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ABSTRACT

A programming language for the Texas Instruments TMS9900 
microprocessor and aspects of its design, development, and 
implementation are described. This mid-level language 
combines the efficiency of an assembly language with the
structure and readability of a high level language, and is
necessarily machine dependent. The programmer is provided 
with complete control of the target machine through a 
language framework which allows development of source 
programs which clearly exhibit the underlying algorithm and 
which are thus much easier to correct and understand than 
the corresponding assembly language program. Data types and 
operations are defined strictly in the context of the 
TMS9900. The PL/99 compiler is a cross-compiler which has
been written in PASCAL for execution on Control Data
Corporation 6600 and Cyber computers. The object module 
generated by the compiler is consistent with the Texas 
Instruments standard object module format.
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A Mid-Level Programming Language 

for the TMS9900 Microprocessor



INTRODUCTION

Until recent years, the languages available for 
programming most computers have been either low-level 
assembly languages or high-level languages such as FORTRAN, 
ALGOL, or PASCAL. Programs written in the machine-dependent 
assembly languages usually require relatively long 
development times and essentially preclude a clear 
exhibition of the structure of the underlying algorithm. 
The high-level languages generally overcome these 
deficiencies, but are machine independent and thus cannot 
provide explicit control of a given computer at the machine 
operation level.

In a classic paper, Wirth M  presented the programming 
language PL360 which afforded the IBM 360 programmer the 
flexibility and degree of control typical of a conventional 
assembly language, but which exhibited the structure and 
readability of a high-level language. This early paper set 
the standard for a series of languages alternately called 
ALGOL-like assembly languages [2], structured assembly

2



3

languages [3,4]., block-structured assembly languages [5] , 
and mid-level assembly languages [6]. The target machines 
for these languages have ranged from the IBM 360 to smaller 
computers, minicomputers, microcomputers, and
microprocessors.

Regardless of the particular title affixed, the purpose 
of each of these languages has been to provide the 
programmer with complete control of the target machine 
through a language structure which more nearly resembles a 
high-level language such as ALGOL or PASCAL. Each language 
provides certain high-level constructs coupled with a 
convenient syntax, but data types and operations are defined 
strictly in the context of the target machine. The 
resulting source programs clearly exhibit the structure of 
the underlying algorithm and are much easier to develop, 
correct, and understand than the corresponding assembly 
language program. The compilation of the source program to 
machine code is generally straightforward and no 
inefficiencies are introduced into the resulting machine 
code.

In a recent paper, Foster [6] describes the MID-level 
Assembly language MIDAS which provides a basic framework for 
the development of a mid-level language for virtually any 
microprocessor. This basic MIDAS framework is extended to
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obtain a dialect for a particular target microprocessor. 
The concepts and principles established for MIDAS have 
provided the basis for the development of PL/99, a mid-level 
assembly language for the Texas Instruments TMS9900 
microprocessor.

The PL/99 compiler is a cross-compiler which has been 
written in PASCAL for execution on Control Data Corporation 
6600 and Cyber computers. The primary goal has been to 
develop a prototype compiler with a sufficiently modular 
structure to allow convenient expansion and modification for 
future applications. The complete instruction set of the 
microprocessor has been implemented through a combination of 
a PASCAL-like language structure coupled with a machine 
instruction mnemonic capability for those instructions which 
are not readily incorporated into the basic PL/99 structure. 
The object module produced by the compiler is consistent 
with the format used by the Texas Instruments loaders.

The following chapters present a description of the 
target microprocessor, a detailed development of the syntax 
and semantics of PL/99, and example programs to illustrate 
the capabilities of the language.



CHAPTER 1

The TMS9900 Microprocessor

The Texas Instruments TMS9900 microprocessor [7] is a 
16-bit single integrated circuit microprocessor which 
constitutes the basic building block for the 990 computer 
family including the 990/4 microcomputer and the 990/10 
minicomputer. The PL/99 language has been directed toward 
the basic instruction set of the microprocessor, and thus 
the few remaining instructions which require the additional 
hardware of the 990/4 or 990/10 have not been considered. A 
brief summary of the microprocessor and its characteristics 
and capabilities is presented in the following sections.

5
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1.1 Instruction Set

A machine instruction usually occupies one 16-bit 
memory word, but some instructions extend to two or three 
words for immediate operands and extended addresses. A word 
describing an instruction is decoded by the Central 
Processing Unit (CPU) into various fields within the 
16-bits. The fields within an instruction word contain the 
following information:

1. The op code identifies the operation to be 
performed when the instruction is executed.

2. A single-bit B code indicates whether the
instruction will affect a full 16-bit word or an
S-bit byte.

3. The two-bit T fields for source and destination
operands specify which of the five available
addressing modes is to be used (direct register,
indirect register, memory address, memory address 
indexed, or indirect register autoincrement).

4. Source and destination register fields specify the 
register to be used.
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5. A displacement field contains a bias to be added to 
the program counter to determine a target address.

6. Count fields indicate the bit shift count for shift 
instructions or the number of bits to be addressed 
by a Communications Register Unit (CRU) 
instruction.

1.2 Memory Addressing

A 16-bit memory address word is used for memory 
addressing. The least significant bit of this address word 
is used by the CPU to address bytes. All word addresses in 
memory are even values which range from 0000 to hexadecimal 
FFFE.

1.3 Workspace Concept and the Register File

A file of sixteen 16-bit registers (R0-R15) is 
available to the programmer through a workspace pointer 
register which points to a register file or workspace in 
memory. The workspace may be arbitrarily located in memory
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on word (even-numbered byte) boundaries, and any number of 
such workspaces may be defined by the programmer. To access 
a particular workspace, the programmer loads the workspace 
pointer register with the address of the register file in
memory.

1.4 Addressing Modes

Approximately one-half of the instructions available on 
the TMS9900 allow a choice of one of five addressing modes 
for one or both operands. These modes allow convenient 
access to data in workspace registers or in memory
locations.

1. Workspace Register Addressing - A specified
workspace register contains the desired operand.

2. Workspace Register Indirect Addressing - A
specified workspace register contains the address
of the operand.

3. Workspace Register Indirect Autoincrement
Addressing - A specified workspace register 
contains the address of the operand. Upon
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completion of the operation, the workspace register 
contents are incremented by one for byte 
instructions and by two for word instructions.

4. Indexed Memory Addressing - The word following the 
instruction contains the base address while a 
specified workspace register contains the indexed 
value. The effective address of the operand is 
found by summing the base address and the indexed 
value.

5. Symbolic Memory Addressing (Direct and Indirect)
The operand or operand address is contained in the 
word following the instruction.

1.5 Status Register

A condition code register holds relevant information on 
preceding operations and is referenced by conditional 
branches. This status register can be loaded and stored as 
a single 16-bit register, or individual bits may be altered 
with a single instruction.
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1.6 Communications Register Unit

The Communications Register Unit (CRU) is the I/O data 
interface for the 990 computer family. The CRU may be 
visualized as 4K consecutive bits which are addressed as 
independent bits or in groups of up to 16 bits by CRU 
instructions. The CRU is best decribed as a 4096-bit input
register and a 4096-bit output register.

1.7 Register Conventions

Conventions in certain instructions require that
specified registers within the workspace be reserved for 
particular functions. Program storage requirements are 
reduced by conserving space in the instruction word through 
the use of these conventions. Register Rll is used as a
link register (branch and link), R12 is used as a base
register for CRU I/O addresses, and R13, R14, and R15 are 
used as link registers for status exchange operations. R0 
is inhibited from use as an index register through a zero 
default in index register identification which generates the 
immediate address mode ( direct symbolic memory addressing 
).



CHAPTER 2

Language Definition

PL/99 mimics PASCAL to some extent in its basic 
structure and capabilities, but the machine dependency of a 
mid-level language results in certain differences and 
restrictions not usually associated with a high-level 
language. The following sections present a detailed 
definition of PL/99.

2.1 Lexical Elements

The lexical structure of PL/99 is patterned after 
PASCAL, but tends to be more restrictive in several aspects.

11
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2.1.1 Character Set and Special Symbols

The PL/99 compiler will recognize the twenty-six upper 
case letters A through Z and the digits 0 through 9. Other 
symbols recognized are:

+ :

/ <>* <

! >

2.1.2 Free Format Input

PL/99 source programs may be written in a free format 
which allows the programmer to structure the code in a 
manner which exhibits the underlying algorithm in an easily 
readable style. A statement may begin and end at any point 
on a card; multiple statements may appear on a single card; 
and statements may extend to more than one card. Any number 
of blanks may appear between distinct identifiers, numbers, 
or other symbols, but no blanks may occur within an 
identifier, number, or other symbol.

()[]A&
$
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2.1.3 Identifiers

Identifiers are names associated with constants, 
variables, types, procedures, and labels. They must begin 
with a letter which may be followed by any combination of 
letters, digits, or underscores. PL/99 permits identifiers 
of any length, but only the first ten characters are used. 
Identifiers denoting distinct objects must therefore be 
unique in the first ten characters.

Examples: COUNTER, FIRST_ID, TEMPI

2.1.4 Numbers

Positive integers composed of strings of the digits 0 
through 9 and the letters A through F are allowed in PL/99. 
If the digit string is preceded by the character $, the 
integer is interpreted as hexadecimal, otherwise the base is 
assumed to be ten. The target microprocessor is a 16-bit 
machine, and thus the integers must be in the range 0 to 
65535 .

Examples: 123, $ABC1
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2,1.5 Comments

A comment statement may be inserted at any point where 
a blank is allowed (e.g., between any two identifiers, 
numbers, or special symbols) to serve as documentation or to 
enhance the readability of the code. The delimeters (* and 
*) bracket the comment which may be any sequence of symbols 
not containing *). A comment has no effect on the code 
generated.

2.1.6 Reserved Words

Certain identifiers in PL/99 are classified as reserved 
words, and the programmer may not use them in any context 
other than that set forth in the language definition. In 
particular, reserved words may not be used as identifiers. 
The PL/99 reserved words are:

Example: (* THIS IS A COMMENT. *)

ABS ENDP PROGRAM
AND ENDPR REPEAT
ARRAY ENDW THEN
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BEGIN GOTO UNTIL
BYTE IF VALUE
CALL INV VAR
CONST LABEL WHILE
DO OF WORD
ELSE OR XOR
END IF PROCEDURE

In addition to these reserved words, the register 
identifiers R0,R1,...R15 are predeclared identifiers which 
are used to reference workspace registers. The user may 
optionally declare any of these register identifiers to 
designate a label, constant, variable, or procedure 
identifier and thus override the predeclaration.

2.1.7 Mnemonics

A number of the TMS9900 instructions do not readily 
lend themselves to implementation through the PL/99 
structure, and thus a limited mnemonic capability has been 
included in the language. The following mnemonics have been 
implemented:

AB
B
BL

JOP
LDCR
LIMI

SRA
SRC
SRL
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BLWP LWPI STCR
CB MOVB STST
CLR RTWP STWP
COC SB SWPB
CZC SBO SZC
JH SBZ SZCB
JL SETO TB
JNC SLA X
JNO SOC
JOC SOCB

Detailed discussions of the mnemonic capability are 
presented in sections 2.9.4 and 3.6.7.4.

2.2 Input/Output

The concept of input/output for the target machine has 
not been rigorously addressed in PL/99, but access to the 
Communications Register Unit (CRU) has been provided through 
the mnemonic facility described in section 2.9.4. The five 
CRU instructions may be directly generated through the use 
of the appropriate mnemonic.
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2.3 Grammar Specification

The context free syntax for PL/99 is formally described 
using the traditional Backus-Naur Form (BNF). As presented 
in the appendix, these BNF productions collectively describe 
the permissable forms of a PL/99 program.

2.4 PL/99 Program Structure

A program written in PL/99 will be composed of the 
following parts:

program header
label declaration section 
constant declaration section 
variable declaration section 
value section 
procedure definitions 

BEGIN
program body 

ENDP.

Each program section will appear in the order given 
above. The label, constant, or variable declarations may be
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empty. Value initializations and procedure definitions are 
likewise optional.

This program structure offers the advantage of a clear 
organization with the label, constant, variable, and initial 
values conveniently located at the beginning of the program. 
The declaration sections facilitate the construction of the 
symbol table and avoid errors which can occur when
extraneous identifiers are inadvertently introduced due to 
coding errors. The procedure definitions and program body 
relative positions are easily incorporated into the TMS9900 
memory organization.

2.5 Program Header

The program header is the first statement in every 
PL/99 program. It is composed of the reserved word PROGRAM 
followed by an identifier and a semicolon. The program
header assigns a name to the program which is subsequently
used in the object module.

Example: PROGRAM PL_PROG;
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2.6 Declarations and Types

All labels, constants, and variables must be declared 
in PL/99. Initial values for selected variables may be 
indicated in the VALUE section. A declaration section may
be empty and thus not appear in a particular PL/99 program.
Note that it is not necessary to declare the register
identifiers R0-R15, but initial values may be preset for 
them.

The allowed data types include two of simple type and 
one structured type. These data types are defined to
reflect the TMS9900 instruction types and addressing
capabilities. Programmer defined types such as found in 
PASCAL are not permitted.

2.6.1 Labels

The label declaration section is composed of the
reserved word LABEL followed by a list of label identifiers 
separated by commas. The last label identifier is followed 
by a semicolon. A label is an identifier associated with a 
given source statement and is usually the target of one or
more GOTO or mnemonic jump statements.
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Example: LABEL LABI, LAB2, LAB3;

2.6.2 Constants

The constant declaration allows association of an 
integer constant value with a constant identifier. Constant 
definitions separated by commas follow the reserved word 
CONST. Each constant definition has the syntax
identifier=constant value. A semicolon completes the CONST 
section.

Example: CONST MAX_HEX = $FFFF, PROCESSOR = 9900;

The use of constant identifiers allows the grouping of 
program constants in a convenient location where they can be 
easily noted for documentation purposes or changed for a 
particular execution case.

2.6.3 Variables

Variable names other than the predeclared register 
identifiers are declared in the variable declaration. The 
variable declaration section is composed of the reserved
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word VAR followed by a series of variable declarations. 
Each variable declaration is composed of a list of
identifiers followed by a colon followed by a type. The 
type may be a simple type or a structured type. The simple 
types are WORD and BYTE, and the structured type is the 
ARRAY type. Variables of type BYTE are packed two per word 
of storage. For the ARRAY type, the colon is followed by 
the reserved word ARRAY, the array bound specification in
brackets, the reserved word OF, and the BYTE or WORD type 
specification. The first index of every array is assumed to 
be zero, and the bound specification denotes the maximum 
index to be used for the array, i.e., the number of array
elements plus one.

Example: VARV1,V2: BYTE;
V3,V4: WORD;
V5 : ARRAY [3] OF BYTE;

Note that the array V5 is composed of the four elements 
V5 [0] , V5 [l] , V5 [2] , and V5 [3] .

2.6.4 Value Initialization

A VALUE declaration section has been implemented in 
PL/99 to provide a convenient means of initializing program
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variables and registers at load time. This capability 
provides a compact method for program initialization without 
resorting to assignment statements, and thus results in more 
efficient machine code as well as a more readable source 
program. The VALUE declaration ultimately results in loader 
directives to perform the required initialization.

The VALUE declaration section is indicated by the 
reserved word VALUE. Each initialized variable name is 
equated to the appropriate numerical value in a manner 
paralleling the CONST declarations.

The VALUE declaration for array variables assumes that 
the values declared correspond to the ordered elements of 
the array beginning with index zero, but does not require 
that all elements be initialized.

Example: VALUE HEX__DIGIT = $B, XARRAY = [4,2,$A,3];

Note that XARRAY [o] =4 , XARRAY [l] =2 , etc . , but there may be 
more than four elements in XARRAY.

2.7 Procedure Definition and Usage
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PL/99 allows the use of procedures, but only in a
restricted sense. A procedure is a block of code beginning 
with the reserved word PROCEDURE coupled with the procedure 
name, and followed by an arbitrary number of source
statements which constitute the procedure body. The
procedure is terminated with the reserved word ENDPR. Only 
global variables are allowed. There is no parameter list, 
and there are no local variables as in PASCAL. There may be 
any number of procedures, but they may not be nested. This 
limited procedure capability does provide the programmer 
with the capability to execute a fixed block of code 
repeatedly from any point within the program body. 
Additionally, this form for procedures is readily
incorporated into the memory organization and provides 
direct access to the TMS9900 branch and link instructions. 
The CALL statement is used to branch to the desired 
procedure and is described in section 2.9.3.

Example: PROCEDURE ADD_ONE;
A:=A+1;
B:=B+1;

ENDPR;
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2.8 Addressing Modes

The five addressing modes available on the TMS9900 for 
source and destination operands have been implemented 
directly in PL/99. Four addressing modes are directly 
expressable by the programmer, and two are activated through 
the choice of non-register variable names or the ARRAY data 
structure.

2.8.1 Workspace Register Addressing

As previously noted, the workspace register identifiers 
RO,R1,...,R15 are predeclared in PL/99. If the contents of 
a workspace register are to be used as an operand, the 
appropriate register is indicated simply by name, e.g., 
R5:=R5+1.

2.8.2 Workspace Register Indirect Addressing

If a workspace register contains the address of an 
operand, the appropriate register identifier is followed by 
the symbol a  , e.g., R5a:=R5 +2. Note that no blanks are
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permitted between the register name and mode specification.

2.8.3 Workspace Register Indirect Autoincrement Addressing

This mode functions in the same manner as indirect 
addressing, but upon completion of the operation the 
workspace register contents are incremented by one for byte 
instructions and by two for word instructions. This mode is 
indicated by suffixing the symbol & to the register name and 
A, e.g., R5A&:=R5a &+R4a&. Note that this addressing mode 
may be used to step through a table of values without 
recourse to the ARRAY structure.

2.8.4 Symbolic Memory Addressing

Direct symbolic memory addressing has been implemented 
for variable names which do not correspond to register 
identifiers. Variable names descriptive of the problem 
being programmed may thus be used to further enhance the 
readability of the algorithm. The two words which follow a 
machine instruction are reserved for the addresses of the 
variable names which designate the source and destination 
operands, respectively. The programmer simply employs the
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variable name in a statement to activate this mode, e.g., 
R5a :=DATA.

2.8.5 Indexed Memory Addressing

This mode allows the use of any register as an index 
register for determination of a required effective address. 
Both explicit and implicit forms of this addressing mode 
have been implemented.

In the explicit form, a variable identifier is followed 
by parentheses enclosing an integer constant or constant 
identifier in the range 1-15 which specifies the register to 
be used as the index register. The TMS9900 instruction set 
requires that register RO cannot be used for indexing. The 
word following the machine instruction will contain the base 
address, i.e., the address of the variable identifier, which 
when added to the contents of the index register yields the 
effective address of the operand.

Examples: TABLE($A), XVAL(3), YVAL(ONE)

The ARRAY data structure utilizes this addressing mode, 
but in an implicit sense. An array variable identifier is
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followed by brackets enclosing the array index which may be 
an integer constant, a constant identifier, or a register 
identifier:

Examples : A [2] , A [TWO] , A [R2]

The base address corresponds to the address of the first 
element of the array A [0]. The array index simply becomes a 
specification of the indexed value used to obtain the 
address of a given element within the array. If one of the 
constant forms for the index is used, however, the 
addressing mode reverts to direct symbolic memory addressing 
because the address of the specified array element may be 
determined directly from the array base address and 
constant. When a register identifier is employed, the 
contents of that register are added to the array base 
address to obtain the address of the desired element. Note 
that the entire array may be accessed by incrementing the 
indexing register contents in a loop.

Example: R1 := 0;
REPEAT
A[Rl] := 0;
R1 := R1 + 1;

UNTIL R1 = 5;
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2.9 Statements

The program and procedure bodies are composed of a list 
of statements separated by semicolons. Statements available 
in PL/99 include assignment, GOTO, CALL, mnemonic, IF, 
REPEAT, WHILE, and the empty statement. Statements may be 
unlabeled, or a label identifier followed by a colon may 
precede a statement for reference by a GOTO or mnemonic jump 
statement.

2.9.1 Assignment Statement

The assignment statement is used to assign the value of 
an expression to a register or variable identifier. As in 
PASCAL, the symbol := is the assignment operator, which 
separates the destination operand on the left-hand-side from 
an expression on the right-hand-side of the assignment 
statement. Several forms for the expression are allowed, 
but all reduce to a single machine instruction and must 
reflect the source and destination operand ordering required 
by the instruction set of the microprocessor.



29

Expressions may be composed of a single constant, a 
single identifier, a single identifier preceded by the 
monadic operators + or -, or an identifier-identifer or an 
identifier-constant pair separated by any of the arithmetic 
operators or / , or by any of the Boolean operators
AND, OR, or XOR. Also permitted are the ABS and INV 
expressions described below. Each of these forms may be 
directly translated into the appropriate TMS9900 machine 
instructions.

Expressions in PL/99 are restricted to a single 
operator form. This restriction is not generally serious, 
however, and should provide most programmers with an 
assignment statement syntax which will be sufficiently 
powerful for most applications. The adoption of this 
limited expression follows from two additional 
considerations. Firstly, a primary goal of the language is 
to provide the programmer with control of register 
allocation and use. Thus there are no registers available 
for the storage of intermediate results obtained during a 
more lengthy expression evaluation. Secondly, expressions 
are evaluated in a simple left to right scan with no 
parentheses or operator precedence constraints. The single 
operator syntax precludes any difficulties arising from 
these considerations and simultaneously results in a 
one-to-one correspondence between machine instructions and
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the assignment .statements.

The concept of source and destination operands is 
fundamental to the TMS9900 instruction set and must be 
reflected in the specification of expressions in PL/99. 
Expressions involving the arithmetic operators + , *, or /
must have the syntax d := d operator s where d and s are the 
destination and source operands respectively.

Examples: R1:=R1+R2;
R3A;=R3A*R1;

DATA:=DATA-VAL1;
VAL1:=VAL1/DATA;

In addition, the TMS9900 instructions for AND and OR 
operations perform the indicated operation between the 
contents of a workspace register and an immediate operand 
(i.e., a constant or constant identifier). The XOR 
operation, however, allows the use of a workspace register 
destination operand and a source operand which is resident 
in the workspace or in memory. These peculiarities of the 
TMS9900 must be strictly observed and reinforces the machine 
dependency of PL/99.

Examples: R1:=R1 AND 1;
R3:=R3 XOR VI;
R2:=R2 OR $A;
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When register identifiers are employed in any 
expression, the addressing mode may be indicated as 
previously described. Note also that any variable 
identifier may be an array element.

The last two forms for an expression involve the 
reserved words ABS and INV. These expressions are monadic 
and result in the absolute value and inverted value of a 
given operand.

Examples: R1 := INV(Rl); VI := ABS(Vl);

2.9.2 GOTO Statement

The GOTO statement results in an unconditional branch 
to the statement preceded by the indicated statement label, 
and is composed of the reserved word GOTO followed by a 
label identifier. A GOTO statement may be used within a 
procedure, but transfer into or out of a procedure using a 
GOTO is not permitted.

Example: GOTO LABI;
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2.9.3 CALL Statement

The CALL statement is used to branch to a procedure. 
The reserved word CALL is followed by the procedure name.

Example: CALL PR0C1;

2.9.4 Mnemonic Statement

Several of the TMS9900 instructions do not readily lend 
themselves to incorporation into the PL/99 structure. A 
mnemonic capability has thus been included to provide 
convenient access to certain jump, shift, compare, branch, 
and CRU instructions. Also included are several byte 
operand instructions which may be used when operations 
involving the left byte of a register are required. A 
mnemonic statement may occur at any point where any other 
statement may occur. Mnemonics are denoted by a pair of 
periods enclosing a mnemonic identifier. The operands for 
the instruction follow the second period by at least one 
blank and are separated by a comma if more than one operand 
occurs. The following table summarizes the available 
mnemonics and gives examples of their usage and operand 
form.
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Add Bytes 
Branch
Branch and Link
Branch and Load 
Workspace Pointer
Compare Bytes 
Clear Operand
Compare Ones Corresponding
Compare Zeroes Corresponding
Jump if No Carry
Jump if No Overflow
Jump on Carry
Jump if Odd Parity
Jump if High
Jump if Low
Load Interrupt Mask 
Immediate
Load Communication Register
Load Workspace Pointer 
Immediate
Move Byte
Return with Workspace 
Pointer
Subtract Bytes 
Set Bit to One 
Set Bit to Zero 
Set To One

PL/99 Mnemonics
.AB. R2,R1 
.B. ADDR1 
.BL. R4

•BLWP. R5A 
.CB. R2,R1 
.CLR. VI
.COC.
.CZC.

R2 , VI 
R2 , VI

. JNC. LABI 

.JNO. LAB2

. JOC. 

. JOP. 

.JH.

LAB3
LAB4
LAB5

.JL. LAB6

.LIMI. $000A

.LDCR. R1,5

.LWPI. 

.MOVB.
WPADDR
R2,R1

.RTWP.

.SB. R2,R1 

.SBO. 1
•SBZ. $AF 
. SETO. A2 [4]
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Shift Left Arithmetic
Set Ones Corresponding
Set Ones Corresponding,
Byte
Shift Right Arithmetic
Shift Right Circular
Shift Right Logical
Store Communication Register
Store Status
Store Workspace Pointer
Swap Bytes
Set Zeroes Corresponding
Set Zeroes Corresponding, 
Byte
Test Bit 
Execute

.SLA. R3,4 

.SOC. R2,VI

.SOCB. V2,V3 

.SRA. R4,SHIFTCOUNT 
•SRC. R4,$A 
.SRL. R4,0 
•STCR. R2,2 
.STST. R3 
.STWP. R5 
.SWPB. R3 
.SZC. Al[l],Vl

.SZCB. V2,V3

.TB. 6 

.X. R5

The use of these mnemonics must always adhere to the 
basic definitions and usage prescribed for the instruction 
set P L  Additional comments regarding the mnemonic
capability may be found in section 3.6.7.4.

2.9.5 Conditions
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The three remaining statements - IF, WHILE, and 
REPEAT - all involve the evaluation of a condition which is 
composed of an identifier-identifier or identifier-constant 
pair separated by one of the relational operators = ,<> , < , 
<=, > , or >=, This syntax maps directly into the TMS9900 
compare instructions.

If the indicated relationship holds between two 
identifiers or between an identifier and a constant, the 
condition is assigned the Boolean value TRUE, and the 
appropriate bits in the machine status register set to one. 
Otherwise the condition is FALSE. Examples of the use of 
conditions are presented in the discussions of the IF, 
WHILE, and REPEAT statements below.

Restrictions on instruction format peculiar to the 
TMS9900 previously noted for assignment statements and 
Boolean expressions apply similarly to conditions. If an 
identifier and constant are to be compared, the identifier 
must be a register identifier.

2.9.6 IF Statement
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The IF statement is available in two forms. The syntax 
is IF condition THEN statement list ENDIF or IF condition 
THEN statement list ELSE statement list ENDIF with the usual 
semantics in both cases.

Examples: IF R1>V1 THEN V1:=R1; ENDIF;
IF RKO THEN R1:=-R1 

ELSE 
R1: s=Rl+R2;
R2:=V1;
ENDIF;

A semicolon preceding the ENDIF or ELSE is optional.
The compiler will insert an empty statement following the
semicolon to complete the parse.

2.9.7 Repetitive Statements

The WHILE and REPEAT statements are used to specify
that a block of statements be executed while or until a
condition is true. The syntax of the WHILE statement is
WHILE condition DO statement list ENDW. The REPEAT
statement evaluates the condition after the statement list
has been executed and has the syntax REPEAT statement list
UNTIL condition.
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In each case the number of iterations to be performed 
is not specified directly. Repetition of the statement list 
continues until the condition becomes false. The REPEAT 
statement will always be executed at least once, but the 
WHILE statement will result in no execution of the statement 
list if the condition is initially false.

Example: WHILE R1 > 0 DO
B := B + 1 ;
R1 := R1 - 1;
ENDW;
REPEAT A := A - 1 UNTIL A = 0;

2.9.8 Empty Statement

An empty statement contains no symbols, causes no 
action, and results in no machine code.



CHAPTER 3

Compiler Development and Semantic Actions

The PL/99 compiler has been constructed using a system 
of compiler writing codes developed jointly at the 
NASA-Langley Research Center and the College of William and 
Mary. A fairly complete compiler may be generated through 
the use of these programs in conjunction with a grammar 
specification for the target language and appropriate 
semantic information. The development and implementation of 
the PL/99 compiler, its major components and semantic 
actions are discussed in this chapter.

38
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3.1 Compiler Generation

Development of the PL/99 compiler has made use of a 
series of programs which facilitate the construction of a 
given compiler by providing a number of automatic features 
which result in a fairly complete compiler. The basis for 
the generation of a compiler via this approach is a set of 
grammar rules for the target language. These rules or 
productions are expressed in a form similar tc> the 
Backus-Naur Form (BNF) and may optionally include 
interspersed semantic information. This basic definition of 
the target language is analyzed by the parser generator 
(PARGEN) which produces optimized LALR(l) parser tables and 
parsing procedures. These results are incorporated into a 
skeletal compiler which additionally includes a symbol 
scanner (NEXTSYM), a procedure SYNTHESIZE which contains a 
case label for each grammar rule and its associated 
semantics, and dummy procedures for subsequent incorporation 
of a variety of functions including error processing, symbol 
table entry, searching and printing, and object code 
generation. This basic compiler is written in PASCAL 6000 
Version 3 and all LABEL, CONST, VAR, and VALUE declarations 
are specified automatically. The user must then construct 
and incorporate specific procedures required for a 
particular application.



40

Subsequent modifications to the grammar may be 
incorporated by executing the various components of the 
compiler writing system with the revised grammar and 
semantics. The existing version of the compiler may also be 
specified such that the new skeletal compiler will be merged 
with the old compiler to produce a new program containing 
the revised grammar and semantics as well as the specific 
procedures and other code previously incorporated into the 
old compiler. This capability provides a convenient process 
for evolving a final compiler through several stages of 
development with a minimum of repetitive effort or 
cumbersome text editing between old and new versions of the 
compiler.

3.2 Compiler Structure

The PL/99 compiler is a one-pass syntax directed 
cross-compiler written in PASCAL for execution on Control 
Data Corporation 6600 and Cyber computers. The following 
table presents the primary components of the compiler:

PL/99 Compiler Structure
Procedure Name Function

PARSE Parses PL/99 source program
SYNTHESIZE Semantic actions and object 

code generation control.
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NEXTSYM
PROC_IDENT
GET_NUMBER
GET_MNEMONIC

NEXTCH
ENTERST

GET_STORAGE
SEARCHST

GEN1,GEN2
GEN9,GENCRU1,
GENCRU2
ERROR
PRINTSYMTAB

WRITE_LISTING 
LOAD_VALUES

WRITE_OBJECT 
WRITE VALUES

Returns next token.
Constructs identifier.
Constructs constant.
Controls generation of machine 
instruction for mnemonics.
Gets next input character.
Enters identifier and attributes 
into symbol table.
Allocates storage for variables.
Searches symbol table for 
given identifier name.
Generate machine code for 
various instruction formats.

Writes error messages.
Writes output listing 
of symbol table.
Writes output listing.
Initializes storage as per 
VALUE declaration.
Writes object module.
Writes output listing 
of VALUE initializations.

A series of secondary procedures supports the functions 
of the main components listed above. Modularity in the 
compiler has been emphasized for future expansion or 
revision.
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3.3 Memory Organization

A simple linear memory organization has been assumed 
for the object code generated by the PL/99 compiler. The 
initial workspace pointer is set at byte address 0000 and 
the first sixteen words of storage allocated for the 
workspace. This initial workspace is always provided, but 
the user may designate any number of additional workspaces 
through the Load Workspace Pointer Immediate (LWPI) 
mnemonic. Variables defined in the VAR declaration are 
allocated storage beginning at byte address hexadecimal 
0020. If a procedure is defined, its initial instruction 
address is adjusted to begin on an even-numbered byte 
address. The program entry point is the first even-numbered 
byte address following all declarations and procedure 
definitions. Subsequent instructions and data are assigned 
sequential addresses through the remainder of the source 
program compilation.

3.4 Symbol Table

The PL/99 symbol table has been implemented as a PASCAL 
linked list data structure and contains various attributes
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associated with identifiers declared in the PL/99 source 
program. The structure of the symbol table is as follows:

Symbol Table Entry

NEXT
IDENTIFIER
ARRAY_SIZE
ADDRESS

INITIALED

VALUE_PTR

IDTYPE

Pointer to next entry in table. 
Symbol name.
Upper bound plus one for array.
Relative address of variable 
identifier or procedure entry 
point.
Boolean field indicating 
VALUE initialization.
Pointer to initial value set 
for this identifier.
Type associated with 
this identifier.

The last field, IDTYPE, designates a PASCAL tag field 
for the symbol table record and provides additional 
information depending on the type: LABEL types include
specification of addresses where forward references to the 
label were detected; CONST types have the associated integer 
value specified; and REGISTER types include the integer 
equivalent of the register name.

During parsing of the LABEL, CONST, VAR, and PROCEDURE 
declarations, the procedure ENTERST is used to enter each 
identifier into the symbol table. The table is first
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searched to verify that the symbol has not previously been 
declared, and, if it has, an error message is issued. 
Otherwise all attributes available are set and dummy values 
substituted for any fields which will be determined at a 
later point in the compilation. Note that the register 
identifiers RO,R1,...,R15 are the first identifiers entered 
into the symbol table push-down list and the pointer to R15 
saved. The programmer thus may choose to declare any of 
these identifiers as a label, constant, variable, or 
procedure identifier, and that declaration will always be 
found first in the symbol table search, thus overriding the 
predeclaration.

A summary of the symbol table is printed along with the 
source and object code listings on completion of the PL/99 
source program compilation.

3.5 Parser Actions

The procedure PARSE is automatically constructed by the 
compiler writing system and causes tokens to be read and 
directs the processing of the semantic actions through calls 
to the procedure SYNTHESIZE. PARSE determines the actions 
required given a symbol and the current state of the parse.
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If a shift is required the state symbol is pushed onto a 
stack and the next token read. Successive tokens are read 
if necessary. If a reduction sequence is required, the 
appropriate semantic actions are invoked as the stack is 
popped for the required states. This process continues 
until an accept state is reached or an error state occurs 
from which recovery is not possible. Successful completion 
of the parse results in the final accept state.

3.6 Semantic Actions

As noted previously, the procedure SYNTHESIZE is 
generated by the compiler writing system and contains a case 
statement label for each rule of the input grammar. Each 
label has appropriate semantic actions specified and thus 
SYNTHESIZE provides ultimate control over the compiler code 
generation. The semantic actions are processed at the 
conclusion of the parsing of a grammar rule as is always the 
case with a syntax directed compiler. The following 
sections present discussions of the semantic actions 
associated with the various components of the PL/99 
language•
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3.6.1 Program Header

Parsing of the program header results in the saving of 
the program name. This identifier is used during the 
generation of the object module.

3.6.2 Label Declarations

Each declared label is entered into the symbol table 
and the number of forward references to the label 
initialized to zero.

3.6.3 Constant Declarations

A symbol table entry is generated for each declared 
constant identifier. The integer value associated with the 
constant is also entered so that the integer value may be 
substituted whenever the constant identifier occurs in the 
source program.
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3.6.4 Variable Declarations

Parsing of the VAR declarations results in the
allocation of memory for each declared variable. The 
initial workspace for registers RO,R1,...,R15 is allocated 
storage and the workspace pointer WP is set to 0000 just 
prior to the parsing of the variable declarations.

3.6.4.1 Simple Types

Variables of simple types BYTE and WORD are entered
into the symbol table and allocated single byte or word
storage as required. WORD variables have their most
significant bits at an even-numbered byte address.

3.6.4.2 Array Types

The array name is entered into the symbol table along 
with the bound specification (i.e., the largest array index 
to occur) plus one. The amount of storage required is 
computed from the bound and allocated. The address entered 
for the array name corresponds to the first element. Arrays
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of type WORD begin on an even-numbered byte address.

3.6.5 Value Declarations

Variable and register identifiers may be preset in any 
order using integer values or constant identifiers. When a 
value is initialized for an identifier, the symbol table 
field is flagged, a pointer to the appropriate entry in the 
list of initial values saved, and the initial value entered 
into the list. When all or part of an array is initialized, 
the initialization flag in the symbol table record indicates 
how many elements of the array have been preset beginning 
with the first element (index 0). All initial values will 
subsequently be included in the load module while dummy 
values will be set for identifiers not initialized. A 
summary of all preset values is printed as part of the 
compiler output.

3.6.6 Procedure Declarations

Definition of a procedure results first in a symbol 
table search to verify that the procedure name has not 
previously been declared. If it has not, the procedure name
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is entered along with the entry address for the procedure. 
If this address is not an even-numbered byte address, the 
program counter is incremented by one prior to entry in the 
symbol table. The procedure body is then compiled until the 
ENDPR reserved word is detected. The ENDPR statement 
results in the generation of a branch instruction (B) which 
assumes that workspace register Rll contains the branch 
address for return to the calling program. Additional 
discussion of this point is included in the CALL statement 
section below.

3.6.7 Statements

Generation of PL/99 machine instructions for the 
various source statements which may occur makes use of the 
information stored in the symbol table during parsing of 
both declarations and the program body. The semantic 
actions associated with the various statement forms are 
discussed below.

3.6.7.1 Labeled Statements
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When a labeled statement is encountered, the symbol 
table is searched for the label name. The location of the 
label is then entered so that displacements relative to the 
label may be determined as required for use in GOTO or 
mnemonic jump statements which reference the label.

3.6.7.2 GOTO Statement

A GOTO statement first results in a search of the 
symbol table for the referenced label. If the label has 
previously occurred, an unconditional jump instruction (JMP) 
is generated using a displacement computed from the current 
program counter contents and the address where the label 
occured. Otherwise the GOTO makes a forward reference to 
the label, and the symbol table entry for the label is 
updated to indicate the address at which a jump instruction 
with an incomplete displacement field has occurred. These 
incomplete displacements are subsequently filled when the 
label is found and its relative address determined.

It should be noted that the TMS9900 instruction set 
provides 8-bit displacement fields. Forward jumps must 
therefore not exceed 127 words and backward jumps must be 
less than 128 words. An appropriate error message is 
generated if these restrictions are not satisfied.
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3.6.7.3 CALL Statement

The occurrence of a CALL statement initiates a symbol 
table search for the name of the referenced procedure and 
its entry point. A branch and link instruction (BL) is 
generated which automatically saves the current program 
counter contents in workspace register Rll and then branches 
to the procedure entry point. As previously noted, the 
ENDPR statement results in a branch instruction which 
references Rll for the branch address for return to the 
calling program.

3.6.7.4 Mnemonic Statement

Use of a mnemonic statement first results 'in the 
determination of the mnemonic employed, and then the 
processing of the required operands.

The AB, CB, SB, and MOVB mnemonics have been 
implemented primarily to allow byte operations for register 
resident quantities where the left or most significant byte 
is involved. These mnemonics thus expect both destination 
and source register operands. The SOC, SOCB, SZC, and SZCB
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mnemonics are- of the same instruction type and require 
specification of destination and source operands which may 
be register or memory resident. Operands for COC and CZC 
mnemonics must be a register identifier for the destination 
operand and either a register or memory resident identifier 
for the source.

The B, BL, and BLWP mnemonics require specification of 
a register or memory resident source operand which will 
contain the branch address. A memory or register resident 
source operand must also be specified for CLR, SETO, SWPB, 
and X.

The jump mnemonics JNC, JNO, JOC, JOP, JH, and JL 
require a label operand from which the jump displacement may 
be determined.

The shift mnemonics SLA, SRA, SRC, and SRL require 
specification of a register identifier which must be 
followed by the shift count. The shift count must be in the 
range 0-15 and can be an integer value or a constant 
identifier.

The immediate operand for the LWPI and LIMI mnemonics 
must be a constant or constant identifier. STST and STWP 
require specification of a workspace register identifier,
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and RTWP has no operands.

3.6.7.5 Assignment Statements

Various forms of the assignment as well as the
availability of both byte and word types results in the 
generation of a variety of machine instructions. In each
case the symbol table is searched to provide the necessary
data for a given identifier and the addressing mode is set.

Type checking is performed to ensure that only
word-word or byte-byte operands are combined. These 
restrictions are required because both word and byte 
instructions are available in the TMS9900 instruction set.

The source statement is also checked to confirm that 
the proper ordering of source and destination operands has 
been observed. If operands are out of order, or, if the 
destination operand on the left-hand-side of an assignment 
does not correspond to the first operand on the 
right-hand-side, an instruction format error message is 
written. Similar messages are issued if register 
identifiers are not employed for operations where they are 
required, or if index registers are improperly used.
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Eight basic assignment statements may occur where 
register, variable identifier, and constants (or constant 
identifiers) are employed in the expression on the 
right-hand-side of the assignment. Addressing modes are 
determined from the syntax used in the source statement. 
The various expression forms and associated machine 
instructions are as follows:

1. Constant. This syntax results in the generation of 
a load immediate (LI) instruction.

2. Identifier or + identifier. Either a move (MOV) or 
move byte (MOVB) instruction is generated.

3. Identifier or - identifier. The negate 
instruction (NEG) is generated.

4. Identifier + or - constant. In this case the
second operand is a constant. If this constant has
a value of 1 or 2, then an increment (INC) or 
decrement (DEC) , or increment by two (INCT) or 
decrement by two (DECT) instruction is generated, 
respectively. If the constant is 3 or greater, an
add immediate (AI) is generated for the + operator,
but no subtraction is available in the TMS9900 
instruction set.
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5. Identifier or / identifier. The appropriate
add (A), add bytes (AB), subtract (S), subtract 
bytes (SB), multiply (MPY), or divide (DIV) 
instruction is generated when the second operand is 
an identifier.

6. Identifier AND or OR constant. The corresponding
and immediate (ANDI) or or immediate (ORI) 
instruction is generated.

7. Identifier XOR identifier. The exclusive or (XOR)
instruction is generated.

8. Identifier ABS (identifier) or INV (identifier).
The absolute value (ABS) or invert (INV) 
instruction is generated.

3.6.7.6 Conditions

The evaluation of the appropriate condition is an 
integral part of the execution of the IF, WHILE, and REPEAT 
conditional statements. Machine instructions to perform the 
required compare operations are generated in two forms:
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1. Identifier <,<=,=,<>,>, or >= constant, A compare 
immediate (Cl) instruction is generated.

2. Identifier <,<=,=,<>,>, or >= identifier. The 
appropriate compare words (C) or compare bytes (CB) 
instruction is generated.

Type checking is performed to verify that the 
identifier is a register identifier in 1 above, and that the 
identifier types are equivalent in 2 above.

3.6.7.7 WHILE Statement

Detection of the reserved word DO results in the 
initial translation of the WHILE statement. The program 
counter is pushed onto a stack for subsequent reference, and 
the relational operator specified for the condition is 
complemented. A jump instruction related to the 
complemented condition is then generated to jump around the 
body of the WHILE if the condition is false. Note that at 
this point, however, the jump displacement is not known. 
For example, if the original condition specified the = 
relational operator, then the complemented operator would be 
<> and a jump not equal (JNE) instruction would be
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generated. The body of the WHILE is then compiled until the 
ENDW reserved word is encountered. This statement list 
comprising the body of the WHILE may include additional 
control structures including WHILE statements. At this 
point the address at the head of the WHILE is popped from 
the stack and an unconditional jump (JMP) instruction 
generated to return to the compare at the head of the WHILE. 
The address of the last statement in the WHILE is now known, 
and appropriate measures may be taken to update the 
previously incomplete jump instruction.

3.6.7.7.1 REPEAT Statement

The reserved word REPEAT causes the program counter 
contents to be pushed onto a stack, and the remainder of the 
REPEAT statement compiled. As in the case of the WHILE 
statement, the body of the REPEAT may contain any valid 
PL/99 statement. The appropriate compare instruction is 
then generated as specified by the UNTIL part of the REPEAT 
statement. The stack is popped for the address of the head 
of the REPEAT, the condition relational operator 
complemented, and a conditional jump instruction generated 
to return to the first statement in the body of the REPEAT.
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3.6.7.8 IF Statement

Two forms of the IF statement are available, and thus 
additional jump instructions must be generated if the ELSE 
form is used. For the IF-THEN part the condition is 
evaluated and the appropriate compare instruction generated. 
The program counter is then stacked, the relational operator 
complemented, a conditional jump instruction with an
incomplete displacement generated to jump around the THEN 
part of the IF if the condition is false, and the statement
list comprising the THEN compiled. The next symbol is then
either the ELSE or ENDIF. In either case, the address 
previously stacked is popped and used with the current 
program counter to fix the displacement for the jump around 
the THEN. If the current symbol is the ENDIF, the statement 
compilation is complete.

Detection of the ELSE causes the current program
counter to be stacked and an unconditional jump instruction 
(JMP) around the ELSE to be generated with an incomplete 
displacement field. The ELSE statement list is then 
compiled until the ENDIF is encountered. The required 
address is popped from the stack and the previous jump 
instruction around the ELSE completed.



59

3.7 Code Generation Completion

During the compilation sequence described above, the 
generated machine code instructions are written in 
hexadecimal notation to a PASCAL text file. These 
instructions are complete except for the forward 
displacement fields of jump instructions associated with the 
WHILE, IF, GOTO, and mnemonic branch and jump statements. 
The addresses at which these forward references have 
occurred have been maintained along with the corresponding 
displacements as they were determined. These
address-displacement pairs are now sorted into increasing 
relative address order and used to complete the jump 
instructions as the machine code is. transferred one 
instruction at a time from the original text file to a new 
text file. The program listing, symbol table, and VALUE 
summary are then printed and the object module constructed.

3.8 Object Module Generation

The PL/99 object module is produced in the Texas 
Instruments standard object module format [8]. Each object 
module record may be up to 71 ASCII characters in length,
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and consists -of a number of tag characters followed by one 
or two fields of data. The following table summarizes the 
tag characters and data fields used for the PL/99 object 
module.

OBJECT MODULE TAG CHARACTERISTICS

TAG First Field Second Field Meaning

0 Length of all Re
locatable Code

2 Entry Address

Checksum for 
Current Record
Load Address

B Data

C Data

F None

8 character Program 
Identifier
None

None

None

None

None

None

Program
Start
Relocatable
Entry
Address
Checksum

Relocatable
Load
Address
Absolute
Data
Relocatable
Data
End of 
Record

The first tag character of the object module is always 
0. Each succeeding tag character follows the last field of 
the preceding tag character. A record is ended by a tag 7 
followed by a checksum and the tag F. The last record of 
the object module is indicated by a colon in column one.
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Note that all numerical values in the module are in 
hexadecimal notation.

The initial tag 0 is followed by the length of the 
module relocatable code and an eight character program name. 
The module entry address is preceded by a tag 2 while the 
module relocatable load address follows the tag A. Absolute 
data (i.e., instructions and constants) are preceded by tag 
B, and a word that contains a relocatable address is 
preceded by tag C. The checksum is preceded by a tag 7 and 
consists of the two’s complement sum of the 8 bit ASCII 
values of the characters in a record from the first tag 
through the 7. The checksum is then followed by the tag F.

The object module contains a data field for every byte 
address generated during the compilation including the 
addresses assigned to variable and register identifiers. 
The VALUE declarations cause the required initial values to 
be written in the appropriate byte or word data field of the 
object module while hexadecimal FF or FFFF is used as a 
dummy value for identifiers not initialized. The final 
object module is written on the file OBJECT which is printed 
and which may be saved on disc or tape or punched for future 
use.
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Sample Programs

Two sample programs have been written and compiled 
using the PL/99 compiler. The resulting object module was 
then executed on a TM 990/100M microcomputer for 
verification.

4.1 Listing Format

Upon successful completion of the parsing of a PL/99 
source program, an output listing is produced which contains 
the PL/99 source code, addresses and machine code, a summary 
of the symbol table, a listing of all initial values set 
using the value declaration, and a listing of the object 
module. All addresses, machine instructions, and object

62
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module data are in hexadecimal form.

To the left of each PL/99 source line in the program 
listing is the relative word address of the instruction 
generated for the source line. Following the address is the 
machine instruction generated for that source line. If 
several instructions or data fields were generated for a 
given line, they are printed on succeeding lines prior to 
the printing of the next source line. Following the address 
and machine instruction columns are the source statement 
line number and the source statement.

The symbol table listing contains the name of each 
variable, label, constant, and procedure used in the source 
program as well as the predeclared register identifiers. 
The type of each identifier is given and its address unless 
it is a constant identifier for which no storage is 
allocated. If the variable name is an array, the array size 
is listed.

The VALUE declaration listing provides a convenient 
check on program initialization. All initialized variables 
are printed with the corressponding value. Only that 
portion of an array initialized is printed.
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The object module listing represents the final output 
of the compiler and is formatted in the manner previously 
described.

4.2 Program Execution Procedure

The two sample programs have been executed on a Texas 
Instruments TM 990/100M microcomputer to verify the 
generated machine code. The object module proper was not 
used in this process.

A TM 990/301 microterminal connected to the 990/100M 
was used as the I/O communication interface. This terminal 
resembles a hand-held calculator and provides direct data 
entry and communication with the 990/100M. Keys are 
provided for direct hexadecimal-decimal conversions and 
vice-versa, and for entering and displaying the program 
counter (PC), status register (ST), and workspace 
pointer (WP). CRU data entry and display is similarly 
available. Data and instructions are entered into specified 
memory locations using the EMA (enter memory address), EMD 
(enter into memory address displayed), and EMDI ( EMD with 
autoincrementing of address).
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The H/S key allows the suspension of program execution
and display of the next address and contents. It also
provides single step execution where each keystroke causes 
the next instruction to be executed and the contents of that 
address to be displayed.

Pressing the RUN key initiates program execution using 
the current contents of the WP, PC, and ST registers.

4.3 Description of Sample Programs

The first example program provided, ORDER_PAIRS, orders 
each of N data pairs. Two one-dimensional arrays, P and Q,
are compared one element at a time, and, if the P-element is
greater than the corresponding Q-element, the elements are 
swapped. On completion of the program execution, all 
P-elements are less than or equal to all corresponding 
Q-elements.

The declaration section defines a constant N=20, 
declares a word variable TEMP and the P and Q arrays, and 
initializes the P and Q arrays with arbitrary positive 
integer values.
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Program execution begins at address 0066 where register 
R1 is loaded with value zero. A WHILE statement is then 
used to step through the P and Q arrays. An IF statement 
compares corresponding elements of the P and Q arrays using 
R1 as the array index. If the P-element is greater than the 
Q-element procedure SWAP is called to interchange the 
elements using TEMP to temporarily hold the P-value.

The array index R1 is then incremented by 2 to step to 
the next word in the P and Q arrays. The WHILE statement is 
then repeatedly executed until all elements have been 
compared and interchanged if necessary.

The second program, SUM_C0UNT, sums a list of positive 
integers and counts the number of zeroes encountered. The 
declaration section defines the constant N=40 and declares 
the word variables SUM and COUNT. An array NUMBER with 21 
elements is declared and then initialized using the VALUE 
declaration.

The .CLR. mnemonic is used to set SUM, COUNT, and 
register R2 to 0. R2 is to be used as the index for array 
NUMBER.

A REPEAT statement is used to examine each element of 
NUMBER. If the element value is zero, the COUNT total is
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incremented by .one; otherwise, the SUM is updated. The IF 
statement which tests each element of NUMBER compares the 
element with zero. The element thus must first be loaded 
into a register, R3, to comply with the requirements of the 
TMS9900 compare immediate instruction format. This cycle 
defined by the REPEAT continues until all elements of NUMBER 
have been examined.

Both of these sample programs were successfully 
executed on the TM 990/100M microcomputer and verified 
through examination of specific memory addresses after 
program execution.
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CHAPTER 5

Concluding Remarks

The PL/99 language and compiler described in the
preceding chapters offers a viable alternative for the 
TMS9900 programmer. Algorithms may be clearly expressed in 
a form which is superior to the corresponding assembly 
language program, require less creation and testing effort, 
and result in machine code which is no less efficient. The
structure of PL/99 has been patterned after PASCAL and
should be readily learned by most programmers familiar with
the TMS9900. The compiler has a modular structure and may
be revised or extended in a straightforward manner.

PL/99 in its present form will provide satisfactory 
solutions for many programming problems, but the absence of 
certain features will no doubt lead to further revision and

68
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expansion. The inclusion of record types with the
additional ability to define arrays of records may be 
desirable. Similarly, future revisions would probably
include user defined types and CASE and FOR statements as in 
PASCAL. The limited procedure capability could also be 
improved. It is felt, however, that these deficiencies are 
not serious at this point in the development of PL/99. A 
strong framework for evolution of the language has been 
established.
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APPENDIX

The PL/99 Grammar

This appendix presents the PL/99 grammar in standard 
BNF notation.

1]2]
3]
4]

5
6
7
8 
9
10
11
12
13
14
15
16
17
18
19
20 
21
22
23
24

< compilation >
< program >
< programhead >
< programbody >

labeldecl > 
labeldecl > 
labellist > 
labellist > 
labelelem >
constdecl
constdecl
constlist
constlist
constelem
vardecl > 
vardecl > 
varlist > 
varlist > 
varelem >
identifierlist > 
identifierlist >
idlisthead > 
simpletype > 
simpletype >

< program > < eofsym >
< programhead > < programbody > 
PROGRAM < identifier > ;
< labeldecl > < constdecl >
< vardecl > < valuedecl >
< proceduredecl >
BEGIN < statementlist > ENDP .

= LABEL < labellist > ;
= < epsilon >
= < labelelem >
= < labellist > < labelelem >
= < identifier >
= CONST < constlist > ;
= < epsilon >
= < constelem >
= < constlist >< constelem >
= < identifier > = < constant >

VAR < varlist >
< epsilon > 
varelem >
varlist > < varelem 
identifierlist > : 
simpletype > ; 
identifier > 
idlisthead > 
identifierlist > 
identifier > .

<
<
<
<
<
<
<
<
WORD
BYTE
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26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

71

varelem > ::= < identifierlist > : 
ARRAY [ < bound > ] 
OF < simpletype > ;

bound > : := < constant >
valuedecl > ::= VALUE < valuelist > ;
valuedecl > : := < epsilon >
valuelist > : < valueelem >
valuelist > : := < valuelist > < valueelem >
valueelem > : := < identifier > = < values >
values > : <  constant >
values > : := [ < arrayvalues > ]
arrayvalues > : := < constant >
arrayvalues > : < arrayvaluehead > 

< arrayvalues >
arrayvaluehead > : := < constant > ,
proceduredecl > ::= < procedurelist >
proceduredecl > ::= < epsilon >
procedurelist > : := < proceduredefn >
procedurelist > : := < procedurelist > 

< proceduredefn >
proceduredefn > : := < procdeurehead >

< statementlist > < endpr >
procedurehead > ::= PROCEDURE < identifier > ;
endpr > ::= ENDPR
statementlist > ::= < statement >
statementlist > ::= < statement > ; < statement
statement > : := < label > < unlabstatement
statement > : := < unlabstatement >
label > : := < identifier > :
unlabstatement > : := < assignstatement >
unlabstatement > ::= GOTO < identifier >
unlabstatement > : := < epsilon >
unlabstatement > ::= CALL < identifier >
unlabstatement > : := < mnemonicstatement >
unlabstatement > : := < strucstatement >
struestatement > : := < ifstatement >
struestatement > ::= < whilestatement >
struestatement > : := < repeatstatement >
assignstatement > ::= < leftside > < becomes >

< rightside >
leftside > : := < identifier >
becomes > : : =
rightside > : := < expression >
expression > ::= < constant >
expression > ::= < operand1 >
expression > ::= < addop > < operand1 >
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65] < expression > : := < operandl > < arithop >
< operand2 >

66] < expression > : <  operandl > < boolop >
< operand2 >

67] < expression > ::= ABS ( < identifier > )
68] < expression > ::= INV ( < identifier > )
69] < operandl > ::= < identifier >
70] < operand2 > ::= < identifier >
71] < operand2 > ::= < constant >
72] < arithop > ::= < addop >
73] < arithop > ::= < mulop >
74] < addop > ::= +
75] < arithop > : -
76] < mulop > : := *
77] < mulop > ::= /
78] < boolop > ::= AND
79] < boolop > ::= OR
80] < boolop > ::= XOR
81] < mnemonicstatement > ::= < mnemonic > < operands >
82] < mnemonic > : <  identifier > .
83] < operands > ::= < epsilon >
84] < operands > ::= < identifier >
85] < operands > ::= < constant >
86] < operands > ::= < operandhead >

< operands >
87] < operandhead > ::= < identifier > ,
88] < ifstatement > ::= IF < condition > < then >

< statementlist > ENDIF
89] < ifstatement > ::= IF < condition > < truepart >

< statementlist > ENDIF
90] < condition > ::= < operandl > < relop >

< operand2 >
91] < then > ::= THEN
92] < truepart > : := < then > <statementlist > ELSE
93] < relop > ::= =
94] < relop > ::= <
95] < relop > ::= <=
96] < relop > ::= >
97] < relop > : : = >=
98] < relop > ::= <>
99] < whilestatement > ::= < whilehead >

< statementlist > ENDW
100] < whilehead > ::= WHILE < condition > DO
101] < repeatstatement > ::= < repeat > < statementlist >



< untilpart >
[102] < repeat >
[103] < untilpart >

::= REPEAT 
::= < UNTIL > < condition
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Notes

[l] Wirth, Nicklaus, "PL360, A Programming Language for 
the 360 Computers,” Journal of the Association for Computing 
Machinery, Vol. 15, No. 1, January 1968, pp. 37-74.

[2] Bell, D. A. and Wichmann, B. A., "An Algol-like 
Assembly Language for a Small Computer," Software- Practice 
and Experience, Vol. 1, 61-72 ( 1972 ).

[3] Pleban, Uwe Frederik, "Design and Implementation of 
the Structured Assembly Language PL/85," Masters Thesis, 
University of Kansas, 1976.

[4] Mowday, Barry L., "PL/STAR, A Structured Assembly 
Language for the CDC STAR 100," Masters Thesis, The College 
of William and Mary, 1979.

[5] Gray, Lawrence, "What type of programming language 
best suits OEM design?," EDN, June 20, 1978, pp. 78-84.

[6] Foster, Victor S., "MIDAS : A Mid-level Language
for Microprocessors," ( University of Virginia, undated ).

m  Texas Instruments Incorporated, "990 Computer 
Family System Handbook," Manual No. 945250-9701, 1976.

Texas Instruments Incorporated, "TM 990/100M 
Microcomputer User1s Guide", August 1977.
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