
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1980

PL/99, a mid-level programming language for the TMS9900 PL/99, a mid-level programming language for the TMS9900

microprocessor microprocessor

Kenneth B. Walkley
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Walkley, Kenneth B., "PL/99, a mid-level programming language for the TMS9900 microprocessor" (1980).
Dissertations, Theses, and Masters Projects. Paper 1539625082.
https://dx.doi.org/doi:10.21220/s2-w4zf-1215

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539625082&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539625082&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-w4zf-1215
mailto:scholarworks@wm.edu

PL/99
II

A Mid-Level Programming Language
for the TMS9900 Microprocessor

A Thesis
Presented to

The Faculty of the Program in Applied Science
The College of William and Mary in Virginia

In Partial Fullfillment
Of the Requirements for the Degree of

Master of Science

by
Kenneth B. Walkley

1980

APPROVAL SHEET

This thesis is submitted in partial fullfillment of
the requirements for the degree of

Master of Science

(a J ____7\ Author

Approved, August 1980

ohn C. Knight

£? a J.
Robert E. Noonan

Micha/eT

ii

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS iv
ABSTRACT .. v
INTRODUCTION .. 2
CHAPTER 1. THE TMS9900 MICROPROCESSOR 5
CHAPTER 2. LANGUAGE DEFINITION 11
CHAPTER 3. COMPILER DEVELOPMENT AND SEMANTICS 38
CHAPTER 4. SAMPLE PROGRAMS 62
CHAPTER 5. CONCLUDING REMARKS 68
APPENDIX ... 70
NOTES .. 74
BIBLIOGRAPHY ... 75

ACKNOWLEDGEMENTS

The author wishes to express his appreciation to Dr. John C.
Knight for his encouragement and assistance throughout this
effort, and to his wife Judy who provided substantial
patience and confidence.

ABSTRACT

A programming language for the Texas Instruments TMS9900
microprocessor and aspects of its design, development, and
implementation are described. This mid-level language
combines the efficiency of an assembly language with the
structure and readability of a high level language, and is
necessarily machine dependent. The programmer is provided
with complete control of the target machine through a
language framework which allows development of source
programs which clearly exhibit the underlying algorithm and
which are thus much easier to correct and understand than
the corresponding assembly language program. Data types and
operations are defined strictly in the context of the
TMS9900. The PL/99 compiler is a cross-compiler which has
been written in PASCAL for execution on Control Data
Corporation 6600 and Cyber computers. The object module
generated by the compiler is consistent with the Texas
Instruments standard object module format.

v

PL/99

A Mid-Level Programming Language

for the TMS9900 Microprocessor

INTRODUCTION

Until recent years, the languages available for
programming most computers have been either low-level
assembly languages or high-level languages such as FORTRAN,
ALGOL, or PASCAL. Programs written in the machine-dependent
assembly languages usually require relatively long
development times and essentially preclude a clear
exhibition of the structure of the underlying algorithm.
The high-level languages generally overcome these
deficiencies, but are machine independent and thus cannot
provide explicit control of a given computer at the machine
operation level.

In a classic paper, Wirth M presented the programming
language PL360 which afforded the IBM 360 programmer the
flexibility and degree of control typical of a conventional
assembly language, but which exhibited the structure and
readability of a high-level language. This early paper set
the standard for a series of languages alternately called
ALGOL-like assembly languages [2], structured assembly

2

3

languages [3,4]., block-structured assembly languages [5] ,
and mid-level assembly languages [6]. The target machines
for these languages have ranged from the IBM 360 to smaller
computers, minicomputers, microcomputers, and
microprocessors.

Regardless of the particular title affixed, the purpose
of each of these languages has been to provide the
programmer with complete control of the target machine
through a language structure which more nearly resembles a
high-level language such as ALGOL or PASCAL. Each language
provides certain high-level constructs coupled with a
convenient syntax, but data types and operations are defined
strictly in the context of the target machine. The
resulting source programs clearly exhibit the structure of
the underlying algorithm and are much easier to develop,
correct, and understand than the corresponding assembly
language program. The compilation of the source program to
machine code is generally straightforward and no
inefficiencies are introduced into the resulting machine
code.

In a recent paper, Foster [6] describes the MID-level
Assembly language MIDAS which provides a basic framework for
the development of a mid-level language for virtually any
microprocessor. This basic MIDAS framework is extended to

4

obtain a dialect for a particular target microprocessor.
The concepts and principles established for MIDAS have
provided the basis for the development of PL/99, a mid-level
assembly language for the Texas Instruments TMS9900
microprocessor.

The PL/99 compiler is a cross-compiler which has been
written in PASCAL for execution on Control Data Corporation
6600 and Cyber computers. The primary goal has been to
develop a prototype compiler with a sufficiently modular
structure to allow convenient expansion and modification for
future applications. The complete instruction set of the
microprocessor has been implemented through a combination of
a PASCAL-like language structure coupled with a machine
instruction mnemonic capability for those instructions which
are not readily incorporated into the basic PL/99 structure.
The object module produced by the compiler is consistent
with the format used by the Texas Instruments loaders.

The following chapters present a description of the
target microprocessor, a detailed development of the syntax
and semantics of PL/99, and example programs to illustrate
the capabilities of the language.

CHAPTER 1

The TMS9900 Microprocessor

The Texas Instruments TMS9900 microprocessor [7] is a
16-bit single integrated circuit microprocessor which
constitutes the basic building block for the 990 computer
family including the 990/4 microcomputer and the 990/10
minicomputer. The PL/99 language has been directed toward
the basic instruction set of the microprocessor, and thus
the few remaining instructions which require the additional
hardware of the 990/4 or 990/10 have not been considered. A
brief summary of the microprocessor and its characteristics
and capabilities is presented in the following sections.

5

6

1.1 Instruction Set

A machine instruction usually occupies one 16-bit
memory word, but some instructions extend to two or three
words for immediate operands and extended addresses. A word
describing an instruction is decoded by the Central
Processing Unit (CPU) into various fields within the
16-bits. The fields within an instruction word contain the
following information:

1. The op code identifies the operation to be
performed when the instruction is executed.

2. A single-bit B code indicates whether the
instruction will affect a full 16-bit word or an
S-bit byte.

3. The two-bit T fields for source and destination
operands specify which of the five available
addressing modes is to be used (direct register,
indirect register, memory address, memory address
indexed, or indirect register autoincrement).

4. Source and destination register fields specify the
register to be used.

7

5. A displacement field contains a bias to be added to
the program counter to determine a target address.

6. Count fields indicate the bit shift count for shift
instructions or the number of bits to be addressed
by a Communications Register Unit (CRU)
instruction.

1.2 Memory Addressing

A 16-bit memory address word is used for memory
addressing. The least significant bit of this address word
is used by the CPU to address bytes. All word addresses in
memory are even values which range from 0000 to hexadecimal
FFFE.

1.3 Workspace Concept and the Register File

A file of sixteen 16-bit registers (R0-R15) is
available to the programmer through a workspace pointer
register which points to a register file or workspace in
memory. The workspace may be arbitrarily located in memory

8

on word (even-numbered byte) boundaries, and any number of
such workspaces may be defined by the programmer. To access
a particular workspace, the programmer loads the workspace
pointer register with the address of the register file in
memory.

1.4 Addressing Modes

Approximately one-half of the instructions available on
the TMS9900 allow a choice of one of five addressing modes
for one or both operands. These modes allow convenient
access to data in workspace registers or in memory
locations.

1. Workspace Register Addressing - A specified
workspace register contains the desired operand.

2. Workspace Register Indirect Addressing - A
specified workspace register contains the address
of the operand.

3. Workspace Register Indirect Autoincrement
Addressing - A specified workspace register
contains the address of the operand. Upon

9

completion of the operation, the workspace register
contents are incremented by one for byte
instructions and by two for word instructions.

4. Indexed Memory Addressing - The word following the
instruction contains the base address while a
specified workspace register contains the indexed
value. The effective address of the operand is
found by summing the base address and the indexed
value.

5. Symbolic Memory Addressing (Direct and Indirect)
The operand or operand address is contained in the
word following the instruction.

1.5 Status Register

A condition code register holds relevant information on
preceding operations and is referenced by conditional
branches. This status register can be loaded and stored as
a single 16-bit register, or individual bits may be altered
with a single instruction.

10

1.6 Communications Register Unit

The Communications Register Unit (CRU) is the I/O data
interface for the 990 computer family. The CRU may be
visualized as 4K consecutive bits which are addressed as
independent bits or in groups of up to 16 bits by CRU
instructions. The CRU is best decribed as a 4096-bit input
register and a 4096-bit output register.

1.7 Register Conventions

Conventions in certain instructions require that
specified registers within the workspace be reserved for
particular functions. Program storage requirements are
reduced by conserving space in the instruction word through
the use of these conventions. Register Rll is used as a
link register (branch and link), R12 is used as a base
register for CRU I/O addresses, and R13, R14, and R15 are
used as link registers for status exchange operations. R0
is inhibited from use as an index register through a zero
default in index register identification which generates the
immediate address mode (direct symbolic memory addressing
).

CHAPTER 2

Language Definition

PL/99 mimics PASCAL to some extent in its basic
structure and capabilities, but the machine dependency of a
mid-level language results in certain differences and
restrictions not usually associated with a high-level
language. The following sections present a detailed
definition of PL/99.

2.1 Lexical Elements

The lexical structure of PL/99 is patterned after
PASCAL, but tends to be more restrictive in several aspects.

11

12

2.1.1 Character Set and Special Symbols

The PL/99 compiler will recognize the twenty-six upper
case letters A through Z and the digits 0 through 9. Other
symbols recognized are:

+ :

/ <>* <

! >

2.1.2 Free Format Input

PL/99 source programs may be written in a free format
which allows the programmer to structure the code in a
manner which exhibits the underlying algorithm in an easily
readable style. A statement may begin and end at any point
on a card; multiple statements may appear on a single card;
and statements may extend to more than one card. Any number
of blanks may appear between distinct identifiers, numbers,
or other symbols, but no blanks may occur within an
identifier, number, or other symbol.

()[]A&
$

13

2.1.3 Identifiers

Identifiers are names associated with constants,
variables, types, procedures, and labels. They must begin
with a letter which may be followed by any combination of
letters, digits, or underscores. PL/99 permits identifiers
of any length, but only the first ten characters are used.
Identifiers denoting distinct objects must therefore be
unique in the first ten characters.

Examples: COUNTER, FIRST_ID, TEMPI

2.1.4 Numbers

Positive integers composed of strings of the digits 0
through 9 and the letters A through F are allowed in PL/99.
If the digit string is preceded by the character $, the
integer is interpreted as hexadecimal, otherwise the base is
assumed to be ten. The target microprocessor is a 16-bit
machine, and thus the integers must be in the range 0 to
65535 .

Examples: 123, $ABC1

14

2,1.5 Comments

A comment statement may be inserted at any point where
a blank is allowed (e.g., between any two identifiers,
numbers, or special symbols) to serve as documentation or to
enhance the readability of the code. The delimeters (* and
*) bracket the comment which may be any sequence of symbols
not containing *). A comment has no effect on the code
generated.

2.1.6 Reserved Words

Certain identifiers in PL/99 are classified as reserved
words, and the programmer may not use them in any context
other than that set forth in the language definition. In
particular, reserved words may not be used as identifiers.
The PL/99 reserved words are:

Example: (* THIS IS A COMMENT. *)

ABS ENDP PROGRAM
AND ENDPR REPEAT
ARRAY ENDW THEN

15

BEGIN GOTO UNTIL
BYTE IF VALUE
CALL INV VAR
CONST LABEL WHILE
DO OF WORD
ELSE OR XOR
END IF PROCEDURE

In addition to these reserved words, the register
identifiers R0,R1,...R15 are predeclared identifiers which
are used to reference workspace registers. The user may
optionally declare any of these register identifiers to
designate a label, constant, variable, or procedure
identifier and thus override the predeclaration.

2.1.7 Mnemonics

A number of the TMS9900 instructions do not readily
lend themselves to implementation through the PL/99
structure, and thus a limited mnemonic capability has been
included in the language. The following mnemonics have been
implemented:

AB
B
BL

JOP
LDCR
LIMI

SRA
SRC
SRL

16

BLWP LWPI STCR
CB MOVB STST
CLR RTWP STWP
COC SB SWPB
CZC SBO SZC
JH SBZ SZCB
JL SETO TB
JNC SLA X
JNO SOC
JOC SOCB

Detailed discussions of the mnemonic capability are
presented in sections 2.9.4 and 3.6.7.4.

2.2 Input/Output

The concept of input/output for the target machine has
not been rigorously addressed in PL/99, but access to the
Communications Register Unit (CRU) has been provided through
the mnemonic facility described in section 2.9.4. The five
CRU instructions may be directly generated through the use
of the appropriate mnemonic.

17

2.3 Grammar Specification

The context free syntax for PL/99 is formally described
using the traditional Backus-Naur Form (BNF). As presented
in the appendix, these BNF productions collectively describe
the permissable forms of a PL/99 program.

2.4 PL/99 Program Structure

A program written in PL/99 will be composed of the
following parts:

program header
label declaration section
constant declaration section
variable declaration section
value section
procedure definitions

BEGIN
program body

ENDP.

Each program section will appear in the order given
above. The label, constant, or variable declarations may be

18

empty. Value initializations and procedure definitions are
likewise optional.

This program structure offers the advantage of a clear
organization with the label, constant, variable, and initial
values conveniently located at the beginning of the program.
The declaration sections facilitate the construction of the
symbol table and avoid errors which can occur when
extraneous identifiers are inadvertently introduced due to
coding errors. The procedure definitions and program body
relative positions are easily incorporated into the TMS9900
memory organization.

2.5 Program Header

The program header is the first statement in every
PL/99 program. It is composed of the reserved word PROGRAM
followed by an identifier and a semicolon. The program
header assigns a name to the program which is subsequently
used in the object module.

Example: PROGRAM PL_PROG;

19

2.6 Declarations and Types

All labels, constants, and variables must be declared
in PL/99. Initial values for selected variables may be
indicated in the VALUE section. A declaration section may
be empty and thus not appear in a particular PL/99 program.
Note that it is not necessary to declare the register
identifiers R0-R15, but initial values may be preset for
them.

The allowed data types include two of simple type and
one structured type. These data types are defined to
reflect the TMS9900 instruction types and addressing
capabilities. Programmer defined types such as found in
PASCAL are not permitted.

2.6.1 Labels

The label declaration section is composed of the
reserved word LABEL followed by a list of label identifiers
separated by commas. The last label identifier is followed
by a semicolon. A label is an identifier associated with a
given source statement and is usually the target of one or
more GOTO or mnemonic jump statements.

20

Example: LABEL LABI, LAB2, LAB3;

2.6.2 Constants

The constant declaration allows association of an
integer constant value with a constant identifier. Constant
definitions separated by commas follow the reserved word
CONST. Each constant definition has the syntax
identifier=constant value. A semicolon completes the CONST
section.

Example: CONST MAX_HEX = $FFFF, PROCESSOR = 9900;

The use of constant identifiers allows the grouping of
program constants in a convenient location where they can be
easily noted for documentation purposes or changed for a
particular execution case.

2.6.3 Variables

Variable names other than the predeclared register
identifiers are declared in the variable declaration. The
variable declaration section is composed of the reserved

21

word VAR followed by a series of variable declarations.
Each variable declaration is composed of a list of
identifiers followed by a colon followed by a type. The
type may be a simple type or a structured type. The simple
types are WORD and BYTE, and the structured type is the
ARRAY type. Variables of type BYTE are packed two per word
of storage. For the ARRAY type, the colon is followed by
the reserved word ARRAY, the array bound specification in
brackets, the reserved word OF, and the BYTE or WORD type
specification. The first index of every array is assumed to
be zero, and the bound specification denotes the maximum
index to be used for the array, i.e., the number of array
elements plus one.

Example: VARV1,V2: BYTE;
V3,V4: WORD;
V5 : ARRAY [3] OF BYTE;

Note that the array V5 is composed of the four elements
V5 [0] , V5 [l] , V5 [2] , and V5 [3] .

2.6.4 Value Initialization

A VALUE declaration section has been implemented in
PL/99 to provide a convenient means of initializing program

22

variables and registers at load time. This capability
provides a compact method for program initialization without
resorting to assignment statements, and thus results in more
efficient machine code as well as a more readable source
program. The VALUE declaration ultimately results in loader
directives to perform the required initialization.

The VALUE declaration section is indicated by the
reserved word VALUE. Each initialized variable name is
equated to the appropriate numerical value in a manner
paralleling the CONST declarations.

The VALUE declaration for array variables assumes that
the values declared correspond to the ordered elements of
the array beginning with index zero, but does not require
that all elements be initialized.

Example: VALUE HEX__DIGIT = $B, XARRAY = [4,2,$A,3];

Note that XARRAY [o] =4 , XARRAY [l] =2 , etc . , but there may be
more than four elements in XARRAY.

2.7 Procedure Definition and Usage

23

PL/99 allows the use of procedures, but only in a
restricted sense. A procedure is a block of code beginning
with the reserved word PROCEDURE coupled with the procedure
name, and followed by an arbitrary number of source
statements which constitute the procedure body. The
procedure is terminated with the reserved word ENDPR. Only
global variables are allowed. There is no parameter list,
and there are no local variables as in PASCAL. There may be
any number of procedures, but they may not be nested. This
limited procedure capability does provide the programmer
with the capability to execute a fixed block of code
repeatedly from any point within the program body.
Additionally, this form for procedures is readily
incorporated into the memory organization and provides
direct access to the TMS9900 branch and link instructions.
The CALL statement is used to branch to the desired
procedure and is described in section 2.9.3.

Example: PROCEDURE ADD_ONE;
A:=A+1;
B:=B+1;

ENDPR;

24

2.8 Addressing Modes

The five addressing modes available on the TMS9900 for
source and destination operands have been implemented
directly in PL/99. Four addressing modes are directly
expressable by the programmer, and two are activated through
the choice of non-register variable names or the ARRAY data
structure.

2.8.1 Workspace Register Addressing

As previously noted, the workspace register identifiers
RO,R1,...,R15 are predeclared in PL/99. If the contents of
a workspace register are to be used as an operand, the
appropriate register is indicated simply by name, e.g.,
R5:=R5+1.

2.8.2 Workspace Register Indirect Addressing

If a workspace register contains the address of an
operand, the appropriate register identifier is followed by
the symbol a , e.g., R5a:=R5 +2. Note that no blanks are

25

permitted between the register name and mode specification.

2.8.3 Workspace Register Indirect Autoincrement Addressing

This mode functions in the same manner as indirect
addressing, but upon completion of the operation the
workspace register contents are incremented by one for byte
instructions and by two for word instructions. This mode is
indicated by suffixing the symbol & to the register name and
A, e.g., R5A&:=R5a &+R4a&. Note that this addressing mode
may be used to step through a table of values without
recourse to the ARRAY structure.

2.8.4 Symbolic Memory Addressing

Direct symbolic memory addressing has been implemented
for variable names which do not correspond to register
identifiers. Variable names descriptive of the problem
being programmed may thus be used to further enhance the
readability of the algorithm. The two words which follow a
machine instruction are reserved for the addresses of the
variable names which designate the source and destination
operands, respectively. The programmer simply employs the

26

variable name in a statement to activate this mode, e.g.,
R5a :=DATA.

2.8.5 Indexed Memory Addressing

This mode allows the use of any register as an index
register for determination of a required effective address.
Both explicit and implicit forms of this addressing mode
have been implemented.

In the explicit form, a variable identifier is followed
by parentheses enclosing an integer constant or constant
identifier in the range 1-15 which specifies the register to
be used as the index register. The TMS9900 instruction set
requires that register RO cannot be used for indexing. The
word following the machine instruction will contain the base
address, i.e., the address of the variable identifier, which
when added to the contents of the index register yields the
effective address of the operand.

Examples: TABLE($A), XVAL(3), YVAL(ONE)

The ARRAY data structure utilizes this addressing mode,
but in an implicit sense. An array variable identifier is

27

followed by brackets enclosing the array index which may be
an integer constant, a constant identifier, or a register
identifier:

Examples : A [2] , A [TWO] , A [R2]

The base address corresponds to the address of the first
element of the array A [0]. The array index simply becomes a
specification of the indexed value used to obtain the
address of a given element within the array. If one of the
constant forms for the index is used, however, the
addressing mode reverts to direct symbolic memory addressing
because the address of the specified array element may be
determined directly from the array base address and
constant. When a register identifier is employed, the
contents of that register are added to the array base
address to obtain the address of the desired element. Note
that the entire array may be accessed by incrementing the
indexing register contents in a loop.

Example: R1 := 0;
REPEAT
A[Rl] := 0;
R1 := R1 + 1;

UNTIL R1 = 5;

28

2.9 Statements

The program and procedure bodies are composed of a list
of statements separated by semicolons. Statements available
in PL/99 include assignment, GOTO, CALL, mnemonic, IF,
REPEAT, WHILE, and the empty statement. Statements may be
unlabeled, or a label identifier followed by a colon may
precede a statement for reference by a GOTO or mnemonic jump
statement.

2.9.1 Assignment Statement

The assignment statement is used to assign the value of
an expression to a register or variable identifier. As in
PASCAL, the symbol := is the assignment operator, which
separates the destination operand on the left-hand-side from
an expression on the right-hand-side of the assignment
statement. Several forms for the expression are allowed,
but all reduce to a single machine instruction and must
reflect the source and destination operand ordering required
by the instruction set of the microprocessor.

29

Expressions may be composed of a single constant, a
single identifier, a single identifier preceded by the
monadic operators + or -, or an identifier-identifer or an
identifier-constant pair separated by any of the arithmetic
operators or / , or by any of the Boolean operators
AND, OR, or XOR. Also permitted are the ABS and INV
expressions described below. Each of these forms may be
directly translated into the appropriate TMS9900 machine
instructions.

Expressions in PL/99 are restricted to a single
operator form. This restriction is not generally serious,
however, and should provide most programmers with an
assignment statement syntax which will be sufficiently
powerful for most applications. The adoption of this
limited expression follows from two additional
considerations. Firstly, a primary goal of the language is
to provide the programmer with control of register
allocation and use. Thus there are no registers available
for the storage of intermediate results obtained during a
more lengthy expression evaluation. Secondly, expressions
are evaluated in a simple left to right scan with no
parentheses or operator precedence constraints. The single
operator syntax precludes any difficulties arising from
these considerations and simultaneously results in a
one-to-one correspondence between machine instructions and

30

the assignment .statements.

The concept of source and destination operands is
fundamental to the TMS9900 instruction set and must be
reflected in the specification of expressions in PL/99.
Expressions involving the arithmetic operators + , *, or /
must have the syntax d := d operator s where d and s are the
destination and source operands respectively.

Examples: R1:=R1+R2;
R3A;=R3A*R1;

DATA:=DATA-VAL1;
VAL1:=VAL1/DATA;

In addition, the TMS9900 instructions for AND and OR
operations perform the indicated operation between the
contents of a workspace register and an immediate operand
(i.e., a constant or constant identifier). The XOR
operation, however, allows the use of a workspace register
destination operand and a source operand which is resident
in the workspace or in memory. These peculiarities of the
TMS9900 must be strictly observed and reinforces the machine
dependency of PL/99.

Examples: R1:=R1 AND 1;
R3:=R3 XOR VI;
R2:=R2 OR $A;

31

When register identifiers are employed in any
expression, the addressing mode may be indicated as
previously described. Note also that any variable
identifier may be an array element.

The last two forms for an expression involve the
reserved words ABS and INV. These expressions are monadic
and result in the absolute value and inverted value of a
given operand.

Examples: R1 := INV(Rl); VI := ABS(Vl);

2.9.2 GOTO Statement

The GOTO statement results in an unconditional branch
to the statement preceded by the indicated statement label,
and is composed of the reserved word GOTO followed by a
label identifier. A GOTO statement may be used within a
procedure, but transfer into or out of a procedure using a
GOTO is not permitted.

Example: GOTO LABI;

32

2.9.3 CALL Statement

The CALL statement is used to branch to a procedure.
The reserved word CALL is followed by the procedure name.

Example: CALL PR0C1;

2.9.4 Mnemonic Statement

Several of the TMS9900 instructions do not readily lend
themselves to incorporation into the PL/99 structure. A
mnemonic capability has thus been included to provide
convenient access to certain jump, shift, compare, branch,
and CRU instructions. Also included are several byte
operand instructions which may be used when operations
involving the left byte of a register are required. A
mnemonic statement may occur at any point where any other
statement may occur. Mnemonics are denoted by a pair of
periods enclosing a mnemonic identifier. The operands for
the instruction follow the second period by at least one
blank and are separated by a comma if more than one operand
occurs. The following table summarizes the available
mnemonics and gives examples of their usage and operand
form.

33

Add Bytes
Branch
Branch and Link
Branch and Load
Workspace Pointer
Compare Bytes
Clear Operand
Compare Ones Corresponding
Compare Zeroes Corresponding
Jump if No Carry
Jump if No Overflow
Jump on Carry
Jump if Odd Parity
Jump if High
Jump if Low
Load Interrupt Mask
Immediate
Load Communication Register
Load Workspace Pointer
Immediate
Move Byte
Return with Workspace
Pointer
Subtract Bytes
Set Bit to One
Set Bit to Zero
Set To One

PL/99 Mnemonics
.AB. R2,R1
.B. ADDR1
.BL. R4

•BLWP. R5A
.CB. R2,R1
.CLR. VI
.COC.
.CZC.

R2 , VI
R2 , VI

. JNC. LABI

.JNO. LAB2

. JOC.

. JOP.

.JH.

LAB3
LAB4
LAB5

.JL. LAB6

.LIMI. $000A

.LDCR. R1,5

.LWPI.

.MOVB.
WPADDR
R2,R1

.RTWP.

.SB. R2,R1

.SBO. 1
•SBZ. $AF
. SETO. A2 [4]

34

Shift Left Arithmetic
Set Ones Corresponding
Set Ones Corresponding,
Byte
Shift Right Arithmetic
Shift Right Circular
Shift Right Logical
Store Communication Register
Store Status
Store Workspace Pointer
Swap Bytes
Set Zeroes Corresponding
Set Zeroes Corresponding,
Byte
Test Bit
Execute

.SLA. R3,4

.SOC. R2,VI

.SOCB. V2,V3

.SRA. R4,SHIFTCOUNT
•SRC. R4,$A
.SRL. R4,0
•STCR. R2,2
.STST. R3
.STWP. R5
.SWPB. R3
.SZC. Al[l],Vl

.SZCB. V2,V3

.TB. 6

.X. R5

The use of these mnemonics must always adhere to the
basic definitions and usage prescribed for the instruction
set P L Additional comments regarding the mnemonic
capability may be found in section 3.6.7.4.

2.9.5 Conditions

35

The three remaining statements - IF, WHILE, and
REPEAT - all involve the evaluation of a condition which is
composed of an identifier-identifier or identifier-constant
pair separated by one of the relational operators = ,<> , < ,
<=, > , or >=, This syntax maps directly into the TMS9900
compare instructions.

If the indicated relationship holds between two
identifiers or between an identifier and a constant, the
condition is assigned the Boolean value TRUE, and the
appropriate bits in the machine status register set to one.
Otherwise the condition is FALSE. Examples of the use of
conditions are presented in the discussions of the IF,
WHILE, and REPEAT statements below.

Restrictions on instruction format peculiar to the
TMS9900 previously noted for assignment statements and
Boolean expressions apply similarly to conditions. If an
identifier and constant are to be compared, the identifier
must be a register identifier.

2.9.6 IF Statement

36

The IF statement is available in two forms. The syntax
is IF condition THEN statement list ENDIF or IF condition
THEN statement list ELSE statement list ENDIF with the usual
semantics in both cases.

Examples: IF R1>V1 THEN V1:=R1; ENDIF;
IF RKO THEN R1:=-R1

ELSE
R1: s=Rl+R2;
R2:=V1;
ENDIF;

A semicolon preceding the ENDIF or ELSE is optional.
The compiler will insert an empty statement following the
semicolon to complete the parse.

2.9.7 Repetitive Statements

The WHILE and REPEAT statements are used to specify
that a block of statements be executed while or until a
condition is true. The syntax of the WHILE statement is
WHILE condition DO statement list ENDW. The REPEAT
statement evaluates the condition after the statement list
has been executed and has the syntax REPEAT statement list
UNTIL condition.

37

In each case the number of iterations to be performed
is not specified directly. Repetition of the statement list
continues until the condition becomes false. The REPEAT
statement will always be executed at least once, but the
WHILE statement will result in no execution of the statement
list if the condition is initially false.

Example: WHILE R1 > 0 DO
B := B + 1 ;
R1 := R1 - 1;
ENDW;
REPEAT A := A - 1 UNTIL A = 0;

2.9.8 Empty Statement

An empty statement contains no symbols, causes no
action, and results in no machine code.

CHAPTER 3

Compiler Development and Semantic Actions

The PL/99 compiler has been constructed using a system
of compiler writing codes developed jointly at the
NASA-Langley Research Center and the College of William and
Mary. A fairly complete compiler may be generated through
the use of these programs in conjunction with a grammar
specification for the target language and appropriate
semantic information. The development and implementation of
the PL/99 compiler, its major components and semantic
actions are discussed in this chapter.

38

39

3.1 Compiler Generation

Development of the PL/99 compiler has made use of a
series of programs which facilitate the construction of a
given compiler by providing a number of automatic features
which result in a fairly complete compiler. The basis for
the generation of a compiler via this approach is a set of
grammar rules for the target language. These rules or
productions are expressed in a form similar tc> the
Backus-Naur Form (BNF) and may optionally include
interspersed semantic information. This basic definition of
the target language is analyzed by the parser generator
(PARGEN) which produces optimized LALR(l) parser tables and
parsing procedures. These results are incorporated into a
skeletal compiler which additionally includes a symbol
scanner (NEXTSYM), a procedure SYNTHESIZE which contains a
case label for each grammar rule and its associated
semantics, and dummy procedures for subsequent incorporation
of a variety of functions including error processing, symbol
table entry, searching and printing, and object code
generation. This basic compiler is written in PASCAL 6000
Version 3 and all LABEL, CONST, VAR, and VALUE declarations
are specified automatically. The user must then construct
and incorporate specific procedures required for a
particular application.

40

Subsequent modifications to the grammar may be
incorporated by executing the various components of the
compiler writing system with the revised grammar and
semantics. The existing version of the compiler may also be
specified such that the new skeletal compiler will be merged
with the old compiler to produce a new program containing
the revised grammar and semantics as well as the specific
procedures and other code previously incorporated into the
old compiler. This capability provides a convenient process
for evolving a final compiler through several stages of
development with a minimum of repetitive effort or
cumbersome text editing between old and new versions of the
compiler.

3.2 Compiler Structure

The PL/99 compiler is a one-pass syntax directed
cross-compiler written in PASCAL for execution on Control
Data Corporation 6600 and Cyber computers. The following
table presents the primary components of the compiler:

PL/99 Compiler Structure
Procedure Name Function

PARSE Parses PL/99 source program
SYNTHESIZE Semantic actions and object

code generation control.

41

NEXTSYM
PROC_IDENT
GET_NUMBER
GET_MNEMONIC

NEXTCH
ENTERST

GET_STORAGE
SEARCHST

GEN1,GEN2
GEN9,GENCRU1,
GENCRU2
ERROR
PRINTSYMTAB

WRITE_LISTING
LOAD_VALUES

WRITE_OBJECT
WRITE VALUES

Returns next token.
Constructs identifier.
Constructs constant.
Controls generation of machine
instruction for mnemonics.
Gets next input character.
Enters identifier and attributes
into symbol table.
Allocates storage for variables.
Searches symbol table for
given identifier name.
Generate machine code for
various instruction formats.

Writes error messages.
Writes output listing
of symbol table.
Writes output listing.
Initializes storage as per
VALUE declaration.
Writes object module.
Writes output listing
of VALUE initializations.

A series of secondary procedures supports the functions
of the main components listed above. Modularity in the
compiler has been emphasized for future expansion or
revision.

42

3.3 Memory Organization

A simple linear memory organization has been assumed
for the object code generated by the PL/99 compiler. The
initial workspace pointer is set at byte address 0000 and
the first sixteen words of storage allocated for the
workspace. This initial workspace is always provided, but
the user may designate any number of additional workspaces
through the Load Workspace Pointer Immediate (LWPI)
mnemonic. Variables defined in the VAR declaration are
allocated storage beginning at byte address hexadecimal
0020. If a procedure is defined, its initial instruction
address is adjusted to begin on an even-numbered byte
address. The program entry point is the first even-numbered
byte address following all declarations and procedure
definitions. Subsequent instructions and data are assigned
sequential addresses through the remainder of the source
program compilation.

3.4 Symbol Table

The PL/99 symbol table has been implemented as a PASCAL
linked list data structure and contains various attributes

43

associated with identifiers declared in the PL/99 source
program. The structure of the symbol table is as follows:

Symbol Table Entry

NEXT
IDENTIFIER
ARRAY_SIZE
ADDRESS

INITIALED

VALUE_PTR

IDTYPE

Pointer to next entry in table.
Symbol name.
Upper bound plus one for array.
Relative address of variable
identifier or procedure entry
point.
Boolean field indicating
VALUE initialization.
Pointer to initial value set
for this identifier.
Type associated with
this identifier.

The last field, IDTYPE, designates a PASCAL tag field
for the symbol table record and provides additional
information depending on the type: LABEL types include
specification of addresses where forward references to the
label were detected; CONST types have the associated integer
value specified; and REGISTER types include the integer
equivalent of the register name.

During parsing of the LABEL, CONST, VAR, and PROCEDURE
declarations, the procedure ENTERST is used to enter each
identifier into the symbol table. The table is first

44

searched to verify that the symbol has not previously been
declared, and, if it has, an error message is issued.
Otherwise all attributes available are set and dummy values
substituted for any fields which will be determined at a
later point in the compilation. Note that the register
identifiers RO,R1,...,R15 are the first identifiers entered
into the symbol table push-down list and the pointer to R15
saved. The programmer thus may choose to declare any of
these identifiers as a label, constant, variable, or
procedure identifier, and that declaration will always be
found first in the symbol table search, thus overriding the
predeclaration.

A summary of the symbol table is printed along with the
source and object code listings on completion of the PL/99
source program compilation.

3.5 Parser Actions

The procedure PARSE is automatically constructed by the
compiler writing system and causes tokens to be read and
directs the processing of the semantic actions through calls
to the procedure SYNTHESIZE. PARSE determines the actions
required given a symbol and the current state of the parse.

45

If a shift is required the state symbol is pushed onto a
stack and the next token read. Successive tokens are read
if necessary. If a reduction sequence is required, the
appropriate semantic actions are invoked as the stack is
popped for the required states. This process continues
until an accept state is reached or an error state occurs
from which recovery is not possible. Successful completion
of the parse results in the final accept state.

3.6 Semantic Actions

As noted previously, the procedure SYNTHESIZE is
generated by the compiler writing system and contains a case
statement label for each rule of the input grammar. Each
label has appropriate semantic actions specified and thus
SYNTHESIZE provides ultimate control over the compiler code
generation. The semantic actions are processed at the
conclusion of the parsing of a grammar rule as is always the
case with a syntax directed compiler. The following
sections present discussions of the semantic actions
associated with the various components of the PL/99
language•

46

3.6.1 Program Header

Parsing of the program header results in the saving of
the program name. This identifier is used during the
generation of the object module.

3.6.2 Label Declarations

Each declared label is entered into the symbol table
and the number of forward references to the label
initialized to zero.

3.6.3 Constant Declarations

A symbol table entry is generated for each declared
constant identifier. The integer value associated with the
constant is also entered so that the integer value may be
substituted whenever the constant identifier occurs in the
source program.

47

3.6.4 Variable Declarations

Parsing of the VAR declarations results in the
allocation of memory for each declared variable. The
initial workspace for registers RO,R1,...,R15 is allocated
storage and the workspace pointer WP is set to 0000 just
prior to the parsing of the variable declarations.

3.6.4.1 Simple Types

Variables of simple types BYTE and WORD are entered
into the symbol table and allocated single byte or word
storage as required. WORD variables have their most
significant bits at an even-numbered byte address.

3.6.4.2 Array Types

The array name is entered into the symbol table along
with the bound specification (i.e., the largest array index
to occur) plus one. The amount of storage required is
computed from the bound and allocated. The address entered
for the array name corresponds to the first element. Arrays

48

of type WORD begin on an even-numbered byte address.

3.6.5 Value Declarations

Variable and register identifiers may be preset in any
order using integer values or constant identifiers. When a
value is initialized for an identifier, the symbol table
field is flagged, a pointer to the appropriate entry in the
list of initial values saved, and the initial value entered
into the list. When all or part of an array is initialized,
the initialization flag in the symbol table record indicates
how many elements of the array have been preset beginning
with the first element (index 0). All initial values will
subsequently be included in the load module while dummy
values will be set for identifiers not initialized. A
summary of all preset values is printed as part of the
compiler output.

3.6.6 Procedure Declarations

Definition of a procedure results first in a symbol
table search to verify that the procedure name has not
previously been declared. If it has not, the procedure name

49

is entered along with the entry address for the procedure.
If this address is not an even-numbered byte address, the
program counter is incremented by one prior to entry in the
symbol table. The procedure body is then compiled until the
ENDPR reserved word is detected. The ENDPR statement
results in the generation of a branch instruction (B) which
assumes that workspace register Rll contains the branch
address for return to the calling program. Additional
discussion of this point is included in the CALL statement
section below.

3.6.7 Statements

Generation of PL/99 machine instructions for the
various source statements which may occur makes use of the
information stored in the symbol table during parsing of
both declarations and the program body. The semantic
actions associated with the various statement forms are
discussed below.

3.6.7.1 Labeled Statements

50

When a labeled statement is encountered, the symbol
table is searched for the label name. The location of the
label is then entered so that displacements relative to the
label may be determined as required for use in GOTO or
mnemonic jump statements which reference the label.

3.6.7.2 GOTO Statement

A GOTO statement first results in a search of the
symbol table for the referenced label. If the label has
previously occurred, an unconditional jump instruction (JMP)
is generated using a displacement computed from the current
program counter contents and the address where the label
occured. Otherwise the GOTO makes a forward reference to
the label, and the symbol table entry for the label is
updated to indicate the address at which a jump instruction
with an incomplete displacement field has occurred. These
incomplete displacements are subsequently filled when the
label is found and its relative address determined.

It should be noted that the TMS9900 instruction set
provides 8-bit displacement fields. Forward jumps must
therefore not exceed 127 words and backward jumps must be
less than 128 words. An appropriate error message is
generated if these restrictions are not satisfied.

51

3.6.7.3 CALL Statement

The occurrence of a CALL statement initiates a symbol
table search for the name of the referenced procedure and
its entry point. A branch and link instruction (BL) is
generated which automatically saves the current program
counter contents in workspace register Rll and then branches
to the procedure entry point. As previously noted, the
ENDPR statement results in a branch instruction which
references Rll for the branch address for return to the
calling program.

3.6.7.4 Mnemonic Statement

Use of a mnemonic statement first results 'in the
determination of the mnemonic employed, and then the
processing of the required operands.

The AB, CB, SB, and MOVB mnemonics have been
implemented primarily to allow byte operations for register
resident quantities where the left or most significant byte
is involved. These mnemonics thus expect both destination
and source register operands. The SOC, SOCB, SZC, and SZCB

52

mnemonics are- of the same instruction type and require
specification of destination and source operands which may
be register or memory resident. Operands for COC and CZC
mnemonics must be a register identifier for the destination
operand and either a register or memory resident identifier
for the source.

The B, BL, and BLWP mnemonics require specification of
a register or memory resident source operand which will
contain the branch address. A memory or register resident
source operand must also be specified for CLR, SETO, SWPB,
and X.

The jump mnemonics JNC, JNO, JOC, JOP, JH, and JL
require a label operand from which the jump displacement may
be determined.

The shift mnemonics SLA, SRA, SRC, and SRL require
specification of a register identifier which must be
followed by the shift count. The shift count must be in the
range 0-15 and can be an integer value or a constant
identifier.

The immediate operand for the LWPI and LIMI mnemonics
must be a constant or constant identifier. STST and STWP
require specification of a workspace register identifier,

53

and RTWP has no operands.

3.6.7.5 Assignment Statements

Various forms of the assignment as well as the
availability of both byte and word types results in the
generation of a variety of machine instructions. In each
case the symbol table is searched to provide the necessary
data for a given identifier and the addressing mode is set.

Type checking is performed to ensure that only
word-word or byte-byte operands are combined. These
restrictions are required because both word and byte
instructions are available in the TMS9900 instruction set.

The source statement is also checked to confirm that
the proper ordering of source and destination operands has
been observed. If operands are out of order, or, if the
destination operand on the left-hand-side of an assignment
does not correspond to the first operand on the
right-hand-side, an instruction format error message is
written. Similar messages are issued if register
identifiers are not employed for operations where they are
required, or if index registers are improperly used.

54

Eight basic assignment statements may occur where
register, variable identifier, and constants (or constant
identifiers) are employed in the expression on the
right-hand-side of the assignment. Addressing modes are
determined from the syntax used in the source statement.
The various expression forms and associated machine
instructions are as follows:

1. Constant. This syntax results in the generation of
a load immediate (LI) instruction.

2. Identifier or + identifier. Either a move (MOV) or
move byte (MOVB) instruction is generated.

3. Identifier or - identifier. The negate
instruction (NEG) is generated.

4. Identifier + or - constant. In this case the
second operand is a constant. If this constant has
a value of 1 or 2, then an increment (INC) or
decrement (DEC) , or increment by two (INCT) or
decrement by two (DECT) instruction is generated,
respectively. If the constant is 3 or greater, an
add immediate (AI) is generated for the + operator,
but no subtraction is available in the TMS9900
instruction set.

55

5. Identifier or / identifier. The appropriate
add (A), add bytes (AB), subtract (S), subtract
bytes (SB), multiply (MPY), or divide (DIV)
instruction is generated when the second operand is
an identifier.

6. Identifier AND or OR constant. The corresponding
and immediate (ANDI) or or immediate (ORI)
instruction is generated.

7. Identifier XOR identifier. The exclusive or (XOR)
instruction is generated.

8. Identifier ABS (identifier) or INV (identifier).
The absolute value (ABS) or invert (INV)
instruction is generated.

3.6.7.6 Conditions

The evaluation of the appropriate condition is an
integral part of the execution of the IF, WHILE, and REPEAT
conditional statements. Machine instructions to perform the
required compare operations are generated in two forms:

56

1. Identifier <,<=,=,<>,>, or >= constant, A compare
immediate (Cl) instruction is generated.

2. Identifier <,<=,=,<>,>, or >= identifier. The
appropriate compare words (C) or compare bytes (CB)
instruction is generated.

Type checking is performed to verify that the
identifier is a register identifier in 1 above, and that the
identifier types are equivalent in 2 above.

3.6.7.7 WHILE Statement

Detection of the reserved word DO results in the
initial translation of the WHILE statement. The program
counter is pushed onto a stack for subsequent reference, and
the relational operator specified for the condition is
complemented. A jump instruction related to the
complemented condition is then generated to jump around the
body of the WHILE if the condition is false. Note that at
this point, however, the jump displacement is not known.
For example, if the original condition specified the =
relational operator, then the complemented operator would be
<> and a jump not equal (JNE) instruction would be

57

generated. The body of the WHILE is then compiled until the
ENDW reserved word is encountered. This statement list
comprising the body of the WHILE may include additional
control structures including WHILE statements. At this
point the address at the head of the WHILE is popped from
the stack and an unconditional jump (JMP) instruction
generated to return to the compare at the head of the WHILE.
The address of the last statement in the WHILE is now known,
and appropriate measures may be taken to update the
previously incomplete jump instruction.

3.6.7.7.1 REPEAT Statement

The reserved word REPEAT causes the program counter
contents to be pushed onto a stack, and the remainder of the
REPEAT statement compiled. As in the case of the WHILE
statement, the body of the REPEAT may contain any valid
PL/99 statement. The appropriate compare instruction is
then generated as specified by the UNTIL part of the REPEAT
statement. The stack is popped for the address of the head
of the REPEAT, the condition relational operator
complemented, and a conditional jump instruction generated
to return to the first statement in the body of the REPEAT.

58

3.6.7.8 IF Statement

Two forms of the IF statement are available, and thus
additional jump instructions must be generated if the ELSE
form is used. For the IF-THEN part the condition is
evaluated and the appropriate compare instruction generated.
The program counter is then stacked, the relational operator
complemented, a conditional jump instruction with an
incomplete displacement generated to jump around the THEN
part of the IF if the condition is false, and the statement
list comprising the THEN compiled. The next symbol is then
either the ELSE or ENDIF. In either case, the address
previously stacked is popped and used with the current
program counter to fix the displacement for the jump around
the THEN. If the current symbol is the ENDIF, the statement
compilation is complete.

Detection of the ELSE causes the current program
counter to be stacked and an unconditional jump instruction
(JMP) around the ELSE to be generated with an incomplete
displacement field. The ELSE statement list is then
compiled until the ENDIF is encountered. The required
address is popped from the stack and the previous jump
instruction around the ELSE completed.

59

3.7 Code Generation Completion

During the compilation sequence described above, the
generated machine code instructions are written in
hexadecimal notation to a PASCAL text file. These
instructions are complete except for the forward
displacement fields of jump instructions associated with the
WHILE, IF, GOTO, and mnemonic branch and jump statements.
The addresses at which these forward references have
occurred have been maintained along with the corresponding
displacements as they were determined. These
address-displacement pairs are now sorted into increasing
relative address order and used to complete the jump
instructions as the machine code is. transferred one
instruction at a time from the original text file to a new
text file. The program listing, symbol table, and VALUE
summary are then printed and the object module constructed.

3.8 Object Module Generation

The PL/99 object module is produced in the Texas
Instruments standard object module format [8]. Each object
module record may be up to 71 ASCII characters in length,

60

and consists -of a number of tag characters followed by one
or two fields of data. The following table summarizes the
tag characters and data fields used for the PL/99 object
module.

OBJECT MODULE TAG CHARACTERISTICS

TAG First Field Second Field Meaning

0 Length of all Re
locatable Code

2 Entry Address

Checksum for
Current Record
Load Address

B Data

C Data

F None

8 character Program
Identifier
None

None

None

None

None

None

Program
Start
Relocatable
Entry
Address
Checksum

Relocatable
Load
Address
Absolute
Data
Relocatable
Data
End of
Record

The first tag character of the object module is always
0. Each succeeding tag character follows the last field of
the preceding tag character. A record is ended by a tag 7
followed by a checksum and the tag F. The last record of
the object module is indicated by a colon in column one.

61

Note that all numerical values in the module are in
hexadecimal notation.

The initial tag 0 is followed by the length of the
module relocatable code and an eight character program name.
The module entry address is preceded by a tag 2 while the
module relocatable load address follows the tag A. Absolute
data (i.e., instructions and constants) are preceded by tag
B, and a word that contains a relocatable address is
preceded by tag C. The checksum is preceded by a tag 7 and
consists of the two’s complement sum of the 8 bit ASCII
values of the characters in a record from the first tag
through the 7. The checksum is then followed by the tag F.

The object module contains a data field for every byte
address generated during the compilation including the
addresses assigned to variable and register identifiers.
The VALUE declarations cause the required initial values to
be written in the appropriate byte or word data field of the
object module while hexadecimal FF or FFFF is used as a
dummy value for identifiers not initialized. The final
object module is written on the file OBJECT which is printed
and which may be saved on disc or tape or punched for future
use.

CHAPTER 4

Sample Programs

Two sample programs have been written and compiled
using the PL/99 compiler. The resulting object module was
then executed on a TM 990/100M microcomputer for
verification.

4.1 Listing Format

Upon successful completion of the parsing of a PL/99
source program, an output listing is produced which contains
the PL/99 source code, addresses and machine code, a summary
of the symbol table, a listing of all initial values set
using the value declaration, and a listing of the object
module. All addresses, machine instructions, and object

62

63

module data are in hexadecimal form.

To the left of each PL/99 source line in the program
listing is the relative word address of the instruction
generated for the source line. Following the address is the
machine instruction generated for that source line. If
several instructions or data fields were generated for a
given line, they are printed on succeeding lines prior to
the printing of the next source line. Following the address
and machine instruction columns are the source statement
line number and the source statement.

The symbol table listing contains the name of each
variable, label, constant, and procedure used in the source
program as well as the predeclared register identifiers.
The type of each identifier is given and its address unless
it is a constant identifier for which no storage is
allocated. If the variable name is an array, the array size
is listed.

The VALUE declaration listing provides a convenient
check on program initialization. All initialized variables
are printed with the corressponding value. Only that
portion of an array initialized is printed.

64

The object module listing represents the final output
of the compiler and is formatted in the manner previously
described.

4.2 Program Execution Procedure

The two sample programs have been executed on a Texas
Instruments TM 990/100M microcomputer to verify the
generated machine code. The object module proper was not
used in this process.

A TM 990/301 microterminal connected to the 990/100M
was used as the I/O communication interface. This terminal
resembles a hand-held calculator and provides direct data
entry and communication with the 990/100M. Keys are
provided for direct hexadecimal-decimal conversions and
vice-versa, and for entering and displaying the program
counter (PC), status register (ST), and workspace
pointer (WP). CRU data entry and display is similarly
available. Data and instructions are entered into specified
memory locations using the EMA (enter memory address), EMD
(enter into memory address displayed), and EMDI (EMD with
autoincrementing of address).

65

The H/S key allows the suspension of program execution
and display of the next address and contents. It also
provides single step execution where each keystroke causes
the next instruction to be executed and the contents of that
address to be displayed.

Pressing the RUN key initiates program execution using
the current contents of the WP, PC, and ST registers.

4.3 Description of Sample Programs

The first example program provided, ORDER_PAIRS, orders
each of N data pairs. Two one-dimensional arrays, P and Q,
are compared one element at a time, and, if the P-element is
greater than the corresponding Q-element, the elements are
swapped. On completion of the program execution, all
P-elements are less than or equal to all corresponding
Q-elements.

The declaration section defines a constant N=20,
declares a word variable TEMP and the P and Q arrays, and
initializes the P and Q arrays with arbitrary positive
integer values.

66

Program execution begins at address 0066 where register
R1 is loaded with value zero. A WHILE statement is then
used to step through the P and Q arrays. An IF statement
compares corresponding elements of the P and Q arrays using
R1 as the array index. If the P-element is greater than the
Q-element procedure SWAP is called to interchange the
elements using TEMP to temporarily hold the P-value.

The array index R1 is then incremented by 2 to step to
the next word in the P and Q arrays. The WHILE statement is
then repeatedly executed until all elements have been
compared and interchanged if necessary.

The second program, SUM_C0UNT, sums a list of positive
integers and counts the number of zeroes encountered. The
declaration section defines the constant N=40 and declares
the word variables SUM and COUNT. An array NUMBER with 21
elements is declared and then initialized using the VALUE
declaration.

The .CLR. mnemonic is used to set SUM, COUNT, and
register R2 to 0. R2 is to be used as the index for array
NUMBER.

A REPEAT statement is used to examine each element of
NUMBER. If the element value is zero, the COUNT total is

67

incremented by .one; otherwise, the SUM is updated. The IF
statement which tests each element of NUMBER compares the
element with zero. The element thus must first be loaded
into a register, R3, to comply with the requirements of the
TMS9900 compare immediate instruction format. This cycle
defined by the REPEAT continues until all elements of NUMBER
have been examined.

Both of these sample programs were successfully
executed on the TM 990/100M microcomputer and verified
through examination of specific memory addresses after
program execution.

«Lf“1 •« i
1 © *“• 1* «H 1* rH % Ii «s CM ;i CO -4- •»! OC i o c CO s♦—1 j or O' «L 1; ! o -* ©

a. 1i z «H •« i1 rH CM ii<c i U_ i
H 1 o cd on j
<T i «K• «K O n rH CD i*

i to © ^ % i
oc z 1 H -4- O

►- M LI •i «i
Z <x u_ ••t CM HUJ cl o 1 o >- •l
Z 1 i oc < on cm CL i •*UJ oc X i □ Oc •> «L <C ! m •«
♦— UJ o I* OH O CM 3t r-i . rH CL

o <x << i—i i—• (O rH i or x:
V- oc UJ o •• OC t l—i UJ
to □ CM M • ■ UJ I—I . °oc ■ Cl ■ or cu i • ■
u ZtZ UJ X 51 O CL O © ■ ■ ••
o <5 o UJ L o •* i r—i r-i
CL oc oc h- ►— CL UJ 1 UJ Q_ I rH rH
© © o to © o sr i or
a o z OC —J O UJ ! LI UJ
CO oc * o << i oc H- 1 CL o

CL W © > > i o. 1I

UJ

40
UJ
oo

CO
to
a;ao

• • • • • • • • • • • •r-t(Mri'fir\<or^cDa'OH(\j • •
m i IO vO

co
■
V

oc
a.ozUJ

e>
UJCD

o

a:

h eu cr o h cm cn
rH rH «H CM CM CM CM

! o

o.

ito

<xu

©
/V

i * . •: ITl
i CM CM

O O
UJ u
CM Oo o

rH CM ©
CM CM CM CD © Ou o o

*-l CD CM O O CO CD
«o m <m *£> c m on mcu o o cd © o «*■© © © o ©. © ©

•H o O o
CM O © O

«-H *4' CD OJ rl O
CM O tTk
O © «H

H CM CO CM © CM^ (\l fO O < If'i UJ o O cvj O ©
leu o O «“• O ©

UJ o
o o © ©

CM »J- Oin imh © © oO O O
0 < U U i O N ̂
IT \ tfS l f \ l f \ » 0 <>0o © © o o © o© © o © © © ©

O CD <0 0 © © o o
< U U J O <0 *> © © © o o o

O CVJ ̂ ^ ® <^ »*. t*- r- r- f̂*© o © © © o© © © © © ©.

AD
DR

ES
S

CO
NT

EN
TS

LIN

E.
.S

OU
RC

E
ST

AT
EM

EN
T

C O+
oc
a

oz

ONOO'O co <v» cvj cvj m

rH 4T>O U-m o
O rH

r»-oo

Cl <1

UJrslt—tlO
>~<<
QC
OL
<3

t oCO
OL M 00 fNJ O UJ u <x to <£> •tf- r j O UJ u CD o W O
o tf> CO < \i C\J H r-J r-t H H r—« i-H o o o o o o o O
o O o o O o o O © o o o o o o o o o o o O
< o o o o o o o o o o O o o o o o o o o O

u .
_ 1

I 1

cc
<1

i
i

H * UJ
o l H OL OL OL OL OL OL OL OL OL OL OL o : OL OL OL OL*

- J = 9 z UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ U l UJ UJ LU UJ
O o <4 f - I— h~ *— t - ►— H H ►- *— H h - 1 - t— ► -
03 UJ *— t o t o to CO t o to t o to t o to t o CO to to t o t o
51' LU u C-> o o to H ►-* *—« »—1 H M M *—» t - l »-» i - i *-« »—1 *—«
> - CL. o OL OL OL z o O o © UJ o UJ o UJ o o © o © o ©
V / > - OL D U O U UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ u UJ u . UJ UJ

j o . 3 u OL UL OL tx. OL QL OL OL OL OL OL OL o : OL OL OL

~y o. 1 o.
UJ < - JC tr\
O 3 UJ H H H

s 0 p T Z OL OL OL

M h o

QC OL
i

H O f" <0 ift W M H O
O C Q C O C O C O C . Q C O C O C O C O L O C

9 • t • * • e

. V
ALU

E
DE

CL
AR

AT
IO

NS

u~ 1o i
i ^ }

ll LL LL LL LL1
UJ CD ro « CM

! CD m! LL © r. co roLL LL LL LL LL! LL r- r̂ r- r-LL <M o o coI O O o CM o
! ll O o o ir>
'i u- o o o H
! U. u <_> «_> CD

LL m CM
o © o CM
L_ o o O Ouu © o O o

! u_ © u © CO
LL O cm r-4 *-H
<_» O O CM CD

■ LL o o CD CMLL o o O Ou. o © 03 CD LLu_ LL (VI O O CD
o LL o O o CO
u- LL o O o Nu. U o o o LL
u. U © CD CDU. LL o © vH ino LL o LL o LL
LL LL o CM CM O* LL LL o O O 1-4
LL © u CD CD CL
LL LL r-» 1-4 CD r4
O LL o © LTV ©LL LL o o >r in

j LL LL o o o °i LL U o u CD CD
LL LL CM CD CM
U LL o o CO
LL LL o o o °1 LL LL o o © O
LL U u u u u
LL LL o ro o O
O LL o O CM

•' O LL o o O o
{ O LL o o O o

o o © L> u CO
o u_ cu O o CM

: <x LL o O «o O
«o LL o u CD CM

j <£> LL o o © H
o U © u CD CD
O LL o> CM CM CD

LL «\J LL o O CM CO
— J < LL o O O O
3 o. LL o o o o
O 1 <-> u u O ©o e* LL ro GO CM
X. LU LL o o m CM

o U. o O o O
1- O' LL o o o o
u a o u u U u
UJ U. LL CD H Hm LL o o >occ O LL o O CD CD
o O LL o o U GOo O © u CD CD

i i

ink-
Z

z
Clo

m
•» o o 1•k o o

l • •> (VJ i
1
!

♦
i

O
on

X) © '

i m a in © ! i ©
o © i z • i © +

: Z C3 oC* * h-
li < DC © •» o j Z
i © ! □ o • . ©
• fcO N •* o ©

on i f » m © ©
j © li- i M) O ■

cd CD i o ro ro o • •
Z a: >—< •V * i t—
© on a © OD 1 j z
z © 3 > - j ©

»— ►— CO < o r- ©Z z U - 2= i • * Cfc r - « ©
U J © O © , a. ro
x ; o Z H - <1 M ! a t z
U J © ♦— 1 Z j ©
♦— 1 t o © © • • on t— OL I«c z M I O © z © 1 -

© © H» i o © QC CO Z © CO
VO in • sj- © 2 - © ro O z o

« « *— ‘ ■ •> CXi © CO a: © © ■
U J z Z z r r *r** z CO
© <L z © © © • • ■ ■ QC
o c OL © a ■ H * ^ z © Z QC ry QC < r —«
© o l /J o m © * - i © © © © co ©
o O ■ z ac © O © O © © QC ©
in on ♦ ; o <x <1 © • • • ©

O l ; © > > CO ; , Qc

z •M 1 2 3 <♦ 5 6 7 8 9 0 cH ro m «*• in -X) h- ; co U* o © (VI
© < r-< rH H rH •—1 H : *H © © © N (VI (VJ

© oU J © N O © O

!
O ©
U J CVJ««■ o © O

CO
(VI (VJ

••s
©

! i
' j

CVJ 1 i
on 1
'■ U l ;
on i ! !
© j '
ec 1 1X-. ©

: Z ' ♦z i
© z
CO i : ro ■
■ : + CO
* • !© CO on

© z on
tn © ! o • ©
© ' Z •• ©
© i © (VI ♦-ii QC z

!i
i

©

; i

in >o n c O'
ro ro cvj co ro

«nj © ro
© © CVJ

'*■ o o o o
MO'MOWOCMM<M«rOUjN C U O O < N O NC M M
O O l V J O « O ^ C O ® 0 0 t_>000»“* © 0 © ^ 0 0

ro©ino
CVJ
CD
CO©

m
*n
UJ
onoo

UJ O>j- «n o o o o
(V I *Tin in © © o o

<o ® < in m in © © O © O O
U U J O N ' f ' O ® < U U J O
m in >o <£ o *c «o r—
O O O O O O O O O O Oo © o o © o o o o © o

<VJ
©o

-o-r-©c

« • «

AD
DR

ES
S

CO
NT

EN
TS

LIN

E
SOU

RCE

ST
AT

EM
EN

T

UJ
t>J

to
<3.
OL

CM

CO<t

i/i
i/i
UJ
OLoo«a

> j- cm o
CVJ CVJ CM O O O O O O

i
UJU<CD'CJ, (\ i O U J U < CO > 0 <#■ CVI O
fH i—I rH ft H *—i r-t *H O O O O O O O O
O O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O O

1- OL OL QC OL OL OL OL OL OL OL OL OL OL OL OL OL
-J tZ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ U j UJ UJ UJ
G t- H* »- H ►- H- 1- »— H- h- »— *- b~ h-
OJ H- co CO to CO CO CO CO to co CO CO to CO to CO co
JZ OJ o o o vO t-c HI Hi HI HI HI HI HI HI ft HI HI HI ft Hi M
> - a. OL OL OL Z o UJ o o o UJ e- o O o o u> o o O u>
CO >- u o CJ o UJ UJ UJ UJ LU u> UJ UJ UJ UJ U_> UJ UJ UJ UJ Uj

h- 2 3 3 u UL or Ol OL Ol OL OL OL OL Ol OL a OL OL O l OL

CO z 3Z 3 3 a z u 3CO Z
tf'* m - m cvj *-t O 1

QLoLOLOCor. OLococaeacocacoLoc ft oCX QC

« (» (f (9 <9 19 9 <9

VAL
UE

DE
CL

AR
AT

IO
NS

o m

o o

•o o

xn cnj

*3" rH

O O

m o

CM O

CD

O I"-

CDaz
ZDX

9 # 9 # # # # • • • # • « 0

(
1
i
i

lu
CO
©
LU LU
uj

LU
CO

LU
Q

Ji1
LU00

i N ro © UJ o
, LU O m CVJCOi LU LULU LULU
i U_ f*- P- r- r-
) LU f i < <\j M"
j UJ O o UJ CM

LU O o O
i LU O o © O

LU UJ UJ CDUJ
i LU O O' O CVJ

UJ o o CMCM
LU O o O COj LU O o O •<

i U- <_JUJ UJ CO
LU LU00 o ro

' O LUo LU o
j LU LUo sr ©
j LU LUo o H

LU UJ UJ CL CO
LU LUr- o OJ
LJ LU© © CVJ
LU LUo © ©
LU LU© © ©

; LU UJ UJ CD UJ
, LU LUo O o
; UJ LUo LUi LU LU© CMin
i LU LUo O o

LU (_J UJ COCD
LU LUo LUCO
UJ LU© LUo4 LU LUo LU 421 LU LU o LUH
U- UJ UJ O CO LUi LU LU <o © O UJ
O LUo O o 4J

i LU LU© O ©
i LU LU© O © U-i LU UJ UJ UJ CD
t LU LUin o COrH
i U LUo o cr U-

O LUo o CVJ©ii © LUo © o rH
O UJ UJ UJ COCO
O LU <4- o CO
HL LU© o CVJCM
CM LUo o © O

i in LUo o O ©
t O UJ UJ UJ UJ CD

O LU o UJ CVI CVI
LU C\J LUo o LUI oc
_J Z LU © o o CM3 3 LUo O UJ O
O O UJ UJ UJ COCO
o UJ LUro <Z3CVI CM
n 1 LUo o CM©

X LUo o o in
H 3 LUo © © o
U LO UJ UJ UJ UJ CO
LU O LU COo © ©
“> CO LUo o LUCM
CD CJ LU o o 4 Oa O U. o o © O

O UJ UJ UJ CO© ~

.a .A A

CHAPTER 5

Concluding Remarks

The PL/99 language and compiler described in the
preceding chapters offers a viable alternative for the
TMS9900 programmer. Algorithms may be clearly expressed in
a form which is superior to the corresponding assembly
language program, require less creation and testing effort,
and result in machine code which is no less efficient. The
structure of PL/99 has been patterned after PASCAL and
should be readily learned by most programmers familiar with
the TMS9900. The compiler has a modular structure and may
be revised or extended in a straightforward manner.

PL/99 in its present form will provide satisfactory
solutions for many programming problems, but the absence of
certain features will no doubt lead to further revision and

68

69

expansion. The inclusion of record types with the
additional ability to define arrays of records may be
desirable. Similarly, future revisions would probably
include user defined types and CASE and FOR statements as in
PASCAL. The limited procedure capability could also be
improved. It is felt, however, that these deficiencies are
not serious at this point in the development of PL/99. A
strong framework for evolution of the language has been
established.

70

APPENDIX

The PL/99 Grammar

This appendix presents the PL/99 grammar in standard
BNF notation.

1]2]
3]
4]

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

< compilation >
< program >
< programhead >
< programbody >

labeldecl >
labeldecl >
labellist >
labellist >
labelelem >
constdecl
constdecl
constlist
constlist
constelem
vardecl >
vardecl >
varlist >
varlist >
varelem >
identifierlist >
identifierlist >
idlisthead >
simpletype >
simpletype >

< program > < eofsym >
< programhead > < programbody >
PROGRAM < identifier > ;
< labeldecl > < constdecl >
< vardecl > < valuedecl >
< proceduredecl >
BEGIN < statementlist > ENDP .

= LABEL < labellist > ;
= < epsilon >
= < labelelem >
= < labellist > < labelelem >
= < identifier >
= CONST < constlist > ;
= < epsilon >
= < constelem >
= < constlist >< constelem >
= < identifier > = < constant >

VAR < varlist >
< epsilon >
varelem >
varlist > < varelem
identifierlist > :
simpletype > ;
identifier >
idlisthead >
identifierlist >
identifier > .

<
<
<
<
<
<
<
<
WORD
BYTE

25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

71

varelem > ::= < identifierlist > :
ARRAY [< bound >]
OF < simpletype > ;

bound > : := < constant >
valuedecl > ::= VALUE < valuelist > ;
valuedecl > : := < epsilon >
valuelist > : < valueelem >
valuelist > : := < valuelist > < valueelem >
valueelem > : := < identifier > = < values >
values > : < constant >
values > : := [< arrayvalues >]
arrayvalues > : := < constant >
arrayvalues > : < arrayvaluehead >

< arrayvalues >
arrayvaluehead > : := < constant > ,
proceduredecl > ::= < procedurelist >
proceduredecl > ::= < epsilon >
procedurelist > : := < proceduredefn >
procedurelist > : := < procedurelist >

< proceduredefn >
proceduredefn > : := < procdeurehead >

< statementlist > < endpr >
procedurehead > ::= PROCEDURE < identifier > ;
endpr > ::= ENDPR
statementlist > ::= < statement >
statementlist > ::= < statement > ; < statement
statement > : := < label > < unlabstatement
statement > : := < unlabstatement >
label > : := < identifier > :
unlabstatement > : := < assignstatement >
unlabstatement > ::= GOTO < identifier >
unlabstatement > : := < epsilon >
unlabstatement > ::= CALL < identifier >
unlabstatement > : := < mnemonicstatement >
unlabstatement > : := < strucstatement >
struestatement > : := < ifstatement >
struestatement > ::= < whilestatement >
struestatement > : := < repeatstatement >
assignstatement > ::= < leftside > < becomes >

< rightside >
leftside > : := < identifier >
becomes > : : =
rightside > : := < expression >
expression > ::= < constant >
expression > ::= < operand1 >
expression > ::= < addop > < operand1 >

72

65] < expression > : := < operandl > < arithop >
< operand2 >

66] < expression > : < operandl > < boolop >
< operand2 >

67] < expression > ::= ABS (< identifier >)
68] < expression > ::= INV (< identifier >)
69] < operandl > ::= < identifier >
70] < operand2 > ::= < identifier >
71] < operand2 > ::= < constant >
72] < arithop > ::= < addop >
73] < arithop > ::= < mulop >
74] < addop > ::= +
75] < arithop > : -
76] < mulop > : := *
77] < mulop > ::= /
78] < boolop > ::= AND
79] < boolop > ::= OR
80] < boolop > ::= XOR
81] < mnemonicstatement > ::= < mnemonic > < operands >
82] < mnemonic > : < identifier > .
83] < operands > ::= < epsilon >
84] < operands > ::= < identifier >
85] < operands > ::= < constant >
86] < operands > ::= < operandhead >

< operands >
87] < operandhead > ::= < identifier > ,
88] < ifstatement > ::= IF < condition > < then >

< statementlist > ENDIF
89] < ifstatement > ::= IF < condition > < truepart >

< statementlist > ENDIF
90] < condition > ::= < operandl > < relop >

< operand2 >
91] < then > ::= THEN
92] < truepart > : := < then > <statementlist > ELSE
93] < relop > ::= =
94] < relop > ::= <
95] < relop > ::= <=
96] < relop > ::= >
97] < relop > : : = >=
98] < relop > ::= <>
99] < whilestatement > ::= < whilehead >

< statementlist > ENDW
100] < whilehead > ::= WHILE < condition > DO
101] < repeatstatement > ::= < repeat > < statementlist >

< untilpart >
[102] < repeat >
[103] < untilpart >

::= REPEAT
::= < UNTIL > < condition

74

Notes

[l] Wirth, Nicklaus, "PL360, A Programming Language for
the 360 Computers,” Journal of the Association for Computing
Machinery, Vol. 15, No. 1, January 1968, pp. 37-74.

[2] Bell, D. A. and Wichmann, B. A., "An Algol-like
Assembly Language for a Small Computer," Software- Practice
and Experience, Vol. 1, 61-72 (1972).

[3] Pleban, Uwe Frederik, "Design and Implementation of
the Structured Assembly Language PL/85," Masters Thesis,
University of Kansas, 1976.

[4] Mowday, Barry L., "PL/STAR, A Structured Assembly
Language for the CDC STAR 100," Masters Thesis, The College
of William and Mary, 1979.

[5] Gray, Lawrence, "What type of programming language
best suits OEM design?," EDN, June 20, 1978, pp. 78-84.

[6] Foster, Victor S., "MIDAS : A Mid-level Language
for Microprocessors," (University of Virginia, undated).

m Texas Instruments Incorporated, "990 Computer
Family System Handbook," Manual No. 945250-9701, 1976.

Texas Instruments Incorporated, "TM 990/100M
Microcomputer User1s Guide", August 1977.

75

Bibliography

Aho, Alfred V. and Ullman, Jeffrey D. Principles of
Compiler Design, Reading, Mass. : Addison-Wesley, 1977.

Bell, D. A. and Wichmann, B. A. "An ALgol-like Assembly
Language for a Small Computer." Software- Practice and
Experience, Vol. 1, 61-72 (1972).

Foster, Victor S. "MIDAS: A Mid-level Language for
Microprocessors." University of Virginia, undated.

Gray, Lawrence. "What type of programming language best
suits OEM design?" EDN, June 20, 1978, pp. 78-84.

Jensen, Kathleen and Wirth, Nicklaus. Pascal User
Manual and Report. New York : Spring Verlag, 1974.

Mowday, Barry L. "PL/STAR, A Structured Assembly
Language for the CDC STAR 100." Masters Thesis, The College
of William and Mary, 1979.

Pleban, Uwe F. "Design and Implementation of the
Structured Assembly Language PL/85." Masters Thesis,
University of Kansas, 1976.

Texas Instruments Incorporated. ”990 Computer Family
System Handbook." Manual No. 945250-9701, 1976.

Texas Instruments Incorporated, "TM 990/100M
Microcomputer User1s Guide", August 1977.

Wirth, Nicklaus. " PL360, A Programming Language for
the 360 Computers." Journal of the Association for Computing
Machinery 15 (January 1968) 37-74.

76

VITA

Kenneth B. Walkley

Born in Montgomery, Alabama, January 27, 1948.
Graduated from Jackson High School in Jackson, Alabama in
May, 1966; B.A.E., Auburn University, 1971; M.S., Auburn
University, 1973. The author has been employed by the LTV
Corporation since February 1974, and presently serves as
Supervisor of the Aerodynamics Unit at the Hampton Technical
Center. He entered the program in Applied Science in
January 1976, and has continued his graduate studies as a
part-time student.

	PL/99, a mid-level programming language for the TMS9900 microprocessor
	Recommended Citation

	tmp.1539793463.pdf.h6ymp

