
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1999

Causal distributed assert statements Causal distributed assert statements

Sharon J. Simmons
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Simmons, Sharon J., "Causal distributed assert statements" (1999). Dissertations, Theses, and Masters
Projects. Paper 1539623962.
https://dx.doi.org/doi:10.21220/s2-fcrz-jw60

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623962&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623962&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-fcrz-jw60
mailto:scholarworks@wm.edu

INFORMATION TO USERS

This manuscript has bean reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependant upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bieedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Arm Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CAUSAL DISTRIBUTED ASSERT STATEMENTS

A Dissertation

Presented to

The Faculty o f the Department o f Computer Science

The College o f W illiam and Mary in V irg inia

In Partia l Fulfillm ent

O f the Requirements for the Degree o f

Doctor o f Philosophy

by

Sharon J. Simmons

1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number 9974950

UMI*
UMI Microform9974950

Copyright 2000 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Beil & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

an J. Simmons

Approved, May 1999

Phil Kearns
Thesis Advisor

\ 1 & 1 L
William Bynum

(jJ u .A yl*~

Weizhen Mao

Robert Noonan

Rex Kincaid
Department of Mathematics

u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

List o f Figures xi

Abstract xii

1 Introduction 2

1.1 M onitoring Sequential P ro g ra m s.. 2

1.2 M onitoring D istributed Systems.. 3

1.2.1 System M odel........................... 4

1.3 The Happens Before R elation... 5

1.3.1 Asynchronous Message Passing L ib ra ry .. 6

1.3.2 Partia l Order o f E v e n ts .. 7

1.3.3 M ultip le Partial Orders ... 7

1.4 Outline o f the D issertation... 9

2 Distributed Programs 11

2.1 Set partition .. 11

ii i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 M utual E xclusion.................... 13

2.3 Bubble S o rt... 14

2.4 TVee Sort .. 1G

2.5 Positive Ack/Retrans P ro to c o l.. 18

3 M onitoring M ethods 22

3.1 Global S tate... 22

3.2 Runtime Methods 23

3.3 Postmortem Methods 30

4 Causal Distributed Assert Statem ent 32

4.1 Model and N o ta tio n .. 35

4.2 Im plem entation... 40

5 Optimization 46

5.1 Tim ing R e su lts ... 46

5.2 Piggybacking messages... 48

6 Static Analysis 57

6.1 Goals o f Static A n a ly s is .. 57

6.2 Static Analysis in the D istributed D om ain ... 58

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Communication Analysis for Asynchronous Message

Passing ... 63

6.4 LCP and LCP' E vents.. 105

6.5 POG and Taylor’s Complete Concurrency H is to ry .. 121

6.6 Static Analysis in the Parallel D o m a in ... 121

7 Loops 124

7.1 Control Flow G raphs... 124

7.2 H Graph ... 135

7.3 P O G ... 152

7.4 LC P and LC P ' events.. 160

8 Static Analysis o f Distributed Programs 169

8.1 Set P a r t it io n ... 169

8.2 M utual E xclusion... 174

8.3 Bubble S o r t.. 179

8.4 TVee Sort ... 187

8.5 Positive Acknowledgement/Retransmission ... 192

8.6 P ro to ty p e ... 197

9 Conclusions 210

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.1 Communication System s.. 211

9.2 Complexity issues o f static a n a ly s is .. 216

9.3 Future Work ... 217

9.3.1 Data A na lysis... 217

9.3.2 Modifications to the D istributed P rog ram .. 218

9.3.3 Global Assert Statem ent... 219

9.4 Concluding R em arks.. 221

A Grammar 222

B Asynchronous Library Functions 237

Bibliography 249

v i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Asynchronous program 8

1.2 Space-time diagram ... 8

1.3 M ultip le Partia l Orders .. 9

1.4 Space-tirne d iag ram s... 9

2.1 A lgorithm for Set Partitioning P ro g ra m .. 12

2.2 M U T E X .. 13

2.3 Bubble Sort ... 15

2.4 Local Sort .. 16

2.5 D istributed Bubble S o r t ... 16

2.6 Tree Sort ... 17

2.7 D istributed Processes .. 18

2.8 D istributed TVee Sort .. 19

3.1 Local Snapshot phase o f Global Snapshot A lg o rith m 26

3.2 Set P a r t it io n .. 28

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Two asynchronously communicating processes ... 30

3.4 Lattice o f global states ... 30

4.1 Consistent Cuts of the Assert S tatem ent............................... 34

4.2 3 process distributed system ... 36

4.3 Partial o rd e rs ... 37

4.4 Causal cuts for event e 38

4.5 Causal G lobal State for an A ssert.. 39

4.6 Latest State .. 42

4.7 Vector Time .. 42

4.8 Propagation Protocol .. 44

4.9 Update Causal State B u ffe r ... 44

5.1 Datagram e xp e rim e n t... 47

5.2 LCP and LCP' events o f the Assert E ven t... 50

6.1 Flow graphs o f a 2 process s y s te m ... 60

6.2 Flow graphs o f a 4 process s y s te m ... 60

6.3 Successor s e ts .. 61

6.4 Complete Concurrency H istory o f figure 6 .1 .. 63

6.5 if/else portion o f control flow g raph ... 68

v iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.6 if portion o f control flow g ra p h .. 69

6.7 Flow graphs for a simple 3 process sys te m ... 69

6.8 Pi's source code .. 70

6.9 FG t ... 71

6.10 i f and i f /e ls e flow graphs.. 73

6.11 Tree H for simple 3 process system ... 81

6.12 Possible and impossible receives .. 91

6.13 Same partia l o rders... 94

6.14 2 possible P O G s .. 101

6.15 H tree ... 103

6.16 POG derived from H o f figure 6.11 ... 105

6.17 LCP and LCP1 e ve n ts ... 109

7.1 Control flow graph o f the loop constructs ... 130

7.2 Control flow graph w ith a while lo o p ... 132

7.3 Control flow graph w ith a do - while lo o p ... 133

7.4 Example 1 ... 136

7.5 Example 1 w ith back ed g e s.. 137

7.6 Example 2 ... 138

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.7 Example 2 w ith back edg es.. 139

7.8 Case 1 .. 142

7.9 Case 2 .. 144

7.10 Detecting a lo o p ... 145

7.11 Detecting a lo o p .. 146

7.12 Assert in the loop b o d y .. 162

7.13 Assert and receive in the loop b o d y .. 163

7.14 Assert not in the loop b o d y .. 164

7.15 POG w ith a back edge... 165

8.1 Flow Graphs for Set P a rtitio n ... 171

8.2 H for Set P a rtitio n ... 172

8.3 POG for Set P a rtitio n ... 173

8.4 Flow Graphs for Mutual E xc lu s io n .. 176

8.5 Graph H for M utual E xc lus io n .. 177

8.6 POG for M utual E xc lu s io n .. 178

8.7 Time space diagram for Bubble S o r t ... 181

8.8 Flow Graphs for Bubble S o r t ... 182

8.9 Graph H fo r Bubble S o r t ... 183

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.10 POG for Bubble Sort ... 185

8.11 LCP and LCP' events for Bubble S o r t... 186

8.12 Flow Graphs for TVee S o rt... 188

8.13 Graph H for Tree S o r t... 190

8.14 POG for Tree S o r t 191

8.15 Time Space Diagram for Tree S o r t ... 192

8.16 Flow Graphs for Positive Ack/Retrans .. 194

8.17 Graph H for Positive A ck /R e trans... 195

8.18 POG for Positive A c k /R e tra n s .. 196

8.19 LCP and LCP' events for Positive Ack/R etrans.. 197

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

M onitoring a program's execution is fundamental to the debugging, testing and mainte
nance phases o f program development. This research addresses the issue o f monitoring the
execution of a distributed program. In particular, we are concerned w ith efficient tech
niques for evaluating global state predicates for distributed programs. The global state o f
a distributed program is not well-defined, making the m onitoring task complex compared
to that o f a sequential programs. Processes o f a distributed program execute concurrently,
and the events o f the program cannot be to ta lly ordered. Each process has its own local
memory, and the local memories are physically separate.

Despite the difficulties o f defining a distributed computation's states, monitoring a dis
tributed program requires reasoning about constituent processes' execution as a single col
lective entity. We have extrapolated the semantics o f the sequential program's assert state
ment into the distributed context. A distributed assert statement is a global predicate that
is anchored at a control point o f one processes, and tha t is evaluated when that process
executes the assert.

We have developed a runtime method for monitoring both stable and unstable properties
that does not disrupt the computation o f the distributed system. A distributed assert
statement is evaluated w ith that statement's causal global state which incorporates the
state o f the system as a whole as it may have causal impact upon the assert statement. A
runtime protocol has been implemented that constructs the causal global state and evaluates
the assert statement. No additional synchronization o r message passing is imposed on
the distributed application although some message sizes are increased to propaga te state
information. The causal global state is immediately available providing real-time feedback.

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CAUSAL DISTRIBUTED ASSERT STATEMENTS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Monitoring Sequential Programs

Observing a program’s execution is fundamental to the debugging, testing and maintenance

phases o f program development. Debugging is premised on the ability to examine the value

o f a variable at chosen points during the execution o f a program. Testing involves detecting

erroneous threads o f execution and invalid variable values. Maintenance relies on the ab ility

to follow a program’s execution and detect deviations from anticipated behavior.

The a b ility to observe a sequential program's execution is straightforward since a single

thread o f execution defines a to ta l temporal order on the programs atomic operations. The

execution o f each atomic operation results in a new program state, where a program state is

a function from variables to values [12]. An ordered sequence o f states is defined w hile the

program is executing, and at any point o f execution the state o f the program is immediately

available since a ll variable values are stored in the same local memory.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER!. INTRODUCTION 3

Debugging, testing and maintenance examine a program’s execution by comparing states

w ith expected behavior. One common method o f conveying the expected behavior o f a

program utilizes state predicates. A predicate used in this manner is a boolean function

on a program state and is evaluated by replacing variables o f the predicate with their state

values [12]. Predicate evaluation is straightforward in a sequential program since a state is

well-defined and immediately available.

Choosing appropriate predicates is dependent on the application and the activities mon

itored. Predicates can be chosen to detect program malfunction and. i f skillfu lly designed,

relay a strong clue about the location o f the bug leading to the failure. Particular points

o f a program's execution may be crucial, and predicates should be designed for evaluation

at these points. Evaluating a predicate after the execution o f an identified atomic opera

tion is consistent w ith Hoare-style axiomatic program verification techniques [14]. Complex

verification statements such as loop invariants, upon which a proof o f partial correctness is

usually hinged, make obvious candidates for conversion into predicates. Debugging break

points and diagnostic p rin t statements indicate positions for developing appropriate predi

cates. Independent o f the application, predicates are a powerful m onitoring tool throughout

the program's life cycle.

1.2 Monitoring Distributed Systems

This research addresses the issue o f m onitoring the execution o f a distributed program. In

particular, we are concerned w ith efficient techniques for evaluating global state predicates

for distributed programs. The global state o f a distributed program is not well-defined.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER1. INTRODUCTION 4

making the task o f m onitoring complex compared to sequential programs. Processes o f a

distributed program execute concurrently, and the events o f the program cannot be to ta lly

ordered. Each process has its own local memory, and the local memories are physically

separate from one another. A process is only immediately aware o f its own local state.

Access to the state of a remote process requires communication and incurs a delay which is

usually substantial and often unpredictable.

1.2.1 System M odel

A sequential program's execution and the execution o f a single process o f a distributed pro

gram are sim ilar. The i th atomic operation or event o f a sequential program is represented

by e,. and the resulting state is represented by S’,. The execution o f a sequential program

is modeled as

o = So — S i — S i . . .

The notation Si- 1 S, denotes the execution o f event e, which causes a transition from

state Si- 1 to Sj.

A d istributed system consists o f a fixed number o f distinct processes n = {Pq, P ,v-1}.

These processes share no memory and interact only via message passing. Each process con

sists o f a to ta lly ordered sequence o f atomic events. The i th event o f Pj is represented by

e*. and the resulting local state is represented by S j. The execution o f Pj is modeled as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER1. INTRODUCTION 5

In both a process and a sequential program, it is possible to say which event or state

happened before another event or state since the events o f both are to ta lly ordered. The

execution o f a distributed program is viewed as a set o f events E = Eq U • • • U /? v -i where

E, represents the events o f Pt. and an irreflexive partial order is defined on these events [19]:

-> C £ x £ .

The —► relation is commonly referred to as happened before. For e. / 6 E. e -» / i f and only

i f e has potential causal impact upon / .

1.3 The Happens Before Relation

Interprocess communication defines the happens before relationship among events on d if

ferent processes. Asynchronous communication occurs when a process places a message “on

the network." and continues execution. The process receiving the message blocks un til it

receives the message, then continues execution.

In an asynchronous communication regime. -> is the smallest relation satisfying the

following three conditions: (1) i f e and / are events in the same process, and e happens

before / . then e -» / : (2) i f e is the sending o f a message and / is the receipt o f the same

message, then e ->■ / : and (3) i f e —► f and / —► g, then e —► g.

I f e -*■ / . we say tha t e causally precedes / and that / causally succeeds e. I f e -ft f

and / •/> e, then we say that e and / are causally unrelated or concurrent, denoted e ||/,

and neither can causally affect the other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 6

1.3.1 A synchronous M essage Passing Library

We have developed a lib rary o f asynchronous communication functions for w riting dis

tributed programs that communicate asynchronously. Each process's program is w ritten

in the programming language C[16] w ith the addition o f the asynchronous communication

functions for message passing between processes. Appendix B covers in detail the asyn

chronous functions, but the two o f prim ary interest are asyncsend and asyncjrecv. The

function asyncjsend has the following format:

asyuc-send(i. may. len).

The message pointed to by mag o f length len is sent to process t. I f i is -1. the message is

broadcast to a ll the processes o f the distributed program. The function asyncjrecv has the

following format:

asyncjrecv (t. mag, len. waitaecs).

A message from process i is copied into the address mag. The length o f the received

message is len. I f a message does not arrive w ith in waitaeca. asyncjrecv returns w ith a

value o f -1. I f i is -1. the message is accepted from any process o f the distributed program.

I f waitaecs is 0, the process waits u n til the message is received. When presenting example

programs, only the fields o f i and mag for both asyncjsend and asyncjecv w ill be indicated.

The field waitaecs o f asyncjrecv is assumed to be 0 unless otherwise indicated.

The asynchronous lib ra ry routines implement reliable FIFO (F irst In F irst Out) commu

nication by default. Unreliable or non-FIFO communication can be configured by functions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I. INTRODUCTION 7

described in the appendix. The example asynchronous distributed programs tha t appear in

this document are based on reliable and FIFO communication unless specified otherwise.

1.3.2 P artial Order o f E vents

When a distributed program executes, a partial order o f the program events is defined.

The order is not to ta l because some events on different processes are causally unrelated.

Figure 1.1 is a distributed program o f two asynchronously communicating processes. The

dots denote statements that are not relevant to the communication. A time-space diagram

o f the program's execution is given in figure 1.2. Each vertical line corresponds to a process’s

execution where the direction o f the line indicates tim e increasing, and each tick on that

execution line corresponds to an event. A diagonal arrow between two processes denotes a

communication. The following are some o f the concurrent (||) and causal (—>) relationships

that exist between the program's events:

1.3.3 M ultip le P artia l Orders

The communication o f a distributed program is classified as defin ing either a single partia l

order or multiple partia l orders. The classification is based on the control constructs and

Concurrent Causal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 8

1
2
3
4
5
6
7
8

Po

x=0:
async_send(l. &x)

async_recv (1 ,& x):

1
2
3
4
5
6
7
8

Pi

async_recv(0. & z);

async.send(0, &z)

Figure 1.1: Asynchronous program

1t i L

8 -
7 *
6 -

z - 8

- 6

5
" 5

4 .

" 4
" 3

■ X ^ I - 2
3 .
2 .
1 . " 1

Po

Figure 1.2: Space-time diagram

the communication functions they affect. The remaining statements o f a process do not

affect the partia l order, and therefore are ignored.

I f none o f the processes have control constructs affecting the com m unication functions,

the classification is a single partial order. I f one or more o f the processes have a control

construct selecting among multiple communication functions, the classification is m ultiple

partial orders. The partia l order defined when the distributed program executes may differ

according to which communication function is selected by the control construct.

Figure 1.3 is an example o f a distributed program that is classified as defining m ultiple

partia l orders. The i f /e ls e control construct o f Po selects one o f the two groups o f commu

nications functions to execute. The two possible partia l orders are shown in figure 1.4. The

function async_send(l ,w) is represented by *. function asyncjsendC2,w) is presented by

j . function async_recv(0,j;) is represented by k , and function async_recv(0,z) is repre

sented by L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER1. INTRODUCTION 9

Po Pi P i

w = t + 1 async_recv(0,i/): async_recv(0 .2)

if (w > 0) : :
async_send(l.u;);
async_send(2. w);

else
async_send(2, w);
asyuc_send(l. w):

Figure 1.3: Multiple Partial Orders

J

I

Po Pi Pi

i

J

Po Pi

Figure 1.4: Space-time diagrams

1.4 Outline of the Dissertation

Chapter two presents several distributed programs that w ill be used in discussing distributed

m onitoring methods. The programs range from a single partia l order program w ith repeat

ing communication patterns to a m ultiple partia l orders program w ith complex communi

cation patterns.

In chapter three we review well-known m onitoring methods that appear in the literature.

Problems that these m onitoring methods incur are discussed. Both runtim e and postmortem

methods are reviewed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 10

In chapter four our methodology for m onitoring a distributed system is presented. The

terminology and notation corresponding to our methodology is defined. This chapter also

contains our in itia l algorithms.

Chapter five examines the affects o f our in itia l algorithm to the execution o f a distributed

program and defines the messages that are sufficient for implementing our method o f mon

itoring a distributed system. Chapters six and seven present algorithms for o p tim izing our

in itia l results.

In chapter eight we apply our methodology for examining the execution o f a distributed

program to the programs o f chapter two. Chapter nine concludes w ith possible avenues for

continuing our research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Distributed Programs

Five distributed programs appear throughout this document to demonstrate and clarify

concepts for m onitoring distributed programs. These programs are described in detail in

this chapter. The communication complexity o f the programs varies greatly and is discussed

w ith each program.

2.1 Set partition

SETPART, the set partition program, by D ijkstra [7] partitions disjoint integer sets 5 and

T. SETPART exchanges an element o f S w ith an element o f T un til the elements o f 5

are less than the elements o f T . The original sizes o f S and T are maintained after each

exchange. SETPART consists o f two distributed processes, P0 and P i. Pq m aintains S.

and P i maintains T. Processes Po and P i exchange an integer to determine i f the sets are

already partitioned correctly, then Po initiates an integer exchange w ith P i i f there exists

an element o f S that is greater than the element previously received from P i. For the

exchange, Po sends the maximum element o f 5 to P i and removes this value from its set.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. DISTRIBUTED PROGRAMS 12

Pi receives the integer from Po and adds this integer to T. then P\ sends the minimum

element o f T to Po and removes th is minimum value from its set T . Po receives the integer

from P i and adds th is integer to S. Po continues to in itia te an exchange un til it determines

that the sets are partitioned correctly. I f the last value Po receives from Pi is greater than

or equal to the maximum o f S, then no element o f T is less than any element o f S. And Po

can conclude that partition ing is complete.

Set Partitioning's communication behavior exhibits conversational continuity [31]. which

is interactive communication between processes where a continuously repeating communi

cation pattern is formed. The number o f communications between the SETPART processes

is dependent on the input data, but the communication pattern is static. Figure 2.1 is the

distributed SETPART program for Po and P j. The function max returns the maximum in

teger o f the operand set. and the function min returns the minimum integer o f the operand

set.

P0:: P i"
I n ix = max(S) 14 while(true)
2 async_send(l. tnx) 15 async_recv(0. y)
3 S = S - [m x] 16 T = T U { y }
4 async_recv(l. x) 17 mn = m in(T)
5 5 = 5 U {x } 18 async_send(0, mn)
6 mx = max(S) 19 T = T - {m n}
7 while (mx > x) 20 endwhile
8 async_send(l. mx)
9 5 = 5 - {m x}
10 async_recv(l, x)
11 5 = 5 U {x }
12 mx = m ax(5)
13 endwhile

Figure 2.1: Algorithm for Set Partitioning Program

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. DISTRIBUTED PROGRAMS 13

2.2 Mutual Exclusion

The circulating token m utual exclusion protocol can be embedded in distributed processes'

application code i f global m utual exclusion control is needed. The protocol defines a log

ical cycle through the processes, and the communication pattern is not influenced by the

distributed system's application.

P(i):r
1 do
2 async_recv((i + N — 1) mod N. token, waitsecs)
3 if message received
4 if want.csj
5 tn-cs,=true: critseci; want.cst=(alse
5 endif
7 async.send((i + l)m od IV.token)
8 else / * async_recv timed out * /
9 do_otherj
10 end if
11 enddo

Figure 2.2: MUTEX

M UTEX [21]. shown in figure 2.2, is a token-based protocol for administering m utual

exclusive c ritica l section entry for a distributed system o f N processes. The protocol al

lows only one process to enter its critica l section at a tim e. O nly one token exists in the

system, and a process can neither create a token nor destroy the token. The processes are

responsible for circulating the token around the system so tha t every process eventually

receives the token. Process P, receives the token from P((l+iv-i)raodiV) and sends the token

to P((i+i)modV)- A process indicates that it wants to enter its c ritica l section by setting

wantjcs to true. A process only enters its c ritica l section when it receives the token and

wantjcs is true. Immediately before the process enters its c ritica l section, in jcs is set to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. DISTRIBUTED PROGRAMS 14

true. Process Pi passes the token to its neighbor P(i+i)modA’ either when Pi completes its

critica l section or when Pi does not want to enter its critica l section.

2.3 Bubble Sort

This d istributed bubble sort algorithm is based on the odd-even transposition variation o f

the sequential bubble sort [43]. A to ta l o f q integers are sorted in ascending order w ith N

processes where N < q. The processes are connected in a logical ring so that Pi's neighbors

are P,_i and Pl+ \. In itia lly each process is assigned a lis t o f q /N elements, and each lis t is

sorted locally using a sequential sort.

The distributed sort consists o f N phases, numbered 0 to N — 1. I f the phase number is

even, each even numbered process sends its sorted lis t to its higher numbered odd neighbor,

and each odd numbered process sends its sorted lis t to its lower numbered even neighbor.

Each process merges the received lis t w ith its own lis t and sorts the resulting lis t. Each odd

numbered process retains the last q /N elements o f the lis t as its sorted lis t, and each even

numbered process retains the first q /N elements o f the lis t as its sorted lis t.

I f the phase number is odd, sim ilar steps are followed as for an even phase number.

Each odd numbered process sends its sorted lis t to its higher numbered even neighbor, and

each even numbered process sends its sorted lis t to its lower numbered odd neighbor. Each

process merges the received lis t w ith its own lis t and sorts the resulting lis t. Each even

numbered process retains the last q /N elements o f the lis t as its sorted lis t, and each odd

numbered process retains the first q /N elements o f the lis t as its sorted lis t. Processes 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. DISTRIBUTED PROGRAMS 15

and N — 1 do not participate in odd numbered phases.

A fter N phases are complete, a ll q numbers are sorted in ascending order where Pi has

the elements i x q /N through {i +1) x q /N — 1 o f the sorted list. The bubble sort algorithm

is shown in figures 2.3 and 2.4. Figure 2.5 shows the communication pattern for a bubble

sort w ith a six process distributed system.

integer pid. phase:
arrays l is t. recvJist

1 pid = process's id
2 read q /N elements into lis t
3 sort lis t
4 for phase = 0 to N — 1
5 i f phase is even
6 i f pid is even
7 async_send(ptd + I. lis t)
8 async_recv(pid 4- I. recvJist)
9 lis t = merge_sort(list. recvJist. first)
10 else
11 async_send(pid — I, lis t)
12 async_recv (pid — I. recvJist)
13 lis t = merge_sort(/is<.recvJist. last)
14 end if
15 endif
16 i f phase is odd && pid != 0 & & pid != N — 1
17 i f pid is even
18 async_send(pid — l . l is t)
19 async_recv(pid — 1, recvJist)
20 lis t = merge_sort(lis t, recvJist. last)
21 else
22 async_send(/rt"d - f 1, l is t)
23 async-recv(ptd -t- I. recvJist)
24 l is t = merge-sort{lis t,recvJ is t. first)
25 endif
26 end if
27 endfor

Figure 2.3: Bubble Sort

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. DISTRIBUTED PROGRAMS 16

merge_sort(/ist, recvJist, ha lf)::
array merge J is t

1 merge J is t = merging o f recvJist and lis t
2 sort merge J is t
3 if h a lf= firs t
4 return firs t ha lf o f elements in merge J is t
5 else
6 return last half o f elements in merge J is t
7 endif

Figure 2.4: Local Sort

Po Pi Pi Pz Pa Ps

Figure 2.5: Distributed Bubble Sort

2.4 Tree Sort

The N processes o f the tree sort distributed program are arranged in a binary tree. The

number of processes required for th is sort is 2P — 1. where p > 1. 2p_l processes are leaf

nodes. The process which is the root node o f the tree in itiates the sorting o f q numbers,

q > N . The root process splits the lis t in ha lf and sends one ha lf to each child process. I f

the receiving child process is not a leaf, it repeats the same steps as the root process. I f the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. DISTRIBUTED PROGRAMS 17

number o f elements in the lis t is odd, the left child receives one more element than the right

child. I f the receiving child process is a leaf node, it sorts the list and sends the sorted list

to its parent process. Once a parent process has received both o f its children's sorted lists,

the parent merges the two lists into one sorted lis t. I f the parent node is not the root node,

it sends th is sorted lis t to its parent. The sort is complete when the root node receives two

sorted lists from its children, and merges the two in to one sorted list o f q numbers.

The tree sort algorithm is shown in figure 2.6. Figure 2.7 is the binary tree formed by

15 processes (p = 4) P o .-.P u , and figure 2.8 shows the tree sort for the 15 processes.

Po” (root node) P;:: (parent node)
integer c h ild i. child? integer child i. child?,parent
arrays lis t, lis t i, l is t? arrays list, lis t i, l is t?

1 read q elements into lis t 1 asyuc_recv(parent, lis t) :
2 sp lit lis t into two halves: l is t i , l is t 2 2 sp lit list into two halves: lis ti.lis t?
3 async_send(c/u‘W i. l is t i) 3 async_send(c/u7di, l is t i)
4 asyncsend(child?. lis t)) 4 async_send(c/w7d2, list?)
5 async_recv(c/»7di. lis t i) 5 asy nc_recv (c/u7 d \ , l is t i)
6 asyncjcecv(child?* list?) 6 asyncjcecv(child?, list?)
7 merge l is t\ and list? into lis t 7 merge lis t i and lis t? in to lis t

8 async_send(parent, lis t)

P i" (leaf node)
integer parent
array lis t

1 async_recv(paren<. lis t)
2 sort lis t
3 async_send(paren£. lis t)

Figure 2.6: Tree Sort

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. DISTRIBUTED PROGRAMS 18

Figure 2.7: Distributed Processes

2.5 Positive Ack/Retrans Protocol

The positive acknowledgement/retransmission protocol presented by Tannenbaum [41] en

forces reliable communication between two communication nodes. CN „ and CNr , on an

unreliable physical transmission line. The communication node CNa only sends data mes

sages. and the communication node CNr only receives data messages. Associated w ith CN„

is at least one host that supplies the data for the outgoing messages, and associated w ith

CNr is at least one host that consumes the data o f the incoming messages. Once CN„ has

transm itted a message, it does not send another message un til the message is received by

CNr w ithout errors. The node C N r informs CNS w ith an acknowledgement message when

it has received a message w ithout errors. I f CNS does not receive an acknowledgement

w ith in a predetermined amount o f time, it retransmits the data message.

Since the communication line is unreliable, the data message and the acknowledgement

message can be lost or corrupted. There exists a problem w ith retransm itting the data

message when the acknowledgement message is lost. Suppose CNr has received an uncor-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. DISTRIBUTED PROGRAMS 19

Po Pi Pi Pi Pa Pi Po Pi Pa Po PlO Pi I Pli Pll P\A

Figure 2.8: Distributed Tree Sort

rupted data message and sends an acknowledgement. I f the acknowledgement is lost, CNS

retransmit the same data message. The node CNr does not realize the data message is

being retransmitted and interrupts the retransmitted message as a new message.

One b it appended to the data message provides the inform ation for the receiver to

distinguish between a retransm itted message and a new message. The node C N S maintains

a b it by alternating the b it when it receives an acknowledgement and appends the current

value o f the b it on data messages. The node C N r maintains a b it by alternating the b it

when it receives a valid data message. The receiver only accepts a data message as a new

message if the b it on the message matches its b it value. Following is the described protocol:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. DISTRIBUTED PROGRAMS 20

P rocedure CNS::
MsgBitSend: b it / * alternating bit * /
sbuffer. message / * buffer for outgoing data message * /
event: (MsgArrival, CksumErr, TimeOut) / * different interrupt events * /

1 MsgBitSend = 0 / * initialize alternating bit * /
2 FromHost (sbuffer) / * get the data message from host * /
3 repeat
4 async_send(r,sbuffer, MsgBitSend)
5 StartTim er: / * time to wait fo r acknowledgement * /
6 wait (even!) / * possibilities MsgArrival, CksumErr, TimeOut * /
7 if event = M sgArrival
8 asyuc_recv(r. ack) / * receive the acknowledgement * /
9 FromHost (sbuffer) / * an acknowledgment has arrived intact * /
10 inc(MsgBitSend) / * increment by 1 then mod 2 * /
11 endif
12 u n til doomsday

P rocedure CNr ::
MsgBitReceive : b it / * alternating bit * /
IncomingBit : b it / * incoming message's bit * /
rbuffer. message / * buffer for incoming data message * /
event: (MsgArrival. CksumErr) / * different interrupt events * /

13 MsgBitReceive = 0 / * initialize alternating bit * /
14 repeat
15 wait (even!) / * possibilities MsgArrival, CksumErr * /
16 if event = M sgArrival / * a valid message has arrived * /
17 async_recv(s. rbuffer, IncomingBit) / * accept the message * /
18 if IncomingBit = MsgBitReceive
19 ToHost {rbuffer) / * pass the data to the host * /
20 inc(MsgBitReceive) / * increment by I then mod 2 * /
21 endif
22 asyncjsend(s. acknowledgement)
23 endif
24 u n til doomsday

The async-send command transmits a message (data message and b it) over the com

munication channel, and the async_recv command accepts a message from the communica

tion channel and assigns the data message to rbuffer and the b it to Incom ingBit Procedure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. DISTRIBUTED PROGRAMS 21

S ta rtT im e rO starts the tim er and enables the Timeout Event. Procedure W aitO waits for

an event to happen, and returns the event type when one occurs. The procedure FromHost ()

fetches a data message from the host, and the procedure ToHost () delivers a data message

to the host.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Monitoring Methods

3.1 Global State

A partia l order is defined on a distributed system's events when the system executes. The

notion o f a system state is complicated by the lack o f a to ta l order among events. An

additional complication is the d ifficu ltly o f capturing a system state since local memories are

physically separate from one another. Despite the difficulties o f a d istributed computation’s

states, m onitoring a distributed program requires reasoning about constituent processes’

execution as a single collective entity. Previous work [28, 4. 38, 37, 29. 33] has defined a

global state for unified reasoning about the d istributed processes. A global state is analogous

to “gluing” together local states, one from each process, such tha t the local states can

happen at the same “tim e” . The “gluing” produces one possible state o f the system.

Global states provide a means to monitor a distributed system’s execution w ith global

predicates. A global predicate for a distributed system is comprised o f relationships among

variables from different processes. Once a global state is constructed, a global predicate

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MONITORING METHODS 23

is evaluated on this state. Constructing a global state and evaluating a predicate on that

state helps in any rational scheme for debugging and monitoring the distributed program.

3.2 Runtime Methods

Despite a global state’s usefulness, problems exist w ith distributed system m onitoring based

on global states. A m ajor problem is the d ifficu lty o f capturing a global state during the

distributed system’s execution.

Runtime methods o f capturing a global state has been addressed by many researchers.

Several papers that stand out in the literature are briefly described. Chandy and Lamport

[4] were the first to define a global state as a global snapshot that could have occurred if

a ll processes took a snapshot o f their local states simultaneously. Their global snapshot

algorithm assumes FIFO asynchronous communication, and each process has at least one

incoming and outgoing unidirectional communication channel. Process Pi communicates

d irectly w ith Pj i f a channel exists from Pi to P j. otherwise P, communicates indirectly

w ith Pj through intermediate processes and channels.

The snapshot algorithm consists o f two phases. In the first phase, each process takes

a snapshot o f its state. In addition to the recorded local state inform ation, the messages

in-transit when the local snapshots are taken w ill be included in the global snapshot. The in

transit messages are flushed through the channels before the local snapshots are assembled

into a global snapshot. A process initiates a global snapshot by (I) saving its local state. (2)

sending a snapshot token message on each o f its outgoing channels, and (3) beginning the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MONITORING METHODS 24

recording o f messages on each incoming channel. The token informs the receiving process

that a snapshot is being taken, and it flushes the messages in -transit so they are included

in exactly one process's local state. When a process receives a token, it performs the same

three steps as the in itia ting process.

A process continues to record incoming messages for a channel un til the process receives

a snapshot token on the channel. Once a process has received a token on each channel, the

process’s local state is complete for the global snapshot.

In the second phase, each process disseminates its local state information to form a

global snapshot. Each process must send its state inform ation to each o f its neighbors,

and when a process receives other processes’ states, it must relay this information to its

neighbors. This type o f dissemination ensures that the process requesting the snapshot

eventually receives the global state.

Every process receives the global snapshot w ith Chandy and Lamport’s algorithm .

Kearns and Spezialetti [38] improve the efficiency o f the global snapshot algorithm by

reducing the message-passing load for disseminating the global state. Only the process

or processes that in itia te the global snapshot receive it. The process(es) that in itia te the

snapshot by passing snapshot tokens include their process identification w ith the tokens.

The tokens continue w ith their orig inal purpose o f inform ing other processes to record the ir

local states. Once a process has completed recording its local state, the local state is only

sent to the process that prompted th is process to take a snapshot. Once a non-in itia ting

process has sent its local state to the in itia ting process, it has completed the global snapshot

since it no longer has the responsibility o f sending neighboring processes’ state inform ation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MONITORING METHODS 25

through the network.

Lai and Yang [18] extend the original global snapshot algorithm by removing the FIFO

restriction. One status b it is associated w ith each process and is piggybacked on all mes

sages. Each process’s b it is in itia lly 0. and a process sets the b it to 1 when it initiates a

snapshot. When a process receives a 1 status b it. its status b it is set to 1. and it takes

a snapshot. Since the channels are non-FIFO, messages sent before the snapshot can s till

be in-transit after the snapshot is taken. These message must be incorporated into the

global snapshot. Each process keeps a record o f a ll messages it has received and sent for

calculating the in-transit messages.

M attern [28] develops an algorithm sim ilar to Lai and Yang’s for non-FIFO channels,

but it does not require the processes to record messages. The algorithm ensures that the

result o f a process in itia liz ing a global snapshot is a consistent cut. A consistent cut is a set

o f events that are not causally related (concurrent), and each process has exactly one event

in the cut. I f an event ei happens before Pi's cut event, and ej happens before e,. then ej

must happen before P /s cut event for the cut to be consistent. This condition disallows

messages sent after the cut to be received before the cut. The only messages in -transit-

after the cut are messages w ith a status b it o f 0 being sent to processes w ith a status b it

o f 1. The global snapshot comprises the local states resulting from the cut events and the

in-transit messages.

The global snapshot algorithms described share a common problem, they add causal de

pendencies to a d istributed system’s computation. To expose this problem, consider Chandy

and Lamport’s snapshot algorithm . The recording o f Pi's local state and propagating the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MONITORING METHODS 26

- .11
- - 8

- - snapshot^

snapshot i - - 10

« - - 9

- - 5

Po P.

Figure 3.1: Local Snapshot phase of Global Snapshot Algorithm

suapshot token are events added to the distributed computation by the local snapshot phase

o f the algorithm . Figure 3.1 is a time-space diagram o f a three processor system. The asyn

chronous messages o f the computation (w ithout the snapshot algorithm) are denoted w ith

solid lines. The dashed lines represent snapshot token messages. The notation snapshot^

indicates the local snapshot o f Pi. Figure 3.1 shows both the local snapshots being taken

and the propagation o f the token, given that Po in itiated a global snapshot after e{j. Assume

no messages are in transit when the local snapshots are taken and the only communication

channels are Po’s outgoing channel to P i, P i’s outgoing channel to P2 , and P^'s outgoing

channel to Po. The global state obtained by this global snapshot is denoted by globaLstate,

which is U i=o..j2 snapshot j.

The token messages add causality to the computation. For the events eg, eg, eg, eg of

Po, events e f.e ^ e i.e f o f P i, and events e l.e ^ e ^ 1 o f P>, there exist no causal relationship

between e™ and for i ^ j , according to the distributed computation. For example, eg and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MONITORING METHODS 27

ef are concurrent in the underlying computation. The token messages add (false) causality

to these events as defined by the happens before relationship. Event eg happens before ef

according to the causal relationship added by the token transmission from Po to P i. The

concurrent execution o f eg and ef is inconsistent w ith the causal order defined by the token

messages. Events eg and eg are causally related to e [. e f and e.>1. ef and ef are causally

related to eg, eg and e“ . and ejj and e.,0 are causally related to eg and eg due to the three

token messages. For example, eg —► e{ and eg —>• e.V.

Adding causality to concurrent events invalidates legitim ate global states o f the under

lying computation. For example, the cut consisting o f events eg,e| and e il is consistent in

the underlying computation, but is an inconsistent cut due to the causality added by the

token messages. Since the cut o f eg,e(and e i1 is not consistent, the global state consisting

o f the local states after the execution o f eg, e[and e.,1 is not a valid global state. The global

state defined by eg.ef and e.,1 is valid in the underlying computation.

Global snapshot algorithms require that obtaining a global state should not disrupt

the computation o f the distributed system, but these algorithms do interfere by imposing

order on concurrent events. D istributed system monitors should be based on the uncorrupt

computation o f the system, and should not allow a method that invalidates legitim ate global

states.

An additional problem w ith global snapshots is the ir usefulness. Global snapshots are

only adequate for detecting stable properties. Once a stable property occurs, it persists

un til the system is terminated. Examples include deadlock and term ination. Predicates

expressing stable properties are called global stable predicates. By taking global snapshots

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MONITORING METHODS 28

periodically, a stable property can be detected by a predicate evaluated on the sequence o f

snapshots.

D istributed m onitoring and debugging properties are, in general, not stable. Predicates

for detecting unstable properties are called unstable predicates. Repeated snapshots are

inadequate for evaluating an unstable predicate, as the property expressed by the predicate

may have occurred between snapshots, and gone undetected.

(3.5)
(1.2)

(2.3,5)

(2.5

(1.2.5)

(3,5) (1.2
PiPo

Figure 3.2: Set Partition

Consider the distributed program SETPART. A reasonable and informative global pred

icate to evaluate after each exchange o f maximum and m inim um datum values is S O T = 0.

I f this predicate evaluate to true, SETPART is correctly updating the sets after an exchange.

But many globed states are possible after an exchange. A simple execution o f SETPART

is shown in figure 3.2. Each deished line represents a possible globed state after the firs t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MONITORING METHODS 29

exchange. Figure 3.2 represents a valid execution o f SETPART, but the evaluation o f the

global predicate may be either true or false. The predicate’s evaluation does not provide

insight into the correctness o f the execution. I f the global states are restricted by Po in iti

ating the global snapshot after i f receives x and adds x to S. two global states are possible:

S= {1.3}. T = {1.2.5} and S = {1 .3 }. T = {2 .5 }. One resulting in a false evaluation o f the

predicate, and the other resulting in a true evaluation. Although SETPART’s communica

tion has a simple repeating pattern, it exemplifies the deficiencies o f monitoring unstable

properties w ith existing runtim e methods.

Cooper and Marzullo [5] propose an algorithm . Currently, for evaluating an unstable

predicate while the system is executing. A process sends a m onitor process, Pmtm, its local

state i f the local state might affect the outcome o f a known global predicate <&. Pmon

maintains the last received state o f each process, and evaluates $ each time it receives a

process’s state. I f $ evaluates to true. Pmon has detected an undesirable global state.

When a process enters a state that might falsify the evaluation o f $. it freezes and sends

a block message to Pmon before inform ing Pmtm o f its new state. The process remains blocked

un til Pmm has received a ll in -transit messages from the other processes. This flushing of

messages allows Pmon to obtain in-transit states that m ight detect the predicate. Once

the messages have been flushed, the blocked process sends Pmon its state and continues

execution.

Although Currently's objective is detecting unstable predicates, it is equivalent to taking

snapshots periodically, and it can miss a state on which $ evaluates to true. Currently

incurs the same problem as the previously described algorithms, legitim ate global states are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MONITORING METHODS 30

invalidated by imposing causal relationships on concurrent events. When processes send

state inform ation to Pmm and receive acknowledgements from Pmon, order is imposed on

concurrent events.

3.3 Postmortem Methods

Instead o f capturing a global state while the system is executing, the postmortem algorithms

Definitely and Possibly by Cooper and Marzullo [5] construct a lattice o f a ll consistent global

states based on trace data gathered during execution. Possibly $ evaluates to true if there

exists a global state which causes <£ to be true. Definitely $ evaluates to true i f for a ll

tota l orders there exists at least one global state in each tota l order which causes $ to be

tnie. Possibly and Definitely provide a meaningful evaluation o f unstable predicates since

all global states are considered.

S i i
/ \

S 'u Sis
/ \ / \

S3 1 S22 S 13

/ \ / \ / \
S41 Szt Stt Su

\ / \ / \ /

6 - -
a

- - 6

\ / \ / \ /

Figure 3.3: Two asynchronously communicating
processes F igure 3.4: Lattice of global states

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MONITORING METHODS 31

W hile the distributed system is running, each process informs Pmon o f each local state

it enters. Pmon maintains a FIFO lis t o f these states for each process. Once the execution

has completed. Pmm assembles the local states to construct a lattice o f a ll consistent global

states. Figure 3.4 shows the lattice constructed for the 2 processor distributed execution

o f figure 3.3. Point S ij o f the lattice is the global state where i events have occurred on

P i. and j events have occurred on P2 . The level o f Suj is i+ j . A possible to ta l ordering o f

states is a path starting at the level 1 global state, and each subsequent global state has a

level increase of one. Possibly is true i f at least one point in the lattice satisfies <&. Definitely

is true at least one point in every to ta l ordering satisfies $.

Definitely and Possibly provide a meaningful predicate evaluation methodology by con

sidering a ll global states. The outcome o f evaluating $ provides unambiguous information

about the systems behavior. Although they provide meaningful results, the inab ility to

m onitor the system at runtim e is a significant weakness o f both algorithms. By waiting for

the system to complete execution, on-line corrective actions such as recovery or abortion

can not be made for invalid execution behavior. Real-time feedback is crucial for life- or

mission- critica l control applications.

We have developed a runtim e method for m onitoring a distributed system that is mean

ingful for both stable and unstable properties. Predicates are evaluated w ith a ll the pro

cesses' state inform ation that may affect the evaluation. Any invalid system state, indicated

by evaluation o f the predicate, is detected. Evaluation is only w ith system states that can

occur in the distributed computation, and legitim ate global states are not invalidated. The

following chapter describes our methodology, both in terms o f design and implementation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Causal Distributed Assert

Statement

Some sequential programming languages [39, 40] facilitate predicate evaluation w ith assert

statements. An assert statement [30] (or lib rary function, depending on it's implementation)

generally has the form

assert (P)

where P is a predicate defined on the state o f the program. The semantics o f this assert

statement are that P is evaluated, w ithout side-effects, on the program state at the point

at which the assert () is executed. I f P is true then the program continues its execution.

I f P is false, however, the program is aborted, and a diagnostic message is produced.

We have extrapolated the semantics o f the assert statement fo r sequential programs

into the distributed context. A d istributed assert statement is a global predicate that is

anchored at a control point o f one process, and that is evaluated when the process executes

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CAUSAL DISTRIBUTED ASSERT STATEMENT 33

the assert. A distributed assert statement monitors a distributed system's execution, but

only a subset o f the system states o f the execution are relevant for evaluating the assert. Two

possibilities exist for which portion o f the execution the distributed assert monitors. One

possibility is the distributed assert statement monitors the global states that are defined

by consistent cuts including the assert statement. This interpretation is in accord w ith

the global predicate evaluation methods described in chapter 3. I f the distributed assert

monitors concurrent execution, then any consistent cut o f the system that includes the

assert event defines a valid global state for predicate evaluation. A sim plistic three processor

system is shown in figure 4.1. The broken lines represent a ll possible consistent cuts, and

the x represents an assert statement.

The only previous work that resembles this interpretation o f the distributed assert state

ment is Cooper and M arzullo’s Currently^. Currently evaluates the global predicate $

while the system is executing and is claimed to be appropriate for unstable predicates. But

Currently is incomplete: global states can be missed that cause a true evaluation o f $ [33].

Currently is also intrusive o f the system’s execution since it introduces extra synchroniza

tion into the monitored computation, and it can cause a significant degradation in system

performance. Every m odification o f a variable in $ can be considered a possible invalidation

o f $, causing the network to be congested w ith block and acknowledgment messages and

causing the process about to execute the modification to freeze un til a ll in -transit messages

to Pmon are received.

Another interpretation o f the distributed assert statement is tha t it monitors the exe

cution that has the most recent causal impact on the assert statement. We have developed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CAUSAL DISTRIBUTED ASSERT STATEMENT 34

\ \;
■ /

- v
\ S ! / -

v \

V \
\ '

% V
' \

Po Pi Pi

Figure 4.1: Consistent Cuts of the Assert Statement

a methodology for evaluating a distributed assert statement in accordance w ith this in

terpretation. O ur methodology does not have the problems associated w ith global state

reasoning. The state o f the system necessary for evaluating the predicate is well-defined,

and the evaluation result relays unambiguous inform ation about the state o f the system.

O ur distributed assert statement is characterized by two properties:

A 1 The asserted predicate is evaluated during execution o f the program. We do not gen

erate and analyze traces post mortem.

A 2 No additional synchronization or message passing is added to the original distributed

application in support o f the distributed assert statement. We do increase the size o f

some application messages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CAUSAL DISTRIBUTED ASSERT STATEMENT 35

4.1 Model and Notation

Recall that a distributed program consists o f a fixed number o f processes II = {Po, • • •. P/v-1},

and the happened before relationship, is a partia l order on the program’s events. For

event e in Pj, L C P (t. j) where j t. denotes event e's latest causally preceding event in P j.

We define LC P(e,j) = f i f and only if / is an event in Pj, such that / happens before e.

and there does not exist event f in Pj such that / happens before f and f happens before

e.

D efin ition 4.1 For some event e 6 Pj. the latest causally preceding event in Pj where

j i, denoted LC P(e.j), is event f i f and only i f

i ■ f e P j

2. f -¥ e

3. f ' e P j - . f ^ f ' ^ e

One o f possibly many partia l orders is defined when a distributed system executes. This

is due to branches in control o f execution and to the fact that co m m unication delays and

process speeds are unpredictable. Hence sends and receives w ill •‘match up” unpredictably

in general. Consider the source code o f a three process distributed system shown in figure

4.2. One o f possibly two partia l orders is defined when this program executes. The two

possible partia l orders, P O \ and POo, are shown in figure 4.3. Set P is the set o f possible

partia l orders o f a distributed system’s execution. For the distributed system shown in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CAUSAL DISTRIBUTED ASSERT STATEMENT 36

Po"

beg in
x = 1
async_send(l,x)
x =2
async-send(l.x)

end

beg in
y = 3
async.sendd, y)

end

Pi"

beg in
i?

async j:e cv(0 ,x)
async_recv(2,y)

else
async_recv(2, j/)
async_recv(0,x)

e n d if
async.recv(0 , x)
a sse rt(x = y)

end

Figure 4.2: 3 process distributed svsfem

figure 4.2. V = {P O q.P O i }. For a given execution o f the distributed system, one partial

order, a € P . is produced.

For a partia l order, a € P . at most one LCP event exists in each process for any event

e. Erich partia l order may identify a different LC P (e .j). The maximum unique LCP events

o f Pj for event e is bounded by the number o f partia l orders, i.e., the size o f set P.

Lem m a 4.1 For a partial order a 6 P of a distributed system and an event e of Pi, at

most one LC P(e.j) exists fo r j ^ i.

P ro o f b y c o n tra d ic tio n . Assume two LC P (e .j) events, e' and e". exist for the one partial

order a . According to the defin ition o f LCP events (definition 4.1),

1. e' —► e. and there does not exist another event / such that e' f e

2. e" —»• e. and there does not exist another event / such that e" -> / —¥ e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CAUSAL DISTRIBUTED ASSERT STATEMENT

n it

37

Pa Pi P> Pa P\ P-i

POi PO.

Figure 4.3: Partial orders

From 1. and 2.. e' fa e" and e" fa e' . therefore e'\\e". The concurrency o f e' and e" is a

contradiction since both are events o f Pj and the events o f one process are to ta lly ordered.

Consider event e in process Pt. A causal cut through e is the set o f events consisting o f

e and the LCP event o f e of each process for a partial order a.

D e fin itio n 4.2 .4 causal cut through event e. denoted CC(e), is defined as

CC(e) = {e } U
\

(J {L C P (e ,j) \
0 <j<N

\

Intuitively, CC (e) is the ‘‘latest” set o f events o f I I which can have a causal impact upon e.

In figure 4.4, the causal cut through Pq, P i , and P> for event e is shown as a dashed line.

An event / is said to be before causal cut CC(e) i f there exists event g € CC[e) such that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CAUSAL DISTRIBUTED ASSERT STATEMENT 38

/ —> g; f is after CC{e) i f there exists event g E CC(e) such that g —► / . Accordingly, we

use CC to define a notion o f global state to be used in the evaluation o f a distributed assert

statement.

■vent e ^vente

✓

Po Pi

POi POi

Figure 4.4: Causal cuts for event e

A causal cut does not necessarily include an LCP event from each process since each

process may not have an event that occurs before an event e. For each o € V. there is one

causal cut for a given event. Also, the LCP events tha t comprise the causal cut for an event

and one partia l order may differ from the LCP events tha t comprise the causal cut for the

same event and a different partia l order.

Theorem 4.1 For a partial order at E V o f a distributed system and an event e o f Pi, at

most one CC{e) exists.

P ro o f. This follows directly from Lemma 4.1 and D efinition 4.2. Since each process has at

most one LC P (e,j) for each a E V (lemma 4.1) and CC[e) is comprised o f the LC P{e,j)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CAUSAL DISTRIBUTED ASSERT STATEMENT 39

from each process (definition 4.2). at most one CC(e) can exist. ■

For event e in process Pi, let pre(e) denote the local state o f P, in which the execution

o f e is begun. Execution o f e effectively terminates state pre(e). I f e is the execution o f

a causal distributed assert statement in Pi, then the causal global state, anchored on e. is

simply

CGState(e) = {p re (f) : f 6 CC(e)\.

CGState is the set o f process states which immediately precede the causal cut through e.

the execution o f the assert statement. CGState thus incorporates the state o f the system as

a whole as it may have causal impact upon P, at the point the assert statement is executed.

Events which are after the causal cut through e cannot affect the execution o f e. A ll events

which happen before the causal cut w ill have their effect on e through transitiv ity.

assert
\

x = 2

y=3

Pc Pi

assert

r = 2 - -

Po Pi Pj

POi P 02

Figure 4.5: Causal Global State for an Assert

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CAUSAL DISTRIBUTED ASSERT STATEMENT 40

Figure 4.5 shows a causal distributed assert statement being evaluated in process P i.

The horizontal lines across the process tim e lines represents events, and the dashed line

represents CC(assert(P)). The ind ividual process states compromising the causal global

state anchored on the assert is denoted by x ?s on the process tim e lines. Partia l orders

POq and PO\ each have a corresponding causal cut and causal global state. Although

in this example the causal cut and causal global state are identical, in other distributed

systems they can be different. The causal global state is Pq.x = 2 and P>.y = 3 for both

partia l orders.

4.2 Implementation

Our implementation o f the causal distributed assert statement ensures that when an assert

is executed, the relevant components o f the causal global state are immediately available at

the process executing the assert (Property A l) . To that end, process P, maintains its current

view o f the CGState in the causal global state buffer. CGSBuffert. Processes maintain the ir

causal global state buffers independently. Buffer maintenance requires no message-passing

or synchronization beyond that required by the underlying application (Property A2). Each

causal state buffer consists o f tuples o f the following form

(process id, variable name, variable value, vector timestamp)

The meaning and use o f vector timestamp is discussed below. A process maintains its causal

state buffer to contain only the latest (causally speaking) state inform ation for each process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CAUSAL DISTRIBUTED ASSERT STATEMENT 41

When an assert statement is executed in Pi, say at event e, CGSBufferi w ill contain a ll

components o f CGState[e).

A process receives state inform ation from each process in the system by having the

processes piggyback state inform ation on application messages. When a process sends an

application message, it piggybacks its CGSBuffer on the message. Process Pj acquires

state inform ation from Pi when P directly communicates w ith Pj or when Pi indirectly

communicates w ith Pj. Process Pj directly communicates w ith Pj by sending a message to

Pj. Process Pi indirectly communicates w ith Pj by sending a message to another process

Pk and Pk either directly or ind irectly communicates w ith Pj. I f Pj does not directly or

indirectly communicate w ith P j, then Pj does not contribute to P j's causal global state. In

this case, LCP{e. i) does not exist.

Consider the communication pattern shown in figure 4.6. Pi receives state information

for Pq from two different sources: the message Pq sends to P>, and the message Pt sends to

Pi. When P i and P-2 communicate. Pi requires a m echan ism for determ in in g the causally

latest value o f x. P i has one value o f x in CGSBuffer2 from its direct com m unication w ith

Po, and a new arriving value o f x is piggybacked on P i's message to P2. In fact, the newly

arriving value o f x is stale and should not overwrite the tuple for x in CGSBuffer2. Vector

time [29] is the mechanism we adopt for determ ining the latest causal values associated

w ith variables.

Tiniestam ping a set o f events w ith vector tim e has been shown to be isomorphic to

the causal pa rtia l order on those events [33]. Each Pj maintains a vector Vj o f N integers,

(V j[0],. . . V i[N — 1]), where V j[i] is the counter o f the number o f events which have occurred

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CAUSAL DISTRIBUTED ASSERT STATEMENT 42

on P{. V j[i] is incremented before each event in Pj. V|(e) is the vector tim e o f event e

resulting from e. The rules for m aintaining asynchronous vector time are:

1. In itia lly , for each P „ V[[/] = 0 for 0 < j < N

2. V,[i] = Vi[*] + 1 when an event occurs on Pj.

3. Suppose Pi sends a message to Pj, and et and ej are the corresponding send and

receive events, respectively. I f V, = (V j[0]. Vi[N — 1]) corresponds to ej and Vj =

(Vj[0],------V j[^V -l]) corresponds to e} . then as a result o f Pi and Pj communicating,

Pj updates its vector clock to

Vj{ej) = M AX((Vi[0].........Vi{i} + 1........V i [N - l }) . (V j[0]..... Vj\J\ + l V ^ [iV -l])),

o f process Pj. The vector time associated w ith event e is also associated w ith the state

where M AX designates component-by-component maximum.

x = o [1,0,0] . .
[0,0,0] --

PoPo P t P i
± [0,0,0] 1 [0,0,0]
Pi P t

F igure 4.6: Latest State Figure 4.7: Vector Time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CAUSAL DISTRIBUTED ASSERT STATEMENT 43

Vector time can be used to indicate the relative “causal timeliness” o f state inform ation.

Suppose Pj propagates a state datum stamped w ith a vector time to P*.. I f the datum

is a variable o f P j, it w ill be timestamped w ith the vector time o f Pj just before the

communication w ith Pk- If, however, the datum is not local to Pj or Pk. then it must reside

in CGSBuffer j (it is being propagated in order to handle the indirect communication), and

the vector time o f the component's tuple in CGSBuffer} w ill be used. Upon receipt of

the vector timestamped datum (assume the datum resides at Pi), the ith component o f its

timestamp is compared w ith the ith component o f the vector timestamp o f the tuple in

CGSBufferk associated w ith the appropriate variable o f Pi. I f the ith vector component of

the tuple in CGSBufferk is greater than or equal to the ith component o f the timestamp

on the incoming datum, then the copy in CGSBufferk is the valid latest causal value o f the

variable, and the tuple is not updated. Otherwise, the incoming datum is causally later

than the value o f the variable stored in CGSBufferk, and the tuple must be overwritten

w ith the incoming datum.

Figure 4.7 is derived from figure 4.6 by adding vector tim e. Note that P> receives

two copies o f the datum for Pq's variable x. It receives x w ith value 1 and vector times

tamp [3,0.0] when Po sends a message to P2 . The tuple (Po,ar. 1. [3.0.0]) is inserted into

CGSBuffer2. When Po sent a message to Pi, the tuple (P o ,x .0, [1,0.0]) was inserted into

CGSBufferi. When Pi sends a message to P j, Pi forwards a datum for x w ith value 0 and

vector timestamp [1,0,0] to Po to account for the indirect communication between Po and

P-2 . However, when P j receives the second datum for x . the firs t component o f the datum ’s

timestamp. 1, is compared to the firs t component o f the vector timestamp fo r P q 's x in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CAUSAL DISTRIBUTED ASSERT STATEMENT 44

CGSBuffer•>. 3. Process P* then knows to discard the second datum.

The causal state propagation is implemented by the protocol shown in figure 4.8 on each

communication. This protocol is not intended as a fina l implementation but as a foundation

for a more efficient result.

P ro to co l: Causal S ta te P ropaga tion

Pi sends to Py Pj receives from Py.
vi[i} = vi{i\ + i Vj[j} = Vj[}} + i
send (msg, VJ. CGSBuffer J to Pj receive (msgi,u]jer. Vy Tmp-Buffer) from Pi

Update(CGSBuffer j .T nip-Buffer)
Vj =
consume(msgbujQTer)

Figure 4.8: Propagation Protocol

To sim plify the presentation, the above pseudo-code assumes that each process keeps its

local state in its causal state buffer along w ith remote state components it has acquired via

message passing. The Update procedure in figure 4.9 is invoked to a lter the local causal

state buffer based on th is communication.

P rocedure U p d a te (B l,B 2)
Updates local state buffer B1 based on contents o f remote buffer B2.
Recall that buffer tuples contain fields (P id. var. value. V)

fo r a ll tuples T in B2 do
i f (T .P id.T .var.*.*) n o t in B1

in se rt T in B1
else /* Let T ' be the tuple in B1 matching T. * /

i f T '.V [T '.P id] < r.V [T .P id]
rep lace T ' w ith T

e nd fo r

Figure 4.9: Update Causal State Buffer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CAUSAL DISTRIBUTED ASSERT STATEMENT 45

The asynchronous communicants piggyback state inform ation on all messages to track

the causal global state. Although th is does guarantee that the causal global state is imme

diately available for the process evaluating the assert, we piggyback all state inform ation

on a ll messages. Optim izations o f this naive approach are addressed in chapters 5, 6 and

7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Optimization

5.1 Timing Results

Our evaluation o f an assert statement alters the distributed system by piggybacking data on

existing messages, resulting in increased message sizes. Intu itive ly, one way message trans

mission tim e is linear in size o f the message. To verify linear transmission tim e increases,

we have conducted an experiment w ith datagram communication on real systems.

Two processes, Psmder and ^receiver- communicate w ith each other through U D P/IP

datagrams. P3enderS and ^receiver's only function is communicating w ith each other. This

provides an adequate environment to measure the fu ll impact o f increased message length

on execution time. P3ender sends to Preceiver 1.000 datagrams, and for each datagram sent,

Psmder waits fo r an acknowledgment from Preceiver before sending the next datagram. One

thousand samples o f P3ender's execution time are gathered to obtain a sufficient number o f

samples to determined Psmder s average execution tim e w ith 95% confidence. For the first

1,000 samples, the datagram size is 50 bytes. The datagram size is incremented by 50 bytes,

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. OPTIMIZATION 47

and samples are gathered for each datagram size. This experiment is completed after the

samples are gathered for a 3500 byte datagram. The experiment is conducted between two

Sun workstations running SOLARIS 1.1. The average execution times and associated 95%

confidence intervals are plotted in figure 5.1. The same experiment is conducted on two

additional machine platforms and sim ilar results are obtained. For one platform , the sender

is an IBM RS6000 workstation running A IX 3.23. and the receiver is a Sun workstation.

For the other platform , the sender is a DBCstation 5000 workstation running U ltrix 4.2A.

and the receiver is a Sun workstation.

Figure 5.1: Datagram experiment

In a ll three datagram experiments, the execution times are roughly linear as message

size increases. Common to a ll three experiments is a fluctuation in execution tim e when the

message size is approximately 1500 and 3000. The significance o f these numbers lies in the

maximum transmission unit (M TU) for the Sun which is 1500 bytes, and datagram frag

mentation into packets occurs for every M TU. The Internet protocol (IP) layer, or network

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. OPTIMIZATION 48

layer, is responsible for fragmentation into packets and reconstruction o f the datagram. The

overhead o f fragmentation occurs when the message size reaches an M TU m ultiple. The

im portant conclusion gained from the datagram experiment for assert statement evaluation

is that increasing the message size does increase the execution time o f a distributed system,

but the increase is linear in the size o f the piggybacked data.

5.2 Piggybacking messages

The naive implementation described for a causal distributed assert statement constructs

a causal state buffer consisting o f each process's causally latest state information. Each

process piggybacks its entire causal state buffer on the application messages. This does

ensure that a ll data is available for assert statement evaluation, but one expects that a

m ajority o f the data is not necessary for the evaluation. The amount o f state information

gathered in the causal state buffers and piggybacked onto messages can be reduced by

preprocessing w ith regard to the assert statement.

I f the messages that are not necessary for delivering the CGState can be identified, the

number o f messages marked for piggybacking can be reduced. The LCP events are the

means by which we reduce the number o f messages piggybacking state inform ation. The

first step in achieving our reduction is showing that LCP events are communication events.

Lem m a 5.1 For event e o f Pi, each L C P {e ,j) , j ^ t, is a communication event.

P ro o f. According to the happens before relation and the definition o f LCP events (defini

tion 4.1), i f there exists an LC P (e ,j), then there must exist a communication event / in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. OPTIMIZATION 49

Pj such that / -¥ e, and there does not exist another communication event f in P j such

that / —> / ' —► e. Events in Pj either occur before or after f . Consider an event g # / in

P j. There are two cases:

1. Assume g f . Since g - * / —*■ e and an event that occurs before / is not LC P{e,j),

it follows that g is not LC P(e.j).

2. Assume / - * g. Since there does not exist a communication event after / that happens

before e. we know g -ft e. Therefore g is not the LC P(e.j).

We can conclude from 1. and 2. that LC P(e,j) is the communication event / . ■

For asynchronous message passing, each LCP event is a send. We w ill be concentrating

on results for asynchronous message passing, but our results can easily be extended to (the

less practically significant) synchronous message passing.

Lemma 5.2 For event e of Pi, each LC P {e .j), j ^ i. is a send event.

P ro o f. We know from lemma 5.1 that each LCP event is either a send or receive event.

Assume that the event = LC P{e.j) is a receive event. For e_, to be the LC P (e.j),

ej -> e and there does not exist another event e' such that ej - * e '-» e (definition 4.1).

For an event o f Pj to happen before an event o f Pi process, there must exist a causal

chain o f communication events from Pj to Pi where the causal chain begins w ith Pj sending

a message and ends w ith Pi receiving a message (definition o f -+). For ej to happen before

e there must exist a send event e" in Pj that happens after ej and that happens before the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. OPTIMIZATION 50

event e. Since ej -> e" —► e and e" is a send event, the receive event ej can not be an LCP

event. ■

assert- - assert

Po Pi Ps Po Pi Pi

PO i P 0 2

Figure 5.2: LCP and LCP' events of the Assert Event

Corresponding to each LCP send event is a receive event, denoted LCP'. A causal cut

for event e consists o f LCP send events. The LCP and LCP1 events o f the distributed

program shown in figure 4.2 are shown in figure 5.2. The wider communication line

indicates the message o f the LCP and LCP' events. The LCP and LCP' events o f a partial

order comprise the communication events that are sufficient for delivering the CGState data

to the process evaluating the assert. Before proving th is property, the following definitions

are necessary:

Definition 5.1 A communication path of length t + 1 from e° to ej, where t is odd and

j j^ i , is a series o f communication events e ^ ,...,e \ such that

1. e° is the only communication event o f P j in the path.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. OPTIMIZATION 51

2. e- is the only communication event of Pi in the path,

3. erk —> e[+ l. where k ^ I or k = /. and there does not exist an event e' that is an event

of the path such that ek -> e' -* e[+1.

4- fo r ek and 1, where k £ I and r is even, erk and are a send/receive pair (ek

being the send and e[+ l being the receive J, and

5. fo r erk.ert + l. where k £ I, the next event of the path (i f it exists) must occur on Pi,

denoted e[+", and the the event following e[+2 is not an event of Pi.

I f e j.e ^ .e ^ .e f.e /.e f is a valid communication path o f length 6. e° is a send to Pk, ek is

the receive corresponding to e“ , e'k is a send to Pi, ej* the receive corresponding to ek, and

ej is a send to Pj. and er‘ is the receive corresponding to ej.

Definition 5.2 .4 non-repetitive communication path is a communication path such that

when two communication events o f Pk occur in the pa th ek,ek+ l no other events of

Pk can occur in the path.

A non-repetitive communication path differs from a communication path in that

• i f Pk has events in the path, k ^ j . and k ^ i , then exactly one send and one receive

o f Pk occurs in the path.

• Pj has exactly one event in path, the send event e“ , and

• Pj has exactly one event in the path, the receive event e\.

A non-repetitive communication path is a special case o f a communication path.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. OPTIMIZATION 52

Lemma 5.3 I f a communication path exists from e° to ej. then at least one non-repetitive

communication path exists from Pj to Pi consisting o f a subset of the events o f the commu

nication path.

Proof by contradiction. Assume a communication path exists from ej to ej but a non-

repetitive communication path does not exist from Pj to P, consisting of a subset o f the

events o f the communication path.

Consider the communication path from e° to ej.

Case 1 .

The communication path from e“ to ej is not a non-repetitive com m unication path due

to there existing at least two send commands and two receive commands o f the same

process. Pk. k ^ j . k ^ i. in the path. Let p = e °, ek~l ' ek efc+,*efc+,+1’ e\

represent such a path where Pk is the only process that has m ultiple send and receives

in the communication path. The events ek~ 1 and er̂ 1 are receive events o f Pk. and

the events ek+t and e£+,+l are the send events o f Pk. We know from the definition

o f a communication path that ek~ l -* erk -*■ erk+l —> e£+ ,+ l. We also know that

e“ , ej*-1 is a non-repetitive communication path and that erk+l+1, . . . ej is a non-

repetitive communication path, therefore e“ ...e £ -1 .ej’+ /+ l, . . .e j is a non-repetitive

communication path.

Case 2 .

The communication path from e“ to ej is not a non-repetitive communication path

due to there existing in addition to the send command e® at least one send and receive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. OPTIMIZATION 53

o f Pj in the path. Let p = e °,. . . , e -̂1 , e^,. . . , ej represent such path. The event e -̂1

is a receive event o f Pj and e£ is a send event o f P j. We know from the definition

o f a communication path that e° -*■ e j~ l —► ej. We can conclude that ej . . .e j is a

non-repetitive communication path.

Case 3 .

The communication path from ej to ej is not a non-repetitive communication path due

to there existing in addition to the receive command ej at least one send and receive

o f P4 in the path. Let p = e j e p 1. e j e- represent such path. The event e p 1

is a receive event of Pj and ej is a send event o f Pj. We know from the definition o f

a communication path tha t e p l -* ej -+ ej. We can conclude that e j. . .e j~ l is a

non-repetitive communication path.

■

I f a non-repetitive communication path exists from event ej to event e3, then event

e, happens before ej. Also, i f event ej happens before event ej, then there exists a non-

repetitive communication path from Pj to Pj where the first event o f the path happens after

ej and the last event o f the path happens before ej.

Lemma 5.4 Event ej happens before ej i f and only i f there exists a non-repetitive commu

nication path from a send o f Pj that happens after ej and a receive o f Pi that happens before

Cj.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. OPTIMIZATION 54

Proof

I f ej -» ej, then there exist a non-repetitive communication path from a send o f Pj that

happens after ej and a receive o f Pi tha t happens before e;.

Assume ej —► ej but there does not exist a non-repetitive communication path that

starts w ith a send event o f Pj that happens after ej and ends w ith a receive event o f

Pj that happens before ej.

For ej ->■ ej, there must be communication path, e“ ...e ‘ . such that e3 —> e° and

e- —> ej (ej can be e® and ej can be e-). From lemma 5.3 we know that there must

also exist at least one non-repetitive communication path from Pj to Pi that consist

o f a subset o f the communication path e °. . . ej.

I f there exists a non-repetitive communication path from a send o f Pj that happens after

e3 and a receive o f Pj that happens before ej then ej -> ej.

Proof. Let e' be the send event that happens after ej and e' be the receive event that

happens before ej. From defin ition 5.2, we know that e' -*■ e'and therefore ej -> ej.

■

Theorem 5.1 For each LCP(ei, j) event o f CC(ei), there exists a non-repetitive commu

nication path from L C P (e i,j) to an LCP' o f Pi such that each event o f the path is either

an LCP event or an LCPf event.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. OPTIMIZATION 55

Proof.

C ase 1 For each LCP fa , j) event of CCfaCj, there exists a non-repetitive communication

path from LC P (e i,j) to a receive event e' such that e' —> e;

Let ej = L C P fa ,j) . From lemma 5.2, we know ej is a send event. From definition

4.1 we know ej —► e*. From lemma 5.4, we know there exists a non-repetitive

communication path from ej to some receive e' such that e' —> e,.

C ase 2 The non-repetitive communication path that exists from LC P {e i.j) to receive event

e\ consists of LCP and LCP1 events.

C ase 2.a The send events of the path are LCP events.

In order for every non-repetitive communication path that exists from LCP fa , j)

to event e' not to consist o f LCP send events, in each path there must exist at

least one send event in Pk. ek, that is not an LCP event.

Since ek is a send event o f a non-repetitive communication path from e} to e't,

we know from defin ition 5.2 that e* -► e;. For ek to not be an LCP event, there

must exist another event, e^. o f Pk such that e t - t e'fc -+ e*; i.e.. e'k is LCP fa , k).

From this follows a contradiction. I f e'k exists then there does exist a non-

repetitive communication that includes LC Pfai,k) = e'k according to 5.4. I f e'k

does not exist, then ek is the LCP fa Ar).

C a se 2.b The receive events of the path are LCP' events.

We know from case 2.A that the sends o f a non-repetitive communication path

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. OPTIMIZATION 56

from ej to e\ are LCP events. And from definition 5.2, the receives o f the path

correspond to the sends, therefore the receives are LCP' events.

■

The following theorem is the basis for reducing the number o f messages on which state

inform ation is piggybacked.

Theorem 5.2 I f the state data o f the processes are piggybacked only on the messages of

the LCPs and LCP's o f the CC{e) o f the current execution, the process executing the assert

statement is delivered exactly the CGState prior to the assert statements execution.

P ro o f. This follows directly from theorem 5.1. Prom theorem 5.1 we know there exists

a non-repetitive communication path from each LCP event to an LCP' o f P, that consists

o f LCP and LCP' events. I f a process only piggybacks its local state information, and the

state inform ation it has received from other processes, on the message corresponding to its

LCP event, the data w ill be received by Pfs LCP' event(s). ■

O ur first objective in reducing the amount o f piggybacked data is to analyze the source

code o f the distributed processes to determine a ll possible partia l orders and the LCP and

LCP' events o f each partia l order. Chapters 6 and 7 explain our static analysis methods

for achieving this objective.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Static Analysis

6.1 Goals of Static Analysis

The causal state propagation protocol presented in chapter 4 satisfies the two properties of

the distributed assert:

A1 The asserted predicate is evaluated during execution o f the program. We do not gen

erate and analyze traces post mortem.

A 2 No additional synchronization or message passing is added to the original distributed

application in support o f the distributed assert statement. We do increase the size o f

some application messages.

This protocol can be improved by reducing the amount o f data piggybacked. We know from

the tim ing experiments in chapter 5 that these reductions w ill result in less interference w ith

message transmission time. Hence, the "natural” tim e in the program can be preserved.

The objective o f static analysis is to determine which send and receive events are the LCP

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 58

and LCP' events o f the assert. By piggybacking data only on these messages, the assert

statement is evaluated w ith the CGState and the amount o f data piggybacked is reduced.

The firs t step in our static analysis is to examine the source code o f each process and

generate a flow graph. From the flow graphs, communication analysis matches send and

receive events to generate a tree called a partia l order graph (POG). We prove that the

POG represents a ll partia l orders o f the distributed system (property 6.12) and that each

path o f the POG from root to a leaf node represents a unique partia l order (property 6.13).

A fter analyzing the source code and generating the POG. our technique detects the LCP

and LCP' events for an assert statement. Properties 6.14 and 6.15 are our concluding

properties o f our analysis, and these properties establish that our technique for identifying

LCP and LCP' events is valid.

By perform ing this analysis before execution, a reduction in the amount o f piggybacked

data is achieved by tagging the LCP and LCP' events as piggybacking events, and properties

A l and A2 are upheld. Before presenting algorithms for identifying the LCP and LCP'

events, Taylor’s static analysis technique is discussed.

6.2 Static Analysis in the Distributed Domain

Taylor [42] has developed an algorithm for statically analyzing the synchronous commu

nication o f a distributed program. Synchronous communication occurs when the sending

process blocks u n til the message is received by the destination process. Effectively, the

rendezvous o f the send and receive appears as a distributed assignment, var = expr, that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 59

takes place in the context o f both processes. The sender evaluates expr, and the receiver

stores the value into var.

The transform ation o f the —► relation into the synchronous communication regime only

affects condition (2) o f the three conditions stated in chapter one for asynchronous com

munication. A ll the conditions are repeated for completeness: (1) if e and / are events

in the same process, and e happens before / . then e - * f : (2) if e and / are a send and

receive pair which rendezvous, consider e / / as a single event (the rendezvous which effects

the distributed assignment) on both the sending and receiving processes: and (3) if e - * f

and f - * g, then e - * g.

Taylor’s algorithm matches a ll possible synchronous communications for the program

ming language Ada [44]. The following is a discussion o f Taylor’s technique as modified

(by us) to deal w ith communicating sequential processes (CSP)[15] . CSP is a well-defined

language which supports s tric tly synchronous communication. The semantics o f CSP con

structs have been formalized, and sound and relatively complete verification methodologies

for CSP are well-established [20, 21. 3]. Two message transmission operations are available

in CSP. Process Pj sends a message, msg.out, to process Pj by a matching send/receive pair.

Pi executes the send operation jlmsg.out, and Pj executes the receive operation ilmsg.in.

As part o f the static analysis, each process is represented by an annotated flow graph G,,

which is a m odification o f a sequential program’s flow graph derived from flow analysis [13].

A distributed program is represented by {Go, G i, G n - t } such that G, = {Vj, Aj,r-j}

where Vi is the set o f nodes, A i is the set o f arcs, and r, 6 Vj is the root node o f Gj.

In contrast to a flow analysis flow graph that usually represents a ll statements, nodes o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 60

Gi represent only the statements necessary for communication analysis. In particular, the

following commands are represented by nodes: send and receive communication commands,

guards comprised o f communication commands, and repetitive and selective constructs

comprised o f communication commands. In addition, the root node o f G, represents the

beginning o f P/’s execution (begin node), and the node whose out-degree is zero represents

the completion o f P j’s execution (end node). Axes show the possible paths o f execution

between the nodes, and a ll paths o f Gi are assumed to be executable. Figures 6.1 and 6.2

demonstrate two distributed programs’ flow graphs. The horizontal lines o f the flow graph

represent the nodes.

G i G-> GzGo
begin

alternative
begin begin

alternative alternative

1?
rcpttiove

end end
- t- end

alternative

- - 2?
- - 3?11 ... > repitmve end

aitemanve

Figure 6.1: Flow graphs of a 2
process system Figure 6.2: Flow graphs of a 4 process system

For any node Vi o f G j , the set o f immediate successor nodes is the set o f a ll nodes u[■

for which there exists a path p from vj to u' in G j such tha t there is no node v" (v" ^ i/j ;

vi ^ v\) 011 the path from Vj to o'. Succ(vj) denotes the set o f immediate successors o f t/j.

Figure 6.3 lis t some o f the successor sets for figures 6.1 and 6.2.

Taylor defines a concurrency state C as an ordered AT-tuple (uo, v\ , . . . vat- i) where each

Vj is a node o f G j o r is an inactive marker. Each Uj denotes the next node to be executed in

Pi or indicates process inactivity. A concurrency state C has successor concurrency states

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 61

Successor sets of figure 6.1 Successor sets of figure 6.2
Go: G i :

succ(begin)=alternative succ(begin)=alternative
succ(altemative)=l?,l! succ(altemative)=0?,0!
succ(l?)=end succ(0?)=end
succ(l!)=end succ(0!)=end

G qi G i :

succ(altemative)=l?,3? succ(alternative)=0!,2?
succ(repetitive)=2?
succ(2?)=repetitive,end

Figure 6.3: Successor sets

based on the successor sets o f the nodes o f C . A concurrency state C ' = (v q , v [, v ,N_ l)

is a successor o f C , SUCC(C), i f and only if

1. For a ll t.O < i < N — 1, either

(a) v\ € succ(i’j),

(b) oj = or

(c) Vi = end and v[= inactive

2. There exists at least one which represents application of case a or c.

3. Adherence to the communications semantics o f CSP is reflected in the application o f

the three cases a-c. I f V{ is a send or receive command. can not be replaced by an

element o f succ(v;) u n til the command’s matching communication command occurs

in the concurrency state. When a matching send/receive occur in the concurrency

state, either both or neither are replaced by the ir respective successor nodes fo r the

successor concurrency state.

A matching send (i/j) and receive (vj) in a concurrency state indicates the CSP commu

nication between Pi and P j can occur. The com m unication between P,- and P, is an i/o

rendezvous between Pi and P j.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 62

A nonterminal concurrency state has at least one successor state, and a term inal concur

rency state has no successor states. Taylor’s concurrency history is a sequence o f concurrency

states Co, C \ , . . . , Cm such that

1- Co =(begino, beg in i,. . . . begins_ [). Co represents the in itia l state o f the distributed

computation.

2. For t,0 < i < m - l.C i+ i G SUCC(C,)

A proper concurrency history is a fin ite concurrency history such that Cm has no successors:

i.e.. Cm is a term inal state. A complete concurrency history o f a distributed system is the

collection o f a ll possible proper concurrency histories. A directed graph provides a visual

representation o f a complete concurrency history, where each node o f the graph represents

a concurrency state. For the distributed program in figure 6.1. the complete concurrency

history is shown in figure 6.4.

Relating Taylor’s algorithm to previously defined distributed system terminology, we

see tha t each proper concurrency history corresponds to a possible to ta l order o f the syn

chronous communications. A proper concurrency history where Cm does not contain a ll

inactive markers represents an execution that does not allow a ll the processes to complete

the ir execution. For example, i f process Pi executes the receive j l , but P j does not send a

message to P,, then Pi hangs on the receive and can not complete execution. The complete

concurrency history corresponds to a ll possible communication patterns since a ll execution

paths are considered possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 63

(b,b)

(a,b) (b.a)

Legend:
a: alternative
b: begin
e: end

(1?.0?) (1?,0!) (l!.0?) (1!,0!)

(e.e)

Figure 6.4: Complete Concurrency History of figure 6.1

Taylor’s algorithm has been modified and expanded for various, distributed system’s

applications [27, 45, 22. 8. 26]. We have developed algorithms, motivated by Taylor’s work,

designed to identify the LCP and LCPV messages in each process for an assert statement.

6.3 Communication Analysis for Asynchronous Message

Passing

In this work, the processes o f a distributed program are w ritten in the programming lan

guage C. The language has been augmented w ith three commands: async-send, async_recv.

and assert. The statements async-send and async_recv are for asynchronous communication

between processes and are described in detail in chapter 1. The assert command has the

format assert(P) where P is a predicate. The predicate P is a boolean expression over the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 64

variables o f the distributed program. Currently, the placement o f async_send, async_recv

and assert statements is restricted to the main function o f the program. In this chapter,

the language does allow nested i f and if/else constructs, but it does not allow loops. This is

done for ease o f presentation. Loops are added to the language and handled by our analysis

in chapter 7.

Each process Pi is represented by a control flow graph (F G i). A distributed program is

represented by { FG q,FG \ F G s - i } such that F G i= {V ,. A ,,r, } where Vt is the set

o f nodes. .4, is the set o f arcs, and r* 6 Vj. The root node r, represents the start o f P,'s

execution. The nodes o f FG i represent either computation statements or control constructs

o f the source code. Assignment, async-send, async_recv. and a sse rt statements are

classified as computation statements. The i f and e lse constructs and begin and end

delim iters are classified as control constructs. An end node represents the completion of

Pi's execution. The arcs represent P ’s flow o f execution. I f an arc exists from node n to

node n '. n ' can be executed following the execution o f n. Although m ultip le branches may

exist in the flow o f execution, a ll flow o f execution w ill terminate into a single end node.

Consecutive assignment statements that occur between control constructs and other

types o f computation statements are grouped into one node labeled ASSIGN. The com

mands async_send, async_recv. and assert are represented by SEND. RECEIVE, AS

SERT nodes, respectively. The control constructs i f and else are represented by nodes

labeled IF and ELSE, respectively. The end o f the i f side o f an i f /e ls e is represented by

a END JFSID E node. The end o f an i f statement is represented by an END J F node, and

the end o f the e lse side o f an i t i f /e ls e is represented by a END-ELSE node.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 65

Each FGi is generated by parsing the source code o f P,. F irs t a lexical analyzer reads

in the source code, and scans this code to recognize tokens. The software tool Lex has been

used to produce the lexical analyzer.

The lexical analyzer passes the token to a parser. The tokens are parsed according to

the ANSI C grammar tha t appears in Appendix A. This grammar is LR(1). The soft

ware tool Yacc helped produce the parser. The productions o f the grammar that are

relevant for describing the algorithm for generating the FGjS are p o s tfix .e xp re ss io n ,

unary-express io n , assignm ent-expression, and se lection -sta tem en t.

Actions are embedded in these productions to call functions tha t collectively generate the

control flow graphs. The algorithm , Create_FGj(). implemented by these function calls, is

described. For grouping consecutive assignment statements into one node, each assignment

statement of the node is an entry in a linked lis t, and the assignment node references th is

linked list. A stack is employed to match the begin and end o f control constructs. An entry

in the stack is a pointer to a node o f FGt. The variable TopStack is a pointer to the node

referenced by the top entry o f the stack. The variable CrtNode is a pointer to the current

node o f FGi. Associated w ith each node o f F G i are two fields that are for constructing

the flow graph. The fields are HoldPtr and AddEdgeFlag. HoldPtr is a pointer to a node o f

F G i and AddEdgeFlag is a boolean flag. The input for Create_FG, O is the source code o f

P i, and the output o f Create_FGj() is the flow graph F G ,.

Create_FG, () / * Input: Pi; Output: FGi * /
Create the ROOT node o f F G i
CrtNode = ROOT node
if an assignment statement is recognized

Add assignment statement to the ta il o f the linked lis t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 66

i f an async-send is recognized
if the linked list is not empty

AddNode(CrtNode, ASSIGN)
linked list is set to empty

AddNode (CrtNode. SEND)
i f an async_recv is recognized

if the linked list is not empty
AddNode (CrtNode. ASSIGN)
linked list is set to empty

AddNode (CrtNode. RECEIVE)
i f an a s s e r t is recognized

if the linked list is not empty
AddNode(CrtNode, ASSIGN)
linked list is set to empty

AddNode (CrtNode f ASSERT)
if an i f statement is recognized

if the linked list is not empty
AddNode (CrtNode, ASSIGN)
linked list is set to empty

AddNode (CrtNode, IF)
Push CrtNode onto the stack
TopStack = CrtNode

if an e lse is recognized
AddNode (.CrtNode, ENDJFSIDE)
if the linked lis t is not empty

Set field in CrtNode to point to linked list
linked lis t is set to empty

TopStack.HoldPtr = CrtNode / * Set HoldPtr of the IF node to the *f
/ * address of the ENDJFSIDE * /

CrtNode = top entry o f the stack
CrtNode.AddEdgeFlag = true / * Flag an edge needed from ENDJFSIDE node * /

/ * to the first node following ENDJZLSE node * /
i f the end o f the else side o f an if/else is recognized

AddNode (.CrtNode, END .ELSE) / * fo r the ending of the else side * /
if the linked lis t is not empty

Set field in CrtNode to point to linked lis t
linked lis t is set to empty

CrtNode.HoldPtr — TopStack.HoldPtr / * Move the address of the ENDJFSIDE * /
/ * node to the ENDJZLSE node * /

CrtNode.AddEdgeFlag = true / * Flag an edge will be needed from ENDJFSIDE * /
/ * node to the first node following ENDJZLSE node * /

Pop the stack
| f the end o f an i f statement is recognized

AddNode (.CrtNode, END J F) / * for the ending of the i f statement * /
if the linked lis t is not empty

/ * fo r the assignment statements * /

/ * fo r the assignment statements * /

/ * for the assignment statements * /

/ * for the assignment statements * /

/ * for the if statement * /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 67

Set field in CrtNode to point to linked list
linked lis t is set to empty

CrtNode.HoldPtr = TopStack / * Set the HoldPtr of ENDJF node * /
/ * to the address of the IF node * /

CrtNode.AddEdgeFlag = true / * Flag an edge will be need from the IF node * /
/ * to the first node following the ENDJF node * /

Pop the stack
i f the current control construct or statement is not recognized

Generate an error and halt
i f the end o f the source code is recognized

AddNode (CrtNode. END)
I f the linked lis t is not empty

Set field in CrtNode to point to linked lis t
linked lis t is set to empty

end a lg o rith m

The algorithm Create-FGjO calls the algorithm AddNode() .

AddNode (CrtNode. type)
NewNode = Allocate a node
Create a directed edge from CrtNode to NewNode
i f CrtNode.AddEdgeFlag

Create a directed edge from the node CrtNode.HoldPtr to NewNode
/ * An edge is added either from ENDJFSIDE or IF node to NewNode * /

i f type = ASSIGN
Set field in NewNode to point to assignment linked lis t

CrtNode = NewNode
end a lg o rith m

When a node is added to F G i, i f the previously added node is the end o f the else side

o f an if /e ls e , the ENDJFSIDE and ENDJ2LSE nodes must both have an edge to this

newly added node. Figure 6.5 shows the adding o f NewNode. The dashed lines indicate

the edges AddNode () creates to NewNode. The END .ELSE is CrtNode so the edge from

END.ELSE to NewNode is added by the second tine o f AddNode() . But creating the edge

from ENDJFSIDE to NewNode is more complicated. When ENDJFSIDE is added to F G i,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 68

the address o f this node is stored in the IF node. This is accomplished w ith the following

line from Create_FGj():

TopStack.HoldPtr = CrtNode

When the END .ELSE node is added, the address o f the END.IFSIDE node is moved from

the IF node to the END -ELSE node. This is accomplished w ith the following line from

Create_FG, () :

CrtNode.HoldPtr = TopStack.HoldPtr

By moving the address o f the ENDJFSIDE. when a new node is added and CrtNode is

equal to ENDJ3LSE. the address o f the ENDJFSIDE node is available in CrtNode to add

the edge from ENDJFSIDE to NewNode. The flag AddEdgeFlag o f the ENDJ2LSE node is

set to true to indicate tha t function AddNode () should add an edge from the ENDJFSIDE

node to NewNode.

o

^ n d x ts e ^)

a '

NewNode

Figure 6.5: if/eise portion of control flow graph

endufside

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS

endif

Nc‘ NewNode

Figure 6.6: if portion of control flow graph

root

assignment

assignment

end

root

asyncjrecv(O)

enddfside

async-recv(O)

assert

end

root

assignment

end

Figure 6.7: Flow graphs for a simple 3 process system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 70

Figure 6.6 shows the adding o f a new node when CrtNode is a END J F node. When

the END J F node is created, the address o f the IF node, which is available on top o f the

stack, is stored in the END J F node. This is accomplished w ith the following line from

Create _FG* () :

CrtNode.HoldPtr = TopStack

When NewNode is added to FG i, the address o f the IF node is available in CrtNode so that

an edge from the IF node to NewNode can be created by AddNode C). The flag AddEdgeFlag

o f the ENDJF node is set to true to indicate that function AddNode () should add an edge

from the IF node to NewNode. Figure 6.7 is the resulting control flow graphs for the source

code o f figure 4.2. Another example o f a flow graph is figure 6.9 which is the result o f one

process's source code w ith nested i f constructs shown in figure 6.8.

Pi"
{

a = random number
b = a -1
i f (a > 1) {

i f (b > 1) {
async_send(0. a)
b = b * 2

}
else {

async_recv(0, b)
a = b * 2

}
}
a = b

}

Figure 6.8: Pi’s source code

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS

root

assign

send receive

encLifelse

endif

assign

end

Figure 6.9: FGi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 72

As we know from the defin ition o f F G i, the nodes o f F G i represent syntactic constructs

in the source code o f Pt. The execution o f Pi may be viewed as a traversal o f F G i, starting

at the root node and ending at the end node. An event in the execution o f P, corresponds

to the locus o f control passing through a node o f FG i. In the remaining discussion o f the

flow graphs, the symbol representing a node o f FG i is also used to represent the event

corresponding to the execution o f the source associated w ith that node. The context o f the

use o f the symbol determines whether it is representing a node o f FG i or an event. For

example, if the context is a —> b. the symbols a and b represent events.

We make use o f the following properties o f a F G t.

P r o p e r t y 6 .1 A path exists from node a to node b in FG i i f and only i f a —* b when both

a and b are executed.

Proof.

PART 1. If a path exists from node a to node b. then a -»■ 6 when both a and b are executed.

C a s e 1. F irst consider a process's source code in which no i f or i f / e l s e statements

exist. The resulting control flow graph contains only nodes o f type ROOT.

ASSIGN, SEND, RECEIVE. ASSERT and END, and one path exists from the

ROOT node to the END node. Since execution must follow the edges in P G „ a

path from a to 6 implies a —y b.

C a s e 2 . Now consider the case in which i f and i f / e l s e constructs exist. According

to the construction algorithm , flow graphs o f the form shown in figure 6.10 are

generated for an i f control construct and an i f / e l s e control construct.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 73

For the if control construct, the branch o f control resulting from the falsifying o f

the i f statement is the edge from the IF node to S2. When the condition o f the

i f statement evaluates to false, the statements represented by S2 are executed

next, and therefore IF —> S2. Let node a occur before the IF node in FG i, and

let node b occur after S2 as are shown in figure 6.10. Two paths exist from node

a to node b. Independent o f which path is followed in an execution Pi, a —► b.

Next consider the i f / e l s e control construct. For the branch resulting from a true

evaluation o f the condition o f the i f / e l s e , a path is created by C r e a te _FG, ()

from the IF node to the ENDJFSIDE and from the ENDJFSIDE to S5. I f

the condition evaluates to true, the statements represented by S3 are executed

endifside

Figure 6.10: i f and i f /e ls e flow graphs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 74

then the statements represented by S5 are executed. Therefore. IF —► S3 ->

ENDJFSIDE -> S5. For the branch resulting from a false evaluation o f the

i f statement, a path exists from the IF node to the END J3LSE and from the

END J3LSE to S5. I f the condition evaluates to false. IF —► S4 —► ENDJ3LSE

-¥ S5. Let node a occiur before the IF node in F G i, and let node b occur after

S5 in F G i as are shown in figure 6.10. Two paths exist from node a to node 6.

Independent o f which path is followed in an execution Pi, a -> b.

PART 2. I f a —> 6 when both a and b are executed, then a path exists from node a to node

6 in FG i.

Assume a —> 6 but that a path does not exist from node a to node 6 in FG ,. Two

cases can exist in FG , such that a path does not exist from node a to node 6.

1. there exists a path from node b to node a. or

2. node a occurs in one branch o f a i f /e ls e and node 6 occurs in the other branch

o f the if /e ls e .

I f a path exists from node b to node a, we know from part 1 o f this proof that 6 —► a

when both b and a are executed. This contradiction stands in to our assumption that

a -*■ 6. therefore a path cannot exist from 6 to a. Now consider case 2. Only one

branch o f the i f /e ls e w ill be executed for any execution o f Pi. Therefore, a -ft 6. So

we can conclude that if a —► 6, a path exists from node a to node 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 75

P ro p e rty 6.2 Each path o f FG i from ROOT node to the END node represents an execu

tion of Pi.

Proof. Assume there exists a path from the root uode to the end node that does not

represent an execution o f Pt. For such a path to exist, there must exist at least two nodes

v and v' where v is a parent o f v' , and it is not possible that v —> v' for any execution o f

Pj. This is a contradiction o f property 6.1. ■

P ro p e rty 6.3 For each path, the occurrence o f the nodes in the path represents the total

order of events i f this path is executed.

Proof: For each statement and control construct o f the source code, a node is generated in

FGi (algorithm Create_FG,0). From th is observation o f Create_FG,() and properties

6.1 and 6.2. it follow that th is property is true. ■

P ro p e rty 6.4 FG , represents all execution paths of P i.

Proof. This property may be falsified under two conditions:

C o n d i t i o n 1. Flow graph F G t only represents a subset o f execution paths o f Pj. We know

from Create_FGj() that every statement and control construct is represent in F G i-

For a path not to be represented in F G i, one or more directed edges between nodes

are om itted. Three cases exist when an edge can be om itted:

1. an edge from current node to new node is not added.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 76

2. an edge from ENDJFSIDE node to firs t node following the END .ELSE node is

not added, or

3. an edge from IF node to first node following the END JF node is not added.

For any o f these cases to occur, the AddNode O algorithm is contradicted.

CONDITION 2. FG , represents an invalid execution o f P,. For this to be true, at least one

path from the ROOT node to the END node represents an invalid execution o f Pj.

This contradicts property 6.2.

■

For each communication node, v , o f F G i» an immediate successor set S(v) is determined

from FG i. Node v' is an immediate successor o f node v if

1 . there exists a path from v to «'.

2. v' is a communication node or END node, and

3. there does not exist a communication node v" on the path from v to v' such that

u" # v'.

Concurrency communication states (CCSs) are generated from the flow graphs

{F G o ,F G i, — F G jV -l} o f the constituent processes o f the distributed system. Each CCS

is an ordered iV-tuple (vo,v i, . . . where v, is the root node o f FG i. a communication

node o f FG i, or the END node o f FG i. In the examples, an underscore denotes the END

node. I f Vj is a communication node, v, denotes the next communication command to be

executed in Pi. The communication commands o f a CCS represent the events tha t may

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 77

occur concurrently. Not a ll communication commands are ready to be executed: i.e.. a

receive is not ready i f its corresponding send has not been executed. A ll the communication

commands o f a CCS that are ready to execute are concurrent. A series o f CCSs are

generated, as described shortly, to m im ic the execution o f the distributed system represented

by {FGo. F G _ i} . Collectively, a tree. H . o f CCSs is generated that represents

a ll the possible partia l orders V o f the distributed system. Figure 6.11 is an example o f

an H tree where each node o f the tree represents a CCS. The concurrency among the

communication events is preserved in H by not imposing a to ta l order on the concurrent

events.

Associated w ith each send command in a CCS is a counter. I f Uj is a send to P} . the

counter associated w ith u, is how many messages have been sent to P j including this send.

Assume we have a four process system, and vt E CCS is equal to 5:async_send(0). This

five means four messages have been sent collectively to Pq from P i.F> and P j prior to

this message. Associated w ith each receive command whose matching send command has

already been executed is also a counter. I f vj is a receive command and has an associated

counter, the counter is how many messages have been received by Pj including the message

received w ith Vj.

The in itia l concurrency communication state. C C S q. contains the root node o f each

flow graph {F G q ,F G i,F G y v -i}, CCSo = (ro , . . . ,r ,v - i) . Successor CCSs o f CCSo are

determined from S (n) , 0 < i < N . The successors o f CCSo are a set o f concurrency com

munication states denoted by SUCC(CCSo). The follow ing steps determine SUCC(CCSo):

1 . Generate a successor o f CCSo by replacing each r,- w ith an element o f S(r,-); i.e.,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 78

CCS = (vo,. . . . u/v_i) is an element o f SUCC(CCSo) if each Vj is an element o f S(r,).

2. Generate SUCC(CCSo) by repeating step 1 u n til a ll unique CCSs are generated from

the root nodes’ immediate successor sets. The number o f successor CCSs o f CCSo is

!S(r0)! * ••• * IS K v ,!)! = |SUCC(CC50)|

A CCS. where each Vi is a communication node or an inactive marker, has at least

one successor, CCS' = has at least a send command or a ready

receive command. I f node n o f H represents the concurrency communication state CCS,

the successors o f CCS are represented in H as the children nodes o f n. The predecessor o f

CCS is represented in H as the parent (immediate ancestor) o f n. A ready receive means

that the necessary send command for this receive command occurred in the predecessor

o f the CCS or in a ancestor o f CCS. A message queue. M sg.Q i. is maintained for each

process. I f vj 6 CCS is a send command to P j. the entry j is added to the queue M sg.Qi

following the generation o f SUCC(CCS). I f V{ is a receive from P j and M sg.Qi contains a

j , the receive is ready and the firs t j in M sg.Q i is removed.

Associated w ith each M sg.Qi is a counter that is incremented each tim e an entry is

placed in the queue. The current value o f the counter is appended to an entry when it is

added to M sg.Q i. An entry in M sg.Q i has the format <counter, process id> . The value o f

counter is also appended to the send entry o f the CCS node o f H tha t generated the entry

in M sg.Q i. Send commands that are syntactically identical in a process’s source code are

distinguished in the CCS nodes o f H by the ir associated counter. When a receive Vi from

P j is ready, the counter associated w ith the firs t j entry in the queue M s g .Q i is appended

to the receive entry in the CCS node o f H . Not only are syntactically identical receives

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 79

distinguishable, the counter provides a method to match sends w ith corresponding receives.

The use o f this counter for matching sends and receives w ill be seen in a later algorithm .

A CCS may contain m ultip le sends and ready receive commands. For example,

CCS = (async-send(l), async_send(0), async_recv(3),-) has the two sends, and a possible

ready receive. I f Msg.Q > has the entry < counter. 3> to indicate tha t P3 has sent a message

to P) but the message has not been received by P>, vo (vn = async_recv(3)) is a ready

receive. I f v-> is a ready receive, the value o f counter is appended to async_recv(3) in the

H node. I f CCS has no sends and no ready receives. CCS has no successor states. The

successor concurrency communication states o f CCS. SUCC(CCS). are determined from

the immediate successor sets o f CCS ’s send and ready receive commands. The following

steps determine SUCC(CCS):

1. In CCS. find the send and ready receive commands.

2. Generate a successor o f CCS. CCS', by replacing each v, o f CCS that is either a send

or ready receive command w ith an element o f S(uj). I f the element o f S(t/;) chosen is

the end node, replace u, w ith the inactive marker.

3. Generate SUCC(CCS) by repeating step 2 un til a ll unique CCS 's are generated from

the send and ready receive immediate successor sets. For example, i f CCS has two

sends, vq and iq , and one ready receive, 1/3 , then the number o f successor states o f

CCS is |S(v0)| * |S(tn)| * |S(f*)| = |SUCC(CCS)|

A CCS containing more than one send and /o r ready receive commands signifies these

commands happen concurrently. I f a CCS consists o f no send commands and one or more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 80

receive commands, where the receive commands are not ready, the CCS has no successors

and is an invalid terminal state o f the distributed system. A C C S comprised of a ll inactive

markers is a valid terminal state.

A proper CCS history is a sequence o f concurrency states CCSq, CC S\ CCSm such

that

1 . CCSo = (7*0 , 7*!........ 7*;v_i),

2. For a ll t.O < i < m — 1, CCSj+ i € SUCC(CCSj), and

3. CCSm has no successors (CCSm is a valid or invalid term inal state).

A complete CCS history o f a distributed system is a collection o f all possible proper

CCS histories. The complete CCS history is represented by a directed graph H = (N . .4, r)

where N is the set o f nodes, A is the set o f arcs, and r 6 N is the root node of the graph.

The nodes represent the CCSs. r represents CCSo. and an arc exists from the node that

represents CCS to the node that represents CCS' i f CCS' € SUCC(CCS). A path from

the root node to a node o f the graph that has no successors (out-degree is 0) is a proper

CCS history. Figure 6 .1 1 is a complete CCS history for the distributed system shown in

figure 6.7. The underlined communication events are the sends and ready receive events.

The number preceding the communication event is the counter associated w ith the event.

The following algorithm , C rt_H (), generates the graph H to represent the complete

concurrency history. The graph H is b u ilt breath firs t, that is. one level o f the tree is

created before the next level is begun. A node o f H consists o f two entries, CC S and

FGnodefO... N -Ij. The entry CCS is the CCS this node represents. The array entry

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS

(ro, r u n)

(l:async_send(l),

async_recv(0),

2:async_send(l))

1
(3:async

r
.send(l).

l:async.recv(0),

1

(—

2:asvnc.r

)

>

ecv(2).

’

(-

3:asvnc_r

)

i

ecv(O).

(l:asvnc.send(l).

async-recv(2),

2:async.send(1))

(3:async.send(l).

2:async.recv(2),

—)

o

l:asvnc_recv(0).

d

3:asyncj*cv(0).

—)

Figure 6 .1 1 : Tree H for simple 3 process system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 82

FGnode[i] is the node o f FG i that vi o f CCS represents. The array FGnode is set to the

appropriate values by algorithm C rtJ lO and is used la ter by algorithm Crt_P0G().

An array o f size N o f integers is maintained, counter[0], counter[N — 1], by algorithm

C rt .HO for counting the number o f messages that have been sent to each process. The value

o f counter[i] is the number o f messages that have been sent to Pi and the number of entries

that have been placed in Msg.Qi. In addition to the Msg.Qi queues, another queue CCS.Q is

maintained for recording the CC Ss tha t are to be added next to H . An entry in CCS.Q con

sists o f four parts, a C C S . a linked lis t representing the set SUCC(CCS), the values of the

queues Msg.Qo M s g .Q s -1 tha t correspond to C C S after SUCC(CCS) has been deter

mined. and the value o f array counter that corresponds to C C S after SUCC(CCS) has been

determined. The format o f an object in the queue is <node. list.Ms</_Qo. M sg .Q i

counter>. An entry in the linked lis t lis t consist o f two two values. C C S and the variable

FGnode corresponding to this C C S . The input to C rt_H() is {FGq, F G i, F G s - 1 }• and

the output is the tree H .

Algorithm CrtJlO calls function Determine-SUCCC) to determine the successors of a

CCS and to place the appropriate entries in the Msg.Q queues and CCS.Q queue. Function

Determine J3UCC () calls function Generate JSUCCO to generate a ll the successors o f a CCS.

The variables employed by function Generate_SUCC() to generate the successors are S.Vi

and index. Corresponding to each send and receive node o f FG , is an array S.Vi that

contains the successors o f node Vi, S(vi), in FG i. I f u, is an entry in a CCS, array S.Vi

is the successor nodes o f v,-. The maximum number o f successors o f a node is MAXKIDS,

and the dimension o f each S-u, is M A X K ID S + l. Each S_t/, array is filled w ith -1 for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 83

unused entries. Variable index is an array o f N integers. Function Permute () determines

a successor o f CCS by selecting an index into each 5_u, array for each Vi € CCS that is a

send or ready receive. The array index contains indexes into each S.V{. I f u* 6 CCS is a

send or ready receive. index[i] is an index into the array S .v t . I f v t € CCS is neither send

nor ready receive. index[ij is a - I meaning this u* should not be changed in the successors

o f CCS. Function Generate-SUCC() calls function PermuteO to obtain the indexes for a

successor o f a CCS and continues to call function Permute () un til a ll successors o f a CCS

are generated.

Crt-HO
In itia lize queues Msg.Qo, M sg.Q ^-i, CCS.Q to empty
In itia lize array counter[0] . . . counter[N — 1] to 0
Create root node r
r.CCS = CCSo
Determine-SUCCCr.CCSo. Msg.Qo,..., M sg.Q ^-i, CCS.Q)
w hile CCS.Q is not empty

item = behead (CCS.Q) / * format of item is < node.list.Qq.......Qn - i . counter> * /
Parent = item.node
LL = itemJist
Msg.Qo, M sg.Q i _ l = item. Q0 item. Qy _ i
counter = item.counter
for each < CCS.FGnode> entry in LL

Create a node n in H
n.CCS = CCS
n. FGnode = FGnode
Create edge from Parent to n
DetermineJSUCC(n.CCS, Msg.Qo M sg.Q ^-i, counter, CCS.Q)

end for
end w hile

end algorithm

Determine_SUCC(n.CCS, Msg.Qo, M sg.Q s-i, counter, CCS.Q)
Msg.Q or....M sg .Q ’s - i = Msg.Qo, M sg.Q ^-i
counterf = counter
i f (n = root node)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 84

SUCC(CCS) = Generate_SUCC (n) / * < CSS,FGnode> is entry in SUCC(CCS) *J
i f (SUCC(CCS) # NULL)

Add <n.SUCC {CCS), Msg.Q o, Msg.Q 's~ \. counter'> to the ta il o f CCS.Q
end if

else
for i = 0 to N — 1

i f («j o f CCS = async_recv(j))
if (Msg.Q ̂ has entry < counter, j >)

/ * t>i is a ready receive * /
item = behead firs t < counter, j > entry in Msg.Q \
append item.counter to t/j in CCS / * item.cotinter.-async.recv(.j) * /

end if
end if

end for
for i = 0 to N — 1

i f (o f CCS = async-send O’))
counter[j]'++
Add <counterfj}’. i > to Msg.Q j
Append counterfj]’ to u, in CCS

end if
end for
SUCC(CCS) = Generate -SUCC (n)
i f (SUCC(CCS) # NULL)

Add <n.S\JCC(CCS),Msg.Q*o,------Msg.Q'.y.i.counter > to the ta il o f CCS.Q
end if

end if
end function

Generate .SUCC (n)
SUCC(CCS) = NULL
index[Q] . . . index[N — 1/ = -1
for i = 0 to N — 1

i f (t/j € CCS = send OR Vi € CCS = ready receive OR u, € CCS = r*)
indexfi] = 0

end if
endfor
do

CCS• = n.CCS
FGnode' = n.FGnode
for * = 0 to N — 1

i f (indexfij - 1)
Vi € CCS' = cotmno command or inactive marker for node S.Vi[index[iJJ
FGnode[ij = S.Vi[index[iJ]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 85

endif
end fo r
Add < CCS',FGnode> to the ta il o f linked lis t SUCC(CCS)

w h ile (Permute(index) = true)
retum(SUCC(CCS))

end fu n c tio n

Permute Cindex)
current = N - I
while (indexfcurrentj = = -1) AND (current > - 1)

current = current —
endwhile
i f (current > 0)

index[current]++
else

returu(false) / * index is all -1 ’a * /
endif
w h ile (current > 0) AND (5.ucurreT,t/index/ctxmen^// = -1)

indexfcurrent] = 0

current —
while (current > 0) AND (indexfcurrent] = -1)

current —
end while
if (current > 0)

indexfcurrent]-^+
endif

end while
i f (current < 0)

return(false) / * have been through all permutations * /
else

return(true)
endif

end function

The following are useful properties o f H . In proving these properties, the function p

maps an event e to the process o f the distributed system in which the event occurs.

p(e) = i 6 I I i f e 6 Pi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 86

Property 6.5 I f

• Vi and vj are events in the execution of a distributed system,

• V , —¥ V j ,

• Vi 6 CCS and u; is a send o r ready receive. and

• v j £ CCS' and Vj is a send or ready receive,

then CSS is an ancestor of CCS'.

C ase 1 For p(vj) = p(vi).

Proof by induction.

Basis. If

• vi € CCS.

• V{ is a send or ready receive.

• CCS occurs on level I o f H .

• Vj 6 S(Uj), and

• Vj 6 CCS'

then CCS' occurs on level / + 1 .

Proof. We know that the SUCC(CCS) are children o f CCS in H . According

to the construction o f H , SUCC(CCS) is determined w ith the S(u;) fo r each V{

that is send or ready receive. Node Vj is represented in at least one CCS' €

SUCC(CCS) which occurs on the next level, / + 1, o f the tree H .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 87

Inductive hypothesis. If

• V{ 6 CCS ,

• Vi is a send or ready receive.

• CCS occurs on level I o f H .

• V i -> vk.

• fj(vi) = p (v k), and

• vk e CCS".

then CCS" occurs on level / + n for n > 2 .

Inductive s t e p . If

• vk is a send or ready receive.

• vj 6 S(u*), and

• vj € CCS'

then CCS1 occurs on level / + n + 1.

Proof. We know from the inductive hypothesis that CCS" occurs on level I + n

and that CCS" is an ancestor o f CCS. Since Vj € S(ufc). we know from the basis

that CCS' occurs on level / + n + I. We can conclude that CCS' is an ancestor

o f CCS.

C ase 2. F o r p (v j) ^ p (v i) .

Proof. Since u, —► Vj, we know from lemma 5.4 there exists a non-repetitive commu

nication path from P i to P j from a send o f P i that happens after u, (or u, is this send)

and a receive o f P j tha t happens before v j (or v j is this receive). Let N C P = e“ , e*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 88

be this Don-repetitive communication path. Two possibilities exist for vt: either u,-

and e“ are the same event, or u, occurs before e“ . Two possibilities exist for V j , either

vj and elj are the same event or vj occurs after e j. In the remaining proof we assume

w ithout loss o f generality that v, and e“ are the same event, and u} and e* are the

same event.

The events o f the path N C P correspond to one or more messages. Consider the

following 2 cases:

C ase 2 .a . N C P corresponds to one message.

Event Vi is the sending o f a message to P j. and Vj is the corresponding receive

o f the message from Pj. Let the following be true for the nodes C C S and C C S '

o f H: Vi € C C S and Vj 6 C C S '. According to the construction o f H. when Vj

is ready, the i entry in Msg.Qj corresponds to vt. For the i that corresponds to

V i to be in M sg.Qj. C C S must be an ancestor of C C S '.

CASE 2.B. N C P defines two o r more messages.

Let N C P = e° ejj1, e™+1. e|” + i e j. where m-1-2 < t. and € C C S and is

a send, ejj* € C C S " and is a receive. ejj*+1 E CSS'" and is a send, e™+1 E C C S ""

and is a receive, and ej 6 C C S ' and is a receive. We know from case 1 that for

events e£\e£*+ l o f N C P . where ejj* € C C S " and e^*+ 1 € C C S "', that C C S "

is an ancestor o f C C S '" We know from case 2 .a that for events e™+1. e™+2 o f

N C P , where e™+ l € C C S '" and ejr ,+ 2 6 C C S"", that C C S '" is an ancestor o f

C C S"". Therefore, C C S " is an ancestor o f C C S"". I f e^* is the receive event

immediately following e® in N C P , then from case 2.a we know that C C S is an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 89

ancestor o f C C S ". Therefore, C C S is an ancestor o f C C S"". I f eJ” +~ is the send

immediately preceding e* in N C P , then from case 2.a we know C C S "" is an

ancestor o f C C S '. We conclude that C C S is an ancestor o f C C S '.

m

P ro p e rty 6 . 6 The sends and ready receives o f a C C S are concurrent.

Proof. Assume for Vi.vj € C C S that u; -¥ v j . This contradicts property 6.5. ■

P ro p e rty 6.7 I f C C S is an ancestor of C C S ', v, € C C S and v} 6 C C S ', and vt and vj

are either sends or ready receives, then t>; —> vj i f one o f the following is true:

C ase 1. p(wj) = p(vj)

CASE 2. Vi is send to Pj, v j is a ready receive from Pi, and the next i entry in M sg.Q j

corresponds to w,.

C ase 3. vt —> Vk and Vk - * vj where i/fc 6 C C S " such that o* is either a send of ready

receive, C C S is an ancestor o f C SS", and C C S " is an ancestor o f C C S '.

P ro o f.

C a se 1.

For Vj to occur in C C S ' that is a descendant o f C C S , v j € S(u,-) or

v j £ S(S(... S (vi) . . .)) where the nesting o f immediate successor sets is two or greater.

Therefore —► V j .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 90

C as e 2.

According to the algorithm for constructing H . for uj to be a ready receive and the

next i entry in M s g .Q j to correspond to Vi, vt must happen before Vj.

C a s e 3.

This follows d irectly from the transitive property o f the happens before relationship.

■

We know from property 6 .6 that the sends and ready receives o f a CCS cire concurrent.

We can deduce concurrent sends and ready receives that occur in different CCSs. Entries v;

and vj are concurrent i f Uj € CCS . vj € CCS', Uj and Vj are either sends or ready receives.

CCS is an ancestor o f CCS', and Vi ■/* v} .

Before stating and proving the next property, lemma 6.1 is established. The execution

o f a communication event in Pi represented by node n in FG i is possible i f there exists at

least one path from the root node to n such tha t the communication events occurring in the

path prior to n are either sends or ready receives in H . In other words, the com m unication

event o f node n has a possibility o f being executed if the communication events that occur

prior to it are executed. I f a receive is possible, its execution is then dependent on a message

being sent, and the receive is labeled as ready when the necessary message is sent. I f the

necessary message is not sent, the receive does not become ready and does not execute. I f

a send is possible, it executes since a send’s execution is not dependent on the occurrence

o f a communication event in another process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 91

FCo« F G i" FG 2 ”

cootroot

END

END

Figure 6.12: Possible and impossible receives

An example o f a possible receive event and an impossible receive event is shown in figure

6 .1 2 . In FG) there exists a path from the root node to the firs t a sync_ re cv(l). We know

from the construction o f H that async_send(0) w ill be an element o f a node o f H. and

async-send(l) w ill be an element o f a node of H . The first async_ recv(l) o f FG) w ill

occur in a node o f H as a receive, but th is receive w ill not be ready since the sending o f

a message from P\ to P2 does not exist. This receive occurs as an entry in an i f node

to represent the receive w aiting to execute. The communication commands o f Pi prior to

the firs t async_recv(l) are executed, and async_recv(l) is possible although it w ill not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 92

execute. Since the firs t async_recv(l) o f P? can not execute, the second async_recv(l)

o f P> w ill not occur in a node o f H and is therefore impossible.

Lem m a 8 . 1 I f node n of F G i is a communication node and the execution o f n is possible,

then n is a send or receive in at least one node of H .

Proof.

B a sis .

I f node n is a successor o f the root node o f F G t, n 6 S (r;), then u, = n for at least

one C S S 6 SUCC(CCSo). C C S q occurs on level 0 o f H . therefore each C C S 6

SUCC(CCSo) occurs on level 1 o f H .

Proof. According to the construction o f H . the SUCC(CCSo) is determined by S(r,)

for a ll t. Node n of FG , is represented in at least one C C S € SUCC(CCSo).

In d u c t iv e H y p o t h e s is .

I f node n ' is a communication node o f F G i, n ' is an immediate predecessor o f node n

in F G i, the execution of n' is possible, then node n' is represented in C C S ' on

level i o f H .

In d u c t iv e S t e p .

I f node n € S(n') and the execution o f node n is possible, then node n is represented

in at least one C C S € SUCC(CCS') on level i + 1 o f H .

Proof. From the inductive hypothesis, we know n ' is represented in node C C S ' on

level i o f H . For the execution o f node n to be possible, node n ' is either a send or

ready receive element o f C C S '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 93

In the construction algorithm , SUCC(CCS') is determined by S{vt) for a ll i o f CCS'

that are sends or ready receives. Let v\ = n ' in node CCS'. Since v't is a send or a

ready receive o f CCS' and n G S(o'). we can conclude that node n is represented in

at least one CCS G SUCC(CCS') on level i + 1 o f H .

m

P ro p e rty 6 . 8 The tree H derived from { FG q, F G jv - i } represents a ll partial orders

of the distributed system represented by { FG q FG ;v - i }•

Proof.

1. From properties 6.1. 6.3. and 6.4. we know each FG, represents a ll execution paths

o f Pi. and the occurrence o f the nodes o f a path o f FGi represents the to ta l order o f

events of Pj.

2. From properties 6.5 and 6.7. we know a ll the happens before relationship among

local and non-local events o f the distributed system are correctly represented in H.

3. From leinma 6.1. we know that i f the execution o f a communication node o f FGi is

possible, then the communication event is represented in H .

From (1), (2) and (3). we can conclude a ll possible executable events o f each process are

represented in H , and a ll happens before relationships among these events are correctly

represented in H . Therefore a ll partia l orders o f the distributed system are represented in

H . ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 94

In some cases, two or more branches o f H represent the same partia l order. Consider the

portion o f tree H for a four processor system in figure 6.13. In this example, the receives

o f the CCSs are not ready. The sends o f each CCS are replaced in the child CCSs w ith

an inactive marker. Both leaf node branches indicate that Pq does not complete execution.

The two branches shown represent the same partia l order. From the tree H, a partia l order

graph, POG , is constructed tha t combines branches that represent the same partia l order

into one branch. Also, only the sends and receives that are executed in a partia l order are

represented in the POG. In other words, the sends and ready receives are presented in the

POG.

(asvnc_recv(2),

l:asvnc.send(0).

l:async_seucl(l)

2:async.send(1))

(r o ,r i ,r 2, r 3)

(async_recv(3),

l:async_send(0),

l:async.send(l)

2:async_send(l))

(asvnc_recv(2). (asyncjrecv(3).

-)

F igure 6.13: Same partial orders

A POG is a directed graph (N , A , s) where N is the set o f nodes. A is the set o f arcs,

and s e N is the root node o f PO G . The nodes o f the POG are generated from H 's nodes

such tha t the POG nodes represent the sends and ready receives command o f the H nodes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 95

In the remaining discussion o f POG nodes, the following format o f an entry is a POG

node is adapted for conciseness. A send entry has the format c : iS j where c is the counter.

i is the process executing the send and j is the destination process. A ready receive entry

has the format c : iR j where c is the counter, i is the process executing the receive and j is

the sender. The POG is constructed by traversing H breath firs t, starting at the the root

node o f H. and generating the nodes o f the POG in breath firs t order. The algorithm for

constructing the POG determines whether CCSs have equivalent send and ready receive

communication entries. C C S i CCSt have equivalent communications if the following

conditions are true:

1. I f at least one CCSq:i<q<t contains one or more send and/or ready receive commands.

2 . I f Vi is a send command o f CCSqxi<q<t< then each vt in a ll CCST-.i<r<t is the same1

seud command.

3. I f Vi is a ready receive command o f C C S qa<q<t, then each v, in a ll CCSr:i< r<t is the

same receive command and is a ready a receive.

I f C C S i and C C S] have equivalent communication commands, the equivalent communica

tion commands o f C C S i and C C S j are a ll the send and ready receive commands tha t occur

in C C S i and C C S j.

The algorithm for constructing the POG relies on the function EQUIVO. The input to

EQUIV () is a set o f H nodes, nodeset, and the return value is a subset o f nodeset. I f nodeset

contains two or more nodes that have equivalent communication commands, EQUIVO re

1 Same meaning each v, represents the same node o f FGi and the counters are equal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 96

turns these nodes, else EQUIVO returns 0. Nodes o f H that have equivalent communication

commands are called equivalent nodes. I f EQUIV O finds a subset o f node.net that have

equivalent communication commands, EQUIVO removes these nodes from nodeset.

I f node.net contains two or more equivalent node subsets. EQUIVO nondeterministicly

returns only one o f these subsets. For example, let the CCSs o f node.set equal {(2:051,

3:1/22. 2/20. 3/20), (2:051. 3:1/22, 2/21, 3/21). (1:0/21, 1/23, 2:250. 3/20). (1:0/21.1/20, 2:250,

3/20)}. The first and second entries in nodeset are equivalent and the th ird and forth

entries in node.set are equivalent. EQUIVO w ill return either the nodes corresponding to

{(2:051.3:1/22.2/20.3/20),(2:051.3:1/22.2/21,3/21)} or {(1:0/21.1/23.2:250.3/20), (1:0/21,

1/20. 2:250.3/20)}. To select a node from a set o f H nodes for testing if a subset o f

the nodes are equivalent, function EQUIVO calls function S e le c tO . Function S e lec tO

randomly picks a node element from a set o f nodes, removes the element from the set. and

then returns this element.

I f the return value o f EQUIVO is not NULL, the returned nodes are represented w ith

one node in the POG . This POG node is labeled w ith the sends and ready receives o f the

returned nodes.

The POG construction algorithm , Crt-PQGO, places inform ation about the newly added

nodes o f the POG in the queue data structure VisitNodes. An entry in the VisitNodes queue

has the format <node.ptr, node.set>. The entry nodejptr points to a node o f the POG ,

and node^set is a set o f one or more H nodes. The set nodeJSuccSet is a set o f H nodes that

is b u ilt from the successors o f equivalent nodes. The string Commos is set to the sends and

ready receives o f an H node and is for labeling the nodes o f the POG. For example i f the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 97

CCS o f a node is (1:051,3:150), then Commos = “1:051,3:150". The following algorithm

constructs the POG from H :

Crt_P0G()
In itia lize queue VisitNodes to empty
Create root node 5 (labeled root)
Add <5.SUCC(root node o f H)> as the firs t entry in the queue VisitNodes
while (VisitNodes not empty)

item = behead(VisitNodes) / * format of item is <node.ptr, stateset> * /
POG-ptr = item.node.ptr
node-set = item.node.set / * stateset= {CCSi.......CCSm\, m > 1 * /
while ((EQUIVset = EQUIVCnodeset) # 0)

Commos = the sends and ready receives o f the CC5s o f EQUIVset
Create POG node N and label w ith Commos
Create an arc from node o f PO G jptr to N
nodeJSuccSet — (9
for each node o f EQ UIVset

node.SuccSet = node.SuccSet U SUCC(node)
end for
Add the entry <N. node.SuccSet> to the ta il o f VisitNodes
node-set = node-set - EQUIVset

end while
for each node € nodeset

if ((Commos = sends and ready receives o f the CCS o f node) ± NULL)
Create POG node N and label w ith Commos
Create an arc from node of P O G j)tr to N
Add the entry <JV.SUCC(node) > to the ta il o f VisitNodes

else
Create POG node N and label as END node
Create an arc from node o f PO G j>tr to N

endif
endfor

end while
end algorithm

EQUIV (.nodeset)
node.set’ = nodeset
EQUIV.found = false
w h ile (nodesetr £ 0) AND (EQUIV.found = false)

Node.l = Select (nodeset 'J

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 98

EQ UIVset = [N ode .l\
Commos = the sends and ready receives o f Node.l.CCS
FGnode = Node.l.FGnode
localset = nodeset’
w h ile (localset ^ 0)

NodeJ2 = Select (JocaLset)
Commos.2 = the sends and ready receives o f Node.2. CCS
FGnodeS = Node.2. FGnode
i f (Commos = Commos.2) AND (FGnode = FGnodeS)

EQUIV.found = true
Add Node.2 to EQ UIVset

end i f
end w h ile

end w h ile
i f (EQUIV.found=true)

return {EQUIVset)
else

return(0)
end fu n c tio n

The POG represents the causal and concurrent relationship among the communication

events. The first four properties o f the POG are derived directly from the properties o f H .

P ro p e rty 6.9 I f ei —► e j, where e, and ej are communication events, and e, is an entry in

node N of the POG and ej is an entry in node N ' of the POG. then N is an ancestor o f

N '.

P ro p e rty 6.10 The communication events represented in a node o f the POG are concur

rent.

P ro p e rty 6.11 I f POG node N is an ancestor of POG node N ' and e,- 6 N and ej 6 N ',

then e{ —► ej i f one o f the following is true:

I . p(i) = p { j)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 99

2. e{ is a send to P j. ej is a receive from Pi, and ej is the corresponding receive fo r this

send.

3. ej —> ek and e* -*■ ej where et 6 N " such that N is an ancestor o f N " and N " is an

ancestor o f N '.

P ro p e rty 6.12 The POG represents all partial orders.

The construction o f the POG prunes the tree H w ith the EQUIVO function so that one

branch o f the POG from root to leaf node represents an unique partial order a 6 P . The

nodes o f the POG are minimized from the nodes o f H to represent only the communication

commands that occur in an execution o f the distributed system. The properties o f H remain

true in the POG since the construction does not elim inate or create new inform ation about

the occurrence o f the communication events.

Lem m a 6.2 The construction of the POG from H preserves the causal and concurrent

relationships represented in H .

P ro o f.

Case 1 . Nodes o f H w ith equivalent communication commands do not exist.

Function EQUIVO always returns 0 for nodes o f tree H ; i.e.. there exists no nodes o f

H that have equivalent communication commands.

A lgorithm Crt_P06() traverses H in a breath-first order w ith the use o f queue Visit

Nodes. The next entry in VisitNodes represents the next group o f nodes in H to be

represented in the POG. Consider creating the nodes and edges o f the POG.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 100

N od es .

I f a node o f H . h, has at least one send or ready receive, the node is represented

in the POG by creating a POG node and labeling it w ith the corresponding

sends and ready receives o f h.CCS.

I f a node o f H does not have at least one send or ready receive, a node is not

created in the POG to represent this node. A node o f H. h, that does not

have at least one send or ready receive means no communication commands are

executed after the sends and ready receives o f h's parent, and therefore node h

does represent any causal or concurrent relationships among events.

E d g es.

I f a node o f H. h. is represented in the POG by node n and if a child o f h

is represented in the POG w ith node n1. then an edge is created from node n

to node « ' o f the POG. Therefore, causal and concurrent relationships among

nodes o f H are preserved in the POG. Since all nodes o f H that have at least one

send or ready to receive are represented in the POG. a ll causal and concurrent

relationships are preserved.

CASE 2. Nodes of H with equivalent communication commands do exist.

Function EQUIVO finds nodes o f H that have equivalent communication commands.

The nodes that are input to EQUIVO are nodes that occur in the same level o f H . I f

the nodes o f H , { h i . . . ht }, are equivalent (the CCSs have equivalent communication

commands) one node n is created in the POG to represent these t nodes and is labeled

w ith the equivalent communication commands. Then set nodeJSuccSet is b u ilt so that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 101

nodeJSuccSet = SUCC(hi) U - • • U SUCC(ht). Set nodeJSuccSet is placed in the queue

VisitNodes for generating the children o f node n. Therefore nodes o f H that represent

the same causal and concurrent relationships are represented as one node in the PO G .

and a ll causal and concurrent relationships that are represented by the successor nodes

of { h i . . . /it } w ill be represented in the POG as children o f n.

root

1 :0S1

1 : IPO

1 :0S2

1 : 2/10

END

root

1 :051

1 : 0S2.1: tfiO

END

Po P i Pi

Figure 6.14: 2 possible POGs

A partia l order a 6 V is represented in the POG by a path beginning at the root

node and ending at a leaf node o f the tree. The process o f generating the POG guarantees

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 102

that there exists only one possible representation o f a partia l order in the POG. Figure

6.14 is the time-space diagram o f a distributed system’s execution and the two possible

unique path representations o f the partia l order defined by the system’s execution. From

* property 6 .1 1 we can determine from either o f the two paths the following relationships:

1:051 -> 1:052,1:051 -> l: liE 0 ,1:052 —> l:2i?0. and 1:051 and 1:052 are concurrent. O f

the two paths shown in figure 6.14, only the path to the left is generated by the Crt_P0G()

algorithm . Since the POG is derived from H . algorithm Crt_H() dictates the path that w ill

occur in the POG for a pa rtia l order. The H generated by algorithm Crt_H() is shown in

figure 6.15 for the execution shown in figure 6.14. The left path in 6.14 is generated from

this H.

Lem m a 6.3 For partial order a £ V, there exists one possible representation of a in the

POG.

P ro o f.

A partia l order is represented in the POG by a path beginning at the root node and ending

at a leaf node o f the tree.

Assume there exist two different representations o f a in the POG . thus there must exist

two differing paths from the root node to a leaf node that correspond to a. For th is to

occur, H must have at least one path from the root to a leaf node that corresponds to each

path o f a in the POG (according to algorithm Crt_P0G() and lemma 6.2). Let p be one

such path o f H , and let p' be the other path o f H . The nodes o f paths p and p' must d iffe r

in the order tha t the sends and ready receives occur in the path to generate two different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 103

(ro ,n ,r2)

u
(l-.asyncjsend(l),

async-recv(O),

asyncj-ecv(O))

' i

(l:async.send(2)t

l:asyncjecv(0),

asyncjrecv(O))

1 f

l:asvncjrecv(0))

U

Figure 6.15: H tree

representations o f a in the POG (according to algorithm Crt-POGO and function EQUTVO).

For p and p' to d iffer in this manner, there must exist a node n o f H that is common to

both paths that has at least two children that mark the differing o f paths p and p'. Let c be

a child o f n that corresponds to path p and let d be a child o f n that corresponds to path

p '. For nodes c and d to correspond to different paths in the POG , nodes c and d must

consist o f different send and ready receives (according to algorithm Crt-POGO and function

EQUIVO).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 104

For node n to have children, node n must have a t least one send or ready receive. Let t;,- € n

where u, is a send, iS j . The children o f n, SUCC(n), are determined by the successors o f

iS j . S(iSj). For SUCC(n) = {c. c/}. S{ iSj) must have two entries. For S(iSj) to have two

entries, there must exist two branches in FGi from the node o f FG, that corresponds to iS j

such tha t each branch includes a successor o f iS j . In FG,, a branch indicates a different

total order o f events o f Pi. Therefore c and d o f H mark the beginning o f two different

partial orders, and the POG paths that are derived from p and p' represent two different

partial orders. A contradiction to our assumption has been reached.

Let Vi € n where u* is a ready receive. iR j . Since SUCC(n) = {c. c/} occurs under the

same conditions as when u, = iS j . the same contradiction is reached for o, = iR j . ■

P ro p e rty 6.13 Each path o f the POG from root node to leaf node represents a unique

partial order

P roo f.

Assume two paths o f the POG represent the same partia l order. Two cases are possible for

this to occur.

Case 1 . The two paths are identical.

For th is to occur, there must exist a node o f the POG that has two children that are

identical. This contradicts function EQUIVO.

C ase 2 . The two paths d iffe r but represent the same partial order.

This contradicts lemma 6.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 105

root

(^ 051,2 3)

END END

Figure 6.16: POG derived from H of figure 6.11

Figure 6.16 is the POG o f the distributed program in figure 4.2. and this POG is

generated from H shown in figure 6 .1 1 . Notice that the two partia l orders o f figure 4.3

are each represented as a path from root to a leaf node in the POG. In particular, the left

path o f the POG represents POi. and the right path o f the POG represents PO 2 .

6.4 LCP and LCP' Events

For an event e*. each process’s LC P and LCP1 events can be determined from the POG.

From theorem 4.1 and lemma 5.1 , we know that for a pa rtia l order a and event e,-, at most

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 106

one CC(ei) exists and this CC(ei) consists o f LCP events which are communication events.

The causal global state for event ej is identified by CC(e;). From theorem 5.2. we know

that by piggybacking state data on the LCP and LCP' events, the CGState(ei) is available

in Pi for event e,.

Before determining the LCP and LCP' events o f the assert statement e,. the last LCP'

receive event that occurs in P, must be identified for each execution path o f Pj that includes

e,. "Last" means the receive event corresponding to the last o f the latest causal messages

that w ill piggyback state inform ation to P, for evaluating the assert statement. Since the

assert statement and a ll possible executions o f P, are represented in FG ,. the last LCP'

event(s) o f P, is(are) identified from FG,.

The algorithm BouncLAssert () determines the last LCP' event (s) o f an event. Referring

to figure 6.7. note that an async_recv(0) o f Pi has two parents. Since a node o f FG, can

have more than one parent, the parents o f each node are maintained as a linked lis t of

node pointers. The variable currenLlist is set to th is linked list. The variable NextBranch

is a stack, and an entry in the stack is a linked lis t o f FG i node pointers. The variable

LocaLLCPs is a linked lis t o f FG, node pointers, and at the completion o f the algorithm

the entries in this linked lis t are the last LCP' receive events o f an event in Pi.

The input to Bound-AssertO is FG i and assert-node. The variable assert-node is a

pointer to the assert node in FG i. A lgorithm Bound-AssertO begins the search for the

last LC P ' events o f assert-node w ith the first parent node in assert-node's currenLlist. The

search continues by traveling up the tree u n til a receive event is found o r the root node

is reached. Each possible path from assert-node to the root node o f FG,- is searched for a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 107

receive event. In the case that m ultiple paths exist from the assert-node to the root node, a

different receive.event may be found on each path. I f a receive event is found on the path,

this receive event is a last LCP' event and is placed in the linked list LocaLLCPs, and the

search is stopped on this path. The output o f the algorithm is LocaLLCPs.

Bound-AssertO
/ * input: FGi and assert-node * /

current-list = the parent nodes o f assert-node
NextBranch = NULL
Local-LCPs = NULL
cmt.node = first entry in current-list
Remove cmt-node from current-list
receive.found = false
do

while (receiue-found= false) AND (cmt-node jz root node o f F G i)
if (current-list # NULL)

Push current-list on the stack NextBranch
endif
if cmt-node — receive

Add cmt-node to Local-LCPS
receive-found = true

else
current-list — parent nodes o f cmt-node
cmt-node — first entry in current-list
Remove cmt-node from current-list

endif
endwhile
if (NextBranch ^ NULL)

receive-found = false
current-list = Pop(NextBranch)
cmt-node = first entry in current-list
Remove cmt-node from current-list

endif
while (NextBranch NULL)

end algorithm

From Bound-AssertO we have identified the last LCP' events in FG i. The next step

is to identify these same events in the P O G . Each entry in Local-LCPs is represented in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 108

the P O G at least once i f the execution o f the receive is possible. To access the P O G node

that corresponds to an entry in Local-LCPs, it is necessary to know which send and receive

commands o f the control flow graphs each P O G node represents. When creating a P O G

node, a linked lis t o f pointers is b u ilt that identifies the send and/or receive nodes o f the

control flow graph that the P O G node represents. Also, each send or receive node o f F G ,

has a linked list o f pointers to the P O G nodes that represent this communication event.

For each entry in Local-LCPs, which is actually a pointer to the appropriate receive node

in F G i. the P O G node(s) that represent the receive can be accessed.

I f an entry in Local-LCPs is represented by a POG node, then this receive is a LCP'

event o f assert-node in P,. I f an entry in Local-LCPs is not represented by a POG node,

then this receive can not be executed and therefore is not an LCP1 event.

Continuing w ith the distributed program shown in figure 4.2. we find the last LCP1

events o f Pi from figure 6.7 using algorithm Bound-AssertO . Process Pi has only one

such message. async_recv(0). This is the async-recv(O) that immediately precedes the

assert statement in F G i. Two nodes o f the POG represent this communication command,

one for partia l order PO\ and the other for partia l order PO-u These two POG nodes are

shown in figure 6.17 w ith double circles.

From theorem 5.2 we know for assert event e, there exist a non-repetitive communication

path from each LCP event to an LCP' event o f Pj that consists o f LCP and LCP' events.

The algorithm Find_LCPs() accesses the POG to find these LC P ' and LCP events for

the assert event ej. For each pa rtia l order branch o f the POG corresponding to an entry

in Local-LCPs, the algorithm traverses the branch in an upward direction beginning w ith

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 109

QToSl. 1 : T/flT) (̂ TToSl.2 I LfiT)

3 : 1A0 3 : IflO

cr^o o °o
Figure 6.17: LCP and LCP' events

the receive event o f Local-LCPs up to possibly the root node to find these non-repetitive

communication paths. Since the branch is traversed upward, the receives (LCP's) o f the

messages are encountered before the matching sends (LCPs).

When a receive event, c:jR k, is encountered in a POG node, it is a candidate LCP'

event if:

1. a non-repetitive communication path has been found from Pj to Pj that occurs after

c:jR k and a non-repetitive communication path from P* to Pj has not been found, or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 110

2 . the receive event is an event o f Pi and a non-repetitive communication path from Pk

to Pi has not been found.

The reason for candidate is the receive event c ijR k is not an LC P1 event o f Pj i f another

non-rcpctitive communication path from Pk to P, is found before2 the matching send o f

ctjR k is encountered in the PO G .

When a send event. czjSk. is encountered in the PO G , it is an LCP event if:

1. the matching receive. c:kR j, has been encountered, and

2. receive event, c:kR j. is a candidate LCP' event.

Six data structures are employed by algorithm Find-LCPsO to find the LCP and LCP'

events when traveling up a branch o f the POG. Three o f the six data structures are

sets o f process numbers. These sets are FoundProcs. Sends, and RecjwoSends. The set

FoundProcs contains the entry j i f the piggybacking message for Pj. consisting o f the send

event o f Pj and the matching receive event, has been determined from the POG. Set Sends

contains the entry j i f the send event for piggybacking data from Pj has been found. Set

Rec.woJSends contains the entry j i f the receive end o f a piggybacking message has been

found for Pj but the matching send has not. The other three data structures are queues:

RwoSQ, SendQ and RecvQ. The queue RwoSQ contains entries for receive commands

whose matching send command has not been found in the POG. An entry in RwoSQ has

the format POGnode> where c is the counter, * is process number o f the receiver,

3 Before in this context meaning the path happens after the matching send since the P O G is traversed
upward

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 111

j is the process number o f the sender, and POGnode is a pointer to the POG node that

contains the receive. The queue SendQ contains an entry for each LCP send event, and an

entry has the format < c ,j, POGnode> where c is the counter, j is the process number o f the

sender and POGnode is a pointer to the POG node containing the seud event. The queue

RecvQ contains an entry for each LCP' receive event, and an entry has the format < c ,j,

POGnode> where c is the counter, j is the process number o f the receiver and POGnode is

a pointer to the POG node containing the receive event.

Find_LCPs() / * Input: LocaLLCPs Output: SendQ, RecvQ * /

for each entry in LocaLLCPs where the event format is c:iR j
for each POG node that contains c:iR j

POGnode = POG node tha t contains c :iR j
FoundProcs = Sends = 0
Rec-wo-Sends = { i}
RwoSQ = NULL
Insert <c. i , j , POGnode> in RwoSQ
POGnode = ParentOf(POGnode)
w h ile (POGnode ^ root node) AND (FoundProcs # ({ 0 N -l } - i))

for each receive. c .jR k . in POGnode
if ((j € Sends) OR (j = *)) AND {k & FoundProcs)

AND (Rec.wo Sends does not have entry jR k)
Insert < c ,j,k . POGnode> in RwoSQ
RecjwoSends = RecjwoSends + j

endif
endfor
for each send, c:jS k , in POGnode

if (Ar € Rec_woJSends)AND((Recv-POGnode = SearchQCc.fc.j)) / NULL)
if (RwoSQ does not have an entry w ith k as the receiver)

RecjwoSends = Rec-woSends - k
endif
Sends = Sends + j
FoundProcs = FoundProcs -h j
Insert < c ,j, POGnode> in SendQ
Insert <c, k , Recv-POGnode>. in RecvQ

endif
endfor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 112

POGnode = ParentOf{POGnode)
endw h ile

e n d fo r
e n d fo r
end a lg o rith m

The i f statements o f the algorithm are complex and require explanation. When a

receive event c ijR k occurs in a POG node, the following check is made:

i f { (j € Sends) or (j = i)) and {k £ FoundProcs)
and (Rec-woNends does not have entry jR k)

The value j being in the set Send indicates a non-repetitive communication path has

been found from P} to P, that occurs after this receive. Any data received by Pj from

receive event c:jR k can then be piggybacked on the messages o f the path to Pi. I f j = i.

then the receive is a local event o f the process evaluating the assert. The data piggybacked

on the message o f this receive event w ill be available to the assert statement w ithout having

to piggyback the data on additional messages. The value k being in FoundProcs indicates

the L C P and L C P ' events for piggybacking the state inform ation o f Pjt have been found,

and the message associated w ith this receive is not needed for piggybacking data from Pk

to Pj. I f the i f statement evaluates to true, the receive event is a candidate L C P ' event.

Assume P j has two or more jR k receive events, and one jR k is already inserted in

RwoSQ. I f the other jR k receive events are encountered by the algorithm , they should

not be considered as L C P 1 events since there execution occurs before the jR k that is

represented in RwoSQ. The last condition o f the i f statement prevents these events from

being considered.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 113

When a send event c:jSk occurs in a POG node, the following check is made first:

if (k € Rec.wo Sends) and ((Recv-POGnode = SearchQ(c. k . j)) NULL)

The value k being in the Rec.wo Sends set indicates Pk has a receive event that is a candidate

LCP' event and the matching send event has not be found. For this send to be the matching

send event, the receive for Pk must be expecting a message from P j. The function SearchQO

searches the queue RwoSQ for the occurrence o f the entry <c. k . j. POGnode>. I f found, the

entry is deleted from RwoSQ and POGnode is returned. I f not found. NULL is returned.

The i f statement evaluating to true indicates this send, c:jSk. is an LCP event and the

matching receive pointed to by RecvJPOGnode is an LCP' event. The nested i f statement

checks whether k should be removed from RecjwoSends.

i f (RwoSQ does not have an entry w ith k as the receiver)

If. after SearchQO removes the entry corresponding to c.jS k. RwoSQ has an entry where

Pk is the receiver o f a message, then there is a possibility that Pk has additional L C P '

events. The value k should remain in Rec.woSends to indicate that receives o f Pk are

candidate L C P ' messages. I f RwoSQ does not have an entry where Pk is the receiver o f a

message, then the value k is removed from Rec.woSends.

Since we have identified the last L C P ' events o f the distributed program shown in figure

4.2, we next identify the L C P and L C P ' events. For each partia l order, the L C P and

L C P ' events are determined w ith algorithm Find-LCPsO. The steps taken by Find-LCPsO

to find the L C P and L C P ' events o f partia l order P O \ are given. For each iteration o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 114

the algorithm ’s loop, the variables values are shown. The values o f the variables before

executing the loop are:

Rec-woJSends = {1 }

FoundProcs = 0

Sends = 0

i= 1

RwoSQ = (< 3 ,l,0 ,3 :li2 0 >)

SendQ = NULL

RecvQ = NULL

POGnode = 2:IR2

For the firs t iteration o f the loop, the i f statement ((j 6 Sends) OR (j = i)) AND (k

& FoundProcs) AND (Rec.woSends does not have entry jR k) evaluate to true for event

2:li22. The values o f the variables after this iteration are:

Rec.woSends = {1}

FoundProcs = 0

Sends = 0

i= 1

RwoSQ = (<3.1,0.3:1R0 > . <2.1.2.2:1R2 >)

SendQ = NULL

RecvQ = NULL

POGnode = 3:051,1:1R0

For the second iteration o f the loop, the i f statement (k E Rec_wo_Sends AND (Recv-POG-

node = SearchQCc, k , j)) ^ NULL) evaluates to true for event 3:051. The values o f the

variables after th is iteration are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 115

Rec-wo-Sends = {1}

FoundProcs = {0 }

Sends = {0 }

i = 1

RwoSQ = (<2.1.2,2:152>)

SendQ = (<3.0.3:05l>)

RecvQ = (<3,1.3:150>)

POGnode = 1:051. 2:251

For the th ird iteration o f the loop, the i f statement {k 6 Rec.wo_Sends AND {Recv-POG

node = SearchQ(c.k, j)) ^ NULL) evaluates to true for event 2:251. The values o f the

variables after this this iteration are:

Rec.wo Sends = 0

FoundProcs = {0.2}

Sends = {0.2}

i = 1

RwoSQ = NULL

SendQ = (<3.0.3:05l>. <2.2.2:251>)

RecvQ = (<3,1,3:1R0>. <2.2.2:1R2>)

POGnode = root

The condition o f the while loop evaluates to false, and the LCP and LCP' events for

PO\ are identified in SendQ and RecvQ. The LCP events are 3:0S1 and 2:251. and the

LCP' events are 3:150 and 2:152. For POo, algorithm Find-LCPsC) identifies the LCP

events 3:051 and 2:251, and the LCP1 events 3:150 and 2:152. These events are underlined

in figure 6.17. In th is particular example, the LCP and LCP ' events are the same for both

partia l orders, but th is is not always the case. Notice that the send and receive o f the firs t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 116

message from Pq to P i are not identified as LCP and LCP' events. This message need not

be used for piggybacking data.

The properties resulting from this algorithm are:

1. Event ej is an LCP event if and only if event e3 is an entry in SendQ.

2. Event e3 is an LCP' event if and only if event ej is an entry in RecvQ.

These two properties establish that our technique for identifying LCP and LCP' events is

valid. Two lemmas are prerequisites for proving these properties.

Lem m a 6.4 //F ind_LCPs() adds send event ek to SendQ, e/t is an event o f a non-repetitive

communication path, and ek is an LCP event.

Proof.

Event e, is the assert event o f Pj.

B a s is .

I f efc = c:kSi, k € RecjwoJiends and RwoSQ has the entry <c. i,k , POG.node>, then

c:kSi is an event o f the non-repetitive communication path c:kSi. ctiRk and e* is an

LCP event.

Proof: By defin ition 5.2, c:kS i.c:iRk is a a non-repetitive com m unication path.

The send event c:kSi is the LCP event of P* i f c:kSi —>• c:iRk and there does not

exist another send event e'k such that c.kSi —► e'k -*■ cziRk -> ej. Since c:kSi is

the corresponding send to cziRk (RwoSQ has the entry <c, i. k, POGnode>) then

akS i —► c iiR k —>■ ej, and since k 6 RecvjwoSend, e'k does not exist.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 117

In d u c t iv e H y p o t h e s is .

The events jR k . jS U R j , . . . m S i.iR m form a non-repetitive communication path o f

length n, and iR m ->• ej.

In d u c t iv e S t e p .

I f e*; = c:kSj. then

1. the send event c:kSj is added to the non-repetitive communication path jR k ,

jS l. IR j m S i.iR m to form the non-repetitive communication path kS j,

jR k . jS l. IR j m S i.iR m o f length n + 1 , and

2. the send event c:kSj is an LCP event.

Proof:

The event c:kS j is the corresponding send o f c:jRk. and the relationship c:kSj - *

c:jR k is true Therefore. k S j. jR k . jS I . IR j m Si.iR m is a non-repetitive commu

nication path (definition 5.2) o f length n + 1. Event c:kS j is added to SendQ by

algorithm FincLLCPsO when it is found to be part o f the non-repetitive communica

tion path.

We know c:kSj —► ej since c:kS j is an event o f k S j. jR k . jS I . IR j, m S i.iR m and

iRm -» ej. From the basis and c:kSj —► ej, we can conclude tha t c:kSj is an LC P

event.

■

Lem m a 6.5 I f Find-LCPsO adds receive event jR k to RecvQ, jR k is an event o f a non-

repetitive communication path and jR K is an L C P ' event.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 118

Proof.

For event jR k to be added to RecvQ, k must first be an entry in RecjwoSends and RwoSQ

contains the entry for c:jRk. For these to exist, we know from algorithm Find-LCPsO

• j € Sends or j = i. and

• k g FoundProcs

Consider the two possibilities:

1. j 6 Sends and k g FoundProcs.

From lemma 6.4. i f j € Sends. a non-repetitive communication path exists from

a LCP send o f P j, jS l. to a LCP' event o f Pi, iRm : jS l, iR m . And for k g

FoundProcs, the LCP and LCP' o f Pk have not been found in the POG. We can

also conclude that jR k —► jS l. For jR k to be added to RecvQ, the send kS j must

have been found in an ancestor node o f the o f jR k (from algorithm Find-LCPsO).

Therefore. k S j —► jR k . From this we can conclude the send event corresponding to

jR k . kS j. is found and is an LCP event (Lemma 6.4). jR k is an LCP' event, and

jR k is an event o f the non-repetitive communication path k S j, jR k , jS l iRm.

2. j = i and k g FoundProcs. Event jR k is a receive event o f the process evaluating

the assert, and the LCP event o f Pk has not been found. Then for jR k to be added

to RecvQ, the send k S j has been found in the POG, is the LCP event o f Pk and

forms the non-repetitive communication path k S j, jR k (lemma 6.4). Since jR k is

the corresponding receive o f kS j, jR k is an LCP' event.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 119

P ro p e rty 6.14 Event ej is an LCP event i f and only i f event ej is an entry in SendQ.

P ro o f.

PART 1. I f ej is an LCP event, then ej is in SendQ.

Proof by contradiction.

Assume e} = jS k is an LCP event but is not in SendQ. Since jS k is an LCP event.

there exists a non-repetitive communication path JS k .kR j.kS l.lR k m S i.iR m

that consists o f LCP and LCP ' event where jS k -» k R j -> kSl -> IRk - > • • • • —>

mSi —► iR m (theorem 5.1 and defin ition 5.2). For jS k to not be in SendQ, k R j is

not in RwoSQ and k is not in Rec.wo-Sends. For this to occur either

1 . j 6 FoundProcs or

2. k 0 Sends.

1. For j to be in FoundProcs. another e' exists where e' is in SendQ and e' is an

LC P event o f P j. But since Pj can have only one LC P event (lemma 4.1) a

contradiction has been reached.

2. For k ft Sends. kSl. the L C P event o f Pk. is not in SendQ. The same reason

ing holds as to why each L C P event o f the non-repetitive communication path

jS k ,k R j,k S l, lR k , mSi. iR m is not in SendQ except for mSi. For m Si to

not be an LCP event. iRm is not recognized as an LCP' event. For iR m to not

a LCP' event, m must be in FoundProcs. For m to be FoundProcs, a send event

em and a receive event e' exist where m Si ->• iRm - * em - * e '. Thus e™ is the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 120

L C P event o f Pm (defin ition 4.1). A contradiction has been reached since m Si

is the LCP event o f Pm-

Part 2. If e} is in SendQ. then ej is an L C P event.

Proof. This follows directly from lemma 6.4.

■

P ro p e rty 6.15 Event ej is an L C P 1 event i f and only i f event e} is an entry in RecvQ.

Proof.

Part 1. If ej is an L C P ' event, then e} is in RecvQ.

Proof.

I f Cj = jR k is a receive L C P 'event, then jR k is part o f a non-repetitive communication

path to an LC P1 event o f Pi tha t consists o f L C P and L C P ' events. jS k . kR j, kSl, IRk,

 m Si.iR m (theorem 5.1). We know the L C P sends are entries in SendQ (property

6.14). I f the sends are entries in SendQ. then the corresponding receives are also entries

in RecvQ according to algorithm Find-LCPsO.

Part 2. If ej is in RecvQ, then ej is an L C P ' event.

Proof. This follows directly from lemma 6.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTERS. STATIC ANALYSIS 121

6.5 POG and Taylor’s Complete Concurrency History

Taylor's work motivated our static analysis to generate the POG for representing the pos

sible executions o f a distributed system, but our static analysis algorithms have been de

veloped independent o f Taylor's work. The only portion o f our static analysis that is a

derivation o f Taylor's static analysis is representing each process w ith a flow graph and the

successor relationship between nodes o f the graph.

A path o f the POG has a different meaning from a path in Taylor's complete concurrency

history. A path o f Taylor's history represents a possible to ta l ordering o f i/o rendezvous

and does not represent the concurrent execution o f i/o rendezvous. Each path o f the POG

represents a partia l order o f the distributed system, and a path does represent the concur

rency o f the communication commands. One or more o f Taylor's paths can correspond to

one path o f the POG since one or more to ta l orders can correspond to the same partia l

order.

6.6 Static Analysis in the Parallel Domain

Work in the parallel domain that is most closely related to ours is the automated paralleliza-

tion o f sequential code. Parallelizing compilers collect data flow information for a source

program and use this information to detect potential parallelism, determine an appropriate

grain size, and then transform the program into a functionally equivalent parallel program

tha t can exploit the underlying architecture. These compilers also aim at automating the

selection o f data distributions and reducing nonlocal data accesses in distributed memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 122

systems.

The m ajority o f the data flow analysis performed by these compilers is dependence

analysis. Two computations that have a dependence relationship means that constraints

on the ir execution order are present. By identifying these constraints w ith dependence

analysis, it can be determined whether transformations o f the source code w ill alter the

semantics o f the computation.

Two types o f dependencies that can be identified w ith data flow analysis are data and

control. Consider two statements, a and 6 . o f a sequential program. Statement b is control

dependent on statement a. i f a determines whether 6 executes. Statements a and b have a

data dependence if they cannot be executed simultaneously because o f conflicting uses o f

the same variable.

Dependence analysis performed at the procedure and function level is useful for identify

ing coarse grain parallel transformations [35.17. 24. 23. 36]. Dependence analysis performed

at the loop level is useful for identifying fine grain parallelism [6 . 10. 11. 9, 25, 36]. Lan

guages. such as Fortran D [34], provide commands the programmer uses to annotate the

sequential program w ith data decompositions. The compiler then performs dependence

analysis to determine the computation decomposition [2]. O ther languages [32, 2] exist in

which the compiler determines both data and computation decompositions w ith the aid o f

dependence analysis.

The objective o f the compiler is to produce parallel code in which the execution is

m axim ally parallel and nonlocal data accesses are minimized. Dependency analysis provides

inform ation for achieving th is objective.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. STATIC ANALYSIS 123

In itia lly our static analysis appeared sim ilar to the static analysis performed by paral

lelizing compilers. By comparing the two more closely, the sim ilarities are only superficial.

A parallelizing compiler generates control flow graphs of the sequential program and per

forms sequential data flow analysis. The com piler uses these results to create a functionally

equivalent parallel program and decompose the sequential program’s data. As part o f this

process, the necessary communication commands are also created. Our work generates

control flow graphs for the source code o f the distributed processes to analyze the commu

nication. The source code is already comprised o f communication commands. We do not

perform dependence analysis and we do not add communication to the distributed system.

In the next chapter, the analysis o f distributed programs w ith the addition o f loops

is described. The distributed programs in chapter 2 are analyzed in chapter 8 . and the

LCP and LCP' events determined. These programs further demonstrate the benefits o f

identifying LCP and LCP' events for reducing the number o f messages that piggyback

data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Loops

Chapter 6 presented algorithms for creating the FG,. H and POG graphs. Algorithms

where also presented for determ ining the LCP and LCP' events of an assert statement from

the POG. These algorithms did not support loops in the source code o f the distributed

processes. In th is chapter we make the additions to the algorithms to allow loops, and

the algorithms are modified so a ll properties and lemmas o f chapter 6 are preserved. By

concluding w ith the preservation o f properties 6.14 and 6.15. we demonstrate that our

technique remains valid for identifying LC P and LC P ' events.

7.1 Control Flow Graphs

Three loops constructs can occur in the source code o f a process: do - w h ile , w h ile , and

fo r . Each loop has one unique entry point and one unique exit point. Nesting o f loops are

allowed, but each loop has its own entry and exit point. Neither goto nor break statements

are allowed in the source code since either can create additional entry or exit points for

loops.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 125

Algorithm Create_FGi() requires additions for representing loops in FG ,. Each loop in

a process’s source code is represented as a cycle in the process’s corresponding flow graph.

The cycle is accomplished w ith a back edge from the exit point o f the loop to the entry point

o f the loop. The concept o f a dominating node is necessary to define a back edge. A node

a o f flow graph FG , dominates node b o f FG, if every path from the root node of FG , to

node b passes though a. I f (a. 6) is an edge, then a is the in itia l node and b is the term inal

node. An edge is a back edge if its term inal node dominates its in itia l node. An edge o f a

flow graph that is not a back edge is referred to as either a forward edge or an edge.

The control flow graph for a process. FG j, requires additional node types for representing

loops. The entry point o f a loop is represented w ith a head node, and the exit point o f a

loops is represented w ith a ta il node. The head and ta il o f a w h ile loop are nodes labeled

W HILE and END .W H ILE, respectively. The head and ta il o f a do - w h ile loop are nodes

labeled DO and END_DO. respectively. The head and ta il o f a fo r loop are nodes labeled

FOR and END-FOR. respectively. The nodes that occur between the head and ta il nodes

make up the body o f the loop.

The w h ile and fo r loop are sim ilar in that the loop condition is evaluated at the head

o f the loop. The loop body is executed zero or more times. This type o f loop is referred

to as a precondition loop. The loop condition o f the do loop is evaluated at the ta il o f the

loop so the loop body is executed one time before testing the condition. This type o f loop

is referred to as a postcondition loop.

Algorithm s Create JG j () and AddNodeO are repeated from chapter 6 w ith the additions

required for the loop constructs. Figure T .l shows the three loop constructs represented

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 126

by a portion o f a control flow graph. The dashed edges between nodes indicate the edges

added by algorithm AddNodeO when NewNode is added to the flow graph. A back edge is

added by Create_FGiO for any one o f the loop constructs from the ta il o f the loop (e.g.,

END .W H ILE node) to the head o f the loop (e.g.. W HILE node). The back edge creates a

cycle in the graph.

Three additional stacks and three additional variables are required to handle loops in

algorithm Create.FGj(). The stacks are WhileStack. DoStack and ForStack. The three

pointer variables are TopDoStack. TopWhileStack, and TopForStack. Each pointer refer

ences the top entry o f its respective stack. The stacks are in itia lly empty, and the pointers

are in itia lly NULL. The stacks are used to match the begin and end o f the loop constructs.

Create_FGt() /* Input: Pt; Output: FGi * /
Create the ROOT node o f FG i
CrtNode = ROOT node
i f an assignment statement is recognized

Add assignment statement to the ta il of the linked lis t
i f an async-send is recognized

if the linked lis t is not empty
AddNode (CrtNode. ASSIGN)
linked lis t is set to empty

AddNode (CrtNode. SEND)
i f an async.recv is recognized

if the linked lis t is not empty
AddNode (CrtNode, ASSIGN)
linked lis t is set to empty

AddNode {CrtNode. RECEIVE)
| f an a sse r t is recognized

i f the linked lis t is not empty
AddNode C CrtNodeT ASSIGN)
linked lis t is set to empty

AddNode (CrtNode, ASSERT)
i f an i f statement is recognized

i f the linked lis t is not empty

/ * for the assignment statements * /

/ * for the assignment statements * /

/ * fo r the assignment statements * /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 127

AddNode (CrtNode, ASSIGN) / * for the assignment statements * /
linked lis t is set to empty

AddNode (CrtNode, IF) / * for the i f statement * /
Push CrtNode onto the stack
TopStack — CrtNode

| f an e ls e is recognized
AddNode (CrtNode. ENDJFSIDE)
i f the linked lis t is not empty

Set field in CrtNode to point to linked lis t
linked lis t is set to empty

TopStack.HoldPtr = CrtNode / * Set HoldPtr of the IF node to the * /
/ * address of the ENDJFSIDE * /

CrtNode = top entry o f the stack
CrtNode.AddEdgeFlag — true / * Flag an edge needed from ENDJFSIDE node * /

/ * to the first node following ENDJSLSE node * /
if the end o f the else side o f an if/else is recognized

AddNode (CrtNode. END-ELSE) / * for the ending of the else side * /
if the linked lis t is not empty

Set field in CrtNode to point to linked lis t
linked lis t is set to empty

CrtNode.HoldPtr = TopStack.HoldPtr / * Move the address of the ENDJFSIDE * /
/ * node to the ENDJSLSE node * /

CrtNode.AddEdgeFlag = true / * Flag an edge will be needed from ENDJFSIDE * /
/ * node to the first node following ENDJSLSE node * /

Pop the stack
i f the end o f an i f statement is recognized

AddNode (CrtNode. EN D -IF) / * for the ending of the if statement * /
if the linked lis t is not empty

Set field in CrtNode to point to linked lis t
linked lis t is set to empty

CrtNode.HoldPtr = TopStack / * Set the HoldPtr of ENDJF node * /
/ * to the address of the IF node * /

CrtNode. AddEdgeFlag — true / * Flag an edge will be need from the IF node * /
/ * to the first node following the ENDJF node * /

Pop the stack
i f a w h ile statement is recognized

i f the linked lis t is not empty
AddNode (CrtNode, ASSIGN) / * for the assignment statements * /
linked lis t is set to empty

AddNode (CrtNode. W H ILE) / * for the i f statement * /
Push CrtNode onto WhileStack
Top WhileStack = CrtNode

i f a fo r statement is recognized
i f the linked lis t is not empty

AddNode (CrtNode, ASSIGN) / * fo r the assignment statements * /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 128

linked lis t is set to empty
AddNode (CrtNode, FOR) / * for the i f statement * /
Push CrtNode onto ForStack
TopForStack = CrtNode

i f a do statement is recognized
i f the linked lis t is not empty

AddNode (CrtNode, ASSIGN)
linked lis t is set to empty

AddNode(CrtNode, DO)
Push CrtNode onto DoStack
TopDoStack = CrtNode

i f the end o f a while loop is recognized
AddNode (CrtNode. END .W H ILE)
i f the linked lis t is not empty

Set field in CrtNode to point to linked list
linked lis t is set to empty

Add back pointer from CrtNode to Top WhileStack / * create cycle in the graph * /
CrtNode.HoldPtr = Top WhileStack / * Set the HoldPtr of END.WHILE node * /

/ * to the address of the WHILE node * /
CrtNode. AddEdgeFlag = true / * Indicate an edge will be needed from the WHILE * /

/ * node to the first node following the END. WHILE node * /
Pop WhileStack

i f the end o f a for loop is recognized
AddNode (CrtNode, END.FOR) / * fo r the end of the for loop * /
| f the linked lis t is not empty

Set field in CrtNode to point to linked list
linked lis t is set to empty

Add back pointer from CrtNode to TopForStack / * create cycle in the graph * /
CrtNode.HoldPtr = TopForStack / * Set the HoldPtr of END-FOR node * /

/ * to the address of the FOR node * /
CrtNode.AddEdgeFlag = true / * Indicate an edge will be need from the FOR * /

/ * node to the first node following the END-FOR node * /
Pop ForStack

| f the end o f a do loop is recognized
AddNode (CrtNode, ENDJDO) / * fo r the end of the do loop * /
I f the linked lis t is not empty

Set field in CrtNode to point to linked list
linked lis t is set to empty

/ * create cycle in the graph for loop * /
Add back pointer from CrtNode to node reference by TopDoStack
Pop DoStack

i f the current control construct or statement is not recognized
Generate an error and halt

I f the end o f the source code is recognized
AddNode (CrtNode, END)

/ * for the assignment statements * /

/ * for the if statement * /

/ * fo r the end of the while loop * /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 129

I f the linked lis t is not empty
Set held in CrtNode to point to linked list
linked lis t is set to empty

end a lg o rith m

The only valid exit point o f a postcondition loop is from the ta il o f the loop. Algorithm

AddNodeO creates an edge from the ENDJDO node to the firs t node added to the graph

after the END-DO node (NewNode). The only valid exit point o f a precondition loop is

from the head o f the loop. A lgorithm AddNodeO creates an edge from the W HILE node

and the FOR node to the firs t node tha t occurs after the loop's end node.

AddNode (.CrtNode, type)
NewNode = Allocate a node
i f CrtNode ? END.W HILE. END-FOR

Create a directed edge from CrtNode to NewNode
i f CrtNode.AddEdgeFlag

Create a directed edge from the node CrtNode.HoldPtr to NewNode
i f type = ASSIGN

Set field in NewNode to point to assignment linked lis t
CrtNode — NewNode

end a lg o rith m

Algoritlim AddNodeO does not require additional code or modification to create the

edge from the exit point o f a do -w h ile loop. Additional code is required for the exit point

o f the w h ile and fo r loops. To create an edge from a W HILE or FOR node to NewNode,

the same steps are taken when an edge is added from an IF node to the EN D JF node. The

description o f th is process is presented in terms o f the w h ile loop, but is generalized to any

precondition loop. When the EN D.W HILE node is added, the address o f the W HILE node,

available on top o f WhileStack, is stored in the END.W HILE node. This is accomplished

w ith the following line from Create-FG jO :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 130

WHILE FOR

END.WHILE END.FOR
\\ \

V

DO

END.DO

I
I

X ^ ^N ew N ode^^) NewNode C - o Q

1 T
Figure 7.1: Control flow graph of the loop constructs

CrtNode.HoldPtr = Top WhileStack

When NewNode is added to FGt. the address o f the W HILE node is available in CrtNode

so that AddNodeO can create an edge from the W HILE node to NewNode. The flag

AddEdgeFlag o f the END.W HILE node is set to true to indicate that function AddNodeO

should add an edge from the W HILE node to NewNode.

Properties 6.1 through 6.4 correspond to the control flow graphs. Properties 6.2 and 6.4

are not affected by loops, but property 6 .1 requires some modification when loops occur in

the source code.

F irst we w ill consider precondition loops. Consider the tfh ile loop shown in figure 7.2.

I f the loop is executed zero times, the happens before relationship among the nodes is:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 131

W HILE -4 S2

I f the loop is executed one time, the happens before relationships among the nodes are:

W HILE -4 SI -» END.W HILE -4 W HILE -4 S2

A new iteration o f the loop is begun when the firs t node of the loop body is executed. In

this example, uode S i is the first node o f the loop body. The last node o f an iteration is the

W HILE node. I f i iterations o f a precondition loop occur, the W HILE node is executed i + 1

times, and the back edge is followed i times. Consider the case when the loop is executed

two times. The happens before relationships are:

W HILE -4 SI -> END.W HILE -4 W HILE -> SI -► END.W HILE -4 W HILE -4 S2

The following summarizes the happens before relationships and the beginning and ending

o f loop iterations for the v h ile loop.

WHILE—► S2

WHILE —*■ SI —*- END.WHILE —**WHILE— S2

iteration 1

WHILE — SI — END.WHILE - —WHILE—*- SI — END.WHILE —"-WHILE—* S2

iteration 1 iteration 2

DO— SI — END.DO — S2
\ /

iteration 1

DO— SI — END.DO — D O -— SI —* END.DO — S2
\ \ /

iteration 1 iteration 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 132

The happens before relationship and the beginning and ending o f loop iterations are also

shown for do -w h ile loops, which w ill be discussed next.

WHILE

END.WHILE

Figure 7.2: Control flow graph with a while loop

According to property 6.1. if a path exists from node a to node 6. then a —► 6 when both

are executed. By examining the happens before relationship between the S i node and the

END-W HILE node, we see that property 6.1 requires updating. A path exists from node

END-W HILE to node SI in figure 7.2. but it is not the case that END.W HILE —> SI when

one iteration o f the loop occurs. Consider two iterations o f the loop. The END-W HILE o f

the firs t iteration does not happen before the SI o f the firs t iteration, but the END.W HILE

o f the firs t iteration does happen before the SI o f the second iteration. In general,

EN D.W HILE S I if

1 . the loop is executed 2 or more times

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 133

DO

END_DO

Figure 7.3: Control flow graph with a do - while loop

2. END-W HILE occurs in iteration i o f the loop, and

3. S i occurs in iteration i -f 1 or greater.

Next we need to examine the postcondition loop. Figure 7.3 shows a flow graph for a

do loop. I f the loop is executed only one time, the happens before relationships among the

nodes are:

DO -> SI -> END.DO -► S2.

The happens before relationships for two executions o f the loop are:

DO -> SI -► END-DO -+ DO -> S i -+ END_DO -> S2.

The boundary nodes o f an iteration for a postcondition loop are different than those o f a

precondition loop. The firs t execution o f DO begins iteration 1 o f the loop, and END_DO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 134

completes that iteration. I f the loop is iterated i times, DO and END-DO are executed i

times, and the back edge is followed i — 1 times.

Consider the happens before relationship between SI and END-DO. A path exists from

the END-DO node to the S i node, but the relationship END-DO -> S i is true only i f

1 . the loop is executed more than once,

2. END-DO occurs in iteration i, and

3. Si occurs in an iteration greater than i.

Property 6.1' subsumes property 6.1 to account for the occurrence o f loops. The property

is given in two parts for completeness, but only part 1 is modified. The variable I is used

to denote a loop.

Property 6.1’

PART 1. I f a path exists from node a to node b in FG i • then a -> 6 when

1. a and b are both executed and a back edge is not part o f the path from node a to

node b, or

2. a and b are both executed, the back edge of loop I is part o f the path from node a

to 6 , node a occurs in iteration i o f loop I and node b occurs in iteration j , where

j > i, o f loop I, or

3. a and b are both executed, the back edge of loop I is part of the path from node

a to b, loop I is a precondition loop, nodes a and b occur in the same iterationr

and node b is the head o f the loop.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 135

PART 2. I f a -> b when both a and b are executed, then a path exists from node a to node b

in F G i.

Condition (1) of part 1 is equivalent to property 6.1. Conditions (2) and (3) quantify

which happen before relationships are possible w ith the addition o f back edges. Condition

(2) o f part 1 allows the relationship END-W HILE —> SI o f figure 7.2 when m ultiple iter

ations o f the loop occur, and S i occurs in a later iteration than END-W HILE. Also notice

that this condition allows the happens before relationship W HILE —► W H ILE where the

first W HILE occurs in an earlier iteration than the second. As for postcondition loops, the

condition S i —► DO is allowed for figure 7.3 when two or more iterations occur. Condition

(3) o f part 1 allows S i —► W H ILE when both occur in the same iteration.

7.2 H Graph

W ith the possibility o f loops in the source code o f each process o f the distributed system,

loops are also possible in H . In the algorithm for constructing H . additions are required

for detecting the repeated execution o f communication commands and representing these

repetitions as cycles in H . Cycles occur in H if

1. a send command is in the body o f a loop and the send is possible.

2 . a send command is possible, the matching receive is ready, and both occur in the body

o f a loop, or

3. a combination o f (1) and (2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 136

Cycles are created in H w ith back edges. The graph retains the properties o f a tree; there

exist a root node and leaf nodes. The terminology ancestor, descendent, parent and child

w ill remain in use for the relationships defined by forward edges. The relationships between

nodes defined by back edges w ill be discussed following the modified C rtJ K) algorithm.

Properties 6.5 through 6 .8 and lemma 6.1 correspond to the H graph. The substantial

changes to the i f graph construction algorithm do not invalidate these properties and

lemma. The node relationship ancestor is fundamental to properties 6.5 and 6.7, and these

properties remain valid w ith the clarification o f the ancestor relationship. Properties 6 .6

and lemma 6.1 are not affected by loops. Property 6 .8 is discussed following the modified

C rt-HO algorithm .

Po P,
do do

async_send(Ijr) isync_recv(0,y)

while while

(V l)
1

(l:async_scnd(l).
axync_recv(0))

—) *iync_recv(0))

(4async_iend(l). (4:«iync_iemKl).
) 3:miync_rccv(0)) -)-)

Figure 7.4: Example 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 137

<ro»ri)

I
(l:async_send(l),
async_recv(0))

l:async_recv(Q))

async_recv(0))
-)

(• ♦

--) async_recv(0)) —)

Figure 7.5: Example 1 with back edges

The detection o f loops in H requires significant additions to the Crt_H() algorithm .

Two examples, useful for describing the additions to C rtJ lO . demonstrate the occurrence

o f loops in H. The first example is a two process distributed system. The source code o f

each process and the graph resulting from algorithm Crt_HC) in chapter 6 is shown in figure

7.4. The graph H can not accurately represent the execution o f this distributed system

without back edges. Communication commands are repeatedly executed, but the loops are

not shown as cycles in H since this version o f the algorithm does not detect loops. A pattern

can be observed in H . The nodes (2:async.send(l), l:async_recv(0)) and (3:async_send(l),

2:async_recv(0)) o f figure 7.4 represent the same state o f the system. Although the counters

corresponding to the sends and receives differ, the send in each node represents the same

command in Pq, and the receive in each node represents the same command in P i. Another

system state is represented by nodes (3:async_send(l)T—) and (4:async_send(l),—) o f figure

7.4. The complete H graph w ith the inclusion o f back edges is shown in figure 7.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS

r o
do

async_send(l,j:)
async_send(l,x)

while

r i
do

async_recv(0,y)
async_rccv(0,y)

while

(r0,r,)

I
(l:async_send(l),

async rccv(O))

1
(2:async_send(l),

l:async_recv(0))

(3:async._send(l),

2:async_recv(0))

(4:async..send(l).

3:async_recv(0))

(Srasync.

4:async_

.send(l),

.recv(O))

async_recv(0))

2:async_recv(Q))

(4:async_send(l), (—,

—) async_recv(0))

(5:async_scnd(l),

(6:async_scnd(l),

->

Figure 7.6: Example 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

CHAPTER 7. LOOPS 139

Po P,
do do

async_send(l.r) async_recv(0,y)
async_send(l,x) async_recv(0,y)

while while

(ro»rt)

I
(l:async_send(l),

async_recv(0))

(2:async_send(l),

l:async_recv(0))

(3:async_send(l),

2:async_recv(0)) 2:async_recv(0))

(4:async_send(l),

(5:async_send(l),

Figure 7.7: Example ‘2 with back edges

Loop detection is more d ifficu lt in the example o f figure 7.6. The nodes (2:async_send(l)t

l:async_recv(0)) and (3:async-send(l), 2:async_recv(0)) syntactically appear to represent

the same state, but they do not. The node (2:async_send(l), l:async_recv(0)) repre

sents the firs t send o f Po and the firs t receive o f Pi, whereas the node (3:async_send(l).

2 :async_recv(0)) represents the second send in Pq and the second receive in P\. Nodes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 140

(2:async_send(l), l:async_recv(0)) and (4:async_send(1),3:async_recv(0)) represent the same

state o f the system, and nodes (3:async_send(l),2:async_recv(0)) and (5:async_send(l),4:

asyncjrecv(O)) represent another state o f the system. The complete H graph representing

the execution o f the distributed system w ith back edges is given in figure 7.7

Additional inform ation is required to detect and represent loops in H. For each node,

n. o f H the following inform ation is needed.

• A temporary back edge, temp.back. used by Crt_HO is a field of n.

• An array o f node pointers that are the children o f n. KidsfMAXEDGES] is a field o f

n. Each entry represents a child that is the result o f a forward or back edge. The

forward edge children occur first in the array.

• An array o f integers KidJypefMAXEDGES], where Kid.type[i] indicates the type o f

edge for Kids[iJ. is a field o f n. A zero entry indicates a forward edge, and a one entry

indicates a back edge.

• An array o f pointers to the parents nodes o f n. Parents[2], is a field o f n. Entry

ParentsfOj is the parent o f n that is defined by a forward edge. Each node has a

parent from a forward edge. I f a node is pointed to by a back edge, then the node

also has a parent that is defined by a back edge. The entry ParentflJ is the parent

o f n that is defined by a back edge or NULL i f the n is not pointed to by a back

edge. An example o f a parent resulting from a back edge is node (3:async_send(L),

2:async_recv(0)) which is a parent o f (2:async_send(l), l:asyncjecv(0)) o f figure 7.7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 141

When node n is added to H , a check is made to determine i f the state represented by

this node has already been represented by another node in n ’s execution path. This is done

by comparing n w ith its ancestors. F irst n is compared w ith its parent. I f the parent does

not represent the same state, then the grandparent is compared against n. This continues

u n til either a node that represents the same state o f n is found or the root node is reached.

Two comparisons are required to determine if node n and its ancestor node, n'. represent

the same state. The firs t comparison identifies syntactically identical nodes. Syntactically

identical meaning that for each entry, u*, in n. there exists v ' in n’ which is identical w ith

the exception o f the counter value. I f nodes n and n ' are syntactically identical, the second

comparison is necessary to determine whether the nodes represent the same state. For

each pair o f entries, w* and v[. where Vi and v[are not equal to the inactive marker, the

test insures that FGnode[i] o f n is equal to FGnode[ij o f n '. I f FGnodefiJ o f n is equal to

FGnode[iJ o f n '. both point to the same node o f FG j. Passing the test implies that u, and

v[represent the same command o f Pi. I f the test is true for each pair. («*, u'). then the two

nodes represent the same state.

I f the ancestor node n ' represents the same state as node n. then n ' is possibly the entry

point o f a loop, and the parent o f n is possibly the exit point o f this loop. The next decision

is whether to add a back edge from the parent o f n to n ' to form the loop. Two cases exist

for the relative location o f nodes n and n ' in H.

1. The parent o f node n is also node n '.

2. The parent o f node n is not node n '. Node n ' is an ancestor o f the parent o f node n.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 142

(r0 ,rt)

\
(l:async_send(l),

async_recv(0))

Cr0»r!)

I
(l:async_send(l),

async_recv(0))

node n '

node n

(2:async_send(l),

l:async_recv(0))

(3:async_send(l),

2:async_recv(0))

node n'

Figure 7.8: Case 1

(2:async_send(l),

l:async_recv(0))

I f case I is true then a loop has been detected in H. A back edge is added from n'

to itself, and node n is removed from H. Figure 7.8. the portion o f figure 7.4 needed

to demonstrate case 1 . shows the transformation o f H when the loop is detected. Case 2

requires more inform ation to determine whether a loop has been found in H. Figure 7.9

is a distributed system that demonstrates case 2. Nodes n' and n represent the same state,

but adding a back edge from the parent o f n to n ' would be incorrect. The state represented

by node (5:async_send(l). 2:async_recv(2), —) does not recur after node n. Additionally,

the state represented by nodes n and n ' does not recur after node n .

Continuing to generate nodes o f the execution path that includes n and n ' is necessary

to determine i f a loop exists in H . I f the nodes from n ' to the parent o f n are duplicated

immediately after n. a loop exists in A back edge is added from the parent o f n to n '

creating a cycle. Node n and its descendants are removed from H .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 143

The algorithm Check_Loops() checks for cases 1 and 2. Determining whether a back

edge should be added for case 2 requires the use o f field temp.back. Whenever case 2 is

true. Check-LoopsO sets the field temp.back o f n's parent to point to n'. Figures 7.10 and

7.11 demonstrate the use o f temp.back. The dashed edge represents the value o f temp.back.

Figures 7.10 and 7.11 show the generation o f H in figure 7.6 as each node is added. Only

the portion o f H relevant to the addition o f a back edge is shown.

Step 3 o f figure 7.10 shows the first occurrence case 2. Nodes n and n' represent

the same state and a temporary back edge (temp.back) is added from the parent o f n

to n'. A back edge can not be added u n til it is known that the state represented by

node (3:async_send(l). 2:async_recv(0)) occurs again immediately after node n. The node

added in step 4, (5:async_send(l), 4:async_recv(0)). represents the same state as node

(3:async_send(l). 2:async_recv(0)). A temporary back edge is added from the parent o f

n (4:async.send(l), 3:async_recv(0)) to n' (3:async_send(l). 2:async_recv(0)). When this

temporary back edge is added, n ' also has a temporary back edge that points to node

(2:async_send(l), l:async_recv(0)). This indicates tha t the state o f nodes (2:async_send(l),

l:async_recv(0)) and (3:async_send(l). 2:async_recv(0)) are repeated by (4:async_send(l),

3:async_recv(0)) and (5:async_send(l), 4:async_recv(0)) nodes. The temporary back edge

o f node n ' becomes the back edge, and the nodes after n ' are removed as shown in the

resulting H.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS

async_send(l;c)
do

async_send(I ̂ c)
while(...)

node n '

node n

P.

async_recv(0,y)
do

async_recv(0,y)
async_recv(2,y)

while(...)

P2

async_send(l,z)

(r0*rl*r2)

I
(l:async_send(l),

async_recv(0),
2:async_send(l))

“ 1
(3:async_send(l),
l:async_recv(0),

-)

I
(4:async_send(l),
3:async_recv(0),

I
(5:async_send(l),
2:async_recv(2),

i
(6:async_send(l),
4:async_recv(0),

—)

J
(7:async_send(l),

async_rccv(2),

?
Figure 7.9: Case 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 145

1) Addition of node:
(2:async_send(l),
l:async_rccv(0))

(ro.rO

I
(l:async_scnd(l),

async_recv(0))

(ro.rt)

(l:async_scnd(l),
async_recv(0))

(2:async_send(l).
I:async_rccv(0))

2) Addition of node:
(3:async_send(l),
2:async_recv(0))

(r0,r,)

i
(l:async_send(l).

async_recv(0))

(2:async_send(l),
l:async_recv(0))

(r0.rt)

I
(l:async_send(l),

async_rccv(0))

(2:async_send(l),
l:async_recv(0))

I
(3:async_scnd(l),
2:async_recv(0))

3) Addition of node:
(4:async_scnd(l),
3:async_recv(0))

(r0,r,)

i
(l:async_send(l),

async_recv(0))

I
(2:async_scnd(l),
l:async_recv(0))

(3:async_scnd(l),
2:async_recv(0))

(r0,ri)

*
(l:async_scnd(l),

async_recv(0))

I Ir
(2:async_send(l),
l:async_recv(0))

(3:async_send(l), >
2:async_recv(0)) /

“ R(4:async_scnd(l),
3:async_recv(0))

F igure 7.10: Detecting a loop

node n

node n

node n '

node n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 146

4) Addition of node:
(5:async_send(l),
4:async_recv(0))

(r0,r,)

(l:async_send(l),
async_recv(0))

(2:async_send(l),
l:async_recv(0))

(3:async_send(l),
2:async_recv(0))

(4:async_scnd(l),
3:async_recv(0))

(r0.ri)

*
(l:async_send(l),

async_recv(0))

| f
(2:async_send(l).
I:async_recv(0))

(3:async_send(l),
■" I

2:async_recv(0» /

(4:async_send(l).
3:async_recv(0))

(5:async_scnd(l),
4:async_recv(0))

Resulting Hi

(r0,rt)

*
(l:async_send(l),

async_recv(0))

I c \
(2:async_send(l),
l:async_recv(0»

(3:async_send(l),
2:async_recv(0))

Figure 7.11: Detecting a loop

node n '

node n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 147

When node n is added to H . algorithm Crt_H() invokes algorithm Check_Loops () to

check for the existence o f a loop w ith the additional node. A lgorithm Check-Loops O checks

the ancestors o f n for a node representing the same state as n. I f one is found, the variable

PossJIead is set to the matching node, and variable Poss.Tail is set to the parent o f n.

I f PossJIead and Poss.Tail refer to the same node, an occurrence o f case 1 is found, a

back edge is added from PossJIead to itself, and node rt is removed from H. I f case 2 is

verified, nodes from the parent o f Poss.Tail to PossJIead are traversed checking for values

in temp.back. I f all nodes have values in temp.back. then the loop has been repeated. In

PossJIead. the value o f temp.back is replicated as the back edge. I f any node has no value

in temp.back. the potential loop body has not been repeated.

When a loop is added to H . nodes require removal. I f a back edge is added for case I,

then only node n needs to be removed. When a back edge is added for case 2. the nodes

and the ir children that were created to duplicate the loop body must be removed. When

traversing H from the parent o f Poss.Tail to PossJIead. the variable prev.traverse is set to

the previously checked node. I f a back edge is added, node prev.traverse and its children

are removed by the Remove-NodesO function. Entries may remain in CCS.Q for children

o f the removed node. When a node is removed from H. the queue CCS.Q is scanned for

entries whose parent is the removed node. I f any are found, they are removed from CCS.Q

by the RemoveQO function.

Crt-HO
In itia lize queues Msg.Qo, . . . , M sg.Q s-i, CCS.Q to empty
In itia lize array cotmfer[0] . . . countei\N — I] to 0
Create root node r
r.C C S = CCS0
Determine_SUCC(r,CCSq, Msg.Qo,.... Msg.QN-u CCS.Q)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 148

w h ile CCS.Q is not empty
item = behead(CCS-Q) / * format of item is <node,list,Qo, ... ,Qn - i , counter> * /
Parent = item.node
LL = item, list
Msg.Qo, M sg.Q x-i = item.Qo, item .Q s-i
counter = item, counter
fo r each <CCS, FGnode> entry in LL

Create a node n in H
n.CCS = CCS
n.FGnode = FGnode
AddEdge (Parent, n)
Determine-SUCC(n.CCS. M sg.Q o...., Msg.Qo. [, counter, CCS.Q)

end fo r
end w h ile

end a lg o rith m

DetermineJ5UCC(n, CCS, Msg.Qo,..., Msg.Qo- i . counter. CCS.Q)
Msg.Q o M sg.Q 's -i = Msg.Qo Msg.QN- i
counter’ = counter
Loop = false
if (n = root node)

SUCC(CCS) = Generate^UCC(n) / * <CSS.FGnode> is entry in SUCC(CCS) * /
if (SUCC(CCS) £ NULL)

Add <n.SVCC{CCS).Msg.Q’o... . . M sg.Q \y-i.counter’> to the ta il o f CCS.Q
end if

else
for i = 0 to N — 1

if (t/j o f CCS = async_recv(j))
i f {Msg.Q \ has entry <counter, j >)

/ * v, is a ready receive * /
item = behead first <counter. j > entry in Msg.Q
append item.counter to u, in CCS / * item.counterasyncjrecv(.j) * /

end if
end if

end for
for i = 0 to IV — 1

i f (in o f CCS = async-send(j))
counter[jJ’+ +
Add <counter[jJ’, i > to Msg.Q’j
Append counterfjj’ to v, in CCS

en d if
end for
Loop = Check-Loop(n) / * Changes for loop start here * /
i f {Loop = false)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 149

SUCC(CCS) = Generate-SUCC(n)
if (SUCC(CCS) # NULL)

Add <n,SUCC(CCS),Msg.Q o, Msg.Q ’,v- 1.counter’>
to the ta il o f CCS.Q

end if
end if / * Changes for loop stop here * /

end if
end function

Check-Loop(n)
Found^\fatch = false
PossJIead = n.parentfO] / * Check i f an ancestor of n represent the same state of n * /
while (PossJIead ROOT) AND (Found.Match — false)

Found.Alatch = Check_Dup(n, PossJIead)
if (Found-Match = false)

PossJIead = PossJIead.parentfO]
endif

endwhile
if (FoundJdatch = true) / * PossJIead represents the same state as n. Does loop exist? * /

Poss.Tail — n.parent[0]
if (PossJIead — Poss.Tail) / * Case I * /

Add_BackEdge(PossJIead, Poss.Tail)
RemoveNodes(n)
return(true)

else / * Case 2 * /
traverse.node = Poss.Tail.parent[Oj
while (traverse.node / PossJIead) AND (traverse.node.temp.back ^ NULL)

prevJraverse = traverse.node
traverse.node = traverse.node.parentfO]

end w hile
if (traverse.node jz PossJIead) OR / * a potential back edge * /

((traverse.node = PossJIead) AND (PossJIead.tempJback= NULL))
Poss.TaU.temp. back = PossJIead
return(false)

else / * a loop exists, add the back edge * /
Add-BackEdge (PossJIead. temp.back, PossJIead)
RemoreNodes (prevJraverse)
retium (true)

endif
endif

endif
end ftinction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 150

Check_Dup(.nodeI, node2)
CCS1 = nodel.CCS
CCS2 = node2.CCS
i = 0

Equal = true
while (i < N) AND (Equal = true)

if (uj 6 CCSl = Vi € CCS2) / * Do not compare counter that may be appended to t’i * /
if (nodel.FGnode[i] ^ node2.FGnode[iJ)

Equal = false
end if

else
Equal = false

endif
i++

end while
return(Equal)

end function

Remove .Nodes (n)
index = 0

w h ile (n.Kids[indexj # NULL)
KemovBJlodes(n.Kids[indexJ)
index++

end w h ile
Delete n
RemoveQ(n)

end fu n c tio n

RemoveQ (CCS)
item = head o f CCS.Q
w h ile (item ^ NULL)

i f item.parent = CCS
Remove item from CCS.Q

end i f
item = next entry in CCS.Q

end w h ile
end fu n c tio n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 151

AddEdge (.parent, n)
i = 0
while [parent.Kids[i] NULL)

end while
parent.Kidsfi] = n
n.Parents[0/ = parent

end function

Add-BackEdge (n. parent)
i = 0
while {parent.Kids[ij ^ NULL)

H—h
end while
parent. KidsfiJ = n
n.Parents[lJ = parent

end function

The addition o f back edges to H represents the repeated execution o f a portion o f the

d istributed system's execution. When following a possible execution path o f H and a back

edge occurs in the path, this back edge represents an iteration o f the loop associated w ith

the back edge. If. when considering only the forward edges o f H.

• nodes a and 6 are in an execution path in H.

• nodes a and b are both nodes o f the same loop, and

• node a is an ancestor o f node b.

then, when considering forward and back edges,

• 6 is an ancestor o f a when 6 occurs in iteration t o f the loop and a occurs in an iteration

greater than t, and

• a is an ancestor o f b when a occurs in iteration t and b occurs in iteration i o r greater.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 152

Referring back to figure 7.7, node (2:async_send(l), l:async_recv(0)) is an ancestor o f

node (3:async_send(l), 2:async_recv(0)), and node (3:async_send(l), 2:async_recv(0)) is an

ancestor o f (2:async_send(l), l:async_recv(0)). The firs t ancestor relationship is inherent,

but the second is only possible w ith the addition o f the back edge. The second relationship

is true only when node (3:async_send(l), 2:asyuc_recv(0)) occurs in iteration i and node

(2:async_send(l). I:async_recv(0)) occurs in an iteration greater than L

I f node a is an ancestor o f node b, then b is a descendant o f a. The children o f a are the

descendants o f a whose path length from a is equal to one. This path can be a forward or

back edge. I f b is a child o f a, then a is the parent o f b.

Property 6 .8 states that tree H represents a ll the partia l orders o f the distributed

system. W ithout back edges in H. the number o f pa rtia l orders is fin ite. I f H has back

edges, the partia l orders are known but the number o f partia l orders is potentia lly in fin ite.

A bound is not known for the number of times a loop can be iterated. Each path from the

root to a leaf node that includes a back edge represents a group o f partia l orders that have

a repeating pattern. Graph H continues to represent a ll the partial orders.

7.3 POG

In chapter 6 , the input to the algorithm Crt-POGO is the tree H and the output is the

PO G . W ith the possibility o f back edges in H . the POG can also have back edges. Only

the function EQUIVO o f algorithm Crt_P0G() is affected by the addition o f back edges in

H . Properties 6.9 through 6.13 and Lemmas 6.2 and 6.3 correspond to the POG. We

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 153

demonstrate that these properties and lemmas are maintained w ith the addition o f back

edges.

Function EQUIVO serves the same function as described in chapter 6 . However, the

inclusion o f back edges requires additional tests to determine equivalency o f H nodes. Sup

pose CCS and CCS' are found to have equivalent communication commands, and the nodes

that represent CCS and CCS' are n and n \ Function EQUIVO must check whether

1 . n or n' is pointed to by a back edge, or

2 . n or n ' has a back edge.

Function EQUIVO calls function Check-EackO to determine i f either (1) or (2) are true.

I f neither (1) nor (2) occurs, n and n' are equivalent. Both cases require further tests to

determine equivalence.

In case (1). i f only one o f the nodes is referenced by a back edge, then n and n ' are

not equivalent. When nodes n and n' are each pointed to by a back edge, both node n are

entry points o f loops in H . The next test determines whether the loop associated w ith node

n is equivalent to the loop associated w ith node n '. The recursive function TreeCmpO of

algorithm Crt_P0G() determines the equivalence o f the two loops.

Node back is the node that has a back edge to node n, and node back is the node that

has a back edge to node n'. Nodes n and back define a subtree. Node n is the root node, and

the nodes that are descendants o f n but not the descendants o f back comprise the nodes o f

the subtree. The variable subtree is the subtree defined by nodes n and back. Nodes n' and

back also define a subtree, subtree!. The two subtrees are traversed in lock step, starting at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 154

the root node, in depth first order. The current node o f subtree, c, is compared against the

current node o f subt reed. I f

1 . the CCS o f node c is equivalent to the CCS o f node d, and

2 . the number o f children o f c is equal to the number o f children o f d

then the traversal o f the subtree continues. I f either condition is false, the loops are not

equivalent and the traversal stops. I f both subtrees are completely traversed w ithout falsi

fying either condition, then the loops are equivalent. I f the loops are equivalent, then nodes

n and n ' are represented by a single node in the POG. The nodes o f the equivalent loops,

that are not the entry and exit points o f the loop, w ill be united by the original EQUIVO

algorithm .

I f case 2 is found to be true, then the following two tests are required to determine the

equivalence o f « and n ':

1 . both n and n ' have a back edge, and

2. the H node pointed to by the back edge o f n is equivalent to the H node pointed to

by the back edge o f n '.

Function CheckJfodeO is called by EQUIVO to determine i f these two tests are true. I f

both tests are passed, both n and n ' w ill be represented by a single node in the POG.

The equivalent H nodes described in test 2 w ill already be represented by one node

o f the POG as a result o f the previous case. A single back edge w ill be added from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 155

POG node that represents n and n' to the POG node representing the equivalent H nodes

pointed to by the back edges o f n and n'.

One additional field is added to the H nodes to transform H in to the POG. The field

POGnode is added to point to the POG node representing this H node. More than one H

node may have the same value o f POGnode since one POG node represents equivalent H

nodes. The POG nodes also require additional fields that are replicated from the H nodes:

• KidsfMAXEDGES]

• K i d- type [MA XEDGES]

• ParentsfMAXEDGES]

These POG node fields are functionally equivalent to their H node counterparts. Field

KidsfMAXEDGESJ is an array o f pointers to the children o f the POG node. Each entry

represents either a forward or back edge. Field Kid-typefMAXEDGES} is an array o f integers

indicating the type o f edge for each entry. Forward edge have a zero entry, while back edges

have a one entry. Pointers to the parents o f the POG node are maintained in the array

ParentsfMAXEDGESJ.

Algorithm Crt_P0G() and function EQUIVO are shown w ith required back edge addi

tions. Supportive functions are also shown.

Crt-POGO
In itia lize queue VisitNodes to empty
Create root node S (labeled root)
Add <5, KidsO f(root node o f H)> as the firs t entry in the queue VisitNodes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 156

while (VisitNodes not empty)
item = behead(VisitNodes) / * format of item is <node.ptr, nodeset> * /
POG.ptr = item.node.ptr
nodeset = item.nodeset / * nodeset= {nodei,... ,nodem) . m > 1 * /
w h ile ((EQ UIVset = EQUIV (.nodeset) ^ 0)

Commos = the sends and ready receives the CCSs o f EQUIVset
Create POG node N and label w ith Commos
AddEdge(PO G -pfr. N)
NodeSuccSet = 0
for each node o f EQ UIVset

NodeSuccSet = NodeSuccSet U KidsOf(node)
end for
Add the entry < N , NodeSuccSet> to the ta il o f VisitNodes
nodeset = nodeset - EQ UIVset

end while
for each nodeof nodeset

if ((Commos = sends and ready receives o f the CCS o f node) ^ NULL)
Create POG node N and label w ith Commos
AddEdge(POG-ptr. N)
Add the entry < N . KidsOf(node)> to the ta il o f VisitNodes

else
Create POG node N and label as END node
AddEdge(POG-ptr. N)

endif
endfor

end while
end algorithm

EQUIV (nodeset)
nodeset! = nodeset
EQUIV-found = false
w h ile (nodeset! # 0) AND (EQUIV-found = false)

Node-1 = Select(node_sef)
EQ UIVset = {Node-1}
Commos = the sends and ready receives o f Node-l.CCS
FGnode = Node-l.FGnode
Back-Foundl = Check_Back(ATode_i)
localset = nodeset!
w h ile (localset / 0)

Node-2 = Select (ZocaLseJ)
Commos-2 = the sends and ready receives o f NodeJH.CCS
FGnode2 = NodeS.FGnode
i f (Commos = Commos-2) AND (FGnode = FGnode2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 157

BackJound2 = Check_Back(iVode_5)
i f (BackJoundl = BackJoundS)

case BackJ'oundl
0 :

EQUIV.found = true
Add Node-2 to EQ UIVset

1 :
i f (TreeCmpCMxte.l, Node-2, Node.l.parent[lJ, Node.2.parent[l]))

EQUIV-found = true
Add Node-2 to EQUIVset

end i f
2:

i f (CheckJiodeCWode.l, Node-2))
EQUIV-found = true
Add Node-2 to EQUIVset

end i f
end case

end i f
end i f

end w h ile
end w h ile
i f {EQUIV-found—tt\ le)

return {EQ U l Vset)
else

return(0)
end fu n c tio n

Che ck_Back (Node)
/ * Check 1: Is Node pointed to by a back edge? * /

i f (Node.parentfl] ^ NULL)
re tu m (l)

/ * Check 2: Does Node have a back edge? * /
i = 0

w h ile (Node.KidsfiJ £ NULL)
i f (Node.KicLTypefi] = 1)

retum (2)
end i f
H—h

end w h ile
/ * Neither check 1 nor check 2 is true * /

return(O)
end fiin e tin n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 158

Check-Node (Node.l, Node-2)
i = 0
w h ile (Node-1.Kid-Type[iJ = 0)

H—b
end w h ile
BackNodel = Node-l.Kid[iJ
i = 0

w h ile (Node.2.Kid.Type[i] = 0)
i+ +

end w h ile
BackNodeS = Node.2.Kids[i]
i f (BackNodel.POGNode = BackNode2.POGNode)

return(true)
else

return(false)
end i f

end fu n c tio n

TreeCmpCRootl, Root2, Terml. Term2)
K idsl = Rootl. Kids
Kids2 = Root2.Kids
i f ((K idsl has no entries AND Kids2 has no entries) AND (Rootl.CCS = Root2.CCS))

return(true)
end i f
i f ((number o f entries in K ids l number o f entries in Kids2)

OR (Rootl.CCS # Root2.CCS))
ret urn(false)

end i f
i = 0

w h ile (K id s l[i] # NULL)
i f ((K id s l[i] ■£ Terml) AND (Kids2[i] ± Term2))

i f (TreeCmp CKidsl[iJ, Kids2[ij, Term l, Term2) = false)
retum(false)

end i f
else

i f (((K id s l[i] = Terml) AND (Kids2[iJ ^ Term2))) OR
((K idsl[iJ £ Terml) AND (Kids2[iJ = Term2)))
retum(false)

/ * find back edge in Node-1 * /

/ * find back edge in Node.2 * /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 159

end i f
end i f
*+ +

end w h ile
return(true)

end fu n c tio n

KidsO f (.node)
kidaet = NULL
i = 0
w h ile [node.Kidafi] / NULL)

i f node.Kid-type[ij = 0

Add node.KidafiJ to kidaet
end i f
H—h

end w h ile
tetum(kidaet)

end fu n c tio n

Properties 6.9. 6.10. 6.11. and 6.12 are derived d irectly from the properties o f H and

are affected by back edges as described in section 7.2. Lemmas 6.2 and 6.3 and property

6.13 remain true w ith the addition o f loops in H and the POG. M odification o f algorithm

C rt _P0G() is lim ited to additional checks for equivalency o f nodes o f H. The construction

o f the POG continues to preserve the causal and concurrent relationships in H. Property

6.13 states that each path from the root node to a leaf node o f the POG represents a unique

partia l order. I f there exists a path from the root node to leaf node n that contains a loop,

then a different path exists from the root to n when the nodes o f the loop are repeated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 160

7.4 LCP and LCP' events

The last modifications pertain to the algorithms Bound-Assert O and Find_LCPs() that

determine the L C P and L C P ' events. Lemmas 6.4 and 6.5 and properties 6.14 and 6.15

correspond to the identification o f the L C P and L C P ' events. These lemmas and properties

are not affected by the possible occurrence o f back edges in the P O G . Two modifications

are required for Bound-Assert () . The firs t modification stops searching a path fo r the last

LC P' event when the ASSERT node occurs in the body o f a loop. W ithout back edges in

flow graph F G i, the search stopped when either a RECEIVE node or the root node was

encountered. W ith back edges the search should also stop if the ASSERT node itse lf is

encountered. When Bound_Assert() searches for a RECEIVE node in the flow graph o f

figure 7.12 two paths are searched. One is the path including only the FOR node and the

RECEIVE node. The search stops at the RECEIVE node. The other path starts at the

FOR node, proceeds to the END_FOR node by following the back edge. The next node

in the path is the ASSERT node. The search terminates since a receive does not exist on

the path from the ASSERT node back to itself. I f a RECEIVE node exists between the

END .FOR node and the ASSERT node, as shown in figure 7.13. the RECEIVE is a last

L C P ' event and is added to the linked lis t LocaLLCPs. In this case, the search succeeds

when the RECEIVE node is encountered.

The second m odification is needed when a loop occurs in the path being searched, but

the ASSERT node is not part o f the loop body. W ithout modification, the nodes o f a loop

w ill be followed in fin ite ly i f the loop occurs prior to the ASSERT node and a RECEIVE node

is not found. The flow graph in 7.14 demonstrates the problem. The path ASSIGN, FOR,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 161

END .FOR, SEND. FOR, END .FOR, SEND,. . . is repeatedly traveled unless a modification

is made. When searching a path for a RECEIVE node, each node is flagged as visited when

it is encountered. Before following a parent o f a node in a search path, the visited flag

o f that node is tested. I f it has not been set, then this path is searched. I f it has been

previously visited, this path is not searched.

For completeness, we repeat algorithm Bound-AssertO w ith modifications.

Bound-Assert O / * input: FGi and assert-node * /
currenLlist = the parent nodes o f assert-node
NextBranch = NULL
Local-LCPs = NULL
cmt-node = first entry in currentJist
Remove cmt-node from currentJist
receive-found = false
do

while ((receive.Jound={alse) AND (cmLnode ^ root node o f F G i) AND
(cmtjnode ^ assert-node) AND (cmt-node has not been visited))
if (current-list NULL)

Push currentJist on the stack NextBranch
endif
Mark cmt-node as visited
if cmt-node = receive

Add cmt-node to Local-LCPs
receive-found = true

else
currentJist = parent nodes o f cmt-node
cmt-node = first entry in currentJist
Remove cmt-node from currentJist

endif
endwhile
if (NextBranch ^ NULL)

receive-found = false
currentJist = Pop (NextBranch)
cmt-node = firs t entry in currentJist
Remove cmtjnode from current-list

endif
while (NextBranch # NULL)

end algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 162

RECEIVE

FOR

ASSERT

END.FOR

SEND

II

Figure 7.12: Assert in the loop body

Algorithm Bound-AssertO constructs a linked list, Local-LCPs, that are the last LCP

events o f the assert. This lis t is used by algorithm Find-LCPsO to determine the LCP and

LCP' events o f the POG. The search fo r LCP and LCP' requires Find-LCPsO to v is it

the ancestors o f each POG node represented by an LCP event in Local-LCPs. Changes are

necessary to Find-LCPsO to contend w ith back edges encountered during the search. Back

edges in the POG define additional causal relationships as demonstrated by the portion o f

the POG shown in 7.15. W ithout considering the back edge, the causal relationships are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 163

FOR

ASSERT

RECEIVE

END.FOR

SEND

l
r

Figure 7.13: Assert and receive in the loop body

1 : 051 —► 1 : 1/20 —► 1 : 250 —► 1 : 0/22. The causal relationships 1 : 0/22 —> 1 : 250

—> 1 : 1/20 —► 1 : 051 exist w ith the back edge. When determining the LCP and LCP'

events, a ll casual relationships, including those derived from back edges, must be considered.

A node w ith a back edge pointing to it has two parents. One parent is the result o f a

forward edge, and the other parent is the result o f a back edge. In the original version o f

Find-LCPsO. only parent nodes which result from forward edges are searched. To consider

a ll the causal relationships in the POG, paths that include parent nodes that are the result

o f back edges are also searched.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 164

FOR

END.FOR

ASSIGN

RECEIVE

SEND

Figure 7.14: Assert not in the loop body

In the POG shown in figure 7.15. the assert occurs in P i. and the receive o f node last

is the last LCP event o f Pt . The search for LCP and LCP' events starts at node last. The

send o f node n. 1:051. is found to be an LCP' event. Node n has two parents, one resulting

from a forward edge and one resulting from a back edge. A t th is point the search branches

in to two paths. The path that includes the parent o f node n resulting from a forward edge is

searched by the orig inal Find-LCPsO. The path tha t includes node n ' and node n " should

also be searched by Find-LCPsO since these nodes are ancestors o f node n. The receive o f

node n" is an LCP event and the send o f node n ' is an LCP' event.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 165

' f
node n

node last

node n '

node n "

Figure 7.15: POG with a back edge

Notice in the POG o f figure 7.15 that when the path follows the back edge parent

o f node n. the path la s t.n .n " .n f can repeat indefinitely. When a back edge is encoun

tered. the back edge must be followed to consider a ll causal relationships. By following

the back edge once, a ll additional causal relationships defined by this back edge are con

sidered. Additional variables are required in algorithm Find-LCPsO to follow paths that

include parent nodes resulting from back edges and to not visit a parent that is the re

sult o f a back edge more than once in the same search path. A node is placed in the

set VisitOnceif the node is a parent node resulting from a back edge, and the node is

visited by the current search. Since the search can branch into two different paths, the

state o f the search p rio r to the branch is saved. The branch resulting from a forward

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 166

edge is visited first. When the search o f this branch has been completed, the other branch

is searched by restoring the saved state and continuing the search at the branch point.

An entry in the queue StateQ is the state o f a search. The format o f an entry in StateQ is

<POGNode, RwoSQ, SendQ, RecvQ, FoundProcs, Sends, Rec.woSends, VisitOnce>. The

variable POGNode is the parent node resulting from the back edge. The remaining items

are the values o f variables before the branch. A lgorithm Fin<LLCPs() is repeated w ith the

appropriate modifications.

Find-LCPsO / * Input: LocaLLCPs Output: SendQ, RecvQ * /

StateQ = NULL
fo r each entry in Local-LCPs where the event entry is c : iR j

fo r each POG node that contains c : iR j
Lastnode = POG node that contains c : iR j
POGnode — Startnode
FoundProcs — Sends — VisitOnce = (4
Rec-woSends = {*}
RwoSQ = NULL
Insert < c . i . j , POGnode> in RwoSQ
POGnode = ParentO f (POGnode)
while (POGnode ^ root node) AND (FoundProcs ^ ({ 0 N -l } - i))

while (POGnode £ root node) AND (FoundProcs 56 ({ 0.N -l } - i))
fo r each receive, c : jR k . in POGnode

i f ((j 6 Sends) OR (j = t)) AND (k £ FoundProcs)
Insert < c , j,k , POGnode> in RwoSQ
Rec-woJSends = Rec.woSends + j

endif
endfor
fo r each send, c : jS k , in POGnode

i f (k € Rec_wo_Sends) AND
((Recv-POGnode = SearchQCc,k , j)) ± NULL)
if (RwoSQ does not have an entry w ith k as the receiver)

Rec-woJSends = RecjwoSends - k
endif
Sends = Sends + j
FoundProcs = FoundProcs + j
Insert < c ,j, POGnode> in SendQ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 167

Insert <c, k, Recv.POGnode> in RecvQ
end i f

end fo r
POGnode = ParentO f (.POGnode)

end w h ile
i f (StateQ ^ NULL)

item = behead(5fa£eQ)
POGnode = item.POGnode
RwoSQ = item.RwoSQ
SendQ = item.SendQ
RecvQ = item. RecvQ
FoundProcs = item. FoundProcs
Sends = item.Sends
Rec.wo.Sends = item. Rec.wo.Sends
VisitOnce = item. VisitOnce

end i f
end w h ile

end fo r
end fo r
end a lg o rith m

ParentO f (.POGnode)
i f {POGnode.Parent[l] ^ NULL) / * i f POGnode has two parents * /

AND (POGnode. Parentfl] not in VisitOnce)
Add entry
<POGnode.Parent[l]. RwoSQ, SendQ, RecvQ, FoundProcs.

Sends, Rec.woJSends, VisitOnce>
to StateQ

end i f
return(POGnode.Parent[Oj)

end fu n c tio n

The changes to algorithm Find-LCPsO to facilitate searching paths including back edges

for LCP and LCP' events do not affect lemmas 6.4 and 6.5 and properties 6.14 and 6.15.

The entries in SendQ are the LCP events, and the entries in RecvQ are the LCP' events.

No alterations to the method o f adding entries in to these queues results from the changes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. LOOPS 168

to Find-LCPsO. We conclude tha t our technique for identifying LC P and LC P 1 events

remains valid.

The next chapter analyzes the distributed programs o f chapter 2. The resulting POG

is shown for each program, and the LCP and LCP ' are determined from the POG.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Static Analysis of Distributed

Programs

We presented five distributed programs in Chapter 2. In this chapter, we apply the al

gorithms o f chapters 6 and 7 to determine the LCP and LCP' events for each distributed

program.

8.1 Set Partition

SGTPART, the set partition program, is reproduced from section 2.1 w ith the addition o f

an assert statement A\ in process Pi.

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 170

Pq:: P i ::
1 mx = max(5) 14 while(true)
2 async_send(l. mx) 15 async_recv(0 . y)
3 S = S - {m x} 16 T = 7 U { y }
4 async_recv(l. x) 17 mn = m in(T)
5 S = S U {x } Ai assert(y = m ax(5) > mn > xA
6 mx = max(S) |5| = |50 | A 5 n r = y)
7 while (mx > x) 18 async_send(0 . mn)
8 async_send(l, mx) 19 T = T - {m n}
9 5 = 5 - {m x} 2 0 endwhile
10 async_recv(l. x)
11 5 = 5 U {x }
12 mx = rnax(5)
13 endwhile

An assert statement in either process is adequate for expressing expected system execu

tion behavior. Placing the causal assert statement A\ between lines 17 and 18 is useful for

detecting incorrect execution and for locating errors in both Pq and P i. Assert statement

.41 is evaluated on each exchange.

A false evaluation o f .4 [indicates erroneous execution o f the program. SETPART’s error

is identified by the assert's falsifying clause. I f y is not equal to m ax(5): P q did not send

the correct value. I f max(5) ^ mn; processing should have stopped on the last exchange,

and a likely error is Pq's exchange loop condition. I f mn ? x: either a value other than

the m inimum of T was chosen, or P q has erroneously altered the variable x since the last

exchange. I f the new size o f S has changed. P q has not correctly added or removed a value

from S since the last exchange. I f the intersection o f 5 and T is not equal to y; either S

or T has not been correctly updated since the last exchange, and the results o f the other

clauses help in identifying the incorrect set.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS

root

while

end

root

while

end

Figure 8.1: Flow Graphs for Set Partition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 172

(r*r,)

I
(l:mync_acnd(I).

aiync_jecv(0))

(«iync_recv(l),
l:async_rccv(Q))

(async_recv(l),
l:async_send(0))

2:aiync_rccv(0))

(uync_recv(l).
2:«sync_»end(0))

atync_recv(0))

(2:a»ync_recv(I)
iiync_recv(0))

(2:uyncjecv(l).

F ig u re 8 .2 : H fo r S et P a rtitio n

Suppose the programmer mistypes line 8 by sending x instead o f m x to P i. This mistake

is detected by clause y = max(S) o f A i- The negative evaluation o f this clause identifies

an erroneous value sent by Po. A lternatively, suppose Po’s condition to in itia te another

exchange is incorrectly a > instead o f a > , then line 7 is

7 while (mx > x).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 173

mat

1 : ISO

end

2 : ISO

end

Figure 8.3: POG fo r S et P a rtitio n

This error prevents Pq from detecting the sets axe partitioned, and causes SETPART to

enter an in fin ite loop. The clause m n > x o f A i detects this error the first tim e an invalid

exchange is attempted by Pq and elim inates the i n f i n i t e loop problem.

Static analysis is performed by the algorithms o f chapter 7 since loops are present in the

program. F irst, algorithm Create-FGt-() constructs the control flow graphs. The resulting

flow graphs are shown in figure 8 .1 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 174

Graph H is constructed by algorithm C rtJ lO from the flow graphs. The resulting

graph H is shown in figure 8.2. The back edge represents the continuous exchange o f data

between the two processes un til the set is partitioned. The POG is constructed from H

and is shown in figure 8.3.

A lgorithm Bound-AssertO determines the last LCP' event o f the assert statement in

P i. Node async_recv(0) o f FG\ is returned by Bound-AssertO . This node is shown in

figure 8.1 w ith double circles. The event async_recv(0) o f P\ is represented by two POG

nodes. One node has the entry 1:1/20, and the other node has the entry 2:1/20.

Starting w ith node 1:1/20 o f the POG . we identify the LCP and LCP' events. The LCP'

event is 1:1/20. and the LCP event is 1:051. For node 2:1/20, the LCP' event is 2:1/20. and

the LCP event is 2:051. The nodes w ith double circles in figure 8.3 represent the LCP

and LCP' events. Since the assert is in P i. it is not necessary for Pi to propagate state

inform ation to Po. Our static analysis allows us to not piggyback messages from P q to P i.

8.2 Mutual Exclusion

Assume a three process distributed system implements m utual exclusion by embedding

the circulating token protocol in its distributed application. Additional assumptions are

that process Po starts the token circulating, process P i evaluates the the assert statement

.41, and each process p initializes variable irucsi to false. Assertion -4i detects m utual

exclusion violation. The distributed application may incorporate message passing, but we

only analyze the mutual exclusion code. The messages o f the application w ill not affect our

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS

analysis. Below is the portion o f the code we analyze.

M U T E X
Po"

1 do
2 async_send(l, token)
3 async_recv(2, token, waitsecs)
4 if message received
5 if want-csQ
6 in_cso=true; critseco; wantjeso=false
7 endif
8 async_send(l, token)
9 else / * async_recv timed out * /
1 0 do_othero
11 endif
12 enddo

Pi"
13 do
14 async_recv(0, token, waitsecs)
15 i f message received
.4 1 assert(in_cso = t A tn_csi = t = > it i-csq -> in jes i V in .e s i —► in .cso and

in je s i = t A in jc s -2 = t => in .e s i —> i7t_cs2 V iru c s •> —► iru c s i) and
in^cso = t A injcs-2 = t => injcsQ —¥ in ^ s o V tn_c.S2 —> in-cso)

16 i f wantjes \
17 in_cst=true: c rtisec i; wantjes i=false
18 endif
19 async_send(2, token)
2 0 else / * async_recv timed out * /
2 1 do-otheri
2 2 endif
23 enddo

P2::
24 do
25 async_recv(l, token, waitsecs)
26 i f message received
27 i f want-cs?
28 in_cs2 =true; critsec2; tu<mt-cs2=false
29 endif
30 async_send(0. token)
31 else / * async_recv timed out * /
32 do_other2

33 endif
34 enddo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 176

aid

end cad

Figure 8.4: Flow Graphs for Mutual Exclusion

Assume line 26 o f P i is erroneously om itted, and then suppose the following occurs.

Process Po passes the token to Pi, and Pi enters its c ritica l section. Process Pi wants to

enter its c ritica l section and has set wantjcsi to true. W hile Pi is in its critica l section, the

async_recv on line 25 times out. The condition o f line 27 is true, and Po incorrectly enters

its critica l section while P i is in its critica l section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 177

(Vi.ra)

I
(l:uyncjcnd(l).
uyncjecv(O),
uyncjecvd))

(uyncjecv(2),
l:uyncjtcv(Q).
uyncjecvd))

(i*yncjtcv(2),
l:uyncjcnd(2).
uyncjecvd))

(uyncjecvd).
uyncjecv(O),
l:uyncjtcv(l))

(uyncjecvd).
uyncjecv(O),
l:uync_«cnd(0))

(1 (uyncjecvd).
uyncjecv(O),
uyncjecvd))

(2:uync_»cnd0).
uyncjecv(O),
uyncjecvd))

(uyncjecvd).
2:uync_recv(Q).
uyncjecv(l))

\ J

Figure 8.5: Graph H for Mutual Exclusion

This invalid critica l section entry by P-z is detected by the assert statement A) when

the token circulates around to P i- The clause (tn_c.S[= t A iru c s i = t ^ im cs i —►

injcso V irucs"* —► in .cs i) evaluates to false detecting that P i and P> entered the ir c ritica l

sections concurrently. The combination o f tn_cs, being true and the timestamp o f when

in jcsi was last modified conveys the last tim e P entered its critica l section. W ith this

inform ation, the assert statement detects any o f the processes vio lating m utual exclusion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 178

l : 152

1 : 2 *1

1:250

2 : 1*0

end

Figure 8 .6 : POG for Mutual Exclusion

The flow graphs for the circulating token protocol are shown in flgure 8.4. The do.other

statements in the source code are represented as a series of assignment nodes in the flow

graphs. The H graph generated is shown in figure 8.5, and the POG is shown in figure

8.6.

A lgorithm Bound-AssertO determines the last LCP' event o f the assert statement in

P i, node async_recv(0) o f F G \. This node is shown in figure 8.4 w ith double circles.

The event async_recv(0) o f P\ is represented by two POG nodes. One node has the entry

l : l i 20 . and the other node has the entry 2 : l i 2 0 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 179

Starting w ith node 1:1/20 o f the POG , we identify the LCP and LCP' events. The

LCP' event is 1:1720. and the LCP event is 1:0S1. For node 2:1/20, the LCP' events are

2:1/20, 1:0/22, and 1:2/21. The LCP events are 2:0S1, 1:2S0, and 1:152. The nodes w ith

• double circles in figure 8 .6 represent the events that are the LCP and LCP' events. The

messages that implement the circulating token are also the messages that piggyback state

information for assert evaluation. The distributed program's application messages w ill not

be tagged for piggybacking.

8.3 Bubble Sort

We continue w ith the distributed bubble sort program from chapter 2 that consists o f six

processes. The time space diagram for the bubble sort's execution is repeated in figure 8.7.

The hashes on P /s time line represent assertion evaluation. Two asserts in one o f the six

processes provides a thorough erroneous execution detection method. The assert statements

can be in any one o f the six processes and provide the same meaningful inform ation. We

have a rb itra rily selected /V Process /V s source code is shown below w ith the two assert

statements A>a and Aob- The clause P i.lis t < Pi.recuJ.ist in the assert statements tests

whether every element in Pi.lis t is less than or equal to a ll elements o f Pi.recvJist. and the

clause P i.lis t > Pi.recvJist in the assert statements tests whether every element in Pi.list

is greater than or equal to a ll elements Pi.recvJist.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 180

integer pid. phase:
arrays lis t. recvJist

1 p id = 2
2 read q/6 elements into l is t
3 sort l is t
4 for phase = 0 to 5
5 if phase is even
7 async_send(3, lis t)
8 async_recv(3. recvJist)
9 l is t = inerge_sort(h'sf, recvJist. first)
A>a assert(Pi l is t < P i.recvJist A P i.recvJist = P^JistA

P^Jist < P i.recvJist A Pi.recvJist = P i.lis t A
Pi .lis t < P i.recvJist A P i.recvJist = P i.lis t A
P i.lis t > P i.recvJist)

10 endif
11 i f phase is odd & & pid != 0 & & pid != N — 1
12 async_send(l, lis t)
13 async_recv(l. recvJist)
14 l is t = m ergesort(list,recvJist, last)
.4>6 assert(P iJ is t > P i.recvJist A P i.recvJist = P\ .listA

Pi .lis t > Pq.recvJist A P i.recvJist = Po.listA
Po.list < PQ.recvJist)

15 endif
16 eudfor

merge_sort(Ms£. recvJist. h a lf) ::
array merge J is t

1 merge J is t = merging o f recvJist and lis t
sort merge J is t
i f h a lf= first

return first ha lf o f elements in merge J is t
else

return last ha lf o f elements in merge J is t
endif

The clause Pi.recvJist = Pj+ i.lis t, for i — 2 ...4 , o f assert A ia determines whether

process P, received the correct lis t from its right neighbor P i+ i- The clause Pi.recvJist =

P i- iJ is t . for i = 1 . . . 2, o f assert A n determines whether process P, received the correct

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 181

t i i i t i
i ■ | i . ;

p. p, p, p, p. p,

Figure 8.7: Time space diagram for Bubble Sort

list from its left neighbor P ,-i- The clauses PiJist < Pi.recvJist and Pi-list > Pi.recvJist

ensure that m erge_sort() correctly sorted and halved the merged list.

Assume line 9 o f P4 is mistyped. The function merge_sort() is passed last instead o f

f i r s t . Function merge_sort() sorts and returns the last q/ 6 elements, and these elements are

assigned to lis t. The correct execution should have assigned to lis t the first q/6 elements o f

the merged and sorted elements. In the next phase (odd), line 12 o f P4 sends this incorrect

lis t to P3 . Assume P3 is correct. In the following even phase when P3 sends its supposedly

correct lis t to P2 , the clause P iJ is t < P j .recvJist o f assert A-2a evaluates to false detecting

that P4 executed incorrectly. This false evaluation singles out the error to P4rs execution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 182

o f m erge-SortO in an even phase. In general, errors in merging, sorting and halving

l c

Figure 8 .8 : Flow Graphs for Bubble Sort

any o f the process’s lis t w ill be detected by the two assert statements. The comparisons

P i-lis t < P i.recvJist, P i.lis t < P i.recvJist and P i.lis t < Pi.recvJist o f A ia ensures the

correct execution o f P i and its right neighbors. The comparisons P i.lis t > P i.recvJist and

P i.lis t > Pq.recvJist o f An, ensures the correct execution o f P i and its le ft neighbors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 183

(lujyaĉKadU).
ESySSZaBK
Lasyacjeadtt),
latyacjgdal \
laiyncjMmfiR \
l̂ *ync_w>d(4))

— I—
*

[lgiync.itC YO).
fcnyncjtcwO).
lniyoc_recvU).
h M yn c jtcv ffl.

la»>1KJ»C¥<4))

(iainic_»««d(l).
lMyncjqid<21.
3:»ync_iod<iI
M̂ync.lodi«k V

iMyncjcidJk
3a»yncj«adgr>

O y n c jtn O) ,
iM'rnc.wndX
2auy»cj«c»<iK
2j»mc_rev<4).
2j»rac_rov<3).
■yoc_i8CTt<))

O yKJccvO).
3a«>iicjc»dC0).
hmyxjatdOi.
yMttejnSS.
tiKpcjadSi
aqn c jK M *))

t2:«»yoc,teortlk
2a»ycj«cv<iS
}:«y»c_i»cv<3E
3j»ypc_rccvf̂ 3.
iatyc-ncvri).
ZJHrncjcctBT)

(lj»ync_icad<l).
la ty a c jn d g).
2a» yacj«n5 K
lj»yncjcad(4). ~*
IJ tync jcndO).
2wyacjcaA4»
 1-----

*
(aqracjecvO).
2«yac_recW21'
ta»yiK_l4C»(l).
l:«ync_rtcv<4).
lj> ya c ,tto < 3).
M yKjeevW)

(«iyoc_ncw!).
Ia»ync_icixK3).
3:*iync_»cxltil.
3jiyjcjeniK43. \
ZuyxjokffSk \
ayncj«cM 4))

D q n c jn lllk
3:n»yac_WCT<2).
2a»yacj«CT<U
Ia»y»c.ffcvflE
4j»yiic_ncv<3fc■yocj=v<l))

\ U

<«yocLiccv<t).
luwynĉcakOk
ZmyvcjeuBRk
iMypcjenklk
ImynejtmHSi,

(la a yp c jicvU),
l:a»yac_wcv<0)»
2awypc_«cv<3)»
2uwyncj«v<2X
2awyncjtcv<3).
l:i»yncjicv<4))

Figure 8.9: Graph H for Bubble Sort

In an even phase, process P3 should send lis t to P2 . But consider the case when P3

mistakenly sends recvJist instead o f lis t. Clause P i.recvJ is t = P i.lis t o f Aia evaluates

to false and identifies P2 as sending the incorrect data. Assert .4>a ensures tha t P2 's right

neighbors have sent the correct data, and assert A 26 ensures that P^s le ft neighbors have

sent the correct data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 184

The source code for the other five processes is not shown in this chapter, but the bubble

sort algorithm in chapter 2 is sufficiently outlined for our static analysis. The flow graphs

are shown in figure 8.8. The resulting H graph is shown in figure 8.9. Each process has an

if/else branch in execution, and the combinations o f different executions creates a large H

graph. Only those branches that contribute to a path in the POG are shown in H . An edge

w ith an asterisk denotes an incorrect decision made at the if/else branch o f the processes.

The resulting POG is shown in figure 8.10.

Since we have two assert statements in Po. algorithm Bound-AssertO is called twice

to determine the last LCP' events. For assert A>a, the last LCP' event is async_recv(3)

o f FGo. The event async_recv(3) is represented by three POG nodes. The POG node

entries that represent this receive are l:2/?3. 3:2i23. and 2:2R'3. For assert .4-26, the last

LCP' event is a syn c .re cv (l) o f FGo. The event async_recv(l) is also represented by

three POG nodes. The POG node entries that represents this receive axe 2:2i21. I:2f21,

and 2:2721. A ll six POG node representatives o f these last LCP' events are underlined in

figure 8.10.

For each of the last LCP' events, the LCP and LCP' events are determined by algorithm

Find-LCPsO. The LCP and LCP' events are underlined in figure 8.11. The messages that

piggyback state inform ation are shown in the tim e space diagram o f figure 8.7 as solid

directional lines. The LCP and LCP' events for assert A^a are identical to the LCP and

LCP' events for assert A26- In this example, the additional assert statement did not increase

the number o f messages piggybacking state inform ation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 185

Figure 8.10: POG for Bubble Sort

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 186

Figure 8.11: LCP and LCP' events for Bubble Sort

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 187

8.4 Tree Sort

Referring back to figure 2.5. we see tha t the distributed tree sort program o f chapter 2

consists o f 15 processes. We have selected P\ to evaluate assert statement A [. This assertion

ensures that processes P\.P3,Pi,Pj,P% , Pg and Pio have correctly sp lit, merged, and sorted

the list Pq sent to P i. Since the le ft side and the right side o f the tree are symmetric, a

sim ilar assert statement would be placed in P> to ensure processes P2. P3. Pg, Pi l, Pl2?Pl3

and P 14 correctly sp lit, merge, and sort the lis t Pq sent to P>.

P i:: (parent node)
integer child 1. child>. parent
arrays l is t, l i s t l i s t)

1 async_recv(0 , list)-,
2 sp lit lis t in to two halves: l is t i . i is t2
3 async_send(3, lis t j)
4 async_send(4. lis t2)
5 async_recv(3. lis t 1)
6 async_recv(4, lisU)
.4 i: a s s e r t(P7 .lis t is sorted A P -.lis t is sorted A Pg.list is sorted A

Pio-list is sorted A P3 .li.st is sorted A P \.lis t is sorted A
((P -.list U Pg.list U P i.lis t U Pio-list) = P i.lis t) A
(P -.lis t = P^.lis ti) A (Pn.list = P i.iis t2) A
((P3.Usti U P3.lis t2) = P -.lis t = P i.lis t 1) A
(Pg.list = P o lish) A (P - . l is t = P+.list-i) A
(P i. lis ti U P i.Ust2 = P i.lis t = Pi .list-2) A

(P i. lis t 1 U P i .list* = P i.lis t))
7 merge l is t i and lis t2 into l is t
8 async_send(0 . list)

In the correct implementation o f tree sort, P3 receives a lis t from P i, and then P3 is

responsible for sorting this list and sending the sorted lis t to P i. Assume P3 erroneously

sends the wrong lis t to P i. Following is the incorrect implementation o f P3 :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 188

u yn c_ se a d (l) aiync_recv(0) async_recv(0)

tcruUS)) C asyoc.ieadO)uync_sendu)) (uync.sendO)

»*ync_recvU)^ ^a*^„send<4^ (^M ^.iend^T)

isync_pecvffl^ (^^nc_recvffl^)

Mync_recv(̂ ̂ (̂ Myncjecvf̂ T)

isync_iend(B)

uync_iend(0)

Figure 8.12: Flow Graphs for Tree Sort

P3 :: (parent node)
integer c h ild \ . ch ild-2 , p a re n t
arrays l is t , l i s t 1. l i s t -2

1 async_recv(l. l is t) ;
2 sp lit lis t into two halves: l is t] , . l is t -2

3 async_send(7, l i s t i)
4 async_send(8 ,
5 async_recv(7, l i s t 1)
6 async_recv(8 , Z is^)
7 merge l i s t i and l i s t -2 in to l i s t
8 async-send(1 . lis t 1)

Line 8 is incorrect. P3 should send lis t to P\. Assert A i detects the error by two

clauses evaluating to false. These clauses are (P ^.lis ti U P^list-i = Ps.list = P i-lis ti) and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 189

(P i-lis ti U P \. lis t i = P i-lis t). The combination o f these clauses identifies that P iA is ti is

incorrect. Since none o f the other clauses involving P2 . lis t i and P^.list-2 evaluated to false,

the false evaluation o f {P i.lis ti U Pi-listo = P -.lis t = P i. lis t i) conveys that P i.lis t i is not

equal to P -.lis t. W ith this inform ation, the source o f the error is easily found.

As another example o f an incorrect implementation, suppose leaf process P» does not

correctly sort its lis t. This error causes clause (Pg./ist is sorted) o f A i to evaluate to false.

None o f the other clauses evaluate to false, and the source o f the error is directly identified.

The flow graphs for P q. P i, P j, and Pr are shown in figure 8.12. The flow graphs for

P i. P i. P5 and P5 are identical to P>’s flow graph w ith the exception of the destination

and source o f messages. Also, the flow graphs for P&, P9 , Pio, Pu* Pvz, Pv^ Pu are identical

to p 's flow graph w ith the exception o f the destination and source o f the message. The

destinations and originations o f the messages fo r the communication events are given in

chapter 2 .

The H graph for the tree sort program is shown in 8.13. There exists only one execution

path since none o f the processes have a possible branch in execution. The resulting POG

is shown in figure 8.14. A lgorithm BouncLAssertO returns the event async_recv(4) of

P> as the last LCP' event. This event is identified in P i's flow graph w ith double circles.

One POG node represents this receive event, and that node’s entry is 3:1P4. This event,

as well as the LCP and LCP' events determined by algorithm Find_LCPs(). is underlined

in figure 8.14. Figure 8.15 is the tim e space diagram o f tree sort’s execution w ith the six

messages tha t piggyback state inform ation shown as solid lines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS

f f i l l
«

I I

* % l I 3
M i l lJ X 8 ff -S

*? « ** 5 *5 I

I S I
5 I

1 !
n I n
1 1

\ !

i#

f 1
s. it# s

n u n !

1 i

I t ! I I I If i

I ! I ! ! 5
I i

! ! ! 5 I S Sit its i

M8 m
£ eS
I 1
I IPi «

I I
I ** ft

1 I 1 I I ' i
5 5 M \ •-i I

1
!
i i
\ I£X N

! !
I

i !
S Jf

1 \it £* I
£ 1

I *S }

1 I

I t \ ! I |
I ! I

» }
I I
} t

M M !
I I
I

Figure 8.13: Graph H for Tree Sort

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS

wsi

1:052 1:1*0

1:153 10*0

154 1253 1:3*1

< 4 0 5 6 1:35? 1:4*1 ^ h 5 * 2 ^

1
:358 1:459 1:5511 1 : 6 * 2 1 0 * ^

1
<£45101:3512 1:6513 2:753 1:8*3 1:9*4 1:7I*£>

________I______________
i W 7 1:6514 3:853 1954 1:108411153 1:12*5 1:134

E;3*8 14*9 13*11 3:1054 3:1255 11356 1:14*0

<051 3:4*10 3:5*12 16*13 1145^

<0*3 3:451 1552 16*5?

1*4 12*5 3:652

1:150 3:2*6

10*2

Figure 8.14: POG for Tree Sort

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 192

Figure 8.15: Time Space Diagram for Tree Sort

8.5 Positive Acknowledgement/Retransmission

The two process distributed program implementing positive acknowledgement and retrans

mission is repeated from chapter 2 with the addition o f assert statement .4o. Process Po

sends a message to P i, and P\ acknowledges receipt o f tha t message. Process Po retransmits

the message un til an acknowledgement for the message is received.

Pq".
MsgBitSend : b it / * alternating bit * /
sbuffer. message / * buffer for outgoing data message * /
event (M sgArrival, CksumErr, TimeOut) / * different interrupt events * /

1 MsgBitSend = 0 / * initialize alternating bit * /
2 FromHost(sbuffsr) / * get the data message from host * /
3 repeat

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 193

4 async_send(1 .sbuffer. MsgBitSend)
5 StartTim er; / * time to wait for acknowledgement * /
6 wait (event) / * possibilities MsgArrival, CksumErr, TimeOut * /
7 i f event = M sgArrival
8 async_recv(l. ack) / * receive the acknowledgement * /
.4o: a s s e r t (P i .IncomingBit = Pq.MsgBitSend A Pq.MsgBitSend # P i.MsgBitReceive A

Pa.sbuffer = Py.rbuffer A Pi.event = MsgArrival)
9 PromHost (sbuffer) / * an acknowledgment has arrived intact * /
10 inc(MsgBitSend) / * increment by I then mod 2 * /
11 endif
12 un til doomsday

Pi::
MsgBitReceive : b it
Incom ingBit: b it
rbuffer. message
event: (MsgArrival. CksumErr)

13 MsgBitReceive = 0

14 repeat
15 wait (event)
16 i f event = MsgArrival
17 async_recv(0. rbuffer. IncomingBit)
18 i f IncomingBit = MsgBitReceive
19 ToHost (rbuffer)
20 inc(MsgBitReceive)
21 endif
2 2 async.send(0 . acknowledgement)
23 endif
24 u n til doomsday

Assert Ao firs t determines i f IncomingBit-was correctly received at Pi and was not erro

neously changed by Pi. The second clause o f the assert, Pq.MsgBitSend ̂ Pi. MsgBitReceive,

ensures that MsgBitSend and MsgBitRecv are correctly updated. The th ird clause, Pq.sbuffer

= Pi.rbuffer, determines whether P i received the correct message, and the last clause,

Pi.event = M sgArrival, ensures that P i sent the acknowledgement only after it received a

message from P q .

/ * alternating bit * /
/ * incoming message's bit * /

/ * buffer fo r incoming data message * /
/ * different interrupt events * /

/ * initialize alternating bit * /

/ * possibilities MsgArrival, CksumErr * /
/ * a valid message has arrived * /

/ * accept the message * /

/ * pass the data to the host * /
/ * increment by 1 then mod 2 * /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 194

root

eodjf

ead.do

cad

loot

cndjf

end

Figure 8.16: Flow Graphs for Positive Ack/Retrans

In the correct implementation o f this distributed program, process P i increments Ms

gBitReceive when a new message is received. Suppose P i increments MsgBitReceive when

it receives any valid message. This error occurs i f either line 18 is om itted or i f line 20 is

placed after line 2 1 .

Assume line 18 is om itted. Suppose the following events occur. Po sends a message to

P i. P i receives the message and correctly passes the message to the host and increments

MsgBitReceive. Process P i then sends an acknowledgement, but the acknowledgement is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 195

M l

H:M yac^cad(l). atyacjtcvfOI)

(m jB c j*c v (l). la ym yecvtO)) IZnyacjcad(T l. la»y»c_i»cv<0))

(■ ya cjicvU). latynejm K O)) (3:Mync^icmKl). l:Myac_Knd<0)) (M yo c jtc vd). l:Mync.»ead(01)

asyacjccvtOl) tlaycjcCTtl). —arnc-Tĝ flDI ll3»)llC_ffCV<l). Ja»)WCJCCT(0))

/ IL OwyacjndO),!

(Irasyacjm rU),)

<__ *iy*c_jtcv«J» 2:»yi>cjKmtfO)) ̂

Figure 8.17: Graph H for Positive Ack/R etrans

lost. Process P q times out and retransmits the same messages. Process Pi receives a

duplicate message. Since line 18 is missing, P \ erroneously passes the message to the host

and increments MsgBitReceive. Process P \ then sends an acknowledgement to Po, and the

acknowledgement is received by Po. The assert statement is evaluated. The second clause

o f .4o. P q . MsgBitSend ^ P i.MsgBitReceive. evaluates to false and identifies the error.

As another example o f an incorrect implementation, assume P i sends an acknowledge

ment for any event. This error occurs if line 22 is placed after line 23. Suppose the following

events occur. Process Po sends a message to P i. The message is corrupted in transit. Pro

cess Pi is interrupted and procedure wait returns a CKsum Err event. Line 16 evaluates to

false, but then P i incorrectly sends an acknowledgement to Po. Process Po receives the ac

knowledgement. The assert statement is then evaluated, and clause Pi.event = M sgArrival

evaluates to false. This clause identifies tha t P i sent an invalid acknowledgement.

The flow graphs are shown in figure 8.16, and graph H in shown in figure 8.17. Although

the two processes’ source code is short, the execution behavior o f the distributed program

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 196

root

1-051.1:1X0

end 1.-0X1.11X0

end

end end

Figure 8.18: POG for Positive Ack/Retrans

is complex. The main reason for this is the async_ re cv(l, ack) of line 8 . Process Pi w ill

continue execution regardless o f whether Po receives P i's acknowledgement. The result, as

shown in figure 8.17. is m ultiple branches o f execution. The resulting POG is shown in

figure 8.18.

The assert statement is evaluated when the i f condition o f Po evaluates to true. A l

gorithm Bound-Assert O identifies statement async_recv(l) o f Po as the last LCP' event.

This event is represented by three POG nodes which are underlined in figure 8.18. O nly the

messages sent from Po to P\ need to piggyback state inform ation. A lgorithm Find_LCPsO

identifies the POG node entries that represent the send event o f P i as the LCP event. Both

LCP and LCP’ events are underlined in the POG o f figure 8.19.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 197

not

1:150 1:150

1:0X1 end

2:051 end

end end

Figure 8.19: LCP and LCP' events for Positive Ack/Retrans

The five examples analyzed in this chapter are diverse in the ir communication behavior.

Together they demonstrate the robustness o f our static analysis technique. For each exam

ple. the analysis identifies the latest causally preceding communication events. The assert

is evaluated w ith the causal global state obtained by piggybacking state inform ation on the

messages o f the LCP and LCP1 events.

8.6 Prototype

A prototype system has been w ritten to demonstrate the feasib ility o f analyzing distributed

programs for evaluating d istributed asserts. O ur prototype is a two-pass compiler. The

grammar for our compiler is shown in appendix A. The C source files for the distributed

processes are the input o f the compiler. For assert statement evaluation, code is added

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 198

to the processes' source files to create and maintain a causal global state, and the LC P

messages are identified and altered to piggyback this causal global state. The remainder o f

the distributed program is not altered.

We w ill use the distributed program SETPART as our running example in the following

explanation o f our system. The source code for SETPART appears below.

Po:

t in c lu d e <stdio.h>
#include <async.h>
tin c lu d e <sys/tim e.h>

in t S[163;
in t x;

m ain(argc,argv)
in t argc;
char *argv[] ;

{
i n t count;
in t numcount;

i n t len ;
i n t i ;
i n t mx;

i f (argc < 2)

f p r in t f (s td e r r , "USAGE: 7,s <st s ize> \n " , a rg v [0]) ;
e x i t (l) ;

>

in i t .a s y n c (121, 0 , 2 , 0 , 0 .0 , 0, 0) ;
count = a to i (a r g v [l]) ;
I n i t . i i s t (S , knumcount, count, 0);

p r i n t f (" I n i t i a l s e t in P 0 \n \t") ;
f o r (i=0; Knumcount; i++)

printf("% 6d " , S [i]) ;
p r in t f (" \n \n ") ;

mx = max(S) ;
x = -99999;
w hile (mx > x)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS

i
async.send (1, fcmx, sizeof(m x)) ;
Remove (S , knumcount, mx) ;
len = s iz e o f (in t) ;
async_recv (1, kx, k len , 60) ;
Add (S , knumcount, x) ;
mx = max(S);

>

p r in tf (" F in a l s e t in P 0 \n \t") ;
fo r (i=0; i< numcount; i++)

p rin tfC 7 .6d ", S [i]) ;
p r in t f (" \n \n ") ;

c lo se_ asy n c();
>

Pi
t in c lu d e <stdio .h>
t in c lu d e <async.h>
t in c lu d e <sys/tim e.h>

in t mn;
in t T [16];
in t y;

m ain(argc,argv)
i n t argc;
char *argv[] ;

{
in t count;
in t numcount;
i n t len ;
in t i ;
i n t devdata;

devdata = 1;
i f (argc < 2)

f p r in t f (s td e r r , "USAGE: ‘As <set s iz e > \n " , a rg v [0]);
e x i t (l) ;

>
in it .a s y n c (121, 1, 2, 0 , 0 .0 , 0 , 0) ;
count ~ a to i (a r g v [l]) ;
numcount = I n i t .L i s t (T, knumcount, count, 1);

p r in t f (" I n i t i a l s e t in P l \n \ t ") ;
f o r (i=0; Knumcount; i++)

printf("*A6d " , T [i]) ;
p r in t f (" \n \n ") ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 200

w hile (devdata > 0)
{

len - s i z e o f (i n t) ;
devdata = async.recv (0 , fcy, & len, 60) ;
i f (devdata > 0)

{
Add (T, taum count, y) ;
mn = min(T) ;
assert((max(CG._PO_S.S) — y) kk

(max(CG. _P0_S. S) >= mn) kk
(mn > CG._P0_x.x) kk
(in tersect(C G ._P0_S.S , T) == y)) ;

async.send (0, to n , sizeof(mn)) ;
Remove (T , fcnumcount, mn) ;

>
>

p rin tf("F in e d s e t in P l \n \ t ") ;
fo r (i=0; Knumcount; i++)

printf("*/.6d " , T [i]) ;
p r in t f (" \n \n ") ;
c lo se_ asy n c();

>

The first pass o f our compiler consists o f four phases. The in itia l phase parses the source

code in each o f the process input files and creates a control flow graph for each process as

described in chapter 7. A declaration table. VarMap. is created. Each variable in a process

has an entry in the table consisting o f variable type, identifier and amount o f memory

required.

When an assert statement is detected by the parser, an entry containing only the variable

identifier is added to the lis t asse rt.va rs fo r each non-local variable that occurs in the

assert. Since processes can have identical variable identifiers, a notation has been developed

to distinguish the process in which a variable resides. Non-local variables o f the assert must

be specified in the following format:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 201

The process number is indicated by i, and the ids indicate the variable identifier. For

example, set partition 's assert is

asse rt ((max(CG.-PO-S.S) ==■= y) kk
(maxCCG._P0_S.S) >= mn) kk
(mn > CG.-PO-x.x) kk
(in te rsect(C G .JO -S .S , T) *= y)) ;

The lis t a sse rt.va rs w ill have two entries, CG._P0_S.S and CG._P0_x.x, after parsing this

assert.

The second phase creates three files for each process: a s s e rti.h . p igR ecvi.c. and

pigSendi.c where i is the process number. Each a s s e rti.h file defines a data structure

for the causal global state and w ill be included in Pi. A structure exists in the included

file for each entry o f a sse rt.va rs . The type and size o f each item o f a sse rt.va rs are

found in the table VarMap. The singular difference between a s s e rti.h and a s s e rtj.h is the

in itia lization o f vector time. The files assertO .h and a s s e rtl .h created for SETPART are

shown below.

assertO .h :

#define MAXPS 2
s tr u c t
{

s t r u c t
{

i n t S[16] ;
in t vtime;

> _P0_S;
s t r u c t

in t x;
in t vtim e;

> _P0_x;
> CG, tmpCG;
in t _vector_t[MAXPS] = {1, 0 >;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 202

a s s e r t l .h :
#define MAXPS 2
s t r u c t
•C

s tr u c t
{

in t S [16];
in t vtim e;

> _PO_S;
s tr u c t
{

in t x;
in t vtim e;

> _P0_x;
> CG, tmpCG;
in t _vector_t[MAXPS] = {0,1 };

The symbol MAXPS indicates the number o f processes in the distributed program. As

shown in procedure Update () o f chapter 4. the integer vtim e is used for updating the

causal global state. The variable CG is the causal global state, and the variable tmpCG is for

tem porarily holding a received causal global state. Vector time is maintained in the array

.v e c to r _t D .

The file pigSendi.c is included by process P,. This file contains the source code for

function Piggy-Send () which piggybacks the causal global state onto an outgoing message.

This function is also responsible for updating the causal global state prior to piggybacking

state inform ation. The P iggy -Send () functions differ for each process. Piggy-SendO for

process Pi is only responsible for updating CG w ith the variables that reside locally in P;.

The files pigSendO.c and p ig S e n d i.c for SETPART are shown below.

PigSendO.c

t in c lu d e < std io .h>
tin c lu d e <async.h>
Piggy_send(i, d a ta , s iz e d a ta)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 203

i n t i ;
char ‘data;
i n t s iz e d a ta ;

char ‘ d a ta p tr ;

da tap tr= (ch a r *)m alloc(sizeof(C G)+ sizedata);
memcpy(dataptr, d a ta , s iz e d a ta) ;
memcpy(CG._PO_S.S, S, (s iz e o f (in t) * 16));
CG._P0_S.vtime = _vecto r_ t[0] ;
CG._P0_x.x = x;
CG._P0_x.vtime = _vecto r_ t[0] ;
m em cpy((dataptr+sizedata), ftCG, sizeof(C G));

re tu ra(asy n c_ sen d (i, d a ta p tr , s izeof(C G)+ sizedata)) ;
>

P igSendi.c
t in c lu d e <stdio.h>
t in c lu d e <async.h>
Piggy sen d (i. d a ta , s ized a ta)

i n t i ;
char ‘da ta ;
i n t s iz e d a ta ;

char ‘ d a ta p tr ;

d a tap tr= (ch ar *)m alloc(sizeof(C G)+ sizedata);
memcpy(dataptr, d a ta , s iz e d a ta) ;
memcpy((d a ta p tr+ s iz e d a ta) , JcCG, sizeof(C G));

re tu rn (async_send (i, d a ta p tr , s izeof(C G)+ sizedata)) ;
>

The file pigRecvt. c is included by process P{. This file contains the source code for func

tion Piggy_Recv() which receives an incoming message tha t has been piggybacked w ith a

causal global state. The newly received causal global state is copied into the variable tmpCG.

The P iggy _recv() o f Pi updates P ,’s causal global state w ith the latest state inform ation by

comparing the vtim e o f corresponding entries in CG and tmpCG. The entry w ith the largest

v tim e has the latest state inform ation. This is consistent w ith the causal state propagation

protocol described in chapter 4. P iggy_recv() o f Pi only updates the components o f the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 204

causal global state that do not correspond to i t ’s own variables. The hies pigRecvO . c and

p ig R e c v l. c for SETPART are shown below.

pigR ecvO .c:

tin c lu d e < std io .h>
tin c lu d e <async.h>
P iggy_recv(i, d a ta , s iz e d a ta , time)

in t i ;
char *data;
in t * s iz e d a ta ;
in t tim e;

char * d a ta p tr ;
in t CGsize;

CGsize = sizeof(CG) + * sizeda ta ;
d a tap tr= (ch a r *)m alloc(C G size);

i f (async_ recv (i, d a ta p tr , ftCGsize, tim e) < 0)

r e t u r n (- l) ;
• s iz e d a ta = CGsize - sizeof(CG);
memcpy(data, d a ta p tr , * s iz e d a ta) ;
memcpy(fctmpCG, (d a ta p tr + *s iz e d a ta) , sizeof(C G));
r e tu m (* s iz e d a ta) ;

>

pigR ecv l.c :
tin c lu d e < std io .h>
tin c lu d e <async.h>
P iggy_recv(i, d a ta , s iz e d a ta , tim e)

in t i ;
char *data;
in t * s ized a ta ;
in t tim e;

•C
char * d a ta p tr ;
in t CGsize;

CGsize = s iz e o f (CG) + *sizeda ta ;
d a ta p tr= (ch a r *)m alloc(C G size);

i f (asy n c_ recv (i, d a ta p tr , tCGsize, tim e) < 0)

re tu rn (-1) ;
• s iz e d a ta = CGsize - sizeof(C G);
memcpy(data, d a ta p tr , * s iz e d a ta) ;
memcpy(fctmpCG, (d a ta p tr + * s iz e d a ta) , s izeof(C G));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 205

i f (CG._P0_S.vtime < tmpCG._P0_S.vtime)
{ memcpy(CG._P0_S.S, tmpCG._P0_S.S, (s iz e o f (in t) * 16));

CG._P0_S.vtime = tmpCG._P0_S.vtime;
>
i f (CG._P0_x.vtime < tmpCG._P0_x.vtime)
{ memcpy(ftCG._P0_x.x, fctmpCG._P0_x.x, sizeof(C G ._P0_x.x));

CG._P0_x.vtime = tmpCG. _P0_x. vtim e;
>
re tu m (* s iz e d a ta) ;

>

The th ird phase determines the LC P and LC P ' events. The H graph and the POG are

constructed according to the algorithms C rtJ I and Crt-POG given in chapter 7. From the

PO G . the LC P and LC P ' events are determined. These events are found according to the

algorithms Bound-Assert and Find-LCPs also o f chapter 7. This phase produces the same

results for SETPART that where given in section 8.1.

The last phase o f pass one forks a child process that is the second pass o f the compiler

and establishes a pipe from the firs t pass process to the second pass process. Through

th is pipe the identification o f the LC P and LC P ' events are sent to the second pass. The

identification o f each event consists o f two numbers: process identifier and communication

node identifier. As the nodes o f the control flow graph are created in phase one, a counter

co m m o N o d e lD is assigned to each communication node. The counter commoNodelD is in i

tialized to one each tim e a new control flow graph is bu ilt and incremented each time an

async-xecv or async-send node is added.

The second pass o f the compiler reads the LC P and LC P 1 event identifications and

stores this inform ation in the table IDMap. The distributed processes are parsed again by

pass two, and a new source file is created for each process. The name o f each file is H.file .c,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 206

where file is the name o f the original source file. I f the names o f SETPART's orig inal source

files are procO .c and p ro c l.c , then N .procO .c and N .p ro c l .c are the two new source files

created by pass two. These new source files are the result o f altering the original files to

incorporate piggybacking o f data on the L C P and L C P 1 events.

The firs t line w ritten in process Pi's new file is tin c lu d e “ a s s e rti.h ". When a line of

source code is read by the parser that is not an asyncjsendO or async_recv() function

call that corresponds to an L C P or L C P ’ event, the line is w ritten to the new source

file. The parsing o f pass two does not create internal data structures, only a commoNodelD

counter is maintained as in pass one. When a send or receive command is detected during

parsing, the commoNodelD is incremented and the table IDMap is checked to determine if

the command is an L C P or L C P ' event. I f the command is an L C P or L C P 1 event and

is an async-sendO function call, the function name is replaced w ith P iggyjsend. The

parameters o f the function are not altered. A line is also added after the function call to

update vector time. I f the command is an L C P or L C P 1 event and is an async_recv()

function call, the function name is replaced w ith Piggy_recv. Again the parameters o f the

function are not altered, and a line is added after the function call to update vector time.

A fter the source file for Pi has been parsed, two lines are added to the end o f the

new source file to include the pigR ecvi.c file and the p igS endi.c file, thus completing the

creation o f the new file. Once all new source file are created, our two pass compiler is

finished. The new files for SETPART are shown below.

N .procO .c:

t in c lu d e "assertO .h."
t in c lu d e < std io .h>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 207

t in c lu d e <async.h>
tin c lu d e <sys/tim e.h>

in t S[16];
in t x;

m ain(argc,argv)
in t a rg c ;
char *argv □ ;

{
in t count;
in t numcount;

in t le n ;
in t i ;
in t mx;

i f (argc < 2)

f p r i n t f (s td e r r , "USAGE: 7,s <st s iz e > \n " , a rg v [0]);
e x i t (l) ;

>

in i t .a s y n c (121, 0 , 2 , 0, 0 .0 , 0, 0) ;
count = a to i (a r g v [l]) ;
I n i t .L i s t (S , ftnumcount, count, 0);

p r in t f (" I n i t i a l s e t in P 0 \n \t") ;
fo r (i=0; i<numcount; i++)

p r in tf('7 .6 d " , S [i]) ;
p r in t f (" \n \n ") ;

mx - max(S) ;
x = -99999;
while (mx > x)

{
Piggy_send(l, t a x , sizeof(m x)) ;
.v e c to r _ t [0]++;

Remove (S , ftnumcount, mx) ;
le n = s iz e o f (in t) ;
async_ recv (l, ftx, ftlen , 60);
_ v e c to r_ t[0]++;

Add (S, ftnumcount, x) ;
mx = max(S) ;

>

p r in t f (" F in a l s e t in P 0 \n \t") ;
fo r (i=0 ; i< numcount; i++)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS

p rin tf('7 .6 d " , S [i]) ;
p r in t f (" \n \n ") ;

c lose_async();
}
#include "pigRecvO.c"
tin c lu d e "pigSendO.c"

N .p rocl.c :

tin c lu d e " a s s e r t i .h "
tin c lu d e <stdio .h>
tin c lu d e <async.h>
tin c lu d e <sys/tim e.h>

in t mn;
in t T[16];
in t y;

m ain(argc,argv)
in t argc;
char *argv[] ;

in t count;
in t numcount;
in t len;
in t i ;
in t devdata;

devdata = 1;
i f (argc < 2)

fp r in t f (s td e r r , "USAGE: '/,s < se t s ize> \n " , a rg v [0]);
e x i t (l) ;

>
in it .a sy n c (121, 1, 2 , 0, 0 .0 , 0, 0) ;
count = a to i (a r g v [l] > ;
numcount - I n i t_ L is t (T, ftnumcount, count, 1);

p r in t f (" I n i t i a l s e t in P l \ n \ t ") ;
fo r (i=0; i<numcount; i++)

printf("% 6d " , T [i]) ;
p r in t f (" \n \n ") ;

while (devdata > 0)

len = s iz e o f (in t) ;
devdata = Piggy_recv(0, ty , A len, 60);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 209

.v e c to r _ t [1]++;

i f (devdata > 0)
■C

Add (T, ftnumcount, y) ;
mn = min(T) ;
assert((max(CG._P0_S.S) == y) t t

(max(CG._P0_S.S) >= mn) ftft
(mn > CG._P0_x.x) ftft
(intersect(C G ._P0_S.S , T) == y)) ;

async_send(0, ftmn, sizeof(m n));
_ v ec to r_ t[l]+ + ;

Remove (T, ftnumcount, mn) ;
>
>

p r in tf (" F in a l s e t in P l \n \ t ") ;
f o r (i=0; Knumcount; i++)

prin tf("7 .6d " , T [i]) ;
p r in t f (" \n \n ") ;

c lo se_ asy n c();
>
♦include "pigR ecvl.c"
♦include "p igSendi.c"

The new files are ready for compilation and execution. A fter compilation, the executing

programs create and m aintain a causal global state for the assert statements. The assert

statement is evaluated using the causal global state transm itted via the identified L C P

messages. Despite the potential disturbance to the tim ing o f the distributed programs exe

cution by increasing message sizes, the tim ing changes o f our technique are minor compared

to other existing techniques. We do not add messages to the distributed execution and exe

cution is not suspended to gather state information. By preserving the causal relationships,

the distributed program maintains the same functionality o f the original.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

Conclusions

Our research addresses the d ifficu lt issue o f monitoring the execution o f a d istributed system.

We have developed a runtime method for monitoring both stable and unstable properties

that does not disrupt the computation o f the distributed system. We used the sequential

assert statement as the basis for our development o f the distributed assert statement. A

distributed assert statement is evaluated w ith that statement’s causal global state. The

causal global state incorporates the state of the system as a whole as it may have causal

impact upon the assert statement.

We have developed a runtime protocol that constructs the causal global state and evalu

ates the assert statement where no additional synchronization or message passing is imposed

on the distributed application. The causal global state is immediately available providing

real-time feedback.

The protocol increases the size o f only the messages corresponding to the LCP and LCP'

events. We refined our protocol by statically analyzing the distributed program in order

to reduce the amount o f piggybacked data. Our techniques are able to analyze complex

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS 211

distributed programs where each process has branches in execution and nested loops. The

POG is able to represent a ll concurrent and causal relationships and a ll possible paths o f

the system’s execution. By having this inform ation condensed into the PO G . we are able

to determine the assert’s LCP and LCP' events.

In conclusion, our work provides a practical solution for monitoring a distributed sys

tem's execution that is not only theoretically sound, but also implementabie. Our solution

provides a powerful m onitoring tool tha t can be used throughout the system's life cycle,

and the only responsibility left to the distributed program developer is to assert predicates

as needed. The developer must understand causality to create informative predicates since

they w ill be evaluated w ith a causal global state.

9.1 Communication Systems

Two message passing systems are commonly used for w riting distributed programs. These

systems are PVM (Parallel V irtu a l Machine) and MPI(Message Passing Interface). Both

can run on a variety o f architecture platforms and provide a library o f communication

commands. Our work has not been ported to these systems, but we w ill address what

would be involved.

PVM is the forerunner o f M P I. PVM provides asynchronous reliable FIFO point-to-point

communication on a heterogeneous network o f machines running Unix. A process sends a

message to another process w ith the command pvm_send(). The pvm_send() has the same

functionality as our async-sendO. A process receives a message w ith one o f the following

commands: pvm_recv(), pvm_trecv(). or pvnuirecvO. The command pvm_recv() is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS 212

blocking receive and is equivalent to our async_recv(). As w ith our async_recv(), there

is an option to receive from any process instead o f a specific process. This is achieved w ith

a -1 in the process identification field. We have not addressed this issue in our analysis,

although only minor modifications are necessary to handle the -1 option. Consider a four

process system w ith the following line in process Pq.

async-recv(-/, y)

In terms o f flow o f execution, this is equivalent to the nested if/else statements shown below.

Since a ll paths of executable are assumed possible in our analysis, boolean expressions are

not necessary and the textual order o f the receiving processes is irrelevant in the nested

if/else statements.

if 0
async_recv(2. y)

else if ()
async_recv(2, y)

else if ()
async_recv(y. y)

We are able to analyze communication commands embedded in nested if/else statements.

The only modification required to our analysis is to recognize the -1 option and treat this

as nested if/else statements.

The command pvm _trecv() is a blocking receive w ith the a b ility to timeout after a

specified length o f time. The command pvm_nrecv() is non-blocking receive. I f a message

has not arrived when pvm_nrecvC) is executed, it returns immediately. Our async_recv()

has an option o f specifying a length o f time to wait for a message. Setting this field to zero is

equivalent to a nonblocking receive. We did not exp lic itly address nonblocking and timeout

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS 213

receives, but they can be analyzed w ith m inor modifications. Consider a four process system

w ith the following line in process Pq.

async-recvCi, y, 0)

The zero is the timeout. In terms o f execution flow, th is is equivalent to the i f statement

shown below.

if 0
async_recv(l. y)

The only change to our analysis is to recognize the use o f the timeout field and to analyze

in the same maimer as an i f statement and a receive command.

M ulticasting is also possible in PVM . The command pvm jncastO is executed by the

sender o f the multicast message. The sender o f the multicast messages may send to a ll pro

cesses except itself. An array o f process identifiers is provided to the command pvsuncast O

specifying which processes should be sent the message. We do not have an equivalent com

mand in our asynchronous library. I f the array contains the values 1 and 2, this is equivalent

to two asynchronous send commands, one sending to P i and one sending to P-2 . O ur anal

ysis is able to handle a sequential series o f send commands. The modifications necessary to

analyze a multicast command are to read the pids from the array and treat each entry as

a separate send command.

M PI provides reliable FIFO communication which can be either asynchronous or syn

chronous indicated by the send command. Communication can also be either blocking or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS 214

nonblocking. Both the send and receive commands indicate whether blocking is desired.

M P I’s and PVM ’s blocking have different semantics. M PI attempts to improve system per

formance by overlapping communication and computation. Nonblocking communication is

one way to achieve this overlap. A nonblocking send is in itia ted w ith a command that

copies the message to a buffer and immediately returns. W hile computation is preceding,

the message is copied out o f the send buffer. The send is completed w ith a command to

verify that the message has been transferred. Similarly, a receive command in itia tes the

receive operation and immediately returns. W hile computation continues, data is transfered

into the receive buffer. A separate command completes the receive operation.

M PI's library o f communication commands is large, and it is not necessary to discuss

each command. We w ill describe how each type o f com m u n ication can be achieved w ith a

subset o f the commands. Asynchronous communication can be achieved w ith the commu

nication pair MPI-BSendO and MPI-RecvO. The B preceding Send indicates tha t message

buffering is to be used. The send blocks by default, mea n in g the send w ill wait un til the

message is copied out o f the sender’s buffer before it returns control to the caller. The

receive also blocks by default, meaning it returns only after the receive buffer contains the

message. M PI’s blocking asynchronous communication can be analyzed as we currently

analyze our async_send() and async_recv().

Nonblocking communication is indicated w ith an I in the com m u n ication commands:

MPI-IBSendO and MPI_IRecv(). The command MPI_IBSend() places the message in the

buffer. The command MPI_Test O verifies that the send has completed. We only need to

analyze the MPI_IBSend(). and it can be analyzed in the same m anne r as async-sendC).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS 215

The contents o f the send buffer reflect the causal inform ation o f the sending process. The

computation that occurs between the MPI_IBSend() and MPI_Test () do not affect the causal

global state and can be considered as occurring after the send. The command MPI_IRecvO

only initiates the receiving o f the message. The command MPI_WAIT() is one o f several

commands that can complete the receive. The command MPI.WAITC) waits for the receive

to complete. The commands that complete the receipt o f the message should be analyzed in

the same manner as async_recv() since this is when the message is received by the process.

The commands for synchronous communication are MPI-SSendO and M PIJlecvO. Our

work w ill require modifications to analyze synchronous communication. Synchronous mes

sage passing means that the sending process blocks un til the message is received by the

destination process. We discussed synchronous communication when describing Taylor’s

work in chapter 6 . Since the rendezvous o f a send/receive pair in the synchronous domain

can be considered a single event on the sending and receiving processes, the algorithms

for constructing the POG and the H w ill require modification to correctly represent the

happens before relationships. The algorithms for finding the LC P and LC P ' events w ill

also require minor modifications.

M PI's communication commands have the same options that are available w ith PVM ’s

commands. We discussed the analysis o f these options when describing PVM. For example,

the M PI receive command also has a w ild card to indicate it w ill accept a message from any

process. M PI also provides commands for broadcasting. The analysis o f these broadcast

commands can be handle in the same manner as w ith PVM multicast commands.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS 216

In conclusion, the major work for analysis programs w ritten in either o f these two

message passing systems is for synchronous communication. As described, the remaining

work w ill require m inor modifications for recognizing the particular system's asynchronous

communication commands.

9.2 Complexity issues of static analysis

The worst case performance o f our static analysis is exponential in the number o f possible

concurrency states. For the worst case, assume every node o f a flow graph can occur in the

same concurrency state w ith every node from the other processes’ flow graphs. I f we let T be

the number o f nodes o f a ll the processes' flow graphs, then an upper bound on the number

o f nodes o f one flow graph is 0 {T). The worst case bound ou the number o f concurrency

states is 0 (T N), where N is the number o f processes in the distributed application.

Although static analysis can have exponential performance, the time spent analyzing

does not affect the execution o f the distributed system. The analysis is done prior to

execution, and provides insight into the application’s behavior.

Performance improving refinements to the analysis algorithms have been considered.

Localized portions o f the POG can be constructed based on the location o f the assert

statement. Only the events tha t occur before the execution o f the assert statement need to

be represented in the POG. Representation o f communication events that occur after the

last LCP' events is not necessary to determine the remaining LCP and LCP' events. Our

algorithms can be modified to determine the last LCP' events before constructing H and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS 217

POG graphs. When a last LCP' event is represented in H , construction o f that branch of

execution can stop. This can result in a smaller H and POG. depending on the location of

the assert statement.

Space conservation is possible by not generating the complete H graph p rio r to gener

ating the POG. As a portion o f the H graph is generated, the corresponding portion o f the

POG can be generated. This portion o f H is no longer needed and can be discarded. The

space required to store the entire H graph would not be necessary.

9.3 Future Work

O ur work can be extended in several directions. Three major areas are described.

9.3.1 D ata Analysis

To minimize the amount o f piggybacked data, we statically analyze a distributed program

and identify the LCP and LCP' events. This can greatly reduce the number o f messages

piggybacking data. Additional reductions can be obtained by performing data analysis w ith

regard to the assert statement. In the simplest case, processes only send state inform ation

regarding variables used in the asserted predicate. The amount o f data piggybacked, and

the sizes o f the causal state buffers are reduced to include only relevant variables. The

maximum size o f a process’s causal state buffer is one tuple for each variable in the assert.

Since a process only piggybacks the contents o f its causal state buffer, this maximum also

applies to the increased size o f messages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS 218

Consider a d istributed program where a process’s LCP event is executed more than one

time (e.g., it occurs in the body o f a loop), as demonstrated in the distributed program

SETPART where process Pq's LCP event occurs in a while loop. I f Po’s state inform ation

changes every tim e the LCP event is executed, then this state inform ation should be pig

gybacked to correctly propagate the state o f the process. If, however, the state inform ation

does not change, piggybacking duplicate state inform ation is not necessary.

Sophisticated static analysis, such as data flow analysis [1], can provide the inform ation

required to determine whether the state o f the process has changed since the last piggy

backing o f state inform ation. This type o f static analysis, in combination w ith determ ining

the LCP and LC P '. can provide additional reductions in the amount o f piggybacked data.

9.3.2 M odifications to the D istributed Program

I f we change the location o f an assert statement or add assert statements to the distributed

application, the affects to our static analysis are minor. The POG does not require modifica

tion since a different assert location does not affect the concurrency and causal relationships

o f the d istributed program. When an assert is added or relocated in process Pi, p ’s flow

graph can be updated w ith the appropriate location o f the assert node. As w ith a ll as

sert statements, algorithm Bound-Assert O is called to determine the last LCP' events,

and algorithm Find-LCPsO is called to determine the LCP and LCP' events o f the assert

statement.

I f the assert’s predicate is changed, th is w ill only affect data analysis. Although we have

not developed these algorithms, we suspect that additional variables w ill not invalidate the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS 219

prior data analysis. I f variables are removed, the corresponding portion o f the data analysis

should also be removed.

I f the distributed program is altered, the effects to the already existing flow graphs and

POG are dependent on the type o f changes. Changes to assignment statements w ill not

affect the POG but may alter the data analysis. Additions or deletion o f control constructs

which do not alter communication events w ill not affect the POG. I f control constructs are

added or deleted that affect communication events, or if communication events are added or

deleted, the POG is affected. The effects may be incremental, meaning that only a portion

o f the commuuication analysis requires reevaluation.

Since distributed assert statements are in itia lly intended as a tool for debugging, altering

the distributed program is expected. Incremental static analysis may provide a feasible and

efficient solution for updating the flow graphs and the POG.

9.3.3 Global Assert Statem ent

We have demonstrated the usefulness o f evaluating assert statements w ith causal global

states, but distributed systems may remain which require their execution to be monitored

w ith global states. In chapter 3, algorithms that capture global states o f the distributed

systems execution, problems capturing global states, and the lack o f meaningful predi

cate evaluation w ith these states were described. Two o f our conclusions about global state

reasoning were (1) the consideration o f a ll global states o f the system is required for a mean

ingful evaluation o f the predicate, and (2) obtaining global states should not invalidate other

global states. Our work can be extended by developing a meaningful run-tim e evaluation o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS 220

a global assert statement, i.e., evaluation against a ll consistent cuts that include the assert

statement.

The POG is useful for evaluating a global assert statement. I t provides the informa

tion needed to determine the consistent cuts o f the distributed system's computation that

include the assert statement. By examining a partia l order o f a distributed program, we

can determine a lower and upper bound communication event in each process that define

the region o f execution that is concurrent to an assert statement. I f Pj's lower and upper

bound events are lowerj and upperj, then a ll events in Pj that happen between lower; and

upperj are concurrent to the assert statement. A process’s LCP message is the lower bound

message o f the process's concurrent region. The upper bounds can be determined from the

POG by a sim ilar method to LCP determination w ith node traversal occurring downward

instead o f upward. Once the lower and upper bounds are found in each process, a ll valid

consistent cuts o f the assert can be constructed from the concurrent regions' events.

A run-tim e method o f gathering the information o f the consistent cuts is required for

global assert statement evaluation. One possibility is to send each local state and corre

sponding vector tim e tha t results from the execution o f an event concurrent to the assert

to a m onitor process. The m onitor process can glue together, using vector tim e stamps,

the received local states to form global states for assert statement evaluation. The moni

to r process w ill have a ll the state inform ation necessary for a meaningful evaluation o f the

assert statement. An evaluation method based on gathering state inform ation concurrent

to the assert is meaningful since evaluation is done w ith a ll global states that result from a

consistent cut including the assert statement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS 221

Adm ittedly, this is only a starting point for developing a global evaluation method, but

the m ajority o f the static analysis exists in the POG.

9.4 Concluding Remarks

A meaningful and reliable technique for examining the execution o f distributed programs has

been our goal. By developing both causal distributed assert statements and a static analysis

technique for determining the LC P and L C P ' events for piggybacking state inform ation, we

have achieved our goal w ith minimal interference to the execution o f a distributed program.

Existing run tim e debugging techniques are not reliable for detecting buggy programs since

they capture only one o f many global states. The one captured global state may or may not

provide meaningful information. To capture a global state, these techniques add messages

to the distributed execution which alter the causal relationships among events.

Our results provide a practical tool for the distributed system engineer. As demon

strated w ith our analyzed programs, the examination o f an execution is easily achieved

by inserting assert statements that express the expected behavior o f the program. Our

prototype evaluates the assert w ithout requiring the programmer to a lter the distributed

program or to log state information. The programmer w ill need to reth ink his debugging

strategy. Instead o f th inking globally, a causal view o f the execution is necessary. Once this

is achieved, causal assert statements convey meaningful insight into the program’s behavior.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Grammar

The italicized variables are nonterminals, and the a ll capitalized nonterminals are tokens in

the lexer. Terminals appear in monospaced font.

tranalation.unit

extemaLdecl

function.defn

extemal-decl

tranalation-unit extemaLdecl

function.defn

declaration

declspecifiera declarator decLliat compountLatmt

decLapecifiera declarator compoundstmt

declarator decLliat compoundstmt

declarator compountLatmt

POUND < poatfixsxpr >

POUND < poatfixsxpr / poatfixsxpr >

POUND " poatfixsxpr "

POUND " poatfixsxpr / poatfixsxpr "

222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GRAMMAR

decLspecifiers

iniLdeclarator .list

iniLdeclarator

storage-classspecifier

typespecifier

storage-class specifier

storage.classspecifier decLspecifiers

typespecifier

typespecifier decLspecifiers

type.qualifier

type.qualifier decLspecifiers

iniLdeclarator

iniLdeclaratorJist , iniLdeclarator

declarator

declarator = initializer

TYPEDEF

E XTER N

STATIC

AUTO

REGISTER

VOID

CHAR

SHORT

IN T

LONG

FLOAT

DOUBLE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GRAMMAR

atruct-or-unionspecifier

8truct-or-union — ►

I

atruct-decLliat — ►

I

atruct-decl - >

apecifier.qualifierJiat — ►

atruct-declaratorJiat - >

SIGNED

UNSIGNED

8truct-or-unionspecifier

enumspecifier

TYPE-NAM E

atruct-OT-union ID E N T IF IE R atruct-decl-list

atruct-or.union atruct-decLliat

atruct-or-union ID E N T IF IE R

STRUCT

U N IO N

atruct-decl

atruct-decl-liat atruct-decl

8pecifier-quolifier-liat atruct-declarator-liat ;

typespecifier apecifier.qualifierJiat

typespecifier

type-qualifier apecifier-qualifierJiat

type-qualifier

atruct-declarator

atruct-declaratorJiat , atruct-declarator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GRAMMAR

8truct-declarator

enumspecifier

enumeratorJiat

enumerator

type-qualifier

declarator

direct-declarator

— ► declarator

| : constant-expr

| declarator : constant-expr

- * ENUM enumerator-list

| ENUM ID E N T IF IE R enumerator-list

| ENUM ID E N T IF IE R

- > enumerator

| enumeratorJiat , enumerator

-> ID E N T IF IE R

| ID E N T IF IE R = constant-expr

CONST

| VOLATILE

— ► pointer direct-declarator

| direct-declarator

-+ ID E N T IF IE R

| (declarator)

| direct-declarator [CONSTANT]

| direct-declarator []

| direct-declarator (parameter-typeJist)

| direct-declarator (identifier-liat)

| direct-declarator ()

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GRAMMAR

pointer

type-qualifier Mat

parameterAypeMat

parameter Mat

para.meter.decl

identifierMat

type-name

abatract-declarator

* type-qualifierMat

* pointer

* type-qualifierMat pointer

type-qualifier

type-qualifier-liat type-qualifier

parameterMat

parameterJiat , ELIPSIS

parameter-decl

parameter-list , parameter-decl

decLapecifiera declarator

decl-apeeifier8 abatract-declarator

decLapecifiera

ID E N T IF IE R

identifierMat , ID E N T IF IE R

apecifier-quolifierMat

apecifier-qualifier-liat abatract-declarator

pointer

direcLabatrad-declarator

pointer direct-abatract-declarator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GRAMMAR 227

direct-abstract-declarator

initializer

initializer-list

stmt

C abatract-declarator)

LI

[constant-expr]

direct-abstract-declarator []

direct-abstract-declarator [constant-expr']

()

C parameterAypeAiat)

direct-abatract-declarator ()

direct-abstract-declarator (parameter-type-list)

assignment-expr

initializerAist

initializerjist ,

initializer

initializer-list , initializer

labeled-stmt

compoundstmt

exprstmt

selectionstmt

iterationstmt

jumpstm t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GRAMMAR 228

labeledstmt

compoundstmt

decLliat

atmt-liat

exprstmt

aelectionstmt

iterutionstmt

whileprod

doprod

- > ID E N T IF IE R : atmt

| CASE constant-expr : atmt

| DEFAULT : atmt

—>

| atmtJiat

| decLliat

| decLliat atmLliat

- 4 declaration

| decLliat declaration

- 4 atmt

| atmtJist atmt

- 4 ;

I expr ;

-4 IF (expr) atmt

| IF (expr) atmt ELSE atmt

| S W ITC H (expr) atmt

W H ILE whileprod (expr) atmt

| DO doprod atmt U N TIL (expr) ;

| FOR tempprod (exprstmt exprstm t) atmt

| FOR tempprod (exprstmt exprstmt expr) atmt

-► (}

{ }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GRAMMAR

tempprod

jump-atmt

relationaLexpr

ahift-expr

additive-expr

multiplicative-expr

caat-expr

{ }

CO NTINUE ;

BREAK ;

R ETU R N ;

R ETU R N expr ;

ahift-expr

relationaLexpr < ahift-expr

relationaLexpr > ahift-expr

relationaLexpr LE.OP ahift-expr

relationaLexpr GE-OP ahift-expr

additive-expr

ahift-expr LE FT-0P additive-expr

ahifLexpr R IG H T-O P additive-expr

multiplicative-expr

additive-expr + multiplicative-expr

additive-expr - multiplicative-expr

caat-expr

multiplicative-expr * caat-expr

multiplicative-expr / caat-expr

multiplicative-expr % caat-expr

unary-expr

(type-name) caat-expr

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GRAMMAR 230

unary-expr

argument-exprJist

poatfix-expr

primary-expr

postfix-expr

IN C .OP unary-expr

DEC-OP unary-expr

unary-operator caat-expr

SIZEOF unary-expr

SIZEOF C type-name)

assignment-expr

argument-exprJist , assignment-expr

primary-expr

postfix-expr [expr]

poatfix-expr ()

poatfix-expr (argument-exprJist)

postfix-expr . ID E N T IF IE R

poatfix-expr PTR -O P ID E N T IF IE R

poatfix-expr IN C -O P

poatfix-expr DEC-OP

SEND (caat-expr , caat-expr , caat-expr)

RECV (caat-expr , caat-expr , caat-expr , caat-expr)

ASSERT (expr)

ID E N TIF IER

CONSTANT

STRING-LITERAL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GRAMMAR

unary-operator

equality-expr

and-expr

exclusive_ o r _ e x p r

inclusive-or-expr

logicaLand-expr

logicaLor-expr

conditional-expr

(expr)

k

relationaLexpr

equality-expr EQ-OP relationaLexpr

equality-expr NE-OP relationaLexpr

equality .expr

and-expr k equality.expr

and-expr

exclusive-or-expr ~ and-expr

exclusive-or-expr

inclusive-or-expr \ exclusive-or-expr

inclusive-or-expr

logicaLand-expr AND-OP inclusive-or-expr

logicaLand-expr

logical-or-expr OR-OP logicaLand-expr

logicaLor-expr

logicaLor-expr ? expr : conditional-expr

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GRAMMAR 232

aaaignment-expr

oaaignment-operator

expr

constant-expr

declaration

D

L

H

E

conditional-expr

unary-expr aaaignment-operator aaaignment-expr

M UL-ASSIGN

D IV-A SSIG N

MOD-ASSIGN

ADD-ASSIGN

SUB-ASSIGN

LEFT-ASSIGN

R IG H T.A SSIG N

AND.ASSIGN

XOR-ASSIGN

OR-ASSIGN

aaaignment-expr

expr , aaaignment-expr

conditional-expr

decLapecifiera ;

decLapecifiera iniLdeclarator Jiat ;

[0-9]

[a-xA-Z_]

[a-fA-FO-9]

[Ee][+-]?^

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GRAMMAR

FS

IS

AUTO

BREAK

CASE

CHAR

CONST

CO NTINUE

DEFAULT

DO

DOUBLE

ELSE

E N U M

EXTE R N

FLOAT

FOR

IF

IN T

IN T

LONG

REGISTER

R E TU R N

-> (f|F|l|L)

-> (u|U|l|L)*

-> auto

-*■ break

-► case

-> char

-*■ const

-> continue

-> default

-+ do

->■ double

-* e lse

—► enum

-► extern

-► flo a t

-»• for

i f

-> in t

->• FILE

-> long

->■ reg ister

-> return

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GRAMMAR 234

SHORT

SIGNED

SIZEOF

STATIC

STRUCT

S W ITC H

TYPEDEF

U N IO N

UNSIGNED

U N TIL

VOID

VOLATILE

W HILE

SEND

R E C V

ASSERT

POUND

ID E N T IF IE R

CONSTANT

—>• s h o r t

—>• s ig n e d

—► s i z e o f

-> s t a t i c

-¥ s t r u c t

s w i tc h

-> ty p e d e f

—► u n io n

—► u n s ig n e d

—> u n t i l

-> v o id

->• v o l a t i l e

-*• w h ile

—► a sy n c -se n d

-* a sy n c _ rec v

-> a s s e r t

->■ tf in c lu d e

-»■ o[xx]jr-is?

| 0 D+IS l

| ZJ+JS?

I D+EFSl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GRAMMAR

I d *.d +(E)?f s ?

| D +.IT(E)?FS?

STRING -LITERAL - > "(V

R IG H T.A S S IG N -¥ » *

LEFT.ASSIGN « *

ADD-ASSIGN -* + =

SUB-ASSIGN - =

M UL-ASSIGN — > * s

D IV-A SSIG N - > / =

MOD-ASSIGN -¥ • / . *

AND-ASSIGN f t *

XOR.ASSIGN - >

OR-ASSIGN - r 1*

R IG H T-O P — > »

LEFT-OP - > «

IN C -O P + +

DEC.OP -► —

PTR-OP ->■ - >

AND.O P -> • ftft

OR-OP - > II

LE.OP -» • < *

GE-OP > «

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GRAMMAR

EQ-OP

N E.O P

f

{

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Asynchronous Library Functions

237

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. ASYNCHRONOUS LIBRARY FUNCTIONS 238

N A M E

init_async - in itia lize the asynchronous message transm ittion facility

SY N O P S IS

include <async.h>

in t init.async(group. procid, numprocs. vtflag, simlost. nonfifo. traceflag)
short group;
short procid:
short numprocs:
short vtflag;
double simlost:
short nonfifo:
short traceflag;

P A R A M E T E R S

group a positive short integer identifying the process group to which this pro
cess is a member.

a short integer between 0 and numprocs- 1 identifying the process num
ber o f this member o f the process group.

procid

numprocs a short integer indicating the number o f processes in this process group

vtflag a flag indicating whether or not vector clocks should be used during
this execution. The difference in execution speeds and message sizes for
most process groups is insignificant.

sim lost a double floating point number representing the probability o f messages
sent from this process being lost during transm ittion. A value o f 0.0
indicates that messages transm ittion is reliable and a value o f 1 .0 w ill
cause a ll messages sent from this process to be lost.

nonfifo a flag indicating whether or not messages can be delivered out o f or
der. Message order is simulated using the M iller-Park random number
generator.

traceflag a flag indicating whether or not traces o f the execution should be con
structed. I f traceflag is true, then a file named progname.trace w ill be
created. Refer to the async.h header file fo r the exact layout o f the trace
records.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. ASYNCHRONOUS LIBRARY FUNCTIONS 239

D E S C R IP T IO N

init-async initializes the asynchronous communication facilities provided by the
libasync library. The first parameter identifies the group to which this process
belongs. The group id is a short integer that identifies the set o f processes w ith in
the distributed system. Processes are only allowed to communicate w ith other pro
cesses w ith in the ir group. In addition, processes are only allowed to begin execution
after a ll processes in the group have been started.

Each process in the system calls init-async to register w ith the process server and
obtain the lis t o f addresses for the other members o f the group. Only after a ll
members have registered are the processes allowed to proceed. I f a ll processes have
not registered w ith in a specified timeout period, failure responses are sent to those
processes that have registered and the group is removed from the registry. Later
attempts to register w ith in the same group are considered requests from a new
group.

R E T U R N V A LU E S

0 In itia liza tion failed. An indication o f why should be printed to stderr.

1 In itia liza tion was successful.

N O TE S

The lib rary containing this and other asynchronous communication related func
tions, along w ith the C header files are located in dennis/public. To use them w ith
gcc. the following command should be used.

gcc source -Idennis/public/inciude-Ldennis/public/lib -lasync -lm -11

E X A M P L E P R O G R A M S

Here are two programs that use asynchronous communication to send a simple ” Hello
World” string from process 0 to process I. The receiving process then prints the
number o f bytes received and the received message. Notice tha t the message length
is increased by 1 to insure the received message contains the ’\ 0 ’ string term inating
character.

Process 0

#include <std io.h>
#include <async.h>
main ()

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. ASYNCHRONOUS LIBRARY FUNCTIONS 240

char message[32];

/ * group: 101, process: P0, 2 processes in group * /
init_async(1 0 1 , 0 , 2 . 0 . 0 .0 , 0);

sprintf(message,” Hello World”);
/ * send message to P i * /
async_send(l. message. strlen(message) -t-1):

/ * finished * /
close_async():

}

Process 1

#include <stdio.h>
#include <async.h>
main ()
{

char message[32];
in t msglen:

/ * group: 101. process: P I. 2 processes in group * /
init_async(1 0 1 . 1 . 2 . 0 . 0 .0 . 0):

msglen = 32:
/ * receive message from P0 * /
async.recv(0 , message. & rnsglen. 0);
p rin tf(” received %d bytes [%s]0 . msglen. message);

/ * finished * /
close_async():

}

SEE A LS O

async_send(2), async_recv(2). close^isync(2), recv_qinfo(2). inc_vtime(2),
get_vtime(2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. ASYNCHRONOUS LIBRARY FUNCTIONS 241

N A M E

async_send - send an asynchronous message to another process

S Y N O PS IS

^include <async.h>

in t async_send(procid. tnsg, ten)
short procid;
void *msg;
in t Jen;

P A R A M E T E R S

procid a short integer between 0 and numprocs- 1 identifying the target process
in the process group. I f -1 is given as the target process identifier, the
message is broadcast to a ll other processes in the process group.

tnsg a pointer to the begiuing address o f a message to be sent.

Jen the length in bytes o f the message. (Currently restricted to
(M AXMSGSIZE1 10240 bytes.)

D E S C R IP T IO N

I f vector tim e is in use, the local component is incremented to indicate the occurrence
o f an event. The message pointed to by msg length Jen is then sent to process procid.
I f procid is -1. then the message is broadcast to a ll other processes in the process
group. (See init_async(2) for a description o f process groups.)

R E T U R N V A LU E S

0 The message was lost d in ing the send process.

1 The message was successfully sent to the other process and awaits de
livery.

SEE A LS O

init_async(2). async_recv(2), close_async(2), recv.qinfo(2), inc_vtime(2),
get_vtime(2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. ASYNCHRONOUS LIBRARY FUNCTIONS 242

N A M E

async-recv - receive an asynchronous message from another process

SYN O PSIS

#include <async.h>

in t async_recv(procid, msg, len. waitsecs)
short procid;
void *msg;
in t * len;
in t waitsecs:

P A R A M E T E R S

procid a short integer between 0 and numprocs- 1 identifying the transm itting
process in the process group. I f - I is given as the source process identi
fier. the message is accepted from and process in the process group.

msg a pointer to the begining address o f a message to be sent.

len a pointer to an integer to contain the length o f the message in bytes. It
is in itia lized to the length o f the message buffer. (Currently restricted
to (MAXMSGSIZE) 10240 bytes.)

waitsecs an integer number o f seconds to wait for the arrival o f a message. I f
no message has arrived w ith in waitsecs seconds, the function returns a
-1. A value o f 0 indicates that the tim er should not be used and the
function w ill wait forever.

D E S C R IP T IO N

I f vector tim e is in use, the local component is incremented to indicate the occurrence
o f an event. A message from process procid is copied to the address stored in msg.
The length o f the message is stored in len. I f procid is -1, then the message is
accepted from any process in the process group. (See init_async(2) for a description
o f process groups.) This option w ill return the next message in the order o f arrival.
I f no message is available, the function w ill hang, waiting for an arrival. I f no
message arrives w ith in waitsecs seconds, then the function returns w ith a value o f
- 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. ASYNCHRONOUS LIBRARY FUNCTIONS 243

R E T U R N V A LU E S

-1 No message was available for delivery w ith in the tim e specified by the
waitsecs parameter.

message length
The message was successfully received from the indicated process. Side
effects are to store the message in the memory area pointed to by msg
and to store the size o f the received message in the integer pointed to
by len.

SEE ALSO

init_asyuc(2). async_send(2). close_async(2), recv_qinfo(2). inc_vtime(2),
get_vtime(2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. ASYNCHRONOUS LIBRARY FUNCTIONS 244

N A M E

close_async - terminate the asynchronous message transm ittion fac ility

S Y N O PS IS

#include <async.h>

in t close_async()

D E S C R IP T IO N

close_async terminates the asynchronous communication facilities in itia lized by a
call to init-async. This function should always be called by the program using the
async library. Failure to do so could leave zombie children wandering about.

R E T U R N V A LU E S

1 Termination was successful. Does not return un til term ination has been
completed.

SEE A LS O

init.async(2). async_send(2). async_recv(2). recv_qinfo(2), inc_vtime(2).
get_vtime(2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. ASYNCHRONOUS LIBRARY FUNCTIONS 245

NAME

recv_qinfo - check the status o f the asynchronous message wait queues

SYNOPSIS

#include <async.h>

in t recv_qinfo(procid)
short procid;

PARAMETERS

procid a short integer identifying the sending process from which messages
should be checked. A value o f -1 indicates that messages from a ll pro
cesses should be reported.

DESCRIPTION

recv-qinfo checks to see i f any messages are waiting to be delivered to this process
from process procid.

RETURN VALUES

0 No messages are waiting to be delivered from the indicated process.

1 Messages are waiting to be delivered from the indicated process.

SEE ALSO

iuit_async(2). async_send(2), async_recv(2), cIose.async(2), inc_vtime(2),
get_vtime(2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. ASYNCHRONOUS LIBRARY FUNCTIONS 246

NAME

inc.vtim e - increment the local component o f the vector clock

SYNOPSIS

include <async.h>

in t inc_vtime()

DESCRIPTION

I f vector clocks are being used in the asynchronous communication facilities, this
function increments the local component to indicate the occurence o f a significant
local event.

RETURN VALUES

0 Vector clocks are not being used in this execution. See init_async(2).

local vector clock component
The value o f the local component o f the vector clock is returned after
it has been incremented to indicate success.

SEE ALSO

init_async(2). async_send(2). async_recv(2), close_async(2), recv_qinfo(2).
get_vtime(2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. ASYNCHRONOUS LIBRARY FUNCTIONS 247

NAME

get.vtime - return the current vector clock values

SYNOPSIS

#include <async.h>

in t get.vtime(vt)
unsigned in t *vt:

PARAMETERS

vt a pointer to an array o f unsigned integers where the values in the vector
clock should be placed.

DESCRIPTION

I f vector clocks are being used in the asynchronous communication facilities, this
function stores the current value o f the vector clock in the array o f unsigned integers
pointed to by v t.

RETURN VALUES

-1 An error has occurred preventing the completion o f the operation.

0 Vector clocks are not being used in this execution. See init_async(2).

1 The current values o f the vector clock have been successfully placed in
the vt array.

SEE ALSO

init_async(2), async_send(2), async_recv(2), cIose_async(2), recv.qinfo(2),
inc_vtime(2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. ASYNCHRONOUS LIBRARY FUNCTIONS 248

NAME

trace - Add a local event record to a process’ trace file

SYNOPSIS

#include <async.h>

in t trace()

DESCRIPTION

trace is used w ith the asynchronous communication lib ra ry event tracing facility.
It creates an event record o f type TRACE-LOCAL w ith the current vector time
and adds that record to the trace inform ation. See init_async(2) for inform ation on
in itia liz ing the tracing facilities.

RETURN VALUES

none No values are returned from this function.

SEE ALSO

init_async(2), async_send(2). async_recv(2). recv_qinfo(2). inc.vtim e(2),
get_vtime(2). close_async(2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] A .V . A h o . R. SETHI. AND J.D . ULLMAN. CompilcrstPrinciples. Techniques, and
Tools. Addison-Wesley, 1986.

[2] S am an A m arasinghe and M onica La m . Communication optim ization and code
generation for distributed memory machines. ACM SIGPLAN Notices. 28(6):126—138.
June 1993.

[3] K . A p t. N. F r a n c e z , a n d W . D e R o e v e r . A proof system for communicating
processes. ACM Trans. Programming Languages and Systems, 2:359-385. 1980.

[4] K .M . CHANDY AND L . L a m p o r t . Distributed snapshots: Determining global states
o f distributed systems. AC M Transactions on Computer Systems. 3(l):63-75, 1985.

[5] R. C o o p e r a n d K . M a r z u l o . Consistent detection o f global predicates. In Pro
ceedings o f the ACM/ONR Workshop on Parallel and Distributed Debugging, pages
163-173. 1991.

[6] S usan G raham David Baco n and O l iv er S h a r p . Compiler transformations-
for high-performance computing. ACM Computing Surveys, 26{4):345-420. December
1994.

[7] E. W . D ijk s t r a . A correctness proof for networks o f communicating processes—A
small exercise. Technical Report EWD-607. Burroughs, 1977.

[8] Lo ri C lark e Douglas Lo n g . Data flow analysis o f concurrent systems that use the
rendezvous model o f synchronization. Technical Report COINS 91-31. University o f
Massachusetts at Amherst. July 1991.

[9] Sam an A m arasin gh e D r o r M aydan and M o n ica La m . Array data-flow analy
sis and its use in array privatization. 12th AC M SIGPLAN-SIGACT Symposium on
Principles o f Programming Languages, pages 2-15, January 1993.

[10] R. G upta E. Duesterwald and M . Soffa . A pratical data flow framework for
array reference analysis and its use in optimizations. SIGPLAN Notices, 28(6):68-77,
June 1993.

[11] Pa u l F e a u t r je r . Semantical analysis and mathematical programming. Parallel and
Distributed Algorithms., pages 309-320, October 1989. Proceedings o f the International
Workshop.

[12] D avid G r ie s . The Science o f Programming. Springer-Verlag, 1981.

249

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 250

[13] M .S. H e c h t . Flow Analysis o f Computing Programs. Number ISBN 0-444-00210-3 in
Programming Language Series. Elsevier North-Holland, New York. 1977.

[14] C .A .R . HOARE. An axiomatic basis for computer progra m m in g . Communications of
the ACM , 12(10):576-583, 1969.

[15] C .A .R . H o a r e . Communicating sequential processes. Communications o f the ACM,
21(8):666-677, 1978.

[16] B rian K ern in g h a n and D ennis R it c h ie . The C Programming Language. Prentice-
Hall. 1978.

[17] Sy ing -S yang L iu K urt J ohm ann and St e p h e n Yau . Context-dependent flow-
sensitive interprocedural dataflow analysis. Software Maintenance: Research and Prac
tice, 7:177-202. 1995.

[18] T .H . Lai AND T .H . Yang . O n d istribu ted snapshots. Inforamtion Processing Letters.
pages 153-158. 1987.

[19] L. La m po r t . Time, clocks, and the ordering o f events in a distributed system. Com
munications of the ACM, 21(7):558-565. 1978.

[20] G .M . Levin AND D. G ries . A proof technique for communicating sequential pro
cesses. Acta Informatica, 15:281-302. 1981.

[21] W . S. L lo y d and P. K earns. Using tracing to direct our reasoning about dis
tributed programs. In Proceedings o f the 11th International Symposium on Distributed
Computing systems, pages 552-559, 1991.

[22] D .L . Long and L .A . C la r k e . Task interaction graphs fo r concurrency analysis.
In Proceedings o f the 11th International Conference on Software Engineering, pages
44-52. A p ril 1989.

[23] A lan C a rle M ary H all , J ohn M ello r -C rum m ey and R e n e ’ R o d r ig u ez . Fiat:
A framework for interprocedural analysis and transformation. Proceedings o f the 6th
Workshop on Languages and Compilers fo r Parallel Computing, pages 522-545, August
1993.

[24] B r a in M u r ph y M ary H all and Sam an A m arasin gh e . Interprocedural paral-
lelization analysis: A case study. Proceedings o f the 7th S IA M Conference on Parallel
Processing, pages 650-5, February 1995.

[25] Vadim M aslov . Lazy array data-flow dependence analysis. 21st ACM SIGPLAN-
SIGACT Symposium on Principles o f Programming Languages, pages 311-25, January
1994.

[26] STEPHEN M a stic o l a . Static Detection o f Deadlock in Polynomial Time. PhD thesis,
Rutgers, Univeristy o f New Jersey, 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 251

[27] STEPHEN P . M a stic o l a AND Ba rb a ra Ry d er . Non-concurrency analysis. In Pro
ceedings of the 4th ACM SIGPLAN Symposium on Principles and Practice o f Parallel
Programming, May 1993.

[28] F reidem ann M a t t e r n . Efficient algorithms for distributed snapshots and global
tim e approximation. Journal of Parallel and Distributed Computing, 18(4):423—434.
1993.

[29] FRIEDEMANN M a t t e r n . V irtua l tim e and global states o f distributed systems. In
Parallel and Distributed Algorithms: Proceedings of the International Workshop on
Parallel and Distributed Algorithms, M . Cosnard et. al.. editor, pages 215-226. Elsevier
Science Publishers B. V.. 1989.

[30] D . MATUSZEK. The case for the assert statement. SIGPLAN Notices, pages 36-37,
1976.

[31] Larry L. P e t e r s o n . N ick C. B u ch ho lz . and R ich ard D . S ch lich tin g . Pre
serving and using inform ation in interprocess communication. ACM Transactions on
Computer Science, 7(3):217—246. August 1989.

[32] M o n ic a Lam S a m an A m a ra s in g h e . J e n n i f e r A n d e r s o n a n d Amy Lim. An
overview o f a compiler for scalable parallel machines. Proceedings 6th International
Workshop on Languages and Compilers fo r Parallel Computing, pages 253-271. August
1993.

[33] R einhard Schw a rz and F r iedem a nn M a tter n . Detecting causal relationships in
distributed computations: In search o f the holy grail. Technical Report SFB 124-15/92.
Department o f Computer Science. University o f Kaiserslautern, December 1992.

[34] K e n K e n n e d y S e e m a H ira n a n d a n i a n d C h a u -W e n T s e n g . Compiling fortran d.
Communications o f the ACM. 35(8):66-80. August 1992.

[35] P hillip Sh a f f e r . Parallel implementation o f real-time control programs. Proceedings
o f the 27th IEEE Conference on Decision and Control, 2508(2):1449-1454. December
1988.

[36] P hillip Sh a f f e r and T im othy J o hn son . Data flow analysis o f concurrency in a
turbojet engine control program. Proceedings o f the 1988 American Control Conference,
2503(3):1837-45, June 1988.

[37] M . Sp e z ia l e t t i and J . P. K ea r n s . Simultaneous regions: A framework for the
consistent m onitoring o f distributed systems. In Proceedings o f the 9th International
Symposium on Distributed Computing systems, pages 611-618, 1989.

[38] M adalene Sp e z ia l e t t i and P hil K earn s . Efficient distributed snapshot. In Pro
ceedings o f the 6th International Conference on Distributed Computing Systems, pages
382-388, 1986.

[39] Sun. SunOS Reference Manual Vol II, 1989. C Library Function.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 252

[40] Sun. Sun Pascal Reference Manual, 1991.

[41] A n d r ew T ann en bau m . Networks.

[42] R ich ard N. Ta y lo r . A general-purpose algorithm for analyzing concurrent programs.
Communications o f the ACM, 26(5):362—376, May 1983.

[43] Anshul G u pta V ipin K um ar , A n a n th G ram a and G eo r g e K a ry pis . Introduc
tion to Parallel Computing. Benjamin/Cummings. 1994.

[44] Western D ig ita l Corporation. Ada Reference Manual, 1983.

[45] M . Y oung and R. N. Taylor . Combining static analysis w ith symbolic execution.
IEEE Transactions on Software Engineering, 14(10):1499—1511, October 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Sharon Jeanette Simmons

Born in New Orleans. Louisiana. A p ril 21. 1962. Graduated from Hattiesburg High

School in Hattiesburg, Mississippi, May 1980. A t the University o f Southern Mississippi,

earned a B.S. in Computer Science in 1984 and earned a M.S. in Computer Science in 1991.

Currently a Ph.D. candidate at the College o f W illiam and Mary.

The author is an assistant professor o f Computer Science at the State University o f West

Georgia.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Causal distributed assert statements
	Recommended Citation

	tmp.1539750766.pdf.7SsOY

