
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1979

PL/STAR, a structured assembly language for the CDC STAR-100 PL/STAR, a structured assembly language for the CDC STAR-100

Barry Lee Mowday
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mowday, Barry Lee, "PL/STAR, a structured assembly language for the CDC STAR-100" (1979).
Dissertations, Theses, and Masters Projects. Paper 1539625049.
https://dx.doi.org/doi:10.21220/s2-djk9-hd77

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539625049&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539625049&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-djk9-hd77
mailto:scholarworks@wm.edu

PL/STAR

A Structured Assembly Language

For The CDC STAR-100

A Thesis

Presented to

The Faculty of the Program in Applied Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Master of Science

by

Barry L. Mowday

1979

ProQ uest Number: 10626208

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is d e p e n d e n t upon th e quality o f th e co p y subm itted.

In th e unlikely e v en t th a t th e au thor did no t send a c o m p le te m anuscript
a n d there are missing p ag es , th e se will b e n o ted . Also, if m aterial h ad to b e rem oved,

a n o te will ind icate th e deletion.

uest
ProQuest 10626208

Published by ProQuest LLC (2017). Copyright of th e Dissertation is held by th e Author.

All rights reserved.
This work is p ro te c ted against unauthorized copying under Title 17, United States C o d e

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

APPROVAL SHEET

This thesis is submitted in partial fulfillment of

the requirements for the degree of

Master of Science

ff/busrlaA/
& Author “V

Approved, July 1979

Johfi Knight
(

Stefan'Feyock

k M u r . m
Robert Noonan

Table of Contents

Chapter Title Page

Acknowledgments iv

Abstract v

I Introduction and Basic Concepts 2

II Language Description 9

III Syntax 13

IV Implementation of the PL/STAR Compiler 28

V The Module Listing and Sample Modules 50

VI The Compiler Writing System 64

VII Evaluation 68

Appendix The PL/STAR Grammar 72

Notes 76

References 77

ACKNOWLEDGMENTS

The author wishes to express his appreciation to Dr*

John Knight for his patience and encouragement in the

preparation of this work, to Douglas Dunlop for his valuable

comments and to Marie Noland for her instruction in the text

processing facilities used to produce this paper.

iv

ABSTRACT

This thesis documents the programming language PL/STAR.
PL/STAR is a structured assembly language for the CDC
STAR-1,00 computer. The language is designed for systems
programming applications. PL/STAR combines the control and
data structures of high level languages with the access to
.machine features of assembly level programming. The high
.level features of the language supply the advantages in the

'■ s. development, readability and organization of programs
normally associated with high level languages. The access

- ; to the registers of the machine and the control the PL/STAR
programmer exercises over the machine instructions that are
generated distinguish PL/STAR from higher level languages.
The result is a programming language that can offer
advantages over assembly language for systems programming
tasks.

The compiler for PL/STAR is a syntax directed cross
compiler hosted on the STAR access station, a CDC 6 400
computer. The compiler was developed using a compiler
writing system.

v

PL/STAR

Structured Assembly Language

For the CDC STAR-100

CHAPTER 1

Introduction and Basic Concepts

1.1 introduction to PL/STAR

PL/STAB, is a structured assembly language (SAL) for the
Control Data STAR-100 computer. PL/STAR draws on high level

languages for the form of control structures and data

structures, while providing the same access to machine

features as is found in assembly language programming.

The purpose of PL/STAR is to provide systems

programmers and other users a means to write assembler level

code in a readable, maintainable and less error prone form.

One feature of code written in assembly language is its

lack of an easily discernible organization. That is, line

after line can appear on an assembly listing with no

indication of the underlying program structure.

2

One. goal of PL/STAR is to provide a means of writing

assembly level, code in a manner that makes the program

structure clear.

Another goal of the language is to provide the user the

advantages of high level language data structures. For this

PL/STAR provides type declarations and a user defined type

capability.

The first structured assembly language was PL360,

implemented by Niklaus Wirth in 1965[3]. Since then there

have been several such languages implemented. In addition

to PL360 two other structured assembly languages, MIDAS[4]

and PL85[5] have served as sources for PL/STAR.

While the languages vary in content, certain

similarities do appear to be characteristic of structured

assembly languages. All languages studied contain high

level control structures, although the specific ones

realized vary. All provide for variable declarations.

While the declarations generally determine the amount of

storage allocated for the variable, PL360 makes an

additional distinction similar to the high level language

concept of scalar type. Input/output are not treated in

structured assembly languages.

Structured assembly languages are machine dependent.

4

1*2 The STAR-100 Computer

The Control Data STAR-100 is one of the largest and

fastest scientific computers now available. Among the

advanced features employed on the STAR are stream

processing, virtual addressing and hardware macro

instructions.

The STAR-1.00 provides an extensive vector handling

capability. On the STAR a vector is a set of operands

located in consecutive memory locations. Instructions are

provided to perform a wide range of operations on vectors,

from basic arithmetic to inner products and square roots[1],

I2j.

The word size on the STAR is 64 bits. Addresses are 48

bits long, and there are 256 general purpose registers. The

STAR is a three address machine, so that the result field is

specified explicitly and may differ from either operand.

The principal languages used on the STAR are FORTRAN,
the assembly language META and SL/1. FORTRAN and SL/1 are

oriented toward scientific programming. The bulk of system

programming is done in assembly language or a FORTRAN like

implementation language, IMPL.

5

.1*3 Basic Concepts and Notation

This section defines elementary forms of the PL/STAR

language.

1.3.1 Free Format Input

PL/STAR is a free format language. Statements may

begin at any place on a card and extend over any number of

cards. The amount of space between elements of a statement

is determined by the user. The PL/STAR programmer,

therefore, posseses the flexibility to produce visually

coherent programs.

1.3.2 Identifiers and Reserved Words

An identifier is a symbol used to name a piece of data,

a label or a constant. An identifier is a letter followed

by a string, possibly empty, of letters, digits and

underscores. While identifiers can be of arbitrary length,

only the first ten characters are used by the compiler. For

two identifiers to be distinct, then, they must differ

within their first ten characters.

Examples:
first
max size

6

Certain identifiers set forth in the language

definition have an inalterable meaning and may not be

redefined by PL/STAR users. These identifiers are called

reserved words.

PL/STAR Reserved Words

AND ARRAY BIT
CALL CHARACTER CODE
CONST DESCRIPTOR DO
DREG ELSE END I
ENDM ENDR ENDW
ENTRY GOTO IF
INTEGER LENGTH MODULE
OF OR REAL
RECORD REG REPEAT
SDR EG SREG THEN
TYPE UNTIL VALUE
VAR WHILE XOR

PL/STAR also contains one predeclared identifier.

BASE__REG is a register that is initialized to hold the

relocation amount for the module.

1.3.3 Data and Types

The quantities that PL/STAR units manipulate are its

data. Each piece of data has three attributes that define

it, its type, its storage class and its value.
PL/STAR provides two classes of types, scalar and

structured. The. scalar types are real, integer, bit,

descriptor and character.

There are two structured types in PL/STAR, the array

7

and the record.

An array consists of some number of elements each of

the same type. Arrays in PL/STAR are one dimensional.

Elements of an array are referenced using an integer index.

A record is a grouping of elements that are not

necessarily of homogeneous type. Each element of a record

is termed a field and is named by an identifier. The

elements of the record are referenced by the name of the

record and the field identifier. No indexing is used.

Comments can be placed throughout the PL/STAR module to
improve its readability. Comments may appear only between

'■PL/STAR identifiers, numbers and symbols. The form of a

comment is {* <any text string not including *)> *).

Example:

(* A comment may take as much space as is

necessary to make its meaning clear. *)

1.3.4 Grammar Specification

The syntax of the language is specified formally with a

Backus-Naur form (BNF) grammar. The PL/STAR grammar is a

set of productions that describe the permissible forms of a

PL/STAR module.
The following sections employ a modified form of BNF to

describe the syntax of the constructs under consideration.

The modifications consist of the addition of the follovjing

meta-symbols:

{ } grouping

[+] one or more repetitions

[*] zero or more repetitions.

CHAPTER 2

language Description

2.1 Overview of PL-/STAR Structure

This chapter provides an introduction to the design of

PL/STAR.

The syntax of PL/STAR, like other SAL's, is similar to

that of high level languages. For PL/STAR, SL/1[6] and

PASCAL[7] served as sources, athough the form of PL/STAR is

adapted to suit the particular needs of its environment.

The compilable unit of PL/STAR is a module. From the

user's perspective, a PL/STAR module is a separately

compiled subroutine. At present there is no way for a job

to begin execution within PL/STAR. This is a result of the

view that PL/STAR is an addition to the present tools of

systems implementors.

9

10

A PL/STAR module is divided into two basic sections.

The first section, the declaration section, defines the data

used by the module. The second section, the code section,

defines the actions to be performed on that data.

2.1.1 The Declaration Section

PL/STAR provides three distinct types of data

definition, constant declarations, variable declarations and

user defined type declarations.

A constant declaration assigns to an identifier a value

that may not be changed within the module. The type of the

constant identifier is the same as that of the constant

value to which it is bound. Neither a storage location nor

a register is allocated for a constant declaration.

PL/STAR requires that all variables used in a program

be declared. The absence of declaration by default aids

responsible programming. At compile time, a declaration

binds type and storage attributes to the variable

identifier.

The declaration of type with the attendant type

checking is a major departure from the assembly code level.

Type checking is employed to promote reliable software. The

compiler checks that operands of an expression are of

compatible type. When an error in type is encountered the

compiler signals an error.

11

There exists also a means to initialize variables if

the user desires.

The final type of declaration is that of the user

defined type. PL/STAR provides the user a limited facility

to create his own data types.

2.1.2 The Code Section

The code section is a sequence of statements that

defines the manner in which the data of the module is to be

manipulated.

A salient feature of PI,/STAR is the manner in which its

statements resemble those found in higher level languages.

The similarity is intentional. A high level syntax maps the

linear structure of assembly language code into a form in

which the flow of control is more apparent.
PL/STAR supplies three control structures, the IF,

WHILE and REPEAT statements. Each statement has a unique

terminator- ENDI, ENDW and UNTIL respectively. One result

of the use of the terminators is the elimination of the

dangling else problem in the IF statement.

The STAR-100 provides an instruction set of sufficient

richness that an unacceptably complicated syntax would be

the result of providing an operator for each machine

instruction. To allow access to the full capability of the

12

machine, PL/STAR permits the user to incorporate symbolic

assembly code into his module.

CHAPTER 3

Syntax

This section provides a detailed description of the

parts of a PL/STAR module, BNF notation is used to provide

a more formal description.

A PL/STAR module decomposes into six parts. In order

of appearance the parts are:

module header,

constant declaration section,

type declaration section,

variable declaration section,

initialization section,

cede section.

13

14

3.1 The Declaration Section

The symbol table is built within the declaration

section. A description of the syntax used in the

declaration sections follow.

3.1.1 Module Header

In BNF the module header is defined to be:

<module header> : MODULE <identifier>

The identifier names the module. Its use, though, is

restricted to the production of the loader tables. It is
not defined to be an entry point, although the user may

define ah entry point with the same name..

Example:
MODULE plsort;

3.1.2 Constant Declarations

<constant declaration section> :
CONST cconstant declaration> [-f] | <epsilon>

Cconstant declaration> <identifier> - <constant>

The effect of a constant declaration is to add the

identifier to the symbol table and associate with it the

value and type of the constant.

The constant may be of any PL/STAR provided scalar

15

type.

Example:
CONST

wordsize = 6 4;
one = 1;

Both identifiers, wordsize and one, are entered into

the symbol table with type integer and their respective

values.

3.1.3 Type Declarations

ctype declaration section> ::=
TYPE ctype declaration>[+] j <epsilon>.

ctype declaration> ::=
ctype identifier> - RECORD cfield list> ENDR;.

cfield list> : : =
{cidentifier> {, cidentifier>}[*] : cscalar type> ;
> [+ 3 •
In PL/STAR the user may create his own data types.

Currently, this facility is limited to record structures,

although a general user definition capability is envisioned.

The record structure permits the description of complex

quantities that can not be adequately represented with a

scalar type.

16

Examples:
TYPE

position = RECORD
x__ccord,
y_c oo rd : INT EGER;

ENDR;

In this example position is declared to be a type with

two integer fields. With this declaration, variables can be

declared to be of type position.

weather - RECORD
temperature : INTEGER;
pressure : REAL;
humidity : INTEGER;

ENDR;

This declaration demonstrates the use of

non-homogeneous type fields in a record. Weather is a type

with three fields. Two fields are integer and the third is

real.

3.1.4 Variable Declarations

Cvariable definition section> ::=
VAR <variable definition>[+3.

<variable definition> ::=
<identifier> {, cidentifier>>[*] : <type> STORAGE>;.

All variables used in a PL/STAR module must be

declared. The definition links a type and a residence to

the variable identifier.

The type of a variable can be any predefined or user

declared type.

A PL/STAR variable may have a residence in a register

17

or in memory.

All PL/STAR structured variables must be memory

resident. Elements of array and records are allocated

consecutive memory locations. The declared bound of an

array denotes the number of elements in the array and the

first element of each array has index zero.

The only operations that the language directly provides

for use with memory resident variables are loading and

storing.

The declaration of a variable to be register resident

permits the user to specify that the register variable be

saved and restored by called procedures or initialized.

These actions are specified by the reserved word used

to declare a a variable register resident:

SREG - register is to be saved and restored by called

procedures

DREG ~ register is to be initialized

SDREG - register is to be saved, restored and

initialized

REG - register is not saved, restored or initialized.

The notation and conventions for the above functions

are based upon the set of STAR Standard Procedures [8].

18

Examples
VAR

max, min
prime
pi, p 2 p U O X L X U LI j

INTEGER;
ARRAY [10] OF INTEGER
RECORD
fi, f2 : integer;
ENDR;

INTEGER REG
REAL SDREG;
position;

mem
a
rec

The registers corresponding to max and min will contain

integers. Neither register is saved or restored, prime is

declared to be a register that will hold a real and will be

saved and restored. pi and p2 are of user declared type

position. The elements of array a are a[0] through a[9j.

rec demonstrates the use of a record declaration in the

variable declaration part.

3.1.5 Initial Section

cinitial section> ::=
VALUE {cidentifier> = <constant>;}[*] | <epsilon>.

An initial directive causes loader directives to be

generated that will initialize the variable to the desired

value. Type checking is performed to enforce compatibility.

Example:
VALUE

max = 100;

Before execution, the loader will initialize max to the

given value.

IS

3.2 The Code Section

The code section is a list of executable statements

introduced by the reserved word CODE. Statements comprising

a list are separated by semicolons. PL/STAR statements are

the assignment, GOTO, WHILE, REPEAT, IF, CALL, ENTRY and

empty statements,

3. 2.1 Assignment Statement

<a.ssignment statement> <left hand side> : =

<expression>»

The effect of an assignment statement is the alteration

of the value of a variable designated by the left hand side

to the value of the expression on the right hand side of the

assignment operator.

The left hand side may refer to either a memory or

register resident variable.

A memory resident variable can be referenced either by

its name or by indirect addressing, that is, in PL/STAR, by

a register variable that contains the address of the memory

resident variable followed by a caret (~)♦

A register resident variable is referenced by its name.

While the forms that an expression may take are varied,

most, of the forms reduce to one machine instruction.

Certain loads and stores require two. The limited nature of

the PL/STAR expression contrasts sharply with that found in

other PL360 derivative languages that generally permit

expressions of arbitrary length*

Arbitrary length expressions were avoided for three

reasons.

A significant feature of the design of PL/STAR is the

deliberate omission of register management in favor of
allowing the user to control the allocation of registers. A

result of this policy is the absence of registers to hold

intermediate results in expression evaluation. Expressions,

therefore, had to be limited to a form that maps into a

single machine instruction.

An unavoidable exception to the single instruction rule

occurs with certain load and store sequences in which a

register is needed to hold an address. In this case a

register from a group of designated temporary registers is

used to hold the address.

The second reason is that structured assembly languages

in general do not include parentheses and treat all

operators as having equal precedence. Thus statements are

translated strictly left to right. It is quite possible,

therefore, that the meaning of a multioperator expression to

a structured assembly language translator differs from the

meaning a programmer intended.

The third reason is pragmatic. It was felt that the

21

form employed In PL/STAR would be sufficiently powerful to

satisfy most users,

3.2,1.1 Conditions

A condition is a relationship between two register

resident variables. The relational operators are >, >=, <,

<-, = and <>. Each condition has a boolean value. The

value of the condition is true if the stated relationship

holds between the variables, false if the relationship does

not exist.

3. 2.1. 2 Expressions

An expression takes one of four forms. A constant

generates the appropriate load instruction. A memory

resident variable generates loads. A register resident

variable generates store or register transfer instructions.

An expression can also be of the form <operandl>

operator <operand2>. Both operands must be register

resident. The operator can be arithmetic (+, *, /) or

boolean (and, or, xor) or relational (<, <=, >, >=, =, <>).

Examples:
p 1.x_c oord := max;
loc := loc + increment;
loc~ := min;

The first statement shows an assignment into a field of

a record. The value of max is stored in the memory location

assigned to field x__coord of pi. The second example adds

the value of increment to the value of location. The third

statement places the value of min into the storage location

pointed to by loc.

3. 2. 2 If Statement

The IF statement is available in both the IF-THEN and

IF-THEN-ELSE forms, The BNF form of an IF statement is:

<if statements ::= IF <ccndition> THEN <statement list>

E ND I |

IF <condition> THEN <statement list> ELSE <statement

list> ENDI.

23

Examples:
IF cand > max THEN

max := cand;
END I

IF loc < stop place THEN
loc := loc + increment;
cand := loc~;

ELSE
answer := max;

END I

The examples illustrate the two versions of an IF

statement. The semicolon before the ELSE is legal in

PL/STAR. An empty statement following the semicolon

completes the parse of the statement list.

The effect of the IF statement is the same as that in

high level languages.

3.2.3 Iterative Statements

There are two iterative statements in PL/STAR, the

WHILE and the REPEAT statements.

<while statement> ::= WHILE <condition> DO <statement

list> ENDW.

<repeat statement> ::= REPEAT <statement list> UNTIL

<condition>.

24

Examples:
•WHILE loc < stop__place DO

loc := loc + increment;
ENDW

REPEAT
loc loc + increment;

UNTIL loc >= stop_place

These statements operate in the same manner as they do

in other high level languages.

3. 2. 4 GOTO Statement

<goto statement> ::= GOTO <label>.

Example:
GOTO maxfound

A GOTO statement transfers control to the statement
labelled by <label>. A label is an identifier, and a

statement is labelled by preceding the statement with the

label and a colon. Labels are not declared.

Since PL/STAR is a one pass compiler, the relative

address corresponding to the label may not be known when a

GOTO is encountered.

This situation can cause less than optimal code to be

generated. The STAR provides two types of branch

instructions, one type 6 4 bits long, the other 3 2 bits Jong.

Branching is expressed as an offset from the current

contents of the program counter. For space and time

considerations, the 32 bit branch instruction is preferred;

25

however, it cannot express as large a jump as the full word

instruction. When a label with an undetermined address is

encountered in a GOTO the full word branch is generated

although the half word instruction may have sufficed.

GOTO's are permitted to branch only within the module.

An attempt to branch to a point outside the module results

in a compile time error. It is possible to branch, into the

bodies of control structures, although the practice is
discouraged.

3.2.5 Empty Statement

Empty statements contain no symbols and cause no

action. They can be labelled and be the object of branches,

however. Empty statements occur more frequently than one

might suspect. Consider the following WHILE statement in

which C is a condition and SI and S2 are statements:

WHILE C DO
SI;
S2;

ENDW

There is an empty statement between S2; and ENDW.

Since semicolons separate statements and ENDW is not part of

the statement list, there must be another statement after

S2. The only possible statement is the empty statement.

26

3.2.6 Call Statement

The CALL statement transfers control to an external

procedure and passes it parameters. The form of a CALL

statement is:

<call statement> ::= CALL <procedure name> j
CALL <procedure name> (parameter {, parameter} [*]..) .

A parameter can be a constant or a register variable,

which passes the contents of the register variable, or a

register variable in brackets, which passes the contents of

the address pointed to by the register variable.

Examples:
CALL extproc(max, [loc], 5)
CALL proc2

To execute the first CALL statement, control is

transferred to external entry point extproc. The values

pointed to by parameter list entries are the value of max,

the value contained in the memory location whose address is

in loc and the value 5.

The second statement transfers control to a point which

takes no parameters.

3.2.7 Entry Statement

An ENTRY statement, which must be labelled, establishes

an entry point in the PL/STAR module. The entry point is

27

referenced by the label of the ENTRY statement. The form of

an ENTRY statement is:

<entry statemeht> ::=

ENTRY | ENTRY (parameter {, parameter}[*]).

The ENTRY statement invokes the standard procedure

entry sequence. The caller's registers are saved and the

called module's registers are loaded.

A parameter is either a register variable or is empty.

The register parameters are loaded with the values of the

corresponding arguments from the calling procedure.

Example:
sort proc:

ENTRY (max, min)
Max and min are loaded with the values contained in the

caller's parameter list.

CHAPTER 4

Implementation of the PL/STAR Compiler

This chapter supplies a description of the structure

and implementation of the PL/STAR compiler.

PL/STAR is a one pass syntax directed compiler written

in PASCAL. The compiler is built using a compiler writing

system developed by Professor Michael Donegan of William and

Mary. A discussion of the system is in chapter six.

The remainder of the chapter is divided into three

sections. The first is a description of the symbol table.

Following that is a discussion of the compiler functions.

The chapter concludes with an overview of the form of the

loader tables generated for the STAR.

28

29

4.1 The Symbol Table

The most conspicuous data structure in the PL/STAR

compiler is the symbol table, in which information

describing the data of the PL/STAR module is storedB

The symbol table for PL/STAR is a straightforward

mechanism, a list of entries corresponding to the declared

data. Entries are generated for variables and constants,

and new entries are added to the front of the list.

Information kept on each symbol is its name, type and

storage class. For arrays the number of elements is saved;
for records a pointer to the record definition is kept. The

register allocated is recorded for register resident

variables.

Symbol Table Entry Fields

IDFIELD
KIND
STORE
ARRAYSIZE
ADDRESS
REGISTER

INITIALED
NEXT_SYM
a case variant
type or a poin

name of symbol
type
storage residence
bound of arrays
relative bit address in data base
register assigned to register
variables
true if variable is initialed
pointer to next symbol in table
that can hold a value for a scalar

ter to a record type

A new entry in the symbol table is manufactured in

procedure ENTER. ENTER first determines that the symbol has

30

not: been previously defined and then calls procedure CREATE,

which generates a new symbol table entry and fills its

fields with spurious values. ENTER then fills in the proper

values and fixes the pointers.
Separate lists maintain information on labels and entry

and external entry points. An entry in the list of labels

consists of the label identifier, the relative address and a

pointer to a list of addresses at which the label is used in

forward branches.

Information kept on entry points defined within the

PL/STAR module is the identifier of the entry point and its

relative address. For external entry points all the

addresses from which it is called are also saved.

4. 2 Syntax Analysis and Code Generation

The PL/STAR compiler is in two parts. In the first

part the symbol table is built, the syntax analyzed and code

generated. In the second half the loader tables that are

communicated to the STAR are generated. This section deals

with the first half.

31

4.2.1 Parsing Routines

The compiler generating system supplies two procedures

that execute the parse. One, READTABS, initializes the

parser tables.

The other, procedure PARSE, is the driver of the parse.

It maintains the stack of symbols,. causes tokens to be read,

and directs the execution of semantic actions.

The form of PARSE is a loop. Upon getting the next

input symbol, pr token, PARSE determines the action

corresponding to that symbol and the current state. If the

action requires a shift, the symbol is pushed onto the stack

and a flag is set to get the next symbol.

If reductions are necessary, the appropriate semantic

actions are invoked and the requisite number of states are

popped from the stack. Each reduction results in a new

action.

If necessary, the next symbol is scanned.

This process continues until either an accept state or

an error state from which recovery is impossible is entered.

An accept state is entered after the input program has been

parsed, successfully.

32

4.3 Semantic. Actions

The second procedure called by PARSE is SYNTHESIZE.

SYNTHESIZE controls all the semantic actions and, therefore,

the code generation properties of the compiler.

SYNTHESIZE is a large case statement. The case labels

correspond to the rules of the grammar. It is important to

remember that in a syntax directed compiler semantic actions

can be invoked only at the end of a rule.

More than one rule is normally required to describe a

PL/STAR form. What follows Is a discussion of the actions

taken by the compiler for the various statements of PL/STAR.

4.3.1 Module Header

The sole action associated with the module header is

the saving of the module name for use in generating loader

tables.

4.3.2 Constant Declarations

For each constant declaration a symbol table entry is

generated. In addition to the notation that the entry

describes a constant, the entry includes the identifier and

the type and value of the constant.

33

4.3.3 Type Definitions

In the type section a list, headed by FIRST__TYPE, is

built. Each entry in the list corresponds to a user defined

type. A list entry consists of the type identifier, a

pointer to the type definition and a pointer to the next

list entry.
The definition of a record is itself a list. An entry

in a record definition list contains the field identifier

and its type. Each element of a record definition may have

as many as ten identifiers declared to be a single type. To

handle this situation, the compiler maintains a list of the

identifiers, and an entry for each identifier in that list

is generated when the type is known.

4.3.4 Variable Declarations

Storage and register allocation is accomplished in the

variable declaration section.

To facilitate the saving of registers, all SREG and

SDREG type variables must occupy consecutive registers and

words in the data base. To do this SREG and SDREG variables

are allocated registers beginning with register 20 (hex),

the first general purpose register available to the user,

and word 0 of the data base. As the declarations are

encountered, the compiler assigns.offsets from the first of

the type for REG and DREG type registers. An offset in bits

is kept for memory resident quantities also. After the last

declaration is processed, the proper amounts are added so

that the REG and DREG variables follow the SREG and SDREG
variables and the memory resident variables follow the DREG

and REG ones.

4. 3.4.1 Arrays and Records

For an array the proper number of memory words are

allocated. The address contained in the symbol table for

the array is the address of the first element of the array.

A list of identifiers may be declared to be of a record

type enumerated in the variable declaration section. The

same list as that built for a record in a type declaration

is constructed, and that list is walked through to allocate

memory for the fields.

When a user defined type is encountered, the compiler

finds its entry in the list of user defined types and its

definition is traversed to allocate storage for the fields.

35

4.3.5 Initial Section

In a value directive, the symbol table is searched for

the identifier, a flag is set to show the loader table

generation routines that an initialization is to be done and

the initial value saved.

4.3.6 Code Section

At this point in the parse the symbol table has been

completed. The compiler uses the information contained in

the symbol table to generate machine instructions in the

code section.

A discussion of the actions corresponding to PL/STAR

forms follow.

4.3.6.1 Labels

When a label is encountered, the compiler searches the

list of labels for an entry that matches the label

identifier. If a match is not found, the label definition

has preceded its use in any GOTO. The compiler adds a new

entry in the label list containing the label identifier and

the relative address of the label.

If a match does occur, the label was used in a forward

branch. The compiler can then enter the proper- relative

address in the list entry.

4.3.6.2 GOTO Statement

A GOTO statement maps into one of the two types of

unconditional branch instruction that the STAR supplies*

Whether the halfword or fullword instruction is used depends

upon the distance of the branch destination from the branch

instruction.

The compiler searches the label list for the label. If

it has been defined, the halfword branch instruction is

generated if the branch destination is no than 255 halfwords

distant. If the destination is more than 255 halfwords

away, the fullword branch instruction is generated.

If the label has not been defined, an entry in the

label list is generated for the first occurrence of a label.

An entry in the list of forward references is made so that

after parsing the code generated can be altered to show the

proper branch displacement. A fullword branch instruction

must be generated since the final displacement is not known.

Example:

Assume label! is determined to be address n and the

value of the instruction counter is i.

The translation of the statement GOTO label1 is

BADF i-n if n = i and i-̂-n < 256
IBXEQ,F n-i,0,0 if n > i
IBXEQ,B i-n,0,0 if n < i and i-n >= 256

The format used in this paper to show branch

instructions differs from standard META. Following the

instruction mnemonic is the branch displacement. For

conditional branch instructions the registers to be compared

follow the displacement.
BADF is the halfword branch instruction generated when

the location of the branch is less than 256 halfwords from

the value of the instruction counter. In PL/STAR the BADF

is always an unconditional branch instruction.

The IBX series are fullword conditional branch

instructions. Following the IBX is a two letter menmonic

identifying the condition being tested. The ,F indicates a

forward branch and the ,B a backward branch. The IBX

instruction causes the two registers to be compared and the

branch taken if the tested condition is met.

The two IBX instructions above are in effect

unconditional branches. Register 0, the contents of which

is always zero, is tested for equality with itself.

4.3.6.3 Assignment Statement

The code generated by the compiler for an assignment

statement depends upon the form of the statement.

1. cregister identifier> := cregister identi£ier>
<operator> <register identifiers

This form translates into a halfword instruction in

which the three registers are the operands of the

instruction. The specific instruction generated is

determined by the operator and the types of the registers.

Example:

rl := r2 operator r3 generates the halfword instruction

OPCODE r2,r3,rl, in which OPCODE is determined by the

following table:

OP/TYPE INTEGER REAL
+ 63 62
- 67 66
* 3D 6B
/ 6F

BIT

AND 2D
OR 2E
XOR 2C

2. <register identifier> := <operand>.

If the operand is a constant, a load immediate is

generated. If it is another register, a register to

register assignment is performed. If the operand is a

storage resident variable, a load instruction is generated.

39

A storage resident quantity can be specified in two

ways. A register identifier followed by a caret, indicating

indirect addressing, causes one instruction to be generated.

A variable declared to be storage resident, however,

requires an additional instruction to load a temporary

register with the address of the operand.

Examples:

rl := 6 generates ES rl,6
rl :=65536 generates EX r 1,65536

rl ;= r2 generates RTOR r2,0,rl

rl :=mem generates ES TEMPREG,address(mem)
LOD TEMPREG,BASEREG,r1

rl :=r2‘~ generates LOD r2,0,rl

rl :=r2~[r3] generates LOD r2, r3,rl

The ES and EX instructions both place the second

operand into the register designated by the first operand.

ES is a halfword instruction used for integers less than

65536; EX is a fullword instruction is used for larger

integers. RTOR is a register transfer instruction.

3. cregister identifier> := LENGTH(Cregister identifier>).

An instruction that replaces the contents of the result

register with the leftmost 16 bits, called the length field,

of the operand register is generated.

Example:

rl := LENGTH(r2) generates LTOR r2,0,rl

4. cmemory resident variable> := Coperand>.

AO

For this form store instructions are generated. If the

result field is specified by indirect addressing, only one

instruction is needed. If the result field is a memory

resident variable, however, the extra instruction to load a

temporary register with its address is needed.

Examplesi

mem := r2 generates ES TEMPREG,address(mem)
STO r2,BASEREG,TEMPREG

rr*‘ := r2 generates STO r2,0,rl

A.3.6. 4 Conditions

One part of each control structure is the controlling

condition, a relationship between two registers. The

compiler maintains pointers to the two symbol table entries

and a record of the relational operator.

See section 3. 2. 1.1.

Examples:

cand < max generates IBXGE cand,max

loc >= stop generates IBXLT loc,stop

4.3.6.5 While Statement

The first action specific to a WHILE statement occurs

41

after the reserved word DO is recognized. The relation of

the condition is complemented, that is, equal becomes not

equal, greater than becomes less than or equal etc. A

fullword branch using the complemented relational and the

two registers is generated so that a branch around the WHILE

statement occurs if the original condition is false. The

address of the branch is pushed onto a stack of addresses.

The statement list of the WHILE, which may itself
contain other control structures, is compiled next.

When the ENDW is seen, the address of the branch

instruction at the head of the statement is popped from the

stack. An unconditional branch to there is generated as

well as the information needed to fix the displacement of

the WHILE branch.

Example:

<statement
list>

ENDW

halfword
address

WHILE rl=r2 DO i,i+l

i+2
n-1

n

IBXNE,F n-i+1,r1,r 2

code for
statement list

BADF n-i

An IBX instruction is used in place of the BADF if n-i

> 255. The body of the WHILE statement is executed only as

long as the condition is true. An IBX instruction is

generated, therefore, that will cause a branch about the

WHILE body when the condition is false. The condition of

42

equality in the PL/STAR code thus becomes the IBXNE of the

generated code. After the code for the statement list of

the WHILE has been completed, an unconditional branch back

to the condition test is made.

4.3.6.6 Repeat Statement

The treatment of the REPEAT statement is similar to

that of the WHILE statement. The current relative address

is pushed onto the stack when the word REPEAT is seen, and

the statement list compiled.

After the concluding condition has been done, the stack

of addresses is popped to obtain the address of the first

statement in the statement list. The condition's relation

is complemented and the branch generated to return to the
top of the REPEAT.

43

Example:

halfword
address

REPEAT

<statement
list>

code for
statement list

UNTIL r l=r 2 n,n+l IBXNE n-i,rl,r2

The expansion of a REPEAT statement consists of the

generation of the code for the statement list followed by a

conditional branch to the first instruction of the REPEAT

statement list if the condition is false.

Since the termination condition for the example is the

equality of the two registers, the branch tests for

inequality.

4.3.6.7 If Statement

The IF statement is more complicated since it may or

may not contain an ELSE part. After the THEN, the current

relative address is stacked, the relational complemented and

a branch instruction generated. The statement list to be

executed if the condition is true is compiled.

After the statement list is completed, the next symbol

can be either an ELSE or an ENDI. In either case the

address of the IF branch is popped and the information to

fix its displacement generated.

If the symbol is an ENDI, the statement is completed.

If the symbol is an ELSE, the current address is

stacked and an unconditional branch about the ELSE code, is

generated. The ELSE statement list is compiled. The

address of the branch about the ELSE is popped and the

information to fix its displacement is generated.

Examples:

halfword
address

IF rl=r2 THEN i,i+l

<statement i+2
list> n

ENDI
The IBXNE,F statement causes a branch to the statement

following the body of the IF statement if the if condition

is not met.

IF rl=r 2 THEN i., i+1 IBXNE,F j + 2-i,r l,r 2

<statement i+2 code for
list> j-1 statement list

ELSE j >j+l IBXEQ,F n-j+1,0,0

<statement j + 2 code for
list> n statement list

ENDI

In this case the IBX condition will branch to the first

instruction of the ELSE part if the condition is not met,

i.e. rl <> r2. After the THEN code, an unconditional

branch is generated to skip the ELSE part.

IBXNE,F n-i-f 1 ,r 1, r 2

code for
statement list

45

4.3. 6*8 Call Statement

For a CALL statement the compiler adds the external

entry point to the list of entry points if it does not

already appear there, and adds the current address to the

list of addresses from which the entry point is called.

The next step is to process the parameters. Parameter

addresses are placed in consecutive locations in memory. A

descriptor placed in a register allows the called procedure

to reference them.

There are three forms of parameters. If a parameter is

a constant, the address of a memory location containing the

constant is placed into the parameter list.

The second type of parameter is a register identifier.

The contents of the register is placed into its location in

the data base and the address of that location is placed in

the parameter list.

The third form is a register identifier in brackets.

In this case the register contains the address of the

parameter. A store instruction is generated to place the

address contained in the register into the parameter address

list. Finally the code for a procedure call is generated.

An instruction is generated that will place the address of

the entry point into register IE (hex)• This address is not

known at compile time; the loader places the proper address

into the instruction. The parameter descriptor is placed

46

into register hex 17. A branch and link instruction sets

the return register and branches to the called procedure.

Code for Procedure Call

RTOR entrypoint+1,0,IE load link register
RTOR parameterdesc,0,17 load parameter descriptor
BSAVE 1A,0,entrypoint branch and set return

4.3.6.9 Entry Statement

In an ENTRY statement the associated label is added to

the list of entry points, and the code for an entry is

generated. The sequence of instructions saves the caller's

registers and designates which of the called module's are to

be saved in the case of a call. Finally the registers that

are to be initialized are loaded with their initial values.

The next step is the handling of parameters. All the

formal parameters must be registers. Into these registers

are placed the contents of the parameter list entry for the

corresponding actual parameter. Since this entry will

normally be an address, the load instruction to fetch the

value of the actual parameter is the responsibility of the

user.

47

Code to Establish an Entry Point

SWAP 0, 15,1C save caller registers
ELEN IF, 0
RTOR 1C,0,ID update stack pointers
RTOR 1B,0,1C
ELEN 1C ,x x is number of registers to
IS lB,x*64 Increment the dynamic stack
ELEN IE, z z is number of registers to

for execution
SWAP IE, 14,0 Load registers

48

4*3.6.10 Completion of Code Generation

Upon encountering the reserved word ENDM the standard

procedure exit sequence is generated.

Exit Sequence

SWAP ID,15,0 restore caller's registers
LSDFR 060000 load data flag register
BADF 1A return control to caller

.After parsing has been completed, the forward branches

associated with WHILE, IF and GOTO statements must have the

proper displacement added before the loader tables can be
generated.

At the conclusion of the WHILE and IF statements and

after the labels of forward branching GOTO's have been

defined, entries are made in a list, ordered by increasing

relative address, of displacements that have to be added to

the instructions contained in those addresses. It is then a

simple matter to transfer code, as halfwords, from the file

to which the code was generated originally to a new file

with the proper displacements added.

Following this operation the listing and symbol table

are printed.

49

4. 4 Generation of Loader Tables

PL/STAR generates four tables to create a load module.

An overview of their contents follows.

The MODULE table is the header for the load module. It

contains the name of the module, the length of the tables,

the length of the code, the length of the database and

pointers to the other modules.

The CODE table contains the relocatable code.

The EXT ENTR table contains a list of entry point and

external entry point names.

Following the list of names is a list of one word

descriptors for the names in the list. A descriptor

contains two fields. The leftmost 16 bits describe the type

of the name, entry or external entry. The remaining 48 bits

contain the relative bit address in the code for entry

points and 0 for external names.

The interpretive data initialization table, named INT

DATA in the tables, contains directives to initialize

storage locations[10]•

CHAPTER 5

Module Listings and Sample Modules

This chapter describes the format of a PL/STAR listing

and presents two sample modules that have been executed on

the STAR computer.

5.1 The Listing Format

PL/STAR supplies the user a listing of the code

generated for his module. This information appears to the

left of the PL/STAR source line for which the code is

generated.

The first field on a line is the relative bit address

of the instructions generated for the source line.

Following the relative bit address is one or two halfwords

of code. These fields are printed only if instructions have

been generated for that source line. If more than two

50

51

halfword instructions have been generated for a line, the

remaining instructions are printed on succeeding lines

before additional source.

Following the generated instructions are the number of

the source line and the PL/STAR source line itself.

After the source has been listed a symbol table

directory is printed. The type, storage residence and

database address of each variable is printed. For each

register resident variable, the register assigned to the

variable is printed. For array variables the size of the

array is printed.

To conclude the symbol table a list of all labels and

their relative addresses is printed.

5.2 The Sample Modules

The two examples provided are both called from SL/1

routines, listings of which are also provided. The SL/1

modules initialize the data on which the PL/STAR modules

operate, call the PL/STAR modules and print results.

The first PL/STAR module, PLSORT, sorts into descending

order an integer vector of arbitrary length.

No code is generated in the declaration sections as the

symbol table is being built. At line 24 the first eight

halfword instructions comprise the standard entry sequence.

52

To load the parameters the address of the parameter list is

placed into a temporary register. The contents of the

parameter list are then placed into the corresponding

registers with individual load instructions. Succeeding

parameter list values are accessed by executing an add

immediate instruction on the temporary register.

Note that the four instructions to set the variable LIM

could have been expressed in one instruction if PL/STAR did

not limit expression length.

The remainder of the module is just a loop with another

loop nested within it. The outer loop is delimited by the

branch instructions on lines 3 4 and 63. These instructions

were generated during the parsing of the WHILE statement.

The first segment of the loop initializes the variables MAX,

CTR and SWITCH using a load, an add and a register to

register assignment respectively.

The second segment of the loop is the inner loop

defined by the branches on lines 42 and 53. The loop
compares each remaining member of the vector to the value of

MAX. If an element greater than MAX is found., that element

becomes the new value of MAX and SWITCH is assigned its

location.

The final portion of the outer loop, on lines 55

through 63 accomplishes the exchange and increments the

index.

s-Hr-ipo

i o r •ooit\)

S I

I I
I i ! i I

! | ! !
i l :

i !
i |

I I I f I I t I i I I I I I I I I I 1 I

tr*■PH

■̂4

o o *b
_ j «*
a .

t o
»-<

•—*
QCi C*
u J DOf CO ♦—
U 4 OM •k LU ••v
Z l o : >
M

•s •k
**

•* e> t o
r -1 H z *HO ►H
H •k h - DC
U i <\J . Q£ CD
o d H O h*
a ' t o U
M •k UJuf sO LU ■ >
L14 a:

•k
O '

o
; LL .

•k
o

• *v oa UJ z
H - UJb • •v : CD *—4
0 0 O f LA 1—
LU U J DC
H* M • •k □
- J Z l > rH Jfc CO «*k
Q. *-«

. «c i n
Jfc

a c
z n ro ■*V t-H o j m
♦—« 0 4 O —* H- K-f
o a d rH •k ••k ^ «k O U .
UJ z * U l r'- h— X X rH < »k
CD O f CO ^ co •k Xtil a d UJ * > m
H- u (■ a N *— !>•* Jfc ►H
</> C | M —J ■ v* •- **:
LU a d M > CL­ ’ ^ h“
f - Q-l UJ M ->V —* cc •s —•
- J >f U J a ^ >
Q- ’ * 4 a d ►H o o ►H

<xi a d - 1 Z J - j J*
U 4 21 U J <tt a CL-1 a d a M U J u j u j U J LU

at a a I I
u 4 u_4 HI—I •—I •—<
XI 23 23u< M *HI I I I I I

a t H H J H H CM23
o» f-< —i _ t .-4 a t a t
c 4 04 04 <xi c 4 23 23
OJ 3l3luj3l3i U4U4I I I I I I I I I I I I

I 5

oi^mosooo'OHwm^-inoNcoo'O
i I

•
CO
o
o ra
3 : t

__I
< #
Z o aM oo DC 0 0
LU o w
CD a
w z

o
>o • J o
r o •< t LU

X CO
t o M

.*-«• u CO
UJ cn

a Q •
LU • w oH'< O '
a : o
LU •r - i ,
z ! • •
LU CO
O LH : UJ

z :
UJ U i ♦-H
CD ! NJ f -
O 1
o CO z

CD
ti­ LU *H
ed 0 0 h *•< <H- 0 0 ; —1
z ►*■4
3 a .a z
5 - ; CD

:< ■ 1 CD

i I

i !

! 1 i t

ill!

i '
M i l l

i !

i I

I I \

1 i

I !
f ; «

UJ
X

□ LU
t™ X
~z a t —

h—
LU ♦

(U * 3
3

o c 3 a CO H- LU
CJ UJ o t o X
h~ on #— * oc lU L.U r z
o t o x o oc >z 3
UJ <x UJ • ; < Q LU H -
> CL 21

U
CZ
o t z

O 3
!U

U
LU

oc to —I H* UJ J>
LU H- ilJ O a . t o OC
u> jZ: LU < 3 H -
U I UJ h“ ^> tO X t— CO
H- Z t o H - o c
Z 3 C* UJ ►—< X i/J 3
►H O

a c
H
LU

X
H* x :

OO HH
LU

< t o 3 > > 3
<

U3
LU
X

lu
a R

E w
t o

t o X h" o o % t o
f— ►— T!| rZ ?1J UJ H* LL!
oc LU rxj UJ oc OZ on
KD • O t—i ij? cc O
oO a :

UJ CO
to 3

H*
ac
UJ

: z
«LI

H
LL.

a
<

• #X !JJ o t o !J Z u> 3 sO
H- 3 oc 'XI X lU UJ > - ■3
C* 3 o oc 1— •» h - H" CZ u *•* H «<N
C3 O Q •• •s X z X r— •• <
<0 O 3 3 a SZ o •s, =-4 X o X Z
3 SC z < X oC 3 H* o t u cZ CZ >-• 3
Ol <£ 3 X u-4 M a : z •« 3 ►H 3 z :

on 3 UJ a j ; H- < t r—4 •• O d .
UJ ►h z : X c z u - •v t o O o H- X 1— a
3 X UJ !—» o > - U- UJ w c z > - N JO •«
3 * - o h— t— CO •s •s. * X 3 u j O K M t o
3 t o LU <3 c z X e z sz LU s i - J LU 3 t o X X
C3 • ■* UJ OC U i < H ►-4 H-4 X < z UJ < X a 3 H X it HH
je: Q < :> CO LL. 3 3 H" > O o a - * t o rH

I I

ioO o o (M CI O H L) O N Mo o t-H <r o o
0 .0 O rH o o
u . co cq l u r o ro
H 1—i rH r—< O O .
.•4 CO LL. O LU UJW N M N N N

iTi JO O' O(\l N l\l M N fl

oor-ocoooo-o
m o o o o o o o o
r H O O O O O O O O
O U O u j N ro m r-H (XI
O r- (rH H i—I O O (VI (VI
D 0 5 < < O U. IL l ; ' CONN(V(MN(r>romrv-
o o o o o o o o o0 ^ ® U 0 J K « I U
O O O O r - < f - H r H * —IrHr'jOOOOor'OOo o o o o o o o o
O O O O O O O O O
C O O O O O o o o

Ooo

1 I

fr-z LLUJ CD-ftrLU Z GC
—1 CDCDLU ►-4

1-
H»
O*— <1UJ

</■> o D>
< a
-J -j2:L-|
UJ LL,
OC O O
<a. tOZ)5Z VOaa SfUJu.o QlLLO U.ICD CD0t— LU£/><r<t
Q 1— to;>IJU»—(IHLU h-
z X X VOH*CDLUa H*0
z:3:i-H3;<1■& oo

*-

ccr>o

«•» 1— {—4 0 ♦•4 4-
LU X —1 a »*s <*—# X X X
3 to + 3C p—4 M H>-H
1 * — 1 II n II

to •• •* •*-l: sz jC V►-< p-4 >H X—I u. X O*-4 >-
11 II u H X OC»« •• •« tu 3 < *—-J CO 0se 5Z 4-4>—4 »—1 X3 3 u 3

oo
TZ.

UJ
I—

*H*ZLU
sUJ

* _J
UI

a QZ
-4 LDh I—*<1 OU UJO z>—1 1—
to XH— LU►H X
Uj LLr— O oc
CD 32 toaCOLLX O LU>-LU Z • *\ oCX < oj: O XH— •»vI— Q ►H
X O 0 < toX <tX< 1C< II O +

2: 0 *• r—
3 C*A UJ IIX rzH—
z ••0 H*O

0 f“ O
21 h-X f—4 H
< UJ< 3 **v ►— •*
0 toHi.40 >-4 iUO co0£LL > X *UJ CD DC

<X

x a.<< jc x s r x u i <l►H I— SC
O II
z •«

X

II

<
Xx <_>1U £L Hs: >-« < LU 3: x:

^ H V) ■— I

Z CO
uj o sc u_1JJ >-
_J I—ui X

rH CVI ro M” in X) 0" QO O' O r-t CM CO 0 in xi N CO O' 0
!

rH OJ CO M- in XJ o- 00 0 0 *—I CM
ro <0 ro co ro co co ro ro <r «j- <r o~ O' 0 0 o* ■O' "O' in in m in m in in in in xi xj XJ X)

! i 0 1

1 1

0 , 0 i

; I .
1 i
i i i

I

i ^• 0 . 1 ! : 1 0 0 ! ! i * CM
M- •0- f- O
OJ CM 00 O
ro O' vf i ; j X3
H t O O ; CM
O i O O ' * ! j U.

t ° i O .O ! ’ ! r~

vT -j- -j- x> m co co < < r- in 10 co :o CC X)
OJ 00 CM CM OJ 00 00 OJ CM OJ CM CM CM 0 CM CM OJ
O' rH <f 0 0 0 rH 0 O O O O rH O O O rH
CM CM CM 0 0 0 CM 0 O O O O <M O O C3 CM
'T *1- CM vj- X) X) -O of CO vf •< CO CO x> X3 in XJ
<\J CM CM O CM CM CM ' 0 CM O CM CM 0J vf CM ' CM CM
f- O 00 00 co LU CO in u j <r 03 CO CO ro Li.! LU ro
O ro X) CO 1̂ r- X) co f~ co r- r- X) co O- r- XJ

O O 0 0 0 0 0 0 0 0 0 0 O O O 0 0
O CO M- X3 <1 CJ LU O •vf 03 c u u.» O CM «»• oc
00 CM <M 00 00 CM CM ro co ro CO CO <0 vf vf M- -J;
0 0 (O ri O O O <0 0 O 0 0 0 0 O C r-,
O O O O O O O O O O 0 0 0 0 O O O
0 O O O O O O O O O 0 0 0 0 O O O
O O 0 O O O O O O O 0 0 ; 0 0 O O O 0C

00
4A

0
33

46
00

12

64
EN

DW

00
03
 4

CO
70

1D
15
00

3B

C6
00

00

65
EN

DM
j

00
0D
 5

00
33
4

00
01

A

UJo<c oOC UiO KOO(3UO(3OO:!IO0H- OUJLLlUJUiLUUiUJLuaiLUUJto (/OtXOCCXiXCXQCQCaCQCClCQC

occxt xex t xcxexcxcxacaccxUJ Ui UJ LU LU Uj LU UJ U J UJ UJ UJC S O O O U O O I S W O U O111 UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UI
Z Z Z 2 Z Z Z z z z

< UJ(X INIex 1-1 <t to
totoUJ o >ro -oOJ00•J-o 'O0J00JJ-cx o J-r-f-Hu-00OJm COOJJOQ o-«oiTlin■J-roroOJrHrHa<r ooc * oUJ o co <1o-aor~JOm •J-ro0JrH o1—’ OJOJOJOJOJOJ0JOJOJOJOJ0J oto o o o o o o O o o o o O o►"I o o o o o o o o o o o o oO o o o o o o o o o o o o oUJ UJ_J exCO•4 oc►— oUJ 3u_i _l oc X u. to 1—a Q 1 CO K >- _J occc ca UJexo H- to*— UJ a£ x <ox:z UJexX M £ £ exX co to>- >- <1ui< z i— X JCM rH►H «t _Ji/i to UJI— o u o x t—(toU z UUto _J a.

BE
FO

RE

SO
RT

IN
G,

"V
EC

TO
R~

TS
~:

58

The purpose of the second module, TESTMQ'D, is to

demonstrate the use of a record,

The entry code is handled in the same manner as in the

first sample module. The assignments into the record fields

are examples of cases in which a temporary register is

needed for a store.

The assignment SIZE := SIZE"* is necessary to place the

actual size of the vector into the register since the

parameter list contains the address of the parameter.

The content of the IF statement has been manipulated to

show an IF-THEN-ELSE construct.

LU
vS<

r>-o
oo-

i I

i i t i i i i i i i i i i i i i ii i i

ni
Zlt-d
ad■-UOl
Ui

<£>
r>s *

j
X
< 1

3

i n a £
>_i a : «k
LSfl S — *»
=3| i— •* z
M c o •H X a
o l u j **v - * X »H
u i l ~ 1.U X .

«*k X O x *4
<\J —k <?- - 4 X O
H* u a a i _J x o
c o u i u i «v CL X _1
UJ O l o i m X
h - U i U i •k x z_i M M <L X X HI
CL ZJ ZJ

H i H i >
rH < X

2= x
Z ■ — HI •k %
HI C\J *•1 •k
O U i , r— i UJ i n H .
UJ o d in •k OJ O UJ
03 =31

a i \
3 ■— H i

c o _ j
•k o

> < ;
OJ U i o d LU CL H i _ l
H - • o l d i M , t— ! : •H *-* CL j
t o C l n — 1 *k OJ Q -
ItJ , a d o l > CL X •H rH a «s
H - , n i u i HI Hj OJ | 5= X
—I > 1 '■r u i 2= H 1— c
a . - 4 ad i » in y=

<U ad - i d u q •« LU ---
U 4 2 3 U i d i d H t -
—4 o d o l H | u i o i — LU u i • H ■»
= 4 u i U J M o e s jL i O - I t— 1 0 4 S3
C4 M t—1 H | □ H X <t _ i H i a o i
O X I 2 3 2 3 3 d 2 1 < - J < n o n 2 1 2 1
■ a
I

u i
1 1

H i
1

H|
1

f l J H
1 1

>= CL
1 1

t_ i Je)
1 1 1

ui uj
1 1

-Iml

— I r—I rH rH r--̂ rH fH r-* 1—■ rH rH OJ

<1 • .
x t o ;
HI o r »
l_> ct CO
LU o H
Q 3 : CD
•w— Z

r ^ I a
■J" _ J ' <_>
OJ < } ' UJ

Z ' co
lO HI 1 i
HI o co

UJ : CO
Q O •
UJ- »«• o
H
<4 NOC o ; J
LU rH |
z ••
LU too HI LUi z
UJ UJ HI
o OJ . H
a HI !
o to ' Z

o
u . UJ , HI
o CO H

< f <1
1 - co _1
z HI
“) -XT a
o 1 - 2=

lit
X

« LU
o X **y
ac t— —%
O • •k UJ
cd ll O o
LU a ■O'. *•» LU <1
a: * o ac 3

x I Li a.
<5 o • OC OC

>-< OC LU •y
U- H* o oc CD 3
O < h* lJ> UJ LU ^ H-

CD 3 UJ o f— CM 3
OJ o UJ •«y a: LU X CO
CO 3 D* a: ►— 3 H 1ZJ UJ a: X X *■

o cZ <J> 3 1~H a:
»JLl z uj UJ O H 21
X O H iJJ M IU z
H- LU 21 H~ CD •y 3

ui H- ►H X oc: < •* LU a:
c/> 3 X H H- 3 rH rn
UJ —1 >—< •* CD OL 3 i—
►— < •• li co LU
< > X UJ •» •y CO
X <t u a. X X UJ •y
f - UJ < X 3 3 X rH *
uo X u. 3 3 az X O X
3 h~ 3 Q a. H- rH
3 a: ••k «\ •y w
3 OOnC o •y «s UJ H ^ >-
►h X slj o X o LU x uj %r OC

03 UJ < X H* ►H3 0- sO b-
o UJ 3 oc X LU rH OO >- X ••y
3 _t UI -O •y H- 1) UJ rH
jc ZJ lU 21 II 1 •y UJ CD X
H o ai X 3 X LU UJ •• 3

o H* LU < H CJ QL rH a
tXJ 3C 3 on O. r—t rn a II
t— 3 UJ >- c/> •y •• tO z

CO ZJ o k— •y o O Q h*
uj M o OZ CD X oc X CD OC </> X
3 X CD < LU < LJ < UJ UJ o UI 3
ID H—X 3 UJ CC 3C 3: CD OC 3 3 H OC
o OL C& 3 O
3 * >- < Hi 3
£ 1— I > D» ■ u

1 2 m 5 6 r- oo O' o rH co ro IT> 0̂ r^ co O' O h M ro >1- u> sO r- ut>
fH rH H rH H rH rH rH H H C\J N <\J «\J t\J CVJ CM CM CM

O U O O < i A W O
O H <_> O <\J <\j f\j r\j
O O r - l v J O O O O
O O O r M O O O O
u. J3 a uj ro m i<i nfH rH *“< f—1 O O O O
<1 CO U_ O UJ \U UJ UJc\j h- r- j> r- r—

00f'-0<'00 0 0 0
■—« « H o o o - j - x r < r < r
• n o o o o o o o o
r - I O O O O O O O O
O o o u u r ^ c o r o m m
O r - l t - l r - * r - l O O O O
O f f l < < ® L L t L C L U -
r ~ - r ' - f \ i f \ J f ^ c o r o c o o n

sO
C\J
Oo

o o o o o o o o o o
O >r co o o -j - an o O m
O O O O f —! «-i »-t 1-1 (SI fVi
O O O O O O O O O o
O O O O O O O O O o
O O O O O O O O O o
o o o o o o o o o o

! !

I !

! ! ! Ii i

! ! ! i

ill!

I i

I !
(ill

! 1 ! i i I
I !

I J

I i I I ! I !
I I

a
z ft ao

o
UJ>

I <_>_I OJ
<t oc

vo oc <i a
Cl. u_

£a
oc

4 * * cz O
UL •MO UJ z • «s O

20 • K < X 21
O z UJ z 1— < t
h - r> rvj O UJ X o U

z *—t Q X - 4
o CO I— z • ̂ II II
UJ X o UJ £3 •• ••
OC UJ X H- hsj X 3 : z

z < l a ►H < < t IU < UJ
o o 3 : 3 c o z : £ z o D
z < ; o < X
<* H II UJ KU + « oC A I— II —1 <

< •• •• r a i*n4 V UJ •• Ol
X £ *—« i—I a © vo • •
< cU c o •V) 3 C£ •• Z X O o
V a : o Qt H < * < UJ UJ

< X o it C-> O o -— z OC X
1— it < < •• II Z
UJ •• •CL O •• UJ < t u .
i/1 • • • U i-U —1 0 1—4

X a <w> rvj 21 »—t
*- <L •i ■- LJ * *—t 3 X

s z o ' a : oO 0£ j 3 I

O H <\j CO i n vO CO
: ' i
O ' O H CO ro >r tr» o

cn CO CO
i

CO CO CO CO CO CO
1

r o ^ sj- >r

i
j

u- >r nJ- nT

i
i

j

1

JO* 1-4 i

j

i . i

1 ! 1
lO i ! i o

!

-Is- co1 ! AJ C\J O ’ . I o OJ CsJ
o o • i n ! H o o
AJ <\i 1 CO OJ OJ OJ

i 0 0 CO { o ■ < CO O')
, t O o , >H | o o o; CL LL , i o i j o ! LL LL! N Is- ! o Is- h-

o
+

OC
J—
l_> LU

:o:
o
iro •

' § ■;‘o !

Q
Z

zz>
:

z
:d
u£

CD CD. LU
Z Z l_>
< x uj <

< t— _j a.
a- C

II • .u
•*<_>»—

X <tz
UJ

Z oc< oc 1.1

a. | a_ o
£ X £ 4 4 UJ —J
t—■ 5ET h— i£

O r H N f O ' I - i n v O N C O U 'ininininininiftinuMn

H o o m 45 ' c- CO 1 00 (t—4 . o o c~ i *0 c- ! 43LL 1 o ro o
co >r 00 co co ■ co co co CO •J- oo co . o co CO o 00 CO 4-
o ro CO o Nf . o o o o co ro O' o ■> • 4" o CO o roo o o o CO o o ' o o o o CO o CO CO o o o o
4D co CO 1 ^ 43 i vT 43; ! 4- 00 ro ro Is- . 4- r- , 4343 CO co CO
CO o o CO CO o co ' o co o O CO • o CO CO •o- o co o
LU UJ LU l-L co ; U’V UJ <r cn LU LL! CO o CO CO ro UP LL U.1
C- CO CO c- 43 ! cr. c- ' CO r- ro CO 43 co 43 43 CO , CO C- ro

O O o o o o O o o o o o o o o o o o o
4 43 < u o CO 43 03 <_) UJ CJ 43 CD t_! III o CJ 43 CO
CO co CJ CJ CO ro ro co ro (Cl J- J- . ■vT OL -j- in in in m
f*» O O o o> co O O O o o oi O O o o . o o o
O O O o o O o o o o o c O O o o o o o
o o o o o o o o o o o o o o • o o o o o
O O O o o o © o o o o o o © i © O © o o 00

03

5C
0

"
7

F
2

C
0

0
2

3

60
0

0
0

0
5

5
0

7

0
1

D
15

00

3

8
0

6
0

0
0

0

61

E
N

D
M

0
0

0
0

6
2

0

3
3

4
Q

C
0

1
A

SY
M

BO
L

T
A

B
L

E
'"

! I i I i

i i i

! i

■ i i
i I !
! I !i i i

f I i
i

is ts ̂ o o o o o o o o au iu aj uj lu uj lu lu ;u uj lu uj
o c o c o c a c o c a c a z j c a c o c a z a c

az oci .U LU
oc o o oc -jc oc oc ac oc ac az oc oc ocUJ Q JJ .JJ .U UJ LU u U U U JJ UJ J JJ uO JC r - <— O <Z> J> O O O LL> O O O O OUl'OZ Z UJ I.U LU LU U.I IU .JLJ lJJ uj lu uj lu
J™ LJ 1—4 t— < I— I— I— I— t— I— I— I—“ r—- L—r {—■ |—zoi i z z z z z z z z z z z zh a; *—* >—« *—* »—< j—• >—t ►—« >—• ♦—« ►—< ►—« •—•
' i ' I i

<) <\j co sr O o c\j o,.' <r O so r\i to -j-33 CM in a- CM -o X) CO - G J l i A - f t o m c j H H

U 30 < CJ1 ® N 'O u~i M" CO CM CM CM CM CM CM CM CM CM CM CM CM CM
O O O O O O O O O O O O
O O O O O O O O O O O O
O O O O O O O O O O O O

o UJ 1 UJ u ;Uj o j ; IV H*1 i O_» OZ X < * f—1 ►-* t tn oo 1 <Z —1u I/O in XCO UJ s; Ol. o o u> o Q_ 1 UJ H-r <s T *—411 *r rv Kf rv* r X X ro>- UJ __!z> X XI. <L z> *-h o <x <t <t , LiU) , on o- ! Q_ z M o O o CK is* ̂ s', x: __i h*

□

<toa

rs
X*

CHAPTER 6

The Compiler Writing System

6.1 Overview

This chapter presents an introduction to the compiler

writing system employed in the PL/STAR project. The system

was developed by Professor Donegan of the College of William

and Mary and adapted for use on the CDC machines at NASA by

the author.

The system, itself written in PASCAL, generates the

basis of a syntax directed compiler for a target language

defined by a LALR(l) grammar. The generated compiler is
\.

also a PASCAL program.

Certain modifications to the original system were made

at NASA to substantially reduce the amount of user

interaction needed.

64

65

The system proper consists of three programs, a table

generator, a table compressor and a compiler synthesizing

program. Also available is a utility program that puts the

grammar rules and semantic code of an existing version of

the compiler into a form that can be used as input to the

compiler writing system.

6.2 Input/Output

Two files are input to the system. The first contains

the grammar for the language. Following each grammar rule

is the code to execute semantic actions associated with the

rule.

The form of an input rule resembles BNF with a few

modifications. The is replaced by a and the

vertical or bar is replaced by a semicolon. Symbols on the

right hand side of a rule are separated by commas and each

rule is terminated by a period. A '$' must precede each

and appearing in a rule.

The end of the grammar is signaled by a period in

column one.

The code associated with a rule appears in the output

compiler following the case label corresponding to the rule

in the SYNTHESIZE case statement. Line images containing

semantic actions must have a blank in column one while rules

must not have a blank there.

66

The output of the system is the parse tables and the

generated compiler. In addition various human readable

lists, such as lists of symbols and state tables, that aid

in debugging are printed.

6.3 Method

The table generator builds the LR(0) sets of items for

the grammar and adds lookahead information for those states

with parsing conflicts. The generator assigns an integer

index to each symbol in the grammar. These indexes

represent the symbols in the tables.
The table compressor attempts to shrink the size of the

tables.

The compiler synthesizing program merges textfiles

supplied by the user and the table generator program into a

skeleton compiler for the target language. The completeness

of the generated compiler depends upon the sophistication of

the user supplied code.

The generated compiler is written to a segmented file

called BUILDFL by the compiler writing system.

The first segment of the compiler is created by the

table generator program. The segment contains the program

card for the compiler and certain constant declarations.
Two additional constant declarations are contained in

the second segment, supplied by the compressor program.

To this base the compiler synthesizer adds the first of

two sections of user supplied code. This first section

contains global declarations and the function and procedure

declarations that are to appear before procedure SYNTHESIZE,

the semantic action driver.

The next file to be merged is supplied by the table

generator. It contains procedures SCANINIT, which equates

reserved words with their integer indices, NEXTSYM, which

identifies the next symbol in the input to the compiler and

SYNTHESIZE.

The last segment of BUILDFL contains additional user

supplied code and the two system routines, READTABS and

PARSE, that execute the parse.

CHAPTER 7

Evaluation

In [9] Pratt lists features of a good programming

language. This chapter attempts to evaluate PL/STAR using

Pratt's criteria. PL/STAR, though, does not exist in a

vacuum. It is an alternative to the STAR assembly language

and should be judged accordingly.

7.1 Clarity, Simplicity and Unity of Language Concept

Pratt feels that a language should provide its user a

coherent and manageable set of concepts with which to

develop programs.

PL/STAR maintains a small number of native forms. The

rules governing their use will be familiar to assembly

language programmers.

The PL/STAR language, though, is designed to be used as

68

69

a basis for development and, therefore the features provided

are designed to support a wide variety of applications.

7.2 Clarity of Program Structure

It is in this area that PL/STAR contrasts most strongly

with assembly language. The control structures of PL/STAR

can make clear the flow of the program logic. The free form

input allows the use of blank lines to delimit code of equal

precedence while indentation can show subordinate or

dependent code, These features properly used result in a

piece of work more nearly resembling the human concept of

the process of the module than the machine's linear

instruction sequence.

7.3 Ease of Extension

Pratt means by ease of extension a measure of how well

the algorithm can be expressed using the features available

in the language. To address this concern, PL/STAR contains

the structured types array and record, which permit the user

to build his own data structures.

70

7.4 Efficiency

Pratt mentions three distinct aspects of efficiency.

7.4.1 Efficiency of Program Execution

In high level languages the generation of the object

code is hidden from the programmer. A result of the close

correspondence of PL/STAR to machine features is that the

PL/STAR programmer controls the nature of the code that is

generated. The efficiency of the code, then, depends

greatly upon the skill of the programmer and is.expected to

approximate that of assembler code written by the same

programmer.

7.4.2 Efficiency of Program Translation

The PL/STAR compiler exists on the STAR access station,

a CDC 6400 computer. After PL/STAR programs compile on the

access station the object files are sent to the STAR for

loading and execution.

STAR assembler code, though, is assembled directly on

the STAR, making any comparison of the two times misleading.

Certainly a CPU second does not represent the same

expenditure of resources on the access station as on the

71

STAR.

7.4.3 Efficiency of Program Creation, Testing and Use

In the sense that efficiency is related to ease, this

topic summarizes the purpose of the language. PL/STAR is an

attempt to bring high level features to assembly level

programming. It is reasonable to expect that some portion

of the relative advantage that high level languages enjoy

over assembler in program development time will accrue also

to PL/STAR.

APPENDIX

The PL/STAR Grammar

This appendix lists the grammar that defines PL/STAR

It is the grammar used as input to the compiler writing

system except that it appears below in standard BNF* The

modifications to BNF necessary to make grammars acceptabl

input to the compiler writing system are contained in

chapter 6.

[1] <compilation> ::= <moduledef> <eofsym>
[2] <moduledef> ::= <modu!ehead> <constsection>

<typesection> <declarations> <initialsection>
<codesection> ;

[3] <modulehead> ::= MODULE <identifi.er> ;

[4] <constsection> : = CONST <constlist>
[5] <constsection> : = <epsilon>
[6] <constlist> : = <constelem>
[7] <constlist> : = <constelem> <ccnstlist>
[8] <constelera> : = <identifier> = <constant>

[9] <typesection> : TYPE <typelist>
[10] <typesection> ::= <epsilon>

11 ctypelist> := ctypedef> ctypelist>
12; <typelist> <typedef>
13 ctypedef> := ctypeid> = crecorddef>
14 ctypeid> := cidentifier>

15 crecorddef> := cre,cord> crecdeflist> ENDR ;
16 <record> := RECORD
17 crecdeflist> := crecdefelem> crecdeflist>
18 Crecdeflist> := Crecdefelem>
19 <recdefelem> := cfieldidlist> : cpredeftype> ;
20 <fieldidlist> := cfieldidhead> cfieldidlist>
21 <fieldidlist> := cidentifier>
22 <£ieldidhead> := Cidentifier> ,

23 <generaltype> := Cusertype>
24 Cgeneraltype> := cpredeftype>
25 <usertype> := cidenti£ier>
26 cpredeftype> := REAL
27 <predeftype> := INTEGER
28 cpredeftype> := DESCRIPTOR
29 <predeftype> := CHARACTER
30 <predef type> := BIT

31 cdeclarations> - VAR cdecllist>
32 <decllist> = cdeclelem> cdecllist>
33 <decllist> = cdeclelem>
34 <declelem> = Cidentifierlist> : ARRAY [

<bound>] OF <predeftype> ;
35 <bound> := cconstant>
36 <declelem>

<storage> ;
::= cidentifierlist> : cpredeftype>

37 <storage> = SREG
38 <storage> = DREG
39 <storage> = SDREG
40 <storage> = REG
41 <declelem> = Cidentifierlist> : cgeneraltype>

42
y
<declelem> :

<recdeflist> ENDR ;
:= cidentifierlist> : crecord>

43 <identifierlist> : = cidlisthead> cidentifierlist>
44 cidentifierlist> : = cidentifier>
45 cidlisthead> • = Cidentifier> ,

46 cinitialsection> : = VALUE cinitlist>
47 <initialsection> : = Cepsilon>
48 <initlist> = cinitelem> cinitlist>
49 <initlist> = cinitelem>
50 <initelem> = cidentifier> = Cconstant>

51 cc.odesection> • • — • •= CODE cstatementlist> ENDM
52 Cstatementlist> = Cstatement> ; Cstatement.list>
53 <statementlist> : : == cstatement>

74

5 4] <stateraent> = <label> <unlabstatement>
55] <stateraent> = <unlabstatement>
56] <label> = <identifier> :

57] <unlabstatement> : = <assignmeritstate>
58] <unl-abstatement> : = GOTO cidentifier>
59] Cunlabstatement> : = ENTRY <entryplist>
60] <unlabstatement> : - ENTRY
61] <unlabstatement> : = CALL <callid> <callplist>
6 2] <unlabst:atement> : = CALL <callid>
63] <unlabstatement> : = cinstruction>
6 4] <unlabstatement> : = <epsilon>
65] <imlabstatement> : = cstruc. turedstatement>

66] <assignmentstate> := <lhs> <rhs>
67] <lhs> : = <identifier> <becomes>
68] <Ihs> : = cidentifier> ~ <becoraes>
69] <becomes> : = =
70] <rhs> : = <operandI>
71] <rhs> : = <operandl> ~
7 2] <rhs> : = <constant>
73] <rhs> : = <operandi> <boolop> <operand2>
7 4] <rhs> - <operand2> <arithop> <operand2ar
75] <rhs> = LENGTH (Cidentr.ifier>)
76] coperandl> : = cidentifier>
77] <operand2> : = <identifier>
78] <operand 2arith> :: -= <identifier>
79] coperand 2arith> : : == <constant>
80] <boolop> : = AND
81] <boolop> : = OR
82] <boolop> : = XOR
83] <arithop> : = <addop>
84] <arithop> : = <mulop>
85] <addop> : = +
86] <addop> : = -
87] <mulop> : = *
83] <mulop> : = /

89] <entryplist>
Centryplbaek>

: = Centryplfront> <entrylist>

90] <entryplfront> : = (
91] <entrylist> : = <regpair> , <entrylist>
92] <entrylist> : = <regpair>
93] <entryplback> : =)
94] <regpair> : = cidentifier>
95] <regpair> ; s= cepsilon>

96] <callid> = <identifier>
97] <callplist> = <callplfront> <callplback>
98] <callplfront> : = (<callplitem>
99] <callplback> “ > Ccallplitem> ccallplback>
100] <callplback> =)

75

101
102
103
104

105

106
107
108

109
110
111
112
113
114
115

116

117

118
119
120

121
*122

123

124
125

<callpliteiu>
<callplitem>
<callregid>
<callregid>

<instruction>

<constant>
<callregid>
cidentifier>
[<identifier>]

= (
<structuredstatement>
cstructuredstatement>
<structuredstatement>

= <ifstatement>
= <whilest.atement>
= <repeatstatement>

<condition> <operandl> <relop> <operand2>
<relop> :;= <
<rel.op> ::= >
<relop> ::= =
<relop> ::= <>
<relop> ::= <=
<relop> : > =

<ifstatement> ::= <if> <condition> <then>
<statement:list> ENDI
cifstateraent> ::= <if> <condition> <truepart>

<statementlist> ENDI
<if>
<then>
<truepart>

= IF
= THEN
= <then> <statementlist> ELSE

<whilestatement> ::= <whilehead> <statementlist> ENDW
<whilebead> WHILE <condition> DO

<repeatstatement> ::= <repeat> <statementlist>
<until.part>
<repeat>
<untilpart>

:= REPEAT
:= UNTIL <condition>

76

Notes

[13 Control Data Corporation, Control Data
STAR-100 Computer Hardware Reference Manual (Control
Data Corporation, 197 4) p. 1-1.

[2] NASA Langley Research Center, STAR Programing
Manual (NASA Langley Research Center, 1976)" sec. 1.2.1,
1. 2. 2.

[3] Niklaus Wirth, "PL360, A Programming Language
for the 360 Computers," Journal of the Association for
Computing Machinery 15 (January 1968) : 37-7 4.

[4] Victor S. Foster, "MIDAS: A.Mid-level Language
for Microprocessors," (University of Virginia,
undated).

[5] Uwe Frederik Pleban, "Design and
Implementation of the Structured Assembly Language.
PL/85" (Master's Thesis, University of Kansas, 1976).

[6] NASA Langley Research Center, SL/1 Manual,
(NASA Langley Research Center, 1978).

[7] Kathleen Jensen and Niklaus Wirth, Pascal User
Manual and Report (New York: Springer Verlag, 1974).

[8] NASA Langley Research Center, STAR Standard
Procedures, (NASA Langley Research Center, 1976) pp.
28, 29.

[9] Control Data Corporation, STAR Operating
System Version 1 (Control Data Corporation, 1977) p.
8 - 1 - 8-1 1.

[10] Terrence W. Pratt, Programming Language
Implementation and Design (Englewood Cliffs, NJ:
Prentice-Hall, 1975), pp. 6-10.

77

References

Aho, Alfred V., and Ullman, Jeffrey D. Principles
of Compiler Design. Reading, Mass.: Addison-Wesley,
1977.

Alio, Alfred V., and Ullman, Jeffrey D. The Theory
of Parsing., Translation and Compiling, 2 vols 0
Englewood Cliffs: Prentice-Hall, 197 2.

Control Data Corporation. Control Data STAR-100
Computer Hardware Reference Manual. Arden Hills, Minn:
Control Data Corporation, 197 4.

Control Data Corporation. Implementation Language.
(IMPL) Reference Manual. Sunnyvale, Calif.: Ccntrol
Data Corporation, 1973.

Control Data Corporation. STAR Operating System
Version 1 Reference Manual. Sunnyvale, Calif.: Control
Data Corporation, 1977.

Foster, Victor S. "MIDAS: A Mid-level Language for
Microprocessors." University of Virginia, undated.

Jensen, Kathleen and Wirth, Niklaus. Pascal User
Manual and Report. New York: Springer Verlag, 1974.

NASA Langley Research Center. SL/1 Manual.
Hampton, Va: NASA Langley Research Center: 1978.

78

NASA Langley Research Center. STAR Programing
Manual. Hampton, Va: NASA Langley Research Center,
I m r

NASA Langley Research Center. STAR Standard
Procedures. Hampton, Va: NASA Langley Research Center,
1976.

Pleban, Uwe F. "Design and Implementation of the
Structured Assembly Language PL/85." Masters Thesis,
University of Kansas, 1976.

Pratt, Terrence, W. Programming Language
Implementation and Design. Englewood Cliffs, NJ:
Prentice-Hall, 1975.

van der Poel, W. L. and Maarssen, L. A. eds.
Machine Oriented Higher Level Languages: Proceedings of
the IFIP Working Conference on Machine Oriented Higher
Level Languages. Amsterdam: North Holland Publishing
Company, 197 4.

Wirth, Niklaus. "PL360, A Programming Language for
the 360 Computers." Journal of the Association for
Computing Machinery 15 (January 1968) : 37-74.

79

VITA

BARRY LEE MONDAY

Born in Coatesville, Pennsylvania December 7,

195 2. Graduated from Coatesville Area Senior High

School in that city in June 1970.

Received B.A. degree College of William and Mary,

June 197 4. In August 1977, the author entered the

program in Applied Science at the College of William

and Mary. Since that time he has served as a research

assistant in the Programming Techniques Branch of the

NASA Langley Research Center in Hampton, Virginia.

	PL/STAR, a structured assembly language for the CDC STAR-100
	Recommended Citation

	tmp.1539793463.pdf.w75PA

