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ABSTRACT

Theorems giving necessary and sufficient conditions under which
an integral domain will be a unique factorization domain are given,

and several results which follow from these theorems are proved.



A STUDY OF UNIGUE FACTORIZATION DOMAINS



INTRODUCTION

This paper presents a study of integral domains in which each
element is uniguely expressible as a product of irreducible elements
(unique except for unit factors and order of the elements). These
integral domains are called unique factorization domains.

The reader is assumed to be reasonably familier with the theory
of rings and ideals. Such familiarity could be obtained from Intro-

duction to Abstract Algebra, by Barnes, Modern Algebra, by Van der

Waerden, or from almost any text on the subject.

Chapter I is concerned with theorems and definitions which are
a necessary prerequisite for the following chapters. In chapter II,
two theorems giving necessary and sufficient conditions for an integral
domain to be a unique factorization domain are developed. Chapter ITT

gives several applications of the theorems in chapter II.

ne



CHAPTER I

PRELTMINARIES

In this paper, all rings are assumed to be commutative with unit.
To begin with, two theorems will be stated for later reference.
Definition: A ring, R, is said to satisfy the ascending chain condi-
tion for ideals if each strictly increasing seguence Al, Any, « «
of ideals of R has only a finite number of terms. That is, there
is some n such that Al C:A2 C o o CZAn and the sequence has no
next element other than R.
Definition: A ring, R, satisfies the finite basis condition if every
ideal in R has a finite basis. That is, every ideal in R 1is
generated by a finite set of elements of R.
Definition: A ring, R, satisfies the maximal condition for ideals
if in any nonenmpty set of ideals of R there exists an ideal maximal
in the set. That is, there exists an ideal A in the set such that
if B is an ideal of R and B_ DA then B = A,
Theorem 1l: 1In a ring, the ascending chain condition for ideals, the
maximal condition for ideals and the finite basis condition are equiv-
alent. (2, p. 113
Definition: A partial ordering 1s a binary relation which is reflexive,
transitive, and artisymmetric. A set on which s partial ordering, f#,
is defined is said to be partially ordered. Two elements are said to
be comparable if (a3, b) ¢ 8 or (v, 2) = . If (a, b) = B, then b

precedes =.



Definition: Let B be a partial ordering of the set M. Let A

be a subset of M., "a" 1is called 2 minimal element of A if

x ¢ A and (a, x) ¢ B implies that x = a. M is said to satisfy
the minimum condition for elements if every nonempty subset of M

has at least one minimal element.

Definition: Let B be a partial ordering of M. If every descending

chain of elements of M (al, 82) € £, (ae, a,) € By « o oy (an, a_ .)€ B,

“n+l

3

.+«+ «» reaches a point where 8, = 8p.1 = ¢ - - ther M 1is said to
satisfy the descending chain condition for elements,
Definition: Let 8 be a partial ordering of M. M satisfies the
inductive condition if a property E 1s possessed by all minimal ele-
ments ¢f M and if from the validity of E for all elements strictly
preceding some element a, we can deduce the wvalidlty of B for a,
then all elements of M satisfy E.
Theorem 2: The inductive condition, the descending chain condition for
elements, and the minimum condition for elements are equivalent. [}, p.Eﬂ
Definition: Two elements a, b of a ring R are sald to bte ussociates
if a =1 +b where 1 1is a unit.

Now I wish to show that from the concept of associativity, a par-
tial order can be found.
Theorem 3: In an integral domain, R, the relation of associativity is
an eguivalence relation.
Proof: Since we have assumed that R has an identity e, a =-e¢ - a.

If £€ + b where ¢ L& a unit, then g’l « a = g'l -t b =D,

[¢]
1]

H
H,
&)
"

€1 - b and b = @2 + ¢ where gl and gg are units, then

b

a= - (§2 +c) = (gl * &) ¢ and iy - &, is a unit since



Now this equivalence relation can be used to pariition the
integral doman R 1into classes of associated elements.

let B = ((A, B) : A and B are classes of associated ele-
ments and an element b ¢ B divides an element a ¢ A} . It D
divides a then a =1r . b, rec R. If a' is any other element
of A and b' is any other element of B, then a = §,- a' and
b =i b' where Ep and &y are units, thus 7 - a' =1r « (5« b!
and a' = gil + iy - T« b'. Therefore, if any element of A divides
any element of B, then all elements of A divide all elements of B.
Theorem 4: If R is an integral domain, then £ is a partial ordering

of R.

e « a, therefore f 1is reflexive. If

Lt}

Proof: (A, A) < B since 2
(A, B) e B and (B, A) ¢ B thenif ac¢A and beB,a=r-+D5b

and b =qg . a for some r, g € R. Therefore, a=1r-q + a,
e=r-.g,and r and q are units which imply that A = B. There-
fore, B 1is antisymmetric. If (A, B) e p and (B, C) ¢ B, then let

ac A, e B, and ¢ ¢ C. There exist ry, Tp € R such that a = ry - b,
b = Tyt e, and a =ry + ry + c. Therefore, c divides a, which implies
(A, C) e B. Thus B 1is transitive.

Theorem 5: If B is defined as above in the integral domain R, then

the ascending chain condition for ideals implies the descending chain
condition for elements.

Proof: Suppose we have the chain (al, ae) e B, (a2, a5) € By o o

where aj, ap, « . . ¢ R, Each a; generates an ideal (ai) and

(a4) € (a4,1), since if x ¢ (ay), then x =D - a; for some b ¢ R.

Then (ai, a ) € p implies a; = ¢ ¢ a, for some c¢ ¢ R, There-

i+l i+l

fore, x=b .c . a and X € (a,

1+l 1+1)' Thus we have (al) C .a

o)



C...C (ai) - éai+1) C . . . by the ascending chain condition there
exists n such that (an) = (an+1) =... . Now (an) = (an+l)

implies a  « (an+l) and a4 € (an). Therefore, a, and a, , are
associates and members of the same equivalence class. Therefore, R
satisfies the descending chain condition for elements.

Example: Let Rl’ R2, o« o ey Rn, « « « Dbe rings with unit. The direct
product S =R ® R,® ... ®@ R® ... 1is the set of all infinite

sequences (a;, a,, 835 ¢ o o ), a4 €eR, 1=1,2, ... . If a= (al,

1

8p, 83, « « » ), b =(by, by, Bz, . . . ) a+b=1(a) + Dby, ap+ by,

a3+b3,...)and acb’-'(al'bl,ae

.

be,aB.bB,...).S

is a ring.
Let

Ay = (2, 0,0, . ..)
A2=(al, aa, O, 0’ ¢« 0 .)

Ap=(ay, 85 ¢+ ., 8,0,0,...)

Al = Ae . (l’ 0, o’ e o o ), An = An+l L4 (l’ l’ l, e o sy l’ O, 0, . o @ )
where the first n elements in the last term are 1. Therefore,

(Al’ A2) € B, (A2, AE) € By o o oy (An’ An+1) € B, . .. and there is

no point where Am = Am+l =. .. o+ Thus s does not satisfy the
descending chain condition for elements, and by theorem 5 s does not

satisfy the ascending chain condition for ideals. Eﬁ, P. lf]



CHAPTER II

NECESSARY AND SUFFICIENT CONDITIONS

Now the preliminary results will be used to aid in constructing
theorems giving necessary and sufficient conditions for a ring to bve
=z unique factorization domain.

Definition: An element of a ring is said to be irreducible if, when-
ever it is expressed as a product of two elements, one and only one
of them is a unit.

Theorem 6: In a ring R satisfying the inductive condition every
nonzero, nonunit element 1s expressible as a product of irreducible
elements.

Proof: ILet E Dbe the property that an element is expressible as a
product of irreducible elements. Clearly E is true for all minimal
elements of R, since all minimal elements are irreducible.

Let x be a nonunit, nonzero element of R. Assume that E is
satisfied for all proper divisors of x. Then x =y . 2 vhere y and

z are proper divisors of x. By hypothesis, ¥ = yl C Y, e e e Vo

n

= 3
z zq Zo o o o Zp WheTre Yy, Yo, + o oy Vp: 21, . . ., 2, are all

irreducible. Therefor = .« e e Y 2. . . . .

efore, x vy ¥g 1 z,

The following is an exsmple of an ring where every element is not
necessarily expressible as a product of irreducible clements.
Example: 1In the exanple given on page six, let Ry, Rzy v v o 1o

the integers, I. Then I 1is the set of ali infinite seiyuences (al,

8oy « « - )y a5 €T forall i,



let p Yve a prime integer and & = (v, P, P, « . « ). Assume

that a=B, * B .. .B where B B
2 m

« « « B are irreducible,
1 m

1’ 72’

and

B, = (bel, boss b25, « o oe )
Bm = (bml, b o me, o)

Thus a = (byy * by * Bgy o+« By Byp t Bop o o+ Dy, Byx v bys
o o e bm5: « « + ) and p = bll . b21 . . e bml’ p = bl2 . b22 . o e
bysy P = b15 . b25 .« o . bm5’ e « « but p is irreducible. There-
fore, each factorization of p can contain only one nonunit element
and that must be +p, Assume that b;; = fp. Since B; is irreducible,

b, = ¥1 i # 1. Therefore, by, #+p which implies LI b32, . e ey

or b, .must equal *p. The B;'s can be ordered so that b,, = ip. Then

since B, is irreducible b, =+l for 1 #2. Now b _ # fp and

13

b25 ¢ tp, thus by reordering if necessary, I can get b__ = *p and

33
b,y =l for i # 3. Continuing, I will eventually get by, = 1p

i<m b, =%, 1 <{m and J £i. But p=>

1(m+1) P2(mel) ° "
3(me1) = ¥p for some J ¢ m. Then

13

Po(me1)? ThUS B

BJ = (bjl’ bje,. o oy me, b,j(m‘f'l)” . -)
= (bjl’ bje,. . sy bjm’ l, l,. . .) . (1’ l,» ° ey l, bj(m+l)" - .)

and neither of the right hand factors is a unit, contradicting the fact
that BJ is irreducible. Thus =a is not expressible as a product of
irreducible elements of S.

Definition: A Noetherian ring is a ring which satisfies the maximum

conditon for ideals.



Theorem 7: In a Noetherian integral domain, R, every element is
expressible as a product of irreducible elements.
Proof: By theorem 1, R satisfies the ascending chain condition for
ideals, and thus, by theorem 5, R satisfies the descending chain con-
dition for elements. Themn, by theorem 2, R satisfies the inductive
condition, and theorem 6 gives the result.
Definition: A prime element is an element x of an integral domain
R such that if x divides a - b, then x divides a, or x divides
b.

The following two lemmas will prove useful in the proof of the next
theorem.
Lemma 1: Let R Dbe an integral domain in which any two elements have
a greatest common divisor. Let a and b belong to R, then define
Mab = {m ce Rem=r .8 and m=s8 . b &and the greatest common divisor
of r and s 1is %). Méb has only one class of assocliated elements,
Proof: Assume that M,, contains two elements, m; and m,. m =7r, . 8,
m =8 + b, m=1r,. 8, and m; = 55, - b where the greatest common
divisor of ry and 8y is 1 and the greatest common divisor of Ty
and 8, is 1, m and m, have a greatest common divisor, say 4.

a divides m and m2, and b divides m, and m Therefore,

2.
d = 4, * a and 4 = 9 - b for some 9y and 94 belonging to R.

ql and q2 have a greatest common divisor, say d2. ql = r5 . d2

and q, = Bz ° d,, where T3 and 83 belong to R. Thus, d = T

. d2 +a and d4d = 53 . d2 « b, r3 and 53’ have a greatest common
divisor dﬁ' Ty =Ty ° d3 and 85 = B) d}’ vhere r) and s,

belong to R. q,1 =T ° d3 . d2 and q2 =5 ° d3 . d2. d3 . d2

divides both 9 and 4, and thus must divide d2. Therefore, d3
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must be a unit. Let n' = 53 «b=r_ -+ a. The greatest common
b)
divisor of s; and ry is 1, so m' isin . Thus, d =d, - m'

and d is a multiple of an element of M .. ‘e had m u5 a aultiple

of 4, therefore m, 1s a multiple of m', say m =T m' where r

belongs to R.

] = . L . o & . = . ' = . .
ry+ra=r-.m r r3 a and 81 b=r.m r s5 b,
therefore, Ty =TT, and By =T - SB’ which implies r divides
ry and 8¢ But since the greatest common divisor of ry and 81 is
1, r must be a unit. Thus m, and m' are associates. Likewise,

n, and m' are assoclates. Thus my and m, are associated.
Lemma 2: Let R be an integral domain in which any two elements have
a least common multiple. If a and b are any two elements belonging
to R and m =a . b, then the greatest common divisor of a and b

is m/n where n is the least common multiple of a and bD.

Proof: Suppose ¢ divides a and b, then a =p < c and b=q- ¢
wvhere p, q € R. Since n 1is the least comuon multiple of a and D,
n=r-+a and n=s°+-b where r, s ¢ R. m 1is a mitiple of n, say
m=u.n ¢ and u have a least common multiple, say d. 4 = ry - ¢
and d =8y * u vhere ry, 69 ¢ R a isa multiple of u since
n.u=m, s+« b.u=a-+b which implies s . u =a. Since a is
also a multiple of ¢, a must be a multiple of 4, say a = Ty d.
Now b is a muitiple of ¢ and r.a.u=a.b implies b=1r . u,
Thus, b 1is a multiple of u. Therefore, b 1is a multiple of d, say
b= S, * d. r,+d=a=u-+s and Tp * 8p T u=u- s; therefore,

r,* Sy = 5. Likewise, s, - d =u . r implies S, . S; . u=u.r

and S, * 8y =Tr. Thus, n=s,+ 8 +a and n=1r_ .« s, « D,

2 1 2 1

Let n' =8, . a=1r,. b n-= s; + n' implies s, is 2 unit,

otherwise n would not be the least common multiple of a and b.
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Therefore, 4 and u are associates. u is then a multiple of c.
It then follows that u 1is the greatest common divisor of a and b.
Theorem 8: Any two elements of an integral domein R have a greatest
cormon divisor if and only if any two elements have a least common multiple.
Proof: (only if) Let a and b belong to R, and let ¢ be a mul-
tiple of both a and b, say ¢ =x -8 and ¢ =y - b. Let M be
as in lemma 1. If ¢ 1is a maltiple of some m € M, then m is the
least common multiple of a and b, since all elements in m are
associated.

x and y have a greatest common divisor, say d. x=1r - 4 and
y=s8.d where r,se€eR. c=r-d-.a and c=85.4d.b, Now r
and s have a greatest common divisor d2. r=r, 4, and s = 8,
a

where r., s_ € R. Thus, x =1r_ - d2 +d and y=s, -4, - d.

2 2’ "2 2 2 2

Since d 1is the greatest common divisor of x and Yy, d2 must equal
l. Therefore, c=r.d+a=58.4d.b,and m=r .a=5+Dbe€ M
(If) This follows immediately from lemma 2.

Theorem 9: Suppose R 1is an integral domain. Any two elements of R
have a least common multiple if and only if the intersection of any two
principal ideals is principal; and furthermore, (a)()(b) = (c¢) if and
only if ¢ is the least common multiple of a and b.

Proof: (only if) Let A and B be two principal ideals, say A = (a),
B = (b), vhere a, be R. a and b have a least common multiple, say
m. If x e (a)N(b) then x 1is a multiple of both a and b, and thus
a multiple of m., Therefore, x ¢ (m) and (a)N(®)C(m). If x e (m)
then x 18 a multiple of m. Now m 1is a multiple of both a and bY;
therefore, x 1is a multiple of both a and b. Therefore, x € (a)
and x ¢ (b). Thus, x e (a)N(b) and (a)(b) = (m).

(If) Suppose a, b € R, then (a)\(b) = (c) for some c € R. ¢ ¢ (a)
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and c¢ ¢ (b). Suppose m 1is a multiple of both a and b, say
m=r.a and m=5 - b, where r, s ¢ R, Therefore, m ¢ (a) and
m e (b) which implies m e (a)(b) = (¢) and thus m 1is a multiple
of ¢. Thus ¢ 1is the least common multiple of a and b. This con-
cludes theorem 9.

The following is an example of an integral domain where the inter-
section of two principal ideals is not necessarily principal.
Example: Let R be the ring of elements of the form a =a + b« 1 \3

2

where a and b are integers. Define N(a) = a“ + 3b2. If

a=8a+b-1\3 and B=c+d. i\3

N(a * B) = N(ac — 3bd + 1 \(3 (ad + be))

]

L}

a2 ¢2 4+ 9b2 32 — Gacbd + 3a2 42 + 3b2 2 4+ Gabed

32 02 + 3a2 d‘? + 3'b2 02 + 9b2 d2

"

"

(22 + 392) « (c2 + 332) = N(a) - N(B)

Now N(1) =1, and f N(a + bi \3) =1 then a° 4+ 3b2 = 1 which implies
a=%1 and b = 0.

Consider (1 + i \3)( (1 — i \3) if this ideal is principal say
(1 +1 \]_5‘)0(1 —1\3) = (¢) then by theorem 9 ¢ is the least common
multiple of 1+ 1\3 and 1 ~ i\[3. Now 4 is a multiple of 1 + 1\/3

and 1 — 1\/3 therefore 4 is a multiple of c.

h=r-c=(rl+ir2 \f?)(cl-t-iceﬁ)
o N(l) = l\I(rl +1r, N3) N(c, + 1 s \3)
16 = (r12 + 3 r22 ; (012 + 5022)

16 =16+ 1 =8+« 2 =4 . 4

If N(r) =1 then r =1 and 4 is the least common multiple of



1+ i\ 3 and 1 - i\3. N(c) cannot be 1 tecause

N(c) > N(1 + 1\[3) = 4. There are ro integers ~.b such that

82 + %b2 = ~ ‘herefore neither N(r) nor MN(c) can equal 2. If

Mc) =4 then ¢ =%1=%4i\(3 or c=2. 2 and *1 * i\|3 are irre-
ducible, since if 2 =qa + B then N(2) = N(a) ¢« N(B), that is,

4 = N(a)N(B). Either N(a) =L, N(B) =1 or N(a) =2, N(B) = 2. If
N(B) =1 then B =1 vwhich means a = 2, and we have a trivial factor-

ization. N(a) cannot be 2 so 2 1is irreducible. Now if

I+

+1*4i\3 =apf then U4 = N(a) + N(B), and by the same reasoning

+

+ 1 % i1\[3 is irreducible.

If b4 is the least cormon multiple of 1 + i\(3 and 1 - i\[3

the; -2 - 2i\(3 1is a multiple of k4, since -2 - 2i\[3 = -2(1 + i\[3) =
(1 - 1\3).

Say 2 -2i\[3=1r .4

-1-i\3=1r.2
l+i\]?=-2-r.

1 + i\[3 is irreducible, so -2 - 21 \J3 cannot be a multiple of
4 and 4 cannot be the least common multiple of 1 + i\3 and
1 - i\3.
¢ cannot be * 1 % i \]—3— or 2 Dbecause all of these elements are
irreducible and therefore cannot be multiples of 1 + i\3 and 1 - i\3.
No other possibilities exist, so no such ¢ exists and this implies
that (1 + 1 \3)[ )(2 - i \3) is not principel.
In the next three lermas the greatest cormon divisor of a ard b

will be denoted by (a,b).
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lerma 1: If a, b, and ¢ are merbers of the integral domain R,

then (ac,pc) and (a,b) * ¢ are associates.

Proof: (a,b) divides a and b, thus (2,b) « ¢ divides a « ¢ and

b » ¢ and therefore (a - c, b - c), say (a - c, b+c)=(ayb).c.r
where r € R. Thus a -¢c=(a.c,b.¢c).s=(a,b)+c+r . s where
s € R. Therefore a = (a,b) + r - s. Likewise b -c=(a- ¢, b-c) . t=
(a,b) » ¢ - r . t where t € R. Therefore b = (a,b) - r - t and

(a,b) - r divides both a and b. Thus (a,b) - r divides (a,b) which
implies r is a unit. Therefore (a - ¢, b . ¢c) and (a,b) - ¢ are
asséciates.

Lemma 2: If a, b, ¢ are members of the integral domain R then

((a,), ¢) and (a, (b,c)) are associates.

Proof: ((a,b), ¢) divides (a,b) &and c¢ and thus a, b, and c.
Therefore ((a,b), ¢) divides a and (b,c) which implies ((a,b),c)
divides (a, (b,c)). Likewise (a, (b,c)) divides ((a,b),c), and the
two are associates.

Lemma 3: If a, b, and ¢ are members of the integral domain R and

if (a,b) =1 and (a,c) =1 then (a,bc) = 1.

]

Proof: Obviously (a, 2 « ¢) =a. By lemma 1 (a,b) . ¢
r(a-+c, b+ c) for some unit r and thus c¢ =r(a + ¢, b + ¢). Now

by lemma 2 (a,b - ¢c) = ((a, a + ¢c), b+ ¢c) =s(a, (a+c, b+ c)) where
s 1s a unit. Therefore (a, b .- c) =s(a, r-1 . ¢). Now (a, r-1.¢) =
(a,c) since r-l1 is a unit, therefore (a, bc) = s - (a,c) = s. Since
any element associated with s also A=t’'nez the greatest common divisor
of a and bt .c, (a, b+c)=s5-1.58=1.

Theorem 10: If a greatest common divisor existe for any pair of elements
a, b € R then every irreducible element of the integral domain R will

be prime.
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Proof: let p be an irreducible element, and assume p s rot prime.
Then there exist a, b € R such that a - b ¢ (p) and a € (p), b € (p),
thus (p, a) =1 and (p, b) = 1. Taerefcre by lemma 3 (p, a - b) =1,
but p divides a - b, This is a contradiction, therefore p 1is prime.
&, ». 73

Theorem 11l: An integral domain R will be a unique factorization domain
if and only if it satisfies condition (a) and either condition Bys» Bos

B}, or Bh'
_(a) R satisfies the minimum ccndition for elements.
(Bl) any two nonzero elements have a greatest common divisor.
(52) any two nonzero elements have a least common multiple.
(33) the intersection of any two principal ideals is principal.
(By) every irreducible element of R 1is prime.
Proof: Bl’ 32, and 35 are egquivalent thus it is sufficient to prove
the theorem for By and B).

First I will prove that if R 1is a unique factorization domain,

then o and Bl are satisfied. If a ¢ R then a =P P2 .« « P

1 n

where P Pg, . . s Pn are irreducible, Every strictly decreasing

1’
chain of elements starting with a can obviously have at most n ele-
ments. Thus the descending chain condition is satisfied, which implies
that a is satisfied. Let &, b € R and let Pl’ Py - -« , B, De
irreducible elements such that every irreducible divisor of both a

and b is associated with some Pi’ and every Pi is associated with
an irreducible divisor of either a or b, Therefore a = §l P¥i Pgé
. e Pgn and b = £, P%l P%E s - Pﬁn where &, and £, are units

and any number of Ki's and L;'s can be-zero. Any divisor, a), of a

can be written a, = 51 Pil PéE e P%n with 0 < il < K;, and any
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divisor, b, of b can be written b; = éé Pgl sz ... Pgn with

1
0<Jy <Lj. Thus (a, b) = PJ1 PI2 . . . PP where m; =min (K, L;),
i=1, ..., n Thus R satisfies condition Bl.

By theorem 10 R satisfies condition Bh’

Thus it remains to be proved that if R satisfies conditions o
and Bh then R is a unique factorization domain. By theorem 6 we get
that every nonmunit, nonzero element of R 1is expressible as a product
of irreducible elements. Every minimal element in R 1is irreducible and
every irreducible element trivially satisfies the uniqueness property.
Therefcre the set of all minimal elements in R satisfies the property
that they are uniquely expressible as a product of irreducible elements,
call this property E. Assume E is true for all proper divisors of an
element a, that is, for all b such that (a, b) ¢ B3 and (b, a) ¢ B.
Now a =%+« c where b and c¢ are proper divisors of a. b = él Py Py
.+« Py and c =§, Poi1 Poyo ¢+ © » Pmy where £y and £, are units

and P P are lrreducible.

l, . . L] ’ m
a = § Pl P2 e« « Py where § =§; - E5. Assume that a =1 3 9p

-+« . Q; where q,, . . ., d¢; are irreducible and 1 is a unit. There-

fore ¢§& Pl P2 e e Pp=gy 4y . . - 4. Wow 45 s + + -+, Q; 8re

. . n=l . . _ .
prime. § 1 Pl Py o o . Pm =d * G . . . q therefore %
divides (& - =1 Pl) * Py . . . Py and 4; divides either (¢ - ﬂ—l Pl)’

P2, + + « , 0Or P,. Assume that 4y divides Pl. If not, then renumber
so that it does. But Pl is irreducitle, therefore Pl and q, are
associates and § . "1 . Py =§&" - 9 where §' 1is a unit. Therefore
' - Q *Pr. .. P = QA e e Yy @hich implies that &' - P,

o . Pm =ds - . 4y but the left and right sides of this egquation

are both proper divisors of a, and by the inductive assumption each
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Py is associated with some qj and vice versa. But then the two
factorizations of a are associated. Therefore R 1is a unique factor-
ization domain. [5, p. 75

The following is an example of a ring satisfying condition o of
theorem 11 which is not & unique factorization domain.

Example: Using the example used previously of the ring, R, of elements
of the form a + i b\|3 we see immediately that R 1s not a unique
factorization domain since U4 =2+ 2 = (1L + i\3) (1 - 1 \3).

It is interesting to note that R satisfies condition (a) of
theorem 11. If ay, as, . . . 1s a decreasing sequence of elements of
R say a) =7 ap, ap =Tp Gzy o e s then N(ay) = N(ry) N(ap),

N(ap) = N(ry) “(aB), o« o e N(al), N(a2), . . . 1is a decreasing
sequence of integers and since the integers satisfy the descending chain
condition there must be an n such that N(ay) = N(ap,) = . . « .

Then N(rp)

1, M(rp,9) =1, . . .and ry =1, rp.; =1, . . . vwhich
implies o, = Cnpl = ¢ 0 0 e R satisfies the descending chain con-
dition, and by theorem 2 R satisfies condition «.

Definition: A prime ideal P of a ring R 1is of height r if there

1s a chain of prime *deals P, such that P DR PQD .. . DP,

but there is no such chain with more terms. If there is no such r, we
say that R 1s of infinite height. The height of a prime ideal in a
Noetherian integral domain is finite. E, p. 2@

Theorem 12: Let R be an integral doma’n satisfying condition o of
theorem 1ll, then every prime ideal of R contains an irreducible element.
Proof: Let P %bve a prime ideal in R, then P contains a set of minimal

elements, select one of these, say p. If p=a + b where a and b

are not units, then either a or Y is a member of P since P 1is prime.
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Then (P, a) €e f and P is not minimal in P. This is a contradiction.
Therefore p is irreducible.
Theorem 13: Let R ©be an integral domain satisfying condition a of
theorem 11. If every irreducible element of R 1is prime, then every
prime ideal P of height 1 in R 1is principal.
Proof: Assume that there exists a nonprincipal prime ideal of height
1, say P. P contains an irreducit®le element p. Let x € (p) then
X=y+.p forsome ye€R peP implies y - pe P and (p)C P.
(p) # P by assumption. Therefore P D (p) D(0) and P is of height
2. This 1s a contradiction. Thus P is principal.
Definition: An isolated prime ideal of an ideal P 1is a prime ideal
which contains P dbut does not contain any other prime ideal which
contains P.

The following is an example of a nonisolated prime ideal.
Example: Let I %be the ring of integers. The ideal (x, y) is a prime
ideal in I [%, i] . (x, y) consists of all elements of I [}, i]
with zero constant terms. a - b € (x, y) implies the constant term of
a « b 1is zero which implies the constant term of either a or b is
zero. Thus (x, y) is prime.

(x) is prime since if a product of two elements has x as a factor
then at least one of the elements must have x as a factor.

(ex) C (x) C (x, y), which shows then (x, y) is not an isolated
prime of (2x).
Theorem 14: In a Noetherian integral domain every ideal, s, has a set
of isolated primes, Py, Pp, . . . , P, and s C:'ﬂlr\\szﬂﬁ e v o (Py-
Proof: The theorem follows imrediately from corollary 3.49.1 in

Intrgduction to Abstract Algebra ty Barnes.




Theorem 15: let R be a Noetherian integral domain, if every prime
ideal P of height 1 1is principal then every irreducible element is
prime.

Proof: Let p be an irreducible element. (p) has a set of isclated
prime ideals Py, Pp, . . . , Py and (p)C P[Py ) . - . ()P,
Therefore (p)C P; 1 =1, n. Now there does not exist a prime ideal
M such that (p)C MCP; since P; is an isolated prime of (p).

Assume there exists a prime ideal M such that (o0)CMC(p).

Now M can be assumed to be of height 1 for if it is not then there
exists a prime ideal N such that N is of height 1 and (0)C NCM,
and we can replace M by N. By assumption M 1is principal and M = (m)
for some m € R. Therefore (0)C (m) C(P) 2nd m = rp where r € R.
Assume r ¢ (m) then since m € (m) and (m) is prime p ¢ (m). Thus

if x € (p) then x =sp for some s € R and x € (m). Therefore

(p) = (m) and p is prime.

If re(m) then r=rpom for some rp € R, thus m =71, m p.
Therefore 1 = rp p and p is a unit. This is a contradiction, there-
fore r ¢ (m), and as shown above, p is prime.

If no such prime ideal M exists, then P; 1is of height 1. There-
fore P; = (p;j) for some p; € R and (p)C (p;) and p =q « p; vhere
4 € R. But p 1is irreducible, g is a unit and (p) = (p;). Thus p;
is prime.

The following is immediate from theorems 13 and 15.

Theorem 16: Let R be a Noetherian integral domain. Then every prime
ideal P of height 1 is principal if and only if every irreducible

element is prime.
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Theorem 17: A Noetherian integral domain will be a unique factorization
domain if and only if it satisfies one of the following: (By), (52),
(83), (By), or (B5), where (B,), (Bz), (B5), and (B,) are as in theorem
11, and (35) is: "every prime ideal of height 1 is principal.”

(6, ». 1
Proof: (only if) this follows irmediately from theorems 11 and 16.
(If) Since R is Noetherian it satisfies condition o by theorem €.

The result then follows immediately from theorems 11 and 16.



CHAPTER III

APPLICATIONS

ggfggfngéz Bvery principal ideal domain is a unigue factorization
domain.

Proof: If R 1is a principal ideal domain then every ideal in R is
principal, that is, every ideal in R has a basis consisting of one
element. Therefore by theorem 1, R is Noetherian.

The intersection of any two principal ideals is an ideal and thus
principal. Therefore by theorem 17, R is a Unique Factorization Domain.
Theorem 19: Let A be an integral domain satisfying condition (a) of
theorem 11. let x and y be products of prime elements and a, b € A,
Then (a - y)f’](b «+ x) is principal if and only if (a){ﬁﬁ(b) is prin-
cipal. E?, P. 3]

Proof: PFirst assume y =1 and x 1is prime. Let n ©be the largest
power of x which divides a. If no such n exists then a, %, ;{%, .
forms a nonending strictly decreasing sequence of elements, which con-
tradicts the fact that A satisfies condition (a). Likewise let m be
the largest integer such that x®™ divides b. Thus a =p - x% and

b =g+ xM for some P, g € A,

Suppose n < m. If (a)()(b) is principal then (a)( )(b)

(c)
where ¢ 1is the least cormon multiple of 2 and ©b.
let y Dbe a2 multiple of both 2 and bx, say y =r - a and

y=s+b-x vhere r, s € A. Thus _gii =s .+ q . x0 ang
x

21
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n
Yy _-r-a _Ir P X _r ' P Byt x is prime which implies X
xh+l  yn+l xh+l X

divides r or x divides pP. Ascsume that x does not divide p then

ivi = £ z = _I.‘.. n = E . Z i l -
x divides r, ;ﬁ%f 2 P and Z=2PX S " 8 Thus = isam
tiple of a, which implies % is a2 multiple of ¢ and y is a multiple

of cx. Therefore c¢x 1is the least comrmer multiple of a and bx and
(a){ﬂﬁ(bx) = (ex).

Now if x does divide p then p =1+« x for some 1 € A. Thus
a=1.x+x%=71.xM byt n was the largest power of x which
divides a, Thus x does not divide p.

Let n>m and assume (a){ﬁ)(b) is principal, ¢ 1is again the least
common multiple of a and b and (a)(ﬁ](b) = (¢). Arsume y is a mul-
tiple of a and bx then y is a multiple of ¢. ¢ =u - a and

c=v.b forsome u, veA. Thus u-P : - x*=c=v +:b=v.q.x"

L}

n-m-1

Xn-m =u P * X « X s8ince if

which implijes v « g =u + D -
n-m>0 then n-m>1., x divides either v or g. If x divides
q then q=p.-X forsome P A and b=D - x+« xW =D . xm+1, but

m was the largest integer such that xM divides b. Therefore x does
not divide q which implies x divides v. v =1 - x for some 1 € A.

c=ve+-b=1.x+ Db, Therefore c¢ is a multipleof x - b and c¢ is

the least common multiple of a and xb. Thus (a)(ﬁﬁ(x . D) (e).
(d)

where by theorem 9, 4 is the least cormon multiple of a and b -« x.

(Only if) Assume (a)(ﬂw(b - x) 1is principal. (a)(ﬁﬁ(b - x)

Suppose n <m. Since d € (b - x), then d =r + b - x for some
r € A.

Suppose y is a multiple of both a and b, y =u - a and
y=v-+-b for some u, ve A, y + x is a multiple of both a and

b x thus y + x is a miltiple of d and y is & multiple of &
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d is 2 multiple of a, say d =a « w vwhere w € A, Thus
p-xt-w=za.w=d=r-bex=r-qg-x",.x, p-ws=

r- g x@0 . x and x must divide p or w. If x divides p,
say p = P' x where P' € A, then a =P' - s+l yhich contradicts the

fact that n 1is the largest integer such that xP divides a. Thus

1

X does not divide p vwhich implies x must divide w, say W =X + W
for w' e A, d =a +« x - w' and % is a multiple of a. Thus % is

the least common multiple of a and b and (a)f\(b) = Gg. Suppose
n>m and let y be a multiple of both a and b, say y =u + a and
y=v-+:b where u, veA. v-:q-xl=v.b=y=u-a=u-+p-x"
thus v+ g=uespe xP-l =y -p. x0-m=1 . x  x divides either v
or q¢ and x cannot divide q since x® 1is the highest power of x
which divides ©b. Therefore x divides v, say v =v' + x where
v' €A, Then y=v' +« x-b and ¥y 1is a multiple of both a and
b « X which implies y 1is a multiple of d. Thus @& is the least
common multiple of a and b and by theorem 9 (a)(ﬁﬁ(b) = (d).

Now if x and y are prime, (a)raw(h - x) is principal and
(ay){ﬁ\(b) is principal, thus (a - y)(ﬁ)(b « X) =
((a - y)(ﬁ\(b)(*\(b . x)(ﬁ\(a)) is principal. The theorem follows by
induction on the number of prime factors in x and y.
Definition: Let R be an integral domain and S a subset of R which
is closed under the operation of multiplication and O ¢ S, then
Rs = (a/s a € R and seS}
Definition: If R 1is a ring and B is a subset of R and if r € R
then Br= (b -r: e B
Theorem 20: Let A be an integral domain satisfying condition (a) of

theorem 11, and let S be the multiplicative system generated by any
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family of prime elements {?i : 1 € R where R 1is an indexing seé} .

If A, is a unigue factorization domeain then so is A, E?, P. i]

s

Proof: By theorem 11 this theorem will follow if I can show that the
intersection of any two principal ideals is principal. For any y € A
let V;(y) be the largest integer n such that x? divides y. This

integer n is finite since A satisfies condition (a). Furthermore

Vi(a'
any element a' € A can be written in the form a' = a HieR xil( )

where a 1is not a multiple of x, foramy 1 e R. Almost all Vi(a')
are zero since A satisfies condition (a). Theorem 19 shows that

(a")( )(b') 1is principal if and only if (a)( )(b) is principal where

wt o= v, (o)
o] b niep xi A

show that Ag a(ﬁ\A = Aa. Let u e Ag a(—]A then u e Aga and ueA

Now Aj = <§ﬁs :a€R, s¢ é} I first want to

which implies u =a - d/s for some s € S and 4 € A. Thus a - d € A.
5

No divisor of s divides a therefore every divisor of s divides 4

and s divides d which implies that a - % € Aa and u € Aa., Thus

Agaf JACAa. Let ueAa then u=a.d for some d € A. ILet

se€S,d-5¢A then £ 8¢ A_. Therefore a . d: 8¢ a and
s s
Ag a(*\A = Aa. Likewise Ag b(R\A = Ay,. Since As is a unique factor-
ization domain A a(R\As b is a principal ideal, say Ag a(’]As b=A_c,
vhere c € A, Aaf JAb = (Ag al JA)()(Ag b )A) = A() (A a(")Ag B) =
A(NAgc. ce Ag implies c =c' - I xgi(cz//é where s € S and c'

is not a multiple of any x;. I want to shov that A c = Ag c'. Let

yeAgc then y = 4. %} I Y xgi(c) where d € A. Therefore
Vs (c) 51
a Ty x;i d
= ————d—— . ¢' and y € Agc'. If yeA c' then y=-—c'
Sy + 8 5 81
where d € A, s, €S. Thus y = 4. 540 2 s .8l Iy xgi(c) =
s, S o T V-(c) 5
1 H
d 3 ) *c ST xgi(c) €5 and y € Ag c. Therefore Aj c = A  c'
¢

Sl Hi Xii
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Ac'. Let

and c' € A. Now I need to show that A[ A, c'

yeAﬂAs c' then ye€eA and y € Age'. y = - ¢' for some

LY

d e A, s € S which implies % - ¢' € A. Now each prime divisor of s
divides either 4 or c¢', but c¢' 1is not divisible by Xy for all

i € R. Therefore each prime divisor of s divides d. Thus s divides
d. Hence y e Ac'. Now let y e Ac', then y =a c' for some a € A.

g

y=a-: +¢c' and y e A, ¢'. Therefore A JA_ c' =Ac' and
8 38 2]

Aal )Av

Theorem 21: If R 1is a unique factorization domain then the polynomial

L]

A c'. Thus AamAb is principal.

ring R[x] is a unjque factorization domain,
Proof: If p is prime in R then it is also prime in RE(]

let s =R -~ {O} then R; = K where K is the quotient field of
R. Therefore K[:;_] is a principal ideal domain since the ring of poly-
nomials over a field is always a principal ideal dc¢main, Therefore by
theorem 18 K [x] = Rs[x] is a unique factorization domain. Now I need

to show that Rs[:x] = Rtx:ls. Let p € R[:x]s, then p = ;ﬁai x1 /s where

£
s €S and a, ¢ R. Thus p=z 21 3 unhich implies € R E:] If
i . j s p s .
i
8
1 i 1
PGRSE(]then p=§:-§_’{x,§;

i

ay xi € R[x]s. Therefore R[x']s -

Ry [x], and by theorem 20 R[X] 1s a unigue factorization domain.
Corollary: If R 1is a unique factorization ‘hen R[xi ) Koy o 0 e, xa
is & unique factorization domain.

Proof: This result follows from the previous theorem by induction.

The following is an example which shows that not every unique

factorization domaein is a principal ideal domain.
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Example: Let I be the ring of integers. T 1is a principal ideal
domain and thus a unigue factorization domain. But IE%] which by
theorem 21 is a unique factorization domain is not a principal ideal
domain.

Consider the ideal generated by the elements 2 and x say
(2,x). (2,x) # I[x] since no polynomial with an odd constant term is

in the ideal. Furthermore if (y) = (2,x) then since 2 ¢ (2,x)

2 € (y) and 2 = py for some P € I[?J. But then either p 1 and

y=2,p=-1 and y=-2,p=2 andy=1, or p=-2 and y = -1.

I+

If y=t+1 then (y) = 1[x'_] contradicting the fact that (y) = I[x].
If y=+2 then x € (2,x) and x ¢ (y) contradicting the fact that
(y) = (2,x). Therefore no such y can exist and (2,x) is not
principal.
Definition: Iet A De a subring of the ring R, an element a € R is
said to be integral over A if there exist elements Cor Cy1s Cos o o v s
Ch.1 belonging to A such that aB + ¢, _; - an-1 | | | 4 e - a' +¢g =
That is a 1is the root of a monic polynomial over R.
Definition: Let R be an integral domain and let K be the field of
quotients of R. R 1is said to be a normal ring if every element of K
which is integral over R belongs to R.

The following is an example of a ring which is not normal.
Example: Again let R be the ring of elements of the form a + i b \[3
where a and b are integers.

x2 + x + 1 is a monic polynomial with coefficients in R. The
roots are - % t % i 3. The roots are in the quotient field of R, but

they are not in R.
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Thecoren zZ2: Every unique factorization domain is a normal ring.

Procf: Let R be a unique factorization domain with guotient field K.
Suppose there is an element x € K which is integral over R and not
in R. Then x = a/b where a, b € R. We can assume that a and b
have no irreducible factors in common since common irreducible factors
could be removed without changing x. There exist Cgs C1s Coy + o -
¢h.1 € R such that % ? 4 Cn-1 % n-1 .. .+ 0y % + cy = 0. Thus

al+cpy1a™l b ..ty L,

o b = 0. Thus a® ¢ (b). If
P is an irreducible divisor of b then & € (p), but since p is
irreducible and R is a unique factorization domein p is prime, and
thus (p) is a prime ideal. Therefore a ¢ (p). This is a contra-
diction. Thus x € R. [6_, jolt 15:]

This theorem essentially says that if a monic polynomial with

coefficients in R does not have a root in R +then it will not have

a root in the quotient field of R.
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