Solar Cycle Effects on Inner Belt Protons

Robert C. Blanchard
College of William \& Mary - Arts \& Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd
Part of the Astrophysics and Astronomy Commons

Recommended Citation
Blanchard, Robert C., "Solar Cycle Effects on Inner Belt Protons" (1964). Dissertations, Theses, and Masters Projects. Paper 1539624569.
https://dx.doi.org/doi:10.21220/s2-b92z-tz65

This Thesis is brought to you for free and open access by the Theses, Dissertations, \& Master Projects at W\&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W\&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

\qquad
A. Theais

Eresented to
The feculuty of the Departnent of Ehysics The College of Whlliam and Mexy in Vixemia

In Pertial Funfilmont of the Requarements tor the Degree of Master of Axts

by
R. C. Blancherd
June, 1964

APPROVAL SHEET

This thesis is submitted in partial fulfillment of the requirement for the degree of Master of Arts

$$
V_{\text {Author }}^{\text {bent C.Bhanch }}
$$

Approved, June, 1964:

Wilunst titer

TABLE OF COMTHUTS
Fage
L工ST OE FTGURES 1
LTES OF TABLES 14
ABSIRACT iv
HEPRODUCTIOA 2.
ANALYSIS AND CALCULAYTOXS 13
The Average Atrosphexic Models 13
The Partiche Consextetinn Equation 21
RBSULTHS ATD CONCLUSEICISS 38
AFFgimax
A. The "Bounce ${ }^{61}$ Average 44
B. Motlon of Truppad Perticles 51
Refriences 59
ACKAOMEDCHEMRS 61

HEST OF FHGURES

Figure Fege
I-2. Rediation belt description 62

1. A time history of the 20.7 cm solar mux according to the measurements of the National Reaearch Council of Cenada for the recent peot. The heavy dotted line indicated the approximste yeariy ayerage 63
2. A time histoxy of the constructed mean soler cyole varlation of the 10.7 cm solar flux with roference time, to of Jemuarys 1954 64
3. B contours at I $=1.25$ for the Northern hemisphere as a function of eititude and geocentric Longitude 65
4. B contours fox 1. $=1.25$ for the Southexn hemiephere as a function of altitude and geocentric longitude 66
5. Neximum altitude contours in B, I space for tho Hoxthern hemisphere 67
6. Minimum altitude contours in $\mathrm{B}_{2} \mathrm{~L}$ space for the Southern hemisphere 68
7. The everage oxygen number denaity as a function of B for five solar thue numbers at $L=1.25$ 69
8. A time hictory of tho atmosphere scale factor; as a function of B at $L=1.25$ 70
9. A time history of the "effective" arosswaection of the atmosphore, F as a function of B at $\mathrm{L}=1.25$ 7.
10. A time history of the reletive inner belt nouthon source strength 72
11. The proton energy $208 s$ energy spectrum for an oxygen target 73
12. The slope of proton enertey loss vexsua enercy for an
13. A compariaon of the stoady-state and trenalent protonSlux cnergy spectruas for $\mathrm{L}=1.25, \mathrm{~B}=199$ at eolerminimun and colar maximun 75
14. A comparison of the ateadymbtate and tronsientprotori plux enswy spectruns for $1=1.25, B=.209$at aplar minimua end nolar maximum *...... 76
15. The time requirea in terms of soler cyoles to buila steady-state condithons vercus energy as a punction of position77
16. A time mataxy of proton hux as a functicn of energy at $I=1.25, B=209$ for the first and tenth solas. cycle78
17. mos mean provon 11fothw, onergy spacton as a thootion of position at solar minimsa 79
18. The mean proton titethres, 7 cnexgy spectinm en a function of postition at solea mextmum........... . . 80
A.I. Gohomatic of a wraped partiche's north-bouth motion. . 81
Acti. The velghing sector A (λ) versus Latitude fos various

LTST OF PABYES

Table Fage
2. Diornel avereeca number densithea of Helinum (He) Es function of alutuade for Pive solar ilux numbers 83
2. Diumat averoged mumer densities of Oxygen (o) es a function of altitude for five solar thux numbers 84
3. Diwrasi avereged number denelties of Moleculam Oxygen (0) es a function of altitude for five eolar fiux numbera 85
4. Diumal averaged number densities of Nitrogen (Ae) as a Amotion of atutude fox mive solar flux numbers 86
5. Dituraal avergged number densitiee of Hydrogen (H) a a function of atutude for five soler nlux numbers 87

ABSTRACM

This report presentes a study of the solar eyain tariation of Whe protor pomulation of the innes radation belt. The analysis includes proton energlee from 10 to 700 Nev fa appropriate field line, $H_{2}=1.25$, end various values of field strengim, $\mathrm{B}_{\text {, }}$ are in vestrected. A particle conservotion equation contaniny souxces and loases of innor belt protors is established using an averaged atrosphere and numerically integreted over e number of colar eyeles. The proton source texm used in the conservation equation is the abwowhere deckytng albedo neutrons, while the lons processes veed are atmospheric iontation and nuclear intexactions. Using Herria end Friester'g (3) models, an averaged atmospherio model. is constructed in tems oi B, L coordinates winch reprenents the nuber density tropped paxticles would, on the averege, ancounter. The procest laciudes divenal, longitudincly northobowh end "bounce" svereging. The time dependence of the model ia constructed for a typtcal solex sycle usins averaged information of the recent past. Although the model is tine dependent, it is indepondent of a perticular oolar eycle. Eoth steadystate and transient conditions are calculaced as a function of belt coordinates. Froton slux apectra for solar meximum and noler minimur are calculated. Transient spectra are presented showing the dynamical cenavior of trappad protons when infiuenced by the Rluctuating awosphere. Comparisons
ewe made with the trensient and stendy state proton popalation celcalations. The wesulta indicete that the proto pepulation Lis changed by en order of magnt tude from solar naximun to soler

 are calculated as manction ozenergy and $\overline{3}$ at solar minimura and solex matimas.

IITRODUCITON

The aiscovery of the eartin's radiation belt by the Explorer I fleght of May, 1958 (Ven Alzen, Ludrig, Ray, Mentwain) hes inftiated much intexect in trapped particle phenomena. In the following five yearo, data has been colleoted and analyzed, yielding a great deal of precemeal infomation describing the radation belta. The comprexity of the problem, along with the vauaal, but necesoary, equipment, that $i f$, satellites, hes hiden the complete explanation of trapped particles. The inner zone of the radiation belt, defined ac altitudes less them approximately one earth rects, has been more thoroughly investigated. Thiss is promably due to its proximity and the state.of-the-art of booster and trackine abilities at the time of the belt aiscovery. Contributions of reseaxchers denling with the exploxation of the imex belt are reviewed es background for the more recent publicetion by Eizzelle (2) which initiated this investigation.

Betore Van Allen's discovery, research wes progessing along amother path; thet of expleining the polar aurora ceused by charged particies. In 190, Stomer studied the wotion of a charged perticle in a dipole field in an totengt to explain aurorel phenomene. A dipole rield was used since thin model represents the eerth's field to e firct approxtmetion. He found thet charged particlec coming from infinity could not be trapped by a dipole fleld lise the earth.

The pertieles would either strake the earth, or be dellected by the magnetic theld and retuan to intinity. Consequenty, workere in the field were led to the conclucion that the inner regions were empty of extra-terrestriai perticles. Stomer's work on the study of motion or charged perticles in the vichnty of a dipole field proved a valuable stepping-stone in light of the belt discoveries 35 years 2ater.

An inportent advance, as fer as eaxth trapped particies ere concemed, came 50 years latex, In 1953 Treiman's celculations of cosmic ray secondaries, or "albedo" particlen, to explatn rocket weesurements indicated that low energy pextieles could exist in the earth's magnetic field. The idea of the obedo particle hypothesis came to be one of the more accepted sources in recent years tor high energy protong in the inner belt. The curreat clbodo hypothesis is as Rollows extre-terrestrial perticles strike the atrospiere producing neutrons and other perticles. The neutrons, not being affected by the earth's megnetie field, bcatter in all directions, Artar e chort tine (i.e. 10^{3} seconds) the neutrons decay into protons. The zesultins protons are affected by the earin"s megnetic field such thet sone are "trapped", that is, conined to a reglon above the earth"s surface. It the altitude at which the trapping occurs is low, tie protons will be reac̃ly lost by collisions with the atmosphere and rill not signipicantly contribute to the belf population. When, hotever, the trapping occurs above the dense lower atrospinere, the protons will stay longer end thas contritoute signipicantly to the belt pogulation. This breaktarouch atimulated new

Anterest $4 n$ explenning the aurort by brappea charged particles. Singex (2955) postulsted the extstence os trapped partielen to Hoduce an exrth bound ming ourrent. Singer used the pertuxbation bheory of bwepped charged partichec formulated by Ativen (1950), Thich predicts thet changen perticles will diset in Longitude and Whereby produce an enicctive longthudnal cuxaent. The interection of the xing curxent end the megaetie fiejo man investiseted analytu eslly. An vnswceessiul attempt wes mede in Nowember, 2957 to

 showed enomalous countang metes at an altituat of apyroximetely one enxth radit, Van Allen m gorrect intexprotation ow the Gelem conncer reading as due to bugh flux encountexs or brepped particles opened new paths $2 n$ the explorethon and description of the trapped. paxticle phenonera.

A demexphtion or the belt whily involoco tise followixy etx guantitates:
(1) J. . the omiaixecthonal slux of the type garimele, i heving enexgy (where 1 \# pxotoxs election, ete.)

(3) (2 the kinetic onergy of the 1 pertiche.
(4) t - time

By utiliaime tha geomanetic coozdinatea, I qua 3; the spetiel dopendence can on greathy simplisied. The use of tixn poordinte byctem is ebsentially dut to the fact that trapped partiolee possess
a longitudinal adiabatic constant of motion, I, which can be utilized in mapping, The fact that particles are "trapped," that 1s, the magnetic moment of a charged particle is a constant of the motion (see Appendix B for discussion) produces a "mirroring" motion whereby a particle spirals about a field line between a magnetic fiela B_{0} in the northern hemisphere and the same value B_{0} In the southern hemisphere. Due to inhomogeneities in the fiela, the whole configuretion arifts. The arift is such that

$$
I=\oint_{M}^{M^{\prime}} \sqrt{1-\frac{B}{B_{0}}} d l
$$

is a constent. I ia called the longitudinal integral invaxiant and M and M^{*} are the northern and southern mirror points and B_{0} is the value of the field at M. The locus of B and I produces rings in the northern and bouthern hemisphere where the southern rings are called the conjugate rings. The locil of lines of force connecting the rings are defined as a magnetic shell. Thus, rather than describing measurements of $97 u x$ at points in space by x, x, and 6, the spatial distribution of trapped particles is defined by

There are actually three adabatic constants of motion of trapped particles. These are the magnetic moment, the longitudinal invariant and the flux invariant. These constants are usually called adiabatic since their constancy depends upon how rapidiy the magnetic field changes.

Labeling the magnetic shelle by Eo, and I since the perticle flux is aprowinately conctant on this shein (10). Wertwain (10) in 1961

 e dipole field, it is equal to the equatorial distance fron the center of the aaxth to the 1 the of force At preaent, the use of
 involved in the exploration of the trapped yastugen.

Soon sfter Ven Allen's chscovery, setelluter fitted with counters vere sent to obtatn date on the trapped partacies. gho atellites were sent in the midale of 195 to explore the spatial astributions of tha new phonowent They were Hmplorer Mif (Van Allen, Mothwein, Tudtigs 1959) enc Sputnit ITT (Vernov and Chudekov, 1960). The tate From noth natelthtes induceted two distinct reghons of high
 a gace probe catrying getger cownters nad letwohot in December, 1958, indicated the sane resut. The two recions rete celled the
 the low counting rate wan called the "Glot." An qubsecuent satellates Were sent with more dserfmaething partele counters, the idea or two astinct regione becume lese believable, Explorez xil (o'Brian,
 tith low encrgy eleptrons (≥ 40 Kev) and proton ($\mathrm{E} \geq 100 \mathrm{Kev}$) Whth epproximotely the tame intensties. It it now belleved thet tha earlicr matelliten which were equipped with non-tiscriminating

and the high energy electrons at $\mathrm{L}>2 \mathrm{e}_{\mathrm{*}} x_{*}$, thus producing the two distinct regions. The names, Inner and Outer region, have been kept by researchers for historical reasons and also to indicate two possible origins.

A current description of the radiation belt is given by Figure 1-1. (This has been reproduced with the permission of Hess (26), The figure describes the radiation belt by separating the omidirectional flux of protons and electrons into energy categories. The omidirectional fux for the different energy categories are plotted in R, λ space where R is the geocentric distance and λ is the magnetic latitude. That is, the magnetic coordinates B and L are transformed to R and through the dipole fleld equations (these are stated in Appendix A). It can be seen from the two Lover figures of high energy protons and electrons why the early experimenters, who used nondiscriminating counters, might have distinguished the belt into two regions. An excellent review of the discoveries leading to the current spatial description of the radation belt is given in References 26, 27 and 28. The protons whtch are investigated in this study are the higher energy protons, statically described by the lower right-hand figure. The portion of space considered in this study, as can be seen from this figure, is confined roughly to magnetic latitudes of 30° and geocentric distances of 1,2 to 2,0 earth radif. The protons are probably the best established component of the radiation belt, mainly due to data taken by Freden and White from nuclear emulsion stacks flown in April, 1959 and October, 1960.

Soon after data becgmo available, trapped partfcle reaearchers began to verify their theories of meohanisms describing the radiation belt: A model evolved containing bwo processes; a source and a loss process of trapped protons. The source of the inner belt protons was found to be reflected atmosphexic decaying neutrons coming from galactic cosmic rey collisions, while the loss of protons was found to bs due to near atnospheric collisions, Investigators $(7,9,16,17,18)$ have established these mechanisms from data. A brief review of their contributzons will be mate in order to establish the model used in this study. Utiligation of their contributions will be made throughout, whenever possible.

Papers by Lencheis and Singer ${ }^{(16,17)}$ Freden and White ${ }^{(7,18)}$, Hess (9) have shom good comparisons with the data using reflected atmosheric neutrons due to gibletic cosmic rays as a source for inner belt protons, The data in the comparisons were taken from the nuolear emulsion stack flown on April. 1959 and October, 1960. (Freden and White). The energy spectrun of the source used to evalunte the data wes found to be a function of $E^{*} \mathrm{Z}$. There is some smeil aifference os to the power of eccording to singer (15). This afference 1 . 0,2 and, for the most part, would not appreciably affect the results. Furthermore, it is pointed out by Singer that this is within the observational accuracy of the data. In accordance, the source spectrum of protons in this paper will be f(E) ${ }^{-2}$.

Removal processes for protons trapped in the belt have been investigated by various peopie $(1,7,9,16,17,18)$. Lenchek and Singer; ${ }^{\text {(17 }}$)
paper enumerates the current theories for proton losses. They are, elastic or Coulomb scattering, inelastic scattering, nuclear interactions, and losses due to non-adiabatic effects. The inelastic scattering, referred to as the ionization Loss mechanism by others, is a significant contributing factor to proton losses throughout most of the enexgies considered in the paper, becoming dominant at lover energies $\mathrm{E}<300 \mathrm{Mev}$. This loss mechanism is used in describing the proton population. Elastic scattering, although of major importance to light trapped particles like electrons, is considered to be negligible for the heavy partleles, like protons (17). Consequently, elastic scattering is not considered. The nuclear interaction losses, that is, proton losses due to catastrophic destruction by running into atmos* pheric constituents, thereby causing a nuclear reaction, have been used by Freden and White ${ }^{(7)}$ and Lenchek and Singer (17) in their analysis of proton fluxes for high energy protons (E $>300 \mathrm{Mev}$). They indicate that the inclusion of this loss process becomes necessary at higher energies $(17,7)$. Since this energy range is of interest, this mechanism is used along with elastic scattering. The last loss mechenism, nonadiabatic effects, is discussed by Lenchek and Singer (17). The criteria of this condition is,

$$
\left|\frac{\nabla B}{B}\right| \ll \frac{1}{a}
$$

That is, the magnetic field doesn't change appreciably as the particle spirals about a field line with a radius equal to a. To obtain a
rough ides of the aize of this condition, consider a 700 Nev proton neax the equator splraling around the $L=1.25$ line, The ratio of $B / 7 B$ for a dipole field approximation is

$$
\frac{B}{\nabla B}=\frac{E}{3} \approx 3 \times 10^{8} \mathrm{~cm}
$$

The radius of eyretion, whon near the equatow the laxgest, of a 700 Mev proton mirroring at laxge latitudes is:

$$
\begin{aligned}
a & =\frac{m v}{q} \sqrt{\frac{1}{B_{e} B_{m}}}=\frac{1.7\left(10^{-24}\right) 2.5\left(10^{10}\right)}{1.6\left(10^{-20}\right)} \sqrt{\frac{1}{(.15)(.26)}} \\
a & =2 \times 10^{7} \mathrm{~cm}
\end{aligned}
$$

Or, a is smaller than $B / 2 D_{\text {. As the velocity decreases the redius }}$ of gyration decreases and the ediabatic condition 1 anless apt to breals aown. Thus, the loss of protons due to the breakdown of the adiabatic condition will not be considered.

To summarize, of the four removal theories mentioned, only inelastic scattering and nuclear interactions are used in this paper. The remalning two are omitted for the following reasons respectively; 1) the tapped charged paxticled investigated are protoan; 2) the enexgien of the protons axe $>10 \mathrm{Mov}$; 3) the lines of force are confined to the inner region of the radiation belt. Or, referring to Figure $\mathrm{X}-1$, the protion of the belt investigated. as a function of time is described by the Lower wight hand figure which can be adequately calculated by using a cosmic ray albedo source and the aforementioned Loss processes.

Previous observations have not indicated large veriations In the proton populetion of the inner part of the radiation belt.

Outer belt (t>2) measurements, on the other hand, have shown large variations and axe cumently being studied. Pizzenla (2) indicated in his paper that Yoshida, Luduig and Ven Allen (1960) have show from Explorer I data that the change in the proton population is less thas a gactor of 2 for a two montz period. Data from Explorer IV (TcIvein, 1961) indicated the game results Sor a chree month period. However, pizzella'(2) collected data from the Explorer YII satellite Lor a period of fourteen months definttely indicaces a trend in a sizeable ohenge of the inner belt population. The plots of counting rate versus time (for $L=I .25$ to 1.5) prasented by Plzzella (2)(Fic. 4) show: a steady fncrease in counding rate thth some superimposed variations. Although the net chenge $\mathbf{4}$ about 4 or $5(L=1.5)$ to 2 or 3 $(L=1.25)$ Por the Pourteen month period, there is a steady increase in the belt population. This Leads to curious questions: why the steady increase - - and whet will be ite net change? An otterpt in made in this paper to answer these questions by inventigating the effects that the expanding and collapsing atmosphere In conjunction with a time varying source have on the trapped protons In the Imer belt. The solar eycle dependence of the fatenstity of galactic comme rays has been investigated by MoDonald and Webber (20,19). A current estimate ${ }^{(19)}$ of the relative change of neutron soler source strengin from solec maximun to solsm minimutis 25 , weye soler maximon is smaller due to the exclusion of some gelactic particles
by the Gu* incxeaed tertwity In matitlon to the chonge in bourct atrenteh is the perioctic change of the etaosphere aematty by aprowatraty an order of magnthude due to exosphexac heatng (3). If twons out that these two effects are resonant. That is, at solet
 average, thereby allowig the protons to live longer. At the same Whe, the source atrength is a maxtman, or moxe protang on the average axe heing supplied into the belt due to the decreased activity of the sua. Thua, the net effect is that more protons are available
 eatect bazes place. It is belneved thet these bur feetors shoula produce noticeabie espect prex a pariod or tine duial to solky eycle (approximately 11 yeers). He 10 atso belteved thet sone of the otady change in countrug rate observed nom datis telven over a ahort pexiod of the las compred to the auration of typical solay aycie) collected by mazella coula be are to this effect. A stuly has been completed warn fruestugateg facse estects on the

 pronented $2 n$ the nollowing dections.

ANALYSTS AND CALCULATTOMG

The Average Atmosprexic Nodels

The study of the proton poplation depend primatily on the atnodphere since losses of protons ere due to the atnosphere. The atmonpare is a function of nemy variebles, lise latituce, time of day, height, etc. To develop the atmosphere in a detailed kamer
 posemble to construct an everage nodel which, ovet long oapling periode. would give reasonable representation of the eaxth's atnosphore. This is by no mean anything new. However, an attenpt wil be made in thas section to develop a soln cycle the dependent atnosphere in tanme or whet a trapped particle woule "see" Whale moving about the Barth"s macnetic field. (Gee Appendx B for discussion of trapped pertiele motion The uvereged models mill be transformed into B_{3} L space ance this cholee of coordinatea hes been adapted by woit trapped paxticle expeximentera. The $B_{,}$L transformation uted is thet developed by Ncllvain ${ }^{(10)}$ using the 48 aphericel hamonic doepricienta of Jenson and Gain ${ }^{(21)}$. This transfomation has been programed for a 7090 IEM dictal computer. the input to the progrom is the geocentric ophertal coordinates (bys d. were h is altutude in km, is geocentric latitude in degrees, and it geocentric lonstude in degrees. Desteally the prosram
numeriaally integrates the loagitudinal invariant 1 using a series expansion for the magnetic ifeld. Then using a dipole representation of the earth, the program calculates L which is a function of I and B, This program is currently being used at the Goddard Space Flight Center Theoretical Division (12).

The basic models used in this study are the ones generated by Harris and Priester (3) which give the hourly number density for five atmospheric constituents, $\mathbb{N}_{2}, O_{2}, H_{e}, H, O$. There are five models generated. Each model refers to a given solex radiation flux in units of 10^{-22} watits/m $/ \mathrm{m}^{2}$ cyle/sec. The link between solar $\mathrm{mlux}, \mathrm{S}$ and time is given by Figure 1. (This has been reproduced with the permission of Harris and Priester (3) . The dotted itne superimposed on the curve represents the average yearly variation of S with time. Notice that the cycle is unsymmetrical. This unsymmetrical nature of the time variation will appear later in the proton population calculation. As been from the curve, the s variation begins at 1947. Since the results are applied to recent data and since an estinate of the fiux for the coming solar mintmum is of interest, an approximate extrapolation has been made. The extrapolation beyond 1961 is an average between the extrapolation of Flguxe 2 and corresponding values less than January, 1954. The constructed mean solar cycle with epoch at Jenuary, 1954, is given by Figure 2. As can be seen, the ungymetrical nature is retained. It nast be noted here that this curve represents an estimate for the next four years using information from the curzent solar cycle and assuming the cycle will last 11. years.

The finst atep in amiving at the average models is to calculate the diurnal average number density of each of the five models presented by Harris and Prieater (3). The sum,

$$
\bar{\Omega}^{j}=\frac{1}{24} \sum_{i=1}^{24} \Pi_{i}^{j} \text { atoms } / \mathrm{cm}^{3}
$$

is computed where the five atmospheric elements are $j=H_{e}, O_{,} O_{2}$, N_{2}, H and where i refers to the hourly value of the density. The walues of $\bar{n}{ }^{j}$ are presented in tabular form es a function of g and altitude in Tables 1 through 5. The diamal average is takea because protons aripting in longitude around the earth have periods of revolution on the order of 1 to 30 minutes (9). Thus, over a period of 24 hours the daily proton population variation will tena to be averaged out, or at least be second order effect compared to the soler cycle expansion of the atmosphere, which is 11 years. This does not mean that the lougitudinal. Arift of trepped protons is belng neglected, but that the short term the effects will not be considered.

The second step in constructing the solar cycle average atmonphere is to considex the longitualnal drift of protons along a B, L contour. Contours of northerm and southern field lines were generated using the $B, 4$ digital code $(10,11,12)$ previouniy mentioned. Figures 3 and 4 show the B eontours sor $L=1.25$ as a function of altitude and longitude. Figure 4 pepresents the southern conjugete field lines of Figure 3. Both figures show the inhomogeneity of the earth's field in the northern and southern hemisphere. As is seen by comparison of these two figures, the southem hemisphere minimum altitude is lower by
approminately 600 ox 700 im than the northem lineo near longitude . 40°. This is what is comony referced to as the South Atlantic anomaly. The maximur altitude for a given B, I contour occurs in the nowhern hemophere, For this particulaw l line the maximan altitude is not appreciably greater in the northem hemisphere than in the southem hemphere. The calculation of the longitucinal average density \tilde{n}_{k}^{j} is done by the sum

$$
\bar{\Pi}_{k}^{j}=\frac{1}{35} \sum_{i=1}^{3 \omega_{1}} \bar{\Pi}_{i}^{j}(\varphi) \quad \text { atoms } / \mathrm{cm}^{3}
$$

where F reters to northem or southern hemisphexe and were $\vec{n}_{1}^{J}(r)$ is the diumal averge number density on the jtin constituent at Longitude which corresponds to ea altitude from igutes 3 and 4. The gactor 35 is used becance equal increnents of 10° in longtude were used to evaluete $\overline{\mathrm{n}} \frac{\mathrm{j}}{} \mathrm{j}$. The longitudinal average was periomed for both southern and northern hemspheres for each of the five 5 models and for each of the five constituenta. Both hemispheres wexe then avernged together to give a componte loagitacinal average na^{3} or the jth atmospheare constituent. As might be suspected, the cow postte longitude mudel 2 s strongly influenced by the southern snowaly Which dips low in altitude. Extrapolation was necessary since the atmospheric tables (Tebles I through 5) used in celculating the longitudinel average include altitudes of $120 \leq n \leq 5000 \mathrm{~km}$. The range of extrapolation an be seen from faures 5 and 6 . These figure ane constant minimm altitudes in the southern hemisphere and constart mevinum altitudes in the northern nemisphere cross-plotted into B, L space. These figuren were reproduced with the pemingion of Hesc,

Blanchard, Staesinopoulob(13) From figures 5 and 6 the limit of the tables 1 fox $L=2.25$ lies between B^{\prime} 's of .231 and .168 where the maximum altitude is obtained from the northern hemisphere and the minimum altitude is from the southern hemisphere. Values of density above and below these B's were obtained by logarithmic extrapolation.

The last averaging step ts to adjust n in j due to the protons north-south mirroring motion. This process, in essence, reduces the magnitude of the tables due to the motion of a proton from a mirror point at low altitude and high density moving towards the equator at high altitude and low density, As one might expect, the amount by which \bar{n}^{j} is reduced depends upon the are distance away from the equator. As the are distance approaches zero, the correction factor becomes one. The calculation of the "bounce" average 言 is made by evaluating the integral; (See Appendix A for derivation and discussion of the bounce average)

$$
\overline{\bar{n}}^{j}=\frac{\int_{0}^{\lambda_{0}} A(\lambda) \overline{\bar{\Gamma}}^{j}(\lambda) d \lambda}{\int_{0}^{\lambda_{0}} A(\lambda) d \lambda} \quad \text { atoms } / \mathrm{cm}^{3}
$$

where

$$
\begin{aligned}
& A(\lambda)=\cos ^{4} \lambda\left[\frac{4-3 \cos ^{2} \lambda}{a \cos ^{6} \lambda-b \sqrt{4-3 \cos ^{2} \lambda}}\right]^{1 / 2} \\
& a=\sqrt{4-3 \cos ^{2} \lambda_{0}} \\
& b=\cos ^{6} \lambda_{0}
\end{aligned}
$$

> Do mixnox point jatitude
> \bar{F}^{\prime} I () lonetwadnal atmosphexic number aensity of the jth constituent as a fuction of latituder $x^{\text {a }}$

The intesral is evalwated numerically for the five 5 modele ond the iIve atmospheric comstituents. The \bar{n} (B) tebleo texe tranc. formed into in 1 (1) by the magnetle aipole traneform

$$
B=\frac{M\left(1+3 \sin ^{2} \lambda\right)^{1 / 2}}{I_{e}^{3} 1^{3} \cos ^{6} \lambda}
$$

The A (X) is introduced into the Integral due to the fact that protone are spiraling about the gela lines rather than bouncing bect and forth along the field 1ind. The spiraling notion is such that protons btay longer near the mirrox point then ot the equator. This effect is teken into account by welghing the avergge calculation with reapect to Latitude, by the inclumion of A() .

Upon completion of the bounce average, the atmosphere constituents are now conctructed in terme of wat the trapped particles woutd encountex. Tha functionol aependence is aolar ghw S, magnetic induotion B, cnd iseld line $2,2.25$. The 5 constituents are pat tozether to form the averuge nutuer of otygen atoms $/ \mathrm{cm}^{3} \mathrm{by}$

$$
\overline{\overline{\bar{\rho}}}=1.75 \overline{\overline{\bar{n}}}\left(\mathrm{~N}_{2}\right)+\overline{\overline{\bar{n}}}(0)+.25 \overline{\bar{\Pi}}^{(\mathrm{He})}+2 \overline{\overline{\bar{n}}}^{\left(\mathrm{O}_{2}\right)}+.125 \overline{\bar{\Pi}}(\mathrm{H})
$$

for each of the 5 S modele, The atmosphere 10 ropresented in terna or oxysen in order to relate the energy loss due to the atmosphere with dete baken by Aron, Hosman and W1110ms (5). Thit procecture of *epresenting the atmonphere in terns of the average oxygen nuber density will becowe mowe apparent in Gection 8 Where the partiole
conservation equation components are described, Figure 7 shows as a function of B for the 5 S models at $\mathrm{L}=1.25$.

As is seen from tinis figure, the 5 models meet at about $B=.25$, That is, the model corresponding to solar meximua ($\mathrm{S}=250$) is the some as the model et solar minuma ($5=70$). This efeot indicates that near B^{\prime} s of this value for $L=2.25$ the solax cycle exfect is negligible.

The nodels generated are for a particuler line of force, $\mathrm{L}=2.25$ and the 5 models. From Figure 2 , 5 versus time, it is a straight Sorward ealculation to eliminate S for time by interpolating between the curves. Pigure 8 show the resulting time dependence of the atrosphere in teras of the scale factor;

$$
\underline{R}(L=1.25, B, t)=\frac{\left(\text { oxygen atoms } / \mathrm{cm}^{3}\right)_{\text {ATMOS }}}{\left(\text { oxygen atoms } / \mathrm{cm}^{3}\right)_{N T P}}
$$

Where (oxygen atoms $\left./ \mathrm{co}^{3}\right)_{\text {MPP }}$ cones from the following relationship of an ideal gas:

$$
22414 \mathrm{~cm}^{3} / \mathrm{kmole}=.60249 \times 10^{24} \text { atoms } / \mathrm{kmole}
$$

or

$$
\text { (oxygen atoms } \left./ \mathrm{cm}^{3}\right)_{\text {NTP }}=2.69 \times 10^{19}
$$

The ratio R is calculated in order to relate the enexgy loss of the atnosphere wit the measured energy lose data (5). Explicitiy, the energy loss/unit length at IWP conaitions for an oxygen absorber is Given in Reference 5. To Find the corresponaing energy loss/length for the atmospheric conditions which is represented in terms of oxyeng, one multiplies by R.

The net result in constructing the atmosphere in the preceding feghion is meinly to eliminate drectionel difficulties in the following discussion of proton spectra nad lifetimes. As can be seen from each of the averasing processes an attempt hes been made to represent the atmosphere in terms of mat the trapped particle would encounter while moving about the earth ox, in other words, replacing the problem by an averaged time dependent absorber which varies periodically mith a period of 11 years.

The atudy of the vaxiation in the proton population requires knowledge of the condttions which governs how protons are supplied to a given region and vinat processes take protons out of the same region. In other words, whet are the sources and sinks for trepped partickes? If they wexe knom completely, a particle conservation could be eatabm Lished and the proton popalation would be knom at any instant of tine and position. It is attempted in this section to describe the proton population on an average basis using the decaying atmospheric neutrons as the souree of protons and to develop the solar cycle average ionization and nuclear interaction Losses. The purpose of this section Is to construct the particle conservation equation used in the study, The resultant equation will be similer to that used by Freaen and White ${ }^{(7)}$, Lenchek and S ngex (17) and Hess ${ }^{(1,9)}$ in theis studies or neutrons es a source and the steady-state proton population.

The continut equation can be written as

$$
\begin{equation*}
\frac{\partial N}{\partial t}+\nabla \cdot \bar{J}=0 \tag{1}
\end{equation*}
$$

where $\frac{\partial \|}{\partial t}$ is the time change in the number of parbicles/ cm^{3} at a given point, This is a statement of the conservation of particies which does not involve any sources or sinks, that is, perticles being
created or destroyed ingle the volume. Equation (1) also striates that the particles can be described by specifying the spatial coom dinates only. That $i s$, ot a given dime the particles in the volume are not distinguishable. As was stated earlier, it is convenient to describe the trapped particles at any time by distinguishing the pattiales by their energies since a given particle nay change its energy. To introduce the concept that the particles being counted are described by both position and energy, it is necessary to write equation (I) in sow dimensional space, with tit the fourth dimension. That is,

$$
\begin{equation*}
\frac{\partial N}{\partial t}+\nabla_{4} \cdot \bar{J}=0 \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& N=N(x, y, z, E, t) \\
& \nabla_{4}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial E^{\prime}}\right) \\
& \bar{J}=\left(J_{x}, J_{y}, J_{z}, J_{E}\right)=N\left(\frac{\partial x}{\partial t}, \frac{\partial y}{\partial t}, \frac{\partial z_{1}}{\partial t}, \frac{\partial E}{\partial t}\right)
\end{aligned}
$$

Considering the trapped particles to be protons end separating out the 4 th component, equation (2) can be written es,

$$
\begin{equation*}
\frac{\partial N_{p}}{\partial t}+\nabla_{x} \cdot \bar{J}+\frac{\partial J_{E}}{\partial E}=0 \tag{3}
\end{equation*}
$$

where,
$N_{D}=$ proton number dersity (protons/onsonev)
$\overline{\mathrm{V}}=$ proton velocity $(\dot{\mathrm{x}}, \dot{\mathrm{y}}, \dot{\mathrm{z}})(\mathrm{cm} / \mathrm{sec})$

$\gamma_{x}=\operatorname{spatial}$ exadient $\left(\frac{\partial}{\partial x^{s}}, \frac{\partial}{\partial y} \frac{\partial}{\partial z}\right)$
$\mathrm{E}=$ minetic energy of the protons under investigetion (Mev)
$J_{E}=N_{p} \frac{\partial \pi}{\partial t}$, energy component of the flux density

Equetion (3) represents the conservation of paricles which have energy B. Thet is, the diverence berm acconts for particles leaving a volume while the extra term in equation (3) eccounts for the chonge in the proton density due to the chargea in proton enerey inside the volume.

The ascumption is made that

$$
\nabla_{x} \cdot \bar{J}=0
$$

That is, the region noder investigetion is cuch that the fux incide is a constant with respect to position. The element of wolume considered Is a tubular shaped aylinder centered about a Ine of force, H , exw tending frow a fixed mognetic flela Bo in the noxthem hemsphere to the same value in the southem hemaphere. The change in proton muber of protone of energy I vould be due to geins or losses of energy incide the volume. With this in mind, equation (3) becowes

$$
\begin{equation*}
\frac{\partial N_{p}}{\partial t}+\frac{\partial}{\partial E^{\prime}}\left(N_{p} \frac{\partial E^{\prime}}{\partial t}\right)=0 \tag{4}
\end{equation*}
$$

Eqoons of energy t are being added to the volwe due to decaytur albedo neutzons and, similarily, protons at enercy ere beins lost
by catastrophic collisions with other particles. To account for these phenomena, equation (4) is adjusted to,

$$
\frac{\partial N_{p}}{\partial t}+\frac{\partial}{\partial E}\left(N_{p} \frac{\partial E_{1}}{\partial t}\right)=S-L_{N}
$$

Rearranging leaves:

$$
\begin{equation*}
\frac{\partial N_{p}}{\partial t}=S-L_{M}-\frac{\partial}{\partial E^{\prime}}\left(N_{p} \frac{\partial E_{1}}{\partial t}\right) \tag{5}
\end{equation*}
$$

Where the change of the proton population with respect to time at a given energy B is given as three texms; a source of protons S , a loss of protons I_{N}, and a change of energy of the protons due to atmospheric absorption of energy. In other words, a field line L is chosen and a mirror magnetic induction B_{0} is fixed. The change in the average numbex density of protons at time t, of energy E, at B_{0}, L is of interest. Protons of energy \mathbb{E} gyrating from northern to southern mirror points run tinto atoms of the atmosphere and are destroyed and no longer avallable for counting, this is the I_{H} term. Protons of energy E are being supplied into the field line by decaying albedo neutrons, and consequently are avallable for counting; this is the S term. Finally, protor of energy E lose some of their energy by lonizing the atmospheric atoms and consequently are not counted since they are of different energy. This effect is included in the last term in Equation (5). Thus; equation (5) represents the conservetion condition of trapped protons which yields the of change of the proton number density with time,

While the integral gives the total number of protons $/ \mathrm{cm}^{3}-\mathrm{Mev}$, or the proton population at any time t.

As stated eariser, to describe the proton population it is neeessary to include all sources and losses, However, as discussed previousiy it is possible to omit some. This can be done by limiting the region of applicability of the results. With this in mind, the two texms S and $I_{n \text { will }}$ be expanded into a convenient form.

The nuclear interaction loss term I_{p} used in this study is basically that used by Freden and White ${ }^{(7)}$. Let $\sigma(5)$ be the area of the 3 th atom of the atmosphere such that if a proton hits that area it will be destroyed, $\overline{\bar{n}}$ is the average number of 5 atoms $/ \mathrm{cm}^{3}$ availabia in the volume. If J is the incident flux, then the Eraction of flux loss in passing through a volume of thickness di is:

$$
\frac{\Delta J}{J}=\overline{\bar{\Omega}}^{j} \sigma(j) d l
$$

The loss rate of the number of protons/ cm^{3} in terms of thux is

$$
L_{N}=\frac{1}{v} \frac{\Delta J}{\Delta t}
$$

From the above equation of the fraction of flux loss by passing through the element of volume, the $I_{\text {a }}$ term becomes

$$
L_{N}=\frac{1}{V} J \overline{\bar{n}}^{j} \sigma(j) \frac{\Delta l}{\Delta t}
$$

Or,

$$
\begin{equation*}
L_{N}=N_{p} V \sum_{j=1}^{5} \overline{\bar{I}}^{j} \sigma(j) \tag{6}
\end{equation*}
$$ Where n is the average number of j atoms/ cm^{3} of the j th constituent of the atmosphere previously calculated and $\sigma(j)$ is the interaction cross

section of the fith constituent and the 5 indicates the number or eonbtituenta considered.

By aefining

$$
\Sigma=\sum_{j=1}^{5} \overline{\overline{1}}^{j} \sigma(j)
$$

equetion (6) can be witten more conveniently as

$$
L_{N}=N_{P} V \Sigma
$$

The value of efor oxyen ued for the calculation of is from Freden and White ${ }^{(7)}$ mith is

$$
\sigma(0)=.36 \times 10^{-24} \mathrm{~cm}^{2}
$$

The interection cross section of Helium uced is

$$
\sigma(\mathrm{He})=.143 \times 10^{-24} \mathrm{~cm}^{2}
$$

For simplietty of calenlation, it is assumed chat the Hitroger interaction cross section is equel to thet of oxysen and the Hydrogen contribution is negligible. Thas, the calculation of is,

$$
\Sigma=\frac{\overline{\overline{\bar{n}}}(\mathrm{He})}{2} \sigma(\mathrm{He})+\left[\frac{\overline{\bar{n}}^{(0)}+2 \overline{\overline{\bar{n}}}^{\left(\mathrm{O}_{2}\right)}}{8}+\frac{2 \overline{\overline{\bar{n}}}}{7}\left(N_{2}\right)\right] \sigma(0) \quad \text { atoms } / \mathrm{cm}
$$

The pulsation or the etnosphere causes the so be a function of time in the colex cyele as well as position. Figare 9 shows loge 5 as a function of tine for various values of B et $\mathrm{I}=2.25$. It can be seen that as B increases, the variation froa solar moximun to solar mintmon decreases. Or, as might be suspected, the "oreething" atrosphere ie not as pronounced at lerge B_{B} whel corresponds to low altitudes.
 albedo neutron decays. The neutrons are produced from cosmic ray protons colliding with oxygen and nitrogen. The produced neutron scatter in all directions and subsequentiy decayed into protons. The neutrons which escape trom the stmosphere and subsequently decay will be injected into the belt. The form of the proton source, S to be used in this study is essentially the same asthat used by Hess (1) with some minox modiflcations. Specificelly, these are the adaition of the solar cycle the dependence and the transformation into B, f space. Due to the neanty equal masaes of protons and neutrons the energy of the proton resulting from neatron decay $1 s$ vexy near the energy of the parent neutron. It $1 s$ possible to assume that the proton"s energy, and direction of motion is that of the parent neutrons or that the source of proton is equal to the decay density of neutrons. That is,
where

$$
S(E)=\frac{d n}{d V}(E) \quad \text { neutrons } / \mathrm{cm}^{3}-\sec -\text { Mev }
$$

dn(E) is the number of decayng neutrons/sec at energy E (neutrons/sec/Mev)
dv is the element of volume $\left(\mathrm{cm}^{3}\right)$
If is the number of undecayed neutrons present in en element of volume dV and the average life of the neutrons before decaying into protons is t seconds, then the number of decaying neutrons per unit time 1s

$$
d J=\frac{n}{\tau}
$$

Letting N be the number of neutrons $/ \mathrm{cm}^{3}$ in the element of volume gives

$$
d n=\frac{N d V}{\tau}
$$

Or, the number of decaying neutrons/sec/element of volume is

$$
\frac{d \cap}{d V}=\frac{N}{\tau}
$$

Defining J_{N} as the neutron flux results in the source of protons as

$$
S=\frac{d M}{d V}=\frac{J_{N}}{V \tau}
$$

The neutron flux leaking out of the atmosphere has been calculated (26) from measurements of the neutron energy spectrum inside the atmosphere. The resultant flux of these neutrons, in the energy range considered in this study, was found to be

$$
J_{N}=.8 E^{-2} f(r) \quad \text { neutrons/ cm } \mathrm{cm}^{2}-\mathrm{sec}-\mathrm{Mev}
$$

where $f(x)$ is a non-dimensional spatial dependence of the neutron flux. Following Hess (1), the decay density of neutrons is given approximately by

$$
S=\frac{d n}{d V}=\frac{\varphi}{v \gamma \tau}\left(\frac{r_{e}}{r}\right)^{2} \exp \left[-\frac{r}{v \gamma \tau}\right]
$$

where r_{e} is the equatomal radius of the earth ($r_{\mathrm{e}}=6378,2 \times 10^{5} \mathrm{~cm}$) and where γ has been added to account for the dilated neutron mean Life. The other quantities in this equation are defined as follows:

$$
\begin{aligned}
& \forall=\text { nextron whocty (cxa/sec) } \\
& n=x / c \\
& \gamma=(1-)^{-3} \\
& a=\text { spect of light, } 2.9979 \times 10^{10} \mathrm{em} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& t_{e}=\text { rearus of exrets. } 6376.2 \mathrm{~m} 10^{5} \mathrm{~cm}
\end{aligned}
$$

neutrons/cha - Nevecer

It is alreedy assmea thet the velocity of the garent neutron is the sune as the veloctby of the decayed proton. In the preceding ealculetions, the evalumbton of 7 , \cap and γ tn s whll be done by conm ardering oniy protons.

Wor the regton oi comthemtion on chis study, the exponeatial Pector hamporimatedy equat to 1. Fox exmale, the alatance from the earter of the aarth to the $2 \mathrm{ne} \mathrm{L}=1.25 \mathrm{ta}$. 40° an, and the
 woughy 10 Mov. Thus, the velue of twe exponemtal 10 :

$$
\exp \left[\frac{-r}{r \gamma \tau}\right]=\exp \left[\frac{-10^{9}}{4\left(10^{9}\right)(1.1) 10^{3}}\right] \approx 1.0
$$

$$
S=\frac{d n}{d V}=\frac{\varphi}{B C \gamma \tau}\left(\frac{r_{e}}{r}\right)^{2}
$$

A modicication of the neutron lentres, m, is wade using informetion

$$
\varphi=.8 E^{-2}
$$

where φ is not a function of time. A non-dimensional perameter , is defined as the relative taner belt sounce atrength. That is,

$$
\Phi(t)=\frac{\varphi(t, E)}{\varphi\left(t_{0}, E\right)}=\frac{K(t) E^{-2}}{.8 E^{-2}}=\frac{K(t)}{.8}
$$

Figure 20 shows (t) as a function of time for the recent pest. Agains the non-symotricti nature of the curgent solet cyele becomes appareat from this figure. As seen fron this ficure, the relative change from solar maxinum to soler minhmu is 25 there molex maximum is the smaller due to the exclusion of gelactac particles, which produce Whe qeutrons, by the moreased activity of the sum, This out-of-phose of the source end loss process helps contribute in a positive vay to the net chance of the proton population between solear maximm and solaz mintmam. That in, at soler mininum, the loss procesa, or basicelly the etmosphexe, is smell compared to solar maximua. This means that protons are not taken out as rapidy. On ton or the the source is pumping in protone at its magimum rate. These, two effects act together to give a net chance of more protons at solar minimm. However, as can be seen from this tuguce and tieure 7, the aboospueze hes a much Iager effect then the varabie souxce.

One modicicetion of results in changing egution (7) to

$$
\begin{equation*}
S=\frac{.8 \Phi(t) E^{-2}}{\beta c \gamma \tau}\left(\frac{r_{e}}{r}\right)^{2} \tag{8}
\end{equation*}
$$

The second modiflcation is to change the position variables to $B_{g} L$ space. mis is done by using a dipole eaxth eqproximation (15).

$$
\begin{equation*}
B=\frac{M\left(4-3 \cos ^{2} \lambda\right)^{1 / 2}}{r_{e}^{3} L^{3} \cos ^{6} \lambda} \tag{9}
\end{equation*}
$$

and

$$
\frac{r}{r_{e}}=L \cos ^{2} \lambda
$$

where M is the eaxth's dipole moment (8.1×10^{25} gauss. cm^{3}).
That Leaves equation (8) as

$$
\begin{equation*}
S=\frac{.8 \Phi(t) E^{-2}}{\beta \subset \gamma \tau L^{2} \cos ^{4} \lambda} \tag{10}
\end{equation*}
$$

where the λ dependence is replaced by 8 through equation (9). The $\cos ^{-4}$, term is left in the equation due to inability of equation (9) to be solved in closed form,

For the calculations, it is assumed that the source tem s produces protons from decaying neutrons such that all produced. protons have velocity orientations perpendicular to the field, B at a given latitude, to. That is, all protons produced are injected at the mirror latitude, 10 . This asamption is made instead of adding the contributions of protons at other positions along a fiela ine Which have the necessary mirror point conditions that is, the proper pitch angle, where of is the angle between \bar{B} and the velocity of the proton $\overline{\mathrm{v}}$). Or, the injection coefflcient used 1 s 1. Thit assumption would probably not affect the general result of the study which is
xelathve ehenge fron solar mintmua to soler mastman.
Wquations (6) fach (10) revxeant the fom ot the component of equetion (5) to be numertealy intergated Betowe substatubing
 In order to set us the equation fox numericol iatogrotion. thrpandurg Quuation (5), gives

$$
\frac{\partial N_{p}}{\partial t}=S-\frac{\partial N_{p}}{\partial E} \frac{\partial E}{\partial t}-N_{p} \frac{\partial}{\partial E}\left(\frac{\partial E}{\partial t}\right)-L_{N}=S-\frac{\partial N_{p}}{\partial t}-N_{p} \frac{\partial}{\partial E}\left(\frac{\partial E}{\partial t}\right)_{-L_{N}}
$$

reaxrexatng xocutas in

$$
\begin{equation*}
\frac{\partial N_{p}}{\partial t}=\frac{S}{2}-\frac{N_{p}}{2} \frac{\partial}{\partial E}\left(\frac{\partial E}{\partial t}\right)-\frac{L_{N}}{2} \tag{2}
\end{equation*}
$$

empendins by ho chata xale

$$
\frac{d E}{d t}=\frac{d E}{d x} \frac{d x}{d t}=\beta C \frac{d E}{d x}
$$

 $\mathrm{c}=$ gyeed of 2kith. sumatituting into equaticn (21) and expanding reatho in

$$
\begin{equation*}
\frac{d N_{p}}{d t}=\frac{S}{2}-\frac{N_{p} c}{2}\left[\frac{d \beta}{d E} \frac{d E}{d x}+\beta \frac{d}{d E}\left(\frac{d E}{d x}\right)\right]-\frac{L_{N}}{2} \tag{12}
\end{equation*}
$$

Mrom Ireden and Whte (7), the values of that are given in teras of Tin two regions of the energy spectra. Tho values are for $10 \leq 8<80$ Nev.

$$
\begin{aligned}
& o=.0484 \mathrm{~m} .477 \\
& v=.930 \mathrm{~B} .02 \mathrm{z}
\end{aligned}
$$

for $80 \leq E \leq 700 \mathrm{Mov}$

$$
\begin{align*}
& \mathrm{v}=.0896 \mathrm{E}^{.346} \tag{23}\\
& v=.428 \mathrm{E} \cdot 205
\end{align*}
$$

Notice that the curve fit to the two separate energy regions does not come together at $I=80 \mathrm{Mev}$. This approximation is overcome by smoothing the resulting spectra in this region. By taking the derivatives of β with respect to E, gives

$$
\begin{array}{ll}
\frac{d B}{d E}=.0231 E^{-.523} & \text { for } 10 \leqslant E<80 \mathrm{Mev} \\
\frac{d B}{d E}=.0308 E^{-.656} & \text { for } 80 \leqslant E<700 \mathrm{Mev} \tag{14}
\end{array}
$$

Substituting equations (6), (10), (13), (14) into equation (12) and
performing the multiplication, the particle conservation equation becomes

$$
\begin{gathered}
\frac{d N_{p}}{d t}=\frac{A_{0} \Phi}{L^{2} E^{B_{0}} \cos ^{4} \lambda_{0}}-\frac{A_{1} N_{p}\left(\frac{d E}{E^{B_{1}}}\right)-A_{2} N_{p} E^{B_{2}} \frac{d}{d E}\left(\frac{d E}{d x}\right)-}{} \quad A_{2} E^{B_{2}} N_{p} \Sigma
\end{gathered}
$$

there, if the energy $1 \mathrm{a} 10 \leq \mathbb{E}<60 \mathrm{Hev}$

$$
\begin{array}{ll}
A_{0}=2.694 \times 10^{-13} & B_{0}=2.509 \\
A_{1}=3.463 \times 10^{8} & B_{1}=.523 \\
A_{2}=7.255 \times 10^{8} & B_{2}=.477
\end{array}
$$

and if the energy is $80 \leq E \leq 700$ Mev

$$
\begin{array}{ll}
A_{0}=3.479 \times 10^{-13} & B_{0}=2.540 \\
A_{1}=4.617 \times 10^{8} & B_{1}=.656 \\
A_{2}=1.343 \times 10^{9} & B_{2}=.344
\end{array}
$$

Equation (15) as the form of the particle conservation equation used for the study of the proton population as a function of time. The equation is numerically integrated using a fixed step, Dratorder Runge Kutta technique (21). That is, the equation written symbolically as

$$
\frac{d N_{p}}{d t}=f\left(N_{p}, E, L, B, t\right)
$$

is solved by first choosing $L=1,25$, a value B, and energy E. Then choosing an integration interval on and intuit conditions to, and N_{po}, the integration is as follows: calculate

$$
\Delta N_{p}=1 / 6\left(K_{1}+2 K_{2}+3 K_{3}+K_{4}\right)
$$

where

$$
\begin{aligned}
& K_{1}=f\left(N_{p_{0}}, t_{0}\right) \Delta t \\
& K_{2}=f\left(N_{p_{0}}+K_{1 / 2}, t_{0}+\Delta t / 2\right) \Delta t \\
& K_{3}=f\left(N_{p_{0}}+K_{2} / 2, t_{0}+\Delta t / 2\right) \Delta t \\
& K_{4}=f\left(N_{p_{0}}+K_{3}, t_{0}+\Delta t\right) \Delta t
\end{aligned}
$$

The inst step answer becomes $N_{p_{1}}=N_{p_{0}}+\Delta N_{p}$. The above calehation continues using the time ta $=t_{0}+t$. Control of the error is handed by appropriately adjusting the integrating tatexvel th. As can be seen from the integrating technique onthned, the function $f\left(M_{p}, E_{s}\right.$ L B_{0}, t) needs to be evaluated at different times for a given E, E, Bo. The quantities to be supplied axe

$$
\frac{d E}{d x}, \frac{d}{d E}\left(\frac{d E}{d x}\right), \Phi, \sum
$$

The enengy loss tem $\frac{d x}{d x}$ as calculated as tumetion of E, B, Lime. Mgure 11 shows the energy loes versun enexgy fow oxy onen aborber et NHF condtbiona. The curve comes trom date publishec by Aron, Horman, and Whiliom (5). As weo stated earliex in the construction of the rodel Etnompheres, in order to relate the onergy $20 s s$ of the abosphere with the meesured cata, the R function (ftore o) is used.
 Ls Lound from theur 11. With this value, twe curve or tigure 8 are cosuctad by mathplyins by the scele muber. In this Geshion, the
 this term representr the energy given per poth length to tho strospheric atcme by the protons.

From Sigure 21 tho shopo is calculated to produce $\frac{\text { a }}{d E}(\mathrm{dE} / 0 \mathrm{x})$

 number of $\frac{\left.a^{(d i f} / d r\right)}{}$ is found and the curves of pirrure 8 edjusted. opprowiately. This tern reptesents the rato of eacrey loss of the brapped protons.

The valued of and $\%$ axe given by figures 9 ma 10 reapectively. As ean be seen, 象, the reative source otrength is given only as a fouction of time, the reeson being thet both the posttion and energy dependence have been factored out of $\frac{1}{}$ in tho development of the source tean. The "effective crocsmection" ", is a function of time and posython, where the energy dapendence has been rotained in the xest of the nuciear tateraction term.

A difficulty arises when evalueting the transient proton muber deastty. As can be seen from equation (15) en inttal value for N_{p} is necessary in order to integrate the equetion. If one assumes fnltially that there are no protons (i.e., $\mathrm{N}_{\mathrm{p}}=0$) at time to, then en assumption is needed as to whether to inject protons into the belt at solar maxtmum, at solar minimum, or sometine in between. For the brady of the trensient spectrus uith $N_{p i}=0$, tt is assumed thec protons are injected at solar minimum. Thie is done to investigete the most rapid build-up since at solar minimum, the injection of protons Is the lergest while the removal process is the smallest.

Following the woris cone earlier, $(7,27,9)$ the steady-state ! proton population is round by setting

$$
\frac{d N_{p}}{d t}=0
$$

that is, assuming the net rate of eneage of the proton numbex density is smanl. Rquation (15) then becomee

$$
\begin{equation*}
N_{p}=\frac{A_{0} \Phi}{L_{1}^{2} E^{B_{2}}\left[\frac{A_{1}}{E^{B_{1}} \frac{d E}{d x}}+A_{2} E^{B_{2}} \frac{d}{d E} \frac{\left.\left(\frac{E}{d x}\right)+A_{2} E^{B_{2}} \Sigma\right] \cos ^{4} \lambda_{0}}{}\right.} \tag{16}
\end{equation*}
$$

Where the coefficients ere those defined previously.
As can be seen from the functionel dependence of $M_{p}=N_{p}\left(E, B_{0}, L, t\right)$, a tine must be chosen in order to eveluate the steadymtate spectrum
for g given posithon. Two tames axe chosen, solax moximum and solax minimum. This is done in order to investigate the maximum change In proton number denstty et the two source and zoss extremes.

RESULDS AND COKCLUSTONS

The calculation of the proton population of the inner belt $L=1.25$, as function of the soler eycle has indieeted thet; (a). The transient tine of buildup of protons to steadystete conditions increases as B decreases. As the proton energy decreases the time necessery to build the radiation belt decreases.
(b) Frotons with energies >300 Mev are not extremely effected by the fluctuating atmosphere.
(c). Frotons with energles $25<\pi<300$ show a relative ohange in populetion of less than an order of magnitude, while extremely low enersies, $E<25 \mathrm{Mev}$, indicote a two order magnitude change in population.
(d). The transient steady-3tate conditions incscate thet sor low enerey protons ($8<25$ Mev), the trensient proton hux is less than the steady-state flux at solsw minmum and the game at solar maximum. The mount of reduction In function of B, whereas B decreases, the reauction is increased.
(s). Jime hastories of the proton population indicete thet due to the "ablisty" of low enerey partons (s e es Nev) to follow the breathang atmosphere, while higheq enemgy protons do not, there $\frac{1}{2}$ engage in the neture of the enexgy spectrum ox the population there the spectrum becomes peekec neer enexgy 100 Mev. This change occurs for a reletively abrupt atmosphere enange, such as the change from solax minimu to soler marimum ubed in this study; Figure 2.
(1). At soler mintmam, protons et lov B live longer by a Eactor or -10^{e} then at solar moximum. As D increeses, the factor is reduced to Less than 10.

These conclusions are based on the reaults found rom evaluabing equetions (25) and (26). The evaluation won done on an now 7090 digitel computer. The mesults Prom these equethons ene presented on Figuxe 33 to 16.

Figures 15 end 14 are plots of proton slux vereus protom energy Sor $I=I .25$ and B's equal to .199 and .209 gawss reapectively. rhe dothed line of each of these grephs represcats the solution of eguation (16) For solar minimum and solax maximum with

$$
\frac{d N_{p}}{d t}=0
$$

That lis, the steady-gtate solution. The solid lines represent the steady-stete flux Pound Erom equation (25) sterting with $\mathrm{N}_{\mathrm{p}}=0$ and t_{i} o 0 lex minimun. The steady-state protom max is found by Letting the souxce and locs mechentsme operete until the belt in seturated. The saturetion test 13 thet two corsecponding eyches

Decome numerically identical. To digress on this, figure 15 indicates the time required in temas of soler cycles (11 yeers) to buila the stecdy-state conditions. As can be seen, at high energies and small B, the buildup takes hudreds of years; Conclusion (a). It is interesting to note the diferent bullup thes as a function or B, which is incremented in 0.1 gauss. For energy $>300 \mathrm{Mev}$ the change in time for an increment of 1 geuss Ros $B>$. 2 L almost twice that for the same increment at $B<.18$. Belov $B=.219$ the buildup is diritcult to detect due to the extrenely low flux and the almost non-existent variation in the atraosphere.

The proton flux at the two extremes under the above steady-atate conditions ere plotted in Figures 13 and 14. These spectruns show comblusions (b), (c), and (a). Wotiee the mall veriation of the solid curve between solar maximm and solax minimm for the two curves at energles $>300 \mathrm{ket}$. In this aree of the apectrm, the same result coula have been obtained by incleding one more step in the averaging caleulation, that is, by averaging flgure 2 . The coxreaponding averaged aolax eycle atmosphere could be uthized in the ateadymatate solution, equation \prime (16), to find the proton population. As seen from Figure 15, this would eliminate great deal of numericel calculations.

From Fibures 13 and 14 at $E<300$ Mev, the dynamical behavior of the atmosphere becomes more predominant, ghe lotex solit line (solex moximum) approeches the ateady, state solution more rapidly than the upper solid line (solax minimun). As E increases, the effect happens
ot higher energies. It sa believed that this phenomona is a direct result of the unaymetrical aycle varlaticn of the atrosphere. Exatning Figure 2_{1} it is seen that Srom soler minimun to solax maximuat the change is abrupt, the time taking appoximately twice a long. This uneven thuctuation causes the low energy protons to follow" or be in phase with the changing atwosphere for the lowew Bolus curve (solex maximan) end not "follow" the Iluctuating atmosphere at solar minimum; Conciusion (d). As might be expocted, the calculation of the Lowex enexgy protons could have been done by using the steedystate equation with the atwospheric nodel corresponding to the time in the solar cycle, observing fagure 13 inatceten thet the results would be more in agreement at solar maximum than ε st solar minimum, The rance of enercy there the simplification in calculation is applicable vould depend on the shape of the cycle.

The relative change in magnitude of thux et alor cycle extremes in the lower energy paxt of the spectrums is indicated on Ifigures 13 and 24: Concluston (c). As is seen from these fleures the change of proton Slux from solar minimum to solax maximum is nearly two oxders of mpgotude near $E \sim 10$ Ney, and decreases as energy increases.

Figure 16 shovs the tinc history of proton flus for two cycles, the first and the tenth, at dfferent energtes. This graph indicates Conclusion (e). That $10_{\text {, }}$ Iov energy protong due to their "ability" to Nollow the changes of the etmosphere shot maximed variations through out the solar eycle, High eaergy protons, oa the other hend, not oxtremely affectad by the fluctuating atmosphers. This effect causes
 domanat. The shape of the oyche wily influmea at wat enexgy the Ghathon occuxp thet 3 , it the eycle veriation whoc van hess atruyt, $2 t$ to expected duat the 25 Dov durve woula not cxoss the 100 Nev curve, mut perheps sore lover encugy. Conoluston (e) is atan

 Waten 1s:

$$
t=\frac{\text { contents }}{\text { input }}=\frac{N_{p}}{S}
$$

PHeuret 47 and 10 are plote of proton 14 fothmea vereus enexgy Sox

 to $B 4.16$. ThLs fors of oxtect was seen on the ditcuasion of Fighto

the soler maximum and solar minimu curves. The second effect is that when the atmosphere collapses due to lesser amount of exospheric heating, the "edge" of the sensible atmosphere is shifted to loyer altitudes. This shifting of the "edge" would account for the spread of the curves at solar minimum since some values of B lie above the sensible atmosphere.

To summarize, indications are that the time fluctuations of the atinosphere play an important role in the proton population of the Inner belt. Calculations indicate thet there is a substantial change In the inner belt population due to solar cycle atmospheric effects. Also, along with the relative change of protons in the cycle, there is a change in the nature of the proton energy spectra. It is expected. that this change is dependent on the shape of the cycle and the time Whinin the cycle. The steady increase of count rate seen in the data collected by Pizzelle ${ }^{(2)}$ for $1<1.5$ could have been the effect of the ourrent cycle which is approaching solar minimum. Data extending over a much longer period of time than avallable today is needed in ordej to substantiate a great deal of the conclusions. The reason being that the atmosphere is constructed such that it averages out short-time effect It is belleved by the author that such a collection of data would be fruitful insofar as that it would bring out a great deal of intereating phenomene about trapped particies and soliaily the statemof-the-art source and loss mechanisms of inner belt protons.

Appendix A

This appendix 411 discuss the method used in the fourth step In the development of the average atmospheric models. As was aiscussed, there 1 a a need to adyat the tables due to tha motion of trapped particles spireling about a field line going from northem mirrox polnt to southern mimor point encountering diffexent densities. This motion is shom pictorianly by Figure Aw. The method will asaume a dipole earth. The procedure will be to find the average denolty encountered by the paxticles north-south bpiraling motion, referred to as the "bounce"motion, in terms of latioude gor a given Fleld line, L.

Following Ray ${ }^{(6)}$, the bounce average of the number density is derined as;

$$
\begin{equation*}
\bar{\rho}=\frac{\int \rho(B, L) d s^{\prime}}{\int d s} \tag{1}
\end{equation*}
$$

That is, the bounce average, for a given mirror point, ho and fiela line, is the averege number of atoms/cne that a perticle "sees" while spixaling about afield line from the noxthern to southern mrror points (Figure A-I). Since the earth is assumed to be e dipole, the megnetic field is symuetrical gbont the nognetic equator. Due to
symmetry, the integral need only be evaluated over $1 / 4$ of comm plate oscillation, The procedure adopted for the calculation of equation (1) is to protect the element of are da onto the meld lIne, L. This in done for convenience stance the atmosphere is given in texas of field lines.

The element of axe $d s=v d t$ were y is the particles total velocity along the helical path. The component parallel to the field lIne is $V_{\|}=V$ cos where a is the "phon" angle, or the angle between the field vector B and the vector \bar{V}

$$
d s=\frac{V_{11} d t}{\cos \alpha}=\frac{d l}{\cos \alpha}
$$

Substituting into equation (1).

$$
\begin{equation*}
\bar{\rho}=\frac{\int \rho(B, L) d l / \cos \alpha}{\int d l / \cos \alpha} \tag{2}
\end{equation*}
$$

To find d in terms of latitude, consider an element of are in polar coordinates (r, λ).

$$
\begin{equation*}
d l=\sqrt{d r^{2}+r^{2} d \lambda^{2}}=\sqrt{\left(\frac{d r}{d \lambda}\right)^{2}+r^{2}} d \lambda \tag{3}
\end{equation*}
$$

using the differential of the equation of e field line for a dipole approximation ${ }^{(23)}$ which is; $x=L \cos ^{2}$ gives,

$$
d r=2 L \cos \lambda \sin \lambda d \lambda
$$

substrtuthe into equation (3) and rearranging gives the relationship

$$
d l=L \cos \lambda \sqrt{4-3 \cos ^{2} \lambda} \quad d \lambda
$$

substituting this relationship into equation (2) gives for a given L line

$$
\begin{equation*}
\bar{\rho}=\frac{\int \rho\left(B, L_{1}\right) \cos \lambda \sqrt{4-3 \cos ^{2} \lambda} \frac{d \lambda}{\cos \alpha}}{\int \cos \lambda \sqrt{4-3 \cos ^{2} \lambda} \frac{d \lambda}{\cos \alpha}} \tag{4}
\end{equation*}
$$

From the conservation of magnetic moment ${ }^{(23)}$ the relationship between $B \sin \alpha \operatorname{sis}$

$$
\frac{B}{B_{e}}=\frac{\sin ^{2} \alpha}{\sin ^{2} \alpha_{e}}
$$

mex subscript e refers to equator. Manipulation or above equation s ives

$$
\cos \alpha=\sqrt{1-\frac{B}{B_{e}} \sin ^{2} \alpha_{e}}
$$

substituting this into equation (4) gives

$$
\begin{equation*}
\bar{\rho}=\frac{\int \frac{\rho(B) \cos \lambda \sqrt{4-3 \cos ^{2} \lambda} d \lambda}{\sqrt{1-\frac{B}{B_{e} \sin ^{2} \alpha_{e}}} d \lambda} \sqrt{\sqrt{1-\frac{B}{B_{e} \sin ^{2} \alpha_{e}}}} d \lambda}{\sqrt{1-3 \cos ^{2} \lambda}} d \lambda \tag{5}
\end{equation*}
$$

Notice, i has been dropped since the value of o will be done for a given 4 . Using the dipole approximation fox B in terms of 3 which as

$$
B=\frac{M}{r^{3}}\left(1+3 \sin ^{2} \lambda\right)^{1 / 2}
$$

Where Mist the earth's anole moment (8.1 $\times 10^{25}$ gauss -cm ${ }^{3}$) Substituting

$$
\frac{r}{r_{e}}=L \cos ^{2} \lambda \quad \text { and } \quad \sin ^{2} \lambda=1-\cos ^{2} \lambda
$$

gives

$$
\begin{equation*}
B=\frac{M\left(4-3 \cos ^{2} \lambda\right)^{1 / 2}}{r_{e}^{3} 1^{3} \cos ^{6} \lambda} \tag{6}
\end{equation*}
$$

Where T_{e} is the equatorial wadis of the earth $\left(6.378 .2 \times 10^{5} \mathrm{~cm}\right)$. Assuming the starting point, a mirror point, there exist from the conservation of the magnetic moment the relationship

$$
\sin ^{2} \alpha_{e}=\frac{B_{e}}{B_{0}}
$$

Substituting the equation for B in terms of gives

$$
\frac{B}{B_{0}}=\sqrt{\frac{4-3 \cos ^{2} \lambda}{4-3 \cos ^{2} \lambda_{0}}}\left(\frac{\cos \lambda_{0}}{\cos \lambda}\right)^{6}
$$

where subscript o refers to mirror point. Using the above relationships it turns out that

$$
\begin{aligned}
& \sqrt{1-\frac{B}{B_{e}} \sin ^{2} \alpha_{e}}= \\
& {\left[\frac{\cos ^{6} \lambda\left(4-3 \cos ^{2} \lambda_{0}\right)^{1 / 2}-\cos ^{2} \lambda_{0}\left(4-3 \cos ^{2} \lambda\right)^{1 / 2}}{\cos ^{3} \lambda\left(4-3 \cos ^{2} \lambda_{0}\right)^{1 / 4}}\right]^{1 / 2}}
\end{aligned}
$$

Substituting the above into equation (5) and replacing B in by λ by equation (6) eves

$$
\left.\bar{\rho}=\int \frac{\int \frac{9(\lambda) \cos ^{4} \lambda \sqrt{4-3 \cos ^{2} \lambda} d \lambda}{\sqrt{\cos ^{6} \lambda\left(4-3 \cos ^{2} \lambda_{0}\right)^{1 / 2}-\cos ^{6} \lambda_{0}\left(4-3 \cos ^{2} \lambda\right)^{1 / 2}}}}{\sqrt{\cos ^{4} \lambda \sqrt{4-3 \cos ^{2} \lambda} d \lambda}} \sqrt{\cos ^{6} \lambda\left(4-3 \cos ^{2} \lambda_{0}\right)^{1 / 2}-\cos ^{6} \lambda_{0}\left(4-3 \cos ^{2} \lambda\right)^{1 / 2}}\right)
$$

Jetting

$$
\begin{aligned}
& a=\sqrt{4-3 \cos ^{2} \lambda_{0}} \\
& b=\cos ^{6} \lambda_{0}
\end{aligned}
$$

and depthing the "weighing" factor

$$
A(\lambda)=\cos ^{4} \lambda\left[\frac{4-3 \cos ^{2} \lambda}{a \cos ^{6} \lambda-b \sqrt{4-3 \cos ^{2} \lambda}}\right]^{1 / 2}
$$

then, the "bounce" average, weighed over latitude, for a given field line is:

$$
\begin{equation*}
\bar{\rho}=\frac{\int_{0}^{\lambda_{0}} \rho(\lambda) A(\lambda) d \lambda}{\int_{0}^{\lambda_{0}} A(\lambda) d \lambda} \tag{7}
\end{equation*}
$$

The "weighing" factor, $A(\lambda)$, appeare in the avaraging equations due to the fact that particles spiral about the field line in such a feshion as to stay longer at some Latitudes, namely, neax mirror latitudea, \on Figure A-II in a plot of $A(\lambda)$ versus x for dieferent mirror Latitudes, ${ }^{\prime} 0$. As cen be seen from this iguxro, $A(A)$ is very large near to becoming indeterminant at ho. Hotice the unusual dipping of the curves which occurs at $\lambda>35^{\circ}$ for large mirror Latitudes, This phenomene occurs principally because the line of force becomes relatively steen at large latitudes. For an equal A it it turns out that the particle whlu spend less tive at some laxge angles than at the equator. To elsbozate, assume the mirror latitude is very high such that the pitch angle at the equator $\mathrm{c}_{\mathrm{e}} \approx 0$. By compaxing equations (5) and (1), one finds that

$$
\frac{d s}{d \lambda}=A(\lambda) \approx \cos \lambda \sqrt{4-3 \cos ^{2} \lambda}
$$

Wo Ind the paint of inflection of $A(X)$ the derivative uth respect to 1 is set equal to zero:

$$
\frac{d A(\lambda)}{d \lambda}=0=3 \cos ^{2} \lambda-\left(4-3 \cos ^{2} \lambda\right)
$$

solving for x , find that

$$
\lambda \approx 35^{\circ}
$$

Checing with figure A-II, one saes that in this axea the curve begins to afp, To pind the time epent per path leagth consider Or thet,

$$
V_{11}=\frac{d s}{d t}=\frac{d s}{d \lambda} \frac{d \lambda}{d t}
$$

$$
\frac{d t}{d \lambda}=\frac{A(\lambda)}{V_{11}}
$$

Substituting the relationship of the total velocity into thit equation gives

$$
\frac{d t}{d \lambda}=\frac{A(\lambda)}{v \cos \alpha}
$$

At the equator assuming the pitch angle $\alpha_{e} \approx 0$, the time spent per path length is approximately

$$
\left(\frac{d t}{d \lambda}\right)_{e} \approx \frac{1}{v}
$$

Whereas at $\lambda>35^{\circ}$ where the pitch angle is still very neax zero, the tine spent per petin iength is greater then $1 / v$ sinee $A\left(2>35^{\circ}\right)$ j.s less then one.

The evaluetions of the integrals are done numerically on an IBM 7090 dieital computer ustrg simpson's technique (21). At mirror latitudes, n_{0}, the expression $A\left(x_{0}\right)$ is undefined. In order to overcome this dinficuaty, equation (7) As mumaically integreted from 0 to ho- F were E is made axiturexily small awch thet the value of the integrels do not change appreciably.

APPEIDIX B

A brief discussion on the motion of trapped particles in a magetic field is presented in the appendix. Much of the material contained in this section comes from Singer and Lencheck(23), Jackson(23) and Spltereri25). Thit subject in reviewed so as to give completenese to the averaging proceas discussed in the analysis and calculation section.

Consider a charged particle of maso m and charge q in a magnetic Rield B . The equations of motion for the particle can be written Es

$$
\frac{d \bar{p}}{d t}=\bar{F}=q(\tilde{v} \times \bar{B})
$$

where $\overline{\mathrm{F}}$ is the payticle's monentum (yw) and \bar{F} is the Lorentiz force exerted on the charge by the field. For simplicity purposes, relativistic mechanics will not be considered, eince the effects to be pointed out are not relativietic. The sealar product of $\overline{7}$ with equation (1) shows that the kinetic enores of the particie is conserved. That is,

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{1}{2} m v^{2}\right)=0 \tag{2}
\end{equation*}
$$

Equathons (2) and (2) reprecent the equetions of thryped partiche In general magnetit ficte. To solve them one must speciry the

 develoment of the avezere etrosphere. Fixat till be constent
 weytur puala.
 thon or the 2 axit. Thaty 4

$$
\bar{B}=B \hat{\epsilon}_{3}
$$

Corstagr velootty eomponenta if ma 1 to the B Rela vuch thet the xemultat velocity as of the form

$$
\bar{V}=V_{1} \hat{\epsilon}_{1}+V_{2} \hat{\epsilon}_{2}+V_{11} \hat{\epsilon}_{3}
$$

By eveluating the croas-product of the richt mexd side of the equathons of motion, the compononth of the equation or mothon cen be urithen es.

$$
\begin{aligned}
& \frac{d v_{1}}{d t}=v_{2} \frac{B}{q m} \\
& \frac{d v_{2}}{d t}=-v_{1} \frac{B}{q m} \\
& \frac{d v_{11}}{d t}=0
\end{aligned}
$$

 mostetic slela in eonstent of the motron. By atsexatheting with reapect to tine the firet component of the aceelexthion equs tion ma substituthis into the mecond gives

$$
\frac{d^{2} V_{1}}{d t^{2}}+\left(\frac{B}{q m}\right)^{2} V_{1}=0
$$

A solution to the dictereatial equation is

$$
v_{1}=c e^{-i w_{B} t}
$$

where C ta a constant of integration to be evaluated ane where
 substituting it back auto the first equation gives the veloaty comparent,

$$
v_{2}=-i c e^{-i W_{B} t}
$$

Conotderint the real part of the solution e mort the velocity component \perp to \bar{B} to be

$$
\begin{aligned}
& V_{1}=C \cos W_{B} t \\
& V_{2}=-C \sin W_{B} t
\end{aligned}
$$

To evaluate the conctrat C, one realizes that the entipotel acceleration equals the Lorentz force* That ia,

$$
\begin{equation*}
\frac{v_{1}^{2}}{2}=\frac{v_{\perp} q B}{m}=v_{\perp} w_{B} \tag{3}
\end{equation*}
$$

where a the radius of the carole. The value of the velocity
Ito the. Crel is L to the field is

From the solution of the equations of motion,

$$
V_{\perp}=\sqrt{V_{1}^{2}+V_{2}^{2}}=C
$$

Thus, the constant of integration is

$$
c=w_{B} a
$$

The complete solution of the equations of motion for the velocity is

$$
\bar{v}=w_{B} a\left(\cos w_{B} t \hat{\epsilon}_{1}-\sin w_{B} t \hat{\epsilon}_{2}\right)+V_{11} \hat{\epsilon}_{3}
$$

where;
${ }^{V} \|$ is a constant velocity in the direction of \bar{B}, that is, along the z-axis
a is the radius of gyration about the z-axis
${ }^{*} B$ is called the gyration frequency

The circular motion with velocity v in the $x y$ plane combined with the translation along the z-axis results in a helix. The gyroperiod about the z-axis is

$$
t_{g}=\frac{2 \pi a}{v_{\perp}}
$$

Using equations (3), this can be written as

$$
t_{g}=\frac{2 \pi}{w_{B}}
$$

From equation (3) it is seen that the pitch angle, o (defined as the angle between $\overline{\mathrm{V}}$ and $\overline{\mathrm{B}}$) is constant throughout the trajectory for a constant B field. The magnitude of is

$$
\alpha=\sin ^{-1}\left(\frac{q B a}{h z v}\right)
$$

Another important parketer used in mognetostatie notion as the mege
 thet ins,

$$
\mu=I(\text { Area })
$$

For a pertiche of chaxge a traveling in a elrole ox radus a fita velock 索y v_{\perp} 。

$$
I=q \times(\text { number of } g y r a t i o n s / s e c)=q \frac{W_{B}}{2 \pi}
$$

Substibuting snto the derinition and using equation (3), it taram out that

$$
\begin{equation*}
\mu=\frac{\frac{1}{2} m v_{\perp}^{2}}{B} \tag{4}
\end{equation*}
$$

For a constant feld, μ ls $e 1 s 0$ a constent of the motion.
A apthial veriction in the mognetic field ceuses the particie to dript. The arift of a particle tue to the inhomogeniety of the sald is umany broken dom thto two osseb. Ninty the drath dwo to the field chance (rb) an the particle spixala about a mela line, and aecondyy, the dript due to the curvoture of the Rela. The developnent of the eredient drift is wumily done by an approximetion.

That is, by expending $\overline{3}$ in a thayox series akove the aenter of eyration snd teeping oniy the first two terms, The criteria of the expansion is that

$$
\begin{equation*}
\left|\frac{\nabla B}{B}\right| \ll \frac{1}{C} \tag{5}
\end{equation*}
$$

or that the aield doem "t change very rach compared to the radius of gyration, a. The motion is ogein broken into two components, If and to \bar{B}. Since the direction of \bar{B} is unchenged, the notion || to $\overline{\bar{B}}$, still a uniform translation, will be unchanged. The necessary modification to the trejectory comes from y_{\perp}. That is, a transverse precession veloctuy is calculeted (24) as

$$
\begin{equation*}
\bar{V}_{G}=\frac{w_{B} a^{2}}{2 B^{2}}\left(\bar{B} \times \nabla_{\perp} B\right) \tag{6}
\end{equation*}
$$

as can be seen, the dxift veloctty if perpendiculer to both. \bar{E} and ${ }_{\perp} B$.

Before considering the curvature drint velocity, there is an important point to be made at this time. From Spitzer (25), it pums out that :is a constant on the motion in \bar{D} doenn't chenge appreciably for a chouge in distance equal to k. That iss

$$
\mu=\frac{\frac{1}{2} m v_{1}^{2}}{B}=\text { constant }
$$

This leads to the mirroxing motion of particles. That is, μ ean be watten in temos of total energy end pitch angle as

$$
\mu=\frac{\frac{1}{2} m v^{2} \sin ^{2} \alpha}{B}=\text { constant }
$$

This in true for ell pointa. A ralation con be established for on arbitrexy point. That $1 s$,

$$
\frac{\sin ^{2} \alpha}{B}=\frac{\sin ^{2} \alpha_{0}}{B_{0}}
$$

or,

$$
\sin \alpha=\frac{B}{B_{0}} \sin \alpha_{0}
$$

when $\frac{B}{B_{0}}$ reachea $\frac{1}{\sin \theta_{0}}, \sin n=1$. Or, in terms of velocity, ail of the velocity is V_{1}, and V_{f} fells to zero. At this point, the perticie "reflects" and moves in the opposite atrection. Thit motion is the basis of the fourth averaging process where the reflection point comoniy referred to as the mirror point in used as a parameter of the stuay.

The drift due to the field curvature is treated in Jaekson (24
and Singer and Lencheis (23). The simptest approech ${ }^{(23)}$ is to consider Lorentz"storce equation,

$$
\frac{\bar{F}}{q}=\bar{f}=\bar{v} \times \bar{B}
$$

By assuming the force is much smaller hen \bar{B}, then, to first order, the reculting velocity due to the perturbative Foree is

$$
\bar{V}_{f}^{-}=\frac{\bar{f} \times \bar{B}}{B^{2}}
$$

or; a force/unit charge $\overline{\bar{I}}$ on a cherged particle will produce a velocity \bar{V}_{f} which 10 at right angles to \bar{I} and \bar{B}. If the force is due to the curvature of the path, that is, the centripetal force $\frac{m V_{11}^{2}}{R_{c}}$, the curvature aript veloeity becomes from equation (7)

$$
\begin{equation*}
\bar{v}_{c}=\frac{m V_{11}^{2} \bar{R}_{c} \times \bar{B}}{q B^{2} R_{c}^{2}} \tag{8}
\end{equation*}
$$

If $7 x \bar{B}=0$, then $\frac{\bar{R}_{c}}{R_{c}^{2}}=-\left(\frac{\nabla_{1} B}{B}\right)$, or equation (8) becomes

$$
\begin{equation*}
\bar{V}_{c}=\frac{m V_{11}^{2} \bar{B} \times \nabla_{1} B}{q B^{3}} \tag{9}
\end{equation*}
$$

Combining (6) and (9) end using equetion (3), the total arift velocsty becomes

$$
\begin{equation*}
\bar{V}_{t}=\frac{\bar{B} \times \nabla_{1} B}{q B^{3}}\left(\frac{1}{2} m v_{1}^{2}+m v_{11}^{2}\right) \tag{10}
\end{equation*}
$$

Equation (10) mepresents the total drift velocity due to the eredient and the curvature of the megnetic field. The drist is east to west for protons, on positive charged perticles. The drift motion ic the reason for the longitudinal averaging proeess in the construction of the atnosphere.

RBTHERENCES

 Phyo. Review Lettiars, vol. 3. no 1 , July $1,1959$.
2. Fineling, Guido, man Varietions of Intentity in the Eawhia Innex Radiation Zone (October 1959 througn December 1960) S. U. $1 .-62-1$, Contrect NAB $\mathrm{H}-17$.
3. Harmis, I, and Priester, W., MTheoretical Models for the BolarCyele Variation of the Upper Atmosphore" NASA, GSFC publ. X-640-62-70, June, 1962.
4. tamis, T, and Exiestex, Ht, Hume-Dependont Structure of the
 Stiudiea publication.
 (end Rev, 2949) U. S. A. EAG UnIv. of Colif. Rad. Lab.
 Mognetic Field ${ }^{\text {I }}$ I of Gcophys. Reg. vol $65, \mathrm{no} .4$, April 1960 , pp. 1125-1133.
7. Breden, S., Whito, B., "Particle Fluxes ta tho Inaer Radiation Belt" at af Gecphy Rec, vol. 65, no. 5, May, 1960°
8. Tremi, E. Orear, Jn, Rosenfela, A. Ho, Schluter, R. A. Murlear Fhysies" (Revised Editiony, Univ. of Chicago Fress, copyright 1950.
9. Hess, W. N. HBnergetic Particles in the Inner Van Allen Belt," Spece Science Revievs, vol. 1, no. 2, October, 1962.
20. McIlwain, C. E., "Coordinates for Mapping the Distribution of Magnetically Trapped Farticles, J. of Geophys. Res. vol. 66 (2961) pp. 3681-3691.
11. Jensen, D. C., and Cain, J. C., unpublished, presented at April, 1962, meeting of the American Geophysical Union, Washington, D. C.
12. Stassinopoulos, E. G., private commacation.
13. Hess, W., Blanchard, R., and Stassinopoulos, E., private commanication
14. McIlwain, C. E., Pizzella, G., "On the energy Spectrum of Protons Trapped in the Earth'G Inner Van Allen Zone," to be published, under contract MASA- 116 .
15. Apel, J. R., Singer, S.F, and Wentworth, R, C., Weffecta of Trapped Farticles on the Gcomagnetic Field, "December, 1961, Contrect AF-19 (604) 3861.
16. Singer, S. F. "Nature and Origin of Radiation Belta," Journal of The Fhysical Society of Japan, vol. 17 Supplement A-II 1962, p. 187.
17. Lencheck, A. M., and Singer, S. F., "Ceomagnetically Trapped Protons from Cosmic Ray Albedo Neutrons," Journal of Geophys. Res. vol. 67, no. 4, April, 1962, p. 1263.
18. Freden, S. C., and White, R. S., "Trapped Froton and Cosmic-Ray Albedo Meutron Fluxes, "J. of Geophys. Res., vol. 67, no. I, January, 1962, p. 25.
19. NcDonald, Fe, private commication.
20. McDonald, and Webber, "A study of the Rigialty and Charge Dependence of Frimary Cosmic Rey Temporal Variations, "Journal of the Physical Society of Japan, vol. 17, Supplement A-II, Proceedings of the Inter national Conference on Cosmic Rays and the Rarth Stom, September 4-15, 1961.
21. Scarborough, in B., "Numerical Mathemstical Analysis" 3th Edition, Oxford University Press, Copyright, 1955.
22. Evans, R. D., "The Atomic Nucleus" McGrew Hill Co, Copyright 1955.
23. Singer, S. F. and Lonchels, A. M., "Geomagneticaliy Trapped Radiation Fhysics Departwent, U. OX MaryLand, August, 1961, Tech. Report Mo. 2
24. Jeckson, J. D_{4}, "Classical Electrodynamics," J. Wiley and Sono, Copyright 2962.
25. Spitzer; L., "Pnysies of Eully Ionized Gases" 2nd edition, Interscience, 1962.
26. Hess, W, N., Tadiation Belts, Transactions of the American Geophyaical Union, Vol. 44, No. 2, June, 1963.
27. OPBien, B. J., "Review of Studies of Txapped Rediation with Satellite-Borne Apparatus, "Space Science Revicus, D. Reidel Publ. Co Dordrecht-Holland.
28. Van Allen, J. A., "Current Worik on Ceomegnatically Trapped Corpuscular Rediation, " I.C.S.U. Review, Vol. 3, Ho. 1, pp 53-60, Elsevier Publ. Co. Ansterden.
29. Hess, Cenfleld, Lingenfelter, 1961. Cosmic Ray Neutron Demography, J. of Geophys. Res, vol. 66, p. 665.

The author wishea to express his appreciation to Dr. W. N. Hess under those direction, contimued guidance, and advice thia study wes performed, The author also whenes to expreas his apprectation to Dr. D. Stern for his explanations of perta of the theory and helpful ariticisms,

The author Hishes to express speciel thanks to Mr. E. G. Stassinopoulos for his explaations of the B_{0} I transformation progrem, to Martan Underwood and Dorothy Pollack for their typing eftorto, and to Janice Chiville and Carol Lee Foley for prepariag the finel manuscript.

Figure 3. B contours at $L=1.25$ e.r. for the Northern Hemisphere of altitude and geocentric longitude.

Figure 4. B contours for $\mathrm{L}=1.25$ for the Southern Hemisphere as a function of altitude and geocentric longitude.

Figure 5. Maximum altitude contours in B, L space for the Northern Hemishpere.

Figure 7. The average oxygen number density as a function of B for the five solar flux numbers at $L=1.25$

Figure 8. A time history of the atmosphere scale factor, R as a function of B at $L=1.25$ e.r.

Figure 9. A time history of the "effective" cross-section of the atmosphere, Σ as a function of B at $L=1.25$ e.r.

Figure 11. The proton energy loss spectrum for an oxygen target.

Figure 12. The slope of proton energy loss versus energy for an oxygen target.

Figure 13. A comparison of the steady-state and transient proton flux energy spectrums for $L=1.25, B=.199$ at solar minimum and solar maximum.

Figure 14. A comparison of the steady-state and transient proton flux energy spectrums for $L=1.25, B=2.09$. at solar minimum and solar maximum.

Figure 15. The time required in terms of solar cycles to build steadystate conditions versus energy as a function of B.

Figure 28. The mean proton lifetime, τ energy spectrum as a function of posffion at solar maximum.

Whe re:
ds - Element of Arc along the particle's helical trajectory dl - Element of Arc along the field line

Figure A-I. Schematic of a trapped particle's north-south motion.

Figure A-II. The wéighing factor, $A(\lambda)$ versus latitude for various mirror latitudes, λ_{0}, where λ_{0} are the asympootes of each curve.

TABLE 1

$\mathrm{h}_{\mathrm{h}(\mathrm{~km})}^{\mathrm{s}}$	250	200	150	100	70
120	2.500107	2. 500E07	2. 500E07	2. 500 E07	2. 500E07
200	4.413E06	4. 872 E 06	5. 484E06	6.319E06	6.982E06
300	2.642E06	2.843E06	3. 050006	3. 205E06	3. 212E06
400	1.945E06	2. 007 E 06	2. 012E06	1. 885E06	1.689E06
500	1.499E06	1. 477E06	1.390E06	1.154E06	9. 272 E 05
600	1.176E06	1.107E06	9. 646 E 05	7. 236E05	5. 231 E 05
700	9.327E05	8.387E05	6. 842E05	4.607E05	3.021E05
800	7.461E05	6. 422 E 05	4. 916E05	3.004E05	1.783E05
900	6.016E05	4. 964 E 05	3. 574E05	1.984E05	1.074E05
1000	4. 886E05	3. 871 E05	2:628E05	1.331E05	6. 593E04
1100	3. 995E05	3. 044 E 05	1. 953E05	9. 050 E 04	4.119E04
1200	3. 287 E 05	2. 411 E05	1. 466E05	6. 238E04	2. 616E04
1300	$2.721 E 05$	1. 925E05	1.110E05	4.353E04	1.687E04
1400	2. 265 E05	1. 547 E 55	8. 482E04	3.074E04	1.104E04
1500	1.895E05	1. 251 E 05	6. 537E04	2. 195 E 04	7.328E03
1600	$1.595 E 05$	1.019E05	5.078E04	1. 584E04	4. 925 E 03
1700	1. 348 E 05	8.346E04	3. 974E04	1.155E04	3:351E03
1800	1.145E05	6. 875 E 04	3. 133E04	8. 497 E 03	2. 306E03
1900	9.774E04	5. 696E04	2. 487 E 04	6.308E03	1.605E03
2000	8.378E04	4.743E04	1.988E04	4.724E03	1.128E04

Diurnal averaged number densities of He as a function of altitude for five solar flux numbers.

$\text { hikm. } \mathrm{S}^{\mathrm{s}}$	250	200	150	100	70
120	7.600E10	7.600E10	7.600 El 10	7.600E10	7.600 El 10
200	3.600 E 09	3.457E09	3. 209E09	2.795 E09	2.416E09
300	8. 870E08	7. 134508	5.124E08	2. 809E08	1. 564E08
400	3.054E08	2. 054 E 08	1.112E08	4. 025 E 07	1. 471E07
500	1.168E08	6.616E07	2.788 E07	6.771E06	1.675E06
600	$4.749 E 07$	2. 287E07	7.708 E 06	1. 273E06	2. 183E05
700	2.024E07	8.364E06	2. 232E06	2.611E05	3.153E04
800	8.983E06	3. 207E06	6. 918 E 05	5.747E04	4.946E03
900	4. 130E06	1. 282E06	2. 252E05	1.342E04	8.320E02
1000	1.960E06	5. 312 E 05	7.645E04	3.301E03	1.488E02
1100	9. 567E05	2. 275 E05	2.696 E 4	8. 502E02	2. 810E01
1200	4.791 E05	1. 003 E05	9. 834 E 03	2. 284E02	5.381E00
1300	2. 456E05	4. 538E04	3.701E03	6.379E01	1. 162E00
1400	1.287E05	2. 106 E 04	1. 434E03	1. 848E01	2. $527 \mathrm{E}-1$
1500	6.878E04	9.997E03	5.706E02	5. 541E00	5.729E-2
1600	3.746 EO	4. 849E03	2.330E02	1.717E00	1.352E-2
1700	2. 077 E04	2.399E03	9.744E01	5.486E-1	3. $312 \mathrm{E}-3$
1800	1.170E04	1. 210E03	4. 170E01	1. 806E-1	8, 412E-4
1900	6.700 E 03	6.216E02	1. 824E01	6. $079 \mathrm{E}-2$	2. $212 \mathrm{E}-4$
2000	3.893E03	3.247E02	8.149E00	2. 128E-2	6.010E-5

Diurnal averaged number densities of 0 as a function of altitude for five solar flux numbers.

S h(km.	250	200	150	100	70
120	1. $200 \mathrm{EL1}$	1.200E11	1. $200 \mathrm{El1}$	1. 200E11	1. $200 \mathrm{El1}$
200	9. 900E08	7. 910E08	5.699E08	3. 438E08	2.151E08
300	7.683 E 07	4. 269 E 07	1.791 E07	4. 503E06	1.188E06
400	1. 020 EO 7	4.069E06	1.048E06	1.191E05	1. 427 E 04
500	1.217E06	4.886E05	7.983E04	4. 808E03	2. 444E02
600	3.142E05	6.758 EO 4	7.106E03	1.857E02	5.155E00
700	6. 428 E04	1.033 E 03	7.062E02	9. 135E00	1.265E-1
800	1. 364E04	1.714 E 03	7.688E01	5.002E-1	3. 528E-3
900	3. 242 E 03	3.031E02	8. 962E00	3. $010 \mathrm{E}-2$	1.102E-4
1000	7.981E02	5.682E01	1.122E00	1.975E-3	3. 821E-6
1100	2.056E02	1.122E01	1. $493 \mathrm{E}-1$	1. $403 \mathrm{E}-4$	1. 459E-7
1200	5. 526E01	2.322E00	2. 106E-2	1.074E-5	5. 274E-9
1300	1. 544E01	5. $028 \mathrm{E}-1$	3. 139E-3	8. 835E-7	$2.788 \mathrm{E}-10$
1400	4. 474E00	1.136E-1	4. $927 \mathrm{E}-4$	7.772E-8	1.382E-11
1500	1. 342 E00	2.778E-2	8.124E-5	7. 292E-9	7.412E-13
1600	4. 157E-1	6. 520E-3	1. 405E-5	7. 277E-10	4. $288 \mathrm{E}-14$
1700	1. $328 \mathrm{E}-1$	1.653E-3	2. 541E-6	7.702E-11	2. 667E-15
1800	4.370E-2	4.342E-4	4. 800E-7	8.627E-12	1.777E-16
1900	1. $478 \mathrm{E}-2$	1.177E-4	9. 452E-8	1. 200E-12	1. 267E-17
2000	5.142E-3	2. 906E-5	1. $937 \mathrm{E}-8$	1. 270E-13	9. 626E-19

Diurnal averaged number densities of O_{2} as a function of altitude for five solar flux numbers.

h(km.)	250	200	150	100	70
120	5. 800E11	5. 800E11	5. 800E11	$5.800 \mathrm{El1}$	5.800E11
200.	7.393E09	6.180E09	4.743E09	3. 136 EO	2. 124E09
300	7.630E08	4.639E08	2. 210E08	6.739E07	2.113E07
400	1. 278 E 08	5.777E07	2.151E07	2.682E06	4. 225E05
500	2. 562 E 07	8.798E06	1. 810E06	1. 407 E 05	1.156E04
600	5.730E06	1. 521E06	3. 239 E 05	8. 800 EO 3	3. 844E02
700	1. 403E06	2. 884E05	2.763E04	6.190E02	1. 471 EOL
800	3.664E05	5. 883E04	3. 899E03	4. 802 EOL	6.320E-1
900	1.012E05	1. 276E04	5. 894E02	4. 057E00	3. $006 \mathrm{E}-2$
1000	2. 932E04	2. 918E03	9. 470E01	3.702E-1	1. 570E-3
1100	8. 862 E03	6. 994E02	1.609E01	3.627E-2	8.936E-5
1200	2.783 E03	1.725E02	2. 878E00	3.798E-3	1.016E-5
1300	9.053E02	4. 558E01	5. 404E-1	4. 237E-4	3.674E-7
1400	3.041E02	1. 233 EOL	1.063E-1	5. $017 \mathrm{E}-5$	2. 633E-8
1500	1.075E02	3.456E00	2. 183E-2	6. $287 \mathrm{E}-6$	2. $023 \mathrm{E}-9$
1600	3.768 EOL	1.002E00	4.677E-3	8.321E-7	1.661E-10
1700	1.380E01	3.001E-1	1. 042E-3	1.160E-7	1.454E-11
1800	5. 211500	9. $268 \mathrm{E}-2$	2.313E-4	1.699E-8	1.353E-12
1900	2. 005E00	2. 949E-2	5.746E-5	2. 612E-9	1.334E-13
2000	7. $927 \mathrm{E}-1$	9. 654E-3	1.431E-5	4.619E-10	1.393E-14

Diurnal averaged number densities of N_{2} as a function of altitude for five solar flux numbers.

$\mathrm{h}(\mathrm{~km} .)$	250	200	150	100	70
120	4.356E04	4.356E04	4.356E04	4. 356E04	4.356E04
200	1.071 E04	1. 224E04	1. 447E04	1.790E04	2. 104E04
300	8.035E03	9.323E03	1.114E04	1.380E04	1.611E04
400	7. 205 E03	8. 328 E 03	9. 837E03	1.189E04	1.352E04
500	6.690 E03	7.660E03	8. 898E03	1. 046 E 04	1.157E04
600	6. 272 E03	7. 102 E 3	8. 107E03	9. 263E03	9. 974E03
700	5. 904E03	6.609E03	7.415E03	8. 214 EO 3	8.638E03
800	5. 573E03	6. 168 E 03	6. 803E03	7.360E03	7. 518E03
900	5. 272 E 03	5.769E03	6. 260E03	6. 597E03	6. 571 E 03
1000	4. 996E03	5. 408 E 03	5.774E03	5. 933E03	5.768E03
1100	4.742E03	5. 079 E 03	5.339E03	5. 352E03	5.083E03
1200	4. 502E03	4. 778 E 03	4. 947E03	4. 843E03	4. 495E03
1300	4. 291E03	4. 503 E 03	4. 594E03	4. 395E03	3.989E03
1400	4. 090E03	4. 250 E 03	4. 275E03	3. 998E03	3. 552E03
1500	3. 903E03	4. 018 E03	3. 986E03	3.647E03	3.173E03
1600	3.730 E 03	3. 804E03	3.723E03	3. 335E03	2. 843E03
1700	3. 568 E 03	3.606E03	3. 484 E 03	3. 057E03	2. 555E03
1800	3. 417E03	3. 424 E 03	3. 266E03	2. 809E03	2.303503
1900	3. 276E03	3. 255E03	3. 066 E 03	2. 587E03	2.081E03
2000	3.144E03	3.098E03	2. 884E03	2. 387 E 03	1. 886 E 03

Diurnal averaged number densities of H as a function of altitude for five solar flux numbers.

VITA

ROBEATT CHARLES BLANCHARD

Born in Scranton, Pennsylvanie, July 16, 1938. Graduated from Scranton Technical High School in that city, June, 1955; B, S. in Physics (cum laude); University of Scranton, 1959. Employed by NASA, Manned Spececreft Center, Langley Field, Langley Field, Virginia from July, 1959 to February, 1962. The area of work involved trajectory analysis support for Projects Mercury and Apollo. In September, 1960, the author entered Williem and Mary on a part time basis. February, 1962, the author transferred to present position at NASA, Goddard Space Flight Center, Greenbelt, Maryland. The area of work is applied theoretical studies in the Theoretical Division, dealing primerily with astrodynamics and related topics.

