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Ah S i k A C i

Optimality theory predicts that natural selection will have favored the behavioral 
alternative that leads to the greatest difference between benefit and cost of performing the 
behavior, i consider two behaviors of the Herring Gull, Larus argent at us, that appeared 
to be suboptimai alternatives to its typical foraging behavior. Gulls frequently drop clams 
onto hard substrates to break them open, but two modifications of this behavior occur: (1) 
dropping onto grass rather than a harder asphalt surface nearby (hereafter referred to as an 
off-road drop); and (2) dropping and catching the clam rather than allowing it to hit the 
ground (hereafter referred to as a drop-catch).

1 tested live hypotheses for the off-road drop, i used experiments to test the 
propositions that (1) clams might open on grassy substrate without breaking or (2) that 
strong wind could blow clams onto the grass. 1 then conducted an observational study to 
further test the wind hypothesis and to test an additional three explanations: (3) the 
presence of other gulls on the road leads less competitive individuals to use a sub-optimal 
but less crowded grass drop site; (4) inexperienced juvenile gulls use the grass; or (5) the 
presence of automobiles causes gulls to drop their clams over grass. 1 observed Herring 
Gull dropping behavior on Jamestown Island, James City County, Virginia to determine 
the effects of wind, age, number of guiis nearby, and presence of automobiles on off-road 
dropping. 1 tested three hypotheses for the drop-catch with an additional observational 
study. The first hypothesis suggests that the drop-catch may be a form of object play in 
birds. Two alternative hypotheses explain this behavior as serving to reveal risk of theft or 
to reposition clams for more accurate dropping.

In my study of off-road drops, i concluded that the presence of vehicles causes 
grass-dropping, and that this effect may be influenced by the age,of the guli. In my second 
study, 1 concluded that the drop-catch is an example of play in birds. The two alternative 
hypotheses were firmly rejected.

These two studies revealed that variations on the typical foraging drop, off-road 
drops or drop-catches, did not lead to a maximum net energy gain, instead of rejecting the 
idea that evolution has shaped animals to behave efficiently, I conclude that my studies 
have revealed constraints on gull foraging not usually included in optimal foraging models.
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Optimality theory predicts that natural selection will have favored the behavioral 

alternative that leads to the greatest difference between benefit and cost of performing the 

behavior. Thus, the animals we observe behaving today should exhibit optimal behaviors, 

such as efficient foraging. This thesis considers two behaviors of the Herring Gull, Larus 

argentatus, that appeared to be suboptimai alternatives to its typical foraging behavior. 

Gulls frequently drop clams onto hard substrates in order to break them open, but two 

modifications of this behavior occur: (1) dropping onto grass rather than a harder aspiiait 

surface nearby (hereafter referred to as an off-road drop); and (2) dropping and catching the 

clam rather than allowing it to hit the substrate below (hereafter referred to as a drop-catch).

Prey Dropping by Gulls

Herring Gulls are generalist carnivores with broad diets. Adults feed in many 

habitats, including dumps, harbors, and intertidal areas, on marine invertebrates, human 

refuse, eggs and young of other sea birds, insects, fish, and small mammals (Pierotti and 

Good, 1994). The exploitation of some of these prey items requires complex foraging 

techniques. Herring Guiis often select their prey based upon ease of handling; e.g., they 

prefer fish over squid and squid over shellfish. However, a shortage of preferred foods 

sometimes requires that they consume prey items that demand more time to process 

(Pierotti and Good, 1994). For example, on Jamestown island in James City County, 

Virginia, Herring Guiis forage on Rangia cuneata, commonly called the wedge clam. 

Eating these hard-shelled clams requires several steps. To consume the edible interior a 

bird must locate the clam, puli it from the mudfiat, properly orient and balance it in its bill, 

fly to an area of hard substrate, hover, drop, assess the condition of the shell, and, if 

necessary, redrop the unbroken clam (Tinbergen, 1961: 28-31; Richardson and Verbeek, 

1986; Richardson and Verbeek, 1987).

2



Frey Characteristics and Adaptations to Predation
3

Considering the amount of time and practice that may be necessary to perform a 

foraging drop efficiently, it might seem curious that a simpler technique is not used. It is 

the strength of the clam shell that makes the force applied by dropping necessary, and this 

strength is conferred by the composition and structure of the molluscan shell. Migrating 

vertically in the substrate may be a behavioral defensive strategy adopted by molluscs in 

response to predation, while thickening or strengthening the shell may be a physical 

adaptation to the same selective pressure . Modifications of the efficient foraging drop, 

such as an off-road drop, are even more baffling when the adaptiveness of the mollusc 

defenses are considered in greater depth.

An effective defensive strategy for clams is vertical migration in the substrate, such 

as that adopted by Mercenaria mercenaria. Though they engage in little horizontal 

movement, these clams move between depths of about 5 mm at high tide and 25 mm at low 

tide. Shorebirds such as Herring Gulls, because of their short beaks, usually feed within 

the top 20 mm of sediment, it might seem a better strategy for the clams to remain at 

depths greater than 20 mm at all times, but sediment clogs the siphons of permanently 

buried clams and prevents them from feeding efficiently (Roberts et al., 1989). This 

potential interference with filter feeding associated with being deeply buried entirely 

prevents some bivalve species from migrating to safety (Richards et al., 1999). in fact, 

when observed for long periods in captivity, Rangia does not seem to migrate at all, and in 

natural mudflats they are never found more than a few centimeters from the surface 

(personal communication, D. Cristol).

The thickness of Rangia shells may represent an alternative defensive strategy to 

burrowing. All molluscan shells are composites of organic and inorganic materials. This 

combination of proteins and minerals may reflect a defense against crushing. Other natural 

structures not subject to crushing, such as the pens of squids and the threads of spider 

webs, incorporate the same proteins but lack the minerals of the clam shell. Combining the 

two components of the molluscan matrix gives it a strength 3,000 times that of the mineral
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crystals themselves (Belcher et al., 1996). The proteins in the matrix not only provide 

structure and strength, but also dictate which inorganic crystals will interact with the matrix 

and where those crystals belong. Only a particular structure and orientation of crystal will 

lower activation energy enough to allow a bond with a given protein to form. The 

specificity of the organic-inorganic bond is established by the organization of the matrix 

such that distinct structural, topographical, and chemical domains are produced across its 

surface (Mann, 1988; Weiss et al., 2000).

The shell of Rangia grows approximately 10 mm in length per year, reaching 

lengths of approximately 8 cm. Clam shells comprise three layers from inside to out: the 

inner complex crossed-lamellar or nacreous layer, the thin pallial myostracum, to which the 

mantle (extension of the body wall which secretes shell) is attached, and the outer crossed- 

lamellar or prismatic layer. The prismatic layer is composed of concentric first-order 

lamellae, parallel to the edge of the shell. Each first-order lamella is composed of second- 

order lamellae, which are arranged like shingles. Small, rod-like, crystalline third-order 

lamellae are joined at their sides to create the second-order lamellae. Growth is most 

evident in the prismatic layer because it occurs quickly in the spring and fall but slowly in 

the summer, resulting in differences in width of concentric first-order lamellae (Fritz et al.,

1990). Having its proteins and crystals organized into these multiple, interwoven layers 

gives the shell additional strength and thickness.

While thickening the shell may effectively defend a mollusc against a shell-crushing 

predator, this strategy will not be effective against a shell-dropping predator. Shell 

modifications necessary to defend a clam against crushing are different from those 

necessary to defend a clam against striking pavement. In addition, selection may never 

favor adaptations against dropping because a thick-sheiled, gull-dropped mollusc that did 

not crack open when dropped on a rock would still be stranded and therefore die anyway. 

Only when some of the prey survive the predator’s attack can resistance to predators evolve 

(Blundon and Vermeij, 1983). Therefore, if Rangia 's shell thickness is a defensive 

strategy, it is likely to have evolved in response to a predator tactic other than prey- 

dropping.



Optimal Foraging Theory and its Relation to Clam-Dropping

While Rangia shells have not become thick in response to gull predation, the tactic 

of dropping prey is likely an adaptation by the gull to the crush resistant traits of the shell- 

just as the clam shell is shaped by natural selection, so too should be the predatory drop 

used by gulls to crack the clam shell. Prey-dropping by birds may be studied in the context 

of optimality theory, a tool used to understand particular examples of adaptation by helping 

to identify the forces and constraints that have influenced the adaptation. The aim of an 

optimality model is to understand the range of possible solutions, or adaptations, to a 

biological problem. When predictions based on optimality are not met by an animaTs 

behavior, insight is gained into the selective forces and constraints that may be acting on 

that animal (Kamil, 1983; Parker and Smith, 1990).

Optimality theory is particularly useful in studying foraging behavior since the 

energy gained from this activity is easily measured and the decisions to be made by the 

animal are readily identifiable. Simple optimal diet selection models assume that: (1) 

animals maximize the average rate of energy intake over the long term, (2) searching and 

exploiting are mutually exclusive, and (3) the prey population is randomly dispersed 

(Ward, 1991). With regard to optimal predatory dropping, a gull must choose an 

appropriate size of clam, hardness of target substrate, height from which to drop the clam, 

and number of times to drop it (Richardson and Verbeek, 1987). This is not meant to 

imply an awareness on the part of the gull that it is acting optimally. Evolution may select 

for simple behavioral rules that govern an animal’s seemingly-complex foraging behavior 

and lead to a match with the theorist’s predictions (Shettleworth, 1998). An optimality 

model of avian prey-dropping predicts that foraging drop height should decrease with an 

increasing risk of loss to another Herring Gull, i.e. when more individuals are present at 

the drop site (Switzer and Cristol, 1999). Further, since clams have the same probability 

of breaking regardless of the number of times they have been dropped (Cristol and Switzer, 

1999), they should be dropped from a constant height when repeatedly dropped, in 

addition, the model predicts that gulls foraging in an area with a variety of dropping
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substrates that differ in hardness should choose harder substrates and drop clams from 

lower heights when over harder substrates. Finally, since all gulls feed on the same type of 

clam, and these clams vary in breakability depending 011 size (unpublished data, D.

Cristol), optimum drop height should be a function of size (Switzer and Cristol, 1999).

Several steps are involved in using optimality theory as a tool with which to analyze 

behavior. First, a question must be posed with regard to the behavior of an animal, e.g., 

why do Herring Gulls occasionally drop clams on grassy substrates? Second, a set of 

plausible (given biological constraints) alternative strategies must be proposed, e.g., 

dropping exclusively on grassy substrate or dropping exclusively on hard substrate. Third, 

an assumption about the measure of Darwinian fitness being maximized, such as rate of 

energy intake, should be made. Fourth, the fitness payoff of each strategy should be 

assessed using assumptions about the costs and benefits of components of that strategy 

(Parker and Smith, 1990). In the case of the foraging gulls, one might develop an equation 

similar to that used in a study of clam foraging by Kelp Gulls (Lams dominicanus).

Clams were burned to measure the gross energy content of each size class. The energy 

cost of prey consumption was then determined using handling time (time taken to crack a 

clam), assimilation efficiency, basal metabolic rate (BMR), and multipliers of BMR for 

flying, searching, and other parts of the handling process (Ward, 1991). The final step in 

using optimality theory involves testing the predictions made by the optimization model 

against the observations.

If the predictions of the model match the observations, the forces shaping this 

strategy may have been properly identified. If not, this strategy may not be adaptive. 

Alternatively, assumptions made about the plausible strategies, the measure of fitness being 

maximized, or the costs and benefits of a particular strategy may be inaccurate. In other 

words, using this equation to determine that dropping exclusively onto a road yields the 

highest rate of energy gain may suggest that this behavior is not adaptive. Alternatively, 

this discovery may indicate that the researcher has not recognized an important factor 

influencing this behavior, such as the energy expended in competing for a drop site on the 

road. This example illustrates that optimality theory is a tool which may be used to
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understand behavior rather than a proposition, as some believe, that animals should always 

be found to act optimally (Parker and Smith, 1990).

Predictions made by optimal foraging theory based on the assumption that animals 

are maximizing energetic efficiency have been supported by studies of various prey- 

dropping birds, in the study, mentioned above, of optimal foraging on clams by Kelp 

Gulls, the birds were found to select clams of a size that ensured net energy gain (Ward,

1991). Herring Gulls along a tidal flat area of the Dutch Wadden Sea dropped only large 

mussels (Mytilus edulis) and American Razor clams (Ensis directus) despite the fact that 

the clam population was a bimodal distribution of small and large individuals (Cadee,

1989). Northwestern Crows (Corvus caurinus) were shown to maximize energy gain in 

their selection of drop height and snail size (Zach, 1978,1979). Similarly, American 

Crows (Corvus brachyrhynchos) demonstrated efficiency in prey-dropping with walnuts. 

They dropped walnuts with harder shells from greater heights, used greater heights when 

over softer substrates, decreased drop height when more potential thieves of prey were 

present, and decreased drop height with repeated drops of an individual walnut, as 

predicted by the fact that walnuts weaken with each drop (Cristol and Switzer, 1999).

Though used in many optimality models, energetic efficiency is only one ultimate 

factor that may control the foraging behavior of an animal. Making an incorrect assumption 

about the currency, or measure of Darwinian fitness, that is being maximized by a behavior 

can lead to a mismatch between an optimality model’s predictions and a researcher’s 

observations (Charnov, 1976). Several species of geese, for example, eat small, empty 

clam shells and pieces of shell. In terms of gaining calories, this behavior seems 

suboptimai. However, this behavior may reflect a nutritional requirement rather than an 

energetic one since it allows female geese to gain scarce calcium prior to egg-laying. Male 

geese engage in this behavior as well but to a lesser degree, suggesting that the shells may 

also be used as grit (Flint et al., 1998). It is important to note that caution is warranted 

when labeling a behavior suboptimai on the basis of its apparently wasting energy.

Whether or not natural selection can optimize behavior depends on the rate at which 

selection can alter genes, the amount of genetic variance and gene flow, the rate at which
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environmental conditions change, and random effects on populations like genetic drift. The 

presence of variation in populations does not discount selection’s ability to optimize. Some
V

amount of variation may be maintained by selection because of changing conditions. For 

example, the strategy of dropping over grassy substrates may have been maintained 

because populations occasionally exploit areas with few patches of hard substrates. 

Alternatively, variation may be selectively-neutral, i.e., selection may not act strongly 

enough in the immediate area of the adaptive optimum to exactly target that optimum 

(Parker and Smith, 1990). For example, selection may only have the capacity to ensure 

that gulls often, rather than always, drop over hard substrates. The off-road and drop- 

catch behaviors that 1 studied seem to be such extreme deviations from normal foraging - 

behavior that they could not immediately be described as adaptive variations. This is 

because both behaviors seemed to result in a complete failure to obtain any food despite 

considerable costs. They must be viewed as sub-optimal until a satisfactory explanation 

can be accepted that demonstrates an adaptive function for either or both.

Variations o f the Foraging Drop

i

Knowing that natural selection has shaped the gulls’ foraging drop to effectively 

crack open clams, it is difficult to understand why Herring Gulls would vary this drop in 

any way. This study investigated two variations of the typical Herring Gull foraging drop 

described previously. I observed both variations while studying winter foraging of 

Herring Gulls. My first chapter examines the dropping of clams into the grass bordering 

the road that leads out to Jamestown island. It would seem that a gull would always 

benefit by dropping its clam onto a hard substrate such as the road, and my preliminary 

observations indicated that they frequently did so; indeed the road is littered with broken 

clam shells. However, while some previous studies support this observation that Herring 

Gulls can selectively drop on hard substrates (lngolfsson and Estrella, 1978; Beck, 1982), 

some older studies have reported that they drop on soft and hard substrates, concluding that 

they are non-selective (Tinbergen, 1961: 28-31; Oldham, 1930). 1 believe that these
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studies are not mutually exclusive; it is my impression that Herring Gulls can drop 

selectively over hard substrates, but that under certain conditions off-road dropping occurs. 

Therefore, 1 decided to look for common factors of the off-road drops, such as the age of 

the dropper or weather conditions, that might reveal a reason for the performance of this 

unusual behavior by some gulls. 1 proposed five hypotheses to explain this behavior. The 

first is that clams may open without the shell breaking when dropped on the grass, 

presumably through stunning; i.e., the grass is just as suitable a foraging substrate as the 

road. The second is that gulls do not make allowances for wind, so clams are blown onto 

the grass during periods of high wind. The third is that only young birds, which have not 

yet learned to forage efficiently, are responsible for the off-road dropping. The fourth is 

that benefits gained by using the hardest available substrate, the road, may be outweighed 

by the costs of competing for that drop site when other gulls are present, making the use of 

a softer substrate, the grass, advantageous for less-competitive individuals. The final 

hypothesis is that gulls drop onto the grass in response to approaching automobiles.

My second chapter examines another type of drop distinct from the typical foraging 

drop. Rather than dropping a clam onto a hard substrate. Herring Gulls occasionally 

dropped clams and then swooped down and attempted to catch them. This behavior was 

sometimes performed with objects other than clams. Gulls sometimes performed this drop- 

catch behavior several times in a row. One of my hypotheses to explain this behavior is 

that it is an example of play in birds. This behavior has been described as play in Herring 

Gulls as well as in other species of birds. However, other studies of the drop-catch in 

birds have mostly been anecdotal and have not tested alternatives to the hypothesis that it is 

play (Wheeler, 1943; Negro et al., 1996; Pandolfi, 1996; Beck, 1982; Terry, 1990; 

Graham, 1988; Warden, 1982, King, 1970; Sauer, 1978; Humphreys, 1964). In Chapter 

2 ,1 investigate this possibility as well as the alternatives that drop-catch behavior is used to 

prevent theft of prey or that this maneuver is performed to reposition the clam for a better 

dropping orientation.



C H A rT ftK  i

During a preliminary study of winter foraging by Herring Guiis on Jamestown 

island in Virginia, i reguiariy found whoie Rangia clams in the grass beside the asphalt 

road leading out to the island. This seemed to violate the predictions of optimal foraging 

theory, which suggest that birds should drop over the hardest available substrate (Switzer 

and Cristol, 1999). Using a hard substrate would result in a gull's flying the shortest 

vertical distance (number of drops times height of each drop) to crack the clam's shell. 

Natural selection should have favored behavior leading to this energetic efficiency, if a soft 

substrate required much less flight, because a hard substrate wasiarther away, then it 

might be more profitable to drop on the soft substrate. However, in the case described 

here, the grass and road drop sites were at the same location, both far from clam-gathering 

areas. Clams dropped on grass were mostly unbroken, and many of them were too far 

from the road to have bounced there following a drop onto the road. They were too 

scattered to have been the middens of otters, raccoons, or muskrats. Further observation 

confirmed that Herring Guiis were dropping the clams onto the grass, despite the fact that i 

had many times observed their using the road as a dropping substrate without error, in 

addition, even though there is more grassy substrate than paved substrate, the amount of

road is large; the section leading from the mainland to Jamestown Island is 4800 m^, while

the mowed grass bordering the road is 32,000 mA The objective of this study was to test

five hypotheses to explain this apparently sub-optimal off-road dropping behavior.

The first explanation for the off-road drop, the Stun Hypothesis, is that gulls use

the grass because it is just as suitable a foraging substrate as the road. Some bivalves, if

dropped from an adequate height onto a soft substrate, may open without the shell

breaking, presumably through stunning. In addition, some molluscs have been reported to

break open on substrates softer than rock (Kent, 1981; ingoifsson and Estrella, 1978). In

order to test whether or not Rangia become stunned and open when dropped on a grassy

substrate, 1 performed an experiment in which i dropped clams onto grass and tested

whether they cracked or became easier to open.
10
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The Wind Hypothesis is that dropped clams are blown onto the grass by high 

winds. Foraging gulls, which track wind activity closely, are likely to fly during these 

periods of high wind because they can gain extra lift and thereby reduce energy expenditure 

when transporting clams (Haney and Lee, 1994; Fritz, 1998; Gilchrist and Gaston, 1997). 

in addition, gulls often fly against strong headwinds, possibly in an effort to steady their 

flight and enhance prey detection (Spear, 1997). Gulls maintain a constant drop height 

over varying wind speeds, but may compensate in other ways, for example, by hovering 

longer before dropping in higher winds (Beck, 1982). 1 conducted an experiment to 

determine the potential horizontal displacement of a falling clam with various combinations 

of wind speed, drop height, and clam size. The Wind Hypothesis predicts that gulls will 

drop clams onto the grass more often during periods of high wind than periods of low 

wind because clams dropped over the road will be displaced far enough by wind that they 

end up on the grass.

The Experience Hypothesis is that only young gulls drop clams onto the grass, 

since they have had insufficient time to perfect foraging skills through practice. Either they 

are indiscriminate with regard to the hardness of the substrate below them, or their aim is 

worse than that of adults. Young animals frequently forage suboptimally because they 

have not yet gained necessary information about their environment and prey through 

experience (Kamil, 1983). 1 analyze the relationship between age and the rate of off-road 

dropping because the ability of a gull to perform a complex foraging task may vary with 

age. A lack of efficiency in complex foraging has been noted in several species of juvenile 

gull. For example, while all aduit Western Gulls {Larus occidentalis) drop clams, only 

about half of the juveniles do. Younger gulls that drop do so more times and from lower 

heights than adults, and they do not adjust height to account for clam weight as do the 

adults (Maron, 1982). Juvenile Herring Gulls have been shown to forage less efficiently 

than adults for prey items that require complex processing. During the first four years of 

their lives, young gulls gradually learned and perfected skills necessary for refuse 

extraction from dumps, such as digging for, recognizing, and extracting edible items 

(Greig et al., 1983; Verbeek, 1977a). Young Herring Gulls, as well as Bonaparte’s Gulls,
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L. Philadelphia, and Ring-billed Gulls, L. delawarensis, plunge-diving for fish and 

starfish gradually improved in their ability to detect, to judge the suitability and accessibility 

of, and to carry prey items. By their fourth year, these young gulls fed nearly as 

successfully as adults and relied less on chasing and stealing for food (MacLean, 1986; 

Verbeek, 1977b). As an additional example, yearling Herring Gulls, as well as Kelp Gulls 

and Glaucous-winged Gulls, L, glaucescens, feeding on shellfish dropped them a greater 

number of times, more often over soft substrates, and from a wider range of heights than 

adults, and were, in the opinion of the researchers, more likely to drop their clams 

accidentally (Siegfried, 1977; ingolfsson and Estrella, 1978; Barash et al., 1975).

Through these studies it can be seen that several factors are involved in performing a 

complex foraging task efficiently, whether the task is prey-dropping or digging for refuse. 

Juvenile gulls must learn and improve foraging skills as they mature. Therefore, age- 

related inefficiency could explain the off-road drop.

Proposing that young gulls perform off-road drops because they cannot yet forage 

efficiently implies that adult gulls do preferentially drop over hard substrates, which may 

seem obvious but has been demonstrated conclusively only in crows. Some older studies 

claimed that crows foraged discriminately over hard substrates but that gulls did not 

(Oldham, 1930; Tinbergen, 1961: 28-31). A more recent study demonstrated that juvenile 

gulls accounted for most of the soft-substrate dropping observed within a population of 

foraging gulls (Barash et al., 1975). Others have stated that gulls are unquestionably 

capable of choosing hard dropping substrates, although relative areas of hard and soft 

substrate were not measured (Siegfried, 1977; Goethe, 1958; Ingolfsson and Estrella,

1978; Beck, 1982). Gulls at Jamestown Island target the road in their foraging drops 

significantly more often (83 % of 504 drops) than would be predicted by chance given the 

amount of hard substrate (3.9 % road and rock) versus soft substrate (96.1 % water, mud,

and grass) available (X^ = 636.7, df = 1, p < 0.0001). Gulls may team gradually to target

the road, though, and the Experience Hypothesis predicts that younger birds should drop 

onto grass more often than adults. Wind speed and direction may exacerbate this inefficient 

dropping behavior, but younger birds are predicted to be less efficient than older gulls
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under any wind conditions.

The Competition Hypothesis is that competition exists for the optimal dropping 

substrate, the road, so some gulls escape competition by dropping on the grass, in keeping 

with this idea, subordinate Herring Gulls fed in suboptimai parts of a garbage dump when 

the degree of competition from dominant birds was higher in a more optimal part 

(Monaghan et al., 1986). Glaucous-winged Gulls defended particular areas of rock used 

as drop sites in Washington (Barash et al., 1975), so it is possible that areas of road were 

defended. This hypothesis predicts that a lower proportion of clams will be dropped into 

the grass when fewer competitor gulls are present. If juvenile gulls as a group tended to be 

the subordinate gulls, then the Competition Hypothesis would make the same prediction as 

the Experience Hypothesis, that the young gulls would do most of the off-road dropping. 

However, i assumed that juveniles were not necessarily the same birds as the subordinates 

because: (1) juvenile Herring Gulls are significantly more likely than adults to attack in 

order to displace an actively-feeding bird; (2) juveniles are just as likely as adults to actually 

displace a feeding bird; and (3) juveniles are just as capable as adults of winning attacks in 

defense of their food (Greig et al., 1983). Thus, the Competition Hypothesis does not 

predict that juveniles will account for a disproportionate number of off-road drops, but 

instead that the subordinate segment of the population will.

Finally, the Automobile Hypothesis is simply that gulls may drop their clams in the 

grass in response to approaching automobiles. Perhaps fear outweighs their feeding 

motivation, causing them to release the clam as they escape the automobile. Distraction by 

the automobile could have the same result. Crows have been shown to avoid cars when 

using roads as surfaces for breaking walnuts, although they did not drop walnuts or leave 

them unretrieved when they fled from oncoming vehicles (Cristol et al., 1997). If this 

hypothesis is correct, gulls should drop clams onto the grass primarily in the presence of 

oncoming cars.
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Determining whether gulls were responsible for clams in the grass

Methods

To determine if off-road dropping, which was not witnessed frequently, occurred 

regularly, 1 conducted an off-road clam survey. On 19 January, 2000, three 14 X 14 m 

sections of grass were marked along both the east and west sides of the road leading across 

the constructed isthmus to Jamestown Island. These sections were initially cleared of 

whole clams and shells and then surveyed on 9 February, 1 March, and 22 March, 2000, 

for newly-appearing whole clams and matching unbroken valves found within 0.5 m of 

each other. Each section was surveyed for 14 minutes each time. Four poles marked the 

comers of each section and a 14-m length of string was laid down parallel to the road and 1 

m from the edge of the section to delineate a 14-m X 1-m swath for collecting. Once this 

swath had been surveyed from north to south and back again the string was moved closer 

to the road by 1 m, delineating a new swath. This was repeated until the entire section was 

cleared.

For each clam collected, 1 recorded size (usually 2.5 - 8 cm from the left to right 

side of one shell) to determine whether a specific size was being dropped in the grass. For 

example, if only the smallest clams were found in the grass, this would lend support to the 

Wind Hypothesis. For each clam, 1 recorded whether the clam was <1 or >1 m from the 

road, because clams within 1 m may have bounced from the road rather than being dropped 

into the grass.

Results

During the two survey dates following the initial clearing, several clams of various 

sizes were collected from both sides of the road at distances greater than 1 m (Table 1).
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This confirms that new clams were regularly appearing in the grass. The observational 

study below confirmed directly that Herring Gulls were dropping clams on the grass. On 

the final survey date, no clams were collected. By this date, the gulls had ceased dropping 

clams altogether and had migrated away from the site, further supporting the conclusion 

that gulls were the source for clams dropped on the grass.

Deter smiling whether wind could blow clams into the grass

Methods

To determine whether the winds occurring at Jamestown Island could blow into the 

grass clams that had been dropped over the road, I used a wind simulator to test how far 

suspended clams could be deflected. 1 performed this experiment with both a large (6.7 cm 

from left to right side of valve) and a small (3.1 cm) clam. To do this 1 suspended a clam 

from the ceiling of a room. Two strings were attached, using duct tape, to the left and right 

side of one valve of the clam (rather than one string attached to the center of the valve, 

which would have allowed spinning). The umbo (the bulge at the hinge of a clam) was 

oriented downward. A fan was situated 61 cm from the uniaped valve. A strip marked off 

in centimeters was situated beneath the clam and extended away from the fan in the 

direction of the wind path in order to measure horizontal displacement of the clam (Fig.l).

The fan was then turned on and adjusted to a desired speed using a rheostat and a 

digital anemometer (Ultimeter 100). Using the anemometer i determined the wind speed at 

the exact spot where the clam would hang. The speed was recorded as the initial speed. 

Once the desired speed was set, the clam was placed in the path of the wind and allowed 

thirty seconds to reach equilibrium position. The horizontal displacement of the clam was 

then recorded, if the clam became stationary, if the clam oscillated, the mean of maximum 

and minimum displacements was used. This procedure was performed twenty times for 

each of four wind speeds representing the range of wind speeds I recorded at Jamestown 

Island: 0, 10, 20, and 25 km/h.
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displacement.
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The horizontal displacement values (W) and the vertical hang distances (D) were then used 

to compute the angle from vertical of a clam’s fall at a particular wind speed, using the 

formula THETA = arcsin W/D (Fig. 1). Using this angle and the range of heights of a 

typical gull drop, which was 3-10 m (unpublished data), the potential horizontal 

displacement of clams dropped by gulls was determined with the formula:

(tan THETA) X height = potential horizontal displacement (W).

Results

Wind speeds in the range recorded on Jamestown Island moved the large clam very 

little from its vertical hang path. At a wind speed of 25 km/h, the large clam was displaced 

at an angle of 3.25 degrees from vertical (Table 2). Dropping for 10 m at this high wind 

speed, a large clam would be horizontally displaced by only 0.57 m (Table 3). At a wind 

speed of 25 km/h, the small clam was displaced at an angle of 6.49 degrees from vertical 

(Table 2). Even dropping for 10 m at a high wind speed, a small clam would be 

horizontally displaced by only 1.14 m (Table 3).

D eterm ining w hether clam s could open on grassy substra te  w ithout 

b reak ing

Methods

To determine whether clams could be opened more easily after being dropped on 

grass, 1 simulated the event with one group of clams and tested whether they could be 

opened more easily than a control group that had not been dropped. I collected 36 clams 

(18 large |5.7 - 8 cm j and 18 small 12.7 - 4.3 cm|) gathered from the mudflat at Jamestown 

Island at low tide on 13 February, 2000. The clams were transported in 15 cm of mud in a 

32-1 ice chest to an outdoor processing area. I manufactured handles on both valves of
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Table 2. Determination of angle at which wind can displace a falling clam.
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W = average horizontal displacement of clams; D = average distance from ceiling to clam; 

THETA = arcsin(W/D) -  angle from vertical of path of wind-blown clam.
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THETA = angle from vertical of path of experimentally wind-blown clam; Predicted W = 

predicted horizontal displacement of a clam dropped by a gull on Jamestown island -  (tan 

THETA) times height of drop.
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each clam, which 1 later used in attempting to pull the clams apart To attach these 

handles, mud was first removed from the surface of each clam using tap water, a rough 

sponge, and paper towels for drying. Clams were then arranged in a row. Each valve of 

each clam was abraded 30 times using coarse grit sandpaper. Seventy-two 15-cm lengths 

of cotton clothesline were cut and 2.5 cm of each end of each length were frayed. Epoxy 

(Ace 60-second) was used to attach both ends of one segment of clothesline to one valve of 

each clam, forming a U-shaped handle for pulling. Pressure was applied to the ends of the 

clothesline for 60 seconds to set the glue. This was repeated for the following three clams 

in the row. The first four clams in the row were then flipped over and treated in the manner 

of the first valve, having U-shaped segments of clothesline attached to them. This was 

repeated for the remaining clams, four at a time. Gluing was done in increments like this 

so that the freshly-mixed epoxy would not harden before being applied to the clams.

After allowing the epoxy to dry for one hour, one segment of clothesline on each 

clam was labeled control or experimental, alternating down the row of clams. Experimental 

clams were dropped and then pulled upon, while control clams were pulled upon without 

having been dropped. Each experimental clam was dropped from a height of 8.5 m onto a 

grassy surface with its umbo oriented down. Immediately after the drop, one loop of 

clothesline was attached to a buried hook; the other loop was pulled upward with a hand­

held scale (Hanson 100-lb.). The greatest force reached before the glue or the clam gave 

way was recorded. The preceding two steps were then performed with a control clam 

(which had not been dropped), alternating between treatments. The total amount of time 

that passed from collection of live clams to last drop was 10 h.

Results

In all cases but one, pulling resulted in ripping the clothesline from the clam rather 

than in opening the clam. The forces reached ranged from 1 to 30 lbs (mean + SD = 8.11 

+ 6.05 lbs, n = 36). One small control clam was pulled open using 13 lbs. of force. 

However, no other clams opened, even with manual manipulation of the clams following
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the pulling procedure. There was no significant difference between the amount of force 

applied to control and experimental clams (mean force: experimental = 15.9 lbs, control = 

21.1 lbs; Wilcoxon rank sum test, Z = 1.479; p = 0.139).

Factors influencing when gulls drop clams on grass

Methods

To test the Experience, Competition, and Automobile hypotheses, 1 observed gulls 

dropping clams under conditions in which experience, levels of competition, or presence of 

automobiles varied. Data were collected from Sandy Bay, east of the isthmus road to 

Jamestown Island, where numerous species of shorebirds and waterfowl forage, including 

five species of gulls. During most low tides, extensive mudflats east of the road are 

exposed, allowing access to Rangia clams, upon which both juvenile and adult Herring 

Gulls feed.

Herring Gull dropping behavior was observed for a total of approximately 30 h 

over 20 d for 1-3 h / day before low tide from November to April in 1998/99 and 

1999/2000. At the beginning of each observation period, 1 first recorded date, time of day , 

and tide level. I then recorded wind speed and direction using the Ultimeter 100 weather 

station in order to determine the relationship between off-road drops and this environmental 

variable. These values were later lumped into 5-km/h categories, which provided 

approximately equal sample sizes for each category of wind speed, 1 updated wind speed 

and direction data every 15 min. I recorded the age and number of Herring Gulls present 

every 30 min. Since passage of a raptor caused gulls to leave the area for approximately 15 

min, creating a gap in the feeding data, 1 noted the presence of eagles or hawks throughout 

each observation period.

The recording of each data point began with a gull acquiring a clam and ended with 

loss or consumption of the clam. 1 recorded the type of drop (Drop, Drop-Catch, or 

Abandon) to allow later comparison of the characteristics of each type. Numbering each
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drop in a drop series performed by one gull allowed me later to select only one drop per 

series to avoid this source of pseudoreplication. Recording the fate of the clam 

(abandoned, lost, stolen, or eaten) allowed me to discern any differences between the 

outcome of an off-road drop versus a foraging drop. 1 determined gull age by the color of 

the plumage, which is distinctive in first- through fourth-year gulls (Pierotti and Good, 

1994), thus allowing me to test the relationship between age and off-road dropping. Using 

the designations in Figure 2 ,1 recorded substrate and, if grass, distance from road where 

clam struck, in order to document off-road dropping. 1 recorded all gulls within 5 m of the 

drop site as being other gulls present at drop site, allowing me to examine the effect of 

competition on off-road dropping. Finally, 1 recorded a car as being present if the car and 

the gull were simultaneously within a 30-m radius of the drop site. This information was 

used to investigate the relationship between off-road drops and the presence of 

automobiles.

Results are presented as number of off-road drops divided by number of on-road 

drops seen under the same circumstances to control for changes in rates of feeding, 

numbers of gulls, or other factors that might affect the absolute number of off-road drops 

observed. Groups were compared using Chi-square tests. Statistical power was calculated 

for non-significant results using a “small” hypothesized effect size of 0.05 (Cohen, 1969).
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Figure 2. Diagram of substrate designations used in recording off-road drops. A & D 
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1 tested the prediction of the Experience Hypothesis, that younger gulls would drop 

their clams on the grass more often than older gulls, by comparing proportion of off-road 

drops, relative to on-road drops, for each age. Consistent with the predictions of the 

Experience Hypothesis, a tendency towards a negative relationship was observed between 

the relative proportion of off-road drops and age (Fig. 3). However, the differences in

relative proportions of off-road drops by age were not significant = 5.1, df = 2, p =

0.077; power = 90 %).

The Competition Hypothesis predicted that a more crowded drop site would cause 

some gulls to drop onto the grass. I tested this by comparing the proportion of off-road 

drops, relative to on-road drops, when there were or were not other gulls present. Off- 

road drops, relative to on-road drops, occurred as often when other gulls were absent

(0.17, n = 122) as when other gulls were present (0.16, n = 141) (X^ ■= 0.1, df = 1, p =

0.725; power = 94 %).

The Wind Hypothesis would explain the presence of clams in the grass as the 

product of high winds that might blow clams off course after they were dropped over the 

road. Drops in the 21-25 km/h and the 26-30 km/h wind speed categories were combined 

due to low sample sizes in each. The data reveal no strong relationship between proportion 

of off-road drops, relative to on-road drops, and wind speed (Fig. 4). The differences in

relative proportions of off-road drops by wind speed were not significant (X^ = 5.3, df =

4, p = 0.255; power = 82%).

Finally, 1 tested the prediction of the Automobile Hypothesis that approaching cars 

might scare or distract gulls, causing them to drop clams onto the grass. A higher 

proportion of clams was dropped onto the grass when cars were present (0.29, n = 31)

than when they were absent (0.15, n = 232) (X^ = 4.1, df = 1, p = 0.042).
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DISCUSSION

A few decades ago, gulls were labeled less intelligent than crows because they did 

not demonstrate as clear a preference for hard dropping substrates (Tinbergen, 1961: 28- 

31). Though comparison of animal intelligence has lost popularity, the issue of whether or 

not gulls are selective in their choice of foraging substrate remains unresolved. This study 

sought to explain the seemingly suboptimal clam-dropping behavior by Herring Gulls onto 

soft grass next to a hard road.

if 1 had shown that the bivalves upon which Herring Gulls feed broke open as 

easily on soft substrates as on hard, as suggested by the Stun Hypothesis;! would have 

had an easy explanation for the gull's unusual behavior.1 'However, when Lexperimentally 

.dropped clams on grass they were not more easily opened than control clams, thereby 

allowing me to reject the Stun Hypothesis. Alternatively, if 1 had found that strong winds 

blow clams off of their drop trajectories and onto the grass, as suggested by the Wind 

Hypothesis, 1 would have had an explanation for the presence of clams in the grass beside 

the road. However, by simulating wind and measuring clam displacement 1 showed that 

not even a small clam dropped from 10 m in 25 km/h winds could be blown more than 1 m 

off of the road, while clams were regularly found at a much greater distance from the road. 

Further, various sizes of clams were found off the road during the initial clam survey, 

indicating that this was not simply a case of unusually small clams being blown onto the 

grass. In addition, there was not a significant increase in the proportion of clams dropped 

on the grass during periods of higher wind.

The Competition Hypothesis explained the presence of clams in the grass as the 

result of less competitive gulls being excluded from the best drop sites. However, the 

proportion of off-road drops was no greater when other gulls were absent than when there 

were 1-18 gulls present. Another possible explanation, the Experience Hypothesis, 

suggested that only the juveniles would drop onto the grass because they did not have the 

skills to drop optimally. 1 found that young birds did not perform significantly more off- 

road drops than expected by chance. However, there was a tendency towards a negative
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relationship between age and off-road drops.

In contrast to the other four hypotheses, the Automobile Hypothesis, that all gulls 

drop clams off of the road in response to approaching vehicles, was supported, albeit 

weakly, by the data. Herring Gulls performed significantly more off-road drops when an 

automobile was present (within 30 m of the drop site) than when none was present.

Perhaps the motivation to avoid “predation” by the automobiles overrides the motivation to 

feed, causing the gull to release the flight-hampering clam. Alternatively, perhaps gulls are 

simply distracted by automobiles and release their clams as a result. This was a surprising 

result for several reasons. First, it has been suggested several times that birds drop hard 

food objects in front of cars so that they will be crushed without effort on the part of the 

birds (Maple, 1974; Grobecker and Pietsch, 1978; Conder and Everett, 1979). Second, 

during several years of casual observation 1 never had the impression that gulls responded 

to cars except to leave the road reluctantly just as the vehicle approached. Herring Gulls 

frequent human-disturbed habitats, cars are numerous at Jamestown, and the strictly- 

enforced speed limit (15 mph) allows birds to escape easily. Therefore, it seemed unlikely 

that the gulls would be frightened or distracted by the presence of a car. After investing so 

much energy into finding and transporting a clam, it seems very odd that birds would 

simply drop their clam onto the grass and leave it there because a car was approaching. 

Crows that were breaking walnuts by dropping them on roads in California also left the 

road as cars approached, but they took their walnuts with them (Cristol et al., 1997), In 

the future, the relationship between off-road drops, age, and automobiles should be 

investigated, although the sample size for drops in the presence of automobiles was too 

small to conduct this analysis in this study. However, first-year gulls do seem to drop on 

the road less often and on a rocky island isolated from cars more often than adults (personal 

observation), perhaps because they have not yet learned that the vehicles on Jamestown 

Island are likely to stop rather than hit them.

This study suggests that the off-road drop is not simply a random occurrence or 

mistake, but is connected to a specific environmental variable, the presence of automobiles, 

and perhaps to age as well. This provides insight into how a species is able to utilize
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human-altered habitats (in this case, a road) and how using such novel habitats introduces 

new variables into a complex foraging behavior. Investigating the off-road dropping 

behavior and discovering a connection between this drop and automobiles reveals more 

about gull ecology than studies which simply dismiss gulls as unintelligent, or dismiss sub- 

optimal behavior as a mistake not yet eliminated by natural selection. Comparative studies 

such as those comparing crows and gulls can be useful in identifying differences in 

behavior and prompting the investigation of the factors responsible for these differences. 

However, using comparison of skills as a direct measure of intelligence should be 

discouraged. Intelligence might be said to reflect how well-suited an animal is for its 

specific environment. Small, perhaps indistinguishable differences in environments may 

render a modification of the seemingly optimal behavior more appropriate in a given 

environment. Perhaps other prey-dropping birds do not require the off-road drop in their 

behavioral repertoire because they are not tame enough to be among humans, and therefore 

they do not drop onto any hard substrate frequented by vehicles, in contrast, evolution 

may already have acted upon the foraging behavior of the gulls, which often live in the 

presence of humans, to make the presence of automobiles an additional factor in the prey- 

dropping equation. Studying more closely the prey-dropping behavior of other birds, such 

as crows, that use roads may reveal that they, too, engage in the off-road drops 

occasionally.



CHAPTER 2

While watching Herring Gulls forage on clams on Jamestown island, James City 

County, Virginia, i occasionally observed the performance of a dropping behavior distinct 

from the typical foraging drop. Rather than dropping a clam onto the road, the gull would 

drop an object and then attempt to catch it before it landed. This behavior would then be 

repeated up to twelve times, in rapid succession.

My first hypothesis to explain this behavior is the Play Hypothesis, that the drop- 

catch is a form of play in gulls. Similar behavior has been labeled play in this and other 

bird species (Beck, 1982; Wheeler, 1943; Terry, 1990; King, 1970; Humphreys, 1964). 

However, as is typical of play studies, most of these reports are anecdotal and do not 

explain their rationale for classifying the behavior as play. In fact, the term "play” is often 

used as a largely untested default explanation when an observer forms the subjective 

opinion that a given behavior has no immediate function (Martin and Caro, 1985). In this 

study, 1 tested eight predictions of the Piay Hypothesis which were based on a 

comprehensive review of piay literature, in addition, 1 tested two alternative hypotheses to 

explain the dropping and catching of prey. The Kieptoparasite Detection Hypothesis is that 

foraging gulls use drop-catches in order to determine whether or not other gulls at the drop 

site are attentive and thus likely to attempt to steal the clams when dropped. The 

Repositioning Hypothesis is that the drop-catch is performed to reposition the clam in the 

gull's beak in order to better orient the clam for a future drop onto a hard surface to break it 

open. The objective of this study was to test these three hypotheses for the function of an 

unusual behavior that has been casually observed and uncritically explained as play in the 

past (Warden, 1982; Sauer, 1978; Graham, 1988; Fandolfi, 1996; Negro et ai., 1996).

The predictions of these three hypotheses follow, and are summarized in Table 4.

31
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Bird Play

Because few animal species are known to play and the concept of animal play has 

been the subject of controversy, it is necessary to consider the documentation of play in 

birds before proposing that the drop-catch is play. The small group of animals reported to 

play is composed of both mammals and birds. Play has evolved mainly in K-selected 

species, or those with a prolonged period of immaturity, dependence on parental care, and 

high ratio of brain to body weight (Bekoff, 1984). In endotherms, families with higher 

total brain mass than expected by body size have more species that play than those with 

relatively smaller brains (Byers, 1999). Species with particularly high visual and 

manipulative capacities may also be particularly likely to play (Fagen, 1976; Pandolfi, 

1996).

Some sources indicate that play in birds is rare, reportedly because their high body 

temperature, small size, and high activity lead to metabolic stress and low energy reserves 

(Barber, 1991; Morris, 1990). Another source suggests that evidence for play is strongest 

in birds (Gould and Gould, 1994). Sixteen out of 27 orders of birds contain primarily 

altricial species, and ten out of twelve orders of birds that do play contain altricial species, 

suggesting a relationship between degree of physical development at hatching and the 

presence of play, in addition, bird orders with more developed forebrains, such as the 

Psittaciformes (i.e. parrots) and the Passeriformes (i.e. songbirds), show more types of 

play (Ortega and Bekoff, 1987).

Corvids (i.e. crows and jays) possibly demonstrate the most complex play in birds. 

They drop and catch objects, engage in an activity which resembles a “king of the 

mountain” game, slide down snowy hills on their backs, and swing themselves around 

twigs or wires, holding on with one or both feet. One explanation for this amount of play 

in corvids is that they occupy a wide range of habitats (Lorenz, 1978). Play may help a 

bird learn about its specific surroundings, such as characteristics of local predators and
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available prey items, allowing inhabitation of a wider range of environments (Ficken,

1977). Gulls also inhabit a wide range of habitats, suggesting that they, too, may have a 

use for play. Play has been reported in members of the avian order Charadriiformes, 

which includes gulls (Ortega and Bekoff, 1987). Herring Gulls were reported to land in a 

river above a water fall, float over the edge, and then fly back and repeat this behavior up to 

21 times in a row (Knappen, 1930). A Pacific Gull (Larus pact ficus) was seen dropping 

and catching a mussel while flying against a strong wind (Wheeler, 1943). Yearling 

Herring Gulls and yearling and juvenile Great Black-backed Gulls (Larus marinas) were 

also seen play-dropping objects, often catching the objects before they hit the ground 

(Beck, 1982).

Of the three categories into which play behavior is normally divided — social, 

locomotor, and object — birds most often engage in object play, or activity directed toward 

an inanimate object (Ortega and Bekoff, 1987; Ficken, 1977). This involves examining 

and testing objects found near the bird such as leaves, twigs, stones, or dead prey. The 

objects may be manipulated in any way, but may not be eaten even if they are edible 

(Morris, 1990; Pandolfi, 1996; Negro et al., 1996; Gould and Gould, 1994). Birds are 

thought to engage in large amounts of object play because they have highly developed 

visual skills and heavy reliance on vision (Ortega and Bekoff, 1987). To give some 

examples. Ascension Frigatebirds (Fregata aquila) catch feathers and seaweed from each 

other in the air while flying together, Inca Terns (Lacosterna inca) drop and retrieve 

objects while flying, and young Montagu’s Harriers (Circuspygargus) and Peregrine 

Falcons (Falco peregrinus) pass vegetable fragments to each other in mid-air (Fagen,

1976; Pandolfi, 1996; Parker, 1975).

Potential Costs of Plav for Birds

Evidence for bird play is not necessarily evidence for Herring Gull play.

Therefore, it will be useful to consider potential costs and benefits of play to Herring Gulls 

to evaluate the likelihood that they would engage in play behavior.
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Play is thought to have several costs, the most obvious being the energy spent on 

the increased effort associated with play and the time spent in play that could be devoted to 

other beneficial activities (Bekoff and Byers, 1992). The drop-catch illustrates these costs 

in that more energy is put into performing the drop-catch than a normal foraging drop, due 

to the extra distance flown during the drops and catches. Also, the time spent drop- 

catching could instead be spent feeding or preening.

in fact, play typically consumes less than 10% of an animal’s total daily time and 

energy expenditure. However, this seemingly small cost may not be representative of its 

importance. First, while some may consider this a minor cost, a study of pronghorn 

{Antitocapra americana) fawns demonstrated that using this small percentage of play 

energy towards growth could result in a 7% increase in fawn weight, enough to affect 

winter survival (Miller and Byers, 1991). Second, even activities requiring low time and 

energy, such as copulating, can have large benefits. Third, time and energy costs should 

be expressed as percentages of the time that the animal is active or of the energy left over 

after the fixed costs of resting metabolic rate (RMR) and growth are accounted for, rather 

than a percentage of the total time or energy budgets (Bekoff and Byers, 1992). The fawns 

mentioned previously used 2% of their total daily energy expenditure on play, but tills 

equaled 20% of their daily energy expenditure beyond RMR and growth (Miller and Byers, 

1991).

Another cost of play is lowered survivorship due to injuries or increased 

susceptibility to predation. For example, in one population of South American fur seals 

{Arctocephalus australis), 84.6% of the pups killed by sea lions were playing at the time 

of the attack, causing them to be distracted and farther from their mothers than non-playing 

young (Harcourt, 1991). Though predation on playing Herring Gulls was never actually 

observed during my study, the presence of eagles and hawks on Jamestown Island makes 

predation a potential cost for Herring Gulls. While these proposed costs of play seem 

reasonable, when all of these potential costs were explored in the play of cheetah 

(Acinonyx jubatus) cubs the overall cost of play was found to be low. Therefore, even if 

the benefits of play are minor, they might still outweigh the costs, preventing play from



being selected against (Caro, 1995).
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Most studies suggest that play has adaptive consequences other than those expected 

of the behavioral systems to which the play is related, e.g. foraging (Barber, 1991). One 

idea is that play has a social function. By causing animals to interact, play allows young 

animals to become lamiliar and bond with fellow group members, compare their 

developmental competence with their peers, establish dominance hierarchies, and maintain 

sibling groups for ease of protection by parents (Vieira and Otta, 1998; Thompson, 1996). 

Challenges have been raised to each of these proposed social functions of play; for 

example, solitary species also play and play may peak before rank-associated encounters 

occur (Smith, 1982). Social functions seem unlikely as an explanation for the drop-catch 

since it may be performed by one gull without another present. A second idea regarding 

the function of play is that it allows the indirect practice of adult activities and the 

development of special skills, such as prey-capture maneuvers (Pandolfi, 1996; Negro et 

al., 1996; Pellis, 1981; Smith, 1982). This is especially useful when direct practice would 

be impractical or would expose the young animal to dangerous prey items or situations. 

Research on coyotes (Canis iatruns) and kittens (Feiis domesiicus) has demonstrated a
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positive correlation was also demonstrated between amount of object play and rates of 

patting, biting, and grasping live prey in cheetah cubs (Caro, 1995). However, other 

studies have shown that animals can still hunt in a species-specific manner and do so 

successfully if deprived of play (Bekoff, 1976). Play in the form of a drop-catch could 

help j uvenile gulls to forage more efficiently by allowing them to practice some component 

ol the foraging drop, such as the steady release of the clam from the beak. A third idea is 

that play is used to develop behavioral flexibility, such that playing animals may not 

necessarily be practicing behavioral patterns that they will use regularly in adulthood but 

rather developing flexibility that will be helpful in making adjustments to novel situations.



36
This flexibility would be particularly useful to animals such as gulls that live in complex 

environments in which conditions change often, affecting habitat use and foraging (Fagen, 

1984; Caro, 1995; Smith, 1982). Finally, a fourth idea is that play promotes physical 

training in young animals. This hypothesis posits that muscle groups which are used 

actively in adulthood might not develop properly without play, in addition to increasing 

muscular strength, play may improve aerobic capacity, endurance, and flexibility (Fagen, 

1976; Fontaine, 1994). Physical training, too, is a possible function for a drop-catch 

performed in play, since flexibility is useful in a complex foraging technique such as prey- 

dropping. A challenge presented to this idea is that many effects of exercise can occur at 

any age and are short-lived, suggesting that general motor training is not the primary 

function of play. One study supporting this view indicated that only two of nineteen 

possible specific effects of elevated motor activity are permanent and available during a 

limited period of time: modification of cerebellar synaptogenesis and modification of 

skeletal muscle fiber type differentiation (Byers and Walker, 1995). Accepting one of these 

explanations does not necessarily mean that the others must be rejected. Play may have 

multiple functions (Thompson, 1996). In addition, different types of play may serve 

different functions (Fagen, 1976).

If play is beneficial, then selection could act to make play pleasurable, thus 

increasing the occurrence of a fitness-improving behavior within a lineage (Bekoff, 1976). 

Data indicate that increased levels of dopamine, endorphins, and norepinephrine are 

correlated with increased levels of play activity (Brownlee, 1997). Dopamine, which 

normally plays a role in reward, motivation, and motor patterning, does not appear 

specifically to target the neural circuitry responsible for play behavior but generally affects 

physical activity, non-selectively affecting play (Siviy et al., 1996). While the ultimate 

reason for playing may be for practice or physical training, the proximate reason may be 

that play is fun for an animal (Millar, 1981).
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The facts that birds have been reported to engage in play behavior many times and 

that some of the potential functions of play would benefit gulls lend credibility to the Play 

Hypothesis. However, this alone is not evidence enough that the drop-catch is play, since 

birds also engage in a variety of other behaviors that might relate to the drop-catch.

Further, the potential functions of play are so broad that nearly any animal could be said to 

benefit from them; Herring Gulls are not unusual in this respect. This generality in the 

potential functions of play makes it easy to see how several play studies could quickly 

classify a behavior such as the drop-catch as play, without rigorous testing. Generality 

within the definition of play has also led to apparent intellectual laziness in the study of play 

and in the investigation of the drop-catch, specifically.

Just as the potential functions of play are so broad that they exclude few potential 

performers of play behavior, the definition of play is so broad that it excludes few 

behaviors. Play behavior takes so many different forms that any definition attempting to 

encompass all of the described examples of play is necessarily extremely general. One 

such definition is “apparently purposeless activity with no immediate adaptive goal, 

utilizing species-typical motor programs that are exaggerated in intensity or number of 

repetitions, or misordered compared to mature behavior, or mixed together with behavior 

appropriate to different contexts” (Gould and Gould, 1994: 164-165). Most of the 

elements of this definition are generally accepted as characterizing play, but the immediacy 

and the degree of benefits conferred by play are debated (Hall, 1998; Burghardt, 1998; 

Fagen, 1981; Bekoff and Byers, 1992; Martin and Caro, 1985). Some definitions state 

that play seems to have no purpose, while others state that play does not seem to serve the 

same purpose as the non-play behavior that it resembles (Pandolfi, 1996; Barber, 1991). 

This generality has made it easy for researchers to dismiss any enigmatic behavior as play 

without rigorous testing, tainting and cluttering this field of research. One example of such 

a behavior is the drop-catch, which is repetitive, utilizes motor programs typical of the 

Herring Gull feeding behavior, and seems to serve no immediate adaptive goal. General



definitions are useful in beginning to investigate a potential play behavior, but much more 

work must follow and, in many studies, does not.

Distinguishing play from other types of behavior might help to further define it. 

Play differs from typical adult behavior in that the behavioral elements which comprise play 

are repeated or misordered relative to the adult behavior or drawn from a variety of different 

adult contexts (Gould and Gould, 1994). Play fighting, for example, differs from mature 

adult fighting in that there is a different sequencing of behaviors. Also, behaviors from 

other contexts, such as copulation and feeding, are incorporated into the play fight (Pellis 

and Pellis, 1998). The drop-catch involves the repetition of the clam-release from the 

typical adult foraging drop, suggesting play. Another difference is that play involves the 

use of signals which are not used in other behavioral contexts. These signals elicit play and 

inhibit aggression in the animal receiving the behavior (Barber, 1991; Heinrich and 

Smolker, 1998). Many play signals are visual, such as the play face of primates, a loose 

jawed grin. Other examples of visual play signals are the play bow of dogs, bears, and 

lions and the locomotor-rotational movements of Giant Pandas (Ailuropoda melanoteuca) 

and Pygmy Hippopotami (Choeropsis liberiensis) (Millar, 1981; Barber, 1991; Wilson 

and Kleiman, 1974). Play signals may also be auditory, chemical/olfactory, or tactile 

(Barber, 1991; Wilson and Kleiman, 1974). Perhaps part of the difficulty of identifying 

play in birds is due to the difficulty of recognizing any changes in their facial expressions 

which might signal play. They may use one of the other modalities of signaling, but no 

play signals in birds have yet been recognized. On the other hand, relaxed body tonus, 

which is often associated with play even though it is not considered a play signal (Pellis, 

1981) is observed in Herring Gulls during the drop-catching behavior.

The next difference between play and mature behavior is that they are 

motivationally-distinct. Rather than trying to kill or injure each other, play fighting animals 

take certain measures to inhibit wounding. Larger or older animals may handicap 

themselves by adopting submissive positions or withdrawing their claws in order to 

prevent scratching (Pellis and Pellis, 1998). At the end of a play bout, no winner or loser 

has been established and there are no changes in dominance status or access to a resource
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(Fagen, 1981). Similarly, in object play, the motivation is not to eat the object. By way of 

example, a tame grison (a small, carnivorous mammal of Central and South America) 

carried and flung around a mouse, stopped to eat a piece of another kind of meat, and then 

continued to play with the mouse, rather than simply killing and eating the mouse. Even 

though the grison was hungry while it was playing and the mouse was a potential prey 

item, it treated the mouse differently from its food object. That the grison’s motivation in 

playing was not to eat was also suggested by the fact that it continued to play with the 

mouse after it had satisfied its hunger with the meat (Fagen, 1981). Similarly, if the drop- 

catch is play, the gulls should not eat the clam immediately after drop-catching.

Although play has been shown to be distinct from mature behavior, it must not be 

mistaken for immature behavior in which a young animal is simply making mistakes in 

attempting to perform adult behavior. Evidence for this is that adults play as well. In 

addition, play may emerge after the mature behavior upon which it is supposedly modeled 

has developed. For example, young coyotes fight to establish a dominance hierarchy and 

then begin to play fight once the hierarchy is stable (Barber, 1991). If the drop-catch is 

play it should be distinct from immature behavior in that adults should occasionally perform 

it and/or juvenile gulls should be capable of engaging in normal foraging behavior. A 

hypothetical example of immature behavior in gulls might be the off-road drop, which, 

according to the Experience Hypothesis (Chapter 1), young gulls perform simply because 

they have not yet learned to forage efficiently by targeting hard dropping substrates.

Finally, play is different from simple practice. The motivations are different, as 

demonstrated by play fighting. Play fighting is not used for fighting purposes but probably 

to form social bonds. Some characteristics of play fighting which cause it to be called play, 

such as the inhibition of wounding, are actually counterproductive to learning to fight well 

(Pellis and Pellis, 1998). in addition, unlike practice, play continues after mastery (Fagen, 

1981). Therefore, if the drop-catch is play, it will be expected to continue even after 

juvenile gulls learn how to perform a foraging drop. Finally, variation increases with time 

in playful behavior, whereas variation decreases with time in non-play behavior as mastery 

is approached through practice (Fagen, 1981). A playing gull will be expected to increase
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the variety in its drop-catch over time, perhaps in types of items dropped or number of 

repetitions over time.

Predictions

Gulis are known to play and have reason to play, and the drop-catch fits a general 

definition of play behavior. Eight specific predictions of the Play Hypothesis (Table 4) are:

(1) I f  the drop-catch is play, a higher proportion o f the total drops performed by 

juveniles will be drop-catches than the proportion performed by older gulls. Typically, 

young animals play more frequently than adult animals, possibly because altricial young do 

not have to devote time or energy to finding food or protecting themselves (Ortega and 

Bekoff, 1987; Hall, 1998; Bekoff, 1984). Precocial species, receiving little parental 

support, do, in fact, play less than altricial species. The order Charadriiformes, which 

contains the gulls, has an equal number of altricial and precocial species, suggesting that 

some but not all members of the order may play frequently (Ortega and Bekoff, 1987). By 

the previous argument, it would seem that adults do not play because they must spend time 

and energy feeding and protecting themselves. Another explanation is that adults maintain 

their physical condition by performing daily tasks so that play is not necessary except in 

times of low predation or high food availability (Fagen, 1976).

(2) I f  the drop-catch is play, it will occur more often than the foraging drop over a soft 

substrate, such as water or grass. Foraging birds aim specifically to break the-shell, and 

therefore require a hard substrate below them, while playing birds would not be motivated 

to access the meat inside the shell, and therefore would not require a hard substrate. That 

foraging gulls target the road was demonstrated by the gulls on Jamestown Island, which 

dropped significantly more often over hard substrate than would be expected by chance 

given the small amount of hard substrate available (see Chapter 1).

(3) I f  this is play, the drop-catch should be performed more, relative to foraging drops, 

when the number o f gulls nearby increases. This is based on the idea that the social 

environment must be conducive to play in order for it to occur. Object play is stimulated in
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both kittens and Japanese monkeys (Macaco, fuscata) by the mere presence of other 

individuals (Egan, 1976; Menzel, 1976). The effect of others may not be as dramatic in the 

gulls, since they are less social than kittens or monkeys. However, this difference in social 

structure may be less relevant with regard to the performance of object play than it would 

be to the performance of social play, which actually requires another individual. This is not 

a strong prediction, but based on a thorough review of the literature it appears that play is 

more likely in the presence of conspecifics.

(4) I f  the drop-catch is play, a higher proportion o f drop-catches, relative to foraging 

drops, will he performed in warmer temperatures than in colder temperatures. 

Environmental conditions must be appropriate for play to occur. In general, habitat type 

and resource availability can affect the amount and type of play (Bekoff, 1984). Poor 

weather will limit play, since an animal may need to conserve energy for thermoregulation. 

Food shortages also limit play, since a malnourished animal is less responsive to stimuli 

within its environment (Fagen, 1982; Bateson et al., 1990). Gulls on Jamestown Island 

would be expected to play less in extremely cold weather, in which they would need to 

devote energy to thermoregulation. The thermoneutral zone for birds, within which they

do not need to devote extra energy to thermoregulation, is approximately 20-35 ° Celsius 

(Calder and King, 1974). Typically, the temperature on Jamestown Island between 

November and April is below this range, although a temperature of approximately 23 °

Celsius may be reached by April. Therefore, with increasing temperature, the proportion 

of drop-catches will be expected to increase consistently or, if the thermoneutral zone is 

reached, to increase and then level off.

(5) The drop-catch, i f  play, will occur at higher average wind speeds than i f  it were 

foraging behavior. Having a favorable environment for play would include having wind 

conditions that are conducive to flight (Bekoff, 1984). Although flight is energetically 

inexpensive in gulls relative to many other species, even their soaring flight requires the 

contraction of the pectoralis muscles to keep their wings steady (Pennycuick, 1975). In 

addition, while gulls have a metabolic rate of only twice their resting value when gliding,



they have a value of 6 -8 times their resting value when engaging in horizontal flapping 

flight, and even more energy is required for the ascending flapping flight required to get 

clams to a droppable height (Phillips et al., 1985: 25-27). Therefore, as wind speed 

increases and birds can rely more on gliding flight, they will have to expend less energy 

than they would in flapping flight. Confirming this idea, a study of the effects of wind on 

the field metabolic rates (FMR) of Northern Fulmars (Fulmarus glacial is), which have 

similar wing-loading and wing-shape to Herring Gulls, revealed that the FMRs were higher 

during lower wind speeds because the birds primarily use gliding flight while foraging 

(Furness and Bryant, 1996). This suggests that the drop-catch, if it is play, would more 

likely be performed during high winds, when flight is less costly. On the other hand, a 

bird performing a foraging drop, in which maximum control would be desirable, might 

drop during lower winds, in which accuracy would presumably be less compromised 

(Beck, 1982). This is not a strong prediction because the magnitude of the effect, or even 

if it would be detectable, is not known. However, available evidence suggests that higher 

wind speeds may promote drop-catches if they are play.

(6) The object dropped, i f  the gull is drop-catching for play, will be a clam less often 

than in foraging drops. Some studies suggest that play occurs most often with familiar 

objects in familiar environments (Fagen, 1976). Others, however, suggest that novelty in 

the environment stimulates play (Pellis, 1981; Wood-Gush and Vestergaard, 1991). If the 

drop-catch is play, it will be expected to occur often with clams but will also occur when a 

novel item is found, such as a piece.of foil or flagging tape. While it might be rare for gulls 

to play with non-food items, since clams are readily available, gulls should never forage on 

non-food.

(7) The object dropped in a drop-catch will not be eaten at the end o f the drop series, 

unlike the object involved in a typical foraging drop. This is based on the idea that the 

motivation for playing is different from the motivation for foraging and objects involved in 

object play are played with rather than eaten (Pellis and Pellis, 1998). Perhaps in a case 

where object play lasted for a significant amount of time, the animal’s motivation could 

eventually change and the play object could ultimately be eaten. However, even the longest
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series of drop-catches lasted substantially less than a minute, so it would seem that 

motivational state would be unlikely to change before the end of a series.

(8) I f  play, the drop-catch series will not lead to the repositioning o f  the clam a 

greater-than-random proportion o f the time (expected = 0.5). This is because 

repositioning of the clam will be expected to be accidental rather than intentional; the clam 

will end up in its original position in the beak by the end of at least half of the series of 

drop-catches. it seems that the favorable position for carrying clams is with the hinge 

outward, allowing the thickest portion of the clam to be held between the tips of the 

mandibles and the thinner, tapered portion to point towards the throat. The shape of the 

beak may not accommodate the clam when held the other way, with the thickest portion of 

the clam pointing towards the throat. In this orientation, the gull may have less control 

over the clam and could drop it or gag on it. Therefore, the Play Hypothesis predicts that 

the clam will not be repositioned more than expected by chance, and it may be repositioned 

less than expected by chance if there is a highly favored position for the clam.

Kieptoparasite Detection Hypothesis

Kleptoparasitism, occasionally called piracy, robbery, pilfering, or food parasitism, 

is when one individual steals the food that another, the host, has obtained (Brockmann and 

Barnard, 1979). The Kieptoparasite Detection Hypothesis is that the drop-catch allows a 

gull to determine if other gulls in the area are attentive and likely to attempt to steal its clam. 

A gull could test the likelihood of theft before actually relinquishing control of a clam by 

dropping the clam as if it were going to allow the clam to hit the ground and then catching 

it. If other gulls at the drop site flew towards the host gull or moved towards the spot 

where the test-dropped clam would have landed, the host could select a different drop site.

Ecological Conditions Favoring Kleptoparasitism

Several ecological conditions facilitate the evolution of kleptoparasitism. First is the
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transportation of large quantities of food. A second is the transportation of particularly 

large or high-quality food items, such as energy-rich prey items like clams. A third is 

predictable feeding habits of the host, such as a parent that regularly returns to a nest with 

food. The feeding habits of the Herring Gulls on Jamestown island are predictable since, 

after acquiring a clam, the birds have the choice of only the rocky island or the road on 

which to drop the clam. A fourth ecological condition that might lead to the evolution of 

kleptoparasitism is the conspicuous carrying of food (Broekmann and Barnard, 1979). For 

example, piracy on bald eagles (Haliaeetus leucocephatus) usually occurred when one 

eagle saw another carrying or eating a fish (Fischer, 1985). A distant observer, and 

therefore, presumably, another gull, can easily see whether or not a gull is carrying a clam. 

Thus, the ecological conditions of the gulls on Jamestown Island favor the development of 

kleptoparasitism, indicating the potential need for an anti-kleptoparasitism mechanism.

Species Characteristics Favoring Kleptoparasitism

Members of the order Charadriiformes, including the gulls, exhibit many ecological 

and behavioral traits which facilitate the evolution of kleptoparasitism in animals. Many 

kleptoparasitic species are opportunists, feeding on a variety of items whenever they 

become available. Many also demonstrate particular aerial agility, in the case of 

kleptoparasitic bird species. In fact, many Charadriiformes, particularly of the gull family 

(Laridae), have been observed kleptoparasitizing other birds. Some gulls obtain a lar ge 

proportion of their diet through stealing (Brockmann and Barnard, 1979). Juvenile 

Herring Gulls, specifically, are less efficient at procuring food themselves and therefore 

resort more frequently to kleptoparasitism (Verbeek, 1977c). Thus, kleptoparasitism is 

likely to occur among the Herring Gulls on Jamestown Island, indicating that putative anti- 

kleptoparasitism measures such as the drop-catch could be necessary,
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Several anti-kleptoparasitism methods have been described in Bald Eagles, but 

these do not include anything resembling the drop-catch. Nine anti-kleptoparasitism 

behaviors observed in Bald Eagles were: feeding away from others, feeding when few 

others are present, selecting small prey items, concealing prey, continuing to act as if 

searching for prey after finding prey, choosing protected eating sites, using aerial 

maneuvers to elude kleptoparasites, using threat displays, and spreading their wings over 

prey items to conceal them (Fischer, 1985). Herring Gulls, too, employ some of these 

methods, such as feeding away from others when several gulls are at the drop site 

(personal observation). This suggests a high risk of theft in this population and a need for 

additional anti-kleptoparasitism mechanisms. Because the ecological conditions and 

species characteristics of the Herring Gulls at Jamestown Island favor kleptoparasitism, an 

anti-kleptoparasitism mechanism would seem to be adaptive.

Predictions

Herring Gulls on Jamestown Island are subject to and required to defend 

themselves against kleptoparasitism, and the drop-catch may serve this purpose. Eight 

specific predictions of the Kieptoparasite Detection Hypothesis (Table 4) are:

(1) I f  the drop-catch behavior is used for kleptoparasitism assessment, a lower 

proportion o f  young than adults will perform it. A study on Kelp Gulls showed that 

juveniles engaged in more kleptoparasitic attacks even though all age classes were equally 

successful in retaining and stealing prey (Steele and Hockey, 1995). This seems to be true 

of the Herring Gulls on Jamestown Island as well (unpublished data, D. Cristol). Adult 

Herring Gulls will be more subject to kleptoparasitism pressure than young gulls and it 

therefore would be adaptive for them to perform the drop-catch more often in order to 

defend their prey items.

(2) The drop-catch will occur, on average, over the same hard substrate as the foraging
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drop. Presumably, the gull will be doing the test drop over an area onto which it actually 

intends to drop the clam.

(3) I f  used in kleptoparasitism risk assessment, the drop-catch will occur a greater 

proportion o f the time, relative to foraging drops, when more potentially- 

kleptoparasitic gulls are around the drop site. Kleptoparasitism is most likely to evolve 

in ecological conditions where there is a large number of hosts. Food-stealing occurs most 

often among colonial seabirds which are packed together on small islands for nesting 

(Brockmann and Barnard, 1979). Although the Herring Gulls on Jamestown Island are 

not nesting, they are often crowded onto the limited sections of hard substrate available ut 

the site, perhaps waiting to parasitize incoming gulls (personal observation). This is the 

critical prediction of the Kieptoparasite Detection Hypothesis.

(4) I f  drop-catches are being used fo r kleptoparasitism assessment, the drop-catch 

will be performed more often in low temperatures, as is the case in foraging, since 

both are used to gain energy through eating. A food shortage occurring during a 

particular year or season or a period of poor weather in which efficient foraging is more 

difficult will prompt kleptoparasitism to occur (Brockmann and Barnard, 1979). Extremely 

cold weather can be viewed as effectively creating a food shortage; the same number of 

clams will be present, but gulls will need extra energy for thermoregulation and thus theft 

will be more costly. With increasing temperature, the proportion of drop-catches will be 

expected to decrease consistently or, if temperatures reach the gulls’ thermoneutral zone, 

decrease and then level off.

(5) A greater proportion o f drop-catches will be observed at lower average wind
f

speeds. As with low temperatures, clams will become more valuable at low wind speeds 

because the energy spent in flight will be greater and thus the motivation to avoid being 

kleptoparasitized will be greater. Supporting this prediction is the fact that kleptoparasitism 

in kestrels increased when the wind was weak, making it unfavorable for flight-hunting 

(Fritz, 1998). Though kestrels and gulls have different styles of flight, gulls also use less 

energy in flight during periods of high wind (Phillips et al., 1985: 25-27) and therefore 

might be expected to kleptoparasitize other birds more in low winds. This is not a strong
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prediction because it is not known whether the magnitude of a putative wind effect would 

be detectable.

(6) The object dropped will always be a clam, since the motivation is to eat the 

dropped object after testing fo r the presence o f kleptoparasites.

(7) The dropped object will be eaten at the end o f a drop series involving a drop-catch 

as often as at the end o f a drop series involving only normal foraging drops. The 

purpose of the drop-catch is to protect the clam from other gulls in order to eat it. The 

motivation for drop-catching is the same as for foraging, namely, hunger.

(8) Finally, as also predicted by the Play Hypothesis, the gulls will not reposition the 

clams in their beaks by the end o f more than half o f the drop-catch series. The clam 

will be randomly reoriented by the end of a given series of drop-catches or will be returned 

to the same favored position in the beak.

Repositioning H ypothesis

The Repositioning Hypothesis is that gulls perform the drop-catch in order to 

reposition the clams in their beaks for a more efficient drop. This assumes that, on 

occasion, gulls extract clams from the mud and begin flying before orienting them 

appropriately in the beak, or lose their grip while flying and must re-orient the clams. 

Because repositioning behavior in prey-dropping birds has never before been studied, only 

three predictions supporting the Repositioning Hypothesis (Table 4) can be confidently 

proposed:

(1) The object involved in the drop-catch will always be a clam, since other prey 

items o f the Herring Gulls on Jamestown Island do not need to be dropped, let alone 

reoriented.

(2) The clam will be eaten at the end o f a drop series involving a drop-catch as often 

as at the end o f a drop series only involving normal foraging drops. The purpose of the 

drop-catch is to orient the clam in a way that will cause it to open more easily when it is



48
dropped, allowing the gull to eat it. Hunger is the motivation for the drop-catch, as it is for 

foraging.

(3) Finally, the critical prediction is that the clam will be repositioned in the gu ll’s 

beak by the end o f a series o f  drop-catches a greater-than-expected (by chance) 

proportion o f the time i f  this drop-catch is performed for the purpose o f repositioning 

the clam for dropping.

METHODS AND RESULTS

Methods

In order to determine the function of a drop-catch behavior distinct from the typical 

foraging drop of the Herring Gull, 1 observed gulls feeding and resting on the mud flats at 

Sandy Bay, east of the isthmus road to Jamestown island. Herring Gull behavior was 

observed for approximately 80 h on 38 days for 1-3 h surrounding low tide periods from 

November to April 1997/98, 1998/99, and 1999/2000.

With a few exceptions, the same variables were measured in this study as in the off­

load drop study described in Chapter 1. In this case, the object dropped was not always a 

clam, so object identity (clam, stick, fish, shell, or other) was recorded for each drop. The 

substrate over which the object was dropped was not limited to grass and road in this 

study; substrate type recorded for each drop also included water, mud, and island (a rocky 

3-m X 8-m island was located approximately 140 m east of the isthmus road). In addition, 

any repositioning of the clam in the beak following a drop-catch was noted. Furthermore, 

air temperature was recorded using the Ultimeter 100 weather station in order to determine 

the relationship between drop-catches and this environmental variable. These values were

later lumped into 5 ° - Celsius categories which provided approximately equal sample sizes

for each category of temperature. Gulls within 5 m of the drop site were recorded as other 

gulls present at drop site. An exception was made for birds dropping on the island, where 

gulls within 2 m of the drop site were recorded as other gulls present. This difference was
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due to the fact that space was limited on the island so gulls using the island for preening, 

rather than interfering with a drop, could coincidentally be within 5 m of the clam-dropping 

gull. In contrast, so much of the road was available that a gull could use a patch without 

being near another gull — if another gull was observed within a 5-m radius of the clam- 

dropping gull, it was likely to be attempting to interfere with the drop. Unlike the previous 

study the presence of cars was not recorded in this study.

Results are presented as number of drop-catches divided by number of typical 

foraging drops seen under the same circumstances. Groups were compared using Chi- 

square tests. Only the first drop in a series of foraging drops performed with the same 

clam was used in the analysis, to avoid pseudoreplication. The drop-catch occurred so 

infrequently that I used the first drop-catch in a series, whether it was the first drop or not. 

Repositioning was recorded as a change in orientation from before the first drop-catch to 

after the last drop-catch in a series.

Results

I began analysis by comparing the proportion of drop-catches, relative to foraging 

drops, for each age. As predicted by the Play Hypothesis and contrary to the 

Kieptoparasite Detection Hypothesis, a negative relationship with age was observed and

the differences in relative proportions of drop-catches by age were significant (X^ ~ 6.4, df

= 2, p = 0.039; Fig. 5). (Due to the low sample size for fourth-year gulls, drops for third- 

and fourth-year birds were combined.) 1 then compared the proportion of drop-catches, 

relative to foraging drops, for soft versus hard substrate. As predicted by the Play 

Hypothesis and contrary to the Kieptoparasite Detection Hypothesis, drop-catches were

more frequent than foraging drops over soft substrate (X^ = 94.8, df -  1, p < 0.0001). 1 

compared the proportion of drop-catches, relative to foraging drops, during the presence of 

0, 1, 2 ,3 , and >4 other gulls. Contrary to a prediction of the Play Hypothesis and the 

critical prediction of the Kieptoparasite Detection Hypothesis, a negative relationship with 

number of other gulls present was observed, with the difference in relative proportions for
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each category being significant (X^ = 113, df = 4, p = 0.023; Fig. 6). In other words, 

although the result was significant, it was in the opposite direction of that predicted by any * 

hypothesis. The proportion of drop-catches, relative to foraging drops, for each 5 °-  

Celsius temperature interval were then compared. As predicted by the Play but not the 

Kieptoparasite Detection Hypothesis, a positive relationship with temperature was 

observed, and the difference in relative proportions of the temperature categories was

significant {X^ = 19.6, df = 6, p = 0.003; Fig. 7). A post hoc comparison revealed a

significant difference between the proportion of drop-catches, relative to foraging drops,

during the warmest and coldest temperature intervals (X^ -  10.7, df = 1 , p -  0.001).

Next, I compared the proportion of drop-catches, relative to foraging drops, for each five- 

krn/h wind interval. As predicted by the Play Hypothesis but not the Kieptoparasite 

Detection Hypothesis, a positive relationship with wind speed was observed, and the

differences in relative proportions by wind speed were significant (X^ -  29.0, df = 4, p <

0.0001; Fig. 8). A post hoc comparison revealed a significant difference between the 

proportion of drop-catches, relative to foraging dops, performed during the highest and

lowest wind speed intervals Q fl = 15.1, df = 1, p < 0.0001). Sixth, in accordance with 

the Play Hypothesis but not the other two hypotheses, 1 found that drops performed with 

clams were drop-catches significantly less often (0.0941, n = 542), relative to foraging

drops, than drops performed with non-clams (0.6176, n = 34) (X^  -  80.2, df = 1, p <

0.0001). Seventh, also in accordance with the Play Hypothesis and not the other two, 1 

found that clams that were eaten at the end of a drop series had been involved in drop- 

catches significantly less often (0.0034, n = 297) than clams that were not eaten at the end

of a drop series (0.1938, n = 258) (X^ = 49.7, df = 1, p < 0.0001). Finally, contrary to 

the critical prediction of the Repositioning Hypothesis, i found that the clam was returned 

to its original orientation by the end of nine out of thirteen drop-catch series and was 

reoriented by the end of only four out of thirteen drop-catch series.
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Table 4. Summary of drop-catch predictions and results.

Kieptoparasite Detection Repositioning Hay Observed
Hypothesis a Hypothesis a Hypothesis a  Relationship **

Age + ■“
(1 —> 4+ yrs)

Substrate +
(soft --> hard)

#  of Others + + (“ )
Present
(0 - >  4+)

Temperature
(-5 - >  25° Celsius)

Wind Speed “ + +
(0 --> 30 km/h)

Object “ “ + +
(clam, other)

Clam  Tate 
(eaten, not)

Repositioned ” + “ (" )
(no, yes)

55 Predicted relationships (slopes) of variables puta lively affecting occurrence of drop- 

catches for the Kieptoparasite Detection, Repositioning, and Play Hypotheses; ** X 2 test

variable except for those in parentheses.
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While play in mammals has been thoroughly studied, play in birds has not been 

well documented and has been said to be rare or absent (Barber, 1991; Morris, 1990). 

Much of the evidence for play in birds is either strictly related to corvids (i.e., crows and 

jays) or is anecdotal (Lorenz, 1978; Graham, 1988; Sauer, 1978; Terry, 1990; Warden, 

1982). Beck (1982) conducted a study in which, measuring some of the same variables as 

those in this study (e.g., wind and substrate), he concluded that the drop-catch behavior 

performed by Herring Gulls was play. However, he did not observe this behavior in 

immature Herring Gulls other than yearlings. Also, as in many studies of play, he did not 

provide and test alternative explanations to the hypothesis that the drop-catch behavior is 

play (Beck, 1982). My study tested multiple predictions of a Play Hypothesis based on 

play research from birds and mammais, as well as the predictions of two alternative 

hypotheses, the Repositioning Hypothesis and the Kieptoparasite Detection Hypothesis, i 

conclude that the Play Hypothesis should not be rejected as an explanation for the drop- 

catch behavior.

Characteristics of the drop-catch behavior itself, the gulls performing it, and the 

environmental conditions surrounding it are ail suggestive of play behavior. Seven of eight 

predictions associated with the Play Hypothesis were supported by observations of the 

Herring Gulls on Jamestown island, while one of eight predictions of the Kieptoparasite 

Detection Hypothesis, and zero of three predictions of the Repositioning Hypothesis, were 

met,

Consistent with the Play Hypothesis, younger gulls performed more of the drop- 

catch behavior than older gulls, in addition, the drop-catch was performed over soft 

substrate significantly more often than foraging drops, suggesting that drop-catches were 

distinct from foraging behavior and not related to food acquisition, increasing wind speeds 

and increasing temperatures increased the chance that a drop-catch would occur, which was 

predicted by the Play Hypothesis since play occurs in favorable conditions, in this case, 

favorable for devoting less energy to flight and thermoregulation. The drop-catch was
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performed with a non-clam significantly more often than other types of drops and the clam 

was eaten significantly less often at the end of a drop series involving a drop-catch than at 

the end of a series not involving a drop-catch, both suggesting that drop-catch behavior is 

distinct from foraging.

One prediction made by the Ray Hypothesis that was not met was that the 

frequency of the drop-catch behavior would increase as the number of other guiis present at 

the drop site increased. Even though object play may be performed solitarily, 1 suspected 

that the presence of other gulls at the drop site would increase the incidence of play since, at 

least in kittens and monkeys, the presence of others encourages animals to play with 

objects (Egan, 1976; Menzel, 1976). However, perhaps the sociality of kittens and 

monkeys influences this effect on play, while other guiis are simply viewed as potential 

thieves of the play object. This finding does allow firm rejection of the Kieptoparasite 

Detection Hypothesis, since increasing the number of potential parasites nearby should 

necessarily increase the threat of kleptoparasitism.

A behavior distinct from the drop-catch was recognized during the observation 

period which more convincingly appears to serve an anti-kleptoparasitism function. 

Arriving at crowded drop sites, guiis often would either turn away and fiy to different drop 

sites or hover as if preparing to drop the clam and then descend to the ground while still 

holding the clam. Occasionally, guiis would ascend and descend several times while 

maintaining their hold on the clams before actually dropping the clams at the site or 

choosing different sites. Guiis also appeared to slightly reposition clams by means other 

than the drop-catch. Several guiis were seen lowering their heads while flying and 

loosening their grip on, rather than completely releasing, the clams. This led to slight 

adjustments in the position of the clams in the beak rather than total reorientation and 

allowed the gulls more control over the clams than would drop-catches.

While the immediate function of the drop-catch, as play, should be to provide 

pleasure to the gull, there are several potential long-term benefits. The drop-catch may 

function to allow young gulls to improve the foraging drop used in opening clams. 

Supporting the idea that play functions to allow a young animal to practice mature behavior.
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this improvement eouid be achieved through their practicing a specific skill (Negro et ai., 

1996), such as releasing the clam a certain way or aiming at some spot below. Instead, the 

drop-catch may allow a gull to practice the recovery of a clam dropped accidentally by itself 

or another gull. Rather than serving a practice function, the drop-catch behavior might help 

young guiis to improve their foraging drop by generally training muscles or establishing 

neural connections, which could give them greater strength or agility later (Fontaine,

1994). Alternatively, the drop-catch might encourage exploration, allowing young guiis to 

learn about potential prey items in their specific environment (Ficken, 1977). The 

observation that non-clams were dropped is consistent with this idea. The drop-catch may 

serve more than one of these functions (Thompson, 1996). 1 have rejected two alternatives 

to the idea that this behavior is play, and found results iargeiy consistent with the idea that 

drop-catch behavior in Herring Guiis is a form of object play. Until other alternative 

hypotheses are proposed, 1 conclude that this behavior is play.
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Simple optimality theory asserts that an animai will perform the behavioral 

alternative that leads to the greatest net energy gain. However, constraints such as 

competition and predation may prevent an animai from doing so. In addition, optimality 

may be measured in currencies other than net energy gain. The purpose of using optimality 

theory to investigate a behavior is simply to better understand the forces influencing an 

animai which lead to its performance of a particular behavioral alternative.

A model of optimal foraging for avian prey-dropping predicts that the Herring Guiis 

on Jamestown Island should drop their clams over the hardest substrate available, i.e., the 

road (Switzer and Cristoi, 1999). However, the gulls were occasionally observed 

dropping onto the grass along the road instead. The prediction that gulls should drop onto 

the hardest available substrate is also violated by the drop-catch behavior I observed, in 

which the clam was caught before it hit the ground. The drop-catch behavior violates a 

second prediction of optimal foraging as well, that the gulls should minimize the height to 

which they fly when dropping prey (Cristoi and Switzer, 1999). By dropping and catching 

clams, gulls are adding tu the tutai height flown without subjecting clams to additional 

striking oi the substrate, in other words, they are wasting energy.

in my study oi olf-road drops, Herring Gulls did not appear to be maximizing net 

energy gain by dropping clams onto the grass. Thus, I proposed several hypotheses to 

explain the sub-optimal behavior. I found a previously-unrecognized constraint affecting 

Herring Gulls that use the roads as foraging substrates, namely the presence of 

automobiles. The birds appear to drop clams as the cars approach, perhaps In a fear 

response to the approach of a potential predator. This result was surprising considering
I n  A t  5 h  .-'I t  h  r**  r» /> ♦ >  I » *■> !  r tJ n t* ./ ' - !
u ia t x  iiavt v/uovi v uu v nav in g  tv/ v/xi tuv iv/aiu ita u iiij;  uu t tu jam tcuuvyrf

while waiting for Herring Gulls to finish tiny remaining pieces of clam in the center of the 

road. Often, gulls would waik rather than fly to the side of the road after finishing 

(personal observation). Also, Herring Gulls are abundant and widely-distributed among 

human populations, feeding on waste from dumps and fisheries and inhabiting man-made 

areas such as pnrKing lots and runways (irfcroiti and fjood, iw T j. i hcrc-lorc, theirf cai oi



areas such as parking iots and runways (Pierotti and Good, 1994). Therefore, their fear of 

or distraction by human activity would not seem to be great enough to merit wasting an 

energetically valuable clam to escape from a slow-moving vehicle. However, three other 

hypotheses were firmly rejected: (1) strong wind blowing the clams onto the grass; (2) 

ciams opening without breaking on grassy substrate; and (3) the presence of other gulls on 

the road leading less competitive individuals to use a sub-optimai but less crowded drop 

site. There was a non-significant trend supporting a fourth hypothesis, the inexperience of 

juveniie guiis; age may influence a gulfs response to automobiles.

in my study of drop-catch behavior, simple optimality theory generally suggested 

that net energy gain was not the currency being maximized by this behavior and that 

acquiring food was not the main motivation behind it. All but one of the predictions of the 

hypothesis that the drop-catch is play, rather than foraging behavior, were supported by the 

data collected from 576 drops. The two alternative hypotheses, that drop-catches serve to 

reveal risk of theft or to reposition ciams for more accurate dropping, were dearly rejected 

by the same data.

Some people unfamiliar with optimality theory believe that if an animal is shown to 

behave in an energetically inefficient manner, optimality theory is proven incorrect. These 

two studies revealed that variations on the typical foraging drop, off-road drops or drop- 

catches, did not lead to a maximum net energy gain, instead of rejecting the idea that 

evolution has shaped animals to behave efficiently, I conclude that my studies have 

revealed two constraints on gull foraging not usually included in optimal foraging models. 

One is that the presence of automobiles may disrupt these animals which are otherwise 

highly adapted for life among humans. The other is that young gulls play in a manner that 

directly conflicts with foraging efficiently. Both studies demonstrate that optimality theory 

provides a useful framework for understanding the constraints on behavior.
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