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A BSTR A CT

Tree searching is a fundam ental technique in computer science, having ap
plications in combinatorial optimization, artificial intelligence, robotics, database 
searching, operations research, numerical analysis, and com puter game-playing. 
The research here focuses on the problem of mapping tree searching algorithms 
to non-shared memory multiprocessor architectures. Though there is substantial 
parallelism in most tree searching problems, this parallelism can be difficult to 
exploit on highly parallel machines interconnected via a packet-switched network. 
Our work is directed at discovering heuristically based adaptive load distribution 
algorithms which can distribute the load nearly uniformly over the processors, with
out incurring excessive communications costs. Factors affecting the performance of 
these strategies, such as interconnection network topology, network size, commu
nication speed, and the particular search tree problem, are studied via simulation. 
Results obtained show that relatively simple load balancing strategies can map tree 
searching algorithms to parallel architectures quite well.



TREE-SEARCHING ALGORITHMS ON PARALLEL ARCHITECTURES



CHAPTER 1

INTRODUCTION

1.1. Importance of parallel tree searching

Tree searching is a fundamental technique in computer science, with applications 

in many diverse areas. Tree searching algorithms are used primarily in problems where 

a sequence of choices must be made in finding the solution. For example, in the field 

of artificial intelligence, tree searching algorithms are used in game playing and in 

natural language understanding. In robotics, tree searching is used in path planning 

algorithms. It is also used in combinatorial optimization problems, such as the traveling 

salesman problem and bin packing problems. Such combinatorial optimization problems 

occur in a variety of contexts, such as maximizing the utilization of the available 

resources in operating systems and factory production lines. Tree searching also occurs 

in adaptive numerical algorithms, computer graphics, and robot collision detection.

Tree searching algorithms have been seriously studied for many years because of 

their wide range of applications. An important characteristic of many tree search 

problems is their high computational complexity[2]. Combinatorial search problems, in 

particular, often have complexity exponential in the problem size. Various pruning 

techniques, such as alpha-beta pruning and branch and bound strategies, are often 

employed to reduce this complexity[19]. These techniques greatly reduce the size of the 

tree to be searched. However, they are problem specific and applicable only on a 

subset of tree search problems. Many problems remain in which the construction of a

2
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large search tree is the only reasonable algorithm known.

Recently, with the advent of parallel computers, the possibility of exploiting 

multiprocessor architectures in tree searching has begun to receive serious 

attention[6,10,30]. There is a natural match between tree search algorithms and 

parallel architectures because of the inherent parallelism of these algorithms. This is 

especially true since it appears possible to split tree search problems into relatively 

independent subproblems, which can be executed in parallel.

In this thesis, we study the issues involved in mapping tree searching algorithms 

onto non-shared memory architectures. The proper distribution of the subproblems on 

the processors becomes critical as one tries to maximize the utilization of the processors. 

Our research is directed at discovering heuristically based adaptive load distribution 

algorithms which can distribute the work nearly uniformly over the processors, without 

incurring excessive communication costs.

1.2. Multiprocessor Architectures

A variety of multiprocessor architectures have been designed and built. These 

multiprocessor architectures can be characterized on the basis of several factors, such as 

the type of memory access and interprocessor communication hardware. Architectures 

can be classified as shared memory or non-shared memory depending on whether all the 

memory is directly addressable by any processor. In shared memory systems, such as 

the Carnegie Mellon CM*[9] and the CRAY XMP, processors communicate by 

accessing shared data structures in the common memory. Non-shared memory 

architectures, such as the Caltech Cosmic Cube[24] the Purdue Pringle[13,14] and the 

NASA Finite Element Machine[12] are characterized by the fact that each processor
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has only local memory. In such systems, processors communicate via message passing, 

rather than by reading and writing in the shared memory. The time required to 

communicate in non-shared memory systems depends strongly on the interconnection 

structure.

Non-shared memory systems can be further classified according to whether their 

interconnection networks are multi-stage or single-stage[29]. In a multi-stage network, 

interprocessor communication is established via several layers of switches 

interconnecting the processors. In single-staged networks, the processors are directly 

interconnected, with no intervening switches. Multi-stage networks can be circuit- 

switched or packet-switched. In circuit-switched networks a direct electrical path is 

established between source and destination, while in packet-switched networks store 

and forward communication is employed. Single-stage networks are universally packet- 

switched. Similar classifications apply to processor-memory interconnection networks in 

shared memory systems.

In this research, we concentrate on non-shared memory architectures consisting of 

a number of interconnected processors, each having its own local memory. These 

processors are interconnected via a single-stage packet-switched communications 

network. Such architectures are attractive, since they are highly scalable, and 

computers with large numbers of processors can be built in this fashion. However, such 

architectures are also more difficult to program than the more expensive shared 

memory architectures.
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1.3. Parallelism in Tree Search Algorithms

Tree search algorithms contain a great deal of parallelism. This is true since 

subtrees rooted at sibling nodes of a tree can be searched independently. Consequently, 

once a node has been assigned to a processor, this processor can search the whole 

subtree rooted there, without requiring any communication with other processors. The 

need for communication arises only when work needs to be redistributed between 

processors, and also when the answers produced by searching subtrees are combined to 

give the final answer. Thus, unless dynamic load balancing is used, the need for 

communication is quite minimal. Note that this is true only for an exhaustive tree 

search, where pruning is not employed. Pruning techniques generally require 

knowledge of all parts of the tree currently being expanded, which in turn requires 

additional communication. Our goal is to study parallelism in tree searching problems 

under the most favorable assumptions, and thus we did not look at pruning issues.

The performance of a tree search algorithm on non-shared memory architectures 

seems to be dependent on many factors, including:

(1) the interconnection network topology

(2) the load distribution strategy

(3) the ratio of the speed of communication to computation

The network topology in non-shared memory systems dictates the penalties incurred 

due to the communication demands of a parallel algorithm. A particular 

interconnection pattern may be very well suited to a particular parallel algorithm, while 

being totally unsuited for some other algorithm. The networks studied here are: a bus, 

a complete connection, a hypercube, a ring, and a tree network. These five networks
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were selected as being representative of packet-switched communication networks used 

in multiple microprocessor architectures.

A second important issue is load distribution. The purpose of a load distribution 

strategy is to optimize the utilization of a parallel system by balancing the work load on 

the processors; and the performance of a parallel architecture can vary dramatically 

with the load distribution strategies used. Several simple load distribution strategies 

requiring few assumptions about the underlying interconnection topology and about the 

characteristics of the tree being searched are examined in this thesis.

The relative speed of communication network in a non-shared memory 

architecture is also clearly important. The faster the network, the more potential there 

is to spread work evenly throughout the network. However, it maybe possible to 

compensate for slow communication by using a more sophisticated load distribution 

strategy. This is one of the types of questions we wish to answer through our study. 

To this end, load distribution strategies of varying sophistication, and possibly of varying 

message intensities were chosen for study.

For this research, we picked four problems for our study: the eight queens 

problem, the knight’s tour problem, the traveling salesman problem and an adaptive 

quadrature problem. Each problem is solved through the generation of a large search 

tree. We simulate the execution of the tree search algorithms on non-shared memory 

architectures, in order to assess the effectiveness of different load balancing strategies 

and the effect of different networks and different communication speeds.
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1.4. Background

Two recent papers, have also addressed some of the issues we are studying. Gray, 

McCormack and Haralick[10] have experimented with the mapping of the consistent 

labeling problem on two interconnection topologies, a ring and a hypercube. Their 

approach is to parameterize the important factors in their load distribution strategy, in 

order to study the effects of varying these parameters in simulation experiments. Their 

load distribution strategy is based upon a forward checking pruning algorithm which 

provides knowledge about the size and complexity of the subproblem that is yet to be 

handled.

Several different parameters were varied in their study. Two different search 

strategies breadth-first and depth-first were utilized. Secondly, the size and number of 

subproblems passed to a neighbor was varied. The cut-off point, at which a processor 

completes its subproblem rather than subdivide and pass it, was also varied. Simulation 

runs were made for two different networks: the ring and a 64 processor hypercube.

Their load distribution strategy is based on polling. Each processor polls its 

neighbors, after processing each node, and passes work to idle neighbors. This is in 

contrast to other approaches, where processors interrupt neighbors and request work. 

The minimum execution time was found for the depth-first strategy, when the 

subproblem size passed was large and the number of subproblems passed was 

approximately half the total work on the processor.

Burton and Huntbach[6] in their research, have viewed the tree being searched as 

a tree of processes. They define their load distribution algorithm for these processes, 

together with the interconnection network chosen, as a virtual tree machine. They



8

have chosen their interconnection network from a family of networks called binary n- 

cubes. Each processor is capable of running more than one process. Their load 

distribution strategy is priority based; children nodes having a priority one greater than 

their parent. Thus, a priority queue of processes resides on each processor during run 

time. A processor, in the absence of any communication with its neighboring 

processors, carries out a simple depth first search for the node with the maximum depth 

in the tree. When a processor has to decide which process to transfer to another 

processor, it chooses one with the least priority, thus transferring as much work as 

possible in one transmission. A process can migrate only once. Hence, only local 

communication is required.

In order to balance the workloads of all processors, a processor sends work to a 

neighboring processor only if the destination processor has less work than itself. Thus, 

every processor communicates its current workload to each of its neighbors at every 

communication cycle. Computation and communication proceed in parallel. One 

difficulty they encountered was that the information a processor received from its 

neighbors was often out of date, thus reducing the effectiveness of their load 

distribution algorithm.

Burton and Huntbacb have chosen to measure the performance of their virtual 

tree machine by processor utilization. Their simulation results, based on a ’’well 

behaved” tree algorithm show that the execution time of a program can be divided into 

three parts: start-up period, when work diffuses through the network; main period, 

when processor utilization is almost a 100%; and wind-down period, when little or no 

work is left for distribution purposes. Their wind down period is longer than the start
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up period because processes cannot migrate more than once. It was found that the 

main period of execution was longer on larger problems. But as the number of 

processors increases, larger problems are needed to saturate the architecture and 

achieve high utilization.

1.5. Overview of Thesis

Our research, though similar in spirit to the work described in the last section, 

focuses on issues that have not been investigated before. Our approach is to investigate 

several algorithms and several load distribution strategies, comparing the difference in 

their performances. Chapter 2 discusses the different network topologies considered. 

Chapter 3 describes the tree search problems studied. The search trees generated by 

these problems are classified according to several parameters. Chapter 4 describes our 

load distribution strategies and the reasons for choosing these strategies. Chapter 5 

presents the results of our simulation experiments. It examines the performance of

these load distribution strategies from a variety of points of view. Finally, the thesis
\

concludes with a short summary in Chapter 6.



CHAPTER 2

ANALYSIS OF NETWORKS STUDIED

The internode communication network in a multi-microprocessor system is perhaps 

the most critical part of the system, having a strong impact on both system performance 

and algorithm choice. In this chapter we describe the five interconnection network 

topologies studied in this thesis. Next we examine their theoretical performance and 

cost effectiveness. This theoretical analysis is intended as a background to prepare the 

way for understanding the simulation results given in Chapter 5. Before presenting the 

five networks, some of the factors distinguishing various networks are described.

2.1. INTERCONNECTION NETWORKS

A wide variety of networks have been proposed and many have been implemented 

recently, largely because of the availability of low cost microprocessors and the 

advances in VLSI technology[18]. However, there does not seem to be any ’’best” 

interconnection network because the cost-effectiveness of a particular network depends 

on many factors. These factors include the complexity of the computational tasks to be 

performed on it, the desired data transfer rate, and the practical realizability of the 

system.

Our attention is focussed on single-stage packet-switched networks. The reason 

for choosing this class of networks is two-fold. First, the load distribution strategies 

being explored here generate communication patterns which are not known a priori. 

Packet-switched networks give us the flexibility to develop load distribution strategies

10
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which are independent of network topology. Circuit-switched networks[3,15,23] are 

difficult to use unless all data movements are preplanned. Second, the higher 

bandwidth possible with multi-stage networks seems unnecessary for tree searching 

problems. We would expect to be able to extract the parallelism of these problems 

without massive communication, and thus the less expensive single-stage networks 

should suffice for this problem class.

In this chapter we examine the theoretical performance of the networks studied 

based on several criteria, the total cost of the network, the mean intemode distance, 

and the network throughput. This analysis follows closely that given in Reed[21]. It is 

also possible to study interconnection networks by looking at the set of permutations 

they pass[26] or by using queueing theory techniques[21]. Looking at the set of 

permutations passed is a valuable approach for circuit-switched networks but is not 

applicable here. Queueing theory, on the other hand, is a dual approach to the 

analytical approach followed here. Queueing theory has advantages, such as the ability 

to treat the case of bounded buffers, but also gives only approximate answers. For the 

situations here, either approach would be equally appropriate.

2.2. NETWORKS STUDIED

In the following sections we describe and analyze the five interconnection 

networks that were simulated. In this section we describe the five interconnection 

networks. Section 23 gives the routing algorithms needed in each of the networks to 

implement long distance packet switched communication. Next, section 2.4 defines the 

criteria by which we look at the performance of these networks. In section 25  the five 

networks considered are analyzed according to these criteria. The chapter ends with
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some remarks in section 2.6 on the relative utility of these various networks. In the 

following discussion, the total number of nodes in the system is represented by P .

The five interconnection networks are a bus, complete connection, hypercube, 

ring, and a tree. These networks seem to be fairly representative of single-stage 

packet-switched networks. All have been used in multi-microprocessor architectures.

Bus

In a bus network all P nodes are connected directly to a single shared bus, as 

shown in Figure 2.1. Bus arbiters, also known as bus controllers, resolve contentions. 

The Intel 432[1] is an example of a bus network. CMU’s Cm*[9] is a loosely coupled 

bus network, where there is a hierarchy of bus levels. Buses are easy to implement and 

are efficient for small numbers of nodes. With a large number of nodes, bus contention 

limits the utility of this system.

Complete Connection

The complete connection network consists of interconnections between each pair 

of nodes (Figure 2.2). Thus each node requires P-l ports to connect to all other nodes. 

Its main disadvantage is the large number of channels and ports involved. But it is 

quite practical for a moderate number of nodes and is studied here partly because it 

provides an upper bound on network performance.

Hypercube

A hypercube network joins nodes such that a node can communicate with any of 

the nodes whose address, when written in binary, differs from it in any one bit. The 

hypercube network is based on the concept of arranging nodes on the vertices of a



Figure 2.1 Bus Interconnection Network

Figure 2 2  Complete Interconnection Network

Figure 23  Hypercube Interconnection Network
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hypercube of dimension D where D = log P . Thus each node is connected to log P 

nodes as shown in Figure 2.3. The Caltech Cosmic Cube[24] is based on a hypercube 

network.

Ring

A ring network consists of P nodes, connected together in a circle (Figure 2.4). 

Node i is connected to nodes i +1 mod P and /-I  mod P . Messages are passed around 

the ring in one or both directions. The ring network studied here is bidirectional. 

University of Maryland’s ZMOB[22] consists 256 nodes connected by a unidirectional 

ring.

Tree

The tree network consists of a binary tree with processors residing at every node 

as shown in Figure 2.5. Each node is connected to its parent and its right and left 

children. The root of the tree has only left-child and right-child connections, while the 

leaf nodes have only a parent connection. We consider here only complete binary trees 

with P =  2k- l  nodes, for some k . The tree network is the only asymmetric network we 

have considered in our study, which means that the network topology is different as 

seen from different nodes. The tree machine being built at University of North 

Carolina[17] is an example of a tree network. A tree machine has also been built at 

Caltech[4,5].

2.3. Routing Algorithms

In packet-switched networks, each node in the network receives messages and 

forwards them towards their destination through a sequence of intermediate nodes. In
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Figure 2.4 Ring Interconnection Network

Figure 2 5  Tree Interconnection Network
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the event that the communication channel required for forwarding a message is busy, 

the message is stored in a buffer and is forwarded on once the channel becomes clear. 

In our analysis, we presume that infinite buffers are available at each node for storing 

such messages.

The algorithm required to route messages at intermediate points is dependent on 

the network under consideration. For several of the networks studied here, the routing 

algorithm is completely trivial and little needs to be said. For others, there are 

subtleties involved, and the routing algorithm selected can affect the performance of 

the network.

Consider first the bus network. Hardware bus arbiters are used in a bus to resolve 

bus contention. A node attempting to send a message contends for the bus, and when 

it gets control of the bus, the message is transmitted immediately to the destination 

node. No intermediate nodes are involved.

In the complete connection network, each node is connected to all other nodes, so 

messages are again directly transmitted from source to destination. With this network, 

in each communication cycle, P messages can be transmitted.

In a hypercube network, a node is directly connected to logP neighbors. As the 

message is routed through the network the following algorithm can be used to 

determine the next node:
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xor _yector present_address XOR destination_address

i :=  position of a random non-zero bit in the xor_vector 

send message to the i-th neighbor

Note for P nodes, the address of a node requires log/3 bits, so that the xor vector has 

log/5 bits. It can be shown that using this routing algorithm, algorithm, a message 

requires at most log/3 steps to reach its destination. The random choice introduces 

non-determinism in the sense that two messages sent from the same source to the same 

destination may take different routes and hence arrive out of order. There exist 

alternate routing algorithms which are determinate and preserve the order of message 

arrival[16].

The routing algorithm for bidirectional ring networks is simple. Every message is 

forwarded around the ring in the clockwise or counter clockwise direction, depending 

on which direction leads to the shorter path. Note that the average distance traveled by 

. Pa message is —.

The routing algorithm for a tree is more complex. If a message is not at its 

destination, then the following algorithm can be used to forward the message one step 

closer to its destination:
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if (destination node in subtree rooted at the present node) 

then

if (destination node in subtree rooted at the right child of present node) 

then
send to right child 

else
send to left child

else
send to parent

This routing strategy requires a simple kernel routine, dependent on the node 

numbering scheme, to determine whether a node is in a given subtree.

2.4. Network Performance Criteria

The performance of the networks considered can be studied from many 

viewpoints. In this chapter we consider several standard performance measures. Some 

of these measures depend on the assumption one makes on the locality of message 

traffic. The worst case assumption, taken here, is to assume a uniform message 

distribution. This means that all nodes are equally likely to originate messages, and the 

destinations of these messages are uniformly distributed.

Cost

The total cost, C , of a network is proportional to the total number of nodes P , 

plus the number of communication channels L . Note that in counting the number of



communication channels, in most cases, it is easiest to determine the number of 

channels attached to each node, multiply by the number of nodes, and then divide by 

two.

Mean Intemode Distance

The mean intemode distance gives an estimate of the average communication time 

for messages, assuming there is no contention between the messages. The mean 

intemode distance is the average number of channels traversed by a message as it filters 

through the network, assuming a uniform message distribution.

For a symmetric network, we can calculate the mean intemode distance in the 

following manner. The probability that a message requires m channel traversals to 

reach its destination is:

where k(m)  is the number of nodes at distance m from any given node. Then the 

average number of channels traversed by a message, i.e., the mean intemode distance ji, 

is:

'"max
*JL = J  m(K"0

m “1
*(«)

-  £ " ( P 3 )

where mmax is the maximum number of channels a message can traverse.
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Throughput

The throughput of a network is the average number of messages reaching their 

destination per unit time, under the assumption of a uniform message distribution. This 

definition assumes that messages are never lost and eventually reach their destinations. 

Assuming infinite buffers, throughput is quite easy to calculate.

The idea is as follows. One assumes that each node sends a message to every 

other node. Some fraction v of these P(P-1)  messages will pass through any given 

channel. One then computes the total time taken by this channel to forward these 

v P  (P- l )  messages. Dividing this total time by P (P - l )  gives the average amount of 

time required by this channel to service any of the P(P-1)  messages. Note that this 

time may be much less than the time taken by this channel to forward a message, since 

many messages may avoid this channel, thus requiring zero service time. This analysis 

can be applied to all channels in the network.

The next step is to select one of the bottleneck channels. For most symmetric 

networks, all channels are topologically equivalent, and it does not matter which one is 

selected. For asymmetric networks, like the tree, the bottleneck channel must be more 

carefully selected. Now, assuming that uniformly distributed messages are being 

continually sent as fast as the network can handle them, and assuming infinite buffers, 

one can conclude that the bottleneck channel will have 100% utilization. Given 100% 

utilization, and given that this channel is a bottleneck, it follows that the number of 

messages that the network can deliver per second is the inverse of the amount of time 

it takes this channel to service the average message. Thus the throughput of a network 

can always be calculated by looking at the bottleneck channel.
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For the special case of symmetric networks, the throughput can be calculated 

easily from \jl, the mean intemode distance. This analysis requires the additional 

assumption that all channels are topologically equivalent. The mean intemode distance 

is the average number of channels traversed by a message. If a channel can forward 

messages simultaneously in both directions in time t ,  the time to service the average 

message in the system is

U.Tservice time  =  — —2L

where I  is the total number of channels in the system. Thus the throughput will be:

2.5. Analysis of Networks

The five networks being considered can be studied in terms of the performance 

measures described above. These measures are perhaps not sufficient to indicate 

exactly how a network will perform in any given application, but they give a strong 

indication of their relative suitability.

Bus

In a bus network, each node is connected to the bus through a communication 

channel. Hence, there are as many channels as nodes. Using the cost measure defined 

earlier, the total cost C of a bus network is equal to

CBus = P + L —  2P.

This analysis does not include the cost of the bus itself. The mean intemode distance
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because each node has direct access to all other nodes.

In a bus based system, the bus itself is the bottleneck, because only one node at a 

time can get access to the bus. The throughput of a bus can be calculated by viewing 

the bus as a critical resource. Since only one message can be transmitted on the bus at 

any time, the throughput must be:

fi - iVB U S  •
T

Note that the throughput of the bus is independent of the number of nodes on it.

Complete Connection

Since each node in a complete connection network is attached to P- 1 channels, 

the total number of channels in the network is:

,  _ P(P-l)
C O M P LE TE  2

Hence the total cost of a complete connection is:

„  . p(p-r> p z + p
L COMPLETE ~  r  1  ^ -- •

This quadratic cost in the number of nodes is the principal reason that a complete 

connection network is considered impractical. The mean internode distance on a 

complete connection network is one, since each node is connected to all other nodes. 

The throughput on a complete connection network is easily calculated from the formula 

for symmetric networks given earlier:

P(P-X)
0 COMPLETE —

T
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Hypercube

In a hypercube network with P nodes, each node is connected to log P channels. 

Therefore,

_ _ P logP
HYPERCUBE ~  ^

Thus the total cost, in this case, is:

r  - p  +  p l o g P  - p'-'HYPERCUBE ~  r  t  f JogfL + i  
2

The mean intemode distance is calculated as follows. The number of links a 

message travels in a hypercube is equal to the number of bit positions that are different 

in the source and destination address pair. Messages are all uniformly distributed, thus 

the probability that a particular bit in the source and destination address is different, is 

half. Since the number of bits is logP, the average number of bits different in the

source and destination address pair is . This analysis includes messages sent to

p
itself by a node. Since our model excludes those messages, a correction factor of (/>-1)

has to be included. Thus the mean intemode distance is

_ log P
HYPERCUBE ~  ^ P - 1

_  P\°sP 
2{P-l)

which asymptotically simplifies to:

_  log/*
^HYPERCUBE  ~  ^

The throughput of a hypercube is



24

WYPERCUBE

P log/*

P logP 
2(P-l)

Simplifying,

JHYPERCUBE
-  2CP-1)

Ring

The total cost of a ring is

C r i n g  ~  *

since there are P nodes and P channels. The mean intemode distance is

R̂ING ~ 4CP-1)
for a bidirectional ring with an even number of nodes. This is approximately — for4

large P , indicative of the fact that the average message needs to travel only one-fourth 

of the way around the ring.

Using the formula for symmetric networks, we can calculate the throughput of a 

ring as follows:

ft\RING
2P  = 8(P-1)

P t  *P2 | 
4 (P -l)f

which is asymptotically

ft _ 8
'RING
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Tree

In a tree with P nodes there are P - 1  channels. One calculates the number of 

channels by thinking of each node, except the root node, as ’’owning” the channel 

between this node to its parent. Since there are P-l channels, the total cost of a tree is

C  TREE ~  “  1*

Unlike the other networks considered here, calculating the mean intemode distance of 

a tree network is quite complex. A careful analysis is given in the appendix of Reed’s 

thesis[21]. The main result is that the mean intemode distance is given by:

2 k 2*-1(2*+l) 62fc~1
(2*-l)(2fc_1-l) “ (2*_1-1

where P = 2*-l. This expression is complex, but is clearly asymptotic to:

~ 2 k -  6 = 2 log(P +1) -  6 .

On a tree network, the channels attached to the root node are the bottleneck 

channels[7,25]. Suppose each node sends one message to every other node. To 

compute the throughput one calculates the percentage of these P { P - 1) messages which

j p _ i
will pass through either of the channels attached to the root. Let q = be the

number of nodes in each of the subtrees of the root. Then there are 2q2 messages 

passing through the root from between the nodes of these subtrees. There are also 2q 

messages passing between either subtree and the root. Thus there are

2q2 + 2q
of the P (P - l )  messages passing through the bottleneck channel, which becomes:

{P -  1) (P +  1)
2

Thus the percent of messages passing through the bottleneck is:



It follows that the throughput of this network is:

&TREE ~
VT

TP
T (P + 1) •

As one can easily see, the throughput of a tree is approximately constant, independent 

of the number of nodes:

®t r e e  ~  •
T

2.6. COMPARISON OF NETWORKS

The performance measures computed for the five networks are summarized in 

Table 2.1. In several cases lower order terms have been neglected and we give only the 

asymptotic results.

Viewing throughput as the most critical performance measure, the networks here 

fall into two classes. The complete connection and hypercube have throughput growing 

at least linearly in P. On the other hand, the bus, ring and tree have throughput which 

is asymptotically constant. Thus, for large number of processors, the latter three 

networks are probably inappropriate for message intensive problems.

The higher performance of the complete and hypercube networks is reflected in 

their higher cost. The quadratic cost of the complete connection may make it 

impractical in many cases. However, high performance and PlogP cost of the 

hypercube shows the great attractiveness of this network, and related networks, such as 

the shuffle[28] and cube-connected cycles[20] not considered here.
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Networks
Number

of
Channels

L

Cost

C

Mean
Intemode
Distance

u-

Throughput

e

Bus P 2P 1 1
T

Complete />(/>-1) 
2

p2 +p

2

P (P - l )
T

Hypercube />iog/>
2 2V /

_  log/* 
2

2(/>-l)
T

Ring P 2P ii _  _8 
T

Tree P - l 2P-1 =  2log(P + l ) - 6
_  2 

T

Table 2.1 Network Parameters

There may be problems where the throughput is not the critical parameter and 

instead the message delays are important. If the network is lightly loaded and thus 

almost contention free, message delays will be proportional to mean intemode distance. 

Viewed this way, the ring is by far the worst and the bus and the complete connection 

are somewhat better than the hypercube or tree. It remains to be seen which of these 

factors plays an important role in our simulation experiments.



CHAPTER 3

TREE-SEARCHING ALGORITHMS

Tree searching problems occur in a variety of application areas. In this chapter, 

we describe the problems chosen for study here. We also characterize the search trees 

generated by these problems on the basis of several parameters such as tree breadth and 

depth.

3.1. ALGORITHMS STUDIED

For the purpose of this study, we have chosen four tree-searching problems. 

These problems are: eight queens, knight’s tour, traveling salesman and adaptive 

quadrature. The eight queens and knight’s tour algorithms are examples of 

combinatorial problems where one searches for feasible solutions. The traveling 

salesman problem is a combinatorial optimization problem, where feasible solutions are 

apparent and one searches for an optimal solution[31]. Finally, the adaptive quadrature 

algorithm here, is a simple example of numerical and graphics algorithms based on 

spatial divide and conquer techniques[ll]. The next four sections provide a high level 

view of these algorithms.

Eight Queens

The eight queens problem is the well known problem of putting eight queens on 

an eight by eight chess board in such a way that no queen checks another. Using the 

fact that two queens cannot be placed in the same column, we can represent the 

positions of the queens on the board as an array, queens, where queens [i] gives the

28
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program eight queens;  
begin

fo r  column =  1 to 8 do  
queens [column] := 0; 

board jgen  (queens, 1); 
end;

procedure board jgen (queens: array [LB] of integer; column: integer); 
begin

fo r  queens [column] — 1 to  8 do  
begin

if test(queens) then 
if column <  8 then

board_gen (queens, columnar 1) 
else

printboard (queens);
end;

end;

Listing 3 J  Eight Queens

position of the queen in the i-th column. Given this representation, Listing 3.1 presents 

a recursive algorithm which computes all feasible solutions to this problem. Here test is 

a procedure which tests whether any of the queens on the board checks another. If 

none do, the algorithm proceeds recursively to place queens on the next column. When 

queens have been successfully placed on all eight columns, one of the solutions to this 

problem has been found, and this answer is printed. Eventually all solutions will be 

found.

Knight’s Tour

The knight’s tour problem is another chess problem, but one that is considerably 

harder than the eight queens problem. Given a chess board, of size m by n, and a fixed
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program knights_tour;

var path — array[l.m *n] of integer;
board =  array[LrnJ.Ji]  o f (visited, not ̂ visited);

begin
initialize(board, path); /* initialize array board to not_visited

and path to 0 */

row :— I; cot :— I;
board[row, col] := visited; /* put knight on square IJ  */ 

movejnum :=  1;
tree_search(move_num, row, col, path, board);

end.

procedure tree^search (move_num, old_row, old_col: integer;
path: array[I.jn*n] of integer;
board: array[l.m j..n ] of (visited, not ̂ visited));

begin
fo r  direction := 1..8 do 
begin

col :— old_col +  coljchange(direction); 
row :— oldjrow  4- row_change(direction);

if valid_move(board, row, col) then 
begin

board [row, col] :— visited; 
path]move_num]  :~  direction; 
if (move_num =  m*n) then 

print(path);
else

tree_search (m ovejium +1, row, col, path, board);
end;

board(row, col) :=  not_visited; 
end;

end;

Listing 3 2  Knight's Tour
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starting point for the knight, the problem is to find all paths on the board in which the 

knight visits each square exactly once. A depth first search algorithm for this problem 

is given in Listing 3.2. The array board, in the algorithm, indicates the positions on the 

chess board already visited. Array path gives the sequence of directions the knight 

moves in performing the tour. Kernel routines col_change and row_change, give the 

position change for each of the knight’s eight possible moves. Routine validjnove 

checks whether the new position will be on the chess board, and if so whether the 

position has already been visited.

Traveling Salesman

The traveling salesman problem belongs to a very important class of problems 

called NP-complete. Various other problems like warehouse location, job-shop 

scheduling, graph partitioning, dynamic storage allocation and register allocation in 

program optimization belong to the same complexity class. In the traveling-salesman 

problem, a salesman desires a minimum mileage trip which visits each of n cities exactly 

once, and returns to the starting city[19]. The array adjacencyjnatrix, in the algorithm 

presented in Listing 33, gives the mileage between the cities. If two cities are not 

connected, the mileage between them is set to -1. The array cities indicates the cities 

already visited, while the array path gives the sequence in which the cities are visited. 

Procedure find_minimum determines whether the current tour is shorter than the shortest 

previous tour, and copies it into array minimum_path if so.
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program travel__salesman;

var adjacencyjnatrix : array[I.Ji, l..n] of integer; 
path, minimum_path : array[0..n] o f integer; 
cities : arrayfl.n ] of (visited, not_visited);

begin
initialize (adjacency jnatrix , path, cities);

path[0] := 1; 
cities] I] := visited; 

movejium  I;

path^find (move_num, path, cities); 
print ( minimum_path);

end;

procedure path_find (movejnum : integer;
path : array[O.ji]  o f integer;

cities : array[Lji]  of (visited, not_yisited));
begin

lastjcity  :=  pathfmovjium - 1]

f  or nextjcity =  I to n do  
begin

if ( adjacency_matrix[last_city, nextjcity] < >  -1) 
and ( cities [nextjcity] =  not_visited) ) then 

begin
path[mov_num] :=  nextjcity; 
cities [nextjcity] := visited; 
if  (movejium  =  n) then 

findjrunimum(path); 
else

path_find (movejium  +  1, path, cities);
end;

path]m ovejm m ] 0;
cities [nextjcity] :=  not_visited; 

end;
end;

Listing 3 3  Traveling Salesman
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Adaptive Quadrature

There are many important mathematical functions for which no analytical formula 

for the integral is available. The standard numerical technique for computing the 

integral of such functions is adaptive quadrature. We consider here the problem of 

numerically integrating a real valued function of two variables over a rectangular 

region. This can be done by dividing the region into cells and then estimating the value 

of the integral over each of the cells using one of the standard numerical quadrature

formulas[ll]. The total value of the integral in the region is then the sum of the values
\

of the integrals over the constituent cells.

While the integral value over each cell is being calculated the error in the 

approximation can also be estimated. If the error in a cell is greater than a specified 

tolerance level, the cell can be further subdivided and the integral and error over the 

new cells evaluated. This subdivision of cells can be viewed as the construction of a 

tree whose nodes represent the quadrature cells. Refinement of these cells is continued 

until the error in each of the subcells meets the specified tolerance level. Thus smaller 

cells will be created for areas where the function is changing rapidly and the 

quadrature formulas are less effective. A recursive adaptive quadrature algorithm is 

given in Listing 3.4.

In this algorithm, function quadJormula computes the integral on a cell. Function 

errorjestimate returns an estimate of the error in the approximation used in 

quad_formula. If this estimated error is excessive, the cell is subdivided into four 

subcells, and the function adapt is called recursively for each of these subcells.
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program quadrature; 

begin
xO := 0.0; x l  1.0;
yO 0.0; y l  := 1.0; I* region fo r  integration *!

tolerance l.Oe-2; 
value adapt(f, xOyl,yOyl); 

end;

function adapt(function funct: real; xOyl yO yl: real) : real; 
begin

error error^estimate (funct, xOjclyOyl);

if  (error <  (xl-xO) * (yl-yO) * tolerance) then 
adapt quad_f ormula(funct, xOxl,yO,yl)

else
begin

xmid :=  05*(x0  +  xl); 
ymid := OJ*(yO +  yl);

surnl adapt (funct, x0, xmid,yO, ymid); 
sum2 :=  adapt(funct, x0, xmid,ymid,yl); 
sum3 :=  adapt(funct, xmidjcl, yO, ymid); 
sum4 := adapt(funct, xmidjcl. ymidyI);

adapt suml +  sum2 +  sum3 +  sum4; 
end;

end;

Listing 3.4 Adaptive Quadrature

3.2. CLASSIFICATION OF TREES

For our simulation experiments, we generated five different search trees. In this 

section we will make an attempt to classify these trees based on several parameters. 

Each of these parameters is a computable measure of one property of the tree. The 

parameters are: depth, maximum breadth, average breadth, average branching factor,



35

balance factor and size.

Depth

The depth of a tree is the maximum number of levels in the tree. Given infinite 

parallelism, the execution time of an algorithm may be expected to be proportional to 

the the depth of the tree. In an ideal situation, if there is a one to one mapping of the 

tree on the architecture, and all the parallelism is being extracted, one can expect the 

limiting factor to be wholly dependent on the depth of the tree.

Maximum Breadth

The maximum breadth of a tree is the maximum number of nodes at any level of 

the tree. Maximum breadth of a tree gives the maximum parallelism inherent in the 

problem. Hence, the maximum breadth provides an upper bound on the number of 

processors which can be used for a problem.

Average Breadth

The average breadth of a tree can be defined as the average number of nodes in a 

level. It is therefore,

2  number of nodes in level
averageJbreadth = -----------------------------------

number of levels

_  total number of nodes 
depth of tree

Average breadth of the tree gives a measure of the average parallelism in the problem. 

This factor largely determines the optimum number of processors needed for a problem.
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Average Branching Factor

The average branching factor of a tree is the average number of children of all 

non-leaf nodes. The average branching factor turns out to be:

total number of nodes — 1 
number of non-leaf nodes

There is no obvious relation between the branching factor and the ability to exploit 

parallelism in tree searching.

Balance Factor

Balance of a tree is a more difficult concept to define. Our measure of the 

balance of a tree is determined by computing a balance parameter at each node of the 

tree, and then combining these to generate a single parameter. The balance of a node 

is defined as the difference between the number of nodes in its largest subtree and the 

number of nodes in its smallest subtree. The balance factor is then defined as:

balance_of _nodes
, , , nodesbalanceJactor — --------------------------------

total number of nodes

The balance of a tree is important, since the more unbalanced the tree, the more 

difficult it will to be to distribute the load effectively across a parallel architecture. The 

balance factor parameter defined here will be large for unbalanced trees, and zero for a 

perfectly balanced tree.

The above six parameters, can be used to characterize the search trees generated 

by the algorithms under study. We looked at five different search trees generated by 

four algorithms. We solve the knight's tour problem for a 4 by 4 chess board and also 

the eight queens problem on an 8 by 8 chess board. A traveling salesman tour for a
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dense graph of 7 cities was computed. Finally, two different functions were integrated 

by the adaptive quadrature algorithm, since the type of tree produced by this algorithm 

was strongly dependent upon the function integrated. The two functions used are:

/  i = (x2 + y2)8 

f  2 ~ a b s \lf{x^ 4- y'*) —  0.6

The parameters characterizing these five search trees are given in Table 3.1. In 

each of these problems, there are free parameters, such as the size of the chess board 

used for the knight’s tour or the tolerance in adaptive quadrature. These free 

parameters were selected so that all trees here would be approximately the same size. 

Thus differences in multi-processor performance on these different tree search 

problems, must be due to other factors, such as breadth or balance, rather than the size 

of the tree.

Algorithms Depth Maximum
Breadth

Average
Breadth

Average
Branching

Balance
Factor

Size

Queens 8 568 22856 156 052 2057

Knights 14 448 1482 152 0.49 2223

TSP 6 924 272.71 195 035 1944

Quad_I 57 256 3595 4D 69.17 2058

Q u a d ! 11 512 176.08 4D 17.84 2113

Table 3 J  Characteristics of Trees
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As seen here, most of the trees have depth about 10. The exception is one of the 

quadrature problems, Quad l, which has a depth of 57, since it is performing deep 

refinement at a point singularity. For the same reason, the average breadth of this 

problem is almost an order of magnitude lower than the rest of the problems and the 

maximum breadth is also smaller.

It is interesting to note that all the combinatorial problems give rise to branching 

factors below two. This is due to the fact that most of the nodes in the tree are near 

the leaves, where few combinatorial choices remain.

The most striking difference between the quadrature problems and the 

combinatorial problems is in the balance factor. The quadrature trees are highly
V.

unbalanced because cells in regions where the functions are singular, will become highly 

refined while the rest will not be. The combinatorial problems, where we have to make 

a sequence of choices, seem to have a completely different character. It appears that 

each of the early choices are almost equally likely to lead to solutions. For example, in 

the traveling salesman problem (TSP), no matter which cities are visited first, we will 

probably be able to complete a tour. Thus most of the nodes higher up in the tree, 

tend to be well balanced.

In this chapter we have presented four different problems and characterized their 

search trees. The search trees produced will be used in the simulation studies described 

in Chapter 5 and the parameters characterizing these trees will be related to the 

performance results obtained.



CHAPTER 4

LOAD DISTRIBUTION STRATEGIES

In the last chapter we discussed a number of tree-search algorithms and the types 

of trees they generate. The goal in this thesis is to effectively map these algorithms 

onto non-shared memory architectures based on the networks discussed in Chapter 2. 

The non-shared memory architectures being considered here do not have a central 

controller, and also there is no a priori knowledge of the structure of the search trees 

being generated. Thus, the principal issue in mapping these problems to such 

architectures is the dynamic balancing of the workload.

This chapter discusses a family of load distribution strategies. We begin by 

presenting the architectural assumptions made for our simulation experiments. After 

that, four load distribution strategies which were developed during the course of this 

study, are described. These range from relatively simple strategies, used to give a 

baseline for comparisons, to complex strategies, which seem to achieve high utilization 

even on problems where load balancing is quite difficult. Finally, we discuss the way in 

which the strategies here relate to the general problem of load distribution on non

shared memory architectures.

4.1. ARCHITECTURE MODEL

As noted before, we are assuming non-shared memory architectures, wherein the 

processors operate in an asynchronous MIMD mode. The run-time environment used is 

based on typical low-level message passing primitives. We look first at the processor

39
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model employed, and then discuss the run time environment.

Processor Model

The parallel systems that are to be studied in our research consist of a set of 

processor nodes, interconnected by a packet switched network. Each of these processor 

nodes or processing elements (PE) is a simple microprocessor along with its local 

memory.

In order to allow computation and communication to proceed in parallel, each PE 

has a co-processor dedicated to input-output, as shown in Figure 4.1. In the absence of 

this co-processor, the processor would have to be interrupted every time a message had 

to be processed. This issue is particularly important with packet-switched networks,

Processor

Input ports Output ports

local memory

coprocessor

Figure 4.1 Model of a Processing Element
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because of the large number of intermediate stores and forwards. The co-processor is a 

micro-processor of simpler design than the processor, since its function is more trivial. 

The local memory is dual-ported so that the co-processor can directly access it.

When a processor needs to send a message to another processor, it places the 

message in a buffer region of memory, which the co-processor services when it has 

time. Similarly, when a message is received from the network, the co-processor places 

the message in the appropriate buffer region of memory and the processor fetches it 

when required. Co-processor also maintains buffers in memory where they keep 

messages being stored and forwarded in the packet-switched network. Since all buffers 

here are regions in the local memory, whose sizes vary dynamically, they can be 

potentially quite large. This is in contrast to other non-shared memory architectures 

where small hardware buffers are employed. With the hardware assumption here, the 

buffers are for practical purposes infinite, just as we assumed in Chapter 2.

We assume a simple run-time environment in which the processors are not 

multiprogrammed. That is, a single process runs on each processor. One process is 

started up on each processor at the beginning of execution, and execution continues 

until all processors become idle. In situations such as ours, the children of any node 

can be processed by invoking new processes for them, or by using recursive subroutine 

calls. The context-switching overhead associated with implementing processes on a 

single processor is generally higher than the overhead associated with a subroutine call. 

Thus, if the granularity of parallelism is low, for example, if the amount of processing 

needed at each node is very small, the process overhead would become significant. 

Hence we have chosen not to allow multiprogramming on the processors.
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Communication Primitives

The processors communicate with each other via message passing. Each message 

begins with a header containing, an origin processor number, a destination processor 

number, and time stamp. The body of the message is a fixed length data field.

There are three simple message passing primitives, a ’’send” construct, and two 

kinds of ’’receive” constructs. The send primitive can be utilized to send a message to 

any other processor. This send is non-blocking, that is, after executing a send, a 

processor does not have to wait for the message to be received, but can continue 

executing immediately.

The run-time environment provides two means of receiving a message, a non- 

blocking receive and a blocking receive. When a process executes a non-blocking 

receive, it receives a message if it is present in the buffer of input messages. If the 

input buffer is empty, the processor is not blocked but continues execution. On the 

other hand, if a processor executes a blocking receive, an empty buffer forces the 

processor to wait for the next message to arrive. Execution of a receive returns the 

earliest message that arrived. No receive primitive that selectively receives messages 

from a specific source processor has been provided here.

4.2. STRATEGIES

In this section we describe the load distribution strategies developed for mapping 

tree searching algorithms onto non-shared memory architectures. The first two 

strategies here are relatively obvious and are studied to provide a baseline. We also 

explored two other strategies which are more sophisticated. The latter two strategies 

were tuned to give high utilization over a range of problems.
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In presenting these strategies the issue of program termination has been ignored. 

The process executing on each processor is described as an infinite loop. Execution 

actually terminates at the point where all processors and input-output co-processors 

become idle.

A related issue is the reporting of results at the end of the computation. The 

computation is begun by processing the root node of the search tree on processor 0, and 

one would ordinarily like the results reported back to this processor. This can be done 

as a separate step at the end of the computation, but requires only logP steps, and has 

been ignored here.

Tree Strategy

The simplest approach to tree-search problems is to map the search trees 

generated directly onto a tree architecture. One way of doing this is to let the root 

processor in a binary tree architecture process the root node of the search tree. Half of 

the children of the root node are sent to the left child of the root processor and the 

other half is sent to the right. Each of the processors below the root similarly send half 

the children spawned to their left child and the other half to their right child. This 

process continues until the leaf processors are reached. At that point, the leaf nodes 

carry out a simple depth first search of the nodes that they have.

There are two main difficulties with this approach. For large search trees, the 

leaves of the tree architecture end up doing all the work. Since in a binary tree 

architecture, half of the total number of processors are leaf processors, the utilization 

with this strategy, can be expected to be only close to 50%. The other drawback of this 

strategy is that there is no load balancing. Thus, on unbalanced trees, the utilization
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can be expected to drop even further, as there will be some overworked leaf processors, 

expanding large subtrees, while other leaf nodes remain idle. It remains to be seen, 

however, how effective other sophisticated strategies are, in dealing with the case of 

different trees.

Round Robin

The round robin strategy is a simple strategy, using a large amount of 

communication. In this strategy, each processor, when processing a node, spawns all its 

children, and sends them to other processors in a round robin fashion. A high level 

view of the algorithm is presented in Listing 4.1.

As is evident from the algorithm this is a very message intensive strategy. Each 

node in the tree leads to a message, and hence the total number of messages in the 

network, under this strategy, is only one less than the total number of nodes in the tree. 

No heuristics are used for distributing the workload among all the processors and the 

idea of exploiting neighborhood connections is not used either. Due to the long 

distance packet-switching communication used, this strategy may be able to distribute 

workloads very uniformly among the processors. However, the important research issue 

is whether adequate load balancing can be achieved with less message intensive 

strategies.

Askwork

The next strategy considered, Askwork, is one of the strategies we have developed, 

which makes use of heuristics to obtain better load balancing. In Askwork, work is 

distributed on the basis of work request messages sent to neighboring processors when a
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begin — robin strategy 
prime :=  87;

— a prime number is chosen so as to avoid clustering 
— of messages near the low numbered processors.

if ( processor number — 0 ) then
nextprocessor prime mod number_ofprocessors
foreach child of node 0  do 

send ( nextprocessor, child)
nextprocessor := ( nextprocessor + I ) mod num berpf processors  

end_foreach 
e n d jf

loop ~  all processors execute this code, 

workpiessage :=■ blockpeceive ()
nextprocessor (processorpumber * prime) mod number p fp r o c e s s o r s

foreach child of workpiessage node do 
send ( nextprocessor, child)
nextprocessor ( nextprocessor +  1 )  mod number p fp r o c e s s o r s

end_for each

end_loop

end — robin

Listing 4.1 Robin Strategy

processor becomes idle. Thus Askwork does not employ long distance communication, 

but uses communication between processors directly connected in the network.

Initially, processor 0 distributes all the children of the root node of the search tree 

in a round robin fashion. Each processor maintains a list of unexpanded nodes, 

w orkjist. It successively performs a depth first search on the subtrees rooted at each 

node in this list. During this process, if a work request message arrives from a 

neighboring processor, an unexpanded node from the end of the workjist is sent. The
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begin — askwork strategy

if  ( processor number =  0 ) then — do a round robin distribution o f children o f root node 
next_processor := I 
foreach child of node 0 do 

send ( next_processor, child)
next jprocessor  :=  ( next_processor  +  1 ) mod number j o f  p rocessors  

end_foreach 
e n d j f

loop
while notjempty (work_list) do

while ( work jrequestjnessage ) and ( length( w o rk jis t ) >  2 ) then
— I f  there is a pending workjrequest message and
— number of nodes in the work list is greater than 2,
-- honor the work request message by sharing work.

node /=  extract_from_end ( workjiist) 
send( requesting p ro cesso r , node ) 

end_while
— Process a node

node extract_f rom_top ( w orkjiist )
foreach child of node do

push_onjop ( w o rk jis t, child ) 
end_for each 

endjwhile
-- W ork list is empty at this point, process work messages i f  any,
— otherwise request work from  neighbors 

workjmessage := non_block_receive ();
if ( workjnessage  < >  null) then

pushjonjtop ( w o rk jis t, work ̂ message.node ) 
else

foreach neighbor heard from  since last request message sent 
send ( neighbor, workjrequest ̂ message) 

endJ~or each
w orkjnessage  :=  blockjreceive () 
p u sh jo n jo p  ( w o rk jis t, workjnessage.node ) 

e n d j f

e n d jo o p

end — askwork
Listing 42  Askwork Strategy
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processor honors work request messages only if its w orkjist has more work than a 

predefined cut-off value. When a processor becomes idle, it sends out work request 

messages only to those neighbors who have sent work since the last round of work 

request messages were sent. A high level view of this algorithm is presented in Listing

4.2.

There are three ways in which the Askwork strategy tries to minimize the message 

traffic. First, work is always sent from the bottom of the w o rk jis t, so that as much 

work as possible is transferred in one send. Secondly, an experimentally chosen 

constant serves as a cut-off point, for honoring work request messages. If the workload 

falls below this value, the processor simply expands its own nodes, ignoring work 

request messages sent by its neighbors. Finally, work request messages are sent out 

sparingly. If a processor has not heard from one of its neighbors since the last time 

request messages were sent out then there is no need to send it another work request 

message.

Knowledge

The last strategy developed here, Knowledge, uses heuristics as well as ’’knowledge” 

of the workload of neighboring processors, to achieve load balancing. Like Askwork, the 

Knowledge strategy exploits neighborhood connections during communication, but it does 

not use the concept of work request messages. Instead, if a processor ’’believes” that it 

has a lot more work than one of its neighbors, it sends work to that neighbor. For this 

purpose each processor maintains a table, neighbor_work_estimates, that reflects the state 

of the workload on all of its neighbors. The current workload of the processor is 

transmitted along with each work message sent to a neighbor. The receiving processor
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begin — knowledge strategy
initialize ( neighborjvorkjestimates )
if  ( processor number — 0 ) then ~  do a round robin initial distribution 

next^processor := 1 
foreach child of node 0 do 

send ( next_processor, child)
next jprrocessor ( next_processor +  1 ) mod number jo f  _processors

end_for each 
e n d j f

loop
while notjempty (w o rk jis t) do

while ( length(workJist) >  15  * minimum(neighbor_work_estimates) ) 
and ( length(workJist) >  2 ) do 

node :=  extractJrom jend ( w o rk jis t) 
send( processor_with_minimum_workload, node ) 
update (neighbor_work_estimates) 

end_while
— Process a node 

node ex tra c tJ ro m jo p  ( w o rk jis t )
foreach child of node do

push_onJop ( w o rk jis t, child ) 
endJoreach

end_while — Work list is empty at this point

w orkjnessage non jb lockjeceive  ()
~  i f  there is a work message, receive it, else wait fo r  one to arrive

while ( workjnessage  < >  null) do
pu sh jon jop  ( w o rk jis t, workjnessage.node ) 
update( neighbor jvork jestim ates ) 
workjnessage := n on jblockjeceive () 

endjvhile

if  ( empty (w o rk jis t) then
workjnessage := b lo ck jece ive  () -  wait fo r  a work message
p u sh jo n jo p  ( w o rk jis t, workjnessage.node ) 
update( neighbor jvork jes tim a tes  ) 

e n d j f  
en d jo o p  

end — knowledge
Listing 4 3  Knowledge Strategy
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updates its neighbor_work_estimates table based on this information.

As in the strategy Askwork, after an initial round robin distribution, each processor 

maintains a list, w orkjist of unexpanded nodes. During the process of performing a

depth-first search each processor tries to keep track of the neighbor with the minimum
\

workload. If the minimum is less than some predefined factor of the processor's 

current workload, the processor sends out a node from the end of the w orkjist to this 

neighbor. It then updates its own neighbor work estimates table by incrementing the 

workload of its neighbor.

When a processor becomes idle, it services any pending work messages. If there 

are none, it is blocked until work arrives. A high level view of the strategy is presented 

in Listing 4.3.

In this strategy, knowledge about the workload of the neighbors is maintained, in 

an attempt to keep the load distribution balanced. Since communication about 

workloads is piggy-backed on the work messages being sent, this strategy may lead to 

balanced workloads without the communication intensity of Askwork.

4.3. COMPARISON OF STRATEGIES

In this chapter we have presented four different strategies for mapping tree- 

searching algorithms onto non-shared memory architectures. The first of these, the Tree 

strategy, is an obvious strategy for tree connected architectures. The other three 

strategies have been designed without any assumptions about either the underlying 

network or the topology of the search tree being mapped.
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Of the other three strategies, Robin, was chosen as a baseline even though it may 

be quite message intensive. One of the issues here is how well the simple round robin 

distribution strategy performs relative to more subtle strategies.

The last two strategies being proposed here, are attempts to exploit our knowledge 

of multiprocessor environments to obtain even load distributions with lower message 

traffic. In the first of these, Askwork, processors distribute work only to idle neighbors 

requesting work. The final strategy, Knowledge, is similar in that both strategies use 

only local communication. This strategy differs from Askwork in that processors 

maintain knowledge tables on which decisions on whom to send work to are based. 

Because this approach uses workload information piggy backed on work messages, 

instead of separate work request messages, it may turn out to have lower message 

traffic than Askwork. The issue is whether it will be as effective at balancing workload.

Strategies similar to Knowledge have been considered by Gray et al[10] and by 

Burton and Huntbach[6]. Dissimilarities between our approach and theirs exist both 

because their architectural assumptions are significantly different, and also because they 

use different mechanisms for obtaining estimates of the neighbor’s workload. Gray et 

al utilize a polling mechanism wherein each processor polls its neighbors to check their 

status. If any of the neighbors is idle, and the processor has enough work it transmits a 

part of its workload to the neighbor.

Burton and Huntbach[6] maintain workload estimates of their neighbors as in our 

system. The processors send work to their neighbor if the destination processor has less 

work. The workload information, as in our strategy, is piggy-backed onto the work 

message. This information is sent to the neighboring processors, in each com m unication
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cycle. Thus if in a communication cycle, if a processor does not need to send work to 

its neighbor, it sends a dummy message containing just its workload. This is in contrast 

to our strategy, wherein messages are sent only if work has to be transmitted.



CHAPTER 5

SIMULATION EXPERIMENTS

5.1. Introduction

The objective of the research here is to study the performance of tree searching 

on non-shared memory architectures. There are several ways of approaching this 

objective. The principal alternatives are the use of theoretical tools such as queueing 

theory, the use of existing parallel architectures, and the use of simulation techniques.

The approach followed here is simulation, since simulation offers strong 

advantages over the other two approaches. Queueing theory is an elegant approach, but 

cannot deal with algorithms of the complexity of the load distribution strategies 

proposed here. Also, one of the issues of interest here is the impact of search tree 

topology on execution speed. It would have been impossible to accurately assess this 

impact via queueing theory methods.

A second approach is the use of working parallel architectures. We had access to 

the eight processor NASA Finite Element Machine[12], and could have obtained remote 

access to a Denelcor HEP[27]. There is a clear advantage to this approach; by using 

working parallel architectures one necessarily takes into account all relevant details. 

On the other hand, this approach is highly inflexible and makes it difficult to vary 

architectural parameters, such as the number of processors, interconnection topology, 

and the relative speed of communication.

52
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The great advantage of simulation is flexibility, since it allows one to vary 

architectural parameters simply by changing a parameter in the simulator. Thus it is 

possible to rapidly explore a wide range of architectural and algorithmic options. With 

simulation, there is always the issue of the level of detail required, and whether the 

simulation results accurately reflect performance realities. However, with sufficient 

care, simulation is one of the most useful approaches to parallel computing research.

5.2. Simulator Design

During our research two different simulators were employed. The first of these 

was an instruction level multiprocessor simulator written by D. Gannon and students at 

Purdue University. With this simulator, the user writes programs in a parallel dialect of 

C, which are then compiled into assembly code to execute on a hypothetical 

architecture consisting of networked microprocessors. The simulator then interprets the 

code executing on each microprocessor.

With a simulator of this level of detail, the simulated execution time of a program 

will be virtually identical to its execution on corresponding hardware. On the other 

hand, with this level of simulation the computation time required can be quite large. 

For our problems, simulating the execution of tree search problems having search trees 

with two thousand nodes required twelve CPU hours on a VAX 11/750. Such large 

execution times would have precluded the exploration of more than a small number of 

architectural and algorithmic options.

In order to accomplish our goal of studying the interaction between tree search 

algorithms, architectures, and load balancing strategies, we switched to a higher level 

and less detailed simulator. There are several high level architecture simulators
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available. We used one written by J. Van Rosendale and P. Mehrotra in connection 

with their research on parallel languages and parallel run-time environments.

As with the simulator written by D. Gannon, this simulator executes a dialect of 

C, but is not an instruction level simulator, and is in fact much closer in concept to the 

Simon simulator, Fujimoto[8]. This simulator was specifically designed to execute very 

rapidly, thus permitting the study of MIMD architectures having thousands of 

processors. This is in sharp contrast to the situation with instruction level simulators, 

where simulation of large programs and complex architectures is prohibitively 

expensive. Since our goal was to study a large number of choices of algorithms and 

architectures, this high level simulator was ideal for our purposes.

This simulator executes a CSP-like dialect of C, which is compiled by the standard 

Unix C compiler, after a special extra pass through the C preprocessor. Our basic 

scheme for using this simulator is shown in Figure 5.1. The process simulator and 

network simulator are separate modules, which execute concurrently as coroutines. 

Thus, one can change networks and processor modules independently. The processors 

are simulated using standard event queue simulation techniques, while the packet- 

switched communication networks, which operate synchronously, are simulated without 

the use of event queues.

Unlike the related Simon simulator, which times VAX instructions, the various 

system clocks here are incremented by special instructions the user inserts in his code. 

Thus one can arbitrarily set the time of each operation of interest, thus controlling the 

architectural assumptions. In our work, we allocate time to process each node in the 

search tree, to spawn each child of a node, and to send, receive, and forward messages.



55

Search
tree
file

Process
code

Network

simulator

Tree
search

algorithm

Multiprocessor

simulator

Figure 5 J  Organization of the Simulator 

The processors in this simulator execute asynchronously, and each has its own 

associated clock. All operations we perform, except message routing and forwarding, 

consume time on these processor clocks. Routing and forwarding messages is the 

responsibility of the co-processors, which operate synchronously under the global 

network clock. Time on these coprocessors is consumed by sending and receiving 

messages, and also by forwarding messages.

Following the assumptions in Chapter 2, we make the assumption here that the 

co-processor can transmit a message on each communication channel in one clock cycle, 

requiring time t . Here t  is a relative time, meaningful only in relation to the time the 

processors require to process or spawn a node, assumed here to take unit time.
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Under these assumptions, a message requires between four and six t  units to go 

from one processor to a neighboring processor, assuming no message contention. The 

lower bound of 4 arises as follows. It takes one clock cycle for a processor to place the 

message in the buffer region of its co-processor. The co-processor requires one clock 

cycle to take the message from the buffer and route it to the input port of the 

destination PE. The co-processor of the destination processor requires another clock 

cycle to transfer the message from the input port to the buffer region of its processor. 

The destination processor finally requires another cycle to ’’receive” the message. 

Hence a total time of at least four t  is required. This is the minimum possible. 

Messages may take up to 6 cycles, since they may have to wait part of a network clock 

cycle as they pass between the processors, which run under asynchronous clocks, to the 

co-processors, which run under the global network clock.

To utilize the simulator, the user writes a process in a C dialect, which consists of 

the C language with extensions for communication. The compiled version of this 

process executes on each processor in the simulated system. For each of the search 

problems to be simulated, a separate sequential program was run to generate the 

underlying search tree, as shown in Figure 5.1. This approach allowed the load 

distribution strategy to be coded independently of the search problem.

Besides the search problem and the load distribution strategy, in each run of the 

simulator the following factors were set: the interconnection network, the number of 

processors P , and the relative network speed, p. Here p is the inverse of t ,  the time per 

network clock cycle. The simulator generates several performance statistics, the most 

important of which is the average utilization or the speed-up achieved. These
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quantities are related as follows:

speed-up = utilization * P.

5.3. Analysis of Simulation Experiments

To study the behavior of the load distribution strategies, a number of simulation 

experiments were carried out. Five factors were varied during these experiments. 

These factors and the values over which they were varied are listed in Table 5.1. Note 

that p is varied from 0.1 to 10.0. Here p = 1.0 means that t ,  the network clock cycle, is 

equal to the time required to process or spawn a node. Smaller values of p imply a 

slower network and conversely. This combination of factors gave rise to more than 

2000 simulation runs, generating a large amount of data which can be studied from 

many different viewpoints.

Factor Values

P 22, 23, 24, 2s, 26

P 0.1, 032,1 .0 , 3.16,10.0

Problems Knights, Queens, TSP, Quadrature_i, Quadrature_ 2

Networks Bus, Complete, Hyper, Ring, Tree

Strategies Tree, Robin, Askwork, Knowledge

Table 5.1 Factors varied during simulation experiments
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To facilitate this study, we divide the issues into two broad categories which we 

analyze separately; the effect of network topology and the effect of the load balancing 

strategies. We study the effect of network topology, by looking at the performance of 

the different networks under varying circumstances. The results achieved are discussed 

in relation to the theoretical analysis of the networks done in Chapter 2.

After that we examine load distribution strategies, looking first at strategy Tree, 

which maps search trees onto a tree architecture. The performance of this strategy is 

compared to that of the other load distribution strategies when they are used on the 

tree network.

Finally we study the the other three load distribution strategies. We look at the 

way the performance of these strategies is affected by the speed and size of the 

networks and by other factors. In particular we look at the underlying search tree 

generated by the different problems and relate the parameters of the search trees 

discussed in Chapter 3 to the performance of the load distribution strategies.

5.3.1. Network Topology

The five networks under consideration were theoretically analyzed in Chapter 2. 

In this section we study the relative merits of these different networks when they are 

used with the load distribution strategy Robin. This strategy is more communication 

intensive than the other strategies and uses long distance packet-switched 

communication rather than neighborhood connection.

We present two sets of graphs, Graphs 5.1 and 5.2, in this section. In the first set, 

Graphs 5.1, the first graph plots speed-up versus the number of processors, while the 

second graph plots speed-up versus the communication to computation speed ratio, p.
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In both graphs the knight's tour search tree is used.

Graph 5.1a shows the speed-up that can be obtained on different networks as P  is 

increased from 4 to 641. The value of p is 1.0, that is, the time needed to spawn a child 

of a node in the search tree is equal to the time needed for a message to be sent across 

a channel. As the number of processors is increased, the performance of different 

networks seems to mirror the throughput column of Table 2.1. The throughput of the 

bus, ring and tree is essentially constant, independent of the number of processors, in 

the network and this is reflected in the flattening out of the speed-up curves. In fact 

for a bus there is essentially no change with respect to P  while for ring and tree the 

flattening occurs at slightly later points reflecting the higher constants in the throughput.

In contrast to the bus, the hypercube network shows an almost linear increase in 

its speed-up as the number of processors is increased. The throughput of the hypercube 

was seen to be proportional to P , the number of processors, reflecting this linear speed

up. The complete network also achieves linear speed-up, which does not seem to reflect 

the 0 ( P 2) theoretical throughput. This is a consequence of the fact that the 

architectural assumptions of the simulator are slightly different from the ones assumed 

in our theoretical analysis. Here each processor can send only one message per 

communication cycle, since each message has to be transmitted to the co-processor, 

requiring time t . Consequently, each processor can send only one message per network 

clock cycle. Hence the throughput for a complete network is 0 { P )  rather than 0 ( P Z),  

as theoretically calculated in Chapter 2. Note that this difference in architectural 

assumptions does not affect the other networks, since their throughput is at most 0 { P )

1 For the tree network the number of processors is always 2k—1 rather than the listed 2k .
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anyway.

The next Graph 5.1b shows the speed-ups achieved as a function of relative 

communication speed, p. In this graph, the number of processors, P , is 32, and the 

underlying search tree problem is the knight’s tour. With faster communication (higher 

values of p) performance differences between the networks become less evident, and all 

but the bus do about equally well. When communication is slower, a correspondence 

between the throughput column of Table 2.1 and the performance of networks can be 

seen again. That is, message contention and throughput determines the speed-up.

The next set of graphs, Graphs 52, show the speed-up that can be achieved by 

each of the load distribution strategies on the different networks. For the tree network, 

we present four strategies, including the Tree strategy. Here the number of processors 

on each of the networks is 32 and the relative communication speed p is 1.0. The first 

graph, Graph 52a presents the data for the knight’s tour problem, which has a 

balanced search tree, while the second graph, Graph 5.2b looks at the problem 

quadrature 1, which has a highly unbalanced search tree.

For the knight’s tour problem, most of the networks seem to perform well. The 

higher bandwidth complete and hypercube networks do better than the rest, while the 

bus does worse. By contrast, on an imbalanced search tree, such as that generated by 

the first quadrature problem, the performance of all networks has dropped. The 

balanced search tree leads to a better distribution of the work and to higher speed-ups, 

while for an unbalanced search tree, some processors finish their work sooner than 

others, leading to poor utilization. This observation holds for all networks except the 

bus network, which has uniformly poor performance.
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In this section, we have presented several graphs in order to characterize the 

performance of the various networks under consideration. All the graphs presented 

lead to the same conclusion, that the complete and the hypercube networks perform 

much better than the other networks. The ring and the tree networks have 

intermediate performance while the bus has the poorest performance. This closely 

reflects the theoretical analysis given in Chapter 2.

Of course, the high performance of the complete and hypercube networks is 

achieved at a cost. The cost of the hypercube network, as shown in Table 2.1, is a 

factor of log/* more than that of the bus, ring or tree. But with the hypercube 

interconnection, speed-ups a factor of three higher than that of a ring or tree are 

achieved with 64 processors. Thus if the cost of the network is not the dominant cost 

in the computer, the hypercube interconnection seems strongly preferable to a tree or 

ring interconnection.

With the assumptions made in the simulator, the complete connection network 

does not show up well. Our simulator assumptions imply that it has only 0 (P )  

throughput, while its cost is 0 ( P 2). This network would look better under different 

assumptions, but it is generally acknowledged that the complete connection network is 

too expensive to construct for large number of processors. The hypercube network, and 

related networks like the shuffle and cube-connected cycle network, having mean 

intemode distance 0(logP),  appear to be generally the most cost effective networks.
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5.3.2. Performance of the Tree Strategy

It is natural to study the possibility of performing tree searching on a tree 

architecture. In the last chapter, a strategy Tree, was developed, that was tailored to 

this architecture. In this section, we compare the performance of this strategy with that 

of the other strategies on the tree network.

The first set of graphs, Graphs 53, represents the performance of the different 

strategies as the number of processors on the tree network is varied. The Tree strategy 

seems to perform well for problems with a balanced search tree. This can be seen from 

the Graphs 53a-c for the knight’s tour, the eight queens, and the traveling salesman 

problem respectively. For unbalanced search trees, the Tree strategy does not perform 

as well as the other strategies, as seen in Graphs 53d-e. This is as expected, given the 

manner in which the Tree strategy distributes load. Work is divided between the two 

children of the current processor node in the network. This division of work is 

continued until the leaf processors are reached, which process the entire subtree rooted 

at each of the nodes that they are given. Thus, for a balanced search tree, all leaf 

processors end up with approximately equal work. This leads to high utilization of the 

leaf processors, with little communication costs.

On the other hand, when the search tree is unbalanced, the leaf processors end up 

with an uneven distribution of work, leading to poor utilization. In such a situation, 

strategies such as Askwork and Knowledge perform better, since work can migrate 

between nodes to achieve better balance. The Tree strategy is much worse for 

unbalanced trees, as can also be noted from Graph 5.4, where the speed-up achieved by 

the various strategies are presented as a bar graph.
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For balanced search trees, the performance of the Tree strategy seems to be 

dependent on the structure of the search tree. The strategy does better for queens and 

the traveling salesman problem than for the knight’s tour. The search tree generated by 

the knight’s tour has a smaller average breadth than the queens and the TSP search 

trees. Also the knight’s tour search tree has a smaller number of nodes at levels nearer 

the root node. For example, since the knight’s initial position is in the comer of the 

board, there are only two possible initial moves, and thus there are only two children 

for the root node. Thus for the knight’s tour, the processors in the tree architecture 

nearer the root finish their part of their work quickly, since they do not have many 

nodes to process. This leads to poorer utilization.

On the other hand, for the eight queens problem or the traveling salesman 

problem, depending upon the number of processors in the network, work may reach the 

leaf nodes before processors higher up in the tree have finished their processing. For 

the eight queens problem, the root node has 8 children, and for the traveling salesman 

problem, the root node has, in our case, 6 children. This seems to lead to a pipelining 

effect, in which all processors in the tree architecture are simultaneously active. The 

result is a surprisingly high utilization of the processors for these problems.

The set of graphs presented in this section show that the Tree strategy does as well 

or better than the other strategies for balanced search trees and especially for balanced 

and bushy search trees. This is particularly true with large number of processors (i.e. 

P -  32 or 64 ) and must be because the Tree strategy is tuned to the tree network and 

can distribute the load to the leaf processors with little communication overhead. With 

smaller number of processors the distinction between strategies is not as evident.
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On the other hand, with unbalanced trees the Tree strategy performs very poorly. 

As was seen in the last section, the hypercube and complete networks performed better 

than the tree network for both balanced and unbalanced search trees. Thus, if a priori 

knowledge of the tree is not available, one should not choose the Tree strategy.

5.3.3. More General Strategies

In the last section we concentrated on the Tree strategy. In this and the next 

subsection we study the other three strategies. Here we look at basic issues such as how 

the communication speed and the network size affect the performance of the strategies. 

In the next section we look in more detail at each of the three strategies studying both 

their speed-ups and utilization.

Performance as a Function of Communication Speed

Graphs 55  present the performance of the three strategies for the different search 

trees, as the communication speed p is varied. For these graphs the number of 

processors, P , is fixed at 32, while the network is the hypercube. As expected, all three 

strategies do a better job of distributing work if the search trees are balanced and if 

communication is fast. The strategies Robin and Askwork achieve almost linear increases 

in speed-up as the communication becomes faster. The effect of increasing 

communication speed is unpredictable for the Knowledge strategy. This strategy 

attempts to send very few messages and thus factors other than communication speed 

seem to be important in this case. However, at low communication speed, the strategy 

Knowledge achieves higher speed-up than the other two strategies. This is true for all 

the problems.
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Performance as a Function of Network Size

The next set of graphs, Graphs 5.6, show the performance of the three strategies 

as a function of the number of processors P . The network is again set to be the 

hypercube, while the communication speed is set to 1.0. Graph 5.6a shows that the 

speed-up achieved by the Robin strategy is approximately linear in the number of 

processors. As will be shown later, the utilization is almost independent of the number 

of processors for this strategy on networks like the hypercube having 0(P)  throughput. 

This is a consequence of the fact that this strategy generates the same number of 

messages regardless of the network or number of processors.

The second strategy, Askw ork, does well for moderate numbers of processors, but 

does poorly for 64 processors. In this strategy a processor sends out work-request
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messages to its neighbors when it becomes idle. These messages are overhead messages 

which do not perform any ’’useful” work. It may be that even for the hypercube 

network, where each processor has only IogP neighbors, the total number of work- 

request messages sent by this strategy is too large, and saturates the network if there 

are a large number of processors. This issue would be less critical for larger problems 

having more inherent parallelism.

The last strategy, Knowledge, seems to perform well on all problems except 

quadrature^, which generates a narrow and deep search tree. This strategy has a 

behavior similar to that of Robin though the ’’envelope” of performance is more spread 

out. As already stated, the behavior of this strategy is subtle and difficult to interpret.
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Interaction of Networks with Strategies

With the next set of graphs, Graphs 5.7, we compare the behavior of the strategies 

on each of the networks, attempting to understand the way the strategies and network 

topologies interact. Graph 5.4 in the last section gave similar data but only for the tree 

network.

On the complete connection, Graph 5.7b, the strategy Knowledge performs very 

well, because each processor can keep track of the workload of all other processors. 

This system wide information allows the strategy to distribute the workload uniformly. 

The rich interconnection pattern helps the strategy Robin also in the distribution of the 

workload, though it does not perform as well as Knowledge.

On the other hand the rich interconnection pattern reduces the efficiency of the 

Askwork strategy. This can be attributed to the fact that in Askwork a processor sends 

work-request messages to all neighbors when it is idle. The rich interconnection pattern 

thus implies that the network is flooded with work-request messages, causing contention 

which delays actual-work messages. Thus the Askwork strategy performs poorly on the 

complete network. In principle, this problem could be fixed by considering a modified 

Askwork strategy, in which each processor sends work-request messages to only a limited 

subset of its neighbors.

A similar behavior is seen for the bus network in Graph 5.7a. Here again each 

processor is considered a neighbor of every other processor, but in this case the bus 

itself acts like a bottleneck reducing the overall performance. The Knowledge strategy, 

which minimizes communication, performs much better than the other strategies on the 

bus network. The high message traffic, generated by both Robin and Askwork reduce
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their performance considerably.

The hypercube network, Graph 5.7c, provides an interesting contrast to the above 

two networks. This network has low mean intemode distance and high throughput, but 

the number of neighbors of each processor is only logP, for P processors. Here the 

Askwork strategy comes into its own, performing better than the other two strategies, in 

most cases.

On the ring network, in Graph 5.7d, we find Robin doing better than the other two 

strategies. The reason for this is that in Askwork and Knowledge, work is passed only to 

neighbors. Thus after the initial round robin phase, work moves in wavefronts around 

the ring. With the Robin strategy, on the other hand, the long distance packet-switched 

communication yields better load balance and higher speed-ups.

The data for the Tree network was presented in Graph 5.4 in the last section, 

where we saw that Askwork performed better than the other two strategies. Here the 

situation is similar to the hypercube. The tree interconnection is less richly 

interconnected than the hypercube network, but has smaller mean intemode distance 

than the ring, allowing Askwork to distribute work better. In a tree network each node 

has at most three neighbors, thus limiting Knowledge's ability to efficiently distribute the 

workload.

The set of Graphs 5.7, indicates that the strategy Knowledge performs better on 

networks which have a rich interconnection pattern, since then each processor has more 

knowledge about the system. On the other hand, Askwork does poorly if the number of 

neighbors of each processor is large, since in this case too many work-request messages 

are sent out. It is interesting to note that on the highly unbalanced search tree,
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quadrature_l, the brute-force strategy Robin out performs the other strategies on most 

networks.

5.3.4. Detailed Analysis of Strategies

In this subsection we look at each of the three strategies, studying their 

performance as functions of the number of processors and relative communication 

speed. Here we freeze the knight’s tour as the underlying search problem. Though in 

principle one gets the same information by plotting speed-up or utilization, it is often 

difficult to visually infer utilization from speed-up and conversely. Because of this, we 

plot both speed-up and utilization here as functions of the number of processors. We 

also plot speed-up as a function of the communication speed p, for the specific case of 

32 processors.

Robin

The first set of graphs here show the Robin strategy. Note that Graph 5.8a and 

5.8c duplicate Graph 5.1a and 5.1b. From Graph 5.8b one can see that the utilization

for hypercube and complete networks is nearly independent of P , the number of
\

processors, while it degrades for the bus, ring and tree. This is due to the fact that the 

throughput for the hypercube and complete connection networks is proportional to P , 

and hence the network is able to handle the increased traffic generated by Robin. For 

the other three networks the throughput remains constant and thus as the network size 

(and message traffic) increases the utilization drops rapidly.

Graph 5.8c presents the speed-ups achieved by Robin, as a function of the network 

speed p. As noted before, for lower communication speeds (smaller values of p) the
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performance reflects the throughput of the network. With increasing communication 

speed, p, as the penalty for co m m unication decreases, the Robin strategy performs well 

on all networks.

Askwork

The second set of graphs, Graphs 5.9, show the performance of the Askwork 

strategy. When the number of processors is small, Askwork achieves very high 

utilization on all networks. As the number of processor increases, the topology of the 

networks starts influencing the performance. The performance of Askwork is worst for 

the bus and complete connection network, as reflected by both Graph 5.9a and 5.9b. 

For networks with smaller number of neighbors, Askwork does a good job of distributing 

the workload.

Knowledge

The last set of graphs, Graphs 5.10, depict the performance of the strategy 

Knowledge as a function of the number of processors, and the communication speed. 

The Knowledge strategy generates the least number of messages of all the strategies 

studied here. However, subtle effects due to the order of execution of the nodes of the 

search tree can arise with this strategy. Such effects were not seen for the other 

strategies, since the number of messages they generated was large and co m m unication  

dominated all other factors. The performance of Knowledge appears to be far less 

predictable than the other strategies, and is difficult to analyze. '



80

3 2 .0
P ro b lem  i K n ig h t 's  Tour 

C o m m in ic e tlo n  S peed  « 1 .0
□ T P L E T I
HYPER

1 6 .0

RING
8.0  -

BJS

i0 .0

G reph 5 .8 e i  S peed -up  v s .  n o . o f  p r o c e s s o r s  f o r  ROSIN s t r a t e g y

1 .0
P ro b lem  i K n ig h t 's  T our 

C o m n u n ica tlo n  Speed  i 1 .00 . 9

0 .6

0 .7

0 .6

0 .5

0 .3

0.2

BU5
0.0

5 74
G ra p h  5 . 6 b t  U t i l i z a t i o n  v s .  n o .  o f  p r o c e s s o r s  f o r  RC01N s t r a t e g y



81

3 2 .0
P rob lem  ■ K n ig h t 'a  Tour 

f ta rb e r  o f  P r o e e s a o r a  •

BU5

1 6 .0

8.0

0 . 0
10.0

G raph 5 .8 c i  S p eed -u p  u s .  com m unication  s p e e d  f o r  H09IN s t r a t e g y



82

3 2 .0
P ro b lem  ■ K n ig h t 's  Tour 

C om m unication  S peed  • 1 .0

1 6 .0

8.0

BJS

0.0

f r a p h  5 . 9 a i  S p ee d -u p  v s .  n o . o f  p r o c e s s o r s  f o r  s t r a t e g y

1.0
P ro b lem  i K n i g h t 's  T our 

Cormvin 1 c a t  1 on S peed  i 1 .00 .9

0 .8

0 .7

0.6

0 .5

0 .4

0 .3

G ra p h  5 . 9 b i  U t l l i e a t l o n  v s .  n o .  o f  p r o c e s s o r s  f o r  ASKWUhK s t r a t e g y



83

3 2 .0
Prob lem  i K n ig h t 's  T our 

t im b e r  o f  P r o c e s s o r s  •

HYPER

TREE16 .0

8.0 RING

0 .0
10.0

G raph 5 . 9 c i S peed -u p  v s .  c o m u n le s t  ton  sp eed  f o r  ftSWJORK s t r a t e g y



84

3 2 .0
P ro b lem  i K n i g h t 's  T our 

C o m n u n lca tlo n  S p eed  i 1 .0

2 4 .0

TREE
BUS

6 .0

RING

0.0

G raph S . lO a i  S p e ed -u p  v s . n o .  o f  p r o c e s s o r s  f o r  KNQ^t-EDSE. s t r a t e g y

.0
P ro b lem  • K n ig h t 's  T our 

C om m unication  S p eed  t 1 .00 . 9

0 . 8

0 .7

0 . 6

0 .5
HTFERCUBE

0 .4

0 .3

0 .2

RING

0 . 0
2
G raph 5 .1 0 b i  U t i l i z a t i o n  v s .  n o . o f  p ro c e s s o rs  f o r  ICO-v_£DGE s t r a t e g y



85

3 2 .0
P rob lem  ■ K n ig h t 's  Tour 

Number o f  P ro cesso rs t

1 6 .0

a.o

R1NS

0 .0
10.o

G reph 5 . 10ci S p eed -u p  s/e. c o im u n lc e t  to n  speed fo r  KfO-i-LLXx. e t r e t e g y



CHAPTER 6

CONCLUSIONS

In this thesis we have studied some of the issues involved in mapping tree 

searching algorithms onto non-shared memory multiprocessor architectures. Tree 

searching is employed in a wide variety of application areas. We chose four different 

algorithms for the purpose of this study. These were the eight queens problem, the 

knight's tour on a 4 by 4 board, the traveling salesman problem on a network of seven 

cities, and two problems in numerical quadrature. As seen in Chapter 3 the first three 

problems generated well-balanced search trees while the quadrature problems gave rise 

to narrow and unbalanced search trees.

These tree searching problems were mapped onto five topologically different 

architectures. Besides the interconnection pattern, the size and speed of the network 

were also varied. We devised four different load distribution strategies. The Tree 

strategy was tuned to the tree network, while Robin was a simple minded strategy which 

distributed work in a round robin fashion. The Askwork strategy used the concept of 

work-request messages. Work was sent out by a processor on receiving such a message 

from its neighbor. The Knowledge strategy attempted to maintain the workload 

information about the neighbors on each processor. Such information was then utilized 

to parcel out work to neighbors. All of these strategies were independent of the 

network topology (except for the Tree strategy) and used no a priori knowledge of the 

search tree. This approach was taken in order to find strategies which are both 

effective and robust.

86
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6.1. General Conclusions

Several broad conclusions can be drawn from our study. We did not find any one 

strategy which performs uniformly well on all networks and on all problems. The 

variety of factors characterizing the networks and the problems have subtle effects on 

the performance of the strategies, leading to complex behavior.

For example, consider the ’’richness” of the interconnection pattern. On a richly 

interconnected network such as the complete connection network, the potential for 

distributing work is high and we see that Knowledge performs very well. However, the 

larger number of neighbors works against the Askwork strategy, which generates work- 

request messages for all neighbors. Similar behavior patterns are seen with the bus, and 

of course, the bus is itself a bottleneck.

The Askwork strategy performs better on networks such as the hypercube and the 

tree, because of the small number of neighbors there. In such a situation, Knowledge 

does not have enough system wide information to perform well. The Robin strategy 

does not do as well as either Askwork or Knowledge on any of those networks. 

Surprisingly, Robin works better on the ring network than the other strategies apparently 

because it does long distance communication rather than communication with 

neighbors, as in the other strategies. This results in better load distribution on this 

network. All of these effects were observed on both balanced and unbalanced search 

trees, the difference being that on unbalanced trees all strategies did worse than on 

balanced trees.

The behavior of the strategies with increasing number of processors is also 

complex. For networks with small number of processors, all strategies performed very



88

well, including Robin, achieving utilization of 90% or higher. For larger networks the 

amount of inherent parallelism in the problem started to play a more important role. 

In general, for large number of processors we found that the strategy Knowledge, which 

utilized the least amount of communication in distributing the workload, did better than 

the other two strategies, Askwork and Robin.

Similar behavior was seen while varying the communication speed for the various 

networks. For faster networks all strategies performed well since communication was 

not penalized. With slow communication Knowledge did well because of its lower 

message traffic.

The fourth strategy, Treey was devised specifically for the tree network. It was 

found that this strategy performed well only when the underlying search tree was 

extremely balanced and bushy near the root node. Under such circumstances, a 

pipelining effect aided in achieving higher speed ups.

In comparing networks we found that the hypercube network proved to be the 

most cost-effective of the five networks studied. This is not surprising in view of its 

high theoretical throughput and moderate cost. The complete connection network did 

equally well under most circumstances but is considerably more costly than the 

hypercube. The tree network performed surprisingly well considering its constant 

throughput, perhaps because mean internode distance also plays a significant role. As 

one could have anticipated, the ring and the bus performed poorly, the bus being the 

worst of the two.
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6.2. Limitations of Study

Several simplifying assumptions were made during our study, and given more time 

one could have made a more detailed study. The principal assumption made here was 

that separate subtrees of a search tree can be searched in parallel. This is a severe 

restriction as it rules out several important algorithms such as branch and bound, and 

alpha-beta pruning[19].

There were also several relatively minor simplifying assumptions made here. One 

of these was that the time to execute or spawn a node in the search tree was taken to 

be a fixed constant, independent of the problem or the particular node in the search 

tree. This is a reasonable simplifying assumption, but, for example, the time taken to 

test a board position in the eight queens problem may depend on the number of queens 

already present. Better treatment of this issue might alter our results slightly, but 

would not have a major effect.

We also assumed that the messages sent between processors were of constant size, 

independent of the problem. This is also a natural simplifying assumption, but one 

which could be altered in a more detailed study.

In simulating the distribution strategies, we have also ignored the overhead due to 

the strategy itself. This penalizes simple strategies such as Robin which do not have 

much overhead over more sophisticated ones such as, Knowledge, in which knowledge 

tables have to be maintained. A more detailed simulation would have included this 

overhead.

Though the simplifying assumptions just described are particular to the simulation 

study performed, similar assumptions are inevitable with computer simulation studies.
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Given more time we would have liked to study tree searching and load balancing issues 

on working parallel architectures such as Pringle and NASA Finite Element Machine. 

Such experiments would be useful not only in validating our simulation results, but also 

in demonstrating the practical value of this approach to parallel computation.
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