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ABSTRACT

A topological space X is metrizeble provided there exists e
metric d on X which induces the given topology on X. 1In this
thesis we consider necessary and sufflcleant conditions that X be
metrizable,

The thesls comsists of three parts. In part I we develop the
properties of metric and pseudometric spaces and prowve the two
classical metrizetion theorems of P. S. Uryson. The first metrize-
tion theorem of Uryson states that a space with a countable base |
is metrizeble if and only 1f it is Ty,. We also prove Tihonov's
form of this theorem which replaces the T assumption with the
weakey ’1'3, assumption. The second metrization theorem of Uryson
can be derived from the first. It zsserts that a compact Hausdorff
space is metrizable if and only if it has a countable bsase.

In part II we defipe a K-basis (the concept is due to Weil) and
prove that & space 18 metrizable if and only if it has & K~-basis. We
use here a mpdified form of Spencer and Hall's ergument. (Their
argunent aeppeaers incorrect in seversl particulars.) Ve then derive
the metrization theorem of Aleksandrov and Uryson: A topological
space is metrizeble if and only if it admite a regular complete
development. This theorem provided the first sclution of the metriza-
tion problem for an arbitrary topologlcal space.

In part III we consider the recent results cbtained by J. Nagata,
Yu. M. Smirnov, and R. H. Bing. Ve prove that the folloving statements
are equivalent:

zl) The topologlcal space X 1s metrizable.

2)'X is a Ts-space with a c-locally finite base. (Nagata-
Smirnov)

(3) X is a Tz-space with a o-discrete base. (Bing)

The proof that (2) implies (1) involves embedding X homeomorphically

in a pseudometrizable product space. To prove that (1) implies (3)

wve essume the following form of the axiom of cholice: Ewvery set can be
well-ordered. Trivially (3) implies (2). This theorem provides the first
satisfactory solution of the metrization problem. In particulaer the
Uryson-Tihonov theorem follows e&s an immediate corollary.
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INTRODUCTTION

A topological space X 15 metrizable if and only if there exists
a meiric 4 on X wvhich induces the given topology on X. The purpose
of this thesis is to investigate necessary and sufficient conditions
for a topological space to be metrizeble. This problem is fundamental
in general topology.

In part I we prove the two classical metrization theorems of
P. S. Uryson (15). (Numbers in parentheses refer to the bibliography.)
The first metrizetion theorem of Uryson states that a topologlical space
which has a countabie base s metrizable 1f and only 1f it is T.
We then derive the Uryson-Tihonov theorem: A topological space which
has a countable base is metrizable if and only if it is '1’3. We derive
the second metrization theorem of Uryson from the first: A coumpact
Haugdorf{ space is metrizable if and only if it has a countable base.

In part II we investigate "the concepts of a K-basis and a regular
complete development along with the metrization characteristics of each.
We prove the metrization theorem of A. Weil (16): A topological space
is metrizable if and only if it has a K-basis. Here we use a modifica-
tion of the proof in Spencer and Hell (5). Their argument appears
incorrect. (See abstract.) From the theorem of Weil we derive the
Aleksepdrov-Uryson theorem (1): A topologicel space is metrizable if
and only if it admits & regular commplete development. This theorem

provided the first solution of the metrization problem for pn arbitrexy



topologlcal space. However, it cannot be said to solwe the metrization
problem is a satisfactory menner, since nelther of the theorems of
Uryson can be derived from it in an obvious way.

Fallowlng the appearance of the Aleksandrove-Uryson theorem a
series of metrization theorems were published by E. W. Chittenden (3),
E. R. Hedrick, ¥. Aronszajn, R. L. Moore, and others; however, most
of these criterie were essentially the same as that of Aleksandrov
and Uryson. In 1951, Yu. M. Smirnov (12) and J. Nagata (9), working
independently, arrived at the first satisfactory solution of the
problem. Their work introduced the concept of 2 g«lccally finite
base. R. H. Bing (2) then formulated the concept of & o-discrete base.
In part III we consider their results. We prove that the following
statements are egulwvalent.

(1) A topologicel spamce X 1o metrizable.

(2) X is a T~ space vhose topology has a o-locally finite base.

(Negata-Smirnov)

(3) X is = T5-space whose topology has a o-discrete base. (Bing)
We derive as an immediete corollary the Unrson-’l‘ihdmv theorem.,

In conclusion we discuss briefly the concept of paracompactness.
(Dieudonné (4)). We state without proof certain properties of metric
and paracompect spaces {in particular the theorems of Stone (13),
Dieudonné (4), and Smirmov (11)) and prove that a locally metrizeble

topological spece iS5 metrizaeble if and only if 1t is paracompact.



SYMBOLS AND HOTATION

a set of elements.

¢ the empty set.

& a famlly of sets.

x€X X is an element of the set X.

*x#X x 1s not an element of the set X,

ACB the set A 1is contalned in the set B.

& C 4§ G is e subfamlly of the family & .

AUB the union of the sete A and B.

ANB the intersection of the sets A and B.

&Uh the union of the families G and § .

X»nyY the cartesian product of the sets X and Y.

I X, the generalized cartesian product of sets X;, a in
sonme index set A.

A A the closure of the set A.

C A the complement of the set A.

(x, ) a topological space X with topology P .

fog composition of £ and g.

inf limit inferior (equivelent to g.l.b.).

sup 1limit superior (equivalent to l.u.b.).

3 al'xch that .

Ry the real numbers .



The letters "iff" will mean "if and only if," and "w.r.t." will mean
"with respect to." The symbol I* will denote the positive integers.
Capital Latin letters such as A usually demote sets, vhile capital
Germen letiere such as U will denote a family of sets. In general,
the symbol X will mean a topological space with topology .53 unless
othervise stated.



PART I

Definition: Let D be a family of subsets of & nonempty set X such

that;
(1) the union of the members of any subfamily of Jf) is a mewber

of D .

(2) the intersection of a finite number of members of P is a
member of D .

Then 5 1is termed a topology for X, and the pair (X, D) is

called a topological space. A subset O of X 1is ogpen iff O

is & member of D .

Example:
(a) Let (5 be the vacuous subfamily of $ . Then by definition

(1) UG = ¢
Ge Gs

(2) NG = X
Ge @35

so that the space X itself and the empty set § are open in
any topology. Define ) n{x,¢}. Then $ 1s called the

indiscrete topology for X, and (X, ;5 ) 18 an indiscrete

topological space.
(b) Let H be the family of all subsets of X. Then 5 is
called the discrete topology for X, and (X, ) is a discrete

6



topologlical space. For the remainder of this paper we shall
use the abbreviation "t.s.” to denote "topolog;lcal space."” é
For brevity we shall also write X for the t.s. (X, D ).
A subset C of X 1is closed iff (CC, the complement of C,
ic open in X. That is, (Ced.

Definition: ILet (X, D) be a t.s. A subfamily ¥ of P forms e

base {or basis) for » 1ff every member of ) 1is the union of

members of s subfamily B* of ¥ .

Definition: At t.s. (X, D) is called a second-axiom t.s. or

second-countable t.8, iff there exists a countsble base for b .

Definition: A femily X x of open sets containing e point x i

termed a base (or besis) at x 1ff for every open set O con-

taining x there exists a B (depending on Q) in E’x such that
x€B C 0.
Definition: A t.s. X is called e first-sxiom t.8. or a firete

counteble t.8., 1ff there exists e countable base at every point

x in X.
Definition: A t.s8. X is sald to satizfy axiom ﬁ iff each point

x€X 1s a closed set. A t.s. X satisfying exiom Ty 1is termed

a Ty-space.

Definition: A t.s. X 1is sald to satisfy axiom Tp 1iff for every
peir of distinct points x and y in X, there exist disjoint
open sets O, and Oy such that xS0, and yﬁay. A t.s. X
satisfying axiom T, is termed a Hausdorff or To-space.

Definition: A +t.8. X is said to satisfy axiom 5 iff for every

x€X and every open set 0 containing x, there exists an open



set G containing x such that x€(G C O. A t.s. X satisfying
axiom T5 is called s regular space. A regular T,-space 1is
termed a T:-spa,ce.

It is easily proved that a t.e. X 1is regular iff for every
closed subset C of X and every point x not in €, there exists
an open set G such that x<G C NGC (c.

Definition: A t.s. X 1is said to satisfy axiom T) iff for every pair
of disjoint closed subsets C; and Cp, of X, there exist dis-
Joint open sete 0Oy and O, such that C) C 03 and Co C Oo.

A t.s. X satisfying axiom T, 1s termed a normal space. A
normal Tye-space 1s called a Ty-space.

We use in the sequel the following cheracterization of normality.
At.s. X 1is8 noxma.}:.-ii'f for every closed subset C of X and any
open set O such that C C O there exists en open set G such that
cCceC ycCo.

Definition: ILet A and B be subsets of X. The set
Q (4,B) « (ANYB)U(KANB) 1s called the juncture of A and B.
1f G(aB) = # the sets A and B are said to be separated.

Definition: A t.s. X is sald to satisfy axiom Tﬁ iff for every pair
of subsets A4 and Ap of X such that O (4,42) = ¢, there
exists disjoint open sets 0y and O such that A CO; and
A2C 02, At.s. X satlefying axiom Ts 1s called a completely
normal space., A completely normal Ty~space 1s termsd a Tf,-space..

Definition: let X be an arbitrary nonempty set, and let d be a
real-valued nonnegative function defined on the product space

XX, If for ell points x, y, and z in X,

~ -



(1) x =y implies da(x,y) =0

(2) alx,y) = a(y,x)

(3} alx,2) T alx,y) + da(y,=2)

then 4 is térmed a pseudometric, and the pair (X,d) is called a

pseudometric space.
Definition: Let (X,d) be a pseudometric space. If for all points

x and y in X,

(%) a{x,y) = 0 implies x =y

then (X,d) 1is termed a metric space with metric 4.

Exemples:

(e) Let R be the set of real mumbers, end define 4@ on R X R
as follows:
alx,y) = 0, if both x anmd y are irrational or both are

rational

a(x,y) = 1, if elther is irrational and the other is rational.
Then d 1is e pseudometric for R but not a metric.

(b) let R, be the set of all n-tuples X = (X,Xny..0,%,) of
real mumbers, and definme & om R, x Ry as follows:

n 1/2
- 2
ax,y) =| (% = i)
k=1

Then (R,,d) is a metric space termed Buclidean n-spece.

c) let be the set of all sequences X = J{x \ of re
(c) Ry ° T {: 1:} - el
musbers such that xka converges. Define d on Ry, < By

les
k=1
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as follows:
o 1/2
axy) = |, (% - ¥i)©
k=1
Then (R,,d) is a metric space termed Hilbert space.
Definition: ILet d be a metric defined on the t.s. X. let x be a

point in X end r be a nomnegative resl number. The set

S(x,r) = {y s a{x,y) < r} is celled the open sphere with center

X ond radius r.

We shall use the symbol (& to denote the family of open
spheres 8S(x,r) for all x€X and all real numbers r > 0.
Definition: lLet  , be the family of open scts generated by & -
Thet is, a set O 1is in bd iff O 1s the union of the members
of & subfamily of @ . (In particular note #e ,.) The family
9 q defines o topology on X which 1s termed the topology on X
induced by the metric _d. The pair (X, Dg) is called a metric

topologlcal space. We remark that the symwbols (X,d) and (X, bd)

are equivelent.

Theorem 1.1l: Ewvery metric t.s. X is first axiom.

Proof: Let x belong to a metric t.5. X. Then the family
{S(x,l/n)}eo clearly forms a base at x.

n=l

Theorem 1.2: Every metric t.s. X 1s Tx.

Proof: let A and B be separated nonempty subsets of a metric t.sé X
vith metric d. Then x€A impliesxfAB so that there exists a

recl nuiber rx > 0 such that S(x,ry)NB = @. Likewise, y€B



implies there exists a real number ry > 0 such that

s(¥sry)NA = §. Define 0y = U S(x,ry/2) and 03 = U S(y,ry/é).
. XEA YsB

Clearly O, and O, belong to Dd such that AC 0, and

BC 0s. Suppose 2€01MN0n. Then there exists points acA and

beB such that d(a,z) < ry/2 end d(b,2) < n,/2. It then follows

that aeS(b,r,) if ry S 1, and bes(e,r,) if 1, Sr,. This is

a contradiction,and hence X is completely normal. It is trivisl

that X 1is T,.

Definition: Let (X, D) be a +.s. Then the space ' X is metrizeble
1ff there exists g metric d on X ¥ X such that the topology

R4 induced on X by 4 is identicel with D . That ic,
Pa= D.

The purpose of this paper is the inwestigation of necessary
and sufficient conditions that a +.s8. X be metrizable. It is
clear that a metrizeble t.s. 1is necessarily T:j and ﬁrs‘i? axiom.

Example: Let X be a discrete t.s. Defime d{x,y) =1 1f x £y
and d(x,y) =0 if x =y. Then ¢ metrizes X.

Examnle: Let X be a nondegenerate indiscrete t.s. Then X 1s not
metrizable. For if X were metrizable, X would be T). Hence
for x en arbitrery point of X, ((x) is a nonempty open set
properly conteined in X.

Simllarly, a pseudometric 4 for X Iinduces a topology for X

termed the pseudometric topology for X. A t.s. X 1s pseudo-
metrizable 1ff there exists a pseudometric for X such that the

given topology for X is the pseudcmetric topology.
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Example: Let X be e nondegenerate indiscrete t.s. Define d(x,y) = O
for all (x,y)¢X x X. Then d is a pseudometric (but not a metric)
for X, and the pseudometric topology is indiscrete. Hence X is
pseudometrizable but not metrizable.

Iet (X, b d) be a pseudometric space. Then 4 1is metric
1ff the t.5. (X, £4d) 18 T,. This follows directly from the
fact that X(x)={ : yeX eand d(x,y) = 0) . Hemce a t.s. X is
metrizable iff X is ‘1’3_ and pseudometrizeble.

Definition: Let 7 be a nonempty subset of a t.8. X. Let ZN D be
the family of all subsets G of 2Z {or which there exists o set
0 in D such thet Q = ONZ. The family ZNJ defines a topology
on 2 wvhich is termed e subspace topology. The set Q in Z is
said to be open w.r.t. Z. The pair (2,2N ) 15 called a topological

subspace of the space X.

It is ear that if X 1g a metric space vith metric 4, 2
a nonempty subset of X, .ﬁtm subspace topology on Z, and fzd
the topology induced on 2 by the metric d, then f)d‘ﬁ -PL'
Definition: A t.s. X is hereditarily normal 1ff every topologlcal

subspace (2, 2 D ) of X 45 normal.

Rfana 5

We remark that a8 t.8. X is hereditarily normal iff X is
completely normel (8), page 59. Since every metric topological
space is completely norxmal, then a topological space which is not
hereditarily normal cannot be metrlzable. For an example of such
& Bpace, see (5)) page 291.

Definition: Let (X, ) and (¥, /i ) be topological spaces, and let £
be a {single-valued) mapping of X into Y. Iet y = £{(x) denote



15

the image in Y of the point x in X under . Then f is

termed continuous on X 1ff for every =x€X and He fl such that

f(x)eH, there exlsts an open set 0¢ 9 such that x€0 and
£(0) CH., Here £(0) =U{y ¥y = £(x) and xeo}.
It ic not difficult to show that f is contimious iff for
every Hefz the preimage f“'l(H)an .
Definition: ILet f be a mapping of a t.s. X ontoa t.s. Y. 'l‘hez}
f 1is seld to be a homeomorphism from X omto ¥ provided:

(1) £ is a one~to-one mapping of X onto Y.
(2) T is continuous.
(3) the inverse of f is continuous,
Tous £ 1is a howmeomorphism 1ff f 1s biunique and
bicontinuous.

Definition: The t6pologicel spaces X and Y ere homeomorphic iff

there exists s homeomorphiem £ from X onto Y. A t.s. X 1is

sald to be homeomorphically embedded in e t.58. Y provided X is

homeomorphic to a subspace of Y.

Theorem 1.53: Every t.s. X which can be homeomorphically embedded in a
metric (pseudometric) t.8. Y 15 metrizable (pseudometrizable).
Proof: It 1s sufficlent to prove that a t.s. X homeomorphic to a metric

t.s. Y 18 metrizable. Hence assume Y 15 o metric t.s. with metric

d and X is homeomorphic ¢0 Y. Let f denote the homeomorphism.
For points u and v in X define da'(u,v) = a(£{u),f(v)). Ve
asgsert that d' is a metric on X. |

(1) a'(u,v) =0 1iff a(f(u),f(v)) =0 1£f £(u) = £(v) 1iff u = v,

since T 1g one-to-one.



1k

(2) a'(u,v) = a(£(u),2(v)) = a(£(+),2(u)) = a*(v,u)

(3) For u,v, and w 4in X,

a'(u,w) = a(f(u),f(w)) < a(r(u),£(v)) + a(£(v),(w))

S a'(u,v) + a'(v,w) .

a'(u,w)
Let & denote the famlly of open epheres defined by d4', and
let Da' be the family gencrated by @ . Let $ denote the
topology for X. Ve assert that Q = 96.' .
let S(x,r)¢ @ . Define 0 = £1[5(f(x),r)] leariy oc P .
We prove that O = S(x,r). HNow ueS(x,r) implies
a(f(u),£(x)) = d'(u,x) < r, so that f(u)es(f(x),r). Hence u€od
by definition. Ict ve0. Then f£(v)es(f(x),r), so that
ar{v,x) = a(£(v),f{x)) < r; that is, weS(x,r). Therefore
0 = 8{x,r). Henceégﬁ,sothat 59&’&;?. 4
let 0 H , and let x€0. Since £ 1 1s continuous
£(0) = (£1)"1(0) 1s open in Y. Hence there exists some r > O
such that S(f(x),r) C £(0). Then useS(x,r) implies
a(£(u),f(x)) = d'(u,x) < r, so that f(u)es(f(x),r). Since f is
one-to-obe, U€O, so that S(x,r) CO. Hemee P C Pa'. It then
follows that 1\3 = i’a'.

Lemma 1.1: Let X be @ normal t.s8., and let A and B be disjoint non-
empty closed subsets of X. Then for every real nmumber ¢ such
that 0 S ¢ £1 there exists an open set U(t) in X such that
(1) %) < tp implies A U(ty) C U(tp)

(2) ACU(0) ana BC (Cu(1).
Proof: let A and B be any two disjolnt nonempty closed subsets of

the normal t.s. X. Define U(1) = (B 8o that B = CU(1) and



ACU(1). Since X 1is normal, there exists an open set U(0)
such that A C U(0) C »U(0) C U(1). Continuing there exists an
open set U(1/2) such that KU(0) CU(1/2) C Hu(1/2) C u(1).
Now there exist open sets U(1/22) and U(3/22) such that
HU(0) Cu(1/22) C Wu(r1/2®) C u(a/2) C A u(r/2) C u(3/2%) C
NU(3/22) CU(1). Suppose that in this manner we have defined the
open sets U(k/2B) for X = 0,1,2,...,2% such that

Xu(x/22) C u((k + 1)/2%). Ve proceed to define U(k/2™*1) for

K = 1,3,5,.40,2%"% L 1, since U(x/2°*1) 1s already defined for
K = 0,2,4,...,2%1, fet 1 be an integer such thet 0 S 1S 20 .31,
M™en 152t +1 52 _ 1, since X 1s normal, there exlsts an
open set U((21 +1)/2%1)  guch that & U(1/28) C u((2t +1)/28+1) C
Hu((21 + 1)/2°*1) C u((1 + 1)/2%). In this way ve have defined
U(k/2B) for every positive integer n and k = 0,1,2,...,29,
Moreover, if Iy = 8/2" apd vy = 8y/2° are fractions such that
0Sr <rp <1, then F U(r;) C U(ri + 1/2%%8) C _Zru(r, + 1/2°8)
C U(ry + 2/28) C ... C X U(r, + (s, - 20 -1)/20¥0) C

U(ry + (2%, - 285,)/2%*0) « U(rp). Bow for every real number t

such that 0 St S1 we defime U(t) = UU(r), where r is of the
Yo

form k/2P. Note that if ¢ = k/2%, then

u(t) = rtg;)/gnU(r) = U(K/?n)- let t) <t5. Choose r; = 53_/2m and

rp = 8p/2% such thet t) S <rp $tp. Then . U(ty) C HU(ny) C

U(ry) C U(t,), and the proof is complete.
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Theorem 1.4 (Uryson): A t.s. X is normal iff for every palr of disjoint

nonempty closed sets A and B, there exists e contimuwous mapping
£ of X onto the unit interval [ 0,1], such that £(x) = 0 on
A,end f(x) =1 on B.

Proof: et A and B be any two nonemply disjoint closed sets in a nor-
mel t.s. X. By lemma 1.1 for every real number + such that
0§t S1, there exiasts an open set U(t) in X such that
(1) ¢ < tp implies X U(ty) C U(tp) and
(2) ACU(0) anda BC LU(1).

Define the wapping f ae follows:
£f(x) =1 if xeCuy(1)
» £(x) = inf t 4if xeU(1) .
xcU(t)

Clearly =x€A implies f£(x) = 0, and x€B implies f£(x) = 1.
We prove that f is continuous. Iet £(x) = a such that
0<a<il. Consider any € > 0 such that (a - 2¢, a + 2€) C (0,1).
Definc Oy = U(a + €)N C X U(a - €). Note that Oy € P and
x¢U(a + €). Otherwise xeU(t) implies a + € < ¢, and hence we have
e+ ¢S s(x) - a, acontrediction. Also a - €/2< e = f(x), so
that x¥¥U(s - €) CU(a - €/2). Hence x604. Iet yeO,. Then
yeU(a + €) implies £(y) Sa+ €, and yfyU(a - 6) implies
r(y) 2 a - €. Thus (y)e(a ~ 26, a + 2¢),

How suppose f(x) = 0. Consider any € > O such that
[0, 2¢) C [0,1). Defime Oy = U(€). Then =xsU(e)e 9 . Also yso,
tmpiies f(y) € so that £(y)e E),ae). Finally, suppose
£(x) = 1. Consider € >0 puch that (1 - 2¢, 1] C (0,1]. Define
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0, = CXUQ - €). Clearly 0,6 ond x€0,, since #£(x) =1

implies xfu(l - €/2). Also, yeOy implies that £(y) 21 - s,

a0 that f£(y)e(1 - 26,1:]. Hence f 1is a continuous mapping of

X oato [0,1].

¥We pow prove the converse. Let A and B be any pair of dis-

Jjoint nonempty closed subsets of X. DBy assumption there exists a

contimuous mapping £ of X omto [0,1] such that f£(x) = 0 for

x€A end £(x) =1 for xeB. Defime 01 = £°1{0,1/2) eand

0, = "X1/2,1]. since [0,1/2) and (1/2,1] are open w.r.t.

[0,1] and £ 1is continuous, Oy and O, are opem vw.r.t. X.

Mso ACO0), BCOp, and 03N0s = §. Hence X is normal.
Theorem 1.5 (Uryson): ILet X be a secondeaxiom t.s. Then X is

metrizeble 1ff X 1s Ty.
Proof: Ewvery metric t.s. X 15 T

el oo )

Assume X is Ty. Ve essert that X 4ic metrizable. Let B

and therefore normal and 'I,'l.

be a countable base for P . Ve may assume B infinite; for if

‘g is finite, X 1s discrete and hence metrizable. Define ;}3

to be the family of all pairs P = (By,Bj) where B; and By
belong to F such that @ £ By C ¥’By C Bj. Let B be any nonempty
menber of :g ; and let x€B., Since X 1s T& there exlsts an open
set G conteining x such that A G C B. Then there exists a set
n'e B such that xeB' C G. Hence the family B is countably
Infinite, and we may write 7} = {te(n)}m . Let neI’, and let

n=l1
P(n) = (By,B;). Here X' B; and CBj are disjoint closed subsets
of X. By theorem 1.4 there exists a contimuous function £ of

X onto [0,1] such that fp(x) = 0 for xc¥B; and fp(x) = 1
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for xeCBJ. We assume in the definition of ;22 that B; £ X so

that CBJ is nonempty. Now for sll points x and y in X

w

we define d(x,y) = L 2‘n|fn(x) - £a(y)|. This series is
D=l

clearly convergent. UWe assert that 4 1s e metric on X.

(1) Clearly x =y implies d(x,y) = O. Suppose that x # y.
mere-exists some merber Be K such that x€B and y#B, and
there exists some member B'€ B such thet x€B' and X B' C B.
The palr (B',B) belongs to 1} , and so P(k) = (B',B) for
eome k€I'. Then f£3(x) =0 and £ (y) = 1, and hence

oo

a(x,y) = L, 2B 1,(x) - £,(3) | 2 B |n(x) - Bly) | = 2°F|0 - 1
n=1

Hence d(x,y) = 0 implies x = y.
(2) Clearly every neX* implies that

|£alx) = fa(¥)| = |Taly) - £a(x)],

and hence d(x,y) = d(y,x).
(3) Let x,y, end z belong to X. Then

d(x’z) = Z‘J E-nlfn(x) - fn(z)l = f'__,) ?nlfn(x) - fn(y) + fn(y) d fn(Z)‘
n=1 n=l
S Ee - ]+ 250 - o0e)]
n=1 n=1

= d(x,y) + a(y,z) .
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Hence 4 1is a metric on X. We assert that the induced
topology 3@ g is ldentical with _D .

let 0O¢ @ such that x€0. We may assume O £ X, since
Xe ar

that S(x, 1/21‘) C 0. It then follows that 39 Cc i)d. Rote that

We assert thaet there exists a positive integer k such

€ 0 is nonempty. ChooBe members B and B' of W such that
x6B'C ¥B'CBCO. Let P(x) =« (B',B). Then xsXB' implies
Ti(x) =0 and fx(y) =1 for a11 ye£O0C CB. Hence yelO
implies d(x,y) 2 1/2%, so that S(x, 1/25) C o,

We now show that @dg D. Let 04¢ @d such that
x€04. Ve asgsert that there exists a member O of @ such that

x60 C 0g. Choose r > O such that S{x,r) C 0q. Since

. 1/2% converges, there exists a positive integer k such
Dl
by
that 1/28% < r/2. Now for every neI' such that 1 Sn <k
Nkl
the mepping £, of X is continuous at the point x. Choose
Onﬁ.b such that x€0, and y€0, implies ‘fn(x) - fn(y)l < rfek.
k

Define oﬁngl On. Then x€0, and y€0 implies

@ k- ®
a(x,y) = ,.:.; 2‘“|fn(x) - fn(y)| = ) a’n‘fn(x) - fn(y)l + z‘n\fn(x)
n=l D=l n=lodl
k ®
L] T oE|e(a) - )| ¢ ) 2/eicx - I
n=} D=kl
E.r.
+5=r

Hence O C s5(x,r) C 04



Definition: Let A be o nonempty subset of the t.s. X, and let

G S O+ Then (& is termed am open covering of A 1ff
AC UG.
Ge> '
Definition: A t.s. X is sald to be Lindeldf iff every open covering
of X has a countable subcovering.
Every second-axiom ¢t.s8. X is Lindeldf (7), page 49.

Theorem 1.6 (Tihonov): Every regular Lindelof t.s. X 4is normal.

Proof: ILet A and B be any two disjoint nonempty closed subsets of
s regular Lindeldf t.s. X. let x6AC CB. Since X is regular,
there exists an open set GOy such that x€G, C XGx C (B. Define
G = {Gx : xaA} . Similarly, for every point y€B C (A, there
exists an open set Hy such that y<H, C JH, C CA; snd hence we
define f = {Hy : y¢B ). Note C(AUB)e). Now define
=6 U&U{C"(A B)} . Then )1 is an open covering of X;
and since X is Lindelof, there exists a countable subcovering
A*. Let Go* - {Gn}::lbe the (countsble) femily of all G
which are menbers of both G5 and 2[* aond let JZL* = {  , be
the (countable) family of sll H which are members of both &
and U*. Clearly x€A implies that there exists a G€ & * which
contains x. Hence (s *¥ covers A; and likewise,._&* covers B.

For ne I+ define

P n
an,ﬁ = 6N E Jul ;¢

# .U
" = H,0 :jul}(jc;J~

K
(£ &%= {Gnp_,» Ut Gy =¢ for n>kj likewise gor Sy *.)



Let m and n be positive integers. We assert Guf NHJF = g.

Suppose n Sn end xe(}n# N Hm# Then xscnf’é implies that

»

n .
x & U 3{33 C CH,. Hence x{Hm#, a contradiction. Suppose

J=1

n

4 ;

n<m. Then x€H,” dimplies x¢( U HGy © CGpe Hence xian#,
J=1

a contrsdiction. Thevefore Gy N Hy! = §. Now define 0 = S Gﬁ,
. ” n=1

02 = nLil H,”. Clearly 0; and 0o  eve disjoint open sets. It

remaing to show that AC 0y end BC 0. Hence x6A implies

that there exists = positiwve integer ny such that )xe‘-"n,(- Also

1S3Sny dimplies that X 'H; C CA. Hence

D Ty
x¢ n CXH;=C U

2 ’1‘,?1‘}13. Therefore xﬁan#, so that AC 0y.
=, Jm

Similarly BC O2. Hence X is normal.

FTocorem 1.7 (Uryson-Tihomov): Let X be a seconde-axiom t.s. Then )5
is metrizeble iff X is Ty. "

Proof: A metrizable space is Ty and hence Tz. Assume X is Ty.
Since a second~axiom t.s. X 15 Lindeldf, X is a T3 Lindelof
space and hence Ty by theorem 1.6. Therefore, by theorem 1.5
X is metrizeble.

Definition: A t.s8. X is compact 1ff every open covering of X has a
finite subcovering of X.

We remerk that every closed subset of a compact space is
compact .



Theorem 1 .8: Every compact Hausdorff space is Tj.

Proof: Let X be a compact Hausdorff space. It is sufficient to prove
normelity. Let Cl and 02 be any two disjoint nonempty closed
subsets of X. Since X 1s compact, C and C, are compact.
We first show that X is reguler. Let y be any point in (Cy.
Then for every point x in Cy there exlst disjolnt open sets
0, and O containing x and Yy, respectively. Here
0N 0y C H(0N0y) = §, so that yfAO,. Define G5 = {0y : x€Cy} .
Since (& 1s an open covering of Cq, there exists a finite
subcovering & ¥ of C;. Define O = UG and Op = CU XG.

Ges* CeZ * |

A

Clearly 07 and O, are disjoint open sets such that C; C O
end y€0p. Thus X 1is regular. Now for every point y in Co
there exists an open set H‘y such that yeay and

HHyNEy =@. Define S, = (M : yeCp p. Then £ 1s en open
covering of Cp, so that there exlsts a finite subcovering ‘R *,

Define ol# -« CUXH eand 0of = UH . It follows that OF
He [ % Hef *

end 02# are disjoint open sets containing C; and Cp,
reepectively. Hence X 1ie normal.

Definition: A t.s. X 1s seperable iff there exlsts a countable subsct
A of X such that A 15 dense im X; that is, A = X.

For example, R; 1is separsble, since the rationals are countable

and dense in R,.

Definition: Let A be a nonempty finite subset of a metric space X
vith metric d, and let € be a real positive mumber. The set A
is termed en €-net for X 1ff for ewery point xe€X, there exists

a point y€A ouch that d(x,y) < €.
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Remark: Iet X be a compact metric space, and let € be any positiwve
real number. Then X has an €e-net. Indeed, consider the family

n
G = {s(x,e) : xeX p. There exists a finite set A= U (xj)
J=1

n
such that X = U s(xJ,s). Clearly A is an ¢-net for X.
=1

'

Theorem 1.9: Every compact metric space 1s separable.

+*
Proof: let X be a compact metric space. For n€l  let E, denote a

]

1/n-net for X. Define E= U Ep. For every n the set E; is
=1

finite, and hence E 1is countable. We assert that X = J/'E. let
x6X, and let O be any open set containing x. We show that

ONE # §. Choose neI® such that S(x,1/n) C 0. By definition
there exists a point y€E, such that d{x,y) < 1/n. Hence
yes(x,1/n)NE, C ONE.

Theorem 1.10: Every separable metric space 1s second sxionm.

Proof: let E be a countable dense subset of a separable metric space X.
Define G = {S(y,r) : yeE and r >0 retional ). Note (> is
countable. We assert that (& is a base for b . Let O be any
open set, and let x<€0. Choose € > 0 such that 5(x,¢) C 0.

Choose a ratiopal muber r satisfying O <y < €/2. Since E
is dense in X, 8(x,r) contains a point y€E. Then for every
2€5(y,r)

d(x,:'z.‘) T d(x,y) + a(x,2) <r +r<g,
go that x€ S(y,r) C 5(x,€) C 0. Hence G 1is a countable base

for ,@.
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Theorem }.11 (Uryson): Let X be a compact Hausdorff space. Then X

is metrizable iff X is second axiom.

Proof: Every compact metric space X 18 second axiom by theorems 1.9
end 1.10. Conversely, & compact Hausdorff space X is T, by
theorem 1.8, Hence if X 1is second axiom, 1t is metrizable by

theorem 1.5.
Definition: A t.s. X 1s said to be countebly compact iff every

countable open covering of X heas & finlte subcovering of X.

The t.s. X 1is termed sequentially compact 1iff every sequence

o0

()

D=l

which

o0
of points in X has a subsequence {xn}

converges to a point in X.

Remerk: Clearly every compact t.s. X is countably compact, but the con-
verse is not true 'Jln general, However, if X 1s 8 second«axiom
t.s. or if X 1is a Hausdorff metric space, the concepts of compactness,
countable compactness, end sequential compactness are equivalent (%).
Hence we conclude the following:

Theorem 1.12: et X be & countably compact Hausdorff space. Then X

is metrizable iff X 18 second axica.
Theorem 1.13: Let X be a sequentially compact Hausdor{f space. Then

X 1= metrizable iff X 1s second exionm.

Rl



PART II

Definition: ILet X be a t.s. with base E . Assume there is associated
with each nel' and every x€X =a unique nonempty menber (cenoted
V(x,n)) of F such that the following properties are satisfied:

(1) For each xeX, the femily {V(x,n)} | forms & countable
base at x. v

(2) (x) = NV{x,n).
ne

(3) Por every neI* and %, ¥, in X, =xeV(y,n) implies

yeV(x,n) .
() For every =neI* and x, y, z in X, =xeV(y,n + 1) and

yeV(z, n + 1) implies xeV(z,n).

Moreover assume for every nopempty B in ]? there are an
n and x such that B - V(x,n). Then F is termed a K-basis
for the t.5. X.

Note every set V(x,n) is open. If X has a K-basis,then
X 18 Ty. For suppose X and y are any two dlstincet points
of X. There exists an nlex" such that y#V(x,n). Othervise
¥y =x by (2). Likewise there exists an n2€I+ such that
xfV(y,np) . Thus the sets V(x,m) and V(y,nps) satisfy the
requirements of the T, axiom.

Let x€X and neX'. We assert A V(x,n + 1) C V(x,n).
Choose yeXV(x,n + 1). The set V(y,n + 1) is an open neighborhood

of ¥y, =0 that there exlsts & point =z 1in the intersection

25



V(x,n + 1)NV(y,n + 1). Then yeV(z,n +1) and zeV(x,n + 1)
implies yeV(x,n).

Theorem 2.1: Every metrizable t.s. X has a K-basis.

Proof: let X be a metrizable t.s. with metric d. For every xe€X
and neI* define V(x,n) to be the spherical neighborhood
5(x,1/2%) . The K-basis properties (1)-(3) follow directly from
the properties of the metric d. Let x¢S(y,1/2%%) and

ye5(z,1/2%"1),  From the triangle inequality,
ax,z) S a(x,y) + aly,z) <1/2°*0 + 1727 Lp/e0,

Hence (4) holds.

We now prove the converse: A +.5. X vwhich has a Kebasis 1s

metrizable.
k
Definition: A positive real number ¢t < 1 of the form t = o~
i=1

where nie:f’ and m <np < ...<ng, is called a dyadic fraction.

The representation of a dyadic fraction 1is unique. Let

k i
t = . e*fi = 2"™ end suppose ng < m3. Then
i=1 13
k 1-1
-2t P S e e
i=1 1=1
}\ Z-l .

Tl e



1-1 1-1

Ir 1=1, put 2. "™ _ 9| Tnie is sbsurd, since
femand (S}
1=1 =1

each sum on the left represents an even integer. lHence mny = mp.
Proceeding in this way it follows that the representationm of t
is unique.

Definition: Iet X be a t.s. Assume for each x€X and each dyadic frace
tion t € 1/2 there is sssociated a unigue subset U(x,t) of X.
Define ;D = {U(x,t) : X€X, t dyadic 51/2}. Then D is called
a dyadic base for X 1iff
(1) Por every x€X +the femily {U(x,t) : t dyedic S 1/2} is &

countable base at x.
(2) t; <ty implies U(x,t;) C U(x,t5) .

(3) yeu(x,t) implies xeU(y,t).

Note by (1) a dyadic base for X is a base for X. k
Definition: Let X be a t.s. with a K-basis, and let t = /. 2=ni
1=1

be a dyadic fraction. Then a finite set of points

X = yl’ YQJ se0y yk’ yk'.'l = Z

of X 1is termed a techain from x to z iff ¥i+1‘“"’(¥i’“i) for
1= 1,2,...,k. (Here the sets V(yj,n;) belong to the K-basis.)
We do not assume the points yy,...,¥xe; &re distinct. It is
clear that a techain from x to 2 18 not necessarily a t-chain
from z to x.
Lemma 2.1: Let X be a t.s. with a K-basis. let x and y belong?l‘.o

X, and let t; = k/2%, t5 = (k + 1)/22 be dyadic fractions such
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that tp $1/2. Assume there exists a point =z€X such that
y6V¥{z,m) and that there exists a tj-chaln from x to z. Then
there exists a to~chain from x to y.

Proof: The proof is by induction on m. For m = 1 no dyadic fractions
exist which satisfy the hypothesis, so assume m ~ 2. Then
t1 = 1/% end to = 1/2. By assumption there exists a point z€X
such that yeV(z,2), and there exists a 1/M%-chain from x to z.
By the definition of a chain z€V(x,2) so that yev(x,'l). Hence
there exists a 1/2-chein from x to y. Nov assuume that the
lemma is true for all dyedic fractions < 1/2 of the form k/28,
(k +1)/22. We assert that it is true for all dyadic fractioms
<1i/2 of the form k/2°%1, (x « 1)/20t,

Assume there exlsts a point 2€X such that yeV(z,n + 1) and

there exists a k/a’ﬁ*l-chain from x to z. There are two cases:

(i) Suppose k is even. Then k = 2h so that

~k_ .. _h 5
oL T okl oon L
where n; S n (as may be seen by writing
h=og+e2+a2+ ... +a2% o =0 or 1, a<n). Let
X = PysPps«-3PysPley = 2 be a l:/2n"'3~~chain from = %o =z.

l
K+l -
Then :E;Tiw = o™l 4 --»l—io and yev(z,n + 1) implies that
© i1

X = P1,Dose--3P1sP14] = 2Pl =y is a (k + 1) /22 Lchain

from x %o ¥.
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o
\

(11) Suppose k 15 odd. Thenm k = 2h 4+ 1. If h = O, then
z6¥(x,n + 1). OSince ysV{z,n + 1), it follows that yeV(x,n);
and hence there exists a 1/2" = 2/2%%l.chain from x to y.

For h >0 we bhave
l i¥]

,_.,E_,.z."}.’...qp-.:.l‘._g v Q-Bi-l-—-.}-mz o po=ni, yhere

CasllE =] CHAR - | ’
Ny =8+ 1. Iet X = py,Pose e sPle1sPep = % be a
/2%l .chain from x to 2. Now yeV(z,n + 1), and by the
definltion of & t-chain 2&V(pyuy,n + 1). Hence y<V(py4y,m).
Clearly X = Dy,Pps---sDP;sPgey 18 an h/2°-chain from x to

Pre1 and

h+41l k+1
on ondl

[

HA

X
2

. Therefore, by the induction asssumption there exists an

bl k*l-chain from x to y.

i 2L

Lemna 2.2: let X be a t.8. with a K-basic, and Jet t; and tp be

dysdic fractions such that t; < t, S 1/2. If there exists a
ty1~chain from x to y, then there exlsts a tp-chain from x
o Yy.

Proof: let ty = af2®, tp = b/Z® where 0 < a <Db. For some integer

h2 0 we can write

& pm a8 22 on

If there existe a ip-chein from x to y, then by lemms 2.1

(with z = y) there must cxist an (a + 1)/2%-chain from x to y-.



Now the exlstence of this chain from x to y luplies the
existence of an (a + 2)/2-chain from x +to y. Procceding in
this vay we see that there exists a ty-chain from x to y.

Theorem 2.2: Let x belong to X, and let + =1/2 be a dyadic

fraction. Define U{x,t) +to be the set of all points yeX i‘?r
which there exists & polnt 2z€X such that i
(i) There exicts & t-chain from =z to x, and

(11) there exists o t-chain from z to y.

Let D - {U(x,t) : xeX, t dyadlc S1/2 . Then D forms a
dyedic¢ base for X.

Proof: let x be an erbitrary polnt of X. For every ¢ dyedic
$1/2 it 1s clear that x€U(x,t). (Choose 2z = x.) Also since
every dyadic fraction ¢ is a rationsl nmumber the famlly
{U(x,t) : ¢t dyadic 51/2} is countable. Ve assert U(x,t) is
open. Let ye€U(x,t), ond let 2z be a point in X such that

(1) and (i1) hold. Iet =z = Dy sPos«+sPysPre = ¥ be the t-chain
A

from z to y. |(Here t = » 281, | Then y belongs to
i=l

V(p;,n1); end for any point weV(py,n3), 2 = D1,P2s++.3P1,V 18

& techain fram 2z to w. Therefore weU(x,t) by definition,

so that V(p;,n;) is an open neighborhood of y contained in

U(x,t). Hence U(x,t) is open.

(1) Ve assert that {Ij(:':,?)v: t dyadie S l/?>, is a countable,
base at x. Iet O be any open sel containing x. Then there
exists & positive integer n such that V(x,n) C 0. Here

ysU(x,1/21) implies there exists e point =z in X such
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that (1) and (1i) are satisfied. By the definition of a chain
xeV(z,n + 1) and yeV{z,n 4+ 1), so that yeV(x,n). Hence
U(x,1/2"1) C v(x,n) C 0.

(2) Let t3 and t, be dyadic fractions such that t; < tp $1/2.
We assert that U{x,t1) C U(x,tp). OSuppose yeU(x,t,), and
let 2z be a point in X setisfying (1) and (i1i) for +3.

By lemms 2.2 z aolso satisfies (i) and (ii) for t,. Hence
yeu(x,ts) .

(3) It is immediate by definition that ysU(x,t) implies
xeU(y,t).

Thus ;D forms a dyadic base for X. For x€X and

neI’ we note that
u(x,1/2M2) C v(x,n) C U(x,1/2%)-

The first inclusion occurs in the proof of (1) above. To
prove the second inclusion let ysV(x,n). By definition of a
chain there is & 1/2® chain from x to y. Hence by
definition (with =z = x) yeu(x,1/2%).
Iemaa 2.3: lLet X be a t.s. with a K-basis. Iet f be the function
| defined on X * X as follows:

f(x,y) =0 if x =y

A

£(x,y) = sup {t : t dyadic S1/2 end yHU(x,t)) ir x [y

(NBote since X 1is Ty, ﬂ{U(x,t) : t dyadic € 1/2} = {x), 8o that
{t : ¢ dyadic S1/2 and y@(x,t)} £@ for x £ y.) Then the
function f possesses the following properties:
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(1) f(x,y) = #(y,x) for a1 x,y in X.
(2) (x,y)

(3) et x and y be distinct points of X, end let k and m

#

C 1iff x =y.

fl

be positive integers such thet k/2% < £(x,y) S (kx + 1)/22 S 1/2,

Then |f(z,w) - f(x,y)l < 3/2™%L  for a1l zeV(x,m + 2) and

vev(y,n + 2).

Proof: Note that 0 S f(x,y) <1/2 for ell x,y in X.
(1) Let t be a dyadic fraction such that + £ 1/2. Then

y#U(x,t) 1iff xfU(y,t), so that Ly definition f(x,y) = £(y,x).

(2) Clear, since x £y implies f£(x,y) £ O.

(3) For x££y we hawe ©(x,y) > 0.

By essumption k and m are positive integers such that
k/2® < £(x,y) S (b +1)/28 < 1/2. Ve assert thet

(2 - 1)/l < p(z,w) € (2k + 3)/2%F)  gor zev(x,m + 2) and
veV(y,m + 2). It follows that |f‘(z,w) - £(x,y)| S 3/awl,

Suppose that (z,w) < (2k-1)/2"™1. Then weU(z,(2k - 1)/ol),
and by definition there rust exist a point r in X such that there
is a (2k - 1)/ chain from r to v and from r to z. Now
k/2 s (2 - 1)/20) & 1/08%0 0 gnd  zeV(x,m + 2) implies
xeV(z,m + 2) C V(z,m + 1). Hence by lemun 2.1 there exists a
k/2®-chain from r to x. Likewise there exists o k/2%-chain
from r to ¥y, end hence yeU(x,k/2®). But k/28 < £(x,y) implies
that there is & dysdic fraction t > k/22 such that yfUu(x,t).

This is a contradiction, since U(x,k/2%) C U(x,t).

Ve may assume (2k + 3)/2“""'1 < 1/2. Suppose

£(z,%) > (2% + 3)/2. Then wfU(z,(2k +3)/2%) . Ve assert that
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yfUu(x,(x + 1)/ . Suppose the cor;'bra.ry, yeU(x,(k + 1)/2™). Then
there cxists & point © in X such that therc is a (k + 1)/7%
chain from s to z and o (k + 1)/2%chain from s to y.

Since (2k + 3)/221 - (k + 1)/2% + 1/27*  and  zeV(x,m + 1), by
lema 2.1 there exists o {2k + 3)/2™lechain from s to z.
Likewise there exists a (2k + 3)/2%*1l_chain from s to w. Hence
wel{z,(2k + 3)/27*), a contradietion. Thevefore yfU(x,(k + 1)/2%),
so that £(x,y) £ (k + 1)/2®. By assumption (x,y) S {k + 1)/28,

so that f(x,y) = (k + 1)/2%. Now

Lok 45 bk+h k4l
2 3z
o2 R

implies yeU(x,(ik + 5)/2%2), Hence there existe a point s in

= £(x,y)

X such that there ic a (bk + 5)/22_chain from s to x oand a
(4k + 5) /¥ 2.chain from s to y. OSince
(2 + 3)/2“‘1 = (Mg + 5)/2“‘*2 + 1/2“"'2 and  ze€V(x,m + 2) by
assumption, there exists & (2k + 3)/2*l.chain from s to =
by lemma 2.1. Similarly there is a (2k + 3)/2™ _chain from s
to w. Hence weU(z,(2k + 3)/2™1), a contradiction.
Hence (2k -1)/21 < g(z,w) < (2k + 3)/2%1,

Romork: Using lemma 2.3 it is not difficult to prove that £ is a
contimuous function on X < X,

Theorem 2.3: A t.s8., X i1s metrizeble 1ff X has a K-basis.

Proof: By theorem 2.1 a metrizeble t.e. X has a Kebasis. Hence,
assume X has o K-basis. We prove that X is metrizable. let d

be the function on X © X defiped by



a(x,y) = sup|£(x,2) - 2(y,2)| ,(x,¥)ex - X.
s€X

(Here I 1s the function defiped in lemua 2.3.) Clearly

a{y,x) = a(x,y) Z ©(x,y) 20 (put =z =y). Also x =y implies
a({x,y) = 0. Suppose a(x,y) = 0. Then £(x,z) - £{y,z) = 0 for

all z€X, and in particular f(x,x) - £(y,x) = O. Hence £(x,y) = O,
so that x = y by lemma 2.3. We prove the triangle inequality.

For all x,y,z,¥v in X
lf(x,w) - f(y,w)[ < [i“(x,v) - f(z,w)[ + lf(z,w) - f(y,w)[

S dlx,z) + dlz,y) .

vy

Hence d(x,y) = su?{]f(x,w) - f(y,w)l < afx,z) + d(z,y). Thus d&
we

is a wetric for X.

Let P gdenote the topology induced by d. We prove that

bd = i) et O be any member of gb , and let x€0. Choose

a positive imteger m such that V(x,m) C 0. Define ¢ = 1/
We assert 5(x,€) C V(x,m), wvhence O0€ D ;. Suppose y#V(x,m).
Then yfU(x,1/Z™), so that a(x,y) 2 £(x,y) 2 1/ - ¢; that
is, y¥5(x,€). Thus &(x,€) C V(x,m). Hence g) C Qd.

How let Qg bve any member of .ba, and let x€0,;. Choose
¢ >0 such that 5(x,¢) C 0y, and choose a positive integer m
such that m >3 and 8/2% < 6, We assert V(x,n + 2) C 5(x,¢).
Tt follows that D 4 C . let y be en arbitrary point of

V{x,n + 2). We show that for every uz€X



| £(x,2) - £(y,2)| <8/ <e. Then alx,y) S8/ <¢, amd
ves(x,e€).

Suppose =z = x. Here [i’(:-:,z) - f(y,z)l = T(x,y). Then
yev(x,m + 2) C V(x,m + 1) C U(x,1/2™1) implies £(x,y) S 1/8%1 < 8/28,
Othervise there exists a dyadic fraction + > 1/9°T1 such that
yfU(x,t); & contradiction, since U(x,1/2%) C u(x,t).

Fow assume = £ x. Suppose f£{x,z) > 1/2%. Then there exists
a positive integer k such that k/2% < £(x,z) © (x + 1)/28 < 1/2.
By lemma 2.3 yeV(x,m + 2) and zeV(z,m + 2) implies
l:ﬁ‘(x,z) - f(y,z)[ = ’f(y,:&-) - f(x,z)’ < 3/55 < §/0%,  Finally,
suppose O < f(x,z) < 1/2®. Then

£(x,2) S nﬂil < 2;:1 - gl’i'l

[

so that 26U(x,1/2%1) C v(x,m - 2). Since yeV(x,m + 2) C V(x,n - 2),
we have that xe€V(y,m - 2). Hence =ze€¥(y,m - 3) C U(y,1/2%-3). It
follows as before #(y,z) S 1/2™3 - /20, Othervise there exists
o dyodlc fractlon t > 1/2%3 such that z¢U(y,t); a comtradiction,
since U(y,l/Qm's) C U(y,t), Therefore O < £(x,z) S 1/2% and
0 < £y,z) $8/2%, and so |1(x,z) - £(y,z)| <8/ < e,

Definition: Iet A : S5y, Gps «+e2 Gpns -+ be 2 sequence of open

coverings of the t.e. X. Then & 1is called o development of X.

The family (5 ; 1is termed the ith stage of the development A.
Definition: A develomxent A of X is sald to be regular iff for
every posltive integer =n, any two wembers of 49 with a

nonempty intersection are contained in some member of .



Definition: A development A of X 1is said to be complete 1ff for
every point x€X and every Gué &y, containing x, the family
{G“}:ﬂz forms a counteble base at x. (We choose exactly one
G, from each Gp.)

Theorem 2.4: Let X be a t.s. with a K-basis. Then there exicts a
development of X vhich is both regular end complete.

Proof: Let ¥ be a K-basis for X. For every positive integer n
define G, = {V(x,n) : x€X ), and let A - {@n}:ﬂ. Since
each &, is an open covering of X, A 1is a flewlo;mnm of X.

let V{x,n + 1) and V(y,n ¢+ 1) be any two members of
(5 n#1 Vhich contain the point z. Then x6V(z,n + 1) and
yeV(z,n + 1). Fov weV(x,n + 1) implies weV(z,n), so that
V(x,n + 1) C V(z,n). Similerly, V(y,n + 1) C ¥(z,n). Hence A
is reguler.

Iet x=X, e.ud.for each positive integer n choose any member
Gy of &, which contains the point x. Ue assert that the

P

Pt Ly @“}nal is @ counteble base at x. It follows that
A 1c complete. lIet O be any open set contalning x. OSince the
family {V(x,n)}:__:l is a countable base at x, there exists a %
positive integer n such that V(x,n) C 0. Let Gpyy = V(y,n + 1),
Note xSGpy; Implies yeV{x,n + 1). Hence ewry z in V(y,n + 1)
belongs to V(x,n). Hence Gpyy = V(y,n + 1) C V(x,n) C 0. Thus

w
<Gn}n=l, is a basec at x.

Theorem 2.5: Iet X bea Ty t.s. vhich admits & regular complete
development, Then X has a K~basis.
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Proof: let A= {@n}m 1 be @ regular complete development of X.
n::_,:

For every positive integer n and each =x€X define

(1)

(=)

(3)

(%)

V(x,0) = U{G, : Gu¢ &, and x<Gy) -

had ig Y £330

We assert the family {V(x,n)}nzl is a counteble basec at x.
By definition V(x,n) dis an open set containing x. Let O,
be any open set containing x. Ve show there exists & positiw
integer my such that V(x,n) C Q.. OSuppose the contrary.
Then for every nel’ there exists a point y,€V(x,n) such
that yofOx. Choose Gpe &, such that Gy contains y,
and x. Since A is complete ®  is a countable

- ’ {Gn} =1
base at x. Hence there exists a positive integer m such
that G,y C Ox. Then Yn,€0x, @& contradiction.
Since X is 7T,

(x) = 0 V(x,n) -
D=1

Iet x and y belong to X. Assume yeV{x,n). Then there
exists a set Gu€ &y, which contains both x end y. Hence
x8Gpn € V(y,n).

let x,y, and z belong to X. Assume z&V(y,n + 1) and
yeV(x,n + 1). Ve assert =z€V(x,n). There exist sets Gyyy
and Gpyy in Sy such that Gpyy contains z and y
and Gp,, contains y and x. Since A is regular and
Gy N Ghey # @, there exists a set Gu€ &, such that

' C "
Gpsy U Gley S Gy Homee .

ZGG‘n S V(x,n) )
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T4 follows that the family B = {V(x,n) : nex*, xex) 1s

& K-basis for X.

A Ty t.e. X is metrizable iff X
aduits a regulax complete development.

Progf: A Ty t.s. X edmits a reguler complete development 1ff X
has a K~basis.



PART IIX

Definition: Let E be any nonempty subset of a metric space X
with metric d. Then for each point x in X,
a(x,E) = inf a(x,z).
z€E

Lemme 3.1: For all points x and y in X, d(x,E) T d(x,y) + a(y,E).

Proof: let x and y Ve points of X. Then for every point 2z in E,
a(x,E) € a(x,z) < a(x,y) + a(y,z),
so that

a(x,E) - d(x,y) € inf d(y,z) = a(y,E).
zZEE
Lemma 3.2: d(x,E) = 0 iff xe X E.

Proof: Assume da(x,E) = O. Then for every ncI', inf da(x,z) < 1/n.
Z€E

Hence there exists a sequence of points {xn>:~l in E such that

lim d(x,xp) = 0. Them 1lim x, = x, so that x€LE. Suppose

n - n -
x€ JYE. Since X 4is first axiom, there exists a sequence of points

(2]
{xn} in E such that lim d(x,xp) = O. Therefore,
n=1

n - e

a(x,E) = inf a(x,z) < a(x,xn)
Z€E

for all n, so that d(x,B) = 0.

39
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Definition: let A and B be any two nonempty subsets of a metric
space X. Then the dcart e(A,B) between A and B 45 defined

as follows :
e(A,B) = inf d(u,v) .
uch
veB
Note thet d(x,E) = e((x),E).

lempa 5.3: For all points x and y in X,
e(A,B) € d(x,A) + a(x,y) + a(y,B) .
Proof: et ueA and v€B. Then

e(A,B) € dlu,v) S a(u,x) + a(x,v)

< d(x,u) + a(x,y) + a(y,v) .

Hence e(A,B) < d(x,a) + d(x,y) + d(y,B). Also by definition we

have e(A,B) < e(C,D) for
g4CCA anda ¢ # DCB.

Lemma 3.4: Let (X,d) be a pseudometric space, and let x and ¥y
belong to X. Define da'(x,y) = min(l,d(x,y)). Then d' 1is a
pseudometric on X, end the topology § 5, induced by d' is
identical with the topology 4 induced by d.

Proog:

(1) Assuwme x=y. Then d(x,y) =0 so that d'(x,y) = O.
() a'(x,y) = min(1,4(x,y)) = min(1,d(y,x))
= 4'(y,x)
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(3) Let =ry,rp, end r3 be any nonnegative real numbers such that
ry + rp 2 r3. I elther min(l,r1) =1 or min(l,rp) =1,
then min(1,rs) 1S nin(l,r) +min(l,ry). If min(l,r) = r
and min(l,rp) = rp, then min(l,rs) < rs Sr; + rp = min{1,r¢)
+ min(l,rp). Hence min(l,rz) < min(l,ry) + min{l,rp), so that
a'(x,z) S a'(x,y) + a'(y,z). Thus a' 1s a pseudometric on X.
Let x€X, and let r be a real number such that 0<r <1.

Put 8(x,r,d) = {y : d(x,y) < r} and S(x,r,a') = {y: a'(x,y) < %.
Since 0<r<1 th;m 8(x,r,d) = 5(x,r,d'). Define
&g= {Slar,d) : xX amd 0<r<1) and
G a = {8(x,r,a") : x¢X end 0<r<1). Then &, 1s
e base for Py and & 45 4s a base for P 4i. But
G g = &gis sndhence Dy = Dgi-

Remark: Note here that the identity mapping is a homeomorphism from

(x, bd) onto (X, \bd').
Definition: Let X be a metric t.s. with metric d. Then X is called

a metric-space with diameter at most one iff d(k,y) $1 for all

X and y in XK.
By virtue of the sbove lemua every psecudoretric space is
homeomorphic to o pseudometric space of diameter at most one.
Definition: Let A be 2 nonempty sete and suppose that for every uwexber

a€A there corresponds o set Y. The cartesian product

T{Y¥s : aéA) 1s defined to be the set of all functions & defined
on A such that s(a)e¥y for each asA. The set Y, is called

the ath coordinate set. The set A 1s termed the index set.
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Definition: Let a€A. The projection P, of the product space
1{¥gr : a'eA) into Y, 1s defined by

Po(s) = s(a) for sell {Yax : a'eA} .

Thus for a given acA the projection P, maps the product

space into the ath coordinate set.
Definition: Let (X, P) be a t.s. Let A be an index set cuch that

for every a€A there corresponds a t.s. (Y&, b&) . Define &
to be the family of &l11 sets & in the product space H{YH : aEA}
such that S = Pa‘l(o) for some ac€A and O€ ba. (Note ge @).ﬁ
Let B be the famlly of all finite intersections of members of S .
Let U be the femily generated by B . (Thus Ll is the femily of
unions of members of B .) Then L defines a topology on
I {Ya,aeA} called the product topology. The t.8. (I ¥g,1])is
the product space.

The family G is termed a pubbuse for the topology LL. Note

G S BC 1{s end B is abase for L .

Theorem 3.1: For each a€A the projection P, is a continuous mapping
of the product spece (M ¥ , 11 ) into the t.s. (¥, 9,).

Proof: Let a€A. Then for every O€ {5&, Pa"l(o) =5 & C 1. Hence
Py, 1is continuous.

Note the definition of the product topology Ll is motivated

by the desire that each projection Py be continuous.

Definition: Iet f be a function on the t.s. X into the product space
IHg. For each acA +the composition Py © f of Py and £ 1is



k3

defined by

Thus

(P o £)(x) = Pg(f(x)) for =xex.

Pg o £ maps X into Yg.

Remark: Let ac€A and 06 P ,. Then (P, o £)°1(0) = £~1(P,"1(0)), for

assume x6(P, © £)"1(0). Then (Pg ° £)(x) = Pa(£(x))c0, so that
£(x)eP,"1(0). Tmus x = £3(£(x))er"1(Py"1(0)). Hence

(Be - £)71(0) C £1(Py"1(0)) . Likewise let xe£~1(Pa~1(0)). Then

£(x)eP,"1(0), so that Pg(f(x)) = (P, ° £)(x)€0. Therefore

x6(Py ° £)~1(0). Hemce (P ,~1(0)) C (P, ° £)-3(0).

Theorem 3.2: A function f wmapping X into the product space I ¥, is

contimious iff P, ¢ £ 1s continuous for eoach a€A.

Proof:
(1)

(11)

Suppose f is continuwous, and let a€A. Then for every 1?
(473 Da’ Pa"l(o) = Ue W since P, is continuous. Hence

(P, o £)"H0) = £1(P,"2(0)) = () D, so that P, o f

is continuous.

Suppose that for each 2€A)(P, ° f) is contimwous. Let Se &,
Then there exists an €A apnd 0€ P o Such that S = ?a*l(o).
Thus  £72(8) = £7H(P,"2(0)) = (P, © £)°}(0)e D, since Py o %

is continuous. Let Be€ ¥ . Then there exist scts {sj}k
k J=1

where 836@ and B = N SJ. Therefore
=1 ‘
k k
1(B) = 1 N s3] = N orlsy)e D
J=1 J=1

Now let Ué L/ . There exists a family Z *C J such that

U= UB . lence
Bejy *
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1) - 1 (UB] = U _ri(Bled.
Bepy Bepy
Hence f i1s continuous.

Iet X be a t.8., and let T be a family of functions such
that each member f of & is & contimuous mapping of X into
the t.s. Yy. Consider the product space IY,. (Here the family
T~ now serves as the index set for the product space.) For a
given point x in X let sx. denote the element of I Yy defined

by

5,(f) = £{x), for re F .

Definition: The evaluntion mapping e of X into the product space
I Yr ic defined by e(x) = s, for xeX.

Theorem 3.3: The evaluation mapping e of X into the product space
1Y, 1s continuous.

Proof: We show that Py ° e 1s continuous for all fe€ F , whence e
is continuous by theorem 3.2. let f€ o and x€X. Then
(P o €)(x) = Pe(e(x)) = Pp(sy) = 8y(f) = £f(x). Therefore Py ° e
is the continuous mapping f in &, s0 that Pp ce is
continuous .

Definition: A family F of functions on a t.5. X ic ceid to distinguish

points and closed sets 1ff for every nonempty closed proper subset

C of X and each point x of X in C€C, there exists some I
in F (depending on C end x) such that £(x) does not belong
to the closure (in Yg) of £(C). (Here £(C) is the set of all

Coe

points f£(y) wvhere y<C.)



Definition: Iet { be o mapping of the t.8. X onto the t.8. ¥,
Then £ is sald to be gpen 1ff for every open subset 0 of X,
f[()] is open in Y.

Theorcm 3.4: Assume F aistinguilshes points and closed sets. Then
the eveluation mapping e of X onto e(X) is open.

Proof: Let 0¢ D. Ve assert that e(0)e e(X) N L . We may assume
that § £ 0 C X, since both e(f) = ¢ and e(X) belong to
e(X) N 1. Let ¢t be an arbitrary point of e(0). Then there
exists a point x in X such that t = e(x). Since CO is
closed in X and x¢ (0, there exists by ossuption some f€
such that f(x) does not belong to the closure (in Yp) of £(C0).
Put H = CH1r(CO). Define Uy to be the set of all points ¢’
~:m I Yp such that t'(f)eH. Clearly t belongs to Uy, since
t = e{x) implies t(f) = sy(f) = £(x)eH. Since H is open in
Ye; and Py is continuwous, Pe~l(H)e LL. Now t'ePp-l(H) irf
Pe(t')en iff ¢'(f)eH 1fF ¢'€Uy. Hence Uy = Pe~l(H)e W.

We show finally that e(X)NUg C e(0). It follows that

e(0) is open in c(X). Lot see(X)NUg. Then see(X) implies
that there exists some point y in X such that s = e(y) = By«
Hence s(f) = sy(f) = £(y). Now se€Uy implies that s(f)eH,
s0 that f(y)eH. Hence y<0; othervise I(y)ef((0)C (H. Therefore,
8 = e(y)ee(0).

Definition: A femily of functions F onet.s. X is said to distinguish
points irf for every pelr of distinct points x and y of X there

exists some f in J (depending on x end y) such that
£(x) £ £(y).
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Theorem 3.5: The evaluation mapping e 1s one-to-one iff J- distinguishes
points.
Proof:

(1) Suppose e 1is one-to-one and x and y are distinct points
of X. Then e(x) £ e(y) implies that sy = e(x) £ e(y) = By~
Therefore, there exists some f in F such that
8,.(f) £ sy(f); that is, ©(x) # £(y). Hence J distinguishes
pointe.

(11) Let x and y belong to X such that e(x) = e(y). We
assert that x = y, vwhence e 1s one-to-one. OSuppose
x fy. Since F distinguishes points, there exists some f
in F such that f£(x) # £(y). Hence s,(f) £ sy(f) s0 that
sx # 8y; that is, e(x) £ e(y), a contradiction.

Combining the abowe results we have:
Theorem 3.6: Let J be a family of functions such that each member ¢
of F i3 a continuous mapping of & t.s. X into a t.s. Yp. Assume
(1) F aistinguishes points ,
(2) ¥ distinguishes points and closed sets -
Then the evaluation mapping e from X onto e(X) is a
homeomorphiam.

It follows that if J distinguishes points and also distinguishes
points and closed sets ,and 1f the product space Il Yy 1is pseudo- ;
metrizable, then the t.s. X 1is pseudometrizsble. ,{

Theorem 3.7: Let I dJdenote the nonnegative integers. For every integer

nel let (Xn, -an) be a pseudometric t.s. of diameter < 1.
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x = x(n) in H{Xn : n€I> let x, = x(n). (Note xpeX,.)
x and y in n{xn:nsx} define

Ax,y) = ;  270p(xn,yn) -

nel

(Clearly the series converges.) Then 4 is e pseudometric for the

cartesian product I {xn : neI}, end the topology \lg induced

by 4 1is the product topology LW .

Proof:
(1)

(11)

We prove 4 1is a pseudometric for I X,. Oupposc Xx = y.
Then n€l implies that x, =y, €X, so that dn(xn,yn) = O,
Since dn(x,,¥n) = dp(yys X,) for each n€l, it follows that
a(x,y) = aly,x). Floally du(x,,2,) € dplxn,yn) + dulygszn)
for all n€I, so that d(x,z) S d(x,y) + d(y,z) for all
%x,¥,z in I X,;. Hence d 1is a pseudometric for the
carteslan product.

We assert that W, C . Let Use Yy, and let xeUy.
Choose m€I such that m > 0 and the open sphere S(x,1/2%)
is conteined in Uz. Define U to be the set of all points
y of HIXp such that 0SnSm+ 2 implies

dy(xp,vp) < 1/27¥8 | crcarly x€U  since a(xp,xp) = O.
For 0SnSm+2 define Oy = 5(x,,1/2%**2), (Note O a_-)
Le?t

mee 1
B= N P (On) .
n=0

By definition B 1s a member of the base P for the product
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topology 1l. Row a point y belongs to B 1ff
Po(y) = vp€0, for 05 nSm+ 2 iff ap{xy,yp) < 1/20¢m2
for 0Sn<m+2 iff yeU, Hence U = Be | . Also for

yeu,

axyy) = | 2 dy(057,) ]

nel
2 = mée
< g, )] ¢ )] < [ 2/
+ / 2—!1 < 4+ “—-_?2 = -L .
fowd Eﬁ 231‘.' 2!3
=T
Hence
yGS(Xp]./Qm)-

Thus Ue Ll and x€U C 5(x,1/28) C Uy so that Uge W\ . Hence
UgC W.
Now let S belong to the subbase & for L . Then
8 = ?n"l(a) for some n€l and O€ 5%. let x be an arbitrary
point of S. Then P,(x) = x,€0, so that there cxists a real number
r > 0 such that the open sphere 5(x,,r) 1is contained in O.
Let yes(x,r/29%). Then 1/2%4 (x,,y,) S d(x,y) < r/2n, so thet
dn(xq,yn) < r. Hence Pp(y) = yn belongs to S(xq,r), and so
yﬁPn’l(O) = S. Thus S(x,r/2%) C S. Hence Se Ud. Therefore
B C Ug, 8andso W C Ug.
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Remark: Since every pseuvdometric space is homeomorphic to a pseudometric
space of diameter S 1, it follows by theorem 3.7 that the product
space (g Xn, W) of a countable number of pseudometric spaces
is pseudometrizable.

Definition: Let X be & t.8., and let & be a family of subsets of X.

Then & 1s termed locally finite iff for every x€X, there exists
an open set Oy containing x such that Oy intersects at most
s finite number of the members of & .

Definition: Let X be a t.s., and let & be a family of subsets of X.
Then & is termed discrete iff for every x€X, there exisl‘e:;’s an open
set Oy containing x such that Oy intersects at most diw menber
of & .

Definition: A famlly & is called g-locally Tinite (g-discrete) iff &

1s the union of a countsble number of locally finite (discrete)
subfamilies.

Clearly a discrete family (& is locally finite.

let G be locally finite. Let x€ #CU G. There exists
an open set Oy conteining x such tlmtcz}g subfamily & ¥ of
G> of all members of (& which intersect Oy 1is finite. Then

x¢ X' G for some GE Gr¥*. Otherwlse there exists an open set Hy,

containing x such that H. NU G =¢, a contradiction. Hence
Ge &

HUG = UXG. It is easily proved that the family (& G : & &)

GEG &

is locally finite.
Theorem 3.8: Let X be a regular t.s. whose topology has a o=-locally

finite base., Then X is normal.



Proof: let C; and Co be two disjoint nonempty closed subsets of
X. let B be the o-locally finite base. Since X is regular,
there exist subfemilies S and J, of ¥ covering C; and Cp,
respectively, such that the closure of each member of G does not
intersect Cp, and the closure of each member of VQ, does not
intersect €. Iet & = U &y and JTL = an, vhere for ewvery n

n
Gr, and f  are locally finite. Now for each n define

Up = UG and Vp = UH .
Ge Gry He S,

k
(Ir B = U B s put una¢s-.vn for n > k.) Here
n=l

XUy = XUG= UVHG, i
GeBy, @& &y
80 that K Up N Cp = ¢ for every n. Simllarly XAV, N €y = ¢
+
for every n. For all n€l define

4}; n

4 n
V' =y N C Ju:L LUy -

The proof now proceeds precisely as the proof of theorem 1.6.
The desired open sets are defined by

g i
0 = UV Uni%
=
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Theorem 3.9: Iet X be a regular Ty-space vhose topology has a
g=locally finite base. Then X 13 metrizeble.
Proof: ILet X be a regular Ty-space whose topology $ has 2z
o-locally finite base _& . Then
B = UBy,
nel
vhere I 18 & set of positive integers and A, is locally finite.
Ve may essume Ay £ @ end @f A, for ell nel,
¥or each pair of positive integers m and n in I such that
B né {X) entfor cach U#X in B, define

w=U{B:Be y,2XBDU}.
Since F , 1is locelly finite,

XU* = UXB cu.
B¢ ¥ ,3xBC O
Now by theorem 5.8 X is normal, so that by theorem 1.4 there
exists & continuous function fj; mapplng X onto the unit interval
such that fy(x) = 1 for xefU* and fy(x) = 0 for xeCU. (If
U* = ¢ define fy(x) =0 for xeX.) Define

dg,n(xy) = [fy(x) - fuly)|, for x,y 1in X.
Ue 7
(Note that U ¢ X.) 8Bince F  is locally finite, every point
x€X 1is contained in at most finitely many members ofjm. Hence

for every pair (x,y) we have x and y belong to (L U for all but
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at most finite muber of Ue 7 m Hence oll but e finite nusber

of terms of the sum

PRE:" I ¥ €9
U‘G,_ﬁm

are zero.

We assert that dm,n is contimuous on X  X. ILet (u,v)
be a point of X x X, and let € > 0. Put
N = (dm,n(“fv) - €, dm’n(u,v) + €). We exhibit open sets G and H
vhich contain u and v, respectively, such that (x,y)eG X H
implies dm,n(x,y)EN. For each pair (x,y) there exist sets

1
{uk} such that Ge B, for 1Sk S 1 amd

k=]

1

t,n(%,¥) = [ |y (x) - £, ()] -
k=1

Here fiy 1is continuous at u and v for l‘fkjl, so that
there exist open scts Gy and My containing u and v,

respectively, such that li‘uk(x) - ka(“)' < efel and

u (y) - (v)| < €/2L for xe€Gy and ycH;. Define
Uy Uy

2 l
G= N G and H= N H.
kel k=1

Clearly G and H are open neighborhoods of u and v, respectively.

Hence (x,y)éC ¥ H implies
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: 1
|m,n(xsy) = dpn(w,¥)| = |/ |fy (%) = £y (9)]- [ty le) - sy (V)]
k=1 K=l

t

t{...d‘ Uft}k(x) - fuk(y)I - lfuk(u) - fuk(v)ﬂ
k=1

i

l

A

lka(x) - fuk(.‘f)] - |fuk(u) - fuk('\')l

‘1
/
/
fud

T/ |fudx) -y (y) - sy (u) + £y (V)]

K=1
A l

s/, |fu (=) - fuk(u)| + /TRy - ka(Y)l
k=1 k=1

+*
21 21

Hence dp p 1s continucus. It is easily verified that dy , ic
a pseudometric for X. Let 7 be the family of pseudometrics

dp,n for ell integers m and n in I such that Fp # {x} .
Since J) is countable, J can be indexed by a set J of positive
integers, (&f J = {1,2,...,1}, define d(x,y) = 0 for k> 1.)
For keI’ define Xx = X. Thus we have defined a family

[
{(xk, ?ak)> of pseudometric t.s. such that for every kef
Kal
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the pseudometric dy 1s contimuous on Xj © Xkx. By virtue of the
remark following theorem 3.7 the product space ( I Xy, (/) is
pseuwdometrizable. keIt

Next we shov that X i1s homeomorphic to a2 subspace of

I *Xk. Then by theorem 1.3 X 1is pseudometrizaeble. Since X is
kel

T3, 1t follows that X 1is metrizable, and the proof is complete.
For keI' let fi.{x) denote the identity mapping of X omto X, .
(That 18, fx(x) = x for =x€X.) We assert that f; is continuous.
Let x€X, r > 0, and consider the open sphere S(x,r). (Here
5(x,rie ‘il)dk, and the center of 8(x,r) is f(x).) Choose

€ >0 such that € <r, and let N = (-€,€). Now @ is continuous
at the point (x,x) and dy(x,x) = 0, o that there exist 0y and
Os in » which contain x such that (u,v)€0; » O, implies
dg(u,v)eR. Since x€0.€ @, y€0, implies that dp(x,y) <€ <r;

and hence yeS(x,r). Thus fj; 1s contimuouc at x. Define
©

F = {fk} . It is obvious that distinguishes points. Ve
k=)

aspert that J~ distinguiches points and closed sets. Let A be
a nonempty closed subset of X which does not contain the polnt
x. Since X 1is regular apd B is o base for P , there exist
en m and Ue Z  such that x€UC (£4A; and there exist an n
and B& F , such that x€BC ¥BCU. If yeA,

a(x,y) 2 |fg(x) - ty(y)] = |1 - 0] = 1. Hence a(x,8) 21 > o0.
Thus x dJdoes not belong to the closure (in Xx) of A. Dut
f(x) = x and 1x(A) = A, so that fi(x) does not belong to the

closure (in Xi) of fx(A). It follows by theorem 3.6 that X
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is homeomorphic to e(X), vhere e 1s the evaluation mapping of

ket

Definition: Iet S be on arbitrary nonempty set which posséssces an

order relation ® . Then the set S 15 sald to be well-ordered

by § provided for x,y, and =z in 95,

]

(1) xSy and y<x implies x =1y
(@) xSy and y <z implies xSz
(3) etther xSy or ySx
(4) ¢4 7C 5 iuplies that there exists an element weT (called
the lesst element of T) such that w St for all teT.
Remark: We sssume os an axiom the followlng statement. Every nonemply
set coan be well~ordered. This esssumption is equivalent to the

axiom of choice.

Definition: Let & be a well-ordered nonemmty set,and let x and y
belong to S. Then x<y iff xSy eand x # y.
Definition: ILet G be a covering of a nonempty set S. A covering f

of S 1s termed a refinement of (35 41ff each member He«ﬂ(,

is o subset of a member G & .

Theorem 3.10: Let X be a metrizable t.s. Then every open covering
of X has an open o-discrete refinement.

Proof: ILet & be an open covering of a metrizable t.s. X with
metric d. Ve may assume X¢ & . Otherwise {(X) 1s the
desired o-discrete refinement. We also assume @f & . For each
uef and each nonempty member Ge & we define G, to be the set
of all points x€G such that d(x, €G) 2 1/20. (Possibly G, = #.

However, for n sufficiently large Gn # @#.) Note G, C Gy € G



for all n, and € Gpyy # . Suppose Gy # §. We assert then
e{Gyy CGpey) Z1/2™1. let xeG, and ye CGpyy. If ye CG,
then d(x,y) 2 d(x, € 6) 2 1/P> 1/2°*1. Hence ascume yeG. Note
y€ e'cn,,,l implies d(y, €G) <1/2%%l, since

d(x, ¢ G) ® a(x,y) + a(y, £G), it follows that

a(x,y) 2 a(x, £G) - da(y, £6) > 1/o8 - 1/20¥l _ 3 fondl

Hence e(Gy, £ Gpyq) 2y /outl,
Let 3 well-order the family & . Define

for every G€ & and neI*. Consider neT* and G and H in &
such that G # H. Assume G * £ § and H* £/ §. We assert that
e(Gp*,Hn*) 2 1/2"*1, Here either H—= G or G-3H. Assume H-3G.
Then
G € UL € Clyy, -
He &
H'3 G
¥y *) > * > > 1

Hence a((}n B ) 2 e(!{n ’ Cﬁml) 2 e(Hn, CH ., ) 2 1/ov*l  since
H*C H,. By symuetry G-3H implies e(GXH*) 21/, Now
define Gn? to be the set of all x€X ocuch that d(x,Gp*) < 1/2%3,
(1£ G* = ¢, put Gn# =@.) We assert Gp* C c;n#g_ G. Clearly
XEG,* implies d(x,6p%) = O, so that xﬁﬁn#‘. let xecn# . We prove
d(x, ©G) >0, whence xf NEG = €G, Here a(x,G*) < 1/2™3, s0
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thet there exists a y in G such that d(x,y) < 1/2°*2. since

¥y Tbvelongs to Gy,

5 T aly, €6) T alxy) + alx, £6) < g + alx, £0).

Hence d(x, £G) > 0.
We show next that G, 1s open for all neI*. Let xeGpi.
Define r = 1/2(1/2%*3 . a(x,G,¥)). Hote r > 0. Ve assert

8{x,r) EGnég. Here yesS(x,r} implies

a(y,0n*) S a(x,y) + a(x,6n%) < r + a(x,Gn*)

_ 2 +d("r“n*)< 1,1/ 1
on+ 2 path T 2\on¥3 ) T ook

Hence yeG,¥. It follows that Gy’ is open in X.

Define &' to be the family of all sets G,F such that
6e & and G,f £ §. Let

‘FL = S @n#‘
n=l
We sssert that d 1is an open covering of X. Let xeX. let &,
be the family of all members of & vhich contain x. Since &
is & cowr, &y £ #. Now & is well-ordered and thus containms & &
least element G. Here a(x, £G) >0, socince G 1z open. Choose d
ner® such that a(x, £ G) 2 1/2%. Hence by definition x€G,. Let
He & such that H -3G. Then Hf &, (since G is minimal), so
that x¢H. Hence x¢H .,. It follows that
x66 N € Uty = Gy* C G .

He &
H=3¢
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We assert J): is & o-discrete refinement of & . Clearly J}/
is a refinement of &, for Gn#Q G. Ve show @n# is discrete.
Let x€X. We assert there exists a positive integer k such that
5(x,1/k) intersects at most one member of ﬁ‘n# . Suppose S(x,1/m)
intersects two distinct members of C%“n# for all meX*. Choose
m ouch that 1/m < 1/2%*3. Then for G, and K7 alstinct
members of @'xﬁ let yeGn#n 8(x,1/m) eand zﬁﬂnﬂgﬁ 8(x,1/m).
Then d(y,2z) € a(y,x) + a{x,z) <1/m + 1/n < 1/2%%2, 5o that
e(o7, 1) § ay,z) < 1/2%2. But for usG? and veH 7,

pr=s) < e(Gr®,Hn®*) < a{u,Gr#*) + dlu,v) + a(v,Hg*) < 'é"m;"“ﬁ + d(u,v) + -—2&3’;—5

‘-.J

S S d{u,v);

that is, 3./2”"E < d(u,v)., Hence JL/E";“'2 < e(Gn#,Hn“#), a
contradiction.

Theorem 3.11: Let X be a metrizable t.6. Then X has a o-discrete
base .

Proof: Let X be e metrizable t.s. with metric d. Define &y to
be the famlly of open spheres S(x,1/n) for =xz€X and nexr’.

Clearly for each neI"', &r,. 1is ap open covering of X. By

n
theorem 3.10, &, has an open o-discrete refinement jn’ Define

[&+]

,.27 = U ﬁn' Clearly j is g-discrete, since each ﬁ n is
Dl

o-discrete. We assert that ﬂ is a base for \bd‘ Let Oe Qd:

and let x be 2 point of O.
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Choose ne€I* such that S(x,1/n) C O, and let m =.2n.
Since_Z = covers X, there exists a set B, in % which con-
tains x. Also [, 1s a refinement of &, so that there exists
a member Gp€ &y such that By C G,. let Gy = £(z,1/m). Now

d(x,2) < 1/m, so that for ye€Gy,

a(x,y) S a(x,z) + d(z,y) < % + i -

=Rl

that is, y€S(x,1/n). Thus x€By C Gy C S(x,1/n) C 0. I{enceﬁ
iz a base for @‘d.

Theorem 3.12: let X be a t.s. Then the following sre eguivelent:

(1) X 4is metrizable.
(2) X 1s e Ts-space whose topology has & o-locally finite base.
(Nagata~Smirnov)
(3) X 1is a Ts-space whose topology has a o-discrete base. (Bing)
Proof: Assume (1). Then X is Ts, and by theorem 3.11 X has a
o-discrete base. Hence (3) holds. Trivially (3) implies (2).
Finally (2) implies (1) by theorem 3.9.
The Uryson-Tihonov theorem now follows as a corollary.

Corollary 3.12: ILet X be a second-axiom t.e. Then X 1is petrizable

iff X is Ts.
Proof: Assume X 1is Ts. lLet & be a countable bese for X. There ,

exists a set of positive integers I such that 7 - {Bn : néI}.},

For n€I define _J, = {Bn} Then %, is discrete, and henceye

. Ba s

Kj ie a v-discrete base for X. Hence X is metrizable. The

converse follows as before.



Definition: Let X be a t.s. Then X ig termed locally metrizable

iff for every x¢X there exists an open set 0 conteindng x
such that the subspace 0 is metrizaeble.

Definition: A t.s. X i=s termed paracompact iff X is Hausdorff and each
open covering of X oadmits an open locally finite refinement. The
following three theorems are stabted without proof.

Theorem 3.13% (Stone): Every metric space X 15 paracompact.

Theorem 3.14 (Dieuwdonné): Every paracompact To-space X is T,.

Theovem 3.15 (Smirnov): Let X be a normel t.6. Let (3 be a locally

finite covering of X such that for every G€ G the subspace

G is metrizable. Then X is metrizable.

Theorem 3.16: Let X be a locally metrizeble Tp-space. Then X is
metrizeble 1ff X 1s paxracompact.

Proof: If X is metrizeble, then X 1is paracompact by theorem 3.13.
Conversely, if X is a paracompact Ty-cpace, then X is Ty.
For every x€X there exists an open set 0, such that the subspace
Ox is motrizable. The family ¢ Oy : x€X; 1: en open covering
of X and therefore admits an open loecally finite refinement Gr.
For every G€ & there exists an x in X such that G C Ox.
Hence the subspace G 1is metrizable. It follows by theorem 35.15

that X 1s metrizable.
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