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ABSTRACT

A perfect number is a number the sum of whose divisors 
is equal to twice the number. Even numbers that are 
perfect have been known for centuries. However, the 
existence or non-existence of odd numbers that are perfect 
has never been established. In this paper, some of the 
properties of perfect numbers are discussed together with 
conditions for their existence.

Chapter I lists the main result concerning even 
perfect numbers together with some minor conclusions 
concerning their properties.

In Chapter II some of the basic principles are set 
forth concerning the question of odd perfect numbers.
This is accompanied by a brief historical review of the 
progress in various areas.

In order to illustrate the means employed in the 
attack on odd perfect.numbers, Chapter III selects the 
most comprehensive and most important of a variety of 
methods and explains their structure.

In the light of the evidence presented, it would seem 
unlikely that any odd perfect number exists. This, however 
has not yet been proved.
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INTRODUCTION

The aliquot parts of a number are the divisors which 
are less than the number* If a given natural number is equal 
to the sum of its aliquot parts it is termed perfect* which 
is equivalent to saying that the sum. of its divisors is 
equal to twice the number. If this aliquot sum is less than 
the given number it is termed deficient. If the sum of the 
•divisors is greater than twice the given number, it is termed 
abundant.

The quality of such a number that equals the sum of 
its parts has for hundreds of years been associated with 
perfection, and hence its name. The establishment of a 
simple criterion by which one could determine whether or not 
a given natural number is perfect has been a goal sought 
by mathematicians since the days of the early Greeks» We 
will discuss, during the next few chapters, the results 
which have been established concerning such numbers and the 
methods employed in their establishment.
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CHAPTER I 
EVEN PERFECT NUMBERS

Euclid [6]^ gave a sufficient condition for an even 
number to be perfect with:

Theorem 1 : If p and 2P- 1 are primes, then 
N = (2P~-*-) (2P- l) is perfect and even.

Proof; Obviously, (2P“^)(2P- 1) is divisible by
1, 2,------  2P~1, 2P- 1, 2(2P- 1),...., (2P~2)(2P- l)

but not by any other number less than (2P“*^)(2P- 1)* The 
sum of these divisors is (2^^)(2P- 1). Clearly N is even.

Euler [6] later proved that this condition was also 
necessary. Hence,

Theorem 2; If N is even and perfect, then 
N = (2P"^)(2P- 1), where p and 2P- 1 are primes.

Proof: We will denote V ^ byO^CN). Letting
a | isn

N = 2 \ ,
where

(2k,,j.) = 1,
we have

G“(N) = 2N =(r(2kn) =G'(2k )(r(fi)»
giving

(A) 2k+1- l g(u) = 2k+l2-1 . I1’
—  .

The numbers in brackets refer to the bibliography. ,
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But 2k+1-l is odd and must be a factor of ja. So

H = (2k+1-l)V

or

whence

But also

(2k+1-lXT(p.) = 2k+1[(2k+1-l)v],

cr(|j.) = (2k+1 )v.

G*((i.) = cr[(2k+1-i)v].
Now, either V = 1 or V > 1. Assume V > 1. The divisors of

(2k+1-l)V are:

(2k+1-l)V, 2 k+1-l, V, 1, ..... .
Their sum, S, is:

S = (2k+1)V - V + 2k+1-l + V + 1 + .....

= (2k+1)V + (2k+1 + .......+.)

=G'[(2k+1-l)V] = CTCp.) 
which from a previous equation is equal to

(2k+1)V,
or

(2k+1)V = (2k+1)V + (2k+1 +
k*t*lwhich is impossible, therefore V = 1, and |x = 2  -1.

From (A),
G~(p.) = 2k+1
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or
CT(2k+1- 1) = 2k+1.

Now, the divisors of 2* - l are:

2k+ X i *i

Adding, we get

CT(2k+1- I) = 2k+-L- l + l + (extra terms)
= 2k+^ + (extra terms), 

k+1thus (extra terms) = 0 *  So 2 - l must be prime®
To show that k + 1 is a prime we assume k + 1 = a«-b®

Then

2k+1- l = 2a#b- 1 = (2a)b- 1 ts xb- 1®
This xb- 1 is divisible by

x — 1 = 2a- 1,
but

Xb- 1 = 2k+1- 1
was prime, hence a contradiction and k + X is prime®

Primes of the form p = 1 + 2 + 22 + • • • • +  2^“^ = 2b- 1 
are called Mersenne primes and since the time of Euler the 
search for even perfect numbers has been reduced to the search 
for Mersenne primes® Due to the difficulty of ascertaining 
whether or not a number, of the form 2^- 1 is a prime, few 
correct lists of Mersenne primes were published until the 
advent of the modern computers. Even now the only even 
perfect numbers known are those corresponding to p = 2, 3,
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5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279,
2203, 228x, 3217, ‘+253, and Mf23 [l]. It is still not 
known whether there is a finite number of even perfect 
number s•

Some of the properties of even perfect numbers follow: 
Theorem 3 : Every multiple of an even perfect number •

is abundant.

Proof: Let N = (2^”*̂*) (2^-1) be perfect*
. Then

NK = (2p_1)(2p-l)K
and

£ K(2P-1)(2P-1)
d|N
d<N

= 2(2P-1)K + 22(2P-1)K +.+ 2p-2(2p-l)K + N + K + 2K +.+ (2p-1)K
= (2P-1) (2P’"1-1)K + N + (2P-1)K 
Let

(2p_l)(2P-1)K - (2p-l)(2p-1-l)K +N + K(2P-1)

= (2P-1)(2P_1-1)K + (2P_1)(2P-1) + (2p-l)K,
hence,

(2P-1)K = (2P_1-1)K + 2P_1 +' K 
= K>2p-1-K + 2P“1 +K 
_ (2P_1)K + 2P“1.
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This holds only for p = 1, which does not make N 
perfect. Otherwise NK is obviously abundant.

Theorem *+: Every divisor of an even perfect number
is deficient.

Proof; Let N = (2P-1)(2P_1) be perfect. The 
conclusion is immediate since, if p is prime, then

(a) £ d = 1

and
d|p d<p

(b) Y  2k = 1 + 2 + 22 + *••• + 2k_1 = 2k- 1.
i —l -

d|2k 
d<2

Theorem 5: If (2p" b ( 2 P- 1) is perfect, then
(2p-1)(2p-l) = l(mod 9).

Proof: We shall denote the ultimate sum of the digits
of a number by S(N).

Example: S(398) = 3 + 9 + 8 = 20* 2 + 0 = 2  and S(398) = 2
Brooke [*+] showed that S[ (2n~'L) (2>n- l)] forms the 

sequence 1, 3* 1> 9> 1* 8, 1, 3> • •• etc., for n > 3* However, 
if (2n“^)(2n- 1) is to be perfect, n must be prime and those 
elements occupying the positions in the sequence generated 
when n was even would be eliminated. Hence the only numbers 
to be considered are those such that S(N) = 1. The result 
follows from the easily proven fact that if

S(N) = l(mod 9),
then

N = 1 (mod 9).
Theorem 6: Every even perfect number is triangular*
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Proof: Triangular numbers are of the form

1/2[n(n + 1)], n > 0,
Given an even perfect number it is of the form

(2P-1)(2P_1)

by Theorem 2 and

(2p-l)(2p"1 ) = 1/2[2P (2P-1)].
Theorem 7: For any integer of the form 2n“^(2n-l),

2n”l<2n-l for every positive integer n >1. In particular,

this holds for any even perfect number N = 2P~‘*‘(2P-1) where 
p is a prime.

Proof: If n = 2, 2 < 3. Assume that.

2k“l < 2k-l
for some integer k >2. Then

2k < 2k+1-2
or

2k < 2k+1-l 
and the induction is complete*

An alternate result may be found in [l]*
Theorem 7*: Six is the only square free even perfect 

number•
Proof: In Theorem 2 we proved that for N = (2P“^ )(2P-1)

to be perfect, 2P~1 and p had to be prime. For N to be 
square free it is necessary that p-l<2, hence p = 2 and N = 6.



CHAPTER II 
ODD PERFECT NUMBERS

In the case of even numbers the desired criteria 
have been established to determine -if the number is perfect. 
However, there does not exist any such determining equation 
for an odd perfect number despite centuries of effort by 
professional and amateur mathematicians. In fact, no odd 
perfect number has ever been discovered and it is seriously 
‘doubted that one even exists.

Among the many earlier statements made concerning 
odd perfect numbers (usually erroneous), the first significant 
fact pertaining to their existance was established by 
Euler [6] who proved that:

Theorem 8: If N is an odd perfect number, then

n = EaqiPlqlP2- • ..q̂ Pn,
where
Pf, are distinct odd primes and a = 1 = p(mod h ).

Proof: We first remark that since p is odd and p > 2,
then

(pS) = pS + p8""1 + . • + p2 + p + 1
is odd when s is even and even when s is odd. Thus we need
only one prime raised to an odd power, where the (Tof this

9
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number, CT(pa), is of the form 2K, K being odd.
Now assume p is of the form ^x - 1* Let n be odd,

then

crt (^X-Dn] = (^x-l)n + (^x-l)11-1 +..+ (^x-l)2 + (U-x-1) +1
which has an even number of terms as shown but the constant 
term in each binomial expansion alternates sign, thus all 
the terms not containing x are gone..
Hence

Q-CO+x-l)11] = 
giving p the form *fx+l as prime.

If p = *+x+l, we now assume an odd exponent n.

CT[ (^x+l)n ] = (̂ 4-x+l )n + (ifx+l)11"1 +••+ C^x+1)2 + (*+x+l) +1
= *+A + (n+1).

If n is of the form + 3 *
then

0"[ C1tx+i)l+K+3] = bk + (*tK+3+l) = >Q»
which cannot be a product of 2 and an odd number. Hence 
the exceptional prime is of the form M-x+l and its exponent 
must have the form -̂K+l.

We will assume the prime factorization given by 
Theorem 8 for any odd perfect number, denoted by N, through­
out this chapter. We continue denoting the sum of the 
divisors of N, by CT(N) and establish some elementary facts 
about this sum in. relation to odd perfect numbers.
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In Theorem 8 assume that
p<q1<q2< * ^ <qn - 

Then the sum of the divisors of N,

CT(N) = (l+p+p2+..+pa )...(l+qn+q^+..+q^n ) =

(A) T>g+1-1.a .... .a2^n +1- i .
P-l 1 Qi-1 n qn-l

a 3Theorem 9: The odd number p q is not perfect•
Proof;: We first give an elementary inequality needed

in the proof.
Assume that ^<0.29 where q.̂  and q2 are primes each 

greater than 2.
Then,

or

whence

qlq2*“ql>qlq2‘-cl2

ql(q2-1)>q2(qi-1)

qn q9(B)    >

Also if

then from (B) and

we have

q-̂ -l q2-l

qi<q2<q3 >

q2 q3 ,
q2~X q3_1
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Then

and

(C) -±L_.-i£_ >
q^-l 0.2"”̂*

Now assume paq^ is perfect.

0-(paq'P) = Pa+1-1 • ^ +1-1 * 2p“qPp-1 q-1

> 2p«qPp-1 q-1
, implies that

P . d > 2 p-1 q-1
This fraction reaches its maximum for smallest values of 
p at p=3 and q=5 "by (C), but this gives 2*^ = ̂  < 2 #

Theorem 10: divides N where p is the ex­
ceptional prime#

Proof: < r ( P ^ 1) = p^ +1-1 =
p-i \ p+i )\ p-i j

These last three factors are integers, so that each divides
Q^(N) and divides N by the statement above#

These elementary results give a basis for the develop­
ment of different methods of attack on the properties of an 
odd perfect number# We continue by giving a historical 
review of these approaches and by proving some of the basic 
ideas#
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The first such attack was an attempt to develop 
relationships between the number of factors n of N and the 
smallest factor p.

The initiator of this method seems to have been 
Desboves [6], who proved in 1878:

Theorem 11: In an odd perfect number which is
divisible by just n distinct primes the least prime, p> 
is less than 2n .

However, using statement (A) we may improve this as 
follows:

Theorem 12: Let p be the smallest prime divisor
of an odd perfect number N, then N has at least p distinct 
prime divisors.

Proof:: Under the same assumptions as statement (A),
we know that:

= pa+1-l.q2Pl+1-l...q2P ^ 1-l ,
- n P-1 qi-1 qn-1

however,

pa+1>pa+1-l, q?fcL+1>q?Pl+1-l, etc
giving

Also,

(D) P . qy . q? ... qnp-1 qi-1 q2-l qn-l

^1-P+l q'2 p+2 q_ p+n-l <__9 _____ <___ » • • ♦ V* .q1-l p q2-l p+1 qn-l p+n-2



so that,

p-1 c^-1' P"1 P P+1 p+n-2 p-1
or

2 < p+n-1 . 
P-1

p<n+l
This result was given by Servais [6] in 1888 and in

21952 Otto Grun [6] proved that p<Tn + 2, by utilizing the
fact that odd primes differ by at least two. Using this 
last result, the fact that 3, 5 and 7 cannot occur together 
in N (See Chapter 3) and that alternate primes differ by at 
least 6, Muskat [8], in 1955* showed that p < l/7(3n+36)» 

Uhler [13] in 1952 proved:

Theorem 13: If N = paq ^ ^ q 2^2.. •cl ^ n is perfect,

where p-, = p and p is the n-th consecutive prime beginningXX

with p.
Proof: The proof follows from the inequality?.

then
n
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which is a result of Theorem 12 when N is perfect; and 
the fact that asymptotically,

t t  (logngrp < n p-1 &

From this result we know

P „  > p2 / w £

The best results to date in this area have been given 
by Karl K. Norton [9] who, employing analytic methods and 
assisted by ILLIAC (the University of Illinois Automatic 
Digital Computer), proved the following theorems:

First we clarify the notation:
Suppose

N = pJ-4>22 * * * is Perfec^>

where

so that

3 $ Pl < p2 < .... pk

k prr+1* 1 -r£- pr(E) 2 = TT ---- —  < TT r

When

r=l p^r(pr- 1) r=l pr_1

pl = pn-
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n+k-1
(F) 2 < T T . r ^ T

r=n

Let the function a(n) he defined for n £ 2 by the 
following double inequality:

n+a(n)-2 n+a(n)-l
(G) t~t Pr < 2 < t- t pr .T T  - 2 -  ^ < T TM  p - i  1J  p - ir=n r=n *r

From (E), (F) and (G) it follows that if pn is the 
♦smallest prime factor of W, then N has at least a(n) 
different prime factors. Also, N must have a prime factor 
at least as large as

Pn+ct(n)+l ~ Ps

(s = s(n) represents n + a(n) + 1).
Norton's results are given in the following:
Theorem 1^: If p^ is the smallest prime factor of N,

then

N *  PnPn+l (Pn+2Pn+3*“ ps-l)2ps‘
Theorem 15: If pn is the smallest prime factor of N,

where 2 ^ n < e^2 or n > e“̂ ^ >  then

log N > 2ps(l - j j j - )  - 2pn (1 + I55l - )  + 6<loS V
s n

+ 2 (lOg P ^ )  - lOg Pg.
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Theorem 16: a(n) > n - 2n - n + 1
log n 

- l A n  (log n).

- ?A  - l/2n

Theorem 17: Suppose that t(l - log^t^ ^ ^ + log.t^

for Pn ^ t cj p , where a and b are constants and 0 < a ^ 3,
0 < b ^ 3.
Then,

i . + 3b + b2 _ 4(log pn)
2<log Pn) Pn J

In particular,

^  s 2p > e p *s pn
i Va + 3b * t>3 >fClog; 5^7)1. for n > 4, 
1 " 2 (log 547) 547 f

Using this same approach Professor Paul T. Bateman [9]> gives 
a theorem which indicates a lower bound for log N:

Theorem 18: Let N have a smallest prime factor pn and
let b be any number less than *f/7*

Then,
1) N has at least a(N) different prime factors, where

a(-N) = ^Cp^) + 0(n2e-log bn).

2) N has a prime factor at least as large as '

_ 2 , - / 2  -log b \,ps = Pn + 0(n e n).

3) log N > 2  p2 + 0(n2e_log bn).
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Many papers have appeared examining the size of' n 
under various conditions on N. We have already shown 
(Theorem 9) that any odd perfect number has at least 3 
distinct prime factors. Desboves [6] stated that no odd 
perfect number is divisible by only 3 distinct primes.

J. J. Sylvester [6] proved there are none with b 
distinct primes and stated that there is no N with fewer 
than 6 distinct prime divisors and proved that there is 
none, not divisible by 3 with less than 8 distinct prime 
divisors..

Kuhnel [8] and Webber [8] proved later that if 3 
divides N, n >, 5*

. 3

E. Catalan [6] proved that if 3 * 5  or 7 does not 
divide N, n ^ 26, with N having at least *+5 digits.

T. Pepin [6] proved that an odd perfect number 
relatively prime to 3*7> 3*5> or 3*5*7 contains at least 
11, or 19 distinct prime factors respectively, and cannot 
have the form 6K + 5*

By 1855 Sylvester [6] had raised the number of distinct 
primes to 5 and Gradstein [8] pushed this to 6* Later, Kuhnel 
[8] and Webber [8] produced the same latter result. .„

T. L. Reynolds [10] proved that if 5^N, n > 6.
In this area, although much later, Kanold [6] showed 

that if N is odd and perfect, such that
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then
n > 9,

and if
a = 1, P2 = ..... = Pn = 1,

then
n > 13.

Muskat [8] illustrated a proof that for any N, n > 7*
An obvious result of the previous section is the 

»establishment of lower bounds for N. Among the first such 
bound was N > 2(10)^ given by Turcaninov [7] in 1908. This 
was raised to 10^ by Bernhard [2], l.1* (10)”̂  by Kanold [73* 
1018 by Muskat [7], 1020 by Kanold [9] and to 1036 by Kanold
[7] If pa - ........   = Pn = 1.

During the period from 1912 to the late thirties there 
seems to have been a lack of interest in the problem of odd 
perfect numbers. The revival of this interest began with 
Steuerweld [7] who introduced greater restrictions on N by 
examining the forms allowed the exponents of the primes. His 
first proof was that N is not perfect if P^ = Pn = !•

Kanold [ 7 ] then showed that if a = 1> or a = 5> then
N is not perfect if = 2 and P2 = ......  = Pn = 1.

Brauer [7] and Kanold [73 then proved independently that
N is not perfect if p^ = 2 and P2 =  = Pn = Kanold
[73 later showed that N is not perfect if Pj = • • • • • =  Pn =
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and also if 2(3̂  +1, i = 1, 2, ...., n, have a common 
divisor 15, 21 or 33* In addition he proved [7] that
N is not perfect if = P2 = 2 and =  * = ^n = ^
or if a = 5> = where i = 1, 2,  , n.

Kanold [7] proved that N is not perfect if it is
relatively prime to 3, i*e., (N,3) = 1 and p2 = .... = Pn = 1,
or if a = 1 or 5, P2 = • • • = Pn = 1 and 2 ^  < 10. He
pointed out that if N is perfect and P2 = ...  = Pn = 1,
then a + 2p^ + 2(n + 1) ^ 37* Also if N is perfect, a = 1,
and p2 = ..... - pn = 1, then q^ = 3, ^ 12.

McCarthy [7] showed that if N is perfect, (N,3) = 1,
and p2 = .... = pn = 1, then qx 5 K m o d  3).

Of a slightly different nature Kanold [7] proved that
if N is perfect, then the maximum prime divisor of N is
greater than twice the maximum of a + 1 and 2(3 ̂ + 1, i = 1,

*  •

2, n. He also proved here that if 2§^ +1 = r 1, i = 1,
2, n, where r is a prime, then both p = l(mod r) and
1/2(a + 1) = 0 or l(mod r) are necessary conditions for N 
to be perfect.

The next area of research, which has led to many 
valuable conclusions concerning odd perfect numbers, is a

iresult of the study of certain cyclotomic polynomials and 
Diophantine equations. We give here some definitions and 
elementary results of this area while delaying a more de­
tailed explanation'of the methods used until the next chapter.
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t  InFor any natural number m, the m—  cyclotomic poly­
nomial is defined by

cp (m)
F(x) = T T  (x _ e  ), 
m i=l 1

t h.where the are the cp(m) primitive m—  roots of unity.

Fm (x) is an irreducible polynomial with integral 

.coefficients, and when rewritten in the following forms

Xs + Xs-1 .+ X2 + X + 1 = TT Eb (x )
m|s+lm^l

we can see its importance to our problem, remembering that 
if N is perfect, and that

<r(pa) • TT CTCqf3-) = 2p“qfl • qap2,...qaPn.

Hence every prime factor of an odd perfect number N
✓

is a prime factor of some Fm (x) where m|a + 1 or m|2pi + 1 .

The fundamental result is due to Kronecker and is in 
reference to the divisibility properties of these polynomials. 
Kronecker proved that if s is a prime divisor of Fm (x), then 
either s|m or s = l(mod m). Kanold [7] then generalized this 
by proving that ifi



with

Pl < P2 < *•••*• < Pk

and if r is a prime divisor of Fm (x), 

then

pk = l(mod p ^ p j 2..... Pkk_1)

is a necessary condition that r = pk, and

pk = l(mod p“lp|2 Pkk-1)

is a sufficient condition that r = l(mod m)# In case
Pk |Fm (a) for some integer a, then py does not divide

\

Fm (a), As a corollary, he proved that if m ) 3 and a £ 3

is an integer, then Fm (a) has at least one prime divisor 
r E l(mod m). He improved on this last result by showing 
that if m ^ 3  and a = ± 2 then Fm (a) has at least one 
prime divisor r 5 l(mod.m).

In the consideration of certain Diophantine equations, 
T. Nagell [3] proved:

If m > 1 is not a power of 3» then the equation 
x2 + x + 1 = y*11 has no solutions in integers x, y with
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Brauer [3] improved on Nagell*s theorem by estab­
lishing, as a lemma, the following:

Let r and s be different positive integers and p 
be a prime. The system of simultaneous Diophantine equa­
tions x2 + x + 1 = 3pr, y2 + y + 1 = 3ps> has no solutions 
in positive integers x, y.

Kanold [7] then proved that the Diophantine equation

XP + + •••• + x2 + x +  1 = y1*

has no solution with x a prime arid r > 1 except x = 3>
p = 1, y - r = 2.

In addition to the various areas covered above 
there are a few miscellaneous results which we list below.

Shapiro [11] and Dickson [5] proved independently, 
giving different proofs, that there are only a finite 
number of odd perfect numbers with a given number of primes. 

If N is given, then
1) Kanold [7] proved that N has a square factor 

greater than or equal to 1/2(r +1), where
r is the largest prime divisor of N.

2) N = l(mod 12) or N = 9(mod 36), which was
proved by Touchard [7]*

We know that N is not perfect if 
l/2[Otpa )] and<r(qfPi),

i = 1, 2, ..... . n are prime powers. [Levit].
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Kanold, McCarthy and Volkman\ showed the density of 
the set of all perfect numbers to be zero [7].



CHAPTER III 
TECHNIQUES OF PROOF

In discussing the techniques used in the proofs of the 
previous statements we remark first that many of these 
results were arrived at by using the elementary items.

For instance, when the'number n + 1 of distinct prime 
factors was relatively small, knowing that no perfect number 
having less than n + 1 distinct prime factors existed, and 
desiring to prove that no number with n + 1 distinct prime 
factors could exist, a process of elimination was instituted 
as follows:

First, all combinations of n + 1 factors satisfying

n
2 < — T  T T  — 3*=- »

p-1 1=1 ‘li-1

were eliminated by systematically ruling out the lower 
values of the exponents until

crtN) > 2.N
These exponents were usually removed by using the fact that 
any odd divisor of (J~(N) also must divide N.

If this failed, then N was selected with fixed exponents
and

G~(m )
N
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was shown to be less than 2.
Following this, one would choose N with larger ex­

ponents and repeat the process.
To demonstrate this procedure we will construct part

of the proof of Desbove*s statement (Chapter II) that there
does not exist an odd perfect number with only three distinct 
prime divisors.

To simplify notation we define the function

F(N> ^  ‘

Thus, for an odd perfect number N,

F CN) = 2,

For obvious reasons we prove:
Theorem 19: If for any N, F(N)> 2, then for any

multiple KN of N, F(KN) > F(N) > 2.
Proof: If (K, N) = 1, then F(KN) = F(K)*F(N) > F(N) > 2.

If KF contains higher powers of the same factors as N, 
then, since

F(Zx+y) = zX+y+1^  > ZX+1-1 = F(ZX )
Zx+y(Z-l) ZX (Z-1)

F(KN) > F(N) > 2.



If KN contains 'both new factors and the present 
factors of N to higher powers, let

KN = KjKgN
where K^ contains the new factors and K2 contains the

higher powers of factors of N*
Then

F(KN) = Fd^J-FO^N) > F(K1)*.F(N) > 2.

We now wish to show that if N is perfect then

N r p Qj. q*2 •

Proof: We first remark that by Theorem 12 the
smallest prime divisor of N is less than n + 1 = 3 + 1 
implying that if

H = Paqflq|p2,

and perfect,
qi = 3.

(1) 5*3*7 does not divide N.
Proofs By Theorem 8, the smallest values of 
the exponents would give 5*32*?2® But

F(5*32*72) = > 2,
and by Theorem 19,

F[K(5*32-72)] > 2.
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C2) If p = 13, then I3*3*x, where x is a prime 
not equal to 7> hoes not divide N.
Proof: By Theorem 10, 1/2(p+1) = 7 divides N.

(3) 5»3*H does not divide N.
Proof: If N = 5*32*112, then

<T(N) = x *— . = x«7*19> ' 
thus 7 and 19 must divide N, a contradiction.

3Tf N = 5*32*ll\ then

■ Q"(N)‘= = x-13,
forcing 13 to divide N, which is impossible.

If N = 5*3^•!!*, then

C?XN) = = x*23 «3*6l,
where 61 does not divide N.

: If N = 5*3 *116> then
F(N) < 2.

If N = 5*36*116> then 

37- 1(j-(N) = x • 2 - = x-1093, 

where 1093 is prime and does not divide Ne

If N = 5-3 *116, then 

3* 1G"(N) = X'^-TT^ = x.13 *757,
where 13 does not divide N.
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If N = 5.310*116, then 
F(N)'< 2.

If N = 5.31G* H 8, then 
F(K) > 2 

and by Theorem 19,
F[K(N)] > 2.

We have thus far illustrated the usage of the basic 
items, knowing that N £ paq ^ l  in the beginning of the 
proof. To complete the proof one need only to continue 
the elimination process.

However, it is obvious, that as the number of 
factors increase, the amount of work necessary to elimi­
nate the proportionally increasing combinations of factors 
becomes impractical. These elementary techniques would 
produce results but as one would suspect, additional 
means have been developed to aid in this work.

One of the strangest, perhaps, of these means re­
sulted from the study of differential equations, the 
outcome of which allows to classify all odd perfect num­
bers into two classes.

In Chapter IIvwe stated that:
If odd perfect numbers exist, they are of the 

form 12M + 1 or 36M + 9#
Proof: Balth van der Pol [ll] in 1951 showed

that the function
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(A) a ( t )  = 1 -  2^CT(k)e"k t ,
1

satisfies the differential equation:

(B) 2||f + 2 a ^ f  - 3(|%) = 0,

and substituting (A) into (B) he shows that the numbers 
(TCE) satisfy the relation:

(C) n.?.(n-ll(3-(n ) = £ [5k(n-k)-n2]G(kXT(n-k),
k=l

for n > 1.
For example:
cr( 2) = 3[cr(i) ] 2 = 3.

3CT(3) = MJCD-CCS) = »t.l*3 = 12.
2(T(>+) = -<J(l).G'(3) + 2[CT(2)]2 = -1+ + 18 = ii+.
5CT5) = -6CTaXT(^) + 6<j(2)G'(3) = -6* 1*7 + 6*3*>+

= -lf2 + 72 = 30.
These are the first few cases for n.
Van der Pol later showed that relation (C) can also 

be written:
n-1

(D) n2 (g-l)g(n) = £ (3n2-10k2XT(kX7'(n-k).
■ k=l

The rearrangement is the first of a family of 
modifications which are derived as follows:
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Sp = S (n-1) = £ kp(T(kX7(n-k),
k=l

then, letting k be n-k gives:
n-1

Sp = [  Cn-k)%(n-k)CT(n) 
k=l

= npSo- pnp~1S1 + J np~2S2 - + (-l)pSp.
From this we may derive the equations:

or
(E) 2SX = nSQ,

and
(F) 1+S3 = 6nS2, - n3SQ*

Using equations (E) and (F) Touchard gives .(C) the 
following form:

(G) n3(n-lX7(n) - *f8nS2 + 72S3 = 0*

Now, if n is perfect, thenCT(n) = 2n and (G) becomes: 
2 ^  (n-1) = W n S 2 - 72S3

or
1/12^ (n-1) =f 2nS2 - 3S3,

where 2nS2 - 3S3 is an integer.

If n is odd, n = 0(mod 3)» then n = X(mod *+), whence 
n E 9(mod 12). However, for n odd, such that n & 0(mod 3), 
then n 5 l(mod 12).
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We conclude this chapter with a brief discussion of 
the use of cyclotomic sums of the form

}] qj1 = 1 + q + q2 +...+ q11-1 = 
i=0

in proving the non-existence of odd perfect numbers when 
the exponents of the prime factors of N are specified.

In Chapter II we gave two lemmas concerning Diophantine 
equations, namely:
Cl) If m > 1 is not a power of 3> then the equation

o rnx + x + 1 = y has no solutions in integers x,y 
with y = ±..1.

(2) Let r and s be different positive integers and p be 
a prime. The system of simultaneous equations 
x2 + x + 1 = 3pr, y2 + y + l = 3pSn has no solutions 
in positive integers x,y.
We now illustrate the use of these lemmas by discussing 

several cases of the proof of the following theorem due to 
Brauer [ 2 ].

Theorem: An odd number of the form N = paq2q|*«•^t-l^t

is not perfect.
Proof: We will denote N by

N = * m^krlr2* * t > 0)
where
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qn = l(mod 3), ( 1 n ^ k)

and
i l(mod 3)

for
(1 ^ X < t).

If we assume that N is perfect then

2N = CT(N) =G'(pccX7(q£)---Cr(q^)a'(r2)..<r(r2Xr(slf) =

(3)
k t 1CT(pa)TT (1 + q_ + ql)TT [ (1 + r, + r?)](l + s + s2 + s3 + s*). n=l n n \=1 K KI

Here (1 + qn + q*) 5 O(mod 3), (1 < n £ k) "but (1 + qn + q^) £

O(mod 9), for (1 ^ n- ̂  k). Also (1 + r^ + r^) & O(mod 3)
for (1 £ \ g t). •

We now consider some cases.
I. N % O(mod 3). Here we have that k = 0 ,  and since
3 does not divide N we know from a previous theorem due
to Sylvester that N must contain at least 8 different
primes, hence t ^6. Since k = 0, then by (3)

t
TT (1 + rv + r. )
X=1 X '

divides
a V p s •

One of the factors of this product could be a power of p, 
but none of the remaining factors could be a power of p 
by Lemma 1. This implies that each of these t-1 factors
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must be divisible.by s, and hence their product would be 
divisible by s , a contradiction.
II. In the following cases it is first assumed that 
N = O(mod 3) where N £ 0(mod 27) and secondly, that 
s = 3* This last case is easily disposed of by considering 
the necessary prime divisors of N. However, the first of 
these two cases is more difficult. It is disposed of in 
the following manner.

First a value for p is chosen and then the allowable 
values for qn and s are ruled out and this is followed by

new selections for p and further elimination of the values
1for qn , r^ and s. These eliminations are usually performed

by using the elementary procedures already discussed. 
However, once the numbers become too large to be con­
veniently removed in this manner then the form of the 
divisors of is regulated by Lemma 2 which in turn
lowers the number of factors of N until either t or k is 
below the necessary value, thus eliminating the remaining 
possibilities.
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