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ABSTRACT

In this paper, the problem of finding the shortest path through a stochastic network
is analyzed by applying a structural factoring approach. A broad class of stochastic
networks with the following characteristics is considered: (1) arc values (length, duration,
cost, etc.) are discrete random variables; (2) these random variables are statistically
independent; and (3) nodes do not fail. A general algorithm for determining the exact
distribution of the shortest path length in such directed networks is presented. The
algorithm is based on the concept of structural factoring, in which a stochastic network is
decomposed into an equivalent set of smaller, generally less complex subnetworks. Several
network constructs are identified and exploited to reduce significantly the computational
effort required to solve a network problem relative to complete enumeration. This
algorithm can be applied to two important classes of stochastic path problems: determining
the critical path distribution for acyclic networks and the exact two-terminal reliability for
probabilistic networks. Computational experience with the algorithm has been
encouraging and has allowed the exact solution of networks previously analyzed only by
approximation techniques.
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A STRUCTURAL FACTORING APPROACH FOR
ANALYZING PROBABILISTIC NETWORKS



SECTION 1.
INTRODUCTION

In general, network analysis involves the study of systems that can be modeled in
terms of nodes and arcs connecting certain of the nodes. Quantitative information such as
length, time to failure, or time to completion may in addition be associated with the arcs.
For example, Figure 1.1 shows a simple six-node network representing possible shipping
routes from a factory (node 1) to a warehouse (node 6). The arcs of this network represent
highway routes with their associated mileages given as the arc lengths. A commonly
encountered problem in such a network is finding the shortest path from the factory to the
warehouse. More generally, shortest path calculations are found to be valuable in
analyzing the behavior of various large-scale distribution networks, such as those

representing the flow of electricity, water, and vehicles.

Figure 1.1. Elementary Shipping Network.
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Historically, network models have played an important role in the management of
complex projects as well as in the analysis of electronic and mechanical systems. The
ubiquitous nature of networks has led to an expanding scope of interest in a variety of
further areas. Network models are now applied in such areas as transportation problems,
complex telecommunications processes, reliability analysis of distributed computer
architectures, and even lifeline systems subject to seismic riskl. The importance of these
applications requires that efficient techniques and tools be developed to aid in the network
analysis process.

Over the past 25 years, many efficient algorithms have been developed for analysis
of networks where the behavior of the individual network components is assumed to be

known. Such deterministic networks have been used to model a variety of transportation

and scheduling problems. A prominent technique in this regard is the Critical Path
Method? (CPM) which is primarily used to determine time-cost tradeoffs in the scheduling
and coordination of interrelated activities. Construction and maintenance projects are well
suited for analysis by CPM. However, the assumption of deterministic components often
fails to describe accurately many other real-world systems.

Progress in developing efficient algorithms to analyze stochastic networks, in which

nodes or arcs or their lengths are governed by some random process, has been somewhat
limited. One example of a technique used in the analysis of stochastic networks is the
Program Evaluation and Review Technique7 (PERT) procedure. The PERT procedure
expands the deterministic approach of CPM by taking into account the random nature of
networks. However, the validity of this technique relies on various approximations and
assumptions. Increasingly, these assumptions have been questioned and the accuracy of
the resulting conclusions has been widely challenged.11

Since the utility of a network model critically depends on the suitability of its

assumptions, a more general model that does not impose such restrictions on the
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distributional form of the network components is desirable. To address these concerns, this
paper considers a broad class of stochastic networks with the following characteristics: (1)
arc values (length, duration, cost, etc.) are discrete random variables, (2) these random
variables are statistically independent, and (3) nodes do not fail. These assumptions
greatly increase the tractability of the problem while preserving the model’s realism by
incorporating the random nature of the problem.9 Statistical independence is commonly
assumed and it reduces the computational requirements associated with most solution
approaches.

In this paper, the specific problem of finding the shortest path through such a
stochastic network is considered. Recall that the arcs of the network now assume random
lengths. These lengths could represent, for example, the duration in traversing a highway
segment or the cost of completing a given function. In real-world settings, these values are
most realistically viewed as random variables, rather than as fixed, deterministic
parameters. Thus, the state of the network depends on the state assumed by each arc. It
follows that the shortest path through the network is a function of the random are lengths;
hence, its length can be characterized by a probability distribution.

Although finding the distribution function for the length of the shortest path is
conceptually simple, the computational burden of determining the probabilities associated
with all possible path lengths is, in general, overwhelming. To illustrate this difficulty,

consider the two-terminal network reliability problem which is actually a special case of

the stochastic shortest path problem. The two-terminal reliability problem is defined
relative to a network G, in which each arc i has a given probability p; of functioning
independent of all other arcs. The two-terminal reliability of the network is equal to the
probability that there exists at least one path in G from a specified node s to a specified

node t along which all arcs are functioning.



Now consider a stochastic network G’ involving the same nodes and arcs as G.

Each arc i in G’ can only assume the lengths zero and one, with probabilities p; and 1-p;,
respectively. If there is a shortest s-t path through G’ that has length 0, then there must be
some path in G’ on which all arc lengths are 0. This directly corresponds to a path in G
composed of all functioning arcs. Thus, the probability that the shortest s-t path through
G’ has length zero is precisely the two-terminal reliability of the original network G.

Ball has shown, however, that network reliability problems are at least as difficult
to solve as the set of computationally hard, NP-complete problems such as the infamous
traveling salesman prob]em.1 Hence, the stochastic shortest path problem is at least as
difficult to solve and, in general, poses a formidable computational task. Consequently,
most analysis techniques for the stochastic shortest path problem have focused on
approximating or bounding the distribution function.2

The objective of this paper is to present a general algorithm for determining the
exact distribution of the shortest path length in a directed, stochastic network. This
algorithm will thus have applicability to two important classes of stochastic path problems:
determining the critical path distribution for acyclic networks and the exact two-terminal
reliability for probabilistic networks. The structure of the paper is as follows. In Section 2,
the necessary notation and basic terminology will be defined. Previous approaches to the
problem will be discussed in Section 3. Our structural decomposition technique will be
described in Section 4, and implementation of the algorithm will be discussed in Section 5.
In Section 6, the structural decomposition approach is applied to several network examples.

A summary of our findings including the limitations of the approach will be presented in

Section 7.



SECTION 2.

NOTATION

To facilitate the discussion of probabilistic networks, some basic terminology and
notation are first introduced. Such a network is modeled using a directed graph G=(N,A),
where N is a set of nodes, representing warehouses or communication centers in the
network, and A is a set of arcs, representing traffic routes or communication buses,
connecting certain pairs of nodes. An arc (i, j), where i, j are elements of N, is defined to be
a directed link from the origin node i to the destination node j. If more than one arc
connects a pair of nodes, the arcs will be denoted with different numbered superscripts.
For example, the two different arcs spanning nodes 4 and 5 in Figure 2.1 are denoted (4,5)1
and (4,5)2. Since we are only concerned with the shortest path (or critical path) between
two given nodes, we will only consider graphs with one source node s, which has only
outgoing arcs, and one terminal node t, which has only entering arcs. Figure 2.1 shows a
directed graph with source node 1 and terminal node 5. The indegree of node i, indegree(i),
is the number of arcs entering node i, and the outdegree of i, outdegree(i), is the number of
arcs leavingi. For each of the networks considered, indegree(s)=0 and outdegree(t)=0. In
Figure 2.1, indegree(3)=2 and outdegree(3)=1.

A path in the graph from node i to node j, is defined as an ordered sequence of arcs
connecting the two nodes. For example, one possible path from node 1 to node 5 in Figure
2.1 is through arcs (1,2) and (2,5). A cycle is a special type of path connecting a node to
itself. In Figure 2.1, arcs (3,2), (2,4), and (4,3) form a cycle. In general, the networks
treated here will be allowed to contain cycles, except in the special case of critical path

calculations for which the underlying graph must be acyclic.
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Figure 2.1. Directed Graph.

To incorporate information about the random behavior of the arcs, each arc will be
assigned a finite set of integer values, indicating, for example, lengths or durations. The
set of arc lengths for arc (j, j) is denoted aj j)r and the number of lengths associated with
arc (i, j) is denoted s(i, j). A particular length assumed by arc (i, j) is denoted L(i, j). For
each arc (j, j), there is a corresponding discrete probability distribution” for the arc lengths
and this is denoted P(ij) As an example, suppose the length of arc (2,4) in Figure 2.1 is
uniformly distributed on the interval [6,9]. Then the discrete set of arc lengths might be
represented by the s(2,4)=4 lengths acg, 4)={6,7,8,9] and the corresponding probability

distribution by P2 4)={.25,.25,.25,.25].

* Using discrete distributions significantly increases the tractability of the problem in
comparison with continuous distributions. Dodin? describes a process for discretizing a

continuous distribution.



SECTION 3.

LITERATURE SURVEY

Although techniques for deterministic network analysis are widespread and
applicable to large-scale networks, this is not the case for stochastic network analysis. For
stochastic networks, current analysis methods are largely confined to approximation,
simulation, and bounding techniques. This situation, as described in Section 1, is due to
the computational difficulty inherent in these problems. Although exact methods have
been developed, they are largely limited to rather small, acyclic networks. The following is
a brief description of some of the more prominent techniques proposed for analyzing
stochastic networks.

The most intuitive approach for finding the exact distribution of the shortest path
length is to enumerate completely every conceivable combination of arc lengths that the
network can attain. Although this approach is conceptually simple, it is infeasible as a
general technique. Even for a relatively small network, this approach can require an
extremely large number of calculations. In a network with 20 arcs and only 2 possible
lengths per are, for example, there would be 220=1,048,576 different combinations of arcs
lengths to consider in determining the distribution of the shortest path length. (In general,
if the network contains m arcs and each arc can take on k values, then there would be k™
combinations of arc values to consider.) Hence, this approach has limited value except for
very small networks.

Martinll presented certain network reduction techniques, based on the structure of

the network, that play a key role in the simplification of many complex



networks. Martin introduced the idea of simplifying series and parallel constructs, as
shown in Figure 3.1, occurring within a network. These reduction techniques sometimes
allow a complex network to be reduced to a network with only two nodes and one arc whose
associated distribution function is exactly that of the shortest path length through the
original network. These series and parallel reductions are basic building blocks of our

structural factoring approach and will be discussed more fully in Section 4.

A

O—0O0—=0 O\JO
SERIES

PARALLEL

Figure 3.1. Series and Parallel Network Constructs.

Other methods have been developed to deal with more general networks, not
reducible by series and parallel simplifications. One approach is to produce an analytic
expression for the distribution function by conditioning on common arcs in the network and
applying complete enumeration to produce the exact distribution.? Other exact approaches
include the use of cutsets®15 and complete path enumeration!2, Another analytic
approach is to find an approximation for the probability distribution function. One such
approach approximates the distribution function on each arc, in order to reduce the factor k
appearing in the expression k™ above, and then applies complete enumeration to yield an
approximate final distribution function.3 Even with such approximations, large networks
can still present computational difficulty. Additionally, the error inherent in these

approximations is not easily quantified.
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To avoid the problems of complete enumeration, a number of bounding techniques
have been introduced. One of the most widely used bounds was proposed by Malcolm, et
al.,, in 1959.10 By replacing the distribution on each arc with its expected length, solving
the resulting deterministic network produces a lower bound on expected project duration,
often referred to as the PERT mean. Other approximations commonly used in many of
these bounding techniques are applied while moving sequentially through the nodes of the
network. For example, the method of Fulkerson iterates through a network using the
expected value of the maximum length to a node as opposed to taking the maximum of the
expected value.® This method yields an improved lower bound on the expected completion
time compared to the PERT mean and has since been refined by Elmaghraby3 and Dodin2.
The Fulkerson approach has been further extended by Kleindorfer8 and Shogan13 to
provide lower and upper bounds on the distribution of the critical path. These bounds are
largely limited, though, to acyclic networks.

Monte Carlo methods have also been developed to approximate the distribution of
the shortest (or critical) path through a network. In 1969, Frank4 presented a basic

approach to simulating a stochastic network:

(1) generate a set of arc lengths according to each arc’s probability distribution,
(2) find the shortest path through the resulting deterministic network, and
(3) repeat this process a large number of times to find the approximate
distribution of the shortest path length.
This crude simulation approach can be substantially improved by applying
statistical sampling procedures.3 The Monte Carlo approach can be both a practical and
powerful approximation tool; however, this approach is prone to sampling errors and can

require extensive computational resources to achieve the desired level of confidencel3,



SECTION 4.
STRUCTURAL REDUCTION TECHNIQUES

In this section, a graph-theoretic procedure for determining the distribution of the
shortest path through a stochastic network is described. The objective of the approach is to
apply certain structural reductions to a given network until the network is reduced to an
equivalent network having only two nodes. The arc connecting the two nodes in this
reduced network will provide the distribution of the shortest path length in the original
network.

In this paper, two different classes of structural reductions are applied to stochastic
networks. The first class of reductions represents fundamental simplifications including
the "series" and "parallel” reductions first employed by Martin!l. The second class of
reductions are based on the concept of local "factoring”. The basic difference between the
two classes is that the fundamental reductions yield a smaller equivalent network. Local
factoring, on the other hand, generates an equivalent set of subnetworks to be solved. Each

type of reduction will be discussed more fully in the following subsections.

11
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4.1 Fundamental Reductions

The fundamental reductions can be applied to three basic configurations present in
a network: series, parallel, and figure-eight structures. Each of these reductions simplifies
the given network by decreasing the number of nodes or the number of arcs (or both).

A series structure exists when there is a node B with indegree(B)=1 and

outdegree(B)=1. Figure 4.1 gives an example of a series structure in which the discrete

distribution function on arc (A,B) is uniform on [0,3] and the discrete distribution function

on arc (B,C) is uniform on [2,6].

a - {0,1,2,3} a = {2,3.4,5,6]
@_(A,B)_____> (B,C) »@

= {.25,.25,.25,.25} P = {.2,.2,.2,.2,.2}

P (A,B) (B,C)

Figure 4.1. Series Structure.

Since any path that goes through node B must include ares (A,B) and (B,C), these
two arcs can be replaced by a single arc between nodes A and C. The set of lengths for the
replacement arc (A,C) is the set of all possible additive combinations of arc lengths chosen
from (A,B) and (B,C). For our example, L(A,C)=3 occurs since L(A,B)=0 and L(B,C)=3 are

present. Moreover,

Pr[L(A,C)=3] = Pr{L(A,B)=0] * Pr{L(B,C)=3] + Pr[L(A,B)=1]1 * Pr[L(B,C)=2]

=(.25)*(2) + (25)*(2) = .1,
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using the independence of arc lengths associated with distinct arcs. More generally, for
those lengths in the set aA.C) that occur in several ways, their length is only denoted once
in a¢ AC) and the corresponding probability is the sum of the contributing probabilities.
The reduced structure, which corresponds to the "discrete convolution” of the arc

distributions on (A,B) and (B,C), is shown in Figure 4.2.

a = 2"’1'!!
@ () = 123456789

= {.05,.1,.15,.2,.2,.15,.1,.
Pac) { 5,.2,.2,.15,.1,.05}

Figure 4.2. Reduced Series Structure.

Two or more arcs that connect the same pair of nodes constitute a parallel
structure. Figure 4.3 shows a parallel structure where arc a A,B)l={2'3'5} and
P( A,B)1=['25"25"5}’ the distribution on arc a(A B)2 is uniform on [0,3], and the

distribution on a(A B)3 is uniform on [2,3]** .

={2,3,5} p = {.25,.25,.5}

3(A,B)1 (A.B)1

@ A,By2 =123} P4y, =1 },

={0,1,2,3} p = {.25,.25,.25_,25}
(A,B)3

a
(A,B)3

Figure 4.3. Parallel Structure.

** The uniform distribution was used in many examples for ease of illustration. In general,
the same reduction techniques apply for any discrete distribution.
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For any given realization of a stochastic network that contains this structure, the
shortest path will contain at most one of the parallel arcs shown in Figure 4.3. When
finding the shortest path through such a deterministic realization, only an arc having the
minimum length among these parallel arcs would be considered for the shortest path. It
follows that the set of parallel arcs can be replaced by a single arc (A,B), whose arc lengths
represent the minimum lengths from all possible combinations of arc lengths of the parallel
arcs. One possible combination of arc lengths in the example is L(A,B)1=3, L(A,B)2=1, and
L(A,B)3=2; hence, min(3,1,2)=1 is included in aA By For this particular combination,
Pr[L(A,B)1 =3]*Pr[L(A,B)2=1]*Pr[L(A,B)3=2] contributes toward the overall probability

Pr[L(A,B)=1]. Specifically,

Pr{L(A,B)=1]= ;kPr[L(A,B)l=j]*Pr[L(A,B)2=1]*Pr[L(A,B)3=k]= 25
Js

again using the independence of arc lengths.

More generally, any length in the set aA B) that arises from several combinations
is represented only once in a A,B) and its corresponding probability is the sum of the
appropriate individual probabilities. By applying this strategy, the parallel structure in

Figure 4.3 can be replaced by the single arc shown in Figure 4.4.

= {0,1,2,3}

a
A,B
e -®

Pag = 25:25.375.125)

Figure 4.4. Reduced Parallel Structure.

The series and parallel reductions are well-known and have applications in many

optimization problems. Martinll was the first to apply these reductions to the stochastic
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shortest path problem. Using these two reduction steps, more complex networks can

sometimes be reduced to a single arc. In fact, a series-parallel network is defined to be any

network that can be simplified via series and parallel reductions to an equivalent two-node
network. For example, consider the network G in Figure 4.5 where the distribution on each

arc is uniform on [1,2]; that is, ag j)=[1 ,2} and PG j)=(.5,.5] for each (§, j) in G.

& C O O——%0
O

Figure 4.5. Series-Parallel Network.

By applying only series and parallel reductions, this network can be reduced to the

equivalent network shown in Figure 4.6.

2y = 13456)

p(s . = {.316406, .529297, .150879, .003418}

Figure 4.6. Reduced Series-Parallel Network.
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The last fundamental reduction, called a figure-eight reduction, while less well-
known than the series and parallel reductions, incorporates the same approach to
simplifying a network structure into an equivalent, less complex, structure. The figure-
eight structure, shown in Figure 4.7, is only found in cyclic networks. In this structure, the
center node B in the structure must have exactly indegree(B)=2 and outdegree(B)=2 and
must be connected to exactly two other nodes, labeled A and C in the figure. Specifically, B

has one incoming arc from node A and one from C; both node A and node C have one

incoming arc from B.

P LN _— <B.C)\@

®

a(g,A) a(c,B)
Figure 4.7. Example of a Figure-Eight Structure.

Since we are only considering the shortest path from the source node to the
terminal node, the subpath (A,B)->(B,A) should never be included in a shortest path.
Similarly, the subpath (B,C)->(C,B) can safely be ignored. By eliminating these two paths
from the set of paths between nodes A and C that could possibly be included in the shortest
path, the only remaining paths of interest are (A,B)->(B,C) and (C,B)->(B,A). The figure-
eight structure can thus be simplified by replacing arcs (A,B) and (B,C) with a single arc
(A,C), and by replacing (C,B) and (B,A) with a single arc (C,A). The lengths and

probabilities of the new arcs are determined in the same manner as with series reductions.
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For example, the set of lengths for (A,C) is the set of all possible additive combinations of
lengths from (A,B) and (B,C). The simplified figure-eight assumes the form shown in

Figure 4.8.

a
TN

@'\ /@

a(c,a)
Figure 4.8. Reduced Figure-Eight Structure.

The advantage of using these fundamental reductions is that they yield a single
equivalent network that has a smaller number of arcs and possibly fewer nodes. The
contribution made to the stochastic shortest path problem through this investigation is the
development of a new reduction technique, called conditional factoring, that, like the
fundamental reductions, is based on the configuration of the nodes and arcs in the network.

Conditional factoring offers additional possibilities for simplifying a given network.
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4.2 Conditioned Reductions

Most exact methods for finding the distribution of the shortest path length through
a stochastic network, whose architecture cannot be simplified by applying only series and
parallel reductions, depend on complete enumeration. In simplifying a construct around a
given node by complete enumeration, all possible combinations of arc lengths for all arcs
connected to that node would be considered. For example, given the network construct
centered at node B in figure 4.9, 34=81 states of that construct would be considered in the
reduction process. In general, complete enumeration is computationally infeasible except

for very small networks where the arcs can assume only a minimal number of lengths.

ON O

={2,4,6} a =(7,8,12}

(A B) "\ (B D)

/'

(C B)’ 2,3} a (B.E) ={1,3,4}

©” ™G

Figure 4.9. Partial Network Structure.

In this investigation, some constructs which are prevalent in many network
architectures were identified that can be simplified without complete enumeration. The
technique used to simplify these constructs is called conditional factoring, and it is based on
the idea that it is sufficient to consider only a specific subset of arcs within certain network

constructs in order to generate an equivalent, simplified representation. In general,
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conditional factoring can be applied to any node, except the source or terminal nodes,
within the network. However, conditional factoring reduces the computational effort,
compared with complete enumeration, in simplifying a construct only when it is applied to
the four special constructs described in this section. For all other constructs, conditional
factoring is equivalent to complete enumeration.

The reductions are performed by identifying a specific construct centered around a
node, called the central node, in the network. The structure of this construct is simplified
by removing the central node and completing all possible paths through that central point
of that construct. In contrast to the fundamental reductions, conditional factoring
generates a set of subnetworks to be solved, where each subnetwork incorporates the new,
reduced structure into the overall network architecture. These subnetworks are generally
smaller in size (i.e. have fewer nodes) and, hopefully, involve reduced computational effort
to solve. The lengths of the new arcs in the subnetworks are defined by conditioning on the
arcs that are used more than once in defining new arcs in the reduced construct. These
arcs that are used more than once in forming the new arcs of the reduced construct are
called factoring arcs. A unique subnetwork is defined for each combination of lengths
among the factoring arcs, and this eliminates any dependencies among the subnetworks.
In this section, the concept of conditional factoring is illustrated by applying it to four
special network constructs.

The first construct to be introduced is the fan construct. A deterministic fan
construct centered at node B is shown in Figure 4.10. In general, a fan construct with
central node i has the following characteristics: (1) i is any node in the network except the
source or terminal node, and (2) either indegree(i)=1 or outdegree(i)=1 (if both are 1, then i
is the center node in a series structure). Ifindegree(i)=1, the incoming arc to node i will be
called the factoring arc and will be denoted f(i). Similarly, if outdegree(i)=1, the outgoing

arc from node i will be called the factoring arc and be denoted f(i). For Figure 4.10, the

factoring arc is f(B)=(A,B).
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/2/©
O— O

3—»

6\®

Figure 4.10. Deterministic Fan Construct.

A fan construct is graphically simplified by eliminating the central node and
completing each possible path (relative to the structure) through that central connection
point. In a deterministic fan construct, the length of the factoring arc is added to the
Iengths of each of the other arcs connected to the central node. For example, arc (A,C) in
Figure 4.11 is formed from arcs (A,B) and (B,C), arc (A,D) is formed from arcs (A,B) and
(B,D), and arc (A,E) is formed from arcs (A,B) and (B,E). The length of each new arc is
accordingly the sum of lengths of its component arcs. For the network in Figure 4.10, this

reduction process yields the network in Figure 4.11.

—C

®< ®

Figure 4.11. Reduced Deterministic Fan Construct.

The concept of conditional factoring is introduced when the length of each arc is

assumed to be a random variable. A stochastic fan construct centered at node i is
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decomposed based on the distribution of lengths on the factoring arc (i), and a distinct
subnetwork is generated for each length in agj;)- The number of subnetworks created by
factoring on node i will be denoted w(i). Thus, for the stochastic fan construct, the number
of subnetworks generated is equal to the number of possible lengths for the single factoring
arc; i.e. o(i)=s[f(i)l.

In general, the arc lengths in the reduced structure are determined by adding the
lengths of their component arcs. The probability that an arc assumes a constant length is
1. If two arcs with constant lengths are combined, the length of the resulting arc is also a
constant and, thus, has corresponding probability 1. When an arc with a constant length is
combined with an arc whose length is governed by a discrete distribution D, the length of
the resulting arc is a random variable governed by D.

To generate the subnetwork Sj, for each j=1, 2, ..., o(i), the following steps are
taken: (1) let f(i) take on a constant value s where ¢ is the jth length in ag;) (2) eliminate
node i from the original structure; (3) complete all possible paths through the central point;
and (4) define the new arc lengths and the associated probabilities.

To demonstrate this process, consider the construct in Figure 4.10, and suppose
each arc can take on a value in {1,2} with corresponding probabilities {.4,.6). This fan
construct can be decomposed into an equivalent set of two independent subnetworks shown
in Figure 4.12. The first subnetwork S; is constructed by assuming L(A,B)=1, and the
second subnetwork Sy is constructed for L(A,B)=2. The probability of obtaining
subnetwork 1 is Pr(S;)=Pr[L(A,B)=1]=.4, and, similarly, the probability of obtaining

subnetwork 2 is Pr(Sy)=Pr[L(A,B)=2]=.6.



2 n o34 P - {.4,.6}"@

/(A’C)
—-a = {3,4 ={.4,.
e O

a ={34} p = {.4,.6)
(AE) (A,E) \@

Figure 4.12. Subnetworks for Fan Construct.

The next three reductions focus on constructs with a central node i where either

22

indegree(i)=2 or outdegree(i)=2. Additionally, each of these constructs contains at least one

simple cycle of size two involving the central node i. The first of these constructs, shown in

Figure 4.13, is called the loop construct with central node B.

® 0O

®

Figure 4.13. Loop Construct.
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In general, a loop construct with central node B has the following characteristics:
(1) indegree(B)=2, (2) outdegree(B)=2, and (3) B together with some node D form the unique
simple cycle of the construct. The possible paths through this structure that would be
considered for the shortest path are then (A,B)->(B,D), (A,B)->(B,C), and (D,B)->(B,C). The
only other path through the structure, (A,B)->(B,D)->(D,B)->(B,C) would never be
considered as part of a shortest path since a subset of that path, (A,B)->(B,C), would always
be at least as short. As a result, it is possible to replace each of these three paths with an

equivalent arc, as shown by the reduced construct shown in Figure 4.14.

@) ~(%)

®

Figure 4.14. Reduced Loop Construct.

Since the arcs (A,B) and (B,C) are used more than once in defining the new arcs in
the reduced construct, the lengths of both of these arcs must be considered when generating
subnetworks. Hence, arcs (A,B) and (B,C) are factoring arcs for this structure and are
denoted fj(B) and fy(B), respectively. In general, the number of subnetworks produced by
any conditioned reduction is the product of the distribution sizes for each factoring arc. For
a loop construct, a distinct subnetwork will be produced for each combination of lengths for
the two factoring arcs, so w(B)=s[f] (B)I*s[f3(B)]. To generate the subnetwork Sy, where

k=1,2,..., ®(B), the following steps are taken: (1) let each factoring arc a:f:i(B), j=1,2, take on
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the constant value < where ¢ is a length in a_; (2) eliminate node B from the original
structure; (3) complete all possible paths through the central point; and (4) appropriately
define the new arc lengths and their probabilities.

To illustrate, suppose that in the loop construct of Figure 4.13 each arc can take on
lengths in the set {1,2) with equal probability. From the first reduction step, we know that
four distinct subnetworks will be generated where L(A,B)=1 and L(B,C)=1 in S;; L(A,B)=1
and L(B,C)=2 in Sy; I(A,B)=2 and L(B,C)=1 in Sg; and, L(A,B)=2 and L(B,C)=2 in S.
These four subnetworks are shown in Figure 4.15. To simplify the notation in the following

figures, the lengths and probabilities are displayed in an abbreviated form. In this

notation, the lengths and corresponding probabilities for each arc will appear in the format

{length,probability: length,probability: ... : length,probability}

@ {2,1.0}_@ @ {3,1.0} @

(2,5 : 3,5) / (2,5 : 3,5 N
Q257 3.5 (3,5 4,.5)

®’ g
@ {3,1.0}? @ {4,1.0} @

(3,5 : 4,.5) . (3,5 : 4,5) N
Q{25 3.5) (3,5 : 4,.5)
rd

Vo)

Figure 4.15. Subnetworks for a Reduced Loop Construct.

The third construct, called the octopus, is a generalization of the loop construct and

is shown in Figure 4.16. In general, an octopus construct with central node B has the
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following characteristics: (1) either indegree(B)=2 and outdegree(B)>2, or outdegree(B)=2
and indegree(B)>2; and (2) B together with some node A forms the unique two-node cycle of

the structure.

®

® e ®

Indegree(B) = 2 Outdegree(B) = 2

Figure 4.16. Examples of Octopus Constructs.

When the central node is removed from an octopus construct, the number of arcs in
each resulting subnetwork is at least as great as the number of arcs in the original

network. The structural reduction of an octopus structure is illustrated in Figure 4.17.

® ©

Q

® ©® ®

Octopus with Central Node B Reduced Octopus Structure

Figure 4.17. Reduction of an Octopus Construct.
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Note that in reducing the octopus construct each arc in the original structure is
used more than once except for arc (B,A). As a result of this commonality, each arc in the
original octopus construct must be a factoring arc except for arc (B,A). The number of
factoring arcs is thus y=indegree(B)+outdegree(B)-1. As in the fan and loop constructs, the
same basic steps are applied to reduce an octopus construct: (1) let each factoring arc
a=f;(B), i=1,2, ..., v, take on a constant length in a; (2) eliminate node B from the original
structure; (3) complete all possible paths through the central point; and (4) appropriately
define the new arc lengths and probabilities. Suppose each arc in the octopus structure of
Figure 4.17 can assume an integer length in the set (1,2) with equal probability. Then,
there would be y=5 factoring arcs, and ®(B)=29=32 subnetworks would be generated in
reducing that structure. Two of these subnetworks are shown in Figure 4.18. In these
subnetworks, only arc (C,A) has a nonconstant distribution. This is because (C,A) is formed
by combining arcs (B,A) and (C,B), and arc (B,A) is the only arc in the structure that is not

a factoring arc of node B.

{2,.5 : 3,.5)
I\- (2,1.0),

(2.5 : 3,5}
{2,1.0}

{2,1.0}
{2,1.0} {3,1.0}
2,1.0
{2,1.0} { } {3,1.0} {2,1.0}
® e ©
Subnetwork 1 Subnetwork 2

Figure 4.18. Two Subnetworks for a Reduced Octopus Construct.

The last conditioned reduction, shown in Figure 4.19, is called a butterfly construct.

Like the octopus construct, either the indegree or the outdegree of the central node must be
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2. The butterfly construct, though, must contain exactly 2 simple cycles connected to the
central node. In general, a butterfly construct with central node B has the following
characteristics: (1) either indegree(B)=2 and outdegree(B)>2, or outdegree(B)=2 and
indegree(B)>2; and (2) B is involved with some node A in a simple cycle and B is also

involved with some other node C in a simple cycle; see Figure 4.19.

® ©

O

) ® e ®

Figure 4.19. Butterfly Construct with Indegree(B)=2.

Removing the central node of a butterfly construct generally creates more arcs in
each resulting subnetwork than present in the original structure. When the new arcs in
the subnetworks of a butterfly construct are constructed, two of the arcs in the original
network are only used one time, such as arcs (B,A) and (B,C) in Figure 4.19. An example of
the graphical reduction of a butterfly construct is shown in Figure 4.20.

As with all conditioned reductions, each arc that is used more than once in creating
the reduced construct will be a factoring arc. Hence, for any butterfly construct with
central node B there will be y=indegree(B)+outdegree(B)-2 factoring arcs. The total number

of subnetworks that would be generated is w(B)= s[f} (B)]*s[fz(B)]*--~*s[f71B)].
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The same steps are used to generate each of the subnetworks of a butterfly structure as

with each of the other conditioned reductions.

Y

®

@

Figure 4.20. Reduced Butterfly Construct.
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4.3 Conditioned Reductions and Shortest Path Calculations

The rules for simplifying a special construct present within a stochastic network via

conditioned reductions follow a general scheme. Namely, once one of the constructs

discussed in Section 4.2 has been identified, the following steps are taken to generate

desired subnetworks:

eh)
©)

3)

@

6))

(6)

Identify all factoring arcs for that construct.

List all possible combinations of lengths for the factoring arcs. Each
combination will define a distinct subnetwork.

For each combination of lengths, compute the product of the probabilities
associated with each length. Due to the independence assumption, this
product is the probability of that subnetwork occurring.

Remove the central node from the construct and graphically complete all
possible paths through the construct. (Note: any loop arc (i, i) formed can be
eliminated from that subnetwork structure.)

Add the lengths of the component arcs to get the lengths of the new arcs in the
subnetworks.

Define the probabilities for the new arcs. An arc with a constant length has
probability 1. When an arc with a constant length is combined with an arc
whose length is governed by a discrete distribution D, the length of the

resulting arc is a random variable governed by D.

To demonstrate how to determine the distribution of the shortest path length in a

network when conditioned reductions are used, consider the network G shown in Figure
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4.21; notice that G is not a series-parallel network. Suppose each arc of G can take on

lengths in the set of integers (1,3) with equal probability.

O,
Q,

Figure 4.21. Network with Loop Construct.

In this network, there is a loop structure with central node 2 and a loop structure
with central node 3. For this example, the choice of central node is not important, so node 2
is arbitrarily selected. (In a later section, criteria are given for choosing nodes for more
efficient subsequent factoring.) According to Step (1) above, there will be four subnetworks
generated from the four possible combinations of arc lengths from the factoring arcs (1,2)
and (2,4). These combinations are 1(1,2)=1 and L(2,4)=1 in S;; L(1,2)=1 and L(2,4)=3 in
Sg; L(1,2)=3 and 1(2,4)=1 in Sg; and, L(1,2)=3 and L(2,4)=3 in S4. The four subnetworks

are shown in Figure 4.22.



Subnetwork 1

{2,1.0)
®\5 : 4,.5) /v

{ 5 : 4,5)

,.5:35} {15:

{4,1.0) @

,.5 : 6,.5)
\\ : 4,5
:35} (15: 5)

v >

Subnetwork 3

Subnetwork 2

{4,.5_: 6,.5) /’/
{4,.5 : 6,.5)

{4,.5 : 6,.5)
{,.:35} /
{15:3,.5}

Subnetwork 4

Figure 4.22. Reduced Subnetwork Structures.

From Step (3) above, the probability associated with each subnetwork is the

product of the probabilities corresponding to the constant lengths used to define that

subnetwork. In Figure 4.22

Pr(S;)=Pr[L(1,2)=1]*Pr{L(2,4)=1]=.25,
Pr(S9)=Pr[L(1,2)=1]*Pr[1(2,4)=3]=.25,
Pr(S3)=Pr{L(1,2)=31*Pr{1(2,4)=1]=.25,

Pr(S4)=Pr[L(1,2)=31*Pr{L(2,4)=3]=.25.
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Notice that each subnetwork in Figure 4.22 can now be simplified to an equivalent

two-node network via series and parallel reductions. These simplified networks are shown

in Figure 4.23.

{2,.25 : 3,.125 : 4,.625}

5, 2 —e® s, O ~®

{2,.25 : 3,.125 : 4,.625} {2,.25 : 4,5 : 6,.25)

SSQ} -@ s, ® —>

Figure 4.23. Simplified Subnetworks.

The distribution of the shortest path length through the original network in Figure
4.21 is then calculated as shown in Table 1. Namely, this final distribution is found by
combining the shortest path distributions in each subnetwork S;, i=1,2,3,4, using as
weights the appropriate Pr(S;).
Table 1

DISTRIBUTION OF SHORTEST PATH LENGTH IN THE NETWORK

Length of the | Distribution in Final Subnetworks | Distribution

Shortest Path | S, Sy S3 S84 | for Original
| 25 25 25 25 |  Network
2 I 1.0 25 25 .25 l 4375
3 | 125 125 I 0625
4 | 625 625 b5 | 4375
6 I 25 l .0625
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4.4 Total Factoring

Although the special constructs required for the basic and conditioned reductions are
found in many network configurations, realistic network configurations exist that do not, on
initial inspection, contain any of these constructs. In these cases, the factoring approach and
the steps for conditioned reductions can still be applied; however, all of the arcs that are
incident with the node chosen for removal will now be factoring arcs. That is, all possible
combinations of arc lengths around a central node will be completely enumerated. If total
factoring were required for each node of the network, except for the source and terminal
nodes, this approach would be equivalent to complete enumeration which, as discussed
earlier, is computationally infeasible for all but the smallest networks. Fortunately,
applying total factoring on a node in a complex network will often yield subnetworks that
can be simplified via the basic and conditioned reductions.

For example, the network shown in Figure 4.24 does not contain any of the

constructs discussed in Sections 4.1 and 4.2.

Figure 4.24. Network with No Special Construct.
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To demonstrate total factoring, let node 2 be the central node to be removed from the

network. The subnetworks generated by removing node 2 will each have the form shown in

Figure 4.25.

Figure 4.25. Subnetwork Structure After Factoring.

After performing a parallel reduction on the arcs connecting nodes 1 and 3, we can now
identify an octopus construct with central node 4 in this subnetwork structure. When node 4
is removed from this subnetwork structure, the new subnetwork, shown in Figure 4.26,
results. In this new subnetwork, there is a simple loop construct with central node 3, an
octopus construct with central node 6, and a butterfly construct with central node 5. Since
there are fewer factoring arcs associated with the loop construct than with the octopus or
butterfly, node 3 is chosen for factoring. After factoring on node 3, the subnetworks, whose
structure is shown in Figure 4.27, are generated. These subnetworks have the same

graphical form as the example given in Figure 4.21 and, thus, can be solved in the same

manner.



©

Figure 4.26. New Subnetwork Structure.

A

G—=C

Figure 4.27. Final Subnetwork Structure.
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4.5. Determining the Shortest Path Length Distribution

In previous sections, the distribution of the shortest path has been found for series-
parallel networks and for networks where only one "level” of subnetworks needs to be
generated. For many networks, such as the one given in Figure 4.24, reductions must be
repeatedly applied before the original network is simplified to an equivalent two-node
network. That is, each generated subnetwork can itself be reduced by further application of
conditioned and basic reductions.

In general, the final subnetworks that simplify to two-node structures (weighted by
their associated probabilities of occurrence) are the only contributors to the overall
distribution of the shortest path length in the network. Hence, for each possible subnetwork,
it is important to keep track of the probability of that subnetwork occurring. Suppose a
conditioned reduction is applied to a network G, and several subnetworks, denoted Sy, are
generated. Then, by the independence assumption, the probability of each subnetwork Sy, is
calculated according to Step (3) in the general reduction procedure. Now suppose that
another conditioned reduction is used to simplify subnetwork S;_and an additional k’
subnetworks, denoted Sk, j are generated. The current status of the computations can be
represented by the tree depicted in Figure 4.28. The shaded leaves of this subnetwork tree
represent the currently unresolved subproblems. The probability of the jth subnetwork of Sp
occurring, Pr[Sk, j]’ is just Pr[Sk’ J-]=Pr[Sk’ j I S 1PrlS; ], where Pr[Sk, j I Sl is calculated
according to Step (3) in the general reduction procedure. This process of generating new
subnetworks from existing subnetworks continues until a generated subnetwork simplifies to

a two-node structure.
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Level 1
Level 2
N Level 3

Figure 4.28. Subnetwork Tree.

Note that all subnetworks at level 2 of the subnetwork tree have the same graphical
structure. The only differences among these subnetworks are the lengths and probabilities
occurring on the arcs. More generally, all subnetworks on the same level of the subnetwork
tree have the same graphical structure. So if a conditioned reduction is required to simplify
Sy, the same conditioned reduction applies to S{, Sy, ..., Si_1. Also, if some Sk, j in Figure
4.28 simplifies to a two-node network without additional conditioned reductions, each
subnetwork on level 3 will also simplify to a two-node network without generating further
subnetworks.

To calculate the distribution of the shortest path in the original network, we only
need to consider subproblems at the final level of the subnetwork tree; that is, those leaf
subnetworks that can be simplified to two-node networks without further conditioned
reductions. For each leaf subnetwork in the final level, we multiply the probability of each
arc length appearing in the associated distribution by the probability of that subnetwork
occurring. Then, for every possible length, we sum the contributing probabilities across all
leaf subnetworks. This yields the distribution of the shortest path length in the original

network.



SECTION 5.

IMPLEMENTATION OF THE REDUCTION ALGORITHM

The basic and conditioned reduction techniques presented in the previous section
have been implemented in a computer program to automate the process of finding the
distribution of the shortest path. The program is written in FORTRAN 77 and was
implemented on a Microvax 3200 computer.*** Although the reduction techniques apply to
arbitrarily large networks, practical limitations on computer resources place limits on the
size of network that can be input to the program. Currently, the program will accept a
network with a maximum of 20 nodes and 40 arcs.

An important aspect of the program is the compact storage of the node and arc
data. The following information is kept for each node: (1) the first arc leaving that node
(OUTSTRT), (2) the first arc entering that node (INSTRT), (3) the number of leaving arcs
(OUTDEG), and (4) the number of incoming arcs (INDEG). The following information is
tracked for each arc: (1) the origin of the arc (FROM), (2) the destination of the arc (TO), (3)
the size of the distribution for that arc (DIS_SIZE), (4) the lengths assumed by each arc
(LENGTH), and (5) the corresponding probability for each length (PROB). Additional
information describing the sets of arcs entering and leaving each node is stored in linked
lists called NEXTIN and NEXTOUT. For example, the node and arc data for the network
in Figure 4.20 are stored as shown in Table 2. The various elements of this data structure

are dynamically created as each network is read into the program.

**+* Although other programming languages lend themselves better to implementing data
structures and recursion, the author’s primary programming language is FORTRAN.

38
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Table 2

STORAGE OF ARC AND NODE DATA FOR A SAMPLE NETWORK

ARC DATA NODE DATA

FROM TO NEXTIN NEXTOUT DIS_SIZE LENGTH PROB OUTSTRT INSTRT OUTDEG INDEG

1 2 0 0 2 1 .5 2 0 2 0
3 .5 4 5 2 2
1 3 0 1 2 1 5 6 3 2 2
3 .5 0 6 0 2
2 3 2 0 2 1 5
3 .5
2 4 0 3 2 1 5
3 5
3 2 1 0 2 1 .5
3 .5
3 4 4 b 2 1 b
3 5

In addition to using this array representation with linked lists to efficiently store and
access the node and arc data, an effort was made to minimize other storage requirements. A
common approach used to minimize storage throughout the program was to use generalized
bit vectors to store information. A bit vector was used, for example, to accumulate the final
distribution data for the shortest path length. At the start of the program, this vector is
initialized to zero. Then, as subnetworks are completely reduced, the appropriate
distribution information is added to the bit vector. As an illustration, suppose a network
problem is being solved where the first subnetwork to be simplified contributes lengths
{2,4,7) with corresponding probabilities {.1,.06,.3} to the final distribution of the shortest
path length. Suppose, further, that the next subnetwork to be completely reduced
contributes lengths {2,5,6,7) with probabilities (.03,.01,.14,.002). Figure 5.1 shows the state
of the bit vector for the final distribution of the shortest path length after the second
subnetwork has been solved. This bit representation is appropriate when the arc lengths
assume nonnegative integer values, as is typically assumed. However, it could be modified

to deal with real data using the concept of "buckets"16,
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0 0 .13 0 .06 | .01 | .14 |.302 0

Figure 5.1. Bit Vector Used for Final Distribution Data.

Bit vectors are also used in the management of the arc distribution data when series
and parallel reductions are performed. Notice that by using bit vectors, the distribution
information can be easily maintained in "sorted order" by length. The combined use of

linked lists and bit vectors to store and manipulate data enhances the overall efficiency of

the program.

Utilizing these data structures to store the necessary arc, node, and distribution

information, the following algorithm is applied to determine the distribution of the shortest

path:

Input network data and store it
Use all applicable basic reductions to simplify the network
If the network has been completely reduced
then
Store the distribution information (note: this is the
complete distribution of the shortest path length)
else
Identify a node to factor on
Apply the appropriate reduction, generate the subnetworks
and place them in a stack
While there are subnetworks in the stack
Remove the subnetwork on the top of the stack
Use basic reductions to simplify the subnetwork
If the subnetwork has been completely reduced
then
Store the distribution information for that
subnetwork
else
Identify a node within the subnetwork to
factor on
Apply the appropriate reduction, generate new
subnetworks and place them on top of the
stack
end if condition
end while condition
end if condition
Print the distribution of the shortest path length
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The algorithm used to find the longest path is identical to that used to find the shortest path
except that maximum values are recorded in place of minimum values throughout the
program.

By applying this algorithm, a tree of subnetworks, as demonstrated in Section 4.5, is
grown. Level 1 of this tree represents the original network. When this network is
decomposed into a set of equivalent subnetworks, another level is added to the tree; that is,
the immediate "successor”" subnetworks of the original network constitute level 2 of the tree.
The simplification of these subnetworks adds yet another level to the tree. This process
continues until the subnetworks on some level of the tree simplify to two-node networks,
giving the necessary arc data for the distribution of the shortest path length.

In terms of efficient storage of the subproblems, the generated subnetworks are
stored using a stack, as described in the above algorithm. When the original network is
decomposed into several subnetworks, the storage space for the original network is used to
store the information for one of these subnetworks. In general, when any subnetwork is
simplified by a conditioned reduction, the storage space for the parent subnetwork is used for
one of the successor subnetworks since the information about the parent subnetwork is no
longer needed. This process in effect carries out a depth-first search of the subnetwork tree.

To illustrate, consider a network G that initially reduces to two subnetworks, G and
G$. According to the algorithm, we would first try to simplify Gg. Suppose that G itself
generates three subnetworks, G{’, GJ’, and G3’. Next, we would try to simplify G§’; suppose
that GJ’ produces two series-parallel networks, G{” and G5”. Figure 5.2 shows the partial
subnetwork tree that has been grown to this point. Notice that at this point only five
subnetworks are stored in the stack of networks: G{, G{’, G3’, G{” and G5”. In completely
solving this hypothetical network problem, no more than five subnetworks will ever occur in

the stack of networks even though a total of 21 networks will be generated and processed.
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e @ Level 4

Figure 5.2. Partial Subnetwork Tree.

Additional effort was made to minimize the "width" of the subnetwork tree by
judiciously choosing the node for factoring. Specifically, the factoring node i is chosen to
fulfill the following criteria:

(1) min[indegree(i),outdegree(i)I<min[indegree(j),outdegree(j)] for all nodes j in the

current subnetwork, and

(2) among all nodes k that satisfy (1), o(i)<w(k).

Our empirical findings have shown that in most cases, choosing the factoring node based on
these criteria results in a smaller total number of subnetworks that need to be solved.

In general, the size of the subnetwork tree depends on the complexity, number of
nodes, and the size of the distribution of lengths for each arc in the original network. If
there are n nodes in the original network, there will be at most n-1 levels in the
subnetwork tree. If there are k subnetworks generated during each simplification, then
there would be a total of 1 + k + k2 + ... + k™2 = (k™1.1)/(k-1) subnetworks to solve.
However, the maximum number of subnetworks that ever need to be stored is (k-1)(n-1)-(k-

2). These are worst-case estimates. In practice, the number of subnetworks solved and the



maximum number stored have been far fewer than those predicted by the worst-case
estimates. The results presented in the next section demonstrate that a fairly modest

computational effort is usually required.
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SECTION 6.

EXAMPLES

In this section, the structural factoring approach will be applied to several network
examples from the literature. The first two examples are acyclic networks where only basic
reductions are necessary to find the distribution of the shortest path or longest path in the
network. The third example is a complex cyclic network that requires both octopus and
butterfly reductions to simplify the network. In the last example, the exact two-terminal

reliability of a large network is determined.
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6.1 Kleindorfer Crossing Network
The first problem, shown in Figure 6.1, is the "crossing network" " analyzed by

Kleindorfer.8 In this paper, Kleindorfer gives bounds on the cumulative distribution for

this network where each arc assumes a length in the set (1,2,3,4,5) with equal probability.

@\><:/@

Figure 6.1. Crossing Network.

By applying structural factoring to the fan structures in this network, the exact
distribution of the shortest path length from node 1 to node 6 can be determined. Table 3
gives the the exact distribution of the shortest path for this network; Table 4 shows the
exact cumulative distribution of the critical (longest) path through the same network as

well as the Kleindorfer bounds.

*+** Also referred to as the wheatstone bridge network
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Table 3

EXACT DISTRIBUTION FOR THE SHORTEST PATH THROUGH THE CROSSING NETWORK

Length Exact Probability
3 0.03064064
4 0.08365312
5 0.14335488
6 0.18986496
7 0.20426496
8 0.16326144
9 0.10479360
10 0.05362176
11 0.02062864
12 0.00505344
13 0.00087552
14 0.00008448
15 0.00000256

Table 4

EXACT DISTRIBUTION FOR THE CRITICAL PATH THROUGH THE CROSSING NETWORK
COMPARED WITH THE KLEINDORFER CUMULATIVE BOUNDS

Kleindorfer Exact Kleindorfer

Length  Lower Bound Cumulative Probability Upper Bound
3 0.000 0.00000256 0.008
4 0.000 0.00008704 0.032
6 0.000 0.00096256 0.080
6 0.002 0.00601600 0.160
7 0.014 0.026654464 0.280
8 0.055 0.08016640 0.424
9 0.149 0.18496000 0.676
10 0.312 0.34822144 0.720
11 0.6528 0.65248640 0.840
12 0.731 0.74236136 0.920
13 0.882 0.88570624 0.968
14 0.969 0.96936936 0.992

15 1.000 1.00000000 1.000
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Notice in Table 4 that Kleindorfer’s lower bound is much closer to the exact
cumulative distribution than the upper bound. Recall from Section 3 that bounding
approaches have largely concentrated on providing only a lower bound on the distribution.
For critical path problems, the expected project duration time, which is the expected length
of the critical path, is often of interest. The exact expected project duration can be calculated
using the exact distribution of the critical path length, and this value is 11.203136.
Kleindorfer gives a lower bound, LB=9.000, and an upper bound, UB=11.358, for this
problem. Shogan13 also gives bounds on the expected project duration for this problem:
LB=10.6 and UB=11.358. Only 3.7 seconds of central processing unit (cpu) time were
required to solve this problem exactly.

Since each arc in this network has five possible lengths, the complete enumeration
approach would consider 58=390,625 possible states of the network to determine exactly the
distribution of the shortest path length. For each possible state of the network, the shortest
path length must be identified. A computer program, written by the author, that
implements this complete enumeration approach took 57.21 seconds of cpu time to execute,
and the resulting distribution agreed with the one given in Table 3. The conditional
factoring approach clearly provides a drastic improvement relative to complete enumeration

for determining an exact solution.
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6.2 Fulkerson Longest Path Example

In this section, we examine a network problem presented by Fulkerson.® The
network has a simple four-node architecture, shown in Figure 6.2, where the length of each

arc is uniformly distributed on the interval [0,2].

Figure 6.2, Fulkerson Example.

In this network, two fan constructs can be identified, one centered at node 2 and the
other centered at node 3. The exact distribution of the longest path through the network has

been determined using our algorithm and is given in Table 5.
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Table 5

EXACT DISTRIBUTION OF THE LONGEST PATH FOR THE FULKERSON EXAMPLE

Length  Exact Probability

0.004115226
0.045267490
0.201646091
0.304526749
0.296296296
0111111111
0.037037037

SN WN=O

From the distribution in Table 5, the exact expected length of the critical path is
calculated to be 3.32510288. In the Fulkerson paper, the lower bound calculated by
Fulkerson’s method is given as 3.22. This problem required 3.5 seconds of cpu time to

solve for the exact distribution and four subproblems were generated.
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6.3 Shogan Example

The next problem is a cyclic network, shown in Figure 6.3, presented by Shogan14.

This is a complex network that requires both octopus and butterfly reductions to obtain the

distribution of the shortest path length from node 1 to node 7.

Figure 6.3. Shogan Example.

For this example, the set of lengths for each arc is {0,2,4) with corresponding
probabilities (.4,.2,.4). The exact distribution of the shortest path length through this

network is given in Table 6.
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Table 6

EXACT DISTRIBUTION OF THE SHORTEST PATH LENGTH FOR THE SHOGAN NETWORK

Length Exact Probability

0.3047540654
0.2810753843
0.2784418939
0.0986955899
0.0339240387
0.0028468838
0.0002621440

NO®BIMIND

bk

To solve this network for the distribution of the shortest path length, 1528
subnetworks were generated, but the maximum number of networks stored was 27.
Although a large number of subproblems were generated, this problem took only 8.19
seconds of cpu time to solve. By contrast, it took 6.787 hours of cpu time to solve this same
problem by completely enumerating all possible combinations of path lengths.

This problem can also be considered as a two-terminal reliability problem where
the probability that each arc is operational is 0.4. The exact two-terminal reliability of the
network, as shown in Table 6, is 0.3047540654. Shogan gives the following bounds on the

two-terminal reliability: LB=0.1971 and UB=0.3527.
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6.4 Large Kleindorfer Network

The last example is a large network with 20 nodes and 38 arcs that was also

presented by Kleindorfer8. This network is shown in Figure 6.4.

i

() )

Figure 6.4. Large Kleindorfer Network.
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The two-terminal reliability of this network, in which each arc is operational with
probability 0.9, can be determined by letting each arc take on lengths (0,1} with
corresponding probabilities {0.9,0.1}. Using the program with these parameters, the exact
s-t reliability of this network is found to be 0.98612801. The subnetwork tree generated for
this problem had 15 levels. A maximum of 15 subproblems were stored at any given time,
and 32,767 total subproblems were generated. The program required 2.4 minutes of cpu
time to solve this problem. For this problem, complete enumeration would not be feasible
since 238 or approximately 2.75x1 01 states of the network would be individually

examined to find the shortest path length through each.



SECTION 7.
CONCLUSIONS

The structural factoring approach allows the exact distribution of the shortest path
length through a stochastic network to be determined. The application of structural
factoring to the fan, loop, octopus, and butterfly constructs significantly increases the
tractability and applicability of the approach, since complete enumeration of all states is not
necessary to simplify these constructs. Although there are network architectures that do not
initially contain these special constructs, factoring can often be locally applied to produce
subnetworks that do contain such constructs. Hence, this approach extends the
computational range, especially in the case of cyclic networks, to larger and more complex
networks than have previously been solved as compared with other exact methods.
Structural factoring can also be applied to find the distribution of the critical path length in
acyclic networks and the two-terminal reliability for a network.

Although the technique of structural factoring is theoretically unconstrained, the size
of the network that can be solved using the algorithm is restricted by computational
resources. In the worst case, the computational effort can grow exponentially with the size of
the problem, which is indicative of the NP-complete status of the stochastic path problem.
Computational experience with the structural factoring algorithm has nonetheless been
encouraging. Moreover, the ability to solve certain nontrivial problems exactly can serve as
a baseline for assessing the accuracy of various approximation schemes proposed to solve

larger problems.
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