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ABSTRACT

The purpose of this study was to develop an effective and more sensitive 
method for the determination o f lead in blood by graphite furnace atomic 
absorption spectroscopy. Lead poisoning, and especially childhood lead 
poisoning, is a major public health problem in many industrialized countries. The 
presence of lead in the blood is regarded as a reliable index to the extent o f recent 
metal uptake. Therefore, the determination of lead in blood is useful in the 
diagnosis of poisoning and in monitoring the working environment.

Sample pretreatment consisted o f a 1:2 dilution with a dilute surfactant.
To eliminate the background absorption signal from the blood matrix, a matrix 
modifier solution of 200 mg/L Pd and 2% citric acid in 0.01 mol/L nitric acid was 
also deposited onto the furnace platform. In addition, an air atmosphere was used 
during the pyrolysis step to aid in the combustion o f matrix materials.

Values for lead in the samples were obtained by direct comparison to a 
linear working curve prepared from aqueous standards. An entire cycle could be 
completed approximately every two minutes.

The determinations were performed in triplicate, and the relative standard 
deviation was typically about 4% at low concentrations, indicative of very good 
precision. In addition, recoveries have ranged from 3 ppb to 50 ppb at low 
concentrations o f blood lead. The limit o f detection was estimated to be 0.5-1 
ppb.

The method proved to be rapid and simple, reliable and was reproducible. 
In addition, there are minimal chances for contamination as the procedure does 
not require the use o f many labwares and reagents. The only sample preparation 
is the dilution, and thus the procedure lends itself to automation. The rapidity o f 
the method and the requirement o f only tens o f microliter volumes of blood 
sample make the method potentially attractive for large-scale screening programs.
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Chapter I: Introduction

Lead in the Environment

Lead is a heavy metal of considerable utility and versatility, but is now a persistent 

and ubiquitous environmental problem. It has been used at least since Biblical times in a 

variety o f products, primarily in inorganic forms to the extent that its impact as an 

environmental pollutant was of little consequence until this century.(l,2,3) Lead pollution 

has increased greatly due to its use, in metallic form, in storage batteries and in the past as 

organic anti-knocking additives to petrol in the automotive industry.(1,3,4,5) It is estimated 

that over seven million tons o f lead were burned in the United States between 1926 and 

1985 through internal combustion engines, and it has been well documented that high 

concentrations o f lead are found in surface soils o f even remote ecosystems as a result of 

atmospheric deposition.(3) Only during the last two to three decades have efforts been made 

to recover lead from used batteries and to use alternative petrol additives.(l,2,4,6)

The health risks associated with exposure to lead are well recognized. There is now 

sufficient evidence to indicate that exposure to even low lead levels (<100ug/L blood) can 

produce adverse health effects, especially in more vulnerable segments of the population; 

including the unborn fetus, infants, children and the elderly.(7) Important sources of 

exposure to environmental lead include paint, dust and soil in and around dwellings.(l,4,5,6)

2
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In addition, lead in drinking water arising from lead piping, fixtures, and lead-based solder 

in household plumbing can also pose a significant risk.(l,4,5,6)

Chronic lead exposure is characterized by neurological defects, kidney dysfunction 

and anemia.(2,3,6,8) Neurological damage includes behavioral problems, intellectual 

impairment and hyperactivity.(l,4,8,9) Various researchers have suggested that the most 

controversial issue associated with the toxic effects o f lead exposure is in regard to subtle 

behavioral effects due to moderately elevated lead levels.(l) Human behavior is influenced 

by so many factors that the design o f studies taking these factors into account has been 

extremely difficulty 1 )

Anatomic data suggest that the kidneys are the most sensitive to lead.(l,2,3,6) 

Generalized aminoaciduria is a characteristic o f early lead nephropathy in both children and 

aduhs.(l,2,3,6) In children with acute exposure to lead (blood lead levels o f at least 150 

pg/dL), a complete renal Fanconi syndrome o f aminoaciduria, glycosureia and 

hyperphosphaturia may develop.(3) The anemia o f chronic lead poisoning is known to be 

due primarily to an inhibition of the enzyme which controls the incorporation of iron into 

the heme molecule.(2,3,4,6)

Overall, the current understanding of lead toxicity is considered inadequate, 

particularly with respect to neurobehavioral effects in man, and in defining the magnitude 

for maximum safe exposure levels.(l) However, in the United States the Centers for 

Disease Control has set the concentration o f blood lead (BPb) considered harmful. The 

chosen value was recently lowered from 25 to 10 pg/dL (100ppb).(10)
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The assessment of lead exposures from paint, dust, soil, food and drinking water 

requires the reliable determination o f lead in clinical samples. As a result, projects 

committed to the standardization of sampling, sample preparation, and analysis of lead in 

whole blood are a critical part of lead poisoning prevention.(7,ll) The most common 

analytical technique for the determination o f trace levels of lead in blood is through graphite 

furnace atomic absorption, as it requires only tens o f microliters o f sample and can provide 

detection limits up to 1 0 0  times lower than other conventional spectroscopic 

techniques.( 12,13)

Comparison of Spectroscopic Analytical Methods

A variety o f analytical methods have been used for the determination of lead in 

biological samples. Spectroscopic techniques include: inductively coupled plasma mass 

spectroscopy, inductively coupled plasma atomic emission spectroscopy, and flame and 

graphite furnace atomic absorption spectroscopy. Each of these methods will be 

described briefly.

Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). ICP-MS is an efficient 

technique with low detection limits (ng/L range) and rapid sample throughput; however, 

instrumentation is expensive (>$100,000). An argon plasma is used as the ion source for 

a quadrupole mass spectrometer.(14) Spectral interferences do not occur in the normal 

sense o f ICP, but interferences from mass overlaps due to other elemental isotopes and
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polyatomic species produced in the plasma can occur.(14) These interferences may 

provide erroneous results, but can be reduced with high resolution instrumentation^ 14)

ICP-MS has proven to be a powerful technique for the determination of trace 

metals in various matrices.(13,14,15) Trace metal determination in biological matrices, 

however, can be very time consuming and tedious. Salts must be removed from high salt 

matrices before analysis due to interferences from mass overlaps.(14) Interferences may 

be corrected for by procedures such as principle component analysis or isotope 

dilution.(14) Salts are usually removed by chemical separation procedures, such as a 

solvent extraction procedure, which may introduce error and thus offset analytical 

advantages.( 13,14,15)

Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). ICP-AES 

is the most widely accepted and utilized multielement atomic spectroscopy technique, as 

it can detect selected elements simultaneously or sequentially.(13,14,15) By monitoring 

selected analytical emission wavelengths for each element, either all at once or in a 

programmed sequence, many elements in a given sample can be determined in one 

automated analysis.(13,14,15) In addition, ICP-AES has an analytical working range of 

up to six orders o f magnitude.(13,14,15) This broad linear dynamic range enables the 

determination o f samples with widely varying concentrations. The detection limit (about 

20 fig/L) is the primary problem for the determination of lead in blood.(15) It is 

inadequate for routine determinations.
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The determination o f trace metals in biological samples by ICP-AES typically 

requires a separation o f the analyte from the matrix because high concentrations o f salts 

in these samples tend to clog the sample orifice o f the ICP torch.(14,15) This separation 

is time-consuming and can create difficulties in creating analytical blanks and in 

controlling contamination problems.

Flame Atomic Absorption Spectroscopy (FAAS). FAAS is a simple, rapid and 

precise method for trace metal analysis; however, large sample volumes are required and 

the limit o f detection for lead (40-50 pg/L) is insufficient for trace analysis.(13) The 

typical analytical working range is two to three orders o f magnitude^ 14) For the analysis 

of higher concentrations o f lead, FAAS may be the instrument o f choice. The 

determination o f lead at pg/L concentrations and below requires the use of 

preconcentration techniques, which are very tedious and time-consuming.(13,14) 

Preconcentration can be accomplished by several methods such as liquid-liquid extraction 

with an organic phase, ion exchange preconcentration, co-precipitation, and 

electrochemical methods. However, any preconcentration technique is slow and prone to 

contamination.

G raphite Furnace Atomic Absorption Spectroscopy (GFAAS). By far the most 

advanced and highly sensitive atomization method for atomic absorption is the graphite 

furnace. The limit o f detection for lead analysis by GFAAS is at least ten times better 

than FAAS; however, GFAAS has a limited analytical working range of a little over two
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orders of magnitude.(13,14) A single routine GFAAS determination for a single element 

normally requires two to three minutes due to the multiple step temperature program 

required. Only small sample volumes are required, which is particularly useful in the 

analysis o f biological samples. Matrix interferences can be controlled, in most cases, 

without the incorporation of extraction and preconcentration techniques. Thus, GFAAS 

appears to be the most useful o f the existing analytical methods for the determination o f 

trace levels o f lead in small biological sample volumes; however, many GFAAS systems 

with low limits o f detection and good precision and reproducibility require the use o f the 

costly Zeeman background correction systems and electrodeless discharge lamps. 

Further improvement in the methodologies could allow for improved simplicity and 

sensitivity for the technique. This would make GFAAS methods more attractive for 

routine lead screening programs using automated systems with sufficiently low limits o f 

detection and no sample pretreatment steps, other than simple dilution, with more 

accessible GFAAS instrumentation.



Chapter II: 

Graphite Furnace Atomic Absorption Spectroscopy

Introduction

GFAAS is a routine analytical method for the quantification o f many elements in a 

variety o f sample matrices. In order to understand this analytical technique, a brief 

description o f the theory behind atomic absorption and of the components o f the graphite 

furnace are necessary.

In atomic absorption, a liquid sample is typically reduced to atoms at elevated 

temperatures as a narrow band of electromagnetic radiation, typically in the ultraviolet 

through the visible region o f the spectrum, is passed through the sample.(12,13,16,17) The 

ground state o f the atom absorbs light energy of a specific wavelength and, through 

electronic transitions, the atom enters the excited state as illustrated in Figure 1.

+

L ight
E n e rg y

Ground
State
Atom

E xcited
State
Atom

Figure 1: The process of atomic absorption. Ref. 16
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The amount of light absorbed is directly proportional to the number of atoms in the 

beam. A quantitative determination o f the amount of analyte can be made by measuring the 

amount of light absorbed relative to known concentrations o f the analyte 

elemental2,13,16,17) Through the use of light sources specific to the given element and 

carefully chosen wavelengths, the selective determination of individual elements is achieved 

such that spectral interferences from other species are minimized.

The intensity of the incident radiation from the radiation source (Io) decreases after it 

passes through the gaseous atoms.(12,13,16,17) The remaining intensity (I) is given by the 

transmittance (T), where

T = I/Io.

The transmittance can then be related to the absorbance (A) by Beer's Law, which states

A = - log T = abc

where ‘a’ is the absorptivity coefficient for the absorbing species, 4b’ is the thickness of the 

sample cell (usually measured in centimeters), and ‘c’ is the concentration of the absorbing 

species. Thus, the extent o f absorption depends primarily on the concentration of the 

absorbing species since in practice the length of the sample cell is held constant. Absorption 

as a function of concentration should be linear over a range of analyte concentrations 

measured in the same sample matrix.

At sufficiently high concentrations most elements tend to deviate from Beer's Law in 

that the relationship between concentration and absorbance is no longer linear. There are 

many reasons for this, including nonhomogeneous temperatures in the absorbing cell, stray 

light, line broadening and self-absorption. ( 12,13,16,17) In order to correct for this,
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microprocessors are incorporated into modem atomic absorption instruments which plot 

absorbance vs. concentration curves over a wide range of concentrations. The instrument 

then utilizes an automatic curve correction to determine elemental content when sample 

concentrations are beyond the linear range.

Instrumentation

Conventional models incorporate at least the following five instrumental 

components: a lamp as a source of electromagnetic radiation, a graphite tube as a sample 

cell in which atoms are produced, a monochromator for wavelength isolation, a detector 

which measures the light intensity and amplifies the signal, and a microprocessor system 

that will electronically interpret the signal.(12,13,16,17) A system to correct for background 

spectral interferences is usually incorporated as well. A schematic diagram of a typical 

GFAA instrument is shown in Figure 2.

Sc-ecL'ic Li^ht M fixaursnient

Scu rce
M co cchr cn: a: o r

Figure 2: Schematic diagram of atomic absorption spectrophotometer. Ref.16
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The light source that is typically used is a hollow cathode lamp (HCL), which 

produces a bright, stable and long-lived radiation source.(12,13,16,17) The energy required 

for atomization is provided by applying a high voltage electrical current through the graphite 

tube where the sample has been placed. A programmable power supply provides precise 

control o f temperature programs in the atomization process. The atomic vapor generated 

from the furnace can absorb light. The light is electronically modulated to differentiate 

between the light from the source and emission from the sample cell. The monochromator 

is used to isolate a specific wavelength for detection by a photomultiplier tube. An electrical 

current is then produced and processed depending on the intensity o f the light reaching the 

detector. A time-dependent signal is produced and either peak height or peak area can be 

measured and compared to a calibration curve in order to determine the analyte 

concentration.

Since atoms absorb light at very specific wavelengths, it is necessary to use a lamp 

that will provide the narrow-line spectra of the element o f interest. The hollow cathode 

lamp is a bright, stable source for most elements.(12,13,16,17) Figure 3 illustrates how a 

hollow cathode lamp is constructed. The lamp consists o f a tungsten anode and a cylindrical 

cathode sealed in a glass tube filled with neon or argon. The cathode is constructed entirely 

or in part of the metal whose spectrum is to be produced. Ionization o f the inert gas occurs 

when a potential on the order o f 300 V is applied across the electrodes, and a current ranging 

from 5 to 20 mA is generated as ions and electrons migrate to these electrodes. If  the 

potential is sufficiently large, a process called "sputtering" occurs in which the gaseous 

cations acquire enough kinetic energy to dislodge some of the metal atoms from the cathode
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surface, thus forming an atomic cloud. These sputtered metal atoms are produced in excited 

states and they emit characteristic radiation in returning to the ground state. Eventually, the 

metal atoms are redeposited as they diffuse back to the cathode or to the glass walls.

NEON OR ARGON

ANODE

OPEN
SHIELD

CATHODE

O

Figure 3: Diagram of a hollow cathode lamp. Ref.16

The sample cell consists o f an electrically heated graphite tube into which the 

sample is deposited.(12,13,16,17) The graphite furnace, shown in Figure 4, is heated by 

applying a high current across the water cooled graphite contacts to resistively heat the
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graphite tube for sample volatilization. The dimensions o f the graphite tube have been 

optimized, as the absorbance signal is dependent, among other variables, upon the residence 

time of the atoms in the sample tube.(10,16) Larger tubes tend to heat slowly and 

problematic temperature gradients along the tube length develop. Shorter tubes heat rapidly 

to the extent that the sample residence time would be too short.

Internal External 
Gas Flow Gas R ow External Internal 

Row Gas Flow

^  Graphite 
S  Cooling 
\  Ring

Window Assy

7777!

l i m i l l l l l l l l l l l lU t f i l l lU l l l U t l lU I I I J I I I

Graphite
>  C ontacts

External 
Gas R ow

External 
Gas Row

Light Beam

Figure 4: Cross-section of a graphite furnace. Ref. 12

Normal graphite has a relatively coarse, layered surface which allows certain 

materials and elements to penetrate into the lattice where they can interact with the graphite 

at elevated temperatures.(12,16,17) This can pose problems because the analyte may be 

retained by the graphite and released only at higher temperatures. Thus, graphite tubes are 

commonly coated with pyrolytic graphite to make the tubes more impervious to metals in
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the vapor phase. Pyrolytically coated graphite tubes have a more uniform and dense surface 

that does not allow for sample or solvent penetration, and they are thus more chemically 

inert.

When wall atomization is used, the sample is deposited onto the wall in the center o f 

the tube.(12,16,17) This is the area o f the tube that is heated most rapidly and which reaches 

the atomization temperature first. Thus, the analyte is volatilized off o f the wall into an 

environment which is cooler than the surface from which it was volatilized. This leads to 

conditions that are very difficult to control and which can cause various matrix 

interferences.

In order to achieve atomization and volatilization at a more constant temperature 

throughout the tube, the sample is often atomized from a small platform of solid pyrolytic 

graphite inserted into the tube.(12,16,17) An illustration o f a L’vov platform inserted in a 

graphite tube is shown in Figure 5. The graphite tube is heated primarily by an electric 

current passing through it; however, the platform is heated primarily by radiation from the 

tube walls. Therefore, there is a time lag between the heating of the tube and the platform, 

which serves to delay the atomization o f the sample until the graphite tube and the inert gas 

reach thermal equilibrium. The L'vov platform has a proven reputation for providing greater 

control and reproducibility of the atomization conditions, and for reductions in sample 

matrix interferences.
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GRAPHITE TUBE
( Port ion of Side Cut Away)

PLATFORM
( In s e r t 'd  in Tube)

END VIEW

Figure 5: L’vov platform inserted in a graphite tube. Ref. 12

The graphite tube is completely enclosed in order to minimize environmental 

influences, except for the port through which the sample is deposited.(12,13,16,17) 

Removable quartz windows are located at both ends of the furnace to allow for passage o f 

the HCL beam. Two independently controlled gas flows are used. An external flow o f an 

inert gas protects the tube from ambient air exposure, which would cause degradation at 

high temperatures due to oxygen. Because an inert atmosphere during atomization is a 

prerequisite for any graphite furnace analysis, an internal gas flow is also used both before 

and after atomization. This gas protects the hot graphite from burning away through contact
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with the ambient air and serves to purge the tube of any matrix materials volatilized during 

the pre-atomization dry and char steps. After atomization, the inert flow also serves to flush 

the tube o f any remaining materials from the sample. Argon is typically used for both the 

external protective and the internal purge gas, as it does not react with the graphite or with 

analyte atoms.

Alternate gases can be used during the thermal char o f samples with complex 

matrices, such as in the atomization o f biological samples.(12,16,17) The use of air as a 

purge gas during the pyrolysis step can provide a much more effective char and thus a more 

complete removal o f organic and biological materials, which may otherwise cause a carbon 

buildup on the inside o f the tube and interfere with the analysis.

Graphite tubes typically have lifetimes of 50 to 300 determinations, depending on 

atomization rate, temperature, the rate o f gas flow, and the composition o f the sample 

matrix.(12,16,17) As the tube ages, analytical precision will decrease. The use o f a L'vov 

platform typically results in a longer tube lifetime as the sample does not come into direct 

contact with the tube wall. In order to achieve the maximum useful tube lifetime the 

atomization temperature and time should be kept as low as possible. As the tube ages, the 

analytical peak may change in shape and the tube should typically be replaced when the 

absorbance value drops to about 20% below the original value.

Graphite furnace atomic absorption spectroscopy is not rapid due to the long interval 

between individual firings (2-3 minutes). Automatic samplers are almost a necessity for 

precise volume measurements and the reproducible deposition of samples into the graphite 

tubes. The manual deposition of a small volume of liquid into a small, dark sample opening
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is very difficult and requires substantial analytical expertise. Furthermore, not only 

accurately dispensed volumes, but also the position o f the sample droplet in the graphite 

tube has an influence on the precision of the resuhs.(12,16,17)

Interferences

Interferences in graphite furnace atomic absorption are evidenced by either an 

enhancement or depression o f the absorbance signal when compared to an appropriate 

standard at the same concentration^ 12,16,17) Various categories o f interferences exist in 

atomic absorption; these are chemical interferences, ionization interferences, emission 

interferences, spectral interferences and background absorption.

Chemical interferences result when the sample contains thermally stable compounds 

of the element o f interest which do not decompose at the prescribed furnace 

temperatures.(12,16,l 7) As a result, the number of analyte atoms in the vapor phase capable 

of absorbing light is reduced. These interferences can usually be overcome with the use o f a 

higher atomization temperature, or through the use of chemical matrix modification. 

Increased atomization temperatures provide additional energy to break down the compounds 

that are stable at the lower temperature; however, more volatile elemental species may be 

lost in the process. Releasing agents or complexing cations can be added to preferentially 

react with the interferent to release the analyte at lower temperatures and indirectly remove 

the chemical interference.

Ionization interferences result when the furnace temperature has enough energy to 

cause the removal o f an electron from the atom, thus creating an ion.(12,16,17) This also
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reduces the number of atoms in the ground state; and thus the extent o f atomic absorption is 

reduced. In order to minimize this type of interference, an excess of an easily ionized 

element can be added to both the standards and samples. Alternatively, a lower atomization 

temperature may be used; however, this may create other potential interferences.

The major emission interferences in graphite furnace atomic absorption 

spectroscopy are due to black body radiation from the furnace tube or from highly emissive 

species in the sample.(12,16,17) At low analyte concentrations, the atomic absorption 

analysis may exhibit poor precision if the emission signal falls within the spectral bandpass 

being used. This radiation is evidenced by increased noise or, occasionally, by baseline 

shifts. The emission signal is generally due to emission from the carbon tube itself; 

however, materials in the furnace or sample may also emit radiation. The slit width o f the 

monochromator may be decreased in order to somewhat compensate for this interference, 

resulting in some loss of sensitivity.

Spectral interferences result when an absorbing wavelength of a species present in 

the sample falls within the bandwidth of the absorption line of the element of 

interest.(12,16,17) In this case, analytical results will be erroneously high as the interfering 

element will augment the atomic absorption signal. A smaller slit width may be used or an 

alternate wavelength chosen to correct for spectral interferences.

Background absorption is a common interference in atomic absorption for which 

there are two primary sources: light scattering by particles in the vapor phase and molecular 

absorption o f light by molecules in the vapor phase.(12,16,17) Some samples, especially 

biological samples, may absorb or scatter light from the source due to the existence of



19

gaseous molecular species or salts in the vapor phase at the atomization temperature. In 

addition, the radiation from a continuum source used to measure background absorption 

may be absorbed by species from the matrix if they have an absorption line within the 

spectral bandpass being used for the analysis. Fortunately, low levels o f background 

absorption can be distinguished from the absorption of the element o f interest. The analyte 

element will only absorb the narrow line emitted by the source lamp; whereas background 

absorption is less specific and extends over a broad band of wavelengths.

The most common way to compensate for background absorption is through 

background correction, which subtracts non-analyte absorption signals from the total 

absorbance signal generated. The deuterium arc lamp continuum source background 

corrector, which is the most commonly used system for background correction, is designed 

to automatically correct for broad-band nonatomic absorption in the UV region from 195 

nm to 320 nm.( 12,13,16,17) The lamp, which is adjusted to equal intensity with the primary 

source, emits light over a broad spectrum o f wavelengths instead o f specific lines. The 

hollow cathode lamp and light from this continuum source are passed alternately through the 

furnace. The element being determined absorbs only the discrete lines from the hollow 

cathode lamp while background interferences can absorb light over the bandwidth o f the slit. 

The overall bandwidth (typically 0.2-0.7 nm) is quite large compared to the linewidth o f the 

atomic transition (0.001-0.0001 nm). Thus, there is negligible error in the background 

correction. Finally, the difference in the two beam intensities is measured electronically and 

used to eliminate the effect of the background absorption.
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Background correction with a continuum radiation source is limited in that it only 

accurately corrects for background absorption that is constant in intensity over the observed 

spectral bandwidth.( 12,16,17) When the background absorption changes with wavelength 

the continuum source background corrector will subtract the average background signal, 

which may not be identical to the actual background absorption on the resonance line and 

results in overcompensation. Any baseline offset in the vicinity o f the absorption signal or 

any over-compensation of the background is a clear indication of improper background 

correction. In order to prevent this, other background correction systems may be used, such 

as Zeeman or Smith-Hjeifte systems; however, these systems are far more costly.

Background absorption can also be reduced through several alternative means. 

Matrix modification through the addition o f other species to the sample will frequently 

reduce the effects o f background absorption. Alternatively, one can reduce the sample size 

by injecting less or by diluting the sample. Increasing the temperatures of the pre

atomization steps may also reduce background absorption, particularly if the background 

signal is being produced by a volatile organic matrix constituent. One may also increase the 

flow rate o f the purge gas in order to decrease the residence time of the background- 

producing constituents in the furnace. Unfortunately, these alternatives also often result in 

poorer limits o f detection.

Optimization of Analytical Methods

In graphite furnace atomic absorption, the desolvation o f the sample, dissociation 

from the matrix, and the generation of analyte ground state atoms occur sequentially during
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the dry, char, and atomization steps respectively. Thus, it is necessary to select the 

individual temperatures such that each step is effectively carried out for its intended 

purpose.( 12,16,17)

In creating the temperature program, temperature ramping allows a controlled, 

gradual increase in the furnace temperature instead of a strictly stepwise procedure.

Stepwise procedures may be inadequate because the thermal treatment at any particular step
/

may be incomplete; thus causing the more volatile constituents of the matrix to dissociate, 

melt or rapidly boil when the temperature program abruptly advances to the next 

step.(12,16,17) This sample spattering may lead to poor precision and loss o f sample. By 

using temperature ramping, each of the constituents in a complex biological sample may be 

more effectively decomposed.

The purpose of all pre-atomization steps is to decompose and remove all matrix 

materials as thoroughly as possible so that the atomization of the analyte element can be 

carried out with minimal interferences.(12,16,17) The temperatures for these steps must be 

carefully chosen as they need to be long enough and the temperature high enough to 

completely volatilize any particulate-producing or interfering compounds. The purpose of 

the dry step is to evaporate low boiling liquids from the sample while the char step is used to 

remove as much of the matrix as possible before atomization. The physical properties o f all 

materials and compounds present in the sample matrix largely determine the success o f this 

separation. Thus, the thermal stability of the matrix in which the analyte element o f interest 

resides is of major significance. The more volatile the matrix materials and the less volatile 

the analyte element, the easier the separation. Thus, the addition of matrix modifiers can
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chemically convert the analyte to a less volatile form, or the matrix into a more volatile 

form.

Matrix modification has been proposed as a technique to transform elements into a 

more well defined compound with known properties in graphite furnace applications. This 

provides for the use of optimal temperature conditions for the thermal pretreatment o f the 

matrix.(12,16,17) Higher pretreatment temperatures ensure the best separation of the 

analyte from accompanying materials, and thus reduces the chance of encountering 

background interferences. Matrix modification may also help to avoid the appearance of 

multiple analyte peaks in the absorption profile due to the absorption o f different 

compounds of the analyte element present in the original sample that are volatilized at 

different temperatures.

The temperature selected for atomization must be high enough to completely 

volatilize the analyte element within a few seconds without loss o f analyte.(12,16,17) The 

atomization time is chosen to be as short as possible while still allowing for the complete 

volatilization o f the analyte element. If this time is too short, some of the analyte may be 

retained in the furnace, thus causing erroneous results for the following samples.

The external protective gas stream around the tube is normally fixed.(12,16,17) The 

purge gas stream, however, must be precisely controlled such that it completely removes all 

volatilized material from the tube without allowing it to recondense in cooler areas of the 

furnace. During atomization, however, the purge gas is stopped so that the analyte atoms 

are kept in the beam o f radiation as long as possible in order to give the highest absorbance.



Chapter IK: 

The Determination of Lead in Blood via GFAAS

Among the various techniques used for the determination o f lead in blood, 

electrothermal atomic absorption spectroscopy (ETAAS) is very popular because o f the 

excellent sensitivity and selectivity for lead.(18) Numerous methodologies have been 

published for ETAAS with wide variations in atomization, sample pre-treatments and 

analytical methods. Most methods involve simple dilution of the blood, normally with a 

haemolysing agent such as Triton X-100, and then introduction into the furnace for drying, 

ashing, and subsequent atomization. The main problem encountered in the application of 

electrothermal atomization to volatile analytes in samples containing appreciable amounts of 

organic matter is obtaining satisfactory separation o f the ash and atomization signals. This 

separation is necessary, even if a background correction system is employed, in order to 

obtain reliable resuhs.(12,16,17) Thus, numerous groups have developed methods to 

remove the organic interferences either by chemical modification of the matrix or through 

the use o f an oxygen pre-ash to aid in the combustion of interfering species.

Eaton and Holcombe published a comparative study which evaluated various 

matrix modifiers and procedures.(18) In particular, the roles o f O2  ashing, Triton X-100, 

HNO3 and NH4H2PO4 were studied. The group suggested a method for the determination

23
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of lead in human whole blood using GFAAS. As previously described, the use of 

temperature ramping allows for a more controlled, gradual increase in the furnace 

temperature; whereas a strictly stepwise procedure as performed here can cause the more 

volatile constituents of the matrix to dissociate, melt or rapidly boil when the temperature 

program abruptly advances to the next step.(12,16,17) The temperature program used in 

this study is provided in Table 1.

Step Furnace
Temperature

(°C)

Ramp
Time

(s)

Hold

(s)

Internal 
Gas Flow 
(mL/min)

Dry 100 0 45 200
Char 900 0 45 200*

Atomization 2000 0 3-5 200
Cool-down 25 0 25 200

’•'Denotes the alternate gas, air.

Table 1: Temperature program for the study done by Eaton and Holcombe

The method did not utilize a continuum background correction system, thus the 

reduction of spectral interferences was a primary concern. The high salt concentration o f 

blood was reduced by using red cells rather than whole blood, as previous research has 

clearly shown that lead tends to adsorb on the surface of red cells. Sample preparation 

involved centrifugation of the blood in order to isolate the whole red cells from the blood 

plasma. This, however, can be tedious, timely and can introduce sampling errors and 

contamination.
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Background measurements were made with the 280.3nm line o f lead.(18) Ash 

buildup was noted after several firings which was difficult to remove even with a high 

temperature burnout in the inert sheath gas. Thus, an air ashing was used to remove the 

carbonaceous deposits. Air, which is approximately 20% O2 , was used at 2.0 L/min during 

the dry and first ash step of the temperature program. In the absence o f air a maximum ash 

temperature o f 500° C could be utilized without a significant loss o f lead; however, in the 

presence of air ash temperatures of up to 950 °C were used. This temperature was 

sufficient to ensure combustion o f the matrix without analyte loss. The group suggested 

that 0 2 was adsorbed as a surface oxide on the graphite and desorbed as CO. The CO 

was only released at an appreciable rate at elevated temperatures of greater than 1000° C. 

Thus, only a few monolayers o f the graphite were removed on every firing as long as an 

inert atmosphere existed within the furnace at temperatures greater than 1000° C.

The study also confirmed the utility of Triton X-100 in blood analysis.( 18) This 

surfactant reduced the sample/graphite interfacial tension and allowed improved contact 

between the sample and the furnace walls. Without the addition of the Triton X-100, the 

majority o f the sample was physically lost from the furnace due to frothing during the 

dry, and the subsequent ashing was ineffective due to poor contact with the graphite tube. 

Several concentrations o f Triton X-100 were used, ranging from 0.1 to 5.0% (v/v). At 

higher concentrations, interfacial tension was so reduced that the sample flowed out o f 

the ends of the graphite tube resulting in a loss o f signal.

Many studies have indicated that the addition of low concentrations o f HNO3 will 

stabilize aqueous solutions o f lead standards and prevent adsorption o f the metal onto the
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storage container walls. However, this study determined that significant variations in 

peak heights and areas caused by minor changes in acid concentrations outweighed the 

benefits o f its use. Many researchers have also added phosphate salts, such as 

NH4 H2 PO4 , as matrix modifiers to facilitate the determination o f lead in blood. However, 

the study also indicated that the addition o f phosphate salts to whole blood and whole red 

cells resulted in considerably higher background absorbances. The addition of 

NH4H2 PO4  to aqueous lead standards and blood samples also allowed for higher 

temperatures to acquire the absorbance peak; however, no explanation for this 

phenomenon was postulated.

Fernandez also developed a method for lead determinations in whole blood by 

GFAA in which no matrix modifiers were used, other than a simple fivefold dilution of 

the blood with 0.01% Triton X-100 surfactant.(19) When the samples were diluted with 

de-ionized water, an appreciable buildup o f residue from the blood matrix was observed 

in the tube, making the use of simple aqueous dilution impractical. Hemolysis o f the 

blood by dilution with the diluent eliminated this residue buildup problem. The use of 

various dilution ratios was investigated, and it was found that a fivefold sample dilution 

provided the best compromise between adequate sensitivity and low background 

absorption. To eliminate the nonspecific absorption signal from the blood matrix, a 

deuterium arc background correction system was used.

The procedure recommended by Fernandez was problematic for the same reasons as 

was the aforementioned procedure. The temperature program provided below in Table 2 

was suggested as optimum; however, it did not include the use o f temperature ramps. In
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addition, the char temperature was very low, and thus may not have removed all potential 

interferences.

Step Furnace Ramp Hold Internal
Temperature Time Gas Flow

(°C) (s) (»> (mL/min)
Diy 100 0 25 15

Char 525 0 50 15
Atomization 2300 0 9 15

Table 2: Temperature program for the study done by Fernandez

The average recovery was studied by adding known amounts o f lead nitrate to 

several blood samples. This recovery was typically around 98% over a concentration 

range of 150-1000 pg/L with precisions ranging from 2-4%. However, this concentration 

range is not a realistic range to study as the Centers for Disease Control recently lowered 

the concentration of blood lead considered harmful to young children from 250 to 100 

pg/L. Thus, a routine method for pediatric screening must be able to accurately and 

precisely detect blood lead levels lower than 100 pg/L. In addition, this method involved 

a centrifugation procedure to mix the diluted blood samples, which was tedious and can 

lead to contamination and transfer error.

Fernandez and Hilligoss developed a different method for the determination of 

lead in blood using the graphite fumace.(20) However, the paper was short and 

inconclusive, and no limit o f detection was mentioned. The method involved a fivefold
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dilution of blood in 0.5% Triton-X 100, matrix modification with 0.2% NH4 H2 PO4 , 

deuterium arc background correction and utilization o f the L’vov platform.

In contrast to the findings o f Eaton and Holcombe, the results o f this study 

indicated that the use o f NH4H2PO4 virtually eliminated any background interferences 

and residue buildup from the blood matrix, thus significantly extending the lifetime o f the 

graphite tube.(lO) However, this discrepancy may be due to the fact that this group 

utilized whole blood whereas Eaton and Holcombe used only red cells. Thus, these 

results indicated that phosphate salts might be of some utility in reducing salt 

interferences when using complex biological samples such as whole blood.

Step Furnace
Temperature

(°C)

Ramp
Time

(s)

Hold

(s)

Internal 
Gas Flow 
(mL/min)

Dry 130 10 5 0
Dry II 200 15 20 0
Char 600 15 45 0

Atomization 1700 0 6 40
Cleanout 2500 1 4 0

Table 3: Temperature program for the study done by Fernandez and Hilligoss

The prescribed temperature program shown in Table 3 was more typical than the 

one previously suggested by Fernandez, as it included the use o f temperature ramps and 

cleanout; however, the suggested char temperature was low. In addition, the study 

suggested the use o f an internal argon flow during atomization, but this purge gas was not 

used for any other step. Ordinarily, the purge gas is used to force some of the vaporized
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matrix materials and burned organic residue out o f the furnace prior to atomization and 

during the cleanout. The use o f the purge gas during atomization; however, may have 

forced some of the lead atoms out o f the furnace and attenuated the signal. The samples 

were also noted to rapidly clot and suspend particulate matter, which noticeably degraded 

both precision and accuracy.

Pruszkowska, Camrick and Slavin also suggested a procedure for the 

determination o f lead in blood using a combined modifier containing 0 .2 % NH4 H2 PO4  

and 0.05% Mg(NO)3 .(2 1 ) In addition, 1% HNO3 was added to the solution in order to 

prevent the precipitation o f magnesium phosphate.

This procedure involved a two step deposition o f the samples onto the L’vov 

platform. First, a 10 pL aliquot of the blood sample diluted 10-fold in de-ionized water 

containing 0.2% Triton X-100 was automatically dispensed onto the platform using an 

autosampler. A 5 pL aliquot o f the modifier solution was then added on top o f the 

previously deposited samples and standards. The temperature program was typical for 

the determination of lead in blood, as given in Table 4.

Step Furnace
Temperature

(°C)

Ramp
Time

(s)

Hold

(s)

Internal 
Gas Flow 
(mL/min)

Dry 130 1 60 300
Char 650 1 45 300

Atomization 1700 0 5 0
Cleanout 2600 1 6 300

Cool-down 20 1 20 300

Table 4: Temperature Program used for the study done by Pruszkowska, Carnrick 
and Slavin
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The use o f this method, along with a magnetic Zeeman background correction 

system and an electrodeless discharge lamp running at 10 Watts, enabled the group to 

reach a sensitive limit o f detection o f 10 pg/L. In addition, a 93-101% recovery was 

reported, and the results were in good agreement with those from the Yale-New Haven 

Hospital, which also analyzed the lead content o f the samples. The reported precision 

was better than 2.5% at levels o f 200 pg/L.

One problem that was noted involved the appearance of a small, early-running 

peak in the blood which was perhaps due to the absorbance o f lead volatilized as the 

chloride. In addition, this method has proven to be impractical for reproduction when 

used with the more accessible and less costly deuterium arc background correction 

system due to the appearance of high background signals and suppressed analyte signals.

Slavin and Parsons developed a different method for the determination o f lead in 

blood via graphite furnace atomic absorption which was more rapid than any o f the others 

previously described.(17) This method, with Zeeman background correction, again 

cannot be easily replicated using a deuterium arc background correction system. Whole 

blood was diluted 1:10 in a phosphate modifier containing 0.2% NH4H2PO4, 0.5% Triton 

X-100 and dilute nitric acid with sampling on a L’vov platform. Except for the small 

purge gas flow during atomization the temperature program was typical as shown in 

Table 5.
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Step Furnace
Temperature

(°C)

Ramp
Time

00

Hold

00

Internal 
Gas Flow 
(mL/min)

Dry 175 5 1 0 300
Dry II 260 5 1 0 300
Char 900 5 2 0 300

Atomization 1900 1 5 30
Cleanout 2500 1 2 300

Table 5: Tem perature program used in the study done by Slavin and Parsons

An entire cycle was completed every 115 seconds with standard deviations 

typically about 2.5 pg/L at concentrations o f 100 pg/L, indicative of very good precision. 

The method appeared to be rugged and reliable as well as precise and accurate, as it 

rapidly determined concentrations down to 10 pg/L.

Hodges and Skelding described a method for the determination o f lead in blood 

by atomic absorption spectroscopy with electrothermal atomization using a very unique 

matrix modification technique.(22) The method proposed a matrix modification solution 

comprised o f 1% orthophosphoric acid, 1% HNO3, and 0.1% Triton X-100. In addition, 

a pre-coating of the graphite tube with molybdenum was suggested in order to most 

effectively minimize matrix interferences and to promote stable routine operation.

The addition of the orthophosphoric acid was effective in raising the atomization 

temperature of lead, thereby allowing greater time resolution of the ash and atomization 

processes. The lowest temperature at which atomization was detectable was reportedly 

increased from 630 to 840° C in the presence of the orthophosphoric acid. It was 

proposed that the substitution o f more volatile anions by orthophosphate was beneficial in
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minimizing if not eliminating the interference of halide and sulfate salts. The role of 

molybdenum as a coating for carbon tubes was not clear; however, it was postulated that 

the coating played some part in modifying the matrix so that background absorption due 

to phosphate salts was reduced. Overall, the molybdenum-coated tubes appeared to allow 

more reproducible analyte absorption signals to be obtained from the various blood 

samples.

The temperature program did not include the use o f temperature ramps between 

steps or a step for the HGA cleanout. In addition, no internal purge gas was mentioned. 

The temperature program is shown in Table 6 below.

Step Furnace Ramp Hold Internal
Temperature Time Gas Flow

(°C) (s) (s) (mL/min)
Dry 100 0 60 0

Char 750 0 30 0
Atomization 2500 0 2-5 0

Table 6: Temperature Program used for the study done by Hodges and Skelding

Over the extended study the method appeared to be reliable and it exhibited consistently 

good performance in regards to both precision and accuracy. The limit o f detection was 

50 pg/L, a value too high for the procedure to be realistically adopted for lead screening 

projects. The precision could probably have been improved if the samples were not 

manually injected. Additionally, the method involved more than one transfer of the 

blood sample into various flasks, the manual coating o f the graphite tubes with
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molybdenum, and the use of a calibration curve created by the method of standard 

additions. These procedures are timely and impractical for routine screening procedures.

Subramanian and Meranger suggested a rapid graphite furnace atomic absorption 

spectrometric procedure for the determination of lead in heparinized human whole blood 

using a slightly different phosphate salt for matrix modification.(7) In this method, a 

known aliquot o f the blood sample was diluted fivefold with an aqueous solution 

composed of diammonium hydrogen phosphate and Triton X-100. A deuterium arc 

background correction system was utilized with a lead electrodeless discharge lamp to 

enhance the sensitivity o f the technique. Nitrogen was used as the purge gas.

The most consistent results were obtained for a fivefold dilution o f blood with 5 g 

of (NH4 )2 HP0 4  and 5 mL o f Triton X-100 per liter over the range of charring 

temperatures investigated, which was suggested as the matrix modification solution o f 

choice for use in the determination o f lead in blood. More specifically, it was postulated 

that the NH** cations helped to minimize the matrix interferences from NaCl through the 

formation of the more volatile NH4 CI species. The temperature program did not include 

the use o f temperature ramps and a step to cleanout the HGA was not included as shown 

in Table 7.
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Step Furnace Ramp Hold Internal
Temperature Time Gas Flow

(°C) (») (■) (mL/min)
Dry 100 0 50 313

Char 700 0 30 313
Atomization 2300 0 8 0

Table 7: Tem perature program used for the study done by Subram anian and 
M eranger

The detection limit for the proposed procedure was 10 pg/L, with precisions typically 

about 6%. The mean recovery o f lead from spiked samples was reported to be 98.7%. 

The method was simple with minimal chances for contamination as it did not require the 

use of many labwares and reagents. The only sample preparation involved was the 

fivefold dilution of the blood with the matrix modification solution, and thus the 

procedure lended itself to automation. Finally, the method was rapid enough to complete 

one determination every two minutes, and required only microliter volumes o f blood 

sample, thus making the method even more attractive for large-scale screening projects.

Granadillo, Navarro and Romero studied the behavior of lead in electrothermal 

absorption spectroscopy with graphite furnace atomization using palladium or phosphate- 

magnesium induced matrix modification in conjunction with the carbon-reducing effect 

achieved by the addition of citric acid.(23) The matrix modification solution contained 

0.5 mg/L o f palladium and 2% m/v citric acid in 0.01 mol/L nitric acid. For comparison 

purposes, a matrix modification mixture consisting of 0.6% m/v NH4H2PO4 and 0.3% 

m/v Mg(NC>3 ) 2  in 0.01 mol/L nitric acid was also used.
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Under an oxygen atmosphere, the lead absorption signal for both matrix 

modification techniques was shifted later in time than with an inert atmosphere. These 

results suggested a carbon dependent mechanism for the reduction o f the atomic 

precursor to form lead atoms with the production o f CO. In addition, a simple method for 

the determination o f lead by stabilized temperature platform furnace electrothermal 

atomic absorption spectroscopy in clinical samples was developed using palladium- 

induced matrix modification, citric acid, and an O2  pyrolysis. The temperature program 

is given in Table 8.

Step Furnace
Temperature

(°C)

Ramp
Time

(s)

Hold

(s)

Internal 
Gas Flow 
(mL/min)

Dry 120 5 5 300
Dry II 250 20 10 300
Char 600 30 15 300*

Atomization 2000 0 5 0
Cleanout 2700 1 1 300

♦Denotes the alternate gas, air.

Table 8: Temperature program used for the study done by Granadillo, Navarro 
and Romero

The limit o f detection was 13 pg/L with recoveries ranging from 94 to 104% and 

a relative standard deviation o f 2.2%. In addition, the method was reported to be free 

from interferences, and it appeared to be reliable and reproducible.

The matrix modification solutions were not combined directly with the sample 

specimens in order to prevent the formation o f any precipitate, as this problem had been
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reported with other procedures. A significant amount of a carbon-containing residue was 

deposited in the graphite tube when no alternate gas was used. These deposits then 

increased after consecutive firings until they reached a point at which the optical beam 

was obstructed. This problem was too significant to be corrected by the deuterium arc 

background correction system, thus, the air pyrolysis was utilized. This successfully 

prevented the build-up o f the obstructing residue and uniformly dispersed the fine 

carbonaceous material across the platform. In addition, no significant deterioration of the 

graphite tube was reported because the oxygen reacted preferentially with the organic 

material.

The proposed method for the determination o f lead in whole blood was simple 

and lended itself to automation, as most systems can be easily programmed to inject the 

sample and modifier in sequence, and to automatically switch to the alternate gas at 

pyrolysis. However the whole blood was diluted ten-fold and the limit of detection could 

be improved with lesser dilution.

Many o f the aforementioned methods have taken advantage of a variety of 

combinations o f matrix modifiers, unique temperature programs, extractions and other 

sample preparations to enhance the limit o f detection, precision and reproducibility for 

the routine determination o f lead in blood. The best results have tended to be associated 

with GFAA systems utilizing the Zeeman background correction system; however, these 

are high end systems not readily available in many laboratories. Furthermore, 

preliminary studies in our laboratory have indicated that the procedures prescribed for use 

with the Zeeman background correction system do not work with the more conventional
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deuterium arc background correction system. In some instances a clean peak was not 

attainable at all, and when signals were obtained the precision and reproducibility were 

consistently lacking. Furthermore, there may be other modifier combinations or 

temperature variations which could potentially provide a reliable method for routine 

determinations with GFAA systems utilizing the more conventional deuterium arc 

background correction system. Thus, the emphasis o f this project was to develop a 

rapid, simple, reliable and accurate method for the determination o f lead in blood, using a 

more conventional GFAA system, with an enhanced limit o f detection suitable for routine 

lead screenings.



Chapter IV: 

Experimental Procedures

Labware

All glassware and Nalgene polyethylene containers were detergent washed, rinsed 

with deionized water, and soaked in 10% (v/v) HC1 to prevent possible contamination 

from lead adsorption onto the container surfaces. A final rinse was then performed with 

semiconductor grade deionized water. All volumetric pipettes were soaked overnight in a 

high-density polyethylene container filled with 10% (v/v) HC1 and then rinsed with tap 

water followed by thorough rinsings with semiconductor grade deionized water. All 

glassware and containers were covered or capped after washings and drying to prevent 

any contamination from the laboratory environment.

Reagents and Standards

Fisher “Reagent” grade HC1 was used for the cleaning of the laboratory 

glassware. Fisher “Trace Metal” grade HNO3 was used for modifier preparation and for 

the acid blank calibration solutions. The certified metal impurity for lead in the 

concentrated HNO3 is 0.4 ppb.

38
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The semiconductor grade deionized water was produced by first passing 

laboratory deionized water through a particulate filter and then through a semiconductor 

grade deionizing cartridge. A polybutylene tap was connected directly to the deionizing 

system to avoid contamination from the metal spigots. This system produces deionized 

water rated at 18 megaohms in resistance. Acid blanks and deionized water were 

periodically checked for contaminations.

Human blood serum and plasma, and pig blood plasma were obtained from the 

Sigma Chemical Company as a lyophilized powder. The samples and standards were 

diluted in 0.1% (v/v) Triton X-100. Human blood was drawn from Dr. Gary Rice and 

stored in a sealed heparinized tube. The whole blood was diluted in 0.5% (v/v) Triton X- 

100. “Electrophoresis Grade” Triton X-100 was obtained from Fisher Scientific and was 

subsequently diluted in deionized water. Triton X-100 is a nonionic surfactant with the 

formula C8Hi7 (C6 H4 )(OCH2 CH2 )xOH and an average molecular weight of 628 g/mol.

Plasma, serum and blood solutions with known lead concentrations were prepared 

by the method o f standard additions. This was done by spiking the diluted organic matrix 

with a standard lead solution. The standard solution was prepared from a commercially 

available lead atomic absorption standard from Aldrich with a certified concentration of 

1000 pg/mL, and successive dilutions were made to create working standard solutions o f 

500 pg/L and 100 pg/L. The standards were transferred into Nalgene polyethylene bottles 

for storage in order to minimize surface adsorption. The blood matrix solution was spiked 

with the appropriate amount o f standard in order to produce the desired blood lead 

concentration. For example, if 10 ppb blood lead concentration was desired in a blood
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sample that was diluted 1 :1 , the solution would contain 2 0 0  pL of blood, 2 0 0  pL of 0 .1 %

Triton X-100, and 4 pL of the spike to produce a total lead concentration of 10 pg/L.

(4pLt*(500pg/U) = 10 pg/L
200 pL

Matrix Modifiers

Various matrix modifier solutions were prepared over the course of the study. A 

modifier solution containing 0 .2 % w/v NH4H2PO4, 0.5% v/v Triton X-100 and 0.2% v/v 

HNO3 was prepared from ammonium dihydrogen phosphate from the Aldrich Chemical 

Company that was reported to be 99.9999% pure. Fisher “TraceMetal Grade” HNO3 was 

used. Later in the study, solutions containing 0.2% w/v NH4H2PO4 and 0.05% Mg(NC>3)2 

with and without the addition o f 1% v/v HNO3 were also prepared. Magnesium nitrate 

hexahydrate, reported to be 99.995+% pure, from the Aldrich Chemical Company was used. 

Other variations in these concentrations were investigated over the course of the study in an 

effort to optimize modifier concentrations.

The palladium matrix modification solution was prepared from a palladium nitrate 

matrix modifier solution containing 0.2% Pd in 2% HNO3 by Specpure from Alfa AESAR. 

Ten mL of the original solution, which contained 2000 mg/L, was diluted into the final 

solution by adding 84.3 mL deionized water, 5.7 mL o f HNO3 and 2.0 g of citric acid. The 

citric acid monohydrate powder was obtained from the J.T. Baker Chemical Company, and
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was reported to contain <0.3 ppm Pb. The resulting solution then contained 200 pg/mL Pd, 

2% citric acid and 0.01 mol/L of nitric acid.

Instrumentation

All atomic absorption determinations were made with a Perkin-Elmer Model 1100B 

Atomic Absorption Spectrophotometer equipped with an HGA 700 Graphite Furnace. The 

AS-70 Autosampler was used for all sample introductions using polycarbonate sampling 

cups. A Fisher single element hollow cathode lead lamp was used for the determination of 

lead. The default software choices for the analytical wavelength (283.4 nm) and the lamp 

current (10 mA) were used. The bandwidth slit height set on the monochromator was 0.7 

nm low; however, a slit width o f 0.2 nm low was also investigated.

A significant aspect o f optimization involved variations in the temperature programs 

to provide the most enhanced and reproducible absorption signals. Signals were taken in 

triplicate with 2-6 second integration times and a zero second read delay. An internal argon 

gas flow o f 300 mL/min was maintained throughout the graphite tube for every step of the 

temperature program except pyrolysis and atomization. An air flow of 300 mL/min was 

used for pyrolysis, and no internal gas flow was used for atomization. An example o f 

specific instrument conditions used is provided in Table 9.
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Step Furnace
Temperature

(°C)

Ramp
Time

0 0

Hold

(s)

Internal 
Gas Flow 
(mL/min)

Dry 150 2 0 2 0 300
Char 1 0 0 0 15 30 300*

Atomization 1650 0 1 0 0

Cleanout 2700 1 7 300
* Denotes the alternate gas, air.

Table 9: Example of a specific temperature program

Four point calibration curves were generated from aqueous and plasma standards 

using optimized temperature programs. Auto-zero (absorbance set to zero) was measured 

using 1% HNO3 with a deuterium arc continuum background correction system.

Sample Preparation

The serum and plasma samples were obtained in a lyophilized powder form and 

reconstituted with 2.0 mL of deionized water. All serum and plasma samples were kept 

refrigerated until used and discarded when clotting was evident. The whole blood sample 

was kept at room temperature. Test portions of the sample and standard blood, plasma 

and serum solutions were prepared fresh prior to each series o f runs by diluting the 

samples to ratios (ranging from 1:1 to 1:10) in dilute Triton X-100. They were thoroughly 

mixed by pumping the pipettes used in transferring them to the sample cups for the AA 

autosampler.



Chapter V: 

Results and Discussion

This project began with an attempt to reproduce the method used by Parsons and 

Slavin (10); however, human blood serum was used instead of whole blood since the 

primary interferences in blood were suspected to be associated with salts in the blood 

plasma. A matrix modifier solution containing 0.2% w/v NH4 H2 PO4 , 0.5% v/v Triton X- 

100 and 0.2% v/v HNO3 was made in accordance with the method, and temperature 

programs for the furnace were used as recommended. The primary difference in 

instrumentation was the use o f a continuum source background correction system instead 

of the Zeeman background correction system used by Slavin.

The first problem encountered was the occurrence of double peaks and signal 

suppression on all o f the lead , an example o f which is shown in Figure 6 . The double 

peaks may have occurred because the matrix modifier solution was deposited onto the 

platform and then the diluted serum sample was automatically deposited on top to limit 

the time spent on sample loading. This may have resulted in inadequate mixing and in 

the formation of lead species with different volatilities at the 1900°C atomization 

temperature used.
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Figure 6 : Double lead peaks observed using the Slavin method

Parsons and Slavin diluted the blood samples directly with the matrix 

modification solution and mixed the samples well with Eppendorf pipettes. When this 

technique was used the double peaks disappeared; however, signal quenching due to the 

matrix o f the blood serum was encountered. The background may have been sufficiently 

high to cause the baseline and signal to be suppressed as shown in Figure 7. Although 

the signal is apparent, it is prematurely quenched by background overcompensation. This 

may have been due to the instrumentation, since Parsons and Slavin utilized the Zeeman 

background correction system which can compensate for background signals more 

effectively.
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Figure 7: Overcompensation of background signal observed using the Slavin 
method

In an attempt to remove the matrix interferences causing the high background, the 

ashing temperature was held for 25 seconds instead o f the 1 0  seconds recommended by 

Parsons and Slavin. A significant improvement in the signal was detected, probably 

because more o f the interfering species were removed prior to atomization. Lower rates 

of inert gas flow were tried during the atomization step using a blood serum sample 

spiked to 5 ppb with an aqueous lead standard. At a 30 mL/min flow, as recommended 

by Parsons and Slavin, the average absorbance peak area obtained over three 15 pL 

sample injections was 0.025 A-s. This average steadily increased to a maximum o f 0.085 

A-s as the inert gas flow was lowered stepwise to 0 mL/min. Although the purge gas 

flow was forcing out some o f the matrix interferences, it was also forcing out lead atoms 

during the atomization step and thus attenuating the signal. Examples o f typical 

absorption profiles are shown in Figure 8 .
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Figure 8 : Absorbance profiles for 5 ppb spiked serum at 30 mL/min and at 0 
mL/min purge gas flow during atomization

In order to improve reproducibility, a new modifier solution was made containing 

the original mix o f chemicals without the addition o f nitric acid, as recommended by 

Eaton and Holcombe.(18) This did in fact result in an improved reproducibility; 

however, signals from the blood serum samples still were attenuated relative to the 

aqueous lead standards.

In addition, a major attenuation in the signal was observed as the sample aliquots 

of a 25 ppb aqueous standard, made up in the dilute modifier solution containing 0 .2 % 

w/v NH4 H2 PO4  and 0.5% Triton X-100, were increased from 15 pL to 50 pL for deposit 

in the furnace. This certainly should not have occurred as there were no salts or other 

species present in the aqueous standards to interfere with the signal. Visual inspection of 

the deposit o f the sample on the platform revealed that the Triton X-100 surfactant was 

reducing the surface tension in the aqueous standards to the extent that the larger volumes 

were rolling right off o f the L’vov platform, which is capable o f holding up to a 50 pL
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maximum aliquot size. Aqueous aliquots over 25 pL repeatedly rolled off o f the 

platform, resulting in a loss o f signal and reproducibility. Unfortunately, the 25 p.L 

volume limit could not be surpassed using a different surfactant because Triton X-100 is 

universally recommended for blood samples to prevent clotting and precipitation.

Although Parsons and Slavin recommended a sample dilution of 1:10 with the 

modifier solution, the limit o f detection could be improved significantly if reproducible 

signals could be obtained from serum samples with a lesser dilution. Thus, one serum 

sample was diluted 1:10 with the 0.2% w/v NH4H2PO4 and 0.5% v/v Triton X-100 matrix 

modification solution and spiked to 5 ppb, and another was diluted 1:1 with the same 

modifier solution and also spiked to a 5 ppb lead concentration. The signals for the 

samples diluted 1 : 1 0  were well formed and produced a reproducible signal with little 

attenuation as shown in Figure 9. The samples diluted 1:1 were very poor with no 

reproducibility as shown in Figure 10. The background signal was markedly higher and 

beyond the limits o f instrumental compensation.
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Figure 9: Absorbance profile for 5 ppb spiked serum diluted 1:10, 0 .2 %NH4 H2 PO4  

and 0.5% Triton X-100 modifier solution



Figure 10: Absorbance profile for 5 ppb spiked serum diluted 1:1, 0.2% NH4 H 2 PO 4

and 0.5% Triton X-100 modifier solution

A new approach was undertaken to minimize the dilution ratio required. The 

modifier solution prescribed by Pruszkowska, Camrick and Slavin was prepared in a 

manner similar to the previously tested solution in that it contained 0.2% NH4 H 2 PO4  

with the addition o f 0.05% Mg(NC>3 ) 2  diluted in 1% HNO3 . Pruszkowska et. al. noted 

that the nitric acid was added in order to prevent the precipitation o f magnesium 

phosphate. A solution not containing the nitric acid was also prepared. No precipitation 

problems were detected.

Pruszkowska, Camrick and Slavin recommended a lower char temperature o f 

650°C, as that temperature was sufficiently high to eliminate the background 

interferences in their findings. Zeeman background correction was again used. It was 

anticipated that a higher char temperature would be necessary in this study, as the 

deuterium arc background correction system is not as efficient as the Zeeman. Thus, char 

temperatures o f 650°C and 900°C were tested with both the acidified modifier solution
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and the one without, using serum samples diluted 1:10 and 1:1 with 0.2% Triton X-100 

and spiked with lead to 5 ppb.

First, the signal produced with the modifier solution containing 0 .2 % NH4 H2 PO4 , 

0.05% Mg(NC>3 ) 2  and 1% HNO3 was compared with the solution with no acid. The 

650°C char temperature was used with the sample diluted 1:10. Both sets o f signals 

proved to be reproducible; however, the signal produced from the sample modified with 

the HNC>3 -containing modifier consistently appeared earlier and with a much lower peak 

height than that produced from the sample modified with no HNO3 , as shown in Figure 

11. When these conditions were tried with the serum sample diluted 1:1, the results for 

both char temperatures and both modifier solutions were very erratic and not at all 

reproducible, as shown in Figure 12. Once again the signal suppression caused by the 

large background and chemical interferences from the serum constituents was substantial.

T  T H i

Figure 11: Comparison of peak profiles for spiked serum diluted 1:10 using 650°C 
char temperature and modifiers with and without HNO3
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Figure 12: Absorbance profile for spiked serum diluted 1:1 using 650°C char 
temperature and HNC>3 -containing modifier

Next, both modification solutions were tried with both sample dilutions using the 

900°C char temperature. As was expected, the signals for the samples diluted 1:10 were 

higher with the higher char temperature, as more o f the matrix interferences were burned 

out o f the sample prior to atomization. The signals from both modifier combinations 

were identical. A signal produced from the acidless modifier is shown in Figure 13. The 

signal profiles were similar to those obtained at the 650°C char, and repeated runs proved 

the technique to be reproducible when using the modifier without the nitric acid. Thus, it 

was determined that the higher char temperature was more effective when using this type 

of procedure. The signals for the samples diluted 1:1, however, were essentially 

unchanged from those obtained when using the 650°C char.



Figure 13: Peak profile for spiked serum diluted 1:10 using 900°C char
temperature and H N 03-less modifier

An atomization ramp time was added to the temperature program prescribed by 

Pruszkowska, Camrick and Slavin. Samples were diluted 1:1 directly with the acidless 

modifier solution with an increase to 0.5% Triton X-100 in addition to the original 0.2% 

NH4 H2PO4  and 0.05% M g(N03)2 modifiers. Initially, the char temperature o f 650°C was 

used with the atomization temperature of 1700°C; however, the resulting 5 ppb signals 

were split and were very erratic regardless o f the atomization ramp time selected. When 

the 900°C char temperature was tested, however, the results were more decipherable but 

two peaks were always present when an atomization ramp was included in the 

temperature program. Furthermore, as the atomization ramp time was increased, the area 

of the first peak steadily decreased and the second peak steadily appeared earlier in time. 

Figure 14 shows a comparison o f the peak profiles when the sample was atomized at a 

temperature o f 1700°C with a ramp o f one second and with a ramp o f three seconds.
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Once again, there appears to be more than one lead species present with varying 

volatilities after the charring stage.

031

Figure 14: Comparison of profiles for spiked serum diluted 1:1 with an atomization 
ramp of 1 and 3 sec

The signals were then compared to the signal o f an aqueous standard that was 

diluted 1:1 with the same modifier solution (less the Triton X-100) and spiked with lead 

to 5 ppb. It was discovered that the second peak of the serum sample signal closely 

matched the signal profile o f the aqueous standard with respect to time of elution as 

depicted in Figure 15. Thus, it was assumed that the second peak of the serum sample 

signal was representative o f the lead species normally produced, and that the first peak 

was due to a more volatile secondary species produced in the char from unknown 

reactions or interactions.



Figure 15: Aqueous standard with an atomization ramp of 3 seconds

Table 10 contains a summary o f the instrumental parameters and matrix modifiers 

used at this stage o f the investigation. The goal was to further modify the instrumental 

parameters in order to eliminate the first peak while keeping the sample dilution ratio at
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Step Furnace
Temperature

(°C)

Ramp
Time

(s)

Hold

(s)

Internal 
Gas Flow 
(mL/min)

Dry 130 5 45 300
Dry II 260 5 10 300
C har 900 1 5 300

Atomization 1900 3 5 0
Cleanout 2500 1 2 300

Modifier Solution: 0.2%NH4H2PC>4 
0.5% M g(N03)2 
0.5% Triton X-100

Table 10: Revised procedural conditions

As suggested by Granadillo, Navarro and Romero, the slit bandpass through 

which the light sources must pass was reduced from a width of 0.7 nm to a width o f 0.2 

nm in an effort to decrease the background absorption.(23) Because this smaller slit 

width allows less source light to pass through while the electronic noise remains constant, 

it was anticipated that the signals might display more noise than those measured with a 

slit width of 0.7 nm. This was proven to be true. The background signal was reduced a 

bit with the lower 0.2 nm slit width; however, the signals obtained at the 0.7 nm slit width 

were far more reproducible.

The project continued with the use o f a completely different modification solution 

containing 0.5 mg/L Pd and 2% m/v citric acid in 0.01 mol/L nitric acid, as suggested by 

Granadillo, Navarro and Romero.(23) In addition, the purge gas was switched from 

argon to air during the pyrolysis step, in an effort to improve the combustion o f the
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organic matrix. The temperature programs and instrumental parameters prescribed by 

their work were replicated using a bandpass o f 0.7 nm. Precipitation problems were 

anticipated, so the serum samples were diluted 1:10, 1:4 and 1:1 with 0.1% v/v Triton X- 

100 and spiked with lead to 5 ppb. The samples and modifiers were dropped onto the 

platform sequentially instead o f being pre-mixed and dropped onto the platform in one 

shot. For each o f these dilution ratios the signal profiles were similar and double peaks 

were apparent, as seen in Figure 16 for a serum sample diluted 1:9 and modified with the 

0.5 mg/L palladium solution. In order to solve this problem, variations in the atomization 

ramp time were tried for the 1:10 dilutions.

Figure 16: Absorbance profile for 5 ppb serum diluted 1:10, modified with 0.5 mg/L 
Pd and 2% citric acid in 0.01 moI/L H N 03

When an atomization ramp of one second was added to the temperature program, 

the first peak was significantly reduced and the overall peak area was only slightly 

reduced as seen in Figure 17. The two second atomization ramp produced a single peak 

for the samples diluted 1:10; however, the profile appeared later in time and the peak area
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was significantly reduced. Figure 18 shows a comparison of the peak profiles with no 

atomization ramp and with a two second ramp. Finally, the three second atomization 

ramp produced peak profiles for the samples diluted 1:10 that appeared even later than 

those at the two second ramp; however, the profiles were essentially the same shape. The 

three second ramp also eliminated the first peak for the samples diluted 1:4; however, the 

signals were very noisy and not very reproducible.

/

Figure 17: Profile for serum diluted 1:10, using 1 sec atomization ramp

Figure 18: Comparison of profiles using 0 and 2 sec atomization ramp times
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In order to further improve the signal, a greater concentration of palladium was 

added to the modifier. Higher palladium concentrations are typically used for samples 

containing high salt concentrations. Earlier attempts to run samples with Pd 

concentrations in the 0.1-1% range resulted in massive precipitation in the serum 

samples. Thus, a more gradual increase in the Pd levels was investigated.

A new modifier solution containing 5 mg/L Pd and 2% m/v citric acid in 0.01 

mol/L nitric acid was produced. The resulting lead signals from spiked serum samples 

were larger and more reproducible, and the first peak disappeared. However, the high 

background signal was causing the baseline to bottom out. Figure 19 contains a 

comparison of the profiles from 1:4 dilutions using both palladium concentrations; 0.5 

mg/L and 5 mg/L. Higher atomization temperatures of 1800°C and 1900°C were tried in 

an effort to resolve the problem but they produced no appreciable effects.

ri,

iC.

Figure 19: Comparison of profiles for 1:4 using both modifiers,
0.5 mg/L Pd and 5 mg/L Pd

As was expected, when the atomization ramp was altered to two seconds with the 

original atomization temperature o f 2000°C the background signal appeared earlier but
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further attenuated the signal, as seen in Figure 20. When the atomization ramp was

increased to four seconds the background should have appeared later; however, two

background peaks were produced which attenuated the signal early on, as seen in Figure

21. There are apparently numerous species present in the matrix which have significant

temperature dependencies with respect to the time frame associated with volatilization.

Thus, the atomization temperature remained at the recommended 2000°C with a ramp o f

3 seconds for further experimentation with modifiers containing higher palladium

concentrations.
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Figure 20: Peak profile from 2 sec atomization ramp times
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Figure 21: Peak profile from 4 sec atomization ramp times

A modifier solution containing 50 mg/L Pd and 2% citric acid in 0.01 mol/L nitric 

acid was then evaluated. This combination produced signal profiles for the serum 

samples diluted 1:4 that were much more gaussian in peak shape. A comparison o f the 

signals produced using the modifiers containing 5 mg/L Pd and 50 mg/L Pd is shown in 

Figure 22. Note that the signal for the 50 mg/L Pd sample appears longer into the 

atomization time, implying that additional levels o f Pd are stabilizing the Pb species with 

respect to volatilization and atomization temperatures.
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Figure 22: Comparison of signals produced using the modifiers 
containing 5 mg/L Pd and 50 mg/L Pd

In an attempt to further improve the reproducibility and peak profiles, modifier 

solutions containing the 2%  citric acid in 0.01 mol/L nitric acid with various Pd 

concentrations were evaluated. Modifier solutions were prepared containing 100 mg/L 

Pd, 200mg/L Pd, 300 mg/L Pd and 500 mg/L Pd. All modifier concentrations were then 

tested with the furnace conditions prescribed by Granadillo, Navarro and Romero, and 

with the recommended slit bandpass o f 0.2 nm.

The smaller slit width produced signal profiles that were much more noisy, as 

expected. As the lead concentrations in the modifier were increased from 50 mg/L to 500 

mg/L, some signal was lost and the profiles broadened. Figure 23 shows a comparison of 

the signals for 1:4 dilutions with 100 and 300 mg/L Pd in the modifier. At the 500 mg/L 

Pd concentration some background overcompensation was apparent and the signals were 

prematurely quenched. The signals were most reproducible at the middle of the range of 

Pd concentrations, in particular from 100 mg/L to 300 mg/L Pd. For the first time in this
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project, the signals for samples diluted 1:1 were discernible; however, reproducibility 

was very poor. In addition, as the dilution ratio was lessened from 1:4 to 1:1 using the 

same modifier solution, some o f the signal was lost and the samples diluted 1:1 appeared 

later than those diluted 1:4. Figure 24 provides a comparison. It was postulated that 

species in the matrix were decelerating the atomization of the less dilute samples, 

possibly due to increased residues on the graphite surface which provided for poorer 

contact o f the lead at the graphite surface during atomization. Thus, the hold time on the 

char and the atomization temperatures were increased.

Figure 23: Comparison of profiles for samples diluted 1:4, modifiers 
with 100 mg/L Pd and with 300 mg/L Pd
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Figure 24: Comparison of profiles for samples diluted 1:4 and 1:1 using 
modifier with 100 mg/L Pd

Continued improvements in the method from this point made use o f pig and 

human plasma instead o f serum, which is a matrix closer to whole blood less the cell 

content. To ensure that this new matrix did not produce any appreciable differences in 

the signals, the previously tested conditions were used and the signals were essentially 

unchanged. Next, the char ramp was decreased to 15 seconds and the char hold increased 

to 30 seconds using the prescribed char temperature of 600°C. Furthermore, the 

atomization ramp time was increased to 3 seconds, and the hold was increased to 10 

seconds at the prescribed temperature o f 2000°C. The modifier containing 100 mg/L Pd 

was used. Unfortunately, the peak profile was significantly changed and double peaks 

appeared with a quenching apparent between the two. Similar profiles were obtained 

when the atomization temperature was increased to 2100°C and then to 2200°C. When 

the modifier containing 200 mg/L Pd was used, the double peaks persisted and the first 

peak height decreased as the second peak height increased; however, both peak areas
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appeared to increase as shown in Figure 25. All variations in atomization temperature 

produced similar results, and as the char temperature was increased both peak heights 

decreased. When the Pd concentration in the modifier was increased to 500 mg/L, triple 

peaks appeared and more peaks may have existed after the integration time cut the signal 

off.

Figure 25: Comparison of peak profiles using modifiers with 100 mg/L Pd 
and 200 mg/L Pd

When the originally prescribed conditions were tried again using the modifier 

containing 100 mg/L Pd, the second peak persisted and the profile was essentially the 

same. It was postulated that perhaps an absorptive buildup in the tube was causing the 

additional peaks, and dry fire runs revealed small peaks o f residue. Thus, the hold on the 

cleanout step was increased to five seconds. In addition, runs of just the modifiers 

containing 100 mg/L Pd and 200 mg/L Pd both revealed numerous peaks, and it was 

determined that a lead contamination to the modifiers was contributing to the problem. 

Thus, the graphite tube was changed and new modifiers were produced.
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Experimentation resumed with the temperature program using the increased hold 

times on the char and atomization steps. The temperature program developed to this 

point is summarized in Table 11. The peak profile for the plasma sample diluted 1:4 

using the modifier containing 50 mg/L Pd was clean with only a trace of a second peak. 

The palladium certainly had an impact on the signals; however, because as the Pd 

concentration was increased the second peak began to grow and the first peak began to 

spread out. Figure 26 shows a comparison of the modifiers containing 50 mg/L Pd and 

200 mg/L Pd. It was speculated that as the palladium concentration increased, the chance 

for a matrix-Pd precipitation also increased since Pd significantly enhances precipitation 

o f species in serum and plasma. Thus, the first peak was due to the free Pb, and the 

second was due to some precipitate that required more time to volatilize in the 

atomization stage. In an attempt to prevent precipitation, the order in which the modifier 

and the sample were deposited onto the platform was reversed with the modifier being 

deposited first. This, however, did not produce an appreciable difference in the signal 

profiles.

Step Furnace
Temperature

(°C)

Ramp
Time

(s)

Hold

(s)

Internal 
Gas Flow 
(mL/min)

Dry 120 5 5 300
Dry II 250 20 10 300
Char 600 15 30 300*

Atomization 2000 0 10 0
Cleanout 2700 1 5 300

*Denotes the alternate gas, air.

Table 11: Modified temperature program for use with Pd method
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Figure 26: Comparison of peak profiles using modifiers with 50 mg/L Pd 
and 200 mg/L Pd

At this point in time, the GFAAS system was overhauled. This consisted of a 

thorough cleaning o f the furnace, replacement of the contacts and installation of a new 

graphite tube. When the different modifiers were again compared using the plasma 

diluted 1:4, the second peak again appeared as the concentration of Pd was increased, and 

the first peak again broadened. In addition, a slight attenuation of the signal was detected 

with the growth o f the second peak. The modifier containing 200 mg/L Pd appeared to 

be most reproducible without creating a significant second peak, thus it was used for 

experimentation throughout the remainder o f the project.

As the dilution ratio was lessened from 1:4 to 1:3, the first peak narrowed and the 

second peak again grew; however, the overall peak height remained relatively constant as 

seen in Figure 27. As the samples became less dilute, a lead-containing species was 

being retained longer relative to the majority o f the lead, which was more easily 

volatilized. It was speculated that a small amount of lead might have been imbedded in
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the charred material and thus retained, or the two peaks may have been the result of 

sample splattering during the dry. If  the sample was present in two different areas o f the 

tube, two peaks may have resulted due to temperature variations along the length of the 

tube.

Figure 27: Comparison of peak profiles for plasma diluted 1:4 and 1:3, modifier 
containing 200 mg/L Pd

The temperature program that had been used at this point consisted of two dry 

steps. As the program advanced from one dry to the next, a quiet sizzle was heard. Thus, 

it was determined that sample spattering did in fact contribute to the double peak 

problem. In an attempt to reduce possible sample splattering the first dry temperature 

was increased from 120°C to 150°C with the ramp increased from 5 seconds to 20 

seconds and the hold increased from 5 seconds to 20 seconds. The second dry step was 

eliminated. No spattering was heard with the incorporation of the revised drying 

temperature program. Sample spattering apparently was not the only contributor to the
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double peak problem because the problem worsened with increased Pd concentrations 

and with lower dilution ratios.

The char temperature was next evaluated from 600°C to 1100°C in 100°C 

increments. The second peak height significantly decreased until it eventually 

disappeared as the char temperature was increased. Figure 28 shows a comparison o f the 

profiles for the plasma samples diluted 1:4 using char temperatures of 700°C and 1000°C. 

The revised drying temperature, used in conjunction with the increased char temperature 

o f 1000°C, produced clean signals with comparable peak heights and areas for samples 

diluted as low as 1:3. When these conditions were tried using plasma samples diluted at 

1:2 the second peak reappeared. However, when the char temperature was further 

increased to a temperature o f 1100°C, the second peak disappeared, the signals were 

gaussian and reproducible, and the peak areas and heights were comparable to those of 

the more dilute samples. Figure 29 shows a comparison of the plasma samples diluted 

1:2 using the revised dry conditions and char temperatures o f 1000°C and 1100°C.

Figure 28: Comparison of peak profiles for plasma diluted 1:4 using 
char temperatures of 700°C and 1000°C



Figure 29: Comparison of peak profiles for plasma diluted 1:2 using char 
temperatures of 1000°C and 1100°C

Next, the char temperature was held at 1100°C as the atomization temperature 

varied, in an attempt to optimize the atomization temperature. A slit bandpass o f 0.7 nm 

was used. The plasma samples diluted 1:2 were spiked with lead to 30 ppb, in order to 

increase the signals and facilitate the experimentation. In addition, the signals were 

electronically magnified by a factor o f ten so that additional digits could be evaluated 

when examining signal reproducibility. As the atomization temperature was decreased 

from 2000°C, as was originally prescribed by Granadillo, Navarro and Romero, all the 

way down to an atomization temperature o f 1500°C , the peak areas steadily increased, 

the profiles were essentially unchanged and the reproducibility o f the measurements was 

good. When the atomization temperature was further decreased to 1400°C, the peak 

areas continued to increase but the peak profile spread out across the entire integration 

time. Figure 30 shows for a comparison o f the peak profiles at various atomization 

temperatures with the char held constant at 1100°C. At an atomization temperature o f
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1300°C the signal was significantly decreased, implying that an insufficient temperature 

was obtained to atomize Pb from the sample.

Figure 30: Comparison of profiles for various atomization temperatures with a 
char of 1000°C using plasma diluted 1:2

When these temperature changes were tried with aqueous samples spiked to 30 

ppb the optimum atomization temperature and the peak profiles were markedly different. 

The profiles appeared a little later than those of the plasma samples, the peak heights 

were significantly lower, and the peak areas were lower as well. When the char 

temperature was held constant at 1000°C the peak areas increased as the atomization 

temperature was lowered from 2000°C to 1700°C; however, the peaks broadened and the 

heights decreased. At 1600°C and below the peak areas also began to decrease and a 

small, early-running peak was apparent. Figures 31 and 32 provide profiles for the 

aqueous sample at an atomization temperature of2000°C and 1700°C, respectively. Note 

that the time scaling on the X-axis is different. A plot of peak area vs. atomization 

temperature for blood plasma and aqueous standards is given in Figure 33. The points
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represent the average peak area for the runs done in triplicate. The relative standard 

deviations for these points ranged from 0.64% -3.5% for the plasma; however, the 

relative standard deviation for the point at 1300°C was 20%, as the results were not very 

reproducible at this atomization temperature. The relative standard deviations for the 

aqueous samples ranged from 0.33% to 1.6%, except for the atomization temperature o f 

1400°C. The relative standard deviation at this point was 18.4%, again because the 

results were not very reproducible at this temperature. An interesting result of this study 

was that although the optimum atomization temperatures are significantly different for 

the blood plasma and aqueous standards, the intermediate temperatures of about 1650°C 

and 1800°C provide an overlap where the net absorbance o f both is comparable.

Figure 31: Profile for a 30 ppb aqueous sample with the char at 1100°C and the 
atomization at 2000°C



Figure 32: Profile for a 30 ppb aqueous sample with the char at 1000°C and 
the atomization at 1700°C
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The char temperature was reevaluated using the plasma samples. The atomization 

temperature was held constant at 1500°C, as this temperature produced the best results for 

the plasma. At a char o f 1200°C, a clean gaussian peak was obtained, and numerous 

replicates proved this temperature to be reproducible. As the char temperature was 

decreased to 1100°C the profile was similar and reproducibility was still good. As the 

char temperature was lowered even further, stepwise down to 800°C, the peak areas 

significantly decreased, the background significantly increased, the peak profiles spread 

out and the peaks appeared later with lower reproducibility. Figure 34 shows a 

comparison of these profiles and Figure 35 a graphical interpretation of these results. 

The points represent the average peak area for runs taken in triplicate, and the relative 

standard deviations for these points ranged from 0.23% to 4.6%.

j.

~ . W

Figure 34: Comparison of profiles for various char temperatures with an 
atomization of 1500°C using plasma diluted 1:2
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An examination of Figure 33 indicated that at the optimum charring temperature 

o f 1000°C, the peak areas for the plasma samples and aqueous samples should be 

comparable if an atomization temperature o f about 1650°C, 1800°C or 1900°C was used. 

O f these temperatures, 1650°C was closest to the optimal atomization temperature for 

blood plasma (about 1400°C-1500°C). Thus, at an atomization of 1650°C a calibration 

curve could theoretically be generated from aqueous standards which would match 

signals generated from the blood plasma.

The optimized procedural conditions used up to this point are summarized in 

Table 12. A calibration curve was generated from aqueous standards spiked with lead to 

give concentrations o f 5, 15, 30 and 50 ppb. Plasma samples were diluted 1:2 and also 

spiked to the same concentrations. Figure 36 provides a comparison o f the peak profiles 

for both matrices spiked to 30 ppb. The matrix certainly has an effect, as the profiles are 

markedly different. The plasma peak appears first, and the aqueous peak is broader with 

a lower peak height; however, the overall peak areas are essentially the same. Calibration 

curves generated from both matrices are provided in Figure 37. Slopes were generated 

from a linear regression fit using Excel. The slope for the aqueous standards was .0021, 

and that for the plasma samples was .0022. The similarities imply that the matrix effects 

are minimal if peak areas, instead o f peak heights, are considered.
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Step Furnace
Temperature

(°C)

Ramp
Time

(s)

Hold

(s)

Internal
Gas Flow 
(mL/min)

Dry 150 20 20 300
Char 1000 15 30 300*

Atomization 1650 0 5 0
Cleanout 2700 1 5 300

♦Alternate gas, air

Modifier Solution: 200 mg/L Pd and
2% w/v Citric Acid in 
0.01 mol/L Nitric Acid 

Plasma Sample Dilution: 1:2 with 0.1 % v/v Triton X-100

Table 12: Optimized procedural conditions for plasma

3.5TIME ( S E C )

Figure 36: Comparison of peak profiles for both matrices spiked to 30 ppb
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Next, a whole blood sample was diluted 1:2 with 0.1% v/v Triton X-100, spiked 

with lead to 30 ppb and run under the same instrumental parameters. Initially, the blood 

samples did not drop directly onto the L’vov platform but instead climbed up the sides of 

the graphite tube due to high surface tension. Thus, blood samples were diluted with a 

greater concentration o f Triton X-100 surfactant (0.5% v/v). This solved the problem and 

peak profiles were obtained; however, the peak areas were only about 60% of the 

expected value. Thus, the char temperature was increased from 1000°C to 1100°C in an 

effort to increase the signal; however, all signal was lost. Next, a char temperature o f 

1050°C was used and only a hint o f a peak was apparent. When the char temperature was 

lowered to 900°C, the peak areas were equal to those of aqueous standards run with the 

same temperature program.

Using the 900°C char temperature, the peak profiles for the blood samples were 

sharper than those of the plasma samples, and they also appeared earlier in time. In 

addition, the plasma samples gave absorbance peak areas that were erroneously high 

when compared to the signals for the aqueous standards. Figure 38 shows a peak profiles 

for plasma, and Figure 39 shows one for blood. This comparison indicates that the 

organic load has a substantial impact on the lead volatility and atomization rate.
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0

Figure 38: Peak profile for 30 ppb plasma sample diluted 1:2

3 , 0

Figure 39: Peak profile for 30 ppb whole blood sample diluted 1:2

Analytical signals from the blood samples were very reproducible. For five runs 

o f the sample spiked with lead to 30 ppb, an average peak area of 0.0846 A-s was 

obtained with a relative standard deviation o f 4.3%. An unspiked blood sample which 

was run five times gave an average peak area o f 0.0098 A-s with a relative standard 

deviation of 0.92%. Based on Beer’s law, if a signal for 30 ppb gave a reproducible
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average peak area of 0.0846 A-s; a reproducible average peak area o f 0.0098 would 

represent a signal o f about 3.4 ppb. As the unspiked blood samples gave very clean and 

reproducible peak profiles with an average peak area of 0.0098, it can be estimated that 

the limit of detection associated with this method is in the 0.5-1 ppb range. The final 

temperature program and matrix modifiers used to obtain these results are provided in 

Table 13.

Step Furnace
Temperature

(°C)

Ramp
Time

(s)

Hold

(s)

Internal 
Gas Flow 
(mL/min)

Dry 150 20 20 300
Char 900 15 30 300*

Atomization 1650 0 5 0
Cleanout 2700 1 7 300

♦Alternate gas, air

Modifier Solution: 200 mg/L Pd and
2% w/v Citric Acid in 
0.01 mol/L Nitric Acid 

Plasma Sample Dilution: 1:2 with 0.5% v/v Triton X-100

Table 13: Optimized procedural conditions for blood

A calibration curve was generated from aqueous standards spiked with lead to 

give concentrations o f 5,15,30 and 50 ppb. Blood samples were diluted 1:2 with the 

0.5% v/v Triton X-100 and also spiked to the same concentrations. The resulting curves 

are provided in Figure 40. Slopes were again generated from a linear regression fit using 

Excel. The slope for the aqueous standards was 0.0018, and that for the blood samples
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was 0.0010. Although the aqueous curve is a little higher than the blood curve, the 

similarities again imply that the matrix effects are insignificant if peak area, instead of 

peak heights, are considered. Time did not allow for further refinements in the method.
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An explanation for this difference in the peak profiles can be derived from an 

explanation o f the atomization mechanism postulated by Granadillo, Navarro and 

Romero.(23) The mechanisms by which palladium actually interacts with the lead 

analyte are still being debated. However, it is apparent that any model intended to 

elucidate the atomization mechanism must consider the following circumstances: (1) the 

type o f chemical and/or physical interactions existing between the graphite surface, the 

analytical matrix modifier and the analyte; (2) the reductive capability o f the carbon at 

the high operating temperatures o f the ETAAS technique; and (3) the availability o f 

active carbons within the graphite furnace to reduce the atomic precursor to the analyte 

atoms. Thus, Granadillo, Navarro and Romero considered the effects that increasing 

amounts of potentially reducing carbon, produced by the addition of carbon-containing 

compounds to the samples, exerted on the absorbance-time profiles of lead atomized in 

the graphite furnace. In addition, the reductive action o f the carbon in the graphite 

furnace itself was considered.

Several researchers have established that the graphite surface plays a major role 

in the atomization of any metal in GFAAS.(12,16,17) The graphite surface consists o f 

crystallites o f graphite with carbon atoms lying in a basal plane which is terminated by 

carbons in zigzag and armchair configurations.(23) These edge carbons constitute the 

active surface area o f the graphite because they have unpaired a-electrons available to 

form bonds, whereas the basal plane carbons have their a-electrons tied up in bonds with 

the adjacent carbons.



84

Previous work has indicated that the use o f reducing agents to promote the 

reduction o f palladium is essential to obtain the modification effect.(23) In this study, the 

citric acid was utilized for this purpose to create a better reducing environment by 

providing active carbon sites different from those found on the graphite furnace. Thus, in 

the presence o f the citric acid, the carbon sites of the furnace were less susceptible to 

oxidation and the lifetime o f the graphite structure was prolonged.

When no citric acid was added to either the aqueous or blood samples they 

discovered that the fastest lead atomization occurred in the blood samples due to the high 

organic content.(23) Apparently, an additional supply o f reducing carbons, different 

from those provided by the graphite furnace, were available from the carbonaceous 

matrix. However, when 200 pg o f citric acid was added to both the aqueous and blood 

samples, the lead profiles appeared at the same early time. Furthermore, this 

phenomenon occurred with the exact same profile appearance time for both the palladium 

modification solution and also for a phosphate-magnesium modification solution.

These results suggested that the atomization rate o f lead was independent o f the 

matrix and of the modifier used, and that a carbon-dependent mechanism occurred.(23) 

The differences in the plasma and blood peak profiles provided in Figures 38 and 39 

added further credence to this theory. The blood samples, which contained a higher 

carbonaceous load, appeared much earlier than the plasma samples.

Granadillo, Navarro and Romero proposed the following mechanisms for the 

atomization of lead by GFAAS with palladium modification [equations (1) and (2)] and
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with magnesium-phosphate modification [equations (3) through (5)], assuming that a 

carbon source other than the graphite surface was available.(23)

*-Pd-PbO —► PbO (1)

PbO + C Pb + CO (2)

and

*-Pb2P20 7 -► Pb2P20 7 (3)

Pb2P20 7 + 2C P20 3 + 2PbO + 2CO (4)

2PbO + 2C -> 2Pb + 2CO (5)

* denotes carbon surface of graphite tube

The intermediate species, such as PbO and Pb2P20 7, were not identified in this 

study due to a lack of instrumental facilities; however, further experimentation added 

credence to the postulated atomization mechanism.(23) The redox reaction between 

Pb2P20 7 and 2 mol o f carbon atoms, as postulated, would result in the formation o f 1 mol 

of P20 3, 2 mol o f PbO and 2 mol o f CO. A further 2 mol o f carbon would then be 

required for the reduction o f the 2 mol o f PbO to form 2 mol of Pb atoms and 2 mol of 

CO. Therefore, 4 mol o f carbon atoms would be needed for the over-all reaction if it

occurred as written. This was verified experimentally when four times more mass of
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citric acid was needed to reduce the phosphate-magnesium modification than for the 

palladium modification technique, with the same appearance time for the analyses o f the 

samples and aqueous standards.

Additional support for the proposed mechanism was obtained when atomization 

was attempted under a partial pressure of CO, and it was discovered that the absorbance 

profiles for both standards and samples appeared later in time.(23) It was postulated that 

the time shift in the appearance o f the absorption pulse occurred as a result o f a 

suppression o f the redox reaction that produced atomic lead, as described by equation (2), 

in response to the increase in the partial pressure o f CO. The carbon monoxide 

atmosphere caused the system at equilibrium to shift to the reactant side.

In conclusion, the proposed carbon-induced reduction o f the atomic precursor 

may be the mechanism to occur for any analyte that undergoes atomization via the 

oxide.(23) However experimental verification, such as by GFAAS-mass spectrometry, o f 

the existence of the postulated intermediates in the graphite furnace is required to further 

substantiate this atomization mechanism o f lead.



Chapter VI: Summary

The use o f GFAAS for the determination o f lead in blood has increased 

significantly in the past decade.(18) Most o f the published methods utilize the Zeeman 

background correction system; however, this system is not readily available in many 

testing laboratories and the methodology utilized was found not to be effective with a 

more conventional deuterium arc background correction system. This led to the 

development o f refined matrix modification and atomization procedures which gave a 

good reproducibility and sensitivity, and also a good linear range o f determination for 

lead in blood. The limits o f detection in particular were significantly improved by a 

factor o f about ten over values reported in the literature by reducing the dilution ratio 

necessary for the blood analysis.

Work with whole blood samples was only performed over the very last stages of 

this project, thus there are several parameters that need to be addressed and refined. In 

particular, an optimization o f the furnace and temperature conditions such that all signals 

are equivalent regardless o f whether the samples are aqueous, plasma or whole blood 

would be very beneficial. In addition, further verification of the reproducibility needs to 

be addressed in particular with the whole blood samples at low concentrations (<10 ppb).

87
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Finally, the complete linear working range for lead concentrations in blood must be 

determined.

Reproduciblity will be a crucial consideration based on the CDC requirement that 

clinical decisions be made for children whose blood Pb level is above 150 ppb. For 

instance, suppose a physician is monitoring a child whose true BPb is at a dangerous 

level o f 170 ppb. The blood analyses at two laboratories both work with reproducibilities 

within an accepted + or -  20 ppb limit. The physician may face a situation where one 

laboratory returns a result o f 150 ppb, which may not require intervention, and the other 

returns a 190 ppb result, which would require intervention. Clearly, the burden on public 

health officials would be lessened if laboratories could operate within a +/- 1-5 ppb limit 

at low levels. The method described by this work appears to have good reproducibility as 

referenced by the relative standard deviation of 4.3% for 30 ppb blood samples. This 

standard deviation is clearly reproducible enough to give good clinical reliability; 

however, continued refinements to the methodology may be necessary for accurate 

quantification and use in large scale screening programs.
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