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ABSTRACT

The uniform integral was recently defined by

: b
A. Sklar as (U)f f(x)dx = 1lim qz f(nc) where CZ g(n)
a

¢>0% (a,b) (a,b)
indicates supmation over all integers n such that
a

E] +1<ng< [g]. Here [x] denotes the greatest integer
function. The uniform integral is an extension of the
Riemann, but neither the Lebesgue nor the uniform integral
is an extension of the other. The following compatibility
theorem 1s proveds. Theorem: Let f be defined and uniform
integrable on [a,b]. If f 1s equal almost everywhere on
[a,b] to a function g whose uniform and Lebesgue integrals
exist and are equal, then f 1s Lebesgue integrable on [a,b]

b b
and ()] £(x)dx = @) £(x)ax.
a a

The uniform integral is a pogsitive linear functional
and enjoys the property of interval additivity, but fails
to satisfy many properties, such as subinterval integra-
bility, satisfied by the Riemann and Lebesgue integrals.
A convergence theory similar to the Riemann integral's
but slightly stronger, is developed.

The uniform Stie%tjes integral of f with respect to
g is defined as (US)I f(x)dg = 1im X f(nc)(g(ne) - g (nc-c))

g is defined as (US)[ f(x)dg = 1im Z f(ne)(g(ne) = g(ne=-c))
"a c»ot ( .
— a,bjc)
(a,bsc)
that [%J +1<n S{Eq and we let g(x) = g(a) for all x in

some interval [a-A,a], A > 0. Provided that xf(x) is bounded
on some interval [a,a+d]}, 3 > 0, the uniform Stieltjes
integral of f(x) with respect to g(x) = x on [a,b] reduces

to the uniform integral of f.

The uniform Stieltjes 1ntegral 1s a bilinear functional
and enjoys the property of interval additivity. The Riemann-
Stieltjes and uniform Stieltjes integrals are compatible and,
with mild restrictions, the uniform Stieltjes integral is an
extension of the Riemann-Stieltjes. .Neither the uniform
Stieltjes nor the Lebesgue-Stieltjes integral is an
extension of the other. A compatibility theorem similar
to that for the uniform and Lebesgue integrals 1s proved.

v
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INTRODUCTION

The Riemann integral has gerious deficiencies. First,
only a very limited class of functions are Riemann integrable,
and second, the Integral is usually defined in terms of a
"1imit", but. it is not a type of 1imit considered in
elementary calculus. The first deficlency has led to the
introduction of various cther types of integration such as
Lebesgue integration. The second difficulty is the source
of'cQQEQQerable trouble on the elementary level. Most
authofs at this level either "define" the integral by a
vague discussion or offer an incorrect, but easily compre=-
hended, definition of the integral as a 1limit of a function
1

or the real line,

In 1963 A. Sklar [2]° defined a new integral, called

b
the uniform integral, as (U)] f(x)ax = 1im c) f(nec)
a ¢>0*  (a,b)

where cz g(n) indicates summation over all integers, n,
(a,b)

such that [%J +1<n S,[%J. Here [x] denotes the greatest

integer less than or equal to x. Compared with other forms

lFor example, see John F., Randolph, Calculus and
Analytic Geometry (Belmont, California) Wadsworth Publishing
Company, Inc., 1961; p. 172.

2Reference is made to the bibliographye.



of integration, the uniform integral is easy to define, and
is defined in terms of the 1imit used in elementary calculuse.

In Chaptér ITI we will see that the uniform integral is
an extension of the Riemann integrale. Thus the class of
uniform integrable functions confains the clagss of Riemann
integrable functions, and if f is Riemann integrable, then
every property which holds for the Riemann integral of f
must also hold for the uniform integral of f. However, the
uniform integral is generally not this well behaved. For
example, subinterval Integrability may fail for a function
which is uniform but not Riemann integrable,

The paper is organized as follows.

In Chapter I a new method of defining the Riemann
integral which motivates the definition of the uniform
integral is discussed, The properties of the uniform
integral are considered and a convergence theory 1s déveloped.

In Chapter II, the uniform integral's relation'tq the
Riemann and Lebesgue integrals 1s discussed,

In Chapter 1III, a Stieltjes type integral, called the
uniform Stieltjes integral, 1s defined. Its properties are
considered and the relation of the uniform Stieltje-
integral to the uniform, Riemann-Stieltjes, and Lebesgue-

Stieltjes integrals 1s considered,



CHAPTER I
THE DEFINITION AND BASIC PROPERTIES
OF THE UNIFORM INTEGRAL
AY

Recently A. Sklar proposed an alternate means of
defining the Riemann integral [1]. This definition
motivates a later definition of the uniform integral
so0 that a brief discussion of Sklar's definition of the

Riemann integral seems in order.

For each positive integer n, let P _(a,b) denote the
partition of [a,b] consisting of a, b, and all real

n.mbers between a and b of the form m/2™ where m is some

integer. If Pn(a,b) consists of p+l numbers, let us
designate them by a = X5 <X <Xy < eee < Xp-1 < Xy = b

and define, respectively, the upper and lower sums

p
S(a, by n3 f) = Z Mk(xk - xk-l) and

k=1 -
P
S(ay, by n; f) = Z_mk(xk - xk-l)
k=1 '

where Mk and m, are, respectively, the least upper bound
and the greatest lower bound of f on the kth subdivision

y



of Pn(a,b). It is necessary to assume here, just as in the

more customary Riemann theory, that f is bounded since
otherwise the upper and lower sums will not necessarily be
finitee We note that these upper and lower sums are normal

upper and lower Riemann sums, but of a particular (and

carefully chosen) type. We define fb f(x)ax =

a
h .
= b 1d
= 1im S(a, b, nj f) and ja f(x)dx = 1im S(a, b, n; f), and
n-=co = n-00

call them respectively the upper and lower integrals of f "
on [é,b]. These upper and lower integrals are well defined
since clearly the upper sums (lower sums) form a bounded
monotonically decreasing (increasing) sequence and any
boqnded monotone sequence must converge. If the upperAand '
lower integrals are equal, we c¢all their common valqg the
integral of f on [a,b].

This integral will be seen to coincide with the  al
Riemann integral. Now the norm of a partition, P, of fasb]

consisting of division points a = Xo < Xq < 200 < X, = b is

defined as the length of the longest subinterval [x; ;s X;1»

where 1 £ 1 X n. We see that a partition P (a,b) has norm

less than or equal to 1/2" so that the norm of these
.partitions must approach zero as n goes to infinity. It is
well known [3; p.18] that for bounded functions, any sequence

of upper (lower) Riemann sums converges to the upper (lower)



Riemann integral if the norms of the corresponding parti-
tions approach zero, We note that the upper (lower)
Riemann integral of a bounded function always exists. Thus
Sklar's upper and lower integrals are equivaleht to the
upper and lower Riemann integrals.: Since the Riemann
integral exists if and only if the upper and lower Riemann
integrals exist and are equal, Sklar‘s method of defining
the Riemann integral is equivalent to the usual definitions.
Two properties of Sklar's definition are immediately
apparent. First, he obtained the Riemann integral as the
11m1§€9fﬂa sequence, and second, except at the end points

each difference x; - X;_q» X4 and x;_; in Pn(a,b), is

precisely 172", Sklar's definition of the uniform integral
(2] 1s essentially a generalization which retains the

essence of these two properties.

Definition: The uniform integral of a finite valued function,

bl - [2a

2] - B

fy is defined as 1lim CZ f(c([%] + n)), if it exists, and
c*ot n=1

b _
denoted by (U)J f(x)dx. Here [x] denotes the greatest
a .

integer function, that is, the greatest integer less than
or equal to x.

The uniform integral could also be defined as

lim qz f(nc) where cy g(n) denotes summation over all

1im cZ f(nc) where cz g(n) denotes summation over all
€07 (a,b) (a,b)



integers n, such that [%] + 1< ng [g]. This simplified

notation will be used frequently.
The real number system may be divided into a special
collection of equivalence classes which are of fundamental

importance to the uniform integral,

Definitiont Let a and b be real numbers. Then a is
equivalent to b, (a = b), if there is a non=-zero rational

number q such that a = bq.

Theorem 1l¢ a =~ b is an equivalence relation.
Proof: Reflexive: a = a(l) so that a =~ a,.

Symmetric: If a =~ b then there is a rational number

q = (%) # 0 such that a = b(%). Thus b = a(£) and b ~ a.
Transitive: If a =~ b and b =~ ¢, so that a = b(%) and
b = c(%}, then a = c(%%) and thus a =~ c.

Let E, denote the equivalence class containing a in

the partition of the real number system defined by this
equivalence relation. We note that if a 1s any real

number, then Ea consists of all non-zero rational multiples
of a. Thus E; = {0}, If a # 0 is a rational number, then
Ea is the set of non-zero rational numbers. If a is an

irrational number, say ~ 2, then E consists of all

non-zero rational multiples of ~ 2, Aside from EO’ each



of these classes is countably infinite since the set of
rational numbers -is countable. However, the set of real
numbers 1s uncountable. Thus there must be uncountably
many of these classes. We now show that each of these

classes,  (except for EO),-is densé in the reals.

Let a and b be real numbers such that a < b. If
a # 0, we assert there is de€E  such that a < 4 < b.

Choose some ¢ > 0 in Ea‘ Now bea > 0 so there 1s some

rational number p > 0 such that 0 < pc < b-a., Since

pc is a positive real number, fhere is an integer r such
that r(pec) < a < (r+1)(pe)e Thus a < (r+1)(pc) =

= rpc + pc < a + (b-a) = bs But rp + p is a non-zero

rational number and c e E, so that d = (r+l)pc ¢E_  and

a<d< b

Consider the uniform integral of a ‘function, f, on

[a,b]; namely, 1im CZ f(nc). Now for any non-zero
. C=>0 (a,b)

integer n, nc is in E,« Thus in taking the limit, for each
¢! such that 0 < ¢! <€, f 1s summed only on a subset of E e

Let d be a non-zero real number and suppose we take the

limit from the right as ¢ goes to zero, regtricting c to

values in Eg. Denote this by lim CZ f(nc). Let the

ot
gegd (a,b)

|
uniform integral of f on [a,b] exist and equal A, Then



since E; is dense, it is clear that 1lim cz’f(nc)'= Ko

+
22t au)

Convexsely, we have that if

1im °X f(ne) = A = Iim ¢) f(ne)

c~ot c~»ot
(a,b) (a,b)
ceEy ’ c«tEd ’

b
then (U)f~ f(x)dx exists and equals A.
a

As might be expected, the uniform integral is not as
well behaved as the Riemann. For example, a function may

be uniform integrable on an interval without being uniform

integrablé on any subinterval. Note first that l-c < c[%]‘g 1

whenever 0 € ¢ € 1 and thus lim cE¥] = le Also, it is
c»ot € '

Il n :
well known that ) k = BEH) apg § 2 = RERL(Zndl)

=1 k=1
Froceeding with the above mentioned example, on the interval

x if x is rational and f(x) = 1/2

[0,1] 1let f£(x)

otherwises Then

lim c): f(ne) = 1im, °Z nc = 1lim ca(@ (%l

§ + - -
¢=*o%  (9,1) e*0” g,1) ©*o*

c.tEl
R+ v, B - 3o 0
| s B v Sl ook

Mee, iy, @), £tne) = 1im, o((£] %) =4, hue

g;gl (0,1)

+
=t
N
~—

i
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1
(U)fo f(x)dx = %'. However, consider any subinterval,
say [0,1/2]« Then

2 1 L
1im cz f(ne) = 1im  © {EE clt & =

+ >0t
et Coa/m) o0

,I e

2
- %_j;xg+ ("['é]"{:']) + i3!3+ f.jé‘%é =g+ 0 2%

»Ya
it Lim ¢} flne) = lim ¢ |23 = & so that (U)J'O £ (x)dx

c»ot c~ot

does not exist,
This same function will serve to show that the square

of a bounded uniform integrable function is not necessarily
uniform integrable. Now on [0,1] £2(x) = x? if x is

rational and f?(x) = % otherwise. Then

e, e = s, o[- 2
c{E ’

However, .
3fL]f18 L

Lim ¢} f(nc) = lim <) (ne)? = lim S [SI(@ + D ClE+y)- 1.

- CQ Cc-*0 c-0

Thus £2 is not uniformly integrable on [0,1].

This example also demonstrates that if f and g are
uniform integrable on [a,b], it does not necessarily follow
that feg is uniform integrable on [a,b].

The supremum of two functions f'and g; written fvg,
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on [a,b] is the function

f(x) if f£(x) > g(x)
(fveg)(x) =
g(x) if g(x) > £(x),

Let £ be defined on [0,1] as in the previous two examples

and define g on [0,1] by g(x) = 1 - x if x is rational,
and g(x) = 2

5 otherwises Now g 1s uniform integrable since

g(x) =1 - £(x) and thus

1lim °Z g(ne) = lim+ cz 1 ~f(ne) =1 = % =
¢=o*  (0,1) ¢>9"  (0,1)

i

1
Hence, (U)J0 g (x)dx % « Now (fvg)(x) = x if x is

rational and x,z~%. (fvyg)(x) =1 -~ x if x is rational

and x 5,%, and (fvg)(x) = % otherwise. Then

lim+ °Z (fvegllne) = 5
S R
1

However,

iir&' cz(: (;:tl‘)vg)(nc) %igx c([ﬁ:‘ g]([?']"' 9)
+ ii1§+ c ([ﬂ({l] + 1) - [%'5](&:"1(?:;‘ + 1) ) =

1 1 1
=2 -§+3-3=t¢

so that (fvg)(x) 1is not integrable over fo,l}.

The property of interval additivity does hold for the
uniform integral.

11
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Theorem 2: Let f be uniform integrable on [a,b] and on
[b,d]s Then f is uniform integrable on [a,d] and

b d d
(1] £x)ax + [ fax = ] £x)ax,

a a

b d
Proof: (U)j f(x)dax + (U)Jb f(x)dx =
a
. a .
= 1im cZ f(ne) + 1inm cz f(ne) = 1lim cZ'f(nc) = (U)J f(x)dx.
©o% (a,b) T (b,d) 7O (a,q) 2

Tt is well known [5; pp.202, 203] that the collection,
A, of all functions defined on an interval [a,b] forms
a linear space (that is, a vector space) with pointwise
addition and multiplication by reals. If D C A, then D 1is

also a linear space provided that (af; + bf,) € D whenever
fl’ f, € D and a and b are real numbers. A function K
defined on a linear space D with range in the reals is
called a linear functional if aK(f,) + bK(f,) = K(af, + bf,)
whenever f;, f, € D and a, b are real. A linear functional
is termed a positive linear functional if K(f) > O

whenever £ € D and f20. As 1s customary, we say that a

function, f, defined on [a,b] is greater than or equal to

zero if f(x) > O for all x in [a,b].

_ b
Theorem 3: Let D(a,b) = {fI(U)f f(x)dx exists}, a and b
a

real. Then for each pair, (a,b), the uniform integral is a

positive linear functional on D(a,b).
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Proof: Let r and s be real numbers and f;, f, € D(a,b)s Then

b b
r(U)f £, (x)ax + s(U)f £, (x)ax =
a a

r 1im CZ fi(nc) + 8 1lim cZ fz(nc) =
¢>0*  (a,b) >0t (a,b)

1im CZ ref.(ne) + 1lim cZ sef,(nec) =
c~rot 1 c->0+ 2
(a,b) (a,b)

1lim cZ (r-fl(nc) + sef,(nc)) =
c»o+ (a,b)

b
- (U)I (refy(x) + sef,(x))dx.
a

P T

Thus if £y, f, & D(a,b), then ('rfJ~ + sfz) € D(a,b) and

b : b b _
r(U)f' £q(x)dx + s(U)f f5(x)dx = (U)j (rf; (x) + sf,(x))ax.
a a a

Hence, D(a,b) is a linear space and the uniform integral is
a linear functional on D(a,b). Clearly, if fé€ D(a,l;) and
f(x) > 0 for all x in [a,b]}, then

b
(] £(x)ax = lim ¢} fne) 2 0.
a c=0 (a,b)
Thus we see that the uniform integral is a positive linear

functional on D(a,b).

Thus by Theorem 3 we note that if f, and f, are
uniform integrable on [a,b], then f1 + f5 is uniform

integrable on [a,b] and

b . b b
(U)ja £, (0dax + (V)] fy0x0ax = ()] (£(x) + £, (x))ax.
a a



1k
Also, if f is uniform integrable on [a,b] and r is a real
number, then ref is uniform integrable on [a,b] and

b b
r(0) f(xdax = ()] rr(x)dx.
a a

Corollary 1: If f;, f,€D(a,b) such that f;(x) < f,(x)

b ' b “
for all x in [a,b], then (0)] £ (x)dx < (W] f,(x)dx.
a s a

Proof: Now by Theorem three, -f,(x) and f,(x) - f,(x)
are uniform integrable on [a,b]. Here fa(x) - fl(X)»z 0

for all x in [a,b] and thus

b b b
W] f,(0ax - ] £,(x)ax = @] (£5(x) - £;(x))dx 2 0,
a a a
b b :
Hence»(U)f fl(x)dx g,(U)f fo\x)dx.
a a

Corollary 2: 1If £, |f]€ D(a,b), then
b b |
)] foaxl ¢ ] I£(x)|ax.
a a
Proof: Now f(x) < [f(x)] and =f(x) £ |f(x)| for all x in

b b
[a,b]e Then by Corollary two, (U)I f(x)iax £ (U)f | £ia, ux
a a
b b b
and -(0)] f(x)ax = ()] -r(x) < W] |rx)]ax.
a a a

b b |
Thus | (0] £x)ax] < @] [£x)]dx.
a a

It is interesting to note that Corollaries two and
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three will hold for any positive linear functional [3; p.182].

The condition in Corollary two that |£f] be uniform:
integrable is necessary. Let f be defined on the interval
[0,1] by |

-1 if x is irrational and 0 < x < &

N

f(x) =<0 if x is rational
1 if x is irrational and 3 < x < 1

Now

i

1lim cz'f(nc)

1im (cz f(nc) + °Z f(nc)) =

g;g;ﬁ?§311> g;g; (0,1/2)  (1/2,1)
- 1, (o -[&]) + < (@] - [2]))-
= 1im °(E§] - 2[213]) =1 - 2.4 = o,
c~ot
b
Obviously lim c) f(ne) = 0. Thus (V)] f(x)ax = 0.
c-*0 (0 1) a
offy

However, we see that |f] is the characteristic function of
the irrationalse But if g is the characteristic function

of the rationals, then clearly for any interval [a,b],

c>ot ( c-0
a,b) (a,b)
ceE,y ’ céEl ’

1lim cZ g(ne) = 0 and 1lim °X g(no) = oo so that g is not

uniformly integrable. Thus If] is not uniform integrable.
We now proceed to develope some convergence thebry

for the uniform integral. Suppose f, sy eeey fi' eoe



is a sequence of functions, uniform integrable on [a,b]
and converging to a finite valued function f, Let

Fi(c) = °Z fi(nc). Then
(a,b)

b .
Lin T,(c) = lim c;afignw = @] £, (x)ax

and 1lim Fi(c) = 1im cZ fi(nc) = cz f(nc)
100 i (a,b) (a,b)

both of which exist and are finite. There are numerous
theorems dealing with the iterated limits of a function,
such as Fi(c), both of whose limits exist and are finite.
The following lemma is a modification of a corollary by

Hobson [7; 1:412],

16

Lemma_1: Let both lim f(x,y) = g(y) and 1lim f(x,y) = h(x) -

X-*a y=b

exist and be finite. Then 1lim h(x) and 1im g(y) exist,
X-a y-b

are finite, and are equal if the following condition holds."

(A) For each € > 0, there is a neighborhood, N, of b

such that if yogaﬂ, then there 1s a neighborhood My of a
Q .

for which [£(x,y,) - h(x)| < € whenever x &M, .
¢ ® o

Proof: Let € > 0 be given. Now there is a y, to which

there corresponds a neighborhood M, of a such that
o

|£(xyy,) = h(x)| < €/3 whenever xeM, « Since lim f(x,y,)

y() X-*a

exists, there is a neighborhood 0y of a such that
0
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. Let

] . ” L ] [1]
|£(x ,y,) = f(x ,yo)l < €/3 whenever x , X € 0y
o

] []
P=M_ NO_. Thus if x , X € P, then
Yo || Vo |

lh(x') -'h(x")l < Ih(x') - f(x',yo7l + If(x',yo) - f(xw,yo)l +

v 18Gx",y) = h(x')] <
€, £

e-—
<§+3+-3-—€ .

Thus 1im 1im f(x,y) = 1im h(x) exists.
x»*a y-b x-a ‘

i

We assert that 1im g(y) = 1im h(x). Let € > 0 be
y-b y*a ‘

given. Then by (A) there is 2 neighborhoed, N, of b such
that if yOG;N, then there is a neighborhood M of a for

yo §
whigg%lf(x,yo) - h(x)| < €/3 for all x in My « Now
" o
“1im f(x,y.) = g(y.) so that there is a neighborhood, O_ ,
x-+a ° ° Yo

o« Also,

of a such that |f(x,y,) - g(y )| < €/3 if x €0,
B o)

we have shown that there is a neighborhood, P, of a such

. \
that |[h(x) - 1im h(x)| < €/3 if x P, Let Q =M_ NO_ N P,
X->a yo y0

Then

le(yy) = 1im h(x)| < lely,) = flx,y )| + £lx,y,) = h(x)| +
x-*a

+ |h(x) - 1im h(x)| <
x-*a

£, &, € -
< 3 + 3 + 3 & .

so that 1im g(y) exists and 1lim g(x) = 1im h(x).
y-+b y+b x»a
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This result has an immediate application to the
uniform integral since if ﬁhey exist,

b
lin 1im ¢) f,(ne) = 1im (W] ' £, (x)ax
jmoo co* ?a,b) 100 a

b
and 1lim 1lim CZ fi(nc) = 1im c? f(ne) = (U)f f(x)dx.
cot im0 (a,b) cot (a,b) a

Thus the following theorem is immediate,

Theorem 4: Let £y £55 eees fi’ eee be a sequence of

“functions, uniform integrable on [a,b] and converging to
a finite valued function f. Then f is uniform integrable
b
on [a,b] and 1im (U)j £,(x)ax = (U)] £(x)dx if the
i-00 a

following condition holdse.

(A') For each € > 0, there is a positive integer N
such that if io > N, then there is a 61 > 0 for which
0

| Z £y (nec) - cz f(nc)| < € whenever 0 < ¢ < bi .
(a,0)° (a,b) -

Lemma one is related to Moore's Theorem [3; p.100].
If we substitute for condition (A) in Lemma one the

stronger condition that 11% f(x,y) = h(x) uniformly, then
y”.

Moore's Theorem ls obtained. Note that Moore's Theorem
yields the additional conclusion that the double limit
exists and equals the two iterated limits. This leads to

a weaker but more conventional convergence theorem,
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Theorem 5: Let fl’ f2, soey fi’ eee be a sequence of

functions uniform integrable on [a,b] and converging

uniformly to a finite valued function f. Then f is uniform

integrable and 1im (U)j £, (x)dx = (U)j £ (x)dx.

{~00

Proof: Let € > O be given. Since lim fy (x) =¢ uniformly
§ =00

on [a,b], there is a positive integer N such that if i > N,

€
then |f1(x) - £(x)]| < 5] +1T ° Then if 0 < ¢ < 1,

|CZ fi(nc) - 1lim qz fi(nc)l = qu (fi(nc).- f(nec))|
(a,b) 100 (a,b) (a,b)

<|o((3] - (2) ==l <€ -

The desired result follows by Moore's Theorem,

The following example shows that Theorem four is
actually stronger than Theorem five. Consider the closed

interval [0,1]. For each positive integer, j, define

0 if x # 1/j
f.(x) = .
J "<$ if x = 1/3

We see that 1lim fj(x) = 0 pointwise but not uniformly so
=00

that no conclusion may be drawn by means of Theorem five.

Now for each ¢ > 0, 1lim cz f (nc) = Z lim fj(nc) =
- =0 L) (a,p)™

e

Also, we note that for each jJ,
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0 if ¢ # é%-for any n such that 1 < n.g,[%]
cX fy(ne) = ' .

- (a,b) je if ¢ = nJ for some n such that 1 < n 5_[%-

Let € > 0 be given and let Jo be a positive integer.

Then if 5, = éi and 0 < ¢ < by ,
[« BN (s} 0

J=oo

ICZ £ (nc) ~ lim cz fj(nc)l = Icgof% (ne)| < Jo€ < 3g ﬁ% =€ o
?

(0,1 (0,1)
| 1 1
Thus by Theorem four, lim (U)J f.(x)dx = (U)j 1im £, (x)dx.
Jooo o 0 jooo J

Coreollary: Let fl’ f2, ceey fi’ ese be a sequence of

functions uniform integrable on [a,b] and converging to a

uniform integrable function, f. If there is an E, # E,

such that iim fi(x) = f(x) uniformly on E, N [a,b], then
-0

b b ‘
1n (O] £, x)ax = O] f£x)ax.
a a

i~c0

Proof: By Theorem five we see that

1im cZ 1im fi(nc) = 1im lim °Z fi(nc).
c~=ot ( b ) i =00 i-00 -0t ( b )
c€E as ceE_ 2y

Then since f is uniform integrable on [a,b],

n

1im cz f(nec) = lim+ cz }im fi(nc) =
> yfe ->» -00
C*0T  (a,b) 2‘§a (a,b)

b
)| fx)ax
a

lim lim ¢) f;(ne) = 1im lim c). f,(nc) =
i~oc0 ¢=o+ (a b ) i=»co ¢c-»ot (a b )
ceE, ’ !



Thug lim (U)
4 =00

b
= 1im (] £, (x)ax.
a

j-sc0

a

b
(U)f f(x)dx.
a

21



CHAPTER II
COMPATIBILITY OF THE UNIFORM INTEGRAL
WITH THE RIEMANN AND LEBESGUE INTEGRALS

Theorem 1: If f is Riemann integrable on [a,b], then f

is uniform integrable on [a,b] and
b b
(| rx)ax = (R f(x)ax.
' a a

Proof: Let P be an arbitrary marked partition,

\

' ' '
(a = x5 < %Xy < se0 < X, = b; X3 £ X5 £ eee £ xp) where

P
L} ]
i=1

L4

b
and N(P) denote the norm of P. Let (R)I f(x)dx = A so
a

that, by definition, 1lim S(P) = A. ILet € > O be given.
| N(P)-0

] ]
Then there is an € > 0 for which |S(P ) - A] < €/3

L] :
whenever P is a marked partition of [a,b] of norm less

1
than € . Now f is bounded on [a,b] since f is Riemann
integrable. Thus let M be a positive real number such that
|£(x)] < M for all x in [a,b]. Let & be the smaller of the

. E | ] .
two numbers € and %%', Let ¢ be a real number such that

22
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O < e < % and define X4 =([%] + n) ¢ where

l1<{ngp =[§] - [%] .
Thus let P* be the marked partition

(a = xog xl’ cee xp’ xp+l = b; xl, x2’ see xp_'_l)

of [a,b] with norm ¢ < 3. Then

P
Icz f(ne) - A] = lcf(xl) + Z fx ) (x, - x, ) - Al =
(a,b) n=2

p+l
| ), £lx ) (x, = x, 1) + £lx)e = (x; = x)) +
n=1

+ (10 (x, ) (x g = X)) = Al
< ISCPTY = Al + [£(xy)(e = (xg = x )| + |01 (xp,q = X))

<

ooy

wim

+Mc+Mc<§’~+-§-+§-=€.f.
Thus 1im QX f(nc) exists and equals A.
-+
The converse does not hold. For example, consider

the function defined on [0,1] by f(x) = x if x is rational
and f(x) = %-otherwise. In Chapter I, this function was

shown to be uniform integrable on [0,1]. However, f is not

Riemann integrable since it is continuous only at x = %

and it is well known [3; p.89] that a function, f, is
Riemann integrable if and only if f is continuous almost

everywhere,



For the remainder of this chapter, we will be
primarily concerned with the relation between the Lebesgue
and uniform integrals. Although the uniform integral is
an extension of the Riemann; neither the Lebesgue nor
the uniform integral is an extension of the other as will
be shown later. We shall investigate first the compati-
bility of the two integrals. )

If A is a Lebesgue measurable set of real numbers,
let m(A) denote the Lebesgue measure of A. If a is a real
number then we define aA = {aala€A}., Halmos shows
[6; p.64] that if A is measurable, then aA is measurable
and m(aA) = |a|m(A).

Lemma 1: Let B be a subset of the reals such that

m(B) = 0, Let {E_}

S aeh be the collection of equivalence

classes, leaving out Eo’ discussed in Chapter I. Then'
for at least one ay E, N B = @e

Proof: Let {ai3§;1 be an ordering of the set of rational
numbers. Define B; = a;Be Assume E, NB # #§ for any

a € A« Thus for every real number b # 0, B contains at
- m
least one non-=zero rational multiple of be Then U»Bi 1s

i=1
the collection of all rational multiples of B so that

oo
U ZBi is the set of real numbers. But
i=1

o0 O
(o0

m( UB) < ) m(By) = ) |a,[m(B) = o0,
=1 i=1 i=1
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a contradiction since the set of real numbers has infinite

measuree.

Theorem 2: Let f and g be uniform integrable on [a,b]e.
If £ 1s equal to g almost everywhere on [a,b] then

b I+)
(U)J £(x)dx = (U)f g(x)dx.
a a

Proof: Let D be the set of measure zero where f(x) # g(x).

Then by Lemma one, there is an E,, # E, such that
\

DNE 4 =@ Now for ¢ in E_,, cZ f{ne) = CZ g(nc) so that

I

(aab) (a’b)
Lim -qz f(ne) = 1im éz g(nec)e But the uniform integrals
C*0 C~>0 -
ceEa' (a,b) 'ceEa' (a,b)

of £ and g both exist so that \

1im °Z f(ne) = 1im cz f(ne) = 1lim °Z g{ne) =

c+o+ c+»ot c-»ot ;
(a,b) ceEa' (a’b) CGEG. (a’b) v

1im °Z g(nec).
c-»o+ (a,b)

b b ,
Hence, (U)f f(x)dx = (U)J g(x)dx.
a a

The condition that both f and g be uniform integrable
is needed. Consider the function f(x) = 1 défined on
some interval [a,b]. Obviously f is uniform integrable on
[a,b], but the set of rational numbers has measure 2zero so
that £ 1s equal almost everywhere to the characteristic
function of the irrationals which, however, is not unifdrm

integrable.
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.Is there a function, f, defined on [a,b] such that
the -uniform and Lebesgue integrals of f both exist, but
are not equal? We can now provide a partial answer to

this question.

'Ehmorem ¢ Let f be defined and uniform integrable on
[a,b]e If f is equal almost everywhere on [a,b] to a .
function g whose uniform and Lebesgue integrals exist

and are equal, then f is Lebesgue integrable on [a,b]

b b
and (1) f(xdax = (L] £(x)ax.
a a

Proof: Now f equals g almost everywhere and g is Lebesgue

b

integrable so £ is also and (L)r

b
J fx)ax = (L)j g(x)dx,
a a

b b
But by Theorem two, (U)f f(x)ix = (U)f g(x)dx and by
a a
b b
hypothesis, (U)j g(x)ax = (L)j g(x)dx. Thus
a a

b b
] rxax = (1)) rx)ax.
a . a

We note that the uniform and_Lebesgue integrals of
any Riemann integrable‘function must exist and be equal.
Thus Theorem three could be weakened by a substitution of
the stronger condition that g be Riemann integrable.

Theorem three is the best result known on the compati-
bility of the Lebesgue and uniform integrals. Our theorem
is a strengthening of the following result, recently stated
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without proof by R. T. Sandburg [2; p.265]. “The best
result to date is that if f is bounded, uniform integrable
and equal almost everywhere to a Riemann integrable
function, then the two integrals [Lebesgué and uniform]
are equal," |

The condition that f be equal almost everywhere to a
Riemann integrable function (or the function g in Theorem
three) is sufficiently unusual as to deserve further
comment; One natural question is, can a bounded function
be Lebesgue integrable and not be equal almost everywhere
to some Riemann integrable function? The answer is yes.
Consider the closed interval [0,1]. Delete the midd.ec
1/% of this set and call the deleted portion Aq. Delete

from each of the remaining two intervals the middle part
of length 1/4%. Call the union of these two deleted sets
Are Continue this process so that in general An is the
‘union of 21 geleted intervals, each interval being the
middle part of length 1/4™ of the 2™ 1 intervals in

n-1 _ :
(0,1] = A 4o Thus m(A ) = 2 = —d— and the A, are

. w o
R
all disjoint so that m( U Ap) = ) ma) = ) preild
- n=1 n=1
o 1
Define A = U A and B = (0,1] - A. Then m(B) = 5. Let
n=1 '

f be the function defined on [0,1] by f(x) = 1 if x€A and
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f(x) = 0 if x€B., Obviously, f is Lebesgue integrable and

I Cu

1
(L)f0 f(x)ix = %m Let Bp = [0,1] = A_. Then Bp is a

n

==

union of intervals, each of length less than 1/2p. Since

for sach ' py B C B_, We see that B contains no intervalse.

p
Define Nb(x) = (X - %, X + %). Then if xe;B,~Nb(x) NAF#ZGM

for any & > 0. Suppose f is equal almost everywhere on
[. ,b] to a function g« Then for some set N of measure
zero, g(x) = f(x) on [0,1] ~ N. Now A consists of intervals

which we will denote by Ij, J =1, 2y eeey so that

oQ

A= U Ij. Thus if x€B and & > 0, then Nb(x) NA#G@
J=1

implies Nb(X) NI, #¢ for some integer j, > O. But in

Jo

this case Nb(X) N Ij is itself an interval. Then for
o

‘

any x€B and » > 0, there is an Ij C A such that
0

m(Nb(x) N Ij ) > 0., Now m(N) = 0 so that
o ,

m(Ny (x) N(T; « M) = m(N, (x) N Ijo) > 0.

0

Thus m(Ny(x) 0 (A - N)) > O sineé I, C A. Hence for
o .

any x €(B - N) C B and any & > 0, Nb<X) N (A -N) #6@ and

thug g 1s discontinuous at every point of B - N. Then g
cannot be Riemann integrable since m(B - N) = m(B) > 0,
As mentioned previously, the Lebesgue and uniform

integrals are not equivalent. An obvious example of a
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function which is Lebesgue but not uniform integrable is
the characteristic function of the irrationals. We proceed
to construct a function which is uniform but not Lebesgue
integrable. Now the characteristic function of a non-
measurable set is not Lebesgue infegrable. Thus we need
only construct a non-measurable set whose characteristic

function is uniform integrable. Let‘{Ea} be the

a€l
collection of equivalence classes previously defined.

For each a, define Ba = Ea N [0,1]s Now by the Axiom of

Choice, for each a € A we may pick an Xy G'Ba' Let

C = {xalaeaA}. Let {ai}izafbe an ordering of the set of

rational numbers contained in the interval [0,1]. Define

o0
C; = a.Ce Then if C is measurable, so is U C, and
i i joq 1 \
o0 oo o , !
m( U ¢;) £ m([0,1]) =1. Thus 12 m(UC.) = ) am(C)
i=1 i=1 3=1

so that the measure of C must be zero if C is measurable.

But by Lemma one, if m(C) = 0, then CN E_ = g for some

a # 0, a contradiction. Hence C is not measurable and

the characteristic function, f, of C is not Lebesgue

integrable. Now for any ¢ > 0, 0 £ QZ f(nc) < ¢ so that
(0,1)

0 £ lim °Z f(nc) < 1im c¢ = 0, Hence,
c=»ot (0,1) c»ot

]

1
lim ¢) f(nc) = 0 and (U)f0 £ (x)dx = 0.

c”o* (0’1)



CHAPTER IIIX
THE UNIFORM STIELTJES INTEGRAL

The following definition of a uniform Stieltjes
integpg}xis a slight modification of a definition suggested
by A. Sklar [M4].

Definition: Let f and g be finite valued functions defined
on the interval [a,b] and for some A > 0, let g(x) = g(a)
whenever x is in [a~A,a]. Then the uniform Stieltjes
integral of f with respect to g on [a,b] is defined as

lim+ Z f(ne)(g(ne) - glne - ¢)), if it exists, and denoted
C*0" (a,bje)

b
by (US)| £(x)dg.
a ,
We note that if g(x) = x and [xf(x)| < M for ali x in
some interval [a,a+y], v > 0, then the uniform Stieltjes

integral of f with respect to g on [a,b] reduces to the

uniform integral of f since in this case

°Z f(ne) - Z f(nc)(g(HC) - glne = ¢)) = f(([é] *']>‘><é = °[c]>

-o{([ 9B -39 (75 )

30
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as c»ot, Thus the counter examples given in Chapter I for
the uniform integral will also serve for the uniform
Stielt jes integral. Hence, if f and h are both uniform
Stieltjes integrable with respect to g on [a,b], then in
general none of the following wiil holde.
(1) f is uniform Stieltjes integrable with respect to
g on a proper subinterval of [a,b].
(2) f? is uniform Stieltjes integrable with respect
to g on [a,b].
(3) feh is uniform Stieltjes integrable with respect
to g on [a,Db].
(4) fVYh is uniform Stieltjes integrable with respect
to g on [a,b].
(5) |f| is uniform Stieltjes integrable with respeét
to g on [a,b].

Theorem 1: Let f and g be defined on [a,b] and let-d & (a,b).
Assume g is left continuous at d and f(x) is bounded, say

|£(x)] < M, on an interval [d,d+y] for some y > 0. If

a b b
(us)| £(x)ag and (US)Jd £(x)dg exist, then (US)| r(x)dg
a : a

]

: b . b
exists and (US)] f(x)ag = (US)] “f(x)ag + (Us)jd £(x)dg.
a a :

b
Proof: Now (Us)jd f(x)dg = %ig+ Z f(ne)(g(ne) - glne - ¢)),
0" (d,b3¢)

By definition, in forming this limit we take g(x) equal to
g(d) on an interval [d-A,d] for some A > O, Let & > 0 be
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given. Since g 1s left continuous at d, there is a &, > 0

such that |g(x) - g(d)| < éﬁ for any x in [d~61,d]- Also,
thereis a by 2 0 such that

| Z f(ne)(g(ne) - glne - c)) + Z‘f(nc)(ginc) - glne = ¢)) +
(a,djze) (d bjc)

+ (-1)<(Us>f f(x)dg + (Us)[ r(x)ag/| < 35
for any ¢ in (0,%,). Choose % equal to the least of the four

numbers 61,62,7, and A. Then if 0 <c <3,

d b
) £(ne)(gne) - glne - ¢)) - ((Us).l‘ f(x)dg + (US)'fdf(x)dg | <

(a,b3c) a

< 1) £(ne)(gne) - gne - ¢)) =( ) £lnc)(glne) - glne-c)) +

(a,bjc) (a,d;c)
+ ) £ne)(gne) - gne = )| + |] £ne)(glne) - glne = ©)) +
(d,b;zc) (a,d;ec)
d b
+ Z f(ne)(g(nec) - g(ne - ¢) = ((Us)f f(x)dg + (US)[ f(x)d%)l <
(d,bjsc) d
< 1) e (gte) - glne = ) - (] £(ne)(glne) - glne - ©)) +
(a,bjc) {a,bjc)

+ Dr([Ee + o) (e ([ﬁ]c + c\ - g/[%] ) +
- f(Ld]c + c)( '":)c + c> - g(d)>)| + §
< lf([d]e + c>< ([ﬂ)- g(d))l rEcu S+ E=e

Hence,

o a b
1im ) £(nc)(g(ne) - glne - e)) = (US)] f(x)dg + (US)| £(x)dg.
¢*0" (a,bje) a d



33

It is interesting to note that Theorem one does not
hold for the Riemann-Stieltjes integral. Let f and g be
defined on [0,2] by

1if0<x< 1 | 1if0<x<1
f(x) = and - g(x) = .
2 if 1< x<?2 2 if 1< x<2

We see that f is bounded on [0,2], g isAleft continuous on

1 1 2 -
(0,21, (Us)fof(x)dg =0 = (Rs)fof(x)dg, and (Us)jlf(x)dg =

2
= 2 = (Rs)flf(x)dg. Then by Theorem one, the uniform
Stieltjes integral of f with respect to g on the interval
2
[0,2] will exist, and (Us)fof(x)dg = 2, However, it is well

known [3; pe263] that if f and g have a common discontinuity
at d, then the Riemann-Stieltjes integral of f with respect
to g will not exist on an interval [a,b] such that a <vd < be
Thus in the present example, the Riemann-Stieljes iﬁtegral
of f with respect to g does not exist on [0,2].

b
Theorem 2: Let D(a,b3g) = {fl(US)f’f(x)dg exists}, a and b
“a

real. - Then D(a,bj;g) is a linear space and the uniform
Stieltjes integral is a linear functional on D(a,bjg)e. If g
is a monotonically increasing function, the uniform
StieltJes integral is a positive linear functional on
D(a,bz;g)e

Proof: Let f, f;€D(a,b;g) and r and s be real numbers.

n



Then

b b
r-(US)f £,(x)dg + s-(US)f fo(x)dg =
a a

i

r-lim+ Z fl(nc)(g(nc) - glne = ¢)) +
C*0" (a,bje)

+ s-lim+ Z fs(ne)(g(ne) ~ glne = ¢)) =
¢*0" (a,bj3e)

= lim+ z r-fl(nc)(g(nc) - glne = ¢)) +
C*0" (a,bse)

+ 1im+ Z s+f5(ne)(g(ne) - g(ne - c))
~=== 7 CP00 (a,bje)

]

Lim ) (ref,(nc) + sefy(nc))(glne) - glne = ¢)) =
€707 (a,bjse)

b
(US)] (ref (x) + sef,(x))dg.
a

Thus D(a,b3g) is a linear space and the uniform Stieltjes
integral is a linear functional on D(a,bjg). Now if g is

monotonically increasing, then g(x;) - g(x5) 2 0 whenever
Xy s x5 € [a,b] such that Xy 2 Xpe Thus if f(x) 2 0 for all

x in [a,b] and g is monotonically increasing, then

-

b .
(us)[ £(x)dg = 1im ), f(nc)(g(ne) - glne - ¢)) 2 0 so’ that
& ¢*o* (a,bje)

the uniform Stieltjes integral is a positive linear
functional on D(a,bj;g)e.

As mentionéd in Chapter I, the properties stated in
the following corollary hold for any positive linear

3k
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functional and thus must hold for the uwniform Stieltjes

integral.

Corollary: Let g be monotonically inereasing on [a,b].

If £,, f, eD(a,b;g) and fl(x) £ £5(x) for all x in [a,b],

b Y
then (US)| £y (x)ag < (US)] fy(x)ag. If £, |f] eD(a,bsg)
a a C

b b
then |(US)[ r(x)ag| < (Us)[]r(x)|ag.
a a

b
Theorem 3: Let C(a,b3f) = {gI(US)J f(x)dg exists}, a and b
a

reale Then C(a,b;f) is a linear space and the uniform
Stieltjes integral is a linear functional on C(a,b;f)e.

Proof: Let r and s be real numbers and gy, &5 eC(a,b;f),.

Then

b b
re (US)[ £(x)dg; + s.(US)| £(x)dg, =
a a

n

relim ) f(ne)(g;(ne) - g;(nc = ¢)) +
c*0% (a,bjc) |

+ selim Z f(ne)(gy(ne) - gyo(ne - ¢)) =
CFO" (a,bje)

-

H

lim ) f£(ne)(reg;(nc) - rog (nc - e)) +
€*0" (a,bse)

+ 1:1m.+ Z f(nc)(s*gy(nec) - seg,(nc - ¢)) =
¢*0" (a,bjc)

Lim Z f(nc)((rgl(nc) + sgz(nc)) - (rgl(nc-c) + sgz(nc-c)))=
¢70" (a,bzec)

——— (TTQ\rb&‘(.&\A’u‘ I Y
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Thus we see that the uniform Stieltjes integral is a
linear functional on both D(a,bjg) and C(a,b;f). Such a
functional is termed a bilinear functional. Thus the
bilinearity of the Riemann-Stieltjes integral holds also
for the uniform Stieltjes integrél.

Theorem 4: Let f and g be defined on [a,b] and extend g

on {a-A,a] as before. Let f be Riemann-Stieltjes
integrable with respect to g on [a,b] and assume g is left

continuous at bs Then f is uniform Stieltjes integrable
: b b
with respect to g on [a,b] and (US)f f(x)dg = (RS)I f(x)dg.
a a

Proof: Let € > 0 be given and let P denote a marked

partition of [a,b]. Now for some 57 > 0, if the norm of P

1s less than bl,'then
] b <
) £(x) (e lxy) = glx;_1)) - (BS)] £(x)ag] < 5°s
1 a

Since g is left continuous at b, there is a 85, > O such

c
that |g(x) - g(b)] < STE(B)] “henever x e[b-5,,b]e Choose

b5 equal to the least of the three numbers 61, 62,Aand A.

o

]
Let ¢ be a positive number less than & and define

X, r—«([%,:] + 1>c' for 1< 1 < ([—E—Z} - [%—]) = m. Thus

P = (xo = ay xl’ X2’ toey xm, xm+1 = b; x1’ x2, esey xm’ xm+1)

is a marked partition of [a,b] having norm less than b.
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Now

b
), £nc')(glne') - glne' - ¢*)) - (RS)] £(x)dg| =
(ay,bsct) 2

m . -~ 4b |
= | Z £(x;)(g(xg) - glxy_5)) - (RS)I £(x)dgl <
i=1 2

m .
< 1), £lx)(e(xy) = glxy_ 1)) + £lx 18 (x ;) = &(x ) +
i=1

) - g(xm))l <

b
+ (-1)(Rs)f f(x)dg| + [£(x,q)e(x 4
a

< % + |f(b)|'§T§%ng =€ o

b
Hence, lim Z f(ne)(g(ne) - g(ne - ¢)) = (RS)J f(x)dge
c»o+,(a’b;c) a

The condition that g be left continuous at b is
needed. On the interval fQ,l] define f(x) = 3 and define
g(x) =1 if xe[0,1) and g(1) = 2. ©Now it is well known

b
that.(RS)f v(x)du exists if v is continuous on [a,b] and
a

1
u is monotone. Thus (RS)I f(x)dg exlistse If‘% is an
0

-

1

integer, then Z f(nc)(g(ne) - g(ne - ¢)) = 3, but if :

(0,1)
is not an integer, then Z f(ne)(g(ne) - g({nc = ¢c)) = 0.
(0,1) |
Thus the uniform Stieltjes integral of f with respect to

g does not exist.
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If g(x) = x and |xf(x)]| < M for all x in [a,a+y],
Y > 0, then the uniform Stieltjes and Riemann~-Stieltjes
integrals of a function f with respect to g become,
respectively, the uniform and Riemann 1ntégralé of f.
Thus uniform Stieltjes integrability does not imply
Riemann-Stieltjes integrability since uniform integrability
does not imply Riemann integrability. For example, if g
is the characteristic function of the irrationals, then
every finite valued function f 1s uniform Stieéltjes
‘integrable with respect to g on any finite interval [a,b],
(and the integral equals zero). Except for the trivial
case £(x) = 0 on [a,b], the Riemann-Stieltjes integral of
f with respect to g will not exist. Furthermore, g is not
of bounded variation so the Lebesgue-Stieltjes integral
with respect to g is not defined.

We now show that the uniform Stieltjes and Riemann-

Stieltjes integrals are completely compatable.

Theorem 5: If f is uniform Stieltjes and Riemann-Stieltjes

integrable with respect to'g on [a,b], then the integrals
are equale.

Proof: Consider the set A = {ﬁln.is an integer}. Then

b
(US)J f(x)dg lim Z f(nc)(g(ne) - glne - ¢)) =
a

€20" (a,b,c)

1lim Z f(nec)(g(nc) = g(ne - ¢)).

-+
gzz (a,bje)
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But for c €A, Z f(ne)(g(ne) - g(ne - ¢)) is a Riemann-
(a,b;c)

Stleltjes sum and f is Riemann=-Stieltjes integrable with

regpect to g so that

b
lim ) f(ne)(g(ne) - glne - ¢)) = (RS)] f(x)dg.
a

4
e29* (a,bse)

From the examples given in Chapter II, we know that
Lebesgue-Stieltjes integrability neither implies nor is
implied by uniform Stieltjes integrability. The compata~-
bility of the uniform Stieltjes and Lebesgue~Stieltjes
integrals remains an open question. The next two theorems

provide a partial answer.

Theorem 6: If f and g are uniform Stieltjes integrable
with respect to h on [a,b] and f is equal to g almost -

b b
everywhere, then (US)I f(x)dh = (US)I'g(x)dh.
a a

Proof: Let D C [a,b] be the set of measure zero for which

f(x) # g(x).. Then by Lemma one of Chapter II, there is an

1]

L # E, such that D N E 1 @#. Thus for any cel v
) £(ne)(n(ne) - hinc - ¢)) = ) g(fic)(h(ne) - h(nc - ¢)) so that
(a,bjc) (a,bzc) a

lim_ Z f(nc)(h(ne) - hine - ¢)) =

1im ) f(ne)(h(ne) - h(nc - ¢)) =

»q+t
¢=o (a,bjze)
=’.1m / I\nc)\n\nc) - h(ne - ¢)) =

-+
<& _,(a,ps0)
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lim ) g(ne)(h(ne) - h(ne - ¢)) =

c-o* ..
ceEu,(a’b’C)

1im+ Z g(ne)(h(ne) ~ hi(ne - ¢)).
¢=o (a,b§c)

fl

If A is a set of real numbers, we shall denote the
Lebesgue-Stieltjes measure of A generated by a function g

of bounded variation by mg(A).

Theorem 7: Let h be of bounded variation on [a,b] and f be
uniform Stieltjes integrable with respect to h on [a,b]. If
there is a function g such that f(x) = g(x) except on a set

D C [a,b] where m(D) =0 = mh(D) and if g is such that the

Lebesgue~Stieltjes and unifory Stieltjes integrals of g with

respect to h on [a,b] exist and are equal, then f is
| b b /
Lebesgue-Stieltjes integrable and (US)[ £(x)dh = (L8)] f(x)dn.
- Ya a

Proof: Since g is Lebesgue-Stieltjes integrable with respect
to h on [a,b] and g(x) = £(x) except on a set D where

mh(D) = 0, f is Lebesgue-Stieltjes integrable with respect to

. b b
h on [a,b] and (LS)J f(x)dh = (LS)I g(x)dah, By Theorem six,
a a ‘ .
b b : b
(US)J f(x)dh = (US)J g(x)dh and by hypothesis, (US)I g(x)dh =
a a a

b ' b b
= (18)] g(x)dh. Thus (US)] £(x)ah = (L8)] £(x)dh.
a a a
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