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ABSTRACT

Few studies to date have been done on the behavioral actions o f suspension 
feeding fish, despite the fact that a great many environmentally and econom ically 
im portant fish are suspension feeders.

Observations of feeding behavior in Oreochromis niloticus revealed 
differences in the frequencies of actions used for suspension feeding on four prey 
types (whole flake food, crushed flake slurry, brine shrimp, and bacteria). Five 
feeding actions (long pumps, short pumps, vacuums, spits, and reversals) were 
quantified and their functions were analyzed.

Examination of w ater samples by Acridine Orange Direct Counts (AODC) 
showed that these fish responded to the presence of naturally-occurring bacteria in the 
w ater and fed spontaneously on that bacteria when it reached a certain density.



FREQUENCIES OF SUSPENSION-FEEDING ACTIONS VARY W ITH PREY 

TYPE IN OREOCHROM IS NILOTICUS (PISCES: CICHLIDAE)



INTRODUCTION

Vertebrate suspension feeding involves the m ovem ent of particle-laden water 

into and through the buccal cavity where surfaces or structures separate the minute 

particles from the water, allowing the ingestion of the captured particles (Sanderson 

and W assersug, 1993). Particulate feeding involves the selective ingestion of 

individual food particles, whereas suspension feeding is comparatively non-selective, 

entrapping food particles in groups rather than individually. Suspension feeders, also 

known as filter feeders, have been defined as "aquatic animals that have evolved 

special structures to process the surrounding water and to retain small suspended 

particles, including food particles such as phytoplankton" (J0rgensen, 1983). I would 

add to that definition that they may also have evolved special physical actions to aid 

in the processing of water for food particles, and in re-suspending particles from 

benthic surfaces back into the water for consumption via filter feeding.

Filter-feeding fishes have long been studied due to their importance to 

freshwater ecosystem s (Northcote, 1988) and to mankind, since they form 

approximately one-third of the world fish catch (FAO, 1993). Suspension-feeding 

tilapia, for example, are valued in commercial fishing industries, even though they 

have caused disruption to native fish populations when introduced to new 

environments (Getachew, 1993; Kaufman, 1992; Kolding, 1993; Ogutu-Ohwayo, 

1990). The ability of suspension-feeding fishes to filter huge quantities o f water for 

tiny prey items is a source of continuing research, including studies of functional 

morphology and sites and mechanisms of filtration (Gerking, 1994; Sanderson and 

W assersug, 1993). However, little work to date has concentrated on the behaviors
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3
involved in collecting and processing the food particles. Behavioral actions during 

feeding can affect fluid flow (both direction and velocity) within the buccal cavity, 

which in turn affects the particle encounter and retention m echanisms involved 

(Rubenstein and Koehl, 1977; Shimeta and Jumars, 1991). Encounter m echanisms 

concern the contact between feeding structures and particles while retention 

m echanisms are concerned with the capture of those contacting particles (Shimeta and 

Jumars, 1991).

Comparison between suspension feeding and particulate feeding is hampered 

by the limited data on the actions involved in suspension feeding. Therefore, I have 

quantified the actions used during suspension feeding in O. niloticus. with the goal of 

determining how and why feeding actions differ with prey type. Oreochromis 

niloticus was chosen for this study since it is one of only three fish species whose 

particle retention mechanisms are known (Abramis bram a. Cyprinidae,

Hoogenboezem et al. 1991; Orthodon microlepidotus. Cyprinidae, Sanderson et al.

1991; Oreochromis niloticus. Cichlidae, Sanderson et al. 1996).

Field and laboratory studies have shown that O. niloticus eat a considerable 

variety of food types, including phytoplankton, bacteria, diatoms, zooplankton, and 

insect larvae (Bowen, 1982; Fryer and lies, 1972; M oriarty and M oriarty, 1973;

Onyari, 1983). Tilapia have been shown to vary suspension feeding behavior with 

size of prey (Drenner et a l. 1984; 1987), so feeding on prey items of different sizes 

was investigated using crushed flake slurry versus whole flake food. The food items 

investigated in this study covered the range of sizes of prey items that may be 

consumed via suspension feeding (~ l|im  - 10 mm), and included natural prey types, 

bacteria and zooplankton.



M ATERIALS & METHODS

Three specimens of Oreochromis niloticus were obtained from a United States 

aquaculture company. The fish (13.5-25.0 cm standard length) were kept in 29 gallon 

aquaria at 26-28 °C, in constant light, and were fed TetraM in flake food daily with 

occasional supplements of frozen adult brine shrimp (Artem ia). The aquaria had 

gravel substrates (3-9 mm diameter). The fish were kept separated and without visual 

contact to prevent aggressive territorial behavior. All experiments were conducted 

during natural daytime, when these fish feed most actively (M oriarty and M oriarty, 

1973).

Feeding Action Observations and Analysis

Videotapes of feeding behavior were recorded using a hand-held Hi-8 

cam corder (Sony CCD-TR81, 30 frames s"l). Feeding behavior by each o f the three 

individuals was observed on four prey types: whole flake TetraM in (3-10 mm 

diameter), crushed TetraM in flakes (0.1-1.0 mm diameter) in a slurry with water, 

frozen adult brine shrimp ( A rtem ia. 4 mm length), and microscopic food particles 

suspended in the water column (bacteria and algae; see water analysis below). The 

first three prey types were introduced into the aquaria by the investigator, with fish 

beginning to feed at the moment of prey introduction. Only one prey type was 

introduced per day and the food types were introduced in a random order. The whole 

TetraM in flakes (2.2 g) were added to the tanks by hand, once at the beginning of 

observation periods, as per daily feedings. The brine shrimp (2.5 g) and the slurry 

(2.2 g crushed TetraM in in water) were added via a plastic tube attached to a 30 cc 

syringe in three to five portions during the first three minutes of observation. The fish
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5
usually began to filter feed spontaneously on microscopic particles two to four hours 

after the last introduction of food. All feeding actions were clearly distinguished from 

respiratory actions, and respiratory actions were not included in analysis.

Prior to all observations, the individual being viewed fasted for 24-36 hours. 

Videotaped data were collected from the feeding fish for continuous time periods of 

10-15 minutes after the introduction of food, or during spontaneous filter feeding on 

microscopic particles in the water column. These observations were repeated on 

separate days until 30 minutes of data had been collected, in two or three bouts of 

feeding, for each of the three fish feeding on each of the four prey types. In each 

case, the fish fed actively throughout the videotaped time, with a noticeable reduction 

in feeding activity after 1 0 -1 5  minutes used as the criterion for the cessation of 

videotaping. In general, feeding activity continued for at least 20 minutes after 

feeding was initiated.

The videotapes were analyzed on a frame by frame basis, using a H i-8 video 

player/recorder (Sony EVO-9700) with an editing controller jog shuttle (Sony RM- 

E9700). Each oral movem ent that took place during feeding was noted. The 

movements fell into five action categories: long pumps, short pumps, vacuums, spits, 

and reversals. There were less than ten movements in all the collected data, prim arily 

"yawns" and "coughs", that did not fit into one of the above categories.

Water Sample Analysis

To identify and enumerate the microscopic particles in the water column, 

water samples were collected both within one half-hour after the beginning of 

spontaneous filter feeding and within one half-hour after the cessation of such filter 

feeding. For each aquarium, feeding and post-feeding samples were taken on the 

same day, for the same bout of feeding. All water samples during spontaneous filter 

feeding were taken a minimum of two hours and a maximum of six hours past the last 

introduction of external food. The fish suspension fed intermittently before
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completely ceasing to feed, but post-feeding samples were taken within thirty minutes 

after continuous filter-feeding activity had completely ceased. Acridine Orange 

Direct Counts (AODC) of the contents of the water samples were done im mediately 

following sample collection. Acridine Orange is one o f the main stains used for 

making direct counts o f aquatic bacteria by epifluorescence (Fry, 1988; Hobbie, et al. 

1977) and provides better estimates of bacterial abundance than does 4'-6-diamidino- 

2-phenylidole (DAPI) (Suzuki, et al. 1993).

Samples were collected with a sterile 5 cc syringe. One m illiliter of each 

sample was filtered immediately onto a black "Nucleopore" polycarbonate (0.2 |im ) 

filter. The filters with samples were stained for five minutes with 0.3 ml of 0.01% 

Acridine Orange dye solution. They were then examined under an epiflourescent 

microscope (Olympus BH2-RFL) at 100X, which permitted identification of three 

general types of cells (rod bacteria, cocci bacteria, and suspended algal cells). The 

category of "algal cells" may include cyanobacteria since I was unable to clearly 

distinguish different kinds of filamentous cells. However, all cells categorized as 

"algal" were defined as such due to the presence of visible internal structures (none 

were visible in the rod or cocci bacteria).

Twenty fields were chosen for each 1 ml sample using a random num ber 

table, and all cells in each field were counted. Counts of the number of cells o f each 

type were averaged for the 20 random fields and the numbers of cells per m illiliter of 

water were calculated using the following equation:

Area of filter/Area of microscope field = 254.46 mm^/O.Ol mm^ =

25446.0 = number of microscope fields/filter

(Average num ber of cells/microscope field) (25446.0 fields/filter) =

Average num ber of cells/filter

(Average num ber of cells/filter)/ 1ml volume o f sample filtered =

Average num ber of cells/milliliter



7
Feeding Action/Prey Type Statistical Analysis

Using JM P version 2, SAS Institute Inc. (1989), statistical analyses were 

performed on the total number of times each of five feeding actions (long pumps, 

short pumps, vacuums, spits, and reversals) occurred during 30 minute observations 

o f feeding by each of three individual fish on each of four prey types (whole flakes, 

crushed flakes, brine shrimp, and microscopic cells). The variances were not 

homogeneous, so all data were transformed by taking the square root (Sokal and 

Rohlf, 1981). Once transformed, the data were normally distributed (Shapiro-W ilk W 

test, P > 0.05) and the variances were homogeneous (Bartlett's test, P > 0.05).

A one-way repeated measures ANOVA was performed for each of the five 

feeding actions. Prey type was a fixed factor and individual was a random factor.

The sequential Bonferroni test was used to give an experiment-wise a  of 0.05 (Rice, 

1989).

Unplanned contrasts among means were conducted for each one-way 

ANOVA by building contrasts in terms of the least squares means of the effect. An F 

test was used to test jointly for all of the contrasts that were tested for each one-way 

ANOVA.

Water Sample Statistics

The average numbers of cells present per milliliter of aquarium water during 

feeding versus post-feeding were calculated for each of three aquaria. Averages were 

obtained for each of three cell types: two forms of bacteria (rod and cocci) and 

suspended algal cells. The cell counts for the water samples were not normally 

distributed, so a square root transformation was performed (Sokal and Rohlf, 1981). 

The transformed data were normally distributed (Shapiro-W ilk W  test, P > 0.05), and 

the variances were homogeneous (Bartlett's test, P > 0.05).
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Two-tailed paired t-tests on each of the three sets of data (rod, cocci, and algal 

cells) were then executed to test for significant differences between feeding and post

feeding samples.



RESULTS

Feeding Action Descriptions

Oreochromis niloticus filter feed using suction pumps that cause w ater to pass 

from the mouth through the buccal cavity and out the opercula, with edible particles 

filtered from this water as it passes through the buccal cavity. These pum ping actions 

were interspersed with other feeding actions: vacuums, short pumps, spits, and 

reversals (described below). W hen food was introduced to the aquarium, the fish 

began to feed by using suction pumps in the open water column for several minutes. 

Particles slowly settled to the, substrate during this feeding. W hen few prey items 

remained suspended in the water column, the fish would briefly disturb the substrate 

with benthic suction feeding (vacuums), and then return to water colum n feeding on 

the particles that had been re suspended from the substrate. This pattern of alternating 

between benthic and water column feeding would continue until feeding activity 

ceases after approximately 20 minutes.

In Figure 1, a fish was traced from the videotape at intervals o f 0.13 seconds 

(4 frames) during a representative suction pump. M ost pumps occurred as part of a 

cycle o f feeding actions and the pre-pump appearance of the fish often included 

adducting opercula and the adducting of the hyoid from the previous pump (Fig la). 

As a pump began (Fig lb ), the mouth opened and the oral valve retracted as the 

premaxillae began to protrude. The opercula and hyoid remained adducted. As the 

mouth opened further, abduction of the hyoid apparatus created a negative pressure 

within the buccal cavity, and water rushed into the mouth (Fig lc). A t the pump 

apex, the mouth formed a wide oval opening, the premaxillae were extended far 

forward, the floor of the buccal cavity was abducting, and the opercula were

9
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abducting (Fig Id). As the mouth closed (Fig le), the buccal cavity floor was fully 

expanded and the opercula were fully abducted. Once the mouth closed completely, 

the hyoid began to adduct, and water was expelled through the opercular opening (Fig 

If). Then the hyoid apparatus continued to adduct and the opercula adducted (Fig 

la), leaving the fish ready for the next action. Pumps lasted for as little as 0.4 

seconds or as long as 1.25 seconds, with an average duration of 0.7 seconds (n = 30,

SD = 0.18).

For O. niloticus two general categories of pumps were identified: long pumps 

and short pumps. Long duration pumps (0.6 seconds or longer, Fig 1) always 

occurred in the water column with a wide-open mouth, and any food particles visible 

near the mouth could be seen entering the buccal cavity during these pumps. Short 

duration pumps (less than 0.6 seconds) also occurred in the water column. However, 

during these short pumps, the mouth was opened only a half to a quarter as wide as 

during long pumps and the buccal cavity was not as expanded. Comparatively litde 

suction was created as indicated by the fact that only particles in the immediate 

vicinity of the mouth entered the buccal cavity during these short pumps. In all other 

respects, the movements involved were similar to those that occurred in long pumps.

The few yawns observed were unlike both types of pumps in that the mouth opened 

widely over an extremely long time period (3 or more seconds) in a stretching motion 

with no visible particle collection.

Vacuums were used exclusively for benthic feeding, where suction was used 

to take up large mouthfuls of food, gravel and detritus from the bottom of the 

aquarium. The physical actions o f the mouth during a vacuum were very sim ilar to 

those of a long pump. Vacuums were quite brief (usually 0.3 to 0.5 seconds 

duration), and the fish often shoved its mouth into the gravel in a rooting motion prior 

to the use of suction. In this paper, vacuums refer exclusively to benthic feeding, 

while the term long pump refers solely to water column feeding.
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Short pumps occurred after a series of long pumps or interspersed with 

vacuuming during benthic feeding. W hen they occurred intermixed with vacuuming 

actions, gravel, food, and fecal material was clearly visible within the anterior buccal 

cavity on the abducted oral floor. In these cases, short pumps were followed by 

spitting, when unwanted material such as gravel was expelled from the mouth in a 

quick burst. Spits occasionally followed vacuums directly.

Lasting 0.5 sec or less, spits ejected material through a wide-open mouth.

Spits were similar to reversals in all buccal movements except that the mouth was 

open in a spit, whereas the closed mouth during the reversal prevented any loss of 

m aterial from the buccal cavity. At no time was material observed exiting via the 

opercula; all uneaten material was ejected through the mouth by these fish during 

spits.

A total of three coughs were observed in these specimens. A cough was 

defined as an abrupt opening of the mouth very wide accompanied by rapid abduction 

and adduction of the opercula, with no visible ejection of material. W ater flow was 

assumed to reverse in the mouth during a cough, similar to a spit, but the lack of 

ejected material made the direction of water flow difficult to determine. M ore data is 

required to clarify the purpose of coughing in this species.

Long pumps, short pumps, vacuums, and spits were all periodically 

interspersed with reversals, although reversals most often occurred following a pump 

or another reversal. A reversal was characterized by an abrupt, coordinated m otion of 

the opercula, premaxillae and hyoid apparatus generally lasting 0.5 seconds or less 

which created a suction in the opposite direction from a pump, causing water to flow 

in through the opercula and forward into the buccal cavity to the closed mouth.

Based on videotapes obtained by inserting a fiberoptic endoscope into the 

buccal cavity, Sanderson et al. (1996) identified three stages of the reversal in O. 

niloticus: the pre-reversal stage, reversal stage 1, and reversal stage 2. In Figure 2, a
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fish was traced from exterior videotape at intervals of 0.067 seconds (2 frames) 

during a representative reversal. Before a reversal began, the mouth was closed and 

the floor of the buccal cavity was either fully adducted or still slightly abducted from 

a previous action (Fig 2a). Immediately preceding a reversal, the opercula abducted 

and the hyoid apparatus and buccal cavity floor continued to adduct if  not yet fully 

adducted (Fig 2b). In stage 1 of a reversal, as the buccal cavity filled with water from 

the backwards influx from the opercula, the opercula abruptly adducted, the hyoid 

apparatus was abducting and the premaxillae began a very rapid protrusion, which 

moved the closed mouth forward (Fig 2c). The premaxillae continued to extend to 

the maximum protrusion (Fig 2d). This movement expanded the volume of the 

anterior buccal cavity as the floor of the buccal cavity distended further, which caused 

a suction that pulled the water in the opercular and buccal cavities from the posterior 

to the anterior. Observations of internal water flow patterns via an endoscope have 

confirmed this posterior to anterior flow during stage 1 of a reversal (Sanderson, et al. 

1996). Then stage 2 began as the closed mouth and premaxillae began to retract, the 

hyoid apparatus adducted, and the opercula abducted again (Fig 2e). As the reversal 

ended (Fig 2f), the mouth returned toward its pre-reversal position with the hyoid 

apparatus adducting as water left through the open opercula.

Feeding Action/Prey Type

The specimens ate vigorously when all food items were introduced to the. 

aquaria. The data collected for the five feeding actions for each of the four prey types 

are shown in Figure 3.

Applying the sequential Bonferroni test with an experiment-wise error rate of 

a  = 0.05, the one-way ANOVAs demonstrated that there were significant differences 

between prey types for all five actions (Table 1). There were also significant 

differences between individuals for short pumps and reversals (b and e, Table 1).
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The unplanned contrasts were performed on selected subsets of prey types for 

the ANOVAs of each action (Table 2). For all five feeding actions, microscopic food 

was responsible for the most significant differences among prey types. Long pumps 

occurred more often with microscopic food than with any other prey type, while all 

other actions (short pumps, vacuums, spits, and reversals) occurred least frequently 

with microscopic prey. There were also significantly fewer spits with brine shrimp 

than with whole flake or crushed flake prey types. However, no other trends tested 

among prey types were significant.

W a te r  Sam ples

All water samples showed the presence of rod and cocci bacteria and algal 

cells (Table 3). The algal cells included both fragments of filamentous algae, 

presumably broken off of the aquarium walls, and unicellular phytoplankton.

Filam entous algae fragments were small, rarely having more than three or four cells 

in a strand. A significantly larger number of bacteria were present in the water during 

feeding behavior than when no feeding was taking place (rods P = 0.002, cocci P <

0.001). However, there was no significant difference between the num ber of algal 

cells present during feeding and post-feeding behavior (P = 0.4). There were 

substantially fewer algal cells present in the water than bacterial cells of either type.



DISCUSSION

Feeding Actions

Prior to this study, m ost research focused on the mechanisms for particle 

encounter and retention and the diets of suspension-feeding fishes, rather than on the 

actions involved in food capture. Different broad categories of feeding behavior, or 

feeding modes, have been noted previously for some suspension-feeding fishes 

(Janssen, 1976; 1978). Janssen (1976) identified three such modes in the alewife: 

filtering, gulping, and particulate feeding. Filter feeding was not size selective, and 

gulping and particulate feeding were size selective, non-suspension-feeding modes. 

However, I have found that prey type and size affect food collection and processing 

actions within the filter-feeding mode. Oreochromis niloticus used different 

frequencies of five action types in response to the four food types in this study.

The functions of the five feeding actions could be inferred from close 

observations o f these actions in real time and in frame-by-frame analysis of video 

footage. Long pumps were observed to draw suspended food particles into the buccal 

cavity. Since these particles did not exit via the buccal or opercular cavities, the term 

"collecting pump" can be used to describe the function of long pumps. Since 

vacuum s were observed to suction food and detritus from the substrate, they can be 

described as specialized collecting pumps used solely for benthic feeding. However, 

vacuums also re-suspend particles into the water column as a side effect o f the 

benthic-feeding action.

Short pumps were characterized by a far less open mouth and less expanded 

buccal cavity than long pumps and caused relatively few particles visible in the water 

colum n to enter the buccal cavity, which suggested that they induced far less suction

14
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than long pumps. Rather than collecting food from the water column, short pumps 

appeared to have the function of separating organic particles from inedible materials, 

such as gravel or sand which entered the mouth during vacuums. Through the 

partially open mouth during short pumps, gravel, feces, and food could be seen lying 

in the anterior buccal cavity, ju st ventral and posterior to the lower jaw. Small 

amounts of w ater entering the mouth during a short pump would wash across this - 

material, potentially washing less dense particles upwards and to the posterior buccal 

cavity. Therefore, short pumps were most likely used for sorting edible particles from 

inedible materials that were collected together, suggesting that the term "sorting 

pumps" be used to distinguish these actions. Short pumps commonly intermingled 

with vacuums, reversals and spits, usually with inedible material visible in the 

anterior buccal cavity. Spits simply expelled water and unwanted matter through the 

mouth in a forceful burst. Reversals, however, appeared to have far more complex 

functions.

A backward m ovem ent of water flow in the buccal cavity had been 

previously mentioned in this species as a "coughing action" (Dempster, et al. 1995), 

but had not been fully examined prior to this study. Reversals caused a posterior to 

anterior movem ent of water within the buccal cavity while the mouth was closed 

(Sanderson, et al. 1996), shifting collected particles inside the cavity while preventing 

the loss o f particles. On their own, or in close combination with short pumps, 

reversals may help to separate food particles from inorganic materials by re- 

suspending less dense organic particles within the buccal cavity. This re-suspension 

should aid in the retention of edible particles by providing additional opportunities for 

entrapm ent of small particles in mucus on the branchial arches. Sanderson, et al 

(1996) reported that O. niloticus used mucus entrapment during suspension feeding 

on whole and crushed flakes, and suggested that reversals also aid in the transport of 

mucus-bound particles to the esophagus during this form of aerosol filtration.
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Therefore, reversals may be im portant for both mucus transport and re-suspension of 

food within the buccal cavity.

Reversals, or reversal-like movements, may serve these functions in other fish 

species as well. A "closed protrusion", a movement similar to a reversal, has been 

noted in suspension-feeding carp fCvprinus carpio. Cyprinidae) by Sibbing et al.

(1986). These authors also suggested that this action aids in the sorting o f edible 

from inedible matter and.in the positioning of particles within the buccal cavity. Both 

carp and O. niloticus maintain completely closed mouths during these actions. This 

helps to distinguish the reversal and the closed protrusion from oral winnowing, a 

behavior used by non-suspension-feeding surfperch species to separate edible and 

inedible items in the mouth (Drucker and Jensen, 1991). W innowing involves a 

partially open mouth, allowing the escape of water, inedible materials, and tiny food 

particles. W innowing fish are feeding on the larger particles which do not escape via 

the mouth.

Feeding Actions/Prey Type

Significant differences existed between prey types for all actions and between 

individuals for short pumps and reversals (Table 1). Fish 1 was anomalous, showing 

few er actions per unit time than the other two individuals for short pumps and 

reversals (Figure 3). However, the overall pattern of actions for the prey types 

remained consistent so that the individual differences did not m ask the differences 

between prey types (Figure 3).

The greatest differences within actions took place with microscopic prey.

Long pumps occurred significantly more frequently during feeding on microscopic 

prey than during feeding on any other prey type (Table 2). There were significantly 

few er occurrences of the other four actions (short pumps, vacuums, spits, and 

reversals) during microscopic feeding versus feeding on the other prey types (Table 2, 

Figure 3). Long pumps may have occurred more often with microscopic prey since
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these particles were suspended in the water column, where this action was used for 

collection of food.

The feeding on microscopic food was spontaneous, with no bacteria or algal 

suspension introduced into the aquarium to induce feeding. In O. niloticus. bacteria 

and other m icroscopic food are probably retained in mucus on the branchial arches 

(Sanderson, et al. 1996), but during feeding on microscopic prey many long pumps 

were apparently needed before reversals became necessary for the transport o f mucus 

to the esophagus (Figure 3). Relatively few short pumps and spits were apparently 

needed during feeding on microscopic prey, possibly because large inedible particles 

such as gravel were not engulfed. Likewise, vacuums to stir up food particles from 

the substrate for continued suspension feeding were least frequent during microscopic 

feeding (Table 2, Figure 3).

All non-microscopic prey types could be observed to fall to the substrate fairly 

rapidly, so that water column feeding could occur only during the first few minutes 

after introduction of the food. After that, feeding had to take place on the substrate, 

leading to a greater num ber of short pumps, vacuums, spits and reversals for non- 

microscopic prey types relative to microscopic prey. The significantly lower num ber 

o f spits for shrimp versus whole flake or crushed flake slurry prey types may be 

related to the ease with which the prey were retrieved from the substrate. W hole flake 

and crushed flake slurry collected inside crevices in the gravel as well as in a thin 

two-dim ensional layer on the substrate. During vacuums, gravel was often collected 

with the flake or slurry particles, which may have led to the high number o f spits to 

clear the gravel from the buccal cavity. The adult brine shrimp, having a three- 

dim ensional shape, did not sink down into the gravel crevices, which may have led to 

less gravel collection and a reduced number of spits. However, short pumps did not 

differ significantly between prey types, suggesting more research is needed to clarify 

the uses of this action.
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Water Samples

The significantly higher numbers of rod and cocci bacteria in the water 

column during microscopic feeding compared to post-feeding periods (Table 3) are 

consistent with reports that O. niloticus can detect and suspension feed on bacteria 

(Beveridge et a l. 1989). The bacteria concentrations found in the aquaria during 

feeding and post-feeding periods were within reported ranges for natural oligotrophic 

and mesotrophic lakes (Kusenzow, 1970 in Rheinheimer, 1992). Since at least some 

forms of bacteria form a food source for this species (Bowen, 1982; Fryer and lies,

1972), the fish may have m echanisms for the detection of bacteria in high enough 

concentrations to make feeding on them energetically efficient. These specimens do 

appear to respond to bacterial concentration in the water since they do not feed 

continuously, but at specific times. The intervals of two to four hours that elapsed 

between the introduction o f prey (flake or shrimp) and later spontaneous feeding on 

microscopic prey in the water column may have reflected the time required for 

enough bacteria to reproduce for feeding to be worthwhile for these fish. Ingestion 

rates increase with particle concentration (microspheres and zooplankton) in another 

suspension-feeding cichlid, Tilapia galilaea (Drenner et al. 1987). This assumes that 

the bacteria are using any uneaten food as an energy source, resulting in an increased 

concentration o f bacteria that is detectable by the fish. Spontaneous filtering of the 

aquarium water was not merely a function of hunger level since the fish filtered 

spontaneously two to four hours after consuming external food but were never 

observed to filter spontaneously prior to the introduction of external food.

The small num ber of reversals compared to long pumps during microscopic 

feeding indicated that mucus was positioned and swallowed only after a considerable 

time spent collecting, presumably after a large number of particles had bound to the 

mucus (Figure 3). This suggests that there may be a threshold quantity o f particles 

bound to the mucus before mucus transport is stimulated, but that threshold remains



unknown at this time. Oreochromis niloticus can adjust mucus production in 

response to particle presence and size (Sanderson et a l. 1996) and now appears to 

likewise behaviorally regulate mucus transport and consumption through reversal 

frequency.

There was no relationship between concentration of algal cells and the 

occurrence of spontaneous suspension feeding (Table 3). Oreochromis niloticus feed 

on phytoplankton and diatoms in the wild (Moriarty and M oriarty, 1973; Onyari, 

1983; Getachew, 1993) and in the laboratory this species has been shown to consume 

periphytic cyanobacteria (Dem pster et a l. 1993) and planktonic cyanobacteria and 

algae (Northcott et a l. 1991: Beveridge et al. 1993; Keshavanath et al. 1994; 

Robinson et al. 1995). D em pster et al. (1995) showed by bioenergetic modeling that 

four tilapia species (including O. niloticus') cannot maintain their weight solely by 

filter feeding on phytoplankton. I propose that there was too little suspended algae to 

stim ulate feeding without a corresponding increase in the concentration of bacterial 

cells. In other words, algal cell num bers rose and fell within too small a range and 

with too few cells overall to stimulate suspension feeding. However, when bacteria 

levels reached the point where feeding occurred, then algal cells were undoubtedly 

also consum ed simply by being present in the water being filtered. Another 

possibility is that the algal particles involved were too small to stimulate feeding, 

since it has been shown that O. niloticus feeding on planktonic algae increase feeding 

rates with particle size (Northcott et al. 1991; Robinson et al. 1995).



CONCLUSION

O. niloticus consum es prey items from bacteria (~1 jam) to flake food (3-10 

mm diameter) via filter feeding, using five actions: long pumps, short pumps, 

vacuums, spits, and reversals. The frequencies of feeding actions change in response 

to the type and concentration of prey being captured and the amount of processing 

required (separation from inorganic particles, mucus transport). These findings 

should stimulate further research, since the frequencies o f feeding actions could have 

effects on particle encounter and retention methods and sites within the buccal cavity.

Further studies are needed to determine the concentration of food, especially 

bacteria, necessary for detection by the fish and for stimulation of feeding. An 

analysis o f the varied feeding patterns of pumps and reversals in microscopic feeding 

is also needed. Sim ilar studies in more species of suspension feeders will help to 

clarify the functions of the above described feeding actions. Other uses for the 

reversal action would be especially interesting; for instance, if  mouth brooding 

specimens use reversals to reorganize or aerate eggs in the buccal cavity. Further 

clarification is also needed of any interactions between mucus processing and the 

described feeding actions.
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APPENDIX

FIGURE LEGENDS

Figure 1. A  representative pump, traced from videotape at intervals o f 0.13 seconds 

(4 frames). Arrows indicate (1) maximum premaxillary protrusion, (2) 

maximum hyoid abduction, and (3) maximum opercular abduction. Opercular 

stippling indicates opercular abduction, (a) pre-pump appearance with 

opercula and hyoid adducting, (b) mouth opening, oral valve retracts, and 

premaxillae begin to protrude, (c) mouth opens further, hyoid abducting, (d) 

pump apex: mouth wide, premaxillae extended, and hyoid and opercula 

abducting, (e) mouth closing, hyoid and opercula fully abducted, (f) 

mouth closed, hyoid adducting, water expelled through opercular opening.

Figure 2. A representative reversal, traced from videotape at intervals of 0.067

seconds (2 frames). Arrows indicate (1) maximum prem axillary protrusion, 

(2) maximum hyoid abduction, and (3) maximum opercular abduction. 

Opercular stippling indicates opercular abduction, (a) end of previous action: 

hyoid slightly abducted, (b) pre-reversal: opercula abduct, hyoid fully 

adducted, (c) stage 1: opercula rapidly adduct, hyoid abducts, and 

premaxillae begin rapid protrusion, (d) premaxillae reach maximum 

protrusion, (e) stage 2: premaxillae retracting, hyoid adducting, opercula 

abducting, (f) hyoid adducts to pre-reversal position.

Figure 3. The total num ber of actions per thirty minute observation of each prey type. 

X-axis: the num ber of actions. Y-axis: action types are listed by individual 

fish (1 ,2 , 3).
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Table 1. One-way ANOVAs of prey type and individual fish during feeding actions 
observed over 30 minutes (a) long pumps, (b) short pumps, (c) vacuums, (d) 
spits, and (e) reversals.

(a)

Source df SS MS F P

prey type 3 262.7 87.6 5.1 0.04

individual

(b)

2 21.6 10.8 0.6 0.6

- Source df SS MS F P

prey type 3 180.3 60.1 21.9 0.001

individual

(c)

2 88.0 44.0 16.03 0.004

Source df SS MS F P

prey type 3 861.05 287.02 29.7 0.0005

individual

(d)

2 72.4 36.2 3.7 0.09

Source df SS MS F P

prey type 3 203.5 67.8 11.6 0.007

individual

(e)

2 28.8 14.4 2.5 0.2

Source df SS MS F P

prey type 3 487.8 162.6 47.7 0.0001
individual 2 80.4 40.2 11.8 0.008



Table 2. Unplanned contrasts of prey types for each action (n. s. = > 0.05). m = 
microscopic food, f  = whole flake, c = crushed flake, and s = brine shrimp.

Action contrast prob > Itl prob > F

Long Pumps
m vs. f, c, s 0.01

0.04f  vs. c, s n. s.
c vs. s n. s.

Short Pumps
m vs. f, c, s 0.0002

0.001f  vs. c, s n. s.
c vs. s n. s.

Vacuums
m vs. f, c, s < 0.0001

0.0005f  vs. c, s n. s.
c vs. s n. s.

Spits
m vs. f, c, s 0.002

0.007s vs. f, c 0.04
f vs. c n. s.

Reversals
m vs. f, c, s < 0.0001

< 0.0001s vs. f, c n. s.
f  vs. c n. s.



Table 3. Results o f paired t-tests comparing the num ber of cells counted in water
samples taken during and after periods of filter feeding on microscopic prey.

Cell type
feeding or post-feeding

Number o f cells/m illiliter 

(mean ± SD, N = 3)

Bacteria, rod

feeding 178546 ±48385 P = 0.002

post-feeding 51528 ± 11387

Bacteria, cocci

feeding 688261 ± 234404 P  < 0.001

post-feeding 160893 ± 61794

Algae

feeding 2863 ± 900 ha II o

post-feeding 3605 ± 1 1 8 0
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