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ABSTRACT

The problem discussed in this paper is the solution of the
equation Ax = ¢ where A 1s an operator on a real Hilbert space,
and x and ¢ belong to this Hilbert space. The general method
of solution is by successive approximations. The particular
approach discussed is to apply steepest descent in Hilbert space in
a manner analogous to the finite space application. In this case
steepest descent 1is used to minimize the quadratic functionals,

H(x) = {Ax,x) - 2<x,¢> and “A.x ¢H , whose minimums are
solutions of Ax =

A technique for bounding an unboundéd operator by defining a
new norm and scalar product, and then showing that the unbounded
operator is bounded in the sense of the new norm is developed.

For the case where A 1is a bounded operator, aigorithms of
the form Xn = X4 + €n-1 zn-l’ approximating the exact solution to

Ax = @, were developed by minimizing the quadratic functionals. These
algorithms gave convergent sequences and the speed of convergence was
shown at least as fast as that of a geometric progression.

A different method of determining the direction of a modification
to a particular approximate solution to give a better approximation to
the actual solution was examined. By modifying a particular guess by
a direction w(gn) ~ A-1 r(xn), where A-l is determined through the

use of a Neumann series, a new algorithm was obtained. The convergence
of the new algorithm is shown and its overestimate indicated that the
new algorithm might lead to faster convergence.

The techniques which were developed were applied to a second
order, self adjoint, differential operator with zero end points. It
was shown that this usually unbounded operator could be bounded using
the techniques developed. If the coefficlents of the differential
operator, A of Ax = @, are continuous and differentiable and ¢ is
continuous, then an approximate solution may be generated for any
second order differential equation meeting these conditions.
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INTRODUCTION

The problem discussed in this paper is the solution of the
equation Ax = @ where A 1is a linear operator-on-a real Hilbert
space and x and 1) belong to this Hilbert space. The general
method of solution will be by successive approximations. The
particular approach discussed will be to apply steepest descent in
Hilbert space in a manner analogous to the finlte spacé aﬁplication.
In this case we will be using steepest descent to minimize & quadratic
functional related to Ax = ¢. .

The first approximation will be denbted by X, whefe X, wi}l
be modified by €z in successive approxim;tions. z 1s a unit vector
called the direction whose actual séatial direct;on ig suggested by
steepest descent to give the maximum variation in the quadratic
functional, in a restricted local sense,in the immediate vicinity of
X On the other hand for a given direction 2z +the € determined by
steepest descent is the best possible and leads to the minimization of
H(xo + ez).

As will be shown in this paper directions which are better in
the general sense of causing X + €z to converge to a solution of
Ax = ¢§ 1in a fewer number of steps may be found by a.different method.
In fact, the direction determingd using steepest descent may also be
determined by tﬁis different method. To show formally that one

method of generating an approximate solution is better than another is



very difficult. . However, by examining the features of the methods,
some appear to give approximate solutions which give better
approximations in a fewer number of steps.

The solution for Ax = § will be constructed first for the
case where A 1is a bounded operator and then extended, by & method
credited to Friedrichs, to the case where A is an unbounded opera.tor;

In the first chapter the theory for the extension of the results
from the bounded to the unbounded operator will be developed. Also,
the theorem that shows that the sequence {xn> which minimizes an
appropriate quadratic functional is equivalent to the approximate
solution of the equation Ax = @ is stated.

The next chapter is devoted to :bhe development of a;c;proximate
solutions to Ax = ¢§ where A is a pounded operator.

The final chapter extends the 'resul;,s of chapter two to. the_ case
of a unbounded operator and also giveé an exa.mﬁle of the application

of the unbounded operator theory.



" CHAPTER I
HILBERT SPACE PRELIMINARIES

When considering an equation of the form Ax = ¢§, where A is a
bounded (with a positive lower })ound), self adjoint operator, we first
must establish thg existance and uniqueness of solutions to this
equation. The gli;scussion [pp. 265 <266, 6] shows that for a symmetric,
- positive definite operator an unique inverse exists. Therefore,

Ax = ¢ wheré A 1is a symmetric, positive definite operator will have
an unique solution.

Now that we have verified that a unique sol_utidn to Ax = @ does
exist we prove the following theorem which is also contained in. [2J ,
[h;] , and [6] ) '
Theorem: The quadratic functional H(x) = {Ax,x> - 2{x,8> attains
its minimum only at the solution x* of Ax = {.

Proof: @ = Ax* so that we write H(x) = <{Ax,x) -'2’<x,Ax*> .
Adding and subtracting Ax* and x* in the first term and x* in the
second term we obtain

H(x)

CAx - Ax* + Ax*, X - X* + x* ) -“2<(x - x*) + x¥, Ax*D
CA(x = x¥), x - x*> = {Ax*,x*>.

Since A is bounded {Ax,x>> mll x112. Therefore,

[}

H(x) > m{(x - x¥), (x - x*¥)> - {Ax*,x*> > - {Ax*,xD= H(x*)
s0 that x* minimizes H(x). To prove x* is the only point where
the minimum is attained let H(x) = H(x*). Then since

H(x) = {A(x - x7), (X - x*)> + H(x*),

0= CAGx* - B), (xr -0 srllx -7]1% 50

so || ¢ - x|] =0 and x = x*.



We would now like to develop the basis for the extension of
bounded operator results to the case of unbounded operatox_'sl..r“
Definition: If A is a symmetric unbounded operator defined over a
set Qo’ B is a symmetric, positively semibounded operator,
<{Bx,x > > {x,x), and if |<Ax,x>l < MCBx,x > f.or xﬁ_Qo then
A is said to be B bounded on Qé. |

We want to examine characteristics,of' B' such as the range,
domain and existence of an inverse. ‘First consider B to have domairi'
Qo where Qo is a linear set dense iﬁ a ﬁilbert space,Z/. Defipe a
new scalar product [u,v] in o as [u,v] = {Bu,v)>. This can be
shown to be a true scalar producp .

(1) [au,u] = {aBu,v > = a{Bu,v) = a[u,v]

(2) [u + r,v] = {(B(u+r),v> = (Bu+ Br,v ) ={u,v) + {Br,v)

= [u,v] + [r,v] 2

(3) [u,v} = {(Bu,v> = {u,Bvy = {Bv,u) =<V,u>..

We don't have to worry about the complex conjugate when reversing the
scalar products since we are dealing onlj' with real numbers.

(&) [u,uJ = {Bu,up>0 for u # 0 since B is positively
semibounded. We now define a norm in Qo’ which we will call the B
norm, as u =[mqlk. |

Consider a Cauchy sequence <}3¥> in the sense of the B norm.

That is i1f €>0 +there exists an M such that for all

e e A R e
<B(Xn - m)’ (Xn - zm)> > TR Xm” so that n);xjxigm len “ Xp|| = 0

or X, ~converges to some ¥ in f/ . Let K. be the completion of QO.

That is K is a Hilbert space with .QOCK, 520 dense in- K, and if (,)



is the scalar product in K, (,) = [,) on . Wewill seek a one to
one correspondence (a continuous linear trgnsforma.tiop T) between K
and a subset of N such that for f € o, T(£) = £. For h€K -,

let ijne‘ 4 with f-n->h€ K. Define T(h) =~ Lim T(fn) = %gglm £ -
This limit exists since £ is Cauchy ir M WU .nd nence inl| Il
If gh-+h in K with gn690, U fn - gnM‘—aO 50 |/ fn -8 N 0. )
Therefore, T(h) is well defined. No‘i: we must show that T is one to
one. Suppose T(£) = T(g), £ >f€K and g - g€K with f_ and

gneﬁo. Let heﬂo, then

(b, T « g)

M, [n7, - 8] = g, BT, -8y

CEn, Mg £ - Limog >= <Bh,2(f) - T(g)D>

<{Br,0> =o0.

Since Qo is dense in K, f = g. K 1is, therefore, one to one with  _

a subset of J(/ wvhere T maps K onto the subset of .H which we
will call QZB

The space QO has been extended to the complete space QB. We
would like to extend the operator B on a subset of QB such that
the range of the extended operator will fill the whole Hilbert
space N .

To create a proper extension we consider an arbitrary element
h € 4 and define the functional I'h(f) = <f,h) vhere ffﬂB. Then

L <1 In1l € MU IIn]] where P} = CBe,2 D2,

In the Hilbert svace fgp; Lh(f) is a linear functional whose norm does
not exceed ” n” « To establish this result define a bounded linear

functional Gg such that ||Ggz]ll <M |l2]] where G 1is some
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arbitrary operator. We now appeal to the following theorem [p. 120, 2J .
"Whatever the linear functional f on a Hilbert space &, there
exists an element yC€#, uniquely defined by the functional £, such
that fx = {x,y> for any xE }." Moreover || £ || = llgll . Using
the theorem, the notion of a linear functional on QB and that
there exists an element g in QB such that Lh(f) = [f ,g] and
also W g N 1is the norm of the functional. Therefore ’
lle Il <UWUeW <llnll . The element g is uniquely determined by
the functional Lh and, therefore, by h so we write g = Dh and
define D as an unique transformation whose domain is ﬂ ~ and whose
range is in @, and is denoted by Ql"; 0y Q_QE D 1is clearly
linear. D may also be shown to be self adjoint.
{f,nh] = [Dh,f] = {n,£> on o, Also, [Df,h] = &) = )
on Qy so that [f,Dh] =<{n,f>= [Df,h] .

We know that L (£) = (£,h) = [f,g:, for £€Q,. Assume that

there are two h's in ﬂ such that Dhl =g = Dhe. But

[f,% = <f,hl> and. [f,g] = <f, 2>. Since QB is dense then

hl = h2 so that there is a one to one correspondence between the

elements in Q; (the range of D) and the elements of J"/ (t.he' dorpa.in
of D). Therefore, pt may be defined as a.n gpérator with domain h
Q; and range }/ .

We now wish to show that D'l is an extension of B ‘on Qg
For D' to be an extension of B we must show that for all -

1 -1

f€§20 Bf = D™Tf. Then since DL is defined on ‘Q;, D would

be said to be an extension of B to Q; Let ' L = Bg, then



Ly () = <f, Bg) = [f,g] = <{f;n) =L (f) and Ih =g,
therefore, h = D.lg since D™ exists and L = Bg D'lg = Bg
where g€ . Therefore, DL is an extension of B.

The possibility exists that thére may be other symmetric '
extensions of B from & to Q; . Let E be such an extension.
Let f be an element of 2 and f' an element of Q*B . Then
£,EE) = [f,nEf'] since Ef' plays the part of h in the
earlier definition of Lh(f)' But _

| {£,Etd> = {Ef, £ =<D"lf,f'> = [Dn’lf,fa - [f,f']

so that DEf' = £' or Ef' = D1f' since F is dense in ¥ .

B
Therefore, EC D-:L so that any .other extensions of B are e_qual to
or contained in D T.
We now have extended B on Qo to D-l on Q;- Also, we have

created D which maps any element of }/ into & In considering

* L]
B
the problem of solving Ax = §, A is only defined for x€ QO while
¢ can be any member of }/ The range of A 1is in j\/ QB is a
complete space which we have constructed by extending QO. If we
apply D _ .to both sides of Ax = ¢ we get DAx = D¢ an equation

B
in Q. We would like to show that DA 1is bounded on Qg and

defined in 0¥ . Ccall D¢ = '¢1' DAx has range in a; but domain

extend the domain of DA to €.
We first must show that DA 1s symmetric at least on Qo.
Consider [DAf,g] where f and g€ a
[DAf,g] = {af,g)> = <f,Ag>v=l[Df,Ag] =[f,nAg]
so that DA 1is symmetric on Qo. B will be selected such that

m Bx,x> < {AX,x> < [DAx,x] sM[x,vx].



Therefore, in 8, DA is semibounded in the sense of the B metric.
However, to extend DA to A' 1in QB we must show that

[DA:t‘,g]2 < [DAf, J [DAg ,g] where the metric is the B metric defined
on QB and f and g pelong to Qo.

For every real A an hKE‘QO may be defined so that

o g
I

£+ x[nAf,g]g.. 0< [DAhA,h)\] = [DA(f + A [DAf,glg),

£+ ADAf,glg] = [(par + A[DAf,g]DAg), £ + A[DAT,€]é]

[oaz, 2] + 2n[par,g] % + 3 [par,g]® [pae.e] -
The preceeding is a quadratic in A with reai»coefficients and always
- greater than zero. If we consider the general quadratic equation
f(x) = ax> +bx + ¢ >0 and form £f'(x) =2ax +b and f''(x) = 2a
we see that f'(x) =0 when x = - EE and at that point f''(x) >0
so'that X = - g; is a minimum point. Since ax® + bx + c >0 has
only one minimum point the graph of such an equation could touch the A
axis only once. This would imply a single reﬁl root. If such occurs
it would have to be a double root. If the graph of the quadratic does
not cross the A axls there would be two imaginary roots. The roots,
therefore, are equal or imasginary so that the discriminate
b2 - he <0 or

h[mf,g]l* - h[DAf,g]e[DAg,g] [mf,f] <0
or

16" < (o] (] (e [1]
so that [DAf;gJ is a bounded functional. Call [DAf,gJ = Lg(f).

We now wish to extend this result to a more general g. Consider
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“DAi_’,gn” <M N &, N n f n - where gnE‘Qo, then

[oasgll<sMMen U Y-

Since Lg(f) is a bounded functional on Qo there exists &a

’gn —-b'gEQB so that

k €Q, such that Lg(f) = [f,k} . This element k is determined by
the-functiona.l and, therefore, by g. Let A'g =k where A' is

© an operator mepping Qg 1into itself. If g€%, then

[pat 6] [£5x], put [pasf,6] = <afe)> = (f.48) - [£,0Ag]-  Then
[f,DAg] [f,k]. Since Qo is dense DAg =k or DAg = A'g for

g€ SZ;). Therefore, A' 1s anAextension of DA. DA is symmetric

1]

in Qo so A' is symmetric in Qo.' We now wish to show A' is
symmetric and semibounded on QB

Consider f and 86”}3 vhere fn - f and 8, —>.g with fn

'[f,A'g]l

Lip ,[fn’A'én]‘ = %me’[ 'fn’gn:” = %H%o [ fn 4 7 &n 4

MATU UNeU -
Let '

£=ag, Nagh®-[agag]<ul ot U el
so that U A'g n <M % g M or A* is a bounded operator and,
therefore, continuous. Now |

[f,A'g] - m, [fn,A'gn]' = Jim_ [A'fn,gn] - [A'f,g].

so A' is symmetric on . For heﬂo, '
nh,n] = m<Br,n) < CAn,h> = [Dann] - [A'h,h] = [DAh,h]
<{An,h> < MBh,b> M[h,h]

then m M n}f 2 _<_[A'h,h] <MUn2 for nE€n,. Since A' is

(]
[



continuous by the above boundedness condition, A' may be extended

from: QO ito QB by continuity.

EGE OF'WILLIAM & MARY

oot

1l



CHAPTER II
BOUNDED OPERATOR THEORY

We would now like to consider the application of the method of
steepest descent to the equation Ax = ¢ vhere A is a bounded,
symmetric, positive definite operator with domain and range in a
Hilbert space }/ . We proved in chapter I that the x required to
minimize the functionals H(x) and || r(x) 112 was also the
solution to Ax = {. |

The method of steepeét descent will now be applied to the
above mentioned functionals and approximations to the exact solution
x* of Ax = ¢ will be generated. First we will consider the
Kantorovich functional H(x) = (Ax,x> - 2{@,x> . If we designate
some element of Jv/ by 2z and a real parameter by €, then
{(Ax + eAz), x + 2> -2{(x + €z), §D>
Chx,x> + €[ (hxsd + (azxd] + €A,z

2{x,¢> - 2e{z,87
H(x) + 2e{Ax = §,2 > + & {Ax,x> .

In an attempt to minimize the functional H(x) we will employ the

H(x + ez)

I}

. method of steepest descent.

We begin with an initial guess at X* which we call x . We
next want to find a unit vector 2z which whez; used to modify x
will result in a vector as close as possible to the exact solution
x*. fhe steepest descent technique suggests a vector which gives the
maximum variation of H(xo + ez) in the immediate vicinity of x .

Assuming that we have found a suitable 2z we will now

determine the € +to be associated with the 2z so that H(xo + ez)

12
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will be a minimum. Setting %e’ H(xo + ez) =0 we get

Ax - @,z
2<Axo-¢;z>+2€<Az,Z>=¢ E=-<<Kz’£> > ‘The 2z

indicated by steepest descent gives the maximum variation at X and

o = 2<Ax° - ¢,z> where

this will be a maximum when 2z 1s a unit vector parallel to Axo - ¢.

is determined by considering g‘—e H(xo + GZ)

We call this first direction - z, = Axo - ¢ Since Zg need not be a
unit vector when determining e let €, be the € minimizing
H(xo + ezo). The original guess is, therefore, modified by eozo. The

1
guess. We then consider H(xl + elzl and repeat the process.

new x we call x. = xo + eozo and this Xy will become the next

.We next consider the problem; is the sequence {xn} we are
generating actually converging to the exact solution x*. In the case
of the approximating sequence generated by considering the '
minimization of H(x) Kantorovich [2] has proved that: "The

successive approximations X, X converge in the norm to the

1, s e e
solution x° of Ax = ¢ ‘with the speed of a geometric progression.”

* Il 20ll/M - m\n
The progression is given as || X, = X I < T \M+m vhere

M and m are the upper and lower bounds of A respectively.

Next we look at a different functional which may be used to
generate an approximating sequence {xn> . In this case we will try to
minimize || A%, - ¢ I 2, Using a notation suggested by Petryshyn [5] ,
call r(x n)’ = Ax_ - ¢ = Aw(xn) where

2
“(%) = (% = %) 1 TRl 2 =114 - 9|y - Comstder



1k

11 A(% *+ %) =9 11°

<(Axo + e hz, - d)’ (Axo * €Az, - d)>

<(r(x +eAz)(r +eAz)>

[ r&xo)” + eo || Az || + 26°<r(xo), Azo> .
a [” r(xo + eozo) 1 2]

2e_|| Az || % + 2dF(%) » A2, -

2
For an arbitrary =z o the € which minimizes I r(xc> + eozo)” is

[HOREENE

2
given by setting g—; [” r(xo + eozo\)” ] = 0. We get

Ar(x zZ
eeo ||Azo ||2 + 2<r(x , Az > O then e ——< “(Az ’” 2> so that

the next guess becomes X = xo + eozo' The z, indicated by steepest

descent is a unit vector det'ermined by maximizing

d
3c [“ r(xo + eoz ]Ql 2<r(x Az = 2<Ar(xo), zo> .
As before since zZ, does not have to be a unit vector when determining

= Ar (xo) .

As before we must show that xn -3 x*. We know that

n n-1 + en_lzn_l so that

+

*
- Xt e %1l = Ypaa Y ShaZna

*
WX = -
( n) X, = X" =X o

Consider Aw (xn) = A(xn - X*) = Axn - ¢ = r(xn) . Then

1 A¥(xp) 1]
m || w(xn‘)“ < “r(xn)” 5M|| w(xn)“ wvhen M and m are the bounds

1= (%)l
m

1 r(xn“l so that

Therefore, if

of A. w(xn)



15

||r(xn)|| = ||Axn - ¢|| approaches zero as n apprpaches infinity,

then ||w(xn)|| = ||xn - x*” will also approach zero. From the

above work w(xn)v= v(xn_) + en-lzn-l and Aw(xn) = r(xn) s0

r(xn) B Av(xn_) * ena1Zna T F(%p-1) t Cna1A%na1
Substituting for en-l and for the zn-l suggested by using steepest

descent we get
2
CAx2y) » Ax(¥p) DR r(%0)
2
1A% (x, )1

r(xn) = r(xn;l)-

TN [ ) |
= (%) ' Azr(xn-ﬂ” 5 & 7(*na)
=(=)IE = <o) (=)D

|Ar( n-l)

= r(xn-l) - |4 r( - 1)“

2
5 A r(anO’ r(xnéﬂ

néﬂ||

| A r(xn.l)

2

I' ( A r(xnéﬂ

2
2

sO thgt

4 4
, 1Ax( %)l . ||Ar(x ) |l
N ) 1P 1) 1

W) 1P = (5 11 2

L
2 2 |Ar! n-])
HE (Za)ll - = HE(x,9)1 . (1)
. ( ) i ( ]) “A (xn_l 2
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I 2 approaches zero as n

We now wish to show that || r(x n)
approaches infinity. An inequality will be created by overestimating
the right hand side of equation (1). Since A is 5ounded

I Ar(xn_l) | 2m ||r(xn_1) || and |} Aer(xn_l)“ < M2 1 r(xn_l) H
where M and m are the bounds of A. Therefore, substituting into

I 4
, 2 m || r(x )|
M| r(x, ) I

2 .mh 2
1= (%) 11 56';&”%%4” O<mgM

L
so that 0 < ( - 2,:) < 1. By induction

M
2 2 s
1 r(xn)“ < ||r(xo)|| [1 -(ﬁ)] . Therefore, as n approaches
infinity 1 r(xn) 1 2 approaches- zero.
We have developed sequences to minimize H(x) and || r(x) || 2,

These sequences are also approximate solutions to Ax = ¢. We would

now like to see the form of the direction 2z and the € required to

minimize || x - x*|| 2, If the n"® step x  of an approximate
solution is of the form x = x , + €z, where 2z 1is a given vector,
the ¢ vhich minimizes || x - x*’||2 is determined as follows:
' * 2 2
1 = ¥ 112 = 11 w(x) I

I W(xn-l) I 24 e2 I 2 ”2 + 2e<w(xn_1), z> .

a 2 2
rll w(xn) 1l 2¢ ||z || + 2<w(xn_l), z> = 0 so that

<w(xn_l) , z> .
€ = = ™ . In general € can not be obtained since x
=1
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and hence w(xn_l) are not known. However, if 2z 1is of the form Ay

CMxaa) Y (T (Kna) YD

Ay Il 2 I ayll 2

where y 1is known the ¢ becomes

which may be calculated.
It is possible to obtain the "best" 2z of the form Ay in the

sense of steepest descent applied to || w(xn) 1 2. et ||Y || = 1

5 :
2¢ || Ay || © + 2<w(xn_l), Ay> o

2<r(xn_1) s y> .

1l

a 2
| e wix
ac 1 ¥(*a) 1l cco

r(x
Thus || w || has steepest descent for y = T r(xn-l))” and
n=l.
X = x <r(xn-l)’ r(xn-_l)> Ar(xn-l)
n <1 - , 2 r(x
n 1] Ax(x, 1) | TR
11 *(*a-1) 11
2 )
Il ¥(*n-2) |1
= X Ar(x ) .
n-1 - 2 n-1
Il AT(%520) 11
As can be seen the € +to minimize || L || 2 has a form which
is.diff'ergnt‘from those for H(x) and I r(xn) I 2, Since every =z

has the form Ay for some Yy, we see that the €'s previously
obtained from consideration of H(x) and Il T(%a) | 2 were not the
best possible in the sense of minimizing the actual error

I| x, = x| - We still must show that sequence generated to

2

minimize || X, - x* i actually converges.
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. Aw(x
| (*n-2) || a2
IAw(xn-l) ”
IR

" 2wa
[l A%w(x, ) 1]

¥(*a ) f«w(xn-l) - n-1)

]

IR

<w_(xn I w(xn)>
2
Il ¥(%2) 11 © -2 2 C) 2 @’(Xn.l): w(xn-ly

i A w(xn-l) [l

L
”wa_ 1 2 2
Il () I

o) ” Awl x R 2
Il %(xaoa) Il (o) 5 1| Av(x, ) I

11 w(x,) 11 2
|| A w(xn.l) 0"

L
L A () i i
2
H A ¥(*n-1) ||
2 | Aw( n-l) ”

ll“( ) i

(1).

I v(%00) 1

Since A is bounded -

2 ) N
act) 11 201 ¥(xg ) || and | (xS () |

where M and m are the bounds of A. Therefo;‘e, substituting into

| Aw(x
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L

2 2 m
equation (1) we get || w(xn) Il =<l w(xn_l) 1 1--7 |- Since
L

M

O<m<M O0<|l - EE < 1. By induction
M _

hn
] As n approaches infinity

=i

RGN CANT [1 -
Il w(x,) 11 2

In chapter I we introduced the idea of looking at a different

approaches zero.

method of choosing a direction which would lead to a more rapid
convergence to the solution of Ax = ¢. We now wish to expand these
ideas. In the process of generating an approximate solution to
Ax = ¢§ Kantorovich uses as his direction r(xn) where
r xn) = Ax - ¢ = Au(xn) where w(xn) =x - x*. If we knew the
exact solution x' the difference between the exact solution and any
approximate solution would be the direction in which to modify the
approximate solution to make it approach the exact solution. This
direction would be = w(xn). Since the exact solution cannot be
calculated, w(xn) is in general unknown. From the steepest descent
approach to minimizing H(x) Kantorovich arrives at the direction
Ba(x) = A%, - Ax* = Ax - ¢ = r(X,) wvhich can be calculated.
Aw(xn)= r(kn) and w(xn) =A™t r(xn), however A™l in general
cannot be determined directly. If A is symmetric and bounded A'l
may be represented as a Neumann series as given on [p. 266,.41 and is
At e (z-a) +(1-a)% 4. a1 -aAll <2, We now wish to

determine what conditions this restriction places on the bounds of A.
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Consider <(I - A) x,x> vhere m{x,x) < {Ax,x> <M x,x) . Then

{x,x> - M{x,x> < (T - A) x> < {x,x> - nlx,x)

(L -M (x> (T -AaKxx>< (1 -m)<xx)>.

If in general m{x,x) < <Gx,x> < M(x,x) the norm of G 1is

ma.x{M,m}. Then || I -A |l =ma.x{lM-l|, lm-l,}. In order

for |l I - A ||l to be less than one, we must have M - 1] <1 ana
[m-11<1 so Il T-A 1l <1 implies |M -21| anda [m-1]<1
or M<2 and m<2. If A showld have M >2 then [M -1]|> 1.
Buf.if we miltiply A by c<% then || I -call<l since

[l cA || <2. Call cA = A' then A-l=(c'lA'J=cI+c(I - cA) +... .

Regardless of the norm of A,A-l may be found. As previously

mentioned the best direction 2z would be x* = X -

-1

r(xn) = A(xn - x*) so that -2 = A r(xn) should minimize H(x) and

1 X(xn) I 2 more repidly than the direction obtained from steepest
descent.
For convenience when calculating 2z we will use only the first

"1 gerties A™1

two terms of the A = 2I - A. However, we find that
we can improve the speed of convergencé of the estimate even more if
the A'l series is expanded about some arbitrary point a where
0<m<a <M. We now must show that such an expansion is possible.

We will use the A' = cA operator introduced above. Let

B2 )

where a 2%5 , when M is the upper bound of A, for convergence to

be guaranteed. Then
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A'-l"-:l > M:‘-}'I*’M*' e o 0 e =gI-l_A'+II.'
a /, n a 2 a 2
n=0 a a &
1 . 2
=-§(2aI-A)+.... . We may use 2acl - c A as our
a

representation for A'J’ since the -:!'-2- is a constant and will not
’ a

affect the direction obtained by using z_ = (A - 2aI) r(xn) .

n
In the following discussion we will assume M < 2 wunless

otherwise noted. The recursive relation developed to minimize H(x)

. ‘ <zn-l’ r(xn_l) >
st X =Xa ¥ faa(a) T(%naa) VRETE Sha(a) < T CA2n1 P >

The recursive relation for the minimization of
, x 2 2 _ : '
[[Axy = AXT ] 7 = ||T(%p) 1] 38 X5 = X5 * €pa(B) Zn-l

= X + € A_l‘(

n-1 n-1 xn-l)

ChAz g5 Bx 5 - ¢>

where en-l(B) = = > . The form of
11 A%na |
-z = A'lr (xn) considering only the zero and first order terms is
-1
Zn = = A r(xn) = - 2r(xn) + Ar(xn)

The new recursive relations are:
1. To minimize H(x)

_<@xn-l '9 g (-Zar(xn_l) + Ax( xn-l))> (-2ar(xn_l) + Ar(xn-l))

T CalRer (i) A (5)) > (T () * AR(%))
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2
2. To minimize ||rn||

N _<A (-ear( xn-ll"' Ar (xn-l)) ’ r( *n -l)> ('2.8'r ( *n -1) +Ar ( xn_'l) )

2
”A -2ar(xn_l) + Ar( 1

X =X
n n

*n —l)
Another method of generating a solution to Ax = ¢ 1is to

-1

consider x = A'l¢ and expand A as & Neumann series

Al eI+ (T-4)+(I-4)2+..... Then

x=¢+ (I-A)¢g + (I- A)2¢ + .... . For convenience we will
terminate the series after the second order term x = 3§ - 3A¢ + A°g.
We would now like to compare these approximate solutions to Ax = ¢
with each other and with the original Kantorovich relation

X =X o€ r( xn-l) . For this illustration let X, = @g. Then
r(xo) = A¢ - ¢ Using the Kantorovich algorithm for minimizing H(x) »

vhere z_ = r(xo) , ve have z_ = A - ¢ . Then

":{ =='¢+€Q (ﬁf¢-¢) =(1-eo)¢+ 0A¢. Then
r(xl) = (l - €°)A¢ + €0A2 g -¢ ana Xy = %) + elr(xl) 50

X = [(l - eo)' - €1]¢ * [eo + €l(l - eo)]Ad * o1 2¢'

After two steps using the Kantorovich algorithm N has the
same form as the first three terms of the Neumann series. However, the
€'s give an optimum distance to travel in the direction 2z at each
step so that the Xy generated should be a better approximation of x*
than the first three terms of the Neumann series which would result if
-e(; = el = =1 1in the Kantorovich algorithm. )
We next consider 2z = -2r + Ar so that z, = A2¢ - 3A¢ + 2.
Then X, = [l + 260](6 - 3eoA¢ + eoA2¢. After one step using the new

algorithm, listed as relation (1) on page 21, we have the same form
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as obtained using two steps of the original Kantorovich algorithm.
However, we do not have quite as much adjustment on the constants as
before. If eo = 1 then the xl given above would be the same as
the first three terms of the Neumann series.

We have introduced the idea of using a Neumann series to
determine a better direction in the sense of minimizing a particular
functional. In this way new algorithms for the {xn> to minimize
H(x) and ||r(xn)|| 2 are obt.ained. We must now show that these
actually converge to the exact solution x¥.

The technique of proof follows the method used by Kantorovich
to prove a similar convergence theorem [2] . Let 7 = max |x - al on
[m,MJ. Assume a > 7y, that is a >§.

Theorem: The sequences {xn} resulting from the minimizati’on of
‘H.(x) and . || r(xn)“2 are convergent to the element x . The speed

of convergence is indicated by the inequality

r(x
||xn-x*” gKn“ 510” for both H(x) and ||r(xn)||2 where

1 M-)a M+m
K =——————— and K< for a= .
"2/ -1 =M+ m 2

Proof: Consider Ax = @, this equation may be transformed to

X =x = kA[QaI - A] x + 1;[2&1' - A]¢
Let [QaI - A] =S, then x = x - kASx + kS@. Now call [I - kAS] =T
so that x = Tx = kS¢ where k 1s to be determined. As previously
discussed z, = (A - 28.1) r( xn) is the general form of the direction

which will be used to minimize the functional H(x) and Il r(xn)” 2.
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T 1is defined as T=[I kAS],T=I-kA(2aI-A)k>O.

Define T = v(A) where V(x) =1 - k(2a = x)x with xe[m,M].

. 2
V(x) =1 - ka® + k(x - a)% 1 -ka® < v(x) = 1 - ka® + k(x - a)°.

Then 1 - ka2 < v(x) <1 - ka® + 02 = 1 - k(a® - 72). To minimize

max ]v(x)] choose k so that ka® = 1 = 1 - ka’ +_k72. Then
k=-————22 5 TRl Ska2'1 by the discussion [p- 161, 5]-
2a =7
2 2 :
||T”£"—§'a"—2'-l= 27 5 = ; . If a=M;mand
2a” -7 2a -7 (a)
2(=] -1
7.
and 7___M;m then
2
1 M-mnm
Tl < — = M-m)
M+m) -1 2(M + m)© =« (M = m)
M-n
- M - m)°
oM + buM + 2n° - M + oMm - m°
(M -m?
'M2+,6Mm+m2

M - m)> < [(M.- m)]2
(M + m)° + boM "~ M+ m)

We must note here that our choice of "a" gives an improved inequality.

1
2

2(;-) -1

regardless of the choice of a and 7, el <1 insuring convergence

However, since & > 7 always, then || T|| < <1 so that

of the later inequalities.
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Beginning with an initial guess x = we obtain €_ = (A - 2aI) r(xo).

Then xl = xo + eozo to that

X - x* x, - x* + < (A - 2aI) A(xo - x*)

[I + e (A - 2aI) lg(xo - x*)

Next define

Tx°+ksd; X, = x - kaSx .+ ks¢

*
X

Using a direction Sr(x o) and our first guess X, we get

x, - kS[Axo - ¢] =x_ - ks'i-(xo) .

X, = X, + €Sr(x ), where the appropriate ¢ gives the best X,
approximation for the Sr(x o) direction in the sense of mi‘nimizing
, ‘
H(x) or ||r(xn)” .
We will first examine the sequence { xn} which minimizes H(x).

We have developed approximations of the form X, =X, 4 + en-lzn-l to

minimize the functional H(x) = {Ax,x> - 2<Ax*,x> which equals
H(x) = <A(x = x*), (x - x*)> - {ax*, &x*>. A 1is positive definite,

symmetric and bounded so, by [p. 265, 6] we can introduce the operator
1 .
A2. Then H(x) = {V(x - x*), V(x - x)> - {vx¥, Vx>

Hv(x - 2) 112 - [lvx* |12

Since X) = X + €%, gives the best Xy

sense of minimizing H(x), H(;l) > H(xl) and

v

for a given x, in the

H(xl) - H(x*) < H(;l) - H(x*). Using the above equation for H(x) in
terms of V we write

* 2 . * 12 ~ 2 2
V(g - =12 < w112 < pv(E - )11 2 - v ® so tnat

»* ~ ~
Hv(xl - x )”2 < ”V(xl - x*>||2. Since x, = Tx_ + kS¢ we write
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* - Px* + kS@. Subtracting 3?1 - x* = x_+ ksf - ™x* - k5S¢ =

T(x - X ) Operating on both sides with V and commuting T and V;
~ ~ *

V(x - x = (xo - xv). Then ||V(xl - X )|| < T | V(xo - X )”

*
<K IIV(xo - X )Il .
In general we may define ;én =Tx, 4 % kS@

X

el " kSr(xn_l) , but

;En is at best only as good an estimate as X, for the given

direction Sr(xn_l). Therefore, H(?Em) > H(xn). Using the above

arguments IIV(x - x*)ll <K ||V(xn_1 - x*)|| . Knowing that |

V(g = ¥ <K V(g = 1 11V(re == <

K ||V(xn_3 - x*)” ce.. etc. we write”V(:in - x*)” <

K ||(V X, - x*)”- Using [p 266, 6] and since yw< |Vl < VN,

vl < —\,1-; %= <1 = V(g -2 <
Hv LIl IV(x - X )II < -—K IV(x - X )” ”V("o - x*)“ _

va(x, - <)< IV A, - <)l ”\TTZ l1x(x,)Il - Then
. r
1ES -x|| €K n ]l ( )“ vhere n = 1,2, ... .
Now for ”r(xn)“ use “r(xn)”2 = ”A(xn - x*)||2. Since

X = X + eozo gives the best’ Xy for a given 2z, in the sense of

2 ~ 2 2 ~ . x\ 2.
mintntzing || x(x) || 1 F(x)11 2 2 gpr(r)n® s 1A% - Y2
||A(xl - x*)” . §l-= Tx + k8¢ . so ve write x = Tx* + ksgd.
Subtracting ¥, - X' = Tx + kSP - Tx" - k8§ so F -x" =7T(x - x*).
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Operating on both sides with A and commuting A and T we get
ARy =) = malxg - xF) 1AF =N < ITI Al - ) s
K2l - X))l - But 1A(y - <) s 11A(F - x*)” then
IR L N LY IR

Tx,_, + kS¢ = x , - kSr(x, ;). But

‘In general we define in

;En is at best only as good as estimate as X, for the given

direction Sr(x, ;). Therefore, ||r('5c'n)|| 25 ||r(xn)||2. Using the

above arguments “A.(?c'n - x*)” <K llA(f‘n- )x*“ . Knowing that

* * *
140 = X SE 1 ACe = <) 1140 - ¥l <
K ||Ax -x*) ete. we write A(x -x*) <k?”® A(x -x*) .
[A(ns = X Jll > ete- A, =% )1 SE )AL, = X))
Using [p. 266, 6] and if m< [lall <M then 11472l g% , then
* -1 * -1 n *
1% = X0 = A7, = <)gp < AT & A, - <)l -
n
r(x
K -”——(m—O)—U- where n=1,2, ... .
We would now like to put together several ideas which have been
introduced and write general ':expreséions for the sequence {xn} R

elements of which are in genera.l'given by X, = xn_i + :En—lxn-l,' Our

direction z = (A - 2I)r(x) in the most general case where the upper
bound of A is greater than 2 1is given by 2z = (ch - 2caI)r(x)

based on using the first two terms of the Neumann series and

2

¢ <g- The € to minimize H(x) is given by -



28

z,rp

- Thez . Then to minimize H(x)

a

{Par(x, ) - 2oatr(x ) o(x, ) ) Ar(x, ) 20aTr(x)y)

2Ar(xn_l) - 20a1r(xn_l)>

The € +to minimize ||r(x)||2 is given by ¢ = Sﬁ-r—(%z- so that

X =X_ .=
n n-l <:c2A?r(xn_il - ECaAr(xn_i), e

T lasli?
2 2 - ;
s -<Ar(xn_l) s Ar(x 1) - QCaIr(xn_l)> c“Ar(x ) _-2caIr(xn_l))
n o n-l 1 c2A2r(xn_l). - ggaAr(xn_l) ||2

As a summary of chapter II tﬁe following review of some of the
characteristics of the different methods of generating approximate
solutions to Ax = ¢ » where is a bounded operator, allows comparison

of these characteristics.
Characteristics

‘Direction z € Overestimate of *a - x*“
indicating speed of convergence

For minimizing H(x)

* %1l M - m\?
r(x) "% =7q M+ m

_ Lx(x),r(x)>
<{Ar(x),r(x))
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Direction =z € Overestimate of “}:n - x*”
indicating speed of convergence.

For minimizing - || r(x)]| 2

, n
Ar(x) x -x < (o)l [l o E)h]E

- <Ar(x) :Ar(x)>
<A2r(x) ,Aer(x)>

For minimizing ||w{x)||Z

. 2
Ar(x) H* = * || < “w(xO)”[l (ﬁ) ]
__Sr(x),r(x) D
<A2r(x) ,Aer(x)>
For minimizing H(x)
(CZA - 2acI)r(x) 1%, - x*” < c ”erIXO)” kP

< Par(x 1) - 2ealx(x ),r(x, 1)>

<°2A2r(xn-l) - 2ca.Ar(xn_l‘, ’?Ar(xn-l) B 2ca.Ir(xn_l)>
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Direction =z € Overestimate of 1l X, - x*”
indicating speed of convergence

For minimizing || r(x) 112

(ceA - 2acI)r(x) 1%, - x*“ < c“r(xo)“ kD

- m

CEE °2Ar(xn-1) - 2calr(x 1) >

2,2 2
1| © A r(xn_l) - 2caAr(xn_l)“

vhere K = - 7 = max |x - a:f on [m,MJ




CHAPTER III
UNBOUNDED OPERATOR THEORY

In chapter I we showed that beginning with an unbounded operator
A, a related bounded operator A' defined over QB’ could be
developed. The results of chapfer II can be applied to such an
operator.

In general we are not guaranteed that Ax =@ has a solﬁtion.
If, however, Ax = § does have a solution then the solution of
A'x = @, will also be & solution of Ax = ¢. In this sense we will
develop & generalized solution to Ax = @.

With this introduction we_would now like to apfly the theory
that has been developed to the problem of solving a second order
differential equation. In setting up the problem several conditions
which we will impose on the problem must be discussed. First, we will
be considering only self-adjqint differential operators. On
[p. 37, l].the proof of the fact that any second order differential
equation may be made self adjoint,is given. Therefore, the self-
adjoint requirement is actually no restriction. Secondly, we
consider only problems with zero end conditions.

To determine theigffect of the above condition consider an
equation which does not have zero end points. If we have an equation
of the form Ax = ¢ with x(a) =a and x(b) =b defined in L,
we can easily find a twice continously differentiable function Yy
defined in I_ such that y(a) =a and y(b) =b. Then Ay = &.

2
Now the equation A(x -y) =Ax - Ay =¢ - ¢ with x(a) - y(a) =0

31
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and x(b -y(b) =0. Callx -y =2z and ¥ - £ = 7 so that we are
solving Az = 7 where z(a) = z(b) = 0. ‘Az =7 is a zero end point
equation and may be solved using the.techniques herein. Since y‘ is
a known function the solution x of Ax = ¢ is gifen by x =z ¥'yﬁ
Therefore, any second order differentiai equation with constant
nonzero end points may be transformed to a zero end point problem.

We will now examine a general second order self-adjoint differen-
tial equation with zero end conditions.
x(t) = Sp(6) &) - ale)x(t) = §(8); x(a) = x(v) = 0 ana p(t) >0
is continuously differentiable, q(t) > ¢ and ¢(t) are continuous.
Call Ax(t) = -Lx(t). We now must choose a B vhich is bounded below
and for which A is bounded in the sense of the B norm, or B
bounded.

2 .
Choose B = = 1-5 which has domain in La([a,b]) and in

dat

particular in Qo, the space of twice continuously differentiable
functions zero at the end points. The scalar product of x(t) and

b
y(t) is given by \/P x(t)y(t)at. The following inequality Ep. 129, hJ
a -

b 2 b
2 -
f x(t)dat < _(b_e__a_l_ f x'2(t)dt is for functions which are zero at
a "VYa

a and b. Bx = -x" so that

(Bx,x> = -f

a

b
x"xdt = -x\x’

b ,
' 2 2 2

= x! dt?-—____.._...fxdt=n X.X
>[a. (b-a)2 a <’>

so that B 1is bounded below.
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b b
x> faq(t)(x(ts)%t fa & (B(8)x"(6)x av

o . b

b
f a(6)x2(t) at - p(e)x' \(£)x(t)
a,

a

b
+ fa p(t) (x*(t))%at

b b b
[ e < [ e xe)as + [ e (e)?a

a a a

. 2 b b
<ozl [Teoe)Zas + [ p(e)(x(6)?as

a a

b 2
= f [(b 5 a) a(t) + p(t)] (x*(t))%at,
a

vhere E is max q(‘t), so that adBx,x> < {Ax,x)> < B{Bx,x >

where agm%np(t) and Bsmi.xp(t)-’-%.

We will now discuss briefly the extensions introduced in
chapter I as they apply to this particular problem.

First the completion of Qo will be summarized. The completion
process indicates that an fI'IE' Qo converges to some element in the
completed ‘space, which we call QB’ in the sense of L2 mean
convergence. This result leads to the conclusion that Cauchy
sequences f €@  converges uniformly to elements fg Q. The
functions in SZB are still zero at the end points but are not

necessarily differentiable.

_ 2
Next we consider B = =- 9——2- + B maps Q into I... The B
at o} 2

necessary to map members of L2 into Qo is given

-1
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t X b rx
B-l = - U/\ Jf z d§ dx + z : : d/‘ J[ z d€ dx. B 1 may be
a Ya a Ya

extended to D, which maps L? into a subset of QB by observing
that the double integrals exist for members of LE and that the

members of QB mapped onto have at least one derivative and zero
end points. Therefore, D, the extension of B’l, maps L2 onto

Q;, a space of at least once differentiable functions with zero end

points.

We next look at the operator DA.

t b
dz t -a dz
DAz = + k/; p(x) T dx - — \/; p(x) % dx

T opx b ~x
t -a
-J; /;q(ﬁ)z(é) dt ax + ¢— /; Lq(ﬁ)z(g) dg’dx, (%)

Examination of DA shows that DA maps Qo back onto Qg. We now

show that DA can be extended to A' on QB' Consider

t : b
DAz = + p(e)a(t) - [ a(x) B ax e poe [To(n 2l o
. a a .

t ~x 't - .
- { ( a t - a f . .
/; j; qft)z(E) ae ax + — ‘/; . alt)x(e) at dx

dz '
There are now no = terms involved so that DAz can be

extended to A' on QB.
A final observation relati#e to the extensions is that when
operating in an extended space the extended . B of D-l will be

used to define the so called B scalar product or [,]. In

%, [,] = {B,D> buton QB [,] =<n'l,>".
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We must now find the expression for the extension of {Bx,z) .

<Bx,z> = -f

t

% Y
x"z dx = f x'z!' dt, since the functions have
t

o o

t

zero end points, so that <Bx,z> = f 1 x'z' dt may be extended to
t
o

t

<D-1x,2> = f 1 x'z' 4t since D-l is defined on 9.; the space
to

of at least once differentiable functions which have zero end points.

In many of the problems of the form Ax = ¢ , the problems of
most interest have ¢ continuous and also the choices of x are

continuous. When generating approximate solutions to

T
guess xo(t) are all continuous, with p(t) being continuously

d (p(t) %X;) + q(t)x(t) = -g(t) if @(t),a(t),p(t) and the first

differentiable and xo(t)€ 0, then referring to equation * on page 3k
we see by inspection that DAx o€ Qo" Since @ is continuous
Df = )€ 9,. Therefore, the residual r(x,) = DAx,, + DJc Q. Inall
the algorithms developed the direction is equal to r(xn) or

\ :
A'r(x )€ %, for continuous x €& and @. Then
X

1
steepest descent process shows that all x €9 .

= X + eor(xo) will belong to- Qo. Repeated application of.the

The form of r( xo) given above is obtained by considering
hx = §, -hx = - so Ax = -3. To obtain & bounded form of Ax = -@
consider DAx = -Df where DA . is bounded in the sense of a D
metric. Then for an X, guess' DAxo + D¢.= r(xo)". We will now look

at the algorithm for the minimization H(x) uging the direction
[r(xn) s7(xp1)]

[t (1) 7 (%)

obtained through steepest descent. The € = -
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Since we are operating in Q, Bl = D so that B and B will ve

used instead of D":L ixi this example. The numerator

[r(rn;l)’ (%4 -1] B (*pa) 7 7 n-1)>
) ) - [

and the denominé.tor
[B'lAr( xn-l) , T xn-l] = <BB-lAr X 1) r(xn_l)>
<Ar r( n-l) >

1L
j;bAr( (t)) r xr(;c )

so that

€ = =

Lb g (t)) at
. e ?
[ 2

])‘)] at + qu(t)[r xr(:i)Jg at

then
LI
(t)
L8 _ (6 . fa & " x“'l) | (t)
n n-l ‘o . T xn-]_)

U/;b p(t) %;[r( r(lti] at + j;b q(f)[r(xﬁ])_)]e,dt
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This algorithm is identical to that derived by Kantorovich'[Y]. Any
Ojther algorithm developed in chapter II may simularly be applied to
the equation Ax = - ¢ and the extended operators shown to be defined
on Qo for this particular equation. Therefore, for all the
algorithm considered each estimate xne‘ Qd and expressions simular

to those above can be developed.
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