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A theory of veloeity limitation is developed on the basis of &
simple analytical model of a returning space probe. The limiting velocity
is that atmospheriec entry speed for which the probe is entively consumed.
The geometry treated is & family of slender blunted cones moving in the
direction of the exis. %The face of the cone is assumed %0 be conbinuously
vaporized by the flow. The entry speed is presumed so high that a large
fraction {or all) of the vehicle volume is consumed in the entry, The
entry speed is also large encugh that the dominent mode of heat transfer
to the vehicle is through radiation from the hot gas cap at the nose.
In the regime of radiation dominance, a second-order nonlinear differ-
ential eguation is found which deseribes the geometrical and dynamical
history during stmospheric entry. By means of solutions of the basic
size-altlitude eqguation the low-meteorie velocity limit is traced out.

For the family of truncated cones, end s limiting form of the heat
input function, expliecit formulas for the limiting velooity are developed,
The limiting velocity is found 10 be independent of the size of the
probe, but dependent on the shape. Pointed c¢ones yield the highest
limiting veloeities for the class of probes considered. However, flat-
faced cylinders yield values nearly as high. The proporiions of the
¢ylinders do not gffect the limiting velocity so that long rods and
thin wafere have the same values. Only the altitude of the high mass~
loss region shifts with the probe size or with the cylinder proportions.






Bven now, in the space age, the only bodies aaterimg} the atmosphere
with sufficient velocity to suffer large fractional mass loss are the
satural meteors. Ballistic missiles and the curremt space vehicles
typically do not devote but & fev percent of their mass to combating
heat flux.. Even return from the moon will not require too much larger
heat protection weights than do earth satellites. Only in the entry
a@eeé ‘range of re%mmiéa space probes do mass losses approach complete
consumption of the vehicles.

The speeds corresponding to the &iffarexﬁé regimes a;f atmospheric
entry are as follows: ballistic missiles at sbout 20,000 feet per
second; near-earth satellites at sbout 26,,9 feet per second; lunar
return vehicles at about 36,000 feet per second; meteors and spsce
probes above 36,000 feet per second. Only in the case of meteors
and space probes is there a broad bend of speeds ranging, for meteors,
up to 45 miles per second for head-on collision with a meteor on a
parebolic orbit with respect to the sun.

For minimun energy orbital trensfer from the distance of the earth
to the dictance of Pluto & launch veloeity of ab@at 5%,000 feet per
second is required, only slightly less than that for escape from the
sun's gravitational field. The corresponding transit time is sbout
46 years. Except for minimum energy return the entry speeds will exceed
the launch speeds. To shorten round-trip times it is fmportemt to know
the limiting speeds at which man-made vehicles may enter the atmosphere and

SUrvive.
o



The basic g@zﬂsmsts 'ﬁeﬁwe@n the casés of meteor and probe entry
lie in the sizes, materials, and shapes. Meteorites come in two
materisls, iron and stone; reach enormous sizes, and seem to have
irregular, blunt shapes. Probes, on the %hgr hand, canpot weigh
more than a few thousands of pounds, snd the materials end shapes can
be eh@%‘mn as desired. For successful probes a definite ﬁ‘mcﬁiga of
the mase, the scientific payloed, must survive the entry. Of course,
in 2 sense, e meteorite is intrinsicelly a scientifiec paeyload.

- The mtieiyate& apeeds of gmbe entry are well beyond the capasbility
of shock tubes. 8Shock tubes are unlikely to achieve gpeeds much higher
than the present limit of about 40,000 feet per second. Information on
entry at higher speeds can, at present, be directly obtained only by
cbeervation of meteors. Recourse must be made to ‘jﬁﬂiﬁiﬁaﬁ extrapolation
and %o analyticael methods for investigation of space probe emtry.

The problem of natural meteor mechanics hae been successfully treated,
in the main,without detailed consideration of the heat imput fumetlon.
(Re£. 1, for example.} Although shock tube experiments and theoretiesl
analyses have produced Mmﬁi@a beat input functions for simple shapes
and it is now possible to include realistic heat input i’matgi@m in
problems of entry mechanics, the range of applicability of the resulis
for high mass-loss trajectories is not known.

A critical regime in space probe returs is found near the low~
nmeteoric velocity 11@@, the exié#yeme;@:f’ which was suggested in
reference 2. On the apalysis of reference 2, meteor~-like bodies in the

ballistic pavameter range of interest for space probes {le2 psf) are

completely consumed for entry m;&cﬁie‘s higher than roughly 50 to

60 thousand feet per second.



It is the pu

rpose of this paper to develop the theory of velocity
limitetion for probe-like bodies. This means a choice of physically
reasongble shapes musct be made and the survival of a definite fraction

of tm initial wass ‘Mﬁﬁ V‘tm» provided,



1.1 Dynamical Equation

The velocities and air loads are so high for the cases to be con~
sidered that the acceleration of gravity will be neglecied. Only after
the pearly coincident heat, mass-loss, end acceleration pulses sre
over will gravity have any importence to the motion. Neglect of gravity
implies that the motion %5 lineasr. Another simplifying assumption is
that the entyy is gt such a steep augle that the curved surfaces of
constant atmospheric density wmay be regerded ae parallel planes for the
straight flight paths to be considered. The atmosphere is to be approx-
imated by sn isothermal model at constant acceleration of gravity. 8uch
a model has an exponential variation of demsity with altitude which may
be expressed ag

Lo 1.1.1

The parameter;, hg, which fixes the decrement of density with altitude on
the isothermal model is called the scale height of the atmosphere. In
the nonisothermal etmospheric mofel of reference 3, loecal values of seale
height are tabulated. The parameter h, may be defined as the sltitude
change for which the density changes by the factor e; the base of nstural



logarithms. For the simplified atmpspheric entry model) under discussion,
& generslized scale height, hl, mey be defined as the distance along

the fiight path in vhich the density changes by the factor e. The two
parameters are related simply by

gin y - h; = h 1.1.2

vhere 7 .is the angle of the flight path with the horizontal.
The substitubtion of the demsity for time as independent variable will
be made as a matter of convenience. In terms of the relations 1.1.1 end

1.3.2 we find

8

a5 the relation betweer + and ps The eguation of motioan becomes on
the assumpbtions outlined above

8U _ehd »

where © = mg/CpA is the so-called ballistic pasrameter. Depending on the

geometry chosen, the coefficient of U on the right member of equation l.1.4

is an, as yel, unspecified function of the nondimensional size, A, of the
probe. This functional relstionship will be denoted as

#(n) = S5 1.2.5



so that the equation of motion has the form

. % =27} » U 1.1.6

Axial symmetry of the probe is gssumed and the aerodynani
be emiea oun the so-called Newtonian hypersouic spproximation. Hach

of %i;xe‘ fiux of particles iumpinging on the vehicle is cousidered to
strike the vehicle independently, losing the velocity component normal
4o the body as it does so. For the continuum flow under consideration,
the shock wave at hypersonic apeeds is so closely wrapped sbout the
nose of the body that the Newtonisn sssumptions are closely realized.

1.2 Heating Equation

The relationship of A to p is found by relating the surface hest
input to the change in volume produced by it. The precise form of this
relation will be given later in ternms of specific models, For the
present it will merely be noted that the relation will be & special case

of the fornm
- &fﬁ 9 1 ¥ ﬂ }' * g{%} 1*8&

1.3 Sige-Altitude Equation

The analysis takes & compact form if the eguations 1.1.6 and 1.2.1
are combined. By differentiation of eguation 1.2.1 snd eubstitution of
second-order size-gltitude eguation is

eguation 1.1.6, the foll
found which is the basic eguation of the present analysis



ependent of the velocity

An advantage of eguation 1.3.1 is that 1t is 4
vhich appesrs explicitly only in the boundary comdition

#g . % &= ;ﬂrﬁaﬁsg {)&) 1:5‘2

wenjent to write equations 1.3.1 in

It is, for many purposes, moreé ¢
terms of the varisble ® = Inp which is lineariy related %o the altitude
in gn isothermal atmosphere at constant g. The »‘Wemmﬂwm yields

1:3:3

o m - o RyE-lg(n) 1.5k

In the form of eguations 1.3.3 and 1.3.4 the size-altitude equation indi-
cates esome general properties of the solutions which lead to scaling leve

for various physiesl quantities with verious physicsl parameters. For

emmg:w, few Wters whmh appear as factors of g(A), but ﬁe not
ppeay in ffk), mﬁa%m of these factors with no change in the product
:pm&wes na change m m ﬂmagml W@.

A mre general tmfmmu&m is m@ ahame ar %’.he meegral curves
umiex me wiatim af wzy pammter z u&imh agyms am & factor of
f{h)g 12 ve imgme an e;emm; of arc of an imagmil. curve of equation 1.3.3
to be translated in ® by an smount o so that



The goefficiént of the Exiﬁm term in % of ‘equation 1,3.3 undergoes the
change |
- 2e® ﬂ$*$* " z'a"a@

where g'#z* mmtmnsmsm | I we requive of a %h%

g = Sl“"éﬁ 1.%5:3

t&sﬁ the éex tem mt’ ﬁmexenmal agmtwr; 3“,%5 is mehange@. for the

t mwx elmmz, %!mm: mw z.m@m}. awa%, “when tmnﬁlama, is a
miutmn ﬁ’m‘ a ﬁiffamnt value of 2. ‘I‘h@ mmmm éégenﬁeme of certaln

rlance of the integral

quentities of interest follows dirvectly from this inva
curves under & translation a giaﬁ an associated change of 2. Written

in a form different from eguation 1.3.5 the proper associstion is
pe = constant 1.3.6

m ﬁmw@m%m aescribed by egumigms 1.3.5 or 1.5.6 will be @&Z&lﬁ:&
a m-a me;

m amaﬁer of ma &megm& curves of the &iﬁ&-&lﬁiﬁﬂé& e«gmtim 135,53
for phwm Ak
mﬁm mgmﬁs of amw conatant size are separated by & mg&m of rapid

_ mteraa%mg; cases is indicated in figure }w Two mmﬁw

sige ahgage, the high ms~M$ msims, m this BAFTOW region ocours.
the hea&:&m :mlsa‘, the a.eeeﬁ.emmm Wise,, ami the ai,ge ahmgé (~ «@»
pulse wh;s;eh pesks at paint i, the inflection point. ‘é:he aecea,emmen

pulse peaks st point G which follows the inflection point. The limiting
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Figure 1.- Sketch of integral curve of size-altitude equation.
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veloeity is defined in terms of the limiting size on the vight, A,
The velocity; Up.s 8t © = -» for vhich Ny, = O is defined as the
1m~am veloRkty, Uy For higher velécity at @ = -» the vehiele will
}mm up a% finite al*aiméas (unless. zhe my&aaé vanishes, which case;
mrre@omm to meteor-~like Miea, w&& be discussed la%m:}

Mﬁhm the ‘ammlﬁmuﬁ@ a@mﬂumm cmx ‘be regarded as & geometrical
feal a:xgaiﬁ; ance. The only term. m@i
favorsble to probe swviml :%s thet with £ as coefficient, emes;pmﬁmg

relation, the terms have ,.

to loss of veleai%y amﬁ mass 6 }f‘ng entry. High values of £ are desireble,
or a&mm%m}.y, m& mlma aﬁ’ B, m v.ﬁaﬁmmm More precisely, ae

m&l be seent ;mw, it is ahighmean value of & -1 that i »&swable.;

1.b Heat~Input Punction
For coordinates moving with the body, the £lux of kinetic energy of
the impisgiog air is

per upit &x’%* Tais energy nay be regarded as an upper bhound for the

heat input to the body, or &s the unit Of heat input. ¥n terms of this
unit, the heat input per unit frontal ares may be written

Detailed theoretical conetderations and experiments have yielded heat
input funetions for the stagnation point regions of blunt bodies.  These
relations hold éor\ the two distinet components of hest input: the con«
yveetive, and the rediative. The convective componpe

0t is due to the



frictionnl sction of the air. It can be shown o héve the functional
form (for exsmple, ref: &)

Ggo = B E 1.4.3
for the m&gy input per unit avrea at the stegration point vhere x 15
4 characteristic’ length of the body.  The ¢
does not wean t%aa.‘e the heat input will vanish et infinite size, since

the integrated input’ V&r:&eﬁ By xﬁl 2,

The radiative component is caused by the shock wave which raises
the eothalpy of & unit mess of air by aboub % aﬁ‘? near ﬁm -stagoation
mﬁms &% sﬁa@e ‘p‘r@be veloeities, this amount of energy is sufficient
to put the equilibriun temperature at such high values (~10" 9g) that
wmmm amd Msmm’wm are important. The inverse recombination
;@r@;@aﬁ%& produce the important radiation, partioularly the Kramers
reconbination of stomic nitrogen ions and electrons (ref. 5). For the
rediative component it iz found experimtmy that (vef. 6)

‘The enormous increase with velocity snd the sharp rise with deneity should

be noted in relation 1.%»2&, The rates of increase are more rapid than

in the ;I.imitmg energy £lux indicated by equation 1.4.2 so that clearly

the reia:mm Labioh cansot hold to arhmrariw largez d@xasmiaa and V&l@ﬁiﬁi@&x
maca; m }matmg rate cannot increase xmfawm:@ with size, X. Alth@ag&a
me h@%& @m cayp veitzm &mm&mat mrl.y in ddrect mwmﬁi@n o tsim,
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there cannot be & substential increase in beating rate beyond the sige

for which the shock stend-off distance is compavable to the gas esp

self-gbsorption length.
‘msavm “the indicated large incresses of radiative heating with

density and veloeity suggest that rediation becomes the dominant form of

heat tremsfer with increasing emtry speeds. This is, indeed,. the case;.
aud. the analysis of the present paper will consider the regime in which
the integrated contribution of the convective heat transfer may be
neglected in comparison with the integrated radimtive transfar, The
experimental variation 1.h.h aﬁli,m folloved until 1t is necessary to
impose the limiting form as is sugzested by considerations of energy
conservation.

A perbaps importent, but certainly complicated, phenomenon which is
‘neglected throughout the anslysis is the effect on the motion of the
vaporized probe material. Under the presumed high mass<loss conditions
the vaporized layer of probe material may be a significant fraction of

the shock layer with fmportant effects. One effect is likely to be e

veduction of uncertain magnitude in the convective heating. However,

convection in its undiminished form 1s negligible fn the regime of inbterest
: With respect to

50 that.any decrease in comvection is unimportant

radiation, the shielding or intensifying effects of the bou

probe material must be put down &s & neglected, but perhaps significant,
quantity.



2.1 Genersl DPescription

In view of the faet that high radistion intensities sre gesociated
with the large entbalpy changes in normal shock weves, and that radiative
nent at spsce probe {meteoric) speeds,

heat transfer is increasingly domi:
1t seems desireble that the surfaces of space probes should bave small
fractions of the surfece area exposed to strong shock _'.wama » This
suggests that the basic shape of space probes, unlike that of meteors,
should be slender so that strong shoek waves can exist only at the fore-
nost parts. A slender blunted cone suggests 1teelf as a possibility since
the ares of the blunted nose will increase with mass loss snd the drag
will thus increase ot the lower velocities for which radistion intensity

is lessened. Detailed gnelysis will show if these simple considerations
are Justified.

For the ¢onical model to be considered (fig. 2) the nose is considered
to be initially plensr, and to remain so, although it is recognized that
there will be rounding at the edges. Since the intensity of heat transfer
will be greatest at the stagnation point, an initislly blunt nose will
lders will not significantly

remain blunt, snd minor changes at the sho
affect the dynamicsl and heating history.

b



e

L=

Figure 2.- Sketch of blunted cone.

\V

15



16

2.2 Ballistic Punction, £

‘The,until now, wngpecificd function £ 1s found for the assumed
flst-faced slender eone by mmﬁim of the weight and CpA 1in terms
of fzha aasmmeﬁ gamtmr By & aﬁ.mple integration the guantity QE&
{8 found to ba

41 - 3}3*\ (%)g
ECE

The weight of the probe is essily found to be

2.2.1

o = WY @ NS SR T4 I PO TN S 1 R o ¢
mg = WY ¢mfgww§ "3*55) [}. - {iw?&}g’]@mtg 2.2.2

with 'V, the probe volume; w, the weight density; and mg, the payload,
The function £ thus becomes
e pee
X (L -2+ (&)
54&%%' soo——— st 1" A B T RS (2&)

e 3.
=3 (1~ n)

£(n) =

‘ 2:2.:3
vhere § = % ie the payload fraction, end A, 18 the initial nondimensional

sige.,

2.5 Heating Fumction, g

‘Ifixe othey mmazgm@ £
input to the heat eapacity of the empmtea material. M firgt the

bion g 1is fixed by mﬁiw m:r the heat

equation will be written with both convective and rediative terms. One £inds
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s _ 3 T TS WY AV AW o
o S mj (p + qc)a8 = e {2‘;)530 * @:)S‘?’?} Sgace  2-341

5 of the heat input functions one finds

Introducing the experimental for

LSRR

"a |
2.3.2

haracteristic lemgth x, is the face dismeter. The constante

& and £ 1in equation £.3.2 correspond to unit face diameter. As
previcusly mentiened, for sufficiently high velocity the radiative contyi-
bution will be dominant end for sufficiently low speeds the convection
will dominate, The mw wm eonsidered is that in which the contribu-
tion of the radiative ternm is dominant. Suppression of the convective
tern of eguation 2.3.2 yields the result

n ,&% @ ¥ rﬁ}.vﬁwl{& - ) 2.5.5

2.3.4

g(a) = k(1 « A) 2.3.5



8

The gize~altitude equation 1.3.3 becones

%@% +* Gfﬁ ~ 1)ePE(N) - } % *m(%)a = 0 2.3.6

For r»2 and 8514, witha B value estimated from the results of
reference 6, numericsl integrations of equation 2.3.6 have shown that for
stesp entry and w.sh masa«loss, the radiative haat; inputs indicated by
the radiative term of equation 2.3.2 exceed the kinetic energy available .
in the flov except mt the beginning and at the end of thée trajectory,
For completeness, however, the trajectory properities corresponding to
equation 2.3.6 are indicated in the appendix..

A physteally
of kinetic emergy onto the face of the probe. This f£lux is

acceptable radistive heat £iux cannot exceed the flux

% o> 1okl

per unit area. Recalling that the Iimiting rodistive 5 flux can be

written as
é = 1 % ﬂ§ 1»*‘%3
an upper bound to the radient heat fiux is found if one assumes, in

ig with the probe, that &ll the incident energy flux’
of which enter the body and helf escape.

ew%‘*mﬁ Hoviy

is eonverted to photons, hal:

The sssunptions require that .

ﬁﬁ% 2.3.7



80 the radie

Because of the spall range of validity of equation 2.5.6 on the high
ajectories to be considered, the heat imput function 1..2 vill

mass-10ss tra

19

tive heat input osnnot exceed half the kinetic energy flux.

be adopted. The size-sltitude equation corresponding to the function 1.4,2

with

2.3.8

2.3.9

2%}@3;@

2.3.11

232



2.k Limiting Velooity

able eguation 2.3%.8, & firet integral may be cbtaioed

pe2 Jf £\ = constant 2,4.1

and & second integral as

¢ + {constent)! ﬁjﬁ; SN . S 2.4.2
" {constant) - ?.j fan
I1f we define
a) =2 [ ran 2.4.3
Jo
we f£ipd the first integration constant in terme of entry conditions as

constant = F{Ag.) - ﬁ*ﬁﬁ, a.k.b

The limiting velocity is found
to p=0 at A= Q.

directly ss the value of U, corresponding

Eiz' T s 2:b.5

On & o<z change it is found that the limiting velocity is independent of
size, Li welght density, wi ond effective scale height, hl. 1In fact, the
only indicated dependence is the following
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i) 2.0.6

2.5 Dynamical Quantities
It ie convenient to express the ésaexéx?ﬁ.tim, G, snd veloeity, U,
in terms of the solutions Me). For the veloeity we find

- ——-

2 - 2.5.1

apd for the dimensionless sccelerntion

2.5.2

leration ocoure on the condition
G = %% B0 2.5.3

Differentiating the right nemder of equation 2.95.2 with respect to o |
and setting derivative 10 gero one finds at the peak ¢ condition

apra1eSJRL . SRo,y 2.5.4

Relation 2.3.4 is & geseralization of that of the ansl
vhich tregts the case of constant size and shape; finding 29f = 1 et

sl of reference T

2,6 Linmiting Velocity Formmlas
For the class of slender blunted cones the limiting velocity can be
evalusted in closed form in terws of ¢lementary funetions. Only the eqse



of limiting velocity wﬁ.& be considered so that the ;mtemtma congtant
of equation 2.h.) is gero vhen P ile used for the inte on ‘the left~
band side. For the function ¥ one finde

gbénl

where

Vo83 ¢ v2/3x 4« o2

ﬁ‘égﬁ

WO Wmm ﬂ’;'ﬁ; the val,; e of a P must be as large as _mssihle, which
should extend over as large & range e poseible. In terms of relation 2.6.2
this means that A, should be unity and thus the lower 1imit of the
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‘bracket in veletion 2.6.2 shou
indicsted as having the highest limiting velocities: As & =0,
epproaches the value

the limiting veloeity indicated by relation 2.6.2

&Mﬁa, &s will be aahm %ae;ww, wmapmﬁa to s eylm&em At the other
ex'&mme of & - w, Wr&sp@nﬁmg m & blunt wae of mm aﬁﬁm&a, the

miting vexmﬁxy approaches &m form

2 . 1 e .1 B 1/5 .
0 = &8(%4);&/; (3 ten lz.m &1/5 T \/"ba“;ﬁ " hjﬁ + :’J &3
This vesult must be given & cautious physical interpretation. On the
present model there is no loss of material from the £lanks and 8o the
drag of the flanks is, in & sense, free. The relation 2.6.3, corresponding
to the limiting shallow cone, puts the highest poseible drag in the place
where it costs mothing. This consideration sleo applies; im & weaker
form, to the earlier result which indicated the polnted cone as ylelding
the highest limiting veloeity. Only for flank slopes shallow enough

. ed to the face input cen
the present model be considered valid. The infinitely shallow conme

that the flank heat input is trul

ly small compar

ebviously does mot meet this requirement. A guantitativé estimate of
the flank input is given in the appendix.
ol with p =0 &t A = A, we find

2.6.4

rical body Bs & limiting

A case of particular inberest is that of a oylim
form of the blunt copme, For cylinders, the parameter L goes infinite.
Redefining A as 1/l; snd 1, oe I{Aw. is thus alvays unity) one finds



2.6.5

2.6.6

and the Limiting velocity is given by
2 4 hg . O 3p(d .
Since Cph bas large values at every value of the weight, the eylinder

yxe;é:; high limiting velocities. The absence of B/l (now the dlameters
fers and rods

length ratio) indieates no preferred proportions. Thus ¥
bave the same limiting velocities.

If this spherical confi
aﬁéﬁ%m %’ a point mass at the wﬁsw, %ﬁa function f is

loking sphere was treated 1in reference 8.

2 »gméa.m ﬁm&l&y copverted to a space probe by

B A e 2@6#8

mm A= % and R @ 7x,,. An integration y&a&&fa"

P = g2 AL 2.6.9



and for the limiting velocity
u;2 = 2g(4)2a(}) 2.6.10
The limiting velocity for the modified Hansen's solution is thus (22

or 0.707 times the limiting velocity for the flat-faced :&Wra Agging
a8 in the case of the cones and cylinders, there is no size dependency.




DISCUSSTON OF ANALYTY

The case ﬂf meteor-like bodies appears in the present asslysi
the limiting case of vanishing payloads, u -0, this TEASe, B 434
three kinde of bodies considered (the blunted cones, the cylinders, and
Hansen's sphere) the limiting velocity becomes infinite. Even when

the experimental heat imput function correspending to r & 2, & = 14

is allowed unrestricted action it can be shown that the limiting

velogity becomes infinite se p -+ 0. To obtein finite values of limiting
velocity et w4 = 0, one must use & value of A, > O a8 the defining value.

3.2 Energy Ratios

A convenient way of considering the heat inputs for atmospheric entry
is in terme of the initial kinetic energy of the body. For entries at
limiting velocity the beat capacity of the body, H,.» divided by the
m&m kinetie energy of the body, T.,.s 8t limiting velocity indlcates
the fraction of the initisl kinetic energy of the body, returned to the
body as beat under the most éxtreme conditions of survival. In the case
of the flat-faced cylinders which yielded high values of limiting velooity
518, the ratio ds

for the ¢lass of probes considered in the present analy
found 0 be

B.8ed




o7

Agsin, there is singular bebavior for the case ® -0 corresponding to
neteor=like bodies. The yatio gg: can be made mzﬁmi&y small for
small enough velues of u. The singulsr bebavior of limiting veloelity
as the payload vanishes emphasiszes the distinetion between the cases of

netecr and probe entry.

%.3 Effects of Shape snd Sige

According to the enalysis there is no effect of size on limiting velocity,
&t least for the limiting form of the heat funotion. The only effect of
increasing size is a lower asltitude for the high mass-lose region. On &
limiting trejectory all the volume must be consumed, on the present model,
and if more volume is provided a amger path is required for complete
ecnsumption when the initial velocity is the same in every case. The
digmeter-length reatio of the oylinder does mobt affect the limiting veloclity.
The oylind
same limiting velocity se does the ¢ylinder. The ey vequirement is &
high value of the integral

is not the only shape with the same high limiting velocity.
e, a fiat-faced pointed cone, traveling base foremost has the

IS S
e an

or in other words,a high vélug of the mean reciprocsl ballistic parameter
with respect to the changing size of the vehicle, This may be more clesrly
seen perhaps, if the ratic of equabion 1.1.6 to equation 2.3:11 1s teken
ylelding

e

" Am
: =

an BE oy
@ vam et



a“*g’g} = gﬁ% %E‘ D« % 3.2.3

which shows the Wme of small & expressed in a differential form.



4.3 Iimiting Velocities
For the cones and cylinders the value B/L = 0.5 has been adopted

suffictently slender shape that the convestion to the flanks is swall
{see appendix). The value bl = 25,200 feet kas been uséﬁ throughout,
This value corresponds to vertical emtry into the atmosphere. The
formulas of the enalysis indicste the sealing with hl. For example,
the air loading, 8, varies inversely with hji.

The limiting velocities indicated by the mnslysis for the limiting
heat function sve indicated in figure 3. Certain cases may be cited as
exmuples. With a cylinder mads of & materisl such as graphite
(& = 15,000 Btu/1b), a peylosd fraction of ™% = ﬂh:@é&; and 4 = 1/2,
the indicated Limiting velocity is sbout 55,000 feet per second, which

lations. In the case of the cone this value yields a

is sbout the leunch speed for escape from the solar system. For the
perhape more veasomable % value of 1/h, the limlting value Ju
78,000 Pect per second, some 40 percent higher then lsunch ep

solar system escape, and well beyond the 50,000 to ’@gm"fﬁé@ per second

nature of Limiving veloeity

range suggested in reference 2. The unbounded
with vanishing payloaé implies that there is, in principle, no Iiwit to the
payload sige or entry speeds poseible. The payload fm@iﬁn need only de
decrensed to that wm@m&mg to the desired entry velocity and a large
enough probe constructed that the assumed fractionsl velue is realized.
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Figure %.- Limiting velocity for various probes.
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Figure 3.- Continued.
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B

Aside from the fact that there sre practical limits on the size of
thickness of the earth's stmosphere to be considered.

%.2 limiting Siges

With inoressing probe eize the position of the high mass-loss region
' be recalled, hmvem ’i:«m% the air
ionds or ,‘mﬁﬁms veieamy do not mnge wi%h sizge. ﬁ aamn:&em mfem
point near t.he emi of the high mass~loss regitm 3.3 ﬁhe ;@aak é'» paint.

mﬁwa to l@r‘aﬁ.ﬂma. It should

Por some size of mabe the pesk G m&m wm secur at ﬁ?&ﬂlﬁml density
(@ = -6.05 in English units). For sizes lerger thsn that which pute

the peak G point at sea-level survival is clearly impossible. In

figure 4 the size limitation iluposed by the finite depth of the atmosphere
15 indicated in terms of the location of the pesk G point as & function
of size and payload fraction with w = 140 psf. For weight densities

other than 140 9&@ figure 4 applies if the sotual value of L 18
miltiplied by w/l0. The characteristic length used for Hansen's

spheve is the dimmeter, 2B, It should be noted that, if one dismisses

the ease af the @riaking sphere &8 a probe model, there is & definite
bound on the size of probe thet can make & liniting entry for §< i/2.

This J4mit is in the neighborhood of L = 10 feet, which for o material
such ae graphite (w =~ 140 psf), indicates s probe weight of aboud m@ !
for & cylinder 10 feot long snd 3 feet in diameter. crensing the diameter
does not affect the position of the high mass-1oss region or the Limiting
veloeity, anzms the effective heat %ﬁwmy; ﬁa/q, does nob aﬁ'ﬁ‘mﬁ
the limiting sige either, but does, as shown in figure 5, raise the limibting
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Figure 4.~ Location of peak G point for various probes.
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b3 Pesk O YValues

The values of peak @ are indicated in figure 5 for e renge of
values Of AW/v, the effective heat capacity. The peak & value (and
81l other G values) arve proportional to the quantity AN/y. Limitiag
veloeity is thus udbounded for unlimited inerease in effective heat

%g&eity a8 mm as for vanishing M. m%m tzsa pmwim af fme

bigh mass-leﬁa regi,ﬁn does not ahif% w*if;h M/ﬁp hwtz :rzaﬁher w:m;h aige.v,
1, 88 e&reaéy shf:mz in ﬁgm'a &, Awmn tzhe pointed a@ne of ﬁ;’z & 0.5
has only & smgh‘fsw highey &m%ng wmm then doee the: c:ylénéer it
is subject to considersbly higher m@&n&;ﬂ;a These h&giwg zmdings m
associated with the absence of high OpA values until late in the
trajectory for the case of the pointed cone.
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Figure 5.- Value of peak G for various probes.
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wlysie hes shown that, for & limiting heat inpnt function and
8 simple probe model, there is no limit to the size of probe that may
4 by the finite

survive entry to the earth's atmosphere save that impos
depth of the atmosphere. In the sbsence of o payload there was found

t0 be no limit to the possible entry speed. The zero-paylosd sase
corresponds to that of weteor entry., For Pinite payload fractions,

entyy speeds considerably in excess of the launch speed for solar system
escape were found to be possible.

The form of probe for highest entry speed was expected to be elender.
This expectation was borne out when the anslysis indicated slender pointed
copes ae having the highest valué of limiting speed for the olass of
probes considered, However, the emtry speed for cylinders was nesrly as
high, and was independept of the cylinder proportions, se that wafers
and rods heve the ssme velues. The indiceted slight adventege of the
slendey cone wae thouwght to come, in part at lesst, from the form of

lytieal model and not from sny real physical sdventege. In sum,
for the extreme case of high mass-loss entries there is, on the present
alysis; no ¢lear inmdication of desirable proportions. The fact that
high entry speeds were found for the cylindrical probes suggests that the
blunt body indicated for low mass-loss entries in which ¢onvestive heat




4

transfer is dominant may again be sultsble in the extreme case of high
mase~loss entries in which radimtive heat tranefer is dominant.
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glr)

Definition
mase density of air

- altitude
 seale height.
-generalized seale height

flight-path angle

air veloeity

‘agcelerstion of gravity

drug coefficient

reference arssa

nondimensiona) size {fig. 2)

ballistic funciion

exponents in hesting rate function 1.2
heating funetion

‘slope, g% 1.3
slope, %

nslated integrsl curve.
amount of transistion of inbtegral curve

& wvalue for tx

16



Symbols

sub o

b e

W

Pefinition
parameter to which ©(A) is proportionsl 1.3
transformed value of 2

w = o
W = e
heat input per unit fromtal srea. 1.4
fraction of &Me%zié aﬁamyfmx converted to
heat
characteristic lemgth
hest input por unit surface ares
stagoation point
convective
rediative
tangent of cone half engle {fig. 2) 2,2
volume of probe
point psyload mmus
welght density of probe volume
length of come (fig. 2)
payload frection
derivative with time 2.3
heat of sublimation
ratio of mean t0 stegmation pofnt heating rates
¢onstants in hesting rate functions

parsmeter product for limiting hesting function

2.4




limiting velocity -
deceleration in unite of g
rodius of sphere

radius of ephere at ©® = o=
hest capacity of probe
kinetic energy of probe

2.h
2.5

2.6

3.2



REESFOIDING 70 ¢(A) = K1 - A)

As memimd e&rmar, the a@aﬁmeataﬁ. war&a%m of mmmve
heating ahﬁaineé fm reference 5 vhich indicates r = 2.8 = 14,
Jeads to em:eaaiwe values of radiation heating st the densities and
speeds of hmh msmlaaa entries. However, the analysis holds for other
values of » an& s a8 Jong as the stegnation point heating rate is
ymmtmmi to tlm eige of t&w face. The trajectory properties
sorrespond i.ng w g(?s} (1 ~ A) thus may have some futuve interest.
Under & o-2 em ehe following functional relations are found:

(h _«_‘)”r*s, . (,&)" . 0"} = constant

{A~2)
{A-3)
dleg 6 . . 20
3 &9%& St Te 1 (A=)



For Limitisg velocities theve is thus & size effect fav
siges, which might be expected, since the beating per unit aves is
proportional to size, ou the assumed heat input functlion.

In the case of the limiting heat function for which  g(A) = K'
ent of size and ishem is no sige

the heating per unit gres is independ
effect on limiting velocity. The ﬁaﬁ&%&w of the high mase~loss region
moves independently of the heat function according to the condition

B %;%%i = constant . (a-5)

The effect of an incresse in sige is to put the high mass~less region at
lower altitudes. Since the effects of changes in w, g hi sare equivalent
to sige changes aee&r&mg to equation (A-6); the term size change includes
the effecte of changes in w, g, hl, the direction of the e«aimlem chenge
being indicated by equation (A~6). In the direction of
the effect of convection will become mﬁaﬁweiy nore

: ﬁi%@ ¥

AWDO ortant since
the ratio of convective heating to rodistive heating rates incresses as
/5™ on the lintting form of the hest function and st & higher rate
on the experimental varistion of reference h., If the convective input
o the face is regarded as a perturbation end evalusted at ‘every point

of & trajectory established under radistion dominence the Limits of

rediation dominance may be found. The convechive hesting rate 56 the

face is



51

q = %%#ﬁ(@) commI3/21 - W32 (A7)
oS, T

The lategrated convective luput to the face of the blunted cones is thus

a%h*( ) p gﬁja {2 ﬁ
¢ 7

The xfatiogéfvcamegtive to radiative inputs for limiting trajectories

is found as

| O |
-1 - ?sw.}z’} | f e t A2 (a-9)

uated £or ene limiting trajectory it can be

When the ratio % is eva:
am&e& to all atm::' va}mas cf 3;: hy W}ymg the g3 amge which
yiel&s the femwmg saa.mng E.am».

(A=10)

(a1}

{a-12)




Using aguatim {&*12) &u& the velue of % for & ﬁing}.e ﬁmjeamry am
may extrapolate to mnd the L &t which Qe ~ Qr The yatio: gﬁ i!%

w3

. o -

p%ﬂw}; % tﬂﬁlﬁ} j ‘

(A-15)

{A-16)

For the myimim shapes on %he Izc-mzing function g(?\} = 1{{1 - 2}

the‘m m an amzmm emz&ae of grmmms whiah ama mat appear on tlw

1m:x,~mg :E*umﬁim g{’lx} s K's If one zmmi&am a giva:z mom of heat
pwmmiaﬁ mtaria},, a m&m mﬁmmtx @t’ the form

2 A e@aﬁm (&*173

is fmplied. Regarding L as vavisble at constant volume, one finds on
& g«2 change

% Iy = gopeteant {A-18)
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s@ﬂz&tf@r M% Uy »w for L -0 and the ﬁguﬁﬁerheemam
infinitely thin vafer of infinite diameter. Por © < % Uy »o for

B m& the cylm&w becomes an inﬁn%e;.y long ma&m of gevo diameter.
The high Wﬁ*l@aﬁ mgim f@w the tvo cases are at @ = s for the
wafer, mm @ = 4 for the rod. On the th mm gﬁm a2 Ky

the 1imiting veloeity was shown to be independent of the Zm'ea;gsém&@na.

fn 8 limiting mgmm for the bl‘!&ﬂtﬁﬁ cone &b L © 3 with
Ao @ 0.70  the vatio % is Pound to be 3.1073, After extrapolation
ing length i 3. m*ﬁ,
This length is smsll emcugh to ’be out of the range of aaneaivahke ;gmhes

to unit yatio by mesns of aauamem (A=12) the correspons

siges,
The relative size of the heat inputs to the face aud to the flanke

of the blunt cones ean be rmm‘y estimated. IF, in the case of wmeati@m

the f£lank ia;m is wwiﬂzm& m be the same as that to & swept cylinder

of varigble rae&ms amt the ,waa of mﬁwm on the flsn

s is neglected it

turns out that .

(A~19)

80 that the flank input is grester than, but comps:
The regime of radistion dominance on the face thus implies dominance on
the vehicle. If the radietive lnput to the Planks is put on the same

reble to, the face input.

basis a8 that to the face, in the case of the limiting heet iuput funetion,
one finds, efter integration, that



Sk

| < %@) (a-20)

vhere the energy luput %o the flanks is based on the compon

ke. For B < 0.3 the flank input is
‘less then 5 percent of the vediative face input according to relavion
(4-20),

ent of the freee
stwean velocity novmel 46 the Flah
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