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Abstract

Two novel plasma sources (one neutral source and one pulsed inductively 
coupled plasma source) and their ashing process characterization were investigated. 
The prim ary goal of this dissertation was to characterize these source properties and 
develop corresponding applications. The study includes process dam age assessment 
with these two sources and another continuous wave (13.56MHz) plasm a source. A 
global average simulation of the pulsed discharges was also included.

The time-resolved plasma density and electron tem perature from the double 
probe analysis were compared with single Langmuir probe results with sheath dis
placement corrections in pulsed discharges(200Hz ~10kHz). The good agreement 
between the equivalent resistance method and nonlinear regression method indicates 
th a t the  equivalent resistance method can be used effectively to analyze the double 
probe data. The transient behaviors of the plasma density and electron tem perature 
are in accord with the simple model of the discharge.

The hyper-thermal neutral source based on the surface reflection neutralization 
techniques was shown to provide enough fast neutrals for ashing applications. The 
surface roughness of the post-cleaned wafer was less than 1 0  .4. Ex-situ and in-situ 
measurements yield typical removal rates of about 1 0  A /s without stream  collimation. 
The removal rates a t increasing pressures show a trade-off between creating higher 
density plasma, leading to a large initial neutral flux and attenuation of neutrals due 
to collisions. Both optical emission and Langmuir probe studies indicate a  mode tran
sition as the rf power is increased. Changing the reflector plate changes the neutral 
energy w ithout changing the discharge composition. A novel technique, combining 
mom entum  and heat flux measurements shows th a t neutral stream  energy is 3~6 eV 
and the neutral flux is on the order of 3 x l0 1 5 cm - 2 s -1 . The derived etch rates from 
the m easured neutral flux and energy values and the experimental rates are in good 
agreement. Quasi-static capacitance-voltage measurements dem onstrate th a t the low 
energy neutral source induces much less damage than  other plasm a sources. Most of 
the neutral process damage is caused by uv photons escaping from the plasma source 
zone. The process-induced damage vary with the reflector bias and rf power.

xvi
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Chapter 1 

Introduction

1.1 Why We Study Charge-free Processing

As device sizes shrink to levels well below the current 0.25 /zm features, many 

problems associated with plasma processing such as the loss of critical dimensions, 

contam ination, and charging [1] will be exacerbated. For example, in etching processes 

low-energy ions can hit the sidewall before they can reach the bottom  of narrow 

features, which results in loss of profile control, leading to vias or trenches which are 

difficult to fill in subsequent steps (Fig. 1.1) [2]. Even the impingement of ions and 

electrons on surfaces a t much lower energies, may have an inherent capacity to  damage 

m aterials by charge trapping or coulomb excitations [3,4]. It is believed th a t the main 

source of the device damage is caused by charging and tha t the dam aged device could 

only be annealed to yield acceptable performance for short periods of time. The 

charging damage induced by non-uniformity, resulting from non-uniformities in gas 

feeds, capacitive or inductive power coupling, or external dc magnetic or electric fields

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



can lead to variations in the ion current or the space potential across the wafer. The 

resultant currents flowing through the wafer will damage the delicate semiconductor 

junctions or insulator layers. Such damage can also occur during process s ta r t  up or 

shut down transients or transients induced by arcing or discharge concentration on 

the chamber walls.

,ONS ELECTRONSELECTRONS

C harge
Buildup

£:p:{

x x x x x x x x x x x

Figure 1.1: Morphological damage by non-ideal processing technology (adopted from [2])

Many previous efforts focused on improving the plasm a uniformity. However, 

charge induced damage continues to be observed even in uniform plasmas for high 

aspect ratio trench etching. For example, a new type of damage (electron shading 

damage) [5], caused by the difference in angular distribution between ions and elec

trons, becomes the main concern as the feature sizes further decrease. In addition, 

other components in plasmas such as UV photons from the plasma source region will 

continue to be a  source of damage [6 ] and this type of damage will increase as the 

feature size decreases. The use of new materials also poses great challenges for plas

m a source development. For example, in the ashing process involving low k dielectric 

materials, the inclusion of the high energy ions causes large drifts in k [7]. Though

3
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some alternatives, such as “downstream” or “rem ote” plasmas [8 ], have been devel

oped for cleaning or stripping processes, a charge-free processing scheme is needed to 

eliminate this problem and to get ready for the even more fragile devices.

By etching or stripping with neutral atoms and molecules one can avoid much 

of the dam age tha t results from the charging of insulator layers. If the beam energy 

can be tuned  to be just above the threshold for specific chemical activation of each 

step, it is possible to completely eliminate im plantation, displacement, and other 

damage. The optimal energy for such a general purpose source is between 1 and 10 

eV, though there may be a need for higher energy sources for certain etching steps. 

Besides etching and ashing or stripping via neutral beams, these low energy processes 

are also promising for deposition or modification of new materials because of their 

potential to reduce the latent dam age in materials while m aintaining the advantages 

of energetic bombardment.

1.2 Charge-Free Sources

Various types of neutral beam  sources are now under development and  have 

been described in detail by Manos et al. [9]. These include the free expansion source, 

plasma source neutral streams, and charge-exchange sources. The m ajor problem with 

neutral beam s is the difficulty of producing high fluxes in the energy range between 

1 and 20 eV. Previous systems with high fluxes have been achieved a t energies either 

below 0.5 eV or above 200 eV. Following the discussion of Manos et al. [9], we briefly 

review m ain advantages and disadvantages of each type of neutral sources in the 

following section.

4
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1.2.1 Free Expansion Gas Sources 

Effusive Beams

The effusive sources are operated a t relatively low pressure (<  1  Torr). Temper

atures of 1100 to 1750 K are required to achieve 50% dissociation of various reactive 

atoms. However, these effusive sources suffer from several drawbacks:

•  Low pressure operation limits intensity;

•  These sources are moderately divergent, displaying an approxim ately cosine 

dependence on angle from the central beam direction;

•  These sources require very high pumping speed.

Nozzle Beams

Nozzle beams increase the flux intensity by raising the gas reservoir pressure. 

Such beams generally have a cosn(9) angular distribution, where n = 2  to 6  is achiev

able. Intense nozzle beams having energies of approximately 1 eV can be achieved 

using this method. Higher energies can also be achieved by resonant or non-resonant 

laser heating of the working gases. However, laser and plasma heated nozzles are all 

susceptible to spatter melting and evaporation due to the large heat fluxes to the 

cone-shaped skimmer. In addition, resonant laser driven dissociation and heating 

schemes are specifically coupled to the particular optical levels of certain atom s and 

thus do not provide adequate species tunability. The use of laser heating also shares 

two o ther generic problems common to all high-intensity nozzle beams:

•  These sources are point sources which are not useful in large area processing;

•  The neutral energy is not easily tuned.

5
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1.2.2 Plasma Source Neutralized Streams

This type of source consists of an ion beam extracted from a plasm a, capable 

of providing high fluxes a t low energy by the addition of electrons from a em itter at 

the exit. Although the stream  is “neutral” , it is only by virtue of containing equal 

num ber of positive and negative charges. It is not a real “charge-free” source.

1.2.3 Charge-exchange Sources

N eutral beam sources using charge exchange are mainly plasm a driven ion 

beam sources followed by a gas neutralizer cell. Typical sources are based on grid 

neutralization. But the intensity of such ion beam sources is severely limited at 

low energy by the Child-Langmuir law. This low intensity ion beam m ust then be 

charge-exchange neutralized. Even if an intense low energy (10 eV) ion beam can be 

produced, the charge-exchange efficiency is very low a t low energies so the resulting 

neutral beam  will be weak. Besides the lack of intensity, current grid sources also 

have other severe problems such as melting and contamination. Free expansion plasma 

sources, on the other hand, are based on the creation of a  dense plasma which expands 

freely, either along magnetic field lines or into a  field-free region. Successful sources 

based on the above mechanism have been reported by Cuthberson et al., Goecker et 

al., and Nichols et al. [10-13]. Small area neutral sources can deliver a plasm a beam 

with an ion current density of approximately 4A /c m 2 a t energies below 10 eV. Broad- 

area high-density sources such as RFI (radio frequency induction) configured for free 

expansion also provide superior performance [13], [1 2 ]. Because an IC P (inductively 

coupled plasma) source can provide independent control of ion energy and plasma

6
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density, with a special reflector design, this type of neutral source can provide low 

neutral energy and high neutral flux. Previous Monte Carlo simulations [14] concluded 

th a t such a source should be able to deliver enough fast neutrals for photoresist 

cleaning application. These applications will be discussed in detail in this dissertation.

1.3 Review of Operation Mechanism for the Low- 

Energy Neutral Sources

In this chapter, a brief review of the operation mechanism for our source and 

its related plasma physics is presented. Fig. 1.2 shows a schematic drawing of the 

operation mechanism of the neutral stream  source developed a t the College of William 

and Mary [13]. The surface reflection-based neutral source is made up of an RFI

Applied B-Field

Plasma
Source

(TCP) I
Reflector

Surface
Neutralization

Plasma
Stream

Wafer

Figure 1.2: The schematic drawing of the neutral stream generation

source and an angled tungsten reflector plate. The tungsten reflector plate can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



biased a t 0 to -50 V to extract ions from plasma source region. O ther reflector 

materials have also been tested in the experiments. A small magnetic field (<  50 

Gauss) is used to confine the plasma, which helps to guide the ions towards the 

reflector plate. This magnetic field can also reduce the sputtering of the rf coupling 

window. The resultant fast neutrals reflecting from the plate transit to the wafers. 

Because of the ease of the size scale-up for ICP sources, this design can provide a much 

broader neutral stream  than  other neutral sources. The fundamentals of the neutral 

reflection mechanism has been described previously in C u th b erso n ’s thesis [1 1 ]. We 

will revisit these mechanisms later in this chapter.

1.3.1 Plasma

A plasma is a partially- or fully-ionized gas with equal amounts of positive 

and negative charges. This "quasi-neutral” state  is generally called “the fourth state 

of m atter” . For plasmas of interest in materials processing, the possible applicable 

range is shown in Fig. 1.3 [15]. For the low pressure and high density plasma sources 

we are interested in, electrons are generally not in thermal equilibrium with ions 

and neutrals or with the chamber walls because of their small mass. Electrons are 

more mobile than ions and can be preferentially heated by the applied electric field. 

The electrons exchange energy with ions and background gases through inelastic and 

elastic collisions. The fraction of ionization is only about 1 to 5% even in these “high- 

density” plasma sources. As a consequence of this very low charged to neutral particle 

ratio, collisions of particles with neutrals are very im portant. This creates a discharge 

of plasm a density on the order of 1 0 l° — 1 0 1 2 cm -3 . and an electron tem perature of

8
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1-10 eV, while the ion temperature is only about 0.025-0.25 eV. The electron energy
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Figure 1.3: Plasma density Log ne Vs Electron temperature Log Te. A*, Debye length 

(adopted from[15])
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can have quite different energy distributions determined by the excitation mecha

nism and the discharge geometry. The common form is a Maxwellian (or nearly 

Maxwellian) energy distribution function. Fig. 1.4 shows Maxwellian energy distri

bution functions with three different energies. It is well known that the high energy 

part of this distribution in Fig. 1.4 contributes the dom inant part of the ionization, 

dissociation, and excitation in the discharge. However, for discharges with large num

bers of m etastable states, low energy electrons may also make significant contributions 

to ionization or excitation.

1.0
O €>Te= 2.5 eV
□— □ Te= 3.0 eV

0 8  ’ A
Te= 3.5 eV

\

0.0 0 -  

0.0 10.0 20.0
- e -
30.0

- e -
40.0 50.0

Energy, eV

Figure 1.4: Maxwellian energy distribution function
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1.3.2 High Density Plasma Sources

The generation of a large neutral flux relies mostly on the source’s ability to 

generate high density ions. In conventional rf systems such as a  capacitively driven rf 

diode, ion energy, density, and flux are linked. The combination of low ion flux and 

high ion energy leads to a relatively narrow processing window for many applications. 

This lim itation pushes the development of a new generation of low pressure, high 

density sources. Four types of these generic sources [16] are shown schematically 

in the Fig. 1.5. One common feature of these sources is tha t the rf or microwave 

power is coupled to the plasma across a dielectric window, ra ther than by direct 

connection to an electrode in a rf diode. This non-capacitive power transfer is the 

key to achieving low voltage across plasma sheaths a t the electrode and wall surfaces. 

W ith a separate rf bias on the wafer holder, independent control of the ion flux and 

ion bombarding energy is possible. Because of the ease of the scale-up, these high 

density sources are used as the ion sources in the neutral stream setup. An inductive 

circuit element (a spiral-like copper coil), adjacent to a discharge region in our set 

up, couples energy from an rf power source to an ionized gas. An additional resonant 

circuit is used to tune the inductor so that an electrical resonance a t the rf driving 

frequency is obtained. The plasma acts as a single turn , lossy conductor operating as 

the secondary of a transformer. Rf power is therefore said to be applied to the plasma 

by “transform er coupling” . The radio-frequency (13.56 MHz) current applied to the 

coil in the ICP plasma source produces an oscillating magnetic field which induces 

an electric field described by:

1 dB
v * E  = - c i *  (>•!)

11
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Figure 1.5: Schematic drawings of different high density plasma sources (adopted from 

[16])
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where E and B are the electric field and magnetic induction, respectively. The induced 

m agnetic field in cylindrical systems is :

B ( r ,9 ,z , t )  =  B (r )e ie ~ iwt (1.2)

where 6  is the plasma skin depth, <5 =  ^ - ,  where u pe is the electron plasm a frequency 

and c is the speed of light. The azimuthal electric field can be extracted from the 

measurem ents of the magnetic field:

E  *  ( 1 .3)
iuie/j.0 6

Loop, or capacitive electrostatic probes, and other electric measurements have shown 

th a t the discharges can be made sufficiently uniform (2.5 % and 3.5%) by the addition 

of m ulti-cusp magnetic fields over 8  in. wafers. The plasm a density can be increased 

by m agnetic confinement on the order of tens of Gauss. Magnetic confinement for 

the spiral-coupler source also serves to lower the plasma potential. A lower plasma 

potential results in a lower bombardment energy of the chamber walls and coupling 

window. This attenuates contam ination of the substrate via chamber sputtering. 

Experim ental measurements for the ICP plasm a source are presented in C hapter 2.

1.3.3 Sheath Theory

Form ation of a plasma sheath when the plasma interacts with an immersed 

object contributes to the extensive use of the plasma sources. At the edge of bounded 

plasmas, a potential exists to contain the more mobile charged species which is needed 

to m aintain the discharge. Fig. 1.6 shows the schematic drawing of plasma-wall 

interaction [15]. For a typical positive-ion plasma, the electrons are m ore mobile

13
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than the ions. The plasma will therefore charge positively with respect to a  grounded 

wall. This region between the plasm a and wall is called the sheath, with a separation 

of tim e scales such tha t electrons respond rapidly to the time variation of electric 

fields while ions respond slowly. W ithout such a sheath region in a quasi-neutral

/ n

Plasma Sheath 
-few  A.n

Presheath
- X ,  » A r v .

4>p

Sheath
edge

Figure 1.6: Schematic drawing of plasma sheath in contact with a wall,A,, ion mean free 

path and <hp, plasma potential.

plasm a, the electric field and potential should be zero everywhere by Poisson’s equa-
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tion. To analyze the sheath we assume a Maxwellian electron energy distribution, 

cold ions, n e(0 ) =  nj(O) at plasma sheath interface, and tha t the boundary flows obey 

following ion energy conservation and continuity equations:

]-Mu2 (x) = — e$ , (1.4)
am

rii{x)u(x) = n isus, (1.5)

where nia is the ion density at the sheath edge, and M, m are the ion mass and 

electron mass, respectively. Solving Poisson’s equation, subject to these constraints, 

the sheath potential at a floating unbiased wall is found to be:

= - r , M  J ^ ) f  (i.6)

For argon discharges, with an initial ion energy of Te/2  a t the sheath-presheath edge, 

argon ions would bombard an unbiased object with an energy of 5.2 Te. Electrodes 

with potentials on them, either dc or rf, can be bombarded with much higher ener

gies. These electrodes will also draw a substantial net current. For electro-negative 

discharges, the ratio  ̂ P/T c is found to be very nearly 1 / 2  if 7  =  Te/Ti > 30. Sheath

voltages are often driven to very large multiples of Te. If only ions are present in the

sheath, a  “m atrix sheath” is achieved where the sheath thickness is given by

» =  - W ^ ) f  (1.7)

where A</c is the Debye length. In the steady state, a self-consistent solution gives the 

well known Child law for space-charge-limited current:

4 .2 e .x V o 12 , .
~  9 M  s2  ' ^
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Under conditions where a large number of collisions occur for mobile ions in the 

sheath, the collisional form of the Child law in which the ion mean free path, A*, is 

independent of ion velocity is:

9 'i 9pA V 3/2

< 1 9 >

These equations can be used to develop plasma diagnostics and other applications.

1.3.4 Neutralization Mechanism

The surface neutralization and reflection scheme is used to achieve a high- 

intensity neutral flux when the plasma freely streams along magnetic field lines from 

the source to a conducting target plate downstream. The plate can be biased relative 

to the plasma a t a voltage from 0 to -50 volts. Cold ions in the plasm a (7* <  1 eV) are 

accelerated through the sheath established between the plasma and the plate. These 

ions strike the plate with the potential difference of the sheath (a few eV to tens 

of eV depending on the bias voltage and the plasma potential) and are neutralized 

by resonant or Auger processes to reflect predominantly as neutral particles. These 

processes have been thoroughly characterized for a  large number of choices of ion and 

plate species [1 1 ]. Radiative processes are not considered in this source [1 1 ]. Two 

types of neutralization dominate in the reflection source while the radiative process is 

a t a much large time scale and will not be considered in this source. The resonant and 

Auger processes [14] occur within several A  of the surface, where the wave functions 

of the electrons in the m etal begin to become appreciable. Resonance neutralization 

is a one electron process in which an electron in the conduction band tunnels into an 

excited level of the incoming atom, illustrated by transition 1  in the electron energy

16
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diagram  of Fig 1 .8 . The vacuum energy level a t the top represents the potential a t the 

metal surface. Since by the Franck-Condon principle no kinetic energy is transfered 

to the atom during an electronic transition, the electron m ust come from a filled level 

in the solid at the same energy as the excited s ta te . Such a  transition can thus occur 

only if the effective ionization energy of the excited state  is greater than the work 

function of the metal.

Auger neutralization is a  two electron process. As the ion approaches, an 

electron tunnels from the metal into the atom ic ground s ta te  of the ion, while the 

potential energy thus released excites a second m etal electron from another level 

in the conduction band. This second electron may be ejected from the solid if it 

happens to be directed toward the surface. These processes can be characterized by 

transition probabilities (per unit time) depending on the distance of the particle from 

the surface. These probabilities are very large for low energy ions so low energy ions 

of high ionization potential approaching the surface alm ost always end up as ground 

state  neutral atom s upon striking the surface. After a close collision with surface 

atom s, the incident atom might also be reflected back from the surface in a neutral 

excited state. But an excited atom  is subject to sim ilar Auger de-excitation processes 

as it moves away from the surface. Thus the fractions of low-energy noble gas ions 

reflected from m etals as ions or m etastable atom s are very low, typically well under 

10-3 . Following surface collision process with the reflector plate, the incident particle 

loses energy by inelastic loss to the electrons and by im parting the recoil energy to 

the surface atoms. The latter is responsible for the  reflection of the incident atom . A 

hyper-therm al projectile encountering a surface composed of much heavier atom s is

18
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very likely to experience large-scale collisional deflection from the surface.

1.4 Previous work - Monte Carlo Simulation

Earlier work [14] in our group was performed to sim ulate the neutral generation 

and transporta tion  in our source. T hat Monte Carlo sim ulation model assumed time- 

independent plasma density spatial profiles in the source region:

where n 0 is the maximum plasma density at z  =  0 . nr and ni are radial and axial shape 

param eters, respectively, r' is the radius of the power deposition toroid, and R  and 

L(x,y) are the radius and length of the plasma column, respectively. The param eters 

ni and n r are determined from the power and particle balance, respectively. Neutral 

particles are launched from the reflector plate using a sam pling procedure. The angu

lar distribution of launched particles is assumed to be of the  form f(9 )  =  Ngcosne{9) 

where No is the normalization constant, rig is the degree of the angular distribution, 

and 9 is the launch angle with respect to the reflector normal. The reflector neutral 

energies are sampled from an energy distribution of the form:

where E is the neutral energy in eV, Ne is a normalization constant,E c is the mean 

launch energy, E w is the width of the energy distribution a t  the base, and n e is the 

degree of the energy distribution. E c is determined from the  applied reflector bias and 

the neutral energy reflection coefficient rg, which varies depending on the particular

(1.10)

m  =  iv£ [i - ( 1 . 1 1 )
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reflector m aterials/feedstock gas combination. A probability array is constructed 

from the relative collision frequencies for each process under consideration (elastic, 

charge-exchange, ionization ) as a  function of energy:

N

Vm ax V m ax

where i =  energy index, j =  process index, N =  num ber of processes, Ui.-j is the collision 

frequency for the jth  process a t energy i, uimax is the maximum collision frequency 

a t energy i, Uimax =  ui,j anc  ̂ umax is the maximum collision frequency over 

the entire energy range. The simulation begins by selecting a site on the reflector 

plate and determining the number of particles to launch from th a t position. The 

particles are launched according to the assumed angular and energy distributions. 

The pressure, plasma density, and ion/neutral reflection param eters are the prim ary 

param eters varied to assess the performance of this design. The simulation studies 

indicated a trade-off caused by pressure increase between the initial high intensity 

beam and the attenuation of neutral transit in the down stream. Simulations also 

indicated a narrow tunable energy range for the reflected neutrals.

1.5 Purpose of this Work

The purpose of this work was to evaluate the process performance of our neutral 

stream  source to our pulsed plasma source and to compare their process damage. 

There were a  number of deliverable goals and tasks required to achieve a more through 

understanding of pulsed operation of this source. Among them were:

•  Characterize ICP plasma source to achieve a  be tter understanding of contin-
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uous wave (cw) plasma discharge chemistry and physics (Chapter 2).

•  Develop electrostatic probe diagnostics to characterize low damage process- 

pulsed discharge (Chapter 3).

•  Simulate pulsed discharges of Ar and oxygen m ixtures to enhance the under

standing of plasma chem istry and mechanism of pulsed processes (C hapter 4).

•  Evaluate ashing performance of low-energy neutral stream  source and com

pare to Monte Carlo sim ulation results (Chapter 5).

•  Perform the neutral energy and flux measurements to explain the relationship 

between the experimental rates and neutral stream  param eters (C hapter 6 ).

•  Assess the neutral process-induced damage and compare w ith other process- 

induced damage (Chapter 7).

1.6 Organization of Dissertation

Because the param eters in the plasm a source zone interlink with the rates of 

etch and clean processes and because damage occurs in the source zone, the process 

results will be presented interleaved with source characterizations. C hapter 2 presents 

a brief review of plasma diagnostics and their application in the continous wave ICP 

plasma source. Most of the discussion centers on the optical emission m ethod and its 

application to plasma discharge studies.

In C hapter 3, we present a double probe setup capable of measuring the pulsed 

plasma properties. We also discuss pulsed plasmas as a  function of the pulse frequency 

and duty  cycles. In C hapter 4, we discuss a global average model for simulation of 

both cw and pulsed plasm a discharges.
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In C hapter 5, ashing studies with the neutral beam source are performed. Many 

experimental issues will also be discussed in this chapter. The experimental results 

are also compared with the simulation results. In C hapter 6 , we present a novel 

m ethod to measure the neutral energy and flux. This m ethod combines a micro

torsion balance and a calorimeter to measure both the energy and the flux of the 

neutral stream. Using the neutral flux value and energy-dependent etch-vield values, 

the calculated stripping rates are compared to experimental results. In C hapter 7, 

we compare the process damage caused by different plasma processes and discuss the 

process damage as a function of the reflector bias and rf power.
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Chapter 2

Plasm a Discharge Characterization

2.1 Introduction

There are various methods, such as Langmuir probes, optical emission, mass 

spectrometry, microwave interferometry, and laser induced fluroscence methods to 

characterize the plasma discharge. In this study, Langmuir probes and optical emis

sion methods were used to measure plasma parameters such as electron tem perature 

and plasma density. Mass spectrometry was used to measure the dissociation rate of 

molecular gases and also to provide a survey of process gas purity and contam ination 

species.

2.1.1 Langmuir probe studies

Langmuir probes are metal probes, inserted into a discharge and biased pos

itively or negatively to draw electron or ion current. These probes are completely 

surrounded by a  plasma sheath. These probes are usually quite sm all and under
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suitable conditions, produce only minor local perturbations to the plasma. Fig. 2.1 

shows a typical current vs voltage plot from a single Langmuir probe. At the probe 

voltage Vp =  Vs, the probe is a t the plasma potential and draws current mainly from 

the more mobile electrons, designated as positive current flowing from the plasm a 

into the probe. V) is the potential a t which an insulated probe, does not draw a net 

current [17]. To minimally d isturb  the plasma and also for the ease of construction, 

Langmuir probes are often made up of the thin wires with radii smaller than the

Electron saturation
regime

Transient
regime

Ion saturation 
regime

Figure 2.1: Single Langmuir probe characteristic I-V curves

Debye length A</e. Different probe geometries, such as planar and cylindrical probes 

have been used extensively in the plasma discharge characterization. The probe anal

ysis varies depending on the ratio  between the Debye length and probe size. Accurate 

results have to take the ion tem perature, ion trajectories, and probe geometries into 

account. Additional complications also arise because of different experimental con

figurations. For example, in an rf driven plasm a, the probe has to float w ith the
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plasma to  eliminate the effects of the oscillating potential. In our general analysis, a 

Maxwellian energy distribution is assumed for all d a ta  analysis though some devia

tions are expected in experiments. More details of single probe setup in cw plasmas 

were included in Nichols’s thesis [14].

2.1.2 Optical Emission Studies

Optical emission spectroscopy is another useful m ethod to investigate chem

ically complex discharges. Compared to the Langmuir probe measurement, it is a 

non-invasive method and provides excited species information in the discharge. The 

wavelength-resolved optical emission also may be spatially resolved perpendicular to 

the line of sight. In our studies we used a spatial average along the line of sight. 

The observed emission intensity is a convolution of the species density for the optical 

wavelength being monitored, the electron energy distribution function, and the cross 

section for electron im pact excitation of the optical level. Fig. 2.2 illustrates the di

rect electron impact excitation of the ground state of atom  A to an excited s ta te  A*, 

followed by subsequent emission a t frequency u> to some lower energy state A / .  The 

emission wavelength is determined from:

A = — . (2.1)
LJ

The emission should be sharply peaked a t A, usually with a small intrinsic line width 

associated with the spontaneous emission rate from level A*. Eqn. 2.2 can be used 

to calculate the emission intensity a t the wavelength A. The intensity, °f

emission is from the ith atomic species or state a t wavelength A(j, k) accompanying 

the transition between the kth and jth  levels. Population of the initial excited level
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Figure 2.2: Schematic drawing of the photon emission

occurs by electron impact excitation of the atom  from a lower state  A{( its ground 

state, or a m etastable state) to the excited state  Ak- The net intensity measured by 

a spectrom eter can be calculated from [15]

/ O O

ffAi.k {v)vi f e{v)dv, (2.2)

**i.k

where a(A jt*) is the spectrom eter sensitivity at A i s  the number density of Ai, 

ffAtk(v){=  0  for v <  t?.4 t J  is the effective cross section for an electron w ith speed v to 

excite a tranistion from level .4, to A k. This includes cascading from levels above Ak 

th a t are populated by electron impact excitation from A{. Other param eters above 

include the quantum  yield, Qk, for emission of a  photon whereby the excited state  

Ak spontaneously relaxes to any lower state  given by :

Qk =  r - 1 +  I<qP  (2‘3^

where r  and K q are the radiative lifetime and effective quenching ra te  constant for

Ak by all species at total pressure P. For em itters w ith very short radiative lifetimes,

and a t the low pressure used in this study, Qk =  1. In Eqn.2.2, B j is the branching
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ratio for the transition Ak —» A j , defined as:

(2 .4 )

The assumed electron energy distribution is Maxwellian:

where m e is the electron mass and Te is the Maxwellian electron tem perature. The 

total emission at A i s  determined by summing over the electron impact excitation 

processes from all lower states, Ai.

Electron Temperature and Particle Density Measurements

Similar to the Langmuir probe method, the optical emission method can also 

be used to measure the electron density and mean electron tem perature, n e and Te 

of the plasma. In the coronal equilibrium regime, Te may be determined from optical 

measurements using the following expression: [18]

where I + and I0 denotes the ion and neutral emission intensity; Ei the ionization 

energy of the atom; E g the energy of the excited level of the singly charged ion relative 

to the ion ground state; and En the energy of the excited neutral atom  relative to the 

neutral ground state. C i is a param eter depending on the energy levels involved and 

on the collision cross-sections.

An plasma frequently had metastable densities tha t exceed a fraction equal 

to 10- 5  of the ground state density in the gas [19]. The electron excitation cross

~  = C\T®'lbexp[—{Eg + E i -  E n) /T e}
* o

(2 .6 )
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sections of metastable species into higher levels can be 1 0 0  or 1 0 0 0  times as large 

as the corresponding cross sections for excitation of ground state atoms. Because 

electron tem peratures in such systems are frequently low (less than a few ev), there 

are orders of magnitude more electrons with sufficient energy for excitation out of 

m etastable levels (about 1.5eV for Ar) than there are with enough energy to excite 

atom s out of the ground sta te  (about 13 eV for Ar). For example, an em itting 2px 

level of the rare gases “A” can be populated through electron impact excitation either 

from the ground state or the metastable state:

The resultant intensity of the observed emission of the excited states of A, i.e. from 

.4* is proportional to

where the sum represents the excitation of em itting .4* states from any i states, which

adding trace amounts of rare gases (He, Ne,and Ar) into the discharge and comparing

A + e k±> A '  + e (2.7)

(2.8 )

or through radiative cascades from higher states initially excited by electron impact.

[°°  uai<A. ( E ) f { E ) d E  
Jo

(2.9)

may be a  ground state of species A or a molecule AB th a t undergoes the dissociative

excitation process:

A B  + e ->  A* + B  + e (2 .10)

A technique described by Malyshev et al. [19] measures the electron tem perature by
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observed atomic emission intensities with those extracted from a com putational model 

including the contribution from m etastable states. If the A* state is primarily excited 

from the ground state, then the equation can be rewritten and the emission intensity 

is proportional to the number density of ground state of A.

2.1.3 Actinometry

The actinometry m ethod, as described by Coburn and Chen [20] has been used 

to measure the active species in the discharge [21-27]. A small am ount of a rare gas 

(usually Ar) is added to the discharge and the emission from a species of interest (A) 

with an unknown number density is divided by tha t of the rare gas to account for 

variability of ne and Te. By choosing the Ar emitting level such tha t the cross section 

for excitation ffAr,Ar• is similar to a a ,a - one may write:

A - o c  —  (2.11)
i.\ r* riAr'

n A j ~ i , a A.A. ( E ) ! ( E ) d E  ^  ( 2  J2)
nArf , r  v a Ar.Ar.(E)!(E)< lE  n Ar 

where a is a constant. The sim ilarity of the two cross sections allows approximate 

canceling of the integrals and thereby eliminates the dependence on n e or Te. Hence, 

the relative density of species A can be obtained from the ratio of corresponding 

emissions, since the density of Ar is easily controlled and therefore, can be taken as 

known. However, reliable actinom etry measurements require the following experi

m ental conditions be fulfilled:

•  The excitation of the em itting level comes only (or mostly) from the ground 

state. Since the excitation of 2P Paschen levels of the rare gases often occurs through
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the m etastable states, the em itting level must be chosen such th a t this contribution 

is negligible under all conditions of interest.

•  The cross sections for studied species and actinom eter gas as function of 

energy must be similar in magnitude and velocity dependence. Changes in Te and 

EEDF (electron energy distribution function) will appear if there are any differences, 

and must be accounted for in the model.

•  Because of possible re-absorption of emitted radiation, a t partial pressures 

higher than 0.5-1 mTorr in Ar discharges, only emission lines term inating on l s 2  or 

Is,! states should be monitored. The density of m etastable l s 3  or l s 5 is high enough 

to give self-absorption under these conditions and thus may not be used [19]. The 

7504A (2pi) and 7515A(2ps) lines are nearly free of contributions from m etastables 

and hence are the best ones to use in actinometry.

2.2 Experimental Setup

Experiments were performed in the apparatus shown in Fig 2.3 which will 

be discussed later in detail. The plasm a source chamber is an 8 ” CF six-way cross 

pumped by a 450 l / s  Fomblin-prepared, turbomolecular pum p. A 3-1/2 turn  water- 

cooled copper coil antenna was coupled to the main cham ber through a 25mm thick 

quartz window. An angled tungsten plate, biased at variable negative voltages, served 

as a reflector plate from which ions bounce as neutrals. The current collected by the 

plate measures the net ion flux proportional to the resulting neutral flux as experimen

tal conditions are changed. The system was tuned with a  7T-LCR matching network. 

A variable power supply (0-800W) was used in continuous wave (CW) rf power exper-
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iments. Typical operating conditions in the source were: 1  x 1 0 - 3  to rr < P  < 10- 2  

Torr; Q,\r =  1~ 10sccm,Qo2 =  l ~ 1 0 sccra; Vbiaa =  0 ~ —35volts, P/jp =  50~600W .

Plasm a density and electron tem perature were measured using Langmuir probes. 

Langmuir probes (both double and single probe) were placed in a mini flange which 

is 3 inches away from the ICP(inductively coupled plasma) coil. Several viewports 

were used for the plasma emission studies. The same ports could be used to mount 

a Hiden mass spectrometer for gas composition analysis.

Match Box
Viewport 

(OES and MS)

Gas Inlet

ReflectorLangmuir Probe

■Venting
Valve

Baratron

Turbomolecular Pump

/
Quartz Window

Figure 2.3: The schematic drawing of the set up for Langmuir probe and OES studies

The particle species line-integral intensities in the source chamber were mea

sured using three different optical spectrometers. A 0.5 m monochrom ator (Acton 

SP300i) was used with three different gratings (300, 600, 1200 grooves/mm) and a 

256x1024 CCD camera as a detector. This monochromator views the plasma perpen-
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dicular to a  m irror axis on the mid-plane. The collected d a ta  were corrected for the 

wavelength response of the grating and CCD camera using a tungsten calibration lam- 

p. In these experiments, the entrance slit of the monochromator was 20/xra yielding a 

resolution full w idth at half maximum of 1  A. The quartz fiber coupler transmission 

was calibrated down to 200 nm. A nother single grating, 1200 grooves/mm, spectrom 

eter was used to m onitor particle density a t a second location. A third spectrometer, 

fitted with a Princeton 1460 OMA was used to monitor the plasm a species density.

2.3 Results and Discussion

2.3.1 Langmuir probe studies

Fig 2.4 and Fig 2.5 show the plasma density and electron tem perature, re

spectively as a  function of the discharge pressure in Ar discharges. The electron 

tem perature increases as the discharge pressure decreases. On the other hand, the 

plasma density increases as the pressure increases. As the pressure increases, the 

electron tem perature decreases because of the increased num ber of collisions inside 

the plasma. The increase of the plasm a density with the pressure is a ttribu ted  to the 

increase of the neutral species a t higher discharge pressure. The plasma density and

A r  + e —► A r + + 2e (2.13)

electron tem perature as a function of the rf power are shown in Fig. 2.6 and Fig. 2.7, 

respectively. The plasma density increases nearly linearly w ith rf power while the
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Figure 2.4: Plasma density as a function of the discharge pressure from single probe, Ar 

discharge, 500W
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Figure 2.5: Electron temperature as a function of the discharge pressure from single probe, 

Ar discharge, 500W
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Figure 2.6: Plasma density as a function of the discharge power in Ar discharges
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Figure 2.7: Electron temperature as a function of the rf power in Ar discharges

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tem perature stays the same when the rf power is over 200 W. This phenomena may 

be explained by a simple uniform discharge model. By equating the to tal surface 

particle loss to the total volume ionization, we can write: [15]

n 0 ub{2v R 2h i  + 2nR L h ft)  =  KiZngn0TrR?L. (2.14)

_  _ _ L _  j , , - 1  R L  (o 1 5 1

Ub(Te) n ,d '„ '  2 RhL +  Lha

Thus Te is independent of the plasm a density and input power. However,

no =  P“bs , Aeff =  2irR(RhL + L h R). (2.16)
eubA ef f S i

where ub is the Bohm velocity for ions. R and L are the diam eter and length of 

the discharge chamber, respectively, and h R are param eters defined in Chapter 

4. £ i  is the average collisional energy loss per electron-ion pairs and is a function of 

Te. Because Te does not change with rf power, el does not change with rf power. 

Thus the plasma density is approximately linear with the rf power while the electron 

tem perature stays the same. Similar results were achieved from both the double 

probe measurement and optical emission results. More discussion about modeling 

dependence of ne and Te will be given in chapter 4.

2.3.2 Optical Emission Studies 

Ar Discharges

The Ar discharge is one of the simplest and so has been investigated extensively 

to understand the plasma discharge mechanism. One interesting application of the 

Ar discharge is its use in actinometry. Fig. 2.8 shows a  representative spectrum  of a
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Figure 2.8: Typical Ar discharge spectrum
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Figure 2.9: Energy diagram of Ar atoms
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500 W  Ar discharge spectrum  at 6.4mTorr. Fig 2.9 shows the corresponding energy 

diagram  of Ar atoms. One of most im portant features is the existence of large number 

of m etastable species in Ar discharges which complicate the analysis. The first excited 

electronic configuration in Ar is 3p5 4s giving four levels. The J = 0 ( l s 3  in Paschen’s 

notation) and the J= 2  ( l s 5  in Paschen’s notation) levels are both m etastable, with 

lifetimes over 1.3 sec. The next set of ten excited levels arise from the 3p5 4p con

figuration (2pt through 2pio in Paschen’s notation). Processes such as electron-atom 

ionization, excitation, and elastic scattering and charge transfer processes are includ

ed in the discharge analysis. Ionization from metastables is of great concern. As 

mention earlier, Ar 750nm and 751 nm emission lines are used frequently in follow

ing studies because of negligible contributions from metastables to the final optical 

emission.

O -i Discharges

Compared to the Ar spectrum , the 0 2  spectrum  is much more complicated 

because of large number of vibration and rotation states in the molecular structure. 

Fig 2.10 shows a pure oxygen spectrum a t 500 W at 7 mTorr. Besides the direct chan

nels, Oo plasma radiation can also be em itted by transitions between the electronic 

levels, between vibrational levels of the same electronic states, or between rotational 

levels of electronic states. Corresponding to these channels, much more complicat

ed processes take place in oxygen discharge. These include molecular dissociation, 

dissociative ionization, dissociative recombination, electron attachm ent, and volume 

recombination between the positive and negative ions. Previous studies indicate th a t 

the 844nm line can be used in oxygen discharge to represent true atomic oxygen
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concentration because of a smaller contribution from dissociative excitation.
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Figure 2.10: 0 2  discharge spectrum at 3.56mTorr, 400 W

Ar +  0o mixture

Fig 2.11 shows the OES (optical emission spectroscopy) results of the plasma 

source region taken as a function of the rf power for Ar + Oo plasmas. The intensities 

of oxygen and argon emission both increase with the rf power. The intensity ratio 

0777nm(3p5p)/.4 r75o„m(3p54p) increases sharply as the rf power increases from 100 W 

to 200 W. Assuming th a t the only atomic processes of importance for an upper level, 

k, are electronic impact excitation of ground sta te  atoms and th a t this upper level k 

can only decay radiatively, then the observed relative line intensity for a  transition
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from level k to a particular lower level j is given by [25]:

I k^ j  = neng < o v  >g-+k 7r, (2.17)

where B k~>j is the branching ratio [28] and Q is the acceptance solid angle for the 

detection system. Thus the ratio of two neutral Ar lines (419nm and 451nm) used in 

our experiments is calculated as

I k - * j  _  <  > g - * k  B k - y j  ( n - , a \

7----------------~  ---------------------n  >1 m -* n  ^  v u  MDm ^ n

0.5

0.0
200.0 300.0 400.0100.0 500.0 600.0

RF power, w

Figure 2.11: The ratio of O rrr /A r^  intensity as a function of rf power

where if a Maxwellian electron energy distribution f e(v) is assumed, the average
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electron im pact excitation rate can be written:

<  av  >g-*k=  ̂J  fe(l')<Tg^k{l')l'd3V. (2.19)

Using the neutral Ar excitation cross section da ta  provided by Feltsan [29], Zape- 

sochnyi [30] and Ballou [31] et al. and the assumption of a  Maxwellian electron 

energy d istribution, the electron tem perature in Ar plasmas is derived (Fig. 2.12).

Electron Temperature

100 150 200 250 300 350 400 450 500
RF Power, w

Figure 2.12: Electron Temperature as a function of the rf power from OES studies

The electron tem peratures measured by the independent m ethods of probes (Chap

ter 3) and emission spectroscopy show the same behavior, indicating a mode jum p 

from capacitively to inductively coupled mode as the rf power increases from 100 to 

200W. A sudden increase of the plasm a emission intensity is also visible through the
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quartz window. Considering errors in the OES analysis caused by inaccuracies in the 

cross section data  and the known errors of the probe analysis, the values of electron 

tem perature are in relatively good agreement.Fig. 2.13 shows actinom etry results for

o
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Figure 2.13: The ratio of O m /A rjsa  intensity as a function of rf power from actinometry 

result

A r  +  0 2 plasmas as a function of the rf power. The ratio of Imnm/Irsonm  increases
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with the rf power. This represents an increase of atomic O density as the rf power 

increases. The corresponding current to the reflector plate also increases because 

the plasma electron density increases with the rf power. Actinom etry results varying 

discharge pressures between 2 m Torr and 20 m Torr show th a t the O m nm emission 

intensity has a single minimum a t 5 m Torr.

30
G— G O777/Ar750 

  O844/Ar750
2 5

20
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5

0
0.80.6 0.7 0.9 1

0 2 / ( A r + 0 2 )

Figure 2.14: .47- +  0> plasma as a function of the oxygen composition in the source region 

(500W, 6.74mTorr)

W ith  the addition of higher percentages of argon into the discharge chamber, 

the assum ptions for actinometry may not be valid. In such cases, therefore, we plot 

both ratios of 0 7 7 7 nm(3 p5 p) and 0844nm(3p3p) lines to the A r75 o„m as functions of

4 2
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percentage of oxygen in the mixture, while m aintaining a fixed pressure. The ratios 

for both oxygen lines increase with increasing oxygen content. The initial increase 

is nearly linear as might be expected from a simple model where electron im pact 

dissociation is followed by ionization of the atoms. The sudden jum p to higher than  

linear dependence associated with increasing to greater than  85% O 2  indicates a 

possible change in kinetics. Our result in Fig. 2.14 tha t the 0 777„m and Og4 4 nm lines 

behave similarly, is not always obtained in the plasma discharge studies [24]. The 

validity of using the 0 777nm line to characterize the ground state  0  atom  density 

m ust be examined in detail for each case [32]. The prim ary contributions to forming 

the  excited state radiation are

D irect Channel e +  O —> OxtJ + e (2.20)

D issociative Channel e + O2  —> 0*x y +  O + e, (2.21)

where 0* indicates the upper state of 777.4 line, and O* indicates the upper s ta te  of

the 844.4 line. The excitation cross-sections for processes 2.20 and 2.21 have been

measured [33,34]. Direct excitation cross-section for both O* and Oy peaks a t about 

13 ev and rapidly falls off. The peak value for O* is more than  three times higher 

than that for O*. Dissociative excitation has a threshold near 13~ 14 eV and rises 

slowly to broad maximum well above 70 eV. The cross-section for the dissociative 

channel for O* crosses the direct channel at 20~ 25 eV. Dissociative excitation for O* 

crosses direct excitation for O * a t about 30 eV, but is well below th a t for O* direct 

excitation for values of energy out beyond 200eV. In our discharges with average 

electron energies below 14 eV and w ithout significant higher energy tails during the
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inductive portion of the discharge, the direct channel dominates and both  emission 

lines are observed to be equally useful for inferring the ground state  oxygen atom 

density. Our photo-resist cleaning results (C hapter 5) showed that the stripping rate 

increased with oxygen percentage,consistent with increasing atomic O concentration 

as more oxygen is added. For some stripping and cleaning applications, F atoms 

are helpful, so we also performed similar studies of C F .\/O ilA r  mixtures, where the 

oxygen content was varied from 0 to 35%. As expected [35] F atom  concentration 

increases with the rf power (Fig. 2.15) and can be dram atically increased by oxygen 

addition. The atom ic oxygen concentration also increases with the rf input power.

5.0
■G F703nm/Ar750nm 
r'; O844nm/Ar750nm

4.0

Ew
c  3.0 
o'
2

£ 2.0 
c

0.01
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02/( Ar+02+C F4)

Figure 2.15: Optical emission spectra of Ar + O2 + CF4 plasmas as a function of the 

discharge gas composition
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W ithout oxygen, F atoms in this discharge are mainly contributed by following reac

tions:

e +  CFa —► C F 3+ + F  + 2e (2.22)

e 4- C F \ —► C F 3 -j- F  -F e (2.23)

e +  C F , -> C F 3 +  F "  (2.24)

e +  F _ - > F  +  2e, (2.25)

C F 3+ +  F  -> CF> +  2F. (2.26)

and fluorine atoms are lost by following reactions:

C F 3+ +  F  -> C F ,, (2.27)

F  +  f  _>«■« F2, (2.28)

C F , +  F  +  M  -> C F , +  M, (2.29)

F  + F  + M  -> F2 +  M. (2.30)

W ith the addition of the oxygen, one possibility is th a t oxygen reacts with 

fluorine-containing species to liberate the fluorine atoms. The reactions may occur

on surfaces or in the gas phase. Mogab et al. [35] proposed the following reactions to

account for the F density variation w ith the oxygen composition.

e +  C F , -*  C F 3 +  F  +  e, (2.31)

C F 3 +  0 2 —► C O F 2 +  O F , (2.32)

C F 3 +  O F  —► C O F 2 +  2 F, (2.33)

O F  +  O F  -> 0 2 +  2F. (2.34)
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The expected decrease of F atom  density as oxygen composition further increases is 

caused by a low dissociation rate of C F\ because electron energy decreases from a 

larger value (6~8.3eV) in pure CF.\ discharge to a lower value (4.5~6eV) in pure 0 2

tions, or detailed studies of etch rates on materials of interest are needed.

A concern in the operation of a surface reflection neutral stream  source is 

w hether variation of the reflector bias changes the composition of the plasm a or the 

neutral stream . Fig. '2.16 shows optical spectra of an A r + 0 2 discharge as a function 

of the reflector bias. No detectable changes are observed. A downstream quadrupole

discharge. Thorough studies of reflected neutral F atom  energy or angular distribu-
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800.0

Figure 2.16: Optical emission spectra of Ar + 0 2 plasmas as a  function of the reflector bias
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mass spectrom eter was used to examine the discharge composition as a  function of 

the reflector bias. We note th a t results from mass spectroscopic studies also agree 

with the optical studies.

2.4 Summary

In this chapter, a brief review the phisma diagnostic methods such as Lang- 

muir probe and optical emission in the ICP source was presented. Plasm a density 

and electron tem perature as a function of the discharge pressure and rf power were 

measured from Langmuir probe measurements. Electron tem perature derived from 

the OES indicates a possible mode jum p in the discharge. As the reflector plate 

bias changes, no detectable OES spectra changes were observed. This indicates tha t 

changing the reflector bias, which changes the neutral energy, does not change the 

discharge composition. This finding has never been confirmed before and is essential 

to the use of such a source in advanced processing applications.
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Chapter 3 

Time-resolved electrostatic probe 

studies of a pulsed inductively 

coupled plasma

3.1 Introduction

The development of new plasma sources is of fundamental importance for 

plasm a-based material processing. The need for sources th a t operate at low pres

sure, w ith a high degree of plasm a uniformity and high plasm a density, has led to 

the development of the radio frequency induction (RFI) and electron cyclotron res

onance (ECR) sources. The transformer-coupled plasma (TCP) source has drawn 

a tten tion  due to its simplicity and its ability to perform large area processing. Pulsed 

plasm as, combining either T C P  or ECR with pulsed power, offer the prospect of bet

ter control by variations of pulse shapes, durations, and duty cycles. For example,
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Samukawa [36] reported an increased selectivity for CHF3 etching SiO -2 over Si, by 

choosing an optimized pulsed-power repetition frequency in an ECR plasma source. 

Shin et al. [37] showed an enhancement of mask selectivity in SiC>2 etching with 

a pulsed ICP (inductively-coupled plasma) source. These sources can also reduce 

process-induced damage, such as th a t caused by electron shading [38,39]. However, 

most research in this area is devoted to the study of the quality of the etching or 

deposition by pulsed processes. The goal of this chapter is to establish the suitability 

of Langmuir probes for pulsed plasm a measurements and to present the experimental 

results with more accurate da ta  analysis approaches in order to understand the pulsed 

discharge mechanism.

Few direct measurements to  understand the pulsed discharge have been per

formed. These include studies using quadrupole mass spectroscopy [40], optical e- 

mission spectroscopy [41], and microwave interferometry [42]. Compared to Lang

muir probe measurements, these diagnostic tools provide volume-averaged or line- 

integrated plasma densities and present minimum interference to  the plasma, but 

they are complicated and their costs can be high.

Electrostatic probes provide simple and reliable methods to analyze local prop

erties of the pulsed plasmas with carefully designed probe circuit and da ta  processing. 

Among earlier studies, Ashida and Lieberman [43,44] reported the use of a single 

Langmuir probe to compare the measurement of a pulsed ICP to a  spatially-averaged 

sim ulation model. Overzet and co-workers [45] compared time-resolved single-probe 

measurements to microwave interferometer measurements in parallel-plate pulsed dis

charges a t 300-500 mTorr. Another type of Langmuir probe, the double probe, has
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also been used previously to measure electron tem perature and the plasma densi

ty [46]. A double probe circuit for use in pulsed ECR discharges was reported by 

Boegger [47]. More recently, Smith and Overzet [48] reported an improved double 

probe system for pulsed rf plasmas inside a Pyrex tube, finding a transition to an 

“electron-free” (positive and negative ions only) plasma arriving a t the end of the 

power pulse [49]. A quantitative analysis of probe data must account for the sheath 

thickness variation in pulsed plasmas, which leads to tedious analysis. Thus pro

cessing a large amount of probe data  using standard iterative, non-linear methods 

requires a large amount of computation time.

The relative merits of the single and double probes have been presented pre

viously [17,50]. We briefly touch on the relevant points here. The perturbation of 

the double probe to the plasma is generally smaller than th a t of a single probe since 

both probes are maintained a t negative potentials so that the total current drawn by 

either probe is always less than or equal to the ion saturation current. Furthermore, 

the double probe analysis for the electron tem perature based on the straightforward 

extension of single probe theory is relatively easy. Unlike the single probe, the double 

probe is insensitive to multi-modal electron energy distributions, being dominated by 

the population of high-energy electrons. It is necessary, therefore, to benchmark dou

ble probe results against other measurements for T e and ne, such as single probes or 

interferometry, to establish the suitability of double probes [17]. The apparatus under 

study in this chapter has been the subject of extensive single probe studies [14,51], 

w ith which the present double probe measurements have been compared. Earlier 

studies in our group have dem onstrated good agreement between double probes and
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microwave interferometer measurements in rf driven plasmas [52-55]. In this chap

ter, we present time-resolved Ar, T C P (13.56 MHz) plasm a measurements over the 

pressure range from 1 m Torr to 15 m Torr a t pulse repetition rates from 200 Hz 

to 10 kHz. O ur analysis fully accounts for sheath thickness variation. The results 

from single and double probes, which are analyzed using both  nonlinear fitting and 

equivalent resistance methods, are compared. Plasma density radial profiles are al

so presented. The temporal dynamics of the electron tem perature and the plasma 

density are discussed in terms of current models [56-58].

3.2 Experiment

3.2.1 Setup

The schematic drawings of the single and double probe measurement circuits 

are shown in Fig. 3.1. The discharge chamber has been described in C hapter 2. An 

HP8116A function generator gates 13.56 MHz cw sinusoidal waves with 50 Hz-15 kHz 

rectangular pulses, created by either a Wavetek 20 function generator or a  HP8004A 

pulse generator. The gated rf signal is amplified by an ENI A-300 power amplifier. 

The calibrated, absorbed plasma power is measured by a Pearson 110 current monitor, 

capacitive voltage probe, and 5 kw dummy load following the procedure described 

by W ainman [59] and Asida [43]. The measured rise tim e and the decay tim e from 

full power to zero power of the rf pulsed power circuit are both about 2[is. A time- 

averaged rf power of 65 W is used in all experiments unless otherwise stated .
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The pulsed ICP plasma param eters are characterized by both a single probe 

circuit and a real-time, double probe system. They are placed about 7 cm downstream 

of the quartz window in the discharge chamber. The single probe is made of a 

cylindrical tungsten wire, seated in a  ceramic tube. The double probe is made of 

two cylindrical W wires, lOO^m diam eter and 1cm long, seated 0.8 cm apart in a 

double-bore ceramic tube. The two probe tips thus were separated far enough from 

each other so th a t neither probe tip will sit in the o ther’s sheath. Both probes can 

be mounted on a bellows-drive, perm itting motion in the radial direction to collect 

the radial profiles.

Several experimental issues have been taken into consideration for pulsed rf 

plasm a measurements:

•  rf chokes are placed inside the stem to prevent the rf from distorting the I-V 

traces. Both probes are trapped for the fundamental, second, and third harmonics 

[60]. Several low pass filters are used to further eliminate the rf interference to both 

single and double probes. These low pass filters have over -45 db attenuation for 

signals at 13.56 MHz and less than -0.1 db attenuation for 50 to 15 kHz modulation 

signals. The collected signal is carried by coaxial cables, which provide the necessary 

shielding.

•  Ground leads from the oscilloscope, rf power supply, and discharge chamber 

in the single probe circuit, are bundled up to a common clean ground. External circuit 

connections are shielded by additional metal foils. For double probes, no ground lead 

is connected to the oscilloscope input terminal or to the bias power supply output 

terminal; this perm its the double probe circuit to float.
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•  The full record of time variation of the plasm a is constructed pulse-to-pulse 

by adjusting the time gate of the measured current and voltage, in a  manner analogous 

to a conventional box-car amplifier. The voltage applied to the probe is varied slowly 

to capture the dynamical development of the plasm a. The applied voltage remains 

constant during one cycle of data  acquisition so th a t measurements of the fast plasma 

transients are easier to record,avoiding probe dynamic effects. Each collected I-t 

waveform, a t each probe bias, is constructed by accumulating 256 repetitions of the 

applied pulse trains, averaged in the oscilloscope. Fast Fourier transform (FFT) 

analysis of I-t traces reveals no detectable rf-induced noise.

•  Plasm a leakage and stray capacitance often limit the use of Langmuir probes, 

especially double probes. The direct use of a standard , stabilized dc power supply 

to bias the probes produces unacceptable results because of the large capacitance to 

the ground at each of output terminals. In our setup, a computer-controlled, bipolar 

amplifier, driven by a battery-powered bias circuit, provides a  floating differential 

voltage to the probe tips. The measurement circuit capacitance is assessed in a 

pulsed plasma by measuring the current, through the probe resistor with zero 

bias voltage. This stray current contributes to the probe current a t the end of a 

power pulse period with a magnitude observed to be less than  10 percent of the 

to ta l ion saturation current. The temporal structure of the stray  current is highly 

reproducible , allowing this background offset to be subtracted from measured current 

in subsequent ion saturation calculations. We also evaluate stray capacitance effects 

by applying a 50Hz-15kHz sine-wave (Vp- p =  IK ) to both electrodes, measuring the 

resultant probe current.
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•  The load resistors for the single probe and double probe analysis are 5 kft 

and 900 ft, respectively. The 5 kft load resistor was chosen so th a t we could directly 

com pare our results to those by Ashida who use the same value while employing 

different da ta  analysis approaches. For our double probe measurements, different 

load resistor values, 100, 500, 900, 1000, 1500 ft have also been tested. The collected 

I-V traces overlap within a  few percent, indicating tha t all of these values are smaller 

enough not to alter the probe load-line. A 900 ft resistor is chosen to provide adequate 

gain for use in Oo pulsed plasmas, which have significantly lower probe currents than 

Ar plasmas.

•  Prior to each argon da ta  collection sequence, the probe is biased a t -65 volts 

for one hour to clean the surface. The time-resolved electron tem perature is derived 

from I-V traces by transecting the I-t d a ta  m atrix at different biases. The electron 

tem perature is then input to a  procedure which iterates on to extract the plasma 

density from the corrected ion current.

3.2.2 Probe theory and data analysis

The electrostatic probe theory for charged particle densities and electron tem

peratures in low to medium pressure plasmas is well established for dc discharges in 

inert gases [61,62]. Its applications for rf plasma measurement have been reported 

by Hopewood [63], and Ruzic and Wilson [64], Wilson et al. [65], Cox et al. [66], 

Gudmundsson et al. [67], and Crawford [68]. Such applications have been reviewed in 

detail by Hershkowitz [50] and Cherrington et al. [69]. For completeness, we include a 

brief discussion of the established theory. Since the electron plasm a frequency is typ-
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ically much higher than the radio frequency used in an ICP plasm a, the electrons will 

react to the rf while the ions do not because of their larger mass. Thus an rf fluctua

tion in the plasma potential distorts the dc characteristic. The probe measurements 

only provide a time-averaged I-V characteristic [70]. Godyak and Piejak [71] have 

dem onstrated the relationship between the probe-plasma impedance Z 3h and the ex

ternal probe circuit impedance Z c which must be fulfilled to achieve reasonable probe 

I-V traces in rf plasmas. There are also hardware means to  compensate externally 

for the signal created by the plasma, for example the use of driven rf probes [72-75].

We will briefly review the existing sheath relation and derive an expression use

ful for applications in pulsed plasmas. Two collisionless models, Laframboise’s orbital- 

motion-iimited (OML) model [76,77] and Allen, Boyd, Reynolds [78,79] (ABR)-Chen 

radial motion cold ion approxim ation model are employed to extract the plasma pa

ram eters based on where the Debye length \de is [kTe/Airnee2]1̂ 2, and rp is the 

probe radius. Detailed sheath theories have been discussed extensively by W endt [80], 

Godyak [81,82], and Lieberman et al. [83].

In general, pulsed plasmas experience a sequence of thick sheath to thin sheath 

to thick sheath transitions represented by a changing ratio of As a first approxi

m ation, one might try  to estim ate the plasma density, w ithout electron tem perature 

dependence, using

n, = ---------■ ll -------- , (3.1)
erp/p \ / - 8 e (V pr -  Vpi) /m x

where is the ion saturation current, m* is the ion mass, e is the electron charge unit, 

rp is the Langmuir probe radius, lp is the Langmuir probe length in the plasma, Vpr is 

the probe bias and Vpi is the plasm a potential. This approach, ignoring the electron
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tem perature variation, overestimates the calculated density through the entire period. 

In this chapter, the plasma density is calculated by employing both Laframboise’s 

orbital motion limit theory Eqn. 3.2 and radial motion theory Eqn. 3.3 derived for 

single probe analysis.

rii = --------- . Il (3.2)
erplp s/2TrkTe/m iJ l

where J\ is the unitless numerical correction tabulated by Laframboise for various 

[76]. Several iterations are necessary to recalculate to verify the validity of sheath 

theory in different regimes until the plasma density value converges [84]. Eqn. 3.3 

may be only used after a stable thin sheath has built up.

n‘ =  n J \  ■ (3 3 >0.5 eApUb

ub = s/eTe/rrii. (3.4)

where .4P is the current collection area of the probe. The above derivation re

quires knowledge of the electron tem perature extracted from a nonlinear regression

Levenberg-M arquardt fit. Such an approach is necessary because the sheath and or

bital effects associated with cylindrical probes do not result in a constant value of ion 

saturation current in the asym ptotic region [17].

One complication using probes in pulsed plasma measurement is accounting for 

the sheath displacement current [85]. We subtract the sheath displacement current 

from the measured saturation current to derive the ion saturation current for the 

decay period. A good approximation of the sheath displacement current is

ds
Ia =  0.5 riiApe—  (3.5)
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where s is the Langmuir-Child sheath width, and is the sheath edge velocity. 

According to Lieberman’s collisionless model [83]:

s =  0.880v^o(e /m i)l/4V l/4 J ~ l/2, (3.6)

where Vilc is the dc sheath voltage, J, is the measured current density. As we bias the 

probe a t a highly negative potential, the dc sheath voltage is approxim ately equal 

to the probe bias. We can combine these existing relations to derive an expression 

for the single probe saturation current in terms of the current density. Hence we can 

write:

I . = / i t ) .  (3.7)

The double probe theory has also been well developed [86-92]. T he derivation 

follows as a  straightforward extension of the single probe theory. The general expres

sion of the electron tem perature for the double probe analysis is sim ilar in dc and rf 

plasmas.

Assuming a Maxwellian electron energy probability function for the double 

probe system, after the removal of Iieak, the electron tem perature can be w ritten as:

<3-8>

where I t and I2  are the ion saturation currents for the two probe tips respectively and 

T e is the electron tem perature value in volts. The calculation of the derivative, ^  

adds numerical noise to the result. The smallest T e th a t can be measured is limited 

by the minimum bias step size.

In the equivalent resistance method, the standard double probe expression is
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recast to  write a  simplified expression for the electron tem perature: [93,94]

Te =  4fcE/p/2o(l +  e ) ’ (3'9)

where R q 1 is the slope of the current-voltage characteristic evaluated a t V =0 for 

double probes.

The complexity of the orbital motion and sheath effects is absorbed into the 

model param eter e. The param eter e [94] depends mainly on the ratio between the 

probe radius and Debye length. E /p is the sum  of the positive ion current for both 

probes when the differential probe voltage is zero. It is extracted from the I-V curve 

at |V'| >10 volts. The calculation of Rq 1 lim its the minimum electron tem perature 

measured. Using a 12-bit or higher resolution data  acquisition board can not solve 

this problem. The analysis will no longer be valid during the pulse-off period a t low 

m odulation frequencies (less than  500Hz), therefore results from a full non-linear fit 

will be presented for tha t regime. In our full nonlinear regression data  analysis, ion 

saturation  currents are also corrected for extraneous contributions discussed above:

I  =  ha ttanh(V /2T e) +  /;eafc +  I  other, (3.10)

where lather represents a constant dc offset associated with the probe setup and the 

floating amplifier.
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3.3 Results and Discussion

3.3.1 Langmuir probe measurement results for cw rf plasma

Fig 3.2 shows results for the double probe measurement with a cw rf Ar plasma, 

collected a t 7.8 mTorr. The agreement between the two different d a ta  interpretation 

m ethods is evident, though the nonlinear fitting requires an order of m agnitude more 

com putation time than  the equivalent resistance m ethod. The electron tem perature 

drops precipitously between an rf power of 100 W and 200 W, associated with a 

transition from a capacitively-coupled mode to an inductively-coupled mode, with 

a concom itant increase in the electron density. The plasma density shows a linear 

relationship with rf power above 200 W. We have followed Lieberm an’s global model 

[43,56] to perform spatially averaged modeling of our discharge. We will not describe 

these calculations here since they are identical in form to the model described in those 

references. The spatially averaged model indicates tha t the electron tem perature of 

the steady ICP plasma is mainly a function of the discharge geometry and the neutral 

particle density. This model also predicts th a t increasing the rf power increases the 

plasma density w ithout much effect on the electron tem perature. This agrees with 

our observed experim ental results.

3.3.2 Single probe measurement for pulsed plasma

Fig 3.3 shows the result using single probes for a pulsed ICP plasma, m odulated 

a t 1000Hz. The plasm a density during power-off period has been corrected for the 

sheath displacement current. The results agree with Ashida’s measurements [43],
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Figure 3.2: Plasma density (A) and electron temperature (B) from double probe measure

ments for the cw Ar Plasma at 7.8 mTorr with two fitting methods.
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though the plasma density seems to decay slower than expected from the spatially av

eraged model. The sheath displacement correction causes a  slight shift( about 10 fj.s) 

in the plasma density decay curve. The electron tem perature decays much faster than 

the plasma density. A large electron tem perature jum p is observed a t the beginning 

of the power pulse. This jum p becomes less pronounced a t higher pulse frequencies. 

We discuss this feature in detail below. The above transient electron tem perature 

and plasma density variations agree with our spatially averaged simulation. At lower 

pulse frequencies ( 50-200 Hz), the plasma density appears to  increase with a single 

rise-time at the onset of the pulse. At high frequencies, the density increases with 

two distinct rise times during the beginning of the pulse.

We note here tha t both a single and double probes have sources of systematic 

uncertainty which have been discussed in the various reviews mentioned above. Ear

lier comparisons of density and tem perature to other measurement methods such as 

microwave interferometry or Thomson scattering indicate th a t the absolute accuracy 

of probe measurements is probably not better than ±  30~ 50%, in general. After an 

initial, careful cleaning of the probes, contam ination during the course of an experi

mental series did not appear to be a major issue in these studies. Returning to the 

same conditions after a period of hours yielded experimental traces within the noise 

envelope of a single trace. We cannot say th a t adsorbed layers do not form on the 

tungsten, for it is likely tha t they do. However, it appears th a t they formed quickly 

and remained stable in terms of their influence on ion or electron collection (including 

secondary electron emission effects) in these experiments. Such behavior may not be 

expected to happen for the general case of reactive gases.
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3.3.3 Double probe measurement for pulsed plasma

Fig. 3.4 shows experimental measurement of the plasma density for various 

choices of rf power m odulation periods. The corresponding electron tem perature 

variations, which are extracted from the same double probe traces, are plotted in 

Fig. 3.5. All of the da ta  were taken a t 50 % pulse duty cycles. The plasma current 

through the antenna as a function of time is also shown in these figures.

The equivalent resistance m ethod is used for above analysis except for the 

result a t 200Hz pulse frequency because of the measurement lim it stated  earlier in 

the experimental section. The peak electron density value of the 1kHz pulse plasma 

is slightly smaller than tha t of single probe measurements; the maximum deviation at 

any time is less than 15 percent. The nearly constant rise time of the density, about 

0.1 ms, is consistent with a diffusional filling of the radial profiles. Therefore, in the 

0-D modeling below, we do not expect to correctly capture this short time scale rise. 

The electron tem perature value from the double probe results is comparably higher 

than  tha t of the single probe. The comparison shows good agreement in trends of 

the plasma density and electron tem perature variation for single and double probes. 

The short period da ta  gives a clear measure of the density in the afterglow. For 

example, this can be seen in Fig. 3.4(d). In short pulses, the highest plasma density 

generally appears a t the end of rf power pulse. The electron tem perature behaves 

differently. The electron tem perature plotted in Fig. 3.5 shows a jum p a t the onset of 

the  rf power (see below). We will also discuss this jum p in connection with the plasma 

model of C hapter 4.
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scale is arbitrary.
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From the double probe measurements(Fig. 3.6), the time-averaged plasma density is
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Figure 3.6: Time averaged plasma density as a function of the pulse frequency from double 

probe measurements (65 W,7.8mTorr, 50 % duty cycle)

a function of the pulse frequency. The time-averaged plasma density reaches a  maxi

mum at about 1000 Hz pulse frequency. As the modulation frequency increases from 

1000Hz to 10 kHz, the time-averaged plasma density starts to drop. The same trend 

appears as the pulse frequency decreases from 1000Hz to lower frequencies. The exis

tence of such a maximum in average plasm a density has also been seen in calculations 

of time-averaged generation and loss rates in pulsed plasmas.
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The electron tem perature versus time generally follows the tem poral envelope 

of the pulsed power for iong pulses. The jum p at the s ta rt of the rf power pulse shown 

in Fig 3.5 is due to heating by the capacitive electric fields in the low-density plasm a 

a t the s ta rt of the rf pulse. As the pulse frequency is further increased, the ions and 

electrons do not have enough time to be completely lost by transport to the cham ber 

wall after the pulse. This trend persists to much higher frequency until the rem nant 

plasm a density from one pulse is carried into the following one, providing enough 

electrons for inductive heating without a preliminary capacitive build-up period from 

the s ta rt of following pulse. This sort of electron tem perature jum p has also been 

simulated by Yokozawa et al. [95] in pulsed ECR C / 2  plasmas. In all cases, the 

electron tem perature s tarts  to decay immediately after the power is turned off. For 

the shortest period in the measurement, the average electron tem perature is lower 

than the value (2 .6 eV) for CW  rf case with the same time-averaged power. Thus a 

pulsed plasma can have a  lower time-averaged electron tem perature when compared 

to a continuous mode plasma with the same average power.

In addition to the spatially averaged modeling, we follow the treatm ent of 

Sugai and co-workers [58] to estim ate the time scale of the cooling of Te. The electron 

energy balance equation is given by:

QE
V = Prf  ~  ~  PeiC' (311)

where Prj  is the RF power input, Pcoa is the power lost by collisions to neutrals, Pesc 

is the power lost by escaping from the plasma to the walls and E  is the electron kinetic 

energy density averaged over the plasma volume E  =  n e(3kTe/2). Prf vanishes a t the 

end of the pulse. Assuming tha t Pcou <C Pesc, the power loss to the wall of surface
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area A is given by:

P e sc (3.12)

where nw =  ne/ 4 is the average electron density at the sheath edge, ub =  (kTe/mi)*

the Bohm velocity, and Ee ~  2kT e the average energy of the escaping electrons. For 

our cylindrical chamber, .4 =  (2 n R L + 2 n R 2) and V  =  n L R 2  (our setup has L  =  8 cm, 

and R  = 7.5cm). Note th a t since ne and T e are tim e dependent, P eac is also time 

dependent. Substituting these relations, with the electron tem perature Te normalized 

to its initial value T0  a t t =  0,

For our experiments w ith argon, kT 0  =  1.8 — 4 eV, which gives rise to a tim e constant 

re of 38 to olfis. This is in good agreement with our measured decay tim e constant 

of 39 to 63 /is for 200H z  ~  1 0 k H z  pulse operations.

the lim it of a small ionization rate Ui = 0  during the pulse-off period, the decay tim e is 

roughly r„ ~  L2 /D a. In our case, the plasma source has L  =  8 cm and the am bipolar 

diffusion constant Da = Ui(kTe/e)  for Te 3> 7*. If we use the peak m agnitude of 

transient electron tem perature kTe =  3.2 eV from Fig.3.3(b) to estim ate the decay 

time, the characteristic decay tim e constant is about 213/xs, agreeing well w ith the

re =  3 L R (m i/kT o)l/2/ ( L  + R). (3.13)

Lieberman et al. [15] have analyzed the time scale of the electron density decay 

giving an estim ate from the ambipolar diffusion equation:

where D a is the am bipolar diffusion coefficient and is the ionization frequency. In

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



measured 240^s in Fig.3.3(a). For the double probe results a t 1000Hz in Fig.3.4 and 

Fig.3.5, the estim ated decay time constant is 195//s while the measured time constant 

is about 2 1 0 ^ 6-.Our spatially averaged model calculations also predict a decay time 

of about 200 /is, in good agreement with the measured values. Thus the plasma 

density is not expected to completely disappear in the after-glow regime above a 

pulse frequency of 5 kHz. This is verified by the plasm a density measurements.

The rise time for Te during short rf pulses is too difficult to measure with 

voltage-swept Langmuir probes. Our observed electron tem perature jum p a t the 

beginning of the pulse for longer periods is in agreem ent with Ashida’s d a ta  and our 

sim ulation results. The simulation reveals such a short rise time (20 nanoseconds) for 

the electron tem perature tha t makes it impossible to  capture the jum p even using the 

above probe setup. As the pulse repetition rate is increased to 10kHz, the electron 

tem perature keeps increasing for a while during the pulse-on period. However, the 

m odulation frequency a t which the highest time-averaged plasm a density appears 

is different from Asida’s results. The electron tem perature, which determines the 

particle generation rate and affects the loss rate, is a strong function of the discharge 

geometry. The difference in our discharge geom etry from the Ashida’s (R=15cm, 

and L=7.5cm) accounts for the observed difference in behavior. Fig. 3.7 shows the 

transient plasma density of pulsed plasmas with different duty cycles but having the 

same average power input of 60W.

At the same discharge pressure, the plasma peak density a t the end of the pulse 

is a  function of the duty  cycle. For the same time-averaged rf power, the sm aller the 

duty cycle, the higher the plasma peak density. An rf power pulse with a small duty
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cycle for the same time-averaged power in Fig. 3.7 implies a larger rf power input 

during the on-period of the pulse. As expected, since plasma density appears to be a

* 45%
•> 50% 
V 55%

1.0

€<a
( 0
tn
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0.0
0.0 0.2 0.2 0.30.1 0.4 0.5 0.6
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Figure 3.7: Measurements of double probe ion saturation current as a function of duty 

cycles with the same time-averaged power.(60W,7.8mTorr,Ar plasma)

linear function of the rf power input, we observe a higher plasma density a t shorter 

duty cycles. Electron tem perature measurements with different du ty  cycles show th a t 

the electron tem perature jumps at the s ta r t of each pulse, but the average electron 

tem perature does not vary much for the duty  cycles used in our experiments. W ith 

approxim ately same average electron tem perature, we do not expect much difference
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Figure 3.8: Two cycles of time profiles of / sat at various locations in a 65 W pulsed 

plasma having 64 % duty cycle.Numbers 1-5 represent the radial positions that the data 

are collected.(Ar plasma, 7.8 mTorr)

in decay time between different duty cycles. Though the capacitive transients can 

lead to a relatively high electron tem perature a t the beginning of the pulse, the par

ticle density during th a t phase is very low, so the integrated fluence of fast electrons 

is low. Also, judicious selection of frequency can miminize this transient electron
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heating. Hence it is possible to achieve a  high average plasm a density and relatively 

low electron tem perature by adjusting the duty cycle and the pulse frequency simul

taneously. The radial profile of time-resolved ion saturation current distribution is 

shown in Fig. 3.8.

The plasma density shows non-uniformity mainly caused by an asymmetric 

gas inlet from the chamber sidewall. This non-uniformity is possibly compounded by 

having a  toroidal electron heating region adjacent to the quartz window [63,96,97].

3.4 Summary

O ur experiments using both single and double probes have shown th a t the dou

ble probes can be used reliably to characterize pulsed TC P plasm a properties over a 

range of pulse frequencies from 200 Hz to 10 kHz. Single probe d a ta  analysis, with 

sheath displacement current correction and utilization of both orbital-m otion-lim ited 

and radial motion theories, shows good agreement with double probe measurements. 

The equivalent resistance method used for the double probe analysis agrees w ith re

sults from the full non-linear fit and requires much less com putation time. Using these 

powerful tools we have been able to examine the most im portant aspects of the use 

of pulsed rf in our neutral source. The tim e scales of the plasm a density and electron 

tem perature decay for an argon pulsed plasma, are in accord with simple models of 

the discharge. Results demonstrate the plasm a density and electron tem perature can 

be partially  decoupled in a pulsed plasma. This decoupling perm its additional control 

for ion-assisted or neutral-assisted etching and deposition.
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Chapter 4

Global Average Simulation of a 

Inductively-Coupled Plasma

Source

4.1 Introduction

Transformer-coupletl-plasma (TCP) sources, which typically operate a t low 

pressures of 1-20 m Torr and high input powers of 1-3 kW, are more preferable than 

conventional parallel plate reactors. The power absorption in a T C P source is typi

cally inductive although , as indicated in earlier section of this dissertation, there is 

a  contribution from capacitative coupling which can dominate a t low rf power. Uti

lization of m odulated power has a ttracted  much attention recently. Pulsed process 

induces much less damage to the wafer by changing the pulse shape, duty cycles, and 

periods [36]. In addition, pulsing the plasma can increase the etching selectivity and
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can suppress the particulate formation. Sugai et al. [58] and Samukawa et al. [36] 

reported increased etching selectivity by controlling the duty cycles of the pulsed pow

er. Charge build-up damage can also be reduced in pulsed EC R  discharges because 

negative ion fluxes incident on the substrate during the afterglow of a pulsed electro

negative EC R  discharge can neutralize the positive charge accum ulating during the 

pulse-on period. Many experimental measurements have been done to analyze the 

pulsed discharge. Ashida et al. [43], Sugai et al. [58], and Ahn et al. [98] reported 

Langmuir probe studies of time-varying plasma density and electron tem perature in 

pulsed ICP discharges. Such analyses offer a fundamental understanding of mecha

nisms governing pulsed processes and help to design better reactors and to find the 

operating param eters for pulsed discharges.

There are several simulation models for CW plasmas. A spatially-averaged 

(global) model for atomic and molecular gases, and their m ixtures has been given by 

Lee and Lieberman et al. [15,56]. Compared to other simulation models, this global 

average model takes much less computation time and provides direct insights into the 

plasma discharge chemistry. A generalized power balance including energy-loss chan

nels for electron-neutral collision processes such as rotational, vibrational, electronic 

excitation, dissociation, ionization dissociative attachment, and electron detachment 

for molecular gases is used. In addition, energy-loss processes for heavy particle colli

sions such as ion-ion recombination are also included. Detailed particle balances are 

w ritten for all species of interest. For charged particles, the appropriate am bipolar 

diffusion rates are used to determine the positive-ion losses. T he complete set of 

equations is solved self-consistently to obtain all species concentrations and electron
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tem perature. Using a simple version of this model, Ashida et al. [57] investigated the 

behavior of argon plasmas driven by time-modulated power in high-density plasma

reactors. The tim e evolution of the electron temperature and the plasma density 

was calculated by solving the particle and energy balance equations. For pressures 

and absorbed powers measured, the excited A r states affected the calculated plasma 

density by a t most 25 % and had practically no effect on the electron tem perature. 

Because electro-negative gases are most often used in semiconductor processing, we 

apply this model to simulate both pulsed 0 2 and 0 2 +  A r  m ixture discharges. Be

cause of the numerical instability caused by fast transits a t the beginning and a t the 

end of the pulses, we chose Rosenbrock m ethods [99] to sim ulate pulsed Ar, 0 2, and 

A r + 0 2 plasm a dynamics.

4.2 Spatially Averaged Simulation Model Setup

4.2.1 Assumptions

The sim ulated discharge is confined to a cylindrical cham ber with L =  8  cm 

and R =  7.5 cm. Some necessary assumptions [56] for this model are listed below:

•  All particle densities n are assumed to be volume-averaged using the equation:

•  The positive-ion densities in an electro-positive discharge are assumed to have 

a uniform profile throughout the discharge except near the wall, where the densities 

are assumed to drop sharply to sheath-edge densities, nts. For an electro-negative 

discharge, the electron density ne is assumed to  be uniform throughout the discharge

(4.1)
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except near the sheath edge, while the negative-ion density n_ is assumed to be 

parabolic, dropping to zero at the sheath edge. The electron density is

ne = rii — n_, (4.2)

with ni—ne—nis, at the sheath edge. Only one type of negative ion is considered.

•  The energy loss processes for which one ion is dissociated to  form another 

and collisions of electrons with positive or negative ions are neglected.

•  The factors h i  and are assumed to be independent of the type of ions,

i.e., the ion-neutral mean-free path  A is identical for all species in the discharge.

•  The electron energy distribution function is assumed to be Maxwellian.

x / m  X 3 / m v 2  \ / .

/ ( " ) =  n ( 2 r t i ; ) ' e ip ( - 2 H ;) (4'3)

The rate constants k(Te) are calculated based on the cross-section values taken from 

available literature:

h{T) =  ( 2 ^ k )§ I ff(u)vexPi-^;)^v2dv (4 -4 )

O ther types of energy distribution functions could also be used to derive corresponding 

rate constants.

•  The ion tem perature T* is assumed to be 0.5 eV for pressures less than 1 

mTorr; for higher pressures, 7* - T0  is allowed to decrease a t a rate proportional to 

1 /p , where p is the pressure, ultim ately reaching the therm al neutral tem perature of 

T0  =  600 K.
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4.2.2 Steady-state model

Godyak and Maximov [15] have solved the diffusion equations analytically and 

determ ined approxim ate plasma densities a t the sheath edges:

(4.5)

a t the axial sheath edge, and

h R = —  =  0 .80(4+  ^ )
Tie ^

(4.6)

at the radial sheath edge.

The effective diffusion length for excited state particles is calculated from: [15]

The excited states de-excite upon striking the chamber walls, and the ground state 

species re tu rn  to the reactor. These diffusional losses are represented by D ef j / A2, 

where De/ /  is the effective diffusion coefficient of the neutral species of interest, which 

has the expression

for gas diffusitivity, and Dkn is the Knudsen free-diffusion coefficient equal to:

The Chapm an-Enskog formulas for diffusivity for the gaseous state  a t low density is:

(4.8)

where D aa* is the diffusion coefficient estim ated using the Chapman-Enskog equation

(4.9)

(4.10)
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This equation is recast to another form:

ATI +  iv f e )
D-ta =0.0018583 V ,  X (4.11)

P&aB d ,ab

in which the units are D 4 b, cm 2 sec-1 ; T, °K; p, atm; o a b , angstrom units. Qd ,ab  is a 

dimensionless tabular function of the tem perature and of the intermolecular potential 

field for one molecule of A and one of B. For potentials of below Leonard-Jones form:

V .w lr)  = 4€ J B [ ( ^ ) 1 2 -  ( — )•] (4.12)r r

&AB — &A +  (4.13)

Tables of Q d , a b  exist, [100] thus we can compute an the effective diffusion coefficient.

For Ar gas, four main sets of equations are used in the global model for the 

mono-atomic gas to fulfill the power balance and particle balance for all species of 

interest. The general form of power balance is :

Pubs = Pev +  Piw 4" Pew (4-14)

where Paba is the power absorbed by the system, Pev is the electron energy loss due 

to all electron-neutral collision processes in the volume, Piw is the ion energy loss to 

the wall, and Pew is the electron energy loss to the walls while A is the surface area.

Piw =  n sub(eVs +  (4.15)

Pew =  2 eTensubA. (4.16)
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By equating the ion and electron flux a t the sheath, The sheath potential drop is

Radiation is included in the particle balance equations. For atomic gases, the  energy 

loss £ i  per electron-ion pair created due to all electron neutral collision processes

where u = <  a v  >  n„ is the appropriate collision frequency, <  csv > is the rate 

coefficient, nn is the neutral density, and N exc is the number of excitation energy-loss

ionization of neutral atoms with an ionization potential of SiZ (in units of eV), the 

second term represents the total energy loss due to excitation of neutral atom s to 

various excite states with threshold energies eexc, and the last term is the energy 

loss due to electron-neutral elastic-scattering. Since the ratios of collision frequencies 

equal to the corresponding ratios of rate constants independent of the atom ic gas 

density, is a function of Te only.

Ions are lost to the wall a t a  characteristic velocity:

where e is 1 . 6  x 10 l9 c. For molecular gases, we assume:

•  Generation of multiple positive ions and negative ions are possible.

(4.17)

P ev CftgV £  L,V\z (4.18)

is: [15]

(4.19)

channels. The first term on the right-hand side is the energy loss due to the direct

(4.20)
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•  Additional energy-loss channels such as dissociation are included.

•  Particle loss channels such as volume positive-negative ion recombination, 

need to be included, so tha t Eqn. 4.19 can be re-cast as:

where n s,t is the number of neutral species tha t generate the ith ions. For A r+,

th ionization frequency for production of the ith ions from neutral species j, is 

the total ionization frequency for production of ith ion, is the threshold ioniza

tion energy for production of the ith  ion from neutral species j, £eXc,kj the threshold 

excitation energy for the kth level of the jth  neutral, and is the to tal collisional 

energy loss process per electron-ion pair created for the ith  ion. The sum over k in

cludes all inelastic electron-neutral collisional processes th a t do not produce positive 

ions, e.g., rotational, vibration and electronic excitation, dissociation, attachm ent, 

and detachm ent.

Pure Argon Discharge

In this simple case, we follow the particle density of three species in Ar dis

charges, n ^ ,  n .|P, rii, and Te[43]. In this simulation, n e is assumed to be equal to n,. 

The particle balance equations are:

N*,i =  2 (Ar and Ar*); for 0 +, N sj  =  2 (O and 0*); for 0^,iV s>i=  1  (O 2 ); Viz,ij is

kcolTlj ftk kraii7l4 a (4.22)

— kcoiTljflk kra(iTl4p (4.23)
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V ~ ^  =  Y 1  Vki**noni -  ihLA L +  hRA R)niUb (4.24)
i

where kraa is the radiative constant, kcat represents the collisional ra te  constant be

tween rij, nk. The corresponding power balance is expressed as

^ 3  ^

Pabs(t) =  Vr[—(-erijTe) +  enQng fee*] +  (n a[A L + n 3TA R)ub{eVs +  - eTe) (4.25) 

Reaction rates in Table4.1 [43] are used to solve these ODE equations.

.4r + e -* .4r(4s) + e ki =5.0 x 10“l5Te074exp(— ll.57/Te)m3s“l

.4r(4s) + e. -> .4r + e A; 2 = 4.3 x 10-18Te0’74m3s-1

Ar + e —> .4r(4p) + e ki = 1.4 x lO_M7’e0’71eip(— 13.2/Te)m3s ~ l

.lr(4p) + e -* Ar + e k4  -  3.9 x 10-iaTe°'71m‘*3-1

,tr(4s) + e -> .4r(4p) + e k5 = 8.9 x lO-l3Te°'5lerp( —1.59/Te)m3s-1

.4r(4p) + e -* .4r(4s) + e k6 = 3.0 x tO-l3Te°'51m3s-1

.4r + e —► Ar+ + 2e kr = 2.3 x 10" uTe°'68ezp(- 15.76/Te)m3*-1

.4r(4s) + e —» A r + + 2e its = 6.8 x lO_lsTe0'87eip(—4.20/Te)m3j-1

.4r(4p) + e -» Ar+ + 2e kg =  1.8 x 10-l3Te°-6lexp(—2.6l/Te)m3»-1

.*trm(4«) + e -> .4rP(4a) + e kio = 2.0 x 10-l3m3»“l

.4rr(4ai) + e -* Ar +  hu A , . t f f  = 3.0 x LO7

,4r(4p) -* Ar + hv Ap,cff  =3.0 x 107

.4r(4p) -♦ Ar(wall) D ' f f / A 2

.4r(4a) -* Ar(wall) D ' f f / A 3
A r + —> Ar(wall) 2.ubAr, (R2hL +

Table 4.1: Reactions for Ar discharges included in the global model[43]

Pure Oxygen Discharge

Table 4.2 [56] lists the dominant known reactions for a low tem perature oxy

gen discharge. The equations below are used to to solve the singly ionized atom ic
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oxygen ion density, noi, molecular oxygen ion density, non,  negative ion density, Uq, 

molecular oxygen, no 2 ,ground sta te  atomic oxygen (03P ) density, no,  excited state 

atomic oxygen (O lD) density, n*0 , and electron tem perature, Te. The electron density 

is derived from charge neutrality (Eqn. 4.26).

ne =  n 0i +  n 0 2i ~  nq  (4.26)

= k(A)nena + fc(13)nen* -  fc(14)n^ -  -  fc(6 )raon oi (4.27)

= k { l)n en0 2  ~  k ( l 5 )n0 2i ~  k{5 )nnn 0 2 i ~  krn 0 2 i, (4.28)at

where kT is the rate for removal of species from the vacuum chamber by the vacuum 

pump.. There will be no pumping loss of negative ions because the plasma sheath 

will confine the negative ions into the center of the discharge during the cw power 

operation. The main loss channel for negative ions is volume recombination with 

positive ions. The plasma sheath collapses after the rf power is off, so during the 

plasma-off period, an additional pumping loss channel for negative ions is added into 

the sim ulation model. The corresponding particle balance equations are :

(Lti~
—£■ -  k(Z)nen 0 2  -  k (5)n02ino -  A:(7)nen5 -  k(<o)n0inQ (4.29)

when the rf power is on.
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Reaction 

e + O i  -> O t  + 2e

rate coefficient 

ki =9.0 x 10-10Te2exp( —l2.76/re)cm3a-‘

e + O-i -+0(3P) + 0(‘D) + e fc2 = 5.0 x 10_8exp(—8.4/Te)cm3s-1

e + 02 ->0(3P) + 0 k3 =  4.6 x L0-Uexp(2.91/Te -  1.26/Te2 + 6.92/Te3)cm35_l

e + 0(3P) —♦ 0+ + 2e fc4 = 9.0 x 10-9Te0-7exp(-13.6/Te)cm3a-1

0 ~  + o.f -» 0(3P) + 0-> ki = 1.4 x lO-7cm3s-1

o- + o+ -> 0(3P) + 0(3P) ke =2.7 x 10_7cm3s_l

e + O" —► 0(3P) + 2e k7 = 1.73 x 10-7exp(—5.67/Te + 7.3/Te2 -  3.48/r€3)cm3s“l

e + O . -> 0(3P) +0(3P) + e fcs = 4.23 x 10-9exp(—5.56/Te)cm3i_l

e + 0(3P) -♦ 0(*D) +e kg = 4.47 x 10-9exp(—2.286/Te)cm3a-1

0(lD) + 02 —v 0(3P) + o2 kio = 4.1 x 10-llcm3s_l

0 ( l D) + 0(3P) -> 0(3P) + 0(3P) fell =8.1 x 10-l2cm3s-1

0(lD _>wutl 0 ( 3 p) k i 2  =  Dcf j / A 2s ~ l

e +  0 ( l D) -* 0 +  +  2e * 1 3  = 9.0 x 10_9Te°'7exp(— 11.67/Te)cm3s'*

0 + ( a) - .wall  0 ( 3P)(g) k u  =2ttb'0 + (R2hL + RLhR) / R 2L s~ l

O t ( g )  - *waU 0 2 (a) *15 =  2ub o t (R2hL +  RLIi r )/R:2U - 1

0(3) -*wa" iOj(g) kl6 =  7rec/A2»-1

e + Ar —► Ar+ + 2e fci7 = 1.23 x 10” 13exp(— 18.68/Te)cm3s_1

e + Ar —> Ar' + e kis = 3.71 x 10-Uexp(-15.05/Te)cm3a_1

e + Ar* -+ Ar+ + 2e fctg = 2.05 x 10_l3exp(—4.95/Te)cm3s-1

e + Ar' -> Ar + 2e * 3 0  = 2. x to-l3cm3s-1

Ar' + Ar' -+ Ar + Ar+ k 2 1 = 6.2 x 10-l8cm3j - 1

-rT+

k32 =  2.ubArl . (R2hL + RLIir ) / R 2L

Ar' -> Ar k23 =  D ' , j / \ 2

O” +■ Ar+ Ar + O k3i  = 2.70 x 10-7cm3s-1

O 2  + Ar' -¥ Ar + 0> * 3 5  = 1.12 x l0-9cm3s-1

O + Ar' -> Ar  +  O * 2 6  = 8.10 x 10-I2em3*-1

O 2  + Ar' —► Ar +  0  +  O fc2 7 = 5.80 x 10-Ilcm3s“l

0> + Ar+ -♦ O?  +  Ar fc28 = 1.20 x 10“llon3j”1

O + Ar+ -* 0 +  + Ar Jfc29 = L.20 x 10-ncm3s-1

Table 4.2: Reaction rate sets for Argon-Oxygen plasmas
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=  source +  k ( lo )n o 2i +  &(5 )n 0 no 2 i — (A:(l) +  k( 2) +  k(  3) +  k( 8 ))neno 2
dno2 

dt

—krno2 +  k ( \6 )n o /2 ,

(4.30)

where ‘source’ is derived from measurement of the flow rate.

=  (k( 2) +  A:(3) +  2 k{8 ))neno 2 +  fc(5 )n 0 2 i«o +  2k(6)n0inQ +  k(7)neTiQ 

+ k ( 1 2 )n '0  -  Arrno +  fc(1 0 )no 2 ^o +  fc (ll)^o«o  -  k(9)nen 0  -  k(4)nen 0

+k(14)n0i — k ( \ 6 )no

(4.31)

=  k ( 2 )ncrio2  +  k(9)nen0  — fc(1 0 )no 2 ^o — ^ ( l l )« o « o  — k{13)neriQ
driQ
dt

—k ( l 2 )n *0  — k r n *0

(4.32)

The power balance equation is :

/  T

e- =  (P a 6 s -  eV'[1 2 .6 (neno 2 (fc(l) +  k ( 2 )3 A n en 0 2 +  &(4)13.6none
dt

+ n eno2^(8)5.56 +  n enoA:(9)2.286)] — noie8 .Teuboi * A e/ f

—rio2ie6Teubo2iAeff)/(3/2Ve)

(4.33)

Ar -f O i  M ixture

For A r  +  O2  plasma discharge, the discharge chemistry is more complicated. 

We m ust add reactions between Ar and oxygen (listed in Table 4.2) to the simulation
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model.

The corresponding particle and energy balance equations are:

dn
dt

driQn

=  k(4)nen 0  +  A;(13)nen* -  k(  14)71^ -  krnoi -  Ar(6 )n0 nri 4- k(29)n0n Ari (4.34) 

— A:(X)7lgMQ2 k ( lo )n o 2 i ^(*i)^0 ^O2 i ^-r^0 2 i 4“ k(28']no2n Ari (4.35)
dt

W ith the rf power on:

dno _  L=  k(Z)nen Q 2  -  k{b)n 0 2 in 0  -  k(7)nen 0  -  k( 6 )n 0 in 0  4- k(2A)na n Ari. (4.36)
dt

W ith the rf power off:

— — k(3)'Tletl02 ^"(o)W02»«o k{6 ) floi’flQ 4" fc(24)fl0 flAri kfTl0 .
dt

(4.37)

d n ^ 2  =  source 4- k(lb)rio 2 i + k(b)nQUo2 i — (fc(l) 4- A:(2 ) 4- fc(3) 4- A:(8 ))neno 2  
dt

—krrio2 4- k( lG)no/2  4* k(21)no2n Ard +  k{28)no2nAri

(4.38)

fl.fl
-  = (k(2) 4- k(3) +  2 k{8 ))nen 0 2  4- k{b)n02inQ + 2k(G)n0inQ + k { l )n en.Q 

dt

+ k ( l2 )n *0  -  krn 0  + k ( l0 )n O2no  4- fc(ll)n 0 n* -  k(9)nen 0 -  k(4)nen a

+k(14)n„i -  k ( \ 6 )n 0  4- 2k{27)n02n Ard

(4.39)

dn*
— =  k( 2 )nen 0 2  + k(9)nen 0  -  k{\Q)no2 n *0  -  fc (ll)n 0 n* -  fc(13)neno -  fc(12)rio — krr 

dt
(4.40)
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=  k ( \ l ) n en \ Ti -  A:(18)nen.iri +  k ( 2 0 )nen Ard + k ( 2 1 )nArdn Ard + k ( 2 2 )nAri
dt

+k{23)nArd +  k(24)n~nAri +  k(2 b)nArdn 0 2 +  k(26)n0n Ard +  

+k(27)no2n Ard +  k{28)no2nAri -  krn Ar +  k(29)n0nAri

(4.41)

— £pL = k(18)nen Ar -  k{ l9 )n enArd -  k{2Q)nenArd -  k{21)nArdn Ard -  k(23)nArd 
dt

—k(2b)n 0 -ynArd ~  (k(26)n0n Ard -  krnArd +  k(27)noin Ard

(4.42)

— pH =  k{ l7 )n en Ar +  k{ l9 )nen Ard + k (2 l )n Ard * n Ard -  k(22)nAri -  k(24)n~nAri 
dt

-/c(28)no2n..iri -  krn Ari + k(29)n0n Ari

(4.43)

dn T
— ^  =  (Pabs -  e V eLik{A)nen0  -  k { \)eeL2 nen 0  V  -  k {17 )eV eunen Ar 

dt

rioi£ '̂'PeU,b0i ♦ f  fXQ2 i€. îP̂ lLbo2 ij\.cf  f  ^ .4ri^^^^.,lri^e//)/(^ /21^^)

(4.44)

4.2.3 Pulsed Operation

In pulsed plasma simulation, different forms of the rf power inpu t can be used 

to observe the particle density and electron tem perature transients w ith modulated 

rf power. The simplest rf power input is a square envelope.

Pabs = Pon, T  < ar,

Poff =  0 or Paf f  ^  0  T  > ar,
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where a  is the pulse duty cycle and r  is the pulse period. Because the initial electron 

tem perature jum p a t the onset of the power pulse can induce severe damage, a contin

uously changing rf power may also be used to reduce the initial electron tem perature 

jum p.

4.3 Results and Discussion

4.3.1 CW plasma

There have been several previous studies for Ar and for 0> cw discharges, so 

we use the previous studies to benchmark the plasma chemistry computed by our 

models for A r + Oi  mixture in cw discharges. Fig. 4.1 shows the positive ion density

15

10

5

0
100 2 0 0  3 0 0  4 0 0  5 0 0  6 0 0  7 0 0  8 0 0  9 0 0  10000

rf power, w

Figure 4.1: Calculated positive ion density, x l0 1 6 m - 3  as a function of cw rf power for Ar 

4 - O2  discharge, A r/0 2 = 1 :10, SmTorr
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as a  function of rf power. The positive ion densities for both Ar and atom ic O 

increase with the rf power. However the Ar density increases much faster th a n  the 

atom ic oxygen density because more energy is need to generate oxygen atom s from 

oxygen molecules for the subsequent ionization, th a t is, 5.2 eV energy is required to

e +  0 2  -> O + O* (4.46)

e +  0 2  -> O +  O  (4.47)

break the molecular bond between the two 0  atoms. Fig. 4.2 shows the molecular 

oxygen positive ion density and corresponding negative ion density variation as a 

function of rf power. The negative ion density decreases as the rf power increases, 

as does the O t  density because high rf power contributes to high dissociation rate 

of molecular oxygen. The electron attachm ent cross section <  aVe > is a  function 

of electron tem perature. It will decrease as the electron tem perature rises. Because

the electron tem perature of the plasm a does not change with rf power and because

the negative ions are only generated through one channel(Eqn. 4.48), the decrease 

of parent molecules Oo to form negative ion with increased rf power results in the 

decreasing negative ion density.

e +  0 2  -> O +  0 ~  (4.48)

Fig. 4.3, 4.4 show positive and negative ion densities respectively, as a function of 

discharge pressure. Fig. 4.5 shows the electron tem perature as a function of the 

discharge pressure. Fig. 4.3 shows th a t Ar ion density increases with the discharge 

pressure. However, the O ion density has a  maximum within this range of discharge

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



pressure. It is the function dependences of e and A ef j  with the discharge pressure 

tha t cause the above difference. It has been reported [56] th a t £l for oxygen is much 

larger than  the of Ar because oxygen has more energy loss channels than  does 

atomic Ar gas. s i  generally increases with the discharge pressure. The effective loss 

area A e/ f ,  on the other hand, decreases as the pressure increases because ions will be 

more confined by elastic collisions a t higher pressures. Since these two factors varying 

in opposite directions, different behaviors for Ar and O-i plasmas are observed.

1 0
</>

1 0

800200 400 600 1000
rf power, w

Figure 4.2: Negative ion density, xlOl6m 3  as a function of cw rf power for Ar -I- 0% 

discharge

The electron tem perature decreases as the pressure increases (Fig.4.5) because 

of increasing collisions a t higher pressure. The low electron tem perature and higher
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Figure 4.3: Calculated positive ion density, x 10l6m 3  as a function of discharge pressure 

for Ar +  0 -2  discharge,400 W
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Figure 4.4: Calculated negative ion density, x l 0 1 6 m - 3  as a function of discharge pressure 

for Ar +  Oi discharge,400w
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neutral particle density in the discharge contribute to a  resulting increase of negative 

ion density. The above results, in good accord with previously published models and 

experim ents for CW plasmas, give us a  high degree of confidence in the correctness 

of our model. We then may use the model to examine the less well known territory 

of pulsed discharges.
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D ischarge pressure, mTorr

Figure 4.5: Calculated electron temperature as a function of discharge pressure for Ar +  

O2  discharge

4.3.2 Pulse-Modulated plasma

Fig. 4.6 and Fig. 4.7 show the electron tem perature and particle species density 

transitions as a  function of time for Ar discharges. The P o f f  equals zero unless 

otherwise stated. There is an electron tem perature jum p a t the begining of the 

rf pulse. This initial jum p is a ttribu ted  to the fact tha t there are few available
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electrons to absorb and collisionally distribute the power a t the s ta rt of the power 

pulse. This in itial electron tem perature jum p is also observed in experiments. Because 

of experimental difficulties, double probes are not able to capture the transient time 

for this jum p. However the simulation indicates this jum p is on a  scale of tens 

nanoseconds. T he peak am plitude is less than 10 eV; however, such a  jum p can cause 

severe damage to a device. As the pulse frequency increases, the am plitude of this 

initial electron tem perature jum p gets smaller. At higher pulse frequencies, there is 

no observed electron tem perature jum p at the onset of the rf power pulse because a 

large number of ions remain present during the short pulse-off period. A nother way 

to eliminate this problem is to apply a continuously changing rf power during the 

pulse-on period. Simulations for such “continous” powers show a sm ooth electron

8.0

6.0<D
CD

2
§• 4 .0

2.0

0.0 
0 . 0 0 0 0 0 .0 0 0 2  0 .0004  0 .0 0 0 6

Tim e, s
0 .0 0 0 8 0.0010

Figure 4.6: Calculated electron temperature transition for pulsed Ar discharges at 1kHz
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Figure 4.7: Calculated particle density transition for pulsed Ar discharges at 1kHz

tem perature variation. The plasm a density and other particle densities decay much 

slower than electron tem perature does. The difference in particle generation and loss 

rates makes it possible to achieve a  high average plasma density by changing the pulse 

frequencies, duty cycles, and pulse shape with the same time average rf power. As 

Ashida pointed out, [57] the particle generation rate has the similar transient behavior 

as the electron tem perature because the ionization rate is a strong function of electron 

tem perature. O ur model shows th a t the time-average plasma density is higher than 

the cw plasma density with the same time average power a t most frequencies. Pulsed 

oxygen discharges show the similar transient behavior for both electron tem perature 

and positive ion densities with Ar discharges. Fig. 4.8 summarizes the time-average 

electron tem perature as a function of the duty cycles in oxygen discharges. The time- 

average electron tem perature increases as the duty cycle increases. It is possible to 

achieve a low tim e average electron tem perature by reducing the duty cycle. However,
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as the duty cycle decreases, the initial electron tem perature jum p gets much higher. 

This short transient behavior of electron tem perature can cause severe damage to the 

features.
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Figure 4.8: Time-average electron temperature as a function of duty cycles

Fig. 4.9 shows tha t the time-average positive ion density increases as the duty 

cycle decreases. However the atomic oxygen density is almost unaffected by the duty 

cycle changes. The time-average plasma density as a function of pulse frequency is 

shown in the Fig. 4.10. The model predicts that the time-average plasm a density 

will have a maximum near 1 kHz. Thus it is possible to pulse the plasm a at that 

frequency to achieve the highest time-average plasma density. For different discharge 

geometry, this optimum pulse frequency value may change. This model then should 

provide guidance in finding optimal conditions for scaling this source to  a genuine 

application. The negative ion density increases initially when the rf power is turned
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off and then starts to decrease. The negative ions may help to reduce the  damage. 
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Figure 4.9: Time-average positive ion density as a function of duty cycles
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Figure 4.10: Time-average positive ion density as a  function of pulse frequencies

Results for repetitive pulsing of Ar and oxygen m ixture discharge results are shown
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in Fig. 4.11 and Fig. 4.12. Fig. 4.11 shows positive ion density transient as a  function

10

1

0 .0 0 0 6 0 .0 0 0 7 0 .0 0 0 8 0 .0 0 0 9 0.001
Tim e, s

Figure 4.11: Positive ion density as a function of pulse frequencies for Ar -F 0 2 mixture 

discharges,800W, 7.8mTorr

of tim e while other species densities are shown in Fig. 4.12. The addition of Ar into the 

0 2  discharge increase the to tal positive ion density because the ionization efficiency 

for Ar is comparatively higher than tha t of 0 2. The negative ions show the same 

transient behaviour as in pure oxygen discharge. The pulse-off rf power is also set 

to nonzero values in the simulations. Fig. 4.13 shows simulated electron tem perature 

transient as a function of time for a pulsed discharge with a fixed pulse-on rf power 

600W. The electron tem perature result with the lowest pulse-off power (60 W) has 

the highest electron tem perature jump. In 60W  and 300W pulse-off power cases, 

the electron tem peratures drop quickly after the rf power is lowered and then climb 

back. W ith  a large pulse-off rf power, the electron tem perature recovers much faster. 

However, if we increase the pulse-off time for the 60 W case, the electron tem perature
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Figure 4.12: Particle species density as a function of pulse frequencies in Ar+ O2  mixture 

discharges,800 W,7.8mTorr

60W  
© 300W  

600W  
0 65OW

0.002  0 .0025  0 .003 0 .0035  0 .004
Time, s

Figure 4.13: Electron temperature transient in pulsed Ar+ Oi mixture discharges with 

nonzero rf power input during the pulse-off period, pulse-on power is fixed at 600W.
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will eventually reach the steady-state value. Under these circumstances, we get the 

same electron tem perature values for all pulse-off periods no m atte r what rf power 

(nonzero) is applied here. This agrees with our previous experim ental results th a t 

the electron tem perature is only a function of plasma discharge geometry at constant 

pressure. It is possible to lower the rf power further to a low lim it so tha t the electron 

tem perature will no longer rise.

4.4 Summary

We have performed a global average simulation model for bo th  CW and pulsed 

plasmas. Studies indicate the time average electron tem perature increases with duty 

cycle and pulse frequency. Simulations show a good agreement w ith experiments and 

previous work of others. It also has the predictive capability for arbitrary  choices of 

cylindrical geometries. The positive ion density peak at certain pulse frequency and 

it decreases as the duty cycle increases. The atomic oxygen density increases with the 

duty cycle mainly caused by higher time average electron tem perature. The negative 

ions reach the peak after the pulse is off. Results indicate tha t by pulsing the plasma, 

it is possible to achieve a high average plasma density and low electron tem perature. 

The negative ions formed during the after-glow can be driven to  neutralize the positive 

charge accumulation during the pulse on period.
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Chapter 5

Stripping and cleaning of 

photo-resists using low energy

neutrals

5.1 Introduction

The removal of residues after etching is a  persistent problem in the semiconduc

to r industry. Wet removal techniques [101], relying mostly on toxic acids, solvents, 

and dipping tanks have been, and continue to  be used. Plasm a ashing and clean

ing can elim inate the handling and disposal of the toxic wastes, reduce the required 

footprint in the  cleanroom, and provide abundant energetic and chemically activated 

species [102]that permit fast removal rates. Despite these advantages, plasm a ashing 

processes, even remote or downstream, can induce severe damage to  small features 

through several mechanisms [3,4]. The trend in semiconductor design towards thinner
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gate oxides and smaller critical dimensions has made dam age an increasingly impor

tan t and critical issue. Among the potential mechanisms of dam age is the presence of 

charged particle fluxes on sensitive structures. The search for selective, damage-free 

etching and stripping processes has prompted the consideration of neutral beams of 

atom s or molecules. Neutral stream  processing is listed as one of the unsolved m ajor 

items in the semiconductor industry association roadmap [103]. In order to examine 

the proof of concept for such processing, a  few small-area neutral sources have been 

investigated. Giapis and Morre [104] developed a laser-driven neutral source for Si 

etching applications. Possible Si etching mechanisms by the hyper-thermal flurorine 

atom ic beam were also discussed by Giapis et al.. O thers studied small-area grid- 

neutralized ion sources [105]. However, these grid-neutralized sources have severe 

integrity and contam ination problems during the operation. The low neutralization 

efficiency also limited their use. O ur own group has studied small area surface re

flection neutralization sources of high-density plasmas [10,106]. A ttem pts to scale up 

such sources for large-area applications have been recently reported [12,13]. In our 

previous work [13] on this broad-area source, Nichols and Manos presented a through 

description of the physics of this source, including a comprehensive numerical simu

lation of the performance issues. Simulations [13] predicted a trade off between the 

need for a high density plasma to create a higher neutral flux and increasing a tten 

uation of the reflected neutral flux due to collisions in the plasma stream . In this 

chapter, experimental studies on cleaning applications for this broad-area inductively 

coupled plasm a (ICP)-driven neutral source are reported and  compared to the earlier 

simulation.
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5.2 Experiment

5.2.1 Equipment setup

A schematic drawing of our apparatus is shown in Fig 5.1. The main chamber 

is an 8” six-way cross pum ped by a 450 i /s  Fomblin-prepared,turbomolecular pump. 

A variable-conductance valve between the chamber and the turbomolecular pump 

adjusts the discharge pressure. A gas mixing manifold with mass flow controllers 

introduces gases into the chamber. For pulsed-pressure operations, a Veeco-10 pulse 

valve is used. Convectron, ionization gauges, and capacitance manometers are used to

Match Box

Pulse Valve
Magnets 
 . Gas Inlet

QCM
ReflectorLangmuir Probe

-Venting
Valve

BaratronIonization Gauge

Turbomolecular Pump
Magnetic Coil

/
Quartz Window

Figure 5.1: Schematic drawing of the low energy neutral beam

measure the chamber pressure (Fig. 5.1). In pulsed power applications, the variable
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power supply is replaced by a  wide-band, 600W linear amplifier driven by a pro

grammable function generator. Frequency-tuned pulse trains of adjustable length 

can be used to provide variable duty-cycle power input to  the modulated pressure 

pulses in the ICP zone. An angled reflector plate is located between the source region 

and the process region. A STM-100 quartz crystal microbalance is used in the down

stream  to measure the in-situ stripping rate. A ring of Nd-Fe-B magnets enhances the 

plasma confinement. The magnets also improve the radial uniformity of the plasm a 

density. Resonant RF traps, along with careful attention to  proper grounding and 

shielding are utilized to eliminate RF interferences.

The neutralization efficiency depends on the choice of plate materials. The 

physics of these processes has been previously described in our earlier papers [13]. 

The neutral energy and flux are selected as follows. The plasm a potential (Vp) and 

the reflector bias (V^as) determine the energy of the ions th a t strike the reflector. Ions 

accelerate to an energy tha t is approximately equal to ('Vp-Vbias) with Vwas usually 

negative. As a general guide, the average energy of the reflected neutral is about 

th irty  to fifty percent of \ 'P-Vt»aa• Hence the energy of the reflected neutrals can be 

tuned by adjusting the reflector bias. Lower pressure is m aintained between the plate 

and the process region so th a t neutrals are not depleted by elastic charge-exchange 

collisions. The angle between the normal of the reflector p late and the axis of plasm a 

region is also variable, perm itting variations of the neutral flux in the process region. 

Earlier studies [11,14] have shown tha t angles in the range of 40-60 0 are optim al for 

maximum neutral flux output. The exact optimal angle depends on the discharge 

gases and the plate material composition [14]. The determ ination of the flux has
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been performed by comparison of recession rates to  known standards developed for 

space applications [11,14]. The computational model previously published [13] also 

computed the angle and energy dependent flux, which was found to be in agreement 

with the recession measurements. For the range of operating conditions reported in 

this chapter, the flux was 7 ± l x l 0 14 atoms.cm_2s_ l . Fluences are calculated using 

this flux, multiplying by the appropriate period of time.

Neutrals stream towards a sample holder. The sample holder can be replaced 

by a  water-cooled quartz crystal microbalance for in-situ removal rate measurements. 

A collim ator can be placed in front of the sample holder. The collimator, shown in 

Fig. 5.2, contains both bias-able grids and stands for UV light filters. This allows 

detailed studies of the relative contribution of charged particles and deep UV to the 

removal rates.

SS plate SS Cylinder
Ceramic tubeMagnets

Magnets

mesh grid 
Ceramic washer

Figure 5.2: Schematic drawing of the ion and electron deflection neutral collimator
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5.2.2 Experiment methods 

Plasm a characterization

The performance of the ICP source was characterized primarily by Langmuir 

probe measurements. Radial profiles of the electron density ne and the electron tem

perature T e were derived from single- and double-probe current-voltage traces. These 

traces were interpreted using numerical fitting routines w ithin the Laframboise’s cylin

drical probe model, correcting for sheath rectification effects [17]. In the downstream 

region, Langmuir probe and the plate ion saturation current measurements were com

pared to give a measure of ion density. Under certain conditions, plasma leakage into 

the process zone was measured using the collimator retarding grids shown in Fig 5.2. 

A picoam meter was used to measure the leakage current.

Cleaning studies

Cleaning rates with different polymers by the neutral stream were studied with 

two classes of trials.

•  The first class employed ex-situ measurements. The samples were fixed on the 

holder for exposure to the neutral flux. The gas composition, total pressure, reflector 

bias, and exposure time were varied. Post-exposure determ ination of the rates, and 

other aspects of the cleaning effectiveness, were evaluated by a variety of surface an

alytical techniques, including atomic force microscope(AFM), X-ray photoelelectron 

spectroscopy(XPS), Auger spectroscopy, and variable-angle-spectroscopic ellipsome- 

try  (VASE).

•  The second class of trials involved in-situ measurements of the cleaning rates
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on spin-coated quartz crystal microbalance (QCM) samples. Both charge-particle 

filtering and neutral collection were applied.

In both classes of trials, the erosion rates and morphologies of a  variety of 

spin-on materials and organic thin films were assessed. Commercial films, which had 

been previously established as a transfer standard by a number of oxygen-atom-beam 

research groups, were used in these experiments. These samples, and various spin-on 

samples of PMMA resists, were masked with 500x 500 line-per-inch W masks to 

evaluate undercutting and morphology.

5.3 Results and Discussion

5.3.1 Neutral cleaning with the collimator

Photoresist dimensions may be altered by etching from the background gases, 

or by shrinkage or direct mass loss of the photoresist from exposure to the uv light. 

Photoresist may also be removed by the directed neutral stream . To distinguish 

between these mechanisms, we covered one side of the sample with a  1 cm x 1 cm 

MgF2 window held 2 mm above the sample to allow access from the thermalized 

background gas. This window transm its photons from the deep UV at about 1300 A  

to  the infrared and also allows thermalized neutral species to reach the sample, while 

blocking the fast neutrals to the sample.Fast neutral cleaning results on a silicon wafer 

covered by photoresist are shown in Fig. 5.3. T he collimator was placed between the 

doped silicon and the reflector plate. Samples were exposed in the neutral beam to a
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Figure 5.3: Comparison of the post-cleaned samples exposed to the neutral beams. 7 

mTorr, Ar: 3.23sccm, 02:9.32sccm, bias:-15 V, 500W. Left sample was exposed without 

MgF ‘2 v/indow, right sample was exposed with MgF2  window.

total estim ated dose of 8 x l017 O-atoms.cm-2 . As seen in Fig. 5.3, the portion of 

sample exposed directly to the neutral beam source showed complete removal of 

the patterned polymer layer, while the portion behind the MgF2  window showed no 

removal. We have performed Auger, XPS, and EDX on the samples to assess the 

effectiveness of our beam in removing the photoresists. This effectiveness is verified 

by the comparison of the carbon level on the samples before and after cleaning. 

Fig. 5.4 shows representative XPS data. The 285 eV carbon (Is) peak, visible before 

cleaning, completely disappears after the process. On the other hand, the oxygen 

peaks (Is, 27.5eV and 2s, 533eV) increased significantly, along with the Si 2s and 

2p peak intensities. Only a slight shift of the Si peaks toward to larger binding 

energy, consistent w ith oxidation, was observed. Fig. 5.4 also indicates no trace of
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sputtered chamber (Fe, Ni, Cr, etc.) or reflector (W) m aterials on the sample. The 

Auger and XPS didnot show these elements either. We conclude th a t resputtered 

m aterials were absent at a  level of approximately 0.01 at% even after many hours 

of exposure. Previous results from our group showed th a t ions and electrons were 

completely removed from the stream  by the collimator. So the source exclusively 

provided fast neutrals for the cleaning applications. The absence of erosion on the

2.06+04

02s

1.56+04
As-received sample

C1s
c3o
O

1.0e+04

Si2p Si 2s

Post-cleaned sample5.0e+03

0.0e+00
0.0 200.0 400.0 600.0 800.0 1000.0

Binding Energy, eV

Figure 5.4: XPS spectra of the cleaning results for Si wafers with patterned photoresist 

residue

sample (Fig. 5.3), which was exposed to thermalized neutrals and uv photons, in

dicates th a t the reaction threshold is well above 0.025 eV. For most experiments
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discussed in this paper, the plasm a potential was at least a  few volts. The reflector 

p late was biased a t negative tens volts. So reflected neutrals should have an energy of 

3 ~  10 eV. This is high enough to remove the photoresist on the  surface. Both therm al 

and non-therm al reactive channels contributed to the “soft” etching processes while 

the Langmuir-Hinshehvood mechanism played little role in our photoresist etching 

experiments. O ther mechanisms such as collision-induced desorption, Eley-Rideal 

dynamics, and dynamic displacement mechanism all depend on the translational en

ergy. W ith a low translational energy for neutrals, the dynam ic displacement etching 

mechanism played little role [107]. The implication tha t the post-cleaned surface was 

atom ically sm ooth, was confirmed by the AFM measurements. The surface roughness 

was less than 10.4.

5.3.2 Cleaning rate measurements 

In-situ cleaning rate measurements

We measured removal rates of polymer PMMA with different rf power, reflector 

bias, gas composition and total pressure. Gold-covered quartz  crystal microbalance 

sensors were spin-coated with PMMA, baked for one hour, and subsequently exposed 

in the process region. Fig. 5.5 summarizes the removal rates as a function of the 

rf power input a t different discharge pressures without the collimator. The removal 

rates increased with the rf input power, but they did not increase monotonically with 

the to ta l pressure. The removal rate  a t 18.4 mTorr had the lowest value. The highest 

removal rate appeared a t 9.0 mTorr. The cleaning rate as a  function of the rf  power 

w ith the collim ator installed is shown in Fig. 5.6. For different gas compositions, the
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Figure 5.5: Stripping rates as functions of the rf power and total pressure.(Bias:-13.4 V, 

Ar: 3.66 scctn,Oo: 8.23 scan.)

cleaning rate(w ith the collimator), increased linearly with the rf power. It should be 

noted th a t the cleaning rate with the restriction of the collimator is much slower (<  

1 A /s)  a t 500IF than  it is for the uncollimated case.

The photoresist etch rate with hypertherm al neutrals can be estim ated quan

titatively, as follows:

ER{x, y, z, E n) =  n(x , y, z, E n) * 7 (£?„) (5.1)

where ER is the position and energy dependent etch rate, n is the neutral flux reaching
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the wafer surface, which is a function of position (x,y,z) and the neutral energy, E n. 

The etch yield, 7  is also a  function of the neutral energy. Etch rates were found by 

integrating the above equation over the energy distributions.

Higher rf power generally enhanced the neutral flux, which led to higher clean

ing rates. Langmuir probe measurements in Chapter 2 indicated th a t the electron 

tem perature varied little as the rf power was increased from 200W to 500W. Over 

the same power range, the plasma density increased by a factor of two, which was 

confirmed by a corresponding increase of the reflector plate current. As predicted by

1.2
0  02/Ar= 2:1 

02/Ar= 3:1
1.0

0.6

1  0.4 (B

0.2

0.0
300.0 350.0 450.0400.0 500.0 550.0 600.0
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Figure 5.6: Neutral stream cleaning rates as a function of the rf power. (8mTorr,bias:-18.4V 

with collimator)
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the earlier modeling of Nichols and Manos [14], these trends led to an observed 

increase of the removal rates.

The pressure dependence of the removal rate (Fig. 5.5) can be interpreted as a 

com petition between increasing ion flux to the reflector plate as the pressure increased 

initially, and the attenuation of the reflected neutrals by charge-exchange and elastic 

scattering as the pressure increased further. The removal rate w ith the collim ator also 

increased with the rf power(Fig. 5.6). The rate, however, was only about one tenth 

of the rate w ithout the collimator. This was caused by a reduction of the  off-axis 

neutral flux,in rough agreement with our previous calculation [13]. The cylindrical 

collimator has a length/diam eter ratio of 2:1, giving a 14 0 angular acceptance from 

the source zone on the reflector. Integrating an assumed cosine distribution from 0 

to 14 0 predicted a ratio of flux without and with the cylindrical collim ator of about 

6.6:1. Photo-resist removal rates by neutrals have been found to be lower for oblique 

incidence [108], thus the ratio of removal rates is expected to be higher than  th a t of 

the fluxes, also in agreement with these observations.

One m ain advantage of this neutral beam  source over conventional downstream  

sources is the ability to tune the neutral energy over a broad range to meet the 

threshold energy requirement for different processes such as Si etching, P R  ashing, 

etc. The average energy of the fast neutrals is strongly affected by the interaction 

with the background in the process region. The effect of reflector bias on the PMMA 

removal rate is shown in the Fig. 5.7. The removal rate remained nearly constant as 

the bias varied from 0 to -30 volts.
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Figure 5.7: PMMA removal rate as a function of the reflector bias.(7.8mTorr,Ar:3.66sccm, 

02:8-23sccm)

Polymethyl methacrylate (PMMA) used in the experiments has two different 

activation thresholds depending on whether the substrate tem perature is above or be

low the glass transition temperature, T s [15]. For PM M A,T9 ~60-90°C, w ith Eo=0.2 

eV for T < T 9 and Ea=0.4eV for T > T 9 [15]. Measurements showed th a t the plasm a 

potential decreased as the rf power increased, bu t stayed above 11 volts. This implied 

the minimum neutral energy was around 3-5 eV, well above the reaction threshold. 

Experimentally, we found th a t the ion flux to the reflector was nearly constant as the
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bias was varied below -10 volts. Hence we expected tha t the neutral flux impinging
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Figure 5.8: Calculated plasma potentials as a function of the rf power from the Langmuir 

probe data

on the PMMA remained unchanged. According to Cross [107], etch yields for hy- 

pertherm al oxygen neutrals on Kapton rise four orders of magnitude from thermal 

velocities up to  3 eV, where the etch yields begin to saturate. The etch yield a t 3 

eV is approxim ately two-thirds of the value a t 5 eV. PMMA has a  lower reaction 

threshold than th a t of Kapton, and the etch yield of PMMA tends to saturate  a t a  

lower translational energy. Thus in cases where the hyper-thermal neutral energy is 

well above 3 eV ,the removal rate  for PMMA does not vary significantly as the re-
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flector bias changes. This may not be true for etching m aterials with higher reaction 

thresholds or different neutral source designs especially those using grid neu tra lizes. 

VVe expect th a t at much higher energy physical sputtering could enhance the  removal 

rate , but with the risk of damaging the surface.

Experiments showed tha t the cleaning rate increased linearly with the  value of 

0 2 / (A r + 0 2) ratio over the range from 0 to 0.8 and remained constant over the range 

from 0.8 to 1.0. VVe found tha t pure oxygen had a cleaning rate of 11.7 A / s  equal 

to  the maximum, within the scatter of the data. This differed from the findings of 

Goecker et al. [12], who observed no cleaning effect using pure oxygen in their neutral 

source. The difference may result from a higher velocity in the  reflected neutrals in our 

experiment, or perhaps represents an enhanced atomic to  molecular recombination 

ra te  in the gridded neutralizer of their apparatus.

Ex-situ removal rate measurements with the collimator

P-doped Si, spin-coated with PMMA, was dried in an oven for one hour a t 98°C. 

Ellipsometry measurements indicated a film thickness of 9000 A prior to  cleaning. 

Exposures to the neutrals were carried out during room tem perature w ater cooling 

on the sample holder for periods up to 6 hours. The residue thickness was measured 

w ith AFM and ellipsometry. We found tha t the average removal rate was around 

0.8A /s  with the collimator. W ithout the collimator, the removal rate increased to 

lO .lA /s. Ex-situ measurements are in good agreement w ith the in-situ ones. Similar 

measurements were made on free-standing Kapton films for which the removal rate 

was 9 A/s w ithout the collimator. W ith  the collimator, the removal rate was reduced 

to  1.89 A/s. The small difference in rates implies a  lack of selectivity for potential
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patterning applications.

5.3.3 Trench cleaning studies by the neutral beam

Cleaning of post-metal etch residues is difficult to do w ithout wet steps, or 

without aggressive direct plasma exposure. Therefore, a t the request of colleagues at 

IBM, we investigated the efficiency of our neutral stream  for this applicaiton. Two 

types of trenches, 1 /x m (width) x 0.25^m  (depth) and 0.25/xm x 0.25/xm were used in 

these experiments. These features were created by a post-m etal etch process leaving 

W containing polymer residues on the bottom  and sidewalls. After spin-coating with 

PMMA, they were baked in an oven a t 98° C for one hour prior to exposure. Long 

exposures (3~4 hours) were performed to provide comparisons to damage studies 

during severe over- etch. Longer exposures (over 6 hours) were also required to assess 

critical dimension loss. The morphology of trenches after 6 hours in the neutral 

stream  is shown in Fig. 5.9. Trenches with an aspect ratio  of 1:4 achieved sharp 

edges(Fig. 5.9) and appeared to be free of residues. On the other hand, some residues 

may be seen at the bottom  and on the sidewalls of trenches with an aspect ratio 

of 1:1 (Fig. 5.9b). To further examine possible contam ination due to sputtering, we 

exposed an ultra-pure crystalline MgF2 sample to the neutral flux for a  period of two 

hours. No trace of any metal elements (W,Cr,Fe,Ni) were found in surface spectra 

taken by XPS and Auger. The survey scans of cleaned trenches also indicated tha t 

no new compounds formed at the bottom  or on the sidewalls, even though the sample 

had been exposed to the neutral stream  for over six hours, yielding an over-etch of 

several hundred percent. In order to get information on the species present in the
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(a) 0.25pm x 1pm trenches

■■■

; '

(b) 0.25p. m x 0.25p m trenches

Figure 5.9: Scanning electron microscopy micrographs of trenches with different aspect 

ratios using the neutral source
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interior of the cleaned trenches after neutral processing, we tilted  the sample to  pref

erentially collect sidewall information under the X-ray source, taking care to  account 

for possible variation of chemical bonding on the flat “lands” between trenches when 

the sample was tilted. A nonlinear fitting algorithm [109] was used to quantitatively 

analyze the Si 2p peaks. This analysis showed tha t SiC^/Si ratio increased as the ro

tation  angle increased, indicating th a t a thin oxide film had formed on the top of the 

trench sidewalls. In general, the peak of carbon will shift to higher binding energies as 

the element reacts chemically with oxygen. The XPS spectra of the angled-resolved 

carbon peaks are shown in Fig. 5.10. As the tilting angle increased, the carbon peak

25.0
-  10 
- - 2 0  
...... 4 0

—  5020.0

5  15.0

10.0 v /

5.0
286.0282.0 284.0 288.0280.0 290.0
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Figure 5.10: Angle-resolved XPS spectra of carbon peaks after neutral processing
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shifted to lower energy first and then moved back to high binding energy. The data 

in Fig. 5.10 is consistent with the presence of unreacted carbon compounds on the 

sidewalls. VVe cannot say unequivocally whether these materials were sputtered from 

the bottom  of trenches or whether they were post-processing residues, initially present 

on the sidewalls, th a t were not removed by directed beam of fast neutrals.

5.4 Summary

O ur experiments dem onstrated tha t a broad-area, reflection neutralization 

source can provide controllable fast neutrals for cleaning applications. The obser

vations confirmed the predictions of our earlier com putational models of this appa

ratus. The cleaned Si surface had a surface roughness less than  1 nm. In-situ and 

ex-situ measurements showed a  removal rate of 10 A /s for PMMA, which is suitable 

for cleaning and soft-landing etching steps. The removal rate increased linearly with 

rf power and was nearly constant as the reflector bias varied from 0 to -30 volts. 

The to ta l pressure affected the removal rate significantly. XPS studies showed no de

tectable contam ination from the chamber or the reflector m aterials. Angle-resolved 

XPS spectra indicated the presence of unremoved carbon compounds on sidewalls 

and the formation of Si0 2  on the top portion of trench sidewalls, consistent with a 

directional fast neutral flux.
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Chapter 6

Neutral Stream Characterization 

of a Surface Reflection Materials 

Processing Source

6.1 Introduction

Neutral atomic and molecular beams have numerous applications. For ex

ample, neutral beams can be used to perform charge-free etching, deposition pro

cesses and molecular beam epitaxy. N eutral beams can also be used for surface 

reaction mechanism and beam interaction studies. Neutral sources such as noz

zles [110], grid neutralization sources [105, 111], laser ablation [104], and surface 

reflection sources [11,13] have been investigated exclusively for the semiconductor 

processing. Etching [104] and cleaning applications [12,51] using such sources have 

been reported. However, a lack of information relating the plasma discharge to neu-
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tral flux properties, including detailed measures of neutral flux and energy has slowed 

down the deployment of these sources. In this chapter, direct measurements of the 

neutral beam energy and flux as functions of plasma param eters are presented.

Such measurements have not been reported routinely because direct measure 

of a hyper-therm al beam is difficult. Time-of-flight [112] and quadrupole mass spec

troscopic techniques [11], while difficult, have under special circumstance been able 

to provide information on neutral energy distributions. Direct particle measurement 

using photo-resist ashing, recession rates of photo-resist [113], metal oxidation [114] 

and catalytic thermocouple probes [115] have yielded some flux measurements.

Such studies have worked only for specially selected systems because they rely 

on the accurate knowledge of process constants, such as the etch yield. In most 

cases, it has been difficult to precisely determine the absolute flux density of the 

beams. This problem is compounded when the beams are composed of high-energy 

particles, or reactive and /o r condensible species. For example, the hyper-thermal 

atomic oxygen fluxes could be determined by exposing a  thin strip  of silver deposited 

on a  non-conducting, non-reactive substrate to the beams. Measuring the electrical 

resistance of the silver strip  as a function of time was used to determine the rate of 

m aterial conversion to a  non-conducting oxide. However, flux measurements made 

using this technique have large uncertainties because of following assumptions for the 

calculation: the sticking probability of oxygen atoms on bare polycrystalline silver is 

unity and independent of the degree of oxide formation; the nearest neighbor distance 

of atom s in polycrystalline silver is th a t of silver face-centered-cubic structure; and 

O-i molecules in the beam do not react with the silver to  form silver oxide.
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Most of above methods developed for measuring the flux of the beam s have 

proven to be expensive, time consuming, limited to a small class of molecular beams, 

and generally yield results with large uncertainties. Recently, Cook et al. [116,117] 

developed a specialized torsion balance which is capable of measuring directly the 

absolute flux density of hyper-thermal beams in an ultra high vacuum environment. 

Torsion balances measure the absolute flux densities of molecular beams composed of 

non-reactive gases by measuring the forces exerted by the beam s on plates mounted 

on the lever arms of the balances. W ith accurate measurements of balance rotations 

of 10~9 rad, for a lever arm length of 5 cm, a torsion balance could measure forces 

of less than 10~2° N. This means tha t this set up is capable of measuring the neutral 

flux a t the order of 1010cm_2.s~l with neutral energy over 2.5 eV.

A similar, highly sensitive torsion balance was built and used in the measure

ments reported here for the neutral flux measurement. A micro-calorimeter was used 

for energy measurements of the neutrals. W ith this combination, we are able to  derive 

both the neutral energy and neutral flux.

To our knowledge, no previous studies have combined such flux and energy 

measurements for a neutral processing source. We also correlated these neutral flux 

and energy measurements for Oo plasmas to our previous cleaning rate measurements 

(C hapter 4) by QCM to provide an independent consistency check on the m ethods.
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6.2 Experiment Setup and Methods

6.2.1 Vacuum system

The experiments were carried out in the apparatus shown in Fig. 6.1. The 

apparatus consists of three 8” CF six-way crosses. The plasma source chamber has 

been described in Fig. 5.1. The interm ediate chamber was pum ped by a 450 1/s 

turbom olecular pump while the test cham ber is pumped by a 360 1/s turbopum p. The 

base pressures in these chambers were monitored by three ionization gauges. During 

the discharge, the capacitance m anometer was turned on in place of the ionization 

gauge. A micro-calorimeter is located in the soure region. An vacuum compatible 

torsion balance is placed in the test chamber.

Match Box
Intermediate Chamber

Langmuir Probe 

Window

Aperture(2)Quartz Window

Source Chamber Test Chamber~)00 Q o o o o /

Gate valve Aperture(l) Window
Heat Fiux 
Sensor
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Turbopump S '  

Turbopump

Gate Valve
Turbopump

Figure 6.1: Vacuum system for the neutral beam characterization

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.2.2 Torsion balance

Fig. 6.2 shows the schematic drawings of the torsion balance. The molecular 

beam loses its momentum to the torsion balance by impinging on a  rough flat plate 

mounted on the torsion balance lever arm. The ideal situation is th a t the beam scat

ters off of the plate diffusely with complete therm al accommodation. One approach 

is to arrange for a simple reflection of incident neutral beam to the flat plate on 

the torsion balance while an alternative approach is to use a  beam trap  such as an 

alum inum  foil sphere with a small aperture to trap  the incident beams. However, 

the exit flux through the aperture in the sphere might not equal the entrance flux, 

and the general relationship between the exit and entrance fluxes will most likely 

be unknown. O ther methods such as directing the beam into a  chamber through a 

knife edge aperture and then measuring the pressure increase in the chamber due to 

the incoming molecules can also provide the flux value. The special beam catcher 

designed by Cook et a i  [116,117] allows the incident particles to reach therm al equi

librium completely in the beam catcher. In our apparatus, this is combined with a 

micro-calorimeter to extract both the neutral flux and neutral energy measurements.

Particles enter the beam stop and impinge upon a flat surface a t a large incident 

angle. The angle between the surface normal and the beam was 76°, and the solid 

angle subtended by the entrance aperture of the beam stop from the impingement 

point was small, 0.027 sr. Very few incident particles will reflect directly back out 

through the entrance aperture, and those th a t do not react w ith or stick to the inner 

surface will reach therm al equilibrium with the beam stop by making, on average, 

many collisions with the walls before exiting. Particles then exit both apertures
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diffusely with identical velocity distributions. The average momentum of particles 

exiting the entrance aperture will be the same in magnitude as the  average momentum 

of particles exiting the other aperture. To increase the sensitivity of the torsion 

balance, most components of the torsion balance were constructed from aluminum 

sheet to reduce their contribution to the total moment of inertia. The beam stop had 

a length of 10cm, a diam eter of 2.8cm, and a wall thickness of 0.12 mm. The beam 

stop end caps were constructed from 0 .1 2 -mm-thick shim stock, and had aperture 

diam eters of 0.89cm on both ends. The cross beam and central axis of the torsion 

balance were constructed from a 0.3-cm-diam cylindrical rod. The central axis length 

was 12.5cm, and the torsion balance lever arm length, defined to  be the distance from 

the axis of rotation to the center of the beam stop was 3.796cm. The damping disk was 

circular, with a diam eter of 6.25cm, and was constructed from 0.38-mm-thick shim 

stock. The overall mass of the torsion balance was approximately 24.5g. Gold-coated 

tungsten suspension wires were used that had diameters of I5fj.ni or 25/zm and lengths 

of about 10 cm were used in the calibration and measurements. The torsion balance 

was situated in the differentially-pumped test chamber. The apparatus is configured 

so th a t the reflector plate can be rotated to direct the neutral stream  toward different 

analysis or processing zones. For momentum measurements, the reflected neutral 

flux travels through a 0 . 8  mm diam. aperture, the interm ediate drift chamber, and 

through a 2 mm aperture into the test chamber. The apertures are optically aligned 

so th a t all of the analyzed neutral flux entered the particle catcher of the torsion 

balance. During the operation of the source chamber a t pressures from 1 ~  10 mTorr, 

the pressure in the analysis chamber does not exceed 1.5 x lO - 7  Torr. This assured
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th a t the atten tuation  of the reflected neutral flux due to charge-exchange or elastic 

scattering was less than 1 %.

The energy carried by the reflected flux is measured by rotating the reflec

tor plate toward a micro-calorimeter positioned in a  sidearm connected to the source 

chamber. The calorimeter has a time response of 6  fis and a  sensitivity of 150 f iW cm ~ 2. 

In the same sidearm, approximately 1  cm in front of the calorimeter we have placed 

a multi-grid electrostatic deflector capable of keeping charged particles from striking 

the detector, and a M gF 2 beam stop capable of perm itting only uv photons to reach 

the detector. Heat flux readings with and w ithout such filtering are then used to 

determine the energy carried by the neutral components. Proper accounting for the 

filter’s reduction of the angular acceptance of the detector is required.

6.3 Theory of torsion balance operation

W ith a particle beam scatters off of a surface, the force exerted on th a t surface 

by the beam is:

Fbeam =  AQmu  -  N rm u r, (6.1)

where .4 and <I> are the cross-sectional area and flux of the beam, respectively: N r 

is the number of particles scattering off of the surface per unit time; V and Vr are 

the flux-weighted average velocities of the incident beam and scattered molecules, 

respectively; and m is the mass of the beam. The flux-weighted average velocity is 

defined by Cook, for a  one-dimensional beam of molecules by letting f^ {v )d v

represent the number of molecules in the beam th a t cross a unit surface area per unit
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time with velocities between u and v + du. The flux of the beam is then given by

and the flux-weighted average velocity of the beam is defined as [117]

1 f°°t, = - J  vf*(i/)dv.

(6 .2)

1
(6.3)

The average velocity of the exiting particles, ur, was assumed to be zero with the 

special beam  catcher.

The aperture  A must collimate the beam to a  small enough diameter so th a t the 

entire beam passing through the aperture enters the beam stop.

W hen the beam enters the beam stop, Fbeam causes the torsion balance to 

rotate by producing a torque about the axis of rotation, defined by an imaginary line 

through the sym m etry axis of the suspension wire. The torque, r 6eam, is equal to 

Fbeam times the lever arm  length I. A restoring torque was applied to the shaft to 

return the balance to its original angular position by twisting the suspension wire 

in the opposite direction. The torque applied by the twisted wire, r ^ r e ,  for small 

rotations is given by

where S , R ,  and d are the shear modulus, radius, and length of the suspension wire, 

respectively, and £ is the angle through which the suspension wire was ro tated  T^re 

is the torque required to return the balance to  its original angular position. The

Fbtam = ^ A m u . (6.4)

wire (6.5)
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param eter k is the torsion constant of the suspension wire. At equilibrium , the net 

torque on the balance is zero. Therefore, the torque applied by the  incident beam 

was equal in m agnitude to the torque applied by the twisted wire, or

IFbeam =  (6.6)

6.3.1 Suspension wire rotation angle measurement

The rotation angle £ was measured using two HeNe laser beams. A HeNe 

laser beam reflected off of a mirror mounted on the torsion balance was focused onto 

a d istan t wall. As the balance rotates due to the torque produced by the incident 

beam, the laser image spot position moves along the screen. The suspension wire was 

then twisted in the opposite direction by turning the suspension shaft feed-through 

with a worm gear until the spot was returned to its original position. Because the 

balance had been returned to its original position, the angle the suspension shaft was 

ro tated through equals £. The angle was measured by reflecting a second laser beam 

off of a m irror mounted on the suspension shaft feed-through and focusing it onto 

the same d istan t wall as before. The distance from the axis of ro tation of the torsion 

balance to the laser beam spot detection wall, D, was 4.00 m. The relationship

between a, defined to be the distance the spot moves along the wall in restoring the

balance to its original position, D, and the angle £ is

Z = \ t a n ~ \ ^ ) .  (6.7)
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6.3.2 Torsion constant calibration

The suspension wire was calibrated to determine the torsion constant, knowl

edge of the shear modulus, radius, and length of the suspension wire under actual 

load conditions would be required. However, since these quantities would be difficult 

to measure accurately, the torsion constant was experimently determined by mea

suring the oscillation period of the torsion balance. The only torque applied to the 

balance was the one produced by the suspension wire, and the equation of motion 

th a t describes the balance is given by [116]:

/?  =  (6-8)

where /  is the moment of inertia of the torsion balance.

£(f) =  Qcos{\J~^t +  0 ,  (6.9)

where 0  is the oscillation amplitude, £ is the phase constant, and s f k j l  is the angular

frequency. The oscillation period of the torsion balance, T,  given by

T  =  (6.10)

Due to torsion balance’s complicated geometry, the torsion constant cannot be u- 

niquely determined. By attaching a calibration dumbbell assembly with a known 

moment of inertia, T ,i, to the balance, the oscillation period becomes

Td = ~ j ~ -  (6.11)

The calibration dumbbell assembly could also be removed and replaced w ith a  cylinder 

of equal mass but a much smaller known moment of inertia / c. W ith the cylinder
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attached, the oscillation period is

I  +  Ic

k '
(6.12)

Using above equations to eliminate I  , the torsion constant is given by

(6.13)

6.3.3 Torsion balance damping

W ithout external damping, any perturbing torque acting upon the torsion bal

ance would cause it to oscillate about its axis of rotation for many hours. An external

tion. A perm anent magnet was suspended approximately 2.5 mm above the damping 

disk on the torsion balance as shown. When the balance rotated, the changing mag

netic flux through the disk produced eddy currents that converted the rotational 

energy into heat. Since the magnetic flux through the disk was constant when the 

balance was stationary, damping torques only occurred when the balance was ro ta t

ing. The dam ping mechanism was specifically designed so tha t the torque it exerted 

on the balance would be zero at equilibrium. Since this torque would most likely 

change in an unpredictable m anner each time equilibrium was reached, additional 

uncertainty of Fbeam would result.

dam ping mechanism was developed utilizing faraday’s law of electromagnetic induc-
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6.4 Results and Discussion

6.4.1 Neutral Energy and Flux Measurement

The accuracy of the momentum measurement strongly depends on the cali

bration of the torsion constant. The details of this calibration can be found in the 

papers of Cook and coworkers [116,117], whose m ethods we used to calibrate the 

torsion constant . We also did a secondary calibration using an effusive source of 

known particles and momentum flux. The measured torsion constant is 2.9 ±0.4  x 

10- 8  N .m /rad. The force equation becomes :

Fbeam =  QAmv =  (6.14)

where £ is the angle through which the suspension wire must be rotated to return  the 

balance to its original angular position and L is the particle catcher arm length(3.796 

cm). This force measurement is used in the calculated momentum below. The neutral 

heat flux is derived as follows. In an Ar plasma, Ar atoms are the only fast neutral 

species coming from the reflector; prior work has shown th a t no sputtering or fast 

desorbed species are released from the plate. The to ta l measured heat flux can be 

written:

Q  = Qphotons ± Qcharged particles ± Qthermalized neutrals ± Q fa s t  neutrals (6.15)

where Qphotons + Q thermalized neutrals were measured by placing the MgF2 filter 1 cm 

in front of the sensor head. F urther filter experiments, using the ion and electron 

deflector, showed no detectable heat flux contribution from charged particles. This 

is as expected from our earlier work, which indicated th a t the charged fraction of
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the neutral stream in the process zone was below our detection limit of 0.1%. The 

detected heat flux from fast neutrals can be written:

Q f  ast neutral — 0 ' (1 'l') ^ in c id en t i (6.16)

where

& incident (6.17)

and 7  is the ratio of scattered neutrals to incident fast neutrals a t the detector. As

suming tha t the energy accommodation coefficient of the fast neutrals at the detector 

is unity, we arrive a t the equation for the flux-weighted average velocity:

This is combined with momentum measurements to yield a  consistent value for the 

neutral flux. Fig 6.3 shows results for pure argon and for oxygen plasmas for varying 

rf power. The measured fast neutral energy does not vary much a t fixed reflector 

bias,V6 , as the rf power increases because the plasma potential, Vp, is nearly constant 

for bias voltages below - 5 V.

As the rf power increases, the plasma density increase causes the neutral flux 

to increase accordingly. These results are in good agreement with previous inference 

from etch rate measurements and model simulations [13,51].

For oxygen plasmas, in addition to the kinetic energy contributions from fast 

atomic and molecular oxygen neutrals, heat can be released from the recombination 

of atomic oxygen fast neutrals on the sensor surface. We can assume that the com

position ratio of O and O 2  fast neutrals is the same as the corresponding ionic ratio,

2Q fa s t neutral A L
(6.18)
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j] = O f  / 0 +, in the source region. We calculated the value using a global average 

model developed by Lieberman and his co-workers [15]. Taking this additional heat 

contribution into account, we can write an expression containing the flux-weighted 

average velocity of the neutral O atoms:

F  _  A m 0 2 v 0( 2{rî  )

where 8  is the surface recombination coefficient for atomic oxygen atom s on the sensor 

surface. Assuming a surface recombination coefficient of 1 a t the sensor will yield an 

estim ate of the lower bound for the neutral flux. Fig 6.3 shows the oxygen neutral 

flux and energy estim ated in this way. The neutral energy value, around 6  eV, is close 

to what is expected from our previous Monte-Carlo modeling a t bias levels of -10 to 

-L5 V [13].

The oxygen neutral flux increases with the rf power. Fig. 6.4 shows argon 

neutral energy and flux as a function of the reflector bias. As seen in previous work 

[118] with such a biased downstream boundary, operation a t zero reflector bias should 

be avoided since a negative voltage (5-10 volts) is required to establish stable reflex 

electron confinement for Te. ~  5ev. Discounting this “special” point, we see th a t the 

flux has a  nearly constant value of ~  1.4 x 101 5 cm - 2 s - 1  with reflector bias changes. 

The fast neutral energy is a roughly linear function of the Vt, — Vp. The earlier Monte- 

Carlo model of Nichols’s thesis [13] and presented by Nichols and Manos [14] discussed 

the transport of reflected neutrals in detail.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



>«

10.0

9.0

8.0

7.0 i -

§ 6.0 h

0)
Z

5.0

4.0

3.0

2.0

( ]

200.0

4e+15

i
<0
cm 3e+15iEo

■g 2e+15
301
Z

1e+15

0
100.0

□ Ar neutral energy 
o  O neutral energy

a a 6

300.0 400.0 
rf power, W

500.0 600.0

O  Ar neutral flux 
~ O neutral flux

o

200.0 300.0 400.0 500.0
rf power, w

600.0 700.0

Figure 6.3: Neutral flux and energy measurement as a function of the rf power for pure Ar 

and 02 plasmas.(Ar plasma:4.54mTorr;02 plasma:5.6mTorr, the reflector bias: -25 V)
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O ur observed energy range 3~6 eV is in excellent agreement w ith those cal

culations. The reflected neutral flux measured as the rf power and reflector bias are 

changed is observed to be proportional to the ion flux collected by the reflector plate. 

The neutral flux density in the downstream region is 0.5% to 1% of the ion flux 

density a t the reflector plate. From the neutral flux and energy measurements, we 

can use the etch yield da ta  of Cross et al. [107] to calculate stripping rates. Fig. 6.6 

shows these calculated stripping rates compared to  our previous experim ental rates 

obtained using coated quartz crystals in a micro-balance.

-23

Eo
5
CO
Eu
20)
>
•Co
Hi

.-28

Translational energy, eV

Figure 6.5: Etch yield as a function of neutral translational energy (reproduced with 

permission from J.Cross[107])
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Figure 6.6: Comparison of the stripping rates as a function of the rf power.(stripping rates 

at different pressures were measured under following experimental conditions: the reflector 

bias: -13.4 V: Ar:3.66 seem; 0»: 8.33sccm)

The observed rate is approximately twice as high as the calculated rate for any 

value of the rf power. The fact th a t the calculated rate is lower than experimental 

is consistent with the fact that our oxygen flux estim ate must be a lower bound to 

the actual flux for the reasons discussed in detail above. The correct value of the O 

atom  recombination coefficient could be less than 1 under these conditions. Another 

possibility is that the neutral energy reflection coefficient is varying with varying 

oxygen coverage of the reflector plate. It is also quite possible th a t the experimental 

rates are enhanced by as much as a factor of two by deep UV flux.
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6.5 Summary

We have performed both the neutral energy and flux measurement of the sur

face reflection neutral enery sources. This technique combines the momentum and 

heat flux measurements together. Measurements show th a t the neutral flux is on the 

order of 10l5cm _as _l and neutral energy is tunable over a certain range (3~6 eV). 

The neutrai flux increases with rf power. The measured neutral energy increases less 

than linearly with reflector bias. The etch rates calculated from the measured neutral 

flux and experimental rates are in good agreement.
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Chapter 7

Process damage assessment of a 

low energy inductively coupled 

plasma-based neutral source

7.1 Introduction

High density plasma sources induce a certain am ount of damage. Gener

ic process-induced damage includes the degradation of integrity of dielectric layer- 

s [119,120], structural damage, contamination [121], and others. This process damage 

depends strongly on the process type and the feature geometry [122]. C urrent damage 

studies center on the damage assessment in etching and post-etch ashing or cleaning 

processes using a variety of sensors, such as CHARM-2 [123], SPORT [124,125], M- 

NOS transistors, contact or non-contact surface potential difference [126], and micro- 

electro-mechanical cantilever structures [127]. Experim ental results [119,120,128]
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and com putational simulations [129,130] indicate th a t in these processes, damage is 

mainly caused by the current stress from plasma non-uniformity [131,132] and by 

direct particle bombardment during plasma-wafer interactions. Photo-resist residue 

on the surface features [4,133,134] in post-etch ashing processes also might be a  m ajor 

source of damage. The current stress damage appears to be less im portant when the 

device features are scaled down to 0.5^m where the topographic-dependent electron 

shading damage (ESD) [135,136] and VUV radiation [137] damage become the main 

concern. However, as the features further scale down towards 0.1/zm and below, all 

of these sources of damage [138,139] are expected to become very serious.

Many plasma source and process modifications to reduce process damage have 

been reported [140]. These include choosing optimal dc bias [141], reducing the pro

duction of ions, uv exposure [142,143], and removing damage by post-treatm ents 

[144-146]. Experiments [147,148] also indicate th a t pulsing (ICP and ECR)plasm as 

can improve the etch selectivity and greatly reduce ESD damage. Complete elimina

tion of the electron shading dam age and other damage is possible, a t least in principle, 

using neutral beams instead of plasma treatm ents for selected processes [103]. Three 

m ajor types of neutral sources have been examined [12,13,104,105]. Early work on 

1 ixm features in our group [106] showed that in a wave-based, small-area, low-energy 

reflection neutral beam source, UV photons contributed almost all of the damage 

for Oo photo-resist patterning and that this damage was anneaiable. Goeckner et 

al. [149] showed that the residual charged particle flux could be made a t least sev

eral orders of magnitude sm aller than the hyper-therm al neutral flux in a multiple 

reflection neutral stream. We have described a large-area transformer coupled plasma
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(TCP)-basecl neutral source and the use of this neutral source for photo-resist clean

ing applications [14,51]. In this chapter, we report quantatively damage studies using 

this large area TCP-based surface reflection neutralization source to examine direct 

plasm a exposure damage and neutral stream  photo-resist ashing damage of metal- 

oxide-semiconductor (MOS) capacitors. The process damage was characterized as a 

function of the reflector bias(neutral energy), gas composition, and rf power. The 

damage caused by direct exposure to the plasm a in cw and pulsed mode was also 

studied for comparison.

7.2 Experiment

7.2.1 CW, Pulsed ICP plasma setup and Surface reflection 

neutralization source

A schematic drawing of the apparatus and detail descriptions are shown in 

Fig. 5.1. The collimator contains magnets and biasable grids to filter out charged 

particles in the downstream zone and allows for the addition of uv light filters. This 

perm its us to de-convolve the relative contribution of neutrals, charged particles, and 

UV light to the device damage.

7.2.2 Damage Measurement

We used standard gate-oxide integrity (GOI) m onitor wafers supplied by San- 

dia National Labs for the dam age evaluation. These wafers have three different size 

(500^m,1000^m, and 3500/zm diameter) metal-oxide-semiconductor (MOS) dot ca-
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pacitors, consisting of the p-type, B-doped silicon substrate, either 100 angstroms or 

1000 angstroms of S 1O 2  dielectric, and A1 top electrode dots. The backs of the wafers 

were stripped of oxides and diffused with A1 to allow back contact. Prior to  exposure 

in our apparatus, the wafers were annealed in forming gas, iV2+  H2, a t 350°C for 30 

minutes.

Exposures in our neutral stream s were studied with two classes of trials. In 

the first class, samples were exposed to the neutral flux with different reflector bias, 

exposure time, rf power, and gas composition. To distinguish uv photon, ion-, and 

electron-induced dam age from the fast-neutral induced damage, an MgF2 window and 

the collimator, with and w ithout the M gF -2 window, were placed in front of samples. 

The M gF -2 window perm its vacuum uv light to strike the sample, but stops all particle 

bombardment. The reflector plate current under these experiment conditions was also 

collected. In the second class of trials, samples were coated with PMMA, baked in an 

oven at 98°C for one hour, and exposed to the neutral stream for very long times (over 

3 hours). In both classes of experiments, we used both cw plasmas and pulsed plasmas 

having the same time-average rf power. Discharge gas composition was varied in both 

classes of experiments. The flux of ions striking the reflector was directly measured as 

the “reflector current” , which is directly proportional to the resulting neutral beam 

intensity.

Simultaneous quasi-static and high frequency CV measurements were carried 

out on a Keithley Model 82 system. I-V measurements were carried out using the same 

system. Post-exposure samples were examined by a variety of techniques, including 

atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS).
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7.3 Results

7.3.1 Class 1: Neutral Damage Measurements without PM- 

MA overlayer

Fig. 7.1 shows quasi-static CV results for the as-received sample and for sam 

ples exposed with and without the collimator. Quasi-static CV results for samples ex

posed with and without the MgFo window are shown in Fig. 7.2. The high-frequency

6e-10

5e-10

4e-10

3e-10

2e-10

A— A With the Collimator 
3— 0  Without the Collimator 
j — -j As-received

1e-10

0e+00
-5.0 -4.0 -3.0 - 2.0 - 1.0 0.0 1.0

V, volts

Figure 7.1: Quasi-static and high frequency CV results of neutral stream processing with 

and without the collimator, (a) As-received, (b) Sample with the collimator,(c)Sample 

without the collimator (130 w, O2 , V& =  -20 V).
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CV curves of the two exposed samples in Fig. 7.2 are shifted toward the negative gate 

bias direction after the neutral stream exposure. These shifts allow us to calculate 

the increased density of positive charges in the oxide, see below. W ith the collimator 

in place, Fig. 7.1 shows th a t the shift becomes less pronounced. The two sets of 

CV traces in Fig. 7.2 for samples exposed with and without the MgF-2 window show 

no relative shifts. As discussed below, with the MgF2 window in place, only the UV 

photons with energy less than ~  11 eV reach the samples to contribute to the damage.

6e-10

5e-10

4e-10

S  3e-10

2e-10

' With MgF2 window 
— 7 Without MgF2 window1e—10

0e+00
-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0

V, volts

Figure 7.2: Quasi-static and high frequency CV results of exposure to neutral streams with 

without MgFi window (8.9mTorr, O2 , 14 =  -20V , 5 min.)

Fig. 7.3 shows the dependence of the observed Hatband voltage shift, a  measure
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of damage described below, as the reflector bias is changed. The figure also shows

0 .5 0
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Figure 7.3: The flatband voltage shift and average fast neutral energy as a function of the 

reflector bias in neutral stream. (8.40mTorr, O2 , 130 w, 5min)
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the calculated average reflected neutral energy reaching the process zone, taking into 

account the velocity m oderating collisions between the reflected neutrals and the 

background. Fig. 7.4 shows the reflector current as the rf power increases; the increase 

correlates to an increase in the neutral flux. To study the variation of damage with 

location in the process region we identified several locations a t which to  make damage 

measurements on the wafer. These measurement points are shown in Fig. 7.5.

Applied B-Field

Plasma
Source
(TCP)

I

Reflector

Plasma
Stream

Surface
Neutralization

Wafer

1.77

- 2.23 \

2 2 2 1 2.65 : 2‘,52 \ l  .57
2.12 / >

- 2.42 /

2.00

Figure 7.5: Numerical values of positive charge density (xlO -7C/cm3) increase at different 

locations after neutral processing! 130 w, bias:-20 V, 5min, note: this data has not been 

corrected for the contribution from UV photons)
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The correlation of damage with composition of the plasma was also studied. Fig. 7.6 

shows C-V measurements a t the wafer center for varying the ratio of Ar/Oo  in the 

plasm a.

1e-09
02/Ar=1:1
02

8e-10

6e-10

4e-10

2e-10

0
- 2.0 0.0- 1.0 1.0

Vgate, v

Figure 7.6: Quasi-static and high frequency CV results of the MOS samples exposed to 

neutral streams. (7.32mTorr,130 W,bias:-25V,(a)C>2Mr =  1 : l)(b)02)

7.3.2 Class 2: Damage with PMMA overlayer

Similar studies were performed on wafers which were given a ~  1 fi m PMMA 

baked overcoat. In addition, these samples were exposed for periods intended to 

represent overetches of several hundred to one thousand percent. Table 7.1 shows 

ashing process damage by neutral, cw, and pulsed plasma processes.
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Type Neutral Processes CW  Plasma Processes Pulsed Plasma Processes

Experimental

conditions

Time

&Qc/ / , c / c m 2

Oo

7.-14 seem, 130 W 

3h

2.2 x 10-7

O 2

7.44 seem,65 w 

30 min 

1.0 x 10~7

878Hz 

65 W 

30min 

1.2 x 10“7

1000Hz 

65 W 

30min 

3.9 x 10“7

5000Hz 

65 W 

30min 

2.3 x 10“7

Table 7.1: Comparison of the photo-resist ashing process damage by different plasma 

processes

7.4 Discussion

7.4.1 Class 1

All plasma components, such as electrons [150], ions [151], UV photons [152], 

and neutrals [153,154], are capable of inducing process damage. In a  non-ideal pro

cess, we expect to observe a variety of sources of damage such as Fowler-Nordheium 

current stress damage between the gate electrode and S i  substrate and vacuum UV 

radiation damage. As samples are placed out of the plasma source zone and the col

lim ator is placed in the downstream region, effectively preventing charged particles 

from reaching the samples in our configuration, current stress damage can be min

imized. But damage by uv photons still remains a concern. These high energy uv 

photons can create electron-hole pairs in the gate oxide. If the vuv photon energy is 

high enough, photoelectrons may be ejected from the surface, causing surface charge 

build-up. Photons with energies lower than the SiO 2  energy gap but greater than 

4.2 eV (the height of minimum energy barrier between the Si substrate valence band 

and oxide conduction band) can cause the injection of the stress current from S i  into

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the thin gate oxide. Charge build up can cause holes to drift toward the S iO ^ /S i  

interface where they either appear as trapped positive charges or release energy on 

recombinations with electrons, breaking chemical bonds and creating additional in

terface trapping sites [155]. The measured values of capacitance and C-V shifts can 

be used to arrive at quantitative estim ates of the oxide damage.

The effective positive charge in S i02  is calculated from

Q eff ~  C«x * (Mmi ~  Vjb)fA, (7.1)

Wm, = W m -  +  EblJ/2  -  0), (7.2)

where Wm and W„ are work functions of the metal and the semiconductor material 

respectively, E btJ is the band gap. 0  is the bulk potential, and Cox is the measured 

oxide capacitance. The interface trap  density is calculated from :

D u = (1/(1 / C q -  1/Co*)) -  (1/(1/Cfc -  1 /C „ ) ) / { A  * e), (7.3)

where A is the electrode area. C,, and C/, are the quasi-static capacitance and high 

frequency capacitance respectively. Using the data of Fig.7.2, these calculations show 

th a t uv photons contribute a t least over 83 percent of the positive charge increase in 

the oxide and a t least 74 percent of interface trap density increase overall.

We can use the calculated interfacial positive charge to estim ate the absolute 

vuv radiation intensity.Generally, there are two steps involved in interfacial positive 

charge generation in hole generation and hole transport and capture a t S i / S i0 2 

interface. The experimental interfacial generation rate  takes both processes into con

sideration [156]. The interfacial positive charge generation rate (charge/photon) in a
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S iO -2 specimen, irradiated by vuv photons having energies between 8.8 eV to 22 eV 

has been estim ated to be in the range of 10-3 to 10~2 [156] w ith zero applied electric 

field. The corresponding interfacial charge generation rate under an applied electric 

field can be calculated from the Smoluchowski equation [155,157].

=  D {V *P (r ,t)  -  ( ^ )  ■ [eP (r,£)]}, (7.4)

where P(r,t) is the probability density of forming a single electron about a  single 

positive charge. The generation rate under applied fields was found to be a higher, 

bu t still less than 0.1 [158]. For low pressure argon and oxygen plasmas, the dominant 

atom ic emission lines have photon energy of around 10 ev. From our measured positive 

charge increase, we can infer a vuv photon flux of about 1. x 1010cm -2s -1 . This value 

is much lower than values reported by other studies, for example, those of Woodworth 

et al. [159] because of the extreme “remote plasm a” aspect of our geometry.

Assuming reflection of O atoms from a polycrystalline tungsten plate hold at 

a  bias between -10 to -30 volts, nascent fast neutrals are expected to carry kinetic 

energies of 0.3 ~  0.5(Vp- V^a3) eV, only modestly larger than  8.8 eV (S i0 2 band gap). 

A fast neutral generates fewer electron-hole pairs than does an ion with the same 

translational energy. This is because an ion must also dum p the energy associated 

w ith neutralization within a few .4 of its point of impact. Nevertheless, uv photons 

and fast neutrals in a neutral source can contribute to the areal dependent current 

stress damage of dielectric layers and to the edge-dependent dam age on the electrode 

edge.

We expect then to see an increase of these sources of damage as the flux of 

photons or neutrals increases. We note again th a t in Fig. 7.3 and Fig. 7.4, the con-
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tribution from uv photons has been subtracted from the to ta l changes. The flatband 

voltage shift increases dram atically as the reflector bias changes from -10 to -30 V 

even though the corresponding reflected neutral energy reaching the process zone in

creases only from about 3 eV to 5 eV. As the reflector bias is changed from -10 to 

-30 volts, the vuv radiation intensity does not change much. The observed change in 

flatband voltage is therefore contributed by the increasing neutral flux.

We assume tha t the process damage can be characterized by the positive charge 

increase, A Q e/ / .  Then damage will be a function of the generation yield, discussed 

above, and the irradiation dose:

A Q ef f  — "{fast neutral * fa st neutral "F “7uv photons * photons i (7.5)

where 7  represents the positive charge generation yield for neutrals and photons and

$  is the to ta l irradiation dose. After subtraction of the uv photon contribution, our

fast neutral process damage da ta  corresponds to:

•A Q e f f  = 7fa s t neutrals * ^  fa s t neutrals i Ĉ -6)

and the flatband voltage shift observed is

=  ( 77 )

Although the neutral energy increase associated with changing the reflector bias is 

small, it is still capable of causing an increase of the positive charge generation yield. 

A substantial initial increase is observed for increasing both  the fast neutral energy 

(slowly) and the neutral flux (rapidly) from 0 to -20 volts of reflector bias. The flux 

then saturates, yielding a slow increase in the damage as voltage changes further.
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This damage increase in MOS capacitors may be associated with the dependence of 

the generation yield on the neutral energy.

The above Eqn. 7.6 is confirmed by the results of increased rf power. Accord

ing to a global average plasma model (see Chapter 4) for IC P plasmas, the plasma 

density in our source region increases linearly with the rf power, while the electron 

tem perature (and thus the plasma potential) remains nearly constant. This causes 

an increase of the reflector plate current thereby increasing the neutral flux without 

changing the neutral energy in the process region [160]. This is consistent, after cor

rection of vuv damage, with the positive charge increase, seen in Fig. 7.4, as the rf 

power increases.

Earlier simulations of the neutral flux, energy, and angles of incidence as func

tions of the location on the wafer suggested that peak flux for a flat 45-50 degree 

reflector plate is not on the center of the wafer. The results shown in Fig 7.5 are in 

excellent agreement with these calculations. Although the etch rate has been found 

to depend on composition in earlier studies, the lack of dependence of damage seen 

in Fig. 7.6, is also consistent with the above interpretation.

7.4.2 Class 2

Table 7.1 [161] shows th a t the worst process damage occurs when the plasma 

is pulsed at 1000Hz frequency. Time-average plasma density measurements and the 

model of Chapter 3 and 4 show that the average plasm a density is highest a t a 

pulse frequency of 1000Hz. It appears th a t there is a  dam age contribution tha t 

depends mainly on the integrated flux of particles striking the oxides. Less damage
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is found in pulsed plasmas a t other frequencies with the same time-average power. 

Post exposure analysis of these samples indicates th a t no PMMA residue remains on 

the surface of the MOS capacitors exposed either to the neutral stream  or exposed 

directly to the 1000Hz pulsed plasma. However, there is a small am ount of PMMA 

residue on the devices exposed to the pulsed plasma a t 878Hz and 5000Hz and for 

the cw case. It is likely tha t damage only starts to accumulate after the regions of 

PMMA are completely removed allowing the A1 electrode to be exposed to  the process 

environment. For fast neutral processing, the damage shows no dependence on the 

gas composition (Fig. 7.6). In contrast, pulsed plasm a process dam age does depend 

on discharge gas composition [162]. The reason, while not entirely clear, may depend 

on differences in plasma chemistry as well as radiative excitations in the pulsed cases, 

where initial populations of hot electrons may be im portant [163] in pulsed plasmas.

7.5 Summary

This chapter has presented a damage evaluation of fast neutral processes based 

on a  surface reflection neutralization ICP based source. The results show th a t most 

of the process damage is caused by the uv photons. The much sm aller am ount of 

fast-neutral induced process damage increases with the reflector bias and rf power 

in neutral processing. Compared to both pulsed plasmas and to cw plasmas with 

same time average power, neutral processes induce far less damage. This improved 

behavior is attribu ted  to the absence of ions and electrons during the  processes.
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Chapter 8

Conclusion

8.1 Summary

In this work, the scaling and the operation of a surface reflection neutraliza

tion method for the semiconductor processing have been examined. Experiments 

show th a t this method can provide enough fast neutrals for cleaning application. The 

neutral beam characterization shows tha t the neutral flux value is about 1 0 1 5 cra- 2 s - 1  

and the neutral energy is tunable about 3~6 eV. Systematic Langmuir probe and op

tical emission studies indicate a mode transition from CCP -ICP mode. The OES 

studies also show th a t there is no visible change in the OES spectra with changing re

flector bias. Damage assessment with different processes, such as cw plasm a process, 

pulsed plasma processes , and low energy neutral processes have been performed with 

MOS capacitors. Results show that the neutral process damage is a function of reflec

tor bias and rf power. The low energy neutral processing induces much less damage 

than pulsed plasma. Most of the damage is caused by uv photons. A nother type
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of low damage process-pulsed processes was investigated in this dissertation. Double 

probe and corresponding da ta  analysis routine are developed to reliably characterize 

the plasma transients in a pulsed Ar discharge. The results shows th a t by changing 

the pulse duty cycle and pulse frequency, it is possible to optimize the time average 

plasm a density and electron temperature.

A global average simulation model is performed to simulate the pulse discharge. 

The simulation dem onstrates tha t by pulsing the plasma a t certain frequencies, a  high 

average density can be achieved. The sim ulation yields good agreement with d a ta  

from CW  and rf pulsed operation of our source and provides us with a  very im portant 

design tools for future optim ization of reflection sources.

8.2 Future Work

Future work are suggested in following areas:

•  New application development: so far, most work with this source are related 

with ashing or etching application. Using this neutral beam to grow charge-free films 

will also be very promising. Etching application using C F 4  gas will also be useful to 

understand the etching mechanism.

•  Reflection efficiency studies: As we discovered in these studies, at a highly 

negative reflector bias, the energy reflection efficiency seems to be lower than  the 

value a t a  lower reflector bias. Further studies on degradation or recombination on 

the reflector are needed to understand the mechanism.

•  Pulsed plasma characterization : double probe set up and da ta  analysis can 

be used to investigate pulsed electro-negative discharges, such as oxygen.
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•  Simulation model : the global average simulation model can be further im

proved to include more particle species such as O 3  and more loss and generation 

channels. More studies should also be performed to  understand other discharges such 

as O2 , C F 4  and C H F 3.

•  Technical improvement: the accuracy of torsion balance measurement can 

be further improved. Modification of the damping system is required to reduce mea

surem ent time. A better wav to measure the resolution of angle measurements will 

also greatly improve the sensitivity of torsion balance.
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