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ABSTRACT

Synthetic routes into benzophenone-3,5-dicarboxylic acid were explored. 
The most promising route involved a three step synthesis starting from 
commercially available 2,4-dimethylaniline. The last step, the oxidation of methyl 
groups in 3,5-dimethylbenzophenone, was investigated under various reaction 
conditions.

Of the several oxidation methods tried, the one involving C r0 3 in acetic 
acid was the most promising. The benzophenone-3,5-dicarboxylic acid is to be 
used as a double capping agent for /3-cyclodextrin.



SYNTHESIS OF BENZOPHENONE 3,5-DICARBOXYLIC ACID FOR THE 
DOUBLE CAPPING OF 0 -CYCLODEXTRIN



INTRODUCTION

Cyclodextrins, which are composed of D-(+)-glucopyranose subunits 

connected by a - (1,4)-linkages, were discovered in 1891 by Villiers. 1 After the 

structures of cyclodextrins2 were elucidated by Freudinger in the 1940s, interest 

in cyclodextrin research grew as scientists developed a greater appreciation for the 

molecule’s unique properties. Notable structural features of the compound include 

their toroidal shape, hydrophobic cavity and outer surface, and hydrophillic faces.3

The formation of inclusion complexes is one of the most important 

characteristics of cyclodextrins. Guest compounds, ranging from polar molecules 

such as acids, amines, and small ions to highly apolar compounds like aliphatic 

and aromatic hydrocarbons, can be included within the cavity of cyclodextrin. 1 

Inclusion complexes are useful in that they can catalyze various organic reactions 

on guest organic molecules. Similar to an enzyme-substrate arrangement, the 

formation of the inclusion complex in cyclodextrin increases the reaction rate by 

raising the probability that two molecules will collide in the correct spatial 

orientation. These collisions can occur between two guest molecules, or 

cyclodextrin and a guest molecule. Cyclodextrin, being intermediate in size 

between that of enzymes and organic molecules, mimics enzymatic activity and 

provides valuable insight into enzyme molecular mechanism.
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In addition to accelerating chemical transfer reactions, cyclodextrins display 

hydrophobic interactions, form stereospecific complexes, and provide an interior 

surface with dielectric properties different from that of an outside aqueous 

solution.4 All of these uncommon properties have generated an increased interest 

not only from the scientific community, but from the industrial community as well.

More specifically, the pharmaceutical industry uses cyclodextrins for a 

variety of purposes. A main focus of research centers on the transport of apolar 

drugs into the body . 4 Torus-shaped in nature, the cyclodextrin interior is 

considerably less polar than water. The interior consists primarily of nonpolar C- 

H groups and secondary glycosidic oxygens. All cyclodextrins are somewhat 

water soluble which enables them to transport nonpolar guest molecules. A guest 

molecule, for example, a nonpolar drug, may be easily transported through a 

body’s aqueous medium. Once the drug reaches the part of the body where it is 

to be expended, the equilibrium shifts so that the drug is released from the torus. 

Premature expulsion is rare because the equilibrium favors the guest molecules 

residing inside the cavity.

Along with its industrial applications, the study of derivatized cyclodextrins 

is currently being investigated by numerous research groups around the world. 

Cyclodextrins, although subject to cleavage in strong acids, are fairly stable in 

basic solutions. This important fact enables functional groups to be attached to 

cyclodextrin with the assistance of an alkaline catalyst.
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A cyclodextrin with an organic molecule attached to one glucopyranose 

subunit, is called a tethered cyclodextrin. If the organic molecule is attached to 

two or more glucopyranose subunits the cyclodextrin is said to be capped. 

Capping adjacent glucose residues is known as AB capping, caps separated by one 

sugar is known as AC capping, and so on. Many tethered and capped 

cyclodextrins have been explored.

The importance of capping is demonstrated by the fact that an unsubstituted 

cyclodextrin, with its open top and bottom, is not able to bind substrates as 

specifically as enzymes, and are therefore less effective catalysts. It has been 

shown that both capping5 and tethering6 molecules, when carefully chosen, can 

significantly increase the ability of cyclodextrins to bind substrates. In some cases, 

derivitization improves binding by forming a hydrophobic floor inside the 

cyclodextrin. Increased binding ability is explained by hydrophobic interactions 

that occur in aqueous solution between the apolar interior of cyclodextrins and the 

guest molecule.

The main focus of this research was to prepare benzophenone 3,5- 

dicarboxylic acid for the AB capping of /3-cyclodextrin. Under low intensity 

radiation, it has been shown that two benzophenone molecules undergo a free- 

radical coupling reaction in isopropanol to form benzopinacol. 7 Having two 

benzophenone molecules AB capped to /3-cyclodextrin would result in the first 

cyclodextrin tetrasubstituted by one molecule. Four different stereoisomers exist

3



of this pinacolized product. Once isolated, benzopinacol may prove to be the best 

cap known in terms of binding effectiveness and specificity.

4



BACKGROUND

Cyclodextrins:

Cyclodextrins are cyclic oligosaccharides which are sometimes referred to 

as cycloamylases, Schardinger dextrins or cycloglucans. 1 They are torus-shaped 

molecules containing from six to twelve a-(l,4)-linked glucose units. Their size 

is indicated as follows: o'-cyclodextrin has 6  glucopyranose subunits, has 7 

subunits, 7  has 8 , and so on. Subsequently, they may also be called 

cyclohexaamyloses, cycloheptaamyloses, and so forth. Cyclodextrins possessing 

fewer then 6  residues do not occur because they are too sterically hindered to 

exist. While cyclodextrins with more than 9 residues have been identified as 

components of mixtures, they have never been isolated. Larger cyclodextrins are

often too flexible to be of interest for binding and functionalization studies.
5 *

0
F ig .l Structures of a-, 0-, and 7 - cyclodextrins

a r
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By treating starch with the enzyme amylase from the bacteria Bacillus 

macerans cyclodextrins can be commercially prepared by forming a crude digest 

consisting of a -, /?-, and 7 -cyclodextrins in addition to a small amount of larger 

cyclodextrins. Isoamylase may be added to enhance the reaction yield. 

Purification of the four smallest cyclodextrins from the digest is done by selective 

precipitation or by variuos chromatographic techniques.

All of the glucopyranose subunits of cyclodextrin exist in an undistorted 

chair conformation. This constraint dictates a special arrangement of functional 

groups with areas of hydrophilic and hydrophobic regions within the cyclodextrin 

molecule. The primary face of the torus consists of C6  primary hydroxyl groups. 

On the other end of the torus, the secondary face, consists of C2 and C3 secondary 

hydroxyl groups. With hydroxyl groups occupying both ends of the torus, 

cyclodextrins are rendered soluble in aqueous solution. On the other hand, the 

inside of the cavity is hydrophobic because it is lined by C3 and C5 hydrogens and 

by the ether-like oxygens. In solution, therefore, these cavities provide a 

hydrophobic matrix in hydrophillic surroundings, described as a 

"microheterogenous environment" .3

In addition, the primary C6  hydroxyl groups are able to rotate freely, 

allowing them to partially block one opening of the cavity. Adversely, the 

secondary hydroxyl groups are relatively rigid not only due to their direct 

attachment to the ring, but also due to an intramolecular hydrogen bond formed

6



with another hydroxyl group on a neighboring subunit. Cyclodextrin cavities are 

therefore slightly "V" shaped with the secondary hydroxyl side more open than the 

primary hydroxyl side. 1 That is, the primary face possesses a slightly more 

narrow circumference than the secondary face.

/ \J  Ô,

HO

14.5 4

7.9S.24.9

7.9 A

Fig.2 Structure of ^-cyclodextrin, and molecular dimensions of 

a-, /S-, and 7 -cyclodextrins3

The limited rotation of the secondary hydroxyl groups allows cyclodextrin 

to be strengthened by hydrogen bonding. Studies on the hydrogen-deuterium 

exchanges of 0-cyclodextrin prove that each C2 and C3 hydroxyl group is involved 

in an intramolecular secondary H-bonding network. a-Cyclodextrin, on the other 

hand, must eliminate two of its hydrogen bonds in order to minimize 

conformational strain. The flexibility of the 7 - and 5-cyclodextrins significantly
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decreases the effectiveness of their hydrogen bonds. 0 -cyclodextrin, however, is 

the most rigid of all the isolated cyclodextrins. This rigidity correlates well with 

solubility studies which show that 0 -cyclodextrin is notably less soluble in water 

than other cyclodextrins. 8

Inclusion Complexes:

One of the most important features of cyclodextrins is the formation of 

inclusion complexes in which the cavity of cyclodextrin serves as a host for a 

variety of organic, guest molecules. Guest compounds include polar reagents such 

as acids, amines, or small ions and extend to various nonpolar molecules, such as 

aliphatic and aromatic hydrocarbons and rare gases. 1

Fig. 3 Inclusion complex formation of a-cyclodextrin

with p- and m-nitrophenol3
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Inclusion complexes are able to form in aqueous solutions because they are 

enthalpically and entropically favored. Several proposals have been made to 

explain the large, favorable enthalpy change that results from cyclodextrin complex 

formation. Suggestions include van der Waals interactions between the guest and 

host molecules, the effect of hydrogen bonding between the guest and hydroxyl 

groups of cyclodextrin, the hydrophobic effect, the release of high energy water 

molecules from the cyclodextrin cavity, and the release of strain energy in the 

macromolecular cyclodextrin ring . 1 The last two factors explain why inclusion 

complexes are able to develop easily in an aqueous environment.

In an aqueous solution, nonpolar molecules become surrounded by water 

molecules. The ordering of water molecules around hydrophobic molecules is not 

favored entropically. To compensate for this energy loss, nonpolar molecules 

aggregate around one another, allowing the water molecules to order themselves 

around the nonpolar whole instead of each individual nonpolar molecule. It is for 

this reason that many aliphatic and aromatic hydrocarbons in solution with 

cyclodextrin prefer to reside within the apolar core of the torus.

Water molecules that are trapped within the cyclodextrin cavity possess high 

potential energies due to the fact that they cannot fully hydrogen bond with the 

limited number of neighboring water molecules which are also present inside the 

torus. Once a guest molecule enters the cavity, releasing these high energy water 

molecules, a favorable entropy change occurs as the water molecules rejoin free

9



water and form their full ensemble of hydrogen bonds. According to this theory, 

the better a guest molecule fits into the cavity, the more effectively it can displace 

the cavity water.9

Although guest molecule size can range from noble gases to fatty acid 

Coenzyme A derivatives, the stability of the resulting complexes vary with the size 

of both guest and host. If a substrate is too large, it will simply not fit and, 

therefore, will not bind to cyclodextrin. 3 The fact that the guest molecule is 

actually contained within the cavity was first shown by X-ray studies. However, 

further proof was required before it could be established that this occurred in 

solution. Therefore, NMR spectroscopic data was used to clarify the host-guest 

constitution.

In addition to NMR, a multitude of spectrophotometric methods can be used 

to examine the molecular nature of inclusion complexes. Some other methods 

include UV absorption, circular dichroism, and fluorescence. NMR, however, 

being a common technique, is widely used for inclusion complex detection. For 

example, when substituted benzoic acids were added to a solution of ot- 

cyclodextrin, the H-3 and H-5 atoms, which are directed toward the interior of the 

cavity, showed a pronounced upfield shift. On the other hand, the H -l, H-2, and 

H-4 atoms, located on the exterior of the cavity, showed only a marginal upfield 

shift. 1 Therefore, by means of NMR, inclusion complex formation can be 

empirically confirmed.

10



Fig. 4 AB-, AC-, and AD capping in ^-cyclodextrin

Capping:

In cyclodextrin chemistry, considerable attention has been focused on 

developing techniques to modify primary hydroxyl groups through the attachment 

of caps. Bifunctional modifying reagents or "capping" reagents possess rigid 

skeletal structures that may symmetrically disubstitute /3-cyclodextrin. Capped 0- 

cyclodextrins have been shown to exhibit remarkably enhanced binding capability 

with many organic substrates as compared to parent (ie. uncapped) cyclodextrins. 3

Capping boosts the binding strength of various inclusion complexes by 

increasing the nonpolar nature of the cavity. Without the cap, both ends of the 

torus are open, allowing guest molecules to escape easily, thereby decreasing 

complexation rates. The cylindrical cavity with open ends does not immobilize a 

bound substrate, so the cyclodextrin-substrate complex does not have the well- 

defined geometry required to produce large intracomplex rates.

Breslow and Emert, in order to increase binding strength and reactivity, 

affixed various functional groups to the C6  positions of the primary face of 0-



cyclodextrin.9 They speculated by use of molecular modeling and consideration

of hydrophobic interactions that the alkyl groups of their derivatives would cluster 

on the inside of the cyclodextrin cavity and form a "flexible cap". 1 - 

Adamantanecarboxylic acid was shown to bind strongly with these modified 

cyclodextrins. Reactions with m-nitrophenol acetate and m-tert-butyl acetate 

resulted in binding with the flexibly capped cyclodextrin equally or worse than the 

unmodified cyclodextrin. Molecular models suggested that the cavity was simply 

too shallow for the substrates to bind effectively. In addition, the alkyl groups 

being able to rotate freely, may have also reduced the rigidity, and subsequently, 

the bin<'’ 1 **Jl " M *

Although Breslow’s modified cyclodextrin greatly increased its binding 

strength, Tabushi et al sought to further refine this method, and a year later, 

reported that his group had succesfully derivatized cyclodextrin at two positions 

using a bifunctionalized molecule. The first known "true" cyclodextrin cap, 

diphenylmethane-p,p-disulfonyl chloride, was a fairly rigid molecule which was 

able to bind both 1 -adamantecarboxylic acid in addition to m-nitrophenyl acetate

X X X

Fig. 5 Breslow’s "Flexible Capping" of ^-cyclodextrin9

X
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more strongly.10

CI02S

Fig. 6 First ’’True" cyclodextrin cap

Bifunctionalized caps were researched due to their ability to create more 

rigid geometries enhancing catalytic rates and substrate binding. The capping 

reaction mechanism proposed by Tabushi, known as a "looper’s walk", transpires 

via an addition-elimination reaction where one of the functional groups on the 

bifunctional capping reagent binds to the C6  position of one glucose subunit. The 

tethered cap will then bind at either the B, C, or D glucopyranose moiety based 

on a variety of factors. Important factors include the size and flexibility of the 

molecule, the direction of approach of the entering group, and so on . 11 

Regiospecficity can be achieved by selectively choosing caps which possess the 

appropriate interfunctional group distance. Molecular modeling studies showed 

that caps which surpass an appropriate distance can result in a variety of 

regioi somers. 12

CI02S
— S 0 2ci

V  '

CI02S

Fig. 7 Tabushi’s regiospecific caps

S 0 2CJ
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In addition to the bifunctionalization of /3-cyclodextrin, Tabushi et al 

attempted to synthesize more rigid caps of a specific length to further improve the 

regioisomeric selectivity. By reacting cyclodextrin with benzophenone-3,3’- 

disulfonyl chloride, one could successfully tetrasubstitute cyclodextrin producing 

the A,C-A’,C’ regioisomer. They also reported that *rans-stilbene-4,4’-disulfonyl 

chloride successfully double capped cyclodextrin forming the A,D-A’,D ’ 

regioisomer. This double capping further increases the rigidity of 7 -cyclodextrin, 

creating a cavity with a significantly more well defined geometry . 13 It is believed 

that in the future, two photosensitive caps may be bound via a photochemical 

reaction and used to form the first cyclodextrin with a single molecule attached at 

four glucopyranose residues.

Photochemistry:

The goal of this project is to photochemically reduce a double capped 

benzophenone cyclodextrin to the benzopinacol in the presence of a hydrogen 

donor. This newly formed benzopinacol would then be a tethered anchor for fi- 

cyclodextrin.

Photochemical reactions occur when atoms or molecules absorb light. The 

absorption of light causes the molecules, which normally exist in a minimum state 

of electronic energy, to be raised to a less stable state or an excited state. All 

substances are selective in their absorption of radiation. The absorbing molecule

14



must, therefore, possess an excited state which corresponds with the energy of 

radiation in order to undergo excitation. Due to the inherently chaotic nature of 

photochemical reactions, where a photoexcited molecule may interact randomly 

with any other photoexcitable species, it is desirable to perform photochemical 

reactions in an organized environment. Cyclodextrin’s interior provides such a 

structured surrounding thereby limiting other photochemical possibilities.

Ciamician and Silber in 1900 discovered that benzophenone could form 

benzopinacol when irradiated in ethanol. 14 After the reaction mechanism was 

characterized in 1920, interest in benzophenone research grew tremendously. 

It was learned that by using isopropanol as the solvent and performing the reaction 

under low intensity radiation in an oxygen free atmosphere one could maximize 

benzopinacol yields.

Benzopinacol formation occurs when benzophenone is irradiated resulting 

in an excited singlet state. This singlet state then undergoes intersystem crossing 

and converts to the triplet state. Benzophenone in its triplet state may now abstract 

a hydrogen atom from an alcohol, thereby breaking the carbonyl 7r-bond and 

creating a carbon-centered radical on benzophenone and the alcohol. The radical 

center of the alcohol then donates a hydrogen atom to an unexcited benzophenone 

so as to form a more resonance stabilized radical center. Two radical centers on 

the benzophenone can now combine to form the pinacol.15

15



4>2C - 0  -------► <f>zC — 0  ( j inglef )  --------► <fi2C =  0  (t riplet )

* RH
<t>2C — 0  (friplef) ------ *■ <£2C — O H  +  R*

2<£2C - O H   > ^  c - C < ^ > ,
I I

O H  OH

6 2C — O H  ■+■ R» -------► oi>2 — C — R
I

OH

<b2C — O H  +  RH -------► (̂ >2C H O H  +  R*

2 R «  ► R — R

Fig. 8 Benzopinacol formation15

Under high intensity radiation, the probability of radical-radical interactions 

increases. Pinacolization can occur under such conditions but additional reactions 

also result. One possible reaction involves the coupling of two ketyl radicals at 

the ortho and para positions of the aromatic ring which form light-absorbing 

transients (LATs) . 16 LATs not only quench triplet benzophenone, but in the 

presence of oxygen produce benzophenone and the alkyl ketone. Another possibile 

reaction is the occurrence of reverse hydrogen transfer. Oxygen, once again, 

disrupts synthesis by reacting with the ketyl radicals. In all, both oxygen and high 

intensity radiation reduce benzopinacol yields.

16



Ph2COH +■ R iR2COH

LAT synthesi

direct

OHPh OH

Ph

coupling
Ph2(j:----- CRtR2

OH OH

reverse 

H-transfer Ph2C = 0  + R ^ C H O H

Fig. 9 Radical-Radical reactions under high intensity radiation

Abelt et al showed by HPLC that irradiated benzophenone capped jft- 

cyclodextrin in aqueous isopropanol formed three major products. The 

benzophenone carbonyl, possessing an endo and an exo face can produce endo- 

endo, exo-exo, and endo-exo pinacol products when the two benzophenone radicals 

couple. The endo-exo form is the major product simply because it may be formed 

by two modes of attack^while the others are formed by only one. 17

endo-endo

exo-exo

endo-exo

Fig. 10 Three major pinacol products
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Previous Synthetic Pathways:

There is no reported synthesis of benzophenone 3,5-dicarboxylic acid. 

However, there have been previous unpublished reports concerning the synthesis 

of other aromatic carboxylic acid derivatives for the double capping of 0 - 

cyclodextrin.

In 1993, Sharma reported the attempted synthesis of 5-acetylisopthalic 

acid . 18 Although several attempts were made, the most promising route involved 

a six step synthesis starting with 4’-aminoacetophenone. The procedure was 

successful up until the fourth step where l-(3’,5’-dicyanophenyl) ethanol was 

synthesized, but in poor yields. Sharma was therefore unable to further oxidize 

and then hydrolyze l-(3’,5’-dicyanophenyl) ethanol to the desired acetylisophthalic 

acid.

;MK2

c=<?

3r> 3 r

c=<r
^  3 O K

CuCN

n
K O iC  C O  , K

rt
M C' V i ^ \ ^ C N  £s/c- C N

H1CrO< 
acecane

‘t c s - c a
3 c - :  3 o k

Fig. 11 Proposed acetylisopthalic acid synthesis

In 1994, Williams attempted to synthesize 3,5-benzophenone diacyl (or

18



disulfonyl) chlorides. 19 The bulk of this work was devoted to the synthesis of the 

diacids themselves. The synthesis was troubled by several problems, of which 

solubility, proved to be the most disappointing. His most successful endeavor 

involved replacing the amino group of dimethyl 5-amino-1,3-isophthalic acid with 

a cyano group. This reaction was pursued using t-butyl nitrite and Cu(CN) 2 in 

acetonitrile and gave a 2 0 % yield.

CO->H C 02H

c-butyl nicme 

Cu(CN>2

Fig. 12 Synthesis of 5-cyano-l,3-isophthaIic acid
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EXPERIMENTAL

Tetrohydrofuran was distilled from Na°/benzophenone. NMR and 13C 

NMR data were obtained using a QE-300 spectrometer. NMR samples were 

dissolved in CDC13 and referenced to TMS at 0 ppm. Melting points were 

determined on a Mel-Temp capillary apparatus and are uncorrected. GE halogen 

90W flood light was used as low intensity radiation source.

20



l-bromo-3. 5-dimethvlbenzene18

To a 1L three-neck round bottom flask fitted with a thermometer, reflux 

condenser, and addition funnel was added 21.07 g (0.174 mol) of 2,4- 

dimethylaniline, 400 mL of water, and 48% HBr (36.7g, 0.455 mol). The 

reaction was heated with stirring to 70°C whereupon 30% H20 2 (18 mL, 0.176 

mol) was added dropwise via addition funnel. The heat was then removed, and the 

exothermic reaction raised the temperature to 85 °C. When the reaction cooled to 

70°C, the solution was filtered, extracted with methylene chloride, and washed 

with water and an aqueous solution of Cu(II)Br2 to remove peroxides. The solvent 

was removed in vacuo.

The remaining bromodimethylaniline was combined with 95 % ethanol (500 

mL) in a 1L three-neck round bottom flask fitted with a stir bar, thermometer, and 

condenser. The mixture was heated with stirring as H2S 0 4 (18 mL) was added 

slowly via pipet. A solution of sodium nitrate (30.9 g in 270 mL of water) was 

then added dropwise via an addition funnel along with a catalytic amount of copper 

powder (0.20 g). The resulting solution was heated at reflux with stirring for 

approximately 2 hours, after which time, the procedure is repeated. The solution 

was extracted with hexane, washed with water, concentrated in vacuo, and the 

organic layer vacuum distilled. The fraction boiling between 90°C and 95°C 

under aspirator vacuum was collected and stored at room temperature. The 

product was a light, brown liquid (10.42 g, 56.3 mmol, 49% yield). NMR 6
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7.12 (s, 2H), 6 . 8 8  (s, 1H), 2.30 (s, 6 H); 13C NMR 5 20.8, 121.0, 128.1, 129.0, 

139.8.

N.N-diethvlbenzamide20

A three-necked 250 mL round bottom flask equipped with an addition 

funnel, CaCl2 drying tube, and magnetic stir bar was placed in an ice bath for the 

duration of the reaction. Diethylamine (11.45 g, 156.6 mmol) and CHC13 (100 

mL) were placed in the flask. Benzoyl chloride (10 g, 71.2 mmol) was then added 

dropwise via an addition funnel. The reaction was stirred for 3 hours. The 

organic layer was then separated, dried with CaCl2, concentrated in vacuo, and 

then distilled under vacuum (0.1 Torr). The fraction boiling between 87°C and 

91 °C was collected. The product was a clear liquid ( 7.89 g, 44.8 mmol, 69% 

yield).

lH NMR 5 7.33, 7.30, 7.28, 3.24 (d, 2H), 1.15 (s, 3H), 1.00 (s, 3H);

13C NMR 8 13.85, 39.26, 43.3, 126.75, 128.67, 129.26, 138.28, 170.47.

3.5-dimethvlbenzophenone21

Distilled THF (400 mL) and l-bromo-3,5-dimethylbenzene (12.14 g, 65.6 

mmol) were placed in a three-neck, 1L round bottom flask equipped with a stir 

bar, cold temperature thermometer, N2 line, and addition funnel. The flask was 

placed in a dewar bath filled with an ethyl ether/liquid nitrogen slurry. BuLi (45
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ml, 1.6 M) was added slowly so that the reaction temperature did not exceed - 

90°C. The mixture was stirred for 45 minutes, after which time, N,N- 

diethylbenzamide (15.75 g, 89.0 mmol) was added dropwise. The mixture was 

then allowed to warm to room temperature and was stirred for an additional 45 

minutes. A dilute NH4C1 solution (16 g in 200 ml of water) followed by a NaCl 

solution (17 g in 200 ml of water) was then added to quench the reaction. The 

aqueous layer was extracted with several portions of ether, dried with anhydrous 

CaCl2, concentrated in vacuo, and distilled under vacuum (0.1 Torr). The fraction 

boiling between 120°C and 127°C was collected, and recrystallized from 95% 

ethanol. The product was a white solid (6.30 g, 34.0 mmol, 52% yield): mp 62- 

65°C. *H NMR 8 2.37 (s, 6 H), 7.39 (s, 2H), 7.44 (s, 1H), 7.50 (m, 2H), 7.58 

(m, 1H), 7.78 (d, 2H); 13C NMR 8 21.04, 127.89, 129.83, 131.97, 133.80, 

137.87, 138.16, 138.32, 196.40.

3.5-fas-broniornethvl benzophenone22

In a 250 mL three-necked round bottom flask equipped with a stir bar, 

addition funnel, thermometer, N2 line, and reflux condenser was placed 1 g (4.76 

mmol) of 3,5-dimethylbenzophenone and 40 mL of benzene. A flood light was 

placed approximately 1 cm from the reaction flask and the reaction was heated to 

80°C. Bromine (1.83 g, 11.42 mmol) in benzene (10 mL) was added dropwise 

at a rate such that the bromine color is removed as fast as it is added
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(approximately 48 hours of reflux with a slow manual addition). The reaction was 

allowed to cool at room temperature, and was then washed with a sodium bisulfite 

solution followed by a sodium bicarbonate solution (performed in hood due to 

formation of noxious fumes). The organic layer was dried with anhydrous calcium 

chloride, filtered, and the solvent removed in vacuo. The product was a brown 

oil (1.89 g, 5.11 mmol) and contained a mixture of the desired product (6 8 %), 

dibrominated methyl groups (8 %), and starting material (24%). Relative amounts 

of each were determined using integration data from the ‘H NMR. NMR 8 2.37 

(s, 3H), 4.50 (s, 2H), 6.65 (s, 1H), 6.85 (s, 1H), 7.35-7.88 (8 H).

Benzophenone-3.5-dicarboxaldehvde23

To a 100 mL round bottom equipped with a reflux condenser was added

3,5-to-bromomethyl benzophenone (1.89 g, 5.11 mmol) and 1 mg of sodium 

bicarbonate dissolved in 9 ml of DMSO. The reaction mixture was heated 160°C 

for 3.5 hours using an oil bath. The solution was cooled to room temperature and 

poured into ice water, and then extracted with diethyl ether. The ether extractions 

were washed with water to remove any excess DMSO. The organic layer was 

dried with anhydrous CaCl2 and the solvent removed in vacuo. The product was 

a yellow oil (1.06 g, 4.45 mmol) and contained a mixture of the desired product 

(35 %) and starting material (65%). Relative amounts of each were determined 

using integration data from the NMR. *H NMR 8 2.50 (s, 3H), 7.52-8.60 (8 H),
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10.0 (s, 1H), 10.2 (s, 1H).

Benzophenone-3.5-dicarboxvlic acid24

In a 1L three-necked round bottom flask fitted with a stir bar, reflux 

condenser, and thermometer was added benzophenone 3,5-dicarboxaldehyde (1.06 

g, 4.45 mmol) in water (400 mL). The reaction mixture was heated to 

approximately 100°C. NaOH (7.0 g, 0.175 mmol) in water ( 8 8  mL) and KMn04 

(0.939 g 5.94 mmol) in water (100 mL) was rapidly added. The reaction was 

boiled overnight. After which time, sodium bisulfite was added to the solution 

followed by H2S0 4 (7 mL). A clear, light brown solution resulted. The solution 

was extracted with CH2C12, the organic layer washed with water, dried with 

anhydrous CaCl2, and the solvent removed in vacuo. The product was

recrystallized from ethanol giving a white solid (0.50 g, 1.89 mmol) containing a 

mixture of the desired dicarboxylic acid, monocarboxylic acid, and starting 

material. ‘H NMR 8 2.37 (s, 6 H), 2.69 (s, 1H), 2.72 (s, 1H), 7.40-8.6 (8 H), 

10.2-11.2 (broad, 2H).
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Benzophenone-3.4-dicarboxvlic acid25

In a three-necked 100 mL round bottom flask equipped with a stir bar, 

addition funnel, reflux condenser, and thermometer was placed 3,4- 

dimethylbenzophenone (1.00 g, 4.76 mmol) dissolved in acetic acid (5 mL). The 

reaction mixture was heated to approximately 100°C. A solution of chromium 

oxide (2.6 g, 0.026 mol) in water(3 mL), acetic acid (5 mL), and sulfuric acid (1 

mL) was added slowly. The reaction was boiled for a week. After which time, 

the solution was allowed to cool to room temperature and decanted into cold water 

(55 mL). The mixture was extracted with CH2C12, dried with anhydrous CaCl2, 

and the solvent removed in vacuo. The product was a brown liquid (4.50 g) 

containing a small amount of starting material (5%) and monocarboxylated (15%) 

benzophenone. Relative amounts of each were determined using integration data 

from the !H NMR. JH NMR d 2.33 (s, 6 H), 2.68 (s, 3H), 2.72 (s, 3H), 7.31- 

8.48 (8 H), 11.62 (s, 1H).

Benzophenone-3.5-dicarboxvlic acid

The same procedure was used as above. The product was a light green 

solid (0.28 g, 1.06 mmol) giving a 28% yield with 83% conversion, mp 280- 

286°C. ’H NMR 5 2.44 (s), 7.57 (m,5H), 8.00 (d), 8.13 (s, 2H), 8.67 (s, 1H). 

13C NMR 8 20.48, 128.37, 128.42, 128.54, 129.30, 129.38, 131.75, 132.59, 

133.27, 133.37, 137.74, 138.63, 165.64, 194.19.
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Benzophenone-3.4-dicarboxvlic acid26

In a 250 mL round bottom flask equipped with a stir bar was placed of 3M 

NaOCl solution (50 mL), 3,4-dimethylbenzophenone (1.00 g, 4.76 mmol), 

Bu4N +Br' (0.077 g, 0.24 mmol), RuCl3 3H20  (0.048 mmol, 0.0099 g), and of 

CH2C12 (40 mL). The mixture was stirred for 2 days at room temperature and the 

pH maintained between 8-10.5 by the addition of potassium dihydrogen phosphate 

and phosphoric acid. During the course of the reaction, the solution remained 

yellow, but then turned black when all the Ru04 had reacted. The solution was 

acidified with sulfuric acid, then extracted with CH2C12. The product was a yellow 

liquid (1.38 g) containing a mixture of starting material (75%), monocarboxylated 

benzophenone (20%), and the desired dicarboxylic acid (5%). Relative amounts 

of each were determined using integration data from the lH NMR. *H NMR 6 2.32 

(s, 3H), 2.37 (s, 3H), 2.45 (s, 3H), 2.89 (s, 3H), 7.30-7.89 (m, 8 H), 8.22 (s, 

1H).
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RESULTS ANP DISCUSSION

The principal goal of this research project was to synthesize benzophenone-

3,5-dicarboxylic acid for the double capping of /3-cyclodextrin and subsequent 

photopinacolization of the benzophenones. Generation of the carboxylic acid 

groups proved to be difficult and became the main focus of the project.

The synthetic pathway involved the formation of the desired dicarboxylic 

acid from 3,5-dimethylbenzophenone via oxidation of the methyl groups. The 

synthesis of the 3,5-dimethylbenzophenone proved to be fairly successful resulting 

in 50 to 60% yields. The dimethylbenzophenone was prepared from l-bromo-3,5- 

dimethylbenzene and N,N-diethylbenzamide via a BuLi exchange reaction. Both 

l-bromo-3,5-dimethylbenzene and the N,N-diethylbenzamide were synthesized.

Starting with commercially available 2,4-dimethylaniline, the aromatic ring 

was brominated using 48% HBr and H20 2. The reagents, 48% HBr and H20 2, 

were chosen to prevent any side chain brominations from occurring. 48% HBr in 

H20 2 is a stronger brominating agent than bromine causing the aromatic ring to be 

attacked instead of the side chain methyl groups. The amino group of the 6 - 

bromo-2,4-dimethylaniline was then removed via a diazotization reaction giving 

l-bromo-3,5-dimethylbenzene in 49% yield. N,N-diethylbenzamide was easily 

prepared via an addition-elimination reaction using benzoyl chloride and

28



diethylamine in 69% yield.

CB CB48% HBr

NaNQj

+ N = N  

Brv ^  XH3

C B

Br
CHnCHiOH

Cu2* N2(g)

CB

B C

Fig. 13 Synthesis of l-bromo-3,5-dimethylbenzene

CHC13

o°c
HCI

Fig. 14 Synthesis of N,N-diethylbenzamide

c h 3

BuLi

-70°C
THF

+ BuBr

c h 3

Fig. 15 Synthesis of 3,5-dimethylbenzophenone

The BuLi reaction, as diagramed above, had low yields due to the fact that 

fresh BuLi was not available and the titration method used to determine the
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molarity of the available BuLi proved to be inaccurate. The titration method for 

BuLi involved two separate titrations using potassium hydrogen pthalate as the 

primary standard solution. One titration determined the amount of total base 

present using a titrating solution composed of BuLi, isopropanol, and water. The 

other titration, which determined the amount of LiOH present, used a solution 

composed of ethyl ether, benzyl bromide, isopropanol, and water. By subtracting 

the amount of total base from the amount of LiOH present one could determine the 

concentration of active BuLi. Repeated attempts using this procedure revealed that 

the BuLi had degraded slightly. But, a considerable amount of degradation must 

have occurred because LiOH could be seen in the cloudy appearance of the BuLi 

solution.

Another reaction pathway explored for the synthesis of 3,5- 

dimethylbenzophenone utilized a Grignard reagent. The procedure called for 1- 

bromo-3,5-dimethylbenzene to be reacted with Mg° to form the Grignard. The 

Grignard reagent was then reacted with benzonitrile and sulfuric acid to form 

dimethylbenzophenone. This approach failed because the Grignard reagent could 

not be synthesized. Attempts made to facilitate its formation by activating the 

Mg° via washings with HC1 failed. It was speculated that in the preparation of the 

l-bromo-3,5-dimethylbenzene, although distilled from CaH2, there remained some 

unknown material which inhibited the Grignard reagent’s formation.
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c h 3

Fig. 16 Failed Grignard pathway

Having successfully synthesized 3,5-dimethylbenzophenone from the 

lithation route, various oxidizing agents and pathways were explored. Initial 

oxidation experiments were performed using 3,5-dimethylbenzophenone. But, as 

time passed, and precious quantities of the 3,5-dimethylbenzophenone were being 

used up in unsuccessful oxidation attempts, it was decided that future experiments 

would be performed using the commercially available regioisomer 3,4- 

dimethylbenzophenone.

Early attempts were made using sodium dichromate dihydrate under various 

reaction conditions. All reactions performed with this oxidizing agent, as indicated 

by *H NMR spectra, showed minimal or partial oxidation of the methyl groups
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(Table 1). The reasoning behind the failure to satisfactorily oxidize may be 

explained by the specificity of reaction conditions required in order for sodium 

dichromate dihydrate to work effectively. Reaction conditions such as acidity, 

order of reagent addition, temperature, and so on have to be precisely right for 

oxidation to occur. Unfortunately, these prime conditions still remain a mystery, 

and subsequently, the use of sodium dichromate dihydrate as an oxidizing reagent 

was abandoned.

Table 1. Variations on the reaction of 3,4-dimethylbenzophenone with

Na2Cr20 7*2H20  yielding benzophenone 3 ,4-dicarboxylic acid

Reaction Conditions Reaction Yield

4.86 equiv. Na2Cr20 7 2H20  in H20 , 
sealed tube at 200°C

1 2 %

1.75 equiv. Na2Cr20 7 2H20  in H2S0 4 

at 30°C
2 0 %

0.625 equiv. Na2Cr20 7 2H20  in acetic 
acid, acetic anhydride at 60°C

18%

A new procedure was then proposed which involved a three-step synthesis 

pathway. In order to convert the methyl group to a more oxidizable form, it was 

decided to tribrominate the methyl groups and hydrolyze to form the desired 

carboxylic acid. The first step, the tribromination, carried out using 6.0
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equivalents of bromine, failed presumably due to overbromination of the aromatic 

ring. The tribromination pathway was therefore abandoned, and replaced by a 

monobromination procedure, which would then be followed by hydrolysis and 

oxidation to the carboxylic acid. Once again, bromine was used, but only 2.4 

equivalents in a carbon tetrachloride solution. The monobromination was 

considerably more successful resulting in 6 8 % yield. Dibromination of 

approximately 7% of the 3,5-dimethylbenzophenone had also occurred. As 

indicated by the 6 8 % yield, there remained a considerable amount of 3,5- 

dimethylbenzophenone in the product mixture. Being unable to separate the 

starting material from the desired product, the methyl groups were present 

throughout each of the following steps of the pathway toward the carboxylic acid. 

The same monobromination procedure was also explored using N-bromosuccimide. 

Both free radical brominations gave similar yields, but the bromine method had a 

slightly higher yield and was an easier reaction to work-up.

H-iC
+ 2Br2

CH2Br

Fig. 17 3,5-fos-bromomethyI benzophenone synthesis

The second step of the synthesis pathway, the formation of the
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corresponding aldehyde, was pursued via a nucleophilic displacement reaction 

using the aprotic solvent DMSO. Primary alkyl halides have been known to be 

oxidized easily into aldehydes with DMSO. Its effectiveness is due to its poor 

solvation of anions. The anions are therefore poorly stabilized and highly reactive. 

As expected, the reaction converted the bromomethyl groups into aldehyde groups.

DMSO

160°C

Fig. 18 Synthesis of benzophenone-3,5-dicarboxaldehyde

The last step of the procedure, the oxidation to the carboxylic acid, was 

carried out using KMn04 in aqueous NaOH. Previous attempts under acidic 

conditions failed, resulting in minimal oxidation. Potassium permanganate’s 

success under basic conditions is counterintuitive since KM n04 has a lower 

reduction potential when under basic conditions than under acidic conditions. In
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base, KM n04 is not protonated and, therefore, possesses a negative charge which 

hinders electron-transfer away from a substrate of interest. The reason for success 

under basic conditions, however, can be explained by the base reacting with the 

benzophenone 3,5-dicarboxaldehyde to activate the KM n04 to perform a hydride 

transfer. The NMR spectrum revealed the presence of carboxylic acid protons 

at 1 0 . 2  ppm.

O 0

OHC.

KiMn04

NaOH

CHO

mech:

O

C- ■H

CO,H

hydride
transfer

O’ O

=>  C-------OH •C OH

Fig. 19 Benzophenone-3,5-dicarboxyiic acid synthesis

Studies involving chromium (VI) oxide were also being investigated as a 

direct synthesis pathway for obtaining the benzophenone 3,5-dicarboxylic acid. 

Under strong acidic conditions, such as in a solution of H2S 04, minimal or partial 

oxidation occurred with no peak present at 10.2 ppm in the !H NMR spectrum.
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But, in a solution consisting mostly of aqueous acetic acid and H2S04, and after 

a week of continuous heating and stirring, the C r0 3 procedure produced the best 

results. A strong, broad peak was seen at 11.6 ppm with no methyl group peaks 

present at 2.37 ppm in the NMR spectrum.

Due to the success of the C r0 3 procedure with the 3,4-

dimethylbenzophenone model compound, the procedure was then repeated on the

3.5-dimethylbenzophenone. As indicated by the NMR spectrum, the reaction

proved to be a success resulting in 83% conversion and 28% yield. No methyl

peaks were present in the 2.3-2.4 ppm region and a 2 to 1 ratio of two aromatic 

proton peaks at 8.67 and 8.41 ppm were also found, consistent with the benzene-

3.5-dicarboxy lie acid group. A mysterious doublet appeared at 8.0 ppm, possibly 

indicating the presence of starting material or aromatic ring oxidation. An 'H -1!! 

COSY spectrum was obtained on the sample showing no coupling between 

aromatic protons and methyl groups. Starting material may be present in such 

minute amounts that the methyl groups could not be detected.

In the oxidation of the methyl groups of the compounds 3,4- and 3,5- 

dimethylbenzophenone, chromium (VI) oxide is believed to proceed via a free 

radical mechanism. The exact nature of the mechanism is unknown, but, it is 

thought to occur via one of the following three methods: direct electron transfer, 

hydride transfer, or hydrogen-atom transfer. The hydrogen-atom transfer, 

however, is the most favored possibility due to the fact that a very similar
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radical mechanism. The exact nature o f  the mechanism is unknown, but, it is 

thought to occur via one o f the follow ing three methods: direct electron transfer, 

hydride transfer, or hydrogen-atom transfer. The hydrogen-atom  transfer, 

how ever, is the most favored possibility due to the fact that a very similar 

oxidizing reagent, chromyl chloride, as proposed by Etard27, proceeds via this 

process. M any oxidation reactions are free-radical substitutions and involve the 

transfer o f  a hydrogen atom. In the C r0 3 case, after the hydrogen-atom  transfer 

occurs forming a free radical, an -OAc group is added and then hydrolyzed to 

form the corresponding primary alcohol. The alcohol is then turned into a 

chromate ester intermediate via an ionic process, subsequendy form ing the desired 

carboxylic 0

addition

,  HO-Cr(OAc)2o r

Q
h y d r o l y s i s

HO-Cr-OAc
(XV)

OH
h y d r a t e

Fig. 20 benzophenone-3,4-dicarboxylic acid synthesis
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CONCLUSION

Although several methods for synthesizing benzophenone-3,5-dicarboxylic 

acid were explored, the C r0 3 procedure in acetic acid proved to be the most 

successful. Complete oxidation of both methyl groups was accomplished with 

minimal traces of starting material present in the reaction mixture. It is 

conceivable that in the near future this method may be further refined resulting in 

higher percent yields and conversions.

Having successfully synthesized benzophenone-3,5-dicarboxylic acid, it can 

now be used as a double-capping agent for 0-cyclodextrin. Photopinacolization 

reaction would result in a benzopinacol which would AB-A’B’cap /3-cyclodextrin 

via ester linkages at the C6  hydroxy position of four glucopyranose subunits.
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Top view of Primary face

primary face

secondary face

Fig.21 Double capping of Benzophenone-3,5-Dicarboxylic Acid 
to £-cyclodextrin
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Spectra 1. XH NMR of l-bromo-3,5-dimethylbenzene
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Spectra 2. 13C NMR of l-bromo-3,5-dimethylbenzene
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Spectra 3. NMR of N,N-diethylbenzamide
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Spectra 4. 13C NMR of N,N-diethylbenzamide
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Spectra 5. *H NMR of 3,5-dimethyIbenzophenone
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Spectra 6. 13C NMR of 3,5-dimethyIbenzophenone
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Spectra 7. XH NMR of 3,4-dimethylbenzophenone
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Spectra 8. *H NMR of 3,5-fas-bromoinethyl benzophenone



Spectra 9. lH NMR of benzophenone 3,5-dicarboxaldehyde
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Spectra 10. XH NMR of benzophenone-3,5-dicarboxylic acid
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