3

% WILLIAM & MARY
CHARTERED 1693 W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1979

PL/STAR, a structured assembly language for the CDC STAR-100

Barry Lee Mowday
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

6‘ Part of the Computer Sciences Commons

Recommended Citation

Mowday, Barry Lee, "PL/STAR, a structured assembly language for the CDC STAR-100" (1979).
Dissertations, Theses, and Masters Projects. Paper 1539625049.
https://dx.doi.org/doi:10.21220/s2-djk9-hd77

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539625049&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539625049&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-djk9-hd77
mailto:scholarworks@wm.edu

PL/STAR
K

A Structured Assembly Language

For The CDC STAR-100

et e e i e

A Thesis
Presented to
The Faculty of the Program in Applied Science

The Cellege of William and Mary in Virginia

In Partial Fulfillment
0f the Requirements for the Degree of

Master of Science

by
Barry L. Mowday

1979

ProQuest Number: 10626208

Allrights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest 10626208
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346

APPROVAL SHEET

This thesis is submitted in partial fulfillment of

the requirements for the degree of

Master of Science

Zonry Mowrlay
Author

Approved, July 1979

< Lt C %yﬁ

Jobﬁ Knight

S B o s

Stefan “Feyock -

T AT M

Robert Noonan

Chapter

II
ITI

v

VII

Appendix

Table of Contents

Title

Acknowledgments

Abstract

Introduction and Basic Concepts
Language Description

Syntax

Implementation of the PL/STAR Conmpiler
The Module Listing and Sample Modules
The Compiler Writing System
Evaluation

The PL/STAR Grammar

Notes

References

Page

iv

13
28
50

64

72
76

77

ACKNOWLEDGMENTS

The author wishes to express his appreciation to Dr.
John Knight for his patience and encouragement in the:
preparation of this work, to Douglas Dunlop for his valuable
comnents and to Marie Noland for her imstructicn in the text

processing facilities used to produce this paper.

iv

ABSTRACT

This thesis documents the programming language PL/STAR.
PL/STAR is a structured assembly language for the CDC
STAR-100 computer. The language 1is designed for systems
programming applications. PL/STAR combines the control and
data structures of high level languages with the access to

machine features of assembly level programming. The high

level features of the language supply the advantages in the
development, readability and organization of programs
normally associated with high level languages. The access
to the registers of the machine and the control the PL/STAR
programnmer exercises over the machine instructions that are
generated distinguish PL/STAR from higher level languages.
The result 1is a programming language that can offer
advantages over assembly language for systems programming
tasks.

The compiler for PL/STAR is a syntax directed cross
compiler hosted on the STAR access station, a CDC 6400
computer. The conmpiler was developed wusing a compiler
writing system.

1./STAR

A Structured Assembly Language

For the CDC STAR-100

CHAPTER 1

Introduction and Basic Concepts

1.1 1Introduction to PL/STAR

PL/STAR is a structured assembly language (SAL) for the
Control Data STAR-100 computer. PL/STAR draws con high level
languages for the form of control =structures and data
structures, while providing the same access to machine
features as is found in assembly language programming.

The purpose of PL/STAR is to provide systems
programmers and other users a means to write assembler level
code in a readable, maintainable and less error prone form.

One feature of code written in assembly language is its
lack cf an easlly discernible organization. That is, line
after line can appear on an assembly 1listing with no

indication of the underlying program structure.

(o)

One goal of PL/STAR is to provide a means of writing
assembly level code 3in a manner that makes the program
structure clear.

Another goal of the language is to provide the user the
advantages of high level language data structures. For this
PL/STAR provides type declarations and a user defined type
capability.

The first structured assembly language was PL360,
impiemented by Niklaus Wirth in 1965([3]. Since then there
have been several such languages implemented. In addition
to PL360 two other structured assembly languages, MIDAS[4]
and PL85[5] have served as sources for PL/STAR.

While the languages vary in content, certain
similarities do appear to be characteristic of structured
assembly languages. All languages studied contain high
level control structures, although the specific ones
realized vary. All provide for variable declarations.
While the declarations generally determine the amcunt of
storage allocated for the wvariable, PL360 makes an
additional distinction similar to the high level language
concept of scalar type. Input/output are not treated in
structured assembly languages.

Structured assembly languages are machine dependent.

1,2 The STAR-100 Computer

The Control Data STAR-~100 is one of the largest. and
fastest scientific computers now available.. Among the
advanced features employed om the STAR are stream
processing, virtual addressing and hardware macro
instructions.

The STAR-100 provides an exteusive vector handling
capability. On the STAR a vector is a set of operands
located in consecutive memory locations. Instructions are
provided to perform a wide range of cperatioms on vectors,
from basic arithmetic to inner products and square roots[l],
{2}.

The word size on the STAR is 64 bits. Addresses are 48
bits long, and there are 256 general purpose registers. The
STAR is a three address machine, so that the result field is
specified explicitly and may differ from either operand.

-The principal languages used on the STAR are FORTRAN,
the assembly language META and SL/1. FORTRAN and SL/1 are
oriented toward scientific programming. The bulk of system
programming is done in assembly language or a FORTRAN like

implementation language, IMPL.

wn

1.3 BRBasic Concepts and Notation

This section defines elementary forms of the PL/STAR

language.

l.3.1 Free Format Input

PL/STAR is a free format language. Statements may
begin at any place on a card and extend over any number of
cards. The amount of space between elements of a statement
is de;ermined by the wuser. The PL/STAR programmer,
therefore, posseses the flexibility to produce visually

coherent programs.

1.3.2 Identifiers and Reserved Words

An identifier is a symbol used to name a piece of data,
a label or a constant. An identifier is a letter followed
by a string, possibly empty, of letters, digits and
underscores. While identifiers can be of arbitrary length,
only the first ten characters are used by the compiler. For
two didentifiers to be distinct, then, they must differ
within their first temn characters.

Examples:

first
max_size

Certain identifiers set forth in the language
definition have an inalterable meaning and may not be
redefined by PL/STAR users. These identifiers are called

reserved werds.

PL/STAR Reserved Words

AND ARRAY BIT
CALL CHARACTER CODE
CONST DESCRIPTOR DO
DREG ELSE ENDI
ENDM ENDR ENDW
ENTRY GOTO 1F
INTEGER LENGTH MODULE
OF OR REAL
RECORD REG REPEAT
SDREG SREG THEN
TYPE UNTIL VALUE
VAR WHILE XOR

PL/STAR also

BASE REG is

contains one

register that

relocation amcunt for the module.

1.3.3 Data and Types

The quantities that PL/STAR units

is

predeclared identifier.

initialized to hold the

manipulate are its

data. Each piece of data has three attributes that define

it, its type, 1its storage class and its value.

PL/STAR provides two classes

structured.

scalar types

descriptor and character.

There are two structured types in

cf types, scalar and

integer, bit,

PL/STAR, the array

and the record.

An array consists ¢f some number of elements each of
the same type. Arrays in PL/STAR are one dimensional.
Elements of an array are referenced using an integer index.

A record 1is a grouping of elements that are not
necessarily of homogeneous type. Each element of a record
is termed a field and is named by an identifier. The
elements of the record are referenced by the name of the
record and the field identifier. No indexing is used.

Comments can be placed throughout the PL/STAR module to
improve its readability. Comments may appear only between
PL/STAR identifiers, numbers and symbols. The form of a
comment is {* <any text string not including *)> #*).

Example:

(* A comment may take as much space as is

necessary to make its meaning clear. *)

1.3.4 Grammar Specification

The syntax of the language is specified formally with a
Backus-Naur ‘form (BNF) grammar. The PL/STAR grammar is a
set of productions that describe the permissible forms of a

PL/STAR module.

The following sections employ a modified form of BNF to

describe the syntax of the constructs under consideration.

The modifications consist .of the addition of . the .follecwing
meta-symbols:

{) grouping

[+] one or more repetitions

[#] zero or nore repetitions.

CHAFTER 2

Language Description

2.1 Overview of PL/STAR Structure

This chapter provides an introduction to the design of
PL/STAR.

The syntax of PL/STAR, like other SAL’s, is similar to
that of high 1level languages. For PL/STAR, SL/1![6] and
PASCAL[7] served as sources, athough the form of PL/STAR is
adapted to suit the particular needs of its environment.

The compilable unit of PL/STAR is a module. From the
user’s perspective, a PL/STAR module is a separately
compiled subroutine. At present there is no way for a job
to begin execution within PL/STAR. This is a result of the
view that PL/STAR is an addition to the present tools of

systems implementors.

10

A PL/STAR module is divided into two basic sections.
The first section, the declargtion section, defines the data
used by the module. The second section, the code section,

defines the actions to be performed on that data.

2.1.1 The Declaration Section

PL/STAR provides three distinct types of data
definition, constant declarations, variable declarations and
user defined type declarations.

A constant declaration assigns to an identifier a value
that may not be changed within the module. The type of the
constant identifier is the same as that of the constaunt
value to which it is bound. Neither a storage location nor
a register is allocated for a comnstant declaration.

PL/STAR requires that all variables used in a program
be declared. The absence of declaration by default aids
responsible programming. At compile time, a declaration
binds type and storage attributes to the variable
identifier.

The declaration of type with the attendant type
checking is a major departure from the assembly code level.
Type checking is employed to promote reliable software. The
compiler checks that operands of an expression are of
compatible type. When an error in type is encountered the

compller signals an error.

11

There exists also a means to initialize wvariables if
the user desires.

The final type of declaration 4s that of the user
defined type. PL/STAR provides the user a limited facility

to create his own data types.

2.1.2 The Code Section

The code section 3is a sequence of statements that
defines the manner in which the data of the module is to be
manipulated.

A salient feature of PL/STAR is the manner in which its
statements resemble those found in higher level languages.
The similarity is intentional. A high level syntax maps the
linear structure of sssembly language code into a form in
which the flow of coutrol is more apparent.

PL/STAR supplies three control structures, the IF,
WHILE and REPEAT statements., Each statement has a unique
terminator— ENDI, ENDW and UNTIL respectively. One result
of the use of the terminators is the elimination of the
dangling else problem in the IF statement.

The STAR-100 provides an instruction set of sufficient
richness that an wunacceptably complicated syntax would be
the result of providing an operator for each machine

instruction. To allow access to the full capability of the

machine, PL/STAR permits the user to incorporate symbolic

assembly code into his module.

CHAPTER 3

Syntax’

This section provides a detailed description of the
parts of a PL/STAR module. BNF notation is used to provide
a more formal description.

A PL/STAR module decomposes into six parts. In order
of appearance the parts are:

module header,

constant declaration section,

type declaration section,

variable declaration section,

initialization section,

ccde section.

13

14

3.1 The Declaration Section
The symbel table is built within the declaration
section. A description of the syntax used in the

declaration sections follow.

3.1.1 Module Header

In BNF the module header is defined to be:
<module header> ::= MODULE <identifier> ;.

The identifier names the module. its use, though, is
restricted to the production of the loader tables. It is
not defined to be an entry point, although the user mnay
define an entry point with the same name.

Example:
MODULE plsort;

3.1.2 Constant Declaratiouns

<constant declaration section> ::
CONST <constant declaration>[+] | <epsilon>

<econstant declaration> ::= <identifier> = <constant> ;.

The effect of a constant declaration 1is to add the
identifier to the symbol table and associate with it the
value and type cf the cocnstant.

The constant may be of any PL/STAR provided scalar

15

type.

Example:
CONST
wordsize = 64;
one = l3
Both identifiers, wordsize and one, are entered into

the symbol table with type integer and their respective

values.

3.1.3 Type Declarations

<type declaration section>
TYPE <type declaration> [+]

| <epsilon>.
<type declaration> ::=
<type identifier> = RECORD <field list> ENDR;.

<field list> ::
{<identifier> {, <identifier>}[*] : <scalar type> ;

Y+].

In PL/STAR the user may create his owa data types.
Currently, this facility is limited to record structures,
although a general user definition capability is envisioned.

The record structure permits the description of complex
quantities that can not be adequately represented with a

scalar type.

16

Examples:
TYPE
position -= RECORD
x_ccord,
y_coord- : INTEGER;
ENDR;

In this example position is declared to be a type with
two integer fields. With this declaration, variables can be
declared to be of type position.

weather = RECORD
temperature : INTEGER;
pressure : REAL;
humidity : INTEGER;
ENDR;

This declaration demonstrates the uce of

non~homogeneous type fields in a record. Weather is a type

with three fields. Two fields are integer and the third is

real.

3.1.4 Variable Declarations
<variable definition section> ::=
VAR <variable definition>[+].

<variable definition> ::=
<identifier> {, <identifier>}[*] : <type> STORAGE>;.

All variables wused in a PL/STAR module mnust be
declared. The definition 1links a type and a residence to
the variable identifier.

The type of a variable can be any predefined or user

declared type.

A PL/STAR variable may have a residence in a register

17

.or in memory.

All PL/STAR structured variables must be memory
resident. Elements c¢f array and records are allocated
consecutive memory locations. The declared bound of an
array denotes the number of elements in- the array and the
first element of each array has index zero.

The only operations that the language directly provides
for use with memory resident variables are loading and
storing.

The declaration of a variable to be register resident
permits the wuser to specify that the register variable be
saved and restored by called prqcedureS»or'initialized1

These actions are specified by the reserved word used
to declare a a variable register resident:

SREG - register is to be saved and restored by called
procedures

DREG -~ register is to be initialized

SDREG -~ register 1is to be saved, restored and
initialized

REG -~ register is not saved, restored or initialized.

The notation and conventions for the above functions

are based upon the set of STAR Standard Procedures [8].

18

Examples:
VAR

max, min : INTEGER REG;

prime ¢ REAL SDREG;

pl, p2 2 positiony”

mem ¢+ INTEGER;

a : ARRAY [10] OF INTEGER;

rec ¢ RECORD
fi, £2 : integer;
ENDR ;

The registers corresponding to max and min will contain
integers. Neither register is saved or restored. prime is
declared to be a register that will hold a real and will be
saved and restored. pl and p2 are of user declared type
position. The elements of array a are af[0] through al9].
rec demonstrates the wuse o0f a record declaration in the

variable declaration part.

30 105 Initial Section

<initial section> ::= _

VALUE {<identifier> = <constant>;}{*] | <epsilon>.

An initial directive causes loader directives to be
generated that will initialize the variable to the desired
value. Type checking is performed to enforce compatibility.

Example:

VALUE
max = 100;
Before execution, the loader will initialize max to the

given value.

19

3.2 The Code Section

The code section is a 1list of execuiable statements
introduced by the reserved word CODE. Statements comprising
a list are separated by semicolons. PL/STAR statements are
the assignment, GOTO, WHILE, REPEAT, IF, CALL, ENTRY and

empty statements.

3.2.1 Assignment Statement

<assignment statement> 3::= <left hand side> =
<expression>.

The effect of an assignment statement is the alteration
of the value of a variable designated by the left hand side
te the value of the expression on the right hand side of the
assignmeat operator. |

The left hand side may refer to either a memory or
register resident wvariable.

A memory resident variable can be referenced either by
its name or by indirect addressing, that is, in PL/STAR, by
a register variable that contains the address of the memory
resident variable followed by a caret (7).

A register resident variable is referenced by its name.

While the forms that an expression may take are varied,

most of the forms reduce to one machine instruction.

20

Certain loads and stores require two. The limited nature of
the PL/STAR expression contrasts sharply with that found in
other PL360 derivative languages that generally permit
expressions of arbitrary length.

Arbitrary length expressions were avoided for three
reasons.

A significant feature of the design of PL/STAR is the
deliberate omission of register management in favor of
allowing the user to control the allccation of registers. A
result of this policy is the absence d? registers to hold
intermediate results in expression evaluation. Expressions,
therefore, had to be 1limited to a form that maps into a
single machine instruction.

An unavoidable exception to the single instruction rule
occurs with certain load .and store sequences in which a
register is needed to hold an address. :In this case a
register from a group of designated temporary registers is
used to hold the address.

The second reason is that structured assembly languages
in general do not include parentheses and treat all
operators as having equal precedence. Thus statements axre
translated strictly left to right. It is quite possible,
therefore, that the meaning of a multioperator expression to
a structured assembly language translator differs from the
meaning a programmer intended.

The third reason is pragmatic. It was felt that the

21

form employed 1o PL/STAR would be sufficiently ppwefful to.

satisfy most users.

3.2.1.1 Conditionsg

A condition is -a relationship between two register
resident variables. The relatiomal operators are‘>, >=, <,
<=, = and <>, Each condition has a boolean value. The
value of the condition is true if the stated relationship
holds between the variables, false if the relationship does

not exist.

3.2.1.2 Expressions

An expression takes one of four forms. A constant
generates the appropriate load instruction. A memory
resident variable generates loads. A register resident
variable generates store or register transfer instructions.

An expression can also be of the form <operandl>
operator <operand 2>. Both operands must be register
resident. The operator can be arithmetic (+, -, *, /) or
boolean (and, or, xor) or relational (L, <=, >, >=, =, <>).

Examples:

pl.x coord := max;

loc := loc + increment;
’
loc™ := min;

53]
N

The first statement shows an assignment into a field of
a record. The value of max is stored in the memory location
assigned to field x coord of pl. The secoﬁd exanple adds
the value of increment to the value of location. The third
statenent places the value of min into the storage location

pointed to by loc.

3.2.2 I1f Statement

The IF statement is available in both the IF-THEN and
IF--THEN~-ELSE forms. The BNF form of an IF statement is:

<if statement> ::= IF <ccndition> THEN <statement list>
ENDIL |

IF <condition> THEN <statement list> ELSE <statement

list> ENDI.

23

Examples:-
IF cand > max THEN
max := cand;
ENDI

IF loc < stop_place THEN
loc := loc + increment;

1 ~

cand := loc”;
ELSE.
answer := max;
ENDI
The examples illustrate the two versions of an IF
statement. The semicolon before the ELSE is legal in
PL/STAR. An empty statement following the semicolon
completes. the parse of the statement list.

The effect of the IF statement is the same as that in

high level languages.

3.2.3 Iterative Statements

There are two iterative statements in PL/STAR, the
WHILE and the REPEAT statements.

<while statement> ::= WHILE <condition> DO <statement
list> ENDW.

<repeat statement> ::= REPEAT <statement 1list> UNTIL

<condition>.

24

Examples: -
WHILE loc < stop_place DO
loc := loc + increment;
ENDW
REPEAT
loc := loc + increment;
UNTIL loc >= stop_place
These statements cperate in the same manner as they do

in other high level languages.

3.2.4 GOTO Statement

<goto statement> ::= GOTO <label>.

Example:
GOTO maxfound

A GOTO statement transfers contrel to the statement
labelled by <label>. A label is an identifier, and a
statement is labelled by preceding the statement with the
label and a colon. Labels are not declarea.

Since PL/STAR is a one pass compiler, the relative
address corresponding to.the label may not be known when a
GOTO is encountered.

‘This situation can cause less than optimal code to be
generated. The STAR® provides two types of branch
instructions, one type 64 bits long, the other 32 bits long.
Branching is expressed as an offset from the current
contents of the program counter. For space and time

considerations, the 32 bit branch instruction is preferred;

25

however, it cannot express as large a jump as the full word
‘instruction. When a label with an undetermined address is
encouintered in a GOTO the full word branch 1is generated
although the half word instruction may have sufficed..

GOTO’s are permitted to branch only within the module..
An attempt to branch to a point outside the module results
in a compile time error. It is possible to branch into the
bodies of control structures, although the practice is

discouraged.

3.2.5 Empty Statement

Empty statements contain no symbols and cause no
action. They can be labelled and be the object of branches,
however. Empty statements occur mcre frequently than one
might suspect. Consider the following WHILE statement in
which C is a condition and S1 and S2 are statements:

WHILE C DO
Sl;
S2;
ENDW

There is an empty statement between S2; and ENDW.

Since semicolons separate statements and ENDW is not part of

the statement list, there must be another statement after

S2. The only possible statement is the empty statement.

26

3.2.6 ¢Call Statement

The CALL statement transfers control to an external
procedure and passes 1t parameters. The form of a CALL

statement is:

<call statement> ::= CALL <procedure name> |
CALL <procedure name> (parameter {, parameter}[*]).

A parameter can be a constant or a register vériable,
which passes the contents of the register varisble, or a
register variable in brackets, which passes the contents of
the address pointed to by the register variable.

Examples:

CALL extproc{(max, [loc], 5)
CALL proc2

To execute the first CALL statement, control is
transferred to external entry point extproc. The values
pointed to by parameter list entries are the value of max,
the value contained in the memory location whose address is
in loc and the value 5.

The second statement transfers control to a point which

takes no parameters.

3.2.7 Entry Statement

An ENTRY statement, which must be labelled, establishes

an entry point in the PL/STAR module. The entry point is

27

referenced by the label. of the ENTRY statement. The form of
an ENTRY statement is:

<entry statement> ::=

ENTRY | ENTRY (pazrameter {, perameter}[*]).

The ENTRY statement invokes the standard procedure
entry sequence. The caller’s registers are saved and the
called module’s registers are loaded.

A parameter is either a register variable or is empty.
The register parameters are loaded with the values of the
corresponding arguments from the calling procedure.

Example:

sort_proc:
ENTRY (max, min)
Max and min are loaded with the values contained in the

caller’s parameter list.

CHAPTER 4

Implementation of the PL/STAR Compiler

This chapter supplies a description of the structure
and implementation of the PL/STAR compiler.

PL/STAR is a one pass syntax directed compiler written
in PASCAL. The compiler is built using a compiler writing
system developed by Professor Michael Donegan of William. and
Mary. A discussion of the system is in chapter six.

The remainder of the chapter 1is divided into three
sections. The first is a description of the symbol table.
Following that is a discussion of the compiler functions.
The chapter concludes with an overview of the form of the

loader tables generated for the STAR.

28

29

4.1 The Symbol Table

The most conspicuous data structure 1in the PL/STAR
compiler is the symbol table, in which information
describing the data of the PL/STAR module is stored.

The symbol table for PL/STAR is a straightforward
‘mechanism, a list of entries corresponding to the declared
data. Entries are generated for variables -and constants,
and new entries are added to the front of the list.

Information kept on each symbol is its name, type and
storage class.. For arrays the number of elements is saved;
for records a pointer to the record definition is kept. The
register allocated is recorded for register resident

variables.

Symbol Table Entry Fields

IDFIELD name of symbol

KIND type

STORE storage residemnce

ARRAYSIZE bound of arrays

ADDRESS relative bit address in data base

REGISTER register assigned to register
variables

INITIALED true if variable is initialed

NEXT SYM pointer to next symbol in table

a case variant that can hold & value for a scalar
type or a pointer to a record type

A new entry in the symbol table 1s manufactured in

procedure ENTER. ENTER first determines that the symbol has

~30

not been previously defined and then calls procedure CREATE,
which generates a new symbol table entry and fills its
fields with spuricus values. ENTER then fills in the proper
values and fixes the pointers.

Separate lists maintain information on labels and entry
and external entry points. An entry in the list of labels
consists of the label identifier, the relative address and a
pointer to a list of addresses at which the label is used in
forward branches.

Information kept on entry points defined within the
PL/STAR module is the identifier of the entry point and its
relative address. For external entry points all the

addresses from which it is . called are also saved.

4,2 Syntax Analysis and Code Generation

The PL/STAR compiler is in two parts. In the first
part the symbol table is built, the syntax analyzed and code
generated. In the second half the loader tables that are
comnunicated to the STAR are generated. This section deals

with the first half.

31

4. 2.1 Parsing Routines

The compiler generating system supplies two procedures
that execute the parse. One, READTABS, initializes the:
parser tables.

The other, procedure PARSE, is the driver of the parse.
It maintains the stack of symbols, causes tokens to be read,
and directs the execution of semantic actious.

The form of PARSE is a lcop. Upon getting the next
input symbol, ¢cr toker, PARSE determines the action
correspouding to that symbol and the current state. If the
.action requires a. shift, the symbol is pushed onte the stack
and a flag is set to get the next symbol.

If reductions are necessary, the appropriate semantic
actions are invoked and the requisite number of states are
popped from the stack. Each reduction results in a new
action.

If necessary, the next symbol is scanned.

This process continues until either an accept state or
an error state from which recovery is impossible is entered.
An accept state is entered after the input program has been

parsed successfully.

4.3 Semantic Actions

The second procedure called by PARSE is SYNTHESIZE.
SYNTHESIZE controls all the semantic actions and, therefore,
the code generation properties of the compiler.

SYNTHESIZE is a large case statement. The case labels
correspond to the rules of the grammar. It is important to
remember that in a syntax directed compiler semanﬁic actions
can be invoked only at the end oi a rule.

More than one rule is normally required to describe a

-PL/STAR form. What follows is a discussion of the actions

taken by the compiler for the varicus statements of PL/STAR.

4.3.1 Module Header

The sole action associated with the module header is
the saving of the module name for use in generating loader

tables.

4,3.2 Constant Declarations

For each constant declaraticn a symbol table entry is
generated. In addition to the notation that the entry
describes a constant, the entry includes the identifier and

the type and value of the constant.

33

4.3.3 Type Definitions

In the type section a list, headed by FIRST TYPE, is
built. Each entry in the list corresponds to a user defined
type. A list entry consists of the type identifier, a
pointer to the type definition and a pointer to the next
list entry.

The definition of a record is itself a list. An entry
in a vrecord definition list contains the field identifier
and its type. Each element of a record definition may have
.as many as ten identifiers declared to be a single type. To
handle this situation, the compiler maintains a list of ‘the
identifiers, and -an entry for each identifier in that list

is generated when the type is known.

4,3.4 Variable Declaratiomns

Storage and register allocation is accomplished in the
variable declaration section.

To facilitate the saving of registers, all SREG and
SDREG type +variables must occupy consecutive registers and
words in the data base. To do this SREG and SDREG variables
are allocated registers beginning with register 20 (hex),
the first general purpose register available to the user;,

and word 0O of the data base. As the declarations are

34

encountered, the compiler assigns.offsets from the first eof
the type for REC and DREG type registers. An offset in bits
is kept for memory resident quantities also. After the last
declaration 1is processed, the proper amounts are added so
that the REG and DREG variables follow the SREG and SDREG
variables and the memory resident variables follow the DREG

and REG ones.

4.3.4.1 Arrays and Records

For an array the proper number of memory words are
allocated. The address contained in the symbol table for
the array is the address of the first element of the array.

A list of identifiers may be declared to be of a record
type enumerated in the variable declaration section. The
same list as that built for a record in a type declaration
is constructed, and that list is walked through to allocate
memory for the fields.

When a user defined type is encountered, the compiler
finds 1its entry in the list of user defined types and its

definition is traversed to allocate storage for the fields.

35

4.2.5 Initial Section

In a value directive the symbol table is searched for
the identifier, a flag 1is set to show the loader table
generation routines that an initialization is to be done and

the initial value saved.

4.3.6 Code Section

At this point in the parse the symbol table has been
-completed. The compiler uses the information contained ir
the symbol table to generate machine instructions in the
code section.

A discussion of the actions corresponding to PL/STAR

forms follow.

4,3.6.1 Labels

When a label is encountered, the compiler searches the
list of 1labels for an entry that matches the label
identifier. If a match is not found, the 1label definition
has preceded its use in any GOTO. The compiler adds a new
entry in the label list containing the label identifier and
the relative address of the label.

If a match does occur, the label was used in a forward

36

branch. The compiler can then enter the proper relative

address in the list entry.

4.,3.6.2 GOTO Statement

A GOTO statement maps into one of the two types of
unconditional branch instruction that the STAR supplies.
Whether the halfword or fullword instruction is used depends
upon the distance of the branch destination from the branch
instruction.

The compiler searches the label list for the label. If
it has been 'defined, the halfword branch instruction is
generated if the branch destination is no than 255 halfwords
distant. If the destinaticn is more than 255 halfwords
away, the fullword branch instruction is generated.

If the label has not been defined, an entry in the
label list is generated for the first occurrence of a label.
An entry in the list of forward references is made so that
after parsing the code generated can be altered to show the
proper branch displacement. A fullword branch instruction

must be generated since the final displacement is not known.

(18]
~4

Example:
Assume labell] is determined to be address =n and the
‘value of the instruction counter is i.

The translation of the statement GOTC labell is

BADF i-n if n =41 and i-n < 256
IBXEQ,F n-1i,0,0 ifn>i
IBXEQ,B i~n,0,0 if n < i and i-~n >= 256

The format used in this paper to shaw branch
instructions differs from standard META. Following the
instruction mnemonic 1is the branch displacement. For
conditional branch instructions the registers to be compared
follow the displacement.

BADF is the halfword branch instruction generated when
the 1location of the branch is less than 256 halfwords from
the value of the instruction counter. In PL/STAR the BADF
is always an unconditional branch instruction.

The 1IBX series are fullword conditional branch
instructions. Following the 1IBX is a two letter menmonic
identifying the condition being tested. The ,F indicates a
forward branch and the ,B a backward branch. The IBX
instruction causes the two registers to be compared and the
branch taken if the tested condition is met.

The two IBX instructions above are in effect
unconditional branches. Register 0, the contents of which

is always zero, is tested for equality with itself.

28

4.3.6.3 Assignment Statement

The code generated by the compiler for an assignment
statement depends upon the form of the statement.

l. <register identifier> := <register identifier>
<operator> <register identifier>.

This form translates into a halfword instruction in
which the three registers are the operands o¢f the
instruction. The specific instruction generated is
determined by the operator and the types of the registers.

Example:

rl := r2 operator r3 generates the halfword instruction
OPCODE r2,r3,rl, in which OPCODE 1is determined by the

following table:

OP/TYPE INTEGER REAL BIT
+ 63 62
- 67 66
* 3D 6B
/ 6F
AND Vo)
OR 2E
XOR x

2. <register identifier> := <operand>.

If the operand is a constant, a load immediate is
generated. If it 41s another register, a register to
register assignment is performed. If the operand is a

storage resident variable, a load instruction is generated.

39

A storage resident quantity can be-- specified in two
ways. A register identifier followed by a caret, indicating
indirect addressing, causes one instruction to be generated.

A variable declared to be storage resident, however,
requires an additional instruction to load a temporary

register with the address of the operand.

Exanmples:

rl := 6 generates ES rl,6

rl :=65536 generates EX r1,65536

rl s=1r2 generates RTOR r2,0,rl

rl :=mem generates ES TEMPREG,address(men)
LOD TEMPREG,BASEREG,rl

rl :=r2° generates LOD r2,0,rl

rl :=r27[r3} generates LOD r2,r3,rl
The ES and EX instructions both place the second
operand into the register designated by the first operand.
ES is a halfword instruction used for integers less than
65536; EX is a fullword dinstruction is used for larger
integers. RTOR is a register transfer instruction.
3. <register identifier> := LENGTH(<register identifier>).
An instruction that replaces the contents of the result
register with the leftmost 16 bits, called 'the length field,
of the operand register is generated.
Example:
rl := LENGTH(r2) generates LTOR r2,0,rl

4. <memory resident variable> := <operand>.

40

FYor this form store Instructions are generated. if the
result field is specified by indirect addressing, only one
instruction is needed. If the result field 1is a memory
resident variable, however, the extra instruction to load a

temporary register with its address is needed.

Examples:

mem := r2 generates ES TEMPREG,address(mem)
STO r 2,BASEREG, TEMPREG

rl™ :=r2 generates ST0 r2,0,rl

4,3.,6.4 Conditions

One part of each control structure is the controlling
condition, a relationship between two registers. The
compiler maintains pointers to the two symbol table entries

and a record of the relational operator.

See section 3.2.1.1.

Examples:
cand < max generates IBXGE cand,max
loc >= stop generates IBXLT loc,stop

4.3.6.5 While Statement

The first action specific to a WHILE statement occurs

41

after the reserved word DO is recognized. The relation of
the condition is complemented, that is, equal becomes not
equal, greater than becomes less than or equal etc. A
fullword branch using the complemented relational and the
two registers is generated so that a branch around the WHILE
statement occurs if the original condition is false. The
address of the branch is pushed onto a stack of addresses.

The statement list of the WHILE, which may itself
contain other control structures, is compiled next.

When the ENDW 1is seen, the address o¢f the branch
instruction at the head of the statement is popped from the
stack. An unconditional branch to there is generated as
well as the information needed to fix the displacement of

the WHILE branch.

Example:
halfword
address
WHILE rl=r2 DO i,i+l IBXNE,F n-i+l,rl,r2
<statement i+2 code for
list> n-1 statement list
ENDW n BADF n-i

An IBX instruction is used in place of the BADF if n-i
> 255. The body of the WHILE statement is executed only as
long as the condition is true. An IBX dinstruction is
generated, therefore, that will cause a branch about the

WHILE body when the condition is false. The condition of

42

equality in the PL/STAR code thus becomes the IBXNE of the
generated code. After the code for the statement ‘list of
the WHILE has been completed, an unconditional branch back

to the condition test is made.

4.3.6.6 Repeat Statement

The treatment of the REPEAT statement 1is similar to
that of the WHILE statement. The current relative address
is pushed onto the stack when the word REPEAT is seen, and
the statement list compiled.

After the concluding condition has been done, the stack
of addresses 1is popped to obtain the address of the first
statement in the statement list. The condition”s relation
is complemented and the branch generated to return to the

top of the REPEAT.

43

Example:
halfword
address
REPEAT
<statement i code for
list> n-1 statement list
UNTIL rl=r2 n,n+l1 IBXNE n-i,rl,r2

The expansion of a REPEAT statement consists of the
generation of the code for the statement list followed by a
conditional branch to the first instruction of the REPEAT
statement list if the condition is false.

Since the termination cordition for the example is the
equality of the two registers, the branch tests for

inequality.

4.3.6.7 1f Statement

The IF statement is more complicated since it may or
may not contain an ELSE part. After the THEN, the current
relative address is stacked, the relational complemented and
a' branch instruction generated. The statement list to be
executed if the condition is true is compiled.

After the statement list is completed, the next symbol
can be either an ELSE or an ENDI. 1In either case the
address of the IF branch is popped and the information to
fix its displacement generated.

If the symbol is an ENDI, the statement is completed.

1f the symbol 1is an ELSE, the current address is
stacked and an unconditional branch about the ELSE code is
generated. The ELSE statement list 1is compiled. The
address of the branch about the ELSE is popped and the

information to fix its displacement is generated.

Examples:
halfword
address
IF rl=r2 THEN i,i+1 IBXNE,F n-i+l,rl,r2
<statement i+2 code for
list> n statement list
ENDI

The IBXNE,F statement causes a branch to the statement
following the body of the IF statement if the if condition

is not met.

IF rl=r2 THEN i,i+1 IBXNE,F j+2-i,rl,r2
<statement i+2 code for
list> j=1 statement list
ELSE j,j+l IBXEQ,F n-j+1,0,0
<statement j+2 code for
list> n statement list
ENDI

In this case the IBX condition will branch to the first
instruction of the ELSE part if the condition is not met,
i.e. rl <> r2. After the THEN code, an unconditional

branch is generated to skip the ELSE part.

45

4.3.6.8 Call Statement

For a CALL statement the compiler adds the external
entry peint to the 1list of entry points if it does wnot
already appear there, and adds the current address to the
list of addresses from which the entry point is called.

The next step is to process the parameters, Parameter
addresses are placed in consecutive locations in memory. A
descriptor placed in a register allows the called procedure
to reference them.

There are three forms of parameters., If a parameter is
a constant, the address of a memory location containing the
constant is placed into the parameter list.

The second type of parameter is a register identifier.
The contents of the register is placed into its location in
the data base and the address of that location is placed 1in
the parameter list.

The third form is a register identifier in brackets.
In this case the register contains the address of the
parameter. A store instruction is generated to place the
address contained in the register into the parameter address
list. Finally the code for a procedure call 1is generated.
An instruction is generated that will place the address of
the entry point into register lE (hex). This address is not
known at compile time; the loader places the proper address

into the instruction. The parameter descriptor 1s placed

46

into register hex 17. A branch and link instruction sets

the return register and branches to the called procedure.

Code for Procedure Call
RTOR entrypoint+l,0,1lE load link register

RTOR parameterdesc,0,17 load parameter descriptor
BSAVE 1lA,C,entrypoint branch and set return

4.3.6.9 Entry Statement

In an ENTRY statement the associated label is added to
the 1list of entry points, and the code for an entry is
generated. The sequence of instructions saves the caller’s
registers and designates which of the called module’s are to
be saved in the case of a call. Finally the registers that
are to be initialized are loaded with their initial values.

The next step is the handling of parameters. All the
formal perameters must be registers. Into these registers
are placed the contents of the parameter list entry for the
‘corresponding actual parameter. Since this entry will
normally be an address, the load instruction to fetch the
value of the actual parameter is the responsibility of the

user.

47

Code to Establish an Entry Point

SWAFP 0, 15,1C save caller registers
ELEN 1F,0

RTOR 1C,0,1D update stack pointers
RTOR 1B,0,1C

ELEN 1C,x x 1s number of registers to be saved
IS 1B,x*64 Increment the dynamic stack pointer
ELEN 1lE,=z z is number of registers to be loaded

for executiocn
SWAP 1E,14,0 Load registers

48

4.3.6.10 Completion of Code Generatiocn

Upon encountering the reserved word ENDM the standard

procedure exit sequence is generated.

Exit Sequence
SWAP 1D, 15,0 restore caller’s registers
LSDFR 060000 load data flag register
BADF 1A return control to caller
After parsing has been completed, the forward branches
associated with WHILE, IF and GOTO statements must have the

bles can be

proper displacement added before the loader ta
generated.

At the conclusion of the WHILE and IF statements and
after the 1labels of forward branching GOT0’s have been
defined, entries are made in a list, ordered by increasing
relative address, of displacements that have te be added to
the instructions contained in those addresses. It is then a
simple matter to transfer code, as halfwords, from the file
to which the code was generated originally to a new £file
with the proper displacements added.

Following this operation the listing and symbol table

are printed.

49

4.4 Generation of Loader Tables

PL/STAR generates four tables to create a load module.
An overview of their contents follows.

The MODULE table is the header for the load module. It
contains the name of the module, the length of the tables,
the length of the code, the length of the database and
pointers to the other modules.

The CODE table contains the relocatable code.

The EXT ENTR table contains a list of entry point and
external entry point names.

Following the list of names 1is- a list of one word
descriptors for the names in the list. A descriptor
contains two fields. The leftmost 16 bits describe the type
of the name, entry or external entry. The remaining 48 bits
contain the relative bit address in the code for ‘entry
points and 0 for external names.

The interpretive data initialization table, named INT
DATA in the tables, contains directives to initialize

storage locations[10].

CHAPTER 5

Module Listings and Sample Modules

This chapter describes the format of a PL/STAR listing
and presents two sample modules that have been executed on

the STAR computer.

5.1 The Listing Format

PL/STAR supplies the user a listing of the code
generated for his module. This information appears to the
left of the PL/STAR source line for which the code is
generated.

The first field on a line is the relative bit address
of the instructions generated for the source line.
Following the relative bit address is one or two halfwords
of code. These fields are printed only if instructions have

been generated for that source line. If more than two

50

51

halfword instructions have been generated for a line, the
remaining dinstructions are printed on succeeding lines
before additional source.

Following the generated instructions are the number of
the source line and the PL/STAR source line itself.

After the source has been 1listed a symbol table
directory is printed. The type, storage residence and
database address of each variable is printed. For each
register resident variable, the register assigned to the
variable is printed. For array variables the size of the
array is printed.

To conclude the symbol table a list of all 1labels and

their relative addresses is printed.

5.2 The Sample Modules

The two examples provided are both called from SL/1
routines, 1listings of which are also provided. The SL/1
modules initialize the data on which the PL/STAR modules
operate, call the PL/STAR modules and print results.

The first PL/STAR module, PLSORT, sorts into descending
order an integer vector of arbitrary length.

No code is generated in the declaration sections as the
symbol table 1is being built. At line 24 the first eight

halfword instructions comprise the standard entry sequence.

52

To load the parameters the address of the parameter list is
placed into a temporary register. The contents of the
parameter list are then placed into the corresponding
registers with dndividual 1load dinstructioas. Succeeding
parameter list values are accessed by executing an add
immediate instruction on the temporary register.

Note that the four instructions to set the variable LIM
could have been expressed in one instruction if éL/STAR did
not limit expression length.

The remainder of the module is just a loop with another
loop nested within it. The cuter loop is delimited by the
- branch instructions on lines 34 and 63. These instructions
were generated during the parsing of the WHILE statement.
The first segment of the loop initializes the variables MAX,
CTR and SWITCH wusing a load, an add and a register to
register assignment respectively.

The second segment of the 1loop 1is the imner loop
defined by the branches on 1lines 42 and 53. The loop
compares each remaining member of the vector to the value of
MAX. If an element greater than MAX is found, that element
becomes the new value of MAX and SWITCH is assigned its
location.

The final portion of the outer 1loop, on lines 55
through 63 accomplishes the exchange and increments the

index.

T 39vd T *ET/L0/6L *E0CR2CIT]

B T S ooty

i

£1340S714

L

ST ¥0193A

£(\8 €0

(FITIINT ¢L0TITOIIIX IIFIINY) IINYIDOVT qqzmuHmma

(S)QNDD3S 8€°0 t JWTL NOILVIIdW3D

*SO¥0M (1VWIJ3Q) 60T ST 3ZIS 3SvA viva

*SQ¥0M (TYWID3Q) 9€¢ ST O3LVAINID 300D 40 INNOWY
L - . 02T
fRURI- 6T

N ¢JUNI- 8T

~ S—— - vmriaisome - - oo e e tam . mare mm— NH R

9 61 ¢x€'¥ (AD) I[I8A- 7 o1 T

ST ¥OLJ3A ¢ONILYOS ¥314V ¢ ¢/ # JITIR- = 7 o1 7

ONIL¥DS 3¥0438

T 2T

£(0TATIL¥DSTId 1T90= ET
€4 6I ‘xe # (AI) JITYR- 2T
vttt o 3ITR- T

£1$3114 3INAIIOI- o

€6 66 €T €¢ €4\ = AY) J«HHMZH-
€AT [OT] §OTIIX mmauwzu-

TN MDY O~

£1S347d NI938 1S317d MJ:aan-
¥TR - 1775

L SOMAN =1 WIT o€ %200£23L 031 C000
o T o (+ IN2WITZ ¥0L193A LSYT 40 $SINAQY 0L WIT L3S %) 62

. R N (+ INIW3ITI2 ¥9L23A L2 ;
» e e 1S3T4 40 SSINAAV SVH XI #) LS¥T4 =@ X1 92 92002284 021G00C
. e L (% O¥CM ¥3d SLI9 #) £49 =1 YNIJIALXTIS G2 0%C0T23€ OVICO0O
R B 0%00€03€ 08T:(D00
B B L . _£200€03. O%00E04E 0%1C000
e — e i o ... 2200£03. _€000L18L 001C00C
. . R _00%T310Z . 000031Ve 020(000
SO . 00T09TH4E . L000D0TVE 050¢€000
e e e e B2T008T8L QT00218Z _0%0C000
. e SUWAN C1SNTHIAYLING :1¥NSTd %2000041Y2. _O161000GZ 000CQ00.

3007 . €2

(TN

-

T T = 3ng
e e e INIvA

‘ , oo £95% ¥IOFINT @ dudL
S “INYD €3N
e 1) fxyy

. £93% %I9IINT X1
. SHOLTIMS “UTT

L o CUNN €1SHT4
) e £53¥ ¥3I9TIINT ¢+ WNDHALXIS
R . = e
e e e e e R d7A] _ - I 3 .
. e . L - e el
N T (x *¥OLJ3A IHL 40 TZIS THL ANY ¥0L23A s T T)
T T T JHL 40 INIW3TT LSHT4 3HL 40 SSINAAY IHL IV s]
- o IHL 01 Q3SS¥d SINIWNOWY SHL *¥30¥0 INIONIISIQ & T T o T
T e 0INT ¥OLD3A ¥3I9SINI NV SI¥OS 370704 SIHL %) E S
o e e A o @
e T £143S7d4 3700DW IO o

M

£3NN4ALXIS + XT =1 X1
(% INJW3T3 IXIN 0L XTI 13S %)
XYW =t oX1
£dWAL =t (HOLIMS.

£,X1 =3 dWsl

{x XTI ONV XYW FONYHIXI %)

EMONT
CANO4ALXTIS + 1D =¢ ¥1D
(«INIWITI ¥0LI3A LX3N 40 SS3IHQAY 0L ¥1I 13S%)

fTAN3

91D =: HILIAS

£ONYD =t Xy
A% NOTLVI0Y SEI 3JLON OGNV XYW M3IN L3S *)
NIHL XVW < ONVD 4T

£L41D =r aNYY
00 WIT => ¥1) 31THAM
(% ¥0123A NI S3NIVA ONINIVWIY 153

C¥N0AALXIS + XTI =t 3D
fLYI =3 XVW

(% YOL23A NI ONNOY 3nTVA LS39¥VY1
40 NOTLvI0 40 S$S34Q0v SI HILIMS #*) €XT =t HILIMS

(x 473517 HLIM
INIWITIT LSV IHYAW0D 01 433N ON #) 0a WIT > XI 3
W + LSYT4 =t
£YN04ALXIS % WIT =3
£IND = NIT =

{WAON3 69

GN13

x)

THM

WIT
WIY
W1

%9
€9
29
19
09

33

84

VIOOOKEE

0000908€ 006TQTGL

L2009242

2T009%h¢ce

921292¢9

80009%€E
921282€9

LZ00VesL

v¥2098¢23L

00426000 82004068

821292€9
12009232

62009282

L 00%2€T00 92004028

92%222¢9
212y eae
\ZL TA RN

006 €000
09%€0CG
0V» 0020 .

08 % (LUT

82006¢dL 0»% (000

00% €000
03€C000

62008264 0J€C000

0veCo00

0029000 v20050%8 _09€ 0000

0%€C000
00€ €000

022000 .
022 €000

QveCo0o .

092 (000.

0%2(GC0
022000
002 G000

93y
PEL:}
23y
PER-]
93y
93y
93y
93y
934
93¥
93y
93440s

39v¥401iS

4393FINT
¥30JUINIT
¥39ILINI
L ERENT
4393INT
4393 INT
Y323INI
d30IUINI
43931INI
¥3IOIINT
3393 UINT
¥393UINT

34Al

37IS $S3¥aQV ¥3LSIO3Y

AVHYY

%9
821
261
962
02¢
8¢
ByY
clg
9LG
0%9
204
0

0000000

12000
22000
€2000
%2000
62000
92000
12000
82000
62000
v2o000
82000

02000

140874
$338v1

dNd3ALXIS
1914
WNN

WI3
HOLINS
XI

XV

AL 2

IND

NV
diW3l
934735V4

T0GKHAS

379VvL 09WAS

LR

__.SI_¥0123A_ONIL¥0S 3

U

P T I

NOCOM~ONMAHOD
—~
i

<
~t

¥3ldvy

AN O T O
. — o~

40438

58

The purpose of the second module, TESTMOD, ‘is to
demonstrate the use of a record.

The entry code is handled in the same manner as in the
first sample module. The assignments into the record fields
are examples of cases in which a temporary register 1is
needed for a store.

The assignment SIZE := SIZE™ is necessary to place the
actual size of the vector into the register since the
parameter list contains the address of the parameter.

The content of the IF statement has been manipulated to

show an IF-THEN-ELSE construct.

{S)ANDD3S 8E°0 : 3WIL NOILVIIGWOD

JE *SO¥OM (TYWID3A) 20T SI 32IS 3Sv@ viva.
. S *SO¥OM (TVWID3Q) %2 SI G3LV¥INZD 300D 30 LNFOKY.
B - (ORI 2 .
‘‘‘‘‘‘‘‘ I i - _ £3aR3- 33
e - § £4 €1 €ONDTLVOOT NI SIS
e - SET €y= INIVA WAWIXVW o €//7/7///17/77% (30¥1d xvi) JITSR-_ 41 .
e - £030v7d ‘XYW ‘G ATICOWLSIL TIFI- 51
. ~ - a1
B - £21- =: 30V1d= _ ol
e - L £20- =1 XVH- 3
e I) - £30y1d . ¢XvW_SIFIIRT- SIT L
‘‘‘‘‘ . - - £z1S3174 IINAITIONG- 1
S - B} - ¢
. R - £\ G T €Z ¢g\ = AT) TFTIIRT=- §
R - - L
e e e e e - fAT 61 ¥DIJIR FIDIINI- . S
—) - . f00WLS3L (IIFIINY - - U
e e e e IO . - “FIFTINT ¢YITIINT ¢(gI1Y¥TITIN F3ITIINT) IINVIJOFT TINIIIN:-. ot
e e e e .- - £21S317d NI938 ziszild FINOOR- 1

2YIR - TS

IHL

(% NN¥ 125 #) SIXT =¢ NNY

03097 f3LISTXVW €3ZIS FIXTIANING :QOWLSAL

3009

£2 = 310 T = INO %9 = 37ISO¥OM
INTYA

£3dA1034 ¢ 23

€933 ¥393INI

: 39VId YUNN €TXT €3ND ANV
£93¥ ¥393INT :

4L SNNY 63ITIS €37TSOANUDM

934 ¥3I9IUINT @ dW3IL €3LISTXVM XV

dYA

£AONT
§YI93IUINT ¢ 30VId “XVY)
QA0I3% = 3dAL2IY

3dAl

(x *A0133A MIOIUINT NV 40 ¥7943W LS3O¥VI

SHL 40 NOTLVI01 QNV 3INTIVA IHL SN®ALI¥ I7nQ0U
*04¥023¥ v 40 3SA IHL SILVELSNTIIT 2In00W SIHL %)

£800WLS3L 271Na0W

32
Le

9200ve8L .022C000
0%00eCd¢
0%00€0dE 0GJT(C0C
0%¥C0e0d4de 0810000
0%00€04e 04T (CCHO
v200€03L €002L18L 0OGLCQOO
00%T3T4L (Q00031ve 0J0C0GO
... 0010973z, 2000JTve . 080C000
QT009TeL QT00218L 0%0C000.
00004Tv¥2 JTSTI00CGL 000CO00.

002 G000
J200€03L
2200€03L
G200€03L

o .+ i e = e e ammarss |

P— —— e e e L S i s ot b4 e

fLANT 19 00009089¢
£dWaL =t ,30v14 54
£3071d*03% =3 dW3L 19
f4W3L =t L3LTSTXVNY LS
EXVW®O3IY =3 4W3L 96

207 ONV XVW NMNL13N %) GG

(% Q¥023¥ WOd4 SINTVA

00610104
Q9 £€2002324¢L

£202€03L O0%E0E0LE
_ £200224¢
T £202€03L. _08E0E£03E

Y1000%€€ 029C000 .
036 (000

. 026 C000 .

0846 €000
064 (G00.
0250000

- o we I
,) €MAON3 €6 40009%€E 006CO0C
£37150%0M + NON =z NNY 26 . .. _..__92%292t9 0=%(000.
T £ - T .. .
SIONT . oS

£3IND + ¥1D =1 WL _ ___ _6%____0000£000
3573 ey
Ly

£3ND + ¥1D =3 Y1)

9%
.G
Xvyw T A

§ONVD =: XVW*O3Y
910 =v 37v14°03y
fONYD =t

8202€04L _ 0BEOE03IE
L202€04L_ O%€0€03¢

______ LZ62L2€9 . 029C000.

0000%008__ 08%C000_.

12620269 099 Cu00
0246200 .
03¢ (000 .

12000264 _0J€C000 .

8200%0%4 . 08£CO00

(x 0¥023% ILVA4N ONV XYY M3N 13S #) - €y 00T2v000_ ¢
NIHL XVW < ONVD 41 e

EONAY =t ONVD T ob 82009234 09€C000

D0 3ZIS => ¥1D 3TIHM _6E ___ QO0G2NTI00 12005058 02€ CUOG
- 1 ‘
£3775030M + NNY =t NNY LE o . 92%292€9 00£G000
£,321S =: 371S 9€ _ _ _ . . §200623L 052€000.
(+ ¥0123A NI SIN3W313 40 ¥38WAN HLIM 32IS Avel %) s¢

ke .
g€e . 1202¢04L .

(% SQY0I3Y ¥4 %)
(x NOTIVION 3IXIT-TVISVL %)

EXVW =t XVW*IIH
£3ND =1 20VI4°03Y
£ONNY =i XV 1€
(+ IN3W3T3 ¥0LI23A LSHT4 OL O3¥ ONV XVM 135 #) 0€
. 62

L% .6202804L 0%E0€04d¢E

0vZ €000 .
0920900
0%2 €000

0ee0cQsc

1200923L

e et i ey e et s e e st e e e i 4 e

e 0000000 . _ QOWLSEl
I T Y > E7 22 I

S 93y 3797 INT %9 12000 __ . xvW _

. _ - A 53y 4393INT 82T 22000__ ZLISTXVA
. o R e 93 HIVAINTe61 . __ €2000 _. _ dhal

oo 53y ¥IVIUINT 962 ____ 42000 __ 37ISQCH__
T 93% ¥393INT T 9ze T szoco T T Taurs
93¥ ¥IAIUINI LAR% g2000 Mg

93% d292UNT L oL BwY 42000 .)

. . e 934 EEEERE D 276 82000_.__ .. QNI _
- e 93y ¥AIIINT ... 9L5 _ _ £2000_ IND
. e e e 933 MIVIINT . 0%9____ ¥2000___ . IXIL..
e e e e 92Y YIOAINT L L. 90L 82000 .. WON
e e e e 93y ¥3I93LINI 894 22000 _ . 30%l4

R o ¥39IINIT . 2€9____ 33V
L : e o YI9TINI 968 . . XVUW
. e L 03093y [R

- R 93308 ¥39ILINI \ 0 02000_ . 93373

¥

tn)

[olX's

3
)

T T 39v40LS 3dA1 32IS $S3®AQY Ww3ILSTOIY JO6WAS
R o] o CAVAYNY

S o _378VL 106RAS

» NOILYI0T NI ¢

INTVA WNWIXVK

CHAPTER 6

The Compiler Writing System

6.1 Overview

This chapter presents an introduction to the compiler
writing system employed in the PL/STAR project. The system
was developed by Professor Donegan of the College of William
and Mary and adapted for use on the CDC machines at NASA by
the author.

The system, itself writtem din PASCAL, generates the
basis of a syntax directed compiler for a target language
defined by a’LALR(l) grammar. The generated compiler is
also a PASCAL program.

Certain modifications to the original system were made

at NASA to substantially reduce the amount of user

interaction needed.

64

65

The system proper consists of three programs, a table
generator, a table compressor and a compiler synthesizing
program. Also available is a utility program that puts the
grammar vrules and semantic code of an existing version of
the compiler into a form that can be used as dinput to the

compiler writing system.

6.2 Input/Output

Two files are input to the system. The first contains
the grammar for the language. TFollowing each grammar rule
is the code to execute semantic actions associated with the
rule.

The form of an input rule resembles BNF with a few
modifications. The “::=" 1is replaced by a “:“, and the
vertical or bar is replaced by a semicolon. Symbols on the
right hand side of a rule are separated by commas and each
rule is terminated by a period. A ‘$° must precede each
27y 737, 7,7 and . appearing in a rule.

The end of the grammar 1is signaled by a period 1in
column one.

The code associated with a rule appears in the output
compiler following the case label corresponding to the rule
in the SYNTHESIZE case statement. Line images containing

semantic actions must have a blank in column one while rules

must not have a blank there.

66

The output of the system is the parse tables and the
generated compiler. In addition various human readable
lists, such as lists of symbols and state tables, that aid

in debugging are printed.

6.3 Method

The table generator builds the LR{(0) sets of items for
the grammar and adds lookahead information for those states
with parsing conflicts. The generator assigns an integer
index to each symbol in the grammar. These indexes
represent the symbols in the tables.

The table compressor attempts to shrink the size of the
tables.

The compiler synthesizing program merges textfiles
supplied by the user and the table generator program into a
skeleton compiler for the target language. The completeness
of the generated compiler depends upon the sophistication of
the user supplied code.

The generated compiler is written to a segmented file
called BUILDFL by the compiler writing system.

The first segment of the compiler is created by the
table generator program. The segment contains the program
card for the compiler and certain constant declarations.

Two additional constant declarations are contained in

the second segment, supplied by the compressor program.

To this base the compiler synthesizer adds the first of
two sections of wuser supplied code. This first section
contains global declarations and the function and procedure
declarations that are to appear before procedure SYNTHESIZE,
the semantic action driver.

The next file to be merged is supplied by the table
generator. It contains procedures SCANINIT, which equates
reserved words with their integer indices, NEXTSYM, which
identifies the next symbol in the input to the compiler and
SYNTHESIZE.

The last segment of BUILDFL contains additional user
supplied code aund the two system reoutines, READTABS and

PARSE, that execute the parse.

CHAPTER 7

Fvaluation

In [9] Pratt 1lists features of a good programming
language. This chapter attempts to evaluate PL/STAR using
Pratt’s criteria. PL/STAR, though, does not exist in a
vacuum. It is an alternative to the STAR assembly language

and should be judged accordingly.

7.1 Clarity, Simplicity and Unity of Language Concept

Pratt feels that a language should provide its wuser a

coherent and manageable set of concepts with which to

develop programs.

PL/STAR maintains a small number of native forms. The
rules governing their wuse will be familiar to assembly

language programmers.

The PL/STAR language, though, is designed to be used as

68

#-

69

a basis for development and, therefore the features provided

are designed to support a wide variety of applications.

7.2 Clarity of Program Structure

It is in this area that PL/STAR contrasts mest strongly
with assembly language. The control structures of PL/STAR
can make clear the flow of the program logic. The free form
input allows the use of blank lines to delimit code of equal
precedence while indentation can show subordinate or
dependent code., These features properly used result in a
piece of work more nearly resembling the human concept of
the process of the module than the machine’s linear

instruction sequence.

7.3 Ease of Extension

Pratt means by ease of extension a measure of how well
the algorithm can be expressed using the features available
in the language. To address this concern, PL/STAR contains
the structured types array and record, which permit the user

to build his own data structures.

70

7.4 Efficiency

Pratt mentions three distinct aspects of efficiency.

7.4.1 Efficiency of Program Execution

In high level languages the generaticn of the object
cede 1is hidden from the programmer. A result of the close
correspondence of PL/STAR to machine features is that the
PL/STAR programmer controls the nature of the code that is
generated. The efficiency of the code, then, depends
greatly upon the skill of the programmer and is.expected to
approximate that of assembler code writtemn by the same

programmer.

7.4.2 Efficiency of Program Translation

The PL/STAR compiler exists on the STAR access station,
a CDC 6400 computer. After PL/STAR programs compile on the
access station the object files are sent to the STAR for
loading and execution.

STAK assembler code, though, is assembled directly on
the STAR, making any comparison of the two times misleading.
Certainly a CPU second does not represent the same

expenditure of resources on the access station as on the

71

STAR.

7.4.3 Efficiency of Program Creation, Testing and Use

In the sense that efficiency is related to ease, this
topic summarizes the purpose of the language. PL/STAR is an
attempt to bring high level features to asseﬁbly level
programming. It is reasonable to expect that some portion
of the relative advantage that high 1level 1languages enjoy
over assembler in program development time will accrue also

to PL/STAR.

72

APPENDIX

The PL/STAR Grammar

This appendix lists the grammar that defines PL/STAR.
It is the grammar used as input to the compiler writing
system except that it appears below in standard BNF. The
modifications to BNF necessary to make graﬁmars acceptable
input to the compiler writing system are contained in
chapter 6.
[1) <compilation> ::= <moduledef> <eofsym>
[2] <moduledef> ::= <modulehead> <constsection>

<typesection> <declarations> <initialsection>
<codesection> ;

.
.
.
.

[3] <modulehead> ::= MODULE <identifier> ;

4] <constsection> ::= CONST <constlist>

5] <constsection> ::= <epsilon>

6] <constlist> ::= <constelem>

7] <constlist> s:= <constelem> <constlist>

8] <constelem> $:= <identifier> = <constant> ;

— gy g

= TYPE <typelist>

[9) <typesection> :
::= <epsilon>

[10] <typesection>

se e

p— Py ey ey P g ey ey P P ey P ey gy gy g o

— ey

— ey ey —

—

11} <typelist>
12) <typelist> :
13] <typedef> HH

14} <typeid> ii=

15] <recorddef> :

16] <record> HH
17] <recdeflist> :

18] <recdeflist> ::
19] <recdefelem> ::
20) <fieldidlist> ::
21] <fieldidlist> ::
22] <fieldidhead> ::

23] <generaltype> ::
24] <generaltype>
25] <usertype> HH
26] <predeftype> :
27] <predeftype> ::
28] <predeftype> :
29] <predeftype>
30] <predeftype>

31] <declarations>

32) <decllist>

33] <decllist>

34] <declelem>
<bound>] OF <pre

35] <bound>

36) <declelem>
<storage> ;

37) <storage>

38] <storage>

39) <storage>

40] <storage>

41] <declelenm>

bl
42} <declelem>

<recdeflist> ENDR ;

43] <identifierlist>

44) <identifierlist> ::

45] <didlisthead>

46] <initialsection>
47] <initialsection>
48] <dinitlist>
49) <initlist>
50} <initelem>

51} <codesection>
52) <statementlist>
53] <statementlist>

73

:1= <typedef> <typelist>
:= <typedef>

<typeid> = <recorddef>
<identifier>

<record> <recdeflist> ENDR ;
RECORD

<recdefelem> <recdeflist>
<recdefelem>

= <fieldidlist> : <predeftype> ;
= <fieldidhead> <fieldidlist>

= <identifier>

= <identifier> ,

= <usertype>

::= <predeftype>

= <identifier>

::= REAL

= INTEGER
= DESCRIPTOR
= CHARACTER

::= BIT

VAR <decllist>
: <declelem> <decllist>
::= <declelem>
: <identifierlist> : ARRAY {
deftype> ;
::= <constant>
::= <identifierlist> : <predeftype>

::= SREG
: := DREG
::= SDREG
::= REG

::= <identifierlist> : <generaltype>

::= <jdentifierlist> : <record>

b

1= <jdlisthead> <identifierlist>
= <identifier>

::= <identifier> ,

¢ := VALUE <initlist>

::= <epsilon>

<initelem> <initlist>
<initelem>

::= <identifier> = <constant>

I

]

]

::= CODE <statementlist> ENDM
::= <statement> ; <statementlist>
:¢= <statement>

-

NPT PSP Y e ey Y ey

Lo B e B B e B B e B e B e B B e B e T e B e B e I B e B B e B e B e I B o I]

54]
55]
56]

571
58]
59]
60]
61]
6 2]
63]
64]
65]

66]
67]
08]
691]
70]
71]
72]
73]
74)
75]
76)
77]
78]
79}
80]
81]
82]
83]
84]
85]
86]
87]
88]

89]

90]
91]
92]
93]
94]
95])

96]
971}
98]
99]
100]

<statement>
<statement>
<label>

74

::= <label> <unlabstatement>
:= <unlabstatement>
:= <identifier> :

ae

.o

<unlabstatement> ::= <assignmentstate>
<unlabstatement> ::= GOTO <identifier>

<unlabvstatement> ::

ENTRY <entryplist>

<unlabstatement> ::= ENTRY

<unlabstatement> ::

CALL <callid> <callplist>

<unlabstatement> ::= CALL <callid>
<unlabstatement> ::= <instruction>

il

e o
|

<unlabstatement> ::= <epsilon>
<unlabstatement> ::= <structuredstatement>
<assignmentstate> ::= <lhs> <rhs>

<lhs> ti=
<lhs> =
<becomes> ::=
<rhs> $i=
<rhs> e =
<rhs> =
<rhs> HEES
<rhs>

<rhs> =
<operandl> ::=

<operand 2> ::=

<identifier> <becomes>
<identifier> = <becomes>

<operandi>
<operandl>
<constant>
<operandi> <boolop> <operand 2>

~

= <cperand 2> <arithop> <operandZarith>

LENGTH (<identifier>)
<identifier>
<identifier>

<operand 2arith> ::= <identifier>
<operand2arith> ::= <constant>

<boolop> = AND
<boolop> = OR
<boolop> = XOR
<arithop> = <addop>
<arithop> ::= <mulop>
<addop> = +
<addop> 1= -
<mulop> = %
<mulop> =/
<entryplist> ::= <entryplfront> <entrylist>
<entryplback>
<entryplfront> ::= (

<entrylist> ::= <regpair> , <entrylist>
<entrylist> ::= <regpair>

<entryplback> ::=)

<regpair> ¢ := <identifier>

<regpair> ::= <epsilon>

<callid> t:= <identifier>

<callplist> ::= <callplfront> <callplback>
<callplfront> ::= (<callplitem>

<callplback>
<callplback>

::=, <callplitem> <callplback>
=)

(101}
[102)]
[{103]
[104]

[105]

[106]
[107]
{108]

[109]
[110]
{111]
[112]
[113]
[114]
[115]

[L16]

75

<callplitem> ::= <constant>
<callplitem> ::= <callregid>
<callregid> ::= <identifier>
<callregid> t:= [<identifier>]
<instruction> ::= (
<structuredstatement> ::= <ifstatement>

<structuredstatement> :

<structuredstatement>
<condition> ::=
<relop> ::= <

<relop> ::= >

<relop> ::= =

<relop> ::= <>
<relop> ::= <=
<relop> ::= >=
<ifstatement> ::=

[117]) <ifstatement>

[118]
(119]
1120]

[121]
[122]

[123]

1= <whilestatement>
= <repesatstatement>

Il

<operandl> <relcp> <operand 2>

<if> <condition> <then>

<statementlist> ENDI

t:= <if> <condition> <truepart>

<gstatementlist> ENDI

<if> = IF

<then> ¢ ¢= THEN

<truepart> ¢ = <then> <statementlist> ELSE
<whilestatement> ::= <whilehead> <statementlist> ENDW
<whilehead> s 2= WHILE <condition> DO
<repeatstatement> ::= <repeat> <statementlist>

<untilpart>
[124] <repeat>

{125] <untilpart>

:= REPEAT
¢= UNTIL <condition>

76

Notes

[1]) Control Data Corporatibn, Control Data
STAR-100 Computer Hardware Reference Manual (Control
Data Corporation, 1974) p. 1-1.

[2] NASA Langley Research Center, STAR Programing

Manual (NASA Langley Research Center, 1976) sec. 1.2.1,
l. 2' 2.

[3] Niklaus Wirth, "PL360, A Programming Language
for the 360 Computers,' Jourral of the Association for
Computing Machinery 15 (January 1968) : 37-74.

[4] Victor S. Foster, "MIDAS: A Mid-level Language
for Microprocessors,'" (University of Virginia,
undated).

[5] Uwe Frederik Pleban, "Design and
Implementation of the Structured Assembly Language
PL/85" (Master’s Thesis, University cf Kansas, 1976).

[6] NASA Langley Research Center, SL/1 Manua%,
(NASA Langley Research Center, 1978).

[7] Kathleen Jensen and Niklaus Wirth, Pascal User

Manual and Report (New York: Springer Verlag, 1974).

[8] NASA Langley Research Center, STAR Standard

Procedures, (NASA Langley Research Center, 1976) pp.
28, 29.

[9] Control Data Corporation, STAR Operating
System Version 1 (Control Data Corporation, 1977) p.

[10] Terrence W. Pratt, Programming Language
Implementation and Design (Englewood Cliffs, NJ:

Prentice-Hall, 1975), pp. 6-10.

77

References

Aho, Alfred V., and Ullman, Jeffrey D. Principles
of Compiler Design. Reading, Mass.: Addison-Wesley,
1977.

Aho, Alfred V., and Ullman, Jeffrey D. The Theory
of Parsing, Translation and Compiling, 2 vols.
Englewood Cliffs: Prentice-Hall, 1972.

Control Data Corporation. Control Data STAR-1Q0
Computer Hardware Reference Manual. Arden Hills, Minn:
Control Data Corporation, 1974.

Control Data Corporation. Jmplementation Language
{(IMPL) Reference Manual. Sunnyvale, Calif.: Control
Data Corporation, 1973.

Control Data Corporation. STAR Operating System
Version 1 Reference Manual. Sunnyvale, Calif.: Control
Data Corporation, 1977.

Foster, Victor S. '"MIDAS: A Mid-level Language for
Microprocessors.'" University of Virginia, undated.

Jensen, Kathleen and Wirth, Niklaus. Pascal User

Manual and Report. New York: Springer Verlgg, 1874.

NASA Langley Research Center. SL/1 Manual.
Hampton, Va: NASA Langley Research Center: 1978.

78

NASA Langley Research Center. STAR Programing
Manual. Hampton, Va: NASA Langley Research Center,
1976.

NASA Langley Research Center. STAR Standard
Procedures. Hampton, Va: NASA Langley Research Center,
1976.

Pleban, Uwe F. "Design and Implementation of the
Structured Assembly Language PL/85." Masters Thesis,
University of Kansas, 1976.

Pratt, Terrence, W. Programming Language
Implementation and Design. Englewood Cliffs, NJ:
Prentice-Hall, 1975.

van der Poel, W. L. and Maarssen, L. A. eds.
Machine Oriented Higher Level Languages: Proceedings of
the IFIP Working Conference on Machine Oriented Higher
Level Languages. Amsterdam: North Holland Publishing
Company, 1974.

Wirth, Niklaus. "PL360, A Programming Language for
the 360 Computers.” Journal_gE the Association for
Computing Machinery 15 (January 1968) : 37-74.

79

VITA

BARRY LEE MOWDAY

Born in Coatesville, Pennsylvania December 7,
1952, Graduated from Coatesville Area Senior High
School in that city in June 1970.

Received B.A. degree College of William and Mary,
June 1974. In August 1977, the.author entered the
program in Applied Science at the College of William
and Mary. Since that time he has served as a research
assistant in the Programming Techniques Branch of the

NASA Langley Research Center in Hampton, Virginia.

	PL/STAR, a structured assembly language for the CDC STAR-100
	Recommended Citation

	tmp.1539793463.pdf.w75PA

