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ABSTRACT

Observations of methane (CH4) and ozone (0 3) from both the Halogen 
Occultation Experiment (HALOE) and the ER-2 aircraft have been used to examine 
transport characteristics in the lower stratosphere. A modified Lagrangian-mean 
(NMLM) analysis of the HALOE CH4  data provided a unique method for identifying 
so-called transport barriers (i.e., regions where quasi-horizontal transport is inhibited). 
The NMLM technique can be used with any long-lived tracer provided adequate 
spatial coverage can be achieved over a reasonably short period. We show how the 
NMLM technique can be implemented with HALOE occultation data. The HALOE 
data set is unique in providing an extended record ( 8  years) of long-lived tracer data. 
Because the solar occultation sampling pattern of HALOE requires approximately one 
month to achieve near-hemispheric coverage, synoptic hemispheric distributions of 
CH4  are reconstructed through correlations with the United Kingdom Meteorological 
Office (UKMO) potential vorticity (PV) distributions for 7-day periods which are then 
analyzed for the presence of transport barriers. The NMLM technique was used to 
construct area equivalent latitude versus potential temperature cross sections of CH4  

mixing ratio and “equivalent lengths” for these periods. Regions of minimum 
equivalent length are identified as barrier regions where meridional transport is 
restricted. Application of this technique to solar occultation data was validated, and it 
is concluded that the NMLM formalism can be applied to occultation data provided a 
suitable synoptic distribution of PV can be obtained for the desired period.

Unlike the satellite data, the localized in situ data obtained by instruments 
aboard aircraft can not be used in the NMLM technique. Instead, correlations 
between the mixing ratios of various tracer constituents have been used extensively to 
provide insight into the relative roles of chemistry and transport in the lower 
stratosphere. However, tracer correlations include the effects of both chemistry and 
transport and are spatially restricted. Separating the effects of chemistry and transport 
and accurately interpreting tracer correlations is often difficult. We show that 
associating an aircraft tracer correlation with a coincident HALOE NMLM analysis 
provides for a less ambiguous evaluation of the correlations and a more comprehensive 
approach in studying transport in the lower stratosphere. However, if only one analysis 
is employed to deduce information about transport, the NMLM technique is preferred 
to tracer correlations. This analysis not only captures the tracer distribution but also 
identifies the location, shape and strength of transport barriers and mixing regions. A 
disadvantage of the method is that it is implemented using global satellite data of 
lower resolution than the aircraft data. Fortunately, the very good agreement achieved 
between the aircraft and HALOE CH4  and 0 3  correlations in the lower stratosphere 
demonstrate that the satellite data can be used confidently in global analyses.

ix



THE USE OF LONG-LIVED TRACER OBSERVATIONS TO EXAMINE 

TRANSPORT CHARACTERISTICS IN THE LOWER STRATOSPHERE



CHAPTER I

INTRODUCTION

Studies of the lower stratosphere have taken on new importance since (1) the 

discovery of the Antarctic ozone (0 3) hole [Farman et al, 1985] and (2) the 

recognition of midlatitude 0 3  trends [WMO, 1999] over the last two decades. These 

two effects manifest themselves in the lower stratosphere. Here, we use lower 

stratosphere to denote the region from approximately 2 2  km down to the tropopause. 

The need for a better understanding and quantification of 0 3  variability has lead to a 

conscious effort to elucidate the relative roles of chemistry and transport. 

Understanding the role of chemical processes [Salawitch, 1994a,b] is facilitated by 

direct measurements of chemical species such as those obtained from satellites (see 

special issue Journal o f the Atmospheric Sciences, 51, 2781-3108, 1994), airborne 

platforms (see special sections “SPADE and AASE II,” in Geophysical Research 

Letters, 21, 2535-2610, 1994; “Airborne Southern Hemisphere Ozone Experiment/ 

Measurements for Assessing the Effects of Stratospheric Aircraft,” in Journal o f 

Geophysical Research, 102(D3), 3899-3949, 1997), and balloons (see special issue 

Journal o f Atmospheric Chemistry, 10, 99-272, 1990). On the other hand, the 

transport of constituents is more difficult to study in that critical parameters such as 

global wind distributions are not directly measured. However, the distribution of
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chemical species with sufficiently long chemical lifetimes, for example methane 

(CH4 ) and nitrous oxide (N2 0), is determined largely by transport. Therefore, direct 

observation of these species provides much useful information on transport [Jones and 

Pyle, 1984; Roche et al.t 1996; Ruth et al, 1994', Ruth et al, 1997].

Transport in the lower stratosphere is especially intriguing since it is a region 

of exchange with the troposphere [e.g., Holton et al, 1995]. Much of the exchange 

between the troposphere and stratosphere occurs through the Brewer-Dobson 

circulation [Brewer, 1949; Dobson, 1956]. This circulation is a mean meridional 

(zonally averaged) circulation which is characterized by tropospheric air ascending 

across the tropopause in the tropics, drifting poleward in the stratosphere, and 

ultimately returning to the troposphere in the extratropics [Andrews et al, 1987]. The 

transport of trace chemical species by the mean meridional circulation operates on a 

time scale of months [Salby and Garcia, 1990]. In addition to the slow meridional 

drift by the Brewer-Dobson circulation in the lower stratosphere, tracers are also 

subject to large-scale quasi-horizontal motions (planetary-scale disturbances) that 

operate on much shorter time scales [Holton, 1992]. Meridional tracer transport can 

be affected by these motions depending on their strength and frequency. A schematic 

illustrating transport in the lower stratosphere is shown in Figure 1.1. This picture has 

been supported by global satellite measurements of long-lived vertically stratified 

tracers, where the zonal mean mixing ratio isopleths (i.e., surfaces of constant mixing 

ratio) in the meridional plane (latitude-height plane) are displaced upward in the 

tropics and downward in the extratropics [Jones and Pyle, 1984 see Figures 3 and 4].
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Figure 1.1. Schematic cross section illustrating transport in the lower stratosphere. 

Heavy solid lines show the mean meridional circulation (Brewer-Dobson cell). Dotted 

lines indicate quasi-horizontal transport. Crosses show the mean tropopause. EQ, 

equator; S, summer pole; W, winter pole. (After Holton, 1986.)

In the summer stratosphere when the zonal circulation is easterly, the flow is 

generally zonally symmetric (i.e., moving parallel to latitude circles about the pole). 

In contrast, the winter stratosphere is dominated by westerly winds and is dynamically 

more active with the flow making large meridional excursions. Whenever there are 

prevailing westerlies during the fall to spring periods, tracers are subject to rapid 

quasi-horizontal transport and mixing by propagating and eventually breaking 

planetary-scale Rossby waves. This phenomenon makes studying transport in the 

winter stratosphere more interesting. The winter hemisphere of the lower stratosphere
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can be divided into at least three regions: ( 1 ) the low-latitude tropical region, (2 ) the 

midlatitude “surf zone” as described by McIntyre and Palmer [1983], and (3) the high- 

latitude polar region. In the tropical region, vertical upwelling from the troposphere is 

the main mechanism for transport of trace constituents into the stratosphere. Observed 

tracer distributions show that this region is somewhat isolated from the midlatitude 

region and that transport out of or into the tropical stratosphere varies with season, 

altitude, and phase of the quasi-biennial oscillation (QBO) [e.g., Trepte and Hitchman, 

1992; Murphy et al, 1993; Volketal., 1996; O ’Sullivan andDunkerton, 1997]. Chen 

et a l [1994] and Waugh [1996] also show that there are northern and southern 

hemisphere asymmetries in the lateral transport out of the tropical region. Similar to 

the tropical region, the polar region is somewhat sequestered from the midlatitude 

region but only when a polar vortex exists in the winter hemisphere. Vertical 

downwelling from aloft is the primary transport in this region accompanied by varying 

degrees of lateral inmixing from and outmixing to lower latitudes [e.g., Murphy et al., 

1989; Pierce and Fairlie, 1993; Dahlberg and Bowman, 1994; Plumb et al., 1994]. 

There are seasonal, altitude, and hemispheric differences in transport, most notably 

associated with the extent of the polar vortex [e.g., Schoeberl et al., 1992; Lahoz et al., 

1995]. The so-called surf zone is a region affected primarily by the propagation and 

breaking of planetary-scale Rossby waves. From late fall to early spring when the 

zonal circulation in the extratropics is westerly, Rossby waves will propagate causing a 

flow which transports constituents quasi-horizontally, meridionally across latitude 

circles. If the amplitude of the waves (or disturbances) becomes sufficiently large, the 

waves “break” [McIntyre and Palmer, 1983] and irreversibly deform the tracer
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isopleths with resultant quasi-horizontal mixing and a net redistribution of long-lived 

tracers. Generally, the surf zone is confined to middle latitudes, bounded by the edge 

of the polar region (the polar vortex edge) and the edge of the tropical region. 

However, the latitudinal extent this region occupies varies seasonally according to the 

degree of mixing [McIntyre and Palmer, 1983; Remsberg and Bhatt, 1996]. Mixing in 

the northern hemisphere winter is much more intense than in the southern hemisphere 

winter due to the hemispheric differences in the surface topography which forces the 

planetary waves. A schematic of transport and mixing in the winter hemisphere of the 

lower stratosphere is shown in Figure 1.2.

As mentioned before, the distributions of long-lived tracers reflect large-scale 

transport. The relatively recent abundance of satellite data such as constituent 

observations obtained by the National Aeronautics and Space Administration (NASA) 

Upper Atmosphere Research Satellite (UARS) provides an excellent opportunity to 

study changes in tracer distributions and identify a variety of transport regimes. 

Unfortunately, the lower stratosphere is somewhat difficult to study using satellite 

observations. These measurements tend to have large uncertainties and often have 

retrieval difficulties because of cloud interference, particularly in the tropics. Airborne 

observations such as those obtained by the NASA high-altitude ER-2 aircraft also 

provide extremely useful high-resolution constituent measurements for studying 

transport in the lower stratosphere. In situ observations are more precise and accurate 

than the satellite observations, but these data are not global and span short time 

periods.
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Figure 1.2. Schematic of transport and mixing in the winter hemisphere of the lower 

stratosphere. Thin lines are isentropic or constant potential temperature surfaces 

labeled in kelvins. The tropopause is shown by the thick line and where this line is 

discontinuous denotes the tropopause break region. Stratosphere-troposphere 

exchange can occur quasi-horizontally in this region. The wiggly double-headed 

arrows denote quasi-horizontal mixing. The broad arrows show transport by the 

global-scale circulation. (After Holton et a l , 1995.)

Aircraft data have been used extensively to construct correlations between 

various tracer constituents. Such studies have provided much useful insight into the 

relative roles of chemistry and transport in the lower stratosphere. For example, tracer
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interrelationships have been used to identify 0 3  loss and the degree of polar vortex 

isolation [Proffitt et al, 1989a, 1990], to identify denitrification and dehydration 

[Fahey et al, 1990a,b], to quantify transport between tropical and middle latitudes 

[Volk et al, 1996], to examine mixing of polar vortex air into middle latitudes [Waugh 

et a l, 1997], and to infer transport rates [Boering et al, 1994], generally by 

interpreting the structure and slope of correlation diagrams (i.e., scatterplots of one 

tracer versus another). Plumb and Ko [1992] argued that a scatterplot of the mixing 

ratio of one tracer versus another will collapse to a compact curve provided that the 

species chemical lifetimes and vertical transport time scales are much longer than 

quasi-horizontal transport time scales (i.e., species in climatological slope 

equilibrium). The mixing ratio isopleths of two such tracers are parallel and share a 

common shape in the meridional plane, with a characteristic poleward-downward 

slope resulting from a balance between the slope steepening effects at low latitudes of 

vertical advection by the mean meridional circulation and the slope flattening effects 

in the extratropical region of quasi-horizontal mixing by large-scale waves [Holton, 

1986a,b; Mahlman et al, 1986]. If the tracer correlation is linear, as well as compact, 

then the species are in gradient equilibrium. In order for this regime to occur the 

species chemical lifetimes must be very long relative to the vertical transport time 

scales. Transport processes being much faster than chemical processes assures that the 

spatial separation of the isopleths of the two tracers, as well as their shape, share a 

common form [Plumb and Ko, 1992]. Correlations between mixing ratios of any two 

tracers that are long lived are expected to exhibit compact and linear relationships 

without regard to latitude or altitude. However, Murphy et al [1993] showed that
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tracer interrelationships are not globally uniform and can be substantially different in 

distinct regions, and in fact, tracer correlations differ in the tropics from those of 

middle latitudes. Consequently, Plumb [1996] states that because mixing is not 

uniform globally, slope equilibrium does not exist globally even for long-lived tracers, 

and tracer correlations are compact separately in the isolated tropical region and in the 

midlatitude surf zone. Therefore, using correlation diagrams for diagnostic purposes 

is somewhat limited due to complicated interpretation (and sometimes speculation) of 

what influences the changes in tracer distributions.

The modified Lagrangian-mean formalism developed by Nakamura 

[Nakamura, 1995, 1996, 1998; Nakamura and Ma, 1997; Nakamura et al, 1999], 

hereafter NMLM, is another technique used to examine stratospheric tracer 

morphology, but can utilize global satellite or model data. The NMLM model is a 

direct descendant of the Butchart and Remsberg [1986] model which uses areas 

enclosed by tracer isopleths on a given isentropic (constant potential temperature) 

surface as a coordinate. In essence, quasi-conservative tracers are used as Lagrangian 

coordinates. Potential temperature acts as the vertical coordinate and the mixing ratio 

of any stratospheric tracer that has a long chemical lifetime and has coherent 

meridional gradients on isentropic surfaces acts as the meridional coordinate 

[Nakamura, 1995]. Since such tracers on isentropic surfaces typically have contours 

that form quasi-concentric loops of monotonically increasing or decreasing mixing 

ratio around the polar region, the tracer mixing ratio is mapped as a function of the 

area that its contour encloses at any given time, creating a one-to-one tracer-area 

relationship [Nakamura, 1998]. Consequently, the NMLM diagnostics are viewed in
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area-potential temperature coordinates and primarily reflect tracer gradients resulting 

from differential isentropic mixing and the mixing efficiency [Nakamura and Ma, 

1997]. Previously, the NMLM method has been applied using synoptically mapped 

N20  data observed by the Cryogenic Limb Array Etalon Spectrometer (CLAES) 

instrument aboard the UARS and N20  data simulated by the Geophysical Fluid 

Dynamics Laboratory’s SKYHI general circulation model [see Nakamura and Ma, 

1997; Nakamura, 1998; Nakamura et al, 1999]. Here, synoptic is used to denote a set 

of data that is defined at all spatial positions for discrete times (once daily in this case). 

These analyses show that the NMLM technique provides a unique method for 

identifying so-called transport barriers (i.e., regions where quasi-horizontal transport 

is restricted) and distinguishing the surf zone from the polar and tropical regions.

The goal of this research is to study transport in the lower stratosphere using: 

(1) aircraft data in tracer correlations; (2) satellite data with the NMLM technique. 

Long-lived tracers such as CH4  and N20  are essential to this research since their 

distributions are governed primarily by transport. Unfortunately, not a lot of global 

data for these species are available. The CLAES N20  data are limited to a time period 

from October 1991 to May 1993. However solar occultation remote sensing 

measurements of CH4  have been obtained since October 1991 by the Halogen 

Occultation Experiment (HALOE), also aboard UARS. Because of the sparseness and 

asynoptic character of solar occultation sampling, these data were deemed unsuitable 

for the NMLM method [Nakamura et al, 1999]. However, global tracer distributions 

of the HALOE CH4  can be reconstructed using the synoptic United Kingdom 

Meteorological Office (UKMO) global potential vorticity (PV) distributions. Here,
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the idea is to exploit the correlation between PV (a long-lived dynamical tracer whose 

global distribution is known) and CH4  to produce a synoptic distribution of CH4. It is 

shown that the reconstruction technique developed can be applied legitimately to any 

asynoptic data set for a long-lived tracer, provided that near-hemispheric data coverage 

is obtained within approximately 30 days. The NMLM formalism is then applied to 

the HALOE reconstructed CH4  field to facilitate interpretation of tracer transport and 

mixing in the lower stratosphere. The NMLM results are then compared to aircraft 

tracer correlations for consistency in interpretation and conclusions.

Organization of this thesis is as follows. A general description of the data used 

in the analyses is given in Chapter II. Chapter III describes the NMLM diagnostic 

formalism including the formulation of the transport equation in the area coordinate, 

application to data, and algorithm testing. Chapter IV focuses on applying the NMLM 

formalism to very sparse, asynoptic tracer data. The procedure to reconstruct tracer 

distributions using synoptic PV data is formulated and the validity of the approach is 

demonstrated. Results from the NMLM analysis of HALOE reconstructed CH4  

distributions are discussed. In Chapter V, two different aspects of tracer correlations 

(CH4  and O3 ) obtained independently from in situ instruments aboard the ER-2 

aircraft and from the HALOE instrument aboard the UARS are discussed. First, the 

validity of using HALOE data in global transport analyses is assessed using 

intercomparisons of the aircraft and HALOE tracer correlations. Then, interpretation 

of aircraft tracer correlations is shown to be less ambiguous when complemented with 

a HALOE NMLM analysis. Finally, in Chapter VI, a summary of the research is 

presented, including an assessment of the transport analyses.



CHAPTER II

DATA DESCRIPTION

Long-lived constituents are useful in studying transport. Collins et al. [1993] 

demonstrated that CH4  and N20  are equally effective tracers of lower stratospheric 

motion. Because they are chemically inert in the lower stratosphere, their distributions 

are primarily determined by transport. Chemical lifetimes in the lower stratosphere of 

about 30 years for CH4  and about 100 years for N20  are long with respect to their 

transport lifetimes [Brasseur and Solomon, 1986]. Both CH4  and N20  have sources at 

the Earth’s surface and are well mixed in the troposphere. In the stratosphere, their 

mixing ratios decrease with height and generally decrease from the equator to the 

poles. Also, 0 3  has a long enough chemical lifetime (~1 year) in the lower 

stratosphere to be an effective dynamical tracer. An exception to this occurs in the 

chemically perturbed polar vortex, especially the southern hemisphere winter polar 

vortex. Ozone’s primary source is in the equatorial region of the middle stratosphere. 

In the stratosphere, ozone increases with altitude up to a maximum mixing ratio 

occurring approximately at 30-38 km depending on latitude and then gradually 

decreases with altitude.

In this study, we use both aircraft and satellite observations of long-lived 

constituents to examine transport in the lower stratosphere. Specifically, satellite CH4

12
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data are used in the NMLM technique and satellite and aircraft CH4  and O3  are used in 

correlations. It is essential that the aircraft and satellite data overlap in time and space 

in order to check the consistency of what the tracer correlations and NMLM analyses 

reveal about transport. The aircraft data are available for a number of years and 

locations, however not a lot of overlapping satellite data are available for these time 

periods. Nakamura implemented his modified Lagrangian-mean technique with 

CLAES N20  data, but these data are limited in time from October 1991 to May 1993. 

On the other hand, HALOE CH4  data have been obtained from October 1991 to the 

present. Unfortunately, the solar occultation sampling pattern of HALOE requires 

several weeks to obtain near-hemispheric coverage, and the NMLM assumptions make 

these data unsuitable for use in this technique. Consequently, we exploit the close 

relationship between potential vorticity and long-lived tracers and use a potential 

temperature-potential vorticity (PT,PV) coordinate transformation and reconstruction 

to obtain synoptic hemispheric distributions of HALOE CH4. The NMLM technique 

is then implemented using the HALOE reconstructed CH4  distributions. These 

NMLM results are then compared to the aircraft tracer correlations for consistency in 

interpretation and conclusions.

2.1 Satellite Data

The wealth of data provided by NASA’s UARS has substantially advanced 

stratospheric research in recent years. The UARS was launched by the Space Shuttle 

on September 12, 1991 and two of its four instruments which measure chemical 

species, specifically the HALOE and the Microwave Limb Sounder (MLS)
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instruments, continue to obtain measurements. The near-circular orbit of UARS at 

585 km altitude inclined 57° to the equator combined with the instrument 

measurement characteristics produces nearly global coverage (that periodically favors 

the northern and southern hemispheres) throughout the stratosphere and mesosphere 

[Reber, 1993]. For this research, the extensive spatial and temporal coverage far 

outweigh the disadvantages associated with satellite measurements such as low 

horizontal and vertical resolution, and large uncertainties and retrieval difficulties due 

to clouds in the lower stratosphere.

2.1.1 HALOE CH4 and 0 3

The HALOE instrument [Russell et al., 1993] aboard the UARS conducts 

remote sensing measurements to obtain vertical profiles of CH4, O3 , and other trace 

constituents. The instrument employs the solar occultation technique to obtain sunrise 

and sunset measurements of constituents, aerosol extinction, and temperature, all as a 

function of pressure. Species concentrations are inferred by measuring solar 

attenuation by the limb of the atmosphere as the Sun rises and sets relative to the 

satellite. Mixing ratios of CH4  and 0 3  are obtained using a gas correlation channel 

operating in the 3.4 pm region and a broadband radiometer channel centered near 9.8 

pm of the v3  band, respectively.

HALOE has made observations since October 1991 and continues to operate 

flawlessly, but in recent years it alternates on/off times with the MLS instrument 

because of the power constraints that occurred as a result of the loss of one battery and 

problems with the solar panels on the spacecraft. The occultation technique and the
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spacecraft orbital parameters result in approximately 15 sunrise and 15 sunset events 

each day. On a given day these events occur at approximately constant latitude spaced 

about 25° apart in longitude. The sunrise and sunset events typically occur in opposite 

hemispheres [Russell et al, 1993 see Figure 10]. The precessing orbit allows HALOE 

to sample its full latitude coverage in approximately 36 days and from about 80° south 

to 80° north over the year [Russell et al, 1993 see Figure 8 ].

On a clear day, the altitude range extends down from 75 km to about 10 km for 

CH4  and from 90 km to about 5 km for 0 3. The vertical resolution is estimated to be

3.5 km for CH4  and 2.3-2.5 km for 0 3, based upon retrieval simulations conducted by 

members of the HALOE science team. At altitudes between 15-50 km the horizontal 

resolution is approximately 6  km x 300 km; that is, the horizontal field of view 

perpendicular to the line of sight is about 6  km and averages along a limb path of 

approximately 300 km (L.L. Gordley, HALOE coinvestigator, personal 

communication, 1999). The version 18 HALOE data are used in this research. The 

estimated total error (accuracy) is obtained by calculating the root-sum-square of all 

the random and systematic error mechanisms. Accuracy estimates (L.E. Deaver, 

HALOE science team, personal communication, 1999) for CH4  measurements are 

somewhat smaller than those published in Park et a l [1996, see Table 1] for version 

17, which vary from 15% at 40 mbar (~22 km) to 19% at 100 mbar (~16 km). 

However, accuracy estimates for 0 3  measurements should be very nearly the same as 

those for version 17 which vary from 18% at 40 mbar to 30% at 100 mbar [Bruhl et 

al, 1996 see Table 1]. In the 40-100 mbar region, the precision is better than 11 % for 

both CH4  and 0 3  measurements. At altitudes below the 100 mbar level, the estimated
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errors in CH4  and O3  are variable and greater than those at the 100 mbar level.

2.1.2 CLAES N20

The CLAES instrument [Roche et al., 1993] aboard the UARS obtained 

vertical profiles of N20  for 19 months, from October 1, 1991 to May 5, 1993. The 

CLAES lifetime was limited by the finite amount of stored cryogen used to cool the 

instrument. However, CLAES is a limb sounding instrument whose measurements 

provide near-hemispheric coverage per day. The NMLM formalism in this study is 

applied to the N20  data strictly to test the software by duplicating Nakamura’s results 

[Nakamura and Ma, 1997]. Also, these data were very useful in testing the logic and 

feasibility of reconstructing constituent distributions using the UKMO PV 

distributions. Since the spatial distributions of both CH4  and N20  are determined 

mainly by transport and have very similar morphology, results of the NMLM analyses 

using these two species are expected to be comparable.

The CLAES N20  data used are the version 7, level-3AL mapped products 

(data interpolated to a common UARS grid and latitude referenced). The 

measurement characteristics of these data are detailed by Roche et al. [1996].

2.2 Aircraft Data

In situ measurements obtained by NASA’s high-altitude ER-2 aircraft provide 

high-resolution, and highly precise and accurate constituent distributions along the 

aircraft flight path. ER-2 sampling during the 1991-1992 Airborne Arctic 

Stratospheric Expedition II (AASE II), 1992-1993 Stratospheric Photochemistry,
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Aerosols and Dynamics Expedition (SPADE), 1994 Airborne Southern Hemisphere 

Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft 

(ASHOE/MAESA), 1995-1996 Stratospheric Tracers of Atmospheric Transport 

(STRAT), and 1997 Photochemistry of Ozone Loss in the Arctic Region in Summer 

(POLARIS) campaigns renders an extensive set of in situ CH4  and 0 3  measurements. 

These data range in altitude from the ground to approximately 21 km and cover a wide 

range of latitude and season. In the time period from August 1991 through September 

1997, the ER-2 aircraft accomplished a total of 191 flights, of which 95 flights 

successfully obtained CH4  and 0 3  data from the Aircraft Laser Infrared Absorption 

Spectrometer (ALIAS) and dual-beam UV-absorption photometer instruments, 

respectively. The flights included test flights from Ames Research Center, California; 

transit flights to/from the deployment sites; and flights from and returning to the 

deployment sites.

2.2.1 ALIAS CH4

The ALIAS instrument is a scanning tunable diode laser spectrometer [Webster 

et al, 1994] which directly measures CH4  from the ER-2 aircraft, using high 

resolution laser absorption at infrared wavelengths in a multipass cell. Basically, this 

instrument transmits light emitted from lasers operating in the 3.4 to 8  pm wavelength 

range into a 1 meter long absorption cell containing an atmospheric air sample. After 

traversing 80 passes (80 meter path length) of the cell, the beams exit to detectors 

which determine the amount of radiation transmitted through the absorption cell and 

thus creating an absorption spectrum. The concentration of CH4  is then determined
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using this spectrum and the laboratory deduced CH4  absorption cross section. For a 

response time (data rate) of 3 seconds the precision is 1 % for the in situ CH4. The 

reported accuracy of the measurements is 5%.

2.2.2 Dual-Beam UV-Absorption Photometer 0 3

A dual-beam UV-absorption photometer [Proffitt and McLaughlin, 1983; 

Proffitt et al, 1989b] was used to obtain in situ 0 3  measurements from the ER-2 

during several aircraft campaigns. This instrument transmits 254 nm radiation to 

detectors through two identical absorption chambers, one containing a sample of 0 3  

rich air and the other containing air scrubbed of 0 3. Since 0 3  strongly absorbs 254 nm 

radiation and its absorption cross section is well known, 0 3  number density is readily 

calculated after comparing the signals detected in each chamber. Subsequently, the 0 3  

mixing ratio can be determined using the chamber temperature and pressure 

measurements. Nearly continuous measurements are made by systematically (once 

every 1 0  seconds) interchanging the 0 3  rich air sample and the air sample free of 0 3  

between the two chambers. For a response time of 1 second the precision (minimum 

detectable concentration) for 0 3  is 1.5 x 101 0  molecules/cm3, approximately 1% of a 

typical stratospheric abundance. The reported accuracy of the measurements is 3% 

plus precision.

2.3 UKMO PV Data

Ertel’s potential vorticity [Andrews et al, 1987], is a quasi-conservative tracer 

in the lower stratosphere. That is, PV remains approximately constant following the
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motion of an air parcel in adiabatic frictionless flow and is an excellent tracer for 

motions on time scales of less than a few weeks. Analytically [Holton, 1992], PV is 

the absolute vorticity (i.e., component of relative vorticity normal to an isentropic 

surface plus the Coriolis parameter which is twice the local vertical component of 

Earth’s angular velocity) multiplied by a term which is regarded as a local measure of 

the depth of the layer between two isentropic surfaces. In a sense, PV is a measure of 

the ratio of the rotation of a fluid column to the depth of the column and is the 

compressible fluid-dynamical analogue of conservation of angular momentum for 

solid body rotation. Since the isentropic distributions of this quasi-conservative tracer 

are similar to CH4  distributions, PV is used in this research to construct synoptic 

hemispheric distributions of HALOE CH4.

The UKMO PV data used in reconstructing HALOE CH4  distributions are 

accessed from a NASA Langley Research Center archive of PV on isentropic surfaces. 

The PV data are calculated from temperatures and winds obtained from daily 

assimilated analyses produced by the UKMO for the UARS project. The assimilated 

temperatures and winds are available on 22 UARS pressure surfaces ranging from 

1000 mbar up to 0.3 mbar, on a 2.5° latitude grid ranging from 88.75° south to 88.75° 

north, and on a 3.75° longitude grid ranging from 1.875° to 358.125° east. These data 

and details of the UKMO data assimilation system are described by Swinbank and 

O ’Neill [1994].

Potential vorticity is calculated at the UARS pressure levels and then linearly 

interpolated onto 35 isentropic surfaces ranging: 240 to 400 every 10 K, 400 to 550 

every 25 K, 600 to 1000 every 100 K, and 1000 to 2400 every 200 K. The PV latitude
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and longitude grids are the same as those for the assimilated data. Daily files of 

synoptic PV are usually archived on a quarterly basis and are available from October 

17, 1991 to very nearly the present time (R.B. Pierce and V.L. Harvey, personal 

communication, 1999).



CHAPTER III

MODIFIED LAGRANGIAN-MEAN DIAGNOSTIC FORMALISM

Nakamura developed a two-dimensional modified Lagrangian-mean technique 

of tracer transport in the stratosphere using potential temperature and the area enclosed 

by contours of constant tracer mixing ratio on isentropic surfaces as vertical and 

meridional coordinates, respectively [Nakamura, 1996]. The NMLM formalism is an 

extension of the Butchart and Remsberg [1986] area diagnostic and casts tracer 

transport in a Lagrangian vertical cross section revealing regions of varying degrees of 

quasi-horizontal isentropic transport and mixing.

On isentropic surfaces, the hemispheric distributions of long-lived tracers 

generally form quasi-concentric contours of monotonically increasing or decreasing 

mixing ratio around the pole. By associating each tracer contour with the area it 

encloses at a given time, a one-to-one tracer-area relationship is established 

[Nakamura, 1998]. In order to give the meridional coordinate the sense of latitude, 

area equivalent latitude c|)e [Butchart and Remsberg, 1986; Nakamura 1995] is defined 

as the bounding latitude of a circle centered at the pole whose enclosed area represents 

the area enclosed by a tracer contour of constant mixing ratio, i.e.,

4>c = sin-1[ ( l-A ) /(2 7 r r2)] , (3.1)

where A is the area enclosed by a specific tracer contour, and r is the mean radius of

21
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the Earth (see Figure 3.1). Consequently, the NMLM technique is used to construct 

area equivalent latitude versus potential temperature cross sections of tracer mixing 

ratio and equivalent length which provides a unique way of identifying regions where 

quasi-horizontal transport is restricted.

3.1 Formulation

In the lower stratosphere, it is convenient to use potential temperature 0 as a 

vertical coordinate [Andrews et al., 1987] since parcels remain on constant potential 

temperature surfaces for motions that are isentropic (i.e., adiabatic). Also, when using 

isentropic coordinates the vertical velocity is equivalent to the diabatic heating term Q, 

and thus transport across isentropic surfaces is easily separated from transport along 

isentropic surfaces [Holton et al, 1995]. Haltiner and Williams [1980] show that the 

mass continuity equation in isentropic coordinates is given by

where p is pressure, V is the two-dimensional gradient operator on an isentropic 

surface, V is the two-dimensional horizontal velocity vector, and Q is d0/dt.

Following the formulation of Fairlie [1993], the continuity equation for tracer 

mixing ratio q can be expressed as

where U is the three-dimensional velocity vector, V3D is the three-dimensional 

gradient operator, S represents chemical source/sink terms, and K represents small-

(3.2)

(3.3)



23

GM

60

Figure 3.1. Schematic illustrating the concept of area equivalent latitude. In (a) blue 

represents the area (A) enclosed by a contour of constant mixing ratio (q), and in (b) 

red represents the same area (A) centered at the pole and the bounding latitude is the 

equivalent latitude (4>e).
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scale processes. The presence of K indicates that mixing ratio even for long-lived 

tracers is not exactly conserved following parcel motion. Separating the horizontal 

and vertical components, Equation 3.3 can be rewritten as

^ = | 9  + V .  Vq + Q f i =  S + K . (3.4)
dt 8t M ae

Multiplying Equation 3.2 by q and adding to Equation 3.4 gives

or |9  + V . V q  + Q | | = S  + K .  (3.5)

The characteristics of the lower stratosphere allow assumptions that simplify 

the tracer continuity equation (Equation 3.5). For relatively short time scales (i.e., 

characteristic time over which flow can be considered isentropic), the NMLM 

formalism assumes that ( 1 ) the diabatic transport associated with cross-isentropic flow 

is much slower than the isentropic transport and can be neglected, and (2 ) the 

distribution of long-lived tracers is determined mainly by transport and chemical 

production and loss can be neglected. Also, the stratospheric winds are assumed to be 

nearly nondivergent on isentropic surfaces. Neglecting the slower process mentioned 

above, Equation 3.5 reduces to the form

| ?  + V . V q  = K .  (3.6)

The expression for K is defined [Nakamura, 1996, 1998] as

K = V«(DVq) = DV2q , (3.7)
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where D is a constant coefficient representing microscale diffusion, and V2q is the

Laplacian of q on an isentropic surface. Here, diffusion is not the “true” diffusion that

occurs at the molecular level due to the random motion of atoms and molecules

[Brasseur and Solomon, 1986]. This microscale diffusion term is merely used to

represent the transport occurring on unresolved scales.

Adopting the Nakamura scheme, a transport equation in the area coordinate is

derived using the tracer continuity equation (Equation 3.6). First, tracer mixing ratio q

is associated with the area A its contour encloses on an isentropic surface at a given

time t. This area includes mixing ratios that are equal to and less than q (i.e., area of

the region where q* < q ) and is determined by evaluating

A(q, t) = * (  1), (3.8)

where Si is an area integral operator and defined as

q
* ( . . . ) - /  dA = j d q * f  b j d l  . (3.9)

qm,-n q*

A schematic of the area enclosed by a tracer contour of mixing ratio q and related 

parameters is shown in Figure 3.2.

The continuity equation in the tracer (q) coordinate is then determined using 

the identity [Nakamura, 1998 see Appendix]

J ( . . . >d A— ^ dA + / /  | ( . . . ) dA (3-10)
q* < q q* < q q* < q

and substituting dq/dt from Equation 3.6 to yield

H A(q’ t ) = | n v * v q d A - ^ u D v 2 q d A - ( 3 i i )
q* < q q* < q
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Figure 3.2. Schematic of the area (shaded region) enclosed by a tracer contour of 

mixing ratio q and related parameters. (After Nakamura, 1998.)

However, horizontal advection by nondivergent winds does not affect the area 

[Nakamura et al., 1999], and the following logic shows that the first term on the right- 

hand-side of this equation vanishes. Since

i ; j ( i . p|2>
q* < q q

then 1 v , V q d A  = f l W Sdl ’
q* < q q

and using the divergence theorem, which relates the area integral to the line integral, 

allows the flux of V over a q contour to equal the divergence of V over the area inside 

q, i.e.,
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fv*^di=n v*vdA
q* < q

Since winds are assumed to be nondivergent, V»V = 0 and Equation 3.11 reduces to

D V 2 q d A  •dt dq
(3.13)

q* < q

Finally, considering the one-to-one relationship between the area A and tracer 

q the continuity equation in the tracer coordinate is inverted to yield the transport 

equation in the area coordinate:

_d_ r r ^  ^  d
dA J J DV*qdA = D ^ J J  V . V q d A .

q* < q

(3.14)
q* < q

Using the divergence theorem and the relation in Equation 3.12, Equation 3.14 can be

rewritten as

|Vq|
dl

and
l5<<JdA

q* < q

(3.15)

respectively. Multiplying and dividing Equation 3.15 by dq /dA  gives

— q(A, t) = D —— 
d t HV ’ dA

d_
dA ! I "“HIM

q* < q

(3.16)

By defining an equivalent length Le [Nakamura, 1996], Equation 3.16 can be
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expressed as

where L' ■ [An l̂ l’JA
q* < q

(3.17)

(3.18)

and Equation 3.17 is the NMLM transformation of Equation 3.6.

The equivalent length [Nakamura, 1996, 1998] is approximately equal to the 

perimeter length of the q contour that encloses area A and is a useful measure of the 

efficiency of irreversible transport. Regions of large equivalent length (i.e., substantial 

stretching of the tracer contours) are associated with rapid quasi-horizontal transport 

and mixing, where as, regions of minimum equivalent length are identified as barrier 

regions where meridional transport is restricted. Thus, equivalent length (and its 

square) is a key diagnostic in the NMLM model.

3.2 Application to Data

This section describes the procedure used to analyze tracer data according to 

the NMLM formalism [Nakamura et al, 1999] and provides a detailed outline for 

implementing the technique. The NMLM technique requires that data coverage be at 

least hemispheric in order to establish the tracer-area relationship, and ideally the 

tracer data should be synoptic and global. Unfortunately, this type of coverage is 

rarely obtained from satellite observations, and often there are no measurements in the 

polar regions. Assuming daily measurements of temperature and tracer mixing ratio
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exist on a latitude-longitude-pressure grid, steps ( 1 ) through (6 ) outlined below are

implemented per day to prepare the tracer data for the NMLM calculations.

(1) Calculate potential temperature, 0, at each grid point.

(2) Linearly interpolate the tracer data onto specific isentropic surfaces at each 

horizontal grid point in the hemisphere. The specified isentropic surfaces are 

chosen such that they span certain regions of the stratosphere evenly in ln(0 ). 

Note that the equator should not be viewed as a boundary since closed contours 

of constant tracer mixing ratio often cross the equator into the opposite 

hemisphere. Consequently, the hemispheric data should include tracer 

measurements to approximately 1 0 ° latitude in the opposite hemisphere.

(3) On each isentropic surface, linearly interpolate the tracer data onto equally 

spaced longitude and/or latitude grids if the data are on irregular grids.

(4) Fourier transform in longitude if tracer data are missing in the polar region or if 

the grid spacing in longitude is not equal to the grid spacing in latitude.

(5) Fill the polar region that lacks data by interpolating the surrounding data 

[Nakamura and Ma, 1997 see Appendix]. Specifically, each Fourier 

coeflicient is interpolated into the dataless latitudes from the lower latitudes 

using a cubic spline method. Constraints at the pole are (1) all Fourier 

coefficients vanish at the pole for zonal wavenumbers 1 or greater (create 

asymmetric coefficient arrays as a function of co-latitude to satisfy), and (2 ) 

the gradient of the Fourier coefficient vanishes at the pole for the zonal mean 

(create symmetric coefficient array as a function of co-latitude to satisfy).

(6 ) Inverse Fourier transform using the Fourier coefficients to obtain tracer grid
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point values in the polar region and/or to obtain tracer grid point values at 

longitudes whose grid spacing is consistent with the latitude grid spacing. 

Note that equal grid spacing in latitude and longitude minimizes the directional 

bias in the horizontal tracer gradient calculation.

The NMLM calculations are performed on the regridded tracer distributions 

that are functions of latitude, longitude, potential temperature, and day. The tracer- 

area relationship and the squared equivalent length are calculated on each isentropic 

surface as follows in steps (7) through (15).

(7) Calculate the horizontal tracer gradient and its square, | Vq| at each grid point 

using centered finite differences (one-sided differences at boundaries).

(8 ) Determine the minimum and maximum tracer mixing ratio values (include all

days) and define 1 0 0  equally spaced tracer contour levels (q contours) between 

these values. The contour levels must range from minimum to maximum

mixing ratio in order to span the entire hemisphere appropriately.

(9) For each day, determine the area enclosed by each tracer contour level defined 

above. A surface area is associated with each tracer grid point. This area 

depends on the latitude and longitude grid spacing and changes only with 

latitude. The total area enclosed by a specific tracer contour level is obtained 

by summing the areas associated with tracer mixing ratios that are equal to or 

less than the q contour. Note that area must be integrated (summed) from pole 

to equator, and therefore in this case, the data are assumed to have a minimum 

at the pole and increase toward the equator.

(10) For each day, integrate the squared horizontal tracer gradient over the area



enclosed by each tracer contour level, i.e., j  j  |Vq|2dA ■
q* < q

Multiply the squared horizontal tracer gradient and the associated surface area 

at each grid point, and then sum this product over the grid points where the 

tracer mixing ratios are equal to or less than the q contour.

For each tracer contour level, aggregate the area enclosed by the q contour and 

aggregate the integrated squared horizontal tracer gradient over approximately 

6  to 8  consecutive days and calculate the mean area, A(q), and mean gradient, 

G(q), (i.e., divide by number of days) to remove random errors.

For each tracer contour level, calculate the area equivalent latitude, <J>e(q), using 

the area A(q) and Equation 3.1.

For each tracer contour level, calculate the squared equivalent length, Le2 (q), 

from the area enclosed by the q contour, A(q), and the squared horizontal tracer 

gradient integrated over this area, G(q), i.e.,

Note that Equation 3.19 is equivalent to Equation 3.18. Using centered finite 

differences to evaluate Le 2  , Equation 3.19 is approximated by

L e 2  = [A(q + S q ) -A (q -5 q ) ]  x [G(q + 5 q ) -G (q -5 q ) ] /(2 8 q )2 , (3.20)

where 8 q is the increment between the equally spaced q contours. One-sided 

finite differences are taken at the boundaries (i.e., at the minimum and 

maximum contour levels).

Linearly interpolate to obtain the tracer mixing ratio and squared equivalent 

length as a function of area equivalent latitude. Since the measured area

(3.19)
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(equivalent latitude) is usually unevenly spaced with respect to the q contours, 

the mixing ratio as well as the squared equivalent length must be interpolated 

onto a regularly gridded area equivalent latitude, <|)e, coordinate. Note that the 

interpolations are from the tracer coordinate onto the area (equivalent latitude) 

coordinate.

(15) Normalize the squared equivalent length and determine the natural 

logarithm, i.e.,

^ = In (Le2/ L02) , (3.21)

where L0  = 27ircos(j)e is the circumference of the zonal circle at equivalent 

latitude <|)e. This step allows the squared equivalent length to be viewed in a 

nondimensional form. Note that since equivalent length is approximately 

equal to the perimeter length of a contour of constant mixing ratio, ^ = 0  if this 

contour coincides with the zonal circle and £, will grow as this contour becomes 

more stretched and deformed [Nalamura and Ma, 1997]. Applying these steps 

to observed data provides a numerically simple procedure for analyzing the 

tracer mixing ratio and equivalent length of its contours in the area equivalent 

latitude versus potential temperature coordinate.

3.3 Algorithm Testing Using CLAES N20  Data

Nakamura applied his modified Lagrangian-mean technique using the CLAES 

(version 7, level 3AL) N20  data averaged over 6  to 8  days to diagnose barrier regions 

[Nakamura and Ma, 1997; Nakamura et al, 1999]. Both hemispheres were analyzed 

for several months between February 1992 and February 1993 to observe the summer-
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to-winter and the winter-to-summer barrier migration. We simply use these results to 

validate the software developed to implement the NMLM technique. The procedure 

outlined in the previous section is applied to the same CLAES N20  data used by 

Nakamura, and the results are displayed as area equivalent latitude versus potential 

temperature cross sections. For all time periods and for both hemispheres, 

Nakamura’s results are very closely duplicated. The comparison of our results, shown 

in Figure 3.3, to those of Nakamura, shown in Figure 3.4, is typical of how well we 

duplicate the NMLM algorithm. The small deviations in the results are deemed not 

significant and are most likely due to using different routines to perform linear and 

spline interpolations, Fourier transformations, and contour plotting. Therefore, it is 

concluded that our software successfully implements Nakamura’s modified 

Lagrangian-mean formalism.
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Figure 3.3. NMLM cross section of the CLAES northern hemisphere N20  mixing 

ratio (ppmv, solid contours) and the natural log normalized equivalent length (color 

contours) for February 13-19, 1993.
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Figure 3.4. Modified Lagrangian-mean cross section of the CLAES northern 

hemisphere N20  mixing ratio (vmr, solid contours) and the natural log normalized 

equivalent length (£, color contours) for February 13-19, 1993 generated by 

Nakamura. (After Nakamura and Ma, 1997.)



CHAPTER IV

MODIFIED LAGRANGIAN-MEAN DIAGNOSTIC APPLIED TO HALOE DATA

The NMLM technique can be used with any long-lived tracer provided 

adequate spatial coverage can be achieved over a reasonably short period of time (i.e., 

characteristic time over which flow can be considered isentropic, approximately 7-10 

days in the lower stratosphere [see McIntyre and Palmer, 1983]). This chapter shows 

how the NMLM technique can be implemented with occultation data. The HALOE 

data set is unique in providing an extended record ( 8  years) of long-lived tracer data. 

Because the solar occultation sampling pattern of HALOE requires approximately one 

month to achieve near-hemispheric coverage, synoptic hemispheric distributions of 

CH4  are reconstructed through correlations with the UKMO PV distributions for 7-day 

periods which are then analyzed for the presence of transport barriers.

4.1 Reconstruction of Tracer Distributions

This section describes the potential temperature-potential vorticity coordinate 

transformation and reconstruction to determine synoptic tracer distributions from a set 

of HALOE occultation observations using the UKMO analyses for PV. Files of 

synoptic distributions of PV are archived at NASA Langley Research Center and are 

available from October 17, 1991 to very nearly the present time (see Chapter 2). The

36
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PV files are accessed on a daily basis corresponding to time periods associated with 

the tracer time range. The tracer time range is selected to achieve near-hemispheric 

coverage and is not less than 7 days. Assuming daily measurements of tracer mixing 

ratio exist on a latitude-longitude-theta grid, the steps outlined below are implemented 

to reconstruct the tracer distributions.

(1) For each day, linearly interpolate the tracer data onto isentropic surfaces 

(corresponding to those defined for the UKMO PV) at each horizontal grid 

point in the hemisphere. Note that the hemispheric data should include tracer 

measurements to approximately 1 0 ° latitude in the opposite hemisphere.

(2) For each day in the desired time period, linearly interpolate the PV data onto 

the same latitude and longitude grids as the tracer data.

(3) Determine the tracer field in potential temperature-potential vorticity space. 

For each isentropic surface, use the PV versus tracer correlation to bin the 

tracer data in PV bins (include all days in the desired period) and determine the 

average tracer mixing ratio value per bin. Normally, between 10 and 30 

equally spaced PV bins are defined between the minimum and maximum PV 

values on an isentropic surface. For each PV bin, the tracer data that fall within 

the bin are averaged and associated with the PV value at the midpoint of the 

bin. Processing all bins and all isentropic surfaces produces a tracer field as a 

function of potential temperature and PV.

(4) Transform the tracer field in potential temperature-potential vorticity space 

back into real (latitude-longitude-theta) space. Using the tracer data 

determined above and the daily archived UKMO PV data corresponding to 7
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consecutive days within the tracer time period, linearly interpolate in PV to get 

the tracer data at the UKMO PV locations (i.e., tracer mixing ratio as a 

function of UKMO latitude, longitude, potential temperature, and day).

(5) For each day, linearly interpolate the tracer data which is on the UKMO grid 

onto a latitude-longitude-theta grid with consistent grid spacing in latitude and 

longitude and evenly spaced in ln(0 ).

The NMLM calculations can then be performed on the reconstructed tracer 

distributions following steps (7) through (15) in Chapter 3.

The CLAES instrument obtains near-hemispheric measurements on a daily 

basis. Therefore, the CLAES data does not need to be reconstructed. However, to 

demonstrate the efficacy of the reconstruction technique, the CLAES N20  data from 

February 12 through March 16, 1993 were sampled in a manner consistent with 

HALOE observations and then reconstructed and used to test the logic outlined in the 

steps above. The NMLM results using the HALOE-sampled CLAES N20  data 

reconstructed from UKMO PV data for February 13-19, 1993 are shown in Figure 4.1. 

These results are comparable to the NMLM results using the CLAES N20  data that 

are not reconstructed (see Figure 3.3) but not without some discrepancies. Both 

analyses show polar and subtropical barriers of approximately the same size, strength, 

and equivalent latitude location. However, the vertical extent of these barriers is 

greater for the reconstructed case. At the lowest altitudes (below ~470 K), a pool of 

large equivalent lengths crossing most equivalent latitudes seen in the actual CLAES 

data seems inconsistent with the isentropic tracer gradients (i.e., usually large 

equivalent lengths are associated with small isentropic gradients) and is not duplicated
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Figure 4.1. NMLM cross section of the CLAES northern hemisphere N20  mixing 

ratio (ppmv, solid contours) and the natural log normalized equivalent length (color 

contours) sampled consistent with HALOE observations and then reconstructed using 

UKMO PV for February 13-19, 1993.
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in the reconstructed data. At these levels, the magnitude of equivalent length for the 

reconstructed data agrees better with the gradient of the tracer mixing ratio. The 

NMLM analysis using the reconstructed N20  data captures a more distinct polar 

vortex and a stronger surf zone (smaller equivalent lengths) than seen in the analysis 

using the actual CLAES data. This structure is most likely due to the influence of PV 

on the reconstructed data. In spite of these differences, it is concluded that the 

reconstructed data are a reasonable surrogate for the actual UARS data.

4.2 Reconstruction of Daily CH4 Distributions and NMLM Results

HALOE CH4  distributions were reconstructed following the outline in the 

previous section. Essentially, the PV versus CH4  correlation on a discrete isentropic 

surface for the number of days required to obtain near-hemispheric coverage ( ~ 1  

month) is used with the daily UKMO PV distribution to construct the CH4  distribution 

for a specific day. Methane distributions are constructed for consecutive 7-day 

periods. The NMLM technique is then applied to the reconstructed HALOE CH4  data. 

Averaging over 7-day time periods in the NMLM analysis improves the accuracy of 

the results by suppressing random noise in the data.

The NMLM results are analyzed using an area equivalent latitude versus 

potential temperature cross section of CH4  mixing ratio and equivalent length. Figure 

4.2, for example, shows NMLM results using HALOE CH4  sunset data reconstructed 

from UKMO PV data. The PV versus CH4  correlations on discrete isentropic surfaces 

were generated using data between April 15 and May 19, 1992. These correlations are 

then used with the UKMO PV data for each day to construct CH4  distributions for
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May 5-11, 1992. The NMLM analysis of the reconstructed CH4  data for this time 

period reveals interesting aspects of northern hemisphere springtime transport. The 

polar and subtropical barriers (i.e., regions of minimum equivalent length where 

meridional transport is restricted) are positioned at higher equivalent latitudes than 

seen in winter (see Figure 3.3). The polar vortex has disappeared in the middle and 

upper stratosphere above the 800 K isentropic surface as evidenced by the change 

from minimum to larger equivalent length, and quasi-horizontal mixing is enhanced in 

this region. During spring, the polar vortex is being destroyed by radiative processes, 

and the surf zone characterized by relatively large equivalent lengths and weak 

horizontal gradients (caused by repeated Rossby wave-breaking events) widens 

significantly.

4.3 Validity of the Approach

Since both CH4  and N20  are long-lived tracers and their distributions have a 

similar structure, the NMLM results using these species are expected to be very much 

alike. Therefore, application of the NMLM technique to solar occultation data was 

validated by comparing results obtained using the reconstructed HALOE CH4  data 

with results obtained using CLAES N20  data for the same periods. The results 

compare favorably. For example, the NMLM results using CLAES N20  data for May 

5-11, 1992, as shown in Figure 4.3, agree reasonably well with the results using 

reconstructed HALOE CH4  data for the same time period (see Figure 4.2). Generally, 

there is very little difference in the positions and areas of small and large equivalent 

lengths. The large equivalent lengths seen in the lower stratosphere N20  data are likely
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due to a CLAES aerosol contamination problem as mentioned by Nakamura and Ma 

[1997].

By exploiting the close relationship between PV and long-lived tracer 

distributions, reconstruction of HALOE CH4  using PV is possible. However, the 

information that PV and CH4  provide is not redundant, and both entities affect the 

NMLM analyses. This can be verified by first observing that the PV versus CH4  

correlations are not linear. If these correlations were linear then CH4  would be 

contributing no new information, and the NMLM analysis using reconstructed CH4  

would merely reflect the PV distribution in CH4  units. Figure 4.4 shows a typical 

correlation between PV and CH4  and the average fit used in constructing the CH4  

fields. To complement the correlations and better identify the contributions of PV and 

CH4, hemispheric distributions of PV and reconstructed CH4  on isentropic surfaces 

were examined. They reveal that the synoptic structure of CH4  is mainly determined 

by the PV distribution. However, the magnitude of the horizontal gradient is affected 

by CH4. Polar stereographic maps of northern hemisphere PV and reconstructed CH4  

on the 801 K isentropic surface (-29 km) for May 5, 1992 are shown in Figure 4.5. 

The PV and CH4  data are normalized by their corresponding maximum values for a 

one-to-one comparison. For each contour of CH4  there is a similar contour of PV 

indicating that most of the hemispheric structure is that of PV. The pole-to-equator 

gradients for both entities are very inhomogeneous, with highly concentrated 

horizontal gradients between approximately 25-45° latitude. It can be seen that the 

magnitude of these variations is very much influenced by CH4. Finally, results of the 

NMLM technique applied to the PV data, to the reconstructed CH4  data, and to the



45

1.4

XX1.2

0.8

X X X

0.6
-0.010 0.000 0.010 0.020 0.030

UKMO PV (x1 O'2 K m2 kg'1 s '1)

Figure 4.4. UKMO PV versus HALOE CH4  correlation on the 801 K isentropic 

surface based on data from April 15 through May 19, 1992. Solid line is the average of 

the CH4  data in PV bins. Negative PV values indicate southern hemisphere data.

CH4  data spanning approximately one month are compared. The NMLM results using 

northern hemisphere PV data for May 5-11, 1992 are presented in Figure 4.6. The 

main differences in these results and the NMLM results using reconstructed CH4  (see 

Figure 4.2) are observed in the subtropical barrier region (i.e., around 30° equivalent 

latitude). In this region the CH4  horizontal gradients are compact (as seen in the 

hemispheric distributions), so that for a small change in the area enclosed by contours
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Figure 4.5. Polar stereographic map on the 801 K isentropic surface for May 5, 1992 

of northern hemisphere (a) PV linearly interpolated to a 4°x4° latitude-longitude grid 

and to an evenly spaced ln(0) grid, and (b) HALOE CH4 reconstructed using UKMO 

PV. PV and CH4 values are normalized by their corresponding maximum values.
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of constant CH4  mixing ratio there is a relatively large change in the CH4  value. This 

is reflected in the NMLM analysis as small equivalent lengths and sharp tracer edges, 

indicating a strong transport barrier. Potential vorticity has less of a horizontal 

gradient in this region and consequently shows a weaker and broader barrier. Figure 

4.7 displays the NMLM results using northern hemisphere HALOE sunset CH4  data 

spanning 35 days from April 15 to May 19, 1992. The strong subtropical barrier as 

well as the strong lower-level polar barrier visible in the reconstructed CH4  results (see 

Figure 4.2) are evident in the month-long results. Since barriers of similar strength are 

not seen in the PV NMLM analysis (see Figure 4.6), this is a good indication that the 

CH4  data very much influences the reconstructed CH4  NMLM results.

Since near-hemispheric coverage exists daily for CLAES N20  data, these data 

are used during an active northern hemisphere winter to determine the consequences 

of using long-term ( ~ 1  month) correlations to reconstruct synoptic hemispheric tracer 

distributions. The PV versus N20  correlations on discrete isentropic surfaces were 

generated using data spanning two different time periods: (1) February 12 - March 16, 

1993; and (2) February 13-19, 1993. These correlations were then used with the 

UKMO PV data for each day to construct N20  distributions for February 13-19, 1993. 

The NMLM technique was applied to the reconstructed N20  data for these two time 

periods, and the results were extremely similar. Because a dynamically active winter 

period was analyzed, the two NMLM results would be very different if the 

reconstructed N20  distributions were affected by using a long-term correlation.

Based on the comparisons discussed in this section, we conclude that the 

NMLM formalism can be legitimately applied to solar occultation data provided a
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Figure 4.7. NMLM cross section of the northern hemisphere HALOE sunset CH4 

mixing ratio (ppmv, solid contours) and the natural log normalized equivalent length 

(color contours) for April 15 through May 19, 1992.
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suitable synoptic distribution of PV can be obtained for the desired period. The 

reconstruction technique appears capable of resolving features of the tracer as well as 

PV.



CHAPTER V

TRACER CORRELATIONS

The primary goal of this research is to examine transport in the lower 

stratosphere. This chapter illustrates efforts to utilize the synergy between aircraft and 

satellite data to meet this goal. The in situ ER-2 measurements provide data that are 

higher in resolution, precision, and accuracy than are satellite data. Unfortunately, 

these data have limited spatial and temporal coverage and are unable to resolve large- 

scale transport issues. The remote observations from the HALOE instrument 

supplement the ER-2 observations by providing a more global perspective at the 

expense of lower resolution, precision, and accuracy than the aircraft data. The 

measurement characteristics of the ER-2 and HALOE instruments, and the precision 

and accuracy of the data sets were discussed in Chapter 2.

Tracer correlations are used in the following scenario. First, correlations based 

upon HALOE measurements are compared with those from the ER-2 to assess the 

satellite data. The very good agreement achieved between the ER-2 and HALOE CH4  

versus 0 3  correlations increased our confidence in using the HALOE CH4  data in 

global NMLM analyses. Then, ER-2 tracer correlations are examined in conjunction 

with coincident HALOE NMLM results. This provides for a less ambiguous 

interpretation of the correlations and a more balanced approach in studying transport.

51
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5.1 Comparison of Aircraft and Satellite Tracer Correlations

ER-2 and HALOE data were examined for time periods that coincide with ER-

2 flights covering five aircraft campaigns from 1991 through 1997. The CH4  versus

0 3  correlations were obtained for both ER-2 and HALOE data spanning specific time 

periods and binned in potential temperature ranging from 350to 550K (-14-22 km). 

To compare with the ER-2 correlations, the HALOE observations were restricted in 

latitude and longitude corresponding to the ER-2 ranges and combined over a time 

range of two weeks or less around the ER-2 flight days.

The ER-2 and HALOE correlations for northern hemisphere 1991 fall and 

1992 winter were in poor agreement. During this time period the HALOE data in the 

lower stratosphere are most likely contaminated with aerosol due to the Mount 

Pinatubo volcanic eruption in June 1991, and in many cases, the HALOE observations 

were too sparse to achieve a valid comparison with the ER-2 correlations.

The agreement between the ER-2 and HALOE correlations for 1993 through 

1997 is mainly very good. During the five year time span both hemispheres and a 

variety of seasons were sampled. In general the CH4  versus 0 3  correlations for the 

ER-2 and HALOE data overlap on isentropic surfaces. A typical comparison is shown 

in Figure 5.1 for isentropic surfaces ranging from 410 to 450 K every 10 K. These 

data were obtained in the 1994 southern hemisphere spring between 40° and 70° 

latitude and between 147° and 195° east longitude. The HALOE CH4  versus 0 3  

correlations, that include observations for October 3-20, have the same structure as the 

ER-2 correlations that span seven flights (October 3,5,8,10,13,16,20) during the 

ASHOE/MAESA campaign. Good agreement also exists for the entire vertical extent
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Figure 5.1. CH4 versus 0 3 correlations for October 3-20, 1994 ranging in latitude 

between 43° and 70° south, ranging in longitude between 147° and 195° east, and 

covering four potential temperature ranges. Black triangles identify ER-2 data for six 

flights and red stars identify HALOE sunset data.
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of the observations as illustrated in Figure 5.2. In this figure, the CH4  versus 0 3  

correlations include data ranging in latitude from 61° to 85° north, ranging in 

longitude from 203° to 258° east, and covering a potential temperature range from 350 

to 550 K. The HALOE correlation includes observations for May 6-20, 1997, and the 

ER-2 correlation consists of data from four flights (May 6,9,11,13) during the 

POLARIS campaign. Some outliers are evident in both the ER-2 and HALOE 

correlations, but most of the HALOE points overlap the ER-2 measurements.

Reasonable agreement between the ER-2 and HALOE correlations establishes 

the feasibility of using these complementary measurements from aircraft and satellite 

platforms to facilitate transport studies in the lower stratosphere. Good agreement 

between the ER-2 and HALOE correlations indicates that HALOE data in the lower 

stratosphere can be used confidently in global analyses. The correlation comparisons 

are especially useful at altitudes below the 1 0 0  mbar level (i.e., below -16 km or for 

isentropic surfaces less than -450 K) where the estimated errors in the HALOE data 

are not well known (see Figure 5.1).

5.2 Analysis Using ER-2 Tracer Correlations and HALOE NMLM Results

As mentioned in Chapter 1, correlations between tracer data obtained during 

aircraft campaigns have been used extensively to deduce transport and mixing as well 

as chemical processes occurring in the lower stratosphere. However, interpretation of 

what the tracer correlations show without ancillary information can be ambiguous at 

times due to the competition between various atmospheric processes (e.g., isentropic 

mixing, vertical advection, chemical loss) that can change tracer distributions.
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In the meridional plane [Holton, 1986a,b; Mahlman et al., 1986], the 

distributions of long-lived stratospheric tracers have mixing ratio isopleths that bulge 

upward in the tropics and slope poleward and downward relative to the isentropic 

surfaces. Vertical transport by the mean meridional cell tends to steepen the slopes of 

the tracer mixing ratio surfaces. At mid- to high-latitudes in the winter hemisphere 

isentropic mixing tends to flatten the tracer isopleths. Also, chemical loss or 

production can have a slope flattening effect. When two tracers have isopleths that are 

parallel to each other and have similar horizontal and vertical gradients, they are in 

slope equilibrium and gradient equilibrium, and their mixing ratios display a linear, 

compact relationship [Plumb and Ko, 1992]. In general, long-lived tracers exhibit 

correlations that may differ from the linear, compact relationship of idealized tracers 

[Murphy et al, 1993; Plumb, 1996]. The departure from a compact relationship in 

tracer correlations could be due to ( 1 ) species having very different chemical loss or 

production rates or relative short local lifetimes; (2 ) spatial and temporal variability in 

horizontal and/or vertical transport that result in inhomogeneous mixing of different 

air masses; or (3) measurement uncertainties, and is subject to individual analysis. 

Therefore, separating the effects of chemistry and transport by interpreting tracer 

correlations is a major challenge, and associating ER-2 tracer correlations with 

HALOE NMLM results should provide for a less ambiguous interpretation of the 

correlation diagrams. The CH4  versus O3  correlation shown in Figure 5.3 does not 

reveal a compact mutual relationship, and both negative and positive slopes or scatter 

exists for most of the potential temperature ranges. The data include ER-2 

measurements during the 1994 austral (southern) spring on three flights (October
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Figure 5.3. ER-2 CH4 versus 0 3 correlation for October 10,13,16, 1994 ranging in 

latitude between 43° and 70° south, ranging in longitude between 171° and 182° east, 

and covering a potential temperature range from 350 to 530 K.
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10,13,16) and span 43° to 70° in latitude, 171° to 182° east in longitude, and 350 to 

530 K in potential temperature (-14-21 km). Examining the CH4  versus 0 3  

correlation diagram with these data sorted by latitude instead of potential temperature 

shows that the positive slopes and scatter seen in Figure 5.3 occur at latitudes poleward 

of 67° south only. The scatterplot of CH4  versus 0 3  collapses to a nearly compact 

curve with a negative slope if data at these latitudes are excluded. Even though, in the 

polar region during austral spring, chemical destruction of 0 3  is the most likely 

mechanism responsible for the anomalies, it is not clear from the scatterplots alone 

whether the departures from a single compact curve is primarily a result of chemistry 

or dynamics.

To aid in the interpretation of Figure 5.3, NMLM results were generated using 

reconstructed HALOE CH4  data. The UKMO PV versus HALOE CH4  correlations, 

which included data from October 3 to November 6 , 1994, and the daily PV fields 

were used to reconstruct synoptic, southern hemisphere CH4  distributions for October 

9-15, 1994. The results of applying the NMLM technique to these reconstructed CH4  

data is shown in Figure 5.4. Between 43° and 70° south latitude, where the ER-2 in 

situ measurements were obtained, the NMLM analysis shows three distinct regions: a 

surf zone, a barrier region centered around 60° equivalent latitude, and a polar region. 

The barrier region separates the polar region from the midlatitude surf zone vertically 

throughout the lower stratosphere and increases its latitudinal extent with altitude. On 

isentropic surfaces above approximately 390 K this barrier strongly restricts lateral 

transport (minimal equivalent length accompanied by sharp horizontal tracer 

gradients). As a result, the air in the polar region of the lower stratosphere is
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essentially isolated from the lower-latitude air.

At latitudes between 67° and 70° south where deviations from a compact 

correlation curve occur, the observations are either in the polar region or on the 

poleward side of the barrier region. The observations that fall completely in the polar 

region are on isentropic surfaces between 390 and 430 K. In Figure 5.3 the 

observations on the 390-410 K and 410-430 K isentropic surfaces are plotted as red 

and green points, respectively. An interesting feature of the observations on these 

surfaces are the discontinuous correlation curves. The correlation curve has a negative 

slope occurring at latitudes between 43° and 46° south that reverses to a positive slope 

at latitudes between 67° and 70° south. The NMLM analysis (see Figure 5.4) shows 

that this discontinuity is due to sampling two distinct air masses that are separated by 

the dynamical barrier to mixing. On the surf zone side of this barrier rapid quasi

horizontal mixing results in correlations forming a negative slope. On the polar side of 

the barrier, air experiences prolonged periods of isolation and mixing of air masses 

from above produce another slope (positive).

On isentropic surfaces above 430 K, the CH4  versus 0 3  correlation consists of 

negatively sloping, compact curves that become diffuse on all surfaces for 

observations obtained in the 67°-70° south latitude range (see Figure 5.3). Referring 

to the NMLM analysis, these measurements occurred on the poleward side of the 

barrier. Methane and ozone being uncorrelated in this region strongly implies 

chemical changes in 0 3. If this lack of correlation was purely a result of vertical 

descent of 0 3  then transport would also bring down low CH4. Between 67° and 70° 

latitude, the tracer scatterplot displays a minimum CH4  mixing ratio of 1 part per
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million by volume (ppmv) and 0 3  mixing ratios less than approximately 3 ppmv. 

Descent of 0 3  with concentrations of 3 ppmv or less would require transport of air 

from the upper stratosphere where the abundance of CH4  is only a few tenths of a 

ppmv. Thus, the higher CH4  observed suggests that vertical descent is not the sole 

cause of scatter in this region. Similarly, the positive slopes observed inside the polar 

vortex below the 430 K surface suggests that 0 3  is being chemically destroyed since 

CH4  decreases and typically 0 3  increases with altitude in the lower stratosphere.

The NMLM technique is strictly a transport oriented analysis. Implementing 

this technique using observations of any passive tracer will clearly identify quasi

horizontal transport barriers and mixing regions. Tracer correlations, on the other 

hand, include the effects of both chemistry and transport. Therefore, in order to assess 

the usefulness of correlations in deducing lateral transport, the NMLM analysis and 

tracer correlation must cover spatial areas that are experiencing no chemical 

processing and minimal vertical descent, for example the subtropical region. To 

facilitate this assessment, an ER-2 CH4  versus 0 3  correlation and an NMLM analysis 

were evaluated between 14° and 38° north latitude in the lower stratosphere during 

spring when one would expect little or no effects of chemistry on either CH4  or 0 3.

An ER-2 CH4  and 0 3  correlation, based on northern hemisphere 

measurements on May 3, 1993, is plotted in Figure 5.5. The observations are sorted 

by potential temperature, and only data on isentropic surfaces above 410 K are 

analyzed to guarantee that only stratospheric air masses are included in the correlation. 

The scatterplot indicates that CH4  and 0 3  are not in perfect slope equilibrium whose 

relationship is represented by a single compact curve. Instead, there is an obvious
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Figure 5.5. ER-2 CH4 versus 0 3 correlation for May 3, 1993 ranging in latitude 

between 14° and 38° north, ranging in longitude between 237° and 243° east, and 

covering a potential temperature range from 410 to 530 K.
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discontinuity between the correlations above and below the 470 K isentropic surface. 

A compact tracer correlation with a negative slope exists for observations obtained on 

surfaces above 470 K, however on surfaces below 470 K, the correlation shows 

considerable scatter. The presence of scatter in the correlation of tracers experiencing 

no chemical processing or vertical descent could be an indication of inefficient mixing. 

Examination of the coincident NMLM analysis appears to support an anomalous 

mixing scenario.

Figure 5.6 displays the NMLM cross section of northern hemisphere HALOE 

CH4  reconstructed using UKMO PV versus HALOE CH4  correlations, that included 

April 10 through May 14, 1993 data, and the daily PV data from April 27 to May 3, 

1993. Within the region of interest (i.e., between 14° and 38° latitude and between 

410 and 530 K isentropic surfaces), a subtropical barrier separates the midlatitude surf 

zone from the tropical region in the lower stratosphere on surfaces above 

approximately 430 K. This barrier is centered around 23° equivalent latitude and 

increases not only its latitudinal extent with altitude but also its strength. The scatter 

observed in the CH4  versus O3  correlation is directly influenced by the strength of the 

subtropical barrier. On isentropic surfaces below 470 K, quasi-horizontal transport is 

only weakly inhibited. Transport is more restricted on surfaces above 470 K (i.e., 

smaller equivalent lengths and more concentrated horizontal tracer gradients). This 

follows a study by Waugh [1996] that showed in the northern hemisphere during the 

fall to spring period (late September to early May) transport out of the tropics in the 

lower stratosphere is greater around the 425 K isentropic surface than near the 500 K 

surface. Air transported out of the tropics on surfaces between 410 and 470 K does not
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(color contours) reconstructed using UKMO PV for April 27-May 3, 1993.
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undergo vigorous quasi-horizontal mixing in the latitude region sampled by the ER-2 

instruments (see subtropical yellow and pink areas in Figure 5.6). As a result, the 

tropical and extratropical air masses are not homogenized, and the tracer correlation 

reveals a significant amount of scatter in this region. Transport out of the tropical 

region is insignificant in the well-correlated region above the 470 K isentropic surface.

Tracer correlations have been coupled with other analyses, such as contour 

advection [Waugh et al, 1997] and trajectory mapping [Pierce et al, 1997] 

techniques, to evaluate the influence of chemistry and dynamics on observations. 

Using tracer correlations in conjunction with the NMLM analyses gives yet another 

perspective for evaluating the role of lateral transport on stratospheric measurements. 

The advantages of this procedure are a less ambiguous interpretation of the tracer 

correlations and both a small-scale and large-scale approach in studying transport. 

However, to make the most of these tools, knowing the chemical and dynamical 

characteristics of the species and stratosphere, respectively, is absolutely essential.



CHAPTER VI 

SUMMARY AND CONCLUSIONS

Transport characteristics of the lower stratosphere were examined by utilizing 

tracer correlations based upon aircraft data in conjunction with a modified Lagrangian- 

mean analysis using satellite occultation data. Coupling these analyses (and data sets) 

provides for a more comprehensive interpretation of the observations and a more 

balanced approach in studying transport.

A very important aspect of this work involved implementing the modified 

Lagrangian-mean technique developed by Nakamura [Nakamura, 1995, 1996, 1998; 

Nakamura and Ma, 1997; Nakamura et ah, 1999] using occultation data. This 

technique allows deduction of certain aspects of the transport characteristics knowing 

only the mixing ratio of long-lived tracers. The method easily identifies so-called 

transport barriers or regions where quasi-horizontal transport is restricted. Potential 

temperature is used as the vertical coordinate and area enclosed by contours of 

constant mixing ratio on isentropic surfaces is used as the meridional coordinate. The 

NMLM technique can be applied to any long-lived tracer provided adequate spatial 

coverage can be achieved over a short period of time, that is, the characteristic time 

over which flow can be considered isentropic (—7-10 days in the lower stratosphere).

The NMLM formalism assumes that the cross-isentropic component of
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transport is much slower than the component on isentropic surfaces ( ~ 1  week) and can 

be neglected, and that long-lived tracer distributions are determined by transport (i.e., 

chemical source and sink terms are neglected). Also, winds are assumed to be 

nondivergent on isentropic surfaces. Following the formal approach of Nakamura, the 

tracer transport equation is transformed to an area coordinate. First, the tracer mixing 

ratio is associated with the area its contour encloses on the isentropic surface. Due to 

the one-to-one relationship between area and tracer mixing ratio, a transport equation 

in the area coordinate is derived. A key NMLM diagnostic included in this equation is 

the equivalent length. It measures the efficiency of irreversible transport (i.e., 

isentropic mixing). Physically, equivalent length is the approximate perimeter length 

of the tracer contour enclosing an area. These contours can be severely deformed and 

may even enclose areas separated from the main entity. A large equivalent length 

indicates substantial stretching of the tracer contour which is associated with rapid 

quasi-horizontal transport and mixing. A small equivalent length identifies regions 

where meridional transport is restricted. The NMLM results (i.e., tracer mixing ratio 

and equivalent length) are displayed (and analyzed) as area equivalent latitude versus 

potential temperature cross sections.

Nakamura applied his technique using CLAES N20  data. The CLAES 

instrument is a limb sounder and obtains near-hemispheric coverage each day. 

Unfortunately, the CLAES data only extend from October 1991 to May 1993. In this 

research, HALOE CH4  observations which provide eight years of data from October 

1991 to the present are used. However, the solar occultation sampling pattern of 

HALOE requires approximately one month to obtain near-hemispheric coverage, and
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assuming isentropic flow over this time period may not be valid. Consequently, by 

exploiting the close relationship between potential vorticity and long-lived tracers, 

synoptic hemispheric CH4  distributions are constructed using daily PV distributions. 

For each isentropic surface, a UKMO PV versus HALOE CH4  correlation is obtained 

and includes data for all days required to get near-hemispheric coverage ( ~ 1  month for 

HALOE data). Using this correlation along with the daily PV distribution, HALOE 

CH4  is constructed for a specific day. The NMLM technique is then applied to the 

reconstructed HALOE CH4  data and for 7-day periods to suppress random noise in the 

data.

The information provided by PV and CH4  in the reconstructed distributions is 

not redundant, and both entities affect the NMLM analyses. We observed that the PV 

versus CH4  correlations are not linear, and therefore CH4  is contributing new 

information and not merely reflecting the PV distribution. Hemispheric distributions 

of PV and reconstructed CH4  on isentropic surfaces were also examined. They 

showed that PV significantly influences the synoptic structure of CH4, and CH4  

influences the magnitude of the horizontal gradient. Finally, the NMLM technique is 

applied to PV distributions and to HALOE CH4  data spanning 35 days (time required 

to achieve near-hemispheric coverage). These results were compared with the NMLM 

analysis using the reconstructed HALOE CH4  data. The comparison confirmed what 

was concluded from the hemispheric distributions of PV and reconstructed CH4  (i.e., 

PV affects the CH4  structure and CH4  affects the horizontal gradient).

Ultimately, we demonstrated that it is feasible to apply the NMLM technique 

to solar occultation data when used in conjunction with daily PV distributions to
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identify lateral transport barriers and mixing regions. Application of the NMLM 

technique to solar occultation data was validated by comparing results obtained using 

the reconstructed HALOE CH4  data with CLAES N20  data for the same periods. 

Since CH4  and N20  are long-lived tracers with similar distributions, their NMLM 

results are expected to be much the same. And in fact the results compare favorably. 

For example, the NMLM analyses using reconstructed HALOE CH4  data and CLAES 

N20  data for May 5-11, 1992 show excellent agreement for the equivalent latitude 

location of both the polar and subtropical barriers. Also, there are very little 

differences in the areas of small and large equivalent lengths in the two analyses.

Tracer correlations are frequently the choice for interpreting the localized ER-2 

aircraft measurements. However, unlike the NMLM analysis, correlations include the 

effects of both chemistry and transport. Separating these effects by merely examining 

tracer correlations is difficult and often ambiguous. A foreknowledge of chemical and 

dynamical processes that could influence the correlation is essential. An additional 

insight as to how the relationship between two tracers is affected by quasi-horizontal 

transport becomes evident when the correlation is associated with a coincident NMLM 

analysis.

Following the theory of Plumb and Ko [1992], a compact relationship is 

expected between long-lived tracers as a result of a balance between transport and 

chemical processes. A breakdown of this compact relationship and what is seen as 

scatter in correlation diagrams can be attributed to tracers having very different 

chemical loss or production rates or relative short local lifetimes, spatial and temporal 

variability in horizontal and/or vertical transport that result in inhomogeneous mixing
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of different air masses, or measurement uncertainties. We demonstrate how scatter 

can be interpreted as chemical anomalies when the NMLM analysis indicates that 

lateral transport is inhibited and when vertical descent is ruled out based on the time 

evolution of the observed tracer concentrations. For example, CH4  versus 0 3  

correlations and NMLM results using reconstructed HALOE CH4  data were examined 

for a chemically active period (i.e., southern hemisphere spring). The NMLM analysis 

showed a strong polar barrier to lateral transport, isolating polar air from midlatitude 

air. Tracer correlations over the same time period exhibited a compact relationship 

forming a negative slope for air sampled on the surf zone side of the polar barrier, 

where rapid quasi-horizontal mixing efficiently homogenizes the air. However, the 

compact correlation curves become diffuse or discontinuous (forming a positive slope) 

for regions on the polar side of the transport barrier, where the air most likely reflects 

chemical processing. Also by examining a complementary NMLM cross section, we 

demonstrate that the presence of scatter in the tracer correlation in regions without 

significant local chemical activity or vertical descent is a direct indicator of anomalous 

mixing (i.e., slow quasi-horizontal transport and inefficient mixing of air masses). For 

this case, CH4  and 0 3  correlations and NMLM results using reconstructed HALOE 

CH4  were examined in the subtropical region during northern hemisphere spring, 

where little or no effects of chemistry are expected on either CH4  or 0 3. The NMLM 

analysis showed a subtropical barrier to lateral transport on isentropic surfaces above 

approximately 430 K. The strength of this barrier increased with altitude and directly 

influenced the tracer correlations. Tracer correlations exhibited a compact, negative- 

sloping relationship on surfaces above 470 K, where the subtropical barrier is relative
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strong and thus isolates tropical and extratropical air. The air sampled on these 

surfaces is from the surf zone side of the barrier and is well mixed. On isentropic 

surfaces below 470 K, tracer correlations were diffuse. Here the NMLM analysis 

showed that quasi-horizontal transport is only weakly inhibited and results in 

inhomogeneous mixing of tropical and extratropical air masses. In these cases, 

correlations hint at the presence of a dynamical barrier to transport. A discontinuous 

jump in the correlation curve more clearly identifies that a strong barrier to mixing 

exists. Therefore, correlations can resolve transport issues but are more precisely 

interpreted when coupled with a NMLM analysis.

In conclusion, combining ER-2 tracer correlations with a HALOE NMLM 

analysis provides increased information for evaluating the role of transport in the 

lower stratosphere on both small and large scales. When tracer correlations and 

NMLM analyses are used in conjunction, one analysis can suggest and the other verify 

the role of transport. However, the NMLM technique is far preferred to tracer 

correlations if only one analysis is employed to deduce information about transport. 

This analysis not only captures the tracer distribution but also identifies the location, 

shape and relative strength of transport barriers and mixing regions. A weakness of 

the method is that it depends upon using global satellite data of lower resolution 

(compared to aircraft data). However, we were able to assess the satellite data by 

comparing tracer correlations based upon HALOE measurements with those from the 

ER-2. Correlations were examined for time periods that coincided with ER-2 flights 

from 1991 through 1997. Fortunately, the very good agreement achieved between the 

CH4  versus O3  correlations from the two independent sources increased our
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confidence in using the HALOE CH4  data in global NMLM analyses which provide a 

much more quantitative interpretation of the transport.
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