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ABSTBACT

An In v estig atio n  o f th e  e ffe c ts  o f con&ensible vapor© on the 
c a lib ra tio n  o f a  therm al conductivity pressure gage has been made.
A th e o re tic a l study i s  made of therm al conductivity  under low 
pressure and ra r if ie d  gas conditions. A method using a  tra n sfe r 
standard i s  described fo r th e  c a lib ra tio n  o f therm al conductivity 
gages in  a  condensible rapor environment over the pressure range 
of 10**3 to  15 to r r . C alibrations su?e made, using th is  method, in  
dry a i r ,  w ater vapor, and acetaanide rapor* The gage is  a lso  
ca lib ra ted  in  th e  Echo XX c a n is te r to  dem onstrate the usefulness 
o f the method in  a  p ra c tic a l ap p lica tio n . The data given in  th is  
rep o rt show s ig n ific an t d iffe rences fo r the various gas com positions.

iv
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A norm alising fa c to r fo r a HsgcwoHian d is trib u tio n  of v e lo c itie s

a therm al accommodation co e ffic ien t

C y sp ec ific  boat a t constant volume

3£
&*

ra te  o f change o f th e  average energy per molecule along x, 

dynes/molecule

average energy per molecule a t the u n it su rface , ergs/m oleeule

B(x) average energy per molecule as a function of x , ergs/m olecule

AH net heat tra n s fe r  per u n it area per u n it tim e, e rg e /a# se c

H net heat tra n s fe r  per u n it area per u n it tim e, ergs/cm^sec

K co e ffic ien t of therm al conductivity

L molecular mean free  path , cm

H m olecular -weight, &a/male

El m&B per m olecule, gm/raalecule

Ho Avogadrofs number, m olecules/m de

n msEflber o f molecules per u n it values©, molecules/csP

P

%

pressu re, dynes/es£
ergs moleun iversal gas constan t, ...... ......

gra molecule °K

T absolute tem perature, °K

TX absolute tem perature of surface 1 , °K

absolute tem perature o f surface 2, °K

V average velo city  per m olecule, cm/sec molecule

v



average of the squared v e lo c ity , cza^/eec2 

d istance from the u n it su rface , oa

number o f molecules crossing u n it area  In  u n it tim e, nioleculee/aa2sec 

Maxwellian gas constan t, sec/cm

ra tio  o f sp ec ific  beat a t  constant pressure to  sp ec ific  heat 

a t  constant volisa© 

tbsrm al-conductivlty  gas constant 

eae density, ga moleculee/câ  
m olecular diam eter, cm
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umiODUcriaj

The requtreaaants of in - f lig h t and ground-f&c 11:1 ty  research programs 

frequently  require pressure measurements to  be made in  the range of 10*^ 

to  15 to r r .  In  the m ajority o f cases the use of gages se n sitiv e  to  gas 

composition is  required since the few gages th a t are in sen sitiv e  to  gas 

composition a re , in  general, too largo fo r th is  type work*

The ca lib ra tio n  of these g a s -e a ^ o s itio a -se n s itiv e  gages I s  normally 

determined by comparison w ith a  primary standard (McLeod gage)* These 

ca lib ra tio n s are  more d if f ic u lt  i f  the te s t  gas i s  a  condensible vapor, 

since th e  McLeod gage i s  a  compression instrum ent and cannot be used fo r 

th is  type gas* The ca lib ra tio n  o f gages in  a  condensible gas can be 

accomplished by the use o f a  gage th a t i s  in sen sitiv e  to  gas cocqxjsitian 

which has been ca lib ra ted  by a  McLeod gage using a noncondensible gas*

In  th is  case the gage th a t i s  in se n sitiv e  to  gas composition a c ts  as a  

tra n s fe r  standard. In  a  ty p ic a l procedure the tra n s fe r  standard is  

ca lib ra ted  against a  McLeod and the gage to  be used is  then ca lib ra ted  

again st the tra n s fe r  standard in  the gas in  question. Three tra n s fe r  

standards were se lec ted  to  cover the 10*^ to  15 to r r  range.

Because of i t s  wide use in  f lig h t and f a c i l i ty  work, the gage chosen 

fo r  c a lib ra tio n  was a  therrral-c on&uet iv ity  -type vacuum gage system1.

The output of th is  therm al-conductivity  gage Is  not a  lin e a r  function of 

pressure and has asymptotes a t approximately 10*1 and 10 to r r . I t s  sen si­

t iv i ty  to  gas com position, th e re fo re , must be determined over the e n tire  

pressure range.
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I f  therm al conductivity  is  considered as a tran sp o rt of k in e tic  

energy betveen two surfaces a t d iffe re n t tem peratures as in  the k in e tic  

theory of gases, then  I t s  variance w ith pressure can be divided in to  th ree  

regions. The f i r s t  region i s  a  pressure range in  which th e re  a re  enough 

molecules to  support a terapem ture g rad ien t. In  th is  region

I f  a  surface o f u n it area Is  placed between two p la te s , then the number 

o f molecules th a t cross the surface in  u n it tim e is

I f  no p ersisten ce of velocity  and no tra n s fe r  o f m ss are  assumed, then 

th e  average energy per molecule th a t crosses th e  surface in  the p o sitiv e  

x -d frac tio n  is

In  the one-dimensicsml case

( i )

2A deriva tion  o f r B is  given by ESemrard* The energy a t s ta tio n  x  

£x * 0 taken a t the u n it surface) fo r p o sitiv e  x  i s

(2)

E(x) -  E. * x g

<semSm (3)

Since Es is  fixed  a t x  « 0 and —  is  constant then B dx



k

Hence 123© to ta l  flu x  o f energy th a t crosses u n it area In u n it time in  

the p o sitiv e  x -d iree tian  is

k  nvlEe ♦ * ^

S im ilarly  fo r p a rtic le s  crossing in  the negative x -d ire c tian , the energy

x

on e s se n tia lly  p o sitiv e  quan tity .

ilie  net flu x  fo r a l l  molecules per u n it area in  u n it tim e is

-o* v>b » w «• - VMMi WtteWiUA ̂  %r + •*+**

flu x  is  - x f ) .  ffiae negative sign appears m  order to  ^

1 -ArC-« * U* nv (s i )
1  «  *• dB /  >i \sa — nv x —— {4}2 ax '  '

however, i f  we assume th a t the mean free  path  is  not a function o f speed 

and th e c o llis io n  ra te  i s  Maxwellian, then a f te r  Jfemmrd^

X a
2 t  (3)
3

Using th e  value of x in  equation (3) and the chain ru le  o f d iffe re n tio n , 

equation (U) becaaeB

w 1 T k  T\  a l  <32?

dg eg?
3 <23? dx

Hy d e fin itio n

1/* cs......... ...v m as?
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th ere fo re
„ ian IT 11=** -rr vjucv •t"- 

3 Ox

But fo r a  M axyelllan gas Bfemmrd1* shows th a t

v  *»
\  «M/

arid

L  1 1

Therefore

^2" stao2

/ \ 1/2
j 1 cv as 

\*7 H7  , /2  j n ^ ' t o

But

m
■ s

Therefore

K
g f a 3 * ^ 2 / !  \ ° V  a £

"  3  V ”  /  \» 0// ra)2 to

In  order to  co rrec t fo r m olecular c o llis io n s , v ib ra tio n a l, and ro ta tio n a l 

energy coaaplax m olecules, a  constant i s  needed which is  derived by

E „ 2 L z - l
X

Therefore

„  (97 -  ? W * y « ]  2 2 l  £ ,  (6 y
h  -  - \ — z r - ) z ; \ - r )  s  ( 6 )
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I t  can be seen fro a  equation (6) th a t the net heat tra n s fe r  is  independent 

o f p ressure. Comparing equations ( l )  and (6) leads to

which is  the v/ell-hnovm co e ffic ien t of therm al conductiv ity .

The second region is  a  pressure range in  -which the gas between the 

surf&ces is  so ra re fied  th a t no in te rac tio n  between molecules e x is ts ; 

th e re fo re , tliere  can be no tem perature g rad ien t. Then the number of 

molecules o f velocity  v per u n it area per u n it tiine is

(7)

The energy of these Is

I f  a  Maxwellian gas i s  assumed, then the average energyu per u n it area 

per u n it time is

0

V * 0

1
(8)

Since

P a  i  PV2
5



where

Then

and

whence

P
2P2

\f« V13/

4  P̂ f

which Is  id e n tic a l to  equation (8 ); In  consequence, the average energy per 

u n it area per u n it time fo r the second region is

-  -  Pv
2

I f  we assume the energy of th e  molecule ad ju sts to  th a t o f the su rface , then



a

where

Therefore

I f  th e  energy does not a d ju s t, then a  co rrection  fac to r must be Included. 

This constant "a” i s  ca lled  th e  thenaal accommodation co e ffic ie n t. Then

I t  can be seen from equation (9) th a t th e re  is  a  lin e a r  re la tio n  between 

heat tra n s fe r  and p ressure.

The th ird  region is  a  tra n s itio n  pressure range th a t e x is ts  between

th e f i r s t  and second regions. Ho successful attem pt a t  a  th e o re tic a l

treatm ent has been made fo r th is  region because o f th e  d if f ic u lt ie s  involved 

in  defining th e  tra n s itio n . The net flu x  is  usually  represented by f i t t in g  

a smooth curve taken from the experim ental data between th e  f i r s t  and 

second regions. Since th is  i s  the region in  which th e  therm al conductivity  

gage operates w ith maximum s e n s itiv ity , the need fo r an experim ental method 

of ca lib ra tio n  becomes read ily  apparent.

The th e o re tic a l curves fo r th e  f i r s t  two regions are  given in  figure 1. 

Since no adequate theory o f the th ird  region e x is ts , the experim ental data

fo r th is  region are  a lso  given.

\  *M / \  a2 i
(9)

where the  slope Is

(10)
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Figure 1.- The three theoretical regions of thermal conductivity
for low pressures.
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EXPEHIM©*£AL miKM W V

The equipment co n sists o f a  high-vacuum p u lin g  system; a  McLeod, 

gage, a© a prim aiy standard; th ree  diaphragm-type pressure transducers, 

os the tra n s fe r  standards; and the g as-sen sitiv e  tb e rm l-co n d u etiv ity  

gage system*

A standard vacuum system? containing a  2 -Inch o il-d iffu s io n  pump 

and a  mechanical forepusap m s used to  a tta in  a pressure in  the 1(H* to r r  

range. This ^steaa ( f ig s . 2 and 3) can cover a  workable pressure range 

o f 10**̂  to  IT to r r ,  w ith an u ltim ate pressure fo r out gassing o f 10~? to r r .

An a i r  dryer and a  mercury McLeod gage are  included in  order to  complete 

the  system as a  c a lib ra tio n  u n it. The system Is  p ro tected  from th e 

McLeod gage mercury vapor by a liq u id -n itro g en  cold tra p . Suitable 

connections are av a ilab le  fo r connecting th e  gages to  be ca lib ra ted .
Q

The McLeod $age used in  th is  study m s a mult ip le  -  range instrum ent 

leaving one quadratic scale from 3 x 10~^ to  1 to r r ,  and th ree  lin e a r  

scales covering the range o f 0 .3  to  1.6 to r r ,  0 .8  to  3*0 to r r , and 3*5 to  

17.0 to r r .

In  order to  road tru e  pressure in  a te s t  gas environment, i t  i s  

necessary to  choose pressure transducers which are  not sen sitiv e  to  gas 

com position. A resistan ce  s tra in  gage, 0-30 to r r  transducer^; a  variab le  

reluc tance, 0-3 to r r  tra n sd u c e r^ ; and a variable-capocitance m lcraaanom eter^ 

were chosen. These gages allowed operating ranges of 3 to  30 to r r ,  0 .1  to  

3 to r r ,  and 0.001 to  0.123 to r r ,  resp ectiv e ly . The gages use a th in  m etal

10
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COLD
TRAP
(N2)

AIR
DRYER MANIFOLD

MANOMETER

McLEOD
GAGE

REGULATOR

DIFFUSION
PUMP

MERCURY
BOWL

MECHANICAL
PUMP VENT

VALVE

Figure 2.- Block diagram of the calibration unit.



12

Fi
gu
re
 

3.-
 
Va
cu
um
 
ca
li
br
at
io
n 

uni
t 

and
 
th
er
ma
l 

co
nd
uc
ti
vi
ty
 
gag
e 

sy
st
em
.



13

diaphragm which move w ith a  change in  p ressu re , unbalancing an a-c 

bridge and giving an output th a t was p roportional to  pressure*
iThe operation of the th e rm l-co n d u ctiv ity  gage'*' i s  based upon the

changes in  therm al conductivity  of resid u a l gases in  a  vacuum* The noble

m etal thenaocouples, which are d ire c tly  heated by a 20-kc power supply,

a re  cooled by an amount which v aries w ith th e  pressure o f these gases*

The output i s  a  function o f the tem perature o f th e  therm opile and i s

am plified and recorded* The instrum ent (figs*  3$ and 5) co n sists  o f

a  con tro l u n it, a  therm opile gage tu b e , a low pass f i l t e r  and a  d-c

am p lifie r. The con tro l u n it provides th e  therm opile gage tube w ith 20-ke

heating voltage* I t  receives i t s  power from a  highly regulated 28-v o lt

d-c power supply* The therm opile gage tube contains th e  noble m etal

therm opile and gives an output o f approximately 10 mv below 10"^ to r r  and

1 srv a t  atmospheric p ressu re. The output o f th e  gage tube is  returned

through th e  balance c irc u it in  th e  con tro l u n it. The low pass f i l t e r  was

used to  f i l t e r  out th e  resid u a l 2Q~3sc heater voltage appearing on the

d-c output. The d-c am plifier was used to  give an output o f approxim ately 
**o3 v o lts  below 10 ^ to r r  and 0*5 v o lt a t atmospheric p ressu re. The therm al 

conductivity  gage has an operating range of 0.010 to  10 to r r  in  a i r .
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GAGE TUBE

LOW PASS 
FILTER

THUHAL COMDUCTIYITY 
GAGE

POWER SUPPLY
28 v d-c

POWER SUPPLY 
CONTROL UNIT

AMPLIFIER 
POWER SUPPLY
28 v d-c

AMPLIFIER

OUTPUT 5- 0.5 v 
PROPORTIONAL TO PRESSURE

Figure 5.- Electrical block diagram for the thermal conductivity
gage system.



E X F E K B lI s m iL  moCEDWE AHD m s

The ejnporlsiental worK has been divided in to  th ree p a rts ; water vapor, 

acetami&e vapor, and the p ra c tic a l application* A x:>rocedure and a  d is ­

cussion w ill be given fo r each p a r t.

Water Vapor 

Procedure

A system (fig* 6) was designed to  compare water-vapor and d ry -a ir  

ca lib ra tio n s of the therm al-conductivlty gage* This system was b u il t  

around the  ca lib ra tio n  un it and contained a  cylinder of water, the 0-50 to r r  

resis tance  s tra in  gage transducer, the necessaiy plisabing and valving, and 

the gas-sensitive  tbermal-cosoductivity gage*

With valve 2 closed and valve 1 open, a  ca lib ra tio n  of the resistance 

etm in-gage transducer (fig* 7) and the therm al-conduetivity gage (fig* 8) 

in  dry a i r  was made by using the McLeod gage as the standard* To ca lib ra te  

the thenm l-conductiv ity  gage in  water vapor, a  mechanical pump, through 

valve 3, was used to  lower the pressure above the water below i t s  vapor 

pressure* S u ffic ien t pumping time m s allowed to  insure th a t a l l  the 

absorbed a i r  m s removed frco  the water* Valve 3 was d o sed  and the pressure 

above th e  cylinder was allowed to  r is e  to  it© liquid-vapor equilibrium .

A fter outsseeing the gage a t  10" * to r r ,  a  number of data po in ts were taken 

by bleeding water vapor in to  the gages through valve 2* Using the diaphragm 

transducer as a tra n s fe r  standard, the output of the tlierraal- conductivity 

gage was then compared to  pressure. This ca lib ra tio n  (fig* 8) i s  displayed

16
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DRY AIR 
INBLEED VALVE

VALVE 1

GAGE TUBE

VALVE 2

VALVE 3

MERCURY 
MC LEOD

VACUUM
CALIBRATION

UNIT

PRESSURE TRANSDUCER

RESISTANCE 
STRAIN GAGE

MECHANICAL PUMP

Figure 6.- Water vapor calibration system.
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on the saine figure as tb s  d ry -a ir  ca lib ra tio n  to  show a comparison between 

the two gases. A p lo t of tru e  pressure versus indicated pressure (fig* 9) 

was xaa&e from figure 8 fo r water vapor, using dry a i r  as a standard.

Discussion and Results 

In  order to  run 'water-vapor ca lib ra tio n s i t  m s necessary to  tabs 

extreme care in  m in ta in in g  a constant temperature in  the e n tire  vacuum 

system. Any small decrease in  temperature can cause a condensation of the 

water in to  i t s  liq u id  form.

C alibrations in  water vapor were made from 17 to  0*3 to rr*  From the 

indicated-true pressure curves, i t  can be seen that the sensitivity of the 

theriml-con&UGtivity gage is affected by the presence of water vapor. (The 

following ta b le  gives the  percentage e rro r for water vapor in  the above 

range assigning dry a i r  as the standard:

Indicated  pressure Percent error,
in  water vapor, dry a i r  as

to r r  standard

0.3 ^

1.0 kj

3*0 36

6.3 0

3*0 -32

I t  can be seen th a t fo r water vapor a t 0*3 to r r  there w ill be an e rro r of 

4*34 percent and a t 8 to r r  an e rro r  of -32 percent, as ca lcu lated  from the 

following re la tio n :

_ . (True pressure -  Indicated pressure)Percent e rro r «      .. v 100 percentTrue pressure
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Indicated pressure, torr

Figure 9*- True versus indicated pressure curves for the thermal
conductivity system.
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These ca lib ra tio n s a lso  show a crossover a t 6*3 to r r  where the se n s itiv ity  

fo r  'water vapor and dry a i r  i s  the same*

I f  the gas constants fo r a i r  and -water vapor are substituted. In to  

equation (6) , the net heat flux  can be calculated  in  the area in  which 

i t  i s  independent of pressure* I f  we assume th a t th e  temperature gradient 

i s  the  same fo r a i r  and water vapor, then a  comparison can be made between 

each gas* In  the second region where a  lin e a r  pressure dependence e x is ts , 

the slope of th is  dependence can be calculated  from equation (10). These 

values are  tabulated  and p lo tted  in  the following ta b le s  and figure*

Type
j Ratio of
j sp ec ific  
5 hea ts , 7

Molecular
weight, H j

T
Mean molecular 
diameter, 0, cm

A ir 28 0.171 I 3*72 x 10”8

I Water vapor 1*32

Aeetami&e -~

18

L
Nq -  Avogadrofs number - 6*021 x V &  e .g .s .

Rja -  Universal gas constant - 83*13 x 10^ c.g .s*

- Temperature of the walls - 300° K

*2 -  Tesaperature of the thermopile in  region I  * 575° &

j A ir 3*89 x 10~5 grad T 

3.63 x 10”5 grad TWater vapor 13*8 x 105
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Region H Region I I I Region I

A ir = 3*^9 x 10“^ grad T

Water = 3»&3 x 10"^ grad T
— "V

Slope = 13*6 x 10^ a u2Q 

Slope = IO.9 x 103 aA ir

Pressure

I t  can be seen from th is  figure  th a t the net heat flux  in  region I  i s  

higher fo r a i r  than fo r water vapor and th a t the slope in  region I I  

(assuming the thermal accommodation co effic ien t of water vapor i s  g rea te r 

than 10.9/l3*9 fo r a i r )  i s  sm aller fo r a i r  than fo r water vapor# I f  these 

areas are  connected by a smooth curve, as experiment v e r if ie s , then a  

crossover should be expected.

Acetamide CĤ COKÎ

Procedure

For comparison of acetamide vapor to  dry a i r ,  the system ( f ig .  10) 

was modified to  contain a  variab le capacitance gage as the tra n s fe r  standard.
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VACUUM
CALIBRATION

UNIT

DRY AIR Q* 
INBLEED VALVE

MERCURY

MC LEOD

VALVE IVALVE 2

<c
CO GAGE TUBE

VARIABLE CAPACITANCE

PRESSURE TRANSDUCER

VALVE 3

VALVE 4

ACETAMIDE

MECHANICAL PUMPCHAMBER

Figure 10.- Acetamide vapor calibration system.
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Since the  sample side contained the capacitance plate©, i t  m s  necesaacy 

to  reverse the ©ides fo r  these te s ts  before ca lib ra tio n  in  acetamide. For 

the re s t of the report a l l  reference to  these sides w ill be opposite to  

th a t recofaaended by the manufacturer.

To begin the te s t  procedure the tra n s fe r  standard was ca lib ra ted  

against the McLeod in  dry a i r .  The acetamide was cured in  a vacuum, oven 

a t  80° C fo r a  period of 48 hours and then was placed in  an evacuated 

chamber fo r 24 hours by pumping through valve 4 with valve 5 closed ( f ig .  10). 

This was done to  insure as pure an acetamide vapor as possib le . With 

valve 2 open and valve© 1 and 3 closed ( f ig .  10), the pressure was ra ised  

with dry a i r  in  the reference side of the gage to  0.130 to r r .  Valve 2 was 

then closed and dry a i r  m s  bled in  through valve 1 in  0.025 to r r  steps.

The outputs from the micrcxaanaaeter balance c irc u it  and the thermal** 

conductivity gage were recorded to  give a d ry -a ir  ca lib ra tio n  of output 

versus pressure fo r both gages. The pressure in  the chamber ( f ig .  10) was 

reduced through valve 4 and acetamide vapor was bled in to  the gages through 

valve 3 in  0.023 to r r  steps os determined by the ca lib ra ted  micmsaaometer.

The theraal-conductiv ity  gage output was then recorded. A ll data fo r the 

acetamide vapor portion  are recorded in  the following ta b le :

Thermal conductivity gage
output 3 vo lts  Variable capacitance

pressure transducer, McLeod pressure 
Dry a i r  Acetamide vapor to r r  to r r

6.02  6.02  0 0

5.93 5*9** .023 .0253

5.83 5.81 .030 .0301

5 .72  5 .7 4  .0886 . 0387



26

Discussion and Results 

I t  can be seen from th is  tab le  th a t th e re  is  no readable d ifference 

in  output between dry a i r  and acetamide vapor, the small varia tio n s in  

output being well within the accuracy lim its  of the  gage# We can therefo re 

conclude th a t the  in troduction of acetamide m por in  any vacuum system, 

measured by the thermal- conduet±vity gage, causes no appreciable e rro r.

I t  was not expected th a t the  output of gage fo r dry a i r  and acetamide m por 

generally  would coincide# The apparatus fo r the t e s t  was checked and tb s  

t e s t  was repeated giving id e n tic a l resu lts#  Since the te s t  data were 

apparently accurate, i t  followed th a t the reasons fo r the s im ila rity  in  

response fo r a i r  aril acetamide vapor should be investigated*

The following i s  offered as a  l ik e ly  explanation: The gage tube

dimensions are  small compared with the mean free  path of dry a i r  and aceta- 

mide in  the pressure range in  which the data were taken* The second region, 

th e re fo re , i s  chosen to  ca lcu la te  the  data# I t  i s  obvious from equation (10) 

th a t the  slope varies as the  square of the  molecular weight i f  we assume 

th a t  the thermal accommodation co e ffic ien t i s  the same, which would make 

the  s e n s itiv i ty  fo r a i r  la rg e r  than th a t fo r acetamide vapor# This, 

however, i s  not the case* A number of fac to rs  can account fear th is  discrep­

ancy. F ir s t ,  the gage i s  operating on i t s  lower asymptote which makes i t s  

s e n s i t iv i t ie s  to  pressure a small, p a rt of i t s  output in  th is  region# Second, 

the  thermal aceamaodation co e ffic ien t could Just balance out the  difference 

in  slope# The ta b le  of accoomodatian co e ffic ien ts  given in  reference^2 

indicate® th a t ,  fo r a  given geometry, the co effic ien t increases w ith 

molecular weight# I t  i s  the  opinion of the  author th a t th is  increase in  

“a** fo r acetamide corrects the slope of acetamide vapor ca lib ra tio n  Just 

enough to  obscure the d ifference in  the  asymptote of the gage.
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P ra c tic a l Application 

Procedure

In  order to  show the ap p lic a b ility  of the method to  a  p a r tic u la r  

problem an ac tu a l te a t  w ill be discussed. I t  should be noted th a t th is  

t e s t  was not done under laboratory conditions, and the  problems involved 

a re  not necessarily  ty p ic a l but are shown to  give some idea of the com­

p lex ity  o f making such measurements.

Since f lig h t packages are  minimized in  weight, i t  was necessary to  

choose a  physical small gage fo r measuring the  pressure in  the Echo c an is te r. 

The gage chosen m s  a  thezm al-eoaduetivity gage and a tra n s fe r  standard was 

used in  order to  give tru e  pressure in  the unknown vapor environment o f 

the  ca n is te r . Since the can is te r  contained acetamide powder a© an in f la ­

tio n  m ateria l, and since the can is te r  could not be baked, the presence o f 

water vapor and acetamide vapor was strongly suspected.

The tra n s fe r  standard chosen was a  variab le  reluctance pressure tra n s­

ducer. The thenaal-conductiv ity  gag© and the reluctance gage were ca lib ra ted  

in  dry a i r  against the  McLeod gage ( f ig s . 11 and 12) on the ca lib ra tio n  

u n it. Since the  te s t s  involved a  number of days in  which the tra n s fe r  

standard could not be ca lib ra ted , i t  m s  necessary to  determine i t s  s h if ts  

in  zero and se n s itiv ity  on a  day-by-clay b as is . Experiments showed th a t 

when the gage was balanced before each run, the s e n s itiv ity  did not change 

during the  t e s t s .  In  order to  accomplish the ca lib ra tio n s in  the can is te r  

and balance the gage a t  the same tim e, a  valving system was designed. The 

two gages and the  valving system ( f ig . 13) were moved to  the can is te r  and 

the e n tire  system was evacuated to  0.2 to r r .  The system had a pressure r is e  

o f approximately 0 .2  to rr/d ay , and i t  was nob known i f  th is  was caused by
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lea&age or ou&gaesing* I t  Idas, th e re fo re , necessary to  perform two 

ca lib ra tio n s  to  determine the causes of the pressure r is e .  F i r s t ,  the 

c a n is te r  was allowed to  r is e  In  pressure and data poin ts were taken fo r 

7 days. This gave a  ca lib ra tio n  of the  therroal-conductivity gage using 

the  reluctance gage as a  standard* This curve# ca lled  the  outgassing 

ca lib ra tio n , i s  shown In figure 12. The the;niBl~canductivity gage was 

then ca lib ra ted  In the  can is te r  by bleeding in  a i r .  This i s  shown in  

the  same figure as the  outgaeaing curve ( f ig . 12). In  order to  compare 

th e  e rro r  due to  gas composition a  tru e  pressure versus indicated pressure 

curve was p la tte d  using dry a i r  as a standard ( f ig .  14). This figure  con* 

s la ts  of the  d ry -a ir  curve, the water*vapor curve, the outgassing curve, 

and the inbleed curve.

Discussion and Results 

I t  can be seen from figure  i t  th a t there  i s  very l i t t l e  d ifference 

between the inbleed and out gassing curves and th a t those curves l i e  between 

the d ry -a ir  and water-vapor curves. Also, the two curves approach the  

water-vapor curve a t  low pressure. Since water i s  a  known component of 

unbaked vacuum systems in  th is  pressure range, i t  i s  safe to  s ta te  the  

gas in  the ca n is te r  a t  the lowest pressure i s  mainly water’ vapor and 

approaches dry a i r  as the pressure increases. Since the  inbleed and out- 

gassing curves are the same, th is  indicated th a t  the can is te r  pressure r is e  

m s  due to  leakage. Hie percent d ifference between the unknown gas and dry 

a i r  i s  appreciable, and these e rro rs  are  given in  the following ta b le :
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Figure 1̂ -.- True versus indicated pressure curves for the Echo II canister.
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Indicated pressure in
Echo XX ca n is te r  Percent e rro r ,

environment, dry a i r  as
 — S S K ___________

0*3 20

1 .0  9

2 .0  8 

3*0 7

6*3 0

Xt can be seen from th is  tab le  th a t th a t e rro r  varies frcsa a +20 percent 

e rro r  a t  0*3 to r r  to  a  0 percent e rro r a t  6*3 to rr#  Ho th e o re tic a l 

approach w ill be taken in  th is  section  since the  unknown gas i s  a  com- 

v ination  of gases* I t  should be noted, however, th a t the composition 

of the  gas changed with pressure* i ’he gage must therefore  be ca lib ra ted  

under the conditions in  the container in  which i t  i s  used.
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An investiga tion  of the e ffe c ts  of eondensible vapor was made using 

dry a i r ,  water vapor, and acetamide vapor* The re su lts  were compared to  

th e  theory o f thermal conductivity as a  transport phenomenon in  k in e tic  

theory of gases- In  comparing water vapor and dry a i r ,  a  crossover 

occurred a t  approximately 6-5 torr*  This crossover was quantitatively- 

explained by a sim ilar crossover in  the low pressure and ra r if ie d  energy- 

tran sp o rt condition in  the theory. The e ffe c ts  of acetamide vapor were 

minimised because o f i t s  low vapor pressure equilibrium  a t  room tempera­

tu re . These re su lts  were explained in  the ra r if ie d  gas condition. The 

app lica tion  in  the Echo I I  c a n is te r  indicated appreciable e rro r and the 

presence of water vapor. The data given in  th is  report show sig n ifican t 

d ifferences fo r various gas compositions.

3^
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