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ABSTRACT

In this paper a discussion is given of the process of determining
the solution of & class of second-order partial differential equations
by means of Bergman's integral operator of the first kind.

A particular integral is derived which generates particular solu=-
tions of the partial differential equation

L(U) = Ugyx + AUy + BUgx + CU = O

where the coefficients A, B, and C are camplex polynocmials in two
complex variables Z and Z¥.

o

This operator is then applied to the transformed equations

Ugx *+ Uyy = 0
and
qxx + U&y + beU = 0.

Particular solutions of these two equations are generated by
application of the operator technique and a short discussion is given
regarding the convergence of the solutions of these equations.



ON THE SOLUTION
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BY MEANS OF BERGMAN'S INTEGRAL OPERATOR



INTRODUCTION

This paper deals wi  the construction of solutions of a class of
partial differential ec .ions by meéns of a Bergman integral operator.

This operator transforms certain analytic functions of a complex variable

into the solutions.

The thesis will consist of three parts. In chapter I, a lemma
will be stated and proved which provides solutions to a second-order,
complex valued, linear partial differential equation with fairly generai
conditions on the input variables. This developﬁent‘follows.very closely
that of Bergman in reference 3 although a good deal of justification
for many of the steps has been addéd.

In chapter II, a theorem is developed and proved which provides
solutions to the same partial differential equation although in this
chapter the coefficients of the P.D.E. have been particularized to
poiynomials in the two complex variables and the complex variables are
treated as conjugates.

In chapter III, the theorem developed in chapter II is used to
determine particular solutions to two partial differential equafions.
The equations and their solutions are then transformed to the real
domain and one of the equations 1s found to be Laplace's equation.

The theorem of chapter II was stated without proof by Bergmasn

and Herriot in reference 6.



CHAPTER I,
LEMMAS

In this chapter two lemmas will be proved which will form the
basis of a theorem generating solutions of partial differential
equations of a particular type. |
continuously differentiable (i.e., analytic) functions of two independgnt
complex varisbles Z and 2Z¥, end (2,2¥)eU*(0,0), vhere U%(0,0,. . . 0)
is an n dimensional neighborhood of the point (0,0,0 . . . 0). Also
define

Z*
D=1y - &/; Ay 4Z¥ + B, F = Ay = AB+ C (1.1)

where Ty is an arbitrary analytic function of Z which is regular
for 2eU2(0,0) (i.e., its derivative exists for ZeU2(0,0)). D and
F are analytic because (ref. 1):

(a) The sum of analytic functions is analytic.

(b) The prodﬁct of analytic functions is analytic.

(¢) The derivative of an analytic function is analytic.

(d) The integral of an analytic function is analytic.
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Let us also define E(Z,2*,t), for (Z,Z*)eUu(0,0), and t a come
plex variable such that ltl < 1, to be a twice continucusly differ~

entigble solution of
~ = - 2 ~ - ;‘, ~ ~ o o = 0.
Y(E) = (1 - t%)Epx ¢ < Ezx + %ZEE:ZZ* .+ DEyx + m] 0 (1.2)

The following properties are also assigned to ﬁ(Z,Z*,t)
(1) 1m (2 - Y3, (2,24,8) = 0
t =11
uniformly in (Z,2*) for (z,z*)eU“(o,o) and

[ad

Eox .
(2) —%— is continuous for (Z,Z*)EUM(O,O) and |t| S 1.

Now let

dt
U(2,2*) = fl E(z,z%,t)f(% z(1 - t2))————- (1.3)
where f 1s an arbitrary anslytic function of Z with argument -
-23= 7(1 - t°) and E(Z,2%,t) is defined as,
z%*
E(Z,Z*,t) = exp|~- f A azx + 1(2)| B(Z,2%,t). (1.4)

0

__Here §lw is a rectifiable path in the complex +t plane which connects-
the points t = «1 and t =1 and omits the point t = O. Now under
these conditions U(Z,Z*) is a solution to the partial differentiasl

equation,



(1.5)

L(U) = Uzz* + AUZ + BUzox- + CU = O-

The solution is twice continuously differentiable in U&(0,0).
Before proceeding to the proof of Lemma I let us show that U(Z,Z¥)

in the form (1.3) exists. For the proof of the existance of the inte-
gral we will restrict our discussion to the following rectifiable curve

in the t = t, + ity plane:

. Here ty(@) and to(@) for the middle arc are continuous, piecewise

smooéh functions of bounded variaticn for which,

to #0 when t; = 0.



Since E(Z,2*,t) is twice continucusly differentisble for
(Z,Z*)eUh(‘0,0) and |t| <1 and since f is analytic in the same

domain we can write

< M. (1.6)

!E(Z,Z*,t)f(% 7 (1 - t2) )

Then for (z,z*)eul*(o,o) end fixed and |t| < 1 we have

ol
which glves
[uez,29] <n [ e el f”e 6y (B)ag + it2'<¢>a¢l| 2
1 Jw- @ Jee [1 Y itzw))g] /
L | ag |
- (1.7)
! fl/a l(l ) ¢2)1/2l 1.7

Now since the integrands of the two outside integrals have singularities

at @ = 1, write

\U(Z,Z*,t)‘ su elimo v -lte I(l.. ¢2)l/2\ '

-1/2 l d¢] e l-¢ I d.¢] _‘l
f N ‘/;./2 !(1'-952)1/2” .

(1.8)

Letting sin © = § and realizing that |cos 6| = cos © for

-2<9<Z obtain
2 2



s

' -1 )
sin ~(-1/2) sin (1-¢)
U(2,2%,t)] S M{ lim ae |+ N+ | ae .
| | / ol eas | | as]

€0 in~t(-1+e¢) in"(1/2)
1.9)
Evaluating the integrals we have,
lu(z,2z%,t)| < M{g—-l- N + 13‘-} . (1.10)

We have shown that all three integrals exist and therefore U(Z,Z*)
exists for (Z,Z*)eUu(0,0) and |t] £ 1. It is also obvious that the~
rate of convergence of the integral to its limit is independent of the
particular values of (Z,2Z*%) and we therefore have uniform convergence -
in Z and Z¥*. The uniform convergence of this integral will be neces-
sary to the proof of Lemma I which follows.:

Proof of Lemma I: It is possible to show (see appendix) that if

z* ,
v(Z,Z%) = exp fo A dz* - n(2)|u(z,2z*) (1.11)

is 8 solution to
L(V) = Vggx + DVzx + FV = 0 (1.12)

then U(Z,2*¥) 4is a solution to (1.5).

Combining equations (1.3), (1.4), and (1.11) one can write

. "
V= ; JU. L S——" 1.13
, fg E Ty (1.13)



Since E is as well behaved as E, the uniform convergence of V can
be inferred from the uniform convergence of .U. V can then be shown
to be a regular function of Z and Z* for (Z,Z*)eUu(0,0). Thus V
can be differentiated under the integral with respect to 2Z and 2¥*.
For proof of this differentiability, the reader is referred to refer-

ence 11, page 266. Differentiating V with respect to Z¥, obtain.
~ dt
V., = Ay . (1:14)
z* Jf 7% 75
L 2T (1 - 8)h

Applying the same conditions along with 2 # 0 and differentiating

with respect to Z, obtain,

\'f = Epoxf + Epyf . (1.15)
Zz¥* fl [ 2.Z% 7% z:]
3 (1 - t2)1/2

Remembering that f = f(% zZ(1 - te)) we can develop a different expres-

sion for fy. For instance,

2
fz=%2-(1-t)f'

and
ft = ZtL'.
£, then becomes simply,
£.(1 - £2)
fz Z - .
272t

We now make this substitution for fy in (1.15) and obtain,

2
v*=f' E*f-?«f*(l’t)f dt . (1.16)
2Z §l 2Z Z o7t t - t2)l/2 .




Integrating the last half of equation (1.16) by parts obtain

. 1/2 |1 o 1/2
v i3 ﬁf—:—ffl—f- £ + U/\ NN P Si;l;iil:i- £ dt.
zz® = “hgx ) 1 2.1/2 z* 27t ’
3 fmal £71 (1 - t%) %
(1.17)
Then using equations (1.13), (1.1%), and (1.17), equation (1.12) becomes
(- t2)1/2 1
t=-1
< /e
By ~ (1 -t2) /
¥ f 1/2 zx
Hox =
+D Z TEt T E 73|t o
(1 - t2) (1 - t2)
(1.18).
But
-8 o -2 1
Sz* T opg TRz T gy ¥
% 274°(1 - t2)1/2
(1.19)

so that the expression under the integral sign in equation (1.18) can

be put in the form,

~ E,x N
— 1t2)l/2Eﬁ;z*t(l - t2) - .._%i + 2tZ(Ezz*: Dﬁz* + Fﬁﬂ -g.
N ‘(1.20)
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But the expression in the bracket is zero due to the condition of
equation (1.2) so that equation (1.11) is a solution to equation (1.12)
and, therefore, U(Z,Z*¥) is a solution to eguation (1.5).

At this point we have presented by means of a lemma a solution
- U(Z,2*¥) of the partial differential equation (1.5) with very general
conditions on the form of E(Z,Z*,t) and E(Z,Z%,t). Presented in
the following lemma will be form for these two functions that are less
general than the preceding but which will be shown to satisfy the cone
ditions of ILemma I.

Lemma II: Let

g2)® - J;:l f(—i- (1 - te))(l : :Z)l/e (1.21)
and
f(z),(z) = Z a Z (1.22)
=0
Then if
B(Z,2%,5) = 1 + i e (2,2%) (1.23)
n=1
vhere
en(2,2%) = 27Q"(z,2*) {1.24)

(l)The existance of (1.21) follows from the existance of (1.3) if
we replace E(Z,2¥,t) by 1.

(2)gince s was given as an entire function (1.22) converges to
f forall 23 |2] <R<we and g(2) is well defined.
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and

VAS .
QNz,z¥) = fo :P(an)(z,Z*)dZ* (1.25)

the integral operator equation (1.3) along with (1.4) can be written in

“the forn,
[~

z* r(en + 1)Q°

U(2,2*) = exp|-~ f A azx|| g(z) + Z
0 | Lo 2%r(a + 1)

‘/:i/;zl .. ,/;Zn_l &(zy)az, - - . azy (1.26)

Before proceeding to the proof of ILemma II we will show here that

E(2,2 ,t) exists and satisfies the three conditions of Lemma I.
Since E must satisfy (1.2), P(Zn), of (1.25) can be obtained in

the following manner:
Evaluating derivatives (this termeby-term differentiation will be

justified later),

E,, = y +2015(20) (5 py (1.27)
n=1
EZ*,t = }: 'éntan'lz%(en)(z,z*), (1.28)
| n=1
Egug, = Z [tznnzn"]?(zn) + tz“znpz(gn.)] . (1.29)
n=1
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Substituting (1.23), (1.27), (1.28), and (1.29) into (1.2) obtain,

w-

(1 - t9) Z -2nt2n'lznP(2n)(Z,Z*) - % Z tQ”ZnP(en.)(Z,Z*)

n= n=1

Y (2mgnrip(2n) , g2npnplen)y

n=1

+ 27t

[>]

+ D Z tenznp(gn)(z,z*)

n=1

o Z*
+ Fl1l+ Z £ g2 f P(an)(z,z*)dz* = 0. (1.30)
- o

n=1l

~If we,noﬁmequate,coeffiqients of like powers of t we obtain for
P(2n) (Z,Z*f) ,

IP(Q)" = «2F (1.31)

and
7%
4
(2n + l)P(an 2) _ olp f p(2n) 4ox o PZ(2n) + pp(@n) |
0
(1.32)
Now by properly choosing PR of (1.25), E(2,Z*¥,t) has been
forced to satisfy the first condition (1.2) of Lemma I. It is also
necessary to show that conditions 2 and 5 are satisfied. First we want

to show
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1
vn (1 - Y %(z,24,8) = 0 (2.33)
t =11 ‘
uniformly in (2,Z*¥) for (z,z*)eU"(o,o).
Since 'ﬁ(Z,Z* ,t) is a twice continuously differentiable soluticn

of (1.2), we can write for (Z,Z*)eUh(0,0) and |E] €1,
|Eps| < M. (1.34)

Then,

(1 - te)l/gﬁz* - (1 - l,a)l/eﬁz*

1/2~

‘(1 - £3)7 Ty

< |- 22 . (1.35)

Now since the right-hand side of the inequality (1.35) is independent
----- of 2 and Z*¥ and ..;Qince we can choose t as close to 1 as we

desire it is obvious that lim+ (1 - te)l/gﬁz* = 0 uniformly in (2,Z*).
t =71

0f the three conditions of Lemma I we have left to show ﬁ'z*/'b is
continuous for (Z,Z*)eUh(0,0)' and |t] £ 1,

First evaluate ﬁz*/t » obtaining

- o
Egx 2n-1 n_(2n
2 - Z 320250 )(z,z*). (1.36)
n=1
It is seen from this form that EZ* /t 1s continuous because P(En) is
analytic for (Z,Z*)eUh(0,0) , 2% is continuous and £=n-L is

contimuous.
We need to show next that E(Z,Z*,t) exists. Since D and F

are anslytic functions of Z and 2z* for (2,2%)eU(0,0), P(Z2)(z zx)
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are also analytic functions of Z and Z* in the same neighborhood for

the reasons given on page 3. E(Z,Z*,t) exists, then if the right-hand

side of (1.23) converges. To show convergence of this series it is
necessary to use the method of dominants (see refs. 2, 3, and 4).

“If ¢(Z,2*%) is any function (regular for |Z| S r, |Z¥| S 1) of

two complex variables with a Taylor series expansion about (0,0) of
_ o o
9(z,2%) = Z Z apgZ z* 3,
p=0 q=0
then a dominating or major series for @(Z,Z*) can be defined as

xzfv('z,z*) = i i quzpzf

p=0 q=0

where

|apq| < [4pq]-

Fram our assumptions that A, B, C, D, and F are regular in
the bicylinder D Zz|Sr, |2z¥ £ r] it can be shown (the reader is -
referred to ref. 4, page 70, for a simple proof) that dominants for

D and F can be written*
-l -1 =1 -1
[D]«M(l--f,-) (1-%) , |F] < M(l-%-) (1-%?) (1.37)

where M 1is a conveniently chosen constant. Define dominants

§<2n)(z,z*) for P(en)(Z,Z*) in the following manner:

*¥A << B means A 1s dominated by B.



1o

5(2)(2,2*) = 2K K2M

(2

K
96-2)

(1';:) -

(en + 1)§(2n+2)(z,z*) = 2|P, n)(z,z*) + P‘(Qn)(z,z*)

Z

K Z* (2n) ‘
P 7,2% ) dz*
. J e

b 36 %)

n=1,2, «..(1.38)

By means of the following formulas we can obtain expressions to work

with which are independent of 2. We write

5(2) _ ')\(2) 7*
Z
-3
n-1l.2n, .
F(En) = G, (z) n=2,3, ..

(l - %)n l d 3 hd 5 e o o (2n - l)
i (1.39)
Substituting these expressions into (1.38) obtain

7\(2)(2*) . S

.77\(2n+2_)(z*.),7=.v7\(2n)(z*) §+ ‘ X . K /‘Z 7\(21’1)(Z-x-)dz-x-.
0

(1.ko)
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It can be seen from (1.40) that the e depend only upon Z¥

and more importantly, the moduli are monotonically increasing functions

of increasing |2*|. Therefore we can write for IZ*I < E

G m(zn)(z*)[n * :}, A=Ke(2 + 1) (1.41)

I
and using (1.39) obtain

i;('en)(z’z*) <« 2n+l(n +A-1L)(n+A-2)...(1+ A)K'

n
(1-Z>rn'161.3. . . (2n - 1)

T

(1.42)

" The majorant series for ¥(z,2z*,t) can now be written

©0

2 2Kizlr - }: 161282213 = 1+ A)(n =2+ A4) . . . (1+4)

1+l ,
(-LEL) = (r-12D%153-5...(2n-1)
T
(1.43)
By means of the ratio test this series can be shown to converge for
1z1 <3 Iz¢l <%, Is] 1.
Since the majorant series (1.43) converges for |2z] < g, | z*| < %,

and Jt| €1, series (1.23) converges for the same domain. Further
examination of series (1.43) indicates that each temm is a continuocus
function of Z and 2z* for lzl<ry <%, lz#¢l <rp <%, and |t]S2
which 1e a sufficient condition for the uniform convergence of series
(1.23) (see ref. 2, page 41).

By means of a minor amount of manipulation dominant series for

,(1.27) and (1.29) can be found such that the radius of uniform convergence

of these two series is the same as that for E. This justifies the



T

term-by-term differentiation required in obtaining (1.27) and (1.29).
The term-by-term differentiation required to obtain (1.28) is much more
easily justified since (1.27) is just a powex; series in t and can be
differentiated with the same radius of convergence resulting.

Proof-of Lemma II: Using equations (1.23) and (1.4) rewrite equa~

tion (1.3) in the form

7%
U(2,2%) = fl exp-f A azx||1
3 0

<0

+ Zﬁnen(z,z*? f(.g_.(l - t2)) z;j-%’;—)m (1.44)

n=

't and use equation (1.21) and equation (1.24) we'can rewrite equa-

\
tion (1.44) in the form

7%
U(Z,Z%) = exp -f A azx || g(z)
0

(=]

+ nZl zPQ(z,2*) j;l tanf<%- ‘(l - t2)> a‘:%;'f/‘e‘

(1.45)

Let us first evaluate the term

Alt%(g (1 - t2)) dt (1.146)
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0

Substitute £(2) = };} enzn from {1.22). Then over the real line from
Y .

-1l to 1 we have

: = . on
fgl ‘banf( (1 - @))-(—:%)-IE:nZO agi

1 n...]_-
f £28(1 - £2) 2 gg,
-1

(1.47)
Breaking the integral into two parts, obtain
o 1
De=
a Z 2
fl temf( (1 - 2)> y n f 231 - £3) at
£ ( t2)1/2 ~_.:

1 B3

2
+ 251 - £2) at|. (1.48)

0

Realizing that the integrand is even, write

1

. hoe n n- =
J;ltanf( (1-t2))(—i?d—:m=;oin£—2/;lt2m(l-t2) 2 at|.

(1.49)
We. now make the transformation t° = X and rewrite the integral in the

form,

Jo g Bt 5| [
n

(1.50)
The integral can now be recognized as a Beta function and the solution

written (see ref.- 2, page 272, for a derivation),
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j,;ltsz( (1-1:2))2-1-:-‘1:-;’-5;—175;2 %?B(m+%,n+ )

1
anzn I‘(m + -§>P(n + -]é'->
en Mo+ n+ 1)

PO~

[~Js

(1.51)

We now want to show

S Pl - ) S R

j;zm"l g(Zy)dZp « o« « Z4.
(1.52)
Let us first evaluate the iterated integrals. g(Z) can be seen to be
(1.51) with m = 0, or

«(2) = i o e ) (2:53)

n
=2 Mn + 1)

_Then, inducting on m,

[ tzpe y 2" [( >r(%>:Janzn+l (1.54)

T'(n + 2)

and

f f a(Zo)azpdz = 2 2nr(n+ ><2>8nzn+2- (1.55)

Mn + 3)

We now claim

2 27%r(n + a g™
fczzfe-..foz.m'lgwm)azm..;azwiz o Frig)™

= Mn+m+ 1)
(1.56)



Integrating once more,

J. efoZl J. 2 et .z - ) Z7r(a + F)o(3)eas™
[ [ . g . A. . = )
ovovo Vo ' 1 L T E—
(1.57)

Now let

8 =2

Z = Zl

p = dpyq-

Then, (1.57) becomes,

®  o=Nn FATNAR ntml
[ [ e - § o™

(1.58)
The induction is complete.

It can be shown by manipulation that*

ii an.Zn P(m + %)P(n,+ %) z’mr(am + 1) i? g'nP<n + %)P(%)anzn+m
=0 on Mm+ n+ 1) gsz‘(m-l-l) n:‘O M'Mn+m+ 1)

(1.59)
so that {1.52) is true.

*Here we use two well-known (i.e., ref. 5) expressions:
1+3+5...(2m=1) T{om+1)

2 ) 22mP(m + 1)
1-’5-5...(2111-1)\/}?'

and

ol

I‘Gn +
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Combining equations (1.52) and (1.45) we obtain the required expression,

Z* hod . %
U(2,2¥) = exp|~ f A(z,z¥)az*| | g(z) + Z [(en + 1)Q7(2,2%)
’. 0 = 2P+ 1)

fozj;zl .. .\/;ZWl &(Zn)dZy + « .« a23 | (1.60)



CHAPTER II
PRINCIPAL THEOREM

In chapter I two lemmas were proved which produced solutions to the
partial differential equation (1.5). The two lemmas will now be used
as the basis for a theorem (see ref. 6) which will be used to obtain

solutions to

L(U) = Uyon + AU, + BU,, + CU =0, (2.1)

where now A, B, and C, in addition to being continuously differen-
tiable functions of Z and Z¥ have been particularized to complex
polynomials in Z and Z¥. Let us also at this point restrict our
discussion to the case % =2Z*¥ (i.e., x and y are real). We have
done this because Bergman and Herriot in reference 6 considered this case.
However, nothing done in chapter II would restrict us to Z = Z¥. The
theorem applies equally well:to this case and also to the case where
Z and Z*¥ are two independent variables.,

The following theorem is developed fram the two lemmas and the
proof is indicated.

-~

Theorem: For each partial differential equation of the form

L(u) = Uy + AU, + Bz + CU =0

22
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a set of functions

(n)

Q" (2,2) n=1,2,3 ...
defined by -
(l) — ‘Z. .
Q7 (2,2) = -2 F az 2.2
(2,2) fo (2.2)
and
Pz,2) - - = H2,2) - afF4)(z,0)
Z-X-
(P-1) n (p-1) & o,
o [ g em (2.3)
and
Q(P)(z,o) =0
where
: z
D=-f Ay Z + B, F =-AB - A7 +C (2.4)

0

can be found such that

— )

7 . n = - K+nel
exp ,-f Az,7)aZ || 25T + Z I(2n + 1)q (2,2)( - 1)12
0 | 2290(n + 1)(K + n - 1)1

n=1

K=1,2,3, ... (2.5)
forms a set of K particular solutions (convergent for |Z]| < -Z—,

12l < g, ana 1t] S 1).¥

*3Since A, B, C, and D are now entire functions r is
arbitrarily large. '
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Since the coefficients A, B, and C are complex polynomials in

-Z and Z they can be written in the form,

LY ml N .
A = y a_JKZj-lZK-l (2.6)
371 K=1
m N
J=1 K=1
m N
C = 2 Z chzj'l'ZK'l. (2.8)
J:l K=

The theorem will now be inferred from.Fhe previous two lemmas.

Let “z =0 (since Ny was defined as an arbitrary function of
Z in equation (1.1) one is allowed to do this) then equation (1.1)
reduces to equation (2.4)

Now since g(Z) i1s an arbitrary analytic function of 2Z of the

form (see (1.53))

g(z) = Z Agz" (2.9)
n=0

one can take the special case g(2) = ZK-l, K=21,2, ¢+ o«

Then for this special case, expression (1.60) with Z* = Zf becomes
—-— o
_ Z - - .- N/, 5 VARYAR
U(2,Z) = exp -f Aaz||Zxt . z P("’gn‘” 1_)Q (2,2) ff 1.
0] o1 2 IMn + 1) ovo
Z
f n l Zn dzn s o o le . (2010)
0

TNote here that henceforth Z* will arbitrarily be changed to Z.
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Let us now look at the term,

rériy opal xo1
ff n'-f Z;{I dZn...le.
ovo 0 ’

By successive integration,

Z rZ Z
1 D=l
ff f Klaz, ... az
ovo 0
22y Zp-2 2
N1
‘/\f OO‘f d-Zn-loaﬁle
ovo 0 K

+1

22y Zp-3 -2
= ) o o & e ——— dzn_2 e o 0 dz:l-
ovo o) K(K + 1)

_ (k- 1)1zt

» 2.11)
Therefore equation (2.10) becomes,
Z = n,, = =-1+n
- g I'(2n + - !
Usexp_f A a7 ZKl"'Z (n2n 1)Q (2z,Z)(k - 1)1z (2.12)
0 2°°M(n + 1)(K = 1 + n)!

n=1

Equation (2.12) is the reqpired expression, equation (2.5).
To develop expressions (2.2) and (2.3), we combine equations (1.25)
and (1.26),

P N (- PR
Q(z,z) | fo P =/(2,2)az

= | 2F 4az. (2.13)
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Now in equation (1.32) let m - 1 = n, then

e R U Pg(m'l) + pp2m-1) | p f Z p2(m-1) 47|, (2.14)

2m = 1 0
So that
_ Z 5
Q™(z,Z) = Jf P 4z (2.15)
0
can be written
— Z 2(m-1 2(m-1 2 p(ge _...
Qm(z,z)=f -2 Pz(m)+np(m-)+Fj PRl o
o &@-1 )
(2.16)

or,

Z
oy 7Y 2 2(m~1) .=
QNz,z2) = l'g/; Py az
z 3 Z Z 1) o
+f DPa(m'l)dzyf Ff XA
vo 0 0

(2.17)

Z o
Substituting for g'/ﬁ P2(m-l) dZ from equation (2.15) obtain
0

— e ——

2 Z Z '_
2,Z) = - —2 Jf p2(r-1) 47 Jf pp2(@-1) 47 Jf ™t &7l
2m-1)Jo 2 0 0

(2.18)
Using Leibnitz's rule of differentiation under the integral along

with expression (2.15), (2.18) can be rewritten as,

—

o '2' .. - - e v E - - Z - -
z,z) = - ) Qﬁ l(z,z) - Q? l(z,o) + \jp n92<m l)dZ + \jﬁ FQ 17|
0 )

(2.19)
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Now since P2m is continuous equation (2.15) can be differentiated with

respect to Z to yield,

(2,Z) = PN2,Z). (2.20)

8 Pe(m-- 1)

"Substituting for in equation (2.19) the expression derived

in (2.20) obtain,

2

z \ _
Q2,E) = - |G H(2,2) - & H(z,0) + fb (el + pg1yaz|.

(2.21)

‘Equation (2.21) along with Q7(Z,0) = O yields the desired expression.



CHAPTER III
APPLICATIONS OF THE THEOREM TO EQUATIONS

In chapter I we proved two general lemmas in the theory of integral
operators. A theorem was developed in chapter II which would yield

solutions to
L(U) = Uz + AU, + BUz + CU = 0 (3.1)

where A, B, and C are complex polynomials in Z and Z. Equa~
tion (3.1) is repeated here for reference. In this chapter wé‘will
apply the theorem to equation (3.1) and obtain sclutions for two cases

which correspond to:

Case I A=0
B=0
C=0
Case II A=0
B=0

Q
]

.nonzero real constant.

Let us first transform (3.1) to a partial differential equation in
the real variables x and y to determine the type of real eguation
with which we have been dealing. The variable U can be considered to
be a function of either (Z,Z) or (x,y). Write U(x,y) = U(Z,Z),

7z + 7 VAR A
y and Yy =

X =

.

28
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Then
ox Sy
Uz = Ux 5+ Uy 3{' L (uy - 1uy), (3.2)
and
S b
Uz-.txxa;c y-éy---—(UXJr iUy),
and

Uzz = £ (U + Uyy)-
If we now substitute expressions (3.2) into (3.1) we obtain,
Uyx + Uyy + aUy + bUy + cU = 0. (3.3)

In (3.3) we have combined the constants in the following manner,

a =2(A + B)
b = 2i(B - A)
c = 4C.

ququation”(B.B) then-is a second-order, linear, elliptic, partial differ-

ential equation.
Returning to the first of our two cases, A =3B =C =0, equa-

tion (3.1) reduces to
Upg = O (3.%)
Using the transformation equations (3.2), equation (3.4) transforms to
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" Equations (2.2) and (2.3) reduce to
oXz,z) =3(2,Z) = . . . = QF(2,Z) = 0. * (3.6)

Expression (2.5) is, for different values of KX,

K=1 1
K =2 z
K =3 22
K=k 22

(3.7)
K=n zR-1,

Expressions (3.7), then, form n particular solutions to equation (3.4).

If we now take the real and imaginary parts of equation (3.7), we obtain

K - l l’ 0
K=2 X, ¥
K=3 x° - y2, xy
(3.8)
K=n

which yields 2n particular solutions to the real (if x and y are

real) partial differential equation (3.5).



For case II, equation (3.1) reduces to
UZZ + CU =0
which transforms to,
Uxx + Uyy + 4cU = 0.

From equations (2.2) and (2.3), obtain for this case

o¥(z,Z) = -2¢Z

and
n n-n
QX(z,Z) = (-1)?2 ¢’z ,on>1
3'5' -.(2n-l)n!
Expression (2.5) reduces to
K1, (x - 1127818

, I(K+ne 1)!
n=l n( )

Taking the real part of (%.13), obtain

_ K-1 > (K - 1) 1281 (q)ReigR
)‘1"3@[2 :]*'Renzl nl(K +n - 1)1 )

Equation (3.1%) can be written in a more usable form,

)n

| +n -
Ly ni(K + n - 1)!

31

(3-9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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“Likewise with the imaginary part, N

ni(K +n - 1)I

n=1

M and A, form 2K particular solutions to equations (3.10) which
are convergent for |Z] <-§, A <% and |tlS1.

It should be remarked here that the real and imaginary parts of
solutions to (3.1) form solutions to (3.3) only because of our particular
choices of A, B, and C (i.e., A, B, and C along with a, b,
and c¢ were chosen to be real conmstants). If, however, a, b, and ¢
were allowed to take on complex values the real and imaginary parts of
solutions to (3.1) would form solutions to two partial differential
equations, respectively, resulting from taking the real and imaginary

parts of (3.3).



APPENDIX
In this appendix we want to show that if

Z*
v(Z,Z*) = exp jo A az* - n(z) U(z,z*) (a-1)

\

is a solution %o

L(v) = Voos + DVpy + FV =0 (a-2)
then
U(2,2*) = fl E(z,z*,t)f<-21- z(1 - t?))---L (A-3)
: (1 - t3)3/2
is a solution to
L{U) = Uygyx + AUy + BUgx + CU = O. (A-k)

First we want to evaluate the derivatives VZ* and sz*. Take

the partial derivative of V with respect to Z¥,

Z*
Vo = exp fo A az¥% - n(2) U(z,z*_)f(z,z*)

7%
vem| [ aar - a(2)|u,z,2. (4-5)
0
Here we make the substitution

A
g = /o A az* - n(z) | (a-6)
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in order to simplify the expansion. Equation (A-5) then becomes
Vgx = exp(BIU(Z,2%)A(Z,2%) + exp(B)Uzx(Z,2%). (2-7)
We can now take the partial derivative of equation (A-T) with respect

to Z,

7%
Vggzx = exp(rs)E fo Ay(2Z,z*)daz* - n%u(z,Z*)A(z,Z*)
+ Uz(2,2%)exp(B)A(Z,2%) + Az(2,2*)U(Z,2*)exp(B)
Z*
+ exp(BIUgx(Z,2%) [ o Ay QzZ* - nz]

+ exp(B)Upgx(2,2%) (4-8)

Substituting equations (A-1), (A-5), and (A-8) into equation (A-2)

obtain,

7% 7
exp(B) ‘/O AZ(Z:Z*)-dZ* - WZJU(Z:Z*)A(Z:Z*)

* UZ(Z:Z*)exP(ﬂ)A(Z:Z*) + AZ(Z’Z*)U(Z:Z*)exP(B)

YA _ .
v em(B)ge(2zt) | [ ag a2 = g ¢ erlB)ggn(z,)
+ D exp(B)U(2,2%)A(Z,2*) + D exp(B)Uy,(2,2%)

+ F exp(B)u(z,2%) = 0. (4-9)
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But from equation (1.1) we have
z* .
D=1, - b/‘ Ay dZ* + B (A=10)
0
F = Ay = AB + C. (a-11)
Substituting equations (A-10) and (A-1l1) into equation (A-9) obtain

. 7%
exo(8) | [ hylz,z00aze - nglu(z,20)a(z,2%)
0

+ U,(2,2%)exp(B)A(Z,2*) + Az(2Z,2%)U(2,Z¥)exp(B)

.Z-)(-
+ exp(B)Uyx(2,2¥) . Az, QZ* = ng | + exp(p)Uyzx(2,2%)

Z*
+ | ng - fo ag aZ% + B|exp(B)U(Z,2¥)A(2,2¥)

-~ - "‘1

+ g = /:) AZ 4z* + B exP(B)Uz*(Z:Z*)
F

+ |-Ag - AB + C|exp(B)U(Z,2*%) = 0. (4-12)
-
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Dividing by exp(B) we get,

z* ‘
|7 sz e - agfuz,zom(z,20) + y(z,20)(2,20
0

o 7%
+ Az (2,2%)0(2,2%) + Ugx(Z,2%) f Ay GZ* - Mg
0

7%
+ UZZ*(Z,Z*} * g - ‘/; Ay az¥* + B|U(Z,2*)A(Z,2%)
, 7%
+ [Ng - b/\ Ay AZ* + B\Ug(Z,2%) + [}AZ - AB + %]U(Z,Z*) = Q.
0
(a-13)

Under close examination of equation (A-12) it can be seen that most

of the terms cancel leaving,
Upgx + BUgy + AUy + CU = 0 (A-1%)

which is what we were to prove.
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