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ABSTRACT

Mitosis in the unicell Porphyridium purpureum (Bangiophyceae, 
Rhodophyta) was studied with the electron microscope. Although the 
fundamental features of spindle development and apparent function are 
basically the same as those observed in members of the more advanced 
red algal class Florideophyceae, several distinct structural differences 
are evident. During early prophase two bipartite nucleus associated 
organelles (NAOs) are seen in a region that will become one of the 
division poles. The division axis is established by the migration of 
one NAO. Microbodies are associated with the poles throughout the 
mitotic cycle. At prometaphase the nuclear envelope (NE) subjacent to 
each NAO forms a marked nuclear pocket which breaks down or opens to 
form a large gap. Concomitant with polar gap formation the large NAO 
portion proximal to the NE disperses whereas the smaller distal NAO 
portion remains throughout subsequent mitotic stages; A metaphase 
plate arrangement of chromatin is seen, although individual chromosomes 
are not clearly defined. Indistinct kinetochores are associated 
with a single microtubule. Chromatin moves to the poles in early 
anaphase followed by pronounced interzonal midpiece (IZM) elongation. 
After IZM dehiscence the flattened nuclei migrate to opposite ends of 
the elongating cell. Chloroplast growth and behavior appear to 
assist in nuclear separation during telophase. Cytokinesis occurs 
by means of an ingrowing cleavage furrow. A comparison of mitotic 
ultrastruetural characteristics in Porphyridium with the data available 
on mitosis in other red algae suggests that the observed structural 
diversity may be of taxonomic significance; a comparison with other 
lower eukaryotes suggests that the overall features of mitosis in 
red algae do not support the general belief that this group is one 
of the most primitive of all eukaryotes.



ULTRASTRUCTURE OF CELL DIVISION 

IN THE UNICELLULAR RED ALGA 

PORPHYRIDIUM PURPUREUM



INTRODUCTION

The unicellular red alga Porphyridium purpureum (Bory) Drew et 

Ross is a well known research organism having been studied principally 

to determine the structure, function, and localization of phycobili- 

somes, the phycobilin accessory photosynthetic pigment granules (12- 

15, 68). Aspects of its growth and nutrition (24, 64), metabolism 

(4, 52, 53, 62, 63), movement (23, 29, 40), and other ultrastruetural 

features (2, 7, 11, 39, 42, 65) also have been examined in detail. 

Porphyridium is well suited for physiological and cytological studies 

of red algae since it is one of the few known unicellular members of 

the phylum Rhodophyta and can grow easily and abundantly in batch 

laboratory culture.

Much research has dealt with cell division in lower eukaryotic 

organisms and recent reviews have provided a wealth of ultrastructural 

information on the basic mechanisms of karyokinesis and cytokinesis 

(10, 17* 19, 26, 27, 46). At the same time, the current literature 

has served to emphasize the paucity of information for some groups 

of lower organisms. The few studies which have been published on 

the ultrastructure of red algal cell division (28, 34, 43, 44, 58, 61), 

with the exception of two brief reports (3, 56), have concentrated 

on members of the Florideophyceae, the more advanced class of the 

Rhodophyta. Porphyridium was selected for a study of mitosis primarily 

because of its phylogenetic position as a member of the less advanced 

class Bangiophyceae, which makes a comparative study of basic spindle
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organization in this ancient algal phylum possible.

Heath (19,), Oakley (41), and others have discussed the use of 

mitosis as a phylogenetic indicator, and it was hoped that results 

from this study could help in determining the phylogeny of the two 

classes of the Rhodophyta. Also, since Porphyridium is one of the 

simplest species in the Rhodophyta, a group considered by many 

biologists to be one of the most primitive of all eukaryotic organisms, 

information from this study potentially could help in the interpretation 

of mitotic evolution and the origin of eukaryotic cells.

This study represents the first comprehensive ultrastructural 

account of mitosis in a unicellular red alga. The details character

izing mitosis in Porphyridium are discussed in relation to data avail

able on mitosis in red algae and other lower eukaryotes and a consider

ation of red algae as primitive organisms, as based upon mitotic 

characteristics, is briefly presented. Preliminary accounts of this 

work have been published (55, 56).



MATERIALS AND METHODS

Porphyridium purpureum was obtained in axenic culture from the 

University of Texas Culture Collection of Algae (UTEX 637). Stock 

cultures were statically maintained in 200 ml of von Stosch enriched 

seawater media (vS) (67) in Corning deep storage dishes at 20-22°C 

with a 14-10 photo regime and approximately 1000 lux illumination.

For light microscopy, cells were subcultured into 6-8 ml of vS 

in 60 mm Petri dishes. Sterile, 18 x 18 mm coverslips were placed 

in the bottom of each dish before inoculation. After growing under 

the above conditions for 4-5 days, individual coverslips were removed 

and placed on glass slides. Light microscopic monitoring of cells 

adhering to coverslips was conducted at 30 min intervals over 24 hr 

periods, and showed a small percentage of dividing cells at several 

different times during the day. However, the division peak appeared 

to be 11-12 hr into the light period when 25-30% of the cells were 

dividing.

Cells for electron microscopy were also subcultured into 60 mm 

Petri dishes. The inoculum volume (0.5 ml) and media volume (4.5 ml) 

were carefully measured. After 5 days of growth under the described 

conditions, cells were fixed in situ 11 hr into the light period.

Five ml of 2% glutaraldehyde in 0.1 M phosphate buffer, pH 6.6, 

containing 0.15 M sucrose was added to each dish (final fixative con

centration: 1% glutaraldehyde in 0.05 M phosphate buffer, pH 6.6,

4



5
containing 0.075 M sucrose). Following fixation for 1 hr at room 

temperature, the Petri dishes were gently scraped with a rubber- 

policeman; loosened cells were collected and gently pelleted with 

a clinical centrifuge. After 3 rinses in phosphate buffer, cells 

were postfixed in 1% phosphate buffered OsO^ for 2.5 hr at room 

temperature. Cells were again rinsed in phosphate buffer, embedded 

in 2% agar, enblock stained with 2% uranyl acetate, dehydrated in 

acetate, embedded in Epon, serial sectioned with an LKB Ultrotome III, 

and poststained with lead (54). Thin sections were examined on slot 

grids with a Zeiss EM 9S-2 and living cells were photographed 

using Normarski differential interference and bright field optics 

on a Zeiss Photomicroscope II. Kinetochore counts were obtained by 

simplifying and adapting previously described methods (20, 36, 66).



RESULTS

Light microscopy of .cultured _P. purpureum shows that mitotically 

inactive cells are generally spherical and 5-6.5 pm in diameter (Fig. 1) . 

However, when the population is observed 11-12 hr into the light period, 

at least 25-30% of the cells show marked variation in shape and size, 

many are elliptical and some show conspicuous cleavage furrows (Fig.

2), an indication that karyokinesis has recently occurred. Two daugh

ter cells are usually formed under the described conditions, although 

this isolate is known to produce up to 16 daughter cells and can 

also reproduce by "budding" (64), a phenomenon never observed in 

this study.

INTERPHASE

Figure 3 shows a typical median view of an interphase cell of P_. 

purpureum. Although the ultrastructure of this species has been 

described (2, 11, 39, 65), some pertinent features will be reviewed.

Each unicell is surrounded by a diffuse, fibrillar sheath that varies 

in thickness depending on the age of the cell and culture conditions 

(11, 39). The large, stellate chloroplast with its central pyrenoid 

is the most obvious organelle. The eccentric, ellipsoidal nucleus 

has a prominent nucleolus that is usually found adjacent to the 

chloroplast in the bottom of a hollow formed by surrounding chloroplast 

arms. Starch granules, vesicles (some containing fibrillar material

6
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similar to that found in the sheath), mitochondria, dictyosomes, 

and microbodies (MBs) are located between the chloroplast extensions 

and cell membrane. A system of endoplasmic reticulum (ER) character

istically lies just beneath the cell membrane. Short, narrow tubules 

periodically extend from the peripheral ER and appear fused with the 

cell membrane.

Except during growth or replication, most organelles appear 

unchanged during cell division. Therefore, only those organelles 

directly involved in or influenced by mitosis or cytokinesis will 

be referred to in this paper.

PROPHASE

During early prophase (Figs. 4, 5) a pair of nucleus associated 

organelles (NAOs) is seen closely associated with the nuclear envelope 

(NE). They are found 90-100° from the nucleolus in an area that will 

become one of the division poles. MBs that were scattered throughout 

the cytoplasm during interphase aggregate in the nuclear region, 

especially around the NAOs (Figs. 4, 5).

Each early prophase NAO is composed of two parts and is surrounded 

by a small, ribosome-free "zone of exclusion". The portion proximal 

to the NE is relatively broad and elliptical, measures approximately 

140 nm wide x 55 nm high, and bridges a slight depression in the NE. 

Although nuclear pores seem to be randomly but evenly distributed 

throughout the NE, there is always a single nuclear pore in this 

depression. Fine struts appear to anchor the proximal NAO portion to 

the NE. The distal portion is a small cylinder, 65-70 nm wide x 

45-50 nm high, and is attached to the proximal portion by amorphous
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material (Figs. 4, 5).

Microtubules (MTs) originating near the zones of exclusion 

increase in number between NAOs as one NAO migrates to establish 

the other division pole (Figs. 6, 7). By late prophase these extra- 

nuclear MTs form a cage partially surrounding the nucleus (Fig. 7) .

The shape of the nucleus is angular and irregular during NAO migration 

(Figs. 6-8), the polar regions of some late prophase nuclei becoming 

almost pointed.

Redistribution of MBs occurs during the establishment of the 

division poles. Those MBs which have previously migrated near the 

NAOs are portioned approximately equally; half remain at the established 

pole and the others become associated with the migrating NAO. Serial 

sectioning shows 6-15 MBs of varying size at each pole. This close 

association is maintained throughout subsequent mitotic stages (Figs.

9, 11, 13, 16, 18-20, 22-25). An association of MBs with mitotic nuclei 

has also been observed in other lower eukaryotes (9, 19, 45).

The MBs are not thought to be functionally significant in mitosis, 

but are more likely taking advantage of the spindle to ensure equal 

allocation to each daughter cell (19, 56).

Once the division axis is formed, the slight depression subjacent 

to each NAO becomes more pronounced until it forms a marked nuclear 

pocket (Figs. 8-10). The proximal NAO portion becomes more diffuse 

and irregularly shaped, and eventually disperses. In later stages of 

pocket formation the distal NAO portion becomes distinct since the 

amorphous material that attached it to the proximal portion is also 

lost. The nucleolus is still prominent at this stage, although by pro

metaphase only large granular aggregates are apparent in the nucleoplasm.
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PROMETAPHAS E-METAPHASE

By prometaphase the nuclear pocket has opened or broken down, 

forming a single, large gap at each pole. The distal NAO portion, 

still surrounded by a small zone of exclusion, is located in the gap 

at the level of the NE. This portion of the NAO is seen in all subse

quent mitotic stages (Figs. 11, 13, 16, 19, 22-24). The polar regions 

appear broader and flatter than at late prophase. The NE is intact 

throughout division except for the polar gaps. ER cisternae are 

seen at the poles at this time, frequently closely juxtaposed with the 

NAOs. Figure 11 shows a typical longitudinally sectioned metaphase 

nucleus in Porphyridium. In Fig. 12 a transverse view of a portion of 

the central region of a metaphase nucleus can be seen. A diagrammatic 

representation of metaphase nuclei, based on observations of over 50 

cells at this stage, is shown in Fig. 14. Generally a metaphase plate 

arrangement of chromatin is seen, although individual chromosomes 

are not clearly defined. The intranuclear spindle appears to have 

three MT types, all having their polar end closely associated with 

an NAO (Figs. 11, 14). The majority of the MTs bypass the chromatin, 

some forming a central spindle possibly composed of two overlapping 

half-spindles while others extend laterally from a pole and abut the 

NE at varying distances from the pole of origin. The third MT type 

extends from a pole to the chromatin, inserting on indistinct, but 

identifiable, kinetochores. Each flared or semicircular-appearing 

kinetochore seems to have only one attached MT (Fig. 11, 16).

Analysis of serial longitudinal sections of four metaphase spindles 

shows that the number of kinetochores oriented toward each pole varies 

from 6-10 (see Table 1), the average being about 7. Figure 15 is a
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diagrammatic reconstruction of the orientation and relationship of the 

kinetochores and kinetochore MTs in one of these spindles. One 

section from that series is shown in Fig. 16.

ANAPHASE

The chromatin masses separate and move toward the poles during 

early anaphase (Fig. 17). The pole-to-pole distance remains constant 

until the chromatin reaches the poles at which time the interzonal 

region starts to elongate, producing a pronounced interzonal midpiece 

(IZM, Fig. 18). The length and diameter of the IZM varies slightly 

and appears to be dependent on the size of the cell since mid-anaphase 

elongation of the nucleus continues until the polar, regions are located 

adjacent to the cell membrane (Figs. 19, 20). The diameter of late 

anaphase IZMs is quite small although the length can be up to 4 ym.

A transverse section of a late anaphase IZM is shown in Fig. 21. The 

incipient daughter nuclei follow the curvature of the cell membrane 

during late anaphase elongation (Fig. 22), the polar regions continuing 

to function as the leading edges. The NAOs retain their relative 

positioning with respect to the cell membrane, but have moved out a 

short distance into the cytoplasm and no longer sit in the NE 

gap (compare NAO position Figs. 11 and 22). The shape of the cell 

has changed from spherical during early anaphase to slightly elliptical 

by late anaphase-early telophase.

TELOPHASE-EARLY INTERPHASE

Reformation of daughter nuclei follows the dehiscence and apparent 

rapid disintegration of the IZM. As the nucleoli reform (Figs. 23-25),
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the nuclei continue migration, again following the curvature of the 

cell membrane until they are situated directly opposite each other 

(compare nuclear positions Figs. 23-26). The enlarging chloroplast 

appears to assist in keeping the nuclei apart after the breakdown of 

the IZM.

Late telophase nuclei are usually very flat and angular. The 

persistent NAO distal portion sits free in the cytoplasm in the 

position it assumed during late anaphase when the elongating nucleus 

began curving beneath the cell membrane. As each nucleus resumes 

its normal interphase shape and the nucleolus completely reforms 

(Fig. 25), the distal NAO portion is found in the same position 

observed in late interphase-early prophase. Therefore, one polar region 

of the next division cycle is established by late anaphase of the 

preceeding mitosis. Figure 27 shows a diagramatic summary of the NAO- 

nucleus association throughout the mitotic cycle. Few stages of 

NAO replication were observed and it is not possible to comment on 

the developmental stages which provide each daughter nucleus with its 

needed complement of two complete NAOs.

CYTOKINESIS

Cytokinesis immediately follows karyokinesis. The cleavage 

furrow is often seen in the mid-region of the slightly elongated, 

elliptical cell before daughter nuclei have completed their late 

telophase migration (Figs. 23-25).

Although more obvious in some preparations than in others, the 

peripheral cytoplasm becomes ribosome-free and fibrous subjacent 

to the forming furrow (Figs. 23-25, 28). This exclusion zone increases
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in size as the furrow moves inward (Fig. 26). Sections through this 

region show what appears to be a large aggregation of microfilaments 

(MFs) parallel to the circumferential constriction (Fig. 29).

There is no evidence of conspicuous arrangements of MFs in the 

cytoplasm at any other time during the cell cycle. The ingrowing 

furrow bisects the chloroplast and the pyrenoid, leaving a narrow 

band of ribosome-free cytoplasm in the isthmus (Figs. 29, 30).

Secretion of the sheath material apparently continues during cyto

kinesis. This material moves inward with the constriction (Figs. 28- 

30) and completely surrounds the new daughter cells (not shown in 

these micrographs). Each new cell remains flattened on its adjoining 

side for several hours, but gradually rounds out, separates from the 

immediate vicinity of the other new cell, and attains its normal, spher

ical shape.



DISCUSSION

Cell division in Porphyridium purpureum was observed in 25-30% of 

the cells at any time during the last 3-4 hr of the light phase in the 

photo regime used in this study. Several hundred dividing cells 

were examined during the course of this research. Most of the nuclei 

were in prophase and metaphase, but many observations were also made 

on various stages of anaphase, telophase, and early interphase.

One of the goals of this study was to explore the possibility of 

using mitotic features as taxonomic criteria within the two classes of 

the Rhodophyta. Comparison of mitotic characteristics between the 

Bangiophyceae, represented by Porphyridium, and the Florideophyceae, 

represented by three comprehensively studied genera, Membranoptera 

(34), Polysiphonia (58), and Dasya (44), shows that whereas the 

fundamental features of spindle development and apparent function 

are basically the same, there are some distinct structural differences. 

Since mitosis in the examined Florideophyceae is fairly uniform 

(see 44, 58 for discussion of the differences in these three genera), 

they will be treated as a group when compared to Porphyridium unless 

there is reason for specific comment.

The polar organelle in Porphyridium has been referred to as a 

spindle pole body (SPB, 55,56) and a microtubule organizing center 

(MTOC, 3). Although it very likely does function as an MTOC, it is 

better to use the acronym NAO (19) until more information is available 
on its role in mitosis.

13
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The NAO of Porphyridium is morphologically and behaviorally 

different from that seen in the Florideophyceae (34, 43, 44, 58, 60). 

Although both types of red algal NAO are bipartite organelles, 

the florideophycean NAO (referred to as a polar ring, PR, 34) is 

a double-ring structure (58) composed of two superimposed hollow 

cylinders, whereas the NAO in Porphyridium is comprised of a broad 

solid granule topped by a small flattened disc or cylinder which looks 

somewhat like a reduced PR. Both NAO types separate into their 

components during late prophase-early prometaphase. In the Florideo

phyceae the two NAO parts are persistent, acting as templates for 

NAO replication during the next division cycle. However, in Porphy

ridium the broad, proximal NAO portion completely disperses, leaving 

only the small cylindrical distal portion in all subsequent mitotic 

stages.

The available information on red algal NAO morphology and behavior 

comes primarily from mitotic studies, yet they are probably persistent 

throughout the life of the cell (44, 58, 59). Fixation procedures 

do not always adequately preserve red algae, so often little can be 

said about the presence or absence of NAOs in non-dividing cells. A 

spindle organizing center, looking somewhat like the distal NAO portion 

in Porphyridium, was observed near a tangentially sectioned nucleus in 

the bangiophycean multicellular red alga Smithora (33). Since it 

was absent, overlooked, or not well preserved in the other observed 

cells, nothing definitive could be said about its morphology. Only 

its close association with an extranuclear MT array suggested it 

might be involved with spindle organization. Even when well preserved 

these organelles are easily overlooked because of their small size and
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inconspicuous nature; the largest PR is only 160-190 nm in diameter (34) 

and the NAO in Porphyridium is 140 nm wide at prophase and only 70 nm 

wide in the later stages. Gantt and Conti (11) understandably did 

not recognize the persistent NAO distal portion associated with the late 

telophase-early interphase nucleus (their Fig. 11) in their early 

ultrastructural work on Porphyridium. Even workers specifically 

looking for NAOs in red algae often publish incomplete information. 

Bronchart and Demoulin (3) overlooked the NAO in Porphyridium 

simply because they did not make enough observations to correctly 

identify the structures in their micrographs. Although they thought 

the amorphous material at the prophase poles might be an MTOC, a 

thorough study, instead of conclusions based on sketchy observations, 

would have given more useful information. The proximal NAO portion in 

Porphyridium is often seen as an amorphous mass in tangential section, 

but many observations and extensive serial sectioning helped elucidate 

its morphology and correlate it with the polar structure seen in later 

mitotic stages. These incidents emphasize the need for good fixation 

technique, suggest that researchers broaden the scope of their observa

tions, reemphasize the need for serial sectioning, and suggest that 

publications be based on thorough studies, not sketchy observations.

The cytoplasm surrounding the NAOs and the organization of the NE 

at the division poles undergo striking changes in appearance during 

mitosis in the examined florideophycean red algae (34, 44, 58).

At interphase-early prophase the PRs (=NAOs), which are attached to the 

NE by short struts or links, are surrounded by very small, ribosome-free 

zones of exclusion. As prophase proceeds, the zones markedly enlarge. 

Large numbers of polymerized MTs and possibly spindle precursors are
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found in the extended zones. At prometaphase the zones begin to thin 

presumably because spindle precursors enter the nucleus via the numer

ous nuclear pores and the many fenestrations which are found in the 

flattened polar regions of the NE. Throughout metaphase-early anaphase 

the zones continue to narrow, becoming very thin layers sandwiched 

between the NE and 1-3 cisternae of perinuclear ER (PER). The zones 

disappear by late telophase. In contrast to the Florideophyceae, 

the zones surrounding the NAOs of Porphyridium enlarge only slightly 

during the entire mitotic process. The small zone probably 

corresponds to the small mitotic apparatus of Porphyridium which 

would probably require a smaller pool of precursors. Porphyridium 

also lacks PER, as might be expected in a uninuclear, unicellular 

organism (19, 44), although there are ER cisternae associated with 

the metaphase-anaphase poles.

The distribution and function of membranes associated with 

the mitotic apparatus have received a great deal of attention recently 

(22, 69, 70). One of the possible roles of these membranes is 

the assembly and activation of the mitotic machinery. The membranes 

could also be involved in transporting MT subunits from sites of 

formation to sites of polymerization, in stablizing kinetochore MTs, 

or they could serve as anchors for MTs that generate force during 

chromosome movements. The ER cisternae around the prometaphase- 

metaphase poles and the vesicles in the elongated anaphase nuclei 

in Porphyridium may be performing some of these tasks as may 

the ER cisternae found at the poles in the Florideophyceae (44, 58).

Besides the progressive changes in the extranuclear polar 

regions, the NE also changes during the division process in all examined
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red algae. The NE subjacent to each NAO is flattened or slightly 

depressed in late interphase-early prophase. In the Florideophyceae, 

nuclear pores become concentrated in the area near the PRs during 

prophase, but the NE area directly subjacent to the PRs is always 

pore-free; however, in Porphyridium the distribution of nuclear pores 

does not seem to change as mitosis proceeds and there is always a 

single nuclear pore in the depression beneath each NAO. At late 

prophase the NE in florideophycean red algae changes shape, forming a 

pronounced nuclear envelope protrusion (NEP) (see 58 for discussion 

of the formation and significance of the NEP). The NE then flattens 

at prometaphase, and broad, fenestrated poles are formed. On the 

contrary, at late prophase the NE in Porphyridium forms a marked 

invagination (nuclear pocket) under each NAO. This pocket deepens 

at prometaphase, and the NE either opens or breaks down to form one 

large gap. The NE gap is formed at the same time that the proximal NAO 

portion disperses. The two events may not be related; however, it is 

possible that the proximal portion is either an assemblage of substances 

that help weaken the NE or a concentrated mass of spindle components 

that enter the nucleus to participate in the mitotic process. These 

invaginations were never seen in Membranoptera, Polysiphonia, or Daysa, 

but preliminary work on Batrachospermum (60), a less advanced, fresh

water member of the Florideophyceae (class Nemaliales), has shown 

somewhat comparable structures. Nuclear pockets similar to the 

invaginations observed in Porphyridium also have been seen in a number 

of fungi (16, 17, 21, 37, 51) and one brown alga (31). In most of 

these cases the invagination appears to form as a result of MT activity. 

Presumably these events are a means of internalizing the extranuclear
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spindle. However, the mechanism of pocket formation in Porphyridium 

remains obscure since serially sectioned invaginations were never ob

served to contain MTs. The pocket most likely represents a stage of 

polar NE breakdown during polar gap formation.

Several differences also are seen at metaphase in the two classes 

of Rhodophyta. As mentioned previously, the florideophycean metaphase 

poles are characteristically flat, broad, and fenestrated. The chromo

somes are condensed, have well-defined kinetochores, and closely 

aggregate to form a typical metaphase plate. Most chromosomal and 

non-chromosomal MTs converge over the broad expanse of the poles 

and abut the inner membrane of the NE, although a few MTs extend through 

the polar fenestrations and contact the PER that caps the poles.

As many as 7 MTs per kinetochore have been seen in metaphase nuclei 

of Polysiphonia (58). Contrarily, chromosomes in Porphyridium are not 

well condensed, although there is a typical metaphase plate, kineto

chores are easily overlooked, and there is only 1 MT per kinetochore.

The three MT types all focus sharply on the singly polar gap. These 

differences are probably due to characteristics innate to an organism 

processing a small nucleus with small chromosomes which may not need to 

fully condense to efficiently segregate (19) and may require only 

1 MT per kinetochore to effect chromosome movements.

While observing random sections of metaphase nuclei, 2-4 kineto

chores were often seen oriented toward one pole in a single section.

Based on light microscopy, Porphyridium has a published chromosome 

number of 2 (64). Since it is generally accepted that most organisms 

have only 1 kinetochore per chromosome, it was decided to analyze 

metaphase nuclei for kinetochore (=chromosome) numbers. Only a few
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nuclei were fortuitously sectioned with proper orientation for analysis 

(see 20, 66, for discussion of technique), 4 of which were chosen 

for detailed study. Even though the results were variable (see Table 

1), probably because obliquely sectioned kinetochores are difficult 

to recognize, this small sample shows that the chromosome number of 

Porphyridium is not 2, but may be as high as 8-10. More nuclei 

would have to be examined before an accurate chormosome number is 

established. The small chromosome counts obtained from light micro

scopic studies can be accounted for if chromatin moves as several 

masses of clumped rather than individual chromosomes. Although the 

masses of chromatin may be fixation artifacts, this type of chromatin 

behavior has been observed in vivo and in fixed material in some 

fungi (18). When the larger chromosome number of Porphyridium is 

compared to that of several other Bangiophyceae (8; e.g., Bangia, 

n=3; Porphyra, n=2-5 depending on species; Rhodochaete, n=4) the 

possibility is raised that Porphyridium may be a diploid organism 

since its chromosome number is almost twice that seen in most of 

the others. However, the currently accepted chromosome numbers of 

other species may also need correlation with electron microscopic 

observations before any concrete conclusions can be made.

The newly formed daughter nuclei in the Florideophyceae are 

kept apart by an enlarging central vacuole (44, 58). This same 

mechanism has been observed in a brown alga (31) and several green 

algae (9, 45-48). In Porphyridium the large, stellate chloroplast 

serves instead of the vacuole to keep the flattened daughter nuclei 

apart. The chloroplast may also be instrumental in further separation 

of the nuclei in late telophase as they move to opposite ends
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of the cell. The increased separation may occur simply by relocation 

of chloroplast arms from one region of the cell to another, thereby 

providing new spaces for the nuclei as the previous spaces become 

occupied. Otherwise the presence of the distal NAO portion at the 

leading edge of the migrating nuclei suggests that the NAO, or other 

components in the same region, may be instrumental in nuclear trans

location (see 1 for support of this idea).

Karyokinesis is rapidly followed by cytokinesis in both classes of 

the red algae. In some florideophycean species (44, 58) the incipient 

cleavage furrow can be seen as shallow indentations as early as 

prophase, but little change occurs until early interphase when the 

furrow rapidly partitions the central vacuole. Neither MTs nor 

MFs are seen in or around the cleavage furrow. In Porphyridium the 

furrow is not evident until late telophase-early interphase when small, 

ribosome-free areas of cytoplasm are seen near small peripheral 

indentations. As the furrow moves inward, bisecting the chloroplast 

and pyrenoid, bands of what appear to be MFs are seen running parallel 

to the constriction. This microfilamentous structure, which is the 

subject of further study, appears quite similar to the "contractile 

ring" found in animal cells (32, 57) and was first observed in 

Porphyridium (UTEX 161) by Chapman (6). In the green alga Cladophora 

glomerata (35) and in Diatoma vulgare (49), a pennate diatom, osmio- 

philic material lines the leading edge of the cleavage furrow. The 

authors speculated that the cleavage furrow-associated material might 

be similar to that seen in animals. The bands of MFs found in 

Porphyridium are more extensive than those shown in Cladophora or 

Diatoma and are the third observation of them in the algae.
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Variation in mitotic features potentially are valid phylogenetic 

indicators in the Rhodophyta (58). However, many more studies must be 

completed before definitive conclusions can be drawn. Three extensive 

studies have been completed in the Florideophyceae, but all three 

genera examined were in the most advanced order Ceramiales, while only 

one genus has been examined in the Bangiophyceae. All that is evident 

at this time is that red algae are heterogeneous with respect to the 

morphological features characterizing mitosis, and this mitotic 

heterogeneity nicely matches our present taxonomic heirarchy. Several 

other algae in the Bangiophyceae and in the Nemaliales, the least 

advanced and most heterogeneous order of the Florideophyceae, must be 

examined. The results of that research will help determine the extent 

to which "bangiophycean" and "florideophycean" mitosis is found in 

the Rhodophyta.

One of the other goals of this study was to determine whether 

information on cell division in the simple unicell Porphyridium 

could be useful in understanding mitotic evolution. If mitosis 

in Porphyridium is compared to that reported for other lower eukaryotes, 

some features fit into Heath’s hypothesis of a primitive system (19). 

Simple kinetochore morphology, few kinetochore MTs per kinetochore, and 

rapid chromosome-to-pole and spindle elongation rates (a rapid rate 

is assumed since fewer observations are made at these late stages) 

correspond to features conjectured for primitive cells. Other features 

are considered somewhat less primitive, e.g., an intact but fenestrated 

NE and partially condensed chromosomes, while the remaining features 

are similar to those found in more advanced organisms. However, it 

should be kept in mind that the same mitotic characteristics implying
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that the red algae are primitive, (as is assumed by most workers based 

on other features, e.g., 5, 25, 30, 38), can also be explained by the 

fact that Porphyridium is merely a small, simple unicell which probably 

does not need complex machinery to efficiently divide.

One other feature of mitosis in this species merits discussion.

The NAO in Porphyridium does not resemble any of the other diversely 

shaped NAOs listed in Heath's extensive review of mitosis in lower 

eukaryotes (19). Not only is its morphology different, its behavior is 

also distinctive and possibly unique. Although other NAOs may split 

into their components (44, 58) or change their morphology during the 

course of division (10, 19, 26, 27, 50), to my. knowledge there are 

no NAOs known to undergo such a dramatic modification once 

they have become situated at each division pole.

In summary, this study has provided the first ultrastructural 

information on cell division in a unicellular red alga, an organism 

in a group often regarded as one of the most primitive of all eukaryotes. 

The results do not appear to reinforce this last contention since red 

algal mitosis is no more primitive than that found in numerous other 

lower eukaryotic groups (see 19 for additional supportive comments). 

However, it is apparent that the diversity in mitotic structural 

characteristics seen in the two different red algal classes will very 

likely be important in future taxonomic assessments.
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TABLE I

NUMBER OF KINETOCHORES IN SERIALLY SECTIONED METAPHASE NUCLEI

OF PORPHYRIDIUM PURPUREUM

Nucleus
Number Stagea

Spindle 
Length (yin)

No. of 
Kinetochores0

Chromatin 
Plate Width (ym)

L R

1 M 1.9 8 8 0.65

2 LM-EA 2.5 7 6 0.94

3 M 2.3 6 8 0.87

4 M 2.1 8+?2 7+?3d 0.87

clM = metaphase, LM-EA = late metaphase-early anaphase

^Spindle length is NAO-to-NAO distance

No. of kinetochores oriented toward left pole (L) and right pole (R)

^Obliquely sectioned kinetochores are often difficult to recognize. 
Two questionable kinetochores were oriented toward the left pole and 
three were oriented toward the right pole.
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Figure 1

Figure 2

Figure 3

Light microscopy of live Porphyridium cells. Normarski 
differential interference optics of mitotically inactive 
cells showing relatively uniform size and spherical shape. 
XX. .1^500)

Light microscopy of live Porphyridium cells. Bright field 
optics of a population showing variation in cell size 
and shape. Some cells show conspicuous cleavage furrows 
(arrow). (X 1,500)

Median view showing the large, stellate chloroplast, 
eccentric nucleus, and other subcellular components 
typical of interphase cells. (X 21,750)
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Figures 4-

Figures 6-

Figure 8.

Nonconsecutive serial sections of an early prophase nucleus 
showing an obliquely transverse view through the nucleolus 
and one future pole. Note closely associated pair of 
NAOs surrounded by a small zone of exclusion lacking MTs 
(arrow) and aggregating MBs. (X 28,500)

Adjacent sections from a series through a mid-prophase 
nucleus showing NAO migration. Note distorted nuclear 
shape, extranuclear MTs between NAOs, and NAO-associated 
MBs. (X 29,250)

Late prophase nucleus. NAOs have established the approxi
mate division axis. Note depression subjacent to one 
NAO (arrow). (X 44,000)
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Figure 9. Pronounced nuclear pocket from a late prophase nucleus 
(X 76,500)

Figure 10. Later stage of nuclear pocket formation showing dispersing 
proximal NAO portion and associated MBs. Note that MTs are 
absent from the nuclear pocket. (X 65,000)

Figure 11. Median view of metaphase nucleus showing-distal NAO portion 
in large polar gap (small arrow). Three types of MTs are 
evident: MTs attached to kinetochores (large arrows),
MTs of the central bundle, MTs that run from one pole to 
NE (arrowhead). (X46,750)

Figure 12. Polar (transverse) view of metaphase chromosomal plate
showing MT distribution. Some MTs are located in a central 
bundle while others are interspersed with the chomatin.
(X 63,000)

Figure 13. Transverse view of distal NAO portion. Note zone of
exclusion surrounding NAO and relationship between NAO,
MBs, and MTs. Size of NAO (arrow) can be compared to nuclear 
pores (NP). (X 64,500)
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Figure 14. Diagrammatic representation of metaphase'nucleus. The 
central spindle, possibly composed of two overlapping 
half-spindles, kinetochores, each associated with only 
one MT, and MTs that bypass the chromatin and abut the NE 
are shown in the composite view. The chromatin of the 
metaphase plate is not condensed into discrete chromo
somes. MBs (6-15 per pole) are associated with the distal 
NAO portions, as are elements of ER.
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Figure 15. Diagrammatic summary of the number, orientation, and spatial
relationship of kinetochore MTs from a tangentially
sectioned metaphase nucleus (Nucleus Number 1, Table 1).
Comparable thickness of kinetochore and kinetochore MT lines 
represents kinetochores observed in the same serial section. 
Arrows point out the kinetochores observed in Figure 16.

Figure 16. Representative section from the nucleus diagrammed in 
Figure 15. Two kinetochores are seen in this section 
(arrows). (X 51,000)
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Figure 17. Early anaphase nucleus. Chromatin has started to move to
the poles. (X 28,500)

Figure 18. Early anaphase nucleus. Chromatin has moved closer to the
poles and the interzonal region (IZM) has started to 
elongate. (X 28,500)

Figure 19. Median view of a mid-anaphase nucleus with elongated IZM
showing distal NAO portion (arrow). (X 33,000)

Figure 20. Mid-anaphase nucleus with elongated IZM. The polar regions
have reached the cell membrane. Note membranous components 
in the IZM (arrow). (X 28,000)

Figure 21. Transverse view of late anaphase IZM showing the characteris
tically small number of MTs. (X 66,500)

Figure 22. Polar region of late anaphase nucleus showing the altered NAO
position. The NAO (arrow) no longer sits in the gap at 
the level of the NE, but has moved a short distance into the 
cytoplasm as the nucleus follows the curvature of the 
cell. (X 36,000)
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Figures

Figure

Figure

23-24. Serial sectioned telophase cell showing reforming
daughter nuclei (N) following IZM dehiscence. Nuclei 
are still flat and angular and the nucleoli are still 
dispersed. The NAOs are further out in the cytoplasm, 
still surrounded by a small zone of exclusion (arrows). 
Ribosome-free, fibrous region of cytoplasm is located 
beneath the forming cleavage furrow (arrowheads).
(X 10,150)

5. Reformed daughter nuclei are evident,in this late telo
phase cell. Although the morphology and nucleoli of 
these nuclei are very similar to the uninucleate inter
phase cells, they have not yet completed their migration 
to opposite ends of the cell. Incipient cleavage furrow 
is evident. (X 9,750)

6. Late cytokinesis. The cleavage furrow has almost 
bisected the pyrenoid and chloroplast and the daughter 
nuclei have migrated to opposite ends of the cell.
Some enlargement usually occurs following complete
cell division to restore the size of typical Porphyridium 
cells. (X 9,050)
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Figure 27. Diagrammatic summary of NAO behavior and location during
mitosis in Porphyridium purpureum. A. Early prophase show
ing closely associated pair of NAOs at one division pole.
B. Late prophase after NAO migration establishing the second 
pole. C. Nuclear pocket formation at late prophase.
Proximal NAO portions become irregularly'shaped and less 
dense. D. Prometaphase. Proximal NAO portions have 
dispersed and the distal NAO portions sit in the polar gaps. 
E. Metaphase. MTs focus on the NAOs that now sit in the 
nuclear gaps. F-G. Early-mid-anaphase. The NAOs continue 
to sit in the polar gap as IZM elongation occurs. H. Late 
anaphase NAOs move out into the cytoplasm as the nucleus 
follows the curvature of the cell. I. Late telophase-early 
interphase. Each NAO sits free in the cytoplasm after IZM 
dehiscence and nuclear migration. NAO positioning is 
similar to that seen in interphase-early prophase (A) when 
new proximal portion is formed.
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Figure 28. Ribosome-free, fibrous peripheral cytoplasm subjacent 
to the forming furrow. (X 39,750)

Figure 29. Surface view through the cleavage furrow showing presumptive 
aggregation of MFs. (X 27,750)

Figure 30. Final stage of cytokinesis. Note the bisected chloroplast 
and pyrenoid and the narrow band of ribosome-free cytoplasm 
in the isthmus (arrow). (X 33,000)
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