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ABSTRACT

Theorems giving necessary and sufficient conditions under which 
an integral domain will be a unique factorization domain are given, 
and several results which follow from these theorems are proved.
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A STUDY OF UNIQUE FACTORIZATION DOMAINS



INTRODUCTION

This paper presents a study of integral domains in which each 
element is uniquely expressible as a product of irreducible elements 
(unique except for unit factors and order of the elements). These 
integral domains are called unique factorization domains.

The reader is assumed to be reasonably familiar with the theory 
of rings and ideals. Such familiarity could be obtained from Intro­
duction to Abstract Algebra, by Barnes, Modem Algebra, by Van der 
Waerden, or from almost any text on the subject.

Chapter I is concerned with theorems and definitions which are 
a necessary prerequisite for the following chapters. In chapter II, 
two theorems giving necessary and sufficient conditions for an integral 
domain to be a unique factorization domain are developed. Chapter III 
gives several applications of the theorems in chapter II.
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CHAPTER I
PRELIMINARIES

In this paper, all rings are assumed to be commutative with unit. 
To begin with, two theorems will be stated for later reference. 

Definition: A ring, R, is said to satisfy the ascending chain condi­
tion for ideals if each strictly increasing sequence Â , A2, . . . 
of ideals of R has only a finite number of terms. That is, there
is some n such that A^ C A^ c • • . C and the sequence has no
next element other than R.
Definition: A ring, R, satisfies the finite basis condition if every
ideal in R has a finite basis. That is, every ideal in R is 
generated by a finite set of elements of R.
Definition: A ring, R, satisfies the maximal condition for ideals
if in any nonempty set of ideals of R there exists an ideal maximal 
in the set. That is, there exists an ideal A in the set such that
if B is an ideal of R and B Z) A then B = A.
Theorem 1: In a ring, the ascending chain condition for ideals, the
maximal condition for ideals and the finite basis condition are equiv-

Definition: A partial ordering is a binary relation which is reflexive,
transitive, and ar.tisymmetric. A set on which a partial ordering, p, 
is defined is said to be partially ordered. Two elements are said to 
be comparable if (a, b) e (3 or (b, a) z p. If (a, b) (3, then b 
precedes a.

3



Definition: Let p  be a part::' a l  ordering of the set M, Let A

be a. subset of M. "a" is called a minimal element of A if
x £ A  and (a, x) e 3 implies that x = a. M is said to satisfy
the minimum condition for elements if every nonempty subset of M 
has at least one minimal element.
Definition: Let (3 be a partial ordering of M. If every descending
chain of elements of M (a^ ag) e p, (a2, a ) <e 3, • • •, (â , an+p) 6
... . reaches a point where an = an+l = * * * then M is said to
satisfy the descending chain condition for elements.
Definition: Let p be a partial ordering of M. M satisfies the
inductive condition if a property E is possessed by all minimal ele­
ments of M and if from the validity of E for all elements strictly
preceding some element a, we can deduce the validity of E for a, 
then all elements of M satisfy E.
Theorem 2: The inductive condition, the descending chain condition for
elements, and the minimum condition for elements are equivalent. Qj;, p.2 
Definition: Two elements a, b of a ring R are said to be associates
if a = i » b where i is a unit.

Now I wish to show that from the concept of associativity, a par­
tial order can be found.
Theorem 3? In an integral domain, R, the relation of associativity is 
an equivalence relation.
Proof: Since we have assumed that R has an identity e ,  a = e  • a.
If a = i • b where £ -g a unit, then • a = • c • b = b.
If a = c,-̂ * ^ an<3- "k - * c where 4̂  and $ are units, then

a = ^  ’ c) = (^l * 2̂  ̂* c an^ -’I * **? ^s a since
^ l 1 * * (z?1 * >̂1 ) = e-
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Now this equivalence relation can be used to partition the 
integral doman H into classes of associated elements.

Let 3 = Q  (A, B) : A and B are classes of associated ele­
ments and an element b e B divides an element a € . If b
divides a then a = r - b ,  r e R .  If a* is any other element 
of A and b* is any other element of B, then a = a* and
b = • b 1 where and are units, thus ^  * a ’ = r * 2̂ ’ ^ *
and a* = . t,2 . r . b*. Therefore, if any element of A divides
any element of B, then all elements of A divide all elements of B.
Theorem k : If R is an integral domain, then 3 is a partial ordering
of R.
Proof: (A, A) e 3 since a = e • a, therefore 3 is reflexive. If 
(A, B) e p and (B, A) € 3 then if a £ A and b c B, a e r • b 
and b = q . a for some r, q e R. Therefore, a = r • q • a,
e = r • q, and r and q are units which imply that A = B. There­
fore, 3 is antisymmetric. If (A, B) £ 3 and (B, C) e 3, then let
a £ A, b £ B, and c £ C. There exist r^, Tg e R such that a = r-̂ • b,
b ** rg • c, and a = r^ • Tg • c. Therefore, c divides a, which implies
(A, C) £ 3« Thus 3 is transitive.
Theorem 3: If 3 is defined as above in the integral domain R, then
the ascending chain condition for ideals implies the descending chain 
condition for elements.
Proof: Suppose we have the chain (â , a^) £ 3, (â , a ) e 3, . . .
where a-̂ , â , . . . £ R. Each a^ generates an ideal (a. ) and
(ai) C (ai+i)> since if x £ (a )̂, then x = b • ai for some b £ R.
Then (â , a +̂1) e P implies a^ = c * ai+1 for SOEie c G There­
fore, x = b . c • a. ~ and x e (a. .). Thus we have (a_) C a_)7 l+l i+l 1 — 2
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C • • • C (â ) C iai+i) C • • . "by the ascending chain condition there 
exists n such that (an) = (an+i) = . . . . Now (an) * (aIM.i) 
implies € ( a ^ )  and a ^  e (an). Therefore, an and an+1 are 
associates and members of the same equivalence class. Therefore, R 
satisfies the descending chain condition for elements.
Example: Let R^, Rg, . . ., R , . . .  be rings with unit. The direct

product S * R ^ ©  R2 ©  • * • ©  Rn ©  • • * is 'the set a^- infinite
sequences (a.j_, a2, a^, . . . ), â  ̂e R^, i = 1, 2, . . . . If a = (â ,
ag, a^, • • • ), b cs (b̂ , bg, "bj* • • • )  a + b = (a^ + b^, ag + bg,
a^ + . . . ) and a • b — (a^ • b-̂ , ag • bg, a^ • • . • ). S
is a ring.
Let

A^ = 0, 0^ . • • )

A2 “ (al* a2* 0* 0, . . . )

a2> • • •> an> 0, 0, ... )

Ai = Ag • (1, 0, 0, • • • ), Ajj — • (l, 1, 1, • • •, 1, 0, 0, . . .  )

where the first n elements in the last term are 1. Therefore,
( A A g )  £ (Ag> A3  ̂e • * • > (An, € 3> • • • and there is

= “ • • • • Thus s does not satisfy the
descending chain condition for elements, and by theorem 5 s does not
satisfy the ascending chain condition for ideals. Qu, p. 17)



CHAPTER II 
NECESSARY AND SUFFICIENT CONDITIONS

Now the preliminary results will he used to aid in constructing 
theorems giving necessary and sufficient conditions for a ring to he 
a unique factorization domain.
Definition: An element of a ring is said to he irreducible if, when­
ever it is expressed as a product of two elements, one and only one 
of them is a unit.
Theorem 6: In a ring R satisfying the inductive condition every
nonzero, nonunit element is expressible as a product of irreducible 
elements.
Proof: Let E he the property that an element is expressible as a
product of irreducible elements. Clearly E is true for all minimal
elements of R, since all minimal elements are irreducible.

Let x be a nonunit, nonzero element of R. Assume that E is
satisfied for all proper divisors of x. Then x = y . z where y and 
z are proper divisors of x. By hypothesis, y = y^ * y0 . . . yR, 
z = Zl z2 . . . zm where yx, y2, . . ynJ , Z]n are all
irreducible. Therefore, x » y, . . . y • z., . . . z .f J 1 •'n 1 m

The following is an example of an ring where every element is not 
necessarily expressible as a product of irreducible elements.
Example: In the example given on page six, let R-,, • . * le
the integers, I. Then C is the set of all infinite sequences (â ,
ap, . . . ), a. e I for all i.

7
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Let p be a prime integer and a = (p, p, p, . . . ). Assume
that a = B • B • • . B where B„, B^, . . . B are irreducible, 1 2 m  1 2 m
and

Bj = ^12* ^13* • ♦ • )

Bg = (^21  ̂"k2 2 ’ ^23* • • • )

Bm = (bml' * m 2 ’ \ - 5 ’ • • ' )

Ihus a * (b^ ‘ ^21 * ^31 * * * ^ml* ̂12 * ^22 * * * ^m2> ^13 ’ ^23
• • • ^1113 > • • • ) & n d  P  =  * ^21 * * * ̂ ml* ^  = ^12 * ^22 * * *

0̂12* ^ c ^13 ’ ^23 * * * \i3> * • * P irre^uc^ l e* There­
fore, each factorization of p can contain only one nonunit element
and that must be ±p. Assume that b^1 = ±p. Since B^ is irreducible,
b ^  = ±1 i ^ 1. Therefore, b^g ± ±p which implies *>22* ̂ 32^ * * '*

or b ^  must equal ip. The B^'s can be ordered so that b22 ® ip- Then
6ince Bg is irreducible b2i = ±1 for i ̂  2. Now b ^ ±p and
b ^ ±p, thus by reordering if necessary, I can get b = ±p andO  33
b ^  «= ±1 for i ^ 3. Continuing, I will eventually get b ^  * ±p

1 i biJ * ±x> 1 ^ and J t u  P = bKiwl) h2(ml) • • •
bm(m+l)’ thus bj(m+l) = ^  for some J ̂  m‘ Then

BJ * bj2>- • •> hjm' bj(nH-l)>- • •)

“ bj2 *̂ * '> * *) * ' **

and neither of the right hand factors is a unit, contradicting the fact 
that Bj is irreducible. Thus a is not expressible as a product of 
irreducible elements of S.
Definition; A No°+herian ring is a ring which satisfies the maximum 
conditon for ideals.
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Theorem 7: In a Noetherian integral domain, R, every element is 
expressible as a product of irreducible elements.
Proof: By theorem 1, R satisfies the ascending chain condition for
ideals, and thus, by theorem R satisfies the descending chain con­
dition for elements. Then, by theorem 2, R satisfies the inductive 
condition, and theorem 6 gives the result.
Definition: A prime element is an element x of an integral domain
R such that if x divides a • b, then x divides a, or x divides 
b.

The following two lemmas will prove useful in the proof of the next 
theorem.
Lemma 1: Let R be an integral domain in which any two elements have
a greatest common divisor. Let a and b belong to R, then define 
Mab = {m € R : m = r . a and m s s . b and the greatest common divisor
of r and s is l). has only one class of associated elements.
Proof: Assume that contains two elements, and m2. m^ ■ r^ • *
m^ * Sj • b, mg *= r2 . a, and mg « Bg . b where the greatest common 
divisor of r^ and s^ is 1 and the greatest common divisor of Tg
and Sg is 1# m^ and mg have a greatest common divisor, say d.
a divides m^ and m^, and b divides m^ and m^. Therefore, 
d = q^ • a and d = • b for some q^ and q^ belonging to R.
q^ and q^ have a greatest common divisor, say dg. q^ = r^ • dg
and qg ** s^ • dg, where r^ and s^ belong to R. Thus, d ■ r^
• dg • a and d «= s^ • dg • b. r^ and s^ have a greatest common
divisor dy  r^ = r^ • d^ and s^ * s^ • d^, where r^ and 6^
belong to R. q1 - r^ • d^ • dg and Sg • • d • dg. d^ _g4 ) id 5 d
divides both a andq^ and q^ and thus must divide dg. Therefore, d^
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must be a unit. Let m' = s • b = r • a. The greatest common3 3
divisor of and r^ is 1, so m ' is in fhus, d * dg * m*
and d is a multiple of an element of -e had as a multiple
of d, therefore is a multiple of m', say = r • m' where r
belongs to R.

r, • a = r • m* = r • r, • a and s, . b = r • m f = r . 6, • b,1 3 1 3
therefore, rn * r • r, and sn * r • s_, which implies r divides1 3 l 3
r^ and s1# But since the greatest common divisor of r^ and s^ is
1, r must be a unit. Thus m^ and m f are associates. Likewise,
mg and m 1 are associates. Thus and mg are associated.
L«mnA 2: Let R be an integral domain in which any two elements have
a least common multiple. If a and b are any two elements belonging 
to R and m = a • b, then the greatest common divisor of a and b
is m/n where n is the least common multiple of a and b.
Proof: Suppose c divides a and b, then a = p • c and b - q • c 
where p, q e R. Since n is the least common multiple of a and b, 
n s r • a and n = s • b where r, s £ R. m is a multiple of n, say
m = u * n. c and u have a least common multiple, say d. d = r^ • c
and d = s^ • u where r-̂ , s-̂ £ R. a is a multiple of u since 
n . u = m, s • b • u = a • b which implies s • u * a. Since a is
also a multiple of c, a must be a multiple of d, say a » r^ • d.
Now b is a multiple of c and r . a . u *= a • b implies b = r • u. 
Thus, b is a multiple of u. Therefore, b is a multiple of d, say 
b s= Sg * d. r^ * d = a = u • s and rg * sq * u - u * sj therefore,
T2 ' S1 ~ S* Likewise, Sg * d = u * r implies Sg . s-̂ . u =* u . r
and Sg • Sj = r. Thus, n = Sg • • a and n = • b.

Let n T = Sg • a = rg • b̂ ,- n = s^ . n f implies s^ is a unit,
otherwise n would not be the least common multiple of a and b.
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Therefore, d and u are associates, u is then a multiple of c.
It then follows that u is the greatest common divisor of a and b. 
Theorem 8; Any two elements of an integral domain R have a greatest 
common divisor if and only if any two elements have a least common multiple. 
Proof: (only if) Let a and b belong to R, and let c be a mul­
tiple of both a and b, say c * x • a and c = y • b. Let M be
as in lemma 1. If c is a multiple of some m € M, then m is the 
least common multiple of a and b, since all elements in m are 
associated.

x and y have a greatest common divisor, say d. x * r • d and
y « s . d where r, s e R. c = r • d • a and c * s • d • b. Now r
and s have a greatest common divisor d̂ . r = r2 • d2 and s = Sg •

where r̂ , s^ € R. Thus, x ® • d^ • d and y « • d^ • d.
Since d is the greatest common divisor of x and y, d^ must equal
1. Therefore, c = r . d * a = s * d » b ,  and m = r . a  = s * b e M .
(if) This follows immediately from lemma 2.
Theorem 9: Suppose R is an integral domain. Any two elements of R
have a least common multiple if and only if the intersection of any two 
principal ideals is principal; and furthermore, (a)D(b) = (c) if and 
only if c is the least common multiple of a and b.
Proof: (only if) Let A and B be two principal ideals, say A = (a),
B ■ (b), where a, b € R. a and b have a least common multiple, say 
m. If x e (a)Pl(^) then x is a multiple of both a and b, and thus
a multiple of m. Therefore, x e (m) and (a)0(b)G(n,i)• If x e (m)
then x is a multiple of m. Now m is a multiple of both a and b;
therefore, x is a multiple of both a and b. Therefore, x e (a)
and x € (b). Thus, x € (a)H(b) and (a)H(b) = (m).
(if) Suppose a, b € R, then (a)O(b) = (c) for some c e R. c e (a)
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and c £ (b). Suppose m is a multiple of both a and b, say
m = r • a and m = s * b, where r, s e R. Therefore, m e  (a) and
m e  (b) which implies m  e (a)O(b) = (c) and thus m is a multiple
of c. Thus c is the least common multiple of a and b. This con­
cludes theorem 9«

The following is an example of an integral domain where the inter­
section of two principal ideals is not necessarily principal.
Example: Let R be the ring of elements of the form a = a + b • l\f3

2 2where a and b are integers. Define N (a) = a + 3b . If
a - a + b • i \[3* and 0 - c + d • i

N(a • 0) = N(ac - 5bd + i \fF (ad + be))
* a2 c2 + 9b2 d2 — 6acbd + 3a2 d2 + 3^2 c^ + 6abcd 
= a2 c2 + 3a2 d2 + 3b2 c2 + 9b2 d2
» (a2 + 3b2) • (c2 + 3d2) * N(a) • N(p)

Now N(l) « 1, and f. f N(a + bi \[3) = 1 then a2 + 3b2 = 1 which implies
a = ±1 and b = 0.

Consider (l + i \f3) O  (1 - i \f3) if this ideal is principal say
(1 + i \[3) O  (1 - i \I3*) * (c) then by theorem 9 c is the least common
multiple of 1 + i \[3~ and 1 — i \|~3. Now U is a multiple of 1 + i \[3"
and 1 — i \[3 therefore ^ is a multiple of c.

U = r • c = (rx + i r2 \H>) (c± + 1 c 2 \f3)
N(*0 * + i r2 \[3) NCc-ĵ + i c2 \[3)
16 * (r-L2 + 3 r22 ) (c-^ + 3c22)

1o = 1 6 * 1 * = 8 * 2 * ^ *  U

If N(r) - 1 then r = 1 and h is the least common multiple of



15

1 + i \fy and 1 - 1x13*. N(c) cannot be 1 "because
N(c) > N(1 + i\[3) = There are no integers a.b such that

+ 3b2 - " therefore neither N(r) nor N(c) can equal 2. If
N(c) = b then c = ± 1 ± i\J3  or c = 2. 2 and ± 1 ± i\[3" are irre­
ducible, since if 2 = a * 3 then N(2) = 11(a) • N(3), that is,
b * N(a)N(p). Either N(a) = b, N(p) = 1 or N(a) = 2, N(3) = 2. If
N(3) = 1  then 3 - 1  which means a - 2, and we have a trivial factoi-
ization. N(a) cannot be 2 so 2 is irreducible. Now if
± 1 ± i \|3~ = a.3 then b - N(a) • N(3), and by the same reasoning 
± 1 ± i\T5" Is irreducible.

If k is t h e  l e a s t  c o m m o n  m u l t i p l e  o f  1 + i \|3 " an(l 1 - i\|3~

the; -2 - 2i\[3~ is a  m u l t i p l e  of s i n c e  - 2  - 2i \J3~ = - 2 ( 1  + i \ [ 3 )  =
(1 - i \JT)2.
Say -2 - 2i \|T = r • b

-1 - i \ [ J  = r  . 2
1  +  i \|3~ = -2 • r.

1  + i\[3~ is i r r e d u c i b l e ,  s o  - 2  - 2i \J3* c a n n o t  b e  a m u l t i p l e  o f

b a n d  U c a n n o t  b e  t h e  l e a s t  c o m m o n  m u l t i p l e  o f  1 +  i \[3 a n d

1  - i\J3".

c cannot be ± 1 ± i \|3~ 2 because all of these elements are
irreducible and therefore cannot be multiples of 1 + i \[3 and 1 - i \J3~-

No other possibilities exist, so no such c exists and this implies
that (l + i \[3)0(T - i \|3) not principal.

In the next three lemmas the greatest common divisor of a and b
will be denoted by (a,b).
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T>mm» 1 : If a, b, and c are members of the integral domain R,
then (ac/oc) and (a,b) * c are associates.
Proof: (a,b) divides a and b, thus (a,b) . c divides a • c and
b • c and therefore (a • c, b • c), say (a • c, b • c) = (&jb) • c • r
where r € R. Thus a- c = (a « c, b • c) * s = (a,b) • c • r • s where
s e R. Therefore a = (a,b) • r • s. Likewise b • c = (a • c, b • c) • t = 
(a,b) • c • r • t where t € R. Therefore b = (a,b) • r • t and
(a,b) • r divides both a and b. Thus (a,b) • r divides (a,b) which
implies r is a unit. Therefore (a • c, b • c) and (a,b) * c are 
associates.
Lemma 2 : If a, b, c are members of the integral domain R then
((a,b), c) and (a, (b.c)) are associates.
Proof: ((a/b), c) divides (a,b) and c and thus a, b, and c.
Therefore ((a,b), c) divides a and (b,c) which implies ((a,b),c) 
divides (a, (b,c)). Likewise (a, (b,c)) divides ((a,b),c), and the 
two are associates.
Lemma 3 : If a* "b* and c are members of the integral domain R and
if (a,b) = 1 and (a,c) = 1 then (a,be) = 1.
P r o o f :  O b v i o u s l y  (a, a  * c) =  a. B y  l e m m a  1 (a,b) . c =

r  (a • c, b  • c) f o r  s o m e  u n i t  r  a n d  t h u s  c - r ( a  • c, b  • c). N o w

b y  l e m m a  2 (a,b • c) = {(a, a  • c), b  • c) = s(a, (a • c, b  • c)) w h e r e

s is a u n i t .  T h e r e f o r e  (a, b • c) = s(a, r ~ I  • c). Now (a, r ~ ^  • c) = 

(a,c) s i n c e  r - 1 is a  u n i t ,  t h e r e f o r e  (a, b e )  = s • (a,c) =  s. S i n c e  

a n y  e l e m e n t  a s s o c i a t e d  w i t h  s a l s o  t h e  g r e a t e s t  c o m m o n  d i v i s o r

O f  a  a n d  b  * c, (a, b  • c) = s -I • s = 1.
Theorem 10: If a greatest common divisor exists for any pair of elements
a, b e R then every irreducible element of the integral domain R will
be prime.
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Proof: Let p be an irreducible element, and assume p is rot prime.
Then there exist a, b € R such that a • b e  (p) and a € (p), b e  (p),
thus (p, a) =1 and (p, b) =1. Therefore by lemma 3 (p, a • b) * 1,
but p divides a • b. This is a contradiction, therefore p is prime. 

&, P. 75]
Theorem 11: An integral domain R will be a unique factorization domain
if and only if it satisfies condition (a) and either condition 3̂ , 32,
Py or Ph.

(a) R satisfies the minimum condition for elements.
(3q) any two nonzero elements have a greatest common divisor.
(32) any two nonzero elements have a least common multiple.
(3̂ ) the intersection of any two principal ideals is principal.
(01*.) every irreducible element of R is prime.

Proof: 31, 3̂ , and 3̂  ar® equivalent thus it is sufficient to prove
the theorem for 3^ and 3̂ .

First I will prove that if R is a unique factorization domain,
then a and 3̂  are satisfied. If a e R then a = P^ P2 . . . Pn 
where P^, P̂ , . . . P^ are irreducible. Every strictly decreasing 
chain of elements starting with a can obviously have at most n ele­
ments. Thus the descending chain condition is satisfied, which implies 
that a is satisfied. Let a, b e R and let P^, P2, . . . , Pn be 
irreducible elements such that every irreducible divisor of both a 
and b is associated with some P . ,  and every P. is associated with 
an irreducible divisor of either a or b. Therefore a = P*tl i p  

. . . P^n and b = §2 P^l pj?2 . . . p^n where an^ 2̂ are uni^s
and any number of K^'s and L^'s can be zero. Any divisor, â , of a 
can be written a1 = pjl P^2 . . . P*n with 0 < i1 < iq, and any
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divisor, b^, of b can be written b^ = * * * ^n11
0 < jji < L̂ . Thus (a, b) = P^l P?}2 . . . P^n where nn = min (K̂ , L^),
1 a 1, . . . , n. Thus R satisfies condition 0 .

By theorem 10 R satisfies condition 3̂ .
Thus it remains to be proved that if R satisfies conditions a 

and 0̂  then R is a unique factorization domain. By theorem 6 we get 
that every nonunit, nonzero element of R is expressible as a product 
of irreducible elements. Every minimal element in R is irreducible and 
every irreducible element trivially satisfies the uniqueness property. 
Therefore the set of all minimal elements in R satisfies the property 
that they are uniquely expressible as a product of irreducible elements,
call this property E. Assume E is true for all proper divisors of an
element a, that is, for all b such that (a, b) e 3 and (b, a)  ̂3*
Now a := b • c where b and c are proper divisors of a. b = P-̂ P2

. . . Pn and c = ^n+i *\i+2 * * * where 2̂ are uni'ts
and P^, . . . , Pm are irreducible.

a - £ P^ . . . Pm where i = Assume that a « q q^ ^
. . . q^ where q^ . . . , q̂  are irreducible and '] is a unit. There­
fore i P.̂ P^ . . .  Pjq — q^ q^ • • • ^l5 *̂2* * * * 3 î
prime. § • • P • P0 . . . P = q., • q . . . q therefore q.,1 d m 1 2 t. 1
divides (I • h”1 Pi) • P^ ♦ • • Pn and qi divides either (I • Pi),
Pg, . . . , or Pn. Assume that qi divides P^ If not, then renumber
so that it does. But Pi is irreducible, therefore Pi and qi are 
associates and | • v,"! . - g» . q where I' is a unit. Therefore
6' • qj • Po • * • Pw = qi • qg • • • <iq which implies that I ' • Bg 
• • • Pm = q2 * • • Ip "but the left and right sides of this equation
are both proper divisors of a, and by the inductive assumption each
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and vice versa. But then the two
factorizations of a are associated. Therefore R is a unique factor'

The following is an example of a ring satisfying condition a of 
theorem 11 which is not a unique factorization domain.
Example: Using the example used previously of the ring, R, of elements

factorization domain since U = 2 • 2 = (1 + i \J~5) (l - i \[3).
It is interesting to note that R satisfies condition (a) of 

theorem 11. If a^, a2, . . .  is a decreasing sequence of elements of 
R say a2, ~ r2 a5> * * • ‘ttien N(a^) = Ntr-̂ ) N(a2),
N(a2) = N(rp) T( a . . .  . N(a2), . . .  is a decreasing
sequence of integers and since the integers satisfy the descending chain 
condition there must be an n such that NCa^) = = . . .
Then N(rn) = 1, N(rn+2) - 1, . . . and rn = 1, rn+p = 1, . . . which
implies = an+i = • * • • R satisfies the descending chain con­
dition, and by theorem 2 R satisfies condition a.
Definition: A prime ideal P of a ring R is of height r if there 
Is a chain of prime ideals P̂, such that P Z) P^ Z) P2 Z) . . . Z) Pr 
but there is no such chain with more terms. If there is no such r, we
say that R is of infinite height. The height of a prime ideal in a

Theorem 12: Let R be an integral domain satisfying condition a of
theorem 11, then every prime ideal of R contains an irreducible element. 
Proof: Let P be a prime ideal in R, then P contains a set of minimal 
elements, select one of these, say p . If p = a • b where a and b 
are not units, then either a or b is a member of P s 'nce P is prime.

ization domain.

of the form a + i b\[5"" we see immediately that R is not a unique

Noetherian integral domain is finite.
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Then (p, a) € fl and p is not minimal in P. This is a contradiction, 
therefore p is irreducible.
Theorem 13: Let R be an integral domain satisfying condition a of
theorem 11. If every irreducible element of R is prime, then every
prime ideal P of height 1 in R is principal.
Proof: Assume that there exists a nonprincipal prime ideal of height
1, say P. P contains an irreducible element p. Let x € (p) then 
x « y • p for some y € R. p e P implies y • p e P and (p) C  P»
(p) f P by assumption. Therefore P D  (p) D  (0) and P is of height
2. This is a contradiction. Thus P is principal.
Definition: An isolated prime ideal of an ideal P is a prime ideal
which contains P but does not contain any other prime ideal which 
contains P.

The following is an example of a nonisolated prime ideal.
Example: Let I be the ring of integers. The ideal (x, y) is a prime
ideal in y) consists of all elements of i [*, 3
with zero constant terms, a • b e (x, y) implies the constant term of 
a • b is zero which implies the constant terra of either a or b is 
zero. Thus (x, y) is prime.

(x) is prime since if a product of two elements has x as a factor 
then at least one of the elements must have x as a factor.

(2x) Cl (x) C  (x, y), which shows then (x, y) is not an isolated 
prime of (2x).
Theorem 1̂ -: In a Noetherian integral domain every ideal, s, has a set
of isolated primes, P1, P2, . . . , Pn and s C  • • * O^n*
Proof: The theorem follows immediately from corollary 3.49.I in
Introduction to Abstract Algebra by Barnes.
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'Theorem 13: Let R be a Noetherian Integral domain, if every prime
ideal P of height 1 is principal then every irreducible element is 
prime.
Proof: Let p be an irreducible element, (p) has a set of isolated
prime ideals P-̂ , P2, . . . , Pn and (p)C * * • O^n*
Therefore (p) G  ?i i * 1, n. Now there does not exist a prime ideal 
M such that (p)C M C  since P^ is an isolated prime of (p).

Assume there exists a prime ideal M such that (0)C M C  (p).
Now M can be assumed to be of height 1 for if it is not then there 
exists a prime ideal N such that N is of height 1 and (0) C  N C  M,
and we can replace M by N. By assumption M is principal and M * (m)
for some m € R. Therefore (0) C  (m ) C  (P) and m = rp where r € R.
Assume r  ̂(m) then since m € (m) and (m) is prime p € (m). Thus
if x € (p) then x =* sp for some s € R and x e (m). Therefore
(p) = (m) and p is prime.

If r € (m) then r = r2 m for some r2 € R, thus m = r^ m p.
Therefore 1 = r2 P and p is a unit. This is a contradiction, there­
fore r (m), and as shown above, p is prime.

If no such prime ideal M exists, then is of height 1. There­
fore Pi = (p^ for some Pj_ e R and (p) C  (p.̂ ) and p = q • p^ where
q € R. But p is irreducible, q is a unit and (p) = (p̂ ). Thus p^
is prime.

The following is immediate from theorems 13 and 15.
Theorem 16: Let R be a Noetherian integral domain. Then every prime
ideal P of height 1 is principal if and only if every irreducible 
element is prime.
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Theorem 17: A Noetherian Integral domain will "be a unique factorization
domain if and only if it satisfies one of the following: (3q)>
(0j)> (01̂), or (3̂ ), where (3X), (02), ), and (0̂ ) are as in theorem
11, and (3cj) is: "every prime ideal of height 1 is principal."
Q>, p. I)

Proof: (only if) this follows immediately from theorems 11 and 16.
(If) Since R is Noetherian it satisfies condition a by theorem 6. 
The result then follows immediately from theorems 11 and 16.



CHAPTER III 
APPLICATIONS

Theorem 18: Every principal ideal domain is a unique factorization
domai n.
Proof: If R is a principal ideal domain then every ideal in R is
principal, that is, every ideal in R has a basis consisting of one 
element. Therefore by theorem 1, R is Noetherian.

The intersection of any two principal ideals is an ideal and thus
principal. Therefore by theorem 17> R is a Unique Factorization Domain.
Theorem 19: Let A be an integral domain satisfying condition (a) of
theorem 11. Let x and y be products of prime elements and a, b e A.
Then (a • y ) 0 ( t * x) is principal if and only if (ajf^Cb) is prin­
cipal. (7, p. 5]
Proof: First assume y = 1 and x is prime. Let n be the largest
power of x which divides a. If no such n exists then a, . .
forms a nonending strictly decreasing sequence of elements, which con­
tradicts the fact that A satisfies condition (a). Likewise let m be 
the largest integer such that x10 divides b. Thus a = p • xn and
b = q • xm for some P, q € A.

Suppose n < m. If (a)f^)(b) is principal then (a)f^)(b) « (c) 
where c is the least common multiple of a and b.

Let y be a multiple of both a and bx, say y = r • a and
y = s • b • x where r, s € A. Thus - X .. = s • q • xm”n. andXIH-I
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 X —  = r  : a = .r— i-P s £ — I— ?. B u t  x  is p r i m e  w h i c h  i m p l i e s  x
x n + l  x 1̂ !  x n + ^ x
d i v i d e s  r o r  x  d i v i d e s  p. A s s u m e  t h a t  x  d o e s  n o t  d i v i d e  p  t h e n

x d i v i d e s  r, — ^ r  =  -  P a n d  ^  =  -  p  x n  = -  • a. T h u s  -  is a  m u l -
> x n + l  x  x x  x  x

t i p l e  o f  a, w h i c h  i m p l i e s  ̂  is a m u l t i p l e  o f  c a n d  y  is a  m u l t i p l e

o f  ex. T h e r e f o r e  c x  is t h e  l e a s t  c o m m o n  m u l t i p l e  o f  a  a n d  b x  a n d

( a ) P | ( b x )  = (cx).

N o w  if x  d o e s  d i v i d e  p  t h e n  p  = 2 • x  f o r  s o m e  7 e A. T h u s

a s= 2 . x  • x n  = I • x n + 1 , b u t  n  was t h e  l a r g e s t  p o w e r  o f  x  w h i c h

d i v i d e s  a. T h u s  x  d o e s  n o t  d i v i d e  p.

Let n > m and assume (a)f^|(b) is principal, c is again the least
common multiple of a and b and (a)f^)(b) = (c). Assume y  is a mul­
tiple of a and bx then y  is a multiple of c. c = u • a and
c = v . b for some u, v e A. Thus u • P • xn = c =  v * b  = v- q • x™ 
which implies v • q = u • p • xn“m = u « p * xn-m-l . x 6ince if
n - m > 0 then n - m > 1. x divides either v or q. If x divides
q then q = p.x for some P ~ A and b = p • x • xra = P • xP^, but
xn was the largest integer such that xm divides b. Therefore x does
not divide q which implies x divides v. v = I • x for some 7, € A.
c = v • b = I • x • b. Therefore c is a multiple of x • b and c is
the least common multiple of a and xb. Thus (a)f^)(x • b) = (c).
( O n l y  if) A s s u m e  ( a ) f ^ ) ( b  • x) is p r i n c i p a l .  (a)f~N)(b • x) = (d)

w h e r e  b y  t h e o r e m  9} d  is t h e  l e a s t  c o m m o n  m u l t i p l e  o f  a  a n d  b  • x. 

S u p p o s e  n  <  m. S i n c e  d  e (b • x), t h e n  d  = r  * b  * x  f o r  s o m e  

r e A.
S u p p o s e  y  is a m u l t i p l e  o f  b o t h  a a n d  b, y  * u  • a  a n d

y  = v * b  f o r  s o m e  u, v  e A. y  • x  is a m u l t i p l e  o f  b o t h  a  a n d

b  • x  t h u s  y  • x  is a  m u l t i p l e  o f  d  and y  is a  m u l t i p l e  o f A
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d is a multiple of a, say d = a • w where w € A. Thus
p • xn • v = a • w = d = r * b • x = r • q • xm . x. p • w =
r • q • xm”n • x and x must divide p or w. If x divides p,
say p = P* x where P 1 e A, then a = P' • xn+1 which contradicts the
fact that n is the largest integer such that xn divides a. Thus
x does not divide p which implies x must divide w, say w = x • w '
for w ‘ € A. d = a • x w ‘ and - is a multiple of a. Thus ^ isx A
the least common multiple of a and b and (a)f^(b) = Suppose
n > m and let y be a multiple of both a and b, say y = u • a and
y = v • b where u, v € A. v - q » x m = v * b = y = u * a = u * P » x n 
thus v • q = u • p • xn“m = u * p • x11-®-1 • x. x divides either v
or q and x cannot divide q since x® is the highest power of x
which divides b. Therefore x divides v, say v = v' • x where
v* e A. Then y = v 1 * x - b and y is a multiple of both a and
b • x which implies y is a multiple of d. Thus d is the least
common multiple of a and b and by theorem 9 (a-)O(^3) = (<0 -

Now if x and y are prime, (a)O(b • x) is principal and
(ay) 0 (b) is principal, thus (a • y ) Q ( b  • x) *
((a • yjPlCbjOK* * x) O  (a)) is principal. The theorem follows by 
induction on the number of prime factors in x and y.
Definition: Let R be an integral domain and S a subset of R which
is closed under the operation of multiplication and 0 £ S, then 
Rs = <Ja/s a € R and s e s)
Definition: If R is a ring and B is a subset of R and if r € R
then Br * {b • r : b € b}
Theorem 20: Let A be an integral domain satisfying condition (a) of 
theorem 11, and let S be the multiplicative system generated by any



family of prime elements ^  : i e R where R is an indexing set)> .
If As is a  u n i q u e  factorization domain t h e n  so is A. (7, P. 3]
Proof: By theorem 11 this theorem will follow if I can show that the
intersection of any two principal ideals is principal. For any y € A
let Vi(y) be the largest integer n such that x? divides y. This
integer n is finite since A satisfies condition (a). Furthermore

V-(a')any element a ’ e A can be written in the form a' = a K^ p
where a is not a multiple of for any i € R. Almost all V ^ a ’)
a r e  z e r o  s i n c e  A  s a t i s f i e s  c o n d i t i o n  (a). T h e o r e m  19 s h o w s  t h a t

(a'jf^Kb*) is principal if and only if (a)f^l(b) is principal where
V  = b n xYi^ ) = r  /s . a € p s G g\ j first want toiep i s 1 ; 3 J
show that Ag a(^A « Aa. Let u € Ag af^A then u e As a and u e A

Jwhich implies u = a • d/s for some s e S and d € A. Thus a • — e A.s
No divisor of s divides a therefore every divisor of s divides d

cLand s divides d which implies that a • - e Aa and u e Aa. Thus
s

Ag af^JAC Aa. Let u € Aa then u = a . d for some d e A. Let
s e S, d • s e A then € A0. Therefore a . - -■* -s € As a ands 5 s
Ag af^jA =  Aa. Likewise As bf^jA «  Â . Since Ag is a unique factor­
ization domain Ag a ^ A g  b is a principal ideal, say Ag af^)Ag b * Ag c
where c e As. A aP)A b - (As aflAjfllAj bP|A) = Ap|(As aP l As =
^f^Ag c . c e As implies c = c* • IT̂ xYi'c/^^ where s e S and c'
is not a multiple of any x^. I want to s h o w  that Ag c = Ag c f. Let
y e AR c then y = A. • 9—  • Jî xYi^c) where d e A. Therefore

V<(c) 1a %  * l l{ ) .?  ~ ZT—   * c' anĉ  y € AR c 1. If y e Ag c 1 then y = —  c 1
’1 * ° “ ~ S1 

where d e A, s, e S. Thus y = ~  - c 1 = ----- — — — - • — •]!., xYi(c)
S1 5 s H rV:(c) sS1 i  i

 ■■  ---- • c, S-, II. xYi^c) € S and y € AR c. Therefore AR c = A_ cVi(c) l i i  s s s
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and c ' e A. Now I need to show that Af^|Ag c' = A c*. Let
y € A(^)AS c' then y e A and y 6 As c'. ^ ® s’ ’ c ' for Bome

ad € A, s € S which implies — • c * e A. Now each prime divisor of s 
divides either d or c *, hut c1 is not divisible by x^ for all
i € R. Therefore each prime divisor of s divides d. Thus s divides
d. Hence y € A c'. Now let y € A c', then y = a c' for some a € A.
y a a • | • e' and y € Ag c 1. Therefore A Ag c * = A c f and
A a O A b  * A c '• Thus A a O A b  is principal.
Theorem 21: If R is a unique factorization domain then the polynomial
ring R[x] is a unique factorization domain.
Proof: If p is prime in R then it is also prime in R(x]*

Let s » R - {o} then Rg ■ K where K is the quotient field of
R. Therefore K[x) is a principal ideal domain since the ring of poly­
nomials over a field is always a principal ideal domain. Therefore by 
theorem 18 K jjx] = *s a unglue factorization domain. Now I need
to show that Rs[x] * R[*]s» Let p € R[x]s> then p ai s wkere

s € S and a^ e R. Thus p = which implies p € Rg£xJ. If
i

Z^i i 1
~  x , ~  a1 x € R|}c]s* Therefore R[x]s ■
1 ii

Rg (XI f a^d by theorem 20 R[x] is a unique factorization domain.
Corollary: If R is a unique factorization hen Rjx^- x<-,. . . . * *3
is a unique factorization domain.
Proof: This result follows from the previous theorem by induction.

The following is an example which shows that not every unique 
factorization domain is a principal ideal domain.
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Example: Let I be the ring of integers. I is a principal ideal
domain and thus a unique factorization domain. But l[}c] which by 
theorem 21 is a unique factorization domain is not a principal ideal 
domain.

Consider the ideal generated by the elements 2 and x say 
(2,x). (2,x) f l[xj since no polynomial with an odd constant term is
in the ideal. Furthermore if (y) = (2,x) then since 2 € (2,x)
2 e (y) and 2 = py for some p e l[jx]. But then either p = 1 and
y = 2, p = -1 and y = -2, p = 2 and y = 1, or p = -2 and y = -1.
If y = ± 1 then (y) = l[x) contradicting the fact that (y) = l(X)*
If y * ± 2 then x e (2,x) and x £ (y) contradicting the fact that 
(y) = (2,x). Therefore no such y can exist and (2,x) is not 
principal.
Definition: Let A be a subring of the ring R, an element a e R is
said to be integral over A if there exist elements ĉ , ĉ , c2 , . . . ,
Cn_^ belonging to A such that an + cn_^ • an"^ . . . + c-̂ • a1 + Cq  = 0.
That is a is the root of a monic polynomial over R.
Definition: Let R be an integral domain and let K be the field of
quotients of R. R is said to be a normal ring if every element of K
which is integral over R belongs to R.

The following is an example of a ring which is not normal.
Example: Again let R be the ring of elements of the form a + i b \|3"
where a and b are integers.

x^ + x + 1 is a monic polynomial with coefficients in R. The
roots are - —  ± — i \f3» The roots are in the quotient field of R. but 2 2
they are not in R.
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Theorem 22: Every unique factorization domain is a normal ring.
Proof: Let R be a unique factorization domain with quotient field K
Suppose there is an element x e K which is integral over R and not
in R. Then x = a/b where a, b e R. We can assume that a and b
have no irreducible factors in common since common irreducible factors
could be removed without changing x. There exist Cq , Cg, . . . ,

n n 1c„ n e R such that — + c„ i ~ + . . . + c, — + c~ = 0. Thusn--L ^ n-i t i b 0
a11 + cn_q an“*̂ b + . . . + c-̂ a bn”̂  + Cq bn = 0. Thus an e (b). If 
p is an irreducible divisor of b then an e (p), but since p is 
irreducible and R is a unique factorization domain g  is prime, and 
thus (p) is a prime ideal. Therefore a e (p). This is a contra­
diction. Thus x e R. (6, p. l+J)

This theorem essentially says that if a monic polynomial with 
coefficients in R does not have a root in R then it will not have
a root in the quotient field of R.
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