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ABSTRACT

A perfbct number is a number the sum of whose divisors.
is equal to twice the number. Even numbers that are
perfect have been known for centuries. However, the
existence or non-existence of odd numbers that are perfect
has never been established. In this paper, some of the
properties of perfect numbers are discussed together with
conditions for their existence.

Chapter I lists the main result concerning even
perfect nunmbers together with some minor conclusions
concerning their properties.

In Chapter II some of the basic principles are set
forth concerning the question of odd perfect numbers.
This is accompanied by a brief historical review of the
progress in various areas.

In order to illustrate the means employed in the
attack on odd perfect numbers, Chapter III selects the
most comprehensive and most important of a variety of
methods and explalns their structure. o ’

In the light of the evidence presented, it would seem
unlikely that any odd perfect number exists. This, however
has not yet been proved. :



INTRODUCTION

The aliquot parts of a number are théidivisors which-
are less than the number. If a given natural number is' equal
to the sum of its aliquot parts it is termed perfect, which
is equivalent to saying that the sum of its divisors is
equal to twice the number. If this aliquot sum is less than
the given number it is termed deficient. If the sum of the
*divisors is greater than twice the giﬁen number, it is termed
agundanﬁ.

The quality of such a number that equals the sum of
its parts has for hundreds of years been associated with
perfection, and hence its name. The establishment of a
simple criterion by which one could determine whether or not
a given natural number is perfect has been a goal sought
by mathematicians since the days of the early Greeks. We
will discuss, during the next few chapters, the results
which have been established concerning such numbers and the

methods employed in their establishment.



ON PERFECT NUMBERS



CHAPTER I
EVEN PERFECT NUMBERS

Euclid [6]l_gave a sufficient condition for an even
number to be perfect with:

Theorem 1: If p and 2P_ 3 are primes, then
N = (2P~1y(2P. 1) is perfect and even.

Proof: Obviously, (2P=1y(2P. 1) is divisible by

1y 2,00eeeey 2P71, 2Pl 1) 2(2P 1),...., (2P"2)(2P- 1)

but not by any other number less than (2P~1)(2P- 1). The
sum of these divisors is (29'1)(2p7 1), Clearly N is even.

Euler [6] later proved that this condition was also
necessary. Hence, |

fzgggzgmég: If N isveven and perfect, then
N = (2P-1y(aP. 1), where p and 2P_ 1 are primes.

Proof: We will denote Z d by G"(N). Letting

alwm
N = 2K p,
where
(2k,p) =
we have
G = 28 =2 )"GTZk)GTp)g
giving '
" 2k+1, 1G(p) 2;9-1“,0

lThe numbers in bracketé refer to'the”bipliographya‘



But 2°*1-1 is odd and must be a factor of m. 8o

= (2K*lo1)yvy
or
@G = 282kl
whence N
G) = (@ v,
But also

G(w) = gLV,

Now, either V. =1 or V> 1. Assume V > 1. The divisors of

k+1

(277 7=1)V are:

+ ! +
(21{ l"l)V’ 2 k l-l, V, l’ ec o200 o
Their sum, S, is:

k+1

S: (2k+l)Y-V+2 —1+V’+1+ ¢eccoe

= @k”7v+(£”1+..g.“+g
=G ¥ 11)v] =G )
which from a previous equation is equal to

(2k+l)v’
or

(?k+l k+1

YW o= (2 2k+1

)V+< + aoooooo+o)

which is impossible, therefore V=1, and p = 2k+1_1°

From (A),

G = 2k+1



or .
G2kl 1) = 281,

k+1

Now, the divisors of 2%7*- 1 are:

ok+l

- l, l’ooo.oo’

Adding, we get

CT(2k+l- 1) ='2k+1—61 + 1 + (extra terms)
2k:+1

-
-—

+ (extra terms),
thus (extra terms) = 0. So 2k*;-.l must be prime.
. To show that k¥ + 1 is a prime we assume k + 1 = aeb,
Then _'
) okl 1 = 22°Pl 1 = (2®)P- 1 = 2P 1.
This xP- 1 is divisible by

X -'1= 23- l,
but

xb_ 1 = ok+1_

1
was prime, hence a contradictioncand k + 1 is prime.

Primes of the form p = 1 + 2 + 22 + ecee + 2P-1 = 2P_ 3
are called Mersenne primes and since the timé of Euler the
search for e#én perfect numbers has been reduced to the search
'for Mersenne primes, ‘Due to the difficulty of ascertaining
whether or not a number, of the form 2P- 1 is a prime, few
cgrrect lists of Mersenne primes were published until the

advent of the modern computers. Even now the only even

perfect numbers known are those corresponding to p = 2, 3,



5 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279,
2203, 2281, 3217, 4253, and ¥423 [1]. It is still not
known whether there 1is a.finite‘number of even perfect
numbers.
Some of the properties of even perfect numbers follow:
Theorem 3: Every multiple of an even perfect number -

is abundant.

Proof: Let N = (2P71)(2P-1) be perfect.
. Then .

NK = (2P71) (2P-1)Kk -
and

) K(2P~1) (2P-1)

“d|N
d<N

i

2(2P_1)K + 22(2P-1)K +.+ 2P"%(2P_1)K + N + K + 2K +.+ (2P~1)k

(2P-1) (2P L)k + N+ (2P-1)K

Let
(2°=1) (2P-1)x = (2P-1) (2P"1.1)K +N + K(2P-1)
= (2P-1) 2Ptk + (2P71)(2Pe1) + (2P-1)K,
hence, : |
@P™HK = (P~I1)x + 2P 4k

Ke2P-l_x + 2P-1 4k

= (2P~1yg 4+ 2P-1,



This holds only for p = 1, which doe?_not make N
perfect. Otherwise NK is obviously abundant.

Theorem 4: Every divisor of an even perfect number
is deficient. | .

Proof: Let N = (2P- 1)(2P1y be perfect. The

conclusion is immediate since, if p is prime, then

(a) ya=1
dlp
d<p
and :
(b) Z 2k =14+ 2+ 22 4 eees 4 2K-1 o OK_ 1.
k
(ile
a<2 _
Theorem 5: If (29'1)(2p5 1) is perfect, then
(2P=1)(2P-1) = 1(mod 9).

Proof: We shall denote the.uitimate sum of the digits
of a number by S(N).
Example® S(398) =3 + 9+ 8 =20; 2.+ 0 = 2 and 8(398) = 2.
Brooke [4]‘§bowed that S[(Zn'l)(éh;‘l)] forms the
sequence 1, 3, 1, 9, 1, 6, 1, 3, «.s etc., for n » 3. However,
if (22=1y (28 1) is to be perfect, n must be prime and those
elements occupying the positions in the sequence generated
when n was even would be eliminated. Hence the only numberé
to be considered are those such that S(N) = 1. The result
follows from the easily proven fact that if

S(N) = 1(mod 9),
then

‘N=1 (mod 9).

Theorem 6: Every even perfect number ié'trianguiarg



Proof: Triangular numbers are of the form

1/2[n(n + 1], n > 0.

Given an even perfect number it is of the form
(2P-1) (2P~1)
by Theorem 22 and

(2P-1)(2P~1) = 1/2[2P(2P-1)].
Theorem 7: For any integer of the form 2n'1(2n-l),

"o=leoP ) for every positive integer m > 1. In particular,

this holds for any even perfect number N = 2P=1(2P.1) where
p is a prime. |
Proof: If n =2, 2 < 3, Assume that.
k-1 ¢ oK
for some integer k > 2. Then

ok  ok+l 5

or
K¢ okl g
and the induction is complete. -
An alternate result may be found in [1].
Theorem 7*: Six is the only square free even perfect
number. |
| Proof: 1In Theorem 2 we proved that for N = (2p-l)(2p_l)
to be perfect, 2p~l,and_p had to be prime. For N to be

square free it is necessary that p?1<2, hence p = 2 and N = 6.



CHAPTER II
ODD PERFECT NUMBERS

In the case of even numbers the desired criteria
have feen established to determine if the number is perfect.
However, there does not exist any such determining equation
for'an,odd perfect number despite centuries of effort by
professional and amateuf mathematicians. 1In fact; no odd
perfect number has ever been discovered and it is seriously
doubted that one even exists.

Among the many earlier statements made concernihg
odd perfect numbers (usually_erroneous),vthe first significant
fact pertaining to their existance was established by
Euler [6] who proved that:

Theorem 8: If N is an odd perfect'number, then

287 .2 2
N = p%qiPla5P2.. .q3Pn,

where

-

Pys dys-++q, are distinet odd primes and a = 1 = p(mod 4).

; Proof: We first remark that since p is odd and p > 2,
then

s-1

(ps)‘.—:ps+p I+..+p24+p+1

is odd when s is even»andfeven when s is odd. Thus we need

only one prime raised to an odd power, where the G of this
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numberyGGCS), is of the form 2K, K being odd.
Now assume p is of the form 4x - 1. Let n be odd,

then

Gl x-1)") = ux-1)" + (#x-l)n-l +,.fj(4x-1)2'+ (bx-1) +1
which has an even number of terms as shgwpnbut the constant
term in each binomial expansion alternateg sign, thus all
the terms not contéining X are gone.. |
Hence

G [ x-1)"] = e,
giving p the form Yx+1 as prime.

If p = 4x+1l, we now assume an odd exponent n.

G [ Qux+1)™)

ex+1)2 &+ (#x+1)n-l'+..+ (’+x+1)2 + (hx+l) +1

= 4A + (n+l).
If n is of the form 4K + 3,
then

MKH37 2 g e (eKe3+1) = 4,

G (x+1)
which cannot be a produbt of 2 and an odd‘number. - Hence
the exceptional prime is df the form Ux+1 and its exponent
must have the form HK+1.

We will assume the prime‘féctoriZation given by
Theorem 8 for any odd perfect number, denoted by N, through—
out this chapter. We continue denoting the_sﬁm of the
divisors of N, by G (N) and_establish some elementary‘facts

about this sum in relation to odd perfect numbers.
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In Theorem 8 assume that
p<ql<q2<...<qn.

Then the sum of the divisors of N,

U(N:) = (1+p+p2+ * '+Pa ) se e (1+qn+q121+ . .+q‘_r21Bn) =
(A-) pa+l_l.qiﬁl+1_l. o0 .qun"'l_l.
p"l ql“l qn-l

Theorem 9: The odd number-pan 1s not perfect.

Proof: We first give an elementary inequality needed

*in the proof.
Assume that q1<q2, where aq and}qz are primes each

greater than 2,

Then,
qlq2-ql>qlq2-q2
or ‘
ql(q2-1)>q2(ql—1)
whence :
: a q
ql-l q2-l
Also if
q;<ap<45;

then from (B) and
a5 > CI3 ,

we have
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(d) 'ql . ) > o q3 .

Now assume paqﬁ is perfect.

Then _
G(p%aP) = g2 . oPa = 2p%P,
p-1 - q-1
and
a+l B+1 :
P4+ > 2p0 p
=T  q= > «p-q
., implles that
P ..d >2
p-1 g-1 :

This fraction reaches its maximum for smallest values of

p at p=3 and q=5 by (C), but this gives 3¢ = 1§ <2 .

Theorem 10: (Egll divides N where p 1s the ex-

ceptiohal'prime,

Ersars GG = g = a2 (2000)

p-1 p+1 p-1
These last three factoré are integers,'so'that each divides
G(N) and E%l divides N by the statement above.

These elementary results give a basis for the develop-
ment of different methods of attack on the properties of an
odd perfect number. We continue by giving a historical

review of these approaches and by proving some of the basic

idease.
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The first such attack\was’an attempt to develop
relationships between the number of factors n of N and the.
smallest factor . | |

The initiator of . this method seems to have been
Desboves [61, who proved in 1878.

Theorem 11: In an odd perfect number which is

divisible by just n distinct primes the least prime, p,
is less than 2?.

However, using statement (A) we may improve this as
follows:

Theorem 12: Let p be the smallest prime divisor

of an odd perfect number N, then N has at least p distinct
prime divisors.
Proof: Under the same assumptions as statement (A),

we know thait:

a iﬁ‘lqgﬁ2 2Bn - a"'l_l.qzﬁl*'l_l 2Bn+1 -1

2p q * e .qn
p-1 Ql—l Qn—l
however, _
p**i>patiog, Q§Bl+l>qiﬁl+l'1? etc.,

giving

(D) o¢P_- 41 _. 92 ... Gn_

P-T ©1-1 a2-1  ap-1

Also,

4 p+l do  p+2 a, p+n-l
< ’ <

goee

;-1 p  ap-1 p+l q -1 p+n—2




1

so that,

P9, g P PLp2 pncl _pincl
p-1 dq;-1 q.-1 p-l P p+l . ptn-2 p-1

or
2 < [2+n-l ’
-1 .
hence
p<n+l

This result was given by Servais [6] in 1888 and in
1952 Otto Grimn [§j provedvthat_p<3n + 2, by utilizing the
fact that odd primes differ by at least twoo Using this
last result, the fact that 3; 5 and 7 cannot occur together
in N (See Chapter 3) and that alternate primes differ by at
least 6, Muskaﬁ [8]; in 1959, showed thét p < 1/7(3n+36).
Uhler [13] in 1952 proved: |

Theorem 13: If N = p“ 2qugﬁz...q Pn 44 perfectg

then
n .
1Y qi‘ X
2< B:szji (q 15 < (1+€)log p /log Py s
where P 7 P and 1 is the n-th consecutive prime beginning
with p.

Proof: The proof‘follows from the inequalitys

5 P qi
< o1 p=-1 1“1 N
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which is a result of Theorem 12 when N is perfect; and

the fact that asymptotically,

P
pT:fn =1 ~ (log n)e¥

From this result we know

2/1+€
P, > P

The best results tp date in this area have been given
by Karl K. Norton [9] who, eﬁﬁloying analytic methods and
assisted by ILLIAC ( the University of Illinois Automatic
Digital Computer), proved the following theorems:

First we clarify the notation:

Suppose
N = pilpgz..;opik is pefoCt,
where
3, S pl < p2 < ~..w° pk
so that
| k p2™l.1 . . k p
() 2=7T1 = — < T
r=l p.T(p,- 1) r=1Pr
When

Pl = Phs
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n+k-1 D
(F) 2< T1T. %~
r=n pr

Let the function a(n) be defined for n > 2 by the

following double inequality:

@) n+a (n)=2 D » < n+a(n)=-1 D
G TT r < < "—“ T _ .
r=n Pr-l r=n pr-

From (E), (F) and (G) it follows that if p_  is the
'smallest prime factor of N, then N has at least a(n)
different prime féctors. Alsé};N must have a prime factor

at least as large as

pn+d(n)+l = ps_

1

(s = s(n) represents n + a(n) + 1).
"Norton's results are given in the followings:
Theorem 14%: If pﬁ'is-the smallest prime factor of N,

then

6 L4 2
N> pnpn+1(pn+2pnf3"‘ps-l} Pg*

Theorem 15: If p  1s the smallest prime factor of N,

where 2 { n < eu2 or.nf> e1993, ﬁhen
NS Om (] o kY o 4 —2L y+ 6(log p )
log N > 2ps(l - Tog ps) - 2pn(l + Tog ph} n’

+ é(log ph}i) - log p..
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Theorem 16: af(n) > n2 -‘2n ?0; o 5/4.- 1/2n

- 1/4%n (log n).

Theorem 17: Suppose that t(1 - " Tog t) <eft) <t + 55:%)

for p, £ t £ p,s where a and b are constants and 0 <acg3,

0< bg 3.

Then,

2(1og Py, )

e-bp2{% _La + 3b+ b2 _ 4(log pn{}.
. Pp |

In particular,

~b_2 ba + 3b + b0 W(log s\, for n 3 k.
Py > € pn‘{l = 3(1og 5L7) T _if_%E%EZ%}.

Using this same approach Prdfessor Paul T. Bateman [9], gives

a theorem which indicates a lower bound for log N:

Theorem 18: Let_N_have a smallest prime factor p, and
let b be any number less than %/7.
Then,j

1) N has at least a(N) different prime factors, where

a(M) = 1, (03) + 0(n’e™18 Pn).

2) N has a prime factor at least as large as

Pg ~ p2 + O(n2 -log Db n.

2

3) log N>2 p, + O(n e 105 b n).
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Many paperé'have appeared ‘examining the size\of‘n
under various conditions on N. We ha?e already shown
(Theorem 9) that any odd perfect number has at least 3
distinct prime factors. Desboves [6] stéted that no odd
perfect number is divisible by only 3 distinct primes.

J. J. Sylvester [6] proved there are none with W
distinct primes and stated that there is no N with fewer
than 6 distihct‘prime divisors and proved that there is
none, not divisible by 3 with less than 8 distinct prime
.divisors.

Kilhnel [8] and Webber [8] proved later that if 3
divides N, n 2> 5. | | )

E. Cgtalan-[6] proved that if 3;15:or 7 does ﬁot
divide N, n » 26, with N having at leastwh5'digitso

T, Pepin [6] proved that an odd perfect number
relatively prime to 37, 3-5, or’305{7_contains at least
11, 1% or 19 distinct prime factors respectively, and cannot
have the form 6K + 5.

By 1855 Sylvester [6] had raised the number of distinct
primes to 5 and Gradstein [8jlpﬁshed this to 6. Later; Kihnel
[8] and Webber [8] produced the same latter result. _

| T. L. Reynolds [10] provéd that if SN, n > 6.

In this area, although much later,‘Kanold [6] showed

_fhat if N is odd and perfect, such that

52 = Geseees = Bn = l,
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then
n>»9,
and if
@ =1, B, = eeneee =p =1,
then

n > 13,
Muskat [8] illuétfated a proof that for any N, n > 7.
An obvious result of tbe'previous section is the
-establishment of lower bounds for N. Among the first. such
bound was N > 2(10)6 given by Turcaninov [7] in 1908. This

8 by Bernhard [2], 1.k(10)%*
0

was raised to 10 by Kanold [7],

10*8 vy Muskat (7], 10%° by Kanold [9] and to 103° by Kanold
(7] if ﬁ2 = veeseses = B = 1.

During the period from 1912 to the‘late thirties there
seems to have been a lack.of'interest in the problem of Qdd
perfect numbers. The:revival-of this intérest began witb
Steuerweld t?] who introduced greater restrictions on N by
examining the forms allowed the exponents of the primes. His
first proof was that N is not ﬁerfect if Bl = eeeeos = B = 1o

Kanold [7'] then showed that if a =1, or a = 5, then
N is not perfect if Bl = 2 and B2 = teeeee = ﬁn = 1, |

Brauer [7] and Kanold [7] then proved independently that
N is not perfect if By = 2 and 52,= esees = P = 1o Kanold
[7] 1later showed that N is not perfect if Bi = sesee = B, = 2,
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and also if 2Bi +1l, 1 = 1, 2, eesey N, have a common
divisor 9, 15, 21 or 33. In addition he proved [7] that
N 1is not pverfect if Bl = BZ =2 andBa T eeevee = Bn = l,_
or if a = 5, ﬁi = 1’ where 1 = 1, 2, eeseey Il

Kanold [7] pro&ed that N is not perfect if it is
relatively prime to 3, i.e., (N,3) = 1 and 32 Z eose ='Bn =1,
or if a =1 or 5, B, = ecees =P =1 and 2B, < 10. He
pointed out that if N is perfect and B, = esece T B, = 1,

then a + 2B, + 2(n + 1) » 37. Also if N is perfect, a = 1,

1
and B, = «... = B =1, then q; = 3, 2B; > 12.

MeCarthy [7] showed that if N is perfect, (N,3) =1,
and B, = .... =B, =1, then q; = l(mod 3?’,‘ |

Of a slightly different nature Kanold [7] proved that
if N is perfect, then the maximum prime divisor of N is |
greater ﬁhan twice the maximum of o + 1 and 2ﬁi +1, i =1,
2, ese.y Nn. He also proved here that if 231-%1 = rXi,'i = 1,
2, eeesy, N, where T is a prime, then both p = 1(mod r) and
1/2(a + 1) = 0 or 1(mod r) are necessary conditions for N
to be perfect.

The next area of research, which has led to many
valuable conclusions conéerning odd perfect numbers, is a
result of the study of certain cyclotomic polynomials and
Diophantine equations. We give here some definitions and.

‘elementary results of this area while delaying a more de-

tailed explanation®of the methods used until the next chapter.
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For any natural number m, the,ng cyclotomiq,poly-

nomial is defined by

o(m)

Fm(x) :T-T (x ..'€i),

i=1

where the € ; are the ¢ (m) primitive mﬁﬂ‘roots of unity.
Fm(x) is an irreducible polynomial with integral

.coefficients, and when rewritten in the following fqrm:

XS+X»S_1+ oooooo""xij‘x*‘l: ‘I Fm(x)
| ' m{s+l
m#L
we can see its importance to our problem, remembering that

if N is perfect, and that

n . ' ‘
G6™ - TT G (a2Ph) = 2p%2P1 . 2Pz, q2Pn,
i= -

n

Hence every prime factor of an odd pérfect number N

I'd

is a prime factor of some Fm(x)_where mja + 1 or ml2ﬁi + 1.

The fundamental result is due to Kronecker and is in
reference to the divisibility'propértiesbof these polynomials.
Kronecker proﬁed that if s is a prime divisor of,Fm(x), then

either s{m or s = 1(mod m). Kanold [7] then generalized this
by proving that if |
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m = pilPEZ.o'o.;p(}x{k ) 3

with
Py < PZ,S weeses < P
and if r is a prime divisor of Fm(x),
then
p, = 1(mod p%lp%2o..-..p;k"1)
is a necessary condition that r = pk,.an§
Py = l(modfpi;pgz.....pik;l)

is a sufficient condition that r = 1l(mod m). In case

plem(a) for some integer a, then p; does not divide
F(a). As a corollary, he proved that if m > 3 and a >3

is an integer, then F_ (a) has at least one pfime divisor
r = 1(mod m). He improved on this lastvreéult by showing
that if m > 3 and a =+ 2 then Fm(a) has at least one
prime divisor r = 1(mod.m).
In the consideration of certain Diophantine equations,
T. Nagell [3] proved:
If m > 1 is not a power of 3, then the equation
2

x2 + x+ 1 =y" has no solutions in integers x, y with

y#% 1.
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Brauer [3] improved on Nagell's theorem by estab-
lishing, as a lemma, thevfollowing:

Let r and s be different positive integers and p
be a prime. The system of simultaneous Diophantine equa-
tions x2 + KX+ 1= 3pr,‘Y2_+ y + 1 = 3p°%, has no solutions
in positive integers Xs Ve

Kanold [7] then proved that the Diophantine equation
XB+X‘3-1.+0-00+X2+‘}C’+1=YI

"has no solution with x a primeiadd r>1 Qxcept x = 3,
p=1,y=1r=2,
In addition to the various areas covered above
there are a few miscellaneoué.results which we 1list below.
Shapiro [11]\and_ﬁi§kson&[5] proved independently,
giving different proofs,‘fhat there are only a finite
number of odd perfect numbers with a given number of primes.
If N is given, then |
1) Kanold [7] proved that N has aAsquare factor
greater than or equal to 1/2(r + 1), where
r is the largest prime divisor of N.
2) N = 1(mod 1é) or N = 9(mod 36), which was
proved by Touchard [7];
We know that N is not perfect if
‘1/237(pa)] and(T(q;Bi)s

i=1, 2, XEEEXY) n are prime powers. [LeVit]o



Kanold McCarthy and Vblkman showed the density of

the set of all perfect numbers to be zero [7].

2k



CHAPTER III
TECHNIQUES OF PROOF

In discussing the techniques used in the proofs of the
previous statements we remark first that many of these
results were arrived af by using the elementary items.

For instance, when the number n + 1 of distinct prime
factors was relatively small, knowing thaﬁ no perfect number
;having leesvtban n + 1 distinct prime factors existed, and
desiring to prove that no number with n + 1 distinct prime
faetors could exist,_a process of elimination was instituted
as follows:. |

First, all combinations of n-+ 1 factors satisfying

n
b q.
— —_—
2 < - Izl qi-l s

\

were eliminated by systematically ruling out the lower

values of the exponents until

jZl%l > 2;

These exponents were usually removed by using the fact that

any odd divisor of ((N) also must divide N.
If this failed, then N was selected with fixed exponents

and

G
N

25
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was shown to be less fhan 2.

Following this, one would choose N with larger ex-
ponents and repeat the.process.

To demonstrate this procedure we wil}'construct part
of the proof of Desbove's statement (Chapter II) that there
does not exist an odd perfect number with only threé_distinct
prime divisors.

To simplify notation we define the function

F(N) JI%§L'
Thus, for an odd perfect number N,

F(N) = 2.

For obvious reasons we prove:
Theorem_;gt If for any N, F(N)> 2, then for any.
multiple KN of N, F(KN) > F(N) > 2,
Proof: If (K, N) = 1, then F(KN) = F(K)F(N) > F(N) > 2.
If KN contains higher powers of the same factors as N,

then, since

z¥ Yl g s Xy = p2),

F(ZXY)y =
z¥*Y(z-1) 2z¥(z-1)

F(KN) > F(N) > 2.



If KN contains both new factors and'the present

factors of N to higher powers, let
KN = K1K2N_
where Kl contains the new factors‘ahd K2 contains the

higher powers of factors of N.
Then
F(KN) = F(K)F (KN > FK))-F(N) > 2,

We now wish to show that'if N is perfect then
N # p*aiPlegPz

‘Proof: We first remark that by Theorem 12 the
smallest prime divisor of N is less thann + 1 =3 + 1

implying that if
N = p“q551QEBZ,
and perfect,
q; = 3.

(1) 5+3+7 does not divide N.
Proof: By Theorem 8, the smallest values of

the exponents would give 5032°720 But

F(5-327%) = g&% > 2,
and by'Theorem 19;

F[K(5+3272)] > 2,

27



(2)

(3)

If p_=cl3, then 13<3+x, where x is a prime
not equal to 7, does not divide N. |
Proof: By Theorem 10, 1/2(p+l) = 7 divideS-N.
Se3e11 does not divide N. |

Proof: If N = 5¢32.112, then

‘ 3
G = x5t = x.7.19,

thus 7 and 19 must dividé N, a contradiction.
If N = 5+32.11%, then
2 o
G'(N): X.Lé—-—:ls = x+13,
forcing 13 to divide N, which is impossible.

If N = 5¢3%+11%, then

5 .
G0 = xeHsd = 52303061,

where 61 does not divide N.

If N = 5+3%11%, then

F(N) < 2,

1f N = 5-3%.11°, then

7
G = x-45L = x.1093,

where 1093 is prime and does not divide N.

6 then

“1r N = 5.3%.11
9
G = x5+ = x.13.757,

where 13 does not divide N.

28
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6 .

.310 ) then

If N = 5e3%7e11
F(N)Y < 2,
1r v = 5.31%m

F(N) > 2

8, then

and by Theorem 19,
F{K(N)] > 2.

We have thus far illustrated the usage of the basic
items, knowing that N # paqiﬁl in the beginning of the
bproof. To complete the proof one need only to continue
the elimination process.

However,‘it is dbvious, that as the number of
factors increase, the amount of work necessary to elimi-
nate the proportionally increasing'cdmbinations of factdrs
becomes impractical. These elementary techniques would
produce results but as one would suspect, additional |
‘means have been developed to aid in this work.

One of the strangest, perhaps, of these means re-
sulted from the study of differential equations,”the
outcome of which ailowé to classify all odd perfect numsx
bers into two classes.

In Chapter II.we stated that:

If odd perfect numbers exigt, they are of the
form 12M + 1 or 36M + 9,

Procf: Balth van der Pol [li].in 1951 showead
that the function
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(o o]
(4) a(t) = 1 - 24) Glr)e™*t,
1

satisfies the differential equation:

d3g _
(B) 2"'{3‘ + 20355 dt2 3( ) =
and substituting (A) into (B) he shows that the numbers
G (x) satisfy the relation:
o, n-1
(c) 248=L)G(n) = ) [5k(n-k)-n2IG(k)G(n-k),
k=1
for n > 1. '
For example:

G(2) = 3[G)]? = 3.

G(3) = 4G(1)-G(2) = 4ele3 =
26(+) = G(1)-G(3) + 2[G(2)]% = <4 + 18 = 1k,
5015) = -6G(1)G(H) + 6G(2)G(3) = 6217 + 63k

= =42 + 72 = 30,
These are the first few cases for n.

Van der Pol later showed that relation (C) can also

be written:

n-1
@ =L Gm) =) (Gn2-10k GG (n-K) .
k=1 '

The rearrangemént is the first of a family of

modifications which are derived as follows:
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Let n-1

. - 1) = P -~
s, = 8 (n-1) kglk G (k)G (n-k),

then, letting k be n-k gives:
n-1
s, = ), (n-0Rs(n-1)G(n)
k=1 '

= b p-l . R ,P-2 - 00 - p
= n°Sy- pnt TSp + Fn oS, = ¢0 + (1) Sy

From this we may derive the equations: |
or

(B) 281 = nS
and

(F) 45, = 6nS, = n3§,.

Using equations (E) and (F) Touchard gives (C) the
following form: '

(6)  n3(n-1)G(n) - 48ng, + 728; = O,

Now, if n is perfect, then((n) = 2n and (G) becomes:
2n*(n-1) = 48ns, - 728,

or

1/12n“(n-1) = 2ﬁs2 - 38555

where 2nS, - 38, is an integer.

If n is odd, n = O(mod 3), then n = 1(med 4), whence
n = 9(mod 12). However, for n odd, such that n # 0(mod 3),
then n = 1l(nod 12).
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We conclude this chapter with a brief discussion of

the use of cyclotomic sums of the form

.AO“*"i =1+a ot et =
i=

in proving the non-existence of odd perfect numbers when
the exponents of the prime factors of N are specified.
In Chapter II we gave two'lemmas concerning Diophantine
equations, namely:
.(l) If m > 1 is not a power of 3, then the equation
| x2+x+ 1= ym has no soiutions in integers x,y;
with y = £ 1.
(2) Let r and s be differentfpositive integers and p be
a prime. The system of simultaneous equations
x2 + x+1=23p%, y2+ y+ 1 = 3p°, has no solutions
in positive integers Xx,y. N
We now iilustrate‘the use of these lemmas by discussing
several cases of the proof oflthe following theorem due to

Brauer [2].

Theorem: An odd number of the form N = pGQ§Q§w°-Q§_1q;

is not perfect.

Proof: We will denote N by

N ='paqiqg.».qirirg...éis“, (k > 0, t > 0)

where



a, = 1(mod 3), (1-<n < k)

and
r, # 1l(mod 3)
for
(L<A<t).
If we assume that N is perfect then
2N =GN =G (p*X(a2) e+ a2 )G (r2)e o G2 1G(s™) =

(3)
' k. " | N N
G(Pa)Tji(l'+ Q, * qg);—&[(l + Ty + ri)](l + s+ s+ 83+ s")..
n: B B - — e

Here (1 + q_  + q2) = O(mod 3), (1 <n < k) but (1 + q  +q3) #

0(mod 9), for (L £ n < k). Also (1 + T, + ri) Z O(mod,3)’
for (L € A € t). ‘

We now consider some cases.
I. N # 0(mod 3); Here we have that k = 0, and since
3 does-not divide N we know from a previous theorem due
to Sylvester that N must contain at least 8 different
primes, hence t > 6. Since k = 0, then by (3)

T (3 2y
1+, + T .
A=1 ATA

divides

?déu;
One of the factors of this product could be a power of p,
but none of the remaiﬁing factors could be a power of p

by Lemma 1. This implies that each of these t-1 factors
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must be divisible by s, and hence their product would be
divisible by és, a contradiction.
II. In the following cases it is first assumed that

N = O(mod 3) where N z‘O(mod‘27) and secondly, that

s = 3. This last case is easily disposed of by considering
the necessary prime divisors of N. However, the first of
these two cases is more difficult. IiAis disposed of in
the following manner.

‘First a value for p is chosen and then the allowable

‘values for Ay and s are ruled out and this is followed by

new selections for p and further elimination of the values

i .
for Q> Ty and s. These eliminations are usually performed

by using the elementary procedures aiready discussed.
However, once fhe numbers become too large to be con-
veniently removed in this manner then the form of the
divisors of (g3) is regulated by Lemma 2 which in turn
lowers the number of factors of N until either t or k is
below the necessary value, thus eliminating the femaining

possibilities.
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