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ABSTRACT

The detailed specification, implementation, and documentation of an interactive software 
environment based on acontinuous/discrete/continuous imaging system model is presented. 
The purpose of the interactive environment is to support the design and performance anal­
ysis of end-to-end digital imaging systems. Development of the environment is based on 
the objectives of acceptable response time, large sampling grid capability, good graphical 
user interface design, independence from proprietary applications and portability among 
UNIX workstations. While one-dimensional variations of interactive design environments 
have been developed by the commercial active filter design community, there is little or 
no evidence that the increased complexity associated with the extension to two dimensions 
had been satisfactorily accomplished prior to the work in this dissertation. The computer 
time versus computer memory trade-off is discussed as it applies in this particular context, 
and the results of a systematic study of representation passband limits are presented. The 
object of the study was to determine the representation passband parameters beyond which 
any aliasing contribution from frequencies beyond the representation passband is invariably 
negligible. Validation of the environment is documented by an exhaustive consideration 
of simple input scenes comprised of a uniform square on a uniform background, in which 
the square can be arbitrarily small and arbitrarily located within the scene. The effects 
of sampling and the dependence of those effects on sample-scene phase are illustrated in 
1-D, used as a predictor for the 2-D outcome, and then illustrated in 2-D for the purpose 
of comparing the projected and actual results.

xx
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Chapter 1

Introduction

1.1 Preface

This dissertation chronicles the development of an interactive simulation environment for 

the design and performance analysis of end-to-end digital imaging systems. Specifically, 

research focused on the detailed specification, implementation, and documentation of such 

an environment that would provide at least the following capabilities.

• Selecting an input scene from the environment’s library.

• Displaying images in either the spatial domain or the frequency domain.

• Visualizing the input-output matrix representations1 of the input scene as it is pro­

cessed through each component of the end-to-end system (qualitative analysis).

• Analyzing performance based on the evaluation of fidelity metrics (quantitative anal­

ysis).

1 “Matrix representation” is the term used in this dissertation to describe the generic 2-D data structures 
that represent the input scene as it is processed through each component of the end-to-end system.

2
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CHAPTER I. INTRODUCTION 3

• Interactively modifying the system filters.

• Interactively modifying the 2-D (two-dimensional) sampling density.

• Simulating image acquisition noise.

• Isolating and visualizing the effects of aliasing due to spatial sampling.

• Operating in a 1-D (one-dimensional) mode.

Development of the environment2 was originally motivated by concurrent interests in 

the areas of graphical user interface design and digital image processing. A vehicle for 

combining the two areas into a unified field of research was actively sought and identified

as the result of a request to create a framework within which students could develop 1-D

system models in a Discrete Linear Systems class offered by the Department of Computer 

Science. Generation of a graphical user interface to handle a 1-D problem paved the way 

for the extension to the much harder 2-D problem. A search for similar environments 

unearthed several, both 1-D and 2-D. Some of these, in particular the 1-D variety, exhibit 

sophisticated features, but research confirmed that none are based on the comprehensive 2-D 

continuous-input /  discrete-processing /  continuous-output (c/d/c) system model described 

in Chapter 2 [24]. The development of an environment which would support end-to-end 

digital imaging system design and performance analysis utilizing the c/d/c system model 

was established as the primary goal of the dissertation research.

2 “Environment" is the term used consistently in the remainder of this dissertation to denote the suite 
of interactive software developed during the course of this research. The suite of programs facilitates the 
design and performance analysis of end-to-end digital imaging systems, utilizing a front-end graphical user 
interface.
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In developing the specification for and the implementation of an environment based on 

the c/d /c system model, the objectives were:

•  support for end-to-end digital imaging system design and performance analysis;

• acceptable response time;

• sampling grids at least as large as 512 x 512;

• good Graphical User Interface (GUI) design;

• independence from proprietary applications;

• portability among the three UNIX/Linux systems available for test purposes.

The environment was developed in ANSI C as an X Window System application for 

UNIX platforms utilizing version X I1 Release 4 or later. The implementation incorporates 

raw X commands [13, 14] with no other software restrictions on the operation of the envi­

ronment; it runs without software modification on Linux, Irix and Sun operating systems.

1.2 Introduction

As stated in Section 1.1, the environment is based on the c/d/c system model, which is 

described in Chapter 2. It has been demonstrated that this model is more comprehensive 

than other common, but incomplete, models [22, 24] and so is well suited for simulating 

end-to-end digital imaging systems. The environment based on the c/d/c system model 

facilitates imaging system design as well as both qualitative (visual) and quantitative (nu­

merical) evaluation of imaging system performance.
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CHAPTER 1. INTRODUCTION 5

1.2.1 A cceptable response tim es

The facility to visualize the matrix representation of the input scene at various processing 

stages within the c/d/c system model provides insight into the extent to which each system 

component contributes to effects and artifacts observed in the output image. However, if 

the matrix representation could not be displayed interactively within a reasonable period of 

time, the environment would not be very useful. One objective of this research, therefore, 

was to provide an environment with acceptable response times which would facilitate mod­

ification of the c/d/c system model parameters and allow convenient display of the matrix 

representation of the input scene at the input and output of each component of the c/d/c 

system model.

Two computational techniques that are naturally part of the c/d/c system model (de­

pending on implementation details) are CPU-time intensive. These are the calculation of 

direct and inverse 2-D Fourier transforms and 2-D spatial domain convolutions. The use 

of these two computational techniques was considered carefully, therefore, to minimize the 

response time experienced by the user. As a result, input scene data is pre-processed to 

ensure that Fourier representations (i.e., frequency domain representations) are the stan­

dard format for all the data supplied to the environment, and subsequent processing occurs 

exclusively in the frequency domain. This ensures that spatial domain convolutions can be 

implemented as multiplications in the frequency domain on a frequency-by-frequency basis 

and eliminates any delay which would otherwise result from transformation of the input 

scene to the frequency domain.
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1.2.2 Two d istin ct m odes o f operation

Also in the interests of minimizing response time, although ultimately rejected, the opera­

tion of the environment in two distinct modes was investigated.

• The process mode was a 2-D mode in which the 2-D matrix representation of the input 

scene was processed through the c/d/c system model, allowing the user to visualize the 

matrix representation at the input and output of each c/d /c system model component 

and to display 2-D fidelity metrics.

• The design mode was a 1-D mode in which a 1-D vector representation of a typical row 

or column from a 2-D matrix representation was processed through the c/d/c system 

model, allowing the user to view a representation of the 1-D vector at the input and 

output of each c/d/c system model component and to display 1-D fidelity metrics.

In design mode only, the user had the capability to redesign the digital imaging system 

by modifying the c/d/c system model parameters. The purpose of restricting processing 

to 1-D in this case was to allow the user to view the characteristic effects of parameter 

changes without having to wait for 2-D matrix representation processing and display each 

time a parameter is modified. While the environment remained in design mode, changes to 

the system parameters did not affect the 2-D matrix representations. When design mode 

was exited, the environment reverted to process mode and the effects of the altered system 

parameters became visible as the 2-D input scene was processed through the c/d/c system
*

model.

In practice, this two-mode implementation proved cumbersome and frustrating to the 

user and so was rejected. A redesign adapted the philosophy of this approach by replacing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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the process and design modes with 2-D and 1-D modes. This change added the design 

capabilities of 1-D mode to 2-D mode, thus allowing the user to trade off convenience and 

patience versus inconvenience and processing speed, as the merits of a particular scenario 

demand. The 1-D mode, of course, is a useful tool in its own right. It is not simply a means 

of speeding up response time when making filter or system parameter changes.

1.2.3 M em ory requirem ents

In addition to response time, the amount of memory required by the environment was care­

fully considered. To speed processing time, it would be desirable to perform all calculations 

(including transformations to the spatial domain) once and store the results. Subsequently, 

any matrix representation in either domain would be instantaneously accessible. However, 

this would be feasible only when the sampling grid is small, and so the following steps are 

taken to minimize memory requirements.

• Possible values of the user-selected parameters, sampling grid size (N\ x AT2) and 

representation passbands (ti, t 2), are restricted, thus imposing an upper limit on the 

size of the stored data structures.

• As input scenes are pre-processed for inclusion in the environment’s library, scenes 

which exceed 8 times the maximum sampling grid size (1024 x 1024) in either dimension 

are cropped to a maximum of 8192 x 8192.

• Only frequency domain matrix representations are stored.

• Two-quadrant complex conjugacy is utilized, making it necessary to store only half of 

each frequency domain matrix representation.
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• Display size is never allowed to exceed 512 x 512.

The environment can utilize a sampling grid size of 512 x 512 on contemporary systems.

1.3 C /D /C  System Model Background Literature

The c/d/c system model described in Chapter 2 is the basis for the environment. In this 

section, sources for the c/d/c system model and related papers are listed. In each case, a 

brief description of the paper’s content is included. Wherever appropriate, the description 

is a quote from the author(s).

Fidelity Analysis of Sampled Imaging Systems, S. K. Park and Z. Rahman (1999) [24]

“For those sampled imaging systems where the effects of digital image acquisition, 

digital filtering, and image reconstruction are significant, the modeling, simulation and 

performance analysis should be based on a ...  comprehensive continuous-input, discrete- 

processing, continuous-output end-to-end model. This . .. comprehensive model should 

properly account for the low-pass filtering effects of image acquisition prior to sampling, 

the potentially important noiselike effects of the aliasing caused by sampling, additive noise 

due to device electronics and quantization, the generally high-boost filtering effects of digital 

processing, and the low-pass filtering effects of image reconstruction . . . .  Computable inean- 

square-based fidelity metrics are developed by which both component-level and system-level 

performance can be quantified. In addition, . . .  system performance can be assessed qual­

itatively by visualizing the output image as the sum of three component images, each of 

which relates to a corresponding fidelity metric.”
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Digital Image Restoration — Eliminating the Blur for a Clearer Picture, M. R. Banham

and A. K. Katsagellos (1997) [1]

This article provides a review and analysis of modeling techniques for digital image 

restoration under the general headings “Where have we been?,” “Where are we now?,” and 

“Where are we going?” Under the latter heading, the authors affirm the c/d /c model. “Re­

searchers are now attempting to improve the models used in identification and restoration 

by incorporating better prior knowledge into the problem. For example, it has been shown 

that digital restoration may fail when incomplete system models sire used [22]. One exam­

ple of an incomplete system model is that which excludes the image formation, or image 

gathering, process. In moving from the continuous to the discrete domain, the sampling 

and reconstruction procedures may introduce enough distortion in there [sic] own right to 

influence a poor digital restoration. By addressing the continuous to discrete step directly 

in the system/restoration model, the degradation is better modeled, and improvements can 

be made over the incomplete system approach. Though more complex than classical ap­

proaches, techniques of the future will likely make use of more complete models to provide 

better image restorations.”

Information-Theoretic Assessment of Sampled Imaging Systems, F. O. Huck et al. (1999) [9] 

“By rigorously extending modern communication theory to the assessment of sampled 

imaging systems, we develop the formulations that are required to optimize the performance 

of these systems within the critical constraints of image gathering, data t r an sm ission, and 

image display. The goal of this optimization is to produce images with the best possible 

visual quality for the wide range of statistical properties [that one normally encounters 

in] the radiance field of natural scenes . . .  Extensive computational results are presented to
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assess the performance of sampled imaging systems in terms of information rate, theoretical 

minimum data rate, and fidelity.”

Incomplete System Models Can Cause Image Restoration Failures, S. K. Park and R. Hazra 

(1995) [22]

A comparison of the qualitative restoration results obtained by using the c/d /c system 

model versus using a less comprehensive continuous-input /  continuous-output (c/c) system 

model.

Oversampling Requirements for Pixelated-Imager Systems, O. Hadar and G. D. Boreman 

(1999) [6]

“The image quality resulting from a 2-D image-sampling process by an array of pixels 

is described. The description is based on a Fourier transformation of the Wigner-Seitz cell, 

which transforms a unit cell of the sampling lattice in the spatial domain into a bandwidth 

cell in the spatial-frequency domain. The area of the resulting bandwidth cell is a quantita­

tive measure of the image fidelity of the sampling process. We compare the image-quality 

benefits of three different over-sampling geometries in terms of the modulation transfer 

function (MTF) as a function of the amount of oversampling used.”

Influence of Sampling on Target Recognition and Identification, R. Vollmerhausen et al. 

(1999) [28]

“Two perception experiments are conducted to quantify the relationship between im­

ager sampling artifacts and target recognition and identification performance using that 

imager. The results of these experiments show that in-band aliasing (aliasing that overlaps 

the base-band signal) does not degrade target identification performance, but out-of-band 

aliasing (such as visible display raster) degrades identification performance significantly.
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Aliasing had less impact on the recognition task than the identification task, but both 

in-band and out-of-band aliasing moderately degrades recognition performance. Based on 

these experiments and other results reported in the literature, it appears that in-band alias­

ing has a strong effect on low-level discrimination tasks such as point (hot-spot) detection; 

out-of-band aliasing has only a minor impact on these tasks. For high-level discrimination 

tasks such as target identification, however, out-of-band aliasing has a significant impact 

on performance, whereas in-band aliasing has a minor effect. For intermediate-level dis­

crimination tasks such as target-recognition, both in-band and out-of-band aliasing have a 

moderate impact on performance. . . .  The degraded performance due to undersampling is 

modeled as an effective increase in system blur . . . ”

Sampling Criteria for Sensor Simulation, E. Jacobs and T. C. Edwards (1999) [11]

“Electro-optic sensor simulation and sensor design require a common understanding of 

spatial sampling. As part of the development of a high fidelity sensor simulation, the U.S. 

Army Night Vision Electronic Sensors Directorate has developed a methodology that enables 

the simulation designer to minimize the spatial sampling rate of the input image based on 

the sensor parameters. Gabor information theory is used to define the limit imposed on 

the ability to simultaneously represent a spatial function and its Fourier transform. This 

is then coupled with the necessary consequences of sampling the image to develop limits 

that ensure minimal error. Resolution requirements for synthetic presensor imagery can be 

developed using this formalism. These requirements are not based on the instantaneous 

field of view (IFOV) or on the detector width alone but are based on the full sensor point 

spread function.”
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Artificial Scenes and Simulated Imaging, S. E. Reichenbach et al. (1991) [25]

“This paper describes a software simulation environment for controlled image processing 

research. The simulation is based on a comprehensive model of the end-to-end imaging 

process that accounts for statistical characteristics of the scene, image formation, sampling, 

noise, and display reconstruction.”

Developing Operational Performance Metrics Using Image Comparison Metrics and the 

Concept of Degradation Space, C. E. Halford et al. (1999) [7]

“A technique for determining relative degradations from image metrics is presented 

along with a technique for predicting sensor performance from metrics. These techniques 

are illustrated with degradations of blur and noise in thermal imagery. These uses of metrics 

are depicted as mappings among a degradation space, an image quality metric space, and 

an operational performance space. This technique has utility in sampled imagery applica­

tions where input and output image comparison is possible, e.g. validation of an infrared 

scene projector (IRSP), testing image compression algorithms, image simulation, etc. Such 

applications have a known input image and a degraded output image. With the input 

image, one can characterize the output image in terms of its degradations relative to the 

input. The concept of a degradation space leads to developing an Operational Performance 

Metric (OPM) in terms of more traditional Image Quality Metrics (IQMs). The technique 

is illustrated using empirical results for human observers performing recognition tasks with 

thermal imagery in a degradation space of blur and noise.”
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1.4 Comparable Interactive Environments

The search for interactive simulation environments capable of facilitating the design and 

analysis of end-to-end systems unearthed a variety of applications aimed at both the UNIX 

and Microsoft Windows platforms. Although some of the environments were extremely 

impressive, end-to-end systems were hard to find: most displayed only input and output, 

and none were based on a comprehensive 2-D c/d/c system model. The primary purpose 

of the 2-D tools was usually image or data visualization. A representative sample of the 

applications that were found is described here.

1.4.1 Tw o-dim ensional applications

System Image Analyzer from JCD Publishing [33]

System Image Analyzer (SIA) allows a user to design a linear imaging system and to 

visualize the output of that system. Like some other environments which provide linear 

system design capability, SIA displays a collection of icons which represent the prototype 

components of the linear system to be built. The user selects and combines these compo­

nents in series to create an end-to-end system and then has the capability to change the 

parameters of these components. SIA has the functionality that most closely resembles the 

environment. It does not have the capability to implement the full c/d/c system model, 

however, because no component which simulates the effects of sampling is included. SIA is 

a Microsoft Windows-based system.
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The Image Toolbox with Khoros Pro from Khoral Research Inc. [30]

Khoros Pro is software technology for data analysis and visualization, for modeling and 

simulation, and for software development and maintenance. It contains GUI creation capa­

bilities. The Image Toolbox is a library of routines, designed for use with Khoros Pro, that 

provides image manipulation algorithms including convolution and various frequency filter 

design operators. Khoros Pro and the environment which is the subject of this dissertation 

are not directly analogous, but Khoros Pro with the Image Toolbox could possibly have 

been utilized to develop the environment, had the initial objectives not precluded the use of 

proprietary software. Khoros Pro 2001 was developed on UNIX-based operating systems. 

Khoros Pro 2000 also runs on Windows NT.

PV-WAVE Extreme Advantage from Visual Numerics [31]

PV-WAVE for UNIX, Windows 95, Windows NT, and OpenVMS is advanced visual 

data analysis software. PV-WAVE’s interface allows the user to transform raw data into 

high-quality full-color graphics, images and maps. The system’s visual exploration tools 

provide a GUI which is specifically designed for visual data analysis tasks. Executables 

(programs that can be run) prepared on one platform can be transferred to another without 

recompilation. The PV-WAVE: Image Processing Toolkit is a Toolbox designed for use 

with PV-WAVE and is incorporated into PV-WAVE Extreme Advantage. The toolkit 

not only provides a general purpose set of image display and image processing operations 

but also an extensive set of filters and transforms. Tools comparable to those which are 

incorporated in the environment include linear and other spatial domain filters, frequency 

domain filters, noise generation and noise removal. Again, PV-WAVE Extreme Advantage 

and the environment which is the subject of this dissertation are not directly analogous,
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but, like Khoros, PV-WAVE could possibly have been utilized to develop the environment,

had the initial objectives not precluded the use of proprietary software.

xv — Interactive Image Display for the X Window System by John Bradley [3]

xv is an interactive image manipulation program for the X Window System. It can 

operate on many different image formats and on all X displays known to the xv author. The 

application incorporates image enhancement techniques and data processing algorithms, as 

well as the capability to resize and reformat images, but it is not an imaging system design 

tool, xv is a UNIX-based application and was much used as an auxiliary application in the 

development of the environment.

1.4.2 O ne-dim ensional applications

SystemView from ELANIX Inc. [34]

SystemView incorporates high-speed design and evaluation processing embedded in an 

intuitive design environment. It runs under Microsoft Windows with minimal hardware 

requirements, and features comprehensive analog and digital design tools for use in such 

applications as DSP, communications, signal processing and control. SystemView provides 

an approach to analog-digital filter design and discrete time linear system design which is not 

dissimilar to the methodology used by SIA but with a feel that is much more sophisticated. 

The systems are designed using graphical templates, the parameters can be modified at 

will, and then processing is initiated. The system output can be graphically displayed in 

the time, frequency or phase domain.
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AFDPLUS from Webb Laboratories [29]

AFDPLUS is an active filter design environment developed for the commercial active 

filter design community. It will analyze the completed design in the frequency and time 

domains. AFDPLUS features user-defined filter circuits, interactive time and frequency 

domain graphics, schematic display and print functions, and multiple filter combinations 

for the design and analysis of complex systems.

PV-WAVE: Signal Processing Toolkit from Visual Numerics [31]

PV-WAVE: Signal Processing Toolkit is another Toolbox designed for use with PV- 

WAVE. The Toolbox provides a broad selection of predefined and readily customized DSP 

functions. It includes filter analysis functions and both classical and advanced filter designs.

1.5 Overview

The remainder of this dissertation is arranged in the following manner. Chapter 2 describes 

the mathematical model used in the environment at both the conceptual and specification 

levels. The next chapter discusses this model at the implementation level with particu­

lar emphasis on the data structures utilized and the algorithms used to manipulate them. 

Chapter 4 addresses the time versus memory concerns which apply in this particular case. 

The means of optimizing both response time and memory usage are discussed. Model veri­

fication and validation are the topics covered in Chapter 5; extensive results are presented. 

In Chapter 6 , a summary is given, and conclusions drawn from the research are presented. 

Because there is always the possibility for improvement, a final section suggests additions 

and changes which could increase the functionality of the environment.
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Mathematical Model

The environment is based on the continuous-input/discrete-processing/continuous-output 

(c/d/c) system model, which is well described in recent literature [9, 24, 27). This compre­

hensive model has been shown to be better suited for simulating end-to-end digital imaging 

systems than its more common but less complete counterparts [1 , 22] — the continuous- 

input/continuous-output (c/c) imaging system model and the discrete-input/discrete-output 

(d/d) imaging system model. As stated by Park and Rahman in their recent contribution 

to Optical Engineering [24], the first models implemented were c/c models, which modeled 

the image, at all stages of the end-to-end system, as a function. This allowed mathematical 

filter performance analysis, but the model was not applicable to sampled imaging systems. 

With the advent of commonly-available digital computing, the d/d model became popu­

lar. The image was now represented as a 2-D array at all stages and matrix theory was 

applied to analyze system performance. However, because the representation of the image 

started and ended life in digitized form, no simulation of continuous-to-discrete sampling 

effects or discrete-to-continuous reconstruction effects could be introduced into the model.

17
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To comprehensively model a sampled imaging system it is necessary to utilize a c/d/c sys­

tem model which incorporates continuous representations of the image at system input and 

output along with digitized (matrix) representations of the image after sampling, during 

filtering, and prior to reconstruction.

Development of the c/d/c system model can be considered to occur at three levels:

• the conceptual level;

• the specification or design level;

• the implementation level.

In this chapter, Section 2.1 describes the model at the conceptual level. Section 2.2 defines 

the end-to-end system components and parameters and develops the mathematical model 

at the specification level. In the next chapter, the c/d /c system model is described at the 

implementation level, relative to the environment.

2.1 The C /D /C  System Model —  Conceptual Level

The simulation of any digital imaging system should take into account the series of changes 

imposed on the input scene as it is processed in a real-world end-to-end system. These are:

• the blurring (low-pass filtering) caused by the OTF of the lens of the device used in 

the acquisition of the scene;

• the noise-like aliasing artifacts due to sampling (digitization);

• the additive random noise due to device electronics and quantization;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. MATHEMATICAL MODEL 19

• the digital (high-boost) filtering used to compensate for acquisition blurring without 

enhancing the aliasing due to sampling or the artifacts due to noise;

• the effects of reconstruction filtering which attempt to faithfully reproduce an image 

of the input scene and suppress the aliasing.

noise
e

input output

acquisition

sampling ® d

con tinuous d iscre te  con tinuous

F ig u re  2.1: The continuous/discrete/continuous (c /d /c ) system model.

Simulation can be accomplished using the continuous/discrete/continuous (c/d/c) system 

model shown in Figure 2.1 [19, 22, 24]. The model components are:

• input, 5 , a 2-D function:

• acquisition filter, h, a 2-D function;

• spatial sampling, a linear operation;

• additive noise, e, a 2-D array;

• digital filter, / ,  a 2-D array;

• reconstruction filter, d, a 2-D function;

• output, r, a 2-D function.

In Section 2.2, the mathematical representation of the c/d/c system model is presented. 

Two initial subsections identify (t) the system parameters and their interrelationships and
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(it) modeling assumptions. Subsequent subsections develop the mathematical model for 

each of the model components listed above.

2.2 The C /D /C  System Model — Specification Level

Figure 2.2: The 2-D (ii,X2) spatial coordinate system.

The spatial coordinate system used to reference the continuous and sampled representations 

of an input scene is the 2-D (x i , i2) system shown in Figure 2.2. Each grid point represents 

the center of a sensor in the acquisition (continuous-to-discrete) subsystem and the units 

of linear measure are the vertical and horizontal inter-sample distances and £2 -

2.2.1 System  param eters

The parameters which define the c/d/c system model are:

• sampling grid size, x N 2 (integer valued);
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• vertical and horizontal inter-sample distances, &,& (real valued);

• period (FOV) of the input scene, Pi x P2 =  N &  x N262 (real valued);

• representation passband parameters, n  x T2 =  iNi x i f y ,  where t =  1,2,3,4 is user 

selected (integer valued);

• reconstruction passband parameters, rr, x rrj =  kN\ x kN 2 , where k =  t,4 is user 

selected (integer valued);

• vertical and horizontal acquisition filter parameters, (real valued);

• vertical and horizontal digital filter parameters, Ai,A2 (real valued);

• vertical and horizontal reconstruction filter parameters, Q i,a2 (real valued);

• signal-to-noise ratio of the additive noise, SNR (real valued).

The Pi x P2 field of view (FOV) is that part of the scene which is projected onto the 

sensors of the Ni  x N 2 sampling grid. The model represents the scene within the FOV 

by a Fourier series (see Subsection 2.2.2) as a continuous, periodic function in the spatial 

domain and as a corresponding discrete, aperiodic matrix representation in the frequency 

domain. The spatial domain representation is periodic with period Pi x P2 . As illustrated 

in Figure 2.2, the P\ x P2 period is defined in terms of the 2-D sampling grid size, N\ x JV2, 

and the inter-sample area, £1 x £2, by Pi x P2 =  N\£\ x In the frequency domain

representation, it is necessary (and has been shown valid — see Subsection 4.2.1) to assume 

that the representation is band-limited, i.e., that there are only a finite number of Fourier 

coefficients that differ from zero. The representation passband parameters, n ,  T2, define the
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cut-off frequencies of the band-limited input scene. Because band-limiting the input scene 

should not be allowed to mask any significant effects of aliasing, ri and r2 are chosen to be 

integer multiples of Ni  and N 2 respectively. In the environment, subject to the relationships 

specified above and some software constraints, each of the c/d/c system model parameters 

is under user control.

2.2.2 M odeling assum ption (Fourier series, com plex form)

The default modeling assumption used as the basis for the implementation of the c/d/c 

system model is that a real-valued function s in two variables measured over a finite area, 

Pi x P2, can be represented by a band-limited Fourier series as

s ( n , i 2) =  5Z 51 S[ui,U2]exp(i2TTi/iXi/Pi)exp{i2Tru2X2/P2)
kil<n M<rj

for (xi, x2) 6  0? x 0?, where Pi is the height of the area and P2 is the width of the area. The 

complex-valued Fourier coefficients that define the frequency domain representation of s at 

the frequency [1/1/P 1, 1̂ 2 /P 2] are

S[i/i,i/2] =  f  f  s(x i,x2)exp(—t27n/iXi/Pi) exp(—t2irt'2x2/P 2)dxidx2
Jpx J Pt

for [tq, 1̂ ] € 71 x T2<1 The representation passband parameters, r i , r 2, are the cutoff fre­

quency indices for the summation. The corresponding cut-off frequencies are t j /P i ,  t 2/P 2. 

Because the input function s(x i,x2) is real-valued, it can be shown that —1/2] =

^2] and 5[—iq, 1̂ 2] =  5*[1/1, —1/2], as illustrated in Figure 2.3.

lTi = {0,±1,± 2 ,.. .,±n}; 75 = {0,±1,±2....... ±ra}.
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(-n .-T j) ( -n ,r 2)

■? [—t/i, i/2]
= S*[«'i,»'2) =S'[vx , -u2 

•  •

•  •

S[ui,-u2\ S[ 1/1, H

(n ,-r 2) "l (n,r2)

F ig u re  2.3: Complex conjugacy in the frequency domain.

2.2.3 Pre-processing and loading input

The environment offers two methods of input scene selection.

1. The user may choose a digitized (sampled) spatial domain input scene from a menu 

of input scenes available in the environment’s library.

2. The user may choose to synthesize an input scene by defining it directly in the fre­

quency domain. This is achieved by selection from a function menu.

2.2.3.1 digitized input scene

Super-resolution spatial domain images are defined by real brightness values specified at a 

grid of points within a 2-D (1 1 ,1 2 ) spatial coordinate system that is finer than the N\ x N2 

sampling grid shown in Figure 2.2. Such digitized input scenes must be pre-processed before 

being included in the environment’s library. If necessary, an input scene is clipped to the 

maximum size acceptable to the environment and then, if either input scene dimension is 

not a power of 2 , padding, cropping or resampling is performed as specified by the user.
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The output from these two pre-processing stages is an Mi x M 2 matrix of real brightness 

values s'[mi,m 2] overlaid on the Pi x P2 FOV of the c/d /c system model. The matrix is 

assumed to be periodic with period M\ x M2.

The Discrete Fourier Transform (DFT) matrix s', periodic with period Mi x M2, cor­

responding to the digitized input scene s', is defined as

j Wi-lA/j-l
s'[i/i , i/2] = s'[m i)m2]exp(-i27ri/imi/Mi)exp(-i27ri/2m2/M2)

^ ^  m i = 0  m 2 = 0

for [v\, i/2] € 71 x 72- The s'[t/i, j/2] coefficients are computed using a 2-D Fast Fourier Trans­

form (FFT) algorithm, as described in Section 2.2.9. Then, the complex-valued Fourier 

coefficient matrix representation S' corresponding to the band-limited input scene s' is 

constructed from the s' coefficients as indicated.

ut = 0 ,± 1,± 2 ,. . ,± ( M i /2 - l ) ,
1/2 = 0 , ± 1, ± 2 ,. . , ±(M2/2 — 1);

s'[v i ,U2}I2 1/1 = 0 ,± 1,± 2 ,. • ,± ( M i /2 - l ) .
V2 = iM 2/2;

i'[td , ^ ] / 2 ui = ±M i/2,
t/2 = 0 , ± 1, ± 2 ,. • , ±(M2/2 — 1);

a'[u i,t^]/4 u\ = ±M i/2,
i>2 = ±M2/2.

Because the input function s ' ( i i , i 2) is real-valued, S'[i>i.t/2] has the conjugate sym­

metry illustrated in Figure 2.3. Therefore, to conserve memory, only S'[i/i,t/2] coefficients 

in the range i/\ = 0 ,1 , . . .  ,M i/2; i/2 =  0, ± 1 ,... , ±M2/2 are stored in the environment’s 

library.

Pre-processing occurs off-line and once only. When the Fourier domain representation 

of a digitized input scene has been successfully stored in the environment’s library, it is 

thereafter readily available for use at run time.
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2.2.3.2 synthesized input scene

Synthesized input scenes are directly defined in the frequency domain. At run time, 

when a synthesized input scene is selected by the user, S'[^i, i/2] coefficients in the range 

v\ =  0 , 1, . . .  ,Ti; vi € 7i are calculated and stored in memory, where t\ and T2 are re­

spectively the vertical and horizontal input scene passband parameters selected by the 

user. Because the function s '(ii,X 2) is real-valued, S'[i/1, 1/2] coefficients in the range 

i/\ =  - 1, - 2 , . , .  , — t\\ 1/2 € 72 can be generated by conjugate symmetry when required 

for computation, as discussed previously. 

pulse train function

This synthesized input scene is described in Section 5.1.1. 

sharkstooth function

This synthesized input scene is defined as

S'[v 11^2] =  <

b b 
2 ‘  2 U\ =1/2=0

(1 -  ( - 1)"2) 1/1 = 0 ;i/2 =  1, 2 , . . . , r 2

^ ( 1 -(- !)"> )  •! ^1 =  1 ,2 ..........ri; t/2 =  0

(1 — (-1)*'1) (1 -  (-1 )1'2)  ̂1 = 1,2,. . .  ,n ;i/2 = 1,2,...  ,T2

This is a separable function and so can be computed as the product of two coefficient 

vectors.

2.2.3.3 inpu t scene filtering

The convolution s =  t® s ' which results from post-processing the scene function s', periodic 

with period Pi x P2 , through the 2-D scene filter t to obtain the band-limited scene function
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s, also periodic with period Pi x P2 , is defined in the spatial domain as

/ o o  r o o

j  Xj *̂2)^ )x^dx^dx i
■00 J —00

for (xi.xo)  6 S x S .  From the Convolution Theorem, s =  t ® s' if and only if

= T (v i /P \ ,  V2 /P 2 ) S'[vi,i/2]

for [u\, 1/2] G Z  x  Z ,2 w here

/ o o  r o o

I t(x  1, 1 2 ) exp(—i27ro)iXi) exp(—i27ru;2i2)dxidx2
•00 J -00

for (a>i,u;2 ) 6  3? x !R. Therefore, convolution can be implemented in the frequency domain 

as multiplication on a frequency-by-frequency basis. The Fourier transform function T  is 

sampled in the frequency domain at the frequencies a>i =  v\/P\ for i>\ 6  7] and U2 = V2 /P 2 

for t/2 € 72 and the Fourier representation of 5  is generated using complex arithmetic.

For all scene filters, post-processing results in a matrix representation of S[t/i,t/2] co­

efficients in the range =  0 , 1, . . .  , n ;  t/2 € 72- coefficients in the range v\ =

—1, —2 , . . .  , —ti; t/2 € 7i are generated by conjugate symmetry when required for compu­

tation. Although this could indicate a lack of understanding on the user’s part and would 

result in unnecessary processing, if a digitized input scene is selected and t\ > M \/2  and/or 

T2 > M2 / 2 , then the Fourier representation matrices are zero-padded.

2Z = {0, ± l,± 2, ...}.
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2.2.3.4 default implementation

The environment offers a menu of scene filters, each with user-controlled, normalized pa­

rameters, V'liV;2 :

•  Cesaro;

• Dirichlet;

•  Lanczos.

The input scene is automatically post-processed at run time, when the user selects an input 

scene. The default post-processor is a Dirichlet filter which simply applies the product of 

the input scene filter parameters and user-selected representation passband parameters to 

band-limit the input scene. Alternatively, the user may elect to use Lanczos or Cesaro 

filtering to smooth the band-limited Fourier representation of the input scene and thereby 

reduce ringing effects.

2.2.4 A cquisition  filter

The convolution g =  h® s  which results from passing the scene function s, periodic with 

period Pi x P2 , through the 2-D acquisition filter h to obtain the image function g, also 

periodic with period Pi x P2, is defined in the spatial domain as

/oo roo
I h(x[ — x \ , x'i —1 2 )3 (1 1 , X2 )dx[dx'2 

■OO J —OO

for (2 1 ,2 2 ) €  3? x 3?. From the Convolution Theorem, g =  h ® s  if and only if

G[j/i,i/2] =  H  (t^i/Pi, ^2 ! P2 ) S[v\,v-i\ (2.1)
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for [i/lt 1/2] e  Z x  Z, where

/ oo roo
I h(xi, X2 ) exp(-t27rwiii) exp(—i2 iruj2 X2 )dxidx2

■OO J —OO

for (011,0 )2) € 3? x 3?. Therefore, convolution can be implemented in the frequency domain 

as multiplication on a frequency-by-frequency basis. The Fourier transform function H  is 

sampled in the frequency domain at the frequencies = v\/P\  for v\ € 7] and o>2 =  V2 I Pi 

for U2 £ T2 and the Fourier representation of G is generated using complex arithmetic.

Because the function g{x 1, 1 2 ) is real-valued and is band-limited by the input function 

representation passband parameters ti,T 2, only G[u 1, 1̂ 2 } coefficients in the range u\ = 

0 ,1, . . .  ,r i; 1/2 6  are computed and stored. G[u 1, 1/2 ] coefficients in the range u\ = 

- 1, —2 ,...  , —ri; 1̂ 2 6  72 are generated by complex conjugacy, as illustrated in Figure 2.3.

2.2.4.1 default implementation

The environment offers a menu of acquisition filters, each with user-controlled parameters:

• box;

• Gaussian;

• composite.

The default acquisition filter is Gaussian, defined in the spatial domain as the function

',(ii'i ! ) = 3 k exp( z i i ) exp( z f l )  ( 2 - 2 )

for (xi, X2 ) € !Rx!R. The real-valued parameters Pi and P2  are independently controlled and 

allow the user to adjust the level of blurring. The continuous aperiodic Fourier transform
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H  corresponding to the Gaussian filter h is

29

H(u 1,U)2) = exp(-ir$lul) exp{-ir02^l)  (2-3)

for (wi,W2) 6  3i x 3?. In this case, because the Fourier transform corresponding to the 

Gaussian filter is a separable product, i.e., H (u  1, ^ 2 ) =  # 1(^1) # 2(^2). it is only necessary 

to compute and store H\ (wi) = exp at cji = u\/P \, where v\ = 0 ,1 ,2 ,. . .  ,ri,

and Hi (ui) = exp ( - 7rJ3$w$) at U2 = V1 /P 2 , where v2 = 0 ,1 ,2 ,... , t i . The stored matrix 

corresponding to the horizontal component is extended using complex conjugacy to include 

Hi values sampled at the frequencies u 2 = v i/P i,  where u2 = —1, - 2 , . . .  , - r 2.

2.2.5 Spatial sam pling

Given a real periodic band-limited image function g defined by

g(i i , x 2) =  ^ 2  G[vi,V2 ]exp(i2 irviXi/Pi)exp{i2 nv2 X2 /P 2 )
| j / i | < n  | i/ j | < t i

for (x i,x2) G 5R x 3i, the periodic N\ x N 2 matrix

p '[ni,n2] = g (n i^ ,n 26 )

is generated by sampling the function Ny times per vertical period and iV2 times per hor­

izontal period with inter-sample distance £i,?2- The periodic discrete Fourier transform 

matrix p' corresponding to p', is periodic with period N\ x N2 .

Frequency folding, which occurs when a continuous function is sampled, can result in 

image degradation due to aliasing. The effect of this phenomenon is defined by the Periodic
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Sampling Theorem which states that

00 00

i> '[vxM =  E  E  G[ul - k lN u ^ - k 2N2] (2.4)
fcl= -0 0  Jfej=-00

for [i/i,i^]6 Z x  Z.  Because g is band-limited by the input matrix representation passband 

parameters, tx and r2l for any [1/1, 1̂ ] the infinite series becomes finite.

2.2.6 A dditive noise

Stochastic noise is generated using a random variate generator to create a (pseudo-)random 

noise matrix, e, periodic with period JVi x N2. The discrete Fourier transform matrix e. 

periodic with period N\  x N2, is generated by taking the DFT of e. That is,

= ^ n5 , 5 , e[n',"2|exp( _i2,' ( :̂ ) ) exp( _i2’r ( i ^ ) )

for \yx, 1̂ 2] € M  x A/2-3 The discrete Fourier transform matrix p, periodic with period 

N x x N 2> is then generated by adding transform coefficients in the frequency domain, on a 

frequency-by-frequency basis. That is,

p[v 1, U2 ] = p'[ui, i/2] +  e[ux, i/2]

for [u\ , v2] 6  x

2.2.7 D igita l filter

The convolution q = f  ®p which results from passing the matrix p, periodic with period 

N x x N2, through the 2-D digital filter /  to obtain the matrix q, also periodic with period

3A/i = { 0 ,1 ,2 ,. . .  ,Ni  — 1}; A/a =  (0 ,1 ,2 ,...  ,JVa -  1}.
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Ni x JV2, is defined in the spatial domain as

OO OO
g[ni, n2] =  5 Z / K  “  n i > n 2 “  n2]p(n i »n2 \

n'[ = —oo n'2= -o o

for [ni,n2] € M  x A/ .̂ From the Convolution Theorem, q = /  ® p if and only if

# i . " 2] =  /(*'i/Afi,*!2/AJ2)p[i'i»*'2] (2-5)

for [i/i, i/2] € A/i x A/o, where

OO OO
/(wj,u;2) =  ^  ^  /[n i ,n 2]exp(-i27rwini)exp(-i27ru;2n2)

ni= -0 0  fl2=-00

for (ui,u2) 6  !R x Ji. Therefore, convolution can be implemented in the frequency domain 

as multiplication on a frequency-by-frequency basis. The Fourier transform / ,  periodic with 

period 1 x 1, is sampled in the frequency domain at the frequencies uji = v \/N \  for u\ € A/\, 

and w2 = U2 /N 2 for i/ 2 6  A/2.

The environment offers a menu of digital filters, most with user-controlled parameters, 

all defined directly in the frequency domain:

• all-pass;

• Constrained Least Squares (CLS) [8 , 10, 17];

• inverse;

• modified inverse.
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2.2.7.1 default implementation

The default digital filter is a modified inverse filter corresponding to the combination of the 

acquisition and reconstruction filters. The modified inverse filter is defined in the frequency 

domain as

i r ^ i - L u ; ! ] ) ^ ! - L a ; i J )  H'{u* -  -  |u;2J)
-  I w i J W u , !  -  | u > i j ) l 2  +  A2 ) (\H{u)2 ~  M)D(u>2 -  k 2J) |2 + A ^ )

for (uj\,uj2 ) € !R x SR. The real-valued parameters Ai and A2 are independently controlled 

and allow the user to adjust the vertical and horizontal frequency responses of the separable 

digital filter.

2.2.8 Reconstruction filter

Given an A/\ x JV2 matrix q, periodic with period iVj x JV2, and an aperiodic reconstruction 

kernel function d, then the corresponding reconstructed function r = d® q  is periodic with 

period P\ =  N\$\ x P2 = iV2£2. The convolution r = d® q  is defined in the spatial domain 

as

00 00

r(x i,x 2) =  5 3  S  d(Xl - n 2& )?[ni,n2]
m = -0O U2 = —00

for (xi,x2) 6  !R x SR. From the Convolution Theorem, r = d® q  if and only if

R[u 1, 1*2] = ~ ~ D  {vi/Pi,U2/P2) qWuty2\ (2.7)
£K2

for [ i/i,i^ ]e 2 x Z , where

/oo roo
I d(x 1, x2) exp(—i27rwixi) exp (—i 2 tuj2 x2) dx 1 dx2

•00 J—00
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for all (u>i,u>2)-

Therefore, convolution can be implemented in the frequency domain as multiplication on 

a frequency-by-frequency basis. Because of the periodicity of q, the matrix representation 

of the reconstructed image is not necessarily band-limited by the representation passband 

parameters ti,T 2. The Fourier transform D is sampled in the frequency domain at the 

frequencies u>i =  vi/P \  with u\ € Tri ,4 and u 2 = ^2 /^ 2  with 1/2 6 Tri-5 The reconstruction 

passband parameters rri, rrj are the cutoff indices for the frequency-by-frequency multipli­

cation. The corresponding cut-off frequencies are Tri/Pl, TrJP2.

Because the function r {x \ ,x 2) is real-valued, only R{v\ , u2\ coefficients in the range 

v\ = 0 , 1, . . .  , r n ; u2 6  are computed and stored. R[v 1, 1/2] coefficients in the range 

u\ = - 1, - 2 , . . .  , - r ri; 1/2 € %2 are generated by complex conjugacy, as illustrated in 

Figure 2.3.

2.2.8.1 default implementation

The environment offers a menu of reconstruction filters, each with user-controlled parame­

ters:

• parametric cubic;

• triangle function.

The default reconstruction filter is parametric cubic defined in the spatial domain as

d (x i ,x 2) = dai dQ3 (2.8)

%  = { 0 , ± l , ± 2 , . . . , ± r r i}.
STr2 =  {0, ± 1, ± 2, . . .  , ± T r j} .
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where

( (a-l-2 )|x |3 -  {a 
= < a |x |3 — 5a|x |2 +

I o

|3 — (a + 3)|x|2 +  1 |*| < 1  
da (x) =  ̂ a |x |3 -  5a|x |2 +  8a|x | - 4 a  1 < |x| < 2

otherwise.

The real-valued parameters a i  and Q2 are independently controlled and allow the user to 

vary the frequency responses of the vertical and horizontal components of the reconstruction 

filter.

It can be shown that the aperiodic Fourier transform corresponding to the PCC recon­

struction kernel is

D{u)\,u)2 ) =  Dai [<jj\)ba2 {u)z) (2.9)

where6

3 2a
Da{uj) =    (sinc2(u;) -  sinc(2u/)) + (3sinc2(2a>) -  2sinc(2a;) -  sinc(4ui))

for w S 9i. In this case, because the Fourier transform corresponding to the filter is a 

separable product, it is only necessary to compute and store b ai (u>i) at ui\ = v\/P\ with 

v\ =  0 ,1 ,2 ,... , r r, and b a2{W2) at u)2 = V2 IP 2 with V2 =  0 ,1 ,2 ,... , r ri. The stored 

values corresponding to the horizontal component are extended using complex conjugacy 

to include Da 2  values sampled at the frequencies u>2 = vi!P 2 , where 1/2 =  - 1, - 2 , . . . .  — 77,.

2.2.9 Conversion from frequency to spatial domain

To avoid undersampling when s, g and r  are displayed in the typical case n  XT2 = 2N\ x2Aro, 

the default display size is set to 4Ni x 4 ^ 2  • However, the user has the capability to set

8sinc(i) =  sin(x)/x
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ri x r2 to jN i  x j N 2, where j  =  1,2,3,4, and/or to set the display size to kNi x fcJV2, 

where k =  1/2,1,2,4,8 . Frequency folding is applied to the 2jN \  x 2j N 2 Fourier coefficient 

matrices to map them to the kNi x kN 2 display size. Spatial domain equivalents are 

computed by generating the inverse Fourier transform of the matrix representations for S , 

G. and R.

Given the aperiodic matrix of Fourier coefficients S[v1, 1/5], for [y\,i/2] G T\ * T 2, then 

the corresponding band-limited function

s(x i,x2) =  ^ 2  S’[j/i,i/2]exp(i'27ri/ixl/P 1)exp(i27ri/2x2/P 2)
l" ll<n  |^2|<r2

is periodic with period Pi x P2 and is displayed by sampling the function at the points 

xi =  2jnifi/fc, x2 =  2j n 2 f r /k

2t i - 12t j -1  , , vv
s{2 jn i£ i /k ,  2j n 2 £2 /k)  =  ^  S[i/i, v2\ exp ( i2 n ( J

1/1=0 1/2=0 '  '  1 2 /  /

for ni = 0 ,1 ,2 ,... , 2ri — 1 and n2 = 0 ,1 ,2 ,... , 2t2 -  1. The displayed image will not be 

undersampled provided k > 2j. The inverse Fourier transforms of the matrix representations 

of G and R  are similarly defined.

Given the periodic matrix of Fourier coefficients p[v\, u2], defined for [u\,u2\ G M  x J\f2. 

for the purposes of displaying a spatial domain representation, the coefficient matrix is 

clipped or zero-padded to the display size, as appropriate. Then the kN\ x kN 2 spatial 

domain representation is the inverse Fourier transform

p V . n 2l =  £  £  P K ‘* ]H‘p ( i2’r ( ^  +  ^ ) )
1/1=0 1/2=0 v v 1 £ /  '
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for ni = 0 ,1 ,2 ,... , kNi  -  1 and n2 =  0 ,1 ,2 ,... , kN 2 -  1. The inverse Fourier transforms 

of the matrix representations of p and q are similarly computed.

2.2.10 Fidelity analysis

The purpose of the fidelity metrics shown in Figure 2.4 is to serve as an evaluation tool for

noise
e

input output
sampling

\s-g\\ II9 -  r ll
\\s - r

F ig u re  2.4: Fidelity metrics.

changes made to system parameters in the c/d/c system model. The calculations are based 

on Parseval’s Fourier Series Theorems. Given a band-limited function

s ( i i , i 2) =  ^ 2  S[ux,u2}exp ( i 2 n
Wi\<nM<T2 V V 1 2 ' '

which is periodic with period Pi x P2, the mean-square (MS) value of s is

N I2 = p V /  /  \s{xu x 2 )\2 dxidx2 =  ^ 2  £  l% i,i /2]|2-
1 2 Pi ***

Similarly, given the band-limited function r, also periodic with period P\ x P2, the MS 

difference between s and r  is

IIs “  r l l 2 = f  I ls(ari,^2) - r { x i , x 2 )\2 dxidx 2 
P1 P2  Jpx Jp2
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or, equivalently,

||s — r|| =  / 5 3  5 3  | S[vx,v 2] -R [ vu V 2 ] \2. (2.10)
Y |i/i|<m ax(ri,rr i) |vj|<m ax(rj,rP2)

In Equation (2.10), if raax(ri,rri) =  rn , then the S  coefficients in which = n  +  1 , t l 4 - 

2 ,.. .  , rn  are known to be zero. Similarly, if maxfojTrj) =  rr j, then the 5  coefficients in 

which i/j =  T2 +1, T2 +  2 ,... , r r3 are known to be zero. In the cases where max(n, rri) = t\  

and/or max(r2, r r j) =  T2 , the R  coefficients between the limiting frequency indices of the 

reconstruction and representation passband parameters are known to be zero.

0 0.001 0.25 0.5 0.75 1.0 1.25
l |s - g || 0.0 2.2 5.6 8.0 9.7 10.9
lls-H I 13.3 11.3 7.9 5.2 3.8 3.5
IIs ~ r ll 13.3 12.7 11.7 11.2 11.1 11.1

0 1.5 1.75 2.0 2.25 2.5 2.75
Ik - s l l 11.8 12.4 12.9 13.3 13.7 14.0

3.6 3.8 4.2 4.5 4.8 5.1
II* -r || 11.2 11.5 11.9 12.3 12.6 12.8

T ab le  2.1: Center row of image “aerial” with =  64

As an example of the utility of fidelity metrics, Table 2.1 shows 1-D results generated 

by varying the Gaussian acquisition filter parameter, 0, while the CLS restoration filter 

parameter is fixed at A =  0.001 and the parametric cubic reconstruction filter parameter is 

fixed at a  =  -0.5, i.e., the filters are defined by

= exp(—ir0 2u>2)

___________ £H*(u) — [o>J)D*(tJ — [u;])____________
|H {u  -  M )^ (w  -  |wj) | 2 +  A|c(u; -  [u)\)D{u -  |w j) | 2
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where c(u>) =  4 sin(7ru>)2 is the CLS stabilizing functional and

3 2q
Da(u) =  (sinc2(w) “  sinc(2u/)) + (3sinc2(2w) -  2sinc(2u;) -  sinc(4w))

for u  € 9®. Figure 2.5 is a graphical representation of Table 2.1. It is apparent from this

metrics

s — r

2.0 2.5 3.0 00 1.0 1.50.5

Figure 2.5: Varying 0 in filter definition H

figure that the parameter value 0  ~  1.125 is optimal in the sense that it minimizes the 

end-to-end fidelity metric, ||s — r||. A trade-off has to be achieved in selecting a value for

0. If 0  is large, blurring becomes the dominant error factor and so ||s -  r|| approaches 

||s -  <?||. If 0  is small, the error due to aliasing becomes the dominant factor and so ||s — r|| 

approaches ||g — r||.

This trade-off is still more evident if the restoration filter is removed from the system 

model because restoration is an attempt to compensate for the blurring effects caused by 

acquisition. Table 2.2 shows 1-D results generated by varying the Gaussian acquisition filter
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parameter, 0, as in Table 2.1, but with the CLS restoration filter replaced by an all-pass 

filter, i.e., a filter with the response f{u )  = 1 for all u. In this case, the parameter value

0 .001 0.25 0.5 0.75 1.0 1.25

I k - d l 0.0 2 .2 5.6 8.0 9.7 10.9
h  -  r|| 13.4 11.3 7.8 5.0 3.1 1.9
I k - r | | 13.4 12.6 11.7 11.4 11.6 12.0

0 1.5 1.75 2.0 2.25 2.5 2.75

Ik -a ll 11.8 12.4 12.9 13.3 13.7 14.0
lit? -  r|| 1.2 0 .8 0.7 0.6 0.5 0.5
Ik -  r ll 12.4 12.8 13.2 13.5 13.8 14.1

Table 2.2: Center row of image “aerial” with Ar2 = 64 and /(w) = 1

0 ss 0.75 is optimal, as illustrated in Figure 2.6. Moreover, Figure 2.6 shows that, without 

restoration filtering, ||s — r|| becomes coincident with ||s — g|| as the blurring (0 ) increases.

s — rmetrics

1.0 1.5 2.0 2.50 3.00.5

Figure 2.6: Varying 0 in filter definition H  with /(w) = 1 

Fidelity metrics are considered useful to the operation of the environment because, to
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realistically employ the environment as a design tool, it is envisaged that it could be used 

in conjunction with an off-line, front-end process that would generate desirable ranges of 

system parameters. The environment would then be used to test parameters within the 

identified ranges both qualitatively and quantitatively by displaying both the numerical 

fidelity of the results and the changes to the image of the input scene at each stage of 

processing throughout the c/d /c system model.

2.2.11 Reconstructed output as 3 separate components

e

input outputdigital
filter

requency
folding

m

acquisition
filter

reconstruction
filter

F ig u re  2.7: Split O utput from Sampling Box

Figure 2.7 illustrates that, in the frequency domain, the output from the sampling box can 

be separated into two components:

1. the cascaded component, pc[*/i>*/2] =

2 . the error attributable to aliasing,

Pa[t'l» **] =  5Z5Z ”  k lN i ' V2 ~  *2^ ] -
[fci,*2]5*[0,0]
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This is true because, referring back to Figure 2.1,

P >  i,**] =  E  E  G[vl - k lN u v 2 - k 2N 2}
jkl=-00 fc2=—OO

= G[^i,«/2]+  E E  G[ux - k xN u U 2 - k 2N2)
[* l,* j]# [0,0l

The aperiodic aliased component, pa, can be calculated in the frequency domain by sub­

tracting the cascaded component, pc, which is analogous to G, from the composite image, 

p \ which is periodic with period N\ x A^-

Pa[v 1,1*2] =  p '^ 1 , ^ 2 ]  — P c E ^ i. ^2]

OO OO
=  E  E  "2 ~  ^2^2] -  G[u\,U2]

J b i = - o o  k i = - o o

Although pa is aperiodic, the representation passband parameters that band-limit pc, sim­

ilarly band-limit the coefficients of p0 that are affected by pc. Beyond the representation 

passband parameters, pa[^i,^2] = p'Wlt^ ]- During reconstruction, the infinite representa­

tion is band-limited by the reconstruction passband parameters. The components pc and 

pa can be summed with the stochastic noise to obtain p, as illustrated in Figure 2.7.

Figure 2.8 indicates that the same result will be obtained whether the three components 

are added and then passed through /  and D or whether each component is first passed 

through /  and D and the results then summed. The Fourier matrix representation of the 

reconstructed image is the sum of the three image components R c, R e and R a, each of which 

can be calculated and analyzed independently, i.e.,

R[v 1, i/2] =  R c[y 1, t^] +  R e ^ i , 1̂ 2] +  Ra[»u P2]
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noise

input output

Figure 2.8: Cascaded, aliased and noise components.

where the cascaded component is

RcWi ^2\ =  S[uu i/2\H{ui / P i , v2/ P 2) f { v i / Ni , i/2/ N2) D{ ui / Pu u2/ P2),

the noise component is

Re{v\ ,vi ]  =  e[ui,u2} f { u i / N i , u 2/ N 2) D{ u i / P i , u2/ P 2),

and the aliased component is

Rq.V' 1 ,^2 ] =  f { v \ I N i , v 2 / N 2 ) b { v i l P i , v 2 / P 2)

_  ^2 -  k2N2\H( i / \ / Pi -  k i ,u2/ P 2 — k2) \  .

[ki,k2\*[Q,0]

Options in the environment allow the user to select any one of the three separate recon­

structed components for display and analysis in the environment’s main window as an 

alternative to the composite reconstructed output. These options enable the user to an­

alyze qualitatively and quantitatively the noise, cascaded and aliased components, which
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sum to form the system output. It is possible to visualize the matrix representations of the 

individual components in either domain.
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Chapter 3

The C /D /C  Model — 

Implementation Level

In this chapter, Section 3.1 specifies the size and type of stored data structures. The four 

possible component modes available for selection by the user are each considered: composite, 

cascaded component, aliased component, and noise component. Section 3.2 discusses the 

algorithms required to process and display the matrix representations of an image for each 

component mode in both the spatial and frequency domains. Each algorithm is described 

in some detail and pseudo-code is provided.

3.1 Data Structures

The matrix representation of an input scene as it is processed through the c/d/c model can 

be displayed at each of the six model stages shown in Figure 3.1:

44
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noise
e

outputinput

acquisition

sampling

continuous discrete continuous

Figure 3.1: The six stages at which the image can be displayed.

1. input to acquisition filter (s);

2 . output from acquisition filter/input to sampling box (<?);

3. output from sampling box (p');

4. input to digital filter (p);

5. output from digital filter/input to reconstruction filter (q)\

6 . output from reconstruction filter (r).

As discussed in Chapter 2, to speed processing, only the Fourier transform associated with 

the matrix representation at each stage is stored.

3.1.1 S to rag e  o f d isp layed  im age

Recall that N i  and N 2 are user-controlled system parameters which specify the number 

of samples per vertical and horizontal period respectively. The convention adopted in the 

environment is that the size of a displayed image can be user-controlled up to a maximum 

size of SNi x 8 N 2 . The 8-bit brightness values used to define a digitized image are stored 

in a dynamically allocated array of characters, and the array is updated on demand for the 

purpose of image display. Dynamic storage allocation occurs in the function image_display
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on a call from either get_raw_pic or manage-display_size_change, and the dynamically 

allocated storage is freed by either get_raw_pic or manage-display_size_change before 

a reallocation occurs.

3.1.2 S to rag e  o f F o u rie r tra n sfo rm s

The dimensions of the frequency domain matrix representation of an input scene stored in 

the environment’s library are (M \/2 + 1) x M2 , where M\, M 2 € {2m : m = 4 ,5 ,... , 13}. 

Figure 3.2 (a) shows the dimensions and frequency indices of the full-size Fourier transform

 _____________  M 2______________

± M 2/ 2

Mi

± M i/2

- 1

2 t 2

± t 2 - 1

±Ti

- 1

2 t i

(a) (b)

Figure 3.2: The packed transform data structure.

matrix representation which can be generated by complex conjugacy from the coefficient 

array stored in the environment’s library; in Figure 3.2 (b), the representation passband 

parameters r i , r 2 have been applied and the coefficients from the first array have been 

packed into a smaller array. Figure 3.2 illustrates the case M \/2  > ti and M2/2 > r2. In
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the case A/i/2 < n  and M 2 / 2  < T2, all elements of the full-size Fourier transform coefficient 

array are transferred into the corners of a larger array which is zero-padded, as shown in 

Figure 3.3. Combinations of the two illustrated cases are also possible. The following should

 ---------------------  2 t 2 ---------------------

Mx / 2

± n

-A/1/2

-1

M2/2 ± t 2 -M 212 - 1

0

0

0

0

2 ti

be noted.

F ig u re  3.3: The filled transform da ta  structure.

1. The stored data structure is not origin-centered.

2. Only the upper half of the data structure — 0 ,1 ,... , ri) is actually stored.

3. In Figure 3.2(b), the frequency index denoted as ± n  contains the sum of the transform 

coefficients at + t i  and —T \  from Figure 3.2(a). If M \/2  =  r i ,  the frequency index 

denoted as ± ti  contains the transform coefficients from the frequency index denoted 

as ± M i/2  in Figure 3.2(a).
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4. In Figure 3.2(b), the frequency index denoted as ±T2 contains the sum of the transform 

coefficients at +T2 and - 7 5  from Figure 3.2(a). If A/2 /2  =  T2 , the frequency index 

denoted as ± 7 2  contains the transform coefficients from the frequency index denoted 

as ±Af2 /2  in Figure 3.2(a).

5. In Figure 3.2(b), each element of row ± ri and each element of column ±T2 is divided 

by 2 after storage. In this way, the [± ti, ±T2 ] element is divided by 4.

6 . In Figure 3.3, each element of rows M \/2  and -M \ /2  and each element of columns 

A/2 /2  and —M 2 / 2  is divided by 2 after storage. In this way, elements [A/i/2. A/2 / 2]. 

[A/i/2, —A/2/ 2], [—A/i/2, A/2/ 2], and [—M y / 2 , -A/2/ 2] are divided by 4.

3.1.2.1 input to acquisition filter

The user specifies the vertical (ri) and horizontal (T2) passband parameters of the matrix 

representation S  corresponding to the input scene. Therefore, only S[u\,u^  coefficients for 

[v\ , ^2] € 7j x are required for computation. However, because S[i/i, u2] coefficients in 

the range —1, —2 , . . .  , —t \ ; U2 £ To can be generated by conjugate symmetry, only 5 [z>t. £/•>] 

coefficients in the range 0 ,1, . . .  , ri; 1/2 € T2 are stored. The coefficients of S  are stored in 

a dynamically allocated array of (n  + 1) x 2 t 2 variables of COMPLEX type.

3.1.2.2 acquisition filter

It should be noted that the acquisition filter is implemented in the environment as a sep­

arable filter. This requirement is not inherent to the c/d/c model or to the environment's 

design. The filter is so implemented to conserve memory (only a single row and column of 

the 2-D filter need be stored) and to facilitate the independent operation of the 1-D system.
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The coefficients of the sampled Fourier transform H  corresponding to the acquisition 

filter h are temporarily stored in a dynamically allocated array of (ri + 1) x 2 t 2 variables of 

COMPLEX type. The use of a larger data structure would be redundant due to the pass­

band parameters imposed on the input scene. The matrix representation of H  is generated 

by multiplying the stored values at u>i =  t'l/P i, where i>i = 0 , 1 , 2 , . . .  ,ti , by the

stored values ^ 2(^2) at ui2 =  V2 /P 2 , where 1/2 € 72 - The matrix representation of H  is freed 

as soon as G has been computed.

3.1.2.3 output from acquisition filter/input to sampling box

The representation passband parameters limit the size of the matrix representation G which 

corresponds to the image at the output from the acquisition filter. Only G[u\, 1/2 ] coefficients 

for [u\yv2] € T\ x 7i are, therefore, required for computation. However, as for S’, only 

G[vi, 1/2] coefficients in the range v\ =  0 ,1 ,... , n ;  j/2 £ 7j> need be stored. The coefficients 

of G are stored in a dynamically allocated array of (ri +  1) x 2r2 variables of COMPLEX 

type.

noise

input output

Figure 3.4: Cascaded, aliased and noise components.
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3.1.2.4 output from sampling box

The matrix representation of the output from the sampling box is stored in one of three 

possible forms. 

composite output

The matrix representation p', corresponding to the composite output from the sampling 

box shown in Figure 3.1, is periodic with vertical period Ni and horizontal period 

(p  — pc 4- pa, as shown in Figure 3.4, and p' + e = p, as shown in Figure 3.1.) Therefore, 

only p'[u\,U2[ coefficients for € M  x A/j are required for computation. The coeffi­

cients of p' are stored in a dynamically allocated array of N\ x N? variables of COMPLEX 

type.

cascaded component

The matrix representation pc, corresponding to the cascaded component from the sampling 

box shown in Figure 3.4, is analogous to G. The coefficients of pc are stored in a dynami­

cally allocated array of (n  + 1) x 2 t 2 variables of COMPLEX type. 

aliased component

The matrix representation pQ, corresponding to the aliased component from the sampling 

box shown in Figure 3.4, represents the error attributable to frequency folding. See Sec­

tion 2.2.11. The coefficients of pa that cannot be generated by replicating the N\ x No 

composite output from the sampling box (p') are stored in a dynamically allocated array 

of (ri 4-1) x 2x2 variables of COMPLEX type. Any subsequent increase in matrix rep­

resentation size required for processing (e.g., a reconstruction passband parameter greater 

them the corresponding representation passband parameter) can be achieved by padding
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with replications of the Ni x N? matrix representation of the composite output from the 

sampling box at the output from the digital filter, because all cascaded coefficients beyond 

the representation passband parameters must be zero.

The notation for the composite output from the sampling box differs from that used for 

the cascaded and aliased components because the composite output from the sampling box 

is modified by additive noise before input to the digital filter whereas, in the case of the 

components, the output from the sampling box is the input to the digital filter.

3.1.2.5 additive noise

The matrix representation e, corresponding to the additive noise, is periodic with vertical 

period N\ and horizontal period Coefficients in the range [1/ 1, 1/3] € N \  x Mi are required 

for computation, but there is no need to store the data structure as the (pseudo-)random 

noise matrix representation is generated each time noise subsystem processing occurs. The 

coefficients of e are temporarily stored in a dynamically allocated array of N\ x No variables 

of COMPLEX type.

3.1.2.6 input to  digital filter

The matrix representation of the input to the digital filter is stored in one of four possible 

forms.

composite output

The matrix representation p, corresponding to the input to the digital filter, is periodic with 

vertical period Ni and horizontal period JV2. Coefficients of p[v\, i/2] for [iq, ^2] 6  AT\ x N 2 

are required for computation and are consequently stored. The coefficients of p are stored
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in a dynamically allocated array of N\ x N 2 variables of COMPLEX type. 

cascaded component

The matrix representation pc, the cascaded component input to the digital filter, is analo­

gous to the cascaded component output from the sampling box. The coefficients of pc are 

stored in a dynamically allocated array of (n  + 1) x 2t 2 variables of COMPLEX type. 

aliased component

The matrix representation p„, the aliased component input to the digital filter, is analogous 

to the aliased component output from the sampling box. The coefficients of pa are stored 

in a dynamically allocated array of (n + 1) x 2 t 2 variables of COMPLEX type. 

noise component

The matrix representation e is the additive noise component input to the digital filter. 

The coefficients of e are stored in a dynamically allocated array of N[ x No variables of 

COMPLEX type.

3.1.2.7 digital filter

It should be noted that the digital filter is implemented in the environment as a separable 

filter. This requirement is not inherent to the c/d/c model or to the environment’s design. 

The filter is so implemented to conserve memory (only a single row and column of the 2-D 

filter need be stored) and to facilitate the independent operation of the 1-D system.

The coefficients of the sampled Fourier transform / ,  periodic with period Ni x A^. 

corresponding to the digital filter /  are temporarily stored in a dynamically allocated array 

of Ni x N2 variables of COMPLEX type. The matrix representation of /  is generated by 

multiplying the stored values f \ (uq) at uq =  tq/JVi, where €  Afi, by the stored values
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f 2 {u)2) at u)i =  V2 /N 2 , where u2 € U 2- The matrix representation of /  is freed as soon as q 

has been computed.

3.1.2.8 output from digital filter/input to reconstruction filter

The matrix representation of the input to the reconstruction filter is stored in one of four 

possible forms.

composite output from the digital filter

The matrix representation q, corresponding to the output from the digital filter, is peri­

odic with period Ni x N2. Coefficients of q[v 1,^2] for [t'i.J'j] € x Af2 are required for 

computation and are consequently stored. The coefficients of q are stored in a dynamically 

allocated array of N\ x N 2 variables of COMPLEX type. 

cascaded component

The matrix representation qc corresponds to the cascaded component output from the dig­

ital filter. The coefficients of qc are stored in a dynamically allocated array of (ri + 1) x 2r2 

variables of COMPLEX type. 

aliased component

The matrix representation qa corresponds to the aliased component output from the digital 

filter. The coefficients of qa are stored in a dynamically allocated array of (ri + 1) x 2ro 

variables of COMPLEX type. 

noise component

The matrix representation qe, corresponding to the noise component output from the digital 

filter, is periodic with vertical period N i  and horizontal period N2. Coefficients of qe[v\,u2\ 

for [vi, i/2] € M  x M2 are required for computation and are consequently stored. The coeffi­
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cients of qe are stored in a dynamically allocated array of N\ x N 2 variables of COMPLEX 

type.

3.1.2.9 reconstruction filter

It should be noted that the reconstruction filter is implemented in the environment as a 

separable filter. This requirement is not inherent to the c/d/c model or to the environment’s 

design. The filter is so implemented to conserve memory (only a single row and column of 

the 2-D filter need be stored) and to facilitate the independent operation of the 1-D system.

Reconstruction is affected by the vertical (rr i) and horizontal (rr j) reconstruction pass- 

band parameters applied to generate the matrix representation R  corresponding to the 

reconstructed image. The coefficients of the sampled Fourier transform D corresponding 

to the reconstruction filter d are temporarily stored in a dynamically allocated array of 

(rri + 1) x 2r r2 variables of COMPLEX type. The use of a larger data structure would be 

redundant due to the passband parameters imposed on the reconstructed image. The ma­

trix representation of D is generated by multiplying the stored values D \(wi) at u>i = v \jP \.  

where v\ — 0 ,1 ,2 ,... , r ri, by the stored values £ 2 (^2) at ui2 =  v i /P h  where U2 ^ T ri. The 

matrix representation of D is freed as soon as R  has been computed.

3.1.2.10 output from reconstruction filter

The matrix representation R  corresponds to the output from the reconstruction filter. Only 

coefficients for [v\, V2] € 7ri * 7r2 are required for computation. However, because 

R  is analogous to S  and G, only R[vi, 1̂2] coefficients in the range v\ =  0 ,1 ,... , rr i; u2 6  

Tri need be stored. The coefficients of R  are stored in a dynamically allocated array of
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Figure 3.5: Algorithms used in transform processing (composite output from sampling box).
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vector-m ult
(rr, + 1) x 2 rra

Figure 3.6: Algorithms used in transform processing (cascaded output from sampling box).

(rn +  1) x 2Tra variables of COMPLEX type.

3.2 Algorithms

Figures 3.5 to 3.8 are annotated with the names of the algorithms used to create and 

manipulate the Fourier transform data structures. The input dimensions are shown above 

and the output dimensions are shown below the algorithm names. The algorithms are:

— copy -  Section 3.2.2;
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Figure 3.7: Algorithms used in transform processing (aliased output from sampling box).

noise box
Ni x N 2
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digital reconstruction
filter 9c filter
/ D R

vector-m ult
Ni x JV2 
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N \ * N 2

vector-m ult
(rr, +  1) x 2r ri

Figure 3.8: Algorithms used in noise transform processing, 

crop -  Section 3.2.3; 

extend -  Section 3.2.4; 

fill (and/or clip) -  Section 3.2.5; 

frequency fold (fold) -  Section 3.2.6; 

noise -  Section 3.2.8; 

replicate (and/or clip) -  Section 3.2.10; 

vector multiplication (vector-mult) -  Section 3.2.11.
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Figure 3.9: Algorithms used in frequency domain display (composite output from sampling box).
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Figure 3.10: Algorithms used in frequency domain display (cascaded output from sampling box).

Figures 3.9 to 3.12 are annotated with the names of the algorithms used to display the 

contents of the Fourier transform data structures in the frequency domain. As in Figures 3.5 

to 3.8, input and output data structure dimensions are shown respectively above and below 

the algorithm names. The algorithms are:

extend -  Section 3.2.4; 

fill (and/or clip) -  Section 3.2.5; 

frequency fold (fold) -  Section 3.2.6; 

origin center (origin-cntr) -  Section 3.2.9; 

replicate (and/or clip) -  Section 3.2.10.
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Figure 3.11: Algorithms used in frequency domain display (aliased output from sampling box).
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kN x x kN 2 
origin-cntr

Figure 3.12: Algorithms used in frequency domain display of noise component.

Figures 3.13 to 3.16 are annotated with the names of the algorithms used to display the 

contents of the Fourier transform data structures in the spatial domain. Again, input and 

output data structure dimensions are shown respectively above and below the algorithm

names. The algorithms are:

-  clip (and/or zero pad) -  Section 3.2.1;

-  extend -  Section 3.2.4;

-  frequency fold (fold) -  Section 3.2.6;

-  inverse Fast Fourier Transform (inv. FFT) -  Section 3.2.7.

In all discussions which follow, the terms “cropped matrix representation” and “cropped

data structure” refer to a matrix representation in which the coefficients that can be gener-
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Figure 3.13: Algorithms used in spatial domain display (composite output from sampling box).
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Figure 3.14: Algorithms used in spatial domain display (cascaded output from sampling box).

ated using complex conjugacy are not included. The terms “full-size matrix representation” 

and “full-size data structure” refer to a matrix representation that is not cropped.

3.2.1 Clip

The clip algorithm creates a new full-size data structure and stores in it the resized contents 

of an existing full-size data structure that holds a periodic matrix representation. This is 

accomplished by clipping or zero padding, as appropriate. 

parameters:

-  a pointer to an array of type COMPLEX, which contains a full-size, periodic 

matrix representation;
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Figure 3.15: Algorithms used in spatial domain display (aliased output from sampling box).
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Figure 3.16: Algorithms used in spatial domain display of noise component.

■ the dimensions of the input array;

■ the dimensions of the output array.

pseudo-code:

COMPLEX *clip(S, Ml.from, M2_from, Ml.to, M2_to)
{
COMPLEX *clipped_S; 
int m,n;
clipped.S > allocate(Ml_to*M2_to,sizeof(COMPLEX)); 
for (m»0; m<Ml_to/2; m++) 

if (m >■ Ml_from/2) 
for (n«0; n<M2_to; n++)

clipped.S[m*M2_to+n] * 0;
else
{
for (n«0; n<M2_to/2; n++) 

if (n >* M2_from/2)
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clipped.S[m*M2_to+n] * Oj 
else
clipped.S[m*M2_to+n] ■ S[m*M2_from+n]; 

for (n*l; n<»M2_to/2; n++) 
if (n > M2_from/2)
clipped.SC(m+l)*M2_to-n] * 0; 

else
clipped.S[(m+l)*M2_to-n] « S[(m+l)*M2_from-n];

>
for (m*l; m<*Ml_to/2; m++)

if (m > Ml_from/2)
for (n*0; n<M2_to; n++)

clipped.S[(Ml_to-m)*M2_to+n] * 0;
else

for (n*0; n<M2_to/2; n++) 
if (n >= M2_from/2)
clipped.SC(Ml_to-m)*M2_to+n] = 0; 

else
clipped.SC(Ml_to-m)*M2_to+n] = S[(Ml_from-m)*M2_from+n]; 

for (n*l; n<*M2_to/2; n++) 
if (n > M2_from/2)
clipped.SC(Ml_to-m+l)*M2_to-n] = 0; 

else
clipped.SC(Ml_to-m+l)*M2_to-n] = S[(Ml_from-m+l)*M2_from-n];

>
return (clipped.S);

>

3.2.2 Copy

The copy algorithm creates a new data structure and transfers into it the contents of an

existing data structure of the same size.

parameters:

-  a pointer to an array of type COMPLEX, which contains a matrix representation:

-  the dimensions of the array.
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pseudo-code:

COMPLEX *copy(G, Ml, M2)
{
COMPLEX *copied_G; 
int nl,n2;
copied.G * allocate(Ml*M2,sizeof(COMPLEX)); 
for (nl=0; nl<Ml; nl++) 

for (n2»0; n2<M2; n2++)
copied.G[nl*Ml+n2] * G[nl*Ml+n2]; 

return(copied.G);
>

3.2.3 Crop

The crop algorithm creates a new data structure and stores in it a clipped and/or zero- 

padded matrix representation formed from an existing full-size data structure, according to 

the specifications of the passband parameters and discarding that part of the data structure 

which can be generated using complex conjugacy. This is accomplished by:

1. discarding any coefficients beyond the frequency coordinates fa , 2x2 -  1];

2. zero-padding the array, if ri > A/i/2 and/or T2 > A/2/ 2 ;

3. summing column (A/2  — T2) into column T2, if T2 < A/2/ 2 ;

4. summing row (A/i — ri) into row t\, if r\ < A/j/2;

5. dividing column (A/2  — T2) by 2, if T2 < A/2/ 2 ;

6. dividing row (A/i — t\) by 2, if t\ < A/i/2;

7. dividing columns fa )  and (A/2  — T2) by 2, if T2 > A/2/ 2 ;

8. dividing rows fa )  and (Afi — ri) by 2, if n  > A/i/2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. THE C /D /C  MODEL — IMPLEMENTATION LEVEL 63

parameters:

-  a pointer to an array of type COMPLEX, which contains a full-size matrix rep­

resentation;

-  the dimensions of the input array;

-  the dimensions of the output array.

pseudo-code:

COMPLEX *crop(S, Ml.from, M2_from, Ml_to, M2_to)

COMPLEX *cropped_S; 
int ra,n;
cropped.S * allocate(Ml_to*M2_to,sizeof(COMPLEX)); 
for (m*0; m<Ml_to; m++)
{
if (m > Ml_from/2)

for (n*0; n<M2_to; n++)
cropped.S[m*M2_to+n] » 0; 

if Cm == (Ml_to-l)) 
for (n=0; n<M2_to; n++)

cropped_S[Ml_from/2*M2_to+n] /* 2;
>
else

for (n»0; n<*M2_to/2; n++) 
if (n > M2_from/2)
{
cropped.S[m*M2_to+n] * 0; 
if (n ** (M2_to/2)) 
cropped.S [m*M2_to+M2_from/2] /» 2;

>
else
i
cropped.S[m*M2_to+n] * S[m*M2_from+n]; 
if (Cm ■■ (Ml_to-l)) kk ((Ml.from/2) > (Ml.to-1))) 
cropped[m*M2_to+n] +* S[(Ml.from-m)*M2_from+n];

>
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for (n*l; n<M2_to/2; n++) 
if (n > M2_from/2)

cropped.S[(m+l)*M2_to-n] * 0; 
if (n «« (M2_to/2-l)) 
cropped.S[(m+1)*M2_to-M2_from/2] /= 2;

}
else
{
cropped.S[(m+1 )*M2_to-n] = S[(m+l)*M2_from-n] ; 
if ((m »* (Ml_to-l)) kk ((Ml.from/2) > (Ml_to-l))) 
cropped.S[(m+1)*M2_to-n] +* S[(Ml.from-m)*M2_from+n];

>
if (M2_to/2 < M2_from/2)
cropped.S[(m+1)*M2_to-n] +« S[(m+l)*M2_from-n];

>

>

for (n=0; n<M2; n++)
cropped.SC(Ml-l)*M2+n] /= 2; 

for (m=0; m<Ml; m++)
cropped.S[m*M2 + M2/2] /* 2; 

return (cropped.S);

3.2.4 Extend

The extend algorithm creates a new data structure and stores in it a full-size matrix 

representation created from an existing data structure that contains a cropped matrix rep­

resentation by generating the coefficients for — t \ < v \  < 0 using complex conjugacy to 

reconstruct a 2 t \ x  2 t 2 data structure from the stored {t \ - I - 1 )  x 2 t 2 array. 

parameters:

-  a pointer to an array of type COMPLEX, which contains a cropped matrix 

representation;

-  the dimensions of the input array;
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-  the dimensions of the output array.

pseudo-code:

COMPLEX *extend(F, Ml.from, M2_from, Ml.to, M2_to)
{
COMPLEX *F2D;
int nl,n2,nl_pr;
F2D * allocate(Ml_to*M2_to,sizeof(COMPLEX)); 
for (nl«0; nl<*Ml_to/2; nl++)
{
for (n2*0; n2<*M2_to/2; n2++)

F2D[nl*M2_to+n2] * F[nl*M2_from+n2]; 
for (n2*l; n2<M2_to/2; n2++)

F2D[(nl+l)*M2_to-n2] = F[(nl+l)*M2_from-n2];
>

for (nl=l, nl_pr=(Ml_to-l); nl<Ml_to/2; nl++, nl_pr— ) 
{
F2D[nl_pr*M2_to] « F2D[nl*M2_to]; 
for (n2*l; n2<M2_to; n2++)

F2D[nl_pr*M2_to+M2_to-n2] * F2D[nl*M2_to+n2];
>
return F2D;

>

3.2.5 Fill

In the discussion which follows, the term “filler data structure” refers to the N\ x  

N 2 matrix representation of a composite image formed from frequency folding. The fill 

algorithm creates a new full-size data structure, copies to it the contents of an existing data 

structure containing a full-size matrix representation and either clips it or pads it with the 

contents of an Ni x N 2 filler data structure. 

parameters:

-  a pointer to an array of type COMPLEX, which contains a full-size matrix rep­

resentation;
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Figure 3.17: The filled data  structure for spatial domain display ( r  =  .V).

-  a pointer to an array of type COMPLEX, which contains a filler data structure:

-  the dimensions of the input array;

-  the dimensions of the output array.

pseudo-code:

COMPLEX *fill(S, filler, Ml.from, M2_from, Ml.to, M2_to) 
{
COMPLEX *filled.S; 
int m,n,x,y;
filled.S * allocate(Ml_to*M2_to,sizeof(COMPLEX)); 
for (m*0; m<Ml_to/2; m++)

x * fmod(m.Nl); 
if (m >« Ml_from/2) 
for (n*0; n<M2_to; n++)
{
y * fmod(n,N2);
filled.S[m*M2_to+n] * filler[x*N2+y];

>
else
{
for (n«0; n<M2_to/2; n++)
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if (n >* M2_from/2)
{
y - fmod(n,N2);
filled_S[m*M2_to+n] » filler[x*N2+y];

>
else
filled.S[m*M2_to+n] * S[m*M2_from+n];

>
for (n*l; n<»H2_to/2; n++) 

if (n > H2_from/2) 

y * fmod(n,N2);
filled_S[(m+l)*H2_to-n] = filler[(x+l)*N2-y];

>
else
filled.S[(m+1)*M2_to-n] = S[(m+l)*M2_from-n] ;

>

>

>
for (m=l; m<=Ml_to/2; m++)
{
x - Ml - 1 - fmodC(m-l),N1); 
if (m > Ml_from/2)
{
for (n*0; n<M2_to; n++) 

y = fmod(n,N2);
filled.S[(Ml_to-m)*M2_to+n] = filler[x*N2+y];

>
>
else

for (n»0; n<M2_to/2; n++)
{
if (n >* M2_from/2)
{
y * fmod(n,N2);
filled.S[(Ml_to-m)*M2_to+n] * filler[x*N2+y];

>
else
filled_S[(Ml_to-m)*M2_to+n] * S[(Ml.from-m)*M2_from+n];

>
for (n*l; n<*M2_to/2; n++)
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{
if (n > M2_from/2) 

y * fmod(n,N2);
filled_S[(Ml_to-m+l)*M2_to-n-l] * filler[(x+l)*N2-y-l];

>
else
filled_S[(Ml_to-m+l)*M2_to-n-l] * S[(Ml_from-m+l)*M2_from-n-l] ;

>

return (filled.S);

3.2.6 Frequency-fold

2 To

0 X2 ±2.V2 -.V2 -1
0

h . ^ 2 ]
* * # *

-V,

* * * *

±2iV,

* * * *

-A Pl

-1
* * * *

2r,

Figure 3.18: Frequency folding due to sampling.

The frequency-fold algorithm is used to introduce the aliasing due to sampling into the 

model and to synthesize the output images in the case that the display size is not 2 r i  x  2 t? . 

The operation of the frequency-fold algorithm is illustrated in Figures 3.18 and 3.19. 

Figure 3.18 shows a 2ri x  2t2 = 4iVi x ANi matrix representation being sampled N\ times 

per vertical period and N i  times per horizontal period. To simulate the effects of sampling,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. THE C /D /C  MODEL — IMPLEMENTATION LEVEL 69

every frequency index pair [1̂ , 1̂ ] in the N\ x JV2 data structure created by the algorithm

is calculated by “folding” (summing) the coefficients at each of the corresponding marked

points in the input data structure. Because the possible folding scenarios will not all be as
 -----------------  2 r2 ----------------- -

0  Nj  2N i  ± 3  Ni  - 2  N 2 - N 2 - I

Ni

± 3  Ni

- 2  Ni

-tfi

-1

[^1 ,^ 2
♦

]
*

* *

2 n

Figure 3.19: Frequency folding due to sampling.

symmetrical as the one shown in Figure 3.18, the algorithm recognizes the packing method 

used in the transform data structures. For example, synthesis of the spatial domain display 

might require frequency-folding from 6N\ x 6i\T2 to AN\ x 4iV2. This would be accomplished 

as shown in Figure 3.19. 

parameters:

-  a pointer to an array of type COMPLEX, which contains a full-size matrix rep­

resentation;

-  the dimensions of the input array;

-  the dimensions of the output array.
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pseudocode:

COMPLEX* freq_fold2_D(F, Ml.from, M2_from,M l.to, M2_to) 
i
COMPLEX *f_cap;
int mu,nu,mu_pr,nu_pr;
f.cap * allocate(Ml_to*M2_to,sizeof(COMPLEX)); 
for (mu*0; mu<Ml_to; mu++) 

for (nu»0; nu<M2_to; nu++)
{
f.capCmu][nu] * 0;
for (mu_pr»mu; mu_pr<*Ml_from/2; mu_pr+=Ml_to)
<
for (nu_pr*nu; nu.pr<*M2_from/2; nu_pr+=M2_to) 

f.capCmu][nu] +* F[mu_pr*M2_from + nu.pr]; 
for (nu_pr=*nu-M2_to; nu_pr>=-M2_from/2; nu_pr-=M2_to) 

f.capCmu][nu] +* F[(mu_pr+1)*M2_from + nu.pr];
>
for (mu_pr=mu-Ml_to; mu_pr>=-Ml_from/2; mu_pr-=Ml_to)

for (nu_pr»nu; nu_pr<*M2_from/2; nu_pr+=M2_to)
f.cap[mu]Cnu] +* F[(Ml_from+mu_pr)*M2_from + nu.pr]; 

for (nu_pr*nu-M2_to; nu_pr>«*-M2_from/2; nu_pr-=M2_to) 
f.capCmu][nu] +» F[(Ml_from+mu_pr+l)*M2_from + nu.pr];

>
}

return f.cap;
>

3.2.7 Fast Fourier Transform (FFT)

This FFT algorithm computes the direct or inverse Fourier transform of a 2-D array of 

COMPLEX coefficients efficiently, in-place. In the environment, however, the original fre­

quency domain matrix representation must be preserved, and so the FFT algorithm creates 

a new data structure and copies the array to be displayed into it before processing com­

mences.

Any algorithm which computes an Af-point Discrete Fourier Transform (DFT) array,
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and does so with 0 ( M  log2(M)) time complexity, is termed a 1-D Fast Fourier Transform 

[4]. The 2-D inverse (or direct) Fourier transform matrices are computed as a sequence of 

1-D inverse (or direct) FFTs, as illustrated in Figure 3.20. Successive doubling, an iterative

1-D inverse DFTs . 1-D inverse DFTs
of each column of 5  applied to each row of s'

________________  M\ x M2

M2 1-D inverse DFTs Mi 1-D inverse DFTs 
each of length Mi each of length M2

Figure 3.20: Computing a 2-D inverse DFT as a sequence of 1-D direct DFTs.

technique, is one of several FFT algorithms. It can be successfully utilized when M is a 

power of 2 [18] and it is implemented in the environment.

To verify the implementation and accuracy of the Fast Fourier Transform algorithm, (a) 

the direct FFT of an input scene defined in the spatial domain can be computed using the 

algorithm, (b) the output from the direct FFT can be fed into the inverse FFT algorithm, 

and (c) the resulting matrix of coefficients can be compared with that of the original scene. 

There should be no discernible difference greater than that attributable to floating point 

error.

parameters:

— a pointer to an array of type COMPLEX which contains a full-size matrix rep­

resentation;

-  a flag indicating direct (or inverse) transform required;

S  —
Mi x M2
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-  the dimensions of the matrix representation — vertical, horizontal (must be 

powers of 2).

pseudo-code:

Computes the Fourier transform of a 2-D set of COMPLEX coefficients.
sasiiatsiiBBsniBUtitMiiisiBiiisiSBsasssisiisssustnssississasssiss

COMPLEX* FFT2_D(s, direct, M, N)
{
COMPLEX *s_cap,*wm,*wn; 
int betaM,betaN,m,n;
s.cap * allocate(M*N,sizeof(COMPLEX));

/* Copy the existing data structure into the new */ 
for (m*0; m<M; m++) 
for (n*0; n<N; n++)

s.cap[m*N+n] * s[m*N+n];

betaM * exponent(M); (M * 2**betaM)
betaN * exponent(N); (N * 2**betaN)

wm * rootsOfUnity(M,direct); 
wn * rootsOfUnity(N,direct);

for (n*0; n<N; n++)
FFT_col(s,wm,M,N,n,betaM); 

for (m»0; m<M; m++)
FFT_row(s,wn,M,m,betaN); 

if (!direct) 
for (m*0; m<M; m++) 

for (n»0; n<N; n++) 
s[m,n] * M*N*s[m,n]; 

return s;
>

Computes the roots of unity for use as a look-up table by the 1-D 
FFT procedures, 
parameters:
the number of roots required;
a flag indicating direct (or inverse) transform required.
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COMPLEX* rootsOfUnity(divisions, direct)

COMPLEX *w,*one,*prev; 
int j;
w * allocate(divisions+l,sizeof(COMPLEX)); 
v[0] .r - 1; 
w[0] .i « 0;
w[l] .r * cos(2*PI/divisions); 
w[l].i ■ -sin(2*PI/divi8ion8); 
for (j*2; j<(divi8ions/2); j++)
{
w[j] .r ■ wtj-1] .r * w[l] .r - w[j-l] .i * w[l] .i; 
w[j] -i * w[j-l] .i * ii[1] .r + w[j-l] .r * w[l] .i;

}
if (!direct)
for (j*l; j<(divisions/2); j++) 

w[j] .i * - w[j] .i; 
return u;

>

Computes the FFT of one column of the 2-D array, 
parameters:
a pointer to an array of type COMPLEX which contains a full-size 

matrix representation; 
a pointer to an array of type COMPLEX which contains the roots of 

unity;
the height of the matrix representation; 
the width of the matrix representation; 
column index; 
power of 2 of M.

void FFT_col(s, w, M, N, col, beta)
{
COMPLEX temp; 
int period.step^.n^t; 
bitReversalSort_col(s,beta,M,N,col); 
for (period*l, step»M/2; period<M; period**2, step/»2) 
for (n«0; n<M; n+»period) 
for (m*0; (2*m)<M; n++, m+*step)
{
t « n + period;
temp * s[t*M + col] * w[m] ;
s[t*N + col] * s[n*N + col] - temp;
s[n*N + col] * s[n*N + col] + temp;
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>
for (t*0; t<M; t++)

s[t*N + col] * s[t*N + col]/M;
>

Computes the FFT of one row of the 2-D array.

void FFT_row(s, w, M, N, row, beta)
{ . . .

differs from FFT.col only in indexing and 
parameter limits

Performs a bit reversal sort on a column of the 2-D array, 
parameters:
a pointer to an array of type COMPLEX which contains a full-size 

matrix representation; 
power of 2 of M;
the height of the matrix representation; 
the width of the matrix representation; 
column index.

SSSSSSSSSB2SIISSIISS3SSS3S3CS3S3SSasSSSSS38SSSS8S8SSSS8SSSSSSSSSS:sSSS

void bitReversalSort_col(s, beta, M, N, col)
{
COMPLEX temp; 
int m,mDash; 
for (m*0; m<M; m++)
{
mDash » bitReverse(m,beta); 
if (m<mDash)
{
temp « s[m*N + col]; 
s [m*N + col] * s[mDash*N + col]; 
s[mDash*N + col] * temp;

>
>

>

Performs a bit reversal sort on a row of the 2-D array.
2ZXaCSSISISIIIItSSSNSUSUItSSI8StBSSSSB«SSBI81I>SIIISSIZ;

void bitReversalSort_row(s, beta, M, N, row)
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differs from bitReversalSort.col only in indexing 
and parameter limits

Performs a bit reverse on n, where 0 < n < 2**beta. 
parameters:
a pointer to an array of type COMPLEX which contains a full-size 

matrix representation; 
power of 2 of M;
the height of the matrix representation; 
the width of the matrix representation; 
column index.

int bitReverse(n, beta)

int nOash,b; 
nDash = 0;
for (b*0; b<beta; b++)

nDash * 2*nDash + CfmodCn, 2)); 
n * n/2;

>
return nDash;

>

3.2.8 Noise box

The noise box uses a (pseudo-)random number generator to create an iVi x iV2 matrix 

representation. The set of routines utilized is drawn from a custom ANSI C library for 

random number generation [20]. The use of this library is recommended by the routines' 

principal author as a replacement for the ANSI C rand  and srand functions, particularly in 

simulation applications where the statistical “goodness” of the random number generator 

is important. The generator used in this library is a so-called “Lehmer random number 

generator” which returns a pseudo-random number uniformly distributed between 0.0 and
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1.0. The period is (M ODULUS  -1 )  where M ODULUS  = 2,147,483,647 and the smallest 

and largest possible values are (l /M O D U L U S ) and 1 — (l/M O D U L U S) respectively [23]. 

Library routines are used to generate random variables from a Gaussian distribution with 

the specified input parameters [15].

Generator Range (x) Mean Variance

Gauss(m, s) all x m s2

parameters:

-  standard deviation of input scene.

pseudo-code:

COMPLEX *noise_box2_D(s_std_dev_2D)
{
COMPLEX *e2D,*noise; 
double mean,std.dev; 
int n,direct;
noise » allocate(N[l]*N[0]*sizeof(COMPLEX));

mean = 0;
std_dev = s_std_dev_2D/SNR;

PutSeedO; /* reseed the random number gen */
for (n*0; n<N[l]*N[0]; n++)
{
noise[n] = Gauss(mean,std.dev);

>

direct * 1;
e2D « FFT2.D(noise,direct,N[1],N[0]); 
return e2D;

>

This procedure is used to initialize the random number generator. 
The initial seed is obtained from the system clock.
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static long PutSeedO 
{
static long seed;
seed - time (NULL) */. MODULUS; 
return seed;

>

This procedure returns a Gaussian distributed real.
(NOTE: use s > 0) 
parameters:
the mean of the brightness values used to define the digitized 

image (m);
the standard deviation of the brightness values used to define 

the digitized image (s).

double Gauss(m, s)
{
return(m + s * NormalO);

>

This procedure returns a standard normal distributed real. 
It uses a very accurate approximation of the Normal idf due 

to Odeh k Evans.

double
T

NormalO
t
double pO m 0.322232431088;
double Pi m 1.0;
double P2 S 0.342242088547;
double p3 m 0.204231210245e-l;
double p4 * 0.453642210148e-4;
double qO m 0.099348462606;
double qi m 0.588581570495;
double q2 3 0.531103462366;
double q3 U 0.103537752850;
double q4 m 0.385607006340e-2;
double u, t p, q, RandomO;
u « Random(); 
if (u < 0.5) 
t * sqrt(-2*log(u)); 

else
t « sqrt(-2*log(1.0 - u));
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p * pO + t*(pl + t*(p2 + t*(p3 + t*p4))); 
q « qO + t*(ql + t*(q2 + t*(q3 + t*q4))); 
if (u < 0.5) 
return(p/q - t); 

else
return(t - p/q);

>

Random is a Lehmer generator that returns a pseudo-random real 
number uniformly distributed between 0.0 and 1.0.

The period is (MODULUS - 1) where MODULUS * 2,147,483,647 and the 
smallest and largest possible values are (1 / MODULUS) and 
1 - (1 / MODULUS) respectively, 

parameters: 
initial seed.

double Random(seed)
{
const long Q = MODULUS / MULTIPLIER; 
const long R * MODULUS 7. MULTIPLIER; 
long t;
t = MULTIPLIER * (seed 7, Q) - R*(seed/Q); 
if (t > 0) 
seed « t; 

else
seed * t + MODULUS; 

return (seed/MODULUS);
>

3.2.9 O rigin-center

The objective of the origin-center algorithm is to reorient a kNi x AriV2 transform 

data structure for frequency domain display purposes. The data structure is divided into 

four equal quadrants, each of dimension {k/2)Ni x (fc/2)A72, as shown in Figure 3.21 with 

k — 4. Elements of each pair of diagonally opposite quadrants are exchanged, in-place. This 

requires a conceptual shift from the general philosophy used throughout the implementation. 

Other algorithms consider the first “quadrant” to include the row with index equal to half
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4 N2 .

± 2  N2 -1 - 2 N 2

4 N 2 

0 2 A 2 -  1

swap

-i

- 2 A f i

4iVx

2 N X -  1

Figure 3.21: Origin-centering.

the height of the array and the column with index equal to half the width of the array. 

The origin-center algorithm excludes this row and column from the first quadrant. It can 

readily be seen, however, that the integrity of the data structure is maintained. The row 

and column in question are the ones that contain the sum of the coefficients at ±  the lowest 

stored frequencies and can, therefore, be just as correctly placed in the other quadrants. 

For precision, the coefficients in the first row and column of the origin-centered array should 

be divided by 2 (the [—2Ni, — 2 ^ ]  element by 4). It was determined by experimentation, 

however, that for display purposes there is no visible difference. 

parameters:

-  a pointer to an array of type doubie, which contains the magnitude values for 

display;

-  the dimensions of the array.
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pseudocode:

void origin_center(disp, M, N)
{
double temp;
int m,n;
for (m*0; m<(M/2); m++) 
for (n*0; n<(N/2); n++)

temp * disp[m*N + n];
disp[m*N + n] * disp[(m+M/2)*N + (n+N/2)]; 
disp[(m+M/2)*N + (n+N/2)] * temp; 
temp * disp[(m+M/2)*N + n]; 
disp[(m+M/2)*N + n] * disp[m*N + (n+N/2)]; 
disp[m*N + (n+N/2)] * temp;

>

3.2.10 R ep lic a te

4 N2

N ,  2 N 2 3Ar2

AT,

2 Ni 4Ni

3Ni

Figure 3.22: The replicated data structure for frequency domain display.

The rep licate  algorithm creates a kNi  x kNz data structure from an Ni x JV2 array of 

transform coefficients by periodically replicating the contents of the array in both dimen-
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sions, as shown in Figure 3.22 with A: = 4. If k < 1, the N\ x N 2  data structure is clipped

to fcJVj x

parameters:

-  a pointer to an array of type COMPLEX, which contains a matrix representation;

-  the dimensions of the input array;

-  the dimensions of the output array.

pseudo-code:

COMPLEX *replicate(F, Ml.from, M2_from, Ml_to, M2_to)

COMPLEX *F2D; 
int nl,n2;
if ((Ml.from>Ml_to) 11 (M2_from>M2_to))

■C
F = clip(F,Ml_from,M2_from,min(Ml_from,Ml_to),min(M2_from,M2_to)); 
Ml_from = min(Ml_from,Ml_to);
M2_from * min(M2_from,M2_to);

>
for (nl*0; nl<Ml_from; nl++) 

for (n2=0j n2<M2_to; n2++)
F2D[nl*M2_to + n2] = F[nl*M2_from + fraod(n2,M2_from)]; 

for (nl=Ml_from; nl<Ml_to; nl++) 
for (n2*0; n2<M2_to; n2++)

F2D[nl*M2_to + n2] - F2D[(nl-Ml_from)*M2.to + n2]; 
return F2D;

3.2.11 Vector m ultip lication

The vector m ultiplication algorithm creates a 2-D filter transform data structure and 

stores in it the matrix representation of a 2-D filter computed as the cross-product of the
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1-D arrays of separable vertical and horizontal components. 

parameters:

-  a pointer to an array of type COMPLEX, which contains the transform coeffi­

cients of the vertical filter component;

-  a pointer to an array of type COMPLEX, which contains the transform coeffi­

cients of the horizontal filter component;

-  the length of the vertical filter component array;

-  the length of the horizontal filter component array.

pseudo-code:

COMPLEX *vector_mult(matrxA, matrxB, A, B)
{
COMPLEX *matrxC; /* matrxC is A x B */
COMPLEX temp; 
int a,b;
matrxC * allocate(A*B*sizeof(COMPLEX)); 
for (a«0; a<A; a++) 

for (b*0; b<B; b++)
{
matrxC[a*A+b].r * matrxA[a].r*matrxB[b].r -

matrxA [a] . i*matrxB [b] . i); 
matrxC[a*A+b].i * matrxA[a].i*matrxB[b].r -

matrxA[a].r*matrxB[b].i);
>

return matrxC;
>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Tim e/M em ory Considerations

4.1 Response Time

The facility to visualize the matrix representation of the input scene at various processing 

stages within the c/d/c system model provides insight into the extent to which each system 

component contributes to effects and artifacts observed in the output image. However, if 

the matrix representation could not be displayed interactively within a reasonable period of 

time, the environment would not be very useful. One objective of this research, therefore, 

was to provide an environment with acceptable response times which would facilitate mod­

ification of the c/d/c system model parameters and allow convenient display of the matrix 

representation of the input scene at the input and output of each component of the c/d/c 

system model.

83
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4.1.1 Spatial domain convolution

One of the computational techniques that is naturally part of the c/d/c system model 

(depending on implementation details) is 2-D spatial domain convolution, which is CPU­

time intensive. Recall that the convolution g = h ® s, which results from passing the periodic 

function s through the 2-D filter h to obtain the periodic function g, is defined in the spatial 

domain as

/oc roo
I h (x[  —  X i,l2 —  X2)s{x'x,x'i)dx\dx'2  

•00 J-00

for (i i , r 2) 6 SR x !R. In this equation, s is a function defined for all (x\,X 2 ) 6 !R x S. If. 

instead, s were a digitized input scene defined by brightness values specified on a grid of 

points within a 2-D spatial coordinate system, then the analogous definition would be

00 OO

g(mi,m2] = 5 1  5Z  Mmi ~ m2Mm i,m 2]. (4.1)
m| = -o o  m '2= —oo

The array h is the point spread function of the convolution operation which weights the 

contribution of any to a given g[mi,m 2 \ as a function of the distance between

the points [mi,m2] and [m'^m'J. The calculation of each value g[mi,m 2 ], therefore, could

potentially necessitate the summation of every sfm^, m^] weighted according to the point

spread function.

Equivalently, Equation 4.1 can be rewritten as

00 00

S[mi,m2] =  5Z -m 'i ,m 2 ~ m'2].
m \= —00 m'2= —00

Although the summation in the discrete convolution equation is theoretically infinite, in 

most applications all the non-zero values of h are contained within a relatively small region
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centered on [0,0]. That is, there exist positive integer constants M[, M2 and the associated 

set of array indices

K h =  { K .m y  : m \  =  0 ,± 1 ,. . . ,± M [ ,m 2 = 0 ,± 1 ,... ,± M 2}

such that = 0 for ail [m[,m2] $ Kh- In this case, the summation in the discrete

convolution equation may be restated as

g[mu  m2] = ^  h[m\ , -  m \ , m2 -  m 2).
[m'1,m'2]eA'h

Note that, by convention, the cardinality of Kh is = (2M[ + \){2M2 + 1). That is. the 

size of the smallest rectangular region that includes all the non-zero values of h is the filter 

kernel size, \Kh\- It is reasonable to consider that \Kh\ is no larger than the dimensions of 

the digitized input scene, because each point in g could then be affected in spatial domain 

(circular) convolution by every point in the digitized input scene because of the periodicity 

of s. Realistically, \Kh\ would not be that large for most applications.

Similarly, the discrete convolution equation corresponding to reconstruction is

r[m i, m2] =  d[m[ ,m 2)q[mx -  m [ , m2 -  m '2\.

The array d is the point spread function of the convolution operation r = d® q. The size of 

the smallest rectangular region that includes all the non-zero values of d is the filter kernel 

size, \Kd\, and it is reasonable to consider that \Kd\ is no larger than the dimensions of the 

digitized reconstructed scene.
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The discrete convolution equation corresponding to digital filtering is

86

m2] =  5 3  5 3  m2]p[™i ~ rn \,m 2 -  rri2).

The array /  is the point spread function of the convolution operation q — /  ® p. The size of 

the smallest rectangular region that includes all the non-zero values of /  is the filter kernel 

size, \Kf\,  and it is reasonable to consider that \Kf  \ =  N \N 2 because p and q are periodic 

with period Ni x N 2 .

noise
e

input outputdigital
filter

spatial
sampling

S ( - )

acquisition
filter

reconstruction
filter

Sc I Sc Sc
16\Kh\NiN2 N 1N0 \Kf \NiN2 161/TJJV! JV2

complex adds complex adds complex adds complex adds

Figure 4.1: Spatial domain processing complexity.

noise
e

input acquisition A Frequency rJ digital reconstruction
filter L7 folding filter filter
H H -)

►
/ D

output 
* R

2t \t 2 i N \N 2
complex mults [ complex adds :

4 tit2 N \N 2
complex adds complex mults

2rr ,Tr,
complex mults

Figure 4.2: Frequency domain processing complexity.

4.1.2 Parameters affecting response time

Figures 4.1 and 4.2 compare the number and type of operations required to process a 

digitized input scene through the c/d/c system model in the spatial domain and frequency
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domain respectively. This example assumes

• sampling grid size of N \ x N2,

• digitized input scene size of 4Ni x 4N2,

• digitized reconstructed scene (display) size of 4iVi x 4 N 2 ,

•  representation passband ri x r2 = 2N \ x 2N2,

• reconstruction passband rn x rrj =  2Ni x 2 N 2 ,

• filter kernel sizes \Kh\, \K/\ and \Kd\,

• processing of composite image.

Figure 4.1 shows the operations that would be required if processing were performed in the 

spatial domain, and Figure 4.2 shows the operations required if processing is performed 

in the frequency domain. In addition to the time complexity of Figure 4.1 or 4.2, the 

time complexity required to display any image in the domain not used for processing is 

0 {Nd log2(Nd))) where Nd is the 2-D size of the display.

The parameters which affect response time are, therefore:

• sampling grid, Ni x N 2 ;

•  representation passband parameters, ti,T 2 (related to N i ,N 2 , so not independent 

parameters);

•  reconstruction passband parameters, rr, , rrj (related to N i ,N 2 , so not independent 

parameters);
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• display size, Nd (related to N \  x JV2, so not an independent parameter);

• filter kernel size, \Kh\ (limited to 4Ni x 4 N 2 by digitized input scene size);

• filter kernel size, \Kj\ (limited to N\ x N 2 by the periodicity of p  and q);

• filter kernel size, \Kd\ (limited to 4N\ x 4 N 2 by display size).

4.1.3 A lgorithm s affecting response tim e

Because the size of the filter kernels, |A),|, \Kd\ and \Kj\, in the example are such that 

\Kh\AKd\ < 16N \N 2 and \K/\ < N 1N 2 , Figure 4.1 shows that the time complexity of 

processing in the spatial domain is 0{N fN $). This time complexity is attributable to 

spatial domain convolution. From Figure 4.2, the time complexity of processing in the 

frequency domain is shown to be 0(NiN2), because typically T\ = 2Ni, T2 = 2AT2.

In addition to the time complexities shown in Figures 4.1 and 4.2, application of a

2-D FFT is required each time it is necessary to convert a matrix representation from one 

domain to the other. This time penalty is incurred whether processing occurs in the spatial 

domain or the frequency domain, as shown in Table 4.1.

domain process /  display time complexity
spatial process O W t N j )

frequency display 0(MJV2 1o62(JViJV2))
frequency process 0(tiT2) 2: 0 { N iN2)

spatial display 0 ( N iN2 log2(JViiV2))

Table 4.1: Comparison of the time complexity of processing in the spatial domain versus processing 
in the frequency domain.

The implementation of spatial domain convolution and the calculation of direct and 

inverse Fourier transforms was carefully considered. To minimize the response time ex­
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perienced by the user, processing occurs exclusively in the frequency domain so that spa­

tial domain convolution can be achieved by multiplication in the frequency domain on a 

frequency-by-frequency basis. In addition, pre-processing of input scene data is performed 

to ensure that Fourier matrix representations are the standard format of the data supplied 

to the model.

4.1.4 Im plem entation conditions affecting response tim e

As discussed in Chapter 1, the environment provides the user with the capability to design 

a c/d/c system model by modifying any or all of the system and/or component parameters. 

In the interests of reducing response time to a minimum when desired, the environment 

operates in two distinct modes. In 2-D mode, the user has the capability to redesign a c/d/c 

system model by changing the system and/or component parameters and, subsequent to 

every change, the input scene is processed through the system to the currently selected c/d/c 

model stage. In 1-D mode, the user retains the capability to redesign the digital imaging 

system, but changes to system or component parameters do not affect the displayed 2-D 

image representation while the environment remains in 1-D mode. Instead, a representative 

1-D scene, selected from the rows or columns of the 2-D input scene is displayed and 

interactively updated as changes are made to the horizontal or vertical components of the 

system parameters. The 1-D mode of operation allows the effects of parameter changes to 

be viewed instantly without the delay imposed by a 2-D FFT. When 1-D mode is exited, the 

environment reverts to 2-D mode and the effects of the altered system parameters become 

visible when the 2-D scene is processed through the end-to-end system.
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4.2 Memory Requirements

The amount of memory required by the environment was also carefully considered. For 

optimum performance, as an input scene is processed through the c/d/c system model, 

it would be propitious to perform all intermediate calculations once and store the results. 

Subsequently, any matrix representation in either domain would be immediately available 

for display. However, this would be feasible in terms of memory only if the sampling grid 

were small, in which case processing time would not be a problem.

4.2.1 System atic study o f passband lim its

A study was conducted with t \ x  r2 =  N\ x IV2, 2N\ x 2 N 2 , 3iVj x 3No, and 4jVj x 4iV2 using 

the various input scenes shown in Figure 4.3. The object of the study was to determine the 

representation passband parameter beyond which any aliasing contribution from frequencies 

beyond the representation passband is invariably negligible. The system model component 

parameters were:

• Dirichlet scene filter with

i.e., input scene band-limited by r, but no ringing suppression on input;

•  Gaussian acquisition filter (see Figure 4.7 with the parameter values indicated in 

Table 4.2);

•  CLS restoration filter with the parameter values indicated in Table 4.3;

T  =
{

1  Id  =  0 ,  ± 1 ,  . . . , ± T

0 otherwise
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Figure 4.3: N\ x Ar2 spatial domain display of input scenes “zone,” “Yukon,” “polygons,” “Oxford,” 
“MontrealNE,” “square,” “Oban,” “Alberta,” and “multiple.” (ri x r2 = 2JVi x 2JVo.)

Figure 4.4: Ni x N2 frequency domain display of input scenes “zone,” “Yukon,” “polygons,” 
“Oxford,” “MontrealNE,” “square," “Oban," “Alberta,” and “multiple.” (n x r2 = 2NX x 2JV2.)
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Figure 4.5: iVi x Ar2 spatial domain display of aliased component of reconstructed scenes “zone,” 
“Yukon,” “polygons,” “Oxford," “MontrealNE,” “square,” “Oban," “Alberta," and “multiple.” 
(rr, x rr, = 4Ni x 4AT2.)

Figure 4.6: Ni x AT2 frequency domain display of aliased component of reconstructed scenes “zone,” 
“Yukon," “polygons,” “Oxford,” “MontrealNE,” “square,” “Oban,” “Alberta,” and “multiple.” 
(rri x rrj = 4Ni x 4JV2.)
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H( l/2 fl 0
0.01 2.5
0.08 1.8
0.17 1.5
0.27 1.3
0.32 1.2
0.39 1.1
0.46 1.0
1.0 asO

Table 4.2: H(l/2{) values corresponding to Gaussian filter parameter values

A 0
0.0004 2.5
0.003 1.8
0.007 1.5
0.009 1.3
0.004 1.2
0.005 1.1
0.0001 1.0
0.001 «  0

Table 4.3: CLS filter parameter values corresponding to Gaussian filter parameter values

• PCC reconstruction filter (a = -0.5).

Eight different Gaussian filter parameter values were used in the study to ensure that 

artifacts due to aliasing were not invariably masked by blurring. In Figure 4.7, the segment 

of each curve beyond the Nyquist frequency controls the contribution to aliasing effects 

in the reconstructed image. It will be noted that the case (3 =  2.5 appears as though it 

would all but obliterate any frequencies beyond the sampling passband. The case (3 % 

0 (an all-pass acquisition filter) was included as a control case, although only the cases 

1.0 < 0  < 2.5 are realistic. The eight different CLS filter parameter values were empirically
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Limit of sampling passband Limit of representation 
= Nyquist frequency passband for t \  x  t 2 =

1.0

(3 =  1.0

ui
0

Figure 4.7: Varying 0 in filter definition H

chosen by inspection of the 1-D CLS filter responses to produce best-case restoration for 

the corresponding Gaussian filter parameter values. The study was conducted using digital 

input scenes with M\ x M2 > 512 x 512 and a sampling grid size of N\ x JV2 = 64 x 64. 

These choices ensured that any increase in t\ x t 2 increased the number of coefficients with 

the potential to contribute to aliasing from frequencies beyond the sampling passband.

In selecting the reconstruction passband parameters for the study, it was important 

to consider the formation of the aliased component of the reconstructed output in the 

frequency domain. Figure 4.8 demonstrates the relationships among the sampling, repre­

sentation, and reconstruction passbands in each of the four cases included in the study. 

Each diagram depicts the matrix representation Ra. Each blank grid square is an Ni x jV2 

matrix representation formed by frequency folding from the cross-hatched area bounded by
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- T ,-Ta

-T i

n  x  T2 =  2 N i x  2Nir j  x  tj =  JVi x  iVj
-T,

-T ,
- n

i
i

I II I
IIIII * * I 1 I I

n  x t j  =  3/V j x  3iV j * n x T i -  4 Wi  x  4A fj  *

F ig u re  4.8: Relationship between sampling, representation & reconstruction passbands in the 
formation of R a a t each value of t \ x r j .

the representation passband parameters and periodically replicated to fill the area bounded 

by the reconstruction passband. The grid squares beneath the cross-hatched area have the 

potential to have been affected by the cascaded component in each case. In order to evaluate 

the fidelity metric ||rQ||, where

I M =  /  5 1  £  1 * 4 -1 ,K2]|2, (4.2)V \vi\<Tr2

with the objective of establishing a representation passband parameter beyond which changes 

in aliasing effects are negligible, it is essential that the reconstruction passband parameter 

limits be fixed for all four cases, i.e., that r ri x rrj #  n  x T2, which could produce misleading
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results due to the increase in the number of coefficients being summed as T \  x  t 2 increases. 

Furthermore, the reconstruction passband must be as large as is necessary not to mask, 

by clipping, any change in aliasing effects which might otherwise have been discernible. 

To fulfill these requirements for the study, the reconstruction passband parameters were 

stipulated to be rPl x rr, =  4N\ x 4Ni.

Figures 4.3 to 4.6 display the images with t \  x  T2 =  2N\ x 2JV2 and /3 = 2.5. The 

images were resampled from 4Ny x 4 N 2 to Ny x N 2 matrix representations by folding in 

the frequency domain. Resampling was necessary to accommodate display of the scenes 

within the limited space available on a page; unfortunately, resampling resulted in the 

production of more aliasing artifacts, most-readily apparent in the images of input scene 

“zone.” Figure 4.5 is a qualitative display of the aliased component of the reconstructed 

images from Figure 4.3. Note that contrast stretching was used in all the figures. The 

fidelity metric ||ra|| recorded in Tables 4.4 and 4.5 provides a quantitative evaluation of 

aliasing as it is affected by blurring and input scene passband parameters.

4.2.1.1 results

Tables 4.4 and 4.5 record the results obtained with the various images shown in Figure 4.3. 

In every instance, differences (A values) refer to the change in ||ra || from ri x r2 =  iVi x No 

to n  x r2 =  2Ni x 2 N 2 . The results suggest that the aliasing contribution from frequencies 

beyond n  x r2 =  Ni x JV2 are neither highly significant nor completely negligible, but that 

the contribution from frequencies beyond tj x t 2 = 2N\ x 2JV2 are invariably negligible. 

That is, the value of ||ra|| remained constant for all images and all realistic Gaussian filter 

parameters as x t2 increased from 2N\ x 2iV2 to 3N\ x 3JV2 and 4Ni x 4iV2. (The single
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I l r j Hi 1 /20 t  = N t  = 2N

*nIIt- r  =  4JV A||ra ||
zone .01 0.723526 0.723526 0.723526 0.723526 < 1 x 10“6

Yukon .01 2.049196 2.049196 2.049196 2.049196 < 1 x 10"6
polygons .01 0.47781 0.47781 0.47781 0.47781 < 1 x 10"b
Oxford .01 2.367778 2.367778 2.367778 2.367778 < 1 x 10~b

MontrealNE .01 1.61808 1.61808 1.61808 1.61808 < 1 x 10"b
square .0 0.005722 0.005722 0.005722 0.005722 < 1 x 10"°
Oban .01 1.23698 1.23698 1.23698 1.23698 < 1 x 10"6

Alberta .01 1.434278 1.434278 1.434278 1.434278 < 1 x 10“6
multiple .01 0.006275 0.006275 0.006275 0.006275 < 1 x 10~6

zone .08 1.07014 1.070141 1.070141 1.070141 +1 x 10_b
Yukon .08 2.511628 2.511628 2.511628 2.511628 < 1 x 10“b

polygons .08 0.571819 0.571819 0.571819 0.571819 < 1 x 10~b
Oxford .08 2.898134 2.898134 2.898134 2.898134 < 1 x 10_b

MontrealNE .08 2.00945 2.00945 2.00945 2.00945 < 1 x 10_b
square .08 0.006962 0.006962 0.006962 0.006962 < 1 x 10~b
Oban .08 1.422269 1.422269 1.422269 1.422269 < 1 x 10"b

Alberta .08 1.743171 1.743171 1.743171 1.743171 < 1 x 10-6
multiple .08 0.00672 0.00672 0.00672 0.00672 < 1 x 10"6

zone .17 1.323107 1.323159 1.323159 1.323159 +5 x 10"5
Yukon .17 2.784922 2.784923 2.784923 2.784923 +1 x10-6

polygons .17 0.623858 0.623855 0.623855 0.623855 -3  x 10"b
Oxford .17 3.205666 3.205659 3.205659 3.205659 -7  x 10~b

MontrealNE .17 2.238565 2.238562 2.238562 2.238562 -3  x 10"b
square .17 0.007727 0.007727 0.007727 0.007727 < 1 x 10"b
Oban .17 1.532338 1.532338 1.532338 1.532338 < 1 x 10"b

Alberta .17 1.962509 1.962507 1.962507 1.962507 -2  x 10_b
multiple .17 0.00683 0.00683 0.00683 0.00683 < 1 x 10_b

zone .27 1.816512 1.816988 1.816988 1.816988 +5 x lO '4
Yukon .27 3.43091 3.430916 3.430916 3.430916 +6 x 10“6

polygons .27 0.748745 0.748712 0.748712 0.748712 -3  x 10~5
Oxford .27 3.892756 3.89268 3.89268 3.89268 -8  x 10~5

MontrealNE .27 2.769258 2.769276 2.769276 2.769276 +2 x 10“5
square .27 0.009409 0.009408 0.009408 0.009408

01OHXrH1

Oban .27 1.826583 1.826597 1.826597 1.826597 +1 x 10~3
Alberta .27 2.446286 2.446278 2.446278 2.446278 -8  x 10-6
multiple .27 0.007637 0.007637 0.007637 0.007637 < 1 x 10“6

Thble 4.4: Aliasing metric in a systematic study of passband limits (Ni x AT2 = 64 x 64).
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IM H(  1/20 t = N

NII t  = 3N r  = 4JV A||ra||
zone .32 2.930809 2.932119 2.932119 2.932119 +1 X 10-*

Yukon .32 5.152396 5.152419 5.152419 5.152419 +2 x 10"5
polygons .32 1.077683 1.077583 1.077583 1.077583 -1  x 10"4
Oxford .32 5.637332 5.63714 5.63714 5.63714 -2  x 10“4

MontrealNE .32 4.165566 4.165647 4.165647 4.165647 +8 x 10~5
square .32 0.013526 0.013522 0.013522 0.013522 -4  x 10"6
Oban .32 2.624406 2.624416 2.624416 2.624416 +1 x 10"a

Alberta .32 3.620907 3.620948 3.620948 3.620948 +4 x 10~5
multiple .32 0.00971 0.00971 0.00971 0.00971 < 1 x 10"6

zone .39 3.25179 3.255657 3.255657 3.255657 +4 x 10~3
Yukon .39 5.480417 5.480565 5.480565 5.480565 +1 x 10~4

polygons .39 1.137731 1.137418 1.137418 1.137418 -3  x 10~4
Oxford .39 5.969209 5.968836 5.968836 5.968836 -4  x 10~4

MontrealNE .39 4.438917 4.439439 4.439439 4.439439 +5 x 10~4
square .39 0.014365 0.014349 0.014349 0.014349 -2  x 10~5
Oban .39 2.780056 2.780297 2.780297 2.780297 +2 x 10~4

Alberta .39 3.88481 3.88524 3.88524 3.88524 +4 x 10"4
multiple .39 0.010428 0.010429 0.010429 0.010429 +1 x 10~6

zone .46 4.755487 4.765907 4.765907 4.765908 +1 x 10"*
Yukon .46 7.678156 7.678869 7.678869 7.678869 +7 x 10“4

polygons .46 1.537412 1.536653 1.536653 1.536653

T1oXoo1

Oxford .46 8.060959 8.060604 8.060604 8.060604 -4  x 10~4
MontrealNE .46 6.21492 6.216867 6.216867 6.216867 +2 x 10“3

square .46 0.019222 0.019176 0.019176 0.019176 -5  x 10“5
Oban .46 3.788168 3.788828 3.788828 3.788828 +7 x 10~4

Alberta .46 5.336709 5.338817 5.338817 5.338817 +2 x 10~3
multiple .46 0.013125 0.01313 0.01313 0.01313 +5 x lO"6

zone 1.0 16.171013 36.32796 56.043322 73.878323 +2 x 101
Yukon 1.0 15.882069 20.055142 21.518896 22.997176 +4 x 10°

polygons 1.0 3.015319 3.903643 4.965883 6.035234 +8 x 10"1
Oxford 1.0 16.16214 21.829248 23.423581 24.473141 +6 x 10°

MontrealNE 1.0 13.78602 18.05924 19.578237 19.377056 +4 x 10°
square 1.0 0.0385 0.043623 0.059359 0.078138 +5 x 10~3
Oban 1.0 7.571706 9.08459 9.349442 9.398874 +2 x 10°

Alberta 1.0 12.129478 18.272926 19.866667 20.046139 +6 x 10°
multiple 1.0 0.033473 0.04104 0.041878 0.056072 +1 x 10-*

Table 4.5: Aliasing metric in a systematic study of passband limits [cont.] (Ni x j\r2 = 64 x 64).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. TIME/MEMORY CONSIDERATIONS 99

exception was an increase of 1 x 10-6 in the fidelity metric for the image “zone," exhibited 

when the Gaussian parameter was 0  =  1.0 and t\ x t2 =  4N\ x 4Nz.) The magnitude1 of the 

change in ||r0||, as Ti x t2 increased from N\ x JV2 to 2JVi x 2N2, consistently increased for 

each image as blurring decreased but, even with blurring at a practical minimum {0 =  1.0), 

the change in ||ra || did not exceed 0.25% for any image and for most was less then 0.05%. 

In Figure 4.7, the segment of each curve beyond u> — l/£  controls any change in the aliasing 

effects as ri x r2 increases beyond Ni x iV2.

No qualitative changes were visible in the images reproduced in Figures 4.5 and 4.6 as 

the parameters of Tables 4.4 and 4.5 were varied, except in the control case 0  % 0, that is, 

the case in which the acquisition filter was an all-pass filter.

A comparison from Figure 4.8 of the formation of Ra in the three cases in which t \  x r2 

exceeds N\ x jV2 suggests only one plausible explanation for the observed results. Because 

the size of the matrix representation for R a was kept constant, the fidelity metric ||ra || was 

computed from the sum of the square of the magnitudes of 8N\ x 8iV2 coefficients in all 

four cases. As ||rQ|| remained constant for n  x r2 > 2Ni x 2 N 2 , it is logical to assume 

that the matrix representation of R a was negligibly different in those three cases. Whether 

it is surmised that the reconstruction filter may have eliminated all frequencies beyond 

|2iVi| x |2iV2|, or accepted that all the coefficients in the matrix representation are non-zero, 

the conclusion is compellingly the same. If the coefficients corresponding to the frequencies 

beyond |2JVi| x |2iV2| were zero, each N\ x JV2 grid square in the 4Ni x 4JV2 area centered 

on [0,0] must be the same in each of the three cases. The effect of the cascaded component

‘Each Fourier coefficient of the Ni x JVj matrix representation which results from frequency folding might 
be greater than or less than the value obtained with other values of n  x due to the summation of positive 
and/or negative coefficients.
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was identical in each case (within the 4Ni x 4N? area centered on [0,0]), therefore, the 

Ni x N 2 matrix representation formed by frequency folding from the area bounded by the 

representation passband also had to be the same in each case. For this to be true, all 

frequencies beyond |2iVi| x |2iV2| in the input scene representations had to be suppressed 

prior to frequency folding. Likewise, if all coefficients in the matrix representation of R a were 

non-zero, each N\ x N 2 grid square in the area beyond the frequencies |2iVi| x \2N2\ must 

have been the same in each of the three cases. For this to be true, all frequencies beyond 

|2iVi| x |2JV2| in the input scene representations had to be suppressed prior to frequency 

folding.

Because filter parameters that simulate the realistic range of blurring were included 

in the study, it can be concluded that blurring due to acquisition imposes a limit on the 

effects of aliasing due to sampling. This conclusion is consistent with the experimental 

results obtained. In contrast to the quantitative results obtained with a Gaussian filter 

with parameters in the realistic range, the results obtained when blurring at acquisition 

was eliminated (H (l/2£) = 1.0 in Table 4.5), show ||rQ|| to be constantly increasing, for 

all input scenes, as n  x r2 increases from Ni x iV2 to 4Ni x 4iV2; incidentally negating 

the possibility that all frequencies beyond |2JVi| x |2iV2| were eliminated at reconstruction. 

Similarly, when blurring at acquisition was eliminated, visible changes occurred in both 

the reconstructed scene and its aliased component, as t \  x t 2 increased from N\ x N 2 to 

4N\ x 4N 2 , although none were apparent with a Gaussian acquisition filter with parameters 

in the realistic range.

These results obviate the need to include options in which rj x r2 > 2Ni x 2iV2 in 

the environment and, if that restriction were imposed, it would limit the size of all data
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structures to a m ax im u m  of 4Ni x 4JV2. This limitation would have benefits both in terms of 

CPU time and memory. The n  x r2 =  3ATj x 3AT2 and 4Ni x 4N 2 options have been retained 

for the benefit of the dubious who may wish to experiment for themselves, accepting the 

consequent time and memory penalties. The result, however, is of consequence not only to 

the implementation of the environment but also to the implementation of the c/d/c model 

in general.

4.2.2 Parameters affecting data structure sizes

Mi x M 2 
crop 

(T i  +  1 )  X  2 t 2

(n + 1 )  X 2 t 2 
extend 
2ri x 2 t 2 

fold 
JVi x N2 
replicate 

(n  + 1) x 2t2

( n  + 1) x 2 t 2 
extend 
2ri x 2t 2 

fill 
2rr , x 2r rj 

crop 
(rn +  1) x 2rrj

vector-m ult vector-m ultvector-mu

digital
filter

frequency
folding

H -)

acquisition
filter

reconstruction
filter

R

(n  + 1) x 2r2 Ni x N2 
replicate

(n + 1) x 2t2

(Tr, + l ) x  2Trj

Figure 4.9: Maximum matrix sizes involved in transform processing (aliased component).

Figures 4.9, 4.10, and 4.11 show the data structure sizes required to process the Fourier 

matrix representation of an input scene through the c/d/c system model and display the 

aliased component of the selected image in the desired domain. It will be noted from Fig­

ure 4.11 that selection of the aliased component of p', p or q in the spatial domain results in 

the display of the inverse Fourier transform of the matrix representation band-limited by the 

sampling passband parameters. Even though the aperiodic (infinite) matrix representation
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digital
filter

frequency
folding

H -)

acquisition
filter

reconstruction
filter

R

(T! + 1) x 2T2 (n  +  1) x 2r2 (n  +  1) X 2r2 (n  +  1) x 2 t 2 (ti +  1) x 2 t 2  (rr, + 1) x 2t T2 
extend extend extend extend extend extend
2ri x 2t 2 2ri x 2r2 2t\ x 2t 2 2t\ x 2t 2 2t\ x 2 t 2 2tTi x 2rr,

fold fold fill fill fill fold
kN\ x kN2 kNi  x AriV2 fciVj x kN2 AriVi x kN i  x AriV2 AriVi. x kN2

origin-cntr origin-cntr origin-cntr origin-cntr origin-cntr origin-cntr

Figure 4.10: Maximum matrix sizes involved in frequency domain display (aliased component).

cannot be physically realized, this allows the user to visualize, prior to reconstruction, that 

element of the aliased component least likely to be eliminated by the reconstruction filter.

Attempts to increase the band-limits beyond the sampling passband in this instance 

result in “sampled” (dot matrix) images due to the underlying Ni x JV2 periodicity within the 

aperiodic matrix representation. That is, because pa is the difference of p', which is periodic 

with period Ni x N2, and G, which is aperiodic but with most of the significant coefficients 

contained within the N\  x iV2 region centered at [0,0], p„ has the characteristic of an N\ x iV2 

periodic matrix representation except in the region affected by the significant coefficients 

of G. If an inverse Fourier transformation were performed on a matrix representation

digital
f i l t e r

frequency
folding

acquisition
filter

reconstruction
filter

R

(n  + 1) x 2t 2 (tx + 1) x 2 t 2 (ti +  1) x 2 t 2 (n  +  1) x 2t 2 (ti + 1) x 2 t 2 (rr, + 1) x 2Tr.,
extend

2Tio ld T2 
kN i  x kN2 
inv. FFT

extend
2ti x 2t2 

fold 
kNi x kN 2 
inv. FFT

extend
2rx x 2r2 

clip 
Ni x JV2 

clip 
kNi x kN2 

inv. FFT

extend
2rj x 2t2 
clip 

N x x N 2 
clip 

kN i  x kN2 
inv. FFT

extend
2tx x 2 t 2 

clip 
Ni x N 2 

clip 
kNi x kN2 
inv. FFT

extend
2 Tr , X 2 Tr, 

fold 
kNi x kN2 
inv. FFT

Figure 4.11: Maximum matrix sizes involved in spatial domain display (aliased component).
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that contained four replications of the representation of a scene, every other value in the 

generated spatial domain scene would be zero. This is because the Fourier transformation 

recognizes the duplicated data. Likewise then, when an inverse Fourier transformation 

is performed on a matrix representation of pa band-limited to a dimension greater than 

Ni x JV2 , the multiple occurrences of the similar N\ x N 2 regions produce an image with a 

dot matrix appearance.

The parameters which affect data structure size are, therefore, the same as those which 

affect response time, namely the sampling grid size, the representation and reconstruction 

passband parameters, and the display size. It should be noted, as before, that all of these 

parameters are related to N\ x N2.

4.2.3 M em ory usage optim ization

composite image min.
input S ,G ,R P'.P><? display S

elements in Mi M 2 2tit2 N iN 2 I6 N 1N2 2 T\T2

data structure 220 219 216 220 219
bytes/element 2“ 2“ 24 2° 24
bytes/data 2“ 2 23 2i(j 2!W
structure 16MB 8MB 1MB 1MB 8MB
data structures 1 3 3 6 1
bytes/type 16MB 24MB 3MB 6MB 8MB
total w/o disp. 43MB N/A 8MB
total w. display 49MB N/A

Table 4.6: Sampling Grid Ni x AT2 = 256 x 256 (composite image)

To minimize memory requirements:

•  spatial domain matrix representations are not stored;
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composite image min.
input S, G, R P'.P,<7 display S

elements in Mi M 2 2tit2 N iN 2 I6 N 1N 2 2 n r 2
data structure 222 221 218 222 221
bytes/element 24 2 * 24 2° 24
bytes/data 226 225 222 222 225
structure 67MB 34MB 4MB 4MB 34MB
data structures 1 3 3 6 1
bytes/type 67MB 102MB 12MB 24MB 34MB
total w/o disp. 181MB N/A 34MB
total w. display 205MB N/A

Table 4.7: Sampling Grid x jV2 = 512 x 512 (composite image)

• only two quadrants of the frequency domain matrix representations for S. G and R 

(also p', p and q when cascaded or aliased components are being computed) are stored:

• frequency domain coefficients for the other two quadrants of S, G and R  (also p \ 

p and q when appropriate) are generated by complex conjugacy when required for 

computation;

•  spatial domain matrix representations are computed from 4-quadrant frequency do­

main matrix representations by inverse Fourier transform when required for display:

•  the possible values of the user-selected parameters,

-  sampling grid, Ni xiV^,

-  representation passband parameters, ti,T2 ,

-  reconstruction passband parameters, rr i , r r j ,

-  display size, kNi x fciV2,

are restricted, thus imposing an upper limit on the size of data structures.
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aliased component min.
input S t G, R P'.P>9 display S

elements in Mi M 2 2n  t2 2tXT2 I6JV1N2 2tit2
data structure 22° 219 219 220 219
bytes/element 2* 24 2* 2° 24
bytes/data 2U 2*3 2rt 2*o 2*3
structure 16MB 8MB 8MB 1MB 8MB
data structures 1 3 3 6 1
bytes/type 16MB 24MB 24MB 6MB 8MB
total w/o disp. 64MB N/A 8MB
total w. display 70MB N/A

T ab le  4.8: Sampling Grid JVt x AT2 =  256 x 256 (aliased component)

aliased component min.
input 5, G, R P'tPi 9 display S

elements in Mi M2 2 t xt 2 2 n r 2 I6JV1N2 2 t i t 2
data structure 2*2 221 221 2*2 221
bytes/element 2* 24 24 2U 24
bytes/data 22ti 225 2*5 2** 2*5
structure 67MB 34MB 34MB 4MB 34MB
data structures 1 3 3 6 1
bytes/type 67MB 102MB 102MB 24MB 34MB
total w/o disp. 271MB N/A 34MB
total w. display 295MB N/A

T ab le  4.9: Sampling Grid N x x jV2 =  512 x 512 (aliased component)

For a 256 x 256 and a 512 x 512 sampling grid, Tables 4.6 and 4.7 compare the memory 

required to store the Fourier coefficients at the input and output of each component of the 

c/d/c system model, when displaying composite images. In addition, each table shows the 

absolute minimum memory that would be required to store Fourier coefficients (S  only) 

and the memory which would be required to store all 6 display data structures. Each table 

assumes a typical scenario: ti x t2 = rri x rri =  2NX x 2iV2; display size = 4JVj x 4iV2.
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Because maximum memory requirements are invoked when an aliased component is 

selected for display, Tables 4.8 and 4.9 compare the maximum memory required to store 

the Fourier coefficients of the aliased component for a 256 x 256 and a 512 x 512 sampling 

grid.
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Chapter 5

Verification and Validation

5.1 Model Implementation

With a complicated system model implemented at the computational level, there must 

always be concern about verification and validation. Verification of the implementation 

of the c/d/c system model (i.e., verification of the environment) was achieved by manual 

calculation of the frequency domain matrix representation generated when a simple scene 

is processed through the model. The results obtained from the environment were then 

compared with the manual calculations.

Validation was achieved by a more intuitive approach. If the simple input scene is a uni­

form square on a contrasting uniform background, and if that square can be arbitrarily small 

and arbitrarily located within the scene, then the effects of sampling and the dependence 

of those effects on sample-scene phase can be illustrated and studied. With foreknowledge 

of the expected effects, it is possible to compare an expected result to the environment’s 

output. Validation of the environment would be suggested by output from the environment

107
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P2 x2

brightness value 
s(x  i ,x 2) =  b

brightness value 
s(x i,x2) =  0

xi

Figure 5.1: Input scene s (x i,i2) used to verify model implementation (color inverted), 

that is in accordance with intuitive expectations.

5.1.1 Verification

Verification of the environment was achieved by manual calculation of the frequency 

domain matrix representation generated when a simple scene is processed through the c/d/c 

system model. The results obtained from the environment were then compared with manual 

calculations to verify their accuracy.

Digitized input scenes being pre-processed for inclusion in the environment’s library 

are represented by arrays of real brightness values b in the range 6 = 0 ,1 ,... ,255. When 

displayed within the environment, the minimum value in a scene is assigned the brightness 

value 0, the maximum value in the scene is assigned the brightness value 255, and all
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intermediate values are correspondingly scaled. The brightness value 0 produces a black 

dot in a displayed dot matrix representation of the scene, the brightness value 255 produces a 

white dot, and brightness values between these limits produce intermediate gradations of the 

gray-scale. As illustrated in Figure 5.1, to define a simple 2-D scene in the frequency domain, 

the matrix representation of a high-contrast 2-D scene comprised of a uniform rectangle with 

brightness s (x i ,i2) = 6 on a contrasting, uniform background with brightness s(xi,X2) = 0 

was calculated as follows.

Fourier Series in Two-Dimensions -  Complex Form:

The complex-valued Fourier coefficients of the scene are

sh^l  =  ^ / p | piS(x1,x2)e x p (- i2  r ^  + ̂ ^ dx,dl2

=  f f E  r  '  I T ' ’ S ( I" X2,6XP ( i f  +  I ? ) )  iXldX2

= m  r r “ p d w '+ * * ) )diiix2
=  d z i  c *  “ p T 2* ! ? ) d x 2

for = 0, ± 1 ,± 2 ,. . .  ,± r i  and = 0, ± 1 ,± 2 ,. . .  , ±T2- To simplify this equation, let 

a = ~2irv/P, and note that

J  exp {iax)dx =  J  (cos(ax) +zsin(ax))dx = ^exp(zax)
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Therefore,

P1P2

b

Pi
—t'27ri/i exp(-i2irviXi/Pi)

7 l + < h

47T21/i I/2 [ —t
b

—: exp(—i2nv\x \ /  P\)

71

7 l + * l

71

P2
•i2irv2

exp(-t'27TI^X2/P2)
7j+ifj

J72

“ t  exp(—i2itviXilP'i) — %
7 2 + ^ 2

72

4tt2i/iK2 ( ^ 7 êXp “̂ *27ri/l71 ̂ ^ exp(-t'27rj/i1 / Px) -  exp(-i27rr/l7i/Pi))^

^ ^ 7 (exp(—i27ri/272/Pz) exp[-i2nu262/P2) -  exp(-i2flr^272/P2))^

A ^ v \ V2 Q ^ * ^ -1271’1' 171/ ^ 1) “  exp(—i27rt/i7i/Pi) exp(-i27ri/i<Ji/P1))^

^j(exp(-z'27ri/272/P2) -  exp{-12̂ 1/272/P2) exp(-i2nu2S2/Pi))^ (5.1)

To express Equation 5.1 in terms of real and imaginary parts, once again let a = -2nu /P .  

then

t  (exp(107) — exp{ia-y) exp(iaS))
I

t  exp(ia7 )(l — exp(ia£)) 
1

=  T(cos(a7 ) + isin(a7 ))(l -  cos(aJ) — z'sin(a<5)) z

=  T(cos(a7 ) -  cos(a7 ) cos(cnf) — z cos(a7 ) sin(a<S) +

z'sin(a7 ) — z'sin(a7 ) cos(aJ) + sin(a7 ) sin(aJ))

=  -z cos(a7 ) + z cos(a7 ) cos(a<S) -  cos(a7 ) sin(a<S) +

sin(a7 ) — sin(a7 )cos(a(5) -  z'sin(a7 ) sin(arf)
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In this way, Equation 5.1 can be written as

S[i/i, 1/2] =  +  Si)/Pi) -  sin(27rj/i7i/Pi) +

i cos (27ru\ (71 +  Si)/P i ) -  i cos (2ttv\ 71 /P \ ))

(sin(27ri^(72 +  &2)fP2) — sin(27rt/272/P2) +

iC O S (2 7 T l/2 (7 2  +  <52) / P 2) -  t C O s ( 2 7 r i / 2 7 2 / P 2 ) )

=  (sin(27rixi(71 +  <5i)/Pi) -  sin(27rt/171/P i) +

tc o s (2 7 r j / i (7 i  + ( 5 i ) / P i )  -  i c o s (27ti/ i 7 i / P i ))

Vb
^-(sm(27n/2(72 + ^J/Pz) ~ sin^wi^/PO  +

icos(27ri/2(72 +  $2 ) ^ 2 ) ~ i cos(2^ 272/ P 2)) (5.2)

The coefficient matrix 5[«/i, ^2] >st therefore, separable and can be computed as the product 

of two coefficient vectors.

Using a small input scene, 5  was computed manually from Equation 5.2. Equation 2.3 

was used to compute the matrix representation of the acquisition filter H , then 5  and H  

were substituted into Equation 2.1 to obtain G. Using Equation 2.4, p was computed. 

Equation 2.6 was used to compute the matrix representation of the digital filter / ,  then p 

and /  were substituted into Equation 2.5 to obtain q. Equation 2.9 was used to compute 

the matrix representation of the reconstruction filter D, then q and D were substituted into 

Equation 2.7 to obtain R. The R  matrix representation was compared with the results from 

the environment to verify the implementation.
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5.1.2 Validation

Validation was achieved by a more intuitive approach. Sixty-four different input scenes, 

each comprised of a small, bright, uniform Ji x 62 square (the target) on a contrasting,

uniform square background, were synthesized in the frequency domain utilizing Equation

(5.2). Four different sizes of target were used:

1. £1 x S2 — £i/ 2  x £2/ 2 ,

2 . <Si x 62 =  $1 x foi

3. <5i x S2 = 2£i x 2&,

4. <fi x 62 = 3£i x 3£2.

In each case, £1 and £2 are respectively the vertical and horizontal inter-sample distances 

of the sampling grid. For each target size, 16 different input scenes were defined with the 

scenes differing from one another only in the sample-scene phase, i.e., only in the location 

of the target relative to the sampling grid.

5.2 Results

In the discussions that follow, let £ = A fixed set of c/d/c system model components

and system parameters was specified as the test configuration.

1. Ni =  N 2 =  16.

2 . e = C i= 6  =  i.

3. n  x T2 =  2Ni x 2N2.
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4. rn  X  r r, =  2Ni x 2JV2.

5. Display size =  4Ni x 47^2-

6 . Filters

(a) The separable Gaussian acquisition Elter was defined by Equation 2.2 with 

/3i ,/32 = 2.5 (see Figure 5.1);

(b) The separable parametric cubic reconstruction filter was defined by Equation 2.8 

with a i,Q2 = —0.5;

(c) The separable modified inverse digital filter was defined by Equation 2.6 with 

A i , A2 = 0.1.

7. No ringing suppression was applied to the input scene.

8 . Signal to noise ratio was sufficiently high to make noise input negligible.

The filters and filter parameters chosen are typical of those found in an end-to-end digital 

imaging system. The sampling grid size was minimized in order to obtain reconstructed 

images (without additional aliasing artifacts) that would be small enough to print 32 to 

a page for inclusion in this dissertation. The passband parameters were set in accordance 

with the results of the study described in Chapter 4 and the display size set accordingly, 

again to avoid the introduction of aliasing artifacts at the display stage.

Once the images required for comparison had been obtained, the passband parameters 

were reset to AN\ x AN2 and the display size to the maximum of 87Vi x 8 N 2 to enable the 

capture of the highest resolution 1-D information available for construction of the illustrative 

graphs included in this chapter.
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Figure 5.2: Stylized representation of £ x £ input scene 1 (color inverted).

5.2.1 £ x £ ta rg e ts

Sixteen different input scenes, each comprised of a £ x £ white target on a black background, 

were synthesized in the frequency domain. The top left-hand corner of the white target was 

positioned in the center of the black background in the first input scene, as shown in 

Figure 5.2. Subsequent scenes were created by progressively subjecting the £ x £ target to

Numbered 
input scenes

horizontal right shift
0 e/4 e/2 3e/4

vertical
down
shift

0 1 2 3 4
e/4 5 6 7 8

e/ 2 9 10 11 12

3e/4 13 14 15 16

Thble 5.1: Sample-scene phase shift of target in numbered input scenes relative to input scene I.
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Figure 5.3: Placement of £ x £ targets on sampling grid.

three right shifts of £/4 to create the first four input scenes, then subjecting each of these to 

three downward shifts of £/4 to create 12 more input scenes. All 16 input scenes with a £ x £ 

target are defined by Table 5.1 which identifies the sample-scene phase shift of each £ x £ 

target relative to the target’s position in Figure 5.2. Figure 5.3 graphically depicts the 

resultant position of the target in each input scene relative to the sampling grid. It should 

be noted that the 16 targets are combined in the same figure for illustrative purposes only. 

That is, each input scene contained only one target.

In Figures 5.4 to 5.7, the 16 different images are combined for ease of comparison. 

The numbered images are packed as shown in Figure 5.8 and the sample-scene phase shift
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Figure 5.4: Input scenes with (  x £ targets.

Figure 5.5: Blurred input scenes with £ x £ targets.
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Figure 5.6: Reconstructed £ x £ targets.

Figure 5.7: Aliased component of reconstructed { x (  targets.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

F ig u re  5.8: Numbered images in Figures 5.4 to  5.7.

relative to Figure 5.2 (input scene 1) corresponds to Table 5.1 and Figure 5.3. Figures 5.4 

to 5.7  display the 16 images at three different stages of the end-to-end system.

1. Figure 5.4—synthesized input scenes, s;

2. Figure 5.5—blurred, pre-sampling images, g\

3. (a) Figure 5.6—reconstructed images, r;

(b) Figure 5.7—aliased components, ra.

Prior to sampling (Figures 5.4 and 5.5), the image of the target is identical in all 16 cases, 

independent of sample-scene phase. After sampling and reconstruction (Figures 5.6 and 5.7), 

the representation of the target varies significantly with sample-scene phase.

Inspection of Figure 5.3 indicates that there are only six unique conditions which result 

from sample-scene phase shift among the 16 2-D input scenes. Identifying scenes by the 

numbering system established in Table 5.1, it is evident that these groupings correspond 

exactly to the results which can be observed in the reconstructed images of Figures 5.6 

and 5.7. Specifically, from Figure 5.3, it can be observed that:

1. scenes 1 and 11 are unique;

2. by rotation, scenes 3 and 9 have the same sample-scene phase;
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F ig u re  5.9: Fourier representation of a pulse train  function with ringing due to truncation.

F ig u re  5.10: Stylized Fourier representation of a  pulse train  function with ringing.

3. the remaining scenes can be divided into three groups of four, each group of four 

having the same sample-scene phase on rotation. The groups are

(a) 2, 4, 5, and 13;

(b) 6 , 8 , 14, and 16;

(c) 7, 10, 12, and 15.

Equation (5.2) defines each 2-D input scene as the product of two coefficient vectors, 

each of which represents a pulse train function, such as is shown in Figure 5.9. The effects

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. VERIFICATION AND VALIDATION 120

of sample-scene phase shift on the 1-D functions as they are processed through the c/d/c 

model can be used as a predictor for the results expected from the 2-D implementation. The

1-D functions corresponding to the coefficient vectors were studied with the pulse located 

at each of the four possible positions relative to the sampling grid.

The band-limited Fourier series representation of the function, s , is subject to ringing, 

and no smoothing was applied to the synthesized input scenes to suppress these effects. The 

ringing artifacts are represented in the graphs to follow in the stylized manner exhibited 

in Figure 5.10 because Figures 5.10 to 5.16, Figures 5.23 to 5.28, Figures 5.35 to 5.40 and 

Figures 5.47 to 5.52 were generated using output from the environment, which supports a 

maximum of 8 coefficients per sampling interval in the matrix representation of a scene.

Figures 5.11 to 5.13 demonstrate one reason why the 2-D scenes vary one from another 

after sampling. Each figure shows a 1-D horizontal cross-section through the £ x £ high- 

contrast target of a 2-D input scene. Each figure is comprised of

1. the ideal f-width pulse train function (as solid straight lines);

2. the band-limited Fourier series representation of that function, s ( as in Figure 5.10):

3. the output from the acquisition filter, g (as a smooth curve);

4. the sampled sequence, p' (denoted by bullets).

No two of the p' sequences are the same due to the sample-scene phase shift in the location 

of the £-width pulse.

Figures 5.14 to 5.16 show how the aliased component, r a, is affected by sample-scene

phase shift. In this case, each figure is comprised of
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p
2

F ig u re  5.11: Pulse train  s and g functions — sample-scene phase shift centered pulse between 
sampling points.

P

F ig u re  5.12: Pulse train  s and g functions — sample-scene phase shift centered pulse on sampling 
point.

P

F ig u re  5.13: Pulse train  s and g functions — sample-scene phase shift positioned pulse asymmet­
rically relative to  sampling points.
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1. the ideal f-width pulse train function;

2 . the sampled sequence, p' (denoted by bullets);

3. the output sequence, <7, from the digital filter (denoted by open circles);

4. the end-to-end system output, r  (as a smooth curve);

5 . the aliased component of the end-to-end system output, ra (as a smooth curve).

Input scene number pre-sampling 1-D functions post-sampling 1-D functions
1,5,9,13 Figure 5.11 Figure 5.14

3,7,11,15 Figure 5.12 Figure 5.15
4,8,12,16 Figure 5.13 Figure 5.16
2,6,10,14 v.m.i. of Figure 5.13 v.m.i. of Figure 5.16

Table 5.2: Relationship between numbered input scenes and 1-D figures (v.m.i. denotes “vertical 
m irror image”).

Table 5.2 identifies the provenance of the six 1-D figures. In addition, corresponding 1-D 

figures derived from input scene 2 et al. produce the vertical mirror image of Figures 5.13 

and 5.16. From Figures 5.14 to 5.16, it will be noted that no two of the q sequences 

are the same due to the sample-scene phase shift in the location of the £-width pulse. 

The combined effects of sample-scene phase shift and aliasing on the reconstructed image 

might be expected therefore to be significant, at least when the dimension of the target is 

comparable to a unit area of the sampling grid, as in this case.

As specified in Table 5.1, only four horizontal and the same four vertical sample-scene 

phase shifts were implemented to generate the 16 2-D input scenes with a £ x f  target. 

Equivalently, each pulse train function was subjected to one of only four possible sample- 

scene phase shifts.
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Figure 5.14: Pulse train r and ra functions — sample-scene phase shift centered pulse between 
sampling points.

P
2

Figure 5.15: Pulse train r  and r Q functions — sample-scene phase shift centered pulse on sampling 
point.

Figure 5.16: Pulse train r  and ra functions — sample-scene phase shift positioned pulse asymmet­
rically relative to sampling points.
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1. Figure 5.11 depicts the p' sequence which results from sampling g when the midpoint 

of the £-width pulse is centered between two sampling points.

2. Figure 5.12 depicts the p1 sequence which results from sampling g when the midpoint 

of the £-width pulse is centered on a sampling point.

3. Figure 5.13 and its vertical mirror image depict p' sequences which result from sam­

pling g when the midpoint of the £-width pulse is asymmetrically positioned relative 

to the sampling points.

Reconstructed Target Prediction corresponding 
input scene(s)r  pulse 1 r  pulse 2

Figure 5.14 Figure 5.14 1

Figure 5.14 v.m.i. of Figure 5.16 2,5
Figure 5.14 Figure 5.15 3, 9
Figure 5.14 Figure 5.16 4, 13

v.m.i. of Figure 5.16 v.m.i. of Figure 5.16 6

v.m.i. of Figure 5.16 Figure 5.15 7, 10
v.m.i. of Figure 5.16 Figure 5.16 8 , 14

Figure 5.15 Figure 5.15 11

Figure 5.15 Figure 5.16 12, 15
Figure 5.16 Figure 5.16 16

Table 5.3: Cross-product of r  functions should predict target characteristics in corresponding 
reconstructed image.

Because each of the 2-D scenes is the product of two pulse train functions, one horizontal 

and one vertical, the information contained in Figures 5.14 to 5.16 can be used to predict 

the characteristics of the 2-D targets in the reconstructed images. Table 5.3 associates two 

graphs with each input scene on the basis of sample-scene phase shift. Because the target 

is symmetrical, the input scene can be rotated indiscriminately, so that only the number of 

combinations (as opposed to permutations) of the possible vertical and horizontal Sample-
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scene phase shifts need be considered. The cross-product of the two r  functions should, in 

each case, predict the characteristics of the target in the corresponding reconstructed image. 

However, it has already been noted that a 1-D sample-scene phase shift of £/4 results in a 

reconstructed function which is the vertical mirror image of that which results from a 1-D 

sample-scene phase shift of 3£/4, and so the number of different combinations of vertical 

and horizontal phase-shifted pulse train functions reduces to those listed in Table 5.4.

reconstructed target prediction corresponding 
input scenesr  pulse 1 r pulse 2

Figure 5.14 Figure 5.14 1

Figure 5.14 Figure 5.16 2, 4, 5, 13
Figure 5.14 Figure 5.15 3, 9
Figure 5.15 Figure 5.15 11

Figure 5.15 Figure 5.16 7, 10, 12, 15
Figure 5.16 Figure 5.16 6 , 8 , 14, 16

Table 5.4: Possible combinations of phase-shifted pulse train  functions.

A direct correspondence between the input scene groupings in Table 5.4 and those pre­

dicted by inspection of Figure 5.3 is immediately evident. Comparison of the reconstructed 

images in Figure 5.6 further corroborates the projections. It should be noted that contrast 

stretching over the range of brightness values in each output image was employed, thus 

there is no indication of the relative brightness values among images. However, the follow­

ing observations contribute to the validation of the environment. (Recall that the images 

in Figure 5.6 are numbered as specified in Figure 5.8 with the sample-scene phase shift 

identified in Table 5.1.)

•  Image 1 is unique. The depiction of the target in the reconstructed image appears ap­

proximately four times as large as the target in the input scene and the artifacts due to
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aliasing are symmetric. These observations are consistent with a 2-D image generated 

from two orthogonal, reconstructed pulse-train functions, r, from Figure 5.14.

• Image 11 is unique. The depiction of the target in the reconstructed image appears 

only slightly larger than the target in the input scene and the artifacts due to aliasing 

are symmetric. These observations are consistent with a 2-D image generated from 

two orthogonal, reconstructed pulse-train functions, r, from Figure 5.15.

• Images 3 and 9 can be rotated to produce the same reconstructed image. The depiction 

of the target in the reconstructed image is rectangular. The artifacts due to aliasing are 

symmetric about the horizontal and vertical axes. These observations are consistent 

with a 2-D image generated from an r function from Figure 5.14 and an orthogonal r 

function from Figure 5.15.

• Images 2, 4, 5, and 13 can be rotated to produce the same reconstructed image. Again 

the depiction of the target in the reconstructed image is rectangular. The artifacts 

due to aliasing are symmetric in the direction of the long side of the rectangle and 

asymmetric in the other direction. These observations are consistent with a 2-D 

image generated from an r  function from Figure 5.14 and an orthogonal r function 

from Figure 5.16.

• Images 6 , 8 , 14, and 16 can be rotated to produce the same reconstructed image. 

The depiction of the target in the reconstructed image appears only slightly larger 

than the target in the input scene and the artifacts due to aliasing are asymmetric 

about the horizontal and vertical axes. These observations are consistent with a 2-D
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image generated from two orthogonal, reconstructed pulse-train functions, r, from 

Figure 5.16.

• Images 7,10, 12, and 15 can be rotated to produce the same reconstructed image. The 

depiction of the target in the reconstructed image appears only slightly larger than 

the target in the input scene and the artifacts due to aliasing are symmetric in one 

direction and asymmetric in the other. These observations are consistent with a 2-D 

image generated from an r  function from Figure 5.15 and an orthogonal r  function 

from Figure 5.16.

Further corroboration of the correctness of the results can be obtained from the following 

observations on the comparison of the reconstructed aliased components in Figure 5.7. 

Once again, it should be noted that contrast stretching over the range of brightness values 

in each output image was employed, thus there is no indication of the relative brightness 

values among images.

• Image 1 is unique and symmetric, which is consistent with a 2-D image generated 

from two orthogonal, reconstructed pulse-train functions, ra, from Figure 5.14.

• Image 11 is unique and symmetric, which is consistent with a 2-D image generated 

from two orthogonal, reconstructed pulse-train functions, ra, from Figure 5.15.

• Images 3 and 9 can be rotated to produce the same reconstructed image. The aliasing 

is symmetric about the horizontal and vertical axes. These observations are consistent 

with a 2-D image generated from an ra function from Figure 5.14 and an orthogonal 

ra function from Figure 5.15.
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• Images 2, 4, 5, and 13 can be rotated to produce the same reconstructed image. The 

aliasing is symmetric in one direction and asymmetric in the other direction. These 

observations are consistent with a 2-D image generated from an ra function from 

Figure 5.14 and an orthogonal r„ function from Figure 5.16.

• Images 6 , 8 , 14, and 16 can be rotated to produce the same reconstructed image. The 

aliasing is asymmetric about the horizontal and vertical axes. These observations are 

consistent with a 2-D image generated from two orthogonal, reconstructed pulse-train 

functions, ra, from Figure 5.16.

• Images 7, 10, 12, and 15 can be rotated to produce the same reconstructed image. The 

aliasing is symmetric in one direction and asymmetric in the other. These observations 

are consistent with a 2-D image generated from an ra function from Figure 5.15 and 

an orthogonal ra function from Figure 5.16.

5.2.2 f / 2 x  f / 2  ta rg e ts

Sixteen different input scenes, each comprised of a £/2 x £/2 white target on a black back­

ground, were synthesized in the frequency domain. The top left-hand corner of the target 

was positioned in the center of the black background in the first input scene, as shown in 

Figure 5.17. Subsequent scenes were created as in Section 5.2.1, and all 16 input scenes are 

again defined by Table 5.1 which identifies the sample-scene phase shift of each £/2 x £ /2  

target relative to the target’s position in Figure 5.17. Figure 5.18 graphically depicts the 

resultant position of the target in each input scene relative to the sampling grid.
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. / y  2

P i / 2

e/2

S/2

Figure 5.17: Stylized representation of £/2 x £/2 input scene 1 (color inverted).

The 16 different images are combined in Figures 5.19 to 5.22 and the sample-scene 

phase shift relative to Figure 5.17 (input scene 1) corresponds to Table 5.1 and Figure 5.18. 

Figures 5.19 to 5.22 display the 16 images at the same three stages of the end-to-end system 

as are used in Section 5.2.1.

Once again, prior to sampling (Figures 5.19 and 5.20), the image of the target is iden­

tical in all 16 cases independent of sample-scene phase. After sampling and reconstruction 

(Figures 5.21 and 5.22), the representation of the target varies significantly with sample- 

scene phase. Table 5.5 summarizes the observations which can be made by comparing and 

contrasting corresponding £ x f  and f / 2  x £ /2  target images.

Figures 5.23 to 5.25 demonstrate why the observed results were obtained. Each figure 

shows a 1-D horizontal cross-section through the £/2 x £/2 high-contrast target of a 2-D
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Figure 5.18: Placement of £ /2 x £ /2  targets on sampling grid.

input scene having the same components as in Section 5.2.1. No two of the p' sequences are 

the same due to the sample-scene phase shift in the location of the £ /2-width pulse.

Figures 5.26 to 5.28 show how the aliased component, ra, is affected by sample-scene 

phase shift. Table 5.6 identifies the provenance of the six 1-D figures. In addition, corre­

sponding 1-D figures derived from input scene 3 et al. produce the vertical mirror images 

of Figures 5.25 and 5.28. From Figures 5.26 to 5.28, it will again be noted that no two 

of the q sequences are the same due to the sample-scene phase shift in the location of the 

f / 2-width pulse.
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Figure 5.10: Input scenes with £/2 x £/2 targets.

Figure 5.20: Blurred input scenes with f/2 x £/2 targets.
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Figure 5.21: Reconstructed £ /2  x £/2 targets.

Figure 5.22: Aliased component of reconstructed £/2 x £/2 targets.
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p

Figure 5.23: Pulse train a and g functions — sample-scene phase shift centered pulse between 
sampling points.

5
2

P
2

Figure 5.24: Pulse train a and g functions — sample-scene phase shift centered pulse on sampling 
point.

P
2

Figure 5.25: Pulse train a and g functions — sample-scene phase shift positioned pulse asymmet­
rically relative to sampling points.
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C x C Figure C/2 x C/2 Figure Observations
5.4 5.19 All 16 images are identical in both cases and 

the ratio of the area covered by the representation 
of the C x C target to the area covered by the 
representation of the C/2 x C/2 target is 
approximately 4:1, as might be expected.

5.5 5.20 All 16 images are identical in both cases but 
the ratio of the area covered by the representation 
of the C x C target to the area covered by the 
representation of the C/2 x C/2 target is 
approximately 1:1.

5.6 5.21 Consider a periodic replication of both figures.
A 4 x 4 frame from Figure 5.6 with input scene 1 at 
the top left hand corner is almost indistinguishable 
from a 4 x 4 frame from Figure 5.21 with input 
scene 6 at the top left hand corner.

5.7 5.22 As for the previous case.

T ab le  5.5: Comparison of scenes with C x C and C/2 x C/2 targets.

The combined effects of sample-scene phase shift and aliasing on the reconstructed image 

might be expected therefore to be significant, when the dimension of the target is less than 

or comparable to a unit area of the sampling grid.

As specified in Table 5.1, only four horizontal and the same four vertical sample-scene 

phase shifts were implemented to generate the 16 2-D input scenes with a C/2 x C/2 target. 

Equivalently, each pulse train function was subjected to one of the four possible sample-

Input scene number pre-sampling 1-D functions post-sampling 1-D functions
2,6,10,14 Figure 5.23 Figure 5.26
4,8,12,16 Figure 5.24 Figure 5.27
1,5,9,13 Figure 5.25 Figure 5.28

3,7,11,15 v.m.i. of Figure 5.25 v.m.i. of Figure 5.28

T ab le  5.6: Relationship between numbered input scenes and 1-D figures (v.m.i. denotes “vertical 
mirror image” ).
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Figure 5.26: Pulse train r and ra functions — sample-scene phase shift centered pulse between 
sampling points.

Figure 5.27: Pulse train r and r„ functions — sample-scene phase shift centered pulse on sampling
point.

Figure 5.28: Pulse train r and r„ functions — sample-scene phase shift positioned pulse asymmet­
rically relative to sampling points.
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scene phase shifts specified in Section 5.2.1. Because each of the 2-D scenes is the product

of two pulse train functions, one horizontal and one vertical, the information contained in

Figures 5.26 to 5.28 can again be used to predict the characteristics of the 2-D targets in

the reconstructed images.
  P i! 2 ---------- -

Figure 5.29: Stylized representation of 2£ x 2£ input scene 1 (color inverted).

5.2.3 2<f x 2£ ta rg e ts

Sixteen different input scenes, each comprised of a 2£ x 2£ white target on a black back­

ground, were synthesized in the frequency domain. The top left-hand corner of the white 

target was positioned in the center of the black background in the first input scene, as shown 

in Figure 5.29. Subsequent scenes were created as in Section 5.2.1, and all 16 input scenes 

are again defined by Table 5.1 which identifies the sample-scene phase shift of each 2£ x 2£
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Figure 5.30: Placement of 2 ( x 2 ( targets on sampling grid.

target relative to the target’s position in Figure 5.29. Figure 5.30 graphically depicts the 

resultant position of the target in each input scene relative to the sampling grid.

The 16 different images are combined in Figures 5.31 to 5.34, and the sample-scene 

phase shift relative to Figure 5.29 (input scene 1) corresponds to Table 5.1 and Figure 5.30. 

Figures 5.31 to 5.34 display the 16 images at the same three stages of the end-to-end system 

as are used in Section 5.2.1.

Prior to sampling (Figures 5.31 and 5.32), the image of the target is identical in all 16 

cases independent of sample-scene phase.
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Figure 5.31: Input scenes with 2( x 2£ targets.

Figure 5.32: Blurred input scenes with 2( x 2f targets.
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Figure 5.33: Reconstructed 2( x 2( targets.

Figure 5.34: Aliased component of reconstructed 2( x 2f targets.
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p
2

Figure 5.35: Pulse train s and g functions — sample-scene phase shift centered pulse between 2 
sampling points.

P

Figure 5.36: Pulse train s and g functions — sample-scene phase shift centered pulse on sampling 
point.

P
2

Figure 5.37: Pulse train s and g functions — sample-scene phase shift positioned pulse asymmet­
rically relative to sampling points.
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After sampling and reconstruction (Figures 5.33 and 5.34), the representation of the target 

varies much less significantly with sample-scene phase than in the cases where the dimension 

of the target is comparable to or less than a unit area of the sampling grid. Table 5.7 sum­

marizes the observations which can be made by comparing and contrasting corresponding 

£ x f  and 2£ x 2£ target images.

£ x £ Figure 2£ x 2£ Figure Observations
5.4 5.31 All 16 images are identical in both cases 

and the ratio of the area covered by the representation 
of the £ x £ target to the area covered by the 
representation of the 2£ x 2£ target is approximately 
1:4, as might be expected.

5.5 5.32 All 16 images are identical in both cases
and the ratio of the area covered by the representation
of the £ x £ target to the area covered by the
representation of the 2£ x 2f  target is approximately
1:4.

5.6 5.33 All 16 images in Figure 5.33 are similar to each other 
and similar in shape and size to the original input 
scenes.

5.7 5.34 While still displaying the same characteristics relative 
to sample-scene phase shift as were exhibited in 
Figure 5.7, all 16 images in Figure 5.34 are similar to 
each other in shape and size.

T ab le  5.7: Comparison of scenes with ( x f  and 2£ x 2£ targets.

Figures 5.35 to 5.37 show a 1-D horizontal cross-section through the 2£ x 2£ target of a 

2-D input scene having the same components as in Section 5.2.1. Again, no two of the p' 

sequences are the same due to the sample-scene phase shift in the location of the 2^-width 

pulse.

Figures 5.38 to 5.40 show that the aliased component is much less significantly affected 

by phase shift than in the previous cases ( ( x (  and £/2 x i /2 ) .  Table 5.8 identifies the
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P

F ig u re  5.38: Pulse train  r  and r 0 functions — sample-scene phase shift centered pulse between 2 
sampling points.

P

F ig u re  5.39: Pulse train  r  and r0 functions — sample-scene phase shift centered pulse on sampling 
point.

P
2

Figure 5.40: Pulse train r and ra functions — sample-scene phase shift positioned pulse asymmet­
rically relative to sampling points.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. VERIFICATION AND VALIDATION 143

provenance of the six 1-D figures. In addition, corresponding 1-D figures derived from 

input scene 2 et al. produce the vertical mirror images of Figures 5.37 and 5.40. From 

Figures 5.38 to 5.40, it will again be noted that no two of the q sequences are the same due 

to the sample-scene phase shift in the location of the 2£-width pulse.

Input scene number pre-sampling 1-D functions post-sampling 1-D functions
3,7,11,15 Figure 5.35 Figure 5.38
1,5,9,13 Figure 5.36 Figure 5.39

4,8,12,16 Figure 5.37 Figure 5.40
2,6,10,14 v.m.i. of Figure 5.37 v.m.i. of Figure 5.40

T ab le  5.8: Relationship between numbered input scenes and 1-D figures (v.m.i. denotes “vertical 
mirror image”).

As specified in Table 5.1, only four horizontal and the same four vertical sample-scene 

phase shifts were implemented to generate the 16 2-D input scenes with a 2( x 2( target. 

Equivalently, each pulse train function was subjected to one of the four possible sample- 

scene phase shifts specified in Section 5.2.1. Because each of the 2-D scenes is the product 

of two pulse train functions, one horizontal and one vertical, the information contained in 

Figures 5.38 to 5.40 can again be used to predict the characteristics of the 2-D targets in 

the reconstructed images.

5.2.4 3£ x 3£ targets

Sixteen different input scenes, each comprised of a  3f x 3£ white target on a black back­

ground, were synthesized in the frequency domain. The top left-hand corner of the white 

target was positioned in the center of the black background in the first input scene, as shown 

in Figure 5.41. Subsequent scenes were created as in Section 5.2.1, and all 16 input scenes
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P2/2

F ig u re  5.41: Stylized representation of 3£ x 3£ input scene 1 (color inverted).

are again defined by Table 5.1 which identifies the sample-scene phase shift of each 3£ x 3£ 

target relative to the target’s position in Figure 5.41. Figure 5.42 graphically depicts the 

resultant position of the target in each input scene relative to the sampling grid.

The 16 different images are combined in Figures 5.43 to 5.46, and the sample-scene 

phase shift relative to Figure 5.41 (input scene 1) corresponds to Table 5.1 and Figure 5.42. 

Figures 5.43 to 5.46 display the 16 images at the same three stages of the end-to-end system 

as are used in Section 5.2.1.

Once again, prior to sampling (Figures 5.43 and 5.44), the image of the target is iden­

tical in all 16 cases independent of sample-scene phase. After sampling and reconstruction 

(Figures 5.45 and 5.46), the representation of the target varies much less significantly with 

sample-scene phase than in the cases where the dimension of the target is comparable to
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Figure 5.42: Location of 3£ x 3£ targets on sampling grid.

or less than a unit area of the sampling grid. Table 5.9 summarizes the observations which 

can be made by comparing and contrasting corresponding £ x £ and 3£ x 3£ target images.

Figures 5.47 to 5.49 show a 1-D horizontal cross-section through the 3£ x 3£ target of a

2-D input scene having the same components as in Section 5.2.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. VERIFICATION AND VALIDATION

Figure S.43: Input scenes with 3£ x 3£ targets.

Figure 5.44: Blurred input scenes with 3£ x 3£ targets.
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Figure S.45: Reconstructed 3f x 3( targets.

Figure 5.46: Aliased component of reconstructed 3£ x 3£ targets.
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p

Figure 5.47: Pulse train s and g functions — sample-scene phase shift centered pulse between 2 
sampling points.

P
2

Figure 5.48: Pulse train s and g functions — sample-scene phase shift centered pulse on sampling 
point.

P

Figure 5.48: Pulse train s and g functions — sample-scene phase shift positioned pulse asymmet­
rically relative to sampling points.
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f  x f  Figure 3£ x 3£ Figure Observations
5.4 5.43 All 16 images are identical in both cases 

and the ratio of the area covered by the representation 
of the £ x £ target to the area covered by the 
representation of the 3£ x 3f target is approximately 
1:9, as might be expected.

5.5 5.44 All 16 images are identical in both cases
and the ratio of the area covered by the representation
of the £ x £ target to the area covered by the
representation of the 3£ x 3$ target
is approximately 1:9.

5.6 5.45 While displaying some of the same characteristics 
relative to sample-scene phase shift as were exhibited 
in Figure 5.6, all 16 images in Figure 5.45 are similar 
to each other and similar in shape and size to the 
original input scene.

5.7 5.46 While still displaying the same characteristics relative 
to sample-scene phase shift as were exhibited in 
Figure 5.7, all 16 images in Figure 5.46 are similar to 
each other in shape and size.

Table 5.9: Comparison of scenes with £ x £ and 3( x 3£ targets.

Again, no two of the p' sequences are the same due to the sample-scene phase shift in the 

location of the 3f-width pulse.

Figures 5.50 to 5.52 show that the aliased component, r a, is again significantly affected by 

sample-scene phase shift and is responsible for the artifacts visible in Figure 5.45. Table 5.10 

identifies the provenance of the six 1-D figures. In addition, corresponding 1-D figures 

derived from input scene 2 et al. produce the vertical mirror images of Figures 5.49 and 5.52. 

From Figures 5.50 to 5.52, it will again be noted that no two of the q sequences are the 

same due to the sample-scene phase shift in the location of the 3£-width pulse.

As specified in Table 5.1, only four horizontal and the same four vertical sample-scene 

phase shifts were implemented to generate the 16 2-D input scenes with a 3£ x 3£ target.
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Figure 5.50: Pulse train r and ra functions — sample-scene phase shift centered pulse between 2 
sampling points.

P
2

Figure 5.51: Pulse train r and ra functions — sample-scene phase shift centered pulse on sampling 
point.

Figure 5.52: Pulse train r and ra functions — sample-scene phase shift positioned pulse asymmet­
rically relative to sampling points.
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Input scene number pre-sampling 1-D functions post-sampling 1-D functions
1,5,9,13 Figure 5.47 Figure 5.50

3,7,11,15 Figure 5.48 Figure 5.51
4,8,12,16 Figure 5.49 Figure 5.52
2,6,10,14 v.m.i. of Figure 5.49 v.m.i. of Figure 5.52

Table 5.10: Relationship between numbered input scenes and 1-D figures (v.m.i. denotes “vertical 
mirror image").

Equivalently, each pulse train function was subjected to one of the four possible sample- 

scene phase shifts specified in Section 5.2.1. Because each of the 2-D scenes is the product 

of two pulse train functions, one horizontal and one vertical, the information contained in 

Figures 5.50 to 5.52 can again be used to predict the characteristics of the 2-D targets in 

the reconstructed images.
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Chapter 6

Summary and Conclusions

6.1 Summary

The 2-D continuous/discrete/continuous (c/d/c) imaging system model described in detail 

in Chapter 2 was used as the foundation on which a 2-D end-to-end digital imaging system 

design environment was built. The c/d/c model is more comprehensive than other common, 

but incomplete, models (as is discussed in the introduction to Chapter 2). The research 

of existing environments with similar functionality described in Section 1.3 confirmed that 

none of the environments is based on the 2-D c/d/c model.

In terms of lines of code, the environment is comprised of approximately 10,000 instruc­

tions, estimated by a semi-colon count in the .c modules. The capabilities required of the 

interactive simulation environment and the objectives it was hoped to achieve are specified 

in the preface to Chapter 1. All of the minimum requirements were met, as detailed in Sec­

tions 6.1.1 to 6.1.9, and the extent to which the objectives were accomplished is discussed 

in Sections 6.1.10 to 6.1.15.

152
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6.1.1 Input

Some forty images (input scenes) currently reside in the environment’s library, and a user- 

friendly pre-processing option described in Section 2.2.3.1 allows any image which can be 

read by xv [3] to be easily reformatted and added to the library, where it becomes immedi­

ately available for future use. An additional feature allows the user to synthesize an input 

scene directly in the frequency domain as discussed in Section 2.2.3.2.

6.1.2 Image display

A matrix representation (image) of the scene at the input and output of all c/d/c sys­

tem components can be readily displayed in either the spatial domain or the frequency 

domain. The scene to be displayed is selected by clicking at the appropriate location on 

the schematic diagram of the end-to-end c/d/c system model. Toggling between the two 

domains is achieved simply by clicking in the image window. The input scene can be dis­

played simultaneously in the currently-selected domain for comparison with the processed 

scene from a later stage in the end-to-end system.

6.1.3 Interactive modification of system filters

A menu of possible filter types is provided for the input scene filter, the acquisition filter, the 

digital filter, and the reconstruction filter. (See Sections 2.2.3.4, 2.2.4.1, 2.2.7.1, and 2.2.8.1 

respectively for details.) When a particular filter type is selected by the user, the facility 

to alter the horizontal and/or vertical parameter(s) pertaining to that specific filter type 

becomes available to the user. The frequency responses of the horizontal or vertical compo­
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nents of the currently implemented filters can be viewed by clicking on any filter box in the 

c/d/c schematic window, at which time each filter box is replaced by a response window.

6.1.4 Interactive modification of 2-D sampling density

The 2-D sampling density can be modified at any time from the sampling menu by altering 

the number of horizontal and/or vertical samples per period. The inter-sample distance of 

the sampling grid can also be adjusted from the sampling menu.

6.1.5 Image acquisition noise simulation

Only additive noise is simulated, as defined in Section 2.2.6.

6.1.6 Visualization of the aliasing effects due to spatial sampling

In both I-D and 2-D modes, the environment can operate in one of four component modes. 

As described in Section 2.2.11, the reconstructed output is the sum of three separate compo­

nents. That is, in the frequency domain, the output from the sampling box can be separated 

into the cascaded component and the error attributable to frequency folding, with the result 

that the input to the digital filter, and consequently the reconstructed output, can be sep­

arated into three components — the cascaded component, the aliased component, and the 

noise component. The environment has the capability to visualize composite scenes or any 

one of these three component scenes, at any appropriate location in the end-to-end system. 

No matter which component mode is selected, composite scenes are displayed if the display 

point selected precedes the sampling box in the end-to-end system.
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6.1.7 1-D o p e ra tio n

Once a 2-D input scene has been loaded, the environment can be toggled into 1-D mode. 

Most changes implemented while in the 1-D mode do not affect the displayed input scene 

until the 1-D mode has been exited. However, altering the number of samples per period 

immediately causes the image window to be resized and the input scene to be reprocessed 

from raw data. The following functionality is available in 1-D mode.

6.1.7.1 selecting input

Any row or column from the 2-D input scene can be selected and used as the 1-D input to the 

c/d/c system by clicking in the image window to specify the row and column. Alternatively, 

a 1-D input can be selected from the environment’s library.

6.1.7.2 vertical and  horizontal modes

In 1-D operation, either vertical or horizontal mode must necessarily be selected. As in 2-D 

operation, changes made to filter parameters in vertical mode do not affect the horizontal 

filter components, and vice versa. However, any changes made to either vertical or horizontal 

filter parameters during 1-D operation remain in effect on reverting to 2-D operation.

6.1.7.3 1-D in p u t display

The amplitude and phase of the vector representation of the 1-D input can be viewed at 

any stage of the end-to-end system, and visualization of the vector representation can be 

toggled between the frequency domain and the spatial domain. The vector representation 

of the processed input from any stage of the c/d/c system can be overlaid on the vector

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. SUMMARY AND CONCLUSIONS 156

representation of the input for visual comparison, or the overlay facility can be switched 

off. A frequency domain range of 2x or 4x the Nyquist frequency can be selected.

6.1.7.4 spatia l dom ain zoom facility

The spatial domain display provides a zoom-in, zoom-out feature which allows successive 2 x 

magnification of a region of interest (ROI) to a maximum magnification factor of 32 x . An 

additional feature provides continuous scrolling through the periodically replicated vector 

representation at any magnification factor greater than 1.

6.1.8 S y stem  sn ap sh o ts

Save and retrieve capabilities are provided for system snapshots. The current definitions 

of all system components and parameter values are captured with a save command and 

restored with a retrieve command. This facility is available in both 1-D and 2-D.

6.1.9 P e rfo rm an ce  analysis

In either 1-D or 2-D mode, fidelity metrics for quantitative end-to-end system performance 

evaluation can be applied to composite or cascaded scenes that have been processed through 

the c/d/c system, as described in Section 2.2.10. A comparable fidelity metric is provided 

to measure the aliased and error components at the output from the end-to-end system in 

both 1-D and 2-D modes. The latter 2-D metric is defined in Equation 4.2.
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6.1.10 Support for system design and performance analysis

This goal was achieved, as specified in Sections 6.1.1 to 6.1.9. The verification and validation 

of the implementation of the c/d/c model are described in detail in Chapter 5.

6.1.11 Acceptable response time

As discussed in Section 4.1.3, the calculations of 2-D Fourier transforms and 2-D spatial do­

main convolutions are CPU-time intensive. The use of these two computational techniques 

was considered carefully, therefore, and resulted in the convention that Fourier represen­

tations are the standard format of all data supplied to the environment, and subsequent 

processing occurring exclusively in the frequency domain. Also investigated was the op­

eration of the environment in two distinct modes, one a 2-D mode in which the matrix 

representation of the input scene was processed through the c/d/c system model, the other 

a 1-D mode in which a vector representation was processed through the end-to-end system 

model, and in which the user had the capability to redesign the system by modifying the 

c/d/c system model parameters. In practice, this two-mode implementation proved frus­

trating to the user and was rejected, as described in Section 4.1.4. A redesign adapted 

the philosophy of this approach, adding the design capabilities of the 1-D mode to the 2- 

D mode. By simply selecting the input scene for display when tentative filter parameter 

changes are being made in 2-D mode, the user can easily avoid the lengthier system response 

time associated with 2-D display after reprocessing.
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6.1.12 Sampling grids at least as large as 512 x 512

In addition to response time, the amount of memory required by the environment was 

carefully considered, as discussed in Section 4.2. To minimize memory requirements, input 

scenes are cropped, if necessary, while being pre-processed for inclusion in the environment’s 

library. Possible values of user-selected parameters such as t \  x  T2, N \ x  N 2 , and (1  x £2 

are limited. Chapter 5 details the justification for restrictions on t \  x  T2.

In the default setting, the reconstruction passband is equivalent to the representation 

pass band, and, in addition, the display size is never allowed to exceed 512 x 512. Only 

frequency domain matrix representations are stored, and two-quadrant complex conjugacy is 

utilized, making it necessary to store only half of each matrix representation. The aperiodic 

(infinite) matrix representations of the aliased components of p',p, and q are stored as 

cropped data structures, the sizes of which are defined by t \  x  T2 as opposed to rr, x rrj. 

With these precautions in place, use of a 512 x 512 sampling grid with representation and 

reconstruction passbands of 2N\ x 2N% produces an acceptable (though not spectacular) 

response time on a 500 MHz CPU and 0.5GB RAM machine. Use of a sampling grid that 

size is also possible on a system with only 64MB of RAM, provided t \ x  t i  = N\ x No. If the 

size of the input scene matrix representation in the environment’s library is small (64 x 64), 

and T\ x T2 < 3JVi x 3JV2, use of a 1024 x 1024 sampling grid is technically possible, even 

on a machine with less RAM, but it is not very useful, because large, zero-padded data 

structures are created unnecessarily.

The difficulty with larger matrix representations from the environment’s library is that 

the library data is stored in memory to speed the system response time when the user
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changes the value of n  x T2, N \ x  iV2, or £1 x This would not be necessary, of course, if it 

could be guaranteed the computer system utilized had a fast local disk. The difficulty is in 

maintaining a balance which will allow the environment to be useful on a range of hardware 

specifications. The response time, therefore, and the limits at which the environment grinds 

to a halt because it can no longer allocate sufficient memory, vary from system to system. 

However, in general, use of a 512 x 512 sampling grid can be achieved on contemporary 

machines.

6.1.13 Good graphical user interface design

Every effort was made to make the environment user-friendly and intuitive. A menu-bar 

with the expected functionality is provided, as well as many point-and-click shortcuts. A 

Help menu explains some of the less-obvious operational features, but the contents would 

undoubtedly be considered inadequate were this a commercial offering. Consultation on the 

human computer interface (HCI) aspect of the GUI suggested that topic should have been 

considered prior to software development, and the user interface developed independently 

of, but in parallel with, the c/d/c model software. The subject was addressed at too late a 

stage to have significant impact on the basic design of the environment, but a redesign to 

incorporate features that would not be transparent to the user was undertaken.

6.1.14 Independence from proprietary applications

The environment was developed in ANSI C as an X Windows application for UNIX plat­

forms. The implementation incorporates raw X commands [13, 14] with no other software 

restrictions on the operation of the environment. However, the pre-processor described in
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Section 2.2.3.1 requires that a file submitted for inclusion in the environment’s library be 

in PGM (ascii) format. Because xv [3] is currently supplied with most Unix-based oper­

ating systems and is capable of displaying many different image formats on all X displays 

known to the xv author, the pre-processor instructs users on how to utilize this application 

to convert their files to the required format. Reinventing an inferior wheel did not appear 

justified, in this instance, to satisfy a condition originally intended to maintain versatility.

6.1.15 Portability among UNIX/Linux operating systems

The environment runs without software modification on Linux, Irix, and Sun operating 

systems. The only problems encountered in switching among machines and/or operating 

systems are differences in font availability and display size. The visual display is less aes­

thetically pleasing when the software is forced to revert to a default font instead of one it 

has been designed to utilize, or when the specified font size increases or decreases relative 

to the number of pixels provided by the display.

6.2 Conclusions

The difficulties inherent in extending the 1-D c/d/c model to 2-D in an interactive environ­

ment require careful resolution of the computer-age-old time versus memory conundrum. 

Chapter 4 describes the process by which a balance between the two conflicting criteria was 

sought and attained. In particular, the results of a systematic study of passband limits are 

described in detail in Section 4.2.1.1, leading to the conclusion that the aliasing contribu­

tion from frequencies beyond t \  x  t % — 2N\ x 2Ni is invariably negligible. This makes a
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strong case for eliminating larger values of r i  x  from the implementation, thus imposing 

an upper limit on memory requirements.

6.2.1 Towards improving time efficiency

From repeated operation of the environment, it became evident that the time savings which 

would prove most significant to the operating response time experienced by the user (when 

that response time is within bounds acceptable to the user of an interactive environment), 

would be any which would improve the efficiency of the FFT (i.e., a faster algorithm). 

Because a generic 2-D FFT is used in the environment, the possibility exists that a highly- 

optimized algorithm could improve the system response time when utilizing large sampling 

grids. However, no focus was concentrated in this area because, when the sampling grid 

is larger than 512 x 512, the response time of all the algorithms operating on the matrix 

representations becomes unacceptable.

6.2.2 Towards reducing memory requirements

Operation of the environment also suggests that storing the matrix representation of only 

the input scene might be a feasible alternative, when the sampling grid is not too large 

(i.e., in the cases where response time is currently acceptable). Storing only the input scene 

matrix representation may have little impact on operating response time in those cases, 

because the FFT that is always used to display a scene in the spatial domain is more CPU­

time intensive than the processing algorithms. However, once again, when the sampling 

grid is larger than 512 x 512 and unacceptable response times are encountered, the effects 

of this change on system response time would merely compound an already bad situation,
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as the operation of all the processing algorithms slows to unacceptable limits.

6.3 Future Development

In the course of developing the environment, modifications which would improve its utility 

as a tool for end-to-end digital imaging system design continually became apparent. Many 

were implemented — and immediately suggested other desirable changes. The current state 

of development is one which in most cases fulfills, and in some cases surpasses, the original 

specifications, but is by no means definitive.

The currently identified possibilities for future development fall into three categories:

1. functionality extensions;

2. redesign;

3. library expansion.

This section addresses features not implemented and changes of a recurring nature.

6.3.1 Functionality extensions

The functionality of the environment would be enhanced by adding or improving some 

features.

• The environment’s menu of synthesized input scenes could be extended.

• The software could be modified to accept filters which are not separable. This would, 

however, preclude the operation of 1-D mode while a non-separable filter type was
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selected. Non-separable filters would also have a negative impact on memory re­

quirements and/or response time, because currently only the horizontal and vertical 

components of each filter are stored, and the 2-D filter coefficients are computed as 

required for processing, then freed. The 2-D coefficients of a non-separable filter would 

either have to be stored (impacting memory requirements) or recalculated each time 

they are required for processing (impacting system response time).

• The capability to cascade several filters as the contents of a single processing box 

could be considered, and the digital filter box could provide an option that would 

allow the user to define a small kernel in the spatial domain as an alternative to 

making a selection from the menu of filters predefined in the frequency domain.

• Additional noise models could be added.

• A 2-D “zoom” feature could be implemented, allowing the user to magnify a region 

of interest (ROI) in the displayed scene. It is projected that operation would be 

comparable to the “zoom” feature in the 1-D case. (See Section 6.1.7.4.)

• Two “levels” of Save could be created. The top level Save would retain the current 

functionality described in Section 6.1.8 and assign a .sav filename to a stored system 

state for long-term retrieval via the Retrieve command. A secondary level Save would 

allow the user LIFO access to a most-recent-Saves list via the f  and |  keys.

• A pop-up note could appear on-screen, when the cursor crosses into an active area, 

to describe the area’s functionality to the user.
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6.3.2 Redesign

The Microsoft Windows operating system is currently so readily available to computer 

users worldwide that a version of the environment capable of running under MS Windows 

is worthy of consideration. Relative to that, it should be noted that the environment 

utilizes approximately 50 raw Xlib functions and 10 Xlib structures which would require 

replacement or conversion. Other than that, the environment is written strictly in ANSI C 

and might port easily to the MS Windows OS. However, this avenue has not been explored.

If the human computer interface aspect of developing a GUI had been considered prior to 

software development, the user interface might have been developed independently of. but 

in parallel with, the c/d/c model software. HCI design techniques [26] could be employed to 

reevaluate the GUI. In particular, revamping the software into object-oriented components 

which would separate operation of the interface from c/d/c model processing would be 

desirable. The possibility of allowing the simple addition of modular functions by the user 

would be an additional useful feature.

6.3.3 Library expansion

The expansion of the environment’s library is included here as a change of a recurring 

nature. It is envisaged that users would add input scenes, as required, by means of the pre­

processor which adapts digitized images to the environment’s library format. Input scenes 

of any size are accepted by the pre-processor. The PGM (ascii) input data is converted to 

a frequency domain matrix representation with dimensions which are powers of 2, and the 

cropped data structure is saved in a file in the environment’s library. The user can choose 

to clip, zero-pad, pad with the image mean, periodically replicate, or resample the original
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image, if resizing is necessary in the pre-processor, to achieve the appropriate dimensions.
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