Mitosis in Leaves

Bernice Marguerite Speese

College of William \& Mary - Arts \& Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd
Part of the Botany Commons

Recommended Citation

Speese, Bernice Marguerite, "Mitosis in Leaves" (1941). Dissertations, Theses, and Masters Projects. Paper 1539624410.
https://dx.doi.org/doi:10.21220/s2-qh4k-vf57

This Thesis is brought to you for free and open access by the Theses, Dissertations, \& Master Projects at W\&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W\&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

MTHOSIS IN LWAVES

by
Bernice M, Speere

MTTOSIS IN LBAVES
by

Bernice M. Specre

SUBMETTKD IN PARTIAL FULITLIWENT

OF THE REQUITHMANTS OP

COLHEGE OF MILITAM AND MARY
for the degree
MASTES OF ARTS
1941

table of qontenta

Achnowledgmonts	Page V
Introavetion	Page 1
Statement of froblem	-
Wethod	"
Reviow of In tereture	Pege 8
Obeerwatione	Page 7
Mitotie thythom	* ${ }^{\text {a }}$
Spatial Diebribution of Mitowos	Fage
chronosome Numbere.	Page 14
Diseuacion	Page 20
Mitotic Rhythre	- 20
Spatial Distribution of mitosea	- 20
Chromosome Nuthere	Page 28
Sumbniy	Page 24
14 tomatura Cated	Fage 25

V.

Acknowiedgrente

The author expreases her apprectation to Dx. J. T. Baldwin,
 Davia for rogarch equiparat an for advioe and oritioion in the proparation of this mamaeript, to Dr. Panl M, pattorson for making avallable Inboratory facilities at Eoliln college, to Dr. Onland z. White for the hospitality of the Blandy Experimentel Fawn and to br. C. V. Morton for Identifying the gmilax plants investigated.

勬 tosis in Leaves

Introduction

Statement of Problem. -This is preliminary report on muclear aivisions in leaves. though, because of the peculiar physiology of leaves, pronounced fluctuations in their aivision curves might be expected, no enalysis seems to have been made of the mitotic riythms in these plant organs. Leaf shape is in part dependent upon the pattern of frequencies of mitosia. cell aivieion is fundamental to growth and morphogenesis. It would be of nom sienificance to determine for leaves the distribution of mitotic Irequencies and to compare in this regard leaves wich aiffer in shape. Any atuay of mitosis in leaves offers a convenient opportunity for determining the numbers of shromosomas. In the present wory the temporal mitotic frequency, the number of nuclear aivisions for given areas, and the chromosome numbers of certain species have been studied. Leaves of gmiax Bona-nox L., S. glauca Falt. var. Leucophylla Blake., S. Mispida"mi., E. Lancoolata I.: S. Laurifolia L. S. rotundifolia L., and Lathyrus latifolius L. were investigated. Reasons for studying these species of Smilax and Lathyrus were: they smear well: the chromatic mass is large, and dividing nuelei are, therefore, readily observable.

Method, -The method of preparing the leaves for study was osaentially that of Bajawin (1939); fixation for at least twelve houra in Carnoy"s fluid, treatment for four minutes with a solution of equal parts 95 per cent alcohol and concentrated hydrochioric acid,
transference again into Cornoy's, and smaaring in iron aceto-carmine. The preparations were bealed with a gum-mastic-paraffin mixture or With Zirkle's (1937) permanent aceto-carmine. For each investigation all the leaf tissues included dorsiventrally in the sectione were examined. The otage in prophase when the chromosomes are firat eestiy recognizable and the atage in telophese when the chronosomas are atill apparent were used as arbitrary 11 mf ts for determining the number of nuclear divistons in process in each section.

Priesner (1920) wrote:
"the nubject of periodicity of growth activities in the plent is by no means new one, in lact, iti is one of the oldest. But a caraful review of the available literature shows that there are still certain phases of the work which have not yet been thoroughly investigated."

Indeed the entire field is open for study. As reterred to by Friesner (1920), two of the earliest investigators of periodioity, Sachs (1872) and Prentl (187\$), concluded thet atily periodicity of plant growth depends upon external influences, such as the alternation of light and dark; that the periodicity is $108 t$ when plants are grown in darkneas. Also, according to Friesner, Baranetwisy (1879) made similar observatione except that shoots of Brascica rapa mainteined a periodicity when grown In darkness. Friesner makes a diatinction between this "periodicity" which is lost under constant onvironmental conditions and "rhythm" Which refers to "any oscillation in activity whioh ia dofinito and reg" ular and not related to any external influences:"

Ward (i895) concluded: "growth (i.e. permenent inerease in buik) while in the long run dependent upon cell division, does not synchronize but rather alternates wifh it."
. Lewle (1901), growing Allium Cepa under normal day and night Lllumination, discovered two waves of cell division, with maxima at midnight and noon and minima at 4:00 a, m. and 4:00 p, m. He found that change in color of light changed the times of maxima and minima, while continuous daxkness, for the most part, reversed the time of occurronce of the maxima and minima.

Macmillan (1901) observed the growth of potate tubers, in continuous darkness, to be whythme tistead of regular. He found the maxime, occurying one to four times during a twenty-four hour period, to be of ahort duration and to be followed by periode of elther slower growth or no growth.

Kellioott (1904) found in roots of Allium, grown under constant conditions. two waves of cell diviaion, with a primary maximum at $11: 00$ p.m. a secondary maximu at $1: 00$ p.m., and primary and secondary minima at 7:00 a.a. and 3:00 p.m.; respectively, According to Kellicott, Ramintzin (1867) and Strasburgar (1880) found that, in the jority of algae, cell diviaion wes most rapid at night. Frieaner (1920) records that an wilaman (1892) observa no diumal differences In the rate at which celle of Spirosyma divide, and that Beaun (1851) found cell division of this alga to be most rapid at night. Kellicott Also records thet Kurssaanow (1912) found the maximm period of dividing cells in Zyenoma to occur from $9: 00$ phat until midnight. Kellicott agreed with the conclustion of most of the eariler workere that the maximal periode of cell aivision alternated with the minimal periods of alongation, and thet during pariods of slow cell division elongation wae most rapid. सellicott further concluded that each plant form seamed to have its own xhythme variation in rate of erowth.

Kareten (1915), working with deamie grom'under normal light conditions, discovered, es recorded by zitesner (1920); e daily periodicity of nuclear and cell division; he also found cell-division rhythms; for acrial perts of hicher plente, which were independent of changes in Lllumantion and temperature.

Lutman (1911), inveatigating cell and nuclear divisions in Closterium, found divitions occuring from 10:00 p.m. to 5:00 a.m. with the maximu nunber from about $10: 00 \mathrm{p} . \mathrm{m}$. witil midnight, the rate of division being conditioned by the weather of the preceding day. Laughlin (1911), working with the comon onion grown under constant conditions, Pound a daily mitotic and growth rhythm, which he attributed to external influences, and a seasonal rhythm, which he considered was eaused by the internal organization of the plant. He also stated that "there is a dafinite altemation betwean permanent Increase in buik and mitosis."

Friesner (1920) used for his investigations seedings of
 Allium Cepa L., and Zea ovarta Sturt., also roots Irom germinating buibs of Allium Copa L. . A. canadense L., and A. oernum . All the work was done in a dark room; the temperature was kept constant, with few exeeptions, to within one degree. Friesner's conclusions were:

1. Under constant uniform conditione elongation in all plants studied proceede in rhythrate maner, two or more waves occurring during the 24 -hour period.
2. Nuclear and cell divisions proceed in a similar rhythmic fashion.
3. The time of occurrence of maxima and minima axe dependent upon the time of initiation of metabolic activity and not upon the time of day by the olock,
4. Plongation and cell division, as regards time of maxima and minima, are, in general, reciprocels of each other.
5. This reciprocel relation existing between elongation and cell diviaions accounts for a large share, at least of the Fhythms tound in these plents.

One (1937), Investigating nuclear divisions in crepis, found two marked dividing periods and two resting periods, with maxime at 2;30 pome and 12:30 a.m. and minima at 5:30 D.mp and 5:30 a. m . The interature indieates that mitotic divisions occur in waves and axe raythmic.

健 tothe phythms, -Twelve Smilax Bona-nex leaves of approximately the same aize were fixed, one ach at $2-h o u r$ intervals throughout a 24-hour period on August $4-3,1939$, and snears made of one-mili-moter-in-diameter samples, punched from each lear near veins in the poaitions indicated in Itgura 1. Since only one young lear or a given size usually securred on a aingle plent of $\underline{\text { g. Bona-nox, twelve differont }}$ plants (groming at the odge or the william and $\begin{aligned} & \text { dary campue) were used. }\end{aligned}$ The number of nuclear atyisions was counted fow ach of the samples; Sample A, 2:45 p.m. , 3734; B, 4:45 p.m., 2003; 0, 6:45 p.m., 1248; D. 8:45 p.m., 1756; E, 10:45 p.m., 3625; 7, 12:46 a.m., 2359; 0, 2:45

 maxima-primazy, maxim, 12 hours apart, at 2:45 p.m. and 2:45 a.m, and a secondary maximun at $10: 45$ p.m. Since it happened that the leaves
 than the others, two adattional leaves of a more comparable size were fixed at these hours on Augugt 17 and 16 reppectively (ifg. 2). The number of divistions for the second 10:45 p.m. leat (fig. 2 A) was conatderably lower than for the first (fig, 2 I), 3141 ae compared with 3615, yet high enough to constitute a maxex maximur in the curve. The number of divistons in the second 10:45 a.m. leat (tig. 2 B) ald not diffor significentiy from the number in the first (fig. 1 K), 2055 as compared with 2143.

Plants of Lathyrus latifolius were grown in a seed ziat. The fourth leaf from the stem base of twolve of these plants was fixed when three millimeters in length and the number of nuclear divisions, for each entire leaf, in process at the time of fixation determined as recorded in table 1.

Table 1. The nuclear aivisions in process, at indieated thes, in the fourth leaf from the stem base of Lathyrus latifolius, fixed when throe mallimetex in length.

Date	Tue	䱏tases
March 1, 1940	2,45 p.m.	2254
Pebruary 21, 1940	4:45 p.al	1504
Pebruary 20, 1940	6:45 p.m.	1435
Pebruary 23, 1940	8:45 pame	1653
Pebruary 28, 1940	10:45 p.0.0.	2501
February 25; 1940	12:45 a.m.	2244
February 86, 1940	2:45 a.tio	1685
February 26, 1940	4:45 a.7n.	871
Pebruary 21; 1940	6:45 m.m.	1645
Tebruary 24, 1940	8:45 a.m.	49
February 25, 1940	10:45 a.m.	1912
Tebruary 25, 1940	12:45 p.m.	1644

Spatial Distribution of Mitoges,-Young leaves of Smilax rotundifolia were used for the determination of the number of nuelear Aivistons in process for a given amea. A leat of the size shown in Hfgure 3 whas fixed at 4:30 p.m. on July 3, 1989; a total of 31,380 mitoges was found in saction A of that leaf. There was a general deczease in mitotio frequency from the proximal to the distal part of that area. Comparsble results wero obtained from rancom seuples designated in flgare 4 the leaf was Pixed at 3:00 pone on July 24; 1939; the number or divisions for each of the samplea aseignated in Ifgare 4 was determined; Sample A, 1952; B, 2012; C, 2166; D. 1787; E, 2089; F. 1469: 0, 92.

The first lati on any atem tip of Lathyrus latifolus 10 small and acale-like at maturity in comparison with later leaves oeourring on the ame stem tip. It seaned desirable to compate the number or mitoses in young leaves of lite size, but in alfferent positions and having different prospective sise at moturity. the first leat, 7 man In size, on potted plent of Latifolius mas fixed at 7:30 p.me on Detober 30, 1939 and the nuelear divisions in process in the entire leaf were counted. The thixa leaf, $8 \mathrm{~mm} \times 5 \mathrm{~mm}$, was fixed at 7,30 p. m , on November 13, 1939 and all the nuclear divisions counted. The recults of these two counte are ahow in table 2.

Table 2. Comparison of the nuelear diviatons in process in tine first and third leaves of a stem of Lathyrue jatifolius.

Leaz	2at aize	Mtitoses
Exust leat	$7 \mathrm{man} \times 3 \mathrm{~mm}$	37
Thind loaf	$8 \mathrm{~mm} \times 3$	2006

Still another investigation was mede using the firet, second, third, fourth and fieth leaves from a otem of a pottod plent of
 1940. Smears were made of samples only, one milimeter in diameter, loceted beside the midrtb and at the midpoint of the length of the leat. Leaf sizes and the mitoses in process for each sample are sinow in tanle 3.

Table 3. Prfoct of leaf size and position on the stom upon the number of nuelear divisions in process at a givon ingtince in comparable areas of leaves of Lathymus 1atifolius.

Leat Position	Leal Leagth	畋 toses
Mrat Latar	8 nem	0
Sacond Leas	34 碞	0
Third Leaf	34 mm	0
Hourth Leat	30 mm	2
Ifth Lent	16 mom	307

A otuly was made to determine the relation botwoen size of leaf and cessation of nuelear divisions．Waterial was collected from young shoots of olone of Smlax rotundifolia（Speoss No，sp；specimen deposited in the United States National Horbarium），growing near the HLandy Expeminental Rarm，Clarke County，Virginia．Since proliminary in－ vestigations had gaven concordant counts only when samples were taken from like axeas of laaves of similar size and in corresponaing pogitiong on the stem，leaves，fitth in position from the base of the stem，were fixed at 4 p．m．on various days from June 14 to June 24,1940 ，and the nuclear divisions detormined for samples one milismeter in diameter and iocated beside the midrib and at the mimpoint of the greatest longtudi－ mal exis or the leaf．Laf slze and the numer of mitoses determined are given in table 4.

Table 4．Number of mitoses in samples from beside the midrib and ot the midpoint of the greatest longtuainal axis of leaves of Aiffexent．sizes，sach beling the firth leaf above the base of a ghoot from a clone of s．rotundifolia．The leawes wore fixed at at00 p, m ．between the dates June 14 and June 84， 1940.

$\begin{aligned} & \text { Leaf } \\ & \text { Length } \end{aligned}$	asze列道胡	Number of Mtoses
12 mm	5 m	1998
14 mm	7 \％	1708
22	10 mm	1809
35 mm	32 nm	475
46	31 mim	86
55 mim．	43 mm	38
68 mm	62 nm	4
82 mm	65.4	0

A further approach to the probien of dietribution of leaf nitoses in space and the possible relation of thas distribution to the stze and shape of leaves was atterpted. Leaves of smiax jauri-

 $134,129,110,135$, and 114 respectively: 3pecimens have deen deposited In the Unitea 3tates National Werbarium) were (izad at $4,00 \mathrm{pun}$. on various days from Auguet 4 to August 24, 1940. Shaples, one milimetor in atameter, were taken from along the margins and from beater the widm ribs at the levels indicated in figure 6. The karyokinetic count for oach tample is recorded in table 5.

Table 5. Species or Smilax investigated and the number of mitoses eounted in semples from along the margins and from beside the midribs of leaves oublined in Higure 6; all the leaves were fixed at $4: 00 \mathrm{p} . \mathrm{m}_{0}$ betwean the dates August 4 to Auguat 24, 1940. Leaves of S. Jauxifolia, S. glauca, s. lanceolata, and S. Bona-nox were Iixed from plants growns in the mursery at the Blendy Experimental Harm, Boyce, Clarke County, Virginia: the geographic sources of these plants are shown in table 5.

	Ceographic Source	$\begin{aligned} & \text { Leaf } \\ & \text { axd } \\ & \text { Level } \end{aligned}$	$\begin{aligned} & \text { Mitoseg } \\ & \text { at } \\ & \text { Nargin } \end{aligned}$	$\begin{gathered} \text { Matoses } \\ \text { at } \\ \text { Midrib } \end{gathered}$
S. Iaurifolia L.	Wilnington,	A1	84	85
	Ner Henotar CO.,	${ }^{\text {A2 }}$	164	146
	North Garolina	AB	236	285
234 E. glauea Walt. var	Keysville,	B1	55	16
Ieucophylia blake.	Charlotie co.,	B2	207	61
	Viretnia	83	264	83
S. Iancoolata 4.	Wrightsvalle Beac	ch, c1.	108	53
	Neg Hanover CO.,	C2	284	175
	North Carolina	63	360	210
S. Mispids mhl.	clarke co.,	D1	523	607
	Virginia	122	1135	2198
		183	1321	1226
S. Bona-nox 2	Hyrtio Besich,	E1	631	640
	Horry Co.,	E2	912	888
	South Carolina	B3	1532	889
S. rotunatrolia L.	clarke co..	71	728	556
	Vreginia	F2	377	940
		FS	1289	1064

Chromosome Numbers,--Chrozisome determinatione for Smilax
rotundifolia L. (fig. 7) and S. Boma-nox L. (fig. 8) were made trom
smears. Both have 32 ckromozomas at leaf metephase.

IIg. 1 \& 2.-FIg. 1. Cutlinee of tweive leaves of Smilax-Bonanox fixed one each at 2-hour intervals throughout a 24 -hour poriod; places from wich aamies ware taken for division counts are indicated. Big. 2. outlines of two other leaver of S. Bone-nox studiec.

F15. 3 \& 4.-Fig. 3. Watuxal size outinne of gmiax rotundifolia leat with area in which 31,380 mitobes were counted. -TII. $\frac{\text {. Wetural }}{\text {. }}$ aize outline of S. rotundifolia lear of which samples A - G were stuleded cytologtcally.

Fig. 5. -- Curve of division frequency in gmiax Bons-mex (line A) and Lathyme hatifollus (line B) leaves, fixed one bach ot 2-hour intervals throughout a 24-hour pexiod.
18.

Nig. 6.-Natural size outlines of Leaves of Smilax Laurifolia, E. Glauca, 3. Ianceolata, g. hisplda, S. Bona-nox, and S. Eotundifolia With lines indicathog levele at wich aample日 one millimeter in diam tor were taken from along the margins and from besice the midribe.

Fig. 7e B.-T1g. 7. Leaf metaphase of Smilax rotundifolia L., 2n F 3e. Wegnification ca. 3800x. - Fig. 8. Leat metaphase of S. Bona-nox L., 2n *32. Magaifichtion ca. 3800\%.

Discuasion

Mtotic Mhythms. The data on tamporal Prequeney for miosis in Bmilex Bona-nox produce a curve with two minima-6:45 p.m. and 12:45 p, m, -wand whth three maxima-mpimary mexima, twelve houre apart, at 2:45 p.m. and 2:45 a.m., and a secomary maximum at 10:45 p.m. Similar data for Lathyxus Zetifolius produce a curve with three minima-mpricary minimum at $8 ; 45$ a.m. and secondary minima at $6: 45$ p.m. and 4:46. a.m. - mand with three maxima-2:45 p.m., 10:45 a.m., and 10:45 p.m. A comparison of these two ourves (Tigures 5) ghows a general orend for mitotic frequency to be high at 2:45 p.m. and low at 6:45 p.me, again high at 10:45 a.m. and low"at 4:45 a.m. These observationg on mtotic fluctuations in leavea of gmiax and Lathyrue ere preliminary, but they gupport a conclusion reeched by priesner (1920) for roots of soveral different genera: "the curve of cell division in all plants studied exhibits a number of osoillations in the 24-hour period, in the marity of plants three." Likewiae ono (1937) found in root tips of Grepis "two marked diviaing periods".

Spatial pistribution of 3 位 In table 2 and table 3 , on the frequency of mitoses in leaves of Lathyrua indicate the possibility of a relationship between the size of the leat at maturity and the frequency of nuclear division. The first lear, thble 2, had only 37 alvialons while the third leaf, wen of a comparable size, had 2006 dividing nuclei. Similarly, from another plent, the inst leaf (8 mm in length) table 3 , had no divisiong while the firth leaf (16 mm in length) had 307 mi totic divisions. The firet
leaves of Lathyrus latitolius are amil and scale-14ke with fow at*istons while later leaves have a mach larger size at maturity and have a correspondingly higher karyokinetic frequeneg. hounts (1932) found the size of the leat the time oell division coases to vary considerably in different leaves on the sams shoot and to be related to the dimenstons of the leaves at maturity. Gregory (1928) maintaine thet lear growth depenas upon the size of the already existing lear area. He concluded: "the limited erowth of single leaves mast be acoounted for by the limited growth potentiality of the leat primomia."

Adaitional evidence in support of this bypothesis is found in the data recorded in table 5. Smilax glanca, E. laurifolia, and S. Lanceolate bave, in general, a lower mitotic Irequency than have. S. Bona-nox, S. Fotundifolia, and S. hispita. tave leaves of the latter three spocied, as observed by the writer, attain a much lasger size than do meture leaver of S. glauce, S. Iaurifolia, and S. Ianceolata.

The ata in table 5 show the aivision frequency at the leaf marein to be, in general, higher then ot the midwib. Smith (1934) conciudes:

The species of the plant under constderation and the atage of development of the leaf determine what portions of the leat are the most actively moristematie, in some instances the major portion of the meriatematic activity is confined to the marginal zone, in others the activity is distributed throughout the leaf."

In the investigation of ceasation of mitosis (data recorded in table 4), it was found that concordant counts wera obtained only
whon leaves of comparable alze were taken from the same atem positions. Delisle (1938) found typical growth anrves in leaves of Aster with the grend period of growth within each successive leat appoaring only at the time when that of the preceding leaf is folling oft". According to Delisle, Folkunov (1905) foum that the size and number of cells per unit area of lest vary with the leat position on the stem.

Chromosome Numbers. The $2 n$-chromosome numbers of S . potundfolia (fig. 7) and of S. Bona-nox (fig. 8) wne found at leat metaphase to be sef the sex of the various plants was not tmown. (Herbarium specimens of the species will be distributed under the numbers: Baldinin 416 and 417.) The chromosomes in both species wery considerably in olze and morphology. Jensen (1937) reported an n-number of 16 for B. $_{\text {roturdifolia fron the Blue fiage mountaing of }}$ North Carolina. He interpseted certain of his obaervationa to "suggest a record of previous hybridization for the species". It is of consequent interest to note that counte from leaf mitoses (sometimes considered to be probebly chronosomally aberrent) of plants in the Tirginia coastal plain corroborate the gamotic number detemmined for supposed hybrid plants in the North Carolina mountaine. Chromosome numbers reported for gmiax are shown in table 6.

Table 6. Chromosome numbers reported for Smilax t.

Specier	2 n	$\underline{1}$	Determined by
3. Bona-nox I.	38		Speese (1939)
S. Ghina L.		30.	Nakajima (1937)
S. glauga		14	Jensen (1937)
E. hederacea 1. var. nipponica Maxim.	30		Wakajima (1937)
S. Larbacea L.		$\begin{array}{r} 12-13 \\ 12 \\ 13 \end{array}$	Fikins (1914) Eumphrey (1914) Lindgey (1929; 1930)
S. Olunam kad.	30		Nakajima (1937)
S. Yotundifolis L.		16	Jensen (1937)
	32		Spasse (1938)

Of the above workers only Nakajima (1937) got eridence of heteromorphic chromomes; be reported sex chromosomes of the $x-y$ type in three species.

A temporal frequency established for mitobis in leaves of g. Bona-nox giver a curve with two marked maima-6:45 p.m. and $15: 45$ p.m. - and with three maxim-mrimazy maxima, twelve hours apert, at $2: 45$ pom. and 2:45 ams and a secondary maxtrum at $10: 45$ p.m. A similam frequency in lesves of 2 latifoliva gives ourve with three narked minimeprimary minimum at 8: 4s a.m. and secondary minima at $0: 45 \mathrm{p}: \mathrm{m}$ and 4.45

Ths number of diviaing nucloi was counted for certnin selected aress of young leavas of B. Fotundifolia. A genemal reduetion in mitotic trequency appeang to occur proximomaistally in those leaves.

M totio divisions in leaf arpas vary with the position of the Leaf on the ftem , nearness to the atem tiv betng correlsted wh thigh diviaion trequenoles.

Increase in size, and accordingiy in age, of a givon leaf area 18 regulaxiy correlated with degrease in mitotic frequency, until. diviekons ceass.

As determined for elt specios of Smilaz, there is a besipetal eradient for the mitotic sate in leaves, nad alvisions cease oarliaf in the central part of the laaf than at the marein.
S. motundifolia L. and S. Bona nox l. both have 32 chromosomes at leaf metaphase.
 ohromosome counts for Smilax L. are included.

Baldwiv, J. T., JT: "Chromosomes from Leaves." Befence E. S. XC (1939) 240.
*Baranetzky, T. Die tagliche Periodicitat in Langenwachatum der Stengel." Kem. Acad. St. Petersbure, VII (1879) 27: 1-91.
*Braun, A. "Uber die Brescheinuag der Verjüngung in der Natur." (1851) pp. 240, 241. Leipzig.
Deliale, A. L. "Morphogenetical studies in the Development of Successive Leaves in Aster, with qespect to Relative Growth, Cellular Dirferentiation, and Auxin Relationships." Amer. Jour. Bot. XxV (1938) 420-430.

Elkins, Marion C. Whe Maturation Phases in Smilax herbaces." Bot. Gaz. LVII (1914) 32-52.

* Damintzin, A. mie Wirkung des Lichtes aut Algen und einige thnen nahe verwand ten Organismen," Jahrb. Wise. Bot. Vi (1867) 1-44.
Foster, Adriance S. "Leat of Carya, Amex. Jour. Bot. XVIII (1931) 864-887. (1936) $349-372$.
friesmer, R. C. Daily Rhythms of elongation and Cell Division in certain Roots". Amos. Your. Bot. VII (2920) 380-407.
Gregory, F. G. Stuaies in the Rnergy Relations of Plants. II. The Effect of Temperature on the Increase in Area of Iear Surface and In bry Weight of Cucumis getirus;" Amer. Jour. Bot. XirI (1928). 469-507.
Humphrey, Lillian A. A Oytologicel Study of the Stamens of Smilex 'herbacea." Oh10 Naturalist. XV (2914) 357-339.
Tenben, H. W. Moiosis in Several Species of Dioecious Monocotyledoneae. I. 'The Possibility of Bex Chromosomes." Gytologia Tujii Jub. Vol. (1937) 95-103.
Harsten, C. Hber enbryonales wachstum und seine tageaperiode." Zeitsohr. Bot. VII (1915) 1-34.
Kellicott, W. H. "Daily Periodicity of cell Bivision." Bull. Wormey Bot. Club. XxXI (1904) 529-550.
*Kolkunor. W. "Contributions to the Problem of Breeding Drought Resistant Orop plants. I. Anatomical and Physiological Investigations of the Degree of Xerophily of certain Cereels." Mom. Polytech. Inst. Kiev, V. (1805) No. 4, (Russien)
Kurabanow, L. fber Befruchtung, Reifung und Keimng bei zygnema." nora ory (1912) 65-84.
Laughling. B. H. Duration of the Several (ifotic stagee in the Diviaing Cells of the Cowmon Onion.' "Cam. Inst. Of Hash. (1919) Pub. 265 Paper 780: 32-35.
Levis, A. O., "Contributions to the Knowledge of the Physiology of Keryokinesis. Bot. Gaz. XcxaI (1901) 424-426.
Indsey, Buth H . "The Chromosomes of DLoecious Anglosperins." Proc. Nat. Acat. Sc1. XV. (1929) 611-613.
- "inhe Chronosomes of some Dioecious Angiosperms." Amer. Jour. Sot. XVII (2930) 152-174.

Iutman, B. F. Cell and Nuclear Division In Glostorinm." Bot. Caz. (2911) 401-430.
mamillen, C. "On the Growth Periodicity of the Potato tuber". Bull. Mnn, Aced. Nat. Sci. III (1901) 355-362.
Howne Bexyl Taylor. The Development of Tollage Leaves." Untv. Iowa Etudies. XIV (1982) 1-19.
Nakajima, G. "cytological Studiee in Some Dioeolous Plante." oytologia Fujli Jub. VoL, (1937) 282-292.
Ono, H. "Periodicity of the Nuclear Divisions in Crepis capillaris." Hellx. Bot. Mas. II (1937) 554-559.
 Arbeiten Bot. Inst. Birzburg. I (1873) 371-384.

* Gaohs, J. Tober den Yinfluss der Luftemporatur und des Tageslit chts auf die stundichen und 招glichen Aenderungen des Langenwachsthums (Strockung) der Internodien." Arbetten Bot Inst. Whízburg. I (1872) 99-192. © Textbook of Botany. Rd. 2 London. Oxford, clarendon Press.
Sinth, G. H. "Anatouy of the Embryonse Leat". Anor. Jour. Sot. xat (1934) 194-209:
Speese, B. M. MM tosis in Leaves of Smlax." Amer. Jour. Bot. XXVI (1939) 852-855.
*Strasburger, E. "Zollbilaung und Zellthellung." $3^{\text {te }}$ Aufl. (1880) p. 171. Jena.
Werd, H, M, "On the Biology of Bacillus ramosus (Braenkel) a Schizonycete of the River Thames. Froc. Hoy. Soc. LVIII (1895) 265-468,
*WIdeman, I. de. Recherches au sujet de 1 "Influence de la temperature sur la marche, la duree of la frequence de carybcinese du regne vegetal." Ann. Soc. Belpe Marose. XV (1891) 5-58,
Zirkie. C. "Aceto-camine Mounting Xedia." Saience LXXXY (1937) 688.
* seen by reference only.

