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ABSTRACT

Several model compounds were synthesized in order to study the initiating importance of 

labile structures in the thermal dehydrochlorination of poly(vinyl chloride): (E)-[(2-decenyl)thio]- 

benzene, (E)-[(1-heptyl-2-decenyl)thio]benzene, [(1,1-dioctylpentyl)thio]benzene, and 

[(1-pentylhexyl)thio]benzene. Most workers agree that the most important of the labile structures 

in PVC are the internal allylic chloride and/or tertiary chloride structures. However, a few other 

researchers have claimed instead that high-energy isotactic conformers in PVC are the principal 

initiating structures for the thermal dehydrochlorination.

To reconcile these two points of view, the 13C NMR chemical shifts of the model 

compounds were compared to those of a PVC sample modified by sodium benzenethiolate and 

then reduced by tri-n-butyltin hydride PVC sample. It was believed that PhS- substituted internal 

allylic and tertiary structures would be formed in the initial fast substitution reaction instead of the 

PhS-substituted structures relating to the high-energy isotactic conformers.

The resonances of the substituted internal allylic and tertiary structures were found in the 

polymer spectrum, while those of the terminal allylic structure were not detected. Resonances of 

the substituted secondary structure also were found. The concentrations of these structures in 

the polymer were calculated and did not agree with previously reported literature values. Further 

research needs to be done to determine with absolute certainty what happens to the (internal 

allylic + tertiary) structures and high-energy isotactic conformers during the initial fast reaction of 

PVC with the benzenethiolate anion.
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Chapter 1 

INTRODUCTION

Poly(vinyl chloride) (PVC) is one of the most important and widely used commercial 

polymers. It is, however, thermally unstable and degrades at temperatures greater than ca. 100- 

120°C.1'5 For this reason, an enormous amount of research has been done to study and improve 

the low thermal stability of PVC.5'18 Most of this research has focused on the nature and 

concentration of unstable fragments of macromolecules of PVC and their influence on the initial 

stage of polymer degradation.5'14 There have also been attempts to improve the stability of PVC, 

either by the addition of one or more stabilizers or by chemical modifications of the polymer 

structure.19*28

It has been well established that the initial instability of PVC occurs primarily from a 

sequential dehydrochlorination process that forms conjugated polyene sequences (Equation 1). 

Most researchers agree that the thermal dehydrochlorination of PVC originates primarily from low 

concentrations of structural defects that have unusually low stabilities. Some of the proposed 

labile groups have included internal allylic chloride and/or tertiary chloride structures, 

~-CO(CH=CH)„ CHCI— (with n > 1) structures, and high-energy conformers that occur in isotactic 

PVC segments.29

—(-CHCICH2-)^- ----------► -fCH=CH-)^rf-CHCICH2-)^m + mHCI (1)

A majority of researchers agree that the most important labile structures in PVC 

responsible for the initiation of thermal dehydrochlorination are the internal allylic chloride and/or 

tertiary chloride structures. However, in recent years, Mill£n and co-workers have proposed that 

the tacticity distribution in PVC has a noticeable influence on the thermal degradation mechanism. 

Specifically, they claim that the GTTG' conformation of isotactic triads is the principle initiating 

structure for the thermal dehydrochlorination of PVC. Furthermore, Mill£n et al. have argued that 

rates of chlorine substitution depend on these isotactic triads and that the thermal improvement of

2
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the chemically modified polymer is due to the transformation by thiophenoxy substitution of some 

of the least stable isotactic triads into more stable structures.15,30"45 These improvements were 

mainly attributed to the removal of the GTTG' arrangement. Also, it was suggested that rather 

long polyene sequences were generated from the dehydrochlorinations starting from the GTTG' 

arrangement.

Other workers have challenged some of these proposals. It has been argued, for 

example, that the changes in the temperature of polymerization cause both isotacticity and the 

number of allylic and tertiary chloride defects to change in parallel ways. Thus the improved 

stability caused by thiophenoxyl substitution might actually be due to the removal of the 

aforementioned conventional defect sites (internal allylic and tertiary chloride).46'48 In a recent 

study, treatment with trimethylaluminum produced a polymer whose greater stability could be 

explained by the replacement of allylic and tertiary halogens by methyl groups 49 It was found that 

the total amount of methylation was much less than the concentration of the GTTG' conformation. 

In another study, the correlation of stability with isotacticity was found to be much weaker than the 

correlation with the (internal allylic + tertiary) chloride content, and it was suggested that the 

formation of longer polyene sequences in highly isotactic polymers results from enhanced 

catalysis of the dehydrochlorination process by HCI (whose concentration would be higher in 

samples that are less stable)46

After all this evidence, there is still some debate over the initiating importance of the 

GTTG' isotactic triad in the thermal dehydrochlorination of PVC. It would therefore be of great 

interest to know with absolute certainty what happens to the internal allylic and tertiary chloride 

structures during the initial fast reaction of PVC with the benzenethiolate anion. To reconcile 

these two points of view, model compounds were prepared and their 13C NMR chemical shifts 

were compared to those of a modified and then reduced PVC sample in an attempt to locate PhS- 

substituted internal allylic and tertiary structures in this polymer. It was believed that these 

structures would indeed be found, a result that would prove that the initial fast substitution by 

sodium benzenethiolate actually occurred at the (internal allylic + tertiary) sites. This result would
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suggest that the most important labile structures in PVC are the internal allylic and tertiary chloride 

structures and not the high-energy isotactic conformers proposed by Milten and co-workers.



Chapter 2 

BACKGROUND

The reasons for the low thermal stability of poly(vinyl chloride), one of the most widely 

used commercial polymers, have been intensively studied in recent years. Much research has 

been done to suppress the harmful effects of heat and light on the properties of the polymer. As 

mentioned earlier, PVC undergoes a spontaneous dehydrochlorination reaction via an ionic or 

quasiionic (polar concerted) mechanism (Figure 2-1 )29 that generates long conjugated polyene 

sequences (Equation 1 in the Introduction). This process occurs when PVC is exposed to 

temperatures above ca. 100-120°C or to radiation in the ultraviolet region. Even small amounts of 

dehydrochlorination may lead to these intensely colored sequences, an undesirable effect on the 

appearance of useful articles constructed from PVC. If dehydrochlorination is not curtailed or 

halted completely, the physical properties of the polymer may be altered in ways that eventually 

lead to their complete deterioration. It is therefore necessary to understand how the thermal 

degradation of PVC is initiated and what may be done to prevent this initiation.

cr
+ -  HOI

—fCH=CH-)^CHCICH2— *= ±  -f-CHNCH-^CHCH—    — ►

cr
-fCh^CH-^CHCICHj—  —(-CH=CH-)jjj-CHCH2— >

-f-CH=CH-)^CHCICH—  ------------- ► etc.

Figure 2-1: Ionic mechanism for the growth of a conjugated polyene 
sequence in PVC.

5
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2.1 Possible Initiation Sites

It is widely agreed that defect sites in the PVC chain have an essential role in the low 

stability of the polymer. The determination of the structures and concentrations of irregularities in 

the polymer has been difficult, because the concentrations are very low and scarcely analyzable. 

Nevertheless, some powerful methods have been developed and used for the determination of 

the microstructure of PVC, especially 13C NMR spectroscopy. Starnes and co-workers have 

developed a novel approach to the structural defect problem which involves the reductive 

dehalogenation of PVC with a metallic hydride and/or deuteride (LiAIH4, LiAID4, Bu3SnH, and 

Bu3SnD), followed by 13C NMR analysis of the reduction product(s).6,50̂ 0 This method shows its 

advantages because the monodeuteration of a 13C atom converts its proton-decoupled NMR 

signal from a singlet into a triplet and causes both that signal and those of neighboring carbons to 

undergo upfield shifts. This result allows identification of the original points of chlorine attachment 

from the spectrum of a deuteride-reduced material. Since the detailed structure of the carbon 

skeleton can also be derived from the 13C spectra of hydride- or deuteride-reduced PVC, it is 

possible to deduce the entire microstructure of the original polymer from the spectral data. This 

method was used successfully to identify and enumerate the structural defects found in PVC.

If it contained no labile structural defects, PVC would be thermally stable up to ca. 

200°C.29 However, low concentrations of chain irregularities in PVC have been found (Table 1), 

and the nature, number, relative stability, and formation mechanisms for these defects have been 

investigated. Of the structures shown in Table 1, those containing aliyllic or tertiary 

halogen20,25,61'63 are considered by most researchers to be the most important ones for initiating 

the thermal dehydrochlorination. Some workers have proposed, however, that other candidates 

should be considered as the most important labile structures, including adventitious oxygenated, 

moieties such as -CO(CH=CH)^-CHCI- (with n > 1)22, high-energy isotactic conformers derived

from ordinary monomer units15,30, and a,p-unsaturated ketone structures which supposedly 

catalyze the dehydrochlorination.64 This thesis will only consider the importance of the internal 

allylic and tertiary chloride structures as compared to the isotactic conformers in the ordinary 

(head-to-tail) monomer units.
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Branches and Their Concentrations

Cl CH2Cl
___L u L u  (2-3)/1000 C----- CHCH2CHCJH-----  (stable)

Cl

f 1
Cl CH2CHCH2CH2CI

----- CHCH2CCH2CH—  < 1 / 1 0 0 0  c
| | (unstable) 
Cl Cl

CHCICH2CI < 0.3/1000 C 
----- CH2CHCH2-----  (stable)

? ?
Cl CH2CHCH2CH-----r 1 < 0 .2 / 1 0 0 0  c  
c h c h 2c c h 2c h  (unstable)

Cl Cl

Long-chain Ends and Their Concentrations

----- CH2C H C H C H 2CI Variable
(fairly stable)

Variable
----- CHCH2CHCH2CI (fairly stable)

P  Variable 
----- CHCH2CH2CI (stable)

Head-to-head Dyads Internal Allylic Structures

ci ci ci
----- CH2C -C C H 2CH2C-----  Never detected!

| | | (fairly stable) 
H H H

Cl Cl < 0.3/1000 c  

CHCH2—(CH=CH)ri—CH

Minsker Structures and Their Concentrations

P P
----- C H - C \  / H  < 0.1/1000 C

.C=C (presence unlikely) 
H <pHCH2~~~ (stable)

Cl

p1 P p1 < 0 .1 /1 0 0 0  c
—-~CH—C \  /  CHCH2-----  (presence unlikely)

yC=C (very unstable)
H H

Table 1: Main structural defects in PVC and their concentrations.
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2.2 Formation of Structures Containing Allylic or Tertiary Chloride

During polymerization, head-to-head addition of vinyl chloride (VC) to the ordinary

macroradical, P. (Figure 2-2), followed by a very rapid, exothermic 1,2 shift of Cl, produces

radical 1. Radical 2 is formed by another 1,2 shift of Cl. Previously, radical 1 (or 2) was thought

to react, in part, by ejecting a chlorine atom in a unimolecular p scission (Equation 2):

1 ----------------► — CH2CH=CHCH2CI + CU (2)

The resultant allylic end group was considered to be very unstable to heat. Moreover, the Cl.

formed was also believed to affect stability adversely by abstracting hydrogen from the polymer in 
•  •

order to give —CH2C C IC H ~ and — CHCICHCHCI—  radicals whose addition to monomer and p 

scission produced, respectively, unstable tertiary chloride and internal chloroallylic groups. 

However, the terminal chloroallylic group (A1 and A2) is now known to be relatively stable, and 

reaction 2 is known not to occur during polymerization to any appreciable extent.29,65,66 The p Cl 

scissions of radicals 1 and 2 actually result, instead, from a bimolecular process involving
ee

monomer as a reactant (Figure 2-2). The chloromethyl branch (MB) and dichloroethyl branch 

(EB) are formed from the addition of monomer to 1 and 2, respectively. It is important here to 

note that the structures shown in Figure 2-2 (A1, A2, MB, and EB) are indeed structural defects 

in PVC, but they are not considered less stable, thermally, than the ordinary monomer units. In 

other words, they are not regarded as important labile groups. Thus it is agreed that head-to- 

head emplacement of monomer is not the ultimate source of the thermal instability of PVC.29 

There are, instead, other authentic labile sites, namely, the internal allylic and tertiary chloride 

segments.

Figure 2-3 illustrates the process that gives rise to a thermally labile internal allylic

29 65 67 68group. ' The process begins with the inter- or intramolecular delivery of a methylene 

hydrogen from the finished PVC segment to the polymeric radical, P.. The resultant radical, 3, 

can add to monomer, giving 4, which starts the growth of a long-branch segment bearing “tertiary 

hydrogen” on the branch-point carbon. Some NMR evidence for the presence of structure 4 has 

been obtained.14,61 However, 4 is not an important structural defect in PVC. On the other hand,
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vc VC

-  c h 2- c h c i- c h c i- c h 2

-  CH2-C H -C H C 1-C H 2C1 -  CH2—CHC1-CH—CH2CI

VC *yc VC y c

<pH2Cl

-  CHCI—CH—CH2—CHC1 

MB

c h 2- c h =c h - c h 2c i

A2

- C H 2-C H = C H -C H 2C1

A1

<pHCI-CH2CI 

-  CH2-C H -C H 2-C H C l 

EB

VC VCVC

Figure 2-2: Chemical consequences of head-to-head emplacement during the free-radical
polymerization of vinyl chloride (VC), where P* is the propagating head-to-tail 
macroradical.

PVC

PH

-C H C 1-C H -C H C H
VCVC

-CH=CHCHC1
IA

p f 2-C H C l
-C H C l-C H -C H C b -

VC
VC

Figure 2-3: Chemical consequences of methylene hydrogen abstraction from PVC by the head-
to-tail macroradical, P«.
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radical 3 can undergo a transfer reaction with VC that gives both an internal allylic chloride (IA) 

moiety and a radical whose addition to monomer starts the growth of another polymer chain. The 

IA structure produced is, indeed, important to the thermal instability of PVC and

29dehydrochlorinates thermally much more rapidly than do structures A1 and A2.

Relatively unstable structures containing tertiary chloride result from other H abstraction 

reactions of P*. These abstractions occur from CHCI moieties and yield radicals whose addition 

to monomer leads to branch formation. The major structures formed are the short-branch 

segment, 5, and the long-branch starting point, 6, whose mechanisms of formation6 are shown in 

Figure 2-4. The dichlorobutyl branch, 5, arises from intramolecular hydrogen transfer, while in the 

case of the long branch, 6, intermolecular abstraction is involved.6,29 As expected, the decreased 

thermal stability of PVC samples made at a given temperature can be correlated with the higher 

observed concentrations of (IA + tertiary) chloride that these polymers contain.69 Starnes and 

Girois concluded that this drop in stability cannot be explained satisfactorily in any other 

reasonable way.29

VC
p .  ► CH2 CC1 Cxt2 CHCI CH2 CH2C1

CH -  CHCI-  CH2~  CH2C1 
I

- C H - C C l - C H -

5

- c h - c h c i- c h 2-
— D O

+ P* ► c h 2 CC1 c h 2 _ v c _ ------ ►

PVC

CH2-C H C t-  | £
- C H - C C l - C H -

6

Figure 2-4: Mechanisms of tertiary chloride formation.
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2.3 Relative Importance of Internal Allylic and Tertiary Chloride

To determine whether the internal allylic or tertiary chloride is the major destabilizer in 

PVC, Starnes et al. obtained first-order rate constants for the thermal dehydrochlorination of 

several model compounds (7-12) in dilute solutions in two different solvents (Table 2).29,70,71 The 

heated solutions were bubbled with argon at the indicated flow rates in order to sweep the 

evolving HCI into water, where it was titrated with standard base. They found that k  for the tertiary 

chloride model, 7, varied only slightly from run to run and showed no clear-cut dependence on the 

rate of argon flow. However, when the argon flow rate was raised, the dehydrochlorination rates 

of the stereoisomeric allylic chlorides 8 and 9 decreased significantly. These structures were 

observed to be less reactive than 7 at the highest flow rate selected and more reactive than 7 at 

the lowest flow rates. Since increasing the argon flow rate reduces the molar concentration of HCI 

in the reacting solutions, it was concluded that the internal allylic chloride structure is much more 

susceptible than the tertiary chloride structure to HCI catalysis.

Also of interest in Table 2 is the low reactivity66 found for the stereoisomeric chain-end 

models, 10 and 11, whose /rvalues were comparable to those of the simple sec-alkyl chloride, 12, 

in both of the solvents used. There also seems to be rather small effects of alkene 

stereoconfiguration on the reactivity differences between compounds 8 and 9 or compounds 10 

and 11. This result argues against a proposed mechanism for the thermal dehydrochlorination of 

PVC that requires c/s-allylic chloride to be much more reactive than trans-allylic chloride.70,72

2.4 Initiation by the Ordinary Monomer Units

Although the effects of structural defects undoubtedly are important, they are not the only 

factors that influence the thermal stability of PVC. The ordinary monomer units (i.e. those not 

associated with structural defects) can initiate dehydrochlorination to some extent, and the 

amounts of HCI that are released after initiation takes place (and thus the lengths of the polyene 

sequences) are influenced by tacticity.29,63,73,74 For example, the decreased stability of a PVC 

sample made at a very low temperature33 was best explained by a polyene length enhancement 

caused by syndiotacticity.73 Since the concentrations of (internal allylic + tertiary) chloride should
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ka x 105, (min)'
model

5800

3120'
600
290°

3300

4900

At 170± 0.5°C with an argon flow rate of 0.14 mL/s unless noted otherwise; reproducibilities were <(± 7%). 
Argon flow, « 0 . 14 mL/s (too slow for accurate measurement).
Argon flow, 1.3 mL/s.

H3C

c h 2ci

(R = n-Pr; R' = n-Bu)

Table 2: Dehydrochlorination rate constants for model compounds.29,71
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decrease with decreasing temperature of polymerization, the lowered stability of the polymer could 

not be related to a faster initiation resulting from the presence of more of these labile structural 

defects. Another study found that the thermal dehydrochlorination of PVC continued at a constant 

rate after the kinetic effects of labile defects introduced deliberately were no longer detectable.63,64 

This steady rate seemed to be initiated by the ordinary monomer units, which was converted to 

allylic chloride by HCI catalysis.

2.5 Correlation Between Stability and Tacticity

Millctn et a/.15 demonstrated that the degradation rate of PVC depends on the isotactic 

content in the manner shown by Figure 2-5. The stability is higher as the isotactic content 

decreases up to a certain point, then the stability decreases again. The minimum in the curve 

agrees with a Bemoullian distribution of tacticity. They conclude that these data clearly suggest 

that the instability is associated with the presence of tactic sequences. Furthermore, the tactic 

sequences, isotactic or syndiotactic, favor the ready propagation of the unzipping reaction 

involving the sequential loss of hydrogen chloride, since the relative proportion of longer polyene 

sequences is higher the greater the tactic sequence content of either type (Figure 2-6).31*42 They 

found that polymers which do not have pronounced tactic sequences because the polymerization 

process obeys Bernoullian propagation statistics have a higher degree of thermal stability and a 

relatively low content of longer polyene sequences after degradation.

30i
c
i
*
Q>
CO

20
c
o

COT3
CO
a>a>
■a. 10co
o

0,35 0,400,30

Figure 2-5: Dependence of degradation rate on syndio­
tactic content of PVC (inert atmosphere; 
180°C).
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0,5

600 700400 500300
A .  nm

Figure 2-6: UV-Visible spectra of 0.3% degraded (180°C) PVC samples.
a) Isotactic polymer (Pmm = 21.4%);
b) Bernoullian polymer (Pmm = 16.7%);
c) Syndiotactic polymer (Pmm = 13.2%).

2.6 Role of GTTG* Isotactic Triads and Reaction of PVC with Sodium 
Benzenethiolate

Although the above results concern the propagation of degradation, according to Milten 

and co-workers, the non-Bernoullian and favored isotactic polymers contain a higher number of 

initiation sites relative to syndiotactic non-Bernoullian polymers. This hypothesis suggests the 

occurrence of a higher content of labile structures in the former polymers. Recently, Mill£n and 

co-workers have proposed that the initiation of the thermal dehydrochlorination of PVC is due, to 

the greatest extent, to the occurrence of the GTTG' conformation of isotactic triads (Figure 2-7) 

formed either during the polymerization or during the degradation process as a result of thermally 

induced conformational changes.15,30,31'45 Their conclusions were based on studies of PVC 

modified by nucleophilic substitution with sodium benzenethiolate, which was suggested to occur 

preferentially at isotactic triads in the GTTG' conformation. The substitution also was suggested 

to involve exclusive attack at the central carbon atom since both the nucleophilic attack and the 

chlorine atom separation would be sterically more favored in that case. This reaction involved a 

fast initial period followed by a slower steady period, and it never reached a high degree of
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CH

CHGTTG-
isoCQCtic tr iads

CH

CHCH

TTTTTTTG

syndiotactic triadhef e ro tac t ic  t r iad

CHCH

GTGT

Figure 2-7: Conformations of triads in PVC.

Rate const X  102 
Mol/L (L/mol*min)

Mol/L PVC C6H5SNa ---------------------------------------------------------
Reaction X  102 X  102 ki k2 k3

A 6.4 7.6 25 1.5 0.3

B 6.4 5.1 25 1.5 0.4

C 3.2 5.1 25 1.4 0.4

Table 3: Substitution conditions for reactions A, B, and C (Figure 2-8) and rate constant values 
(Figure 2-9).
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200120 I S O80
t  C h )

Figure 2-8: Nucleophilic substitution on PVC with sodium benzenethiolate: 
(o ) Reaction A, (□) Reaction B, (A) Reaction C (See Table 3).

o»o
o

200 '16012080
t (h i

Figure 2-9: Kinetic plots of nucleophilic substitution on PVC with sodium benzenethiolate: 
(o ) Reaction A, (□) Reaction B, (A) Reaction C (See Table 3).
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conversion.35 The reaction conditions are given in Table 3, and the conversion curves are plotted 

in Figure 2-8. The reaction was found to fit second-order kinetics (Figure 2-9); thus it was 

believed to be an SN2 substitution reaction. These results, they believe, indicate the existence of 

a fraction of chlorine atoms which are much more reactive than the others in PVC.

Since the chlorine atoms in the internal allylic and tertiary structures do not satisfy the 

best conditions for an SN2 substitution, Millan etal. concluded that the fast initial reaction, shown 

by the reaction constant k1f is related to the displacement of chlorine atoms at some “normal” 

structures in PVC, particularly the central chlorine atoms in the GTTG' isotactic triad. Three 

reasons were given for this backside SN2 attack by the nucleophile: 1. There is no axial 

interaction of the nucleophile with groups larger than hydrogen atoms; 2. The chlorine atoms on 

both neighboring units are as far as possible from the attack point; and 3. The transition state and, 

consequently, the central chlorine separation is favored by the relief of two H, Cl interactions.

Also, it was inferred that every act of substitution occurred either at the meso-meso (mm) triad of 

an mmr tetrad or at the meso-racemic (mr) triad of an rmrr pentad (i.e., the mm or the mr triads 

located at the end of isotactic or syndiotactic sequences, respectively), and that the only three 

stereospecific mechanisms operative in this substitution reaction are the ones shown in Figure 2-

10.

Recently, Millan et al. have found that during the first stages of substitution the number of 

modified triads agrees with the number of isotactic triads that has disappeared. If any labile 

structure but the isotactic labile conformation had reacted, they argue, appreciable deviations from 

this behavior should have been detected. In addition, no systematic correlation between 

“abnormal” labile structures and the type of polyene distribution has been described as it has, 

supposedly, for the tacticity.15 The proposed reason for the lability of some chlorines in the GTTG' 

isotactic triad conformer was that the chlorine atoms, except for the central one, possess a much 

higher degree of freedom than the remaining chlorines in PVC. This condition, they conclude, 

would make it easy for these chlorine atoms to vibrate, thus giving rise to an easier initiation.35
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(A)
mm

(B)m

(C)m m mm

Figure 2-10: Proposed stereospecific mechanisms for the SN2 substitution of PVC with sodium
benzenethiolate.

Hjertberg, on the other hand, questions the findings of Millan and co-workers. From 

experiments on the degradation behavior of four commercial PVC resins with different 

polymerization temperatures, Hjertberg and Rogestedt found a definite relationship between the 

dehydrochlorination rate and the content of internal allylic and tertiary chlorine (Figure 2-11)46 

Their results showed that the dehydrochlorination rate increases with the amount of these 

structures. Furthermore, their attempt to identify a definite correlation between the degradation 

rate of PVC and the overall content of isotactic triads was not as successful (Figure 2-12). Since 

the isotacticity was almost the same in the four different samples used, while there was a 

significant difference in the content of labile chlorine in the samples, Hjertberg and Rogestedt 

concluded that the labile chlorine structures associated with defects contribute most to the initial 

degradation rate and that tacticity is of minor importance. In similar experiments, Troitskii et al. 

reached the same conclusions.75
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Hjertberg also argues that both the content of labile defects and the stereostructure are 

changed by varying the polymerization temperature, so that the conclusion drawn by Millan et at. 

that the polyene sequence distribution markedly depends on the tacticity of the polymer is 

questionable. In one study Hjertberg and Rogestedt alkylated a sample of PVC with 

trimethylaluminum and found that the dehydrochlorination rate of this new polymer was reduced to 

20% that of untreated PVC. This result was best explained by the replacement of allylic and 

tertiary chlorine by methyl groups. They pointed out that the degree of substitution was 

considerably lower than the content of GTTG' isotactic triads.49 Therefore, the concentration of 

HCI in the sample, which depends on the dehydrochlorination rate, is the major factor determining 

the polyene sequence distribution, and it seems most likely that tacticity is of minor importance.

30

c
1

20

o

10§

320 1
Labile C l /1000 VC

Figure 2-11: Relation between the
dehydrochlorination rate and 
the content of labile chlorine.

30

20

0.16 0.200.18
[mm]

Figure 2-12: Relation between, the
dehydrochlorination rate and 
the content of isotactic triads.



Chapter 3 

EXPERIMENTAL

3.1 Materials

All starting chemicals were commercial products that were used as received.

1. Thionyl chloride, SOCI2, 23,046-4, 99+%, bp 79°C, Aldrich Chemical Company, Inc.

2. N,N-Dimethylformamide (DMF), HCON(CH3)2, 22,705-6, 99.8%, anhydrous, bp 153°C, 
Aldrich.

3. (E)-2-Decen-1-ol, CH3(CH2)6CH=CHCH2OH, 32689, Alfa Aesar Johnson Matthey.

4. Magnesium sulfate, MgS04, M65-500, anhydrous, Fisher Scientific Company.

5. Lithium diisopropylamide (LDA), [(CH3)2CH]2NLi, 36,179-8, 2.0 M solution in 
heptane/tetrahydrofuran/ethylbenzene, Aldrich.

6. Tetrahydrofuran (THF), C4H80, 40,175-7, anhydrous, 99.9%, bp 65-67°C, Aldrich.

7. 1-Bromoheptane, CH3(CH2)6Br, B6,757-0, 99%, bp 180°C, Aldrich.

8. Pentane, CH3(CH2)3CH3, 04062-4, 98%, bp 36°C, Fisher.

9. Ammonium chloride, NH4CI, A661-500, 99.5%, Fisher.

10. Sodium thiophenolate (thiophenol sodium salt), C6H5Na, 89027, 97%, Fluka Chemical 
Corporation.

11. Hexadecyltributylphosphonium bromide (HDTP), CH3(CH2)15P[(CH2)3CH3]3Br, 27,620-0, 
97%, mp 56-58°C, Aldrich.

12. Calcium chloride, CaCI2, 22,231-3, -40 mesh, 96+%, Aldrich.

13. Thiophenol, C6H5SH, 22004-0500, 99+%, bp 169-170°C, Acros Organics.

14. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU), C9H16N2, 13,900-9, 98%, bp 80-83°C/0.6mm, 
Aldrich.

15. Benzene, C6H6, B245-4, 99%, bp 80°C, Fisher.

16. 1-Bromobutane, CH3(CH2)3Br, 10677-2500, 99%, bp 100-104°C, Acros Organics.

17. Magnesium metal turnings, Mg, for Grignard reaction, M11-500, Fisher.

20



21

18. 9-Heptadecanone, CH3(CH2)7CO(CH2)7CH3, H0536, TCI America.

19. Sodium sulfate, Na2S 04, S415-500, 99%, anhydrous, granular, 10-60 mesh, Fisher.

20. Phosphorus pentachloride, PCI5, 15,777-5, 95%, mp 179-181 °C, Aldrich.

21. Calcium carbonate, CaC03, 23,921-6, 99+%, powder, Aldrich.

22. Chloroform, CHCI3, C298-1, 99.8%, bp61°C, Fisher.

23. (E)-1 -Chloro-2-butene (crotyl chloride), CH3CH=CHCH2CI, 25,458-4, 95%, bp 84-85°C, 
Aldrich.

24. lodomethane (methyl iodide), CH3I, I-850-7, 99%, bp41-43°C, Aldrich.

25. (E)-3-Penten-2-ol, CH3CH=CHCH(OH)CH3, 11,128-7, 96%, bp 119-121°C, Aldrich.

26. Hydrochloric acid, HCI, A144-212, 36.5-38.0%, Fisher.

27. Chloroform-cf, CDCI3, 15,183-1, 99.8 atom % D, contains 1% v/v TMS, bp 60.9°C, Aldrich.

28. Tetramethylsilane (TMS), Si(CH3)4, T2,400-7, 99.9+%, NMR grade, bp 26-28°C, Aldrich.

29. 1,1,2,2-Tetrachloroethane-cf2, CI2CDCDCI2, 99.6 atom % D, bp 145-146°C/737mm, 
Cambridge Isotope Laboratories.

30. Diethyl ether, (CH3CH2)20, E198-4, 99.9%, anhydrous, bp 34.6°C, Fisher.



22

3.2 Instrumentation

Nuclear Magnetic Resonance:

All 1H and 13C NMR spectra were obtained on a 300 MHz General Electric NMR 

spectrometer (GE QE 300 FT-NMR). For identification of the model compounds, CDCI3 was used 

as the solvent in ca. 10-20% (w/v) solutions at room temperature. For spectra used to compare 

with the PVC spectrum obtained by Dr. G. M. Benedikt of the B. F. Goodrich Company, the 

solvent for the model compounds was a mixture of 1,4-dioxane-cf8, 1,1,2,2-tetrachloroethane, and 

1,1,2,2-tetrachloroethane-cf2 in a 1:4:1 ratio by volume, respectively. These spectra were obtained 

at 90 ± 5 °C (363 °K) using a variable temperature controller, and the instrument was uncalibrated 

at this temperature. Tetramethylsilane (TMS) was used as an internal reference for all the 

spectra.

Gas Chromatography-Mass Spectroscopy (GC-MS):

The gas chromatogram/mass spectra were obtained on a Hewlett-Packard (HP) 5890 

Series II GC instrument coupled to a Hewlett-Packard 5971A MSD apparatus operating in total ion 

concentration (TIC) mode. The instrument was equipped with an ULTRA-1 crosslinked methyl 

silicone gum fused-silica capillary column containing a 95:5 dimethylpolysiloxane: 

diphenylpolysiloxane mixture (12 m x 0.2 mm ID x 0.33 jum film thickness). Helium was used as 

the carrier gas, and the heating rate was 5-10 °C/min.

Infrared Spectroscopy:

All IR spectra were recorded on a Perkin-Elmer 1600 Series FTIR instrument using NaCI

plates.
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3.3 Synthesis of (E)-1-chloro-2-decene

OH

The synthesis of frans-1-chloro-2-decene was based on a literature method for converting 

an allylic alcohol into the corresponding chloride.76 Thionyl chloride (10.5 mL, 17.13 g, 144 mmol) 

was added dropwise to A/,A/-Dimethylformamide (DMF) (81.8 mL, 77.19g, 1.06 mol) at 0-10 °C 

under N2 with stirring. To this mixture frar?s-2-decen-1-ol (15 g, 96 mmol) was added dropwise, 

and the resulting mixture was heated at 85-90 °C for 0.5 h. The reaction was quenched with 

approximately 35 mL of deionized water, and the organic layer was extracted with ether (4x35 

mL). The ether solution was washed with water (3x100 mL), dried with magnesium sulfate, 

filtered, and concentrated on a rotary evaporator at 50 °C. Upon vacuum distillation (~2 mm Hg, 

60-64 °C) of the crude product, 15 g (90%) of 95% pure (by GC/MS) fraas-1-chloro-2-decene was 

obtained. The mass spectrum (Figure 3-1) showed a molecular ion peak at 174 m/e. 1H NMR 

(Figure 3-2): 5 0.80-1.00 (3H, CH3, triplet), 1.10-1.50 (10H, CH2, multiplet), 2.00-2.15 (2H, CH2, 

quadruplet), 3.95-4.15 (2H, CH2, doublet), and 5.53-5.82 (2H, HC=CH, multiplet) ppm vs. Me4Si. 

13C NMR (Figure 3-3): 5 136.15, 126.08, 45.33, 32.12, 31.89, 29.18, 29.11, 28.98, 22.70, and 

14.05 ppm vs. Me4Si.
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Figure 3-1: Mass spectrum of (E)-1-chloro-2-decene
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Figure 3-2: 1H NMR spectrum of (E)-1-chloro-2-decene
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Figure 3-3: 13C NMR spectrum of (E)-1-chloro-2-decene
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3.4 Synthesis of (E)-[(2-decenyl)thio]benzene

DBU
1,8-diazabicyclo[5.4.0]undec-7-ene

HS V /

(1) DBU, Benzene
(2) H+/H20

The synthesis of fra/?s-[(2-butenyl)thio]benzene was based on a literature method77 for the 

conversion of a thiol and alkyl halide into a sulfide. The previously made frans-1-chloro-2-decene 

(1.74 g, 0.01 mol) was added to a stirred mixture of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) 

(1.52 g, 0.01 mol) and thiophenol (1.10 g, 0.01 mol) in benzene (30 mL), and the resulting 

reaction mixture was stirred at room temperature for 2 h under N2. The precipitated DBU-HCI salt 

was removed by filtration. The filtrate was washed with water and dried with anhydrous 

magnesium sulfate. Benzene was evaporated in vacuo and the residue was distilled under 

reduced pressure, yielding 0.85 g (34%) of 97% pure (by GC-MS) product. Mass spectral 

analysis (Figure 3-4) showed a molecular ion peak at 248 m/e. 1H NMR (Figure 3-5): 5 0.80- 

1.00 (3H, CH3, triplet), 1.10-1.50 (10H, CH2, multiplet), 1.90-2.10 (2H, CH2, quadruplet), 3.45-3.56 

(2H, CH2i doublet), 5.38-5.60 (2H, HC=CH, multiplet), and 7.10-7.50 (5H, phenyl H, multiplet) ppm 

vs. Me4Si. 13C NMR (Figure 3-6): 5 136.89, 134.44, 130.33, 128.70, 126.13, 125.37, 36.85,

32.26, 31.89, 29.30, 29.16, 29.08, 22.65, 13.94 ppm vs. Me4Si.
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Figure 3-4: Mass spectrum of (E)-[(2-decenyl)thio]benzene
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Figure 3-5: 1H NMR spectrum of (E)-[(2-decenyl)thio]benzene
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Figure 3-6: 13C NMR spectrum of (E)-[(2-decenyl)thio]benzene
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3.5 Synthesis of (E)-10-chloro-8-heptadecene

(1) 1-bromoheptane
(2) LDA, THF

The method of conversion of frans-1-chloro-2-decene into trans- 10-chloro-8-heptadecene 

was based on a literature method78 for synthesizing internal allylic chlorides from primary altylic 

chlorides. A solution of lithium diisopropylamide (LDA) (28.7 mL, 2.0 M in THF, 57 mmol) in 

additional THF (~102 mL) was added dropwise with stirring to a mixture of frans-1-chloro-2- 

decene (5.00 g, 29 mmol), 1-bromoheptane (10.26 g, 57 mmol), and THF (62 mL) at -78 °C under 

N2. After 15 min the reaction mixture was diluted with pentane (~200 mL) and then added to a 

saturated aqueous solution of ammonium chloride (NH4CI) (~200 mL). The fra/?s-10-chloro-8- 

heptadecene was extracted with ether (4x100 mL), and the ether solution was dried with 

anhydrous magnesium sulfate (MgS04), filtered, and concentrated by rotary evaporation. After 

vacuum distillation (~2 mm Hg, 125-132 °C), 4.1 g (52%) of product (95% pure by GC/MS) was 

obtained. The mass spectrum (Figure 3-7) showed a molecular ion peak at 272 m/e. 1H NMR 

(Figure 3-8): 5 0.80-0.95 (6H, CH3, triplet), 1.10-1.50 (20H, CH2, multiplet), 1.68-1.90 (2H, CH2, 

multiplet), 2.00-2.10 (2H, CH2, quadruplet), 4.25-4.38 (1H, CHCI, quadruplet), and 5.42-5.78 (2H, 

CH=CH, multiplet) ppm vs. Me4Si. 13C NMR (Figure 3-9): 5 133.35, 131.53, 63.28, 39.17, 32.02, 

31.94, 31.91, 29.19, 26.70, 22.68, and 13.96 ppm vs. Me4Si.
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Figure 3-8: 1H NMR spectrum of (E)-10-chloro-8-heptadecene
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3.6 Synthesis of (E)-[(1-heptyl-2-decenyl)thio]benzene

Two methods were used for the synthesis of frans-[(1-heptyl-2-decenyl)thio]benzene. 

They were based on literature methods for making sulfides from alkyl halides.

Method 1:

H3C(H2C)3 (CH2)3CH3 
H3C(H2C)15— P— Br

(CH2)3CH3

Hexadecyltributylphosphonium bromide

(1) PhSNa
(2) HD TP
(3) H20

The first method79 involved the synthesis of thioethers in the presence of a small amount 

of a phase-transfer catalyst. The reactants, frans-10-chloro-8-heptadecene (1.00 g, 3.67 mmol), 

sodium thiophenolate (0.291 g, 2.20 mmol), and hexadecyltributylphosphonium bromide (HDTP) 

(0.186 g, 0.367 mmol) were mixed with 1.1 mL of water in a flask equipped with a magnetic stirrer 

and reflux condenser. After heating at 70 °C (bath temperature) for 3 h under nitrogen, the 

mixture was cooled to room temperature, and 6 mL of ether was added. The organic layer was 

separated, washed with water (3x3 mL), dried over calcium chloride, filtered, and subjected to 

rotary evaporation. After vacuum distillation, no significant amount of product was obtained.
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Method 2:

(1)PhSH
(2) DBU, Benzene
(3) H+/H20

The synthesis of trans~[{ 1-heptyl-2-decenyl)thio]benzene was based on a previously 

reported method77 for the conversion of a thiol and primary alkyl halide into a sulfide. The 

previously made frans-10-chloro-8-heptadecene (1.00 g, 3.67 mmol) was added to a stirred 

mixture of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (0.56 g, 3.7 mmol) and thiophenol (0.40 g, 

3.7 mmol) in benzene (11 mL), and the resulting reaction mixture was stirred at 50 °C for 2 h 

under N2. The precipitated DBU-HCI salt was removed by filtration. The filtrate was washed with 

water and dried with anhydrous magnesium sulfate. Benzene was evaporated in vacuo, and the 

residue was distilled under reduced pressure, yielding 0.59 g (46%) of 87% pure (by GC-MS) 

product. Mass spectral analysis (Figure 3-10) showed a molecular ion peak at 346 m/e. 1H NMR 

(Figure 3-11): 5 0.82-1.00 (6H, CH3, triplet), 1.05-1.50 (20H, CH2, multiplet), 3.50-3.62 (1H, 

CHSPh, quadruplet), 5.18-5.33 (2H, HC=CH, multiplet), and 7.10-7.50 (5H, phenyl H, multiplet) 

ppm vs. Me4Si. 13C NMR (Figure 3-12): 8 135.84, 133.10, 132.37, 131.19, 128.51, 126.83, 51.97, 

35.14, 32.21, 31.91, 29.43, 29.19, 29.08, 27.37, 22.68, and 13.96 ppm vs. Me4Si.
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Figure 3-10: Mass spectrum of (E)- [(1-heptyl-2-decenyl)thio]benzene
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3.7 Synthesis of 9-butylheptadecan-9-ol

(1) BuMgBr, Ether
(2) NHjCl/h^O

OH

A Grignard reaction was used to make the tertiary alcohol from the ketone.80 To -27 mL 

of ether, /7-butyl bromide (2.69 g, 19.7 mmol) and magnesium turnings (0.48 g, 20 mmol) were 

added. The mixture was allowed to react under N2, with occasional cooling in an ice bath at 0 °C, 

until almost all of the magnesium was used. After the Grignard reagent was formed, 

9-heptadecanone (5.00 g, 19.7 mmol) was added to the mixture with another 27-mL portion of 

ether. The mixture was allowed to react for 2 hours at 0 °C under nitrogen. The resulting mixture 

was poured into an icy solution of ammonium chloride (NH4CI) and water (-50 mL). The organic 

phase was separated, dried with sodium sulfate (Na2S 04), and subjected to rotary evaporation. 

Upon vacuum distillation (-2  mm Hg), 3.23 g (53%) of tertiary alcohol (98% purity by GC/MS) was 

obtained. The IR spectrum showed a broad OH peak at 3300-3500 cm'1 (Figure 3-13), and the 

mass spectrum showed a peak at 294 m/e (M+ - H20 ) (Figure 3-14). 1H NMR (Figure 3-15):

5 0.80-1.00 (9H, CH3, triplet), 1.10-1.40 (28H, CH2) multiplet), 1.40-1.50 (6H, CCH2, multiplet), 

and 1.40-1.50 (1H, OH, singlet) ppm vs. Me4Si. 13C NMR (Figure 3-16): 5 74.49, 39.77, 39.45, 

37.87, 32.07, 30.53, 29.93, 29.74, 29.63, 29.42, 25.98, 25.85, 23.71, 23.50, 22.75, and 13.97 ppm 

vs. Me4Si.
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3.8 Synthesis of 9-butyl-9-chloroheptadecane

OH

(1) PC15, CaC03, ether
(2) h 7 h 2o

Cl

The synthesis of 9-butyl-9-chloroheptadecane was based on a literature method81 for 

converting a tertiary alcohol to the corresponding chloride. The previously made 9-butyl- 

heptadecan-9-ol (1.00 g, 3.20 mmol) was added to a slurry of phosphorus pentachloride (PCI5) 

(0.866 g, 4.16 mmol) and calcium carbonate (CaC03) (0.320 g, 3.20 mmol) in ether at 0 °C under 

N2. After stirring for 3 min, the mixture was filtered and washed with cold water. The ether layer 

was dried with sodium sulfate, filtered, and concentrated by rotary evaporation. Upon vacuum 

distillation (~2 mm Hg), 0.38 g (36%) of product (78% purity by GC/MS) was obtained. The IR 

spectrum showed CH2 peaks at 2800-3000 cm'1 without the OH peak at 3300-3500 cm'1 (Figure 

3-17), and the mass spectrum showed a peak at 294 m/e (M+ - HCI) (Figure 3-18). 1H NMR 

(Figure 3-19): 6 0.80-1.00 (9H, CH3, triplet), 1.15-1.55 (28H, CH2, multiplet), and 1.60-1.80 (6H, 

CCH2, multiplet) ppm vs. Me4Si. 13C NMR (Figure 3-20): 5 78.70, 41.66, 41.36, 38.79, 32.00, 

30.08, 29.60, 29.37, 26.75, 24.51, 23.08, 22.73, and 13.97 ppm vs. Me4Si.
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Figure 3-17: IR spectrum of 9-butyl-9-chloroheptadecane
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Figure 3-19: 1H NMR spectrum of 9-butyl-9-chloroheptadecane
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Figure 3-20: 13C NMR spectrum of 9-butyl-9-chloroheptadecane
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3.9 Attempted synthesis of [(1,1-dioctylpentyl)thio]benzene

(1)PhSH
(2) DBU, Benzene
(3) H+/H20

The synthesis of [(1,1-dioctylpentyl)thio]benzene was based on the previous method for 

converting a thiol and alkyl halide into a sulfide.77 The previously made 9-butyl-9-chloro- 

heptadecane (2.00 g, 6.0 mmol) was added to a stirred mixture of 1,8-diazabicyclo[5.4.0]undec-7- 

ene (DBU) (0.92 g, 6.0 mmol) and thiophenol (0.67 g, 6.0 mmol) in benzene (~18 mL), and the 

resulting reaction mixture was stirred at 50 °C for 2 h under N2. The precipitated DBU-HCI salt 

was removed by filtration. The filtrate was washed with water and dried with anhydrous 

magnesium sulfate. Benzene was evaporated in vacuo, and the residue was distilled under 

reduced pressure (~2 mm Hg), yielding 0.63 g (26%) of 45% pure (by GC-MS) product (see 

Results and Discussion). Mass spectral analysis (Figure 3-21) showed a peak at 294 m/e (M+ - 

HSPh). 1H NMR (Figure 3-22): 6 0.82-1.00 (9H, CH3) triplet), 1.05-1.45 (28H, CH2, multiptet), 

1.65-2.04 (6H, CCH2, multiplet), and 7.15-7.53 (5H, phenyl H, multiplet) ppm vs. Me4Si. 13C NMR 

(Figure 3-23): 5 137.42, 129.06, 127.99, 127.25, 74.41, 39.58, 39.27, 31.99, 30.44, 29.68, 29.55, 

29.35, 25.86, 23.60, 23.44, 22.71, and 14.02 ppm vs. Me4Si.
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Figure 3-22: 1H NMR spectrum of [(1,1-dioctylpentyl)thio]benzene (See Results and Discussion)
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Figure 3-23: 13C NMR spectrum of [(1,1-dioctylpentyl)thio]benzene (See Results and Discussion)



3.10 Synthesis of (E)-4-chloro-2-pentene

47

OH

H-CI

The synthesis of trans-4-chloro-2-pentene was based on the classical method of using
go

concentrated HCI to convert alcohols to the corresponding chlorides. The starting alcohol, 

frar?s-3-penten-2-ol (6.00 g, 69.7 mmol), was stirred with concentrated hydrochloric acid (7.62 g, 

209 mmol) for 15-20 min at room temperature under N2. The organic layer was separated, dried 

with calcium chloride (CaCI2), and distilled under reduced pressure (~2 mm Hg) to give 5.17 g 

(71%) of product (90% purity by GC/MS). The mass spectrum showed molecular ion peaks at 

104 and 106 m/e in the expected 3:1 ratio (Figure 3-24). 1H NMR (Figure 3-25): 5 1.40-1.63 

(3H, CHCICH3i doublet), 1.63-1.78 (3H, CH=CHCH3, doublet), 4.45-4.58 (1H, CHCI, quintet), and 

5.45-5.80 (2H, CH=CH, multiplet) ppm vs. Me4Si. 13C NMR (Figure 3-26): 5 133.79, 127.12, 

58.06, 25.44, and 17.27 ppm vs. Me4Si.
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Figure 3-25: 1H NMR spectrum of (E)-4-chloro-2-pentene
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3.11 Synthesis of (E)-[(1 -methyl-2-butenyl)thio]benzene

(1)PhSH
(2) DBU, Benzene
(3)H+/H20

The synthesis of frans-[(1-methyl-2-butenyl)thio]benzene was based on the previously 

reported method for the conversion of a thiol and alkyl halide into a sulfide.77 The previously 

made frans-4-chloro-2-pentene (1.00 g, 9.57 mmol) was added to a stirred mixture of 1,8- 

diazabicyclo[5.4.0]undec-7-ene (DBU) (1.46 g, 9.57 mmol) and thiophenol (1.05 g, 9.57 mmol) in 

benzene (~29 m l), and the resulting reaction mixture was stirred at room temperature for 2 h 

under N2. The precipitated DBU-HCI salt was removed by filtration. The filtrate was washed with 

water and dried with anhydrous magnesium sulfate. Benzene was evaporated in vacuo, and the 

residue was distilled under reduced pressure (~2 mm Hg), yielding 0.86 g (50%) of 78% pure (by 

GC-MS) product. Mass spectral analysis (Figure 3-27) showed a molecular ion peak at 178 m/e 

and a diphenyldisulfide impurity peak at 218 m/e. 1H NMR (Figure 3-28): 8 1.26-1.49 (3H, 

CHSCH3, doublet), 1.49-1.65 (3H, CH=CHCH3, doublet), 3.67-3.80 (1H, CHSPh, quintet), 5.23- 

5.65 (2H, HC=CH, multiplet), and 7.10-7.50 (5H, phenyl H, multiplet) ppm vs. Me4Si. 13C NMR 

(Figure 3-29): 5 135.58, 133.19, 132.92, 129.09, 128.57, 126.96, 45.83, 20.89, and 17.43 ppm vs. 

Me4Si.
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Figure 3-28: 1H NMR spectrum of (E)- [(1-methyl-2-butenyl)thio]benzene
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Figure 3-29: 13C NMR spectrum of (E)-[(1-methyl-2-butenyl)thio]benzene



Chapter 4 

RESULTS AND DISCUSSION

The following three model compounds were made and their 13C NMR chemical shifts 

were assigned: (E)-[(2-decenyl)thio]benzene, (E)-[(1-heptyl-2-decenyl)thio]benzene, and 

[(1,1-dioctylpentyl)thio]benzene (see Figures 3-6, 3-12, and 3-23). The fourth model compound, 

(E)-[(1-methyl-2-butenyl)thio]benzene (Figure 3-29), was used to verify the shift assignments of 

the longer-chain internal allylic thiophenyl compound. No problems were encountered in the 

synthesis of the terminal allylic thiophenyl compound (97% pure by GC/MS). However, the 

highest purity obtained for the internal allylic thiophenyl compound was 87% (by GC/MS). For our 

purposes, this value was acceptable, since we only needed 13C chemical shifts of the main 

component. The smaller peaks belonging to the impurities could be ignored. The synthesis of the 

tertiary alcohol was straightforward, but its 13C NMR showed a few extra peaks that could not be 

assigned. Previous work by someone in our group, however, indicated that the starting ketone 

contained ca. 9% of an isomer as an impurity. Also, as seen in the IR spectrum (Figure 3-13), 

some of the ketone was unreacted. This probably explains the extra NMR peaks in the alcohol.

Conversion of the tertiary alcohol into the chloride only gave 78% (purity, by GC/MS) of 

the product. The facile dehydrochlorination of this tertiary chloride to form an alkene and the 

impurity from the starting ketone may explain this low value and the presence of several extra 

peaks in the 13C NMR spectrum. Synthesis of the tertiary thiophenyl compound yielded a product 

whose purity was only 45% by GC/MS. This low value was attributed to the formation of diphenyl 

disulfide (confirmed by the presence of a molecular ion peak at 218 m/e) and the 

dehydrochlorination of the tertiary chloride in the reaction mixture. Also, the conversion of the 

tertiary chloride to the corresponding sulfide was not complete, as shown by similar peaks in the 

13C NMR spectra of the chloride (Figure 3-20) and sulfide (Figure 3-23). The tertiary carbon

53
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resonance of the chloride, at 78.70 ppm, is also seen in the spectrum of the sulfide. Therefore, 

the peak at 74.41 ppm was, at first, thought to be attributable to the tertiary carbon in the sulfide. 

However, upon further examination, this peak was actually found to be the tertiary carbon peak in 

the alcohol (Figure 3-16). The product obtained was indeed a mixture of the tertiary chloride and 

alcohol. Hence, a second reaction was performed on a more nearly pure sample of tertiary 

chloride (78% by GC/MS), but the conversion to the corresponding tertiary thiophenyl compound 

still was not successful (the final 13C NMR spectrum looked exactly like the tertiary chloride 

spectrum, with diphenyl disulfide carbon resonances from 120-140 ppm).

With this realization late in the project, there was no more time to try to synthesize the 

tertiary thiophenyl compound. Instead, 13C NMR chemical shifts were found for undecane83, 13, 

and [(1-pentylhexyl)thio]benzene84, 14, and the shift corrections for substitution of the hydrogen at 

carbon 6 by PhS' were calculated (Figure 4-1). These shift corrections were used to calculate the 

shift increments for a butyl branch structure6, 15 and 16, upon substitution by PhS'. As can be 

seen, the calculated shift for the quaternary carbon is 16.08 ppm lower than the erroneous one 

shown in Figure 3-23.

Spectra of the model compounds were compared to spectra of similar compounds in the 

Aldrich Library o f13C and 1H FT NMR Spectra83 and Carbon-13 NMR Spectroscopy?5 and to 

previously published chemical shift corrections (see Table 4). Rows H, J, and L contain shift 

assignments for the internal allylic, tertiary, and terminal allylic thiophenyl compounds, 

respectively. The last three rows contain unsorted peaks for a sample of Bu3SnH-reduced PVC 

that had been modified with sodium benzenethiolate for 25 h according to the method described 

by Millan et a !35 This was done previously in our research group84 The 13C NMR spectrum 

(125.76 MHz) for the modified PVC sample (PVC-101X377, polymerized at 82 °C) was obtained 

by Dr. G. M. Benedikt using a 1:4:1 solvent ratio of 1,4-dioxane-d8,1,1,2,2-tetrachloroethane, and 

1,1,2,2-tetrachloroethane-d2, respectively, at a temperature of 90 °C (Figure 4-2). Therefore, it 

was necessary to obtain spectra of the three model compounds under the same conditions. 

Figures 4-3, 4-4, and 4-5 show the 13C NMR spectra of the three compounds under these 

conditions, and rows Q, O, and P in Table 4 show their chemical shift assignments. It should be
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noted that all the peak positions in Figure 4-2 were corrected by subtracting 2.1 ppm to account 

for the -C H 2“  peak occurring at 32.14 ppm instead of 30.04 ppm, and that the measured 

chemical shift data for the tertiary model compound are erroneous (as explained previously).

13
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1, 11. 
2, 10. 

3 ,9 .
4, 8.
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6 .
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Figure 4-1: 13C NMR chemical shifts (in ppm, vs. Me4Si) calculated for the substituted butyl branch.

Incorporation of the benzenethiolate into the PVC sample was previously proven by UV 

spectra (Figure 4-6)84, and the percentages of conversion for the substitution reaction were 

calculated and plotted (Figure 4-7).84 Also, the kinetic data were previously plotted as in Figure 

4-884, showing that the substitution reaction involved two steps—a fast substitution within the first 

25 h and a slow substitution which never reached a high degree of conversion. The decrease in
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Figure 4-2: 13C NMR spectrum of PVC modified for 25 h and then reduced by Bu3SnH.
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Figure 4-2 (continued): 13C NMR spectrum of PVC modified for 25 h and then reduced by Bu3SnH
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Figure 4-2 (continued): 13C NMR spectrum of PVC modified for 25 h and then reduced by Bu3SnH.
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Figure 4-2 (continued): 13C NMR spectrum of PVC modified for 25 h and then reduced by Bu3SnH.
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Figure 4-2 (continued): 13C NMR spectrum of PVC modified for 25 h and then reduced by Bu3SnH.
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Figure 4-3: 13C NMR spectrum of (E)-[(2-decenyl)thio]benzene in 1:4:1
Tetrachloroethane-d2:Tetrachloroethane:1,8-Dioxane-d8 at 90 °C
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rate can be attributed to the replacement of almost all of the labile chlorine by the more stable 

benzenethiolate group (i.e., as more and more labile chlorines were replaced by benzenethiolate, 

the rate of substitution decreased). After 25 h of reaction, the modified PVC sample was 

subjected to reductive dechlorination with tri-n-butyltin hydride, Bu3SnH. Before the final sample 

was analyzed by 13C NMR spectroscopy, it was necessary to learn whether Bu3SnH also replaced 

the C6H5S— groups with hydrogen. Accordingly, model compounds 17-20 (Figure 4-9) were 

previously prepared and their competitive reductions by Bu3SnH were studied.84 Earlier studies 

had established the relative reactivities of various sulfides, selenides, and halides toward SH2 

attack by tributyltin radicals.87 The order of reactivity, according to Beckwith and co-workers, was 

Br > PhSe > Cl > p-CNC6H4S > PhS > p-MeC6H4S > MeS. In experiments with the four model 

compounds, both chlorides were reduced while both sulfides remained unreduced.84 Therefore, 

the lower reactivity of the C—SPh bond compared to the C—Cl bond was confirmed, and reduction 

by Bu3SnH of the modified PVC sample did not affect the benzenethiolate groups, a result 

required by this investigation.

By comparison of the chemical shifts of the reduced and modified PVC sample with those 

found for the model compounds, we can determine if there are allylic or tertiary structures involved 

in the fast substitution by sodium benzenethiolate. The strongest peak at 30.04 ppm (after the 2.1 

ppm correction) in Figure 4-2 was assigned to the -C H 2“  carbons resulting from the reduction of 

the ordinary monomer units. The peaks at 66.21, 66.39, 66.56, 66.73, and 66.91 ppm (strike­

through values in row R in Table 4) all belong to the carbons in p-dioxane-of8. The other solvent 

peaks, from tetrachloroethane and tetrachloroethane-d2, occur at 74.24, 74.47, and 74.80 ppm. 

The underlined values between and including 126 and 137 ppm were assigned to the carbons in 

the phenyl group. All the other peaks arise from structural defects or other branch structures in 

PVC, or from minor impurities in the sample. These peaks are the ones that occupy our interest.

To determine if any tertiary halogen were substituted by the benzenethiolate group, we 

planned to compare the spectra of our tertiary model compound with that of the modified and 

reduced PVC sample. Since the synthesis of the tertiary thiophenyl compound was not 

successful, we instead compared predicted shifts of this compound to the PVC spectrum. A



69

significant peak involves the tertiary carbon, carbon 4 of structure 16 in Figure 4-1, at 58.33 ppm. 

A matching peak could not be found in the PVC spectrum. The resonances of carbons 3 and 5 in 

the tertiary compound were both calculated to be at 40.70 ppm. Carbon 8 in the same compound 

is predicted to resonate at 40.34 ppm. These peaks were found in the PVC spectrum, at 39.80 

and 39.37 ppm (the italicized values in row R). The 0.90-0.97 ppm difference may be attributed to 

solvent effects. Approximately matching the peak at 24.46 ppm were peaks for carbons 2 and 6 

(both at 25.72 ppm), a 1.26 ppm difference. This difference may be small enough to be 

accounted for by both the solvent effect and experimental error. The predicted peaks for the other 

three carbons in the butyl branch, at 28.05, 23.35, and 14.12 ppm, were all found in the PVC 

spectrum at 27.97, 23.15, and 13.86 ppm, respectively. These correlations indicate, firstly, the 

existence of a butyl branch structural defect in PVC, and secondly, the existence of a substituted 

(by PhS') tertiary structure. Based on our initial findings, the tertiary structure may have been 

involved in the initial fast substitution of PVC by sodium benzenethiolate, tentatively indicating the 

importance of this labile structure in the reaction. These results are only preliminary, since a 

model compound was not successfully made to determine exact chemical shifts. More research 

will need to be done in this area.

The concentration per 1000 monomer units of the tertiary branch carbon could not be 

calculated because the peak was not seen in the polymer spectrum. In any case, the calculated 

concentration would be lower than that of the other carbons in the branch structure because of a 

long T, and a low NOE for the tertiary carbon. However, the concentration per vinyl chloride unit 

of the carbons in the PVC sample corresponding to carbons 2, 3, 5, 6, 8, 9,10 and 11 of the 

tertiary structure could be calculated. This was done by taking the integrals of the peaks and 

multiplying by a factor of 10, since the integral of the-C H 2~ peak was set to 200. Multiplying 200 

by 5 would give 1000, but there are tw o-C H 2-  groups per monomer unit after reduction, so the 

peaks are multiplied by 5 x 2 = 10. Consequently, the concentrations of the peaks corresponding 

to carbons 3 and 5 (39.80 ppm), carbon 8 (39.37 ppm), carbons 2 and 6 (24.46 ppm), and carbon 

10 (23.15 ppm) are 13.5 units/1000 VC, 8.7 units/1000 VC, 9.0 units/1000 VC, and 4.2 units/1000 

VC, respectively. The concentrations for carbon 9 (27.97 ppm) and carbon 11 (13.86 ppm) could
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not be calculated because their integrals were not separately measured (see Figure 4-2). Since 

carbons 3 and 5 are both shown by the same peak in the PVC spectrum, their concentration must 

be divided by 2 to get the concentration of the tertiary structure per 1000 monomer units. This 

procedure gives 6.8 units/1000 VC. Doing the same for carbons 2 and 6 gives 4.5 units/1000 VC. 

Taking the average of the four values obtained (8.7, 6.8, 4.5, and 4.2 ppm) gives 6.1 tertiary 

structures/1000 VC. Hjertberg and Rogestedt46 found the concentration of tertiary chlorine in one 

of their reduced PVC samples to be 2.0 units/1000 VC, while Starnes et a l88 found the value to be 

2.4 units/1000 VC. The difference in concentration (a factor of about 3) between that found in the 

current investigation and previously reported literature values cannot yet be accounted for.

Comparison of the peaks of the internal allylic thiophenyl model compound to that of the 

modified and reduced PVC sample also suggests substitution by the benzenethiolate group at the 

internal allylic chloride defect site. However, the intensities of the resonances are mutually 

inconsistent and much higher than expected. Carbon 10 in the model compound (row O in Table 

4) shows a peak at 51.76 ppm. The corresponding peak in the PVC spectrum might be the one at 

50.08 ppm (46.9 units/1000 VC), but this shift is too low. Peaks for the sp2 carbons (carbons 8 

and 9) occur at 132.32 and 131.04 ppm in the model compound. Matching peaks in the PVC 

sample might be the ones at 132.40 and 130.80 ppm (90.8 units/1000 VC and 15.0 units/1000 

VC, respectively). However, peaks from alkene carbons can easily be confused with aromatic 

peaks, and the difference in intensities for these two peaks is much too large. Carbon 7 at 32.10 

ppm can be compared to the peak at 32.87 ppm (30.4 units/1000 VC) in the PVC spectrum, and 

carbon 11 at 35.07 ppm is closely matched by the peak at 35.46 ppm (92.9 units/1000 VC).

Carbon 12, at 27.25 ppm, can be related to any of the peaks from 27.03 to 27.97 ppm (58.7 

units/1000 VC to 127 units/1000 VC) in the PVC sample. Starnes and co-workers previously 

reported the concentration of internal allylic (IA) structures in a PVC sample polymerized at 82 °C
» go

to be 0.6 IA/1000 VC. The much higher concentrations found compared to this value may be 

due to elimination promoted by the PhS' anion to form unsaturation points in the polymer chain.

The involvement of the terminal allylic structure in the fast substitution reaction was not 

confirmed. Carbon 1 in row Q shows a peak at 36.65 ppm, corresponding to the peak at 37.27
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ppm (43.8 units/1000 VC) in the PVC spectrum. Carbon 2 at 130.09 ppm can be matched to the 

peak at 129.90 ppm (21.9 units/1000 VC), but carbon 3 at 134.44 ppm was not found in the 

polymer spectrum. Carbon 4 at 32.18 ppm may also be matched to the peak at 32.87 ppm (30.4 

units/1000 VC). A previously reported concentration68 for the terminal allylic structure was 2.2 

units/1000 VC, so the above concentrations are much too high. Therefore the assigned peaks 

are unlikely to be the ones associated with the terminal allylic structure. One very likely reason 

that the terminal allylic structure could not be detected is the formation of structure 25 in Figure 4- 

10, as suggested by earlier work.89 Since the allylic Cl of 21 would be substituted by NaSPh in the 

first reaction, Bu3SnH would then cause radical 23 to form in the second step. This radical might 

be transformed into 25 via a 1,5 free-radical cyclization. This reaction may also occur with the 

internal allylic structure, forming an internal cyclopentane group in the polymer chain.

Examination of the modified and reduced PVC spectrum for peaks relating to the 

secondary thiophenyl substituted structure also suggests modification at the ordinary monomer 

units of PVC by NaSPh. Figure 4-11 shows the approximate chemical shifts of the model 

compound, 27, previously prepared84 from the corresponding chloride, 6-chloroundecane (26). 

Carbon 6, at about 50 ppm, can be related to the peak at 50.08 ppm in the polymer spectrum. 

Carbons 5/7 (both at 36 ppm) and 4/8 (both at 28 ppm) can also be related to the peaks at 35.46 

and 27.97 ppm, respectively, in the PVC spectrum. The peaks at 50.08, 35.46, and 27.97 ppm 

have been accounted for earlier. However, because of their high intensities, these peaks are 

more likely to arise from carbons in the ordinary monomer units.

The above results indicate that the initial fast substitution by sodium benzenethiolate on 

PVC occurs at conventional defect sites (internal allylic + tertiary) and/or at the ordinary monomer 

units. The chemical shifts of structure 27 in Figure 4-11 are so similar to those of some of the 

internal allylic and tertiary thiophenyJ carbons that their distinction in the PVC spectrum was 

difficult. As a result, we could not establish with confidence the exclusive involvement of the 

(internal allylic + tertiary) structures in the initial fast substitution by the benzenethiolate anion.

More evidence needs to be obtained to show what happens to these structures and to the 

structures involving the ordinary monomer units during the initial fast substitution. It is believed 

that the work described in this thesis will be a useful starting point for further research in this area.
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PhSNa
-  CHClCH2CHClCH2CH=CHCH2SPh-  CHC1CH2CHC1CH2CH=CHCH2C1

-  CHCH2CHXCH2CH=CHCH2SPh

24

X  = Cl or H

Figure 4-10: Formation of a cyclopentane end group during organotin hydride reduction of modified PVC.

2, 10.

38.5
64.7

SPh
2, 10.

Figure 4-11: 13C chemical shifts (in ppm, vs. Me4Si) of 6-chloroundecane and the corresponding
sulfide.



Chapter 5 

CONCLUSIONS

The initial fast substitution by sodium benzenethiolate on poly(vinyl chloride) was 

suggested by the present investigation to occur at (internal allylic + tertiary) chloride structures 

and at the ordinary monomer units. Comparison of the 13C NMR spectra of several model 

compounds to the spectrum of modified and reduced PVC indicated the involvement of both 

PhS—substituted (internal allylic + tertiary) structures and PhS—substituted structures on the 

ordinary monomer units. The substituted terminal allylic structure was not found, but this structure 

may have easily formed the cyclopentane end groups suggested earlier.

The exclusive involvement of the internal allylic and tertiary structures in the thermal 

dehydrochlorination of poly(vinyl chloride) was not successfully established. Problems with the 

synthesis of the tertiary model compound were not solved, and there was difficulty in assigning 

peaks to the polymer spectrum. Also, calculated concentrations of the labile structures did not 

correlate well with previously reported literature values. The reduced PVC sample used to obtain 

the 13C NMR spectrum might have been allowed to react with NaSPh for too long. Modification 

may have initially occurred at the labile chlorine sites and then at the ordinary monomer units after 

a certain time period. This would explain our findings for the secondary PhS—substituted 

structure in the polymer spectrum. A sample of PVC should be modified for a shorter time period 

and then analyzed. Therefore, further work would need to be done in this area.

73
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