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ABSTRACT

Tree searching is a fundamental technique in computer science, having ap-
plications in combinatorial optimization, artificial intelligence, robotics, database
searching, operations research, numerical analysis, and computer game-playing.
The research here focuses on the problem of mapping tree searching algorithms
to non-shared memory multiprocessor architectures. Though there is substantial
parallelism in most tree searching problems, this parallelism can be difficult to
exploit on highly parallel machines interconnected via a packet-switched network.
Our work is directed at discovering heuristically based adaptive load distribution
algorithms which can distribute the load nearly uniformly over the processors, with-
out incurring excessive communications costs. Factors affecting the performance of
these strategies, such as interconnection network topology, network size, commu-
nication speed, and the particular search tree problem, are studied via simulation.
Results obtained show that relatively simple load balancing strategies car map tree
searching algorithms to parallel architectures quite well.
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CHAPTER 1

INTRODUCTION

1.1. Importance of parallel tree searching

Tree searching is a fundamental technique in computer science, with applications
in many diverse areas. Tree searching algorithms are used primarily in problems where
a sequence of choices must be made in finding the solution. For example, in the field
of artificial intelligence, tree searching algorithms are used in game playing and in
natural laﬁguage understanding. In robotics, tree searching is used in path planning
algorithms. It is also used in combinatorial optimization problems, such as the traveling
salesman problem and bin packing problems. Such combinatorial optimization problems
occur in a variety of contexts, such as maximizing the utilization of the available
resources in operating systems and factory production lines. Tree searching also occurs

in adaptive numerical algorithms, computer graphics, and robot collision detection.

Tree searching algorithms have been seriously studied for many years because of
their wide range of applications. An important characteristic of many tree search
problems is their high computational complexity[2]. Combinatorial search problems, in
particular, often have complexity exponential in the problem size. Various pruning
techniques, such as alpha-beta pruning and branch and bound strategies, are often
employed to reduce this complexity[19]. These techniques greatly réduce the size of the
tree to be searched. However, they are problem specific and applicable only on a

subset of tree search problems. Many problems remain in which the construction of a



large search tree is the only reasonable algorithm known.

Recently, with the advent of parallel computers, the possibility of exploiting
multiprocessor architectures in tree searching has begun to receive serious
attention[6,10,30]. There is a natural match between tree search algorithms and
parallel architectures because of the inherent parallelism of these algorithms. This is
especially true since it appears possible to split tree search problems into relatively

independent subproblems, which can be executed in parallel.

In this thesis, we study the issues involved in mapping tree searching algorithms
onto non-shared memory architectures. The proper distribution of the subproblems on
the processors becomes critical as one tries to maximize the utilization of the processors.
Our research is directed at discovering heuristically based adaptive load distribution
algorithms which can distribute the work nearly uniformly over the processors, without

incurring excessive communication costs.

1.2. Multiprocessor Architectures

A variety of multiprocessor architectures have been designed and built. These
multiprocessor architectures can be characterized on the basis of several factors, such as
the type of memory access and interprocessor communication hardware. Architectures
can be classified as shared memory or non-shared memory depending on whether all the
memory is directly addressable by any processor. In shared memory systems, such as
the Carnegie Mellon CM*[9] and the CRAY XMP, processors communicate by
accessing shared data structures in the common memory. Non-shared memory
architectures, such as the Caltech Cosmic Cube[24] the Purdue Pringle[13,14] and the

NASA Finite Element Machine[12] are characterized by the fact that each processor



has only local memory. In such systems, processors communicate via message passing,
rather than by reading and writing in the shared memory. The time required to
communicate in non-shared memory systems depends strongly on the interconnection

structure.

Non-shared memory systems can be further classified according to whether their
interconnection networks are multi-stage or single-stage[29]. In a multi-stage network,
interprocessor communication is established via several layers of switches
interconnecting the processors. In single-staged networks, the processors are directly
interconnected, with no intervening switches. Multi-stage networks can be circuit-
switched or packet-switched. In circuit-switched networks a direct electrical path is
established between source and destination, while in packet-switched networks store
and forward communication is employed. Single-stage networks are universally packet-
switched. Similar classifications apply to processor-memory interconnection networks in

shared memory systems.

In this research, we concentrate on non-shared memory architectures consisting of
a number of interconnected processors, each having its own local memory. These
processors are interconnected via a single-stage packet-switched communications
network. Such architectures are attractive, since they are highly scalable, and
computers with large numbers of processors can be built in this fashion. However, such

architectures are also more difficult to program than the more expensive shared

memory architectures.



1.3. Parallelism in Tree Search Algoritams

Tree search algorithms contain a great deal of parallelism. This is true since
subtrees rooted at sibling nodes of a tree can be searched independently. Consequently,
once a node has been assigned to a processor, this processor can search the whole
subtree rooted there, without requiring any communication with other processors. The
need for communication arises only when work needs to be redistributed between
processors, and also when the answers produced by searching subtrees are combined to
give the final answer. Thus, unless dynamic load balancing is used, the need for
communication is quite minimal. Note that this is true only for an exhaustive tree
search, where pruning is not employed. Pruning techniques generally require
knowledge of all parts of the tree currently being expanded, which in turn requires
additional communication. Our goal is to study parallelism in tree searching problems

under the most favorable assumptions, and thus we did not look at pruning issues.

The performance of a tree search algorithm on non-shared memory architectures

seems to be dependent on many factors, including:

(1) the interconnection network topology

(2) the load distribution strategy

(3) the ratio of the speed of communication to computation

The network topology in non-shared memory systems dictates the penalties incurred
due to the communication demands of a parallel algorithm. A particular
interconnection pattern may be very well suited to a particular parallel algorithm, while
being totally unsuited for some other algorithm. The networks studied here are: a bus,

a complete connection, a hypercube, a ring, and a tree network. These five networks



were selected as being representative of packet-switched communication networks used

in multiple microprocessor architectures.

A second important issue is load distribution. The purpose of a load distribution
strategy is to optimize the utilization of a parallel system by balancing the work load on
the processors; and the performance of a parallel architecture can vary dramatically
with the load distribution strategies used. Several simple load distribution strategies
requiring few assumptions about the underlying interconnection topology and about the

characteristics of the tree being searched are examined in this thesis.

The relative speed of communication network in a non-shared memory
architecture is also clearly important. The faster the network, the more potential there
is to spread work evenly throughout the network. However, it maybe possible to
compensate for slow communication by using a more sophisticated load distribution
strategy. This is one of the types of questions we wish to answer through our study.
To this end, load distribution strategies of varying sophistication, and possibly of varying

message intensities were chosen for study.

For this research, we picked four problems for our study: the eight queens
problem, the knight’s tour problem, the traveling salesman problem and an adaptive
quadrature problem. Each problem is solved through the generation of a large search
tree. We simulate the execution of the tree search algorithms on non-shared memory
architectures, in order to assess the effectiveness of different load balancing strategies

and the effect of different networks and different communication speeds.



1.4. Background

Two recent papers, have also addressed some of the issues we are studying. Gray,
McCormack and Haralick[10] have experimented with the mapping of the consistent
labeling problem on two interconnection topologies, a ring and a hypercube. Their
approach is to parameterize the important factors in their load distribution strategy, in
order to study the effects of varying these parameters in simulation experiments. Their
load distribution strategy is based upon a forward checking pruning algorithm which
provides knowledge about the size and complexity of the subproblem that is yet to be

handled.

Several different parameters were varied in their study. Two different search
strategies breadth-first and depth-first were utilized. Secondly, the size and number of
subproblems passed to a neighbor was varied. The cut-off point, at which a processor
completes its subproblem rather than subdivide and pass it, was also varied. Simulation

runs were made for two different networks: the ring and a 64 processor hypercube.

Their load distribution strategy is based on polling. Each processor polls its
neighbors, after processing each node, and passes work to idle neighbors. This is in
contrast to other approaches, where processors interrupt neighbors and request work.
The minimum execution time was found for the depth-first strategy, when the
subproblem size passed was large and the number of subproblems passed was

approximately half the total work on the processor.

Burton and Huntbach[6] in their research, have viewed the tree being searched as
a tree of processes. They define their load distribution algorithm for these processes,

together with the interconnection network chesen, as a virtual tree machine. They
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have chosen their interconnection network. from a family of networks called binary n-
cubes. Each processor is capable of running more than one process. Their load
distribution strategy is priority based; children nodes having a priority one greater than
their parent. Thus, a priority queue of processes resides on each processor during run
time. A processor, in the absence of any communication with its neighboring
processors, carries out a simple depth first search for the node with the maximum depth
in the tree. When a processor has to decide which process to transfer to another
processor, it chooses one with the least priority, thus transferring as much work as
possible in one transmission. A process can migrate only once. Hence, only local

communication is required.

In order to balance the workloads of all processors, a processor sends work to a
neighboring processor only if the destination processor has less work than itself. Thus,
every processor communicates its current workload to each of its neighbors at every
communication cycle. Computation and communication proceed in parallel. One
difficulty they encountered was that the information a processor received from its
neighbors was often out of date, thus reducing the effectiveness of their load

distribution algorithm.

Burton and Huntbach have chosen to measure the performance of their virtual
tree machine by processor utilization. Their simulation results, based on a "well
behaved” tree algorithm show that the execution time of a program can be divided into
three parts: start-up period, when work diffuses through the network; main period,
when processor utilization is almost a 100%; and wind-down period, when little or no

work is left for distribution purposes. Their wind down period is longer than the start



up period because processes cannot migrate more than once. It was found that the
main period of execution was longer on larger problems. But as the number of
processors increases, larger problems are needed to saturate the architecture and

achieve high utilization.

1.5. Overview of Thesis

Our research, though similar in spirit to the work described in the last section,
focuses on issues that have not been investigated before. Our approach is to investigate
several algorithms and several load distribution strategies, comparing the difference in
their performances. Chapter 2 discusses the different network topologies considered.
Chapter 3 describes the tree search problems studied. The search trees generated by
these problems are classified according to several parameters. Chapter 4 describes our
load distribution strategies and the reasons for choosing these strategies. Chapter 5
presents the results of our simulation experiments. It examines the performance of
these load distribution strategies from a variety of points of view. Finally, the thesis

~

concludes with a short summary in Chapter 6.



CHAPTER 2

ANALYSIS OF NETWORKS STUDIED

The internode communication network in a multi-microprocessor system is perhaps
the most critical part of the system, having a strong impact on both system performance
and algorithm choice. In this chapter we describe the five interconnection network
topologies studied in this thesis. Next we examine their theoretical performance and
cost effectiveness. This theoretical analysis is intended as a background to prepare the
way for understanding the simulation results given in Chapter 5. Before presenting the

five networks, some of the factors distinguishing various networks are described.

2.1. INTERCONNECTION NETWORKS

A wide variety of networks have been proposed and many have been implemented
recently, largely because of the availability of low cost microprocessors and the
advances in VLSI technology[18]. However, there does not seem to be any “best”
interconnection network because the cost-effectiveness of a particular network depends
on many factors. These factors include the complexity of the computational tasks to be

performed on it, the desired data transfer rate, and the practical realizability of the

system.

Our attention is focussed on single-stage packet-switched networks. The reason
for choosing this class of networks is two-fold. First, the load distribution strategies
being explored here generate communication patterns which are not known a priori.

Packet-switched networks give us the flexibility to develop load distribution strategies

10
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which are independent of network topology. Circuit-switched networks[3,15,23] are
difficult to use unless all data movements are preplanned. Second, the higher
bandwidth possible with multi-stage networks seems unnecessary for tree searching
problems. We would expect to be able to extract the parallelism of these problems
without massive communication, and thus the less expensive single-stage networks

should suffice for this problem class.

In this chapter we examine the theoretical performance of the networks studied
based on several criteria, the total cost of the network, the mean internode distance,
and the network throughput. This analysis follows closely that given in Reed[21]. It is
also possible to study interconnection networks by looking at the set of permutations
they pass[26] or by using queueing theory techmiques[21]. Looking at the set of
permutations passed is a valuable approach for circuit-switched networks but is not
applicable here. Queueing theory, on the other hand, is a dual appfoach to the
analytical approach followed here. Queueing theory has advantages, such as the ability
to treat the case of bounded buffers, but also gives only approximate answers. For the

situations here, either approach would be equally appropriate.

2.2. NETWORKS STUDIED

In the following sections we describe and analyze the five interconnection
networks that were simulated. In this section we describe the five interconnection
networks. Section 2.3 gives the routing algorithms needed in each of the networks to
implement long distance packet switched communication. Next, section 2.4 defines the
criteria by which we look at the performance of these networks. In section 2.5 the five

networks considered are analyzed according to these criteria. The chapter ends with
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some remarks in section 2.6 on the relative utility of these various networks. In the

following discussion, the total number of nodes in the system is represented by P.

The five interconnection networks are a bus, complete connection, hypercube,
ring, and a tree. These networks seem to be fairly representative of single-stage

packet-switched networks. All have been used in multi-microprocessor architectures.

Bus

In a bus network all P nodes are connected directly to a single shared bus, as
shown in Figure 2.1. Bus arbiters, also known as bus controllers, resolve contentions.
The Intel 432[1] is an example of a bus network. CMU’s Cm*[9] is a loosely coupled
bus network, where there is a hierarchy of bus levels. Buses are easy to implement and
are efficient for small numbers of nodes. With a large number of nodes, bus contention

limits the utility of this system.

Complete Connection

The complete connection network consists of interconnections between each pair
of nodes (Figure 2.2). Thus each node requires P-1 ports to connect to all other nodes.
Its main disadvantage is the large number of channels and ports involved. But it is
quite practical for a moderate number of nodes and is studied here partly because it

provides an upper bound on network performance.

Hypercube

A hypercube network joins nodes such that a node can communicate with any of
the nodes whose address, when written in binary, differs from it in any one bit. The

hypercube network is based on the concept of arranging nodes on the vertices of a



Y

Fioure 2.1 Bus Interconnection Network

Figure 22 Complete Interconnection Network

Figure 2.3 Hypercube Interconnecrion ivetwork
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hypercube of dimension D where D =log P. Thus each node is connected to log P
nodes as shown in Figure 2.3. The Caltech Cosmic Cube[24] is based on a hypercube

network.

Ring

A ring network consists of P nodes, connected together inn a circle (Figure 2.4).
Node i is connected to nodes i +1 mod P and i-1 mod P. Messages are passed around
the ring in one or both directions. The ring network studied here is bidirectional.
University of Maryland’s ZMOB[22] consists 256 nodes connected by a unidirectional

ring.

Tree

The tree network consists of a binary tree with processors residing at cvery node
as shown in Figure 2.5. Each node is connected to its parent and its right and left
children. The root of the tree has only left-child and right<hild conneciions, while the
leaf nodes have only a parent connection. We consider here only complete binary trees
with P = 2*-1 nodes, for some k. The tree network is the only asymmeiric network we
bave considered in our study, which means that the network topology is different as
seen from different nodes. The tree machine being built at University of North
Carolina[17] is an example of a tree network. A tree machine has also been built at

Caltech[4,5].

2.3. Routing Algorithms

In packet-switched networks, each node in the network receives messages and

forwards them towards their destination through a sequence of intermediate nodes. In



Figure 24 Ring Interconnection Network

Figure 25 Tree Interconnection Network

15
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the event that the communication channel required for forwarding a message is busy,
the message is stored in a buffer and is forwarded on once the channel becomes clear.
In our analysis, we presume that infinite buffers are available at each node for storing

such messages.

The algorithm required to route messages at intermediate points is dependent on
the network under consideration. For several of the networks studied here, the routing
algorithm is completely trivial and little needs to be said. For others, there are
subtleties involved, and the routing algorithm selected can affect the performance of

the network.

Consider first the bus network. Hardware bus arbiters are used in a bus to resolve
bus contention. A node attempting to send a message contends for the bus, and when
it gets control of the bus, the message is transmitted immediately to the destination
node. No intermediate nodes are involved.

In the complete connection network, each node is connected to all other nodes, so

messages are again directly transmitted from source to destination. With this network,

in each communication cycle, P messages can be transmitted.
In a hypercube network, a node is directly connected to logP neighbors. As the

message is routed through the network the following algorithm can be used to

determine the next node:
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xor_vector := present_address XOR destination_address
i ;= position of a random non-zero bit in the xor_vector

send message to the i-th neighbor

Note for P nodes, the address of a node requires logP bits, so that the xor_vector has
logP bits. It can be shown that using this routing algorithm, algorithm, a message
requires at most logP steps to reach its destination. The random choice introduces
non-determinism in the sense that two messages sent from the same source to the same
destination may take different routes and hence arrive out of order. There exist
alternate routing algorithms which are determinate and preserve the order of message
arrival[16].

The routing algorithm for bidirectional ring networks is simple. Every message is
forwarded around the ring in the clockwise or counter clockwise direction, depending

on which direction leads to the shorter path. Note that the average distance traveled by
. P
a message is .
The routing algorithm for a tree is more complex. If a message is not at its

destination, then the following algorithm can be used to forward the message one step

closer to its destination:
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if (destination node in subtree rooted at the present node)
then
if (destination node in subtree rooted at the right child of present node)
then
send to right child
else

send to left child

else
send to parent

This routing strategy requires a simple kernel routine, dependent on the node

numbering scheme, to determine whether a node is in a given subtree.

2.4. Network Performance Criteria

The performance of the networks considered can be studied from many
viewpoints. In this chapter we consider several standard performance measures. Some
of these measures depend on the assumption one makes on the locality of message
traffic. The worst case assumption, taken here, is to assume a uniform message
distribution. This means that all nodes are equally likely to originate messages, and the

destinations of these messages are uniformly distributed.

Cost

The total cost, C, of a network is proportional to the total number of nodes P,

plus the number of communication channels L. Note that in counting the number of
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communication channels, in most cases, it is easiest to determine the number of
channels attached to each node, multiply by the number of nodes, and then divide by

two,

Mean Internode Distance

The mean internode distance gives an estimate of the average communication time
for messages, assuming there is no contention between the messages. The mean
internode distance is the average number of channels traversed by a message as it filters

through the network, assuming a uniform message distribution.

For a symmetric network, we can calculate the mean internode distanice in the
following manner. The probability that a message requires m channel traversals to

reach its destination is:

o(m) = 75,

where k(m) is the number of ncdes at distance m from any given node. Then the
average number of channels traversed by a message, i.e., the mean internode distance [T
is:

p=3 mdm)

m=]

_"m= k(m)
2"

where m p,, is the maximum number of channels a message can traverse.
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Throughput

The throughput of a network is the average number of messages reaching their
destination per unit time, under the assumption of a uniform message distribution. This
definition assumes that messages are never lost and eventually reach their destinations.

Assuming infinite buffers, throughput is quite easy to calculate.

The idea is as follows. One assumes that each node sends a message to every
other node. Some fraction v of these P(P-1) messages will pass through any given
channel. One then computes the total time taken by this channel to forward these
v P (P-1) messages. Dividing this total time by P(P-1) gives the average amount of
time required by this channel to service any of the P(P-1) messages. Note that this
time may be much less than the time taken by this channei to forward a message, since
many messages may avoid this channel, thus requiring zero service time. This analysis

can be applied to all channels in the network.

The next step is to select one of the bottleneck channels. For most symmetric
networks, all channels are topologically equivalent, and it does not matter which one is
selected. For asymmetric networks, like the tree, the bottleneck channel must be more
carefully selected. Now, assuming that uniformly distributed messages are being
continually sent as fast as the network can handle them, and assuming infinite buffers,
one can conclude that the bottleneck channel will have 100% utilization. Given 100%
utilization, and given that this channel is a bottleneck, it follows that the number of
messages that the network can deliver per second is the inverse of the amount of time
it takes this channel to service the average message. Thus the throughput of a network

can always be calculated by looking at the bottleneck channel.
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For the special case of symmetric networks, the throughput can be calculated
easily from p, the mean internode distance. This analysis requires the additional
assumption that all channels are topologically equivalent. The mean internode distance
is the average number of channels traversed by a message. If a channel can forward
messages simultaneously in both directions in time r, the time to service the average

message in the system is

service_time =

R

where L is the total number of channels in the system. Thus the throughput will be:

2.5. Analysis of Networks

The five networks being considered can be studied in terms of the performance
measures described above. These measures are perhaps not sufficient to indicate
exactly how a network will perform in any given application, but they give a strong

indication of their relative suitability.

Bus

In a bus network, each node is connected to the bus through a communication
channel. Hence, there are as many channels as nodes. Using the cost measure defined

carlier, the total cost C of a bus network is equal to

CBUS=P + L = 2P.

This analysis does not include the cost of the bus itself. The mean internode distance

Meys =1
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because each node has direct access to all other nodes.

m a bus based system, the bus itself is the bottleneck, because only one node at a
time can get access to the bus. The throughput of a bus can be calculated by viewing
the bus as a critical resource. Since only one message can be transmitted on the bus at

any time, the throughput must be:

1
Opys = —.
BUS =

Note that the throughput of the bus is independent of the number of nodes on it.

Complete Connection

Since each node in a complete connection network is attached to P-1 channels,

the total number of channels in the network is:

_ P-1)

LCOMPIEI'E 2

Hence the total cost of a complete connection is:

P(P-1 P2+ P
Ccomprere = P + (2 ) = ) .

This quadratic cost in the number of nodes is the principal reason that a complete
connection network is considered impractical. The mean internode distance on a
complete connection network is one, since each node is connected to all other nodes.
The throughput on a complete connection network is easily calculated from the formula

for symmetric networks given earlier:

_ P(P-D)

6 COMPLETE T
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Hypercube

In a hypercube network with P nodes, each node is connected to log P channels.

Therefore,
P log
Lyypercupe = __ZSE
Thus the total cost, in this case, is:
Pl Io
CHYPERCUBE =P + J;P; =P —'éz’ + 1].

The mean internode distance is calculated as follows. The number of links a
message travels in a hypercube is equal to the number of bit positions that are different
in the source and destination address pair. Messages are all uniformly distributed, thus
the probability that a particular bit in the source and destination address is different, is

half. Since the number of bits is logP, the average number of bits different in the

source and destination address pair is -I-c-’gﬁ This analysis includes messages sent to

itself by a node. Since our model excludes those messages, a correction factor of (PP D

has to be included. Thus the mean internode distance is

log P|_P PlogP
WHYPERCUBE = 02 P -1 = 2(Po-—1)
which asymptotically simplifies to:
logP
WHyPERCUBE =~ 02 .

The throughput of a hypercube is
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{re]

OuyPERCUBE =~ -

. PlogP
2P-1)

Simplifying,

_ 2P-1)

OyypERCUBE :

Ring
The total cost of a ring is

CMG-_—ZP,

since there are P nodes and P channels. The mean internode distance is

PZ
KRING = 4P-1)

for a bidirectional ring with an even number of nodes. This is approximately % for

large P, indicative of the fact that the average message needs to travel only one-fourth

of the way around the ring.

Using the formula for symmetric networks, we can calculate the throughput of a

ring as follows:

2p _ 8(P-1)
P 2 P
a(P-1)

OpnG =

which is asymptotically

Orivg =

-
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Tree

In a tree with P nodes there are P ~ 1 channels. One calculates the number of
channels by thinking of each node, except the root node, as “owning” the channel
between this node to its parent. Since there are P-1 channels, the total cost of a tree is

Crres = 2P - 1.
Unlike the other networks considered here, calculating the mean internode distance of
a tree network is quite complex. A careful analysis is given in the appendix of Reed’s

thesis[21]. The main result is that the mean internode distance is given by:

2 k 2X1(2x+1) _ 6251
@ -1D(2'~1) (2x-1-1

where P = 2t-1. This expression is complex, but is clearly asymptotic to:

=2k -6=2log(P+1)-6.
On a tree network, the channels attached to the root node are the bottleneck
channels[7,25]. Suppose each node sends one message to every other node. To

compute the throughput one calculates the percentage of these P(P-1) messages which

will pass through either of the channels attached to the root. Let g = 52-—1 be the

number of nodes in each of the subtrees of the root. Then there are 292 messages
passing through the root from between the nodes of these subtrees. There are also 2g
messages passing between either subtree and the root. Thus there are

29° +2
of the P(P-1) messages passing through the bottieneck channel, which becomes:

P-1HEk +1
> .

Thus the percent of messages passing through the bottleneck is:
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P +1
T

It follows that the throughput of this network is:

v =

1
erm:s“m

-2 _
TaP +1)°

As one can easily see, the throughput of a tree is approximately constant, independent

of the number of nodes:

4w

Orree =

2.6. COMPARISON OF NETWORKS

The performance measures computed for the five networks are summarized in
Table 2.1. In several cases lower order terms have been neglected and we give only the

asymptotic results.

Viewing throughput as the most critical performance measure, the networks here
fall into two classes. The complete connection and hypercube have throughput growing
at least linearly in P. On the other hand, the bus, ring and tree have throughput which
is asymptotically constant. Thus, for large number of processors, the latter three

networks are probably inappropriate for message intensive problems.

The higher performance of the complete and hypercube networks is reflected in
their higher cost. The quadratic cost of the complete connection may make it
impractical in many cases. However, high performance and PlogP cost of the
hypercube shows the great attractiveness of this network, and related networks, such as

the shuffle[28] and cube-connected cycles[20] not considered here.
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Number Mean
Networks of Cost Internode Throughput
' Channels Distance
: L C 1! 0
P m
1
Bus P 2r 1 -
T
2
Complete P )] P7+P 1 Pl ()]
2 2 T
Hypercube fl—ggg P _lggf_H] = ngﬂ A_}:_-l).
. =P =8
Ring P 2P 7 -
Tree P-1 2P-1 = 2og (P +1)-6 = -i—

Table 2.1 Network Parameters

There may be problems where the throughput is not the critical parameter and

instead the message delays are important. If the network is lightly loaded and thus

almost contention free, message delays will be proportional to mean internode distance.

Viewed this way, the ring is by far the worst and the bus and the complete connection

are somewhat better than the hypercube or tree. It remains to be seen which of these

factors plays an important role in our simulation experiments.



CHAPTER 3

TREE-SEARCHING ALGORITHMS

Tree searching problems occur in a variety of application areas. In this chapter,
we describe the problems chosen for study here. We also characterize the search trees

generated by these problems on the basis of several parameters such as tree breadth and

depth.

3.1. ALGORITHMS STUDIED

For the purpose of this study, we bave chosen four tree-searching problems.
These problems are: eight queens, knight’s tour, traveling salesman and adaptive
quadrature. The eight queens and knight’s tour algorithms are examples of
combinatorial problems where one searches for feasible solutions. The traveling
salesman problem is a combinatorial optimization problem, where feasible solutions are
apparent and one searches for an optimal solution[31]. Finally, the adaptive quadrature
algorithm here, is a simple example of numerical and graphics algorithms based on
spatial divide and conquer techniques[11]. The next four sections provide a high level

view of these algorithms.

Eight Queens

The eight queens problem is the well known problem of putting eight queens on
an eight by eight chess board in such a way that no queen checks another. Using the
fact that two queens cannot be placed in the same column, we can represent the

positions of the queens on the board as an array, queens, where queens[i] gives the

28
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program eight_queens;
begin
for column = I to 8 do
queens[column] := 0;
board_gen (queens, 1);

end,
procedure board_gen (queens: array[l.8] of integer; column: integer);
begin

for queensfcolumn] = I to 8 do

begin

if test(queens) then
if column < 8 then
board_gen (queens, column+1)
else
printboard (queens);
end;
end;

Listing 3.1 Eight Queens

position of the queen in the i-th column. Given this representation, Listing 3.1 presenté
a recursive algorithm which computes all feasible solutions to this problem. Here zest is
a procedure which tests whether any of the queens on the board checks another. If
none do, the algorithm proceeds recursively to place queens on the next column. When
queens have been successfully placed on all eight columns, one of the solutions to this
problem has been found, and this answer is printed. Eventually all solutions will be

found.

Knight’s Tour
The knight’s tour problem is another chess problem, but one that is considerably

harder than the eight queens problem. Given a chess board, of size m by n, and a fixed



30

program knights_tour;

var path = array[l.m*n] of integer;
board = array[l.m,..n] of (visited, not_visited);

begin
initialize(board, path); I* initialize array board to not_visited
and path to 0 */

row :=1; col :=1;
board[row, col] := visited; /* put knight on square 1,1 */

move_num := I;
tree_search(move_num, row, col, path, board);
end.

procedure tree_search (move_num, old_row, old_col: integer;
path: array[l.m*n] of integer;
board: array[1.m,]..n] of (visited, not_visited));

begin
for direction := 1.8 do
begin
col = old_col + col_change(direction);
row := old_row + row_change(direction);

if valid_move(board, row, col) then
begin
board[row, col] := visited;
path{move_num] := direction;
if (move_num = m*n) then
print(path);
else

end;
board(row, col) := not_visited;
end;
end;

Listing 32 Knight’s Tour

tree_search (move_num+1, row, col, path, board);
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starting point for the knight, the proble:a is to find all paths on the board in which the
knight visits each square exactly once. A depth first search algorithm for this problem
is given in Listing 3.2. The array board, in the algorithm, indicates the positions on the
chess board already visited. Array path gives the sequence of directions the knight
moves in performing the tour. Kernel routines col_change and row_change, give the
position change for each of the knight’s eight possible moves. Routine valid_move
checks whether the new position will be on the chess board, and if so whether the

position has already been visited.

Traveling Salesman

The traveling salesman problem belongs to a very important class of problems
called NP-complete. Various other problems like warehouse location, job-shop
scheduling, graph partitioning, dynamic storage allocation and register allocation in
program optimization belong to the same complexity class. In the traveling-salesman
problem, a salesman desires a minimum mileage trip which visits each of n cities exactly
once, and returns to the starting city[19]. The array adjacency_matrix, in the algorithm
presented in Listing 33, gives the mileage between the cities. If two cities are not
connected, the mileage between them is set to -1. The array ciries indicates the cities
already visired, while the array parh gives the sequence in which the cities are visited.
Procedure find_minimum determines whether the current tour is shorter than the shortest

previous tour, and copies it into array minimum_path if so.
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program travel_salesman;

var adjacency_matrix : array[l.n, 1.n] of integer;
path, minimum_path : array[0..n] of integer;
cities s array(l.n] of (visited, not_visited);
begin

initialize (adjacency_matrix, path, cities);

path{0] := 1;
cities[ 1] := visited;
move_num = I;

path_find {move_num, path, cities);
print(minimum_path);

end;

procedure path_find (move_num : integer;
path

:array[0.n] of integer;
cities : array[l.n] of (visited, not_visited));

last_city := path[mov_num - I]

begin

Sor next_city = 1 to ndo
begin

if ( adjacency_matrix[last_city, next_city] <> -1)
and ( cities[next_city] = not_visited) ) then

begin
path{mov_nuwm]  := next_city;
cities[next_city] := visited,
if (move_nwm = n) then

find_minimum(path);
else

path_find (move_num + 1, path, cities);
end;

path{move_num] = 0;

cities[next_city] := not_visited;
end;

end;

Listing 3.3 Traveling Salesman
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Adaptive Quadrature

There are many important mathematical functions for which no analytical formula
for the integral is available. The standard numerical technique for computing the
integral of such functions is adaptive quadrature. We consider here the problem of
numerically integrating a real valued function of two variables over a rectangular
region. This can be done by dividing the region into cells and then estimating the value
of the integral over each of the cells using one of the standard numerical quadrature
formulas[11]. The total value of the integral in the region is then the sum of the values

of the integrals over the constituent cells.

While the integral value over each cell is being calculated the error in the
approximation can also be estimated. If the error in a cell is greater than a specified
tolerance level, the cell can be further subdivided and the integral and error over the
new cells evaluated. This subdivision of cells can be viewed as the construction of a
tree whose nodes represent the quadrature cells. Refinement of these cells is continued
until the error in each of the subcells meets the specified tolerance level. Thus smaller
cells will be created for areas where the function is changing rapidly and the
quadrature formulas are less effective. A recursive adaptive quadrature algorithm is
given in Listing 3.4.

In this algorithm, function quad_formula computes the integral on a cell. Function
error_estimate returns an estimate of the error in the approximation used in
quad_formula. If this estimated error is excessive, the cell is subdivided into four

subcells, and the function adapr is called recursively for each of these subcells.
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program quadrature;

begin
x0 = 00; xI := 1.0;
Y0 :=0.0; ylI := 10; [/* region for integration */

tolerance := 1.0e-2;
value := adapt(f, x0x1y0yI);
end;

Sfunction adapt(function funct: real; x0x1y0yl: real) : real;
begin '
error := error_estimate (funct, xX0x1y0y1);

if (error < (xI-x0) * (yI-y0) * tolerance) then
adapt := quad_formula(funct, x0x1y0,y1)

else

begin
xmid = 05%(x0 + xI);
ymid = 05%y0 + yl);
suml := adapt(funct, x0, xmidy0, ymid);
sum?2 := adapt(funct, x0, xmid,ymidyl);
sum3 := adapt(funct, xmid x1, y0, ymid);
sumd4 := adapt(funct, xmid xI, ymidyl);
adapt := suml + sum2 + sum3 + sumd4;

end;

end;

Listing 34 Adaptive Quadrature

3.2. CLASSIFICATION OF TREES

For our simulation experiments, we generated five different search trees. In this
section we will make an attempt to classify these trees based on several parameters.
Each of these parameters is a computable measure of one property of the tree. The

parameters are: depth, maximum breadth, average breadth, average branching factor,
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balance factor and size.

Depth

Thé depth of a tree is the maximum number of levels in the tree. Given infinite
parallelism, the execution time of an algorithm may be expected to be proportional to
the the depth of the tree. In an ideal situation, if there is a one to one mapping of the
tree on the architecture, and all the parallelism is being extracted, one can expect the

limiting factor to be wholly dependent on the depth of the tree.

Maximum Breadth

The maximum breadth of a tree is the maximum number of nodes at any level of
the tree. Maximum breadth of a tree gives the maximum parallelism inherent in the
problem. Hence, the maximum breadth provides an upper bound on the number of

processors which can be used for a problem.

Average Breadth

The average breadth of a tree can be defined as the average number of nodes in a

level. It is therefore,

>, number of nodes in level
levels

breadth =
average_ore number of levels

total number of nodes
depth of tree

Average breadth of the tree gives a measure of the average parallelism in the problem.

This factor largely determines the optimum number of processors needed for a problem.
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Average Branching Factor

The average branching factor of a tree is the average number of children of all

non-leaf nodes. The average branching factor turns out to be:

total number of nodes - 1
number of non-leaf nodes

There is no obvious relation between the branching factor and the ability to exploit

parallelism in tree searching.

Balance Factor

Balance of a tree is a more difficult concept to define. Our measure of the
balance of a tree is determined by computing a balance parameter at each node of the
tree, and then combining these to generate a single parameter. The balance of a node
is defined as the difference between the number of nodes in its largest subtree and the

number of nodes in its smallest subtree. The balance factor is then defined as:

>, balance_of _nodes
nodes

total number of nodes

balance_factor =

The balance of a tree is important, since the more unbalanced the tree, the more
difficult it will to be to distribute the load effectively across a parallel architecture. The
balance factor parameter defined here will be large for unbalanced trees, and zero for a

perfectly balanced tree.

The above six parameters, can be used to characterize the search trees generated
by the algorithms under study. We looked at five different search trees generated by
four algorithms. We solve the knight’s tour problem for a 4 by 4 chess board and also

the eight queens problem on an 8 by 8 chess board. A traveling salesman tour for a
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dense graph of 7 cities was computed. Finally, two different functions were integrated

by the adaptive quadrature algorithm, since the type of tree produced by this algorithm

was strongly dependent upon the function integrated. The two functions used are:

fi= @+

1
8

fa2 = absV(xZ +y9)-06

The parameters characterizing these five search trees are given in Table 3.1. In

each of these problems, there are free parameters, such as the size of the chess board

used for the knight’s tour or the tolerance in adaptive quadrature.

These free

parameters were selected so that all trees here would be approximately the same size.

Thus differences in multi-processor performance on these different tree search

problems, must be due to other factors, such as breadth or balance, rather than the size

of the tree.
Algorithms Depth Maximum Average Average Balance Size
Breadth Breadth Branching Facror
Queens 8 568 22856 156 052 2057
Knights 14 448 1482 152 049 2223
TSP 6 924 27271 195 035 1944
Quad_1 57 256 3595 4.0 69.17 2058
Quad_2 1 512 176.08 4.0 17.84 2113

Table 3.1 Characteristics of Trees
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As seen here, most of the trees have depth about 10. The exception is one of the
quadrature problems, Quad_1, which has a depth of 57, since it is performing deep
refinement at a point singularity. For the same reason, the average breadth of this
problem is almost an order of magnitude lower than the rest of the problems and the

maximum breadth is also smaller.

It is interesting to note that all the combinatorial problems give rise to branching
factors below two. This is due to the fact that most of the nodes in the tree are near

the leaves, where few combinatorial choices remain.

The most striking difference between the quadrature problems and the
combinatorial problems is in the balance factor. The quadrature trees are highly
unbalanced because cells in regions where the functions are singu\la:, will become highly
refined while the rest will not be. The combinatorial problems, where we have to make
a sequence of choices, seem to have a completely different character. It appears that
each of the early choices are almost equally likely to lead to solutions. For example, in
the traveling salesman problem (TSP), no matter which cities are visited first, we will

probably be able to complete a tour. Thus most of the nodes higher up in the tree,

tend to be well balanced.

In this chapter we have presented four different problems and characterized their
search trees. The search trees produced will be used in the simulation studies described
in Chapter 5 and the parameters characterizing these trees will be related to the

performance results obtained.



CHAPTER 4

LOAD DISTRIBUTION STRATEGIES

In the last chapter we discussed a number of tree-search algorithms and the types
of trees they generate. The goal in this thesis is to effectively map these algorithms
onto non-shared memory architectures based on the networks discussed in Chapter 2.
The non-shared memory architectures being considered here do not have a central
controller, and also there is no a priori knowledge of the structure of the search trees
being generated. Thus, the principal issue in mapping these problems to such

architectures is the dynamic balancing of the workload.

This chapter discusses a family of load distribution strategies. We begin by
presenting the architectural assumptions made for our simulation experiments. After
that, four load distribution strategies which were developed during the course of this
study, are described. These range from relatively simple strategies, used to give a
baseline for comparisons, to complex strategies, which seem to achieve high utilization
even on problems where load baiancing is quite difficult. Finally, we discuss the way in
which the strategies here relate to the general problem of load distribution on non-

shared memory architectures.

4.1. ARCHITECTURE MODEL

As noted before, we are assuming non-shared memory architectures, wherein the
processors operate in an asynchronous MIMD mode. The run-time environment used is

based on typical low-level message passing primitives. We look first at the processor

39
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model employed, and then discuss the run time environment.

Processor Model

The parallel systems that are to be studied in our researck consist of a set of
processor nodes, interconnected by a packet switched network. Each of these processor
nodes or processing elements (PE) is a simple microprocessor along with its local

memory.

In order to allow computation and communication to proceed in parallel, each PE
has a co-processor dedicated to input-output, as shown in Figure 4.i. In the absence of
this co-processor, the processor would have to be interrupted every time a message had

to be processed. This issue is particularly important with packet-switched networks,

Processor
Local memory
input ports @
coprocessor (| Output ports

Figure 4.1 Model of a Processing Element
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because of the large number of intermediate stores and forwards. The co-processor is a
micro-processor of simpler design than the processor, since its function is more trivial.

The local memory is dual-ported so that the co-processor can directly access it.

When a processor needs to send a message to another processor, it places the
message in a buffer region of memory, which the co-processor services when it has
time. Similarly, when a message is received from the network, the co-processor places
the message in the appropriate buffer region of memory and the processor fetches it
when required. Co-processor also maintains buffers in memory where they keep
messages being stored and forwarded in the packet-switched network. Since all buffers
here are regions in the local memory, whose sizes vary dynamically, they can be
potentially quite large. This is in contrast to other non-shared memory architectures
where small hardware buffers are employed. With the hardware assumption here, the

buffers are for practical purposes infinite, just as we assumed in Chapter 2.

We assume a simple run-time environment in which the processors are not
multiprogrammed. That is, a single process runs on each processor. One process is
started up on each processor at the beginning of execution, and execution continues
until all processors become idle. In situations such as ours, the children of any node
can be processed by invoking new processes for them, or by using recursive subroutine
calls. The context-switching overhead associated with implementing processes on a
single processor is generally higher than the overhead associated with a subroutine call.
Thus, if the granularity of parallelism is low, for example, if the amount of processing
needed at each node is very small, the process overhead would become significant.

Hence we have chosen not to allow multiprogramming on the processors.
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Communication Primitives
The processors communicate with each other via message passing. Each message
begins with a header containing, an origin processor number, a destination processor

number, and time stamp. The body of the message is a fixed length data field.

There are three simple message passing primitives, a “send” construct, and two
kinds of “receive” constructs. The send primitive can be utilized to send a message to
any other processor. This send is non-blocking, that is, after executing a send, a
processor does not have to wait for the message to be received, but can continue

executing immediately.

The run-time environment provides two means of receiving a message, a non-
blocking receive and a blocking receive. When a process executes a non-blocking
receive, it receives a message if it is present in the buffer of input messages. If the
input buffer is empty, the processor is not blocked but continues execution. On the
other hand, if a processor executes a blocking receive, an empty buffer forces the
processor to wait for the next message to arrive. Execution of a receive returns the
earliest message that arrived. No receive primitive that selectively receives messages

from a specific source processor has been provided here.

4.2. STRATEGIES

In this section we describe the load distribution strategies developed for mapping
tree searching algorithms onto non-shared memory architectures. The first two
strategies here are relatively obvious and are studied to provide a baseline. We also
explored two other strategies which are more sophisticated. The latter two strategies

were tuned to give high utilization over a range of problems.



43

In presenting these strategies the issue of program termination has been ignored.
The process executing on each processor is described as an infinite loop. Execution
actually terminates at the point where all processors and input-output co-processors

become idle.

A related issue is the reporting of results at the end of the computation. The
computation is begun by processing the root node of the search tree on processor 0, and
one would ordinarily like the results reported back to this processor. This can be done
as a separate step at the end of the computation, but requires only logP steps, and has

been ignored here.

Tree Strategy

The simplest approach to tree-search problems is to map the search trees
generated directly onto a tree architecture. One way of doing this is to let the root
processor in a binary tree architecture process the root node of the search tree. Half of
the children of the root node are sent to the left child of the root processor and the
other half is sent to the right. Each of the processors below the root similarly send half
the children spawned to their left child and the other half to their right child. This
process continues until the leaf processors are reached. At that point, the leaf nodes

carry out a simple depth first search of the nodes that they have.

There are two main difficulties with this approach. For large search trees, the
leaves of the tree architecture end up doing all the work. Since in a binary tree
architecture, half of the total number of processors are leaf processors, the utilization
with this strategy, can be expected to be only close to 50%. The other drawback of this

strategy is that there is no load balancing. Thus, on unbalanced trees, the utilization
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can be expected to drop even further, as there will be some overworked leaf processors,
expanding large subtrees, while other leaf nodes remain idle. It remains to be seen,
however, how effective other sophisticated strategies are, in dealing with the case of

different trees.

Round Robin

The round robin strategy is a simple strategy, using a large amount of
communication. In this strategy, each processor, when processing a node, spawns all its
children, and sends them to other processors in a round robin fashion. A high level

view of the algorithm is presented in Listing 4.1.

As is evident from the algorithm this is a very message intensive strategy. Each
node in the tree leads to a message, and hence the total number of messages in the
network, under this strategy, is only one less than the total number of nodes in the tree.
No heuristics are used for distributing the workload among all the processors and the
idea of exploiting neighborhood connections is not used either. Due to the long
distance packet-switching communication used, this strategy may be able to distribute
workloads very uniformly among the processors. However, the important research issue
is whether adequate load balancing can be achieved with less message intensive

strategies.

Askwork

The next strategy considered, Askwork , is one of the strategies we have developed,
which makes use of heuristics to obtain better load balancing. In Askwork, work is

distributed on the basis of work request messages sent to neighboring processors when a
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begin -- robin strategy
prime := 87;
-- a prime number is chosen so as to avoid clustering
-- of messages near the low numbered processors.

if { processor number = 0 ) then
next_processor := prime mod number_of processors
foreach child of node 0 do
send ( next_processor, child)
next_processor := { next_processor + I ) mod number_of _processors
end_foreach
end_if

loop -- all processors execute this code.

work_message := block_receive ()
next_processor := (processor_number * prime) mod number_of _processors

Jforeach child of work_message.node do
send ( next_processor, child)
next_processor := ( next_processor + I ) mod number_of processors

end_foreach
end_loop
end -- robin

Listing 4.1 Robin Strategy

processor becomes idle. Thus Askwork does not employ long distance communication,

but uses communication between processors directly connected in the network.

Initially, processor O distributes all the children of the root node of the search tree

in a round robin fashion. Each processor maintains a list of unexpanded nodes,

work_list. It successively performs a depth first search on the subtrees rooted at each

node in this list. During this process, if a work request message arrives from a

neighboring processor, an unexpanded node from the end of the work_list is sent. The
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begin -- askwork strategy

if ( pi'acessor number = 0 ) then -- do a round robin distribution of children of root node
next_processor := I
foreach child of node 0 do
send ( next_processor, child)
next_processor := ( next_processor + 1 ) mod number_of _processors
end_foreach
end_if

loop
while not_empty (work_list) do
while ( work_request_message ) and { length( work_list ) > 2 ) then
-- If there is a pending work_request message and
-- number of nodes in the work list is greater than 2,
-- honor the work request message by sharing work.
node := extract_from_end ( work_list)
send( requesting_processor, node )
end_while
-- Process a node
node := extract_from_top ( work_list )
Sforeach child of node do
push_on_top ( work_list, child )
end_foreach
end_while
-- Work list is empty at this point, process work messages if any,
-- otherwise request work from neighbors
work_message := non_block_receive ();
if ( work_message <> null) then
push_on_top ( work_list, work_message.node )
else
foreach neighbor heard from since last request message sent
send ( neighbor, work_request_message)
end_foreach
work_message := block_receive ()
push_on_top ( work_list, work_message.node )
end_if

end_loop

end -- askwork
Listing 4.2 Askwork Strategy
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processor honors work request messages only if its work_liss has more work than a
predefined cut-off value. When a processor becomes idle, it sends out work request
messages only to those neighbors who have sent work since the last round of work
request messages were sent. A high level view of this algorithm is presented in Listing

4.2.

There are three ways in which the Askwork strategy tries to minimize the message
traffic. First, work is always sent from the bottom of the work_lisr, so that as much
work as possible is transferred in one send. Secondly, an exberimentally chosen
constant serves as a cut-off point, for honoring work request messages. If the workload
falls below this value, the processor simply expands its own nodes, ignoring work
request messages sent by its neighbors. Finally, work request messages are sent out
sparingly. If a processor has not heard from one of its neighbors since the last time

request messages were sent out then there is no need to send it another work request

message.

Knowledge

The last strategy developed here, Knowledge , uses heuristics as well as “knowledge”
of the workload of neighboring processors, to achieve load balancing. Like Askwork , the
Knowledge strategy exploits neighborhood connections during communication, but it does
not use the concept of work request messages. Instead, if a processor “believes” that it
has a lot more work than one of its neighbors, it sends work to that neighbor. For this
purpose each processor maintains a table, neighbor_work_estimates , that reflects the state
of the workload on all of its neighbors. The current workload of the processor is

transmitted along with each work message sent to a neighbor. The receiving processor
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begin -- knowledge strategy
initialize ( neighbor_work_estimates )
if ( processor number = 0 ) then  -- do a round robin initial distribution
next_processor := I
foreach child of node 0 do
send ( next_processor, child)
next_processor := { next_processor + I ) mod number_of _processors
end_foreach
end_if

loop
while not_empty (work_list) do
while ( length(work_list) > 15 * minimum(neighbor_work_estimates) )
and ( length(work_list) > 2 ) do
node := extract_from_end ( work_list)
send( processor_with_minimum_workload, node )
update (neighbor_work_estimates)
end_while
-- Process a node
node := extract_from_top ( work_list )
foreach child of node do
push_on_top ( work_list, child )
end_foreach
end_while -- Work list is empty at this point

work_message := non_block_receive ()
-- if there is a work message, receive it, else wait for one to arrive

while ( work_message <> null) do
push_on_top ( work_list, work_message.node )
update( neighbor_work_estimates )
work_message := non_block_receive ()
end_while

if ( empty (work_list) then

work_message := block_receive () — wait for a work message

push_on_top ( work_list, work_message.node )
update( neighbor_work_estimates )
end_if
end_loop
end -- knowledge
Listing 4.3 Knowledge Strategy




49

updates its neighbor_work_estimates table based on this information.

As in the strategy Askwork , after an initial round robin distribution, each processor
maintains a list, work_list of unexpanded nodes. During the process of performing a
depth-first search each processor tries to keep track of the neighbor with the mlmmum
workload. If the minimum is less than some predefined factor of the Processor’s
current workload, the processor sends out a node from the end of the work_list to this
neighbor. It then updates its own neighbor_work_estimates table by incrementing the

workload of its neighbor.

When a processor becomes idle, it services any pending work messages. If there
are none, it is blocked until work arrives. A high level view of the strategy is presented
in Listing 4.3.

In this strategy, knowledge about the workload of the neighbors is maintained, in
an attempt to keep the load distribution balanced. Since communication about
workloads is piggy-backed on the work messages being sent, this strategy may lead to

balanced workloads without the communication intensity of Askwork .

4.3. COMPARISON OF STRATEGIES

In this chapter we have presented four different strategies for mapping tree-
searching algorithms onto non-shared memory architectures. The first of these, the Tree
strategy, is an obvious strategy for tree connected architectures. The other three
strategies have been designed without any assumptions about either the underlying

network or the topology of the search tree being mapped.
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Of the other three strategies, Robin, was chosen as a baseline even though it may
be quite message intensive. One of the issues here is how well the simple round robin

distribution strategy performs relative to more subtle strategies.

The last two strategies being proposed here, are attempts to exploit our knowledge
of multiprocessor environments to obtain even load distributions with lower message
traffic. In the first of these, Askwork, processors distribute work only to idle neighbors
requesting work. The final strategy, Knowledge, is similar in that both strategies use
only local communication. This strategy differs from Askwork in that processors
maintain knowledge tables on which decisions on whom to send work to are based.
Because this approach uses workload information piggy backed on work messages,
instead of separate work request messages, it may turn out to have lower message

traffic than Askwork. The issue is whether it will be as effective at balancing workload.

Strategies similar to Knowledge have been comnsidered by Gray et al{10] and by
Burton and Huntbach[6]. Dissimilarities between our approach and theirs exist both
because their architectural assumptions are significantly different, and also because they
use different mechanisms for obtaining estimates of the neighbor’s workload. Gray et
al utilize a polling mechanism wherein each processor polls its neighbors to check their
status. If any of the neighbors is idle, and the processor has enough work it transmits a

part of its workload to the neighbor.

Burton and Huntbach[6] maintain workload estimates of their neighbors as in our
system. The processors send work to their neighbor if the destination processor has less
work. The workload information, as in our strategy, is piggy-backed onto the work

message. This information is sent to the neighboring processors, in each communication
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cycle. Thus if in a communication cycle, if a processor does not need to send work to
its neighbor, it sends a dummy message containing just its workload. This is in contrast

to our strategy, wherein messages are sent only if work has to be transmitted.



CHAPTER 5

SIMULATION EXPERIMENTS

5.1. Intreduction

The objective of the research here is to study the performance of tree searching
on non-shared memory architectures. There are several ways of approaching this
objective. The principal alternatives are the use of theoretical tools such as queueing

theory, the use of existing parallel architectures, and the use of simulation techniques.

The approach followed here is simulation, since simulation offers strong
advantages over the other two approaches. Queueing theory is an elegant approach, but
cannot deal with algorithms of the complexity of the load distribution strategies
proposed here. Also, one of the issues of interest here is the impact of search tree
topology on execution speed. It would have been impossible to accurately assess this

impact via queueing theory methods.

A second approach is the use of working parallel architectures. We had access to
the eight processor NASA Finite Element Machine[12], and could have obtained remote
access to a Denelcor HEP[27]. There is a clear advantage to this approach; by using
working parallel architectures one necessarily takes into account all relevant details.
On the other hand, this approach is highly inflexible and makes it difficult to vary
architectural parameters, such as the number of processors, interconnection topology,

and the relative speed of communication.

S2
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The great advantage of simulation is flexibility, since it allows one to vary
architectural parameters simply by changing a parameter in the simulator. Thus it is
possible to rapidly explore a wide range of architectural and algorithmic options. With
simulation, there is always the issue of the level of detail required, and whether the
simulation results accurately reflect performance realities. However, with sufficient

care, simulation is one of the most useful approaches to parallel computing research.

5.2. Simulator Design

During our research two different simulators were employed. The first of these
was an instruction level multiprocessor simulator written by D. Gannon and students at
Purdue University. With this simulator, the user writes programs in a parallel dialect of
C, which are then compiled into assembly code to execute on a hypothetical
architecture consisting of networked microprocessors. The simulator then interprets the

code executing on each microprocessor.

With a simulator of this level of detail, the simulated execution time of a program
will be virtually identical to its execution on corresponding hardware. On the other
hand, with this level of simulation the computation time required can be quite large.
For our problems, simulating the execution of tree search problems having search trees
with two thousand nodes required twelve CPU hours on a VAX 11/750. Such large
execution times would have precluded the exploration of more than a small number of

architectural and algorithmic options.

In order to accomplish our goal of studying the interaction between tree search
algorithms, architectures, and load balancing strategies, we switched to a higher level

and less detailed simulator. There are several high level architecture simulators
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available. We used one written by J. Van Rosendale and P. Mehrotra in connection

with their research on parallel languages and parallel run-time environments.

As with the simulator written by D. Gannon, this simulator executes a dialect of
C, but is not an instruction level simulator, and is in fact much closer in concept to the
Simon simulator, Fujimoto[8]. This simulator was specifically designed to execute very
rapidly, thus permitting the study of MIMD architectures having thousands of
processors. This is in sharp contrast to the situation with instruction level simulators,
where simulation of large programs and complex architectures is prohibitively
expensive. Since our goal was to study a large number of choices of algorithms and

architectures, this high level simulator was ideal for our purposes.

This simulator executes a CSP-like dialect of C, which is compiled by the standard
Unix C compiler, after a special extra pass through the C preprocessor. Our basic
scheme for using this simulator is shown in Figure 5.1. The process simulator and
network simulator are separate modules, which execute concurrently as coroutines.
Thus, one can change networks and processor modules independently. The processors
are simulated using standard event queue simulation techniques, while the packet-
switched communication networks, which operate synchronously, are simulated without-

the use of event queues.

Unlike the related Simon simulator, which times VAX ix;structions, the various
system clocks here are incremented by special instructions the user inserts in his code.
Thus one can arbitrarily set the time of each operation of interest, thus controlling the
architectural assumptions. In our work, we allocate time to process each node in the

search tree, to spawn each child of a node, and to send, receive, and forward messages.
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The processors in this simulator execute asynchronously, and each has its own

associated clock. All operations we perform, except message routing and forwarding,

consume time on these processor clocks.

Routing and forwarding messages is the

responsibility of the co-processors, which operate synchronously under the global

network clock. Time on these cc-processors is consumed by sending and receiving

messages, and also by forwarding messages.

Following the assumptions in Chapter 2, we make the assumption here that the

CO-processor can transmit a message on each communication channel in one clock cycle,

requiring time r. Here 1 is a relative time, meaningful only in relation to the time the

Pprocessors require to process or spawn a node, assumed here to take unit time.
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Under these assumptions, a message requires between four and six ¢ units to go
from one processor to a neighboring processor, assuming no message contention. The
lower bound of 4 arises as follows. It takes one clock cycle for a processor to place the
message in the buffer region of its co-processor. The co-processor requires one clock
cycle to take the message from the buffer and route it to the input port of the
destination PE. The co-processor of the destination processor requires another clock
cycle to transfer the message from the input port to the buffer region of its processor.
The destination processor finally requires another cycle to “receive” the message.
Hence a total time of at least four t is required. This is the minimum possible.
Messages may take up to 6 cycles, since they may have to wait part of a network clock
cycle as they pass between the processors, which run under asynchronous clocks, to the

co-processors, which run under the global network clock.

To utilize the simulator, the user writes a process in a C dialect, which consists of
the C language with extensions for communication. The compiled version of this
process executes on each processor in the simulated system. For each of the search
problems to be simulated, a separate sequential program was run to generate the
underlying search tree, as shown in Figure 5.1. This approach allowed the load

distribution strategy to be coded independently of the search problem.

Besides the search problem and the load distribution strategy, in each run of the
simulator the following factors were set: the interconnection network, the number of
processors P, and the relative network speed, p. Here p is the inverse of =, the time per
network clock cycle. The simulator generates several performance statistics, the most

important of which is the average utilization or the speed-up achieved. These
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quantities are related as follows:

speed-up = utilization * P.

5.3. Analysis of Simulation Experiments

To study the behavior of the load distribution strategies, a nuinber of simulation
experiments were carried out. Five factors were varied during these experiments.
These factors and the values over which they were varied are listed in Table 5.1. Note
that p is varied from 0.1 to 10.0. Here p = 1.0 means that 7, the network clock cycle, is
equal to the time required to process or spawn a node. Smaller values of p imply a
slower network and conversely. This combination of factors gave rise to more than
2000 simulation runs, generating a large amount of data which can be studied from

many different viewpoints.

| Facrtor I Values I

P 22,23,2%,25,25

1] 0.1, 032, 10, 3.16, 10.0
Problems Knights , Queens , TSP , Quadrature_1, Quadrature_2
Networks Bus , Complete , Hyper , Ring , Tree
Strategies Tree, Robin, Askwork , Knowledge

Table 5.1 Factors varied during simulation experiments



58

To facilitate this study, we divide the issues into two brpad categories which we
analyze separately; the effect of network topology and the effect of the load balancing
strategies. We study the effect of network topology, by looking at the performance of
the different networks under varying circumstances. The results achieved are discussed

in relation to the theoretical analysis of the networks done in Chapter 2.

After that we examine load distribution strategies, looking first at strategy Tree,
which maps search trees onto a tree architecture. The performance of this strategy is
compared to that of the other load distribution strategies when they are used on the

tree network.

Finally we study the the other three load distribution strategies. We look at the
way the performance of these strategies is affected by the speed and size of the
networks and by other factors. In particular we look at the underlying search- tree
generated by the different problems and relate the parameters of the search trees

discussed in Chapter 3 to the performance of the load distribution strategies.

5.3.1. Network Topology

The five networks under consideration were theoretically analyzed in Chapter 2.
In this section we study the relative merits of these different networks when they are
used with the load distribution strategy Robin. This strategy is more communication
intensive than the other strategies and uses long distance packet-switched

communication rather than neighborhood connection.

We present two sets of graphs, Graphs 5.1 and 5.2, in this section. In the first set,
Graphs 5.1, the first graph plots speed-up versus the number of processors, while the

second graph plots speed-up versus the communication to computation speed ratio, p.
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In both graphs the knight’s tour search tree is used.

Graph 5.1a shows the speed-up that can be obtained on different networks as P is
increased from 4 to 64!. The value of p is 1.0, that is, the time needed to spawn a child
of a node in the search tree is equal to the time needed for a message to be sent across
a channel. As the number of processors is increased, the performance of different
networks seems to mirror the throughput column of Table 2.1. The throughput of the
bus, ring and tree is essentially constant, independent of the number of processors, in
the network and this is reflected in the flattening out of the speed-up curves. In fact
for a bus there is essentially no change with respect to P while for ring and tree the

flattening occurs at slightly later points reflecting the higher constants in the throughput.

In contrast to the bus, the hypercube network shows an almost linear increase in
its speed-up as the number of processors is increased. The throughput of the hypercube
was seen to be proportional to P, the number of processors, reflecting this linear speed-
up. The complete network also achieves linear speed-up, which does not seem to reflect
the O(P? theoretical throughput. This is a consequence of the fact that the
architectural assumptions of the simulator are slightly different from the ones assumed
in our theoretical analysis. Here each processor can send only one message per
communication cycle, since each message has to be transmitted to the co-processor,
requiring time 7. Consequently, each processor can send only one message per network
clock cycle. Hence the throughput for a complete network is O (P) rather than O (P?),
as theoretically calculated in Chapter 2. Note that this difference in architectural

assumptions does not affect the other networks, since their throughput is at most 0 (P)

! For the tree network the number of processors is always 2¥—1 rather than the listed 2*.
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anyway.

The next Graph 5.1b shows the speed-ups achieved as a function of relative
communication speed, p. In this graph, the number of processors, P, is 32, and the
underlying search tree problem is the knight’s tour. With faster communication (higher
values of p) performance differences between the networks become less evident, and all
but the bus do about equally well. When communication is slower, a correspondence
between the throughput column of Table 2.1 and the performance of networks can be

seen again. That is, message contention and throughput determines the speed-up.

The next set of graphs, Graphs 52, show the speed-up that can be achieved by
eaqh of the load distribution strategies on the different networks. For the tree network,
we present four strategies, including the Tree strategy. Here the number of processors
on each of the networks is 32 and the relative communication speed p is 1.0. The first
graph, Graph 5.2a presents the data for the knight’s tour problem, which has a
balanced search tree, while the second graph, Graph 5.2b looks at the problem

quadrature 1, which has a highly unbalanced search tree.

For the knight’s tour problem, most of the networks seem to perform well. The
higher bandwidth complete and hypercube networks do betfer than the rest, while the
bus does worse. By contrast, on an unbalanced search tree, such as that generated by
the first quadrature problem, the performance of all networks has dropped. The
balanced search tree leads to a better distribution of the work and to higher speed-ups,
while for an unbalanced search tree, some processors finish their work sooner than
others, leading to poor utilization. This observation holds for all networks except the

bus network, which has uniformly poor performance.
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In this section, we have presented several graphs in order to characterize the
performance of the various networks under consideration. All the graphs presented
lead to the same conclusion, that the complete and the hypercube networks perform
much better than the other networks. The ring and the tree networks have
intermediate performance while the bus has the poorest performance. This closely

reflects the theoretical analysis given in Chapter 2.

Of course, the high performance of the complete and hypercube networks is
achieved at a cost. The cost of the hypercube network, as shown in Table 2.1, is a
factor of logP more than that of the bus, ring or tree. But with the hypercube
interconnection, speed-ups a factor of three higher than that of a ring or tree are
achieved with 64 processors. Thus if the cost of the network is not the dominant cost
in the computer, the hypercube interconnection seems strongly preferable to a tree or

ring interconnection.

With the assumptions made in the simulator, the complete connection network
does not show up well. Our simulator assumptions imply that it has only O(P)
throughput, while its cost is 0(P?). This network would look better under different
assumptions, but it is generally acknowledged that the complete connection network is
too expensive to construct for large number of processors. The hypercube network, and
related networks like the shuffie and cube-connected cycle x\letwork, having mean

internode distance O (logP), appear to be generally the most cost effective networks.
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5.3.2. Performance of the Tree Strategy

It is natural to study the possibility of performing tree searching on a tree
architecture. In the last chapter, a strategy Tree, was developed, that was tailored to
this architecture. In this section, we compare the performance of this strategy with that

of the other strategies on the tree network.

The first set of graphs, Graphs 5.3, represents the performance of the different
strategies as the number of processors on the tree network is varied. The Tree strategy
seems to perform weli for problems with a balanced search tree. This can be seen from
the Graphs 53a-c for the knight’s tour, the eight queens, and the traveling salesman
problem respectively. For unbalanced search trees, the Tree strategy does not perform
as well as the other strategies, as seen in Graphs 5.3d-e. This is as expected, given the
manner in which the Tree strategy distributes load. Work is divided between the two
children of the current processor node in the network. This division of work is
continued until the leaf processors are reached, which process the entire subtree rooted
at each of the nodes that they are given. Thus, for a balanced search tree, all leaf
processors end up with approximately equal work. This leads to high utilization of the

leaf processors, with little communication costs.

On the other hand, when the search tree is unbalanced, the leaf processors end up
with an uneven distribution of work, leading to poor utilization. In such a situation,
strategies such as Askwork and Knowledge perform better, since work can migrate
between nodes to achieve better balance. The Tree strategy is much worse for
unbalanced trees, as can also be noted from Graph 5.4, where the speed-up achieved by

the various strategies are presented as a bar graph.
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For balanced search trees, the performance of the Tree strategy seems to be
dependent on the structure of the search tree. -The strategy does better for queens and
the traveling salesman problem than for the knight’s tour. The search tree generated by
the knight’s tour has a smaller average breadth than the queens and the TSP search
trees. Also the knight’s tour search tree has a smaller number of nodes at levels nearer
the root node. For example, since the knight’s initial position is in the corner of the
board, there are only two possible initial moves, and thus there are only two children
for the root node. Thus for the knight’s tour, the processors in the tree architecture
nearer the root finish their part of their work quickly, since they do not have many

nodes to process. This leads to poorer utilization.

On the other hand, for the eight queens problem or the traveling salesman
problem, depending upon the number of processors in the network, work may reach the
leaf nodes before processors higher up in the tree have finished their processing. For
the eight queens problem, the root node has 8 children, and for the traveling salesman
problem, the root node has, in our case, 6 children. This seems to lead to a pipelining
effect, in which all processors in the tree architecture are simultaneously active. The

result is a surprisingly high utilization of the processors for these problems.

The set of graphs presented in this section show that the Tree strategy does as well
or better than the other strategies for balanced search trees and especially for balanced
and bushy search trees. This is particularly true with large number of processors (i.e.
P =32 or 64 ) and must be because the Tree strategy is tuned to the tree network and
can distribute the load to the leaf processors with little communication overhead. With

smaller number of processors the distinction between strategies is not as evident.
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On the other hand, with unbalanced trees the Tree strategy performs very poorly.
As was seen in the last section, the hypercube and complete networks performed better
than the tree network for both balanced and unbalanced search trees. Thus, if a priori

knowledge of the tree is not available, one should not choose the Tree strategy.

5.3.3. More General Strategies

In the last section we concentrated‘ on the Tree strategy. In this and the next
subsection we study the other three strategies. Here we look at basic issues such as how
the communication speed and the network size affect the performance of the strategies.
In the next section we look in more detail at each of the three strategies studying both

their speed-ups and utilization.
Performance as a Function of Communication Speed

Graphs 55 present the performance of the three strategies for the different search
trees, as the communication speed p is varied. For these graphs the number of
processors, P, is fixed at 32, while the network is the hypercube. As expected, all three
strategies do a better job of distributing work if the search trees are balanced and if
communication is fast. The strategies Robin and Askwork achieve almost linear increases
in speed-up as the communication becomes faster. The effect of increasing
communication speed is unpredictable for the Knowledge strategy. This strategy
attempts to send very few messages and thus factors other than communication speed
seem to be important in this case. However, at low communication speed, the strategy
Knowledge achieves higher speed-up than the other two strategies. This is true for all

the problems.
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Performance as a Function of Network Size

The next set of graphs, Graphs 5.6, show the performance of the three strategies
as a function of the number of processors P. The network is again set to be the
hypercube, while the communication speed is set to 1.0. Graph 5.6a shows that the
speed-up achieved by the Robin strategy is approximately linear in the number of
processors. As will be shown later, the utilization is almost independent of the number
of processors for this strategy on networks like the hypercube having O(P) throughput.
This is a consequence of the fact that this strategy generates the same pumber of

messages regardless of the network or number of processors.

The second strategy, Askwork , does well for moderate numbers of processers, but

does poorly for 64 processors. In this strategy a processor sends oui work-request
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messages to its neighbors when it becomes idle. These messages are overhead messages
which do not perform any “useful” work. It may be that even for the hypercube
network, where each processor has only logP neighbors, the total number of work-
request messages sent by this strategy is too large, and saturates the network if there
are a large number of processors. This issue would be less critical for larger problems

having more inherent parallelism.

The last strategy, Knowledge, seems to perform well on all problems except
quadrature_1, which generates a narrow and deep search tree. This strategy has a
behavior similar to that of Robin though the “envelope™ of performance is more spread

out. As already stated, the behavior of this strategy is subtle and difficult to interprét.
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Interaction of Networks with Strategies

With the next set of graphs, Graphs 5.7, we compare the behavior of the strategies
on each of the networks, attempting to understand the way the strategies and network
topologies interact. Graph 5.4 in the last section gave similar data but only for the tree

network.

On the complete connection, Graph 5.7b, the strategy Knowledge performs very
well, because each processor can keep track of the workload of all other processors.
This system wide information allows the strategy to distribute the workload uniformly.
The rich interconnection pattern helps the strategy Robin also in the distribution of the

workload, though it does not perform as well as Knowledge .

On the other hand the rich interconnection pattern reduces the efficiency of the
Askwork strategy. This can be attributed to the fact that in Askwork a processor sends
work-request messages to all neighbors when it is idle. The rich interconnection pattern
thus implies that the network is flooded with work-request messages, causing contention
which delays actual-work messages. Thus the Askwork strategy performs poorly on the
complete network. In principle, this problem could be fixed by considering a modified
Askwork strategy, in which each processor sends work-request messages to only a limited

subset of its neighbors.

A similar behavior is seen for the bus network in Graph 5.7a. Here again each
processor is considered a neighbor of every other processor, but in this case the bus
itself acts like a bottleneck reducing the overall performance. The Knowledge strategy,
which minimizes communication, performs much better than the other strategies on the

bus network. The high message traffic, generated by both Robin and Askwork reduce
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their performance considerably.

The hypercube network, Graph 5.7c, provides an interesting contrast to the above
two networks. This network has low mean internode distance and high throughput, but
the number of neighbors of each processor is only logP, for P processors. Here the
Askwork strategy comes into its own, performing better than the other two strategies, in

most cases.

On the ring network, in Graph 5.7d, we find Robin doing better than the other two
strategies. The reason for this is that in Askwork and Knowledge, work is passed only to
neighbors. Thus after the initial round robin phase, work moves in wavefronts around
the ring. With the Robin strategy, on the other hand, the long distance packet-switched

communication yields better load balance and higher speed-ups.

The data for the Tree network was presented in Graph 54 in the last section,
where we saw that Askwork performed better than the other two strategies. Here the
situation is similar to the hypercube. The tree interconnection is less richly
interconnected than the hypercube network, but has smaller mean internode distance
than the ring, allowing Askwork to distribute work better. In a tree network each node
has at most three neighbors, thus limiting Knowledge’s ability to efficiently distribute the

workload.

The set of Graphs 5.7, indicates that the strategy Knowledge performs better on
networks which have a rich interconnection pattern, since then each processor has more
knowledge about the system. On the other hand, Askwork does poorly if the number of
neighbors of each processor is large, since in this case too many work-request messages

are sent out. It is interesting to note that on the highly unbalanced search tree,
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quadrature_1, the brute-force strategy Robin out performs the other strategies on most

networks.

5.3.4. Detailed Analysis of Strategies

In this subsection we look at each of the three strategies, studying their
performance as functions of the number of processors and relative communication
speed. Here we freeze the knight’s tour as the underlying search problem. Though in
principle one gets the same information by plotting speed-up or utilization, it is often
difficult to visually infer utilization from speed-up and conversely. Because of this, we
plot both speed-up and utilization here as functions of the number of processors. We
also plot speed-up as a function of the communication speed p, for the specific case of

32 processors.

Robin

The first set of graphs here show the Robin strategy. Note that Graph 5.8a and
5.8c duplicate Graph 5.1a and 5.1b. From Graph 5.8b one can see that the utilization
for hypercube and complete networks is nearly independent of P, the number of
processors, while it degrades for the bus, ring and tree. This is (;ue to the fact that the
throughput for the hypercube and complete connection networks is proportional to P,
and hence the network is able to handle the increased traffic generated by Robin. For

the other three networks the throughput remains constant and thus as the network size

(and message traffic) increases the utilization drops rapidly.

Graph 5.8c presents the speed-ups achieved by Robin, as a function of the network

speed p. As noted before, for lower communication speeds (smaller values of p) the
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performance reflects the throughput of the network. With increasing communication
speed, p, as the penalty for communication decreases, the Robin strategy performs well

on all networks.

" Askwork

The second set of graphs, Graphs 59, show the performance of the Askwork
strategy. When the number of processors is small, Askwork achieves very high
utilization on all networks. As the number of processor increases, the topology of the
networks starts influencing the performance. The performance of Askwork is worst for
the bus and complete connection network, as reflected by both Graph 59a and 5.9b.
For networks with smaller number of neighbors, Askwork does a good job of distributing

the workload.

Knowledge

The last set of graphs, Graphs 5.10, depict the performance of the strategy
Knowledge as a function of the number of processors, and the communication speed.
The Knowledge strategy generates the least number of messages of all the strategies
studied here. However, subtle effects due to the order of execution of the nodes of the
search tree can arise with this strategy. Such effects were not seen for the other
strategies, since the number of messages they generated was large and communication
dominated all other factors. The performance of Knowledge appears to be far less

predictable than the other strategies, and is difficult to analyze. -
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CHAPTER 6

CONCLUSIONS

In this thesis we have studied some of the issues involved in mapping tree
searching algorithms onto non-shared memory multiprocessor architectures. Tree
searching is employed in a wide variety of application areas. We chose four different
algorithms for the purpose of this study. These were the eight queens problem, the
knight’s tour on a 4 by 4 board, the traveling salesman problem on a network of seven
cities, and two problems in numerical quadrature. As seen in Chapter 3 the first three
problems generated well-balanced search trees while the quadrature problems gave rise

to narrow and unbalanced search trees.

These tree searching problems were mapped onto five topologically different
architectures. Besides the interconnection pattern, the size and speed of the network
were also varied. We devised four different load distribution strategies. The Tree
strategy was tuned to the tree network, while Robin was a simple minded strategy which
distributed work in a round robin fashion. The Askwork strategy used the concept of
work-request messages. Work was sent out by a processor on receiving such a message
from its neighbor. The Knowiedge strategy attempted to maintain the workload
information about the neighbors on each processor. Such information was then utilized
to parcel out work to neighbors. All of these strategies were independent of the
network topology (except for the Tree strategy) and used no a priori knowledge of the
search tree. This approach was taken in order to find strategies which are both

effective and robust.
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6.1. General Conclusions

Several broad conclusioiis can be drawn from our study. We did not find any one
strategy . which performs uniformly well on all networks and on all problems. The
variety of factors characterizing the networks and the problems have subtle effects on

the performance of the strategies, leading to complex behavior.

For example, consider the “richness” of the interconnection pattern. On a richly
interconnected network such as the complete connection network, the potential for
distributing work is high and we see that Knowledge performs very well. However, the
larger number of neighbors works against the Askwork strategy, which generates work-
request messages for all neighbors. Similar behavior patterns are seen with the bus, and

of course, the bus is itself a bottleneck.

The Askwork strategy performs better on networks such as the hypercube and the
tree, because of the small number of neighbors there. In such a situation, Knowledge
does not have enough system wide information to perform well. The Robin strategy
does not do as well as either Askwork or Knowledge on any of those networks.
Surprisingly, Robin works better on the ring network than the other strategies apparently
because it does long distance communication rather than communication with
neighbors, as in the other strategies. This results in better load distribution on this
network. All of these effects were observed on both balanced and unbalanced search
trees, the difference being that on unbalanced trees all strategies did worse than on

balanced trees.

The behavior of the strategies with increasing number of processors is also

complex. For networks with small number of processors, all strategies performed very
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well, including Robin, achieving utilization of 90% or higher. For larger networks the
amount of inherent parallelism in the problem started to play a more important role.
In general, for large number of processors we found that the strategy Knowledge, which
utilized the least amount of communication in distributing the workload, did better than

the other two strategies, Askwork and Robin .

Similar behavior was seen while varying the communication speed for the various
networks. For faster networks all strategies performed well since communication was
not penalized. With slow communication Knowledge did well because of its lower

message traffic.

The fourth strategy, Tree, was devised specifically for the tree network. It was
found that this strategy performed well only when the underlying search tree was
extremely balanced and bushy near the root node. Under such circumstances, a
pipelining effect aided in achieving higher speed ups.

In comparing networks we found that the hypercube network proved to be the
most cost-effective of the five networks studied. This is not surprising in view of its
high theoretical throughpﬁt and moderate cost. The complete connection network did
equally well under most circumstances but is considerably more costly than the
hypercube. The tree network performed surprisingly well considering its constant
throughput, perhaps because mean internode distance also plays a significant role. As
one could have anticipated, the ring and the bus performed poorly, the bus being the

worst of the two.
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6.2. Limitations of Study

Several simplifying assumptions were made during our study, and given more time
one could have made a more detailed study. The principal assumption made here was
that separate subtrees of a search tree can be searched in parallel. This is a severe
restriction as it rules out several important algorithms such as branch and bound, and
alpha-beta pruning[19].

There were also several relatively minor simplifying assumptions made here. One
of these was that the time to execute or spawn a node in the search tree was taken to
be a fixed constant, independent of the problem or the particular node in the search
tree. This is a reas;mable simplifying assumption, but, for example, the time taken to
test a board position in the eight queens problem may depend on the number of queens
already present. Better treatment of this issue might alter our results slightly, but

would not have a major effect.

We also assumed that the messages sent between processors were of constant size,
independent of the problem. This is also a natural simplifying assumption, but one

which could be altered in a more detailed study.

In simulating the distribution strategies, we have also ignored the overhead due to
the strategy itself. This penalizes simple strategies such as Robin which do not have
much overhead over more sophisticated ones such as, Knowledge, in which knowledge
tables have to be maintained. A more detailed simulation would have included this

overhead.

Though the simplifying assumptions just described are particular to the simulation

study performed, similar assumptions are inevitable with computer simulation studies.
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Given more time we would have liked to study tree searching and load balancing issues
on working parallel architectures such as Pringle and NASA Finite Element Machine.
Such experiments would be useful not only in validating our simulation results, but also

in demonstrating the practical value of this approach to parallel computation.
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