Analysis of a Vertically Rising Vehicle

Sheldon Baron
College of William \& Mary - Arts \& Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd
Part of the Physics Commons

Recommended Citation
Baron, Sheldon, "Analysis of a Vertically Rising Vehicle" (1961). Dissertations, Theses, and Masters Projects. Paper 1539624526.
https://dx.doi.org/doi:10.21220/s2-yryw-gh96

This Thesis is brought to you for free and open access by the Theses, Dissertations, \& Master Projects at W\&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W\&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

ANALYSIS OF A VERTICALLY RTSTWG VEHICLE

A. Thesis

Presented to
The Facuity of the Department of Physies The College of William and Mary in Virginia

In Partial Fulfillment
of the Requirements for the Degree of Master of Arts

By
Sheldon Baron
June 1961

APPROVAL SHEET

This thesis is submitted in partial fulfillment of the requirement for the degree of

Master of Arts

Approved, June 1961:

Achorleicmanis

The writer wishes to express his appreciation to the stafe of the Physies Department of William and Mary for thelr guidance and eriticisir. The author is indebted to Homer G. Morgen of the Langley Research Center, MASA, whose contributions made this paper possible and to Mr. Charles II. Valade, also of LRC, for his cooperation. The many kindnesses of the Langley Training office and the typing talents of Mrs. Leona Harris were Invaluable in the preparation of this paper.

TABLE OF CONTENTK

Page
 $12 i$
LIST OF TABLES v
LIST OF FIGURES vi
ABSTRACT vis
ITHRODUCTION 2
Chapter
I. AMALYSIS 5
11. RESULIS AID DIsCUSSION ${ }^{8}$ 18
1II. FUTURE CONSIDRIRATIONS 31
APPETDICES 35
BIBLIOCRAPHY 49
VIWA 51

LIBT OR MABLES

Table Page
I. Jict of \$ymbols viit
II. Mumerical Data 52

LIST OF FICURES

Figure

1. Coordinate system for ascending rocket.
2. Bending-moment oictribution along missile. $A=10,000 \mathrm{ft}$,

$$
\left(V_{w^{2}}\right)_{\max }=100 \mathrm{ft} / \mathrm{sec}, \frac{\omega_{2}}{\omega_{p}}=8.66 .
$$

3. Meximxa bending-moment variation uith frequency ratio. $\left(V_{w}\right)_{\text {max }}=80 \mathrm{fi} / \mathrm{sec}$.
4. Msximum bendingmoment variation with wave length of shear reversal using a-control. $\frac{T}{W_{0}}=1.5, x=0.5$, $\left(v_{W}\right)_{\max }=100 \mathrm{et} / \mathrm{sec}$.
5. Naximum bending-moment variation with thrust-to-weight ratio. $x=0.3, A=10,000 \mathrm{Pt}, \quad\left(V_{w}\right)_{\max }=80 \mathrm{st} / \mathrm{sec}$.
6. Measured wind profiles (ref. 2).
7. Response time history due to flying through balloon wind profile no. 3.
8. Bending-moment time hictories due to flytag through the smoketrail wind profile.
9. Beading-moment time histories from flying through two wind profiles with a-control.
10. Maximum bending-moment variation with frequency ratio resulting from smoke-trail and balloon-measured wind profiles.
11. Maximum bending-moment variation with thrust-to-veight ratio resulting from smoke-trail and balloon-measured wind profiles.
12. Comparison of analog and digital time histories of engine deflection and first-mode deflection for step wind.
13. Demonstration of system linearity.

Abstract

ABSIRACI

An analytical investigation of the loads and responses of a simplified elastic rocket vehicle flying a vertical trajectory has been conducted. The external forces assumed acting on the rocket were produced by a serles of wind shear reversals and several measured wind profiles. The sygtem was described by three rigid-body modes and three elastic modes, and was stabilized by a simplified control function. The differential equations had time-dependent coefficients and were solved on an analog computer.

Time-dependent coefficiente of the differential equetions were found to be necessary to preaict loads when the weve length of the wind shear reversal became sufficientily long. Errors which woula result from using time-fixed coefficienta were shown to depend on, among other factors, the ratio of bending Ireguency to control frequency, the thrust-to-weight ratio, and the control system of the rocket.

Detailed wind profiles measured by a smoke-trail hechnique were generaliy found to produce larger loads on the rocket than wind profiles measured by balloon-sounding techniques. These aifferences were as large as 15 to 20 percent, depending on the parameters of the system, It was noted that the character of the bending-moment response to these proflles, whether primarily inertial or aerodymant, and the magaitude of bending mode excitation, depended on the type of control system as well as the rocket's thrust-towtelght ratio and bending-mode frequency to control frequency ratio.

LIST OF SMBOLS

$\mathrm{a}_{1,1}=1,2,3$	characteristic values of unform beam with free-free boundary conditions
B.M.	bending moment, ft-ib
$C_{1 .}$	generalized serodynamie coefticients appearing in equation (6a)
$\mathrm{D}_{\mathrm{n}}, \mathrm{D}_{\text {nj }}$	constants appearing in bending-monent equation
EI	stiffness constant of a uniform beam, lo-fter
F_{xA} * ${ }^{\text {P }} \mathrm{yA}$	components of aerodynamic force in body axes, ib
$\mathrm{F}_{x+\mathrm{B}} \mathrm{F}_{\mathrm{yc}} \mathrm{E}$	components of engine force in body axes, ib
E	gravitetional constent, $\mathrm{ft} / \mathrm{sec}^{2}$
h	altitude, t
bo	initial altitude, ft
$\boldsymbol{I}_{\text {sp }}$	specifie inpulse of rocket, sec
$\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$	gain constants of the control function, equation (2)
\underline{L}	length of the rocket, it
${ }^{6}$	distance from c.g, to aft end of vehicle, ft
M	mase of the rocket at any instant, $1 \mathrm{~b}-\mathrm{sec}^{2} / \mathrm{ft}$
H_{0}	Int-off mase of the rocket, ib-sec ${ }^{2} / \mathrm{ft}$
$\mathrm{M}_{2 \mathrm{~A}}$	aerodynamic pitching moment, lb-ft
$M_{2 E}$	pitching moment due to engine, ib-ft
$\bar{q}_{1}, 1=1,2,3$	generalized coordinate of th mode, divided by L , nondimensional

Q ${ }_{\text {L }}$	generalized aerodynamic force, ib
Q_{18}	generalized engine force, ib
So	base area of the wehtele, t^{2}
t	time, sec
T	thrust, 20
$u_{e}(x, t)$	elastic deflection at aft end of vehicle, it
$\nabla_{\text {m }}$	velocity of the rocket, $\mathrm{ft} / \mathrm{sec}$
V	velocity of rocket relative to air, ft/sec
V_{w}	horizontal veloeity of wiad, ft/sec
W_{0}	List-off weight of rocket, ib
	center-of-gravity velocity of rocket in body axes, divided by wer pee
坟	distance along rocket elastic axis, measured from aft end, diviaed by L, nondimensional
$\overline{\mathbf{x}}_{\mathbf{n}}$	diatance from aft end to nth station, divided by Ly nondimensional.
a	angle of attack, radians
a^{\prime}	total ancle of attack relative to the afr stream, radians
α_{w}	angle of attack due to wind, radians
$\underset{\gamma}{ }$	angle between vertieal reference and inertial velocity vector, radians
8	angle of deflection of thrust vector from rocket center Ine, radians
-	angle between vextical reference and body axis, radians
A	wave leagth of input wind, ft
s_{p}	demping ratio of rigia-body piteh mode, dinensionless
P	density of atmosphere, $1 \mathrm{~b}-\sec ^{2} / \mathrm{f}^{4}$
ρ_{0}	aenstity of atmosphere at sea level, $1 \mathrm{~b}-\sec ^{2} / \mathrm{ft}^{4}$

$\begin{array}{ll}\omega_{1}, 1=1,2,3 & \text { naturel frequency of ith mode, radians/sec } \\ a_{p} & \text { natural frequency of pitch mode, radians/sec }\end{array}$
A dot indicates a differentiation with respect to time.
A prime indicates a differentiation with respect to x (uniess apectiticaliy noted othervise).

AMALYSIS OF A VERTICALIF RISHMG VHICLE

THIRODUCITION

The analysis and design of space vehicles is a subject which occupies a prominent position in physics and engineering. The stability of such vehicles and the loads which they experience are e prime consideration in their design.

A general analysio of any specific physical systen includec airect experimentation, experimentation vith scale models, experimentation with analog models, and several mathenatical techniques?. This paper is concerned with the application of the last two methods of analysis, experimentation with analog models and mathematical techmiques, as applied to the study of loads on a apace vehicle.

An exact analyticel nodel of a space velacle would require a set of nonlinear alferential equations to describe both the rigid and elastic degreec of freedom. Since the mass of the vehicle changes as fuel is consumed, these equations would necessarily have varying coefficients. A description of the extermal forces, such as the motion of the atmosphere, would be necessary as forcing functions for the afferential equations.

However, the avallabiluty of certain types of atmospheric data, and the desire to simplify the analytical and computational procedures, have reculted in approximations to the exact analytical model. An essential feature of most of these approximate analyticel approaches is the use of a constant-coefficient analysis when consiaering the space vehicle as an elastic body.

This investigation will attempt to determine what, if any, signiticant aifterences may be introduced by using the constantcoefficient malyais as opposed to the more realistic variable* coefficient approach. The response of the variable-coefficient, elastic model to several experimental vind profliles is also investigated. The effect of some of the nore important physical parameters is studied. Brief mention is made of some other analytical techniques which may be applied to the loads analysis of space vehieles.

REFRREMCES TOR INXRODUCTION

IRogers, A. E., and Comnoly, I. IV. Anslog Computation in Begineering Design. MeGraw-Hill Book Co., Inc., 1960.

CHAPIER I

Atalysis

The analysis of a physical aystem requires a complete description of the physical system, the derivation of a set of differential equations to rapresent the system and a method for obtaining the solution of these equations.

Physical Systera
For this etudy the space vehicle id condiaered to be restricted to motion in a plane. The vehicle is assumed to be flying vertically through horizontal winds and angular deviations from the vertical Plight path are assumed man. The mass of the vehicle is uniformly distributed and the change in mas is assumed to occur in a uniform maner over the length of the vehicle, similar to the situation to be expected on a solid propelled single-stage vehicle. Both the rate of change of mass and the specific impulse of the rocket are assumed conotant, and therefore, the motor produces constant thrust.

The vehicle an unfinned parabolic body of revolution, resultings in an aerodynamically unstable configuration. The aerodynamic coefficients are determined by momentum or "slender-body" theory (eppendix A).

The vehicle is stabilized by rotating a gimballed engine and thus deflecting the thrust vector. The engine is assumed to respond instantaneously to the control system comana. As a matter of interest,
since previous studies have shown significant differences in response When using attitude or angle-of-attack control, parallel studies using both systems were made. However, no effort is made to optimize either control system and therefore, no comparison of their relative merits is justified.

The response of the vehicle will be examined by consideration of the bending moment. this variable is chosen because it gives an excellent indication of the over-all response and because of 1 ts physical importance as a measure of the loads acting on the vehicle. The responses will be calculated for an altitude range from 20,000 it to 40,000 et. The responses and loads for an actual space vehicle would certainly be influenced by the factors which are neglected in arriving at this model of the system. However, the model retaing the essential features required to stuay the perticular effects considered. It ia believed that the simplifications may actually serve to clarify some aspects of the loads problem.

Equations of Motion

The equations of motion are written in a right-handed body axis coorainate syatem illustrated in figure 1. The equations of motion in moving coordiates for a flexible missile can be written using modified lagrange's equations.

Assuming that the elastic deflection can be represented by a sumation of normsl modes

$$
u(x, t)=\sum_{i} \phi_{i}(x) g_{i}(t)
$$

the kinetic and potential energies can be written

Kinetic energy $=\frac{1}{2} M\left(\dot{x}_{0}{ }^{2}+\dot{y}_{0}^{2}\right)+\frac{1}{2} \dot{\theta}^{2}+\frac{1}{2} \sum_{1} M_{1} \dot{q}_{1}{ }^{2}$

Potential energy $=\frac{1}{2} \sum_{i} \omega_{1} M_{4} q_{1}{ }^{2}$
where,

$$
M_{i}=\int_{0}^{1} m(x)\left[\varphi_{i}(x)\right]^{2} d x
$$

ω_{1} Ifrequency of the ith normal mode
The Lagranglan, I' is then given by

$$
\dot{x}^{\prime}=\frac{1}{2} M\left(\dot{x}_{0}^{2}+\dot{y}_{o}^{2}\right)+\frac{1}{2} \pm \dot{6} 2+\frac{1}{2} \sum_{i} M_{1} \dot{q}_{1}^{2}-\frac{1}{2} \sum_{i} \omega_{i} u_{4} q_{i}^{2}
$$

Gubstituting this expression in Lagrange:'s equations for moving coordinates ${ }^{2}$

$$
\begin{aligned}
& \frac{a}{d t} \frac{\partial L^{\prime}}{\partial x_{0}}-\dot{\theta} \frac{\partial L_{0}}{\partial \dot{y}_{0}}=\sum \mathrm{F}_{\mathrm{x}} \\
& \frac{d}{d t} \frac{\partial L^{\prime}}{\partial \dot{y}_{0}}+\dot{\theta} \frac{\partial L_{0}}{\partial \dot{z}_{0}}=\sum F_{y} \\
& \frac{a}{d t} \frac{\partial L^{\prime}}{\partial \theta}+\dot{x}_{0} \frac{\partial L}{\partial \dot{y}_{o}}-\dot{\Psi}_{0} \frac{\partial L}{\partial x_{0}}=\sum M_{2} \\
& \frac{a}{d t} \frac{\partial \mathbf{L}^{\prime}}{\partial \dot{q}_{i}}-\frac{\partial \mathbf{L}_{1}}{\partial q_{i}}=\sum a_{i}
\end{aligned}
$$

and pexforming the indicated operations yields

$$
\begin{align*}
& \dot{\mathbf{r}} \ddot{\boldsymbol{\theta}}+\dot{\mathbf{I}} \boldsymbol{\theta}=\sum \mathrm{M}_{2} \\
& M_{1} \ddot{a}_{1}+\dot{M}_{2} \ddot{a}_{1}+M_{i} \omega_{i}{ }^{2} q_{i}=\sum Q_{1} \tag{1}
\end{align*}
$$

The forces and moments which are considered as acting on the body are those produced by the engine (referred to as get forces and moments), aerodynomic forces and moments, and gravity.

$$
\begin{aligned}
& \sum F_{x}=F_{x E}+F_{x A}-M g \operatorname{tin} \theta \\
& \sum F_{y}=F_{y E}+F_{y A}-M g \cos \theta \\
& \sum M_{z}=M_{z E}+M_{z A} \\
& \sum Q_{i}=Q_{i E}+Q_{i A}
\end{aligned}
$$

Substituting the expressionc for the set forces and moments obtained in appendix B, in equations (I) yields

$$
\begin{aligned}
& \mathrm{Nx}_{\mathrm{O}}-\mathrm{M} \mathrm{\theta}_{\mathrm{O}}=\mathrm{m}-\mathrm{Mg} \sin \theta+\mathrm{FxA}_{\mathrm{xA}}
\end{aligned}
$$

$$
\begin{aligned}
& -\mathrm{Mg} \cos \theta+\mathrm{yA}_{\mathrm{y}}
\end{aligned}
$$

$$
\begin{align*}
& M_{i} \dot{q}_{i}+\dot{M}_{1} \dot{q}_{1}=\dot{H} \varphi_{i}(0)\left[\dot{y}_{o}-i_{e} \dot{\theta}+\sum_{j} \varphi_{j}(0) \dot{q}_{j}(t)\right]+\varphi_{1}(0)\left[0+\sum_{j} \varphi_{j}(0) q_{j}(t)\right] \\
& +Q_{1 A}-M_{1} \omega_{i}{ }^{q_{1}} \tag{2}
\end{align*}
$$

Letting

$$
\begin{aligned}
& M_{i}=M L \int_{0}^{2} \frac{m(\bar{x})}{M}\left[\varphi_{1}(\bar{x})\right]^{2} d \bar{x}=M A_{i}
\end{aligned}
$$

and assuming k and Ai to be constant in time, we obtain

$$
\begin{aligned}
& \ddot{Z}_{0}-\theta_{0}=\frac{T}{W_{0}} \frac{E}{2} \frac{M_{0}}{M}-\frac{E}{I} \sin \theta+\frac{F_{x A}}{M I}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{E}{L} \cos \theta+\frac{V_{A A}}{M L}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\sum_{j} \varphi_{j}(0) \ddot{a}_{g}(t)\right)+\sum_{j} \varphi_{j}(0) \dot{q}_{g}(t)\right]+\frac{M_{z A}}{M L}
\end{aligned}
$$

$$
\begin{align*}
& +\frac{2}{W_{0}} \frac{g}{L} \frac{M_{0}}{H} \varphi_{1}(0)\left[0+\sum_{j} \varphi_{j}(0) q_{j}(t)\right]+\frac{Q_{L A}}{M L} \\
& +A_{i} a_{1}\left(e_{1}\right) \frac{B x}{H_{0}{ }^{3}} \frac{\dot{M}}{M} \frac{I_{s p}}{T / W_{0}} \tag{3}
\end{align*}
$$

Since for a uniform mass distribution the frequency, 0_{1}^{2}, can be written ${ }^{3}$

$$
\omega_{1}^{2}=a_{1} \frac{E I}{M_{0} I^{3}} \frac{M_{0}}{M} \frac{M}{M}=-a_{1} \frac{E I}{M_{0} I^{3}} \frac{x_{s p}}{T / w_{0}} \frac{M}{M}
$$

and we have a linear masc variation and a constant specific impulse from the engine so that

$$
M=M_{0}+\Delta t
$$

and

$$
T=-g X_{\mathrm{gy}} \mathrm{~h}
$$

then

$$
\frac{M_{0}}{M}=\frac{M_{0}}{M} \frac{M}{M}=-\frac{W_{0} / g}{M / g \cdot I_{g p}} \frac{M}{M}=-\frac{I_{\mathrm{sp}}}{M / W_{0}} \frac{M}{M}
$$

and

$$
\frac{M}{M}=\frac{1}{\frac{H_{0}}{H}+t}=\frac{2}{t-I_{B_{p}} / T / W_{0}}
$$

Substituting the aerodynamic forces and moments obtained in appendix A, and the constants for a uniform beam obtained in appendix C, the equations of motion may be written

$$
\left.-4.647 \bar{q}_{2}-7.859 \bar{q}_{2}-11.0 \bar{q}_{3}\right]
$$

$$
\left.+\frac{y}{L}\left(c_{12^{*}}+c_{i 3^{*}}\right)\right]
$$

$$
\begin{aligned}
& -\frac{6}{L} \div-\frac{\rho_{0} \delta_{0}}{M_{0}} \frac{\rho}{\rho_{0}} \frac{x_{8 p}}{T / W_{0}} \frac{M}{M}\left[\frac{y^{2}}{2} \alpha+\frac{Y}{2}\left(\frac{1}{2} \dot{\theta}+\frac{8}{15} \dot{*}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& +12 \frac{2}{2} I_{5 p} \frac{M}{M} \sum_{3} q_{y}-\frac{\rho_{0} \delta_{0} L}{M o} \cdot \frac{D}{\rho_{0}} \frac{I_{\mathrm{sp}}}{T / w_{0}}\left[\frac{y^{2}}{2} \cdot \frac{1}{30} \alpha+\frac{y}{L}\left(-\frac{3}{20} \theta-\frac{1}{10} a\right)\right]
\end{aligned}
$$

Where it is assumed that the velicle in flying vertucally and experiences only small angular deviations from the vertical path, and we define

$$
\frac{\pi}{\theta}=\theta-\frac{\pi}{2}
$$

so

$$
\begin{aligned}
& \sin \theta=\cos \theta \approx 1 \\
& \cos \theta=\sin \theta \approx \ddot{\theta}
\end{aligned}
$$

Some adaftional equations are necessery to completely describe the nystem. First, an expression for the control systen and engine response to control-system comand. Slace we have assumed that the engine responds instantaneously the engine gimbal deflection angle can be set equal to the desired control comand. For this study a simplitied control systen is considered. the thrust vector is deflected through an angle defined by the relation

$$
\delta=K_{1} \theta+K_{2} \dot{\theta}+K_{3}\left(a_{0}+\alpha_{k}\right)
$$

$K_{2} K_{2}$, and K_{3} are galn constants which are selected to give a prescribed value of frequency and damping in the rigid body pitch mode at maximun dynoric pressure. The value of rigid-body uncoupled pitch mode freguency and damptug chosen were ${ }^{2}-10(\mathrm{rad} / \mathrm{sec})^{2}$ and ${ }_{5} y_{p}=2$. sec.

Tho control systems are invertigated. When $\mathrm{K}_{2}=0$, the velicle is easentially acrodynaically stable and will be referred to as controlled. When $K_{3}=0$, the vehicle will be referred to as o-controlled.

The aerodynamic forces which act on the vehicle are functions of the axgle of attack, that $i{ }^{\text {a }}$, the angle between the velocity vector of the vehscle and the body axis. This in in still air. Eowever, if the air is moving relative to fixed apace, then the air"s notion produces an additional angle of attack, which we will denote by aw Assume that both the still-aix angle of attack, a, and the vind-induced angle of attack, are small and may added to detemine the vehicle's total angle of attact, a^{\prime}.

Note that in the cooranate system used, a positive angle of attack produces a negetive lift Rorce.

Let $V_{m}=\dot{x}_{o}^{2}+\dot{y}_{0}^{2}=$ misalle velocity in inertial apace
$V_{W}=h o r i z o n t a l ~ w i n d ~ v e l o c t t y$
$V_{\text {. }}$ velocity of noving air relative to missile
The etill-air angle of attack is

$$
a=\theta-\gamma=\tan ^{-1} \frac{-\dot{y}_{0}}{\dot{x}_{0}}=\tan ^{-1} \frac{-\dot{y}_{0}}{\frac{\bar{x}_{0}}{x_{0}}}
$$

In moving air, the angle of attack is found in the following manner

$$
\begin{aligned}
& v^{2}=v_{w}^{2}+v_{u}{ }^{2}-2 v_{m} w_{w} \cos (\pi-\gamma) \\
& =v_{w}{ }^{2}+v_{m}^{2}+2 V_{m} V_{w} \cos \gamma \\
& =v_{w}{ }^{2}+v_{m}^{2}-2 v_{m} v_{w} \bar{y} \quad \text { for } \bar{y}=y-\frac{\#}{2} \text { and } \bar{y} \\
& \text { small. }
\end{aligned}
$$

$$
\frac{V_{w}}{\sin \alpha_{w}}=\frac{V_{v}}{\sin (x-\gamma)}
$$

$$
\begin{gathered}
\sin \alpha=\frac{V_{\mathrm{w}}}{V} \sin (\pi-\gamma)=\frac{V_{\mathrm{xt}}}{V} \sin \gamma \\
a_{W}=\sin ^{-1} \frac{V_{W}}{V} \sin \gamma=\sin -1\left[\frac{V_{W}}{V} \cos \gamma\right]
\end{gathered}
$$

Again, assuming suali angles

$$
\begin{aligned}
& a \approx-\frac{\dot{\dot{y}}_{0}}{\dot{x}_{0}} \\
& a_{w} \approx \frac{v_{w}}{v}
\end{aligned}
$$

It id also necessary to determine the altitude in order to compute the aerodynamic forces. This in obtained from the expression

$$
h=h_{0}+\int_{0}^{t} v_{m} d T
$$

Finaliy, an expression for the bending moment is necessary. This expression is derived in appendix D and is presented there.

Solution of Equations

The solutions of linear aifferential equations with constant coefficlents are relatively easy to obtain by known analytical methods ${ }^{4,5}$. Hnear differential equations with coefficients which are functions of the independent variable are usually treated as a separate class, and often, are as difficult to solve as nonlinear differential equations.

However, the principle of superposition does apply to variablecoefficient innear differential equations. In the case of systems which cannot be represented by linear differential equations, direct mathematical analysis is most often inpossible. It is sometimes possible to make certain assumptions to linearize these equations, to obtaia valid, if restricted, results. In adation, numerical. computational methoas may be employed to arrive the resulte.

For all elasses of afferential equations, however, when the forcing functions for the equations are arbitrary, and when a great many solutions are necessary, the work can be so time consuming and laborous that a complete laveatigetion is prohibitive.

The equations of concern in this study were seen to be nonlinear variable-coefficient differential equations (although it is the author"s opinion that the nominearity is negligible. (See chapter 1II.)) For some of the invedtigations, the equations become linear constentcoefficient equations by considering the vehicle at a discrete point in its trajectory. The scope of the investigation made it imperative to use some other means than direet mathematical analysis to obtain the desired solutions. therefore, the reanits were obtained by employing a general prarpose analog computer.

The general purpose analog computer is a device which obtains solutions by establishing a mathematcal model of the syoten being considered. Components which are capable of performing integration, sumnation, muitiplication by a constant, multiplication of two variables and variety of other mathematical operations, are interconnected in a particuler manner so as to arrive at the appropriate mathemtical
model. The computer represents the physical variables of the problem by electrical voltages which obey relationships similar to those obeyed by the variables themselves, the colution of noninnear differential equations or variable-coefficient differential equations are not appreciably more difficult to obtain on an analog computer than are the solutions to linear constant-coefficient differential equations.

The process of translating the original system equations into a computer configuration which gives accurate results ia called "programing" . Prograning techniques as well as computer operation are discussed in detail in many books 6,7 .

The verification of compater resulta 15 , of course, a necessity. The computer operator mast make many checks to make certain that all computer componente are operating correctly and that they are interconnected so as to obey the appropriate mathematical relationships. A high degree of confidence is attained when the computer reauits can be checired against an indegendent solution of the problem. This independent solution may be obtained by mathematical methods, if possible, or on another computer. For this study an independent solution for a particuiar cese was obtained on a high-speed afgital computer. Some typicel zesults for both the analog and distal solutions are shown in figure 12. Excellent agreement of the two solutions is apparent.

REFEREMCBS FOR CHAPTER I

Emomson, William T. Lagrange" Gquations For Moving Coordinates. SML Report No. 19M 9-15, July 1959.

38isplinghofi, Reymond L., Ashiey, HoLt, Halfman, Robert I. Aeroelastleity. Cambridge, 㭗ss.: Aadison-Nesley Publishing Co., Inc. 1955.
${ }^{4}$ Ince, 2. L. Oralnaxy pleferential Equations. Dover Publications, Inc.
Shainville, Barl D. Elementery Difterential Equations. Hew rork. The Macklilan Co. 1952.

Grohnson, clarence L. Analog Computer Hechniques McGraw-Hill Book Co., Tnc., 1956.

7karplus, Walter J., and Soroka, Walter W. Anslog Methode. MeGraw-H11 Book Co., The., 1959.

CHAPIER II
RESULHS AND DHSCUSSION ${ }^{8}$

Response to Wind Shear Reversals
The first objective to this paper was to attempt to determine significant effecta resulting from using variable coefficient differential equations in a wind loads analysis of an elastic rocket. This was done; first, with the variable coefficient equations using a Wind input which wes a function of altitude, and second, usine fixed coefficients with the wind ingut as a function of time. The input vinds, parameter range covered, and pertinent results are discussed In the following sections.

Description of vina shear revergals." The wina shear reversals Which produce the loads on the rocket are triangular waves, iliustrated by this sketch:

Wina veloeity
The wave is symmetric, peaking at 35,000 feet altitude near the point of maximum dynamic pressure in each trajectory. The wave length, A, is the total vertical distance over which the vind velocity persists.

For the variable coefficient cases, the wave is symetric about 35,000 feet altitude. When constant coefficient cases are examined. the coefficients of the aifferential equations are fixed at their velues at 35,000 feet, while this wind becomes a function of time rather than altitude. The time required to pase through the shear reversal, or the period, is now determined by dividing the wave length by the fixed velocity of the rocket. The maximum wind velocity occurs at one-half the period,

Bending-moment aistribution** A bending-monent distribution along the body of the vehicle is shown in figure 2 for the two basie types of control. The loads in this case resulted from a wind shear reversal of 10,000 -foot wave leagth. In other words, the wind velocity inereased linearly from zero at 30,000 feet altitude to $100 \mathrm{ft} / \mathrm{sec}$ at 35,000 feet, and then decreaced linearly to zero at 40,000 feet. The maximum bending monts were determined for each type of control as the roeket ascended through this wind profile. The a-control, i.e., the control system which seeks zero angle of attack, is seen to produce larger loadings than the θ-control which maintains a constant attitude angle. The Jarge loads when the vehicle is operated in the a-control node sesult directly from large inertia Loads induced by the motor. The system has no lag in the motor equation, permitting the thrust vector to follow the wind inputs, with their discontinuities, exactly as commanded by the control function. This produces large angular accelexations as well as signticant excitation of the elastic modes. On the other hand, operation in the 0-control mode produces negligible inertia $20 a d s$, since the thrust is vectored just enough to cancel the aestabilizing aerodynamic moment, and doea
not excite the elastic modes to any great extent. Hic vil. b be 1Lustrated Later in the paper. Also, the momentum theory aerodynamics predict very low nommal forces and pitehing noments on a body of revolution, such that the benging moments reman low deapite the large angles of attack permitted by the 0 -control system.

The noximm bending moments for these ceses occur at the 0.3 and 0. 5 body stations. For the remainder of the pagex the bending moment ot one of these two atations is arbitrazizy chosen for examination.

Benalug-moment variation wth frequency matlo.- Figure 3 Llustrates a case vhere the use of varlable coefflcients can cauge a difference in prealcted loads on the rocket. The maximum benalag moment at station $x=0.5$ is shown as a function of the ratio of turst bending requency to rigio-body pitch frequeney. Hote bhat the frequency ratio, $H_{p} / \mathrm{m}_{\mathrm{p}}$ is a measure of the stifinese of the otructure since ap; the righebody pitch freguency, has been mept constant throughout the study. The input is a 10,000 -foot wave-length sheax reversal with a makimun veloctty of 80 ft/sec. With 0 -control. the bending moments calculated using fixed coefficient are about 20 per: cent higher than those calculated with varlable coefficients. Neithex Ghowe appreciable variation uth frequency retio, indicating mall response in the elastic modes. Howevery the control behaves quite differently; The elastic mones are now contributing a large percentage of the total bending moment, causing a variation with atifiness. There $i s$ also an effect fron using the variable coeficients, changing
from a reduction in predicted load at Lov stiffness levels to an increase at higher stifinesses. the magnitude of the predicted Loads affers by over 30 percent in some ranges.

Consideration of the effects illustrated in thit ingure will show that they arise from the nature of the Input wind. Io gix the coefficients of the equations of motion, the wind becomes function of time rather than altitude, while the rocket flies through this wind at constant velocity. In the variable coefficient case, the rocket is traveling slower at lower altitudes, and thus takes a longer time to reach the point of maximum wind. So, the transiente associated vith the reversal of the wind shear will occur with different phesings with respect to the previousiy induced notions of the vehicle. Then, depending on this phasing. which in twan will depend on the speed with which the rocket is traveling, the wave length of the ghear reversal, and the frequenctice of the elastic nodes, the loads predicted using fixed or varibble coedficients can certainly differ.

Bending-moment variation with wave length.* The afffereaces LIustrated were those due to Prequency changee of the bending modes. It is anticipated that diftexences would also oceur due to changing the vave length of the input, These are illuatrated in figure 4, where bending moment is plotted against wave length of the shear reversal for two frequency ration using angle-of-attack control. The use of fixed coeffickents predicted larger loads than obtained using variable coefficlents at the longer wave lengths; for the frequency ratios illustrated. However, at wave leugths below about 6,000 feet,
again no difference was detectable. This is certainly in agreement With expectations for such a system - at short wave leneths, the neximun responses occur within a very short time span such that changes within the system (variable coefficienta) do not have a chance to elter responses. Similar results wexe obtanned with the attituae-control system.

Bending-moment vartation vith thrust-to-welght ratio.- The differences in predicted bending moments, with and without variable coefficients, which may be anticipated at different thrust-tomeight xatios are 1llustrated in Pigure 5. Bending moments at two trequency ration are shown for the vehicle flying through a shear reversal of 10,000- +oot nave length. The deviation in bending moment is largest at low T / W_{0}, reaching almost 20 percent, but becomes ingignificant at the high values. At the high thrust-to-velght ratios, the rocket passee through the thear reversal too rapialy for the charge in system paremeters to effect response. The deviation in predtcted bending moment appears to be about the same percent of the total for both. Trequency ratios at thrust-to-veight ratio 2.5 .

Response to Measured Wind Profiles

The reaponse of the elastic time varying model to measured atmospheric wind date will now be examined. All of the wind profile data which have been available to designers until recently were obtained by tracking sounding balloons. Such data are recognized to omit the omali-scale pluctuations, i.e., guets or turbulence, from the picture they present of atmospheric motion. Recently, a technique has been
developed at Langley Research Center which permito these small perturbations of the wind to be measured along with the wina's gross motion. This portion of the paper vill present loade for the rocket flying through one of these detailed profiles and compare them with Loads produced by fiying through profiles measured by conventional techniques.

Measused wind profiles,- The wind proflles are taken from refereace 9 and are presented in figure 6, The detanled profile, 1dentifted as the rocket smoke trail, was determined at 100-foot altitude fncrements by photographic triangulation methods utilizing the exhaust trail of the rocket. Two belloon profiles are inalcated number 1 being from a balloon released 3 hours before the rocket was launched, while number 2 came fro a balloon released threequarters of an hour after rocket Zaunch. The balloon data are seen to define the wind velocity with points about 2,000 feet apart, contrasted to the 100-foot increments in the smokemtrail data. These proflee actually extend from near sea level to over 40,000 feet altitude, but, due to 1 imitations in the computer program, the cases reported hereln cover the 20,000 -to $40,000-\mathrm{foot}$ altitude range.

Such mild winde would not be suitable for dealgn purposes, but will serve for the comparisons which it is destred to make, To make the Ioads from the balloon data more severe, a third balloon profilep number 3 , was artielicially created trom prosile number 2 by extending one point, at 32,500 feet, unth the wind velocity matched the maximm Wind velocity on the smoke-trail profile. This effectively adas a
wind shear meversal, with a wave length of about 4,500 feet and maximm velocity of 40 ft/sec to the existing balloon profile.

Bending-moment time histories with o- and 0-contro2.- Before comparing the responses due to the various ingut winds, it is convenient to examine the differences in these responseg from the two types of control. Figure 7 illustrates these aifferences. The input wind it the balloon profile muber 3 which was just described, The time history of engine gimbal angle is shown for the a-control case, along with the bending-moment response at station 0.3 . The other response trace illustrated is the bending monent station 0.3 for O-control. With a-control, the bending moment follows the engine angle very closely: The predominant charcoterictics of this 2oad are the large transient peaks, corresponding to peaks in engine angle, which occur in the regions of rapid changes in the wind impat. The main component of the load would seem to be inertial, resulting from the angular accelerations of the vehicle as it follows the motor. The loads with o-control do not exhibit this type behavior, but follow the input wind directly. With this type control, rocket attitude is being controlled which prevents large angular accelerations from occurring and large and sudaen engine aeflectione are not requared. The angle of attack follows the wind profile so that the bending moment is prim marily due to aerodynamic loads. Also, since the amcontrol results in large, rapid engine motions; the elastic modes are repponding with greater mgaitude than with 0 -control.

Benaing-moment time histories then flying through snoke-trail Wind prosile. Examples of bending-monent responses to the amoketrall wind profile are illustrated in figure 8. In ifgure 8(a), the bending moment at missile station 0.3 is shown for the wo types of control being considered -a-control and θ-control. The rocket parameters are $\omega_{1} / \omega_{p}=7$ and $T / W_{0}=5$. The wind proilile, show at the top as a function of time, begins at 20,000 feet altitude and ends at about 41,000 feet. Laximum dynamic preasure for this trajectory occurs at 35,000 eet, near the peak wind velocity. However, this is not necessarily the point of maximan loed, as the responses show. With a-control, equal loads are produced at about 25,000 feet altitude, corresponding to the first peak on the vind profile. With θ-control the maximum bending noment doe occur near the maximum wind veloctty. Again, notice the difference in the form of the responge of the two types of control. The e-control seeks to reduce angte of attack to zero, and, in following the wind, produces large rigid-body inertia loads ad well as considerable excitation of the Pirst and second elastic modes. On the other hand, the θ-control maintains constant attitude so that rigid-body Inertie loads remin low but aerodynamic loads, due to the angle of attack induced by the wind, now become large. (Dynamic preabure for the case $12 l u s t r a t e d$ is approximately 5,000 Ib per se Pt , so loads become large despite the mall engles involved.) The net reault is to produce approximately equal maximum moments at this station for both types of control.

Figure $8(b)$ shows the bending-moment response to the smoke-trail vind profile for three rockets of aifferent thrust-to-kelght ratios. In each case, omontrol was used along with a very low stiffness * a Inct mode frequency oniy three times the rigid-body pitch frequeney, Changing the thrust-tomelight ratio of the rocket changes the speed with which toverses the wind profile and alters the dynamic presenare which the vehicle sees. It is notable, then, that the maximum Loads sre not too differeat. This comes bbout because, for the low thrust-towelght ratio cases, the control sybtem is able to keep the net angle of attack near zero, but Induces large elastic responses in the process. For the $4 / N_{0}=5$ case, the control system not able to reduce the net angle of attack to zero, but the elastic response is much reduced. The elastla response is the most noticeable aifference between the various cases. This th to be expected sinee the effective frequency content of the wind changes, due to afferent rocket speeds, while the frequency spectrum of the structure has been held constant.

Bending-moment time histortes for different wind profileg-
The difierences in loads experienced by the rocket with amcontrol then flying through different wind profiles are illustrated in ifgure 9. The bending-moment reaponse of a rocket with thrust-to-weight ratio 3 and frequency ratio 7 is shown at station 0.3 for two winds. The bending-moment time history at the top of the figure is due to the smoke-trail profile, while the bending moment showa in the bottom portion is due to the balloon profile which has been called number 3 . This is the balloon-measured wind which has been adjusted by adang a
shear reversal near 35,000 feet to bring the peat veloctity up to that measurea by the smoke-trail technique. Again, note the differences in the bending-moment response. Reoponse to the smoke-trail profile is characterized by large first-mode contributions, while the reaponee to the balloon profile shows larger Inertia loads wth greathy reduced elastic response.

Faximum bendiag-moment veriation with frequency ratio. The maximum bending moments resulting from the various wind prosiles axe show in figure 10 for the rocket with thrast-towelght ratio 5. The bending moment at station 0.5 is plotted as a function of Irequency rablo for θ-control in sigure 10(a), and for a-coatrol in figure 10(b). With attitude control, the Loads exhibit luttle variation with frequency ratio, due to slight excitation of the elastic modes. Slighty larger loads do occur at lover stifinest, ws would be expected. The magnitude of the loads from the varioun proflies seems to correlate With the maximim vind velocities of that profile. For example, balloon proflle number 2 has the lowest loads and aloo had the Jowest Wind velocities. The largest wind velocities from the balloonmeanured winds were on profile number 3 , seem to produce the largest loads of the three belloon profiles. However, the smoke-treil prom duced Loads exceed those produced by balloon number 3 by 8 to 12 percent, although their maximun velocities were the same. Fiying through the gind from the smoke-trail meanurement producen the Largest loads due to greater excitation of the elastic modes.

The picture is slightly difierent with a-control, figure $10(\mathrm{~b})$. Now, sinee angle of attack is being controlled, inertia loads predominate. The balloon profile producing the laxgest loads is number 2 , rather than number 3, due to the large transient inertia loads induced by it. In fact, the moke-trail wind produces larger loads only at very low stitenesses where large responses of the bending modes occur: In general, for this simple system, it would geem that benaing momente are nore sensitive to frequeney ratio when a-control is used.

Maximm bending-moment varlation with thrust-to-weight xatio.The results just examined applied to a rocket with $14 f t-o f f$ thrust-to-welght ratio 5.0. The loade are also influenced by this parameter, as ghown in flgure 12, where the maximum bending noment in plotted against thrust-to-weight ratio for two frequency ratios, 0 g/op $=3$ and 7 and two inputs - the amole-trail wind profile and balloon profile number 3. The bendins moment at station 0.5 , with 0 -control, is precented in figure $11(a)$, and with a-control, in $44 g u r e ~ 21(b)$. Whth attitude control, the loade increase almost inearly with thrust-to-welght ratio for both frequency ratios. Again, this is because the load is almost entirely aerodynamic resulting from the angle of attack built up by the wind. The bending moments due to the amoke-trail wind are greater than those aue to flying the balloon-measured profile in every case, ranging up to amost 15 percent at the higher thrust-toweight ratios. And again, it should be noted that the lower stiffnest produced higher loads, for both inputs, over the entire range of thrust veight retios investigated.

The observations that lower stiffaesses and the smoke-trail input produce higher bending moments carry over to the a-control case, figure $12(b)$. But now the trend with thrust-to-velght ratio is reversed. Where, with θ-control, Loads increased with this ratio, they decrease when using o-control. This is explained by recelling that, with o-control, loade are primarily inertial, produced by engine deflections as the rocket tries to keep angle of attack zero. At high thrust-towelght watios, rocket velocity is higher so that effective angle of attack due to the wind is reduced. Thus, less control is requirea to keep the net angle of attect zero and loads go down. Also, with this bype control, where bending reaponse produces a larger portion of the load, the differeaces between the lads produced by the two wind pro* files are seen to vary much more with frequency ratio. The low stiffness, $\omega_{2} / \omega_{p}=3$, shows a very large increase 1 in load, while the frequency ratio 7 case bhows only moderate increases.

Emorgen, H. G., and Baron, s. Wind Loads On a Yextically Rasing Vehicle Inoluding Effects of Time-Varying Coefficients Presented to the Symposium on Siructural Dynamics of Eish-Speed Flight. Los Angeles, Celif. April 1961.

9Henry, nobert M., Brandon, Gearge W., Tolefson, Harola B., and Lanfork, Wade E. A Method for Obtaining Detailed Wina Ghear Measurements for Application to Dyamic Responce Probzema of Missile Systems. MASA langley Research Center. Proposed TM.

CHAPIBR 141

TUIURE CONSTDERATIONS

Some further investigation with this simple madel seems to be Indicated. However, it is the author's feeling that the present system can be simplified still further so as to ease the analysis.

The most important gimplification would be to linearize the system, First we note that for nost considerations we may set $V=\dot{\text { X }}$. men, If we consider the equations we see that the oniy nonlinear term it the centrifugal force term appearing in the $\ddot{\dddot{x}}_{0}$ equation, for if this term were neglected, then x_{0} would be simply a function of time given by

$$
\dot{\bar{x}}_{0}=-\frac{g}{L} t+\frac{g}{L} \operatorname{s}_{\operatorname{sp}} \ln \left[\frac{1}{1-\frac{3 / W_{0}}{I_{s p}} t}\right]
$$

The equations would then be 1 inear differentlal equations with timevarying coefficients. frimining this term and noting that is a controlled quantity and for the winds that are being considered $\dot{\bar{y}}$. would tend to be small, it seems likely that the product would indeed be snall compared to the component of torce produced by the thrust.

Instead of just omstuing this term from the equation; it was decided, instead, to examine the complete set of equations to see if superposition holds. If it does then the sybtem may be considered Inear. Several such $11 n e a r 4 t y$ checks were made and a typical one 1.5 shown in tigure 13.

A further implification which might be made in this case is to constider only the first elactic mode, neglecting all others. This aimplification was indicated on the besis of the runs made in this study. It was observed thet the second node contribution to the bendingmoment response was extremely mall and the third mode undetectable. This can be explained in terms of the wide separation of natural frequencies of the normal modes for aniform beam. A similar assumption for a realistic vehticle would be much less in order.

With these simplifications the system reduces to three degrees of freedom, two rigid body modes and one elastic mode. The equations are Inear time-varying aifferential equations.

One of the chief advantages in having a linear system is that the response to random disturbances is more easily studied. If the input to e Inear system is a normally distributed random process then the response is nomally distributed. Thus it is oniy necessary to compute the average and the covariance in order to define the probability distribution of the response ${ }^{10}$. An examination of the wind data avallable indicates that the atmosphere is a nonstationary random process. A study of the bending-moment response for a rigid vehicle to nonstationary random inputs using a high-speed digital computer is deseribed in reference 10. The author feels that the application of the analog computer to the same problem, with the inclusion of elastic effects, is an area for further invertigation.

Further, the application of specific analog compatation techaiques may prove fruitful. One such technique in the "Adjoint Methodull, a method which reduces the labor involved in studying the response of
linear time-varying gystems, The adjoint method yielas in a single computer mun a weighting function, which by conventional methods requirea a large, if not infinite, number of mus 12 . The response to a large variety of inputs, Lncluaing arbitrary inputs can be determined in one computer run. Particulardy, the mean square sesponse to white Geussian noise is readily attainable. The possible extension of this technique to nonstationary random process is an area for futire study.

The present whudy included the variation of beading-moment response uith thrust-to-welght ratio and frequency ratio. Several other parameters influence the response, e.E., length of vehicle, specific impulse. The effects of these other parameters on the bending-moment response should be determined. In connection with the study of the effects of various parameters the possible use of "paraneter influence coefficients ${ }^{\text {" }} 13$ w111 be considered.

10 Beiber, R. E. Missile Structurel Loads by Non-Stationary giatistical Methods. Journal of Acrospace sciencer, vol. 28, no. 4, April 1961, 272* 284-294.

11 Lening, F. Halccmbe, anc Batten, Fichard H. Hancom processes in Autonatic Control. MeGrav-Hill Book Company, Inc., 1956.

12fifer, Stanley. Analog Computation. Vol. Iv. MoGraw-HL2L Book Co., Inc., 1961.

13Meissinger, Hans F. Hhe Use of Parameter Influence Coefficients in Computer Analysis of Bramie gystems.

APPENDIX A

AERODYNAMIC FORCES

The aerodynmic forces acting on the missile will be computed using slender body theory as described in reference 14. Following the reference, the lift distribution along the axis of the body is given by

$$
z(\bar{x}, t)=-p\left(\frac{y}{L} \frac{\partial}{\partial \bar{x}}-\frac{\partial}{\partial t}\right) s(\bar{x}) w(\bar{x}, t)
$$

where $S(\bar{x})$ is the cross-sectional area distribution along the center line of the missile and $W(\bar{x}, t)$ is the downash veloctty of the fluid. As suggested by the reference, and for simplicity, the contributions of the elastic motions to the downwash will be neglected, and the downwash will be given by

$$
W(\ddot{x}, t)=V a^{*}-L\left(\bar{x}-\bar{x}_{c \cdot g}\right) \hat{\theta}
$$

Thus, the lift distribution becomes

$$
l(\bar{x}, t)=-\rho v\left\{s^{\prime}(\bar{x})\left[\frac{y}{I} a^{\prime}-\left(\bar{x}-\ddot{x}_{c \cdot g}, \dot{\theta}\right]+s(\bar{x})[-\dot{\theta}]\right\}+\rho s(\bar{x}) v \dot{x}\right.
$$

where, for simplicity, it is assumed $\alpha^{\prime}=\dot{d}$. Aerodynamic forces and momente acting on the misnile are found by integrating this $21 f t$ alatribution as follows:

$$
\begin{aligned}
& F_{y A}=L \int_{0}^{1} i(x, t) d \bar{x} \\
& M_{2 A}=L^{2} \int_{0}^{1}\left(\bar{x}-\vec{x}_{\text {c. }}\right) t(\ddot{x}, t) d \vec{x} \\
& Q_{1 A}=2 \int_{0}^{2} \varphi_{1}(\bar{x}) t(\bar{x}, t) d \bar{x}
\end{aligned}
$$

Performing the indicated operations, we get for these forces and moments

$$
\begin{aligned}
& F_{y A}=\rho s_{0}\left\{v^{2} \alpha^{x}+v\left[\vec{x}_{c \cdot g \cdot} \dot{\theta}+\left(L \int_{0}^{2} \frac{s(\vec{x})}{S_{0}} d \dot{x}\right) \dot{\alpha}\right]\right\} \\
& M_{z A}=p S_{0}\left\{v ^ { 2 } [\int _ { 0 } ^ { 1 } \frac { s (\overline { x }) } { S _ { 0 } } d \dot { x }] \alpha ^ { \prime } \cdot v \left[L^{2} \int_{0}^{1}\left(\bar{x}-\ddot{x}_{c} \cdot g \cdot \frac{s(\bar{x})}{s_{0}} d \bar{x}\right] \dot{\theta}\right.\right. \\
& \left.+v\left[L^{2} \int_{0}^{1} \bar{x} \frac{S(\bar{x})}{S_{0}} d \bar{x}\right] \dot{\alpha}\right\}-\vec{x}_{c \cdot g} \cdot \frac{F_{y A}}{} \\
& Q_{1 A}=\rho s_{0}\left\{-v^{2}\left[\int_{0}^{1} \varphi_{i}(\bar{x}) \frac{p^{\prime}(\bar{x})}{s_{0}} d \bar{x}\right] a^{\prime}+v\left[\int_{0}^{1}\left(\ddot{x}-\vec{x}_{c \cdot g}\right) \varphi_{i}(\bar{x}) \frac{s^{\prime}(\bar{x})}{s_{0}}\right.\right. \\
& \left.\left.+\varphi_{1}(\bar{x}) \frac{S(\bar{x})}{S_{0}} d \dot{x}\right] \dot{\theta}+v\left[i \int_{0}^{1} \varphi_{1}(\ddot{x}) \frac{S(\ddot{x})}{S_{0}} d \dot{x}\right] \dot{\alpha}\right\}
\end{aligned}
$$

Nondimensionalizing these equations, we get for the aerodynamic forces

$$
\begin{aligned}
& \frac{F_{y A}}{M L}=\frac{\rho_{0} S_{0} L}{M_{0}} \frac{\rho}{\rho_{0}} \frac{M_{0}}{M}\left\{\left(\frac{y}{L}\right)^{2} \alpha^{i}+\frac{v}{L}\left[\ddot{x}_{C \cdot g} \cdot \dot{\theta}+\left(\int_{0}^{2} \frac{s(\ddot{x})}{s_{0}} d \bar{x}\right) \dot{A}\right]\right\} \\
& \frac{M_{2 A}}{M L^{2}}=\frac{\rho_{0} S_{0} L}{M_{0}} \frac{\rho}{\rho_{0}} \frac{M_{0}}{M}\left\{\left(\frac{v}{L}\right)^{2}\left[\int_{0}^{1} \frac{S(\bar{x})}{S_{0}} d \bar{x}\right] \alpha^{\prime}-\frac{v}{L}\left[\int_{0}^{1}\left(\dot{x}-\bar{x}_{C} \cdot g .\right) \frac{S(\bar{x})}{S_{0}} d x\right] \dot{\theta}\right. \\
& \left.+\frac{V}{L}\left[\int_{0}^{1} \frac{S(\ddot{x})}{S_{0}} d \vec{x}\right] d\right\}-\bar{x}_{c \cdot g} \cdot \frac{F_{y A}}{M L} \\
& \frac{Q_{1 A}}{M 1}=\frac{\rho_{0} s_{0}^{L}}{M_{0}} \frac{\rho}{\rho_{0}} \frac{M_{0}}{M}\left\{-\left(\frac{y}{L_{0}}\right)^{2}\left[\int_{0}^{1} \varphi_{1}(\bar{x}) \frac{S^{\prime}(\bar{y})}{S_{0}} d \bar{x}\right] \alpha^{\prime}\right. \\
& +\frac{y}{L}\left[\int_{0}^{1}\left(\bar{x}-\bar{x}_{c \cdot g_{n}}\right)\left(\varphi_{i}(x) \frac{S^{\prime}(\vec{x})}{S_{0}}\right)+\varphi_{i}(x) \frac{S^{(x)}}{S_{0}} d x\right] \dot{\theta} \\
& \left.+\frac{y}{I_{0}}\left[\int_{0}^{1} \Phi_{1}(\bar{x}) \frac{s(\bar{x})}{s_{0}} d \bar{x}\right] \dot{\alpha}\right\}
\end{aligned}
$$

Or, for the aerodynamies in the elastic equations

$$
\frac{Q_{1 A}}{M L}=\frac{\rho_{0} s_{0} L_{1}}{M_{0}} \frac{\rho}{\rho_{0}} \frac{M_{0}}{M}\left\{\left(\frac{v}{L}\right)^{2} c_{11^{\alpha}}+\frac{v}{I}\left(c_{12^{\alpha}}+c_{13^{\dot{\theta}}}\right)\right\}
$$

where

$$
\begin{aligned}
& c_{11}=-\int_{0}^{1} \varphi_{1}(\bar{x}) \frac{s^{\prime}(\bar{x})}{s_{0}} d \bar{x} \\
& c_{12}=\int_{0}^{1} \varphi_{i}(\bar{x}) \frac{s(\bar{x})}{s_{0}} d \bar{x} \\
& c_{13}=\int_{0}^{1}{ }_{x} \varphi_{1}(\bar{x}) \frac{s^{\prime}(\bar{x})}{s_{0}} a \bar{x}+c_{12}+\bar{x}_{c \cdot g} c_{11}
\end{aligned}
$$

REFGREDICH MOR APYZUDIX A

14Miles, J. W., and Young, Dana. Generalized Missile Drapmice Anadysis IXI Aerodypamics. SML Report No. E4 8-9, Apria 1958.

APRIMDIX B

JET HORCES AMD MOMENTS

The method of refereace 15 will be used to determine the forces and moments acting on the missile due to the rocket exhaust. From reference 15, the force acting on the missile at the face of the rocket exhaust due to outflowing gas 16

$$
\vec{F}_{J}=-\int_{A} \rho \vec{v}\left(\bar{v}_{r} \cdot \Delta \bar{A}\right)
$$

and the moment about the center of gravity is

$$
\vec{W}_{y}=-\int_{A} \bar{F} \times p \bar{v}_{1}\left(\vec{v}_{3} \cdot d \bar{A}\right)
$$

Where the integrations are to be performed over the area A of the rocket exhaust. In these equations, ρ is the density of the exhauct gas, \bar{v} is the vector velocity of the exiting iluid, \bar{v}_{2} is the velocity of the exiting iluia relative to the c.g.g \vec{v}_{x} is the velocity of the exiting fluid relative to the exhausting surface, a \quad is a differential area vector in the direction of fluid outflow, and \bar{F} is the vector locating the exhoust relative to the c.g.

To compute the jet forces for the present system, the vector quantities can be written as

$$
\begin{aligned}
& \Delta A=-a A\left[\cos \left(u_{e}^{\prime}+s\right) \bar{i}+\sin \left(u_{e}^{\prime}+\delta\right) \bar{j}\right] \\
& \vec{v}=\left[\dot{x}_{0}-v_{e} \cos \left(u_{e}^{\prime}+\delta\right)\right] \vec{i}+\left[\dot{y}_{0}-i_{e} \dot{\theta}-v_{e} \sin \left(u_{e}{ }^{\prime}+\delta\right)+\dot{u}_{e}\right] \bar{j} \\
& v_{x^{*}}=\left[-v_{e} \cos \left(u_{e}+\delta\right)\right] \frac{\pi}{z}+\left[-v_{e} \sin \left(u_{e}^{*}+5\right)\right] j \\
& \vec{v}_{2}=\left[-v_{e} \cos \left(u_{e}^{*}+\delta\right)\right] \ddot{i}+\left[-z_{e} \dot{\theta}+v_{e} \sin \left(u_{e}+\delta\right)+u_{e}\right] j \\
& \vec{F}=-l_{e} \bar{i}+u_{e} \bar{j}
\end{aligned}
$$

where \bar{i}, \bar{j}, are unit vectors along the body axes at the eng. Performing the indicated operations, we can find the jet forces an follows:

$$
v_{r} \cdot d A=v_{e} d A
$$

Now; assuming the outflow of gas is uniformly distributed over the exhausting surface of the rocket,

$$
\begin{aligned}
\overrightarrow{\mathbf{p}}_{J} & =-\rho v_{e} \int_{A} \vec{v} d A=-\rho v_{e} A \vec{V} \\
& =-\rho v_{e A}\left\{\left[\dot{x}_{0}-v_{e} \cos \left(u_{e}+\delta\right)\right] \bar{i}+\left[\dot{y}_{0}-l_{e} \dot{e}-v_{e} \sin \left(u_{e}+\delta\right)+\dot{u}_{e}\right] \hat{j}\right\}
\end{aligned}
$$

and
$M_{j}=-\rho v_{A} A \bar{x} \times \bar{v}_{1}$

A pressure force, due to the back pressure on the nozzle, face, also acts on the missile. This force is normally combined with the jet force to give the thrust. If the back pressure is given by p_{e}, then the vector components of the lore e due to it are

$$
\text { pressure force }=p_{e} A\left\{\cos \left(u_{e}^{*}+8\right) \bar{i}+\sin \left(u_{e}^{*}+6\right) 3\right\}
$$

and the moment produced about the ecg. is

$$
\text { pressure moment }=-p_{e} A\left\{i_{e} \sin \left(u_{e}{ }^{t}+\delta\right)+u_{e} \cos \left(u_{e}^{\prime}+\delta\right)\right\} \bar{k}
$$

How, combining the jet and back pressure terms, the components of force and moment acting on the vehicle become

$$
\begin{aligned}
& \left.p_{x_{e}}=-p v_{e} A \dot{x}_{0}-v_{e} \cos \left(u_{e}+\delta\right)\right]+p_{e} A \cos \left(v_{e}+\delta\right) \\
& F_{y_{e}}=-p v_{e} A\left[\dot{y}_{0}-z_{e} \dot{\theta}-v_{e} \sin \left(u_{e}^{i}+\delta\right)+\dot{u}_{e}\right]+p_{e} A \sin \left(u_{e}+\delta\right) \\
& M_{z_{e}}=-p v_{e} A\left[\nabla_{e} u_{e} \cos \left(u_{e}+\delta\right)+\nabla_{e} z_{e} \sin \left(u_{e}+\delta\right)+z_{e}{ }_{e}+i_{e} u_{e}\right] \\
& -p_{e} A\left[i_{e} \sin \left(u_{e}+\delta\right)+u_{e} \cos \left(u_{e}+b\right)\right]
\end{aligned}
$$

Define the thrust as

$$
T=\rho A v_{e}^{2}+p_{e}^{A}
$$

and noting that the mass flow rate is given by

$$
\dot{X}=-\beta A v_{e}
$$

we get for these forces and moments

$$
\begin{aligned}
& F_{x_{e}}=\dot{M} \dot{x}_{0}+T \cos \left(u_{e}+\delta\right) \\
& F_{y_{e}}=\dot{M}\left[\dot{y}_{o}-i_{e} \dot{\theta}+\dot{u}_{e}\right]+T \sin \left(u_{e}+\delta\right) \\
& M_{z_{e}}=\dot{M}\left[i_{e}{ }^{2 \dot{\theta}}-i_{e} \dot{u}_{e}\right]-T\left[i_{e} \sin \left(u_{e}{ }^{\prime}+\delta\right)+u_{e} \cos \left(u_{e}+\delta\right)\right]
\end{aligned}
$$

If the angles 6 and ne are assumed small such that $\cos \left(u_{e}+8\right) \approx 1$ and $\sin \left(u_{e}{ }^{\prime}+5\right)=u_{e}+8$, these equations are
or, when the elastic deformation is assumed to be made up of a summation of normal modes

$$
u(x, t)=\sum_{i} \varphi_{i}(x) q_{i}(t)
$$

$F_{x_{e}}=\dot{M}_{0}+T$

$$
\left.+\sum_{i} \varphi_{i}(o) a_{i}(t)\right]
$$

$$
\begin{aligned}
& F_{y_{e}}=\dot{M}\left[\dot{y} 0 \cdot v_{e}+\sum_{i} \varphi_{1}(o) \dot{q}_{1}(t)\right]+T\left[\delta+\sum_{i}^{m} \varphi_{i}^{\prime}(o) q_{2}(t)\right] \\
& \mu_{e}=\dot{M}\left[e^{2 b}-t_{e} \sum_{i} \varphi_{i}(o) \dot{q}_{i}(t)\right]-q_{e}\left[v_{e}\left(\sum_{i} \varphi_{i}(o) q_{i}(t)\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& X_{x_{0}}=\dot{\mu}_{0}+{ }_{x} \\
& \mathrm{y}_{\mathrm{e}}=\dot{M}\left[\dot{y}_{o}-z_{\mathrm{e}} \dot{\theta}+\dot{u}_{e}\right]+\pi\left(u_{e}+6\right) \\
& M_{z_{e}}=\dot{M}\left[v_{e}{ }^{2}-v_{e} u_{e}\right]-\Phi\left[v_{e}\left(u_{e}+\delta\right)+u_{e}\right]
\end{aligned}
$$

RWFGEDCE FOR APERIDEX B

15Lausner, George W., and Huason, Donald E. Appied Mechantos Dyramies. Van Hostrand Company, Inc., Princeton, N. J. 21950.

APPGDIX C

UNFORM BEAM CONSTANES

The equations of motion can be simplified by assuming the missile under consideration behaves like a uniform beam. Thus, the mode ghapes are known and can be token from axy convenient reference ${ }^{16}$.

With the mode shapes nomslized to give unit deflection at the wrailing eage of the misaile $(\vec{x}=0)$, the constant in the equations of motion ean be listed follows

$$
\begin{aligned}
\varphi_{1}(0) & =1,0, \quad i=1,2,3 \\
\varphi_{1}(0) & =-4.647 \\
\varphi_{2}(0) & =-7.859 \\
\varphi_{3}(0) & =-12.0 \\
A_{1} & =\int_{0}^{2}\left[\varphi_{i}(\bar{x})\right]^{2} d x=\frac{1}{4}, 1=2,2,3
\end{aligned}
$$

In adation, the following geometric constants can also be ilsted.

$$
\begin{gathered}
\frac{2}{4}=\frac{1}{2} \\
\left(\frac{k}{4}\right)^{2}=\frac{2}{12} \\
\bar{x}_{c \cdot g}=\frac{1}{2}
\end{gathered}
$$

RUTHRETCE FON APPMTDIX C

16 Bisplinghois, Raymond L., ABhley, Holt, Halsman, Robext L, Aeroelastictity. Cambridge, Mass.: Addison-Wenley Publishing Co., Ine., 1955.

APPENDIX 0

BENDING MOMENTS

The bending moment acting at any station along the malsalle will be found by the modal acceleration method. That is, the loads along the missile will be found, and then the moment due to these jonas computed. Loads which will be considered are aerodynamic and inertial.

The loads at any station are
Aerodynamic:

$$
\begin{aligned}
p_{a}(\bar{x}, t)= & i(\bar{x}, t)=-\rho v\left\{s^{\prime}(\bar{x})\left[\left(\frac{v}{x}\right) a^{*}+\left(\bar{x}-\bar{x}_{c \cdot c}\right) \dot{\bar{\theta}}\right]+s(\bar{x})[-\vec{\theta}]\right\} \\
& +\rho S(\bar{x})\left\{v a^{*}\right\}
\end{aligned}
$$

Inertial:

Then the moment at a notation \bar{x} is given by

$$
B \cdot H \cdot(x)=A^{2} \int_{\bar{x}}^{1}(\vec{s}-\bar{x})\left[p_{a}(\bar{s}, t)+p_{1}(\bar{\xi}, t)\right] d \bar{\xi}
$$

Substituting for $p_{a}(\bar{x}, t)$ and $p_{i}(*, t)$ and noting that $M(E)=M$, we may express the bending moment as

The aerodynamic integrals required are

$$
\begin{aligned}
& \int_{\bar{x}}^{1}(\bar{s}-\bar{x}) \frac{S^{\prime}(\bar{s})}{S_{0}} d \bar{s}=-D_{1} \\
& \int_{\bar{x}}^{1}(\bar{s}-\bar{x})\left\{\left(\bar{\xi}-\bar{S}_{c \cdot g}\right) \frac{S^{\prime}(\bar{\xi})}{S_{0}}-\frac{S(\vec{s})}{S_{0}}\right\} d \bar{s}=-D_{2} \\
& \int_{\bar{x}}^{2}(\bar{\xi}-\bar{x}) \frac{S(\bar{\xi})}{S_{0}} d \bar{\xi}=D_{3}
\end{aligned}
$$

Noting that $\frac{S(\overline{5})}{S_{0}}=\left[2-\bar{g}^{2}\right]^{2}$ and $\bar{E}_{c \cdot g}=\frac{1}{2}$ evaluating the integrals yields

$$
\begin{aligned}
-D_{1} & =-\left[\frac{8}{15}-\vec{x}\left(1-\frac{2}{3} \vec{x}^{2}+\frac{1}{5} \vec{x}^{4}\right)\right] \\
-D_{2} & =\left[-\frac{3}{5}+\frac{32}{30} \bar{x}-\frac{1}{3} \vec{x}^{3}-\frac{1}{3} \vec{x}^{4}+\frac{1}{10} \bar{x}^{5}+\frac{2}{15} \vec{x}^{6}\right] \\
D_{3} & =\left[\frac{1}{6}-\frac{8}{15} \ddot{x}+\frac{1}{2} \dot{x}^{2}-\frac{1}{6} \vec{x}^{4}+\frac{1}{30} \bar{x}^{6}\right]
\end{aligned}
$$

The integrals necessary for the inertial contributions to the bending moment are

$$
\begin{aligned}
& \int_{\frac{x}{x}}^{1}\left(\frac{5}{5}-\bar{x}\right) d=-D_{4} \\
& \int_{\vec{x}}^{1}(\bar{s}-\bar{x})\left(\overrightarrow{5}-\bar{E}_{c . g}\right) d \underline{\xi}=-D_{5} \\
& \int_{\dot{x}}^{1}(\dot{\xi}-\bar{x}) \rho_{j}(\bar{\xi}) a \underline{\xi}=-D_{n j}
\end{aligned}
$$

Evaluating these integrals yields

$$
\begin{aligned}
& -D_{4}=\frac{1}{2}(1-\bar{x})^{2} \\
& -D_{5}=\frac{1}{12}(1+2 \bar{x})(1-\bar{x})^{2} \\
& D_{n j}=-D_{4} D_{j}(\bar{\xi})
\end{aligned}
$$

Algebraic manipulation then leads to the following expression for the nondimensional bending moment

$$
\begin{aligned}
& \frac{B_{*} M_{*}(x)}{W_{0} L}=\frac{\rho_{0} \delta_{0} L}{M_{0}} \frac{\rho}{\rho_{0}} \frac{L}{G / L}\left\{\left(\frac{V}{L}\right)^{2} D_{1} \alpha^{*}+\frac{V}{L}\left(D_{2} \dot{\alpha}+D_{3} \dot{\theta}\right)\right\}
\end{aligned}
$$

The constants appearing in the equation were evaluated for the stations of interest and are listed in Table I.

BIBLIOGRAPHX

Beiber, R. E. Missile Strmetural Loads by Non-Stationary Statistical Methods. Journal of Aerospace sciences. Vol. 26, No. 4 , April 1961, pp. 284-294.

Bleplinghoff, Raymond 1., Ashley, Holt, Halfman, Robert L. Aeroelasticity. Cambridge, Mass.: Acdision-Wesley Publishing Co., Inc., 1955.

Crandall, Stephen H. Random Vibration. Technology Press of the Mascachusetts Institute of Technology.

Fifer, Stanley. Analof Computation. Vol. IV, McGrav-Hill Book Co., Inc., 1961.

Geiscler, Ernst D. Problems in Attituade Stabilizgtion of Large Guided Missiles. Aerospace Bngineering, Vol. 19. No. 10, October 1960, pp. 24-29, 68-72.

Hausner; George W., and Hudson, Donala E. Applied Mechandes DynamicgVan Nostrand Company, Inc., Princeton, N.d., 1950.

Henry, Robert M., Brandon, George W., Tolefson, Farola B*, and Lanford, Wade E: A Method for Obtaining Betailed Wina Bheax Measurements for Application to Dynamic Response Problems of Misgile Systems, IMAS, Langley Research Center, Proposed wif

Ince, E. L. Ordinary Differential Equations. Dover Publications, Ine:
Johnson, Clarence 1. Analog Computer Techniques. MoGrav-H111 Book Co., Tre., 1956.

Karplus, Walter J., and Soroka, Welter W. Analog Methods. McGraw-Hill Book Co., Inc., 1959.

Laning: J. Halcombe, and Batten, Hichard H. Random Processes in Automatle Control. MeGraw-Hill. Book Company; Inc: 1956.

Meissinger, Hans p. The Use of Parametex Influence Coefficients in Computer Analyale of Dynamic Systems.

Miles; J. W., and Young, Dana: Generalized Migsile Dymances Analyazs, III - Aerodymamics SNL Report No. EM 8-9, April 1958.

Morgan, H. G., and Maron, S. Wind Loads On E Vertically Rising Vehicle Incluaing mefects of gime-Varying Coerficients. Presented to the Symposium on Structural Dynamics of Hich-Speed Flight, Los Angelee, Caluf., April 2961.

Rainville, Harl D. Zhementary Differential Equations, New York: The Mackillan Co., 3952.
 Desaga. McGraw-Hill Book Co., Inc., 1960. 1
 SML Report No. (4 9-15, July 1959.

vIEA

Sheldon Baron

Born in Brooklyn, N. Y. May 23, 2934. Graduated Iron Boys High School in that city, January 1951; B.S. Brook 1 yn Co11ege, 1955. Batered on active duty with USAF as Second Lt. Auguet 1955. Completed active daty, August 1957. Asslgned to NACA for that period. Smployed by the NASA from February 1958 to present time. Experience totals in excess of five years, in the fleld of prograning and operating analog computer and system analysis.
TABLE II.- NUMERICAL DATA

${ }^{\text {a }}$	
${ }_{\text {c }}$	
${ }^{\text {a }}$	 oiiiiiiiiiiiio
ค	 $\hat{o}_{1} \mathrm{i}_{1} \mathrm{o}_{\mathrm{i}} \mathrm{i}$ i i i i i i i i i i io
A	i i i i i i i i i i i io
n^{m}	
A	
A^{-1}	
χ_{x}	

Figure 1.- Coordinate system for ascending rocket.

$=80 \mathrm{ft} / \mathrm{sec}$. Figure 3.- Maximum bending-moment variation with frequency ratio. $\left(\mathrm{V}_{\mathrm{W}}\right)_{\max }$

Figure 4.- Maximum bending-moment variation with wave length of shear reversal using α-control. $\frac{T}{W_{0}}=1.5, \quad x=0.5, \quad\left(V_{w}\right)_{\max }=100 \mathrm{ft} / \mathrm{sec}$.

x
Figure 5.- Maximum bending-moment variation with thrust-to-weight ratio.
0.3 ,

Figure 6.- Measured wind profiles (ref. 2).

Figure 7.- Response time history due to flying through balloon wind profile no. 3 .

Figure 8.- Bending-moment time histories due to flying through the smoke-trail wind profile.

$\theta-$ CONTROL, $\frac{T}{W_{0}}=5, x=0.5$

[^0]θ-CONTROL, $x=0.5$

(a) θ-control.
Figure ll.- Maximum bending-moment variation with thrust-to-weight ratio resulting from smoke-trail and balloon-measured wind profiles.

(b) a_{-}-control.
Figure 11.- Concluded.

\odot	Analog
\odot	Digital

Figure 12.- Comparison of analog and digital time histories of engine deflection and first-mode deflection for step wind.

(a) Bending-moment time history due to flying through wind shear reversal. $x=0.3, \Lambda=10,000 \mathrm{ft},\left(V_{\mathrm{w}}\right)_{\max }=40 \mathrm{ft} / \mathrm{sec}, \alpha$-control.

(b) Bending-moment time history due to flying through wind shear reversal. $x=0.3, \Lambda=10,000 \mathrm{ft},\left(V_{W}\right)_{\max }=80 \mathrm{ft} / \mathrm{sec}, \alpha$-control.

Figure 13.- Demonstration of system linearity.

[^0]: (b) a-control.

 Figure 10.- Concluded.

