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ABSTRACT

The un.1 form^integral was recently defined by
A* Sklar as (U)J f(x)dx = lim cjT f(nc) where cY g(n)

a c-*o+ (a,b) (a,b)
indicates summation over all integers n such that

£ n < Here [x] denotes the greatest integer
function* The uniform integral is an extension of the 
Riemann, but neither the Lebesgue nor the uniform integral 
is an extension of the other* The following compatibility 
theorem is proved* Theorem: Let f be defined and uniform
integrable on [a,b]* If f is equal almost everywhere on 
[a,b] to a function g whose uniform and Lebesgue integrals 
exist and are equal, then f is Lebesgue integrable on [a,b] rb pb
and (U)J f(x)dx = (L)J f(x)dx* 

a a
The uniform integral is a positive linear functional 

and enjoys the property of interval additivity, but fails 
to satisfy many properties, such as subinterval integra- 
bility, satisfied by the Riemann and Lebesgue integrals#
A convergence theory similar to the Riemann integralfs 
but slightly stronger, is developed*

The uniform Stieltjes integral of f with respect to
is^efined as (US)[ f(x)dg = lim Y f(nc)(g(nc) - g(nc-c))

’ a c ^ o 4" t  * \(a,bjc)
where ^ **(n) denotes summation over all integers, n, such 

(a,b;c)
that j]|J + 1 < n < rjj and we let g(x) = g(a) for all x in
some interval [a-A,a], A > 0* Provided that xf(x) is bounded
on some interval [a,a+6], b > 0, the uniform Stieltjes
integral of f(x) with respect to g(x) = x on [a,b] reduces
to the uniform integral of f•

The uniform Stieltjes integral is a bilinear functional 
and enjoys the property of interval additivity* The Riemann- 
Stieltjes and uniform Stieltjes integrals are compatible and, 
with mild restrictions, the uniform Stieltjes integral is an 
extension of the Riemann-Stieltjes* Neither the uniform 
Stieltjes nor the Lebesgue-Stieltjes integral is an 
extension of the other. A compatibility theorem similar 
to that for the uniform and Lebesgue integrals is proved*

v



THE UNIFORM AND 
UNIFORM STIELTJES INTEGRALS



INTRODUCTION

The Riemann integral has serious deficiencies# First* 
only a very limited class of functions are Riemann integrable, 
and second, the Integral is usually defined in terms of a 
"limit”, but it Is not a type of limit considered in 
elementary calculus# The first deficiency has led to the 
introduction of various other types of integration such as 
Lebesgue integration# The second difficulty is the source 
of considerable trouble on the elementary level. Most 
authors at this level either "define" the integral by a 
vague discussion or offer an incorrect, but easily compre­
hended, definition of the integral as a limit of a function

1or the real line#
2In 1963 A. Sklar [2] defined a new integral, called

where c) g(n) Indicates summation over all integers, n,

the uniform integral, as (U)J f(x)dx = lim c^ f(nc)
a c^°+ (a,b)

such that < n < ra- Here*, [x] denotes the greatest

integer less than or equal to x# Compared with other forms

1For example, see John F# Randolph, Calculus and 
Analytic Geometry (Belmont, California) Wadsworth Publishing 
Company, Inc#, 1961; p# 172#

2Reference is made to the bibliography#

2
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of integration, the uniform integral is easy to define, and 
is defined in terms of the limit used in elementary calculus* 

In Chapter II we will see that the uniform integral is 
an extension of the Riemann integral. Thus the class of 
uniform integrable functions contains the class of Riemann 
integrable functions, and if f is Riemann integrable, then 
every property which holds for the Riemann integral of f
must also hold for the uniform integral of f# However, the
uniform integral is generally not this well behaved# For 
example, subinterval integrability may fail for a function 
which is uniform but not Riemann integrable*

The paper is organized as follows*
In Chapter I a new method of defining the Riemann

integral which motivates the definition of the uniform 
integral is discussed# The properties of the uniform 
integral are considered and a convergence theory is developed# 

In Chapter II, the uniform integrals relation to the 
Riemann and Lebesgue integrals is discussed#

In Chapter III, a Stieltjes type integral, called' the 
uniform Stieltjes integral, is defined# Its properties are 
considered and the relation of the uniform Stieltjes 
integral to the uniform, Riemann-Stieltjes, and Lebesgue- 
Stieltjes integrals Is considered*



CHAPTER I
THE DEFINITION AND BASIC PROPERTIES

OF THE UNIFORM INTEGRAL

Recently A* Sklar proposed an alternate means of 
defining the Riemann Integral tl]» This definition 
motivates a later definition of the uniform integral 
so that a brief discussion of Sklar*s definition of the 
Riemann Integral seems in order*

For each positive integer n, let Pn(a,b) denote the

partition of [a,b] consisting of a, b, and all real

numbers between a and b of the form m/2n where m is some 
integer* If Pn(a*k) consists of p+1 numbers, let us

designate them by a = xQ < < Xg < ••• < < x^ = b

and define, respectively, the upper and lower sums

Prn
S(a, b, n; f) = ^ * xk-l^ and

k=l -

P

k=l
where Mk and m^ are, respectively, the least upper bound

and the greatest lower bound of f on the k subdivision



5

of ?n(a,b)* It is necessary to assume here, just as in the

more customary Riemann theory, that f is bounded since 
otherwise the upper and lower sums will not necessarily be 
finite* We note that these upper, and lower sums are normal 
upper and lower Riemann sums, but of a particular (and

call them respectively the upper and lower integrals of f 
on [a,b]* These upper and lower integrals are well defined 
since clearly the upper sums (lower sums) form a bounded 
monotonically decreasing (increasing) sequence and any 
bounded monotone sequence must converge* If the upper and 
lower integrals are equal, we call their common value the 
integral of f on [a,b]*

This integral will be seen to coincide with the 3tl 
Riemann integral* Now the norm of a partition, P, of [a,b] 
consisting of division points a = xQ < x^ < ••* < xR = b is

defined as the length of the longest subinterval

where 1 < i < n* We see that a partition Pn(a,b) has norm

less than or equal to l/2n so that the norm of these 
partitions must approach zero as ri goes to infinity* It is 
well known [3» P*l8] that for bounded functions, any sequence 
of upper (lower) Riemann sums converges to the upper (lower)

carefully chosen) type* We define f(x)dx

rb
lim S(a, b, n$ f) and J f(x)dx = lim S(a, b, n; f), andn~*x> —
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Riemann Integral If the norms of the corresponding parti­
tions approach zero. We note that the tipper (lower)
Riemann integral of a bounded function always exists. Thus

tipper and lower Riemann integralsSince the Riemann 
integral exists if and only if the upper and lower Riemann

the Riemann integral is equivalent to the usual definitions. 
Two properties of Skiar’s definition are immediately 

apparent. First, he obtained the Riemann integral as the 
limit of a sequence, and second,, except at the end points 
each difference x^ - and *n Pn^a,t^* is

precisely l/2n, Sklar*s definition of the uniform integral 
[2] is essentially a generalization which retains the 
essence of these two properties.

Definitions The uniform integral of a finite valued function,

integer function, that is, the greatest integer less than 
or equal to x.

The uniform integral could also be defined as

Sklar1s upper and lower integrals are equivalent to the

integrals exist and are equal, Sklarfs method of defining

f, is defined as lim c) f(c([— I + n)), if it exists, and
c-*o+ ^ Jn=l

denoted f(x)dx. Here [xj denotes the greatest

lim c£ f(nc) where c£ g(n)denotes summation over all 
c ° (a,b) (a,b)
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integers n, such that |j|j| + 1 £ n i [_c_r This simplified

notation will be used frequently*
The real number system may be divided into a special 

collection of equivalence classes which are of fundamental 
importance to the uniform integral*

Definition: Let a and b be real numbers* Then a is
equivalent to b, (a *4* b), if there is a non-zero rational 
number q such that a = bq*

Theorem 1: a *= b is an equivalence relation*
Proof: Reflexive: a = a(l) so that a *» a*
Symmetric: If -a ** b then there is a rational number

q = f  0 such that a = *>(§)• Thus b = a(^) and b ** a* 

Transitive: If a ^  b and b =» c, so that a = b[~^ and

b = c(u)* ^hen a = c(^) and thus a c*

Let Ea denote the equivalence class containing a in

the partition of the real number system defined by this 
equivalence relation* We note that if a is any real 
number, then E_ consists of all non-zero rational multiplescl

of a* Thus Eq = {0}. If a ^ 0 is a rational number, then 

is the set of non-zero rational numbers* If a is ana
irrational number, say »/”2r, then E consists of all 

non-zero rational multiples of •/!?• Aside from Eq , each
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of these classes is countably infinite since the set of
rational numbers is countable* However, the set of real
numbers is uncountable* Thus there must be uncountably 
many of these classes* We now show that each of these 
classes,,(except for Eq ), is dense in the reals*

Let a and b be real numbers such that a < b* If
a /  0, we assert there is deE„ such that a < d < b*ct
Choose some c > 0  in Ea* Now b-a > 0 so there is some

rational number p > 0 such that 0 < pc < b-a* Since 
pc is a positive real number, there is an integer r such
that r(pc) < a < (r+l)(pc)* Thus a < (r+l)(pc) =
= rpc + pc < a + (b-a) = b* But rp + p is a non-zero
rational number and c eEQ so that d = (r+l)pc and

a < d < b.
Consider the uniform integral of a ‘function, f, on

r

[a,b]j namely, lim c) f(nc)* Now for any non-zero
W  Ca,b)

integer n, nc is in Ec* Thus in taking the limit, for each

cf such that 0 < c1 < ̂  , f is summed only on a subset of Ec,*

Let d be a non-zero real number and suppose we take the 
limit from the right as c goes to zero, restricting c to

values in Ê ,. Denote this by lim c) f(nc)* Let the
C€Ed

%
uniform integral of f on [a,b] exist and equal A* Then



since Ed is dense, it is clear that lim c]T f(nc) = A*
c«E„ <a*b'

Conversely, we have that if

lim c]T f(nc) = A - lim cY f(nc)
c^°+ (t> c-*o+ /_ v*ceEd (a'b) c4Ed (a'b)

then (U)J f(x)dx exists and equals A*

As might be expected, the uniform integral is not as 
well behaved as the Riemann* For example, a function may 
be uniform integrable on an interval without being uniform

integrable on any subinterval* Note first that 1-c < cjjrj < 1

whenever 0 < c < 1 and thus lim c fM = 1* Also, it is
c-»o+ Lc

n n
well known that £ k = and £ k2 = • !>

k=l k=l
Proceeding with the above mentioned example, on the interval
[0,1] let f(x) = x if x is rational and f(x) » 1/2
otherwise* Then

lim cY f(nc) = lim <*) nc = lim 4 1 3  ( H  - 4  - ,
cTe (0,1 ) c"° (0,1) 0-°+‘ 2
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(U)J f(x)dx = 5  • However, consider any subinterval,

say [0,1/2 ]# Then

lim f(nc) = lim c =
- C < 0;1/2)

=  lim (c [ i c l )  + lim °2 2c  = i  + 0 = i
c-o+ ^   c-o+---- 2—  8 8

. . ' y
bnt lim f(nc) = lim c ^ so that (U)J f(x)dx

C“*o+ /n  -i / o \ c-*o+ 0

does not exist*
This same function will serve to show that the square 

of a bounded uniform integrable function is not necessarily

uniform integrable* Now on [0,1] f2(x) = x2 if x is

rational and f2(x) = otherwise* Then

lira o[ f2 (nc) = lim c([i]^)= •
C”*0+ C->0+ '

31e^E (O*1)

However,

lim c[ f (nc) = lim c£ (nc)2 = lim °3 * ^)(^Lc3^ = i *
^  (0,1 ) c~°+ (0,1 ) c^°+ §

Thus f2 is not uniformly integrable on [0 ,1]*
This example also demonstrates that if f and g are 

uniform integrable on [a,b], it does not necessarily follow 
that f*g is uniform integrable on [a,b]*

The supremum of two functions f and g, written fVg,
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on [a,b] is the function
ff(x) if f(x) > g(x)

(fVg)(x) » —<
^g(x) if g(x) > f(x) .

Let f be defined on [0,1] as in the previous two examples
and define g on [0,1] by gCx) = 1 - x if x is rational* .

and g(x) = t? otherwise. Now g is uniform integrable since

g(x) = 1 - f(x) and thus

lim c[ g(nc) = lim c£ 1 - f(nc) = 1 - ^ \  •
e^°+ (0,1) e‘*°+ (0,1)

Hence, (N)J g(x)dx = 5 • Now (f Yg)(x) = x if x is

rational and x 2. 2 * (fVg)(x) = 1 - x if x is rational

1 1 and x <£ *r, and (fvg)(x) = 2 otherwise. Then

lim c£ (f vg)(nc) ~ 2 *

S j g

However,

lim cY (f vgKnc) = lim of f t ]  -  c K K [ f c ] + X) )  +
C**0+ /n 1 \ c-o+ \ /
C€E1

♦ U. *( [jlflil - - I M R 1 * iy \ .
c**o+ \ *5 2 j

_ 1 1 1 - 3

so that (fVg)(x) is not integrable over [0,1].
The property of interval additivity does hold for the

uniform integral.
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Let f be uniform integrable on [a,b] and on 
[b,d]* Then f is uniform integrable on [a,d] and

(U)J f(x)dx + (U)J f(x)dx = (U)J f(x)dx* 
a b a

Pb Pd
Proof; (U)j f(x)dx + (U)J f(x)dx =•' a b

d
= lim cY f(nc) + lim cf f(nc) = lim cV" f(nc) = (U)[ f(x)dx. 

c'>0+ (a,b) °-*0+ (b,d) c~0+ (a,d) ' a

It is well known [?; pp.202, 203] that the collection, 
A, of all functions defined on an interval [a,b] forms 
a linear space (that is, a vector space) with pointwise 
addition and multiplication by reals* If D C A, then D is 
also a linear space provided that (af^ + kf2) ^ D w^enever

f-̂ , f2 € D and a and b are real numbers* A function K

defined on a linear space D with range in the reals is 
called a linear functional if aK(f^) + bK(f2) ~ K(af^ + bf2)

whenever f-̂ , f2 6 D and a, b are real* A linear functional

is termed a positive linear functional if K(f) > 0 
whenever f € D and f>0 . As is customary, we say that a 
function, f, defined on [a,b] is greater than or equal to 
zero if f(x) > 0 for all x in [a,b]*

Theorem 3s Let D(a,b) = {f|(U)J f(x)dx exists], a and ba
real* Then for each pair, (a,b), the uniform integral is a
positive linear functional on D(a,b)*
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Proofs Let r and s be real numbers and f^, f2 6 D(a,b). Then

r(U)J f^(x)dx + s(U)J f2 (x)dx =a a i

= r lim c; fnCnc) + g lim cY f~(nc) - 
c-0+ <a,i) ^  (a,b)

- lim c) r*f.,(nc) 4* lim c) s*fo(nc) = 
c-°+ (a,b) <-°+ (a,b)

= lim cl (r»f,(nc) + s*f2 (nc)) = 
c”*°+ (a,b)

_ ,  == (U)J (r»f^(x) + s*f2 (x))dx*a
Thus if f-̂ , f2 £ D(a,b), then (rf^ + sf2 ) € D(a,b) and 

pb rb rb
r(U)J f-^xjdx + s(U)J f2 (x)dx = (U)J (rf^x) + sf2 (x))dx.

a a a
Hence, D(a,b) is a linear space and the uniform integral is

r

a linear functional on D(a,b). Clearly, if feD(a,b) and 
> 0 for all x in [a,b], then 

"b
(U)J f(x)dx ~ lim cY f(nc) > 0# 

a c**0+ (a,b)
Thus we see that the uniform integral is a positive linear
functional on D(a,b)*

Thus by Theorem 3 we note that if f^ and f2 are

uniform integrable on [a,b], then f^ + f^ is uniform 
integrable on [a,b] and

pb pb Pb
(U)J f^(x)dx *♦* (U)J f2 (x)dx =a (U)J (f^Cx) + f2 Cx))dx, a a a
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Also, if f is uniform integrable on [a,b] and r is a real 
number, then r#f is uniform integrable on [a,b] and

r(U)J f(x)dx = (U)J rf(x)dx* 
a a

Corollary 1: If f^, f2 €D(a,b) such that ^(x) <

for all x in [a,b], then (H)J f-^(x)dx < (U)J f2 (x)dx#

Proof; Now by Theorem three, -f-̂ (x) and ^l/x^

are uniform integrable on [a,b]. Here f2 x̂) - ~ 0

for all x in [a,b] and thus
Pb rb Pb

(U)J f2 (x)dx - (U)J f^(x)dx = (U)J (f2 (x) - f ^ ( x ) ) d x  > 0.

pb pb
Hence (U)J f^(x)dx ^ (U)J f2 (x)dx. 

a a

Corollary 2 s If ff |f|£ D(a,b), then
Pb «b

I (U)J f(x)dx| <£ (U)J |f (x) |dx» 
a a

Proof; Now f(x) £ |f(x)| and -f(x) < |f(x)| for all x in
pb pb

[a,b]. Then by Corollary two, (U)J f(x)dx < (U)J If^A/jax
a a

Pb pb Pb
and -(U)J f(x)dx = (U)J «f(x) < (U)J |f(x)|dx. 

a a a
lw) I)

Thus |(U)[ f(x)dx| < (U)f |f(x)|dx. 
a a

It is interesting to note that Corollaries two and



15

three will hold for any positive linear functional [3» p.l82],
• ^

The condition in Corollary two that |f| be uniform 
integrable is necessary* Let f be defined on the interval 
[0,1] by

-1 if x is irrational and 0 < x < h

i1 if x is irrational and *? < x < 1

Now

lim c£-f(ac) = lim ( o £ f(nc) + c£ f(nc)j =

♦ • © - [ * ] ) ) -

= lim °([c] ~ 2 [Sc]) = 1 - -2.J = 0. 
c-*o+

Obviously lira cV f(nc) = 0* Thus (U) f f(x)dx = 0*
c“*0+ (0 1) a 

<o,i>

However, we see that |f| is the characteristic function of 
the irrationals* But if g is the characteristic function 
of the rationals, then clearly for any interval [a,b],

lim c) g(nc) = 0 and lim c) g(no) = so that g is not; 
c-»o+ i  •»_ \ C”*o+ 7 ■% \
C€E1 °^E1 *
uniformly integrable* Thus |f| is not uniform integrable* 

We now proceed to develope some convergence theory 
for the uniform integral* Suppose f̂ , f2# •••» •••
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is a sequence of functions, uniform integrable on [a,b] 
and converging to a finite valued function f* Let

Fi(c) = c£ f^(nc). Then 
(a,b)

lira F. (c) = lim cV f. (nc) = (U)f f.(x)dx
C-.C+ a 1

and lim F1(c) = lim c f  f..(nc) - cV f(nc) 
iH0° ^  (a,b) (a,b)

both of which exist and are finite* There are numerous
theorems dealing with the iterated limits of a function,
such as F^(c), both of whose limits exist and are finite*
The following lemma is a modification of a corollary by
Hobson [7? l:1*!^]*

Lemma 1; Let both lim f(x,y) = g(y) and lim f(x,y) = h(x)
x-*a y-*b

exist and be finite* Then lim h(x) and lim g(y) exist,
x-*a y-*b

are finite, and are equal if the following condition holds*
(A) For each C. > 0, there is a neighborhood, N, of b

such that if y eN, then there is a neighborhood M of a

for which |f(x,y ) - h(x)| < € whenever x eM •

Proof; Let €  > 0 be given* Now there is a yQ to which

there corresponds a neighborhood M of a such that
o

|f(x,y ) - h(x)| < €/3 whenever xe Mv • Since lim f(x,yQ)
x-*a

exists, there is a neighborhood 0 of a such that
o
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, f . n , t «t|f(x ,y ) - f(x ,y )I < e/3 whenever x , x € 0 • Let
yo

P = M H O #  Thus if x , x € Pf then

|h(x ) - h(x")| < |h(x ) ■- f(xf,y03l + |f(x,,y0) «* f(x ,yQ)i +

+ If(x”,yQ) - h(x,f)| <

< t + 1 + f =fe •
Thus lim lim f(x,y) ~ lim h(x) exists*

x-*a y~* b x-*a
We assert that lim g(y) = lim h(x)* Let € > 0 be

y-*b y-*a
given* Then by (A) there is a neighborhood, N, of b such
that if then there is a neighborhood of a for

M5
which_[f (x,y ) - h(x) | < £/3 for all x in M • Now

y Q

lim f(x,y ) = g(y ) so that there is a neighborhood, 0 ,
x^a , yo

of a such that |f(x,y ) - g(y ) | < ^/3 if xeO • Also,
yo

we have shown that there is a neighborhood, P, of a such 
that |h(x) - lim h(x)| < £ /3 if x P* Let Q = M H O  OP*

x-*a
Then
|g(y ) - lim h(x)| < |g(y > - f(x,y )| + f ( x , y ) - h(x)I + 

x-»a
+ |h(x) - lim h(x)| < 

x-*a
✓ ^ X ^ - /
< 3 3 3 " 6 *

so that lira g(y) exists and lim g(x) = lim h(x). 
y-*b y^b x-*a
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This result has an Immediate application to the
*

uniform integral since if they exist,

lim lim cV* f.(nc) = lim (U)f ' f1 (x)dx 
i-*oo c-*o+ (’a^b) "̂*x> a

and lim lim cY f.(nc) = lim c f  f(nc) = (U)f f(x)dx.c-o+ i-KX, U t h )  c-»o+

Thus the following theorem is immediate.

Theorem h i Let f2> • ••» f^> ••• be a sequence of

functions, uniform integrable on [a,b] and converging to
a finite valued function f. Then f is uniform integrable

Pb rb
on [a,b] and lim (U) f. (x)dx = (U) f(x)dx if the i-KX) J a a
following condition holds*

(A1) For each £ > 0, there is a positive integer N
such that if iQ > N, then there is a ^  > 0  for which

o

ICL CE e whenever 0 < c < 6  ̂ •
(a,b)° (a,b) °

Lemma one is related to Moorefs Theorem [3; p*100].
If we substitute for condition (A) in Lemma one the
stronger condition that lim f(x,y) = h(x) uniformly, then

y^b
Moore1 s Theorem is obtained. Note that Moored Theorem 
yields the additional conclusion that the double limit 
exists and equals the two Iterated limits. This leads to 
a weaker but more conventional convergence theorem.
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Theorem 5 : Let f^, f 2 $ • ••• be a sequence of

functions uniform integrable on [a,b] and converging 
uniformly to a finite valued function f. Then f is uniform

pb pb
integrable and lim (U) f.(x)dx == (U) f(x)dx.i-*oo a a
Proof? Let € > 0 be given. Since lim f1(x) = f uniformly1-OD 1

on [a,b], there is a positive integer N such that if i > N, 

then If^Cx) - f(x)| < ]"b-aT  +*" 1 * Then if 0 < c < 1,

|c£ fi(nc) - lim f^nc)! = | c£ (f^Cnc) - f(nc))| <
(a,b) i"*00 (a,b) (a,b)

< Mtltf “ [ c V  Fb-af +"ll * 6 *
The desired result follows by Moore*s Theorem.

The following example shows that Theorem four is 
actually stronger than Theorem five. Consider the closed 
interval [0,1]. For each positive integer, j, define

CO if x 4  1 / i
f * (x) =
3 if x = 1/3

We see that lim f . Cx) = 0 pointwise but not uniformly so 3"*oo j
that no conclusion may be drawn by means of Theorem five. 

Now for each c > 0, lim c/ f.(nc) = c/ lim f.(nc) = 0.
i-*oo 7* 3 , . i-OO J- •- J (a,b) (a,b)J

Also, we note that for each j f
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0̂ if c ^ for any n such that 1 < n < |j~J 

(a,b) |jc if c - for some n such that 1 < n <

Let £ > 0 be given and let jQ be a positive integer#

£Then if 6 , = rr- and 0 < c < b * »
Jo Jo

|c]T f^ (nc) - lim c£ f^(nc)| ~ \cf fj (nc)| < jQc < jQ —  = 6. , , UW/I N V J_
(0,1  ̂ ■̂*00 (0,1 ) (0,1^

1 1
Thus by Theorem four, lim (U)f f.(x)dx = (U)f lim f.(x)dx#J-*oo J0 3 0 j-̂oo 3

Corollary: Let f^, f2> •••» be a sequence of

functions uniform integrable on [a,b] and converging to a 
uniform integrable function, f. If there is an Ea f  EQ

such that lim f.* (x) = f(x) uniformly on O [a,b], then
i-Kx> A a

Pb rb
lim (U) f,(x)dx = (U) f(x)dx# l-ioo J a 1 J a
Proof: By Theorem five we see that

lim cY lim f.(nc) = lim lim cY f^Cnc).
C~*0+  r , >i-*00 i^OO C"*0+ /
c€E (a'b) C€E (a'b)a a

m

Then since f is uniform integrable on [a,b],
Td

(U)f f(x)dx = lim cY f(nc) = lim o f lim f.(nc) -
a f -L \ c-*o+ f v^i"*00(a,b) c^E (a,b)a

= lim lim cY fjfnc) = 11m lim cY f.(nc) = i-*oo c-»o+ /„ i-wo c-»o+ /„ r \C€J3 va#b) \3,b Ja



rb
= lim (U)| f. (x)dx. 

i-oo a x

Thus lim (U)[b f,(x)dx * (U)fb f(x)dx# 
i-*oo a 1 a



CHAPTER II 
COMPATIBILITY OF THE UNIFORM INTEGRAL 

WITH THE RIEMANN AND LEBESGUE INTEGRALS

Theorem Is If f is Riemann integrable on [a,b], then f
is uniform integrable on [a,b] and

rb rb
(U)J f(x)dx = (R)J f(x)dx# 

a a
Proof: Let P be an arbitrary marked partition,

1 1 1(a = xQ < x^ < < Xp = b; x^ < x2 < ••• < xp ) where

1 r V  %xi«l ~ xi ~ x l *  ta»b3* Let S(P) = f(xi )(x± - x iwwl)
i=l

>b
and N(P) denote the norm of P# Let (R)J f(x)dx = A so

that, by definition, lim S(P) = A. Let £ > 0 be given#
N(P)-»0

Then there is an € > 0 for which |»S(P ) ~ A| < €/3

whenever P is a marked partition of [a,b] of norm less

than €. . Now f is bounded on [a,b] since f is Riemann
integrable# Thus let M be a positive real number such that 
|f(x)| < M for all x in [a,b]# Let b be the smaller of the

two numbers £ and Let c be a real number such that

22
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0 < c < 6 and define xn s ( [ q]  + n^ c where

H  1  P =[S " [t] •
j|{

Thus let P be the marked partition
(a ~ xQ, x1# ... xp, xp+1 ~ b* xx, x2, ...

of [a,b] with norm c < &• Then
P

|c£ f(nc) - A| = IcfCx^) + £ *^xn ^ xn “ xn-l^ *" A l =
(a,b) n=2
p-M

= | £ f(xn)(xn - x ^ )  + f(X:L)(c - (xx - xc)) +
n=l
+ (-l)f<xn+i><xn+i - xn ) - AI

< |S(P*) - A| + |f(x1)(c - (xĵ  - xQ))| + (f(xn+1 )(xn+1 - xn )|

l | + M c  + M c < # + j + j = 6 . .

Thus lim c) f(nc) exists and equals A.
(a,b)

The converse does not hold. For example, consider 
the function defined on [0,1] by f(x) = x if x is rational

and f(x) = ^ otherwise. In Chapter I, this function was

shown to be uniform integrable on [0,1]. However, f is not

Riemann integrable since it is continuous only at x = j

and it is well known [3; p.89] that a function, f, is
i

Riemann integrable if and only if f is continuous almost 
everywhere.



For the remainder of this chapter, we will be 
primarily concerned with the relation between the Lebesgue 
and uniform integrals* Although the uniform integral is 
an extension of the Riemann, neither the Lebesgue nor 
the uniform integral is an extension of the other as will 
be shown later# We shall investigate first the compati- 
bility of the two integrals#

If A is a Lebesgue measurable set of real numbers, 
let m(A) denote the Lebesgue measure of A* If a is a real 
number then we define aA = [aa|a<eA]. Halmos shows 
[6k p ^6*+3 that if A is measurable, then a A is measurable 
and xn(aA) = |a|xn(A).

Lemma Is Let B be a subset of the reals such that 
m(B) = 0. Let [Eo}0€A be the collection of equivalence

classes, leaving out EQ, discussed in Chapter I. Then

for at least one a, E O B = 0.a
Proof: Let be an ordering of the set of rational

numbers# Define = a^B, Assume n B / 0 for any

a tA. Thus for every real number b / 0, B contains at
oo

least one non-zero rational multiple of b# Then U B. is
i=l 1

the collection of all rational multiples of B so that
O O

U B. is the set of real numbers# But 
i=i 1
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a contradiction since the set of real numbers has infinite 
measure*

Theorem 2 : Let f and g be uniform integrable on [a,b]#
If f is equal to g almost everywhere on [a,b] then

Proof: Let D be the set of measure zero where fCx) ^ g(x)*

The condition that both f andT g be uniform integrable 
is needed* Consider the function f(x) = 1 defined on 
some interval [a,b]. Obviously f is uniform integrable on 
[a,b], but the set of rational numbers has measure zero so 
that f is equal almost everywhere to the characteristic 
function of the irrationals which# however, is not uniform 
integrable*

rb rb
(U)J f(x)dx = (TJ)J g(x)dx*

Then by Lemma one# there is an Ea, ^ Eq such that

D O Ea f = 0* ^ f(nc)
(a,b) (a,b)

that

^  f(nc) = lim
<a,b) r s

But the uniform integrals

of f and g both exist so that

lim c l  f(nc) = lim
C"*0+ r , x C**0'

Va #b ) clil

Hence, (U)J f(x)dx = (U)J g(x)dx
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I s  there a function, f, defined on [a,b] such that 
the-uniform and Lebesgue integrals of f both exist, but 
are not equal? We can now provide a partial answer to 
this question#

Theorem 1? Let f be defined and uniform integrable on 
[a,b]* If f is equal almost everywhere on [a,b] to a 
function g whose uniform and Lebesgue integrals exist 
and are equal, then f is Lebesgue integrable on [a,b]

Proof: Now f equals g almost everywhere and g is Lebesgue

We note that the uniform and Lebesgue integrals of 
any Riemann integrable function must exist and be equal* 
Thus Theorem three could be weakened by a substitution of 
the stronger condition that g be Riemann integrable*

Theorem three is the best result known on the compati­
bility of the Lebesgue and uniform integrals* Our theorem 
is a strengthening of the following result, recently stated

and (U)J f(x)dx = (k)J f(x)dx*

integrable so f is also and (L)J f(x)dx = (k)J g(x)dx*

But by Theorem two, (U)J f(x)dx “ (tf)J g(x)dx and by

hypothesis, (U)J g(x)dx = (L)J g(x)dx* Thus

(U)J f(x)dx = f(x)dx*
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without proof by R. T, Sandburg [2; p.265]* "The best 
result to date is that if f is bounded, uniform integrable 
and equal almost everywhere to a Riemann integrable 
function, then the two integrals [Lebesgue and uniform] 
are equal*11

The condition that f be equal almost everywhere to a 
Riemann integrable function (or the function g in Theorem 
three) is sufficiently unusual as to deserve further 
comment* One natural question is, can a bounded function 
be Lebesgue integrable and not be equal almost everywhere 
to some Riemann integrable function? The answer is yes. 
Consider the closed interval [0,1 ]. Delete the middle 
l A  of this set and call the deleted portion A^. Delete

from each of the remaining two intervals the middle part

of length l A 2. Call the union of these two deleted sets 
A2* Continue this process so that in general An isfthe

T"* 1union of 2 deleted intervals, each interval being the

middle part of length l A n of the 2n“^ intervals in
2n-l 1

[0,1] - A_ t • Thus m(A) = — —  = ~ r r  and the AM are * n-l n ^n 2n+i n

OO oooo
all disjoint so that m( U An) = £ m Ân  ̂ = £ ™thT = 2 *

n=1 n=l n=l 2
0°  -

Define A = U A„ and B = [0,1] - A. Then m(B) = Letn • e~n-1
f be the function defined on [0,1] by f(x) = 1 if xeA and
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f(x) = 0 if x 6 B, Obviously, f is Lebesgue integrable and
pl P

(L)J^ f (x)dx s rr# Let Bp = [0,1] - U An# Then Bp is a

union of intervals, each of length less than 1/2*5. Since 
for "each" p, B C Bp, we see that B contains no intervals#

Define N^(x) = (x - £$•, x + *?)• Then if x £ B, N&(x) O A ^ 0

for any b > 0# Suppose f is equal almost everywhere on 
[ *b] to a function g# Then for some set N of measure 
zero, g(x) = f(x) on [0,1] - N. Now A consists of intervals 
which we will denote by L> ;) -1* 2, ••#, so that

v

O O

A ~ U I.# Thus if x e B and 6 > 0, then N. (x) O A /  0 
3=1 3 6

implies N^(x) O L  ^ 0 for some integer > 0, But ino
this case N. (x) n I. is itself an interval. Then for 

6 3#
any xeB and b > 0, there is an I. C A such that

m(N.(x) O I. ) > 0. Now m(N) = 0 so that6 3 q

m(N.(x) 0(1. - N)) = m(N. (x) O I, ) > 0.& 30 6

Thus m(N. (x) O (A • N)) > 0 sincd 1̂  C A, Hence for
5 3o

any x e(B - N) C B and any b > 0, N^(x)n (A - N) /  0 and

thus g is discontinuous at every point of B - N# Then g 
cannot be Riemann integrable since m(B - R) = m(B) > 0#

As mentioned previously, the Lebesgue and uniform 
integrals are not equivalent. An obvious example of a
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function which is Lebesgue but not uniform integrable is 
the characteristic function of the irrationals. We proceed 
to construct a function which is uniform but not Lebesgue 
integrable. Now the characteristic function of a non- 
measurable set is not Lebesgue integrable. Thus we need 
only construct a non-measurable set whose characteristic 
function is uniform integrable. Let [Ea)a be the

collection of equivalence classes previously defined.
For each a , define 13 = O [0,1]. Now by the Axiom ofa a *
Choice, for each a £ A we may pick an xa £.Ba. Let

C = {xa |aeA}. Let C a n  ordering of the set of 

rational numbers contained in the interval [0,1]. Define

so that the measure of C must be zero if C is measurable. 
But by Lemma one, if m(C) = 0, then C n E = 0 for some

x  w»

a ¥■ 0, a contradiction. Hence C is not measurable and 
the characteristic function, f, of C is not.Lebesgue

°i = aiC* Then if C is measurable, so is U C. and
i=l x

w( U C. ) < m([0,l]) = 1. Thus 
i=l 1
oo

integrable. Now for any c >0, 0 < c£ f(nc) < c so that
(0,1)

0 < lim f(nc) < lim c = 0. Hence,
C“»0+ /a n \ c-*o+

f(x)dx = 0



CHAPTER III 
THE UNIFORM STIELTJES INTEGRAL

The following definition of a uniform Stieltjes 
integral is a slight modification of a definition suggested 
by A* Sklar [*f] •

Definition: Let f and g be finite valued functions defined
on the interval [a,b] and for some A > 0, let g(x) = g(a) 
whenever x is in [a-A,a]. Then the uniform Stieltjes 
integral of f with respect to g on [a,b] is defined as

lim Yt f(nc)(g(nc) - g(nc - c)), if it exists, and denoted 
c"°* (a,b;c)

by (US)J f(x)dg

We note that if g(x) = x and |xf(x)| < M for all x in 
some interval [a,a+y3* Y > then the uniform Stieltjes 
integral of f with respect to g on [a,b] reduces to the 
uniform integral of f since in this case

c l  f(nc) - I  f(nc)(g(nc) - g(nc - c)) = ?(((][) + (a “ c[cj) = 
(a,b) (afb;c)

30
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as c-»o+* Thus the counter examples given in Chapter I for 
the uniform integral will also serve for the uniform 
Stieltjes integral* Hence, if f and h are both uniform 
Stielt^es integrable with respect to g on [a,b], then in 
general none of the following will hold*

(1) f is uniform Stieltjes integrable with respect to 
g on a proper subinterval of [a,b]*

(2 ) f2 is uniform Stieltjes integrable with respect 
to g on [a,b].

(3) f*h is uniform Stieltjes integrable with respect 
to g on [a,b].

(*+) fV h is uniform Stleltjes integrable with respect 
to g on [a,b]*

(5) If I is uniform Stieltjes integrable with respect 
to g on [a*,b].

Theorem 1: Let f and g be defined on [a,b] and let d (a,b)#
Assume g is left continuous at d and f(x) is bounded, s^y
|f(x)| < M, on an interval [d,d+y] ^or some y > ^

rd Pb rb
(US)J f(x)dg and (US)J f(x)dg exist, then (US)J f(x)dg 

a d  a
«b pd m pb

exists and (US)J f(x)dg = (US)J f(x)dg + (US)J f(x)dg*
a a d

Proof: Now (US)J f(x)dg = lim £ f(nc)(g(nc) - g(nc - c)).
d c-*°+ (d,bjo)

By definition, in forming this limit we take g(x) equal to
g(d) on an interval [d-A,d] for some A > 0* Let 6 . > 0 be
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given# Since g is left continuous at d, there is a b1 > 0

such that |g(x) - g(d)| for any x in [d-b-^d]. A>lso,
theie is a &2 > 0 such that

| ^  f(nc)(g(nc) - g (nc - c)) + £  f (nc) (g;(nc) - g(nc - c)) + 
(a,d;c) (d,b$c)

+ (-l)(^(US>Jd f (x)dg + (US)J^ f<x)dg) I < |

for any c in (0,&2 )# Choose b equal to the least of the four 
numbers and A, Then if 0 <c <6,

|]T f(nc)(g(nc) - g(nc - c)) - f(US)[ f(x)dg + (US) f(x)dgj | <
(a, b; c) ' 'a 'd /

£  f(nc)(g(nc) - g(nc - c)) f(nc)(g(nc) - g(nc-c)) +
(a,b;c) (a,d;c)

+ Yt f(nc)(g(nc) - g(nc - c))^| + |£ f(nc)(g(nc) - g(nc - c)) + 
(d,b;c) (a,d;c)

4* £  f(nc)(g(nc) - g(nc - c) - / (US)[ f(x)dg + (US) f(x)dgj| < 
(d,bjc) V a ‘d /

< f(nc)(g(nc) - g(nc - c)) - f(nc)(g(nc) - g(nc * c)) +
(a,b;c) (a,b;c)

•f («l)f(rd c + c; g &
Lc.

rd
c

Hence,

~i \ /
u c + c/ ■" ,

c * c) ~ g(d))j) | + | 1

c) - g(d)) I. + # < M ^ + f = € .2

(3. Id
lim 7 f(nc)(g(nc) - g(nc - c)) = (US) f(x)dg + (US)f f(x)dg. 
c**o+ /_ ,__ \ "a d(a,bjc)
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It is interesting to note that Theorem one does not
hold for the Riemann-Stieltjes integral* Let f and g be
defined on [0,2] by

fl if 0 < x < 1 (l if 0 < x < 1
f (x) = and g (x) = •

' (2 if 1 < x < 2 \2 if 1 < x < 2
We see that f is bounded on [0,2], g is left continuous on

rl P1 r2
[0,2], (US) f(x)dg = 0 = (RS) ] f(x)dg, and (US) | f(x)dg =

J0 J0 J1
r2

= 2 = (RS) f(x)dg. Then by Theorem one, the uniform

Stieltjes integral of f with respect to g on the interval
2

[0,2] will exist, and (US)F f(x)dg = 2. However, it is well
J0

known [3, P«263] that if f and g have a common discontinuity 
at d, then the Riemann-Stieltjes integral of f with respect 
to g will not exist on an interval [a,b] such that a < d < b* 
Thus in the present example, the Riemann-Stieljes integral 
of f with respect to g does not exist on [0 ,2]*

rb
Theorem 2: Let D(a,b;g) = [f|(US)I f(x)dg exists], a and b

a
real* Then D(a,b;g) is a linear space and the uniform 
Stieltjes integral is a linear functional on D(a,b;g)* If g 
is a monotonically increasing function, the uniform 
Stieltjes integral is a positive linear functional on 
B(a,b$g).
Proofs Let f-̂ * f2 £E(a,b;g) and r and s be real numbers*
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Then

Id Id
r*(US)J f1 (x)dg + s* (US) [* f2 (x)dg = 

a a

- r*lim ) f1 (nc)(g(nc) - g(nc - c)) + 
c**°+ (a,b;c)

+ s»lim Y, ^2 ̂nc ̂ ̂  ̂nc  ̂“ g (nc - c)) = 
c-°+ <a,b,c)

= lim ) r*f.j (nc)(g(nc) - g(nc - c)) +
c-*o+ / N (a , b} c )

+ lim Y s®f2(nc)(g(nc) - g(nc - c)) =
(a,b;c)

= lim Y (r*fn(nc) + s*f2 (nc))(g(nc) - g(nc - c))
c-*o+ /  •. \(a,b$c)

>b
(US)J (r*f-,(x) + s*f2 (x))dg. 

a
Thus D(a,bjg) is a linear space and the uniform Stieltjes 
integral is a linear functional on D(a,b;g)* Now if g is 
monotonically increasing, then g(x^) - g(x2) > 0 whenever

x^, x2 € [a,b] such that x^ > x2* Thus if f(x) > 0 for all

x in [a,b] and g is monotonically increasing, then
«r

(US) f f (x)dg = lim Y f(nc)(g(nc) - g (nc - c)) > 0 so‘that
c^0+ (a,b|c)

the uniform Stieltjes integral is a positive linear 
functional on D(a,b;g)*

As mentioned in Chapter I, the properties stated in 
the following corollary hold for any positive linear
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functional and thus roust hold for the uniform Stieltjes 
integral*

*
Corollary; Let g be monotonically increasing on [a,b]*
If f^, f2 eD(a,b;g) and f^Cx) < f2 (x) **or a11 x in ta*b],

rb rb
then (US)J fx (x)dg < (US)J f2 (x)dg. If f, |f| eD(a,b;g) 

a a

then |OJS)Jbf(x)dg| < (US)J|f(x)|dg. 
a a

rb
Theorem 3: Let C(a,b$f) = {gI(US)I f(x)dg exists], a and b

a
real* Then C(a,b;f) is a linear space and the uniform 
Stieltjes integral is a linear functional on C(a,b;f)*
Proofs Let r and s be real numbers and g-̂ , g2 £C(a,b;f)*

Then
pb pb

r* (US)J f(x)dg1 + s.(US)J f(x)dg2 = 
a a

= r#lim £ f(nc)(gn(nc) - SnCnc - c)) +
Ca,b;c)

+ s*liro £ f(nc)(g2 (nc) - g2(nc - c)) = 
c“*°+ (a,b;c)

= lim ) f(nc)(r*g1 (nc) - r*g1(nc - c)) +
c-*o+ / .. \(a, bj c)

+ lim £ f(nc)(s*g2 (nc) - s*g2(nc - c)) = 
c~*°+ (a,b;c)

= lim Yj f(nc)((rg^(nc) + sg2 (nc)) - (rg^Cnc-c) + sg2 (nc-c))) = 
°’*° (a,b;c)
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Thus we see that the uniform Stieltjes integral is a 
linear functional on both D(a,bjg) and C(a,b;f). Such a 
functional is termed a bilinear functional. Thus the 
bilinearity of the Riemann-Stieltjes Integral holds also 
for the uniform Stieltjes integral.

Theorem *+: Let f and g be defined on [a,b] and extend g
on [a~A,a] as before. Let f be Riemann-Stieltjes
integrable with respect to g on [a,b] and assume g is left
continuous at b. Then f is uniform Stieltjes integrable

»b pb
with respect to g on [a,b] and (US)j f(x)dg = (FS)J f(x)dg*

a a
Proof: Let £ > 0 be given and let P denote a marked
partition of [a,b]. Now for some 6^ > 0, if the norm of P

is less than 6-̂, then

^)) * (RS)J f (x)dg | < 
i ~ a

Since g is left continuous at b, there is a 62 > 0 such
(:

that |g(x) - g(b)| < 2"[fJbTf w^e n e v e r x Choose

b equal to the least of the three numbers 6-̂f &2t an(*
iLet c be a positive number less than 6 and define

§j + i) c for 1< i < * Ip *0 = m* Thus

F = (xQ = a, xx, x2, xra, x ^  = b; x ^  x2, ..., xm, xm+1

is a marked partition of [a,b] having norm less than 6.
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NOW

I y f(ncf )(g(nc') - g(nc* - c1)) - (RS)f f(x)dg| *=
(a,b|c*) a

m ..,r. fj
= I 2j f(xi )(g(xi ) - g(Xi 1 )) - (RS)J f(x)dg| <

1=1 " a
m

< | £  f(xi )(g(xjL) - . g t x ^ ) )  + f(xm+1><g(xm+1> - g ( % ) )  +
1=1

pb
+ (-1 )(RS)J f(x)dg| + lf(xm+1 )(g(xm+1) - g(xm))| < a

<  f  +  » £  .
Hence, lim / f(nc)(g(nc) - g(nc - c)) = (RS) F f(x)dg,

c-*o+ / \ a(a,b;c)

The condition that g be left continuous at b is 
needed. On the interval FO,l] define f(x) = 3 and define 
g(x) = 1 if x£[0,l) and g(1) = 2, Now it is well known 

pb
that (RS) v(x)du exists if v is continuous on [a,b] and 

a

u is monotone. Thus (RS)J fCx)dg exists, is an
0 •

integer, then £ f(nc)(g(nc) - g(nc - c)) = 3 , but if ~
(0,1 )

is not an integer, then £ f(nc)(g(nc) - g(nc - c)) = 0,
(0,1 )

Thus the uniform Stieltjes integral of f with respect to 
g does not exist.
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If g(x) = x and |xf(x)| < M for all x in [a,a+Y],
Y > 0, then the uniform Stieltjes and Riemann-Stieltjes 
integrals of a function f with respect to g become, 
respectively, the uniform and Riemann integrals of f.
Thus uniform Stieltjes integrability does not imply 
Rieraann-Stieltjes integrability since uniform integrability 
does not imply Riemann integrability. For example, if g 
is the characteristic function of the irrationals, then 
every finite valued function f is ■uniform Stieltjes 
integrable with respect to g on any finite interval [a,b], 
(and the integral equals zero). Except for the trivial 
case f(x) = 0 on [a,b], the Riemann-Stieltjes integral of 
f with respect to g will not exist. Furthermore, g is not 
of bounded variation so the Lebesgue-Stieltjes integral 
with respect to g is not defined.

We now show that the uniform Stieltjes and Riemann- 
Stieltjes integrals are completely compatable.

Theorem 5 * If f is uniform Stieltjes and Riemann-Stieltjes 
integrable with respect to g on [a,b], then the integrals 
are equal.

IdProof: Consider the set A = {~|nJLs an integer] • Then

f(x)dg = lim ^ f(nc)(g(nc) - g(nc - c)) =
(a,b,c;

= lim ) f(nc)(g(nc) - g(nc - c)).
c-o+ /_ n . v n va,b,c)
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But for c eA, Yj f(nc)(g(nc) - g(nc - c)) is a Riemann-
(a,b;c)

Stieltjes sum and f is Riemann-Stieltjes integrable with 
respect to g so that

From the examples given in Chapter II, we know that 
Lebesgue-Stieltjes integrability neither implies nor is 
implied by uniform Stieltjes integrability. The compata- 
bility of the uniform Stieltjes and Lebesgue-Stieltjes 
integrals remains an open question* The next two theorems 
provide a partial answer*

Theorem 6 : If f and g are uniform Stieltjes integrable
with respect to h on [a,b] and f is equal to g almost

Proof: Let D C [a,b] be the set of measure zero for which
f(x) £ g(x)* Then by Lemma one of Chapter II, there is an 
E , ^ E_ such that D O E  y = 0. Thus for any eeE ,,fl O CE OC

lim Y £(nc)(g(nc) - g(nc - c)) ~ (RS)J f(x)dg.

everywhere, then (US)J f(x)dh = (US)J g(x)dh*

Y f(nc)(h(nc) - h(nc - c)) = £ g(nc)(h(nc) - h(nc - c)) so that
(a,b;c) (a,bjc)

lim Y f(nc)(h(nc) - h(nc - c))
c-*o+ / -u \(a,b;c)

= lim+ Y  f(nc)(h(nc) - h(nc - c)) =
(a,b$c)

rr "a



bo

= lim Y, g(nc)(h(nc) - h(nc - c)) = 
c-̂ o* / -u. * % 
c^E f(a,b,c)

= lim Y g(nc)(h(nc) - h(nc - c)).
c-*0+ (a,b;c)

If A is a set of real numbers, we shall denote the
Lebesgue-Stieltjes measure of A generated by a function g
of bounded variation by m (A)*6

Theorem 7: Let h be of bounded variation on [a,b] and f be
uniform Stieltjes integrable with respect to h on [a,b]* If
there is a function g such that f(x) = g(x) except on a set 
D C [a,b] where m(D) = 0 = an<* i** & is such that the

Lebesgue-Stieltjes and uniform Stieltjes integrals of g with 
respect to h on [a,b] exist and are equal, then f is

«b pb /
Lebesgue-Stielt jes integrable and (US )J f(x)dh = f(x)dh<

a a
Proof: Since g is Lebesgue-Stieltjes integrable with respect
to h on [a,b] and g(x) = f(x) except on a set D where
m^(D) = 0, f is Lebesgue-Stieltjes integrable with respect to

pb pb
h on [a,b] and (LS)J f(x)dh = (LS)J g(x)dh# By Theorem six,

a a ,
pb pb pb

(US)J f(x)dh = (US)J g(x)dh and by hypothesis, (US)J g(x)dh = 
a a a
pb pb pb

= (LS)J g(x)dh. Thus (US)J f(x)dh = (LS)J f(x)dh. 
a a a
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