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ABSTRACT

In th is paper, the problem of finding the shortest path  through a stochastic network 
is analyzed by applying a  structu ra l factoring approach. A broad class of stochastic 
networks with the following characteristics is considered: (1) arc values (length, duration, 
cost, etc.) are discrete random  variables; (2) these random variables are statistically 
independent; and (3) nodes do not fail. A general algorithm  for determ ining the exact 
distribution of the shortest path  length in such directed networks is presented. The 
algorithm  is based on the concept of structural factoring, in which a  stochastic network is 
decomposed into an equivalent set of smaller, generally less complex subnetworks. Several 
netw ork constructs are identified and exploited to reduce significantly the computational 
effort required to solve a  netw ork problem relative to complete enum eration. This 
algorithm  can be applied to two im portan t classes of stochastic path  problems: determ ining 
the critical p a th  distribution for acyclic networks and the exact tw o-term inal reliability for 
probabilistic networks. Com putational experience with the algorithm  has been 
encouraging and h as  allowed the exact solution of networks previously analyzed only by 
approxim ation techniques.



A STRUCTURAL FACTORING APPROACH FOR 

ANALYZING PROBABILISTIC NETWORKS



SECTION 1.

INTRODUCTION

In general, netw ork analysis involves the  study of system s th a t can be modeled in 

te rm s of nodes and  arcs connecting certain  of th e  nodes. Q uantita tive inform ation such as 

length, tim e to failure, or tim e to completion m ay in addition be associated w ith the  arcs. 

For exam ple, F igure 1.1 shows a simple six-node netw ork represen ting  possible shipping 

routes from a factory (node 1) to a warehouse (node 6). The arcs of th is  netw ork rep resen t 

highw ay rou tes w ith th e ir associated m ileages given as the  arc lengths. A commonly 

encountered problem in such a  netw ork is finding the  shortest pa th  from the  factory to the 

w arehouse. More generally, shortest pa th  calculations are  found to be valuable in 

analyzing the  behavior of various large-scale d istribution netw orks, such as those 

rep resen ting  th e  flow of electricity, w ater, and  vehicles.

3

6

Figure 1.1. E lem entary  Shipping Network.
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Historically, network models have played an im portant role in the m anagem ent of 

complex projects as well as in the analysis of electronic and mechanical systems. The 

ubiquitous na tu re  of networks has led to an expanding scope of in terest in a  variety of 

fu rth er areas. Network models are now applied in such areas as transportation  problems, 

complex telecommunications processes, reliability analysis of d istributed computer 

architectures, and even lifeline systems subject to seismic risk^. The im portance of these 

applications requires th a t efficient techniques and tools be developed to aid in the network 

analysis process.

Over the p as t 25 years, many efficient algorithm s have been developed for analysis 

of networks where the behavior of the individual network components is assum ed to be 

known. Such determ inistic networks have been used to model a  variety  of transportation 

and scheduling problems. A prom inent technique in th is regard  is the  Critical Path  

Method^ (CPM) which is prim arily used to determ ine time-cost tradeoffs in the scheduling 

and coordination of in terrela ted  activities. Construction and m aintenance projects are well 

suited for analysis by CPM. However, the assum ption of determ inistic components often 

fails to describe accurately m any other real-world systems.

Progress in  developing efficient algorithm s to analyze stochastic networks, in which 

nodes or arcs or the ir lengths are governed by some random  process, has been somewhat 

limited. One example of a  technique used in  the analysis of stochastic networks is the 

Program  Evaluation and Review Technique^ (PERT) procedure. The PERT procedure 

expands the determ inistic approach of CPM by tak ing  into account the random  natu re  of 

networks. However, the  validity of th is technique relies on various approxim ations and 

assum ptions. Increasingly, these assum ptions have been questioned and the accuracy of 

the resulting  conclusions has been widely challenged. ̂

Since the utility  of a  network model critically depends on the suitability of its 

assum ptions, a  more general model th a t does no t impose such restrictions on the



4

distributional form of the network components is desirable. To address these concerns, this 

paper considers a  broad class of stochastic networks w ith the following characteristics: (1) 

arc values (length, duration, cost, etc.) are  discrete random variables, (2) these random 

variables are statistically independent, and (3) nodes do not fail. These assum ptions 

greatly  increase the tractability  of the problem while preserving the model’s realism  by 

incorporating the random  natu re  of the problem.^ Statistical independence is commonly 

assum ed and it  reduces the com putational requirem ents associated w ith m ost solution 

approaches.

In  th is paper, the specific problem of finding the shortest path  through such a 

stochastic network is considered. Recall th a t the  arcs of the network now assum e random  

lengths. These lengths could represent, for example, the duration in traversing a  highway 

segm ent or the cost of completing a  given function. In real-world settings, these values are 

m ost realistically viewed as random  variables, ra ther than  as fixed, determ inistic 

param eters. Thus, the sta te  of the network depends on the sta te  assum ed by each arc. I t 

follows th a t the shortest pa th  through the network is a  function of the random  arc lengths; 

hence, its length can be characterized by a  probability distribution.

Although finding the distribution function for the length of the shortest path  is 

conceptually simple, the  com putational burden of determ ining the  probabilities associated 

w ith all possible pa th  lengths is, in general, overwhelming. To illustrate  th is  difficulty, 

consider the  two-term inal network reliability problem which is actually a  special case of 

the  stochastic shortest path  problem. The tw o-term inal reliability problem is defined 

relative to a  network G, in which each arc i has a  given probability Pj of functioning 

independent of all o ther arcs. The two-term inal reliability of the network is equal to the 

probability th a t there exists a t  least one pa th  in G from a  specified node s to a  specified 

node t  along which all arcs are functioning.
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Now consider a  stochastic network G’ involving the same nodes and arcs as G.

Each arc i in G’ can only assum e the lengths zero and one, with probabilities p- and 1-p-, 

respectively. If  there is a  shortest s-t path  through G’ th a t has length 0 , then  there m ust be 

some path  in G’ on which all arc lengths are 0. This directly corresponds to a  path  in G 

composed of all functioning arcs. Thus, the probability th a t the shortest s-t pa th  through 

G’ h as  length zero is precisely the  two-term inal reliability of the original network G.

Ball has  shown, however, th a t network reliability problems are a t  least as difficult 

to solve as the set of com putationally hard , NP-complete problems such as th e  infamous 

traveling salesm an problem.-*- Hence, the stochastic shortest path  problem is a t least as 

difficult to solve and, in general, poses a  formidable computational task . Consequently, 

m ost analysis techniques for the stochastic shortest path  problem have focused on 

approxim ating or bounding the distribution f u n c t io n .^

The objective of th is paper is to present a  general algorithm for determ ining the 

exact distribution of the shortest path  length in a  directed, stochastic network. This 

algorithm  will thus have applicability to two im portant classes of stochastic pa th  problems: 

determ ining the critical path  distribution for acyclic networks and the exact two-term inal 

reliability for probabilistic networks. The structure of the paper is as follows. In Section 2, 

the necessary notation and basic terminology will be defined. Previous approaches to the 

problem will be discussed in Section 3. O ur structu ra l decomposition technique will be 

described in Section 4, and im plem entation of the algorithm  will be discussed in Section 5. 

In Section 6 , the structura l decomposition approach is applied to several network examples. 

A sum m ary of our findings including the lim itations of the approach will be presented in 

Section 7.



SECTION 2.

NOTATION

To facilitate the discussion of probabilistic networks, some basic terminology and 

notation are  firs t introduced. Such a  network is modeled using a  directed graph G=(N,A), 

where N is a  set of nodes, representing warehouses or communication centers in the 

network, and A is a  set of arcs, representing traffic routes or communication buses, 

connecting certain pairs of nodes. An arc (i, j), where i, j are elem ents of N, is defined to be 

a  directed link from the origin node i to the destination node j. If  more th an  one arc 

connects a  pa ir of nodes, the arcs will be denoted with different num bered superscripts.

For example, the two different arcs spanning nodes 4 and  5 in Figure 2.1 are denoted (4,5)^ 

and (4,5)^. Since we are only concerned with the  shortest path  (or critical path) between 

two given nodes, we will only consider graphs w ith one source node s, which has only 

outgoing arcs, and one term inal node t, which h as only entering arcs. Figure 2.1 shows a  

directed graph w ith source node 1 and term inal node 5. The indegree of node i, indegree(i), 

is the num ber of arcs entering node i, and the outdegree of i, outdegree(i), is the num ber of 

arcs leaving i. For each of the networks considered, indegree(s)=0 and outdegree(t)=0. In 

Figure 2 .1 , indegree(3)=2 and outdegree(3)=l.

A path  in the graph from node i to node j, is defined as an ordered sequence of arcs 

connecting the two nodes. For example, one possible path  from node 1 to node 5 in Figure

2.1 is through arcs (1 ,2) and (2,5). A cycle is a  special type of path  connecting a  node to 

itself. In Figure 2.1, arcs (3,2), (2,4), and (4,3) form a  cycle. In general, the networks 

trea ted  here will be allowed to contain cycles, except in the special case of critical path  

calculations for which the  underlying graph m ust be acyclic.

6



Figure 2.1. D irected Graph.

To incorporate inform ation about the random  behavior of the  arcs, each arc will be 

assigned a finite se t of in teger values, indicating, for exam ple, lengths or durations. The 

se t of arc lengths for arc (i, j) is denoted j) , and the num ber of lengths associated w ith 

arc (i, j) is denoted s(i, j). A p articu la r length assum ed by arc (i, j) is denoted L(i, j). For
j|(

each arc (i, j), there  is a  corresponding discrete probability d istribution for the arc lengths 

and  th is is denoted P(j j) . As an  exam ple, suppose the length of arc (2,4) in Figure 2.1 is 

uniform ly d istribu ted  on the  in terval [6,9]. Then the  discrete set of arc lengths m ight be 

represen ted  by the  s(2,4)=4 lengths a^  4 )= (6,7,8,91 and  the corresponding probability 

d istribution by p(2 4)={.25,.25,.25,.25).

* U sing discrete d istributions significantly increases the trac tab ility  of the problem in
comparison with continuous distributions. Dodin^ describes a process for discretizing a 
continuous distribution.



SECTION 3. 

LITERATURE SURVEY

Although techniques for determ inistic network analysis are widespread and 

applicable to large-scale networks, th is  is not the case for stochastic network analysis. For 

stochastic networks, curren t analysis m ethods are largely confined to approximation, 

sim ulation, and bounding techniques. This situation, as described in Section 1, is due to 

the  com putational difficulty inheren t in these problems. Although exact methods have 

been developed, they are largely lim ited to ra th e r small, acyclic networks. The following is 

a  b rief description of some of the more prom inent techniques proposed for analyzing 

stochastic networks.

The most intuitive approach for finding the exact distribution of the shortest path  

length is to enum erate completely every conceivable combination of arc lengths th a t the 

netw ork can atta in . Although th is approach is conceptually simple, it  is infeasible as a 

general technique. Even for a  relatively sm all network, th is approach can require an 

extrem ely large num ber of calculations. In a  network with 20 arcs and only 2 possible 

lengths per arc, for example, there  would be 2 ^ = 1 ,048,576  different combinations of arcs 

lengths to consider in determ ining the  distribution of the shortest path  length. (In general, 

if  the  network contains m arcs and each arc can take on k  values, then  there would be km 

combinations of arc values to consider.) Hence, th is  approach h as  lim ited value except for 

very sm all networks.

Martin^-^ presented certain network reduction techniques, based on the structure of 

the  network, th a t play a key role in  the simplification of m any complex

8
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netw orks. M artin  introduced the  idea of sim plifying series and parallel constructs, as 

shown in Figure 3.1, occurring w ithin a netw ork. These reduction techniques som etim es 

allow a complex netw ork to be reduced to a netw ork with only two nodes and  one arc whose 

associated d istribution function is exactly th a t  of the shortest pa th  length through the 

original network. These series and parallel reductions are  basic building blocks of our 

s tru c tu ra l factoring approach and will be discussed more fully in Section 4.

o—-o—*o o— — - ^ o
SERIES 

PARALLEL

Figure 3.1. Series and  Paralle l Netw ork Constructs.

O ther m ethods have been developed to deal w ith more general netw orks, not 

reducible by series and parallel simplifications. One approach is to produce an analytic 

expression for the distribution function by conditioning on common arcs in th e  netw ork and 

applying com plete enum eration to produce the exact distribution.^  O ther exact approaches 

include the  use of cutsets®’*® and complete pa th  enum eration*^. A nother analytic 

approach is to find an approxim ation for the  probability d istribution function. One such 

approach approxim ates the  d istribution function on each arc, in order to reduce the  factor k 

appearing  in  the expression km above, and then  applies complete enum eration to yield an 

approxim ate final d istribution f u n c t i o n .^ Even w ith such approxim ations, large netw orks 

can still p resen t com putational difficulty. Additionally, the e rro r inheren t in these 

approxim ations is no t easily quantified.
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To avoid the problems of complete enum eration, a  num ber of bounding techniques 

have been introduced. One of the most widely used bounds was proposed by Malcolm, et 

al., in  1 9 5 9 .^  By replacing the  distribution on each arc w ith its  expected length, solving 

the resulting  determ inistic network produces a  lower bound on expected project duration, 

often referred to as the PERT mean. O ther approxim ations commonly used in m any of 

these bounding techniques are applied while moving sequentially through the nodes of the 

network. For example, the method of Fulkerson iterates through a  network using the 

expected value of the maximum length to a  node as opposed to tak ing  the maximum of the 

expected value.^ This method yields an improved lower bound on the expected completion 

tim e compared to the PERT m ean and has since been refined by Elmaghraby® and Dodin^. 

The Fulkerson approach has been fu rther extended by Kleindorfer® and Shogan^® to 

provide lower and upper bounds on the distribution of the critical path. These bounds are 

largely limited, though, to acyclic networks.

Monte Carlo methods have also been developed to approxim ate the distribution of 

the shortest (or critical) path  through a network. In 1969, F rank‘d presented a  basic 

approach to sim ulating a  stochastic network:

(1) generate a  set of arc lengths according to each arc’s probability distribution,

(2) find the shortest path  through the resulting determ inistic network, and

(3) repeat th is process a  large num ber of tim es to find the  approxim ate 
distribution of the shortest path  length.

This crude sim ulation approach can be substantially  improved by applying

statistical sam pling procedures.® The Monte Carlo approach can be both a practical and

powerful approxim ation tool; however, th is  approach is prone to sam pling errors and can

1 ^require extensive com putational resources to achieve the desired level of confidence .



SECTION 4.

STRUCTURAL REDUCTION TECHNIQUES

In th is section, a graph-theoretic procedure for determ ining the distribution of the 

shortest path  through a  stochastic network is described. The objective of the approach is to 

apply certain  structu ral reductions to a  given network until the  network is reduced to an 

equivalent network having only two nodes. The arc connecting the  two nodes in th is 

reduced network will provide the distribution of the shortest path  length in the original 

network.

In th is paper, two different classes of structura l reductions are applied to stochastic 

networks. The first class of reductions represents fundam ental simplifications including 

the "series" and "parallel" reductions first employed by M artin -^ . The second class of 

reductions are based on the concept of local "factoring". The basic difference between the 

two classes is th a t the fundam ental reductions yield a sm aller equivalent network. Local 

factoring, on the other hand, generates an  equivalent set of subnetw orks to be solved. Each 

type of reduction will be discussed more fully in the following subsections.

11
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4.1 Fundam ental Reductions

The fundam ental reductions can be applied to three basic configurations present in 

a network: series, parallel, and  figure-eight structures. Each of these reductions simplifies 

the  given netw ork by decreasing the num ber of nodes or the num ber of arcs (or both).

A series s truc tu re  exists when there is a  node B with indegree(B)=l and 

outdegree(B)=l. Figure 4.1 gives an example of a  series structu re in which the discrete 

distribution function on arc (A,B) is uniform on [0,3] and the discrete distribution function 

on arc (B,C) is uniform on [2,6].

a = {0,1,2,3} /T N  a = {2,3,4,5,6}
(  A Y _ ( A , B ) ------------------ ► ^ B  ) — (B,C)----------_ _ # / C  J

p = {.25,.25,.25,.25} p = {.2,.2,.2,.2,.2}
<A,B) (B,C)

Figure 4.1. Series S tructure.

Since any path  th a t goes through node B m ust include arcs (A,B) and (B,C), these 

two arcs can be replaced by a single arc between nodes A and C. The set of lengths for the 

replacem ent arc (A,C) is the set of all possible additive combinations of arc lengths chosen 

from (A,B) and (B,C). For our example, L(A,C)=3 occurs since L(A,B)=0 and L(B,C)=3 are 

present. Moreover,

Pr[L(A,C)=3] = Pr[L(A,B)=0] * Pr[L(B,C)=3] + Pr[L(A,B)=l] * Pr[L(B,C)=2] 

= (.25) * (.2 )+  (.25)* (.2) = .1,
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using the independence of arc lengths associated with distinct arcs. More generally, for 

those lengths in the set th a t °ccur in several ways, the ir length is only denoted once

in a ^  C) ant* corresponding probability is the sum of the contributing probabilities. 

The reduced structure, which corresponds to the "discrete convolution" of the arc 

d istributions on (A,B) and (B,C), is shown in Figure 4.2.

© ■
a i A  n  = (2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 }

 _ _  * \ C )

p = {-05,-1 ,.15,.2,.2,.15,.1 ,.05}
(A,C)

Figure 4.2. Reduced Series S tructure.

Two or more arcs th a t connect the same pair of nodes constitute a parallel 

structure. Figure 4.3 shows a parallel structu re where arc a ^  g)j={2,3,5} and 

P(A B )l= (-25>-25,.5}, the distribution on arc a ^  uniform on [0,3], and the

distribution on a ^  is uniform on [2,3]

a (A,B)1 = {2-3 -5} P , A . B ) 1 = {-2 5 - 2 5 - 5}

(A.B12 ~ { 2 ’3> P rA .B 1 2 -< -5 -,5>

a = {0,1,2,3} p = {.25,.25,.25.,25}
(A,B)3 (A,B)3

Figure 4.3. Parallel S tructure.

** The uniform distribution was used in m any examples for ease of illustration. In general, 
the  sam e reduction techniques apply for any discrete distribution.
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For any given realization of a stochastic netw ork th a t  contains th is  structu re , the 

sho rtest path  will contain a t  m ost one of the parallel arcs shown in F igure 4.3. W hen 

finding the  sho rtest pa th  through such a determ inistic realization, only an arc having the 

m inim um  length  am ong these parallel arcs would be considered for th e  shortest path . I t 

follows th a t  the  set of parallel arcs can be replaced by a  single arc  (A,B), whose arc lengths 

rep resen t the  m inim um  lengths from all possible com binations of arc lengths of the  parallel 

arcs. One possible com bination of arc lengths in the exam ple is L(A,B)^=3, L(A,B)2 =1, and 

L(A,B)3=2; hence, m in(3 ,l,2 )= l is included in a ^  g). For th is  particu la r com bination, 

Pr[L(A,B)l=3]*Pr[L(A,B)2=l]*Pr[L(A,B)3=2] contributes tow ard the  overall probability 

Pr[L(A,B)=l]. Specifically,

Pr[LCA,B)=l]= ZPr[L(A ,B)1==j]*Pr[L(A,B)2=l]*Pr[L(A,B)3=k]= .25
j,k

again  using  the independence of arc lengths.

More generally, any  length  in the  set ®(A,B) a r*ses from several com binations 

is  represen ted  only once in a ^  g ) and its  corresponding probability is the  sum  of the  

appropria te  individual probabilities. By applying th is  strategy, the  paralle l s truc tu re  in 

F igure 4.3 can be replaced by the  single arc shown in Figure 4.4.

a , A Dx ={0,1,2,3}
© —

P ,»  m -  {-25,.25,.375,.125}( A, D)

Figure 4.4. Reduced Parallel S tructure.

The series and parallel reductions are  well-known and have applications in m any 

optim ization problem s. M artin^* was the  firs t to apply these reductions to the  stochastic
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shortest path  problem. Using these two reduction steps, more complex networks can 

sometimes be reduced to a single arc. In fact, a  series-parallel network is defined to be any 

netw ork th a t can be simplified via series and parallel reductions to an equivalent two-node 

network. For example, consider the network G in Figure 4 .5  where the distribution on each 

arc is uniform on [1 ,21; th a t is, a^  jy={l,2} and p^ j)= { .5 ,.5 )  for each (i, j) in G.

Figure 4 .5 . Series-Parallel Network.

By applying only series and parallel reductions, th is network can be reduced to the 

equivalent network shown in Figure 4 .6 .

© •
v„ -13-4'5-6)

p = {.316406, .529297, .150879, .003418} 
(s,t)

0
Figure 4.6. Reduced Series-Parallel Network.
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The la s t fundam ental reduction, called a figure-eight reduction, while less well- 

known than  the series and parallel reductions, incorporates the sam e approach to 

simplifying a network structure into an equivalent, less complex, structure. The figure- 

eight structu re , shown in Figure 4.7, is only found in cyclic networks. In th is structure, the 

center node B in the structure m ust have exactly indegree(B)=2 and outdegree(B)=2 and 

m ust be connected to exactly two other nodes, labeled A and C in the figure. Specifically, B 

h as  one incoming arc from node A and one from C; both node A and node C have one 

incoming arc from B.

Figure 4.7. Example of a  Figure-Eight S tructure.

Since we are  only considering the  shortest path  from the source node to the 

term inal node, the subpath (A,B)->(B,A) should never be included in a shortest path. 

Sim ilarly, the subpath  (B,C)->(C,B) can safely be ignored. By elim inating these two paths 

from the  set of paths between nodes A and C th a t could possibly be included in the shortest 

path , the only rem aining paths of in terest are  (A,B)->(B,C) and (C,B)->(B,A). The figure- 

eight structu re  can thus be simplified by replacing arcs (A,B) and (B,C) with a single arc 

(A,C), and by replacing (C,B) and (B,A) w ith a  single arc (C,A). The lengths and 

probabilities of the new arcs are determ ined in the same m anner as with series reductions.
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For example, the set of lengths for (A,C) is the  set of all possible additive combinations of 

lengths from (A,B) and (B,C). The simplified figure-eight assum es the  form shown in 

Figure 4.8.

(C ,A )

Figure 4.8. Reduced Figure-Eight S tructure.

The advantage of using these fundam ental reductions is th a t they yield a  single 

equivalent netw ork th a t has  a  sm aller num ber of arcs and possibly fewer nodes. The 

contribution m ade to the stochastic shortest path  problem through th is investigation is the 

development of a new reduction technique, called conditional factoring, th a t, like the 

fundam ental reductions, is based on the configuration of the nodes and arcs in the  network. 

Conditional factoring offers additional possibilities for simplifying a given network.



18

4.2 Conditioned Reductions

M ost exact m ethods for finding the d istribution of the shortest p a th  length  through 

a stochastic network, whose arch itectu re cannot be simplified by applying only series and 

paralle l reductions, depend on complete enum eration. In sim plifying a  construct around a 

given node by complete enum eration, all possible com binations of arc leng ths for all arcs 

connected to th a t  node would be considered. For example, given the  netw ork construct 

centered a t  node B in figure 4.9, 3^=81 sta tes  of th a t construct would be considered in the 

reduction process. In general, com plete enum eration is com putationally infeasible except 

for very sm all netw orks w here the  arcs can assum e only a  m inim al num ber of lengths.

v» v°> -,7A'2’

O'
Figure 4.9. P artia l Network S tructure.

In th is  investigation, some constructs which are prevalen t in m any netw ork 

arch itec tu res were identified th a t  can be simplified w ithout complete enum eration. The 

technique used to simplify these constructs is called conditional factoring, and it  is based on 

th e  idea th a t  i t  is sufficient to consider only a specific subset of arcs w ithin certain  netw ork 

constructs in order to genera te  an equivalent, simplified representation . In general,
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conditional factoring can be applied to any node, except the source or term inal nodes, 

w ithin the network. However, conditional factoring reduces the com putational effort, 

compared with complete enum eration, in  simplifying a  construct only when i t  is applied to 

the  four special constructs described in th is section. For all other constructs, conditional 

factoring is equivalent to complete enum eration.

The reductions are performed by identifying a specific construct centered around a 

node, called the central node, in the network. The structure of th is construct is simplified 

by removing the central node and completing all possible paths through th a t central point 

of th a t construct. In contrast to the  fundam ental reductions, conditional factoring 

generates a  set of subnetworks to be solved, where each subnetwork incorporates the new, 

reduced structure into the overall network architecture. These subnetworks are generally 

sm aller in size (i.e. have fewer nodes) and, hopefully, involve reduced com putational effort 

to solve. The lengths of the new arcs in the subnetworks are defined by conditioning on the 

arcs th a t are used more than  once in  defining new arcs in the reduced construct. These 

arcs th a t are  used more than  once in forming the new arcs of the reduced construct are 

called factoring arcs. A unique subnetwork is defined for each combination of lengths 

among the factoring arcs, and th is elim inates any dependencies among the subnetworks.

In th is section, the concept of conditional factoring is illustrated  by applying it  to four 

special network constructs.

The first construct to be introduced is the fan construct. A determ inistic fan 

construct centered a t node B is shown in Figure 4.10. In general, a  fan construct w ith 

central node i has the following characteristics: (1) i is any node in the network except the 

source or term inal node, and (2) either indegree(i)=l or outdegree(i)=l (if both are 1 , then  i 

is the  center node in a  series structure). If  indegree(i)=l, the incoming arc to node i will be 

called the factoring arc and will be denoted f(i). Similarly, if outdegree(i)=l, the  outgoing 

arc from node i will be called the factoring arc and be denoted fli). For Figure 4.10, the 

factoring arc is f(B)=(A,B).
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4 ►

• ©

0 ------------4 ----------► © £ --------- 3 — ► ©

‘0

Figure 4.10. D eterm inistic Fan Construct.

A fan construct is graphically simplified by elim inating the central node and  

com pleting each possible pa th  (relative to the structure) through th a t  central connection 

point. In a  determ inistic fan construct, the length of the  factoring arc is added to the  

lengths of each of the  other arcs connected to the  cen tral node. For example, arc (A,C) in 

F igure 4.11 is formed from arcs (A,B) and  (B,C), arc (A,D) is formed from arcs (A,B) and 

(B,D), and  arc (A,E) is formed from arcs (A,B) and  (B,E). The length of each new arc is 

accordingly the  sum  of lengths of its  component arcs. For the  netw ork in Figure 4.10, th is  

reduction process yields the network in  Figure 4.11.

Figure 4.11. Reduced D eterm inistic Fan Construct.

The concept of conditional factoring is introduced when the  length  of each arc is 

assum ed to be a random  variable. A stochastic fan construct centered a t  node i is
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decomposed based on the distribution of lengths on the factoring arc fCi), and a  distinct 

subnetwork is generated for each length in a ^ .  The num ber of subnetw orks created by 

factoring on node i will be denoted to(i). Thus, for the stochastic fan construct, the num ber 

of subnetworks generated is equal to the num ber of possible lengths for the single factoring 

arc; i.e. co(i)=s[fCi)].

In general, the arc lengths in the reduced structure are determ ined by adding the 

lengths of the ir component arcs. The probability th a t an arc assum es a  constant length is

1. If  two arcs w ith constant lengths are combined, the length of the resu lting  arc is also a 

constant and, thus, has corresponding probability 1. W hen an  arc w ith a  constant length is 

combined w ith an arc whose length is governed by a discrete distribution D, the length of 

the resu lting  arc is a  random  variable governed by D.

To generate the subnetwork Sj, for each j= l, 2 ,..., co(i), the following steps are 

taken: (1) le t Hi) take on a  constant value cj, where Cj is the length in a ^ ;  (2 ) eliminate 

node i from the original structure; (3) complete all possible paths through the central point; 

and  (4) define the new arc lengths and the associated probabilities.

To dem onstrate th is process, consider the construct in Figure 4.10, and suppose 

each arc can take on a  value in {1 ,2} with corresponding probabilities {.4,.6}. This fan 

construct can be decomposed into an equivalent set of two independent subnetworks shown 

in  Figure 4.12. The firs t subnetwork is constructed by assum ing L(A,B)=1 , and the 

second subnetwork S2 is constructed for L(A,B)=2 . The probability of obtaining 

subnetw ork 1 is Pr(S^)=Pr[L(A,B)=l]=.4, and, similarly, the probability of obtaining 

subnetw ork 2 is Pr(S2 )=Pr[L(A,B)=2]=.6 .
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3 <A.0 f  ^ ( A . C ,  "  {’4 " 6}

A ) - a (A,Dr {2’3} p(A,D) “  {-4 ’-6}- * @

3 (A,E) = {2’3J V e )  = ('4 '-6>

a = {3,4} p = / 4 e\~*\9) 
(A,C) 7A,C) (-4 " b>

,3 -41 V ,  ■ ' 6 |- * ®

= <3 ’4} P ,A ^  = M.-6}(A.E) ' ’ (A,E)

Figure 4.12. Subnetw orks for Fan Construct.

The nex t th ree reductions focus on constructs with a central node i w here either 

indegree(i)=2 or outdegree(i)=2 . Additionally, each of these constructs contains a t  least one 

sim ple cycle of size two involving the  central node i. The firs t of these constructs, shown in 

F igure 4.13, is called the loop construct w ith central node B.

©

Figure 4.13. Loop Construct.
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In general, a  loop construct w ith cen tral node B h as  the  following characteristics:

(1) indegree(B)=2, (2) outdegree(B)=2, and (3) B together w ith some node D form th e  unique 

sim ple cycle of the construct. The possible p a th s  through th is s tructu re  th a t would be 

considered for the shortest pa th  are then  (A,B)->(B,D), (A,B)->(B,C), and  (D,B)->(B,C). The 

only o ther pa th  through the  structu re , (A,B)->(B,D)->(D,B)->(B,C) would never be 

considered as p a r t  of a shortest path  since a  subset of th a t  p ath , (A,B)->(B,C), would always 

be a t  least as short. As a resu lt, it is possible to replace each of these th ree  p a th s  w ith an 

equivalen t arc, as shown by the  reduced construct shown in Figure 4.14.

Figure 4.14. Reduced Loop Construct.

Since the  arcs (A,B) and  (B,C) are used more th an  once in defining the new arcs in 

the  reduced construct, th e  lengths of both of these arcs m ust be considered when generating  

subnetw orks. Hence, arcs (A,B) and (B,C) are  factoring arcs for th is s truc tu re  and  are 

denoted fj(B ) and  f^B ), respectively. In general, the num ber of subnetw orks produced by 

any conditioned reduction is the  product of th e  d istribution sizes for each factoring arc. For 

a  loop construct, a  d istinct subnetw ork will be produced for each com bination of lengths for 

the  two factoring arcs, so co(B)=s[fi(B)]*s[f2 (B)]. To generate the subnetw ork S^, w here 

k= l,2 ,..., <d(B), the  following steps are  taken: (1) le t each factoring arc a=fj(B), j= l ,2, take on
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the  constant value cj, where Cj is a length in aa ; (2) elim inate node B from the original 

structu re; (3) complete all possible pa th s  through the central point; and (4) appropriately 

define the  new arc leng ths and th e ir probabilities.

To illu stra te , suppose th a t in the loop construct of Figure 4.13 each arc can take on 

lengths in the set {1,2} w ith equal probability. From the firs t reduction step, we know th a t 

four d istinct subnetw orks will be generated  w here L(A,B)=1 and  L(B,C)=1 in S^; L(A,B)=1

figures, the  lengths and  probabilities are displayed in an abbreviated form. In th is 

notation, the lengths and  corresponding probabilities for each arc will appear in the  form at

{length.probability: length ,probability :... : length,probability)

and  L(B,C)=2 in S2 ; L(A,B)=2 and L(B,C)=1 in S3 ; and, L(A,B)=2 and  L(B,C)=2 in S4 .

These four subnetw orks are  shown in Figure 4.15. To simplify the notation in the following

Figure 4.15. Subnetw orks for a Reduced Loop Construct.

The th ird  construct, called the octopus, is a  generalization of the  loop construct and 

is shown in Figure 4.16. In general, an octopus construct w ith central node B h as  the
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following characteristics: (1) e ither indegree(B)=2 and outdegree(B)>2, or outdegree(B )=2 

and  indegree(B)>2 ; and (2) B together w ith some node A forms the unique two-node cycle of 

the  s tructu re .

•  • • •  •  •

Indegree(B) = 2 Outdegree(B) = 2

Figure 4.16. Exam ples of Octopus Constructs.

W hen the central node is removed from an  octopus construct, the  num ber of arcs in 

each resu lting  subnetw ork is a t  le as t as g rea t as the  num ber of arcs in th e  original 

network. The s truc tu ra l reduction of an  octopus s tructu re is illu stra ted  in  F igure 4.17.

Octopus with Central Node B Reduced Octopus Structure

Figure 4.17. Reduction of an Octopus Construct.
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N ote th a t  in  reducing th e  octopus construct each arc in  the  original s tru c tu re  is 

used m ore th a n  once except for arc (B,A). As a  re su lt of th is  commonality, each arc in the 

original octopus construct m ust be a  factoring arc except for arc (B,A). The num ber of 

factoring arcs is th u s  Y=indegree(B)+outdegree(B)-l. As in the  fan and  loop constructs, the 

sam e basic steps are  applied to reduce an  octopus construct: (1) le t each factoring arc 

a=fj(B), i= l ,2 , ..., y, take  on a  constant length in  a a ; (2) elim inate node B from th e  original 

structu re ; (3) complete all possible p a th s  through the central point; and  (4) appropriately  

define the new arc lengths and  probabilities. Suppose each arc in th e  octopus s truc tu re  of 

F igure 4.17 can assum e an in teger length in the  se t {1,2} with equal probability. Then, 

th e re  would be yt=5 factoring arcs, and  (o(B)=2®=32 subnetw orks would be generated  in 

reducing  th a t  structu re . Two of these subnetw orks are  shown in Figure 4.18. In these 

subnetw orks, only arc (C,A) h as  a  nonconstan t distribution. This is because (C,A) is formed 

by com bining arcs (B,A) and  (C,B), and  arc (B,A) is the only arc in the  s truc tu re  th a t is not 

a  factoring arc of node B.

(2,.5 : 3,.5}(2,.5 : 3,.5)

{2 , 1 .0 }

{3 ,1.0}

{2 , 1 .0 }{2 , 1 .0 }{2 , 1 .0 } {2 , 1 .0 }

Subnetwork 2Subnetwork 1

Figure 4.18. Two Subnetw orks for a  Reduced Octopus Construct.

The la s t conditioned reduction, shown in F igure 4.19, is called a bu tterfly  construct. 

Like th e  octopus construct, e ither the indegree or the outdegree of the  central node m u st be
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2 . The bu tterfly  construct, though, m u st contain exactly 2 sim ple cycles connected to the 

central node. In general, a butterfly  construct w ith central node B h as  the  following 

characteristics: (1) e ith er indegree(B)=2 and outdegree(B)>2, or outdegree(B)=2 and 

indegree(B)>2; and (2) B is involved with some node A in a  sim ple cycle and B is also 

involved w ith some o ther node C in a  simple cycle; see Figure 4.19.

F igure 4.19. B utterfly  C onstruct w ith Indegree(B)=2.

Rem oving th e  central node of a  bu tterfly  construct generally  creates more arcs in 

each resu lting  subnetw ork th a n  p resen t in th e  original structu re . W hen th e  new  arcs in 

th e  subnetw orks of a  bu tterfly  construct are constructed, two of the  arcs in  the  original 

netw ork are  only used one tim e, such as arcs (B,A) and  (B,C) in  F igure 4.19. An example of 

the  graphical reduction of a  bu tterfly  construct is shown in F igure 4.20.

As w ith all conditioned reductions, each arc th a t  is used m ore th an  once in creating 

the  reduced construct will be a factoring arc. Hence, for any  bu tterfly  construct with 

central node B th e re  will be y=indegree(B)+outdegree(B )-2 factoring arcs. The to tal num ber 

of subnetw orks th a t  would be generated  is o)(B)= s[fi(B)]*s[f2 (B)]*” -*s[fy(B)].



The sam e steps are  used to generate each of the subnetworks of a  bu tterfly  structure 

w ith each of the other conditioned reductions.

0

Figure 4.20. Reduced Butterfly Construct.
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4.3 Conditioned Reductions and Shortest P a th  Calculations

The rules for simplifying a  special construct p resent w ithin a  stochastic network via 

conditioned reductions follow a  general scheme. Namely, once one of the constructs 

discussed in Section 4.2 has been identified, the following steps are taken  to generate 

desired subnetworks:

(1) Identify all factoring arcs for th a t construct.

(2) L ist all possible combinations of lengths for the factoring arcs. Each 

combination will define a  distinct subnetwork.

(3) For each combination of lengths, compute the product of the  probabilities 

associated w ith each length. Due to the independence assum ption, th is 

product is the probability of th a t subnetwork occurring.

(4) Remove the central node from the construct and graphically complete all 

possible paths through the construct. (Note: any loop arc (i, i) formed can be 

elim inated from th a t subnetwork structure.)

(5) Add the lengths of the component arcs to get the lengths of the new arcs in the 

subnetworks.

(6) Define the probabilities for the new arcs. An arc w ith a  constant length has 

probability 1. W hen an  arc w ith a  constant length is combined with an arc 

whose length is governed by a  discrete distribution D, the length of the 

resu lting  arc is a  random  variable governed by D.

To dem onstrate how to determ ine the distribution of the shortest pa th  length in a 

netw ork when conditioned reductions are used, consider the network G shown in Figure
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4.21; notice th a t G is not a series-parallel network. Suppose each arc of G can take on 

lengths in the set of integers (1,3) with equal probability.

Figure 4.21. Network w ith Loop Construct.

In th is network, there is a loop structure w ith central node 2 and a loop structure 

w ith central node 3. For th is example, the choice of central node is not im portant, so node 2 

is arb itrarily  selected. (In a la te r section, criteria are given for choosing nodes for more 

efficient subsequent factoring.) According to Step (1) above, there will be four subnetw orks 

generated from the four possible combinations of arc lengths from the  factoring arcs (1 ,2) 

and (2,4). These combinations are LG,2)=1 and  L(2,4)=l in S^; L (l,2)= l and L(2,4)=3 in 

S2 ; L(l,2)=3 and L(2,4)=l in S3 ; and, L(l,2)=3 and  L(2,4)=3 in S4 . The four subnetw orks 

are shown in Figure 4.22.
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Subnetwork 1 Subnetwork 2
{2 , 1 .0 } {4 ,1 .0}

{4,1-0}

Subnetwork 3 Subnetwork 4

Figure 4.22. Reduced Subnetw ork S tructures.

From  Step (3) above, the  probability associated w ith each subnetw ork is the 

product of the probabilities corresponding to the constant lengths used to define th a t 

subnetw ork. In Figure 4.22

Pr(S1)=Pr[L(l,2)=l]*Pr[L(2,4)=l]=.25,

Pr(S2)=Pr[L(l,2)=l]*Pr[L(2,4)=3]=.25,

P r(S3)=Pr[L(l,2)=3]*Pr[L(2,4)=l]=.25,

Pr(S4)=Pr[L(l,2)=3]*Pr[L(2,4)=3]=.25.
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Notice th a t  each subnetw ork in Figure 4.22 can now be simplified to an  equivalent 

two-node netw ork via series and parallel reductions. These simplified netw orks are shown 

in  Figure 4.23.

s, 0 - (2 , 1 .0}
{2,.25 : 3 ,-125 : 4,.625}

0 s 0 ------—-----*0

{2,.25 : 3..125 : 4,.625} ^  2$  . 4 g . 6 2gj
s Q ------------------------► ©  s 4 0 --------------------------► ©

Figure 4.23. Simplified Subnetworks.

The distribution of the sho rtest path  length through the  original netw ork in Figure 

4.21 is then  calculated as shown in Table 1. Namely, th is final d istribution  is found by 

com bining the  shortest p a th  d istributions in each subnetw ork Sj, i= l ,2,3,4, using  as 

w eights the  appropriate Pr(Sj).

Table 1

DISTRIBUTION OF SHORTEST PATH LENGTH IN THE NETW ORK

Length of the 

S hortest P ath

1 D istribution in F inal Subnetw orks 1

1 sl s 2 s 3 s 4 1

1 .25 .25 .25 .25 1

D istribution 

for O riginal 

N etw ork

2 1 1.0 .25 .25 .25 | .4375
3 1 .125 .125 1 .0625

4 1 .625 .625 .5 I .4375

6 I1 .25 | .0625
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4.4 Total Factoring

Although the  special constructs required for the  basic and conditioned reductions are 

found in m any netw ork configurations, realistic network configurations exist th a t do not, on 

in itia l inspection, contain any of these constructs. In these cases, the factoring approach and 

the steps for conditioned reductions can still be applied; however, all of the arcs th a t are 

incident with the node chosen for removal will now be factoring arcs. T h a t is, all possible 

combinations of arc lengths around a central node will be completely enum erated. I f  total 

factoring were required for each node of the network, except for the source and term inal 

nodes, th is  approach would be equivalent to complete enum eration which, as discussed 

earlier, is com putationally infeasible for all b u t the sm allest networks. Fortunately, 

applying to tal factoring on a node in a  complex netw ork will often yield subnetw orks th a t 

can be simplified via the basic and conditioned reductions.

For example, the network shown in Figure 4.24 does not contain any of the 

constructs discussed in  Sections 4.1 and 4.2.

Figure 4.24. Network with No Special Construct.



34

To dem onstrate to tal factoring, le t node 2 be the central node to be removed from the 

network. The subnetw orks generated by rem oving node 2 will each have the  form shown in 

Figure 4.25.

Figure 4.25. Subnetw ork S tructure After Factoring.

After perform ing a parallel reduction on the arcs connecting nodes 1 and  3, we can now 

identify an  octopus construct w ith central node 4 in th is subnetw ork structure . W hen node 4 

is removed from th is  subnetw ork structu re , the new subnetw ork, shown in Figure 4.26, 

resu lts. In th is new subnetwork, there is a simple loop construct w ith central node 3, an 

octopus construct w ith central node 6, and a  butterfly  construct w ith central node 5. Since 

there  are fewer factoring arcs associated with th e  loop construct th an  w ith the  octopus or 

butterfly , node 3 is chosen for factoring. After factoring on node 3, the subnetw orks, whose 

s truc tu re  is shown in Figure 4.27, are  generated. These subnetw orks have the  same 

graphical form as the  exam ple given in Figure 4.21 and, thus, can be solved in the same 

m anner.
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Figure 4.26. New Subnetw ork S tructure.

►I

Figure 4.27. F inal Subnetw ork S tructure.
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4.5. Determ ining the Shortest P ath  Length Distribution

In previous sections, the distribution of the shortest path  h as  been found for series- 

parallel networks and for networks where only one "level" of subnetworks needs to be 

generated. For m any networks, such as the  one given in Figure 4.24, reductions m ust be 

repeatedly applied before the original network is simplified to an  equivalent two-node 

network. T h a t is, each generated subnetwork can itse lf be reduced by fu rther application of 

conditioned and  basic reductions.

In general, the final subnetworks th a t simplify to two-node structures (weighted by 

the ir associated probabilities of occurrence) are the only contributors to the overall 

distribution of the shortest path  length in the network. Hence, for each possible subnetwork, 

i t  is im portan t to keep track  of the probability of th a t subnetwork occurring. Suppose a 

conditioned reduction is applied to a  network G, and several subnetworks, denoted S^, are 

generated. Then, by the independence assum ption, the probability of each subnetwork is 

calculated according to Step (3) in the general reduction procedure. Now suppose th a t 

another conditioned reduction is used to simplify subnetwork S^. and an additional k ’ 

subnetworks, denoted St_ :, are generated. The current s ta tus of the computations can be 

represented by the tree depicted in Figure 4.28. The shaded leaves of th is subnetwork tree 

represen t the currently unresolved subproblems. The probability of the j ^ 1 subnetwork of 

occurring, Pr[S^ j ] ,  is ju s t Pr[S^ j]=Pr[Sjt j  I S^]Pr[S^], where P ^ S ^  j IS^] is calculated 

according to Step (3) in  the general reduction procedure. This process of generating new 

subnetw orks from existing subnetworks continues until a  generated subnetwork simplifies to 

a  two-node structure.
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Level 1 

Level 2

Level 3

Figure 4.28. Subnetwork Tree.

Note th a t all subnetw orks a t level 2 of the subnetwork tree have the  same graphical 

structure. The only differences among these subnetworks are the lengths and probabilities 

occurring on the arcs. More generally, all subnetworks on the same level of the subnetwork 

tree have the same graphical structure. So if  a conditioned reduction is required to simplify 

S^, the same conditioned reduction applies to S^, S2 , A l s o ,  if  some S^ j in Figure 

4.28 simplifies to a two-node network w ithout additional conditioned reductions, each 

subnetwork on level 3 will also simplify to a two-node network w ithout generating fu rther 

subnetworks.

To calculate the distribution of the shortest path  in the  original network, we only 

need to consider subproblems a t the final level of the subnetwork tree; th a t is, those leaf 

subnetworks th a t can be simplified to two-node networks w ithout fu rther conditioned 

reductions. For each leaf subnetwork in the final level, we m ultiply the probability of each 

arc length appearing in the associated distribution by the probability of th a t subnetwork 

occurring. Then, for eveiy possible length, we sum the contributing probabilities across all 

leaf subnetworks. This yields the distribution of the shortest path  length in the original 

network.



SECTION 5.

IMPLEMENTATION OF THE REDUCTION ALGORITHM

The basic and conditioned reduction techniques presented in  the previous section 

have been im plem ented in  a  computer program  to autom ate the  process of finding the 

distribution of the shortest path. The program is w ritten in  FORTRAN 77 and was 

im plem ented on a  Microvax 3200 computer.*** Although the reduction techniques apply to 

arb itrarily  large networks, practical lim itations on computer resources place lim its on the 

size of network th a t can be inpu t to the  program. Currently, the program  will accept a 

netw ork w ith a  maxim um  of 20 nodes and 40 arcs.

An im portant aspect of the program  is the compact storage of the node and arc 

data. The following inform ation is kep t for each node: (1) the first arc leaving th a t node 

(OUTSTRT), (2) the firs t arc entering th a t  node (INSTRT), (3) the num ber of leaving arcs 

(OUTDEG), and (4) the  num ber of incoming arcs (INDEG). The following inform ation is 

tracked for each arc: (1) the  origin of the  arc (FROM), (2) the destination of the arc (TO), (3) 

the size of the distribution for th a t arc (DIS_SIZE), (4) the lengths assum ed by each arc 

(LENGTH), and (5) the corresponding probability for each length (PROB). Additional 

inform ation describing the sets of arcs entering and leaving each node is stored in linked 

lists called NEXTIN and NEXTOUT. For example, the node and arc da ta  for the network 

in  Figure 4.20 are stored as shown in Table 2. The various elem ents of th is  da ta  structure 

are  dynamically created as each network is read into the program.

*** Although other program m ing languages lend themselves b e tte r to im plem enting data  
structures and recursion, the au thor’s prim ary program m ing language is FORTRAN.
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Table 2

STORAGE OF ARC AND NODE DATA FOR A SAMPLE NETWORK

ARC DATA NODE DATA

FROM TO NEXTIN NEXTOUT DIS_SIZE LENGTH PROB OUTSTRTINSTRT OUTDEG INDEG

1 2 0 0 2 1 .5 2 0 2 0
3 .5 4 5 2 2

1 3 0 1 2 1 .5 6 3 2 2
3 .5 0 6 0 2

2 3 2 0 2 1 .5
3 .5

2 4 0 3 2 1 .5
3 .5

3 2 1 0 2 1 .5
3 .5

3 4 4 5 2 1 .5
3 .5

In addition to using th is a rray  represen tation  w ith linked lists  to efficiently store and 

access the node and  arc data , an effort was m ade to m inim ize other storage requirem ents. A 

common approach used to m inim ize storage throughout the  program  w as to use generalized 

b it vectors to store inform ation. A b it vector w as used, for example, to accum ulate the final 

d istribu tion  d a ta  for the  shortest pa th  length. A t the  s ta r t  of the  program , th is  vector is 

in itia lized to zero. Then, as subnetw orks a re  completely reduced, the  appropria te 

d istribu tion  inform ation is added to the b it vector. As an  illustration , suppose a  netw ork 

problem  is being solved w here the firs t subnetw ork to be simplified contributes lengths 

(2,4,7) w ith corresponding probabilities (.1,.06,.3) to the  final d istribution of the  shortest 

pa th  length. Suppose, fu rther, th a t the  nex t subnetw ork to be completely reduced 

contributes lengths (2,5,6,7) w ith probabilities (.03,.01,.14,.002). F igure 5.1 shows the  s ta te  

of the  b it vector for th e  final d istribution of the  sho rtest p a th  length  afte r the  second 

subnetw ork has  been solved. This b it represen tation  is appropria te  when th e  arc lengths 

assum e nonnegative in teger values, as is typically assum ed. However, it  could be modified 

to  deal w ith real da ta  using  the  concept of "buckets"*®.
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0 0 .13 0 .06 01 .14 .302 0

Figure 5.1. B it Vector Used for F inal D istribution D ata.

B it vectors are also used in the m anagem ent of the  arc distribution da ta  when series 

and parallel reductions are performed. Notice th a t by using b it vectors, the distribution 

inform ation can be easily m ain tained  in "sorted order" by length. The combined use of 

linked lists and b it vectors to store and m anipulate da ta  enhances the overall efficiency of 

the program .

U tilizing these da ta  s tructu res to store the  necessary arc, node, and distribution 

inform ation, the  following algorithm  is applied to determ ine the distribution of th e  shortest 

path:

Inpu t netw ork da ta  and store it
Use all applicable basic reductions to simplify the netw ork 
If  the network has been completely reduced 

then
Store the distribution inform ation (note: th is is the 

complete d istribution of the shortest path  length)
else

Identify a node to factor on
Apply the appropriate reduction, generate the subnetw orks 

and place them  in a  stack 
While there  are  subnetw orks in the stack 

Remove the subnetw ork on the top of the stack 
Use basic reductions to simplify the  subnetw ork 
If  the subnetw ork has been completely reduced 

then
Store the distribution inform ation for th a t 

subnetw ork
else

Identify a  node w ithin the subnetw ork to 
factor on

Apply the  appropriate reduction, generate new 
subnetw orks and place them  on top of the 
stack 

end if condition 
end while condition 

end if condition 
P rin t the  d istribution of the shortest path  length



41
4

The algorithm  used to find the  longest path  is identical to th a t used to find the shortest path  

except th a t maximum values are  recorded in  place of m inimum values throughout the 

program.

By applying th is algorithm, a  tree of subnetworks, as dem onstrated in Section 4.5, is 

grown. Level 1 of th is tree represents the original network. W hen th is network is 

decomposed into a  set of equivalent subnetworks, another level is added to the tree; th a t is, 

the  im m ediate "successor" subnetworks of the  original network constitute level 2 of the tree. 

The simplification of these subnetworks adds yet another level to the tree. This process 

continues until the subnetworks on some level of the tree simplify to two-node networks, 

giving the necessary arc da ta  for the distribution of the shortest p a th  length.

In term s of efficient storage of the subproblems, the generated subnetworks are 

stored using a  stack, as described in the above algorithm. W hen the original network is 

decomposed into several subnetworks, the  storage space for the original network is used to 

store the inform ation for one of these subnetworks. In general, when any subnetwork is 

simplified by a  conditioned reduction, the storage space for the paren t subnetwork is used for 

one of the successor subnetworks since the information about the paren t subnetwork is no 

longer needed. This process in effect carries out a  depth-first search of the  subnetw ork tree.

To illustrate, consider a  network G th a t initially reduces to two subnetworks, G{ and 

G£. According to the algorithm, we would firs t try  to simplify G£. Suppose th a t  G£ itself 

generates th ree subnetworks, G |’, G^’, and Gg’. Next, we would try  to simplify Gg’; suppose 

th a t  Gg’ produces two series-parallel networks, G-[” and G2”. Figure 5.2 shows the  partia l 

subnetw ork tree th a t has been grown to th is point. Notice th a t a t th is  point only five 

subnetworks are stored in  the stack of networks: G{, G£’, G^’, G{” and G2”. In completely 

solving th is hypothetical network problem, no more than  five subnetworks will ever occur in 

the  stack of networks even though a to tal of 21 networks will be generated and processed.
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Level 1

Level 2

Level 3

Go ) Level 4

Figure 5.2, P artia l Subnetwork Tree.

A dditional effort was m ade to minimize the "width" of the subnetw ork tree by 

judiciously choosing the node for factoring. Specifically, the factoring node i is chosen to 

fulfill the following criteria:

(1) min[indegree(i),outdegree(i)]<min[indegree(j),outdegree(j)] for all nodes j  in the 
cu rren t subnetwork, and

(2) am ong all nodes k th a t satisfy (1), (o(i)<co(k).

O ur em pirical findings have shown th a t in m ost cases, choosing the factoring node based on 

these criteria resu lts  in  a sm aller total num ber of subnetw orks th a t  need to be solved.

In general, the size of the subnetw ork tree depends on the complexity, num ber of 

nodes, and the size of the distribution of lengths for each arc in the  original network. If 

there  are n nodes in the original network, there will be a t  m ost n-1 levels in the 

subnetw ork tree. I f  there are k  subnetw orks generated during each simplification, then 

there would be a to tal of 1 + k + k^ + ... + k n '^  = (kn '^ -l) /(k -l)  subnetw orks to solve. 

However, the m axim um  num ber of subnetw orks th a t ever need to be stored is (k-l)(n-l)-(k- 

2). These are  worst-case estim ates. In practice, the num ber of subnetw orks solved and the
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m axim um  num ber stored have been far fewer than  those predicted by the worst-case 

estim ates. The results presented in  the next section dem onstrate th a t a  fairly modest 

com putational effort is usually required.



SECTION 6. 

EXAMPLES

In th is section, the structura l factoring approach will be applied to several network 

examples from the literature. The first two examples are acyclic networks where only basic 

reductions are necessary to find the distribution of the shortest p a th  or longest p a th  in the 

network. The th ird  example is a  complex cyclic network th a t requires both octopus and 

butterfly  reductions to simplify the network. In the last example, the exact tw o-term inal 

reliability of a  large network is determined.
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6.1 Kleindorfer Crossing Network

The firs t problem, shown in Figure 6.1, is the "crossing network" analyzed by 

Kleindorfer.® In th is paper, Kleindorfer gives bounds on the cum ulative distribution for 

this network where each arc assum es a length in the set (1,2,3,4,51 with equal probability.

Figure 6.1. Crossing Network.

By applying structu ra l factoring to the fan structures in th is network, the exact 

distribution of the shortest path  length from node 1 to node 6 can be determ ined. Table 3 

gives the the exact distribution of the shortest path  for this network; Table 4 shows the 

exact cum ulative distribution of the critical (longest) path  through the same network as 

well as the Kleindorfer bounds.

**** re ferred t0 as the w heatstone bridge network
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Table 3

EXACT DISTRIBUTION FOR THE SHORTEST PATH THROUGH THE CROSSING NETWORK

Length Exact Probability

3 0.03064064
4 0.08365312
5 0.14335488
6 0.18986496
7 0.20426496
8 0.16326144
9 0.10479360
10 0.05362176
11 0.02052864
12 0.00505344
13 0.00087552
14 0.00008448
15 0.00000256

Table 4

EXACT DISTRIBUTION FOR THE CRITICAL PATH THROUGH THE CROSSING NETWORK 

COMPARED WITH TH E KLEINDORFER CUMULATIVE BOUNDS

Kleindorfer Exact K leindorfer
Length Lower Bound Cum ulative Probability U pper Bound

3 0.000 0.00000256 0.008
4 0.000 0.00008704 0.032
5 0.000 0.00096256 0.080
6 0.002 0.00601600 0.160
7 0.014 0.02654464 0.280
8 0.055 0.08016640 0.424
9 0.149 0.18496000 0.676
10 0.312 0.34822144 0.720
11 0.528 0.55248640 0.840
12 0.731 0.74235136 0.920
13 0.882 0.88570624 0.968
14 0.969 0.96935936 0.992
15 1.000 1.00000000 1.000
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Notice in Table 4 th a t Kleindorfer’s lower bound is much closer to the exact 

cum ulative distribution than  the upper bound. Recall from Section 3 th a t bounding 

approaches have largely concentrated on providing only a lower bound on the distribution. 

For critical path  problems, the expected project duration time, which is the expected length 

of the  critical path , is often of interest. The exact expected project duration can be calculated 

using the exact distribution of the critical path  length, and th is value is 11.203136. 

Kleindorfer gives a  lower bound, LB=9.000, and an upper bound, UB=11.358, for th is 

problem. Shogan^® also gives bounds on the expected project duration for th is  problem: 

LB=10.6 and UB=11.358. Only 3.7 seconds of central processing u n it (cpu) tim e were 

required to solve th is problem exactly.

Since each arc in th is network has five possible lengths, the complete enum eration 

approach would consider 5®=390,625 possible states of the network to determ ine exactly the 

distribution of the shortest path  length. For each possible state of the network, the shortest 

p a th  length m ust be identified. A com puter program, w ritten by the author, th a t 

im plem ents th is complete enum eration approach took 57.21 seconds of cpu tim e to execute, 

and the resu lting  distribution agreed w ith the one given in Table 3. The conditional 

factoring approach clearly provides a  drastic im provement relative to complete enum eration 

for determ ining an exact solution.
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6.2 Fulkerson Longest Path  Example

In th is section, we examine a network problem presented by Fulkerson.^ The 

netw ork has a simple four-node architecture, shown in Figure 6.2, where the length of each 

arc is uniformly distributed on the interval [0,2].

Figure 6.2. Fulkerson Example.

In th is network, two fan constructs can be identified, one centered a t  node 2 and the 

other centered a t  node 3. The exact distribution of the longest path  through the network has 

been determ ined using our algorithm  and is given in Table 5.
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Table 5

EXACT DISTRIBUTION OF THE LONGEST PATH FOR THE FULKERSON EXAMPLE

Length Exact Probability

0 0.004115226
1 0.045267490
2 0.201646091
3 0.304526749
4 0.296296296
5 0.111111111
6 0.037037037

From the distribution in Table 5, the exact expected length of the critical p a th  is 

calculated to be 3.32510288. In the Fulkerson paper, the lower bound calculated by 

Fulkerson’s method is given as 3.22. This problem required 3.5 seconds of cpu tim e to 

solve for the exact distribution and four subproblems were generated.
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6.3 Shogan Exam ple

The nex t problem is a cyclic netw ork, shown in Figure 6.3, presented  by S h o g a n ^ . 

This is a complex netw ork th a t  requires both octopus and  butterfly  reductions to obtain the 

d istribution of the shortest pa th  length from node 1 to node 7.

Figure 6.3. Shogan Example.

For th is  exam ple, the  set of lengths for each arc is {0,2,4} w ith corresponding 

probabilities {.4,.2,.4). The exact d istribution of the  shortest path  length  through th is 

netw ork is given in Table 6.
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Table 6

EXACT DISTRIBUTION OF THE SHORTEST PATH LENGTH FOR THE SHOGAN NETWORK

Length Exact Probability

0 0.3047540654
2 0.2810753843
4 0.2784418939
6 0.0986955899
8 0.0339240387

10 0.0028468838
12 0.0002621440

To solve th is network for the distribution of the shortest pa th  length, 1528 

subnetw orks were generated, bu t the maxim um  num ber of networks stored was 27. 

Although a large num ber of subproblems were generated, th is problem took only 8.19 

seconds of cpu time to solve. By contrast, it  took 6.787 hours of cpu time to solve th is same 

problem by completely enum erating all possible combinations of pa th  lengths.

This problem can also be considered as a two-term inal reliability problem where 

the probability th a t each arc is operational is 0.4. The exact two-term inal reliability of the 

network, as shown in Table 6, is 0.3047540654. Shogan gives the following bounds on the 

tw o-term inal reliability: LB=0.1971 and UB=0.3527.
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6.4 Large Kleindorfer Network

The la s t example is a large network with 20 nodes and 38 arcs th a t was also 

presented by Kleindorfer®. This netw ork is shown in Figure 6.4.

Figure 6.4. Large Kleindorfer Network.
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The two-term inal reliability of th is  network, in which each arc is operational with 

probability 0.9, can be determ ined by le tting  each arc take on lengths {0,1} with 

corresponding probabilities {0.9,0.1}. Using the program with these param eters, the exact 

s-t reliability of th is  network is found to be 0.98612801. The subnetwork tree generated for 

th is  problem had  15 levels. A maximum of 15 subproblems were stored a t any given time, 

and 32,767 to tal subproblems were generated. The program required 2.4 m inutes of cpu 

tim e to solve th is problem. For th is problem, complete enum eration would no t be feasible 

since 2^8 or approxim ately 2 .75x10^  states of the network would be individually 

examined to find the shortest path  length through each.



SECTION 7.

CONCLUSIONS

The structu ra l factoring approach allows the exact distribution of the shortest path  

length through a  stochastic network to be determined. The application of structu ra l 

factoring to the fan, loop, octopus, and butterfly constructs significantly increases the  

trac tab ility  and applicability of the  approach, since complete enum eration of all states is not 

necessaiy to simplify these constructs. Although there are network architectures th a t do not 

initially  contain these special constructs, factoring can often be locally applied to produce 

subnetworks th a t do contain such constructs. Hence, th is approach extends the 

com putational range, especially in  the case of cyclic networks, to larger and more complex 

netw orks than  have previously been solved as compared w ith other exact methods.

S tructu ra l factoring can also be applied to find the  distribution of the critical path  length in 

acyclic networks and the two-term inal reliability for a  network.

Although the  technique of structu ra l factoring is theoretically unconstrained, the size 

of the network th a t can be solved using the  algorithm  is restricted by com putational 

resources. In the  worst case, the com putational effort can grow exponentially w ith the size of 

the  problem, which is indicative of the NP-complete sta tus of the stochastic pa th  problem. 

Com putational experience w ith the structu ra l factoring algorithm has nonetheless been 

encouraging. Moreover, the ability to solve certain nontrivial problems exactly can serve as 

a  baseline for assessing the accuracy of various approximation schemes proposed to solve 

larger problems.
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