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ABSTRACT 

Light-weight threads are becoming increasingly useful for parallel processing. This is 
particularly true for threads running in a distributed memory environment. Light
weight threads can be used to support latency hiding techniques. communication and 
computation overlap, and functional parallelism. Additionally, dynamic migration 
of light-weight threads supports both data locality and load balancing. Designing a 
thread migration mechanism presents some unique and interesting challenges. One 
such challenge is maintaining communication between mobile threads. A potentially 
more difficult challenge involves maintaining the correctness of pointers within mobile 
threads. Since traditional pointers have no concept of address space. mO\ing threads 
from processor to processor has a strong impact on the use of pointers. Options 
for dealing with pointers include restricting their use, adding a layer of software to 
support pointers referencing non-local data, and binding data to threads such that 
referenced data is always local to the thread. 

This dissertation presents the design and implementation of Chant, an efficient light
weight threads package which runs in a distributed memory environment. Chant 
was designed and implemented as a runtime system using !-.-!PI-like and Pthreads-like 
calls. Chant supports point-to-point message passing between threads executing in 
distributed address spaces. \Ve focus on the use of Chant as a framework to support 
dynamic load balancing based on thread migration. \Ve explore many of the issues 
that arise when designing and implementing a thread migration mechanism. as well 
as the issues that arise when considering the use of thread migration as a means for 
performing dynamic load balancing. This load balancing framework uses both system 
state information, including communication history, and user input. One of the basic 
functionalities of this load balancing framework is the ability of the user to customize 
the load balancing to fit particular classes of problems. This dissertation provides 
implementation details as well as discussion and justification of design choices. \Ve go 
on to show that the overhead associated with our approach is within an acceptable 
range, and that significant performance gains can be achieved through the use of 
thread migration as a means of performing dynamic load balancing. 

xii 
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Chapter 1 

Introduction 

Light-weight threads have become increasingly popular over the past several years. 

This is particularly true for threads running in distributed memory environments (-1. 22. 

27]. Uses of threads in distributed environments include. but are not limited to, providing 

latency tolerance by overlapping communication and computation, and providing support 

for dynamic load balancing. Dynamic load balancing involves determining the workload on 

each processor at runtime and transferring work from one processor to another to overcome 

a load imbalance. In a multi-threaded environment, this movement of work is referred 

to as thread migration. where a thread from one processor is moved. or migrated, to a 

remote processor. This dissertation describes the design and implementation of Chant, 

a multi-layered light-weight threads library for distributed memory architectures. Chant 

2 
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CHAPTER 1. INTRODUCTION 3 

was designed and implemented as a runtime system with a user interface using 1\IPI-like 

(~Iessage Passing Interface) [20] and Pthreads-like [31] calls. The lower layers support 

point-to-point message passing between threads executing in distributed address spaces 

and remote procedure calls. 

This dissertation focuses on the use of Chant as a framework to support dynamic load 

balancing based on thread migration. \Ve explore many of the issues that arise when 

designing and implementing a thread migration mechanism, as well as the issues that arise 

when considering the use of thread migration as a means for performing dynamic load 

balancing. 

We describe. in detail, the implementation of the migration mechanism, including the 

method used to transfer the thread state a.nd its associated data. Furthermore. we discuss 

how we deal with both user-level pointers and system pointers. That is. if data referenced 

by pointers resides in a different memory locations following a migration than prior to the 

migration. the pointers referencing the data are no longer valid. \Ve describe a method 

for tracking pointers and for updating all active pointers following a migration so that 

all pointers remain valid. Finally, we discuss issues pertaining to communication among 

threads. Since Chant supports point-to-point communication between threads. we must 

maintain the location of threads throughout the system, as well as provide a mechanism for 

forwarding messages that arrive at a processor and are targeted for a thread that no longer 

resides on said processor. 
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CHAPTER 1. INTRODUCTION 4 

An important contribution of this work is the use of Chant as a framework for dynamic 

load balancing based on thread migration. \Ve describe a separate load balancing layer. 

which has been built on top of Chant. There are several issues we address when discussing 

this load balancing layer. 

One of the first issues that must be addressed when developing any load balancing system 

is how to estimate the load of both individual processors as \vell as the entire system. A 

common method for estimating load in a multi-threaded system is to simply use the length 

of the run queue. This is not always sufficient, however, so we explore other methods of 

load estimation. 

Another important issue to be considered is the tradeoff between a more balanced exe

cution and increased communication. That is, if balancing the load of a particular execution 

causes excessive increase in inter-processor communication. the overall execution time may 

increase. \Ve explore ways to track communication and incorporate this information in any 

decision making process involving load redistribution. 

One of our primary goals in the design of this load balancing layer was the support 

of a large variety of programming models. Since a particular load balancing algorithm 

may work well for one class of programs, and may work very poorly for another class 

of programs, we have attempted to design a generic load balancing layer. \Ve provide 

an Application Programmer Interface (API) that allows the user to customize the load 
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balancing to fit particular classes of problems. \Vhile we provide default load balancing 

functionality. this API provides the user with the ability to customize the load balancing 

to var}';ng degrees. \Ve prO\;de the user with the ability to use nearly no customization, to 

near 100% customization. 

Since a primary goal of this work is improved performance of distributed memory parallel 

computing, it is important that we attempt to quantify the overheads associated with 

both multi-threading and thread migration. Furthermore. we attempt to demonstrate that 

performance can be improved through the use of thread migration as a means of performing 

dynamic load balancing. Therefore, we provide detailed analysis of the overheads associated 

with our approach. as well as performance results obtained from using our system on a suite 

of test applications. 

The rest of this dissertation is organized as follows: Chapter 2 provides background 

information on light-weight threads, including the use of threads in a distributed memory 

environment as well as background on thread migration. It also provides background infor

mation on load balancing, including a sample of contemporary load balancing algorithms. 

Chapter 3 provides a summary of related work. Chapter 4 provides a discussion of the 

design and implementation of the lower layers of Chant, including the reasons behind some 

of our design decisions. In Chapter 5 we describe both the design and implementation of 

the thread migration mechanism used by Chant. This includes how we deal with pointers 

and how we handle communication among migrant threads. Chapter 6 provides details of 
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CH.-\PTER 1. INTRODUCTION 6 

the load balancing layer, including an overview of the API. \Ve provide performance results 

in Chapter 7. This includes performance of the threads system itself. performance of the 

migration mechanism, and performance of the load balancing layer on a number of test 

applications. Finally, in Chapter 8 we offer some conclusions as well some ideas on possible 

directions this research can take in the future. 
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Chapter 2 

Background 

In this chapter, we provide some background information that is needed to understand some 

of the material presented in later chapters. \Ve introduce the concept of light-weight threads 

including definitions and motivation for using light-weight threads in a distributed memory 

environment. \Ve follow this with some additional information on thread migration. 

Next, this chapter provides some background information on load balancing, once again, 

including definitions and motivation. \Ve discuss the decision making process, along with 

a summary of some contemporary load balancing algorithms. Following this is some back

ground information on the use of thread migration as a means of load redistribution. 

7 
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CHAPTER 2. BACKGROUND 8 

1 Light-weight Threads 

Light-weight threads have been in use for a number of years. However, most of the work that 

has been done with light-weight threads, has been on uni-processor machines or shared mem

ory multi-processor systems. This section introduces the concept of threads. followed by a 

discussion of light-weight threads, and why light-weight threads are useful in a distributed 

memory environment. This is followed by some background information on migration of 

light-weight threads in distributed memory environments. 

1.1 Definitions 

A thread, as a straightforward concept, is a single independent sequential flow of control. A 

normal UnLx process can generally be thought of as a single thread. \Vithin a thread there 

is a single point of execution at any instant. Having multiple threads means that at any 

instant there are multiple points of execution. one for each thread (5]. 

Threads are generally classified as ·'heavy-weight". "middle-weight". or "light-weight''. 

A thread's weight corresponds to the amount of context associated with the thread. A 

thread's context consists of its program counter, machine registers, and other control in

formation needed for its execution (43]. A typical UnLx process represents a heavy weight 

thread since its context consists of the entire state of the process. Many contemporary 
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operating system kernels, such as Mach, allow multiple threads within a single address 

space. This reduces the size of a thread's contex'1: since process state information is kept 

separate. However. the context of the thread and all thread operations are controlled by 

the kernel and often include more context than the application needs. These kernel-level 

threads represent middle-weight threads. Exposing all context and thread operations to the 

user-level allows for a minimal context, and thread operations can avoid crossing the kernel 

interface. These user-level threads have a much smaller context than kernel-level threads 

and represent light-weight threads. Due to their smaller context. light-weight threads have 

a much shorter context s'\\itch time (the time it takes to smtch control of the processor 

from one thread to another) than either heavy or middle-weight threads. Unless otherwise 

specified, the use of the term "'thread" in this dissertation refers to light-weight threads 

running within a UnLx process. 

Threads that reside in the same process execute within a single address space. This 

allows different threads to read and write the same memory locations. In particular. the 

off-stack (global) variables are shared among all threads within the process. Each thread 

has its own separate call stack and local variables [5]. 

A thread system uses a Thread Control Block (TCB) for each thread to allow the system 

to keep track of each thread's state. A TCB is simply a data structure used to store items 

such as the current stack pointer, the current frame pointer, status of the thread, thread 
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identifier (TID), and other thread specific information. Each thread has a distinct TCB. 

which is maintained by the underl}ing threads system. 

Threads have traditionally been used in uni-processor and shared memory multi-processor 

environments. However, they have recently been utilized in distributed memory environ

ments as well (23, 2i]. In order to move to a distributed memory environment, we must 

take into account some additional issues. 

1.2 Light-weight Threads in a Distributed Environment 

\Yhen running a multi-threaded application, it is often necessary to be able to distinguish 

between different threads. In a uni-processor environment this is triviaL since each thread 

has a unique thread identifier (TID) associated with it. However, when running in a dis

tributed environment, threads on different processors may share a local TID. This makes 

it necessary to also maintain a unique global TID associated with each thread. If threads 

are stationary (never move from one processor to another), this is again triviaL as a tuple 

consisting of a thread's local TID and its processor id. serves as a unique identifier. How

ever. if thread mobility is to be supported, this is insufficient. In this case, two threads on 

different processors cannot share a local TID. since there is no guarantee that one of these 

threads will not move to the processor on which the other resides. For this reason, if thread 

mobility is to be supported, there must be another way to maintain unique global TIDs. 

This will be discussed in more detail in Chapter 4. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 2. B.4CKGROUND 11 

As stated above, threads running within a single process share an address space. making 

information exchange relatively simple. However. when threads are running in a distributed 

memory environment, threads clearly do not share an address space and cannot directly 

share information with other threads executing in separate address spaces. This makes 

information exchange much more difficult. \Vhile there are several possible solutions to 

this problem, we employ explicit message passing as a means of sharing data. A common 

parallel programming strategy is to use !I.IPL or !I.Iessage Passing Interface [20], to perform 

inter-processor communication. 

MPI is a standard developed for writing message-passing programs. \Vhen we refer to 

l\IPI we are referring to the Application Programming Interface (API) rather than a specific 

l\IPI implementation. This allows us to ignore implementation details and concentrate on 

the semantics of the standard. Since we use only communication primitives, rather than the 

entire standard. we will restrict our discussion to those primitives that relate to our work. 

l\IPI supports point-to-point communication between processes running in a distributed 

memory environment. The main communication operations we are concerned with are send

ing and receiving messages. \Vhen sending a message. the user must specify a destination 

process as well as a buffer from which the message must be copied. When receiving a 

message, the user may specify the process from which the message should be sent, or a 

wild-card may be used, indicating the message may arrive from any process. Additionally. 

a buffer into which the message should be received must be specified. Sends and receives 
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are matched up by the use of a message type, or tag. That is. a message sent with tag x, 

will only be retrieved by a corresponding receive that also used the value x in the tag field. 

Communication operations can be either blocking or non-blocking. A blocking operation 

does not return until the resources specified in the call can be reused. \Vhen sending a 

message, this means the message has been copied from the send buffer, and the user is 

free to reuse this buffer. \\nen receiving a message. this means the message has actually 

arrived in the specified buffer, and the buffer's contents are available for use. \\'nen a 

blocking operation is called, the entire process is blocked, and does not regain control of 

the processor until the call has completed. 

Non-blocking operations may return before the operation completes, i.e., before the 

user is free to use resources specified in the call. Non-blocking calls return a handle, which 

may be used for checking the status of the operation. This handle can be used either to 

wait for the operation to complete (a form of blocking call), or to test if the operation has 

completed. The resources specified in the call should not be reused until either a wait is 

called or a test returns true. Once the user returns from a wait calL or tests positive for 

completion, the user may reuse the resources, including the handle. specified in the original 

non-blocking call. 

Threads running in a distributed memory environment can also make use of MPI, though 

there are some problems associated ·with its use. One problem is the way to address messages 
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to particular threads. The problem is that l\IPI only recognizes entities such as processes, 

but not individual entities within a process (e.g., a thread). Another problem is that l\IPI 

blocking calls block the entire process. while we would prefer to block only the calling 

thread. Both these issues will be addressed in more detail in Chapter -1. 

\Vhile we have introduced the concept of threads, and have provided some background 

on threads running in a distributed memory environment, we have not pro-vided any reasons 

for using threads in such a way. That is, what advantages are there to using threads in a 

distributed memory environment? 

A primary incentive to using threads in a distributed memory environment is the ability 

to perform latency hiding. This latency can be due to, among other things. message passing 

or IO calls. If a thread needs data from a remote processor, it can obtain this data through 

explicit message passing. In this case, the thread may have to wait an unknown amount 

of time to receive the data. If the thread has no useful work to perform, it can y;eld the 

processor to another thread. one that does have useful work to perform. By doing this, the 

processor remains busy while waiting to receive remote data. 

1.3 Thread Migration 

Thread migration allows a thread residing on one processor to move to another processor. 

Figure 2.1 represents a multi-threaded distributed system. In this system, a thread from 
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Figure 2.1: A thread migmtes from process p2 to process pl 

process p2 on processor 2 \\-ill migrate to process pl on processor 1. Following the migration, 

process pl will contain two threads. both ha...,ing access to the same address space. A thread 

may be migrated for a number of reasons, including improved data locality, improved load 

balance. and access to system resources that may not exist on all processors. 

There are at least two separate models of thread migration. The first model migrates 

a thread by transferring the data that defines the thread's computation, but little or none 

of the thread"s state [13, 14]. This occurs when threads are migrated before they begin 

execution. or at very well-defined break-points, when the amount of state is minimal. One 

example of such a break-point is the end of a main loop of computation. Migration is accom-

plished by sending the data associated with the thread, and the minimal state information. 

to a remote processor, where a new thread is created. 

A second modeL and the one that has been implemented in this work, supports fine-

grain load balancing, by allowing a thread to migrate at any point during its execution. 

In this modeL a thread to be migrated is suspended during its execution, and the thread's 
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current state and data are sent to a remote processor. On the remote processor. the mi

grated thread resumes execution at the point where it was suspended. This migration takes 

place seamlessly, with the thread having no immediate knowledge that it has moved. This 

model allows for much better load balancing, because a thread can be migrated at arbitrary 

suspension points. However, this model requires the ability to migrate the entire state of a 

thread. 

2 Load Balancing 

The total execution time of a parallel program is equal to the time it takes for the slowest 

(most overloaded) processor to complete its computation (13]. It has been shown that in a 

network of autonomous processors, there is a large probability that, at some point during 

execution, at least one processor will be idle while there are multiple tasks queued for 

execution on other processors [17]. In such a situation, it may be advantageous to move 

some of the work from the busy processors to the idle processors. This movement of work 

(or load) is referred to as load balancing. For some applications, it is sufficient to balance 

the load such that every processor has some work at any time. For others, the load must 

be distributed nearly evenly across all the processors to achieve optimal performance (33}. 

There are three fundamental issues to be addressed when dealing with a load balancing 

problem. These issues can be summarized as when, who, and which: lVhen is it necessary to 
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perform a load redistribution, who (what processors) gets load increases and who gets load 

reduction, and which load units are involved in the redistribution. These factors can vary 

greatly depending on the application in which the load balancing is taking place. U nfor

tunately, fe\v systems take the application into account when making these load balancing 

decisions. 

There are two distinct types of load balancing policies: static and dynamic. Policies 

that use only information about the average behavior of the system, ignoring the current 

state of the system, are referred to as static policies [17]. Static load balancing policies 

are generally evaluated at compile-time and cannot adapt to unexpected load distributions. 

Although static load balancing policies work well for regular problems. there exists a large 

class of problems that have unpredictable computational requirements [49]. These problems 

are best suited for dynamic load balancing policies. Dynamic policies use the current state 

of the system to make load balancing decisions at run-time. \Ve focus here on dynamic 

policies. 

The methods of estimating the load of a processor and determining a maintenance policy 

are of primary importance in designing a dynamic load balancing algorithm. An estimating 

function can combine several load indicators, including length of the CPU queue, rate of 

memory occupancy, rate of CPU utilization, rate of communication, and more. However, 

it has been shown that, in most multi-threaded systems, the length of the ready queue is a 

good indicator of processor load [37]. 
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The maintenance policy can be based upon the local load situation itself, the local load 

situation along with the load situation of direct neighbors, or the load situation of any 

subset of the processors. Additionally, load units (threads in the case of this work) can 

have a local or global migration space. In an algorithm that uses a local migration space, 

\Vork can only migrate to a direct neighbor. \Vhen a global migration space is used. work 

may migrate to any processor in the system [34]. 

There are a large number of load balancing policies that have been proposed. \Vhat 

follows is a non-exhaustive sampling of these different policies. 

• Dimension Exchange .Method [49]. In this method, any processor that invokes a load 

balancing operation, exchanges load \Vith each of its direct neighbors successively. The 

method works by migrating a predefined fraction of excess workload between the two 

processors. This exchange is done with each neighbor one at a time. without regard 

to the load on other neighbors. Actions that trigger a load balancing operation may 

include reaching a load threshold, or expiration of a timer. 

• Diffusion Method [49]. This method is similar to the dimension exchange method. 

The only difference is that, in this method, the load of all the neighbor processors 

is taken into account when deciding the amount of load to exchange between two 

neighbors. 
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• Gradient .Model (34]. In this model. a processor may be in any of three states: L (low), 

N (normal), or H (high), based on its local load. Additionally. each processor has load 

and distance information for all other processing elements. Each processor also knows 

which of its direct neighbors lies on the shortest path to a processor in state L. \Vhen 

a processor enters a state of H, it sends a load unit to its direct neighbor that lies 

on said shortest path. This load unit is not forwarded along the shortest path. but 

rather remains on the processor to which it was migrated. However. if this new arrival 

causes the processor to enter the state H. a load unit will be sent along this shortest 

path via the same mechanism. 

• Bidding Algorithm (34]. This algorithm is similar to the gradient model in that it 

uses the same states (L, N, H). In this algorithm, however, an initiating processor can 

migrate a load unit to any processor, not only a direct neighbor. In this algorithm. 

the initiating processor (the one in state H) receives bids from processors within some 

distance d. This bid indicates the amount of load the responding processor can accept. 

The initiating processor then sends a load unit to the processor from which it received 

the highest bid. The distance value, d, changes dynamically, depending upon how 

many bids are received. If too many bids are received, then dis decreased, while if 

too few bids are received, then d is increased. 

• Drafting Algorithm (34]. This algorithm is similar to the bidding algorithm, except 

that the under-loaded processor initiates the load balancing operation. In this algo

rithm, each processor has a table of the loads of all the other processors. \Vhen a 
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processor enters state L it chooses a processor in state H from its local load table, 

and instructs said processor to migrate a load unit. 

• Centralized [37). A centralized load balancing algorithm uses a master-slave modeL 

where the master processor keeps track of the global load state. The master processor 

broadcasts, to all the slaves, a table of lightly loaded processors at time intervals 

of G_DELA Y. G_DELA Y varies dynamically depending on overall load indications. 

Slave processors send local load information to the master processor at intervals of 

L_D ELA Y, which also varies dynamically. \Vben work is to be created on a processor, 

if said processor is not lightly loaded, then the work is created on a lightly loaded 

processor, chosen from the table received from the master processor. The target 

processor is chosen in such a way as to avoid flooding a particular processor. 

In terms of computational resources used, these different load balancing policies range 

from very simple to very complex. However, Eager, et al. [17) contend that the potential 

benefits of the complex policies do not justify the added complexity nor the added potential 

for poor results. Their findings show that extremely simple policies that collect a very 

small amount of state information, and use this information in very simple ways, yield 

dramatic performance improvement relative to the no load balancing case. Moreover, these 

simple policies };eld performance close to the expected performance of complex policies that 

attempt to make the "best" choice, based upon the large amount of state data collected. 

They also show these results to be valid over a wide variety of system parameters. They 
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conclude that simple dynamic load balancing, ··is of considerable practical value, and that 

there is no firm evidence that the potential costs of collecting and using extensive state 

information are justified by the potential benefits" [17]. This conclusion has not yet been 

disputed. 

3 Load Balancing via Thread Migration 

In a multi-threaded distributed environment also, one processor may eventually become 

overloaded, ending up with a large number of threads while other processors may have very 

few threads. In Figure 2.1, process p2 has four active threads. while process pl has only one 

active thread: this represents a load imbalance. assuming all threads do roughly the same 

amount of work. To attempt to balance this load, a thread from the overloaded process 

(p2) is migrated to the under-loaded process (pl), resulting in a more balanced system. 

A load balancing policy of choosing the least loaded node for each thread creation is 

not difficult to implement. However, since threads have varying lifetimes. such a policy may 

still lead to idle processors when there are more active threads in the system than there are 

processors. A good load balancing policy should ensure that there are no idle processors as 

long as there are at least as many active threads as there are processors. Thread migration 

mechanisms allow the realization of such a dynamic redistribution of threads [38]. 
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The first model for thread migration, which was introduced in Chapter 2 Section 1.3, 

consists of migrating data rather than the actual thread. Using this model. load balancing 

can be implemented in a very straightforward manner. The data associated with a thread is 

viewed as the load unit discussed above. \Vhen a load imbalance is detected. data associated 

with a thread is migrated, using any of the policies discussed above. A new thread is created 

on the destination node and the computation is continued. The choice of which load unit 

to migrate can be arbitrary, or it may depend on known communication patterns. In the 

latter case, a load unit is chosen such that added communication is minimized. Although this 

model is relatively easy to implement, threads are typically not migrated once they begin 

execution, or are migrated at specific points in the execution. The result is a very coarse

grain approach to load balancing, often leaving the system unbalanced for considerable 

periods of time between break-points. 

The second model. where a thread can be migrated at any arbitrary point in its exe

cution. offers much more flexibility for implementing a load balancing system. \Vith this 

model. a load balancing operation can be carried out at any point during the execution of 

the program. A coarse-grained approach could have the user set points in the code where 

the system checks the global load and performs any necessary load balancing operations. A 

finer-grained approach could involve the system checking the global load at either pre-set or 

varying time intervals. Using var};ng intervals can allow for the intervals to increase when 

the system is experiencing little change in overall load, and decrease when the system is 

experiencing significant load changes. Wnen a load imbalance is detected, an entire thread 
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is viewed as a load unit and is migrated, state and all, according to the load balancing 

policy in use. This model allows for much finer-grained load balancing, because a thread 

can be migrated at any arbitrary suspension point. However, this model requires the ability 

to migrate the entire state of a thread. 

In this chapter, we have introduced the concept of a thread as well as discussed the use 

and functionality of light-weight threads. Additionally. we have discussed the use of threads 

in a distributed memory em;ronment, as well as the ideas behind the migration of threads 

across physical processor boundaries. 

\Ve have also prmdded background information on load balancing, as well as some 

traditional load balancing algorithms. Finally, we have discussed the idea behind using 

thread migration as a means for load redistribution in a dynamic load balancing system. 

The following chapter gives a summary of other systems that provide some of these 

functionalities. These systems range from simple distributed thread systems, to systems 

that support thread migration in various capacities. 
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Related Work 

The use of threads in distributed memory systems has received a good deal of attention over 

the last several years. \Ve only discuss some of the important systems that provide threads 

in a distributed memory en·dronment. Discussion of thread systems for single processor, 

shared memory multi-processors, and distributed shared memory machines can be found 

elsewhere [5, 40, 50]. Some of the systems we will discuss simply support communication 

between threads in different address spaces, while others offer thread migration and other 

advanced functionalities. 

23 
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1 NEXUS 

Nexus [22. 23] is designed as a general-purpose runtime system for task parallel languages. 

Rather than being a target for end-users, Nexus is intended to be a compiler target. It is cur

rently being used as a compiler target for the languages Fortran l\,I [21] and CC++ [10. 11]. 

It is designed to run in a heterogeneous as well as a homogeneous environment. The Nexus 

system consists of nodes, contexts, threads, global pointers, and remote service requests. 

A node is a physical processing resource. such as a processor in a distributed memory 

multi-processor, or a shared memory multi-processor. \\'l1en Nexus starts, an initial set of 

nodes is created and nodes can be added or deleted dynamically. 

Computation takes place v•ithin a context, where each context relates executable code 

and one or more data segments to a node. Many contexts can be mapped onto a single 

node. Once a context has been created on a particular node, it cannot be migrated to 

another node. 

Computation takes place in one or more threads, which may be created locally \\<ithin 

a context. or within a remote context. Thread routines are modeled after a subset of the 

POSIX thread specification known as Pthreads [31]. This was done due to the fact that most 

vendors supply either Pthreads or a similar threads package. This improves the portability 

of Nexus. 
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Nexus provides the compiler with a global name space by allowing a global name to be 

created for any address within a context. This name is called a global pointer. and consists 

of a context identifier and a local address. A global pointer can be moved between contexts. 

providing the ability to share global references. 

A thread can issue a remote serl!ice request to request that an action be performed on 

some remote context. This causes the context pointed to by a global pointer to execute a 

special function, known as a handler. The handler is invoked asynchronously by the remote 

context. which allows two or more handlers to execute concurrently. 

2 Panda 

Panda (4] is a portable virtual machine designed with the portability requirements of par

allel languages in mind. It is currently used to implement the Orca parallel programming 

system (1]. 

In order to support portability, Panda was designed using a layered approach. There 

is a system independent Panda layer on top of a system-dependent layer. This facilitates 

portability since only the system layer need be modified to port to other architectures. 
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2.1 Panda Interface 

The Panda interface provides Remote Procedure Calls (RPC), totally-ordered group com

munication, and thread abstractions, with which Panda applications can be built. Totally

ordered Group Communication assures that all members of a group receive all group 

messages in the same order. The thread interface is based upon the Pthreads [31] and 

C Threads [15] interfaces. 

The RPC interface is based upon the notion of a service that provides a number of 

operations. A service is implemented by one or more servers that register the services they 

provide. A client obtains a handle to the server, and sends an RPC request to the particular 

node on which the server resides. \Vhen a request message arrives, a thread is started. which 

calls the registered function associated \vith the request. 

The group abstraction provided by Panda supports totally-ordered, closed groups. A 

group of threads being closed implies that only members of the group can send messages to 

the group. Groups can be created and joined dynamically. If a thread joins a group that 

does not exist, then the group is created, and the requesting thread is a member of the 

group. 
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2.2 System Interface 

Panda"s system interface hides machine dependencies by providing three abstractions: threads, 

messages. and communication primitives. Threads are implemented in the system layer. 

with an interface identical to that of the Panda layer. 

The communication primitives include send primitives (uni-cast and multi-cast) and 

addressing primitives. \\tnen the Panda layer is initialized, a message receive handler is 

registered with the system. All processes run a system layer receive daemon, which handles 

all incoming messages. \Vhen a message arrives, the daemon makes an upcall to the message 

receive handler. This handler carries out the necessary operations associated with the 

message. 

l\Iessages are stack-like. The sender pushes data fields of specified size and alignment 

into the message. These fields may include the sequence number and other information 

needed if the message has been fragmented. The fields are popped in reverse order by the 

receiver. who then handles the messages appropriately. 
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3 Mach 

The l\Iach operating system allows for multiple tasks (processes) over multiple nodes (pro

cessors). It uses kernel-level threads to support concurrency within a task. A common 

operation in Mach is the Remote Procedure Call (RPC), where a thread in one task re

quests some work be done by another task. Recent work has studied the benefits of thread 

migration as a mechanism for RPC [18, 19]. \Vith this approach, when a thread makes a 

request for an RPC, rather than a new thread being created in the remote task. the thread 

itself \Vill migrate to the task, and carry out the request itself. Although a thread may 

request work be done by a task residing on a different node, the thread migration work is 

concerned only with local RPC. That is. a thread migrates only when the server task resides 

on the same node as the client thread. 

4 Computation Migration 

Computation migration [30] is a technique where a portion of a running thread is migrated 

to a remote processor for the purpose of remote data access. The idea is based solely on data 

locality, and can be used as an alternative to either data migration or remote procedure calls. 

If the data to be accessed is large, then moving the computation to the data can be cheaper 

than moving the large block of data. This has advantages over RPC-style access, which 

requires two messages, one for the call, and the second for the reply. These messages can be 
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expensive. since marshaling values into and out of messages can add substantial overhead. 

However. a major advantage of RPC style access. is that it does not put additional load 

on the remote processor, other than load absolutely necessary to handle and carry out the 

request. 

Computation migration gives the benefits of both thread migration and RPC. By moving 

part of the thread's stack to the remote data, locality of access is gained. This can be very 

advantageous if there is a series of accesses to the same data. The benefits of RPC can also be 

gained by var}ing the granularity of the computation migration. This avoids overloading 

the resources of a single processor, since only the amount of state necessary to improve 

locality is moved. 

Hsieh. \Vang, and \Veihl [30] implement computation migration by use of compile time 

transformations. Their implementation generates a special .. continuation'" procedure to 

handle the migration. The body of this procedure is the continuation of the migrating 

procedure. That is. it is the rest of the procedure, following the migration. Client and 

server stubs are generated to handle the message passing required to invoke the migration. 

The client stub of the continuation procedure sends a message to the remote procedure 

to start the server stub. Following migration, if the computation originated from another 

processor, the thread is killed. This happens if a migrated procedure migrates again, or if a 

remote procedure call migrates. If the computation originated on the client processor, then 

the thread waits for the return of the procedure. This allows for a procedure to migrate from 
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one processor to another several times, and return directly to the original processor, rather 

than having to backtrack the steps. This can save a considerable amount of communication. 

Hsieh, \Vang, and \Veihl implemented computation migration in the Prelude compiler 

and runtime system [48], and ran experiments on the Proteus simulator [8]. Their exper

iments show that computation migration outperforms both data migration and RPC in 

many applications. They conclude that computation migration can be a valuable tool in 

distributed environments. 

5 Emerald 

Emerald [6, 7. 32] is a distributed object-based language and runtime system. The primary 

goal of the designers is to experiment with the use of mobility in distributed programming. 

The unit of distribution and mobility in Emerald is the object. Some objects contain 

processes and others contain only data. Emerald offers language support for mobility. 

5.1 System Design 

Each Emerald object has four components, namely: 

• Unique network-\\;de name. 
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• Data local to the object: Primitive data and references to other objects. 

• Set of operations that can be invoked on the object. 

• Optional process. 

Objects with processes are referred to rus active objects, while objects without an russo

dated process are passive data structures. 

Emerald also offers primitives to support mobility. These primitives are as follows: 

• Locate an object. This primitive returns the node on which the specified object resides. 

• Move an object. This primitive is simply a suggestion given to the system. The system 

may choose not to move the object, and additionally, even when an object has been 

moved explicitly, the system may move the object again on its own. 

• Fix. This allows the user to fix an object to a particular node. Once an object has 

been fi.xed to a node, it may not be moved either explicitly or by the system. 

• Unfix. By unfi.xing an object you make it a candidate for movement once again. 

• Refix. Refix is equivalent to a sequence of calls to unfix, move, fix. 

• Attach. This allows a user to attach one object to another. \Vhen an object is attached 

to another, if one of the objects moves, then the attached object also moves. 
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5.2 Implementation 

Emerald has been implemented with only one address space per node. where processes 

are light-weight threads sharing the address space. By having only a single address space 

per node, objects on the same node can access each other directly. \Vhile all objects 

are defined in the same way, the compiler chooses an appropriate addressing mechanism, 

storage strategy, and invocation protocol by analyzing the characteristics and use of an 

object. There are three different styles of object implementation: 

• Global Object. A global object can be moved independently. referenced globally, and 

invoked by objects not known at compile-time. Global objects are allocated from 

within the heap. Invocation of a global object may require remote invocation. 

• Local Object. A local object is completely contained within another object. It can only 

be invoked by its enclosing object and must always move with its enclosing object. 

This means that all invocations on a local object are local. since the object moves 

with the only object that may invoke it. 

• Direct Object. A direct object is a local object whose data area is allocated directly 

in the representation of the enclosing object. Direct objects are primitive types and 

simple objects. 
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Each node contains an object descriptor for every global object for which references exist 

on that node. 'When the last reference is deleted, the descriptor can be garbage collected. 

Object descriptors contain state and location information about the object and use direct 

memory addresses. This means that pointers within an object must be updated if the object 

is moved. \Vnen an object is invoked, its location is first checked. and if it is local it is 

invoked directly. If an invocation is remote, then the call traps into the kernel where the 

remote invocation is handled. 

The location field in this descriptor is a forwarding address as described in Fowler (24]. 

This is the last known address of the object, and communication is done with this node 

for invocation. If the address has been changed, the results will be returned by the new 

location and the forwarding address updated. 

Each global object is assigned a unique Object Identifier (OlD). Each node has a hash 

table for mapping OIDs to object descriptors. This mapping is used to locate the descriptor 

and thus locate the object itself. 

The way in which object movement is performed is based on the type of object to 

be moved. To move a data object, a single message is sent to the destination node. This 

message includes the data area of the object along with information for re-mapping location 

dependent addresses. The message also includes OIDs for global object pointers, forwarding 

addresses. and addresses of object descriptors on the source node. 
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The destination kernel receives the message and allocates space for the moved object, 

copies the data into the newly allocated space, and builds a translation table to map original 

addresses into addresses in the newly allocated space. Object descriptors are located for 

existing global objects, and new descriptors are created if necessary. The kernel then updates 

pointers using the translation table. 

The literature does not describe the migration of the other types of objects. 

6 Amber 

Amber (12] is an object based system where the objects are mobile. and the application runs 

on a network of shared memory multiprocessors. The active objects in Amber are threads. 

Object operations can be invoked either locally or remotely. Amber is implemented on top 

of the Topaz operating system for the DEC Firefly. The distribution model and mobility 

primitives are derived from the Emerald system. 

Data placement in Amber is under complete control of the programmer. Threads may 

be created dynamically. The scheduler supports time slicing, and can be customized to use 

priority or adaptive policies. 

\Vhen a thread invokes an operation on a remote object, the thread migrates to the node 

on which the invoked object resides. Similar to Emerald, objects can be moved, located, 
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attached, and unattached. Additionally, however, objects may be designated as immutable, 

meaning they will not be changed. In the case of moving an immutable object, the object 

is replicated on the destination node, rather than moving the object itself. An object may 

be moved even if it has active invocations. In this case, the thread invoking the object 

moves along with the object. Object location is under direct control of the programmer. 

An object is only moved if it is e.xplicitly moved by the user. it is attached to an object 

that is explicitly moved, or it is a thread object invoking an object that is explicitly moved. 

Additionally, the system always carries out explicit moves. 

Amber uses a type of global virtual memory to facilitate mobility. Dynamic objects are 

assigned a distinct segment of the global address space, and each object occupies the same 

virtual address range on any node it visits. The segment of virtual memory occupied by an 

object on one node is reserved for that object on every other node. 

Remote references and locating objects are handled the same way as in Emerald. 

Thread migration involves simply copying control information and the thread's stack 

to the remote node. This is copied to the same address space on the destination node as 

it occupied on the source node. The descriptors are updated, and the thread put on the 

ready queue of the destination node. All addresses remain valid since the thread occupies 

the same memory location. 
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7 Parallel Adaptive PDEs 

Chrisochoides has done work with a multi-threaded dynamic load balancing implementation 

for parallel adaptive POE computations [13]. In this work, processors execute many threads, 

each typically dependent on results of other local or remote threads. l\Iulti-threading is 

used here for both overlapping communication and computation. and also for overlapping 

load balancing operations and computation. Load balancing operations include information 

dissemination, decision making, and data migration. Threads in the system can be in any 

of five states: new, ready, running, blocked, or dead. 

Problems are broken up into domains, blocks, sub-domains, and regions where each 

computational thread corresponds to a separate region of grid points. Different sub-domains 

are distributed over the different processors. where a set of contiguous regions makes up a 

sub-domain. A set of sub-domains makes up a block, where blocks are independent of one 

another in the whole application. A domain corresponds to the entire application. Each 

sub-domain has interface regions and interior regions. Interior regions need only data local 

to the processor to complete their computation and can execute independently of interior 

regions on other processors. Interface regions require data from interface regions on other 

processors and thus must synchronize their execution. 
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Load balancing is accomplished by migrating threads from overloaded processors to 

under-loaded processors. This migration is done in such a way as to minimize future com

munication. The number of grid points within a thread can change during computati<>n in 

order to achieve better balancing of work loads. 

The load balancing approach in this work attempts to ensure that no processor is waiting 

idle while more than one thread remains to be executed on any other processor. \\'ben a 

processor becomes idle, it requests threads from a subset of processors that are overloaded. 

This subset consists of neighboring processors only, and work is redistributed via thread 

migration. Threads are migrated in a way as to minimize overheads due to future message 

passing. This is done by minimizing the number of grid points that reside on the interfaces 

of the sub-domains. 

Only interface threads are migrated. which causes some interface threads to become 

interior threads. and some interior threads to become interface threads. Threads are only 

migrated at the beginning or end of large blocks of computation, and thus true thread 

migration is not necessary. Thus, instead of thread migration, the system actually performs 

data migration. During load balancing, a thread that is to be migrated is halted. The data 

(grid points) associated with this thread is packed into a message and sent to the destination 

processor, and the thread is killed. On the destination processor. the data is received. 

unpacked, and stored in appropriate memory locations, and a new thread is created, which 

performs the remaining computation on the data. The system uses hardware interrupts 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CH.4PTER 3. RELATED l-VORK 38 

to ensure that migration requests are handled promptly, minimizing the idle time of the 

requesting processor. 

PI\12 [38, 42] is part of the ESP ACE project (Execution Support for Parallel Applications in 

high-performance Computing Environments), whose basic functionality is the Light-weight 

Remote Procedure Call (LRPC). PM2 has been specialized for data parallel programming 

and is therefore not a general use package. LRPC is performed by forking a remote thread 

to execute a specified service. P~I2 is designed on top of a threads package that is a 

large subset of the Pthreads standard [31], with some additional functionalities. It uses 

PVl\1 [25] as its communications library. Creations and synchronizations of threads are 

implicitly managed by the LRPC primitives, leaving the user free from making explicit 

calls to thread primitives. 

LRPC can be synchronous, asynchronous, or asynchronous with deferred waiting. Syn

chronous calls must wait for a return value, while asynchronous calls continue \vith com

putation, not expecting a result. Asynchronous calls with deferred waiting continue with 

computation, and at some later point, wait for a return value. LRPC calls need arguments 

for mode, service identifier, location, priority, a pointer to arguments for the remote thread, 

and a pointer to the results (except for asynchronous calls). 
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Thread migration is the mechanism used for load balancing. Load balancing can be 

based upon thread priorities, or more traditional load balancing policies can be used. Thread 

migration is carried out in three steps: 

1. The thread to be migrated is frozen, and its descriptor and the useful part of its stack 

are packed into a buffer. 

2. This buffer is sent to the destination processor. 

3. The destination processor unpacks the threads descriptor and stack, putting the stack 

in a newly allocated address space, and the thread is unfrozen, ready to continue its 

computation at the same point in its execution as when it was frozen. 

The current implementation only allows for a thread to migrate itself. Additionally, 

pointers to heap data are not implicitly maintained. The user is responsible for migrating 

heap data as well as maintaining the pointers to said heap data. 

There are points in a threads execution when the user may know that a thread should 

not be migrated. For this reason. each thread has a "migratable" state attached to it, which 

can be set or unset on demand. 
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8.1 Load Balancing in PM2 

LB.l\IP (Load Balancing with Migration directed by Priorities) is an interesting approach to 

load balancing used by the PM2 system. Each thread in PM2 has a priority associated with 

it. If thread X has a priority of m. and thread Y has a priority of n. then thread X should 

have control of the processor m/n as often as thread Y. However, threads arc scheduled 

based on priorities relative to the local processor only. It may be desirable to have priorities 

that are relevant across processor boundaries. For this to be true, the sum of all thread 

priorities should be equal on each processor. To compute a distribution of threads that will 

enforce this condition is an NP-Complete problem (38]. Therefore. a heuristic to determine a 

·'good enough" distribution is used. \Vhenever the sum of priorities on a processor changes, 

a load-balancing thread is awakened. If the change is great enough, all other processors 

are contacted and a ·'good enough" distribution of threads is determined jointly by all 

processors. Each processor then carries out the appropriate thread migrations to obtain the 

new distribution of threads. 

Although PM2 appears similar to the work described in this dissertation, there are 

important differences. PM2 is a specialized package, while the work described in this dis

sertation is targeted for a wide variety of progra.'Ilming models. Additionally, P~vl2 supports 

neither explicit message passing nor the general use of pointers. That is, the user cannot 

generate messages to be exchanged between threads, and the system does not handle point

ers to heap data. On the other hand, the system described in this dissertation provides 
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strong support for point-to-point message passing, and efficiently handles all types of point

ers within mobile threads. 

Another important difference involves the levels of abstraction offered by the two sys

tems. \\l1ile Pl\!2 attempts to abstract the threading concept away from the user, the 

system described here is intended to be used as a light-weight threads package. That is, 

P!-.!2 implicitly handles most of the thread primitives, freeing the user from making explicit 

calls to thread primitives. On the other hand, Chant attempts to let the user control the 

multi-threading, and provides a framework within which the user can take advantage of 

known attributes of the particular application. 

9 Xthreads 

Xthreads [44. 45] is a light-weight threads library that offers logical concurrency within 

each processor (via processes and threads). and physical parallelism across processors in a 

distributed memory environment. l\Iore than one process is allowed per processor to offer 

better performance during blocking system calls. If a thread makes a system call that blocks. 

the entire process will block, not allowing other runnable threads access to the processor. 

\Vith multiple processes per process. when a thread causes the entire process to block, the 

operating system can switch to another process, allowing threads in that process access to 

the processor. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER3. RELATED~VORK 42 

The major feature of X threads. besides a threads library, is the ability to migrate threads 

across both process and processor boundaries. \Vhen a thread migrates, the migrant thread 

resumes execution at the statement following the point of migration. as if nothing happened. 

A thread migration is the same thing as a normal context switch. except that the thread 

resumes execution in a different process. 

The migrate function call requires as arguments: a pointer to the thread to be migrated, 

an identifier for the processor to which the thread is to be migrated, and an identifier to 

the process within the specified processor to which the thread is to be migrated. The use 

of a pointer to the thread to be migrated indicates that a thread can migrate itself or 

migrate another thread. When a thread is to be migrated, the thread's stack and useful 

state information (program counter and other information) must be sent to the destination 

process. In order to save both time and space, the thread's stack is used as a message buffer. 

The useful information is pushed on the top of the thread's stack. and the stack is sent as 

the message. The destination process receives the message directly into an available stack 

area, pops the state information from the stack, does the appropriate operations to get the 

thread in a ready state, and puts it on the ready queue. 

Since the stack may not reside in the same memory location on the destination process 

as on the source, pointers will become invalid. Rather than solve this problem, it is simply 

suggested that the user avoid the use of pointers. 
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10 Ariadne 
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Ariadne [36] is a threads library designed to support process-oriented parallel/distributed 

simulation. It is designed to run in a Uni..x environment and focuses on three main goals: 

1. Support for thread migration. \Vhile thread migration can potentially be used for 

load balancing strategies, Ariadne uses it mainly for remote data access. Wllen a 

thread tries to access data local to another process, the thread itself is migrated to 

that process, rather than the data being migrated to the thread or use of a remote 

procedure call. 

2. Portability and Flexibility. Portability is supported by the use of Uni..x libraries rather 

than machine-dependent calls. This allows Ariadne to be easily ported to other Uni..x 

based machines with very little rewriting of code. Flexibility is supported by the use 

of a customizable scheduler. This allows the user to customize the scheduling policy 

to fit the needs of a particular application. 

3. Provide a facility for multi-threaded distributed computing. This is done by providing 

a clean interface between Ariadne and communications primitives. 

Ariadne is a preemptive threads library, meaning it uses time-slicing for scheduling 

threads within the same process. Threads can be taken off the processor either by the timer 

expiring (an interrupt), or by explicitly yielding the processor to another thread. Since a 
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thread may be accessing a critical area of its code at the time of an interrupt, the user may 

explicitly turn interrupts on and off. The default scheduler uses a priority queue with FIFO 

ordering of execution. However. a customized scheduler can be created via library calls to 

allow for application specific scheduling policies. 

Thread migration in Ariadne is carried out in a way similar to that in X threads, with 

one distinct difference. \Vhile Xthreads does not preserve pointers within the threads stack. 

Ariadne provides users with a primitive for updating stack references. This allows stack 

pointers to be updated following a migration. However, references to heap data are not 

preserved following migration. 

11 UPVM 

UPVl\1 [9. 41] supports multi-threading and transparent migration for PVM applications. A 

new abstraction. called a User Level Process (ULP), is defined. ULPs are similar to light

weight threads and communicate only through message passing. The difference between 

ULPs and traditional threads is that ULPs define a private data heap from which all dynamic 

memory allocations are made. \Vhen a ULP is created, space for its data, stack, and heap, 

is allocated on each processor involved in the computation. This space is allocated in the 

same memory location on each processor. 
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UPVM offers thread migration, which allows finer-grained load redistribution than pro

cess migration. The thread migration protocol goes through four stages. 

1. .1\.Iigmtion Event. The global scheduler sends a migration message to the processor 

containing the ULP to be migrated. The process is interrupted and the ULP's state 

gathered. 

2. 1.\fessage Flushing. It is important to preserve messages in any message passing system. 

UPV1[ takes the approach of assuring all messages intended for a migrating ULP have 

been received before allowing the ULP to migrate. This is done by sending a flush 

message to all other processors and awaiting acknowledgment. Acknowledgment from 

all other processors indicates that all messages have been received and the ULP is 

free to migrate. The flush message includes the destination of the migrating ULP for 

future communication. 

3. State Tmnsfer. The source processor sends the state, data, stack. and private heap 

of the migrating ULP to the destination processor. The destination processor places 

this information in its allotted address region. 

4. Restart. The destination processor then places the migrated ULP in the appropriate 

scheduler queue, and the ULP is ready to execute on the new processor. 

Since a ULP has the same memory region reserved on each processor, following a mi

gration no address references have changed. This keeps the system from needing to update 
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pointers following a migration. However. this comes at a high cost, since the need for dy

namic memory allocation causes scalability problems. Since each processor must allocate 

space for each thread, the system is limited by the resources of the processor with the fewest 

resources, rather than the number of processors. 

12 Thread Migration with Active Threads 

Thread migration with Active Threads (29] supports thread migration between clusters 

of shared memory multi-processors. This work supports direct access to stack data, but 

distributed shared memory (DS~I) is used for accessing heap data. The implementation is 

part of the pSather language, where threads are not under user controL but are system

managed, and handled by explicit language constructs. 

Since a DS:M is used for access to heap data, pointers to heap data do not need any 

special handling during a migration. Pointers to stack data, however, are handled in much 

the same way as previously discussed in UPVM [9, 41]. That is, space for each thread's 

stack is reserved on each cluster, so that the stack of a migrant thread can be stored in the 

same memory region at the destination as at the source. This causes pointers to remain 

valid by default. 
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This redundant memory allocation is done at startup, with the stack space for all 

possible threads being pre-allocated. This means that all the threads must have the same 

stack size and, this size must be known prior to execution. 

The thread migration mechanism is used for load balancing, and the initial threads are 

all started on a single cluster. The results are inconclusive since there is no comparison 

with the work being distributed at startup with no load balancing. \Vhile modest speedup 

is achieved, there is no indication that similar or better speedup could not be achieved by 

statically dividing the work among the clusters, and using no dynamic load balancing. 

In this chapter we have discussed a number of distributed memory light-weight threads 

packages of various functionality. These packages ranged from simple systems that only 

support communication to systems that support thread migration and even dynamic load 

balancing. In the following Chapter we introduce the design of Chant, which is our im

plementation of a distributed light-weight threads library. It will cover the lower layers of 

Chant, leaving the discussion of our thread migration and load balancing mechanisms for 

subsequent chapters. 
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Chant 

\Yhile the previous chapter gave a summary of related work, this chapter gives details 

about the design and implementation of Chant. Chant is a distributed light-weight threads 

library that supports point-to-point message passing. It was designed and implemented as 

a runtime system, with a user interface using MPI-like and Pthreads-like calls. 

Chant is designed as a layered system (as shown in Figure 4.1). where the Chant System 

Interface makes standard communication and thread package calls for efficient communica

tion and thread manipulation. On top of this communication and threads system interface 

is a layer supporting point-to-point communication. In standard communication packages. 

such as MPI, there is no concept of any entities besides processes. This means messages 

can be sent only to processes, not directly to entities such as threads. Chant is designed 

48 
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I 
I Chant User Interface 

I I I I Load balancing I 
I I I 1--------------------------I 
I I I 1 Thread migration I I I 

~----------------------------I I I 
I I I Ropes 
I I -------------------------------
I 1 Remote thread operations 
I ~---------------------------------
I Remote service requests 1-----------------------------------

Point-to-point message passing 

Chant System Interface 

Communication System Threads system 
(MPI. P4 •... ) (Pthreads. Open Threads •... ) 

Figure 4.1: Chant 111.ntime layers and interfaces 

such that a thread in one address space can send a message directly to a thread in another 

address space, with no intermediate processing or buffering of the message. On top of this 

layer is the Remote Service Request (RSR) layer, where one processor can instruct another 

processor to do some work on its behalf. These RSR requests are carried out by an RSR 

server residing on each processor. 

On top of this RSR layer is the layer for remote thread operations. This layer uses the 

RSR server to perform various remote thread operations, such as remote thread creation. 

Next there is a layer, called the ropes layer, which supports collective operations and indexed 

communication among threads. 
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The next layer is the thread migration layer, which allows threads to be moved across 

processor boundaries. The final layer is the load balancing layer, which makes use of thread 

migration to perform dynamic load redistribution. 

In this chapter, we discuss the lower layers of Chant. leaving the thread migration 

and load balancing layers for later chapters. The lower layers of Chant have been imple

mented on a number of different platforms, including a network of Sun workstations. an 

Intel Paragon. and an IBM SP2. Additionally, they run on top of several communication 

libraries. These include MPI (both the LAM and mpich implementations), P4, and NX 

(the native communication library of the Intel Paragon). Finally, these layers run on top of 

multiple threads packages, including Pthreads [31]. Ports threads, and Open Threads [26]. 

Chant currently uses the mpich implementation of !\IPI and Open Threads as its com

munication and thread libraries, respectively. Open Threads [26] is a threads package 

developed by Matthew Haines at the University of \Vyoming. Open Threads was chosen 

because it allows the user deep access into the threads system, allowing easy manipulation 

of the threads and run queues. This allows thread migration to be implemented without 

making changes to the thread system itself. 

Portability is an important issue to be considered. This is why Chant was designed 

to run on top of existing libraries. This reduces the number of portability issues we must 

deal with ourselves. \Vhile the are certainly architecture dependancies to be address within 
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the communication library, these dependencies are handled by the implementors of :MPI. 

Likewise. there are clearly architecture dependencies involved with porting Open Threads 

to a new architecture. However. these dependencies are dealt with by the implementors of 

Open Threads. The only are of Chant where there is any architecture dependence is in the 

updating of system pointers following a migration of a thread. The details of this will be 

covered later in this dissertation. Basically there are three requirements for porting Chant 

to new architectures: 

1. There must be an MPI implementation running on the new architecture. 

2. There must be an Open Threads implementation running on the new architecture. 

3. The manner in which system pointers are handled following a migration must be 

tailored to the new architecture. 

The first two items are managed by the software systems. the message passing and 

thread implementations. The third item however. simply requires identify;ng what system 

values need to be updated and determining their locations. Once they are identified and 

located it is relatively simple to make the necessary changes. 
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1 Thread Representation 

As discussed in Chapter 2 Section 1. L most thread systems maintains a Thread Control 

Block (TCB) for each thread. Our current system runs on top of Open Threads, and thus 

Open Threads maintains this TCB. We will refer to this as the Open Threads TCB. 

While the Open Threads TCB contains all the thread specific information important to 

Open Threads, there exists thread specific information that is required by Chant. but does 

not pertain to Open Threads. \Vhile it would be possible to add the necessary information 

to the Open Threads TCB, in order to maintain portability. we prefer not to make changes 

directly to the underlying threads package. Therefore, we introduce a second TCB. which 

is maintained by Chant. \Ve will refer to this second TCB as the Chant TCB. 

The Chant TCB is used to store Chant specific information. This includes information 

needed to support migration, information needed by the load balancing layer. and other 

information simply needed to maintain the system. 

2 Point-to-Point Communication 

The design of Chant addresses many of the issues involved in point-to-point communication 

between threads. Specifically, it identifies the naming of global threads within a process. 
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delivering messages to specific threads, and polling for outstanding messages as primary 

concerns. 

The naming issue is handled through the use of both a global and local thread identifier 

(TID) associated with each thread. The global TID can be converted to a tuple consisting 

of a processor identifier and the local TID. This conversion is stored in a statically declared 

conversion table on each processor. This conversion table simply provides a mapping. 

between a unique global TID, and a <process identifier, local TID> tuple. 

Global TIDs are necessary since Chant threads are mobile, and therefore threads on 

different processors cannot share the same TID. Consequently, a thread created on one 

processor must not be assigned the same global TID as a thread existing on a different 

processor. This is prevented by allowing each processor only a subset of the available global 

TIDs for assignment to newly created threads. For example, if the maximum number of 

threads in the system is 100, and there are 2 processors, processor 0 would only assign 

global TIDs 0-49, while processor 1 would only assign global TIDs 50-99. \Vben a thread 

migrates from one processor to another, there are no guarantees that the thread's local TID 

is not in use on the destination processor, thus a thread ·s local TID may change following a 

migration. Furthermore, a thread's process identifier changes when it migrates to another 

processor. Therefore, it is necessary to allow the conversion table to be edited at runtime. 

Following a migration, the tuple associated with the migrated thread's global TID must be 
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updated to reflect the new values. This update must be performed on each processor in the 

computation. 

\Vhile most communications systems support delivery to a particular process within a 

specified processing element, they do not provide direct support for naming entities within 

a process. However, in order to support point-to-point communication between threads, 

a system must have a way to specify the thread for which a message is intended. Chant 

handles this problem by overloading an existing field of the message header. typically the 

user-defined tag field. This is done by using half of the field for the TID of the destination 

thread and the other half for the actual message tag. Although this reduces the number 

of valid tags from, say, NTAGS, to J NTAGS, this is a minor restriction since most tag 

fields are 32-bit integers. This still allows for 65536 unique tags and an equal number 

of TIDs. An alternative approach would be to put the TID in the body of the message. 

However. this would be costly, since it would require a message copy at the source processor 

to insert the TID and another message copy at the destination processor to extract the TID. 

Additionally, there would need to be an intermediate thread that would receive the message, 

determine the destination TID. and forward the message to the appropriate thread. The 

use of an intermediate thread causes this to not be true point-to-point communication and 

can degrade performance due to the overhead associated with scheduling and executing the 

intermediate thread. 
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The Chant interface offers both blocking and non-blocking communication operations. 

However, when the user makes a call to a blocking receive operation, the system must 

not use the corresponding blocking call provided by the underlying communication system. 

This would cause the entire process to block, preventing other threads from gaining access 

to the processor. Instead, Chant issues a non-blocking communication call. and the system 

returns a ··handle'', which can be used to check for the completion of the operation at a later 

time. If the operation has not completed, then other ready threads can be scheduled, and 

control returned to the blocked thread only after completion of the non-blocking operation. 

This approach requires some type of polling mechanism to determine when the non-blocking 

communication call has been completed. Three basic approaches can be taken. First, the 

scheduler could check for operation completion, and return control of the processor to the 

blocked thread only after the operation has completed. However, this requires modification 

of the scheduler, and most widely available threads packages do not allow such modifications. 

A second approach is to have a separate thread check for operation completion. and 

enable blocked threads to be scheduled following the completion of the operation. However, 

this creates additional overhead associated with the scheduling and execution of this polling 

thread. For this reason, Chant employs a third approach. In this approach a thread 

polls for itself (this is done under wraps, the user has no control nor knowledge of the 

polling mechanism). Wnen a thread calls a blocking Chant operation, the system calls the 

corresponding non-blocking .MPI operation. The system then checks to see if the operation 

has completed, and if not, it yields the processor to a ready thread. Once the thread 
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returns to the processor, it again checks if the non-blocking operation has completed. If 

not. the thread again yields the processor to a ready thread. This cycle continues until 

the operation completes. Although this approach introduces additional overhead due to 

unnecessary context switches, we feel it is the best solution available to us at this time. 

3 Remote Service Requests and Remote Thread Operations 

Remote service requests (RSRs) are used to perform operation on a remote processor. They 

are different from point-to-point messages in that the destination processor is not expecting 

the message. RSRs can be used for any operation. but common examples include getting 

the value from a remote address space (remote fetch), executing a function remotely (remote 

procedure call), and processing system requests necessary to keep global state up-to-date 

(coherence management). 

l\Iany RSRs require some acknowledgment to be sent back to the requesting thread. 

It is, therefore, important to handle requests in a timely fashion, to minimize the time 

the requesting thread is blocked awaiting acknowledgment. However, since MPI does not 

support interrupt driven messages, Chant was designed to use a polling mechanism by which 

RSRs can be checked without interrupting a computation thread. 
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Chant has accomplished this by creating a system controlled thread at initialization 

called the seruer thread, which is responsible for recehing and handling all RSRs. Using one 

of the polling techniques outlined earlier, the server thread continually issues non-blocking 

receive requests for any RSR message. The RSR messages are different from point-to

point messages because they are sent to. and handled by, the server thread, instead of a 

computation thread. \Vhen an RSR message arrives, the server thread gets control of the 

processor. and handles the request. 

\Vhen working with threads in a distributed environment, there are certain thread op

erations that may have global significance. Creating a thread on a remote processor, joining 

a remote thread (blocking until the joined thread has terminated), and releasing a thread 

blocked on a join are the only such function currently supported by Chant. Future enhance

ments might include global mutexes and semaphores along with their associated functions, 

as well as other functions with global significance. To accommodate global thread oper

ations, Chant uses a processor identifier as a parameter to thread functions with global 

significance. To carry out global thread operations, Chant uses the RSR mechanism dis

cussed above. For example, to create a thread on a remote processor, Chant sends an RSR 

to the remote processor, requesting that it create a new thread. The remote processor cre

ates the thread and then returns the global TID to the requesting thread. Other existing 

global thread operations are carried out in a similar manner, while future enhancements 

would likewise be carried out in a similar manner. The other currently supported remote 

thread operations are as follows: 
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• Joining a thread. Joining a thread causes the calling thread to block until the joined 

thread terminates. 

• Detaching a thread. Detaching a thread allows the data associated with a detached 

thread to be freed upon its termination. 

• Unblocking a thread. Any thread may release, or unblock, a thread that has blocked 

on a condition. 

4 Ropes and Data Parallelism 

l\Iost current light-weight thread systems do not provide support for collective operations 

and relative indexing among threads. Such operations are commonly used in data parallel 

programs. For example, consider a simple data parallel algorithm for computing the sum 

over a distributed array (see Figure 4.2). In this example, each thread will compute its local 

sum, and then participate in a global reduction to obtain the total sum. To execute this 

example as a set of distributed threads in the midst of other thread activity. and without 

involving the other threads, a scoping mechanism is needed for identifying the threads that 

\Vill contribute to the global reduction. Ropes [28] provide this mechanism. 

The key to collective operations is the ability for the programmer (or compiler) to spec

ify the scope of the operation; that is, the entities that will be involved in the operation. 
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Figure 4.2: One-dimensional array distributed among four threads in a rope 
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Collective operations are typically supported at the process level by the underlying com-

munication system [16], or by standard communication interfaces [20. 46]. For example. 

l\IPI (20] provides a mechanism for process scoping called groups. However, support for 

grouping threads within a process is not currently supported by either l\IPI or existing 

thread-based runtime systems. Yet, such support is clearly needed if threads are to perform 

collective operations on a subset of the threads in the system. 

Relative indexing allows the programmer to specify spatial relationships among the 

parallel execution units that express the natural "neighboring" relationships in data parallel 

programs. \Vithout support for relative indexing among threads, the programmer would be 

required to assign relative identifiers to the threads. Also, with proper support for mapping 

processes to processors, relative indexing can also be used to optimize performance by 

ensuring that an algorithm is correctly mapped onto the underlying topology. 
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4.1 Requirements 

A system for implementing collections among a set of threads (i.e .. ropes) must satisfy the 

following requirements: 

1. The collections are entities whose members can span processor boundaries. and thus 

their identifiers must be unique within the system. 

2. Each collection must keep track of its constituent processors and threads, and opera

tions to add and delete from this list must be performed atomically. 

3. Thread ranks within a collection must be unique, so that there exists a one-to-one 

mapping between the thread identifier with respect to the processor (global thread 

id). and the thread identifier with respect to the rope (relative index). 

4.2 Rope Servers 

The requirements listed in the previous section are typically satisfied by having a centralized 

name server, responsible for allotting rope identifiers and for performing atomic updates 

to the internal data structures. Distributed algorithms for name servers [39] and atomic 

operations [35] are well known, but their added overhead and implementation complexity 

are often unwarranted in an initial design. However, a centralized solution for naming and 

updating ropes will certainly cause hot-spots. Therefore, our initial design is a two-level 
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approach. derived from the idea of two-level page management schemes for distributed 

shared memory systems [2], that allows the user to control the contention among servers by 

dividing the work between two types of servers: 

1. a single, global name server used to allot identifiers for new ropes, and 

2. a rope server associated with each rope, which is responsible for all modifications and 

requests pertaining to that rope. 

4.3 Relative Indexing 

Spatial relationships play an important role in data parallel algorithms. l\Iost communi

cation systems provide a linear ordering of the participating processors. which allows for 

relative indexing of the processors independent of their actual system address. For example, 

processes in an MPI group are numbered from 0 to n-1. In addition to supporting collective 

operations, ropes provide a relative ordering for a set of threads that is independent of their 

actual global address. Thus we say that each thread within a rope is assigned a unique 

rank. starting with zero and increasing linearly. This makes it possible to send a message 

from thread i to thread i + 1 \vithin a rope, without regard to the physical location of the 

thread. Spatial ordering can also be used to gain performance by exploiting the underlying 

connectivity of the architecture. However, for this to happen the user must be able to 
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specify a mapping of threads to processes (allowed in Chant) and processes to processors 

(allowed in MPI). 

To support relative indexing, the system must provide a one-tcrone mapping between 

the rank within a rope and the global address of a thread. This is accomplished via a rope 

translation table to store and retrieve this mapping information. If the translation table 

is kept in a centralized location, then remote references would be needed for translating 

all relative indices, which would be prohibitively expensive. Therefore, we replicate this 

information, and keep a copy of the table on each processor participating in the rope. 

Figure 4.3 depicts the data structure for the local rope table. 

2 

n 

Local Rope Table 

• 
• 
• 

Rope Entry 
Rope Server Identifier 
Consistency Requirement 
Context List 
Local Thread List 
Rope Translation Table 

Figure 4.3: Data structure for local rope table 

Borrowing from earlier work in the area of page coherence for distributed shared memory 

systems [3], two options were adopted for keeping the distributed translation tables consis-

tent: new information is broadcast so that all tables are kept up-tcrdate at all times (strong 
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consistency). or tables are allowed to remain out-of-date until a reference for a thread is 

generated, causing the information to be retrieved and stored in the local table (weak con

sistency). If each thread in a rope communicates with only a small number of other threads 

in a rope, then the weak consistency model should result in better performance since the 

creation cost is so much less. If, on the other hand. each thread in a rope ·will communicate 

with many other threads in the rope, the strong consistency model should result in better 

performance. Determining the crossover point for a given application is an open question 

depending on the overheads of the two approaches. Therefore, Chant supports both strong 

and weak consistency on a per-rope basis, by providing an argument to the rope creation 

routine to specify the consistency requirement. Note that such a system (weak consistency) 

only works for non-mobile threads. 

4.4 Collective Operations 

l\IPI provides the group facility for specifying which processes \vill participate in a collec

tive operation, and ropes extend this idea to the thread level. To do this, each processor 

participating in a rope must know the other processors in the rope, as well the list of local 

threads in the rope. This information is maintained for each rope in a rope table (refer to 

Figure 4.3). 

In order to take advantage of system-specific optimizations for collective operations 

among processors, all collective operations among threads are performed in two steps: at the 
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intra-processor level, and the inter-processor level. For example, consider the rope_barrier 

operation, which performs a barrier synchronization among all threads in a rope. The 

barrier is performed first among the threads within each processor separately. and then 

among the processors, as described by the following algorithm: 

1. Each thread. upon executing a barrier command, increments a counter monitoring 

the number of threads within the rope that have reached the barrier. If the counter 

is not equal to the number of local threads participating in the rope, the thread will 

block on an appropriate event. 

2. If the counter has reached the number of local threads participating in the rope (this 

information is stored in the rope table, see Figure 4.3), an RSR message is sent to the 

rope server for this rope. The thread then blocks on the appropriate event. 

3. \Vnen the rope server has received a message from each processor in the rope. an 

RSR message is sent to each of the participating processors, informing them that the 

barrier has been completed. 

4. The participating processors receive this RSR message and trigger the events for the 

local threads, thus completing the barrier. 

Ideally, processor-level primitives from MPL such as /e.tfPLBARRIER, should be used 

to replace steps 2 and 3 in the algorithm. However, the lvfPLBARRIER is a blocking calL 

and when invoked by the final calling thread on the processor (step 2), would block the 
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entire processor, including any threads on that processor not related to the rope. This 

would inhibit one of the key features of a multi-threaded system: the ability to overlap 

useful computation (in the form of ready, waiting threads) with long-latency, blocking op

erations. Thus, the implemented algorithm does not use A-fPLBA.RRIER, but rather a 

simple message-combining algorithm that allows other ready threads to execute while the 

barrier operation proceeds. Should MPI ever support non-blocking collective operations, 

they would be incorporated into the design as mentioned. 

Other collective communication operations, such as reduction functions, can be imple

mented in a similar two-le\·el fashion. 

This chapter has discussed the lower layers of Chant, our distributed memory commu

nicating threads system. \Ve have discussed the design of the point-to-point communication 

layer, including ways to target specific threads, and ways for polling for messages without 

blocking the entire processor. Furthermore, we described the RSR layer, discussing the 

use of a special purpose system thread running on each processor. These layers are inte

gral to the design of both the thread migration and the load balancing layers. Finally, we 

discussed the concept of ropes, which support collective operations and relative indexing. 

At this time, load balancing is not supported within ropes, and therefore this layer has no 

effect on the migration and load balancing layers. However, as ropes are an important part 

of Chant, and possible future work could concentrate on load balancing within ropes, we 
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felt it was appropriate to introduce this concept here. In the next chapter. we will discuss 

the design and implementation of the thread migration layer. 
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Chapter 5 

Thread Migration 

In a shared memory environment. thread migration is a relatively straightforward concept. 

This is due to the fact that all memory is directly accessible by the thread. thus data need 

not be moved. \Vhile deciding when to migrate a thread may be more difficult. due to 

effects such as data locality, the actual mechanism for performing the migration is fairly 

straight forward. Migrating threads in a distributed environment, however, is a much more 

difficult task. 

In this chapter, we provide the fundamental design of thread migration. \Ve follow this 

by addressing the problems we encountered when designing the thread migration layer for a 

distributed memory environment. Furthermore, we present our solutions to these problems 

and give a detailed description of the implementation. 

67 
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1 Fundamental Design 

Thread migration allows a thread residing on one processor to move to another processor. 

The basic design of a thread migration mechanism is independent of whether the thread is 

running in a shared-memory or a distributed-memory environment. The basic migration is 

performed in three steps: 

1. The thread is halted, and its stack. TCB, and any other necessary state information 

is packed in a buffer. 

2. The buffer is sent to the destination processor, and the thread is removed from the 

source processor's run queue. 

3. The destination processor unpacks the thread's state. TCB. and stack, and puts the 

thread on the run queue. 

Following these three steps, the thread is ready to run on the destination processor and 

no longer exists on the source processor. 
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2 Issues to be Addressed 

As was mentioned in Chapter 5, this work concentrates on the thread migration model that 

allows a thread to migrate at arbitrary suspension points during its execution. This model 

presents some difficult problems involving the maintenance of pointers as well as supporting 

point-to-point communication in the presence of mobile threads. 

It is important to point out that, for this implementation, \Ve assume a strict homo

geneous SPMD programming environment. That is, the same source code is running on 

each processor and all processors are identical. This is a very important assumption since 

supporting thread migration in a heterogeneous environment introduces many additional 

issues. By assuming homogeneity we need not worry about data and instruction represen

tations, nor do we need to worry about instruction and function locations. This is because 

global variables and procedures reside in the same location regardless of the processor. 

There are several issues involving the use of pointers and support of point-to-point 

communication that arise in the design of a thread migration mechanism. ~Iaintaining 

pointers is difficult for a number of reasons. If the pointers refer to data in the thread's stack, 

then they will only remain defined if the stack is placed in the same memory location on 

the destination processor as on the source processor. Additionally, if the pointers reference 

data within the heap, either the heap data must be migrated along with the thread, or 
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there must be a mechanism for a remote data access. since the data will not reside within 

the new address space. 

There are several "solutions" that have been proposed for the pointer problem. Some 

systems do not allow the use of pointers in migratable threads, while others allow pointers to 

become undefined following migration [44, 45. 36]. Others still. require the user to maintain 

pointers to heap data and make users responsible for migrating heap data [38]. All these 

'·solutions" restrict the use of such common data structures as linked lists and trees. and 

are not considered practical solutions. 

Another solution is to perform all memory allocations on all processors, resen;ng the 

memory locations for each thread and its associated data in case a thread must migrate 

[9, 12]. In this approach, when a thread migrates, all its associated data can be stored in the 

same memory location on the destination processor as on the source processor. This results 

in severe memory restrictions on the system. Moreover, the number of threads is limited 

by the memory capacity of a single processor, regardless of the total number of processors. 

Some systems use a specialized type of pointer, a ·'global" pointer [22]. \Vith this 

method, a ··pointer" is a data structure that defines both the processor on which that data 

resides, and a local pointer to the data that is valid within the specified processor. This 

requires a more complex data access mechanism in which the owner of the data must first be 

determined, and if it is not local, a remote data access request must be made. In addition to 
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requiring more remote data accesses than should be necessary, this approach also requires 

at least one level of indirection for each local memory access through a global pointer. This 

overhead can cause dramatic performance degradation, particularly in a tight inner loop. 

This chapter explores both the design and implementation of a more general approach, 

which allows dynamic thread migration at arbitrary suspension points, direct-access pointers 

for both heap and stack data, the flexibility to relocate stack and heap data at different 

addresses on different processors, and continuing to support point-to-point communication 

between threads. Our design requires keeping track of all dynamically allocated memory 

in such a way that all the data can be transfered to the destination processor, as well as 

keeping track of all pointers. so that their values can be updated upon migration, to reflect 

the new data locations. 

Some other issues involve message passing in a system supporting migrant threads. In 

such a system. there is no guarantee that a thread resides on the processor to which a 

message is sent. In this case there must be a mechanism for forwarding the message to 

the appropriate processor. This problem is well studied and a common solution is the one 

described by Fowler (24]. However, this solution may not be appropriate in a multi-threaded 

environment. Additionally. a thread may post a receive for a message while residing on one 

processor, and migrate to another before completing the receive. For this reason. there 

must be a means for reposting outstanding receive operations following a migration. 
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Figure 5.1: Examples of the four types of pointers 

3 Functional Requirements. 

This section outlines the functional requirements of thread migration in Chant. It addresses 

the different types of pointers that can exist in a multi-threaded system and the ways in 

which these pointers can be manipulated. Additionally, it addresses issues arising from 

the support of point-to-point communication between threads. Since threads may move, 

there must be a mechanism for locating threads, and for handling communication during 

migration. 

3.1 Pointers to Private Data 

Private data refers to data that is being referenced by a single thread. The pointers them-

selves may reside in either the thread's stack, or within the heap, and they may reference 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 5. THREAD AIIGRATION 73 

data located in either the stack or heap. This results in four possible pointer types, as 

depicted in Figure 5.1: 

1. A pointer located in the thread stack and referencing a data item in the stack. 

2. A pointer located in the thread stack and referencing a data item in the heap. 

3. A pointer located in the heap and referencing a data item in the thread stack. 

4. A pointer located in the heap and referencing a data item in the heap. 

3.2 Pointers to Shared Data 

Sharing data between threads can occur in two ways in terms of pointer use. The first is 

the use of pointers to global data. Global data refers to data that is declared statically 

by the process. outside any threads or functions. Since all threads within the process have 

access to this data, any thread can use a pointer to reference it. These pointers remain valid 

by default due to the strict homogeneous SP~ID assumption. This is because global data 

resides in the same location on each processor, thus the pointer values remain the same. It 

is important to point out that this data is global only in a per process sense. That is, it is 

not accessible to remote processes but has global scope within its own process. A second 

method of sharing data between threads occurs when pointers from two or more threads 

reference the same location in the heap. 
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While the first method for sharing data can be accommodated in a relatively straight

forward fashion, the second method is considerably more difficult and is a problem that has 

not been solved in a satisfactory manner for this work. 

3.3 Pointer Manipulation 

The ways in which a pointer can be manipulated can be subdivided into three main cate

gories: assignments, updates, and pointers as formal arguments. A general solution to the 

problem of migrating threads containing pointers should accommodate all three of these 

categories. 

Assignment refers to changing the value of a pointer. This includes assigning to the 

pointer the address of newly-allocated memory, the value of another pointer. or the address 

of a variable. Since pointer assignment is such a common operation, it is very important to 

minimize the overhead associated with these operations. For example, traversing a linked 

list via an auxiliary pointer performs at least one pointer assignment for each element in 

the list. 

Updates refer to changing the value of the data that the pointer references. It is impor

tant that all such updates survive thread migration. That is, it is not sufficient to ensure 
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a pointer references a valid memory location following migration. but that the value refer

enced by a pointer following migration is identical to the value that was referenced prior to 

migration. 

The integrity of pointers as formal arguments must also be protected. For example, 

consider a thread that is migrated while invoking a function call. and that has at least one 

pointer as a formal argument. If the function later updates the pointer, the data being 

referenced must be the same as it was prior to migration. 

3.4 Handling Communication 

If the thread system supports point-to-point communication between threads. then other 

considerations must be taken into account. These include tracking the location of the 

threads. If thread A wants to send a message directly to thread B. then the system must be 

able to locate thread B. This is necessary so that thread A can send the message directly 

to the processor on which thread B resides, and thread B can receive the message directly, 

with no intermediate buffering. 

Additionally, a thread may post a receive request, and migrate to another processor 

before the receive has completed. In this situation, the receive request must be re-posted 

following the migration. This is due to the fact that the underlying communication library 
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on the destination processor will have no knowledge of the original request, and will be un

able to place the message, once it arrives, into the appropriate memory location as specified 

during the original request. 

Finally. a mechanism for forwarding messages must be included. If a message arrives 

for a thread that has migrated, that message must be forwarded to the new location of the 

target thread. Additionally, a message may have already arrived, prior to the completion of 

the receive operation. This would mean the message resides in user space, but the user has 

no way of detecting this fact following the migration. This message must also be forwarded 

to the destination processor, so the migrant thread can complete the receive operation. 

\Vhile there has been work done on message forwarding at the process level (e.g. [24]), we 

know of no work on message forwarding at the thread level. 

4 Supporting Pointers 

This chapter presents the design of a new thread migration system, which supports point:ers. 

The design revolves around two basic concepts. The first of these concepts is the use of 

a private heap for each thread. This private heap is allocated from the processor's heap 

as a contiguous block of memory at thread creation time. All dynamic memory allocation 

performed by the thread occurs within the private heap associated with the thread. This 

facilitates the calculation of offsets for the purpose of updating pointers following migration, 
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and allows us to migrate all of the thread's heap data. in a single message. The second 

concept is keeping track of all valid pointers, which allows all of them to be updated following 

migration. 

This design for thread migration requires the addition of a few new data structures and 

user-level functions, which we present below. 

4.1 Auxiliary Data Structures 

To ensure that heap variables reside in a contiguous block of memory that can be easily 

moved. each thread uses a private heap. This thread heap is allocated from the process heap 

space. where the size can be specified by the user at thread creation time. For efficiency 

purposes. this heap is allocated as part of the thread's stack. Essentially, the stack and heap 

are one and the same, with the only difference being that they grow in opposite directions. 

This means the stack and heap are part of the same contiguous block of memory. 

For the purpose of memory management within a thread's private heap, Chant provides 

specialized memory allocation and deallocation routines. It maintains of a list of free blocks 

of memory within the heap and utilizes two fields at the front of each memory block. One 

field stores the size, in bytes, of the block of memory, while the other stores a flag indicating 

if the block is free or in use. \\'"hen a thread attempts to allocate a block of memory from 

its private heap, the following steps are taken: 
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1. Adjust the requested size to make sure the block is double word aligned. 

2. Adjust the size requested to reserve space for the size and status fields at the front of 

the block. 

3. Traverse the free list until a block of sufficient size is found: 

• If no block can be found to accommodate the request, merge all adjacent free 

blocks. 

• Search for a block of sufficient size one more time. 

• If there is still no block available to satisfy the request, return an error. 

4. If the size of the block is equal to the requested size, remove the block from the free 

list. 

5. If the block is larger than the requested size: 

• Allocate the requested block size from the end of the free block. 

• Adjust the size field of the free block to indicate the remaining size of the block. 

6. Set the status field of the newly allocated block to indicate it is in use. 

7. Return a pointer to the ne\vly allocated block. 

Releasing a block is much simpler. The status field is set to indicate the block is available 

and the block is added to the free list. 
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Figure 5.2: Example of the free_list for pt_table 

These two routines allow for the efficient management of the thread's private heap. 

It is also necessary to keep track of all the pointers being used by the thread, and this 

is done using a table, the pt_table, whose entries consist of two fields: addr and free. The 

addr field is used to hold the address of the pointer itself, and the free field is used to 

facilitate the creation of a free list of table entries. The table itself (depicted in Figure 5.2) 

is statically allocated at the front of the thread heap during thread creation. Again, the 

size of the table can be controlled by the user at the time of thread creation. 

Finally, the thread control block ( TCB) of migratable threads must be supplemented to 

contain an additional four fields: pointer to the base of the thread's private heap. the size 
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of the thread's heap, the size of the thread's pt_table, and the head of the free list. These 

fields are added to the Chant TCB associated with each thread. 

4.2 Auxiliary User-level Functions 

Our thread migration system relies on the fact that the runtime system knows about all 

active pointers within a thread. Therefore. a mechanism is needed that allows all active 

pointers to be registered. \Vithout compiler support we assume that the user will insert the 

pointer registration calls, though it would not be difficult to modify a compiler to insert the 

calls automatically. 

To register a pointer, a free entry in the pt_table must be found, and the addr field 

of this entry set to the address of the pointer being registered. Code for this function is 

depicted in Figure 5.3(a), where the function find....free_entry locates and removes the 

next element from the free list. The system requires that users register all pointers before 

they are used, including pointers in dynamically allocated data structures and pointers that 

are formal parameters to functions. 

In conjunction with a registration function, a function is needed to release pointers when 

they are no longer being used, or when they go out of scope. This prevents the pt_table ta

ble from overflowing and prevents stack memory from becoming corrupted following thread 
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int pt_register(q) 
void •q: 

int i = find_frec_entry(): 
pt_table[i].addr = q: 
return error_codc: 

(a) 

int pt_relcase (Q) 

void *q: 

int i = find_index(q): 
pt_uble[i].addr =NULL: 
add_to_free_list (i): 
return error_code: 

(b) 

Figure 5.3: Code for (a) registering and (b) releasing pointers 

void* thr_malloc (size) 
int size: 

thread_t •t = thread_self(): 
void* heap= find_heap(t): 
void* p = find_block (size. heap): 
I* This will include memory managment 

within the thread·s private heap*/ 
return p: 

Figure 5.4: Code for thread specific malloc 
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migration. When a user releases a pointer, the pointer must be found in the pt_table and 

added to the free list. Code for the release function is depicted in Figure 5.3(b). 

\\~hile adding an element to the free list is straightforward, finding the element from its 

address requires a search. A simple linear search will cause on average n/2 comparisons per 

release where n is either the size of the table or the highest index of a valid pointer. whichever 

is smaller. However, advanced searching and hashing techniques may be employed in the 

future to reduce this overhead. 

Finally, thread-specific malloc and free routines for managing memory in the thread's 

heap are also needed. Code for the former function is given in Figure 5.4. 
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4.3 Updating Pointers 

Migrating a thread takes place from two perspectives. sending data and receiving data. 

The source processor sends data to the destination processor, which processes this data. 

Figure 5.5 gives an outline of the steps taken by each. 

Source Process 

Send size of thread's stack 
Send Open Threads TCB 
Send Chant TCB 
Send Thread's stack 
Receive thread's new local thread id 
Inform other processors of new location of thread 
Forward mess:~ges intended for thread 

Destination Process 

Receive size of thread's stack 
Receive Open Threads TCB 
Receive Chant TCB 
Receive thread's stack 
Send new local thread id to source 
Update pointers 
Repast outstanding receives 

Figure 5.5: Steps taken to migrate a thread 

The source processor first sends a message informing the destination processor that a 

migrant thread is about to arrive. This message contains the size of the migrant thread's 

stack. The source processor then sends the Open Threads TCB followed by the Chant 

TCB. To complete the actual migration, the source processor sends the migrant thread's 

stack to the destination processor. Thus, the source processor sends four messages to the 

destination processor to migrate a thread. After the thread has been migrated, the source 

processor receives, from the destination processor, the new local thread id of the migrant 

thread. This new thread id is sent to all the processors allowing each processor to update 

the thread's location for future communication. Finally, the source processor leaves a stub 
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of the migrant thread for the purpose of forwarding messages. This message forwarding 

mechanism will be explained in Chapter 5.2. 

The destination processor receives a message letting it know a thread is about to arrive, 

including the size of said thread's stack. The destination processor then allocates memory 

for the arriving thread's stack, its underl~ing thread package's TCR and its Chant TCB. 

Next the two TCBs are received and the fields updated as needed (some fields have processor 

specific data that must be updated to reflect the new processor on which the thread resides). 

Next the thread's stack is received from the source processor and stored in the newly 

allocated memory. Some bookkeeping is required to handle pointers and communication. 

This is described in more detail below. Finally, the thread is added to the run queue of 

the destination processor. \Vhen it gets control of the processor, the thread will resume by 

executing the same instruction it would have executed had there been no migration, making 

the migration seamless. 

Following a migration, the data referenced by pointers will most likely reside in different 

memory locations. This means that, after a migration. the values of pointers are no longer 

valid. Consequently, the value of both user-level pointers and system pointers must be 

updated on the destination processor if they are to remain valid. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CH.4PTER 5. THREAD !viiGRATION 84 

User Level Pointers 

Following a migration, the migrant thread's pt_table is available to the system. To update 

the pt_table. each valid entry in the pt_table (addr != NULL) is examined. By knowing 

both the base of the old stack and heap (available from the thread control block) as well 

as the base of the new stack and heap, the addr field of the pt_table entry can be used to 

calculate the new address of each pointer. These new addresses are then placed in the addr 

field of the table. 

The values stored in the pointers themselves also need to be updated, since the location 

of the data that they reference has now changed. Since the new address of the pointer has 

been computed, the pointer can be accessed directly and its current value, i.e., the value on 

the old processor, can be examined. The following scenarios are possible: 

• If the pointer is NULL, then it is not referencing anything and should be left alone. 

• If the pointer references global data, then nothing is done since it is assumed that the 

global data is located at the same addresses on all processors. 

• If the pointer references data in the stack or heap, then the same address computa

tion that was done for the pointer addresses is applied, and the value of the pointer 

updated. 
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An example of this calculation is shown next. Consider a thread with a pointer residing 

on the stack, which references data residing in the heap. Let the thread migrate from 

processor A to processor B, with the following pertinent values: 

Processor A Processor B 

• heap base: 1000 • heap base: 1500 

• stack base: 200 • stack base: 550 

• pointer address: 226 • pointer address: 576 

• pointer value: 1013 • new pointer value: 1513 

The pointer has an offset of 26 (226-200) from the base of the stack. This translates to 

an address of 576 (550 + 26) on processor B. The system now accesses memory location 

576 on processor B and retrieves the value 1013. This is an offset of 13 (1013-1000) from 

the old base of the heap, and translates to a new value of 1513 (1500 + 13) on processor 

B. The system now updates memory location 576 with the value 1513, and the pointer in 

question now references the correct data. 

A final note on user-level pointers: it is essential that the value of a pointer is checked 

before the offset is applied. This is due to things such as linked lists, which use NULL as a 

terminating pointer. Updating this final pointer from NULL will result in a non-terminated 

linked list and will eventually lead to undefined results in the user-level code. 
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System Pointers 

\Vhen we use the term system pointers. we are referring to three different sets of pointers: 

pointers used by Open Threads, pointers used by Chant, and machine dependent pointers. 

Open Threads has, within its TCB, only two non-machine dependent pointers that must 

be updated. The first is the location of the thread's stack. This field is filled in with the 

new location of the thread's stack following its allocation. The second is used for queue 

management. This pointer is automatically updated properly when the migrant thread is 

put back onto the run queue following migration. 

The Chant TCB has only one pointer that must be updated following a migration. This 

is the pointer to the Open Threads TCB. This field is simply filled in following the allocation 

of the Open Threads TCB. This is the only field that requires updating because all the lists 

used by Chant are stored as arrays within the Chant TCB, and are thus automatically filled 

in when the TCB is received. 

This work has been implemented in a strict homogeneous SPl\ID environment, running 

on a network of Sun Spare workstations. In this environment, most of the machine depen

dent system pointers are maintained by default. This is because instruction addresses are 

the same regardless of process, i.e., pointers such as return addresses remain valid following 

a migration, while other system pointers are actually offsets into the stack, and hence are 
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not affected by the migration. Two exceptions. however, are the stack pointer and frame 

pointers. During a context switch, the current stack pointer is stored in the Open Threads 

TCB. Following a migration this stack pointer is updated the same way as user-level pointers 

are updated. by applying the aforementioned offset to the old value. 

Upon a procedure call. a new stack frame is created at the top of the stack. \Vithin this 

stack frame, there is a frame pointer, which is a pointer to the previous stack frame. This 

frame pointer is located at a machine dependent offset from the current stack frame. This 

frame pointer is the address of the previous stack frame, and not an offset within the stack. 

Clearly this must be updated using the same offset as discussed above. However, each stack 

frame has a frame pointer, referencing the previous stack frame. which is the stack frame 

of the calling procedure. Therefore the entire stack must be traversed, applying the offset 

to each frame pointer, and then using the new value to access the previous stack frame. 

This continues until the frame pointer is NULL, indicating the first stack frame has been 

reached. 

At this point, all the pointers have been updated and the thread can be put on the run 

queue of the destination processor. 
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This implementation is specific to the Spare architecture, and porting Chant to another 

architecture could possibly require significant changes to the current implementation. How

ever. these changes should only affect the maintenance of system pointers. The solution we 

have described for user-level pointers is architecture independent. 

5 Handling Communication 

In our system, a thread can send a message directly to another thread residing in a different 

address space. This raises some issues if the threads are allowed to migrate. First, the 

system must globally maintain where each thread is currently residing. Second, messages 

that arrive for a thread, after the thread has migrated elsewhere, must be forwarded. Finally, 

if threads may migrate while receives are pending, these receives must be reposted on the 

destination processor. 

5.1 Maintaining the Location of Specific Threads 

Since we want to allow point-to-point communication between threads, it is important 

that each processor maintains a relatively up to date table specifying where each thread 

resides. This is done by assigning a global thread id (TID) to each thread upon its creation. 

Each processor keeps a translation table, which is used to convert a global TID to a tuple 

consisting of <processor, local TID>, which in turn is used for communication. 
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After a thread migrates to another processor, the source processor waits for a message 

from the destination processor informing it of the new local TID of the migrant thread. 

The source processor then uses the RSR layer to broadcast the new <processor, local TID> 

tuple. along with the thread's global TID. to every other processor in the computation. 

Each processor then in turn updates its translation table, allowing messages to be directly 

sent to the thread on the new processor. rather than being forwarded by the old processor. 

Each processor also responds to the source processor with information needed to forward 

any messages sent to the migrated thread on the source processor, but not received. 

This approach does add non-negligible overhead to the migration operation and raises 

questions of scalability. Since one message is broadcast, and another gathered from every 

processor. as the number of processors increase so will the overhead. However. for a single 

migration, this overhead remains low, even for a large number of processors. For this reason. 

this approach should scale reasonably well if the number of thread migrations is relatively 

low. However, if an application uses frequent migration, this approach will probably prove 

inadequate when running on a large number of processors. Thus, this approach needs to be 

studied further if large numbers of processors are to be used. 

5.2 Forwarding Messages 

Let's consider a computation in three processors, PO, Pl, and P2, in which thread X has 

just migrated from P 1 to P2. The system must handle all unprocessed messages sent from 
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PO to P 1 that were intended for thread X. If we wait to deal with forwarding messages until 

after PO has been informed of thread Xs new location, we can assume that all messages 

that need to be forwarded have already arrived at processor Pl. 

\Vith this assumption, there are two scenarios to be considered. The first scenario is as 

follows: thread X posted an asynchronous receive prior to migration, the message arrived 

and is in user space on P 1. but the thread has not checked for completion of the receive. 

Thread X has no way of knowing the message had arrived once it has migrated to P2, and 

thus the message residing in user space on P 1 must be forwarded to thread X on P2. 

The second scenario is as follows: A message has been sent from PO, intended for thread 

X. but thread X has not posted a receive for this message. In this situation the message 

is stored in a system buffer waiting for a matching receive. This message must also be 

forwarded to thread X on P2. 

As has been explained pre..,;ously, in a multi-threaded environment it makes little sense 

to use synchronous receive calls, since these will block the entire processor. Chant, there

fore, forces all receives to be asynchronous, and returns a handle with which to check for 

completion. In our system, each processor keeps track, on a per processor basis, of the 

number of messages that have been sent to each thread in the computation. That is, pro

cessor PO knows how many messages have been sent from PO to P 1 intended for thread 

X. Additionally, each thread maintains a list of unprocessed receives. Wben a receive is 
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posted. the posting thread stores in this list the tag, handle, message size, and address of 

the buffer into which the message is to be received. Each thread also keeps track of the 

number of messages that have been processed from each processor. \Ve first explore our 

message forwarding system below ignoring the issue of message tags. 

After it has updated its translation table with thread Xs new location, processor PO 

sends a message to P 1, indicating the number of messages intended for thread X that have 

been sent from PO to P 1. At the same time. thread X has kept track of the number of 

messages it has processed from PO. The difference between these two numbers represents 

the number of messages that must be forwarded to P2. \Vhen thread X migrates to P2, a 

stub remains on P 1 for the purpose of forwarding messages. This stub has access to all the 

private data the system maintained for thread X. 

This leaves us with two possible situations on processor Pl. First, there may be more 

messages that need to be forwarded than unprocessed receives. In this situation, we know 

that all posted but unprocessed receives must have completed, and the messages are in 

thread Xs user space. The difference between the number of messages sent and the number 

of receives posted represents the number of messages that are in the system buffer waiting for 

matching receives. The stub on P 1 uses the handles stored in thread Xs list of unprocessed 

receives to complete each receive, and forwards the buffers (the address is stored in this list) 

to P2. Then, for the messages that have not been received, the stub simply posts receives 

to retrieve the messages from the system buffer, and forwards the messages to P2. 
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The second situation is when there are more unprocessed receives than messages that 

need to be forwarded. This indicates that all the messages that need to be forwarded have 

been received by receive calls, and reside in thread Xs user space. However, we do not 

know which receive calls have completed and which have not. In this situation. the stub 

on P 1 simply checks each unprocessed receive for completion, using the handle stored in 

thread Xs list. If the message has been received, the stub forwards the buffer to P2. A 

non-completed receive means the message was not sent prior to PO updating its translation 

table, and therefore the message will be sent directly to P2. 

The system as described above can easily be extended to check for messages with all 

possible tags. It can also be easily extended to account for messages from each processor in 

the computation. 

There is, however, one additional issue that arises with this approach. As stated ear

lier, a receive call can either specify the processor from which the message is supposed to 

originate, or it can use a wild-card, receiving a message from any processor. Receives using 

a wild-card cause a slight alteration in the message forwarding process described above. 

However, receives specifying the processor cause greater problems. Suppose in the above 

example, thread X, after it migrates to P2, posts a receive specifying it wants to receive 

a message from PO. Suppose also that the message is sent from PO before said migration 
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and must be forwarded to P2. If the message is forwarded. the underl)';ng communica

tion system thinks the message originated from PJ, and the receive operation will never 

complete. 

Therefore, simply forwarding the messages \\;U not work. To overcome this problem, we 

bounce all messages back to the sender rather then forward them directly. That is, when a 

message from PO is received by the stub on Pl, and needs to be forwarded, it is sent back 

to the RSR server on PO as part of a remote service request. \Vhen the RSR server on PO 

processes the remote service request, it knows the new location of thread X, so it simply 

resends the message to thread X on processor P2. This way thread X receives the message 

from PO, as expected. This sequence of events is pictorially depicted in Figure 5.6. 

3: Forward 

P2 

I : Original message 

Figure 5.6: Bouncing a message off the sender to the new location 

The primary drawback to this system is that it requires three message transmissions, 

while only two messages transmissions would be required if the message could be forwarded 
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directly. Additionally, the use of the RSR server adds overhead. The alternative is to 

prohibit the user from specifying from which processor a message should arrive. However, 

this limits the functionality of the message passing system and would be an unreasonable 

restriction. 

5.3 Reposting Receives 

If a thread posts a receive and then migrates to another processor. the underlying commu

nication system on the destination processor has no knowledge of the earlier receive call. 

This would result in the receive never completing. Additionally, the call cannot even be 

checked for completion, since the returned handle is a pointer to a structure on the old 

processor, and the thread has no access to this structure following migration. Therefore. 

all outstanding receive calls must be reposted follO\ving a migration. 

This is done by keeping track of all receive calls in a table. This table includes all 

the parameters used in the receive call, including the buffer into which the message is to 

be received. It also includes a status field, which is set to PENDING when the receive is 

posted and to FREE when the message is processed. This allows easy traversal of the table, 

checking for pending receives, which must be reposted. 

Following the migration, the address of the buffer must be updated in the same way 

as other pointers are updated (see Chapter 4.3). Additionally, all the parameters must 
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be extracted from the table, and are used to repost the receive. Following the reposting, 

the new handle is stored in the table, so subsequent checks for completion use the correct 

handle. 

This chapter has addressed the design and implementation of the thread migration layer 

of Chant. \Ve have discussed issues involving both the use of pointers and the support of 

point-to-point communication. \Ve have also supplied various proposed solutions to the 

pointer problem, and described our solution to the problem. Finally, we gave a detailed de

scription of our implementation of the thread migration mechanism. This thread migration 

layer is now used to develop a new layer on top of Chant. This layer provides a generic 

framework within which a user can develop a customized load balancing system. tailored 

to specific applications. 
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Load Balancing 

This chapter uses the thread migration mechanism discussed in Chapter 5 to describe the 

design and implementation of a load balancing layer. This load balancing layer is intended 

to work as a framework within which users can make use of thread migration, and a supplied 

Applications Programmer Interface (API), to customize load balancing to fit their particular 

needs. \Ve revisit some of the issues involved in the design of any load balancing system, 

as well as introduce some additional concerns that arise in a multi-threaded approach. The 

primary goal of the load balancing layer is to offer the user control over the decision making 

process, while at the same time allowing the user to ignore unnecessary details. 

The primary phase of load balancing is the decision making phase. In this phase the 

system must decide: Is a load redistribution necessary? If yes, what processors should be 

96 
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involved in the load redistribution? If a processor should send work to another processor, 

which load units (threads) should be migrated? Unfortunately, there are no general answers 

to these questions since different applications perform better under different load balancing 

algorithms. That is, a load balancing algorithm that performs well for one application. 

may perform poorly for another application. There are many factors that can affect this 

decision making phase. For this reason, our primary goal while designing the load balancing 

layer was to provide support for building customized load balancing systems tailored to 

specific applications. This has been accomplished by providing a default load balancing 

implementation in which the user can easily override the default choices. The level of 

customization is left to the user, from nearly no user support, to a near 100% customized 

implementation. 

Load Balancing API 

Load Balancing Function 
'---------------------------

Load Balancing Functionality 
'------------------------------

Load Balancing Routines 

Figure 6.1: Load Balancing sub-layers 
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The load balancing layer is itself built using a layered approach. consisting of three sub

layers. The sub-layers in Figure 6.1 would fit into the Load balancing layer of Figure 4.1 

with the Load Balancing API being part of the Chant User Interface from Figure 4.1. The 

bottom sub-layer consists of lower level load balancing routines. These routines range from 

gathering state information to manipulating the run queue. The middle layer provides load 

balancing functionality. These routines either determine which threads to move where, or 

instruct the system to move specific threads to specific processors. The routines that are 

used for decision making can be customized by the user. while the routines that instruct 

the system to move threads are, by their nature. statically implemented. These routines 

make use of the lower level routines to make decisions and to move threads. The top-most 

sub-layer is the actual load balancing function. This is the function that is called by the 

system whenever it is to attempt load balancing, i.e., enter the decision making phase. \Ve 

provide a default load balancing function, but allow the user to register a customized load 

balancing function that may make use of the two lower layers. 

The customizability of the top two layers allows the decision making phase to range 

from very simple to extremely complex. If the decision making phase is very simple, it may 

be advantageous to attempt load balancing often. However, if the decision making phase 

is extremely complex, the system may only wish to attempt load balancing when there 

is a good likelihood that a load redistribution is necessary. This is because an extremely 

complex decision making phase may take a long time to complete. If this phase is entered 

often with no redistribution necessary, the system is spending a lot of time in this phase 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 6. LOAD BALANCING 99 

that could be better spent on the actual computation. For this reason, it is important to 

give the user control over how often this phase is entered. 

Our load balancing mechanism extends the use of the RSR server, discussed in Chap

ter 4. Section 3, by adapting it to carry out load balancing operations. \Vhen users enable 

load balancing, they specify how often the RSR server should attempt to perform load 

balancing. Since the situation where load balancing is not necessary often indicates a fairly 

stable system, this frequency may vary. The user can specify that the RSR server never 

attempts load balancing (on a processor by processor basis), or attempts load balancing 

every time it gains control of the processor. Alternatively. this frequency can vary linearly 

or exponentially. A linear variation means that load balancing is attempted every nth time 

the RSR server gets on the processor, where n starts at 1. and increases by one each time a 

load redistribution is not necessary. The parameter n is reset to 1 following an actual load 

redistribution. An exponential variation means that load balancing is attempted every nth 

time the RSR server gets on the processor, where n starts at 1. and doubles each time a 

load redistribution is not necessary. The parameter n is reset to 1 following an actual load 

redistribution. 

\Vhen the RSR server gets control of the processor, it checks to see when load balancing 

was last performed. If it has been long enough (using the frequency discussed above), the 

RSR server makes a call to the load balancing function. If load balancing is actually 

performed, it resets the frequency counter. If no load balancing is performed, the RSR 
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server uses the user defined frequency to indicate when load balancing should be attempted 

again. 

This functionality does not affect the decision making phase itself, rather it simply affects 

how often the decision making phase is entered. There remain several factors that affect the 

decision making phase itself. These include, but are not limited to, communication histories, 

how the load is estimated, and which processors are involved in the decision making. These 

factors. and others, are described in more detail below. 

The rest of this chapter discusses the sub-layers of the load balancing layer in more detail. 

This discussion includes descriptions of default implementations. as well as descriptions of 

the information returned by the various routines provided through the load balancing API. 

Furthermore, we provide brief discussion on how this information may be used to customize 

the load balancing system. 

1 Lower Level Load Balancing Routines 

The lower level load balancing routines are used to set system parameters, manipulate the 

system, and obtain both system and thread characteristics. This sub-layer is accessed by 

both the user and the upper sub-layers of the load balancing layer. The characteristics set 
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by these routines are used by the system and the decision making phase, while the values 

returned by some of these routines can be used to customize the decision making phase. 

1.1 Set System Parameters 

One of the most important routines in this sub-layer is the one that allows load balancing 

to be enabled and disabled dynamically. This may be important for a computation that 

goes through phases, some of which require load balancing, and some of which do not. 

For example, consider a rendering algorithm that renders multiple images. In many such 

applications, the rendering stage is the only one that requires load balancing. In such a 

situation, the user may enable load balancing prior to rendering an image, disable it once 

the image has been rendered, and re-enable load balancing when the next image is ready 

to be rendered. 

\Vhen load balancing is enabled, the user must supply three parameters. These are 

upper and lower thresholds and a frequency for attempting load balancing. The upper and 

lower thresholds are used by the default load balancing function to determine if a load 

redistribution is needed. These threshold values are also available to any user-supplied 

load balancing function. The default load balancing function will be discussed later in this 

chapter. The frequency, as described above, is used by the system to determine how often 

the decision making phase should be entered. 
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If a computation is running on a large number of processors, gathering information from 

each processor in the computation may introduce an excessive amount of overhead. In this 

situation, it may be advantageous to only include a small sub-set of the processors in the 

decision making phase. A common use of this concept is to only use immediate neighbors 

of the processor initiating the load balancing operations. These neighbors can be physical 

neighbors. as \vith a mesh architecture. or virtual neighbors in an environment such as 

a network of work stations. This is the way the Dimension Exchange and Diffusion [49] 

methods work as described in Chapter 2. 

This sub-layer provides a routine that sets system parameters to define the load bal

ancing domain, i.e., the set of processors to be involved in load balancing operations. This 

domain can include all the processors within the computation, or any sub-set of processors. 

This routine is called on each processor in the computation, and sets up processor specific 

domains. Different processors may be included in different load balancing domains. This 

domain may be used for any subsequent global operation. 

1.2 Thread Characteristics 

The routines discussed in the previous section neither affect the execution of the application 

nor do they gather any information regarding the system. They simply set parameters 

that will be used to decide when the decision making phase should be entered and which 

processors should be included in the decision making phase. 
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The routines discussed in this section are used to dynamically alter thread characteristics 

as well as obtain information about specific threads. These routines work strictly on a local 

basis. That is, they deal with characteristics of threads residing on the processor from which 

the routines are called. The routines that dynamically alter a thread's characteristics are 

strictly user-level routines. That is, they are called by the application program. and never 

from the system itself. The routines that gather information, on the other hand, are used 

by the decision making routines. which will be discussed in Chapter 6, Section 2. Default 

implementations of these decision making routines are provided, though the user has the 

option of providing customized routines. 

One important characteristic of a thread is its migratability. The user m&.y create 

certain special threads that should remain on the same processor throughout their lifetimes. 

Chant supports this by allowing the user to specify, at thread creation time. if a thread 

is migratable or non-migratable. A non-migratable thread will never migrate to another 

processor. A migratable thread, by default, can be migrated either by the system, or 

explicitly by the user. However, there may also be a situation where a thread should be 

allowed to migrate at certain times, and not be allowed to migrate at other times. For this 

reason, a thread that is created as migratable, may be set to user-migratable, which means 

it can only be explicitly migrated by the user, but not by the system. A migratable thread 

can be dynamically switched between being system migratable or strictly user-migratable. 

Additionally, we provide a routine for checking the migratability of a thread, so one never 

attempts to migrate a non-migratable thread. 
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Another important characteristic is how much a thread contributes to the overall load 

of its processor. The overall load of a processor is equal to the sum of the loads of the 

individual threads residing on said processor. By default, all threads contribute equally to 

the overall load of the processor, and thus the default load of a newly created thread is L 

However. some threads are known to have more work to perform than others. Thus. Chant 

supports user specification of a thread's load at the time of its creation. 

Often, it is impossible to predict how much work a thread has remaining, and thus 

the thread's load should never be altered. However, for some applications, a thread may 

have a specified amount of work to perform, such as a certain number of iterations. As the 

thread performs work, it knows how much work remains. Additionally, some applications 

may execute in a manner such that thread's go through cycles, where the amount of work 

remaining is not important, but the current amount of work available to perform varies 

with time. For situations like this, we provide a routine that allows a thread's load to be 

dynamically altered. For a thread that has a specific amount of work to perform. the user 

can regularly reduce the load associated with the thread. For a thread that has a varying 

amount of work to perform, the user can alter the load in a manner consistent with the 

amount of work the thread has available to perform. 

An additional use of this functionality deals with blocked threads. 'While many suggest 

the length of the ready queue is a good indicator of load [37], this may not always be true. 

This would suggest that blocked threads should not contribute to the load of a processor. 
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However, if a particular application behaves in a manner such that threads do not typically 

block for a long time, it may be desirable to have blocked threads contribute some of their 

load to the processor's overall load. Since different applications will have threads that block 

for different durations, the amount a blocked thread contributes to the overall processor 

load should be controlled by the user. \Ve have given the user this ability by allowing a 

thread"s load to be dynamically altered. A user can lower a thread·s load just prior to 

blocking, and raise it back to what it was after the thread is released. 

\Ve also provide a routine for obtaining the amount of load a thread contributes to the 

overall processor load. 

A final thread characteristic that may affect the decision making phase is communication 

patterns. There are two main sources for performance degradation in a distributed memory 

parallel execution. The first, as we have been discussing, is load imbalance. The other 

important consideration is communication overhead. The more communication required 

for a parallel execution, the slower the execution is going to run. For this reason, it is 

often important to attempt to minimize communication overhead, while at the same time 

maintaining a balanced load. Unfortunately, these two issues can be orthogonal in many 

situations, in that balancing the load typically leads to increased communication, and vice 

versa. Therefore. it is important that a load balancing system attempt to minimize increased 

communication at the same time that it attempts to maintain a good system load balance. 
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In a multi-threaded environment, this translates to avoiding separating threads that 

frequently communicate with each other. Moreover. if load redistribution is necessary. it 

is preferable to move threads to processors with which they communicate often. That is, 

if thread A is doing a lot of communication with threads residing on the same processor 

as it resides, it is a poor choice for migration. If, however, thread A is doing a lot of 

communication with threads on processor X, it may be a good candidate for migration to 

X. 

In order to support such a functionality, Chant keeps track of the communication histo

ries of each thread \'.;thin the system. Since threads are mobile, it would make little sense 

to keep this information separate from the threads themselves. Therefore, each thread has, 

as part of its TCR a history of the number of messages that it has sent to each processor in 

the system. Additionally, Chant keeps track of the number of messages that a thread has 

received from each processor in the system. The load balancing API provides a routine for 

returning this information to the user. This information can then be used in the decision 

making phase in an attempt to minimize additional communication overhead. 

While each of these characteristics can be obtained for a specific thread, it is often more 

useful to gather statistics relating to every thread on the run queue. Therefore, the routines 

for obtaining thread characteristics come in two forms. The first form is as discussed above, 

where a thread is specified and a single value (or set of values as in the case of communication 

history) is returned. The related routines, however, return the values of every thread on 
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the run queue. These values are returned in an array. where the array index indicates the 

offset from the front of the run queue. That is, if the values are returned in array X, X[O] 

is the value associated with the thread on the front of the run queue, while X[i] is the value 

associated with the thread offset i places from the front of the run queue. 

1.3 Global State Information 

The previous section described routines that access and alter characteristics of local threads. 

However, many load balancing algorithms require global state information to make deci

sions. \Vhile it would be possible to make individual thread characteristics available to 

remote processors, this would introduce a tremendous amount of overhead. Therefore, we 

have made a conscious decision to allow remote processors to determine how much work 

should be moved where, but to require the processors from which the threads are migrating 

to determine which threads should be involved. That is, while processor A may inform 

processor B that processor B must move x amount of work to processor C, it is the re

sponsibility of processor B to determine which threads should be migrated to processor C. 

Processor B would use the routines discussed above to make such determinations. 

An important piece of information for many load balancing algorithms is the load of 

remote processors. For this, Chant provides routines that gather remote load information. 

One such routine is used to obtain the processor load of a specific processor. \Vhen this 
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routine is called, the target processor is specified and a RSR message is sent to that pro

cessor. The calling routine then waits for a response containing the current processor load 

from the target processor. Another routine retrieves the loads of a set of processors. This 

set of processors can include all the processors in the computation, or just the processors 

defined in the calling processors load balancing domain, as discussed earlier. The initiating 

processor can use this information, along with its o\\--n processor load, to determine if a load 

redistribution is necessary, and possibly what the new load distribution should be. 

Other information needed by some load balancing algorithms, is the communication 

history of certain processors. Though this information cannot aid in determining which 

threads need to be migrated from one processor to another, it can be used to help determine 

when a processor is doing a large percentage of its communication with threads on remote 

processors. This may indicate that it would be helpful to migrate work from this processor 

to the processors with which it is communicating. Since this information is not used by 

the default load balancing algorithm, it is included so it can be used by a customized load 

balancing algorithm. It is assumed the user has customized the other parts of the load 

balancing layer such that the choice of threads to migrate is made appropriately. 

1.4 Manipulating the System 

To this point, none of the routines we have discussed have any impact on the actual execution 

of an application. They have simply dealt with setting parameters and setting and gathering 
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state information. Naturally, there are routines that affect the execution of an application. 

These routines deal with manipulating the system run queue, synchronization of processors, 

and the actual migration of threads. 

Since a customized load balancing algorithm may access threads in any number of ways, 

we must provide mechanisms for manipulating the system run queue. \Ve pro"ide the user 

with three separate routines for removing threads from the run queue. The first routine 

allows the user to remove the thread at the front of the run queue. The other two routines 

allow the user to remove specific threads from the run queue. The first of these requires the 

user to specify an offset into the run queue to identify the thread. Thus thread 0 designates 

the thread at the front of the run queue while thread i would reside i spaces behind thread 

0. The second way to specify the thread to be removed is to provide a pointer to the Chant 

TCB of the targeted thread. In addition to removing threads, threads can also be put back 

on the run queue. However, threads can only be added to the end of the queue. 

It is important to note that these queue manipulation routines may affect the run 

queue extensively. For instance, there is no guarantee that the thread at the front of the 

run queue prior to executing one of these routines, will still be at the front of the run 

queue following the routine. This queue manipulation can clearly have major impact on 

the way an execution proceeds. Great care should be exercised in any use of these queue 

manipulation routines. 
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Certain load balancing algorithms may perform best if there is no computation being 

performed by any processors during the decision making phase. This can be especially 

true for complex algorithms. since other processors continuing computation may change 

the overall state of the system before the decision making phase is complete. In order to 

accommodate such algorithms, Chant supports the synchronization of all processors within 

the calling processor"s load balancing domain. This routine instructs all the processors 

\Vithin the domain to stop computation and participate in a load balancing phase. This 

accomplishes two possible goals. One, it assures that there will be no change in the state 

of the system during the load balancing phase. Second, it can also be useful when the load 

balancing domain is small and it is beneficial to have quick responses to remote queries. 

For instance, when a query is sent to get load information from one of the synchronized 

processors. it is unnecessary to wait for the RSR server to return to the processor to respond 

to the query, since it is sitting on the processor. waiting to respond to queries. If the 

processors were not synchronized, the request would be queued on the remote processor, 

and not handled until the remote RSR server regains control of the processor. Even though 

there is still a latency associated with the message transfer and the processing of the query, 

with synchronization at least the query is handled immediately by the remote processor. 

This synchronization has been implemented so as to ensure that two or more processors 

attempting to synchronize at the same time will never deadlock. This is accomplished by 

using two types of RSR messages, regular RSR messages and RSR messages associated with 

load balancing. \Vhen a processor is synchronized, it only receives RSR messages associated 
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with load balancing. Likewise, any processor that has initiated a synchronization, receives 

query responses via the same format, receiving only RSR messages associated with load 

balancing. This allows a processor that has initiated a s:ynchronization to acknowledge 

synchronization requests from other processors, and to respond to load balancing queries 

concurrent with its own load balancing phase. Furthermore. each processor keeps a tally 

of the number of outstanding synchronization requests it has handled. Thus. when a syn

chronization is released. the server only relinquishes control of the processor if there are no 

outstanding synchronization requests. 

2 Load Balancing Routines 

This section describes the middle sub-layer, which consists of various load balancing rou

tines. These load balancing routines can be divided into two types: those that can be 

customized by the user, and those that are statically implemented. The statically imple

mented routines are those that actually carry out the load redistribution. The customizable 

routines, on the other hand, are those that constitute the decision making phase of load 

balancing. These decision making routines do not carry out any actual load redistribution, 

but rather. simply return values indicating the load redistribution that should be performed. 

The first of these decision making routines would be called by a centralized load balanc

ing algorithm. This routine takes as input the processor loads of each processor involved 
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in the load balancing, be it the entire set of processors in the computation, or just those 

in the calling processor's load balancing domain. This routine returns a two dimensional 

array, say X. indicating how much load each processor should migrate where. The element 

X[i,j} represents the amount of work that processor i should migrate to processor j. 

The default implementation of this routine simply attempts to balance the current load 

evenly across all processors. It does this by taking the average load of all the processors. 

and indicating that processors with load above this average should migrate an appropriate 

amount of work to those whose loads are below the average. 

Let us use an example to explain the default implementation. Suppose we have an 

application running on four processors, PO to P3. Let the array L = [5, 12, 8, 15] represent 

the current processor loads of the four processors. In this example the total system load is 

40. which computes to an average of a load of 10 for each processor. The algorithm proceeds 

as follows: 

• Processor PO has a current load of 5, which is below 10, so it does nothing. 

• Processor P 1 has a load of 12. so it should move 2 units of work. Since processor PO 

has load 5, processor P 1 should move 2 units of work to processor PO. This will cause 

processor PO to have a load of 7. 

• Processor P2 has a load of 8, which is below 10, so it does nothing. 
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• Processor P3 has a load of 15. so it should move 5 units of work. Processor PO has 

a load of 5, but is scheduled to receive 2 units of work form processor Pl. Therefore, 

P3 should send 3 units of work to PO. which would lower P3's load to 12. Processor 

P 1 has a load of 12 and is scheduled to move 2 units of work to PO, so no work should 

be sent to P 1. Finally, P£ has a load of 8, so P3 should send 2 units of work to P2. 

If the redistribution is performed as indicated by the algorithm, each processor will have 

a load of 10 following redistribution. 

Another of these decision making routines can be called by an under-loaded processor 

that needs to get work from other processors. This routine also takes as input the loads 

of all the processors involved in the load balancing. It returns an array that contains how 

much work should be requested from each processor. That is, if the return array is X, the 

\·alue stored in X[ij is the amount of work that should be requested from processor i. 

The default implementation simply chooses the most heavily loaded processor from the 

list of loads, and indicates work should be requested from it. The amount of work to be 

requested is the sum of the calling processor's loads and the most heavily load processor, 

divided by two. This would cause the two processors involved to have equal loads following 

the redistribution. 
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A related decision making routine can be called by an over-loaded processor that needs 

to send work to other processors. This routine also takes as input the loads of all the 

processors involved in the load balancing. It returns an array that contains how much work 

should be moved to each processor. 

The default implementation simply chooses the least loaded processor from the list of 

loads, and indicates work should be sent to it. The amount of work to be sent is the sum of 

the calling processor's loads and the least load processor. divided by two. This would cause 

the two processors involved to have equal loads following the redistribution. 

The decision making routines described above are used strictly for determining what 

load redistribution should be carried out. These routines have nothing to do with choosing 

which threads should be involved in the suggested redistribution. Choosing threads to be 

involved in a redistribution is a local decision. That is, the processors owning the threads 

are responsible for deciding which threads to migrate where. \Ve provide additional decision 

making routines for this purpose. These are local routines that use thread characteristics, 

as described in the previous section, to select which threads should be involved in the load 

redistribution. 

One of these local decision making routines determines which threads to migrate to a 

specific processor, based on a specified amount of work to be moved. It takes as input 

the amount of work that should be moved, and the destination processor. The output is 
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a number indicating the number of threads to be migrated, along with an array indicating 

which threads should be involved. The output array designates threads based on their 

offset from the front of the run queue. This output array would be used as input to the 

redistribution routines discussed below. The default implementation simply traverses the 

run queue, selecting all migratable threads until the requested load has been reached. 

The final decision making routine is related to the one just discussed. This routine 

decides which threads to migrate to various other processors, based on the amounts of work 

needed to be sent to the processors. This routine takes as input an array, say Z, which 

indicates how much work should be migrated to each processor. That is, Z[ij is the amount 

of work that should be migrated to processor i. There are three output values: The number 

of threads to be migrated, an array, say X, indicating which threads should be migrated, 

and an array. say Y, indicating the destination processor of the threads listed in X. That 

is. the value of X{if is the offset from the front of the run queue of the ith thread to be 

migrated, and Y[ij is the destination processor of the thread indicated by X{if. 

This routine is called by the processor when a specific load redistribution is requested. 

The default implementation simply traverses the run queue, selecting all the migratable 

threads until enough work has been selected to satisfy the request for each destination 

processor. 
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The decision making routines discussed above simply decide which threads to migrate. 

These routines do not carry out the actual redistribution. Instead, the output from these 

routines is used as the input for various redistribution routines. which initiate the actual 

redistribution. 

The redistribution routines can be separated into two types: remote redistribution 

routines. and local redistribution routines. The remote redistribution routines instruct 

remote processors to redistribute their load, while the local redistribution routines carry 

out the actual redistribution. The remote redistribution routines make use of Remote 

Service Requests, to instruct the remote processor to carry out the redistribution. The 

remote processors, upon receiving the RSR message, use one of the decision making routines 

discussed above to select which threads will migrate where in order to satisfy the request. 

These remote processors then make use of one of the local redistribution routines to perform 

the actual redistribution. 

There are three different remote redistribution routines. The first of these instructs a 

remote processor to send various amounts of work to various processors. This routine takes 

as input an integer, say p, identifying the processor to initiate the redistribution, and an 

array, say X. which contains the amount of work to be moved to each destination processor. 

That is, the value of X{i} is the amount of work that processor p should migrate to processor 

i. These input values are obtained from the output of the decision making routines discussed 

earlier. 
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The remaining two remote redistribution routines instruct remote processors to send 

work to the calling processor. One of these instructs a set of processors to each send various 

amounts of work to the calling processor. This routine takes as input an array. say X. that 

lists the amount of work to be requested from each processor. That is, the value of X{ij 

is the amount of work that processor i should send to the calling processor. This routine 

then sends RSR messages to each participating processor, requesting the indicated amount 

of \vork. The other routine that fits this category instructs a specific remote processor to 

send a specified amount of work to the calling processor. This routine takes as input an 

integer identifying the remote processor, say p, and an amount of work to be sent, say w. 

This will instruct processor p to send w amount of work to the calling processor. 

This leaves the local redistribution routines, which initiate and actually carry out the 

migration of threads. The first of these send threads to a specific processor. This routine 

takes as input an integer, say p, indicating the destination processor. and an array. say X, 

indicating which threads should be migrated to p. The threads listed in X are identified as 

offsets into the run queue. Thus, this routine instructs the system to send all the threads 

in X to processor p. 

A related local redistribution routine sends threads to various different processors. This 

routine takes as input two arrays. The first array, say X, lists the threads that should be 

migrated, while the second array, say P, indicates the destination processors for the threads 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHA.PTER 6. LO.~D BALA..TVCING 118 

listed in X. Thus, the thread at offset X[if in the run queue should be migrated to processor 

Pfif. 

Finally. we provide local redistribution routines, which perform the actual thread migra

tion. The first of these routines allows a thread to migrate itself. This routine simply moves 

the thread to a target processor. The other local routine that fits this category is the one 

that actually migrates specific threads from one processor to another processor. This rou

tine takes as input an integer, say n, indicating the number of threads to be migrated, along 

with an array of pointers to Chant threads, say T. indicating the threads to be migrated. 

Additionally, it takes as input an integer, say p, indicating the destination processor for the 

threads listed in T. That is, this routine migrates the n threads referenced by T to processor 

p. Upon return, the threads have been added to the run queue of the destination processor. 

Wilen the migrated thread gains control of the destination processor, it proceeds with the 

same instruction it would have executed as if no migration had occurred. Typically. the 

threads referenced by T are not on the run queue at the time this routine is called. The 

caller must. in that case, return the threads to the run queue on the source processor, so 

that the underlying thread system can do some cleaning up following the migration. The 

system will know that the thread has migrated, so no additional effort is required of the 

user. 
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3 The Load Balancing Function 

As mentioned above. the load balancing function is called by the system anytime it attempts 

to balance the system load. We provide a very simple default implementation for this 

function. If the local load (that is, the load of the processor calling the load balancing 

function) is below a user defined lower threshold, the processor loads of all the processors 

in the execution are gathered using the load gathering routine discussed in Chapter 6, 

Section 1.3. This array of loads is then passed to the decision making routine described in 

Chapter 6, Section 2, with a load redistribution being returned. This load redistribution is 

then passed to the remote redistribution routine described in Chapter 6, Section 2, which 

requests work from various processors, in accordance to the indicated redistribution. If none 

of the remote processors has enough work to share, load balancing is implicitly turned off. 

This is to prevent undue overhead associated with load balancing once the execution is close 

to terminating. That is, there would be fewer threads remaining than there are processors. 

In this case, no load redistribution will improve execution, and it will degrade performance 

if busy processors are forced to exchange load gathering messages \vith idle processors. 

If. on the other hand, the local load is above a user defined threshold, the remote loads 

are gathered and passed to the global decision making routine intended for overloaded 

processors (as described in Chapter 6, Section 2). This routine also returns a load redistri

bution, which is used as input to the local redistribution routine that sends work to various 

remote processors (as described in Chapter 6, Section 2). 
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If the user has not registered customized decision making routines, this will be carried 

out using the default implementations. If. however, the user has customized the decision 

making routines. the default load balancing function \\ill call the user supplied routines, 

which must return redistributions consistent in form with the default implementations. 

These results will be passed to the non-customizable redistribution routine that will perform 

the actual redistribution. 

4 Customizability 

As was pointed out at the beginning of this chapter. our goal is to provide a load balancing 

layer that can work as a framework within which users can make use of thread migration, 

and the provided APL to customize load balancing to fit their particular needs. \Ve wish 

to allow the user to have near full control over the load balancing algorithm. allowing the 

amount of user customization to range from almost zero to near 100%. \Ve have provided 

this capability through the load balancing API as well as supplying default implementations 

for all decision making routines. The customizability really arises from the ability of the 

user to replace these default implementations with their own customized implementations. 

Users may decide that the load balancing algorithm provided through the default imple

mentations serves their needs. In this case, no customization is performed, and the default 

load balancing function is called by the system, and this load balancing function makes use 
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of the default implementations of the decision making routines. The only input required of 

the user in this scenario is the upper and lower thresholds, to be used by the default load 

balancing function, as well as how frequently the load balancing function should be called. 

Conversely, the user may decide that the default implementations do not provide the 

desired functionality. This could be the case if a very complex algorithm is appropriate for 

the application. In this case, users can implement their own load balancing function and 

register it with the system. This causes the system to call this customized implementa

tion each time it attempts to perform load balancing. Furthermore, this customized load 

balancing function can call user-level decision making routines, or the user can customize 

the default decision making routines and register those with the system as well. The user 

must still specify how frequently the system needs to call this customized load balancing 

function. 

It is important to point out that these two scenarios. no customization and full cus

tomization, are not the only two choices. These provide the extremes of the range of 

customizability. The user has the option of mbdng and matching choices from the two 

scenarios. The user may feel that the default load balancing function serves the application 

welL but that some or all of the decision making routines do not. In this case the user does 

not register a customized load balancing function, but does register customized decision 

making routines. Furthermore, some of the decision making routines may be customized 

while others are left with their default implementations. In such a case, the default load 
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balancing function makes calls to the decision making routines. and the system ensures that 

the customized routines are called if they have been registered. It is the responsibility of 

the user to ensure that the customized routines return redistributions in a form consistent 

with the default routines. This is due to the fact that the default load balancing function 

will use the return values as input to the redistribution routines. 

A customized load balancing function makes use of the lower level load balancing rou

tines discussed earlier in this chapter, as well as the decision making and redistribution 

routines. Some of these decision making routines can also be customized, in which case 

they also would make use of the lower level load balancing routines. The user has control 

over customizing none, any, or all of the decision making routines as well as the option of 

customizing the upper most load balancing function. The ability to mLx and match which 

routines are customized, gives the user extensive control over the load balancing algorithm, 

allowing it to be tailored to specific application. 

This chapter has provided a detailed description of the load balancing layer built on 

top of Chant. We have concentrated on the decision making policies, with emphasis on the 

ability of the user to decide how much customization is desired. We have also introduced 

the default decision making functions and the API prm-;ded for customization. Chapter 7 

provides results of performance testing. This v.;ll include quantif};ng the overhead associ

ated with multi-threading and other functionalities, as well as the results of using the load 

balancing layer on a small suite of test applications. 
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Perform.ance 

In this chapter we study the effectiveness of many of our decisions. \Ve present the results 

of timing tests for the overhead associated with multi-threading, thread migration, and 

message forwarding. \Ve then test our load balancing system on a variety of test applications 

under a variety of conditions. \Ve present both the performance results. plus brief analyses 

of the overheads associated with the use of thread migration for the purpose of dynamic 

load balancing. 

Unless otherwise stated, all tests were run on a dedicated network of four Sun SPARC

station 20 workstations, model 612 (dual 60 MHz SuperSPARC processors). Each machine 

was running Solaris 2.6 with full patches. Machine PO was the OS server for the rest of the 

machines, all of which were auto clients. The experiments were set up with only a single 

123 
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user process running on each processor. so that the tests would not be affected by any other 

processes except normal system services. The machines were interconnected via a private 

FDDI Net,vork. and thus there was no external network traffic. \Ve used the MPICH version 

1.0.13 implementation of MPI with debug flags turned off during compilation. 

All the performance numbers were collected by taking the average of ten executions. 

1 Overheads Associated with Multi-threading 

There is certain overhead associated with any multi-threaded application. Here we attempt 

to quantify the overhead associated with various operations in multi-threaded applications. 

In a multi-threaded application, the most common overhead is that associated with 

switching control of the processor from one thread to another. This is referred to as context 

switch time. Additionally, our system requires the registering and releasing of pointers, 

for the purpose of supporting thread migration. This introduces additional overhead to a 

multi-threaded application. Finally, Chant supplies its own implementation of dynamic 

memory allocation and free routines. For any application that does frequent dynamic 

memory allocation, we must analyze the difference in time required to perform these different 

routines. The memory allocation times reported here are for the block size required for our 

implementation of the Traveling Salesman Problem. which is 148 bytes. 
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Routine Time (microseconds) 
Creation-termination 1297.77 

Context switch 32.36 
Register/ release 2.14 

System Mallocjfree 3.03 
Chant Mallocjfree 2.09 

Table 7.1: Overheads associated with various thread operations 

Table 7.1 shows the overhead associated with these various routines. The numbers 

for memory allocation and deallocation are an artificial benchmark. gathered by simply 

looping through a number of iterations doing malloc/free pairs. Therefore, these times 

are only approximate as these numbers can be influenced greatly by a number of different 

factors. including memory allocation history. Also. the Chant mallocjfree pair performs 

significantly better than the system mallocjfree pair. This is because Chant it doing simple 

memory management and has a lot less memory information to maintain than does the 

system. 

As can be seen from this table, the most significant overhead can be attributed to 

context switch times. For this reason, it is important in any multi-threaded application to 

limit the total number of context sv.itches. These numbers will be used in the analysis of 

performance in the following sections. 
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2 Application Termination Detection 

In a typical multi-threaded application running on multiple processors, the application 

program knows it has finished its computation for a particular processor when all the threads 

terminate on said processor. However, when threads can migrate between processors, this 

is not sufficient. That is. just because all the threads have terminated, the processor may 

be required to do additional computation if threads migrate to the idle processor. For this 

reason, any application program must implement some type of termination detection on its 

own. This is on top of the termination detection that has already been implemented within 

Chant. 

Each of the test application discussed later in this chapter use an additional user-level 

thread per processor for this purpose. This thread is created at startup, and its sole purpose 

is to determine when the entire computation is completed. The thread checks to see if there 

are any other user-level threads on its processor. If there are. it blocks on a mutex. If there 

are no other user-level threads, it goes into a busy wait, trying to receive a message from 

its neighboring processor. This message is referred to as a token. \\'bile this thread waits 

for the token to arrive, it continually checks to see if there are any other user-level threads 

on the processor. If a thread migrates to this processor, this termination detection thread 

will find it, and block again on its mutex. 
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\\'nen a user-level thread terminates, it checks to see if it is the last user-level thread on 

the processor. If it is not, it simply terminates normally. However. if it determines it is the 

final user-level thread, in unblocks the termination detection thread. \\''ben the termination 

detection thread wakes up, it sets its state to active. Upon receiving the token, its sets the 

token value to its state, sets its state to idle. and sends the token to the next processor. 

If the termination detection thread's state is idle and it receives the token as being idle. 

it knows all the processors have terminated. This is a variation of Dijkstra's algorithm for 

termination detection [47]. 

The use of this termination detection thread adds a small amount of overhead to the 

computation, but is essential for proper termination when thread migration is possible. 

3 Thread Migration Performance. 

\Ve have implemented thread migration such that the system can migrate a thread to 

another processor at arbitrary points during the thread's execution. It is our goal to show 

that threads can be migrated across processor boundaries in an efficient manner with low 

overhead. \Ve have tested the time it takes to migrate threads across processor boundaries 

as well as the time spent forwarding messages. This section presents these test results along 

with an analysis of the performance. 
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3.1 Migration Times 

In order to analyze the time it takes to migrate a thread from one processor to another, 

two sets of tests are conducted. The first set of tests uses .MPI primitives with no multi

threading. In this set of tests, machine PO initiates a message of size m. and sends it 

to machine Pl. Each processor in turn receives the message and forwards it to the next 

processor. The last processor forwards it back to PO. Each test uses four processors and 

consists of sending the message around this cycle 100 times. The total time to complete the 

test is divided by 400 to give the average message passing time. The size of the message, m. 

varies with each test run, giving us the average message passing time for various message 

sizes. 

The second set of tests creates a thread with stack size m on machine PO. This thread 

migrates to machine P 1, which receives it and puts it on a queue. P 1 then removes the 

thread from the queue and migrates it to machine P2 which enqueues it, dequeues it, and 

migrates it to machine P3. P3 does the same and migrates the thread back to PO. This 

loop is carried out 100 times on four processors, and the total time is measured. This total 

time is again divided by 400, to get the average migration time for a thread with stack size 

m. Stack size m varies using the same values used in the first set of tests. 

Table 7.2 shows the results of these tests where Size is the size of the message or the 

thread's stack. Communication is the average time to send a message of size m using 
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~!PI primitives (first set of tests), while !vligmtion is the average time it takes to migrate 

a thread with a stack of size m (second set of tests). Overhead is simply the difference 

between Communication and Migration. The times are all in milliseconds. 

Size (m) Communication Migration Overhead 
16K 4.1 7.6 3.5 
32K 8.2 12.2 4.0 
64K 14.3 18.4 4.1 
128K 25.7 30.5 4.8 
256K 49.8 54.1 4.3 

Table 7.2: Thread migmtion time (in ms) with varying sized stacks 

Since the migration takes place in several steps, we tried to account for this overhead. 

~Iigration is accomplished with four messages being sent to the destination processor. These 

messages are: an integer indicating the size of the thread's stack, the underlj;ng thread 

packages thread control block (TCBL Chant's TCB, and the thread's stack. The underl);ng 

TCB has a size of 72 bytes while Chant's TCB has a size of 4400 bytes. The size of the Chant 

TCB is dependent upon the maximum number of processors used in the application and 

the ma.ximum number of message tags that can be used for message passing, whose values 

were 8 and 100 respectively, for these experiments. These first three messages together take 

approximately 3.0 ms to send. 

These numbers show that other than communication overhead, which cannot be avoided, 

there is very little overhead associated with the thread migration. The small additional 

overhead (ranging from 0.5 ms to 1.8 ms) can be attributed to table traversal for updating 
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pointers and a list traversal for reposting pending receive operations. This is a small price 

to pay for supporting pointers and communication for migratable threads. 

3.2 Message Forwarding 

The previous section only studied thread transmission overhead and overhead incurred by 

the destination processor. This section presents the overhead associated with forwarding 

messages, i.e., the time it takes the source processor to forward messages to a migrant 

thread. These tests were run on 2, 4, and 8 processors, \V;th a varying number of messages 

needing to be forwarded. Each message that was forwarded was one kilobyte in size. 

Number of processors 
1\Iessages 2 4 8 

No messages 5.5 8.1 13.7 
1 message per proc 6.6 10.9 21.5 
2 message per proc 7.8 13.6 28.6 
3 message per proc 9.6 18.4 41.8 

per message +0.51 +0.64 +0.88 

Table 7.3: Forwarding overhead and per message time (in ms.) 

Table 7.3 shows the results of these tests, where the first row is the amount of time spent 

when there are no messages that need to be forwarded. This is overhead associated with the 

forwarding algorithm itself. These numbers increase with the number of processors since 

each processor must be handled separately. The next three rows show the total time needed 

to forward all messages with 1, 2, and 3 messages per processor, respectively. The total 
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number of messages forwarded is equal to the number of messages per processor multiplied 

by the number of processors. The final row indicates the average time per message for 

forwarding. The average amount of time it takes to forward a message increases with the 

number of processors. This is due to the fact that the .MPI implementation we used takes 

longer to retrieve messages from the system buffer when there are more processors. 

These times only reflect the extra time spent by the source processors. They do not 

take into account any effects of increased network contention or increased work on other 

processors. Still, these numbers show acceptable overhead associated with the forwarding 

algorithm. and low overhead associated with the actual forwarding of the messages. 

4 Test Applications 

This section presents the overall execution times for our set of test applications. Each 

application has four versions: 

• A sequential, non-threaded version 

• An r..-IPI based, parallel, non-threaded version 

• A parallel, multi-threaded version, with no load balancing 

• A parallel, multi-threaded version, with load balancing 
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4.1 Traveling Salesman Problem (TSP) 

The first application is a traveling salesman problem. Since we are only interested in how 

well our load balancing layer performs, we used a very naive algorithm. unconcerned with 

the relative performance of the algorithm. We tested the algorithm on three sets of data, 

or graphs. each consisting of 17 cities. The first graph produces a perfectly balanced search 

tree. allowing us to study the overhead associated both with multi-threading, and with load 

balancing. The second graph produces a search tree that only searches a single branch 

of the tree. This causes the computation to be as unbalanced as possible. forcing all the 

computation to a single processor. This allows us tc demonstrate the speedup achievable 

by thread migration in a best case scenario. The final graph was randomly generated. This 

allows us to study the effectiveness of thread migration for load balancing in what might 

be an average case TSP. 

The multi-threaded version is set up such that the first 15 computation threads consider 

a path starting at city 0, with city 1 being the first city in the path. Each of these threads 

designates a different city as the second city in the path. The next 15 computation threads 

consider a path starting at city 0, with city 2 being the first city in the path. Each of these 

threads designates a different city as the second city in the path. This pattern continues 

for each of the 16 cities as the first city visited, for a total of 240 threads. These threads 

are spread evenly across the available processors. 
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Each of the computation threads, if allowed to, could run to completion. However, 

since we are attempting to perform dynamic load balancing, we must assure that there 

are opportunities to redistribute the load. This can only be done by the seroer thread. 

Thus we must perform a reasonable number of context switches. This requires making 

a decision regarding how often a context switch should be performed. The more often we 

switch threads, the more often we can attempt load balancing, and thus we can attain finer

grained load balancing. This may suggest that we switch threads following every iteration. 

However, each of these test cases performs tens of millions of iterations, and as noted 

earlier. context switches are expensive operations. Therefore, it would be unreasonable 

to switch threads following each iteration. \Ve must find a comfortable compromise. In 

these tests, we decided to switch threads every 10,000 iterations. This requires keeping a 

count of the number of iterations, and performing a comparison following each iteration, to 

determine if a context switch should be performed. This extra comparison adds additional 

overhead to the multi-threaded application. In fact, each comparison takes approximately 

0.55 microseconds to perform. This extra time must be taken into account when analyzing 

the performance of the multi-threaded code. 

The non-threaded parallel version is implemented such that each processor periodically 

checks to see if another processor has found a solution better than the previous best. This 

means, when a processor finds a solution better than a previous best, it broadcasts this 

solution to the other processors. \Ve use kfPLTest to check to see if a message has arrived. 

This can be an expensive operation, so once again we do not want to make this call following 
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every iteration. \Ve decided to check for a message every 10,000 iterations, introducing the 

same overhead to the parallel non-threaded implementation as we discussed for the multi

threaded version. 

Tables 7.4, 7.5. and 7.6 show the results for a 17 city traveling salesman problem. The 

first column shows the application, while the remaining columns show the running time in 

seconds for a single processor, two, four, and eight processors. Figures 7.1, 7.2, and 7.3 

show the same results in graphical format. The x-axis is the number of processors, while 

the left side y-axis is the execution time in seconds, and the right side y-axis is the parallel 

speedup, computed \Vith the sequential version as the base. 

Table 7.4 and Figure 7.1 show the results for a perfectly balanced search tree. This is a 

worst case scenario for load balancing due to the fact that there is no load imbalance, and 

therefore performance improvement is not available. This particular search tree performs 

about 25.4 million iterations for both the multi-threaded and non-threaded implementa

tions. with about 2660 context switches in the multi-threaded implementation. 

If we look at the sequential version vs. the ~!PI based non-threaded version on a single 

processor. we see that the MPI version runs slower than the sequential version. This is 

due to the additional overhead associated with the comparison operations discussed above. 

This overhead accounts for about 14 seconds with 25.4 million iterations. 
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Number of processors 
Implementation 1 2 4 8 

Sequential non-threaded 216.1 - - -
MPI based non-threaded 231.3 121.3 61.3 31.0 

Multi-threaded with no load balancing 241.0 120.8 60.4 31.5 
Multi-threaded with load balancing 241.7 120.9 61.0 32.6 

Table 7.4: Execution time (in sec) for perfectly balanced 17 city TSP 

Perfectly Balanced 17 City TSP 
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Figure 7.1: Execution time and speedup for perfectly balanced 17 city TSP 
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\Vhen we factor this into account, as well as the fact the even identical processors don't 

compute at precisely the same speed from execution to execution. we still see the .MPI based 

version running slower than we would hope. After considerable work try;ng to quantify the 

additional execution time, we have concluded that it is due to cache effects. \Ve suspect 

that parallelizing the code alters the memory access patterns in such a way as to introduce 

this additional overhead. This is supported by the fact that when we look at the times for 

4 and 8 processors, compared to the time on 2 processors, we see near optimal speedup. 

It is impossible to quantify these effects without the help of profiling tools, which were 

unavailable to us. 

\Vhen we compare the sequential time to the multi-threaded times. we must take into 

account that the multi-threaded code is paying the cost of the aforementioned comparison 

on a single processor, while the sequential code does not. This accounts for about 14 sec

onds of overhead. Additionally, the multi-threaded code must register and release pointers. 

Each iteration accounts for one register /release pair, though some iterations do multiple 

registrations while other iterations do no registration. According to our measurements, the 

registration/release costs contribute about 54 seconds to the overhead for these tests. 

Finally, we must take into account the fact that memory allocationfdeallocation is faster 

in Chant. However, using the benchmark presented in the previous chapter, we find that 

the multi-threaded version has less overhead than expected. This can be attributed to 

the fact that memory management can be affected greatly by various factors. Therefore, 
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we conclude that memory management in the non-threaded version is costlier than our 

estimate. 

\Vhen we study Figure 7.1, as should be expected, the multi-threaded version provides 

excellent speedup when we move to 2, 4, and 8 processors. Additionally, we see that very 

little overhead is introduced to the multi-threaded code when we enable load balancing. 

It is encouraging that enabling load balancing produces minimal overhead in an execution 

that offers no opportunities for load redistribution. 

Finally, we see that the parallel multi-threaded versions run in about the same time 

as the parallel non-threaded versions. This is surprising since we know there is certain 

overhead associated with multi-threading. However, this can be attributed to the fact that 

memory management times vary greatly under different circumstances. 

Table 7.5 and Figure 7.2 show the results for a radically unbalanced search tree. This is a 

best case scenario for load balancing due to the fact that the load is imbalanced to the point 

where all the computation is performed on a single processor. This particular search tree 

goes through about 34.6 million iterations for both the multi-threaded and non-threaded 

implementations, with about 3960 context switches in the multi-threaded implementation. 
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Number of processors 
Implementation 1 2 4 8 

Sequential non-threaded 296.9 - - -

MPI based non-threaded 317.2 317.1 317.3 317.2 
l\Iulti-threaded with no load balancing 327.6 326.2 324.2 326.8 

Multi-threaded with load balancing 328.4 171.8 95.6 65.3 

Table 7.5: Execution time (in sec) for completely unbalanced 17 city TSP 
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Figure 7.2: Execution time and speedup for completely unbalanced 17 city TSP 
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One of the first things we notice is that the non-threaded execution time jumps when 

we go from the sequential version to the .MPI based version running on a single processor. 

This can be attributed to the comparisons discussed earlier. These comparisons contribute 

approximately 19 seconds to the execution time. \Vhen this overhead is added to the 

sequential time, we see that the rvfPI based version on a single processor runs in about the 

same time as the sequential version. \Ve see no speedup when we go to multiple processors 

for the MPI based version. This is what we would expect since the load is imbalanced to 

the point that no speedup is available. 

Once again we see significant, yet reasonable, overhead associated \'.;th multi-threading. 

Again, however, we see that the overhead is less than what would be expected when using 

the benchmarks discussed earlier. This can, of course, again be attributed to the fact that 

the memory management overhead varies greatly from the artificial benchmarks discussed 

previously. 

\Vhen we do not enable load balancing in the multi-threaded code, we see no speedup. 

This is again due to the radical imbalance of the search tree, and is what would be expected. 

However, when we enable load balancing, we see significant speedup. \Ve do not see 

near optimal speedup for a couple of reasons. One reason is that there is inherent overhead 

involved with the thread migration, as discussed earlier. Another reason is that even though 

there are many threads that must perform a significant amount of computation, not all of 
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these threads perform the same amount of computation. Since the amount of work a 

thread must perform is unknown at startup, and the amount of computation remaining 

is unknown at runtime. we cannot perform ideal load redistributions. Instead. we simply 

randomly select threads to migrate. Though this method does not achieve optimal speedup, 

it performs significantly better than not using any load balancing technique. 

Table 7.6 and Figure 7.3 show the results for a randomly generated search tree. This 

represents an average case scenario for load balancing, since some branches will be pruned 

early while others will continue deep into the tree. 

In the examples discussed above, each implementation performed the same number 

of iterations. This is because those test cases were constructed for the sole purpose of 

being either balanced or unbalanced. For this reason, all branches of the search tree were 

either searched to a leaf, or pruned at the root. Therefore, if a new solution was found. 

it \Vas always equal to the best solution, and thus had no effect on any other parts of the 

computation. This means that it did not matter in what order the branches were searched. 

Once we move to the randomly generated cases, however, this situation changes. Since 

we are using a naive algorithm, which does a simple depth first search. the order in which 

the branches are searched can affect the amount of computation. This is due to the fact 

that a branch that may be searched late in the computation on a single processor may be 

searched much earlier in a parallel run. If this branch leads to a good solution, it may cause 
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Number of processors 
Implementation 1 2 4 8 

Sequential non-threaded 1332.4 - - -
MPI based non-threaded 1418.9 814.6 477.2 344.4 

.rviulti-threaded with no load balancing 1677.4 877.0 526.6 278.3 
l'viulti-threaded with load balancing 1678.4 847.4 449.6 243.3 

Table 1.6: Execution time (in sec) for randomly generated 17 city TSP 

Randomly Generated 17 City TSP 
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branches on other processors to be pruned earlier than they would have been otherwise. 

This would lead to fewer iterations. and thus less computation. It is important to point 

out however, that the opposite effect is equally as likely. That is, parallelizing the code is 

as likely to accelerate the finding of a good solution as it is to delay the finding of a good 

solution. in a relative sense. 

Let us illustrate this concept by assuming we have two different search trees. \Vith the 

first search tree. let's assume that the best solution can be found on the first branch of the 

second half of the tree. In a sequential search, this solution will not be found until after the 

first half of the tree has been searched, allowing pruning of the remainder of the tree. If 

we parallelize this for two processors, however, the second processor will find this solution 

immediately, and will send this result to processor 1. This will allow processor 1 to prune 

much of the first half of the tree. thus decreasing the amount of computation required. 

Now for the second tree. let's assume the best solution can be found on the last branch 

of the first half of the tree. In a sequential search this solution will be found in about the 

same amount of time as for the first tree, again allowing pruning of the second half of the 

tree. If we parallelize this for two processors, the first processor will not find this solution 

until it has searched the entire first half of the search tree, while the second processor is busy 

searching the second half of the search tree. Since the best solution is not found until the 

end of the search, there is no opportunity to prune the second half of the tree accordingly. 
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This results in the work being done by the second processor being wasted, and only minimal 

speedup may be achieved. 

This can also be seen in a multi-threaded approach on a single processor. Since there are 

many threads searching the same tree, better solutions may be found earlier than without 

multi-threading. Again, multi-threading is as likely to accelerate the finding of a good 

solution as it is to delay the finding of a good solution, in the same way as described above. 

Theoretically, there should be no increase in iterations for the multi-threaded code with 

additional processors. This is because the threads are searching the branches in the same 

relative order as for the single processor case. In practice, however, there should be a 

slight increase in iterations as we add processors. This is because of the latency involved 

in communicating new best solutions to other processors. That is, when a thread in the 

multi-processor case finds a new solution, it must communicate this new value to the other 

processors. The time during which this communication is taking place is used by the other 

processors to continue searching the tree. This causes them to search branches that need 

not be searched, simply because the new best solution is not yet known. 

Number of processors 
Implementation 1 2 4 8 
Non-threaded 144.9 160.2 (83.3) 162.0 (48.7) 164.8 (36.1) 

~Iulti-threaded with no load balancing 173.4 172.5 (89.2) 177.6 (54.0) 177.0 (29.1) 
!vlulti-threaded with load balancing 173.4 171.8 (87. 7) 183.7 (47.1) 179.8 (25.2) 

Table 7.7: Number of iterations for randomly generated 17 city TSP (in millions} 
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Table 7.7 shows the number of iterations required for the different executions. For the 

multi-processor executions, the second number is the number of iterations performed by the 

most heavily loaded processor. \Ve can see from the numbers that multi-threading the code 

causes additional workload for both the single processor and multi-processor examples. This 

should be taken into account when analyzing the performance. \Ve also see that the non

threaded code performs more total iterations when it is parallelized. This can be attributed 

to the effects discussed earlier. 

Looking back at Table 7.6 we see that the multi-threaded code takes significantly longer 

than the non-threaded code to complete on a single processor. This can be attributed to 

overhead associated with multi-threading, but most of the additional time is due to the fact 

that the multi-threaded code performs approximately 28 million additional iterations. As 

we discussed, there is always a chance that we v.ill see additional computation when we 

alter the order of the search. 

Table 7.7 also shows us that enabling load balancing for the multi-threaded case does 

in fact produce a balancing out of the load. In all three cases (2, 4, and 8 processors) we 

see that enabling load balancing causes the most heavily loaded processor to perform fewer 

iterations. This is what would be expected since we are migrating threads from the most 

heavily loaded processor. However, the fact that we achieve lower execution times with 

load balancing enabled suggests that the overhead associated with thread migration is low 

enough that the performance gains outweigh the costs. 
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Additionally, we see that enabling load balancing gives us improved performance over 

the non-threaded version for both 4 and 8 processors. This shows that the performance gains 

we achieve by load redistribution outweigh the costs associated with multi-threading. In 

fact. \Ve see a 29% improvement over the non-threaded case when we enable load balancing 

on 8 processors. 

4.2 Adaptive Quadrature 

The next application is an adaptive quadrature application using Simpson's algorithm. \Ve 

tested the algorithm on two different integration functions. The first function is 

f(x) = 1000 * sin(3000 * x) (1) 

where xis in radians. \Ve integrated using an epsilon of 10* 10-10 and an integration interval 

of [0, 1]. This function is a simple oscillating function that converges at the same rate within 

all integration intervals. This should allow for a perfectly balanced parallel execution. 
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Figure 7.4 shows a graph of Function 1 for the interval [0,0.1]. 

Figure 7.4: Function 1 on the interval {0, 0.1 j 

The second function we integrated was 

f(x) = sin(100 * x) + ((x/14) 100 * sin(3000 * x 2 ) (2) 

where xis in radians. \Ve integrated using an epsilon of 10 * w-·l and an integration interval 

of [0,16]. This is an oscillating function that is very flat on the left part of the integration 

interval. but which varies greatly as the value of x increases. This causes the integration to 

converge quickly when we are close to 0, and much more slowly as we approach 16. This 

allows for a very unbalanced parallel execution. 
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Figure 7.5 shows a graph of Function 2 for the interval [0,16]. 
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15.0 

The sequential version uses Simpson's algorithm in a straightforward manner. The 

roiPI based parallel non-threaded version divides the integration interval evenly across the 

available processors. Each processor will run to completion, with no interaction from other 

processors. Therefore, there is no interaction between processors, and there is no direct 

overhead associated with parallelizing the code. The multi-threaded version divides the 

integration interval evenly across the available processors. and then divides the sub-intervals 

evenly across the threads created on each processor. Each processor creates 64 threads for 

the multi-threaded version. 
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As in the traveling salesman problem, each of the computation threads, if allowed to, 

could run to completion. Again, since we are attempting to perform dynamic load balancing, 

we must assure that there are opportunities to redistribute the load. \Ve must, therefore, 

decide once again how often we should perform a context switch. For these tests we perform 

a context switch every 1000 iterations. 

Table 7.8 and Figure 7.6 show the results for integrating Function 1 across an interval 

of [0, 1]. As mentioned above, this function is a simple oscillating function that converges 

at the same rate over all areas of the integration interval. This allows for a very balanced 

parallel implementation, and there is little or no performance gain available from load 

balancing. 

\Ve can see from the table and graph that parallelizing the code introduces no additional 

overhead, which is what was expected since there is no interaction between processors in 

the parallel implementation. Additionally, we see near optimal speedup from the parallel 

executions. Again, this is expected. since each processor has the same amount of work to 

perform, namely 1/p the amount of work as the sequential version, where pis the number 

of processors. 

\Vhen we turn our attention to the multi-threaded implementation, with load balancing 

disabled, we see a small amount of slowdown. This can be attributed to a small degree 

to the overhead associated with multi-threading. The majority of this slowdown. however, 
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Number of processors 
Implementation 1 2 4 8 

Sequential non-threaded 163.4 - - -
MPI based non-threaded 163.4 82.4 41.3 20.8 

1\Iulti-threaded with no load balancing 172.3 86.8 43.5 22.8 
Multi-threaded with load balancing 172.7 87.3 44.5 23.2 

Table 7.8: Execution time {in sec) for Simpson's algorithm integrating Function 1 
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Figure 7.6: Execution time and speedup for Simpson's Algorithm integrating Function 1 
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can be attributed to the cost of the comparisons discussed above. After each iteration, the 

multi-threaded code checks a counter to see if it should perform a context switch. The time 

spent performing this comparison accounts for the majority of the overhead. \Ve again see 

near optimal speedup (relative to the single processor multi-threaded execution time) when 

we parallelize the multi-threaded execution. Again, this is as expected. 

\Vhen we study the times for the multi-threaded implementation with load balancing 

enabled. we see very little fluctuation from the times with load balancing disabled. The 

small difference in these times can be attributed to overhead associated with going through 

the load balancing phase when there is no redistribution needed. Since the computation is 

perfectly balanced, there is never an attempt to migrate threads, therefore execution times 

should be consistent regardless of if load balancing is enabled or disabled. 

Table 7.9 and Figure 7.7 show the results for integrating Function 2 across an interval 

of [0. 16]. As mentioned above, this function is an oscillating function that is very flat in 

the lower end of the integration interval, and becomes much more pronounced as we move 

across said interval. This allows for a very unbalanced parallel implementation, with a great 

deal of speedup available from load balancing. 

The results show us once again that parallelizing the sequential code introduces little 

or no overhead, as the sequential, non-threaded code, runs in about the same time as 

the .1\:IPI based non-threaded code running on a single processor. Additionally, we see 
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Number of processors 
Implementation 1 2 4 8 

Sequential non-threaded 216.4 - - -
l\-IPI based non-threaded 216.5 216.5 216.5 213.5 

Multi-threaded with no load balancing 222.9 223.2 223.4 221.6 
Multi-threaded \Vith load balancing 222.9 126.6 80.2 50.3 

Table 7.9: Execution time (in sec) for Simpson's algorithm integrating function 2 
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Figure 7.7: Execution time and speedup for Simpson's Algorithm integrating Function 2 
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that parallelizing the non-threaded code achieves no speedup for up to 4 processors, and 

negligible speedup on 8 processors. This is due to the fact that the integration is extremely 

unbalanced running in parallel. 

\Vhen we study the execution times for the multi-threaded implementation with load 

balancing disabled, we again see a small amount of overhead associated with the comparison 

used to determine when a context switch should be performed. Other than this overhead, 

the multi-threaded version performs in much the same way as the non-threaded version, 

with no speedup for up to 4 processors and negligible speedup for 8 processors. 

\Vhen we enable load balancing in the multi-threaded executions, however, we see signif

icant speedup. This is due to the fact that most of the processors finish integrating across 

their sub-interval almost immediately, and then ask for additional work from processors 

that are still busy. The executions do not approach optimal speedup due to the overhead 

associated with migrating the threads. The overloaded processors lose some processing time 

to perform the migration, while the under-loaded processors are idle while they wait for new 

threads to arrive. Additionally, since we cannot predict when a thread will converge, all 

threads have the same load associated v.rith them, with no estimation of how much work 

remains. This causes instances where a thread is migrated though it is about to converge. 

This is not advantageous since more time is spent migrating the thread than would have 

been required for the thread to terminate on its own. However, the costs associated with 

thread migration are far outweighed by the gains attained by load redistribution. 
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4.3 Volume Rendering 

The final application is a volume renderer using a real life set of volume data. \Ve ran 

two sets of tests, each using different opacity maps. The opacity maps determine how 

transparent or opaque the image is. The first set of tests were ran with an opacity map 

that made the image almost completely transparent. This allows aU of the rays to traverse 

the entire volume, making for a very balanced parallel execution. The second set of tests 

used an average opacity map. which allows for some of the rays to terminate more quickly 

that others. This can lead to a load imbalance. 

There are two issues that should be discussed before we look into the execution times. 

The first issue has to do with cache effects. The chosen algorithm uses a large amount of 

volume data for the rendering stage. This volume data does not fit into cache. The parallel 

execution breaks this volume up among the available processors, affecting the cache locality. 

This causes the code to run faster in parallel. This means that for a very balanced rendering, 

we can expect super linear speedup. Additionally, if a parallel execution shows excellent 

speedup, we must account for the cache effect. That is, a very unbalanced rendering \Vill 

show speedup as if it were fairly balanced. 

This also affects the multi-threaded implementation. Since each thread has a smaller 

set of volume data, threads have better cache locality. This means that a multi-threaded 

version may run faster on a single processor than the sequential version. 
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The second issue involves the way the executions are parallelized. \Ve used an existing 

algorithm that simply divides the volume evenly among the processors. Each processor then 

renders a sub-image based upon this sub-volume. It does this by calculating the part of the 

image space that is involved \\-ith its assigned sub-volume, and tracing each pbcel v.ithin 

this image space. This is done with no knowledge of the rest of the volume data. This can 

affect the rendering times by causing rays to be traced in the parallel version beyond the 

point where they terminate in the sequential version. This causes more actual computation 

to be performed in the parallel execution. \Ve will attempt to explain this better using a 

couple of figures. 

c-------- --·-·---- -----·--·--·-----------------~ 

Figure 7.8: Volume rendering on a single processor 

Figure 7.8 represents a volume being rendered on a single processor. This shows what 

happens with a ray tracing a single pixel within the image. Using the opacity map, there 

may come a point during the trace where the pixel becomes completely opaque. Nothing 

beyond this point in the volume will affect the final image, and thus the trace can be 

terminated. The point at which a ray terminates varies from pixel to pLxel, with some 
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tracing through the entire volume, and others tracing only a short distance. In the example 

shown in Figure 7.8, the point at which the trace is terminated falls just past the halfway 

point into the volume. 

-·---- ~-------··-----~--------·-----·-----·---~ 

------·-- ------ ------------------------~ 

A 

8 

Figure 7.9: \t'olume rendering on two processor 

Figure 7.9 represents the same rendering being performed on two processors. In this 

example, the volume is divided along the x-a."Cis, with one processor rendering based on 

sub-volume A, and the other processor rendering based on sub-volume B. In this situation, 

the processor rendering sub-volume A has no knowledge of what is happening with sub

volume B. This means that it cannot use the opacity attained by the processor rendering 

sub-volume Bin its decision on when to terminate tracing the ray. In this example, each 

processor traces the ray through its entire sub-volume. This is the equivalent amount of 

\vork as would have been done if the single processor case had traced the ray through the 

entire volume, which was not the case as stated above. In fact, since we stated that the 
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single processor case terminated the trace just past the halfway point into the volume. the 

two processor case performs almost twice the amount of work. 

This problem is exacerbated by multi-threading. Even when running on a single proces

sor. multi-threading divides the volume into sub-volumes. with each thread being responsible 

for rendering based upon only its sub-volume. This causes the multi-threaded version to 

sometimes trace a ray through portions of the volume that are unnecessary. in the same 

way as multi-processing does. Additionally, when multi-threading on multiple processors, 

portions of rays are traced that need not be traced in the non-threaded multi-processor 

version. 

These issues are orthogonal in that they have opposite effects. The cache effect tends to 

improve performance both when multi-threading and when running on multiple processors. 

Conversely, the opacity issue tends to increase the work being performed in both the multi

threaded and multiple processor cases. \Vhich issue affects the total execution time the 

most depends on the conditions. The higher the opacity of the image, the worse the multi

threaded and parallel executions are going to perform. The smaller the cache, the more 

the cache effect is going to improve performance by multi-threading and parallelizing the 

execution. 

Table 7.10 and Figure 7.10 show the results for the tests using the opacity map that 

made the image almost completely transparent. This not only makes for a very balanced 
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parallel execution, it eliminates the performance degradation associated with opacity. That 

is. each ray will trace through the entire volume, never being truncated early. This means 

the same amount of work is performed regardless of the number of processors used or the 

number of threads used. This leaves cache effect as the only issue affecting execution times. 

As we can see from the numbers for non-threaded executions, cache effect has a dramatic 

effect. producing super-linear speedup. Each time we increase the number of processors. we 

see greater cache effect. 

\Vhen we turn our attention to the multi-threaded numbers, we see better performance 

from the multi-threaded executions than we saw with the non-threaded executions. This 

is again due to cache effect. By breaking up the volume into smaller sub-volumes, the 

multi-threaded executions have better cache locality. and thus perform better. \Ve again 

see super-linear speedup in the multi-threaded case running on multiple processors. due to 

yet smaller sub-volumes. 

This makes it difficult to judge the overhead associated with multi-threading, as we could 

get the same results by changing the non-threaded version. \Ve therefore concentrate on 

the overhead associated with enabling load balancing. \Vhat we see is a slight performance 

hit when load balancing is enabled. This will be further explained below. 

Table 7.11 and Figure 7.10 show the execution times for rendering the same volume, 

but using an opacity map that represents a more average case situation. By looking at the 
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Number of processors 
Implementation 1 2 4 8 

Sequential non-threaded 308.0 - - -

:r..IPI based non-threaded 308.0 144.6 68.1 33.9 
:r..Iulti-threaded with no load balancing 258.4 128.5 63.1 31.7 

Multi-threaded with load balancing 258.3 129.7 64.6 33.4 

Table 7.10: Execution time {in seconds) for volume rendering (Opacity map A) 
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Figure 7.10: Execution time and speedup for volume rendering (Opacity map A) 

158 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHA.PTER 7. PERFOR_A,fANCE 159 

execution times for the non-threaded case. we see very good speedup. This may lead us 

to believe that the load is fairly balanced across the processors. However. as we discussed 

above, the cache effects should cause super-linear speedup for a balanced load distribution. 

In this example, the performance degradation associated with opacity outweighs the benefits 

achieved from better cache locality. This can be seen clearly when we compare the sequential 

time to the execution time for the multi-threaded implementation on a single processor. 

The fact is. this example does not have a good load balance. and significant performance 

improvement should be available via load balancing. 

\Vhen we compare the numbers for the non-threaded parallel version with the multi

threaded version with load balancing disabled, we see the multi-threaded version has longer 

execution times. This is due to the fact that the multi-threaded version has significantly 

more \vork to perform, as discussed above. This shows that the performance gains achieved 

by better cache locality are far outweighed by the increased work required due to the opacity 

effect. 

It is important to point out that this is a product of the parallel algorithm, and not a 

shortcoming of multi-threading. Since the algorithm itself will not scale well in terms of the 

number of processors, it does not perform well in a multi-threaded environment. 

In this case, it is difficult to evaluate the efficiency of multi-threading. However, we can 

still study the effects of enabling load balancing. \Ve see from this comparison. that modest 
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Number of processors 
Implementation 1 2 4 8 

Sequential non-threaded 364.3 - - -
.l\,IPI based non-threaded 364.3 185.0 115.9 62.3 

l\Iulti-threaded with no load balancing 402.2 221.8 117.5 69.0 
Multi-threaded with load balancing 402.8 216.1 109.5 58.0 

Table 7.11: Execution time (in seconds) for volume rendering (Opacity map B) 
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performance gain can be achieved from enabling load balancing. However, studying the 

results led us to believe that there was a small amount of necessary overhead. The way the 

load balancing is being done in this example, all threads have the same load attributed to 

them throughout their life. This was similar to the previous examples where there was no 

good way to estimate how much computation was left for a thread. 

The issue is that some threads that are very nearly done with their work may be 

migrated. The problem is, often these threads need less time to complete their computation 

than it takes to migrate them to another processor. This means that once the entire 

computation is nearly finished, we have threads migrating between processors when it would 

be faster for them to simply complete their computation. This accounts for the slight 

performance degradation we saw when enabling migration for opacity map .4 (Table 7.10). 

In these volume rendering examples, however, we can estimate the amount of work 

remaining by the number of rows left to be scanned. The algorithm works by computing 

a sub-space of the image field for the final image. That is, it computes which parts of the 

final image will be affected by each sub-volume. It then scans each row of pixels within this 

sub-image. Thus, we know how many pbcels remain that need to be traced. \Ve used this 

information and set a thread's load to be equal to the number of rows it must scan. \Ve 

then decrement the thread's load after each row has been scanned. This allows us to alter 

the load balancing policy to never migrate a thread with a load less than some value. \Ve 
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re-ran our multi-threaded executions with this new load balancing policy setting it up to 

never migrate a thread \\<ith a load of less than 5. 

Number of processors 
Opacity Map 2 4 8 

A 128.4( 129. 7) 63.1(64.6) 31.8(33.4) 
8 213. 7(216.1) 108.6( 109.5) 57.1(58.0) 

Table 7.12: Execution time (in seconds) for multi-threaded volume rendering 

Table 7.12 shows the execution times for the multi-threaded implementation with load 

balancing enabled and load for threads taken into account. The numbers in parentheses are 

the numbers for the old load balancing policy, taken from Tables 7.10 and 7.11. 

\Ve see from this table that this new load balancing policy slightly improves the exe-

cution times. In fact, if we look back to Table 7.10, we see that the execution times with 

this new load balancing policy are about identical to the times we saw with load balancing 

disabled. This suggests that there is no performance gain available for executions using 

opacity map .4. This is what we would expect since it is nearly perfectly balanced. It also 

suggests that, though the performance gains are minimal, performance can be affected by 

the load balancing policy in use. 

This chapter has presented the overhead associated with multi-threading as well as the 

overhead associated with thread migration. Furthermore, it has presented performance 

results for a number of test applications under varying conditions. These test were run 

sequentially, in parallel, and multi-threaded with and without load balancing. 
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Conclusions 

This dissertation can generally be divided into two parts. The first part is the design and 

implementation of a distributed light-weight threads system that supports point-to-point 

communication. The second part is the design and implementation of a thread migration 

mechanism, and the use of said mechanism for the purpose of dynamic load balancing. 

This chapter explores what we have learned through both of these phases of work. \Ve 

offer our conclusions regarding the effectiveness of using threads in a distributed memory 

environment, and our conclusions regarding the use of thread migration as a mechanism for 

dynamic load balancing. Finally, we discuss what we feel are the contributions of this work, 

and future work that may be pursued in the area of thread migration and load balancing. 
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1 Distributed Light-weight Threads 

When we first started the work that led to this dissertation. the use of light-weight threads 

wa.s just emerging as a model for parallel computation. However, this use was limited to 

shared-memory multi-processing. We noticed the lack of research on the use of light-weight 

threads by the distributed memory, multi-processing community, and decided it would be 

a worthwhile undertaking. Since that time, the use of light-weight threads in a distributed 

memory environment has received increased interest. In fact, some significant developments 

have come out of this interest. Today there are a number of packages that support this 

programming model. 

However. these packages tend to be focused on specific problems. None of these existing 

packages support the wide range of programming models for which Chant is targeted. 

I\Ioreover, since they are geared towards specific problems. they do not offer the generic 

solution provided through Chant. 

\Ve have created a light-weight threads package that runs in a distributed memory en

vironment while supporting a wide range of functionality. This package supports remote 

thread operations, point-to-point communication, remote service requests, collective oper

ations, and relative indexing. Chant also supports explicit message passing, explicit data 

sharing, or a combination of the two! as its programming model. 
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\Ve have shown in Chapter 4. Section 4, that Chant introduces minimal overhead in the 

test cases studied. The majority of the overhead can be attributed to effects of supporting 

thread migration and load balancing. Thus we have shown that the base case of Chant 

(without migration support) is an efficient means for distributed memory multi-processing. 

\Ve have, therefore, demonstrated that light-weight threads running in a distributed memory 

environment is a viable programming modeL even when the threads package supports such 

a wide range of functionality. 

2 Thread Migration and Load Balancing 

Light-weight thread migration has received increased attention in recent years. However, 

the few packages that have actually been implemented have serious limitations. These 

limitations include, but are not limited to, redundant memory allocation, poor support for 

user-level pointers, and unacceptably high costs for accessing heap data. 

Chant supports thread migration in a way that is unique. Chant is implemented totally 

as a runtime system, requiring no compiler support. Additionally, Chant performs migration 

in a manner that maintains all user-level pointers, at the cost of user registration of all 

pointers, and provides for continued point-to-point communication capabilities between 

migrant threads. Furthermore, Chant accomplishes this in a way that keeps overhead at a 

manageable level. 
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\Ve have shown that the time it takes to migrate a thread across processor boundaries 

is linearly proportional to the size of the thread's stack and private heap, and that the 

additional overhead is within an acceptable range. This additional overhead includes the 

time it takes to forward messages, and the time necessary for registering and releasing 

pointers. 

The use of thread migration for the purpose of load balancing is mentioned in almost 

all papers on thread migration. However, very little work has been done to study the 

feasibility of this approach. While Chrisochoides has proposed the use of thread migration 

as a means for achieving load balancing in Parallel Adaptive PDEs [13], he has not yet 

finished a working implementation. In fact. the last we knew he was no longer working on 

this problem. 

The P1!2 [38, 42] project has published performance numbers for a single test case, 

a hand-written Gaussian elimination. While they show reasonable speedup for a very 

unbalanced distribution, they make no comparisons for relatively balanced distributions. 

Therefore we have no indication of the overhead associated with their implementation. Also, 

this is a very specialized package, only intended to be used for data parallel programming. 

The work on load balancing with Active Threads [29] is also inconclusive. For starters, 

this package runs on a cluster of SMPs, which is clearly different that the work described in 

this dissertation. More importantly, however, as discussed earlier (Chapter 3, Section 12) 
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the only performance numbers are based on starting the entire computation on a single 

Sl\IP, and then migrating threads to the other Sl\-!Ps within the cluster. This gives no 

indication of the effectiveness of this load balancing, since there is no static distribution 

across all the SMPs in the cluster against which to compare. 

\Ve have developed a load balancing system that is both simple and complex. That is, we 

have provided a default load balancing function that can be used with very little input from 

the user. At the same time, we have provided a complete load balancing API that allows a 

user to customize the load balancing layer, from simple changes, to complex changes. This 

provides a general purpose load balancing layer, which has been shown to perform well as 

is, but which can be manipulated to meet specific needs of individual applications. 

\Ve have tested this load balancing layer and arrived at three major conclusions. The 

first conclusion is that for executions that are already well-balanced across the available 

processors. our system adds minimal overhead. This is important, since for many applica

tions it is not known before the actual execution how much imbalance may be present. A 

system that adds significant overhead would not perform well for well-balanced executions. 

Secondly, we have seen that we can attain significant performance improvement for 

severely unbalanced executions. This performance improvement comes at a very low cost, 

due to the simple API we provide, which makes it easy for users to implement their code 

using our system. 
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Finally, we have seen that even for moderately unbalanced executions, we can achieve 

reasonable performance gain. This shows that the costs associated with thread migration, 

and with the decision making process of the load balancing layer. can easily be outweighed 

by the performance gained from the load redistribution. 

3 Analysis 

\Ve feel that we have made significant contributions to the distributed memory multi

processing community. \Ve have shown that multi-threading in a distributed memory 

environment can be useful, not only for ease of programming, but also for improved per

formance via thread migration. We have demonstrated that thread migration is a viable 

means of load redistribution and that significant performance gains can be attained. \Ve 

have shown this to be true for a variety of applications, including branch and bound (TSP). 

divide and conquer (adaptive quadrature), and irregular scientific computation (volume 

rendering). 

It is our belief that, as long as a technology is useful and or interesting, work on that 

topic is never finished. The same holds here. \Ve have shown that thread migration is 

both interesting and useful. For that reason, this is by no means a finished work. \Ve 

sincerely hope this research continues for many years to come, and that some day thread 
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migration is so efficient and well understood that it is a common means of performing load 

redistribution. 

\Vith that in mind, it would be negligent of us not to point out some of the areas of this 

work that require further investigation. One of these areas is in message forwarding. \Vhile 

the current implementation performs reasonably well. we believe significant improvements 

are possible. There may indeed be a better way of both keeping track of messages as well 

ensuring that they arrive on the same processor as the target thread. This would be much 

easier if we were not interested in true point-to-point message passing, but we truly believe 

that point-to-point message passing is important, and the task is that much more difficult. 

Another area that can use some more work is in keeping track of pointers. The current 

implementation works extremely well when there is not a lot of dynamic memory allocation 

and deallocation, but for problems like the Traveling Salesman Problem. significant time 

is spent in the register-release functions. An alternative would be indirect access to heap 

data. but for many applications this adds too much overhead. Therefore, other alternatives 

must be studied. 

Finally, there is the issue of preemptive vs. non-preemptive threads. The current im

plementation uses a non-preemptive threads package. This means threads only block when 

the user explicitly yields the processor, or the runtime system blocks a thread for things 

such as message passing. This causes load balancing to be much coarser-grained than we 
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would like. The use of preemptive threads would allow for much finer-grained load balanc

ing, which would make this system attractive to a wider range of applications. However, 

converting Chant to a preemptive threads system would be a major undertaking. This is 

because there were many assumptions made during the implementation that would not hold 

for a preemptive package. Still. a preemptive package may offer significant advantages and 

this is definitely worth investigating. 

These are only some of the areas that may offer future challenges. There surely are 

many other ares of interest for thread migration. As multi-processing research continues 

and processing speeds continue to increase, we must explore software techniques in an 

attempt to exploit new hardware technologies as the become available. Thread migration 

is one of these software techniques, and deserves continuing attention. 
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Appendix A 

Load Balancing API 

This appendbc provides a summary of the load balancing layer of the Chant run-time system, 

as described in Chapter 6. 

1 Lower Level Load Balancing Routines 

The routines in the lower sub-layer of the load balancing layer (see Figure 6.1) are described 

in the following Subsection. 
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1.1 Control 

The following routines are used to control the way load balancing works in a particular 

execution. 

reg_lb_funetion (June_t June) 

This function registers the user defined load balancing function June. which will be 

called by the system when load balancing is to be performed. If this function is not 

called, the default load balancing mechanism will be used. 

reg_get_globaLredistribution (June_t June} 

This function registers the user defined function June, which can be called by the 

system or any user supplied function in place of the default implementation of the 

get_globaLredistribution routine, as described later in this appendLx. If this function 

is not called, the default implementation of get_globaLredistribution will be used. 

reg_geUoeaLredistribution (June_t June) 

This function registers the user defined function June, which can be called by the 

system or any user supplied function in place of the default implementation of the 

get_loeaLredistribution routine, as described later in this appendLx. If this function is 

not called, the default implementation of geLlocaLredistribution will be used. 
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reg_get_requesUist (func_t June) 

This function registers the user defined function June, which can be called by the 

system or any user supplied function in place of the default implementation of the 

get_requesUist routine, as described later in this appendi.x. If this function is not 

called. the default implementation of get_requesUist will be used. 

reg_get_thread_redistribution (func_t June) 

This function registers the user defined function June. which can be called by the 

system or any user supplied function in place of the default implementation of the 

get_thread_redistribution routine, as described later in this appendi.x. If this function 

is not called, the default implementation of get_thread_redistribution will be used. 

reg_get_spec_redistribution (func_t June) 

This function registers the user defined function June. which can be called by the 

system or any user supplied function in place of the default implementation of the 

geLspec_redistribution routine, as described later in this appendi.x. If this function is 

not called, the default implementation of get_spec_redistribution will be used. 

begin_load_balancing (int upper, int Lower, freq_t frequency) 

This function enables load balancing. upper, lower, and frequency are all input param

eters, where upper indicates the upper threshold, Lower is the lower threshold used 
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by either the default or user supplied load balancing routines. and frequency indi

cates the frequency of load balancing attempts. These values are used as described in 

Chapter 6. Section 1.1. 

end_Load_balancing () 

This function disables load balancing. 

define_neighborhood (int num, int *procs) 

This function defines the load balancing domain as described in Chapter 6. Section 1.1. 

Both num and procs are input parameters, where num is the number of processors 

in the load balancing domain, and procs is an array specif}ing the processors in the 

domain. 

get_neighborhood {int *num, int *procs) 

This function retrieves the current load balancing domain of the calling processor. 

Both num and procs are out parameters. On return, num is the number of processors 

in the load balancing domain, and procs is an array of length num specif}ing the 

processors in the domain. 

1.2 Thread Characteristics 

The following routines are used to retrieve thread characteristics. 
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get_my_load () 

This function returns the current load of the calling thread. 

alter_load (int amt) 

This function changes the load of the calling thread by amt. 

get_thread_load (chanter_t t) 

This function returns the load associated ·with the thread referred to by t. 

geUocaLthread_loads (int * loads) 

This function retrieves the loads associated with all the threads on the run queue. 

The function returns the number of threads on the run queue and loads is an array 

containing the loads of each thread on the run queue. 

get_my_migmtability (int *mig) 

This function returns, in mig, the migratability of the calling thread, as discussed in 

Chapter 6, Section 1.2. 

get_migratability {chanter_t t) 

This function returns the migratability, as discussed in Chapter 6, Section 1.2, of the 

thread referred to by t. 
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get_all_migratability (int* migs) 

This function returns, in the array migs, as discussed in Chapter 6. Section 1.2, 

the migratability of all the threads on the run queue. Upon return. migs{if is the 

migratability of the ith thread on the run queue. 

seLmigratability (int mig) 

This function sets the migratability, as discussed m Chapter 6, Section 1.2, of the 

calling thread to mig. 

get_thread_total_comms (int *sends} 

This function sums up the total number of messages sent from each thread on the run 

queue. Upon return, sends{ij is the total number of messages sent by the thread in 

the ith position on the run queue. 

geLthread_comms_proc (int proc, int sends[/) 

This function returns, in the array sends, the number of messages sent from each 

thread on the run queue to processor proc. Upon return, sends{ij is the number of 

messages sent from the ith thread on the run queue to processor proc. 

get_thread_comms (int flag, int *sends{/) 

This function returns, in the array of pointers sends, the number of messages sent from 

each thread on the run queue to each processor in either the load balancing domain 

(flag= D0!\-1) or the application (flag= ALL). If flag is ALL, upon return, sends(ij{jf 

is the number of messages sent from the ith thread on the run queue to processor j. 
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If flag is DO.M. upon return, sends{if{jj is the number of messages sent from the ith 

thread on the run queue to the jth processor in the load balancing domain. sends{Oj{jj 

are unused slots in the array. 

get_spec_thread_comms {chanter_t t, int* comm) 

This function returns. in array comm, the number of messages sent by thread t to 

each processor. 

1.3 State Information 

This section discusses routines used for gathering global state information. 

geUocaUoad () 

This function returns the load of the local processor 

get_total_comms {int flag, int *sends) 

This function returns, in the array sends. the communication history of the local 

processor. If flag equals DOM, it returns the number of messages sent to each processor 

in the load balancing domain. If flag equals ALL, it returns the number of messages 

sent to each processor in the entire computation. 
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get_remote_loads {int flag, int* loads) 

This function returns, in the array loads, the load of processors within the computa

tion. If flag equals DO!vl, it returns the load of each processor in the load balancing 

domain. If flag equals ALL, it returns the load of each processor in the entire com

putation. 

get_remote_comms (int flag, int* sends{]) 

This function returns, in the array sends, the communication histories of the processors 

within the computation. If flag equals DO!vl, it returns the communication histories 

of each processor in the load balancing domain. If flag equals .4LL, it returns the 

communication histories of each processor in the entire computation. 

1.4 Queue Manipulation 

get_num_runq_threads () 

This function returns the number of threads on the local run queue. 

get_first_thread () 

This function removes the first thread from the run queue, and returns a pointer to 

the Chant thread. 
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get_thread (int i) 

This function removes the ith thread from the run queue. and returns a pointer to the 

Chant thread. If i is 0, it returns nil. If i is greater than the number of threads on the 

run queue, this function will wrap around the run queue and remove the appropriate 

thread. Upon return. the thread that had been in the i + 1st position on the run 

queue will be at the head of the run queue. with all previous threads in the same 

order, but at the end of the run queue. 

put_thread (chanter_t t) 

This function puts the thread referenced by t on the end of the run queue. 

1.5 System Manipulation 

synch_for_load_balancing () 

This routine synchronizes all the processors that are part of the calling processor's 

load balancing domain. 

release_synch () 

This routine releases the processors that were synchronized with a corresponding call 

to the function synch_for_load_balancing(}. Calling this routine without a correspond

ing synchronization is erroneous, and the results are undefined. 
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2 Load Balancing Directives 

180 

These routines are used to determine load redistributions that should be carried out (de

cision making routines), and to actually carry out the load redistributions (redistribution 

routines). 

2.1 Decision Making Routines 

ret[][] get_globaLredistribution (int flag, int *loads) 

This routine takes as input the load of each processor either in the calling processor's 

load balancing domain (flag= DO.M), or the entire computation (flag= ALL). It uses 

this input to determine how much work each processor should move where. It returns 

a two-dimensional array, ret, where ret[i,j} indicates that processor i should move 

r-et[i,j} work to processor j. i and j are processor ids relative to the entire computation 

(flag= ALL) or relative to the load balancing domain (flag= DOM). 

The default implementation attempts to redistribute the work evenly, as described in 

Chapter 6, Section 2. 

get_locaLredistribution (int flag, int *procs, int *remote_[oads) 

This routine is called by an overloaded processor and is used to determine how much 

work should be sent to each processor in the computation (flag= ALL) or in the calling 

processor's load balancing domain (flag= DOM). remote_loads is an input array that 
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provides the loads associated with the processors in the entire computation (flag = 

ALL) or in the load balancing domain flag= DO!v[). Upon return, procs contains the 

amount of work that should be moved to each participating processor. This array 

would be used as input to geUhread_redistribution as described below. 

The default implementation selects the least loaded processor from remote_loads and 

indicates that half the calling processor's work should be moved to that processor. 

get_requesUist (int flag, int *Loads, int *remote_Loads) 

This routine is called by an under-loaded processor and is used to determine how 

much work should be requested from each processor in the computation (flag= ALL) 

or in the calling processor's load balancing domain (flag = DOlv[). remote_loads is 

an input array that provides the loads associated with the processors in the entire 

computation (flag= ALL) or in the load balancing domain flag= DOM). Upon return, 

procs contains the amount of work that should be requested from each participating 

processor. 

The default implementation selects the most heavily loaded processor, and indicates 

that half that processor's work should be moved to the calling processor. 

get_thread_redistribution (int *num, int *threads, int *procs, int *loads) 

This routine determines which threads from the calling processor are to be migrated to 

which processors in the load balancing domain of the calling processor (flag= DOM) 

or to which processors in the entire computation (flag= ALL). loads is an input array 
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that states loads{ij work should be migrated to processor i (flag = ALL) or the ith 

processor in the load balancing domain (flag= DOkf). Upon return. num contains the 

number of threads that must be migrated, threads is an array in increasing order that 

holds the displacement from the front of the run queue of the threads that must be 

migrated. and procs is an array indicating the processors to which the threads should 

be migrated. 

The default implementation traverses the run queue, selecting migratable threads to 

be migrated to the destination processors. It selects threads for the first destina

tion processor until enough work has been selected to satisfy that request and then 

continues with the remaining destination processors. 

get_spec_redistribution (int *num, int *threads, int proc, int load) 

This routine determines which threads from the calling processor are to be migrated 

to a specific processor. The input parameter load indicates ho\\' much work should be 

moved to specific processor proc. Upon return, num contains the number of threads 

that must be migrated, and threads is an array in increasing order that indicates the 

displacement from the front of the run queue of the threads that must be migrated. 

The default implementation traverses the run queue, selecting migratable threads to 

migrate until enough load hru5 been selected to satisfy the request. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

A.PPENDIX A. LOAD BALANCING API 183 

2.2 Redistribution Routines 

redistribute (int proc, int* loads) 

This routine instructs a remote processor to migrate work to the other processors 

in the computation. loads is an input array that indicates the amount of work proc 

should move to each processor in the computation. 

Upon return there is no guarantee that the migrations have been completed. This 

routine is not used by the default load balancing system and is provided solely for use 

in customized implementations. Care should be taken with its use. 

send_work (int num, int *threads, int proc) 

This routine instructs the calling processor to migrate num threads to processor proc. 

threads is an array in increasing order, indicating the displacement from the front of 

the run queue of the threads that are to be migrated. 

Upon return, all indicated threads have been migrated. 

scatter_work (int num, int *threads, int *procs) 

This routine instructs the calling processor to migrate num threads to the processors 

indicated by procs. threads is an array in increasing order, indicating the displacement 

from the front of the run queue of the threads that are to be migrated. The thread 

at displacement threads(i] is to be migrated to processor procs{i]. 

Upon return, all indicated threads have been migrated. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

A.PPENDIX A. LOAD BALANCING A.PI 184 

get_work (int proc, int load) 

This routine requests that load amount of work be migrated from processor proc to 

the calling processor. 

Upon return. any migration to be performed has been completed. 

gather_work {int *loads) 

This routine requests work from remote processors. loads is an array indicating the 

amount of work to be requested from each processor in the computation. 

Upon return, any migration to be performed has been completed. 

migrate_threads (int num, chanter_t *t, int proc) 

This routine instructs the system to migrate num threads to processor proc. t is an 

array containing pointers to the actual threads to be migrated. The threads referenced 

by t should NOT reside on the run queue. That is, the threads referenced by t should 

have been previously removed from the run queue using the routines described in 

Chapter 6, Section 1.4. 

Upon return, all indicated threads have been migrated. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Bibliography 

[1] H.E. Bal, l\·LF. Kaashoek, and A.S. Tanenbaum. Orca: A language for parallel 
programming of distributed systems. IEEE Transactions on Software Engineering, 
18(3):190-205, March 1992. 

[2] John K. Bennett, John B. Carter, and \Villy Zwaenepoel. Adaptive software cache 
management for distributed shared memory architectures. In Proceedings of the 17th 
International Symposium on Computer .4rchitecture, pages 125-134, May 1990. 

[3] John K. Bennett, John B. Carter. and \Villy Zwaenpoel. Munin: Distributed shared 
memory based on type-specific memory coherence. In Proceedings of the Second ACM 
SIGPLAN Symposium on Principles and Practices of Parallel Programming (PPoPP), 
pages 168-176, March 1990. 

[4] Raoul Bhoedjang, Tim Riihl, Rutger Hofman, Koen Langendoen, Henri Bal, and Frans 
Kaashoek. Panda: A portable platform to support parallel programming languages. 
In Symposium on Experiences with Distributed and Multiprocessor Systems IV, pages 
213-226, San Diego, CA, September 1993. 

[5] Andrew D. Birrell. An introduction to programming ·with threads. Technical Re
port 35, Digital Equiptment Corporation, January 1989. 

[6] A. Black, N. Hutchinson. E. Jul. and H. Levy. Object structure in the Emerald sys
tem. In Proceedings of the .4CM Conference on Object-Oriented Programming Systems, 
Languages and Applications, pages 78-86, Portland, OR, October 1986. 

[7] A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and abstract 
types in Emerald. IEEE Transactions on Software Engineering, 13(1), January 1987. 

185 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 186 

[8] E.A. Brewer, C.N. Dellarocas, A. Colbrook, and \V.E. Weihl. Proteus: A high
performance parallel architecture simulator. Technical Report MIT /LCS/TR-516, 
.MIT, September 1991. 

[9] Jeremy Casas, Ravi Konuru, Steve W. Otto. Robert Prouty. and Jonathan Walpole. 
Adaptive load migration systems for PVM. In Proceedings of Supercomputing, pages 
390-399, \Vashington D.C., November 1994. ACM/IEEE. 

[10] K. Mani Chandy and Carl Kesselman. CC++: A declarative concurrent object oriented 
programming notation. In Research Directions in Object Oriented Programming. l\HT 
Press, 1993. 

[11] K. l\Iani Chandy and Carl Kesselman. Compositional C++: Compositional parallel 
programming. In Proceedings of the Fifth lntern.ational Workshop on Parallel Lan
guages and Compilers, 1993. 

[12] J.S. Chase, F.G. Amador, E.D. Lazowska, H.M. Levy. and R.J. Littlefield. The Amber 
system: Parallel programming on a network of multipocessors. In A C!vf Symposium 
on Operating System Principles, December 1989. 

[13] Nikos P. Chrisochoides. tvlultithreaded model for dynamic load balancing parallel adap
tive POE computations. Technical Report CTC95TR221, Cornell University, October 
1995. 

[14] Nikos P. Chrisochoides. 1\Iultithreadecl model for dynamic load balancing parallel adap
tive POE computations. Technical Report 95-83, Institute for Computer Applications 
in Science and Engineering, February 1996. 

[15] E.C. Cooper and R.P. Draves. C Threads. Technical Report C~IU-CS-88-154. Carnegie 
Mellon University, February 1988. 

[16] Intel Corporation. Paragon OSF /1 User's Guide. Beaverton, OR. April 1979. 

[17] Derek L. Eager, Edward D. Lazowska, and John Jahorjan. Adaptive load sharing in 
homogeneous distributed systems. IEEE Transactions on Software Engineering, May 
1986. 

[18] Bryan Ford, Mike Hibler, and Jay Lepreau. Notes on thread models in l\Iach 3.0. 
Technical Report UUCS-93-012, Department of Computer Science, University of Utal1, 
April 1993. 

[19] Bryan Ford and Jay Lepreau. Evolving Mach 3.0 to a migrating thread model. In 
Proceedings of the Winter 1994 USENIX Conference, January 1994. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 187 

[20] Message Passing Interface Forum. Document for a Standard IY!essage Passing Interface. 
version 1.1 edition, June 1994. http:/ jwww.mcs.anl.gov/mpi/. 

[21] Ian Foster, Carl Kesselman, Robert Olsen, and Steve Tuecke. Fortran M: A language 
for modular parallel programming. Journal of Parallel and Distributed Computing, 
25(1), February 1995. 

[22] Ian Foster, Carl Kesselman, Robert Olson, and Steven Tuecke. Nexus: An interoper
ability layer for parallel and distributed computer systems. Technical Report Version 
1.3, Argonne National Labs, December 1993. 

[23] Ian Foster, Carl Kesselman, and Steven Thecke. The Nexus approach to integrating 
multithreading and communication. Journal of Parallel and Distributed Computing. 
37:70-82. 1996. 

[24] R. J. Fowler. Decentralized object finding using forwarding addresses. Technical Re
port 85-12-1, University of Washington, December 1985. 

[25] A. Geist, A. Beguelin, and et. al. PVM: Parallel Virtual Machine - A User's Guide 
and Tutorial for Networked Parallel Computing. AC!v[ Press, 1994. 

[26] l\L Haines. On designing lightweight threads for substrate software. In Proceedings of 
the Annual Technical Conference on UNIX and Advanced Computing Systems, Ana
heim. California, January 1997. USENIX. 

[27] Matthew Haines, David Cronk, and Piyush Mehrotra. On the design of Chant: A 
talking threads package. In Proceedings of Supercomputing, pages 350-359, \Vashington 
D.C., November 1994. ACM/IEEE. 

[28] Matthew Haines, Piyush Mehrotra, and David Cronk. Ropes: Support for collective 
operations among distributed threads. Technical Report 95-36, Institute for Computer 
Applications in Science and Engineering, November 1994. 

[29] l\Iichael Holtkamp. Thread migration with Active Threads. Technical Report TR-97-
038. International Computer Science Institute, September 1997. 

[30] 'Wilson C Hsieh, Paul Wang, and \Villiam E \Veihl. Computation migration: Enhancing 
locality for distributed-memory parallel systems. In Symposium on Principles and 
Practice of Parallel Programming, 1993. 

[31] IEEE. Threads Extension for Portable Operating Systems (Draft 7), February 1992. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 188 

[32] Eric Jul, Henry Levy, Norman Hutchinson. and Andrew Black. Fine-grained mobility in 
the Emerald system. ACM Transactions on Computer Systems, 6(1):109-133, February 
1988. 

[33] Reinhard Luling and Burkhard 1\!onien. A dynamic distributed load balancing al
gorithm with provabale good performance. In Proceedings of ACM Symposium on 
Parallel Algorithms and .4rchitectures, 1993. 

[34] Reinhard Luling, Burkhard Monien, and F. Ramme. A study on dynamic load 
balancing algorithms. Technical Report TR-001-92. Paderborn Center for Parallel 
Computing, June 1992. 

[35] 1\Iamoru 1\Iaekawa. A ../N algorithm for mutual exclusion in decentralized systems. 
ACM Transactions on Computer Systems, 3(2):145-159, May 1985. 

[36] Edward Mascarenhas and Vernon Rego. Ariadne: Architecture of a portable thread 
system supporting mobile processes. Technical Report CSD-TR-95-017, Purdue Uni
versity, March 1995. 

[37] N. Melab. N. Devesa, M.P. Lecouffe, and B. Toursel. An adaptive load balancing 
algorithm with a multithreaded implementation. In Eleventh International Conference 
On Systems Engineering (JCSE'96), Las Vegas, Nevada, July 1996. 

[38] R. Namyst and J. F. Mehaut. PM2 : Parallel Multithreaded Machine. In Proceedings 
of Parco '95, Gent. Belgium, September 1995. 

[39] R.l\1. Needham. Distributed Sytems. ACM Press, 1989. 

[40] Shashank S. Nemawarkar and Guang R Gao. 1\Ieasurement and modeling of earth
manna multithreaded architecture. Technical Report ACAPS96, School of Computer 
Science, McGill University, July 1995. 

[41] Steve \V Otto. Processor virtualization and migration for PVM. In Proceedings of the 
Second Workshop on Environments and Tools for Parallel Scientific Computing, pages 
66-75, Townsend, TN, May 1994. SIAM. 

[42] C. Perez and R. Namyst. On the compilation of data-parallel languages on a distributed 
memory multithreaded environment with thread migration. Technical Report RR97-
20, IP, July 1997. 

[43] James Pinakis. Remote thread execution. In Proceedings of the 16th Australian Com
puter Science Conference, pages 489-500, Brisbane, Australia, February 1993. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 189 

[44] J. Sang, F. Knop. V. Rego, J.K. Lee, and C.T. King. The Xthreads Library: Design, 
implementation. and application. In Proceedings of the COlv!PSAC. 1993. 

[45] Janche Sang and Vernon Rego. Efficient implementation of thread migration on 
distributed memory multiprocessors. Technical Report CSD-TR-93-065, Purdue Uni
versity, October 1993. 

[46] Neelakantan Sundaresan and Linda Lee. An object-oriented thread model for parallel 
numerical applications. In Proceedings of the Second Annual Object-Oriented Numerics 
Conference, pages 291-308, Sunriver, OR, April 1994. 

[47] Dijkstra E. \V., Feijen \V. H. J., and Van Gasteren A. J. M. Derivation of a termination 
detection algorithm for distributed comnputations. Information Processing Letters. 
16:217-219, June 1983. 

[48] \V.E. Weihl. E. Brewer, A. Colbrook, C. Dellarocas, \V. Hsieh, A. Joseph, C. \Vald
spurger, and P. Wang. Prelude: A system for portable parallel software. Technical 
Report l\llT/LCS/TR-519, l\llT, October 1991. 

[49] C. Xu. R. Luling, B. Monien, and F .C.l\L Lau. An analytical comparison of nearest 
neighbours algorithms for load balancing in parallel computers. In Proceedings of the 
9th International Parallel Processing Symposium, 1995. 

[50] Honbo Zhou and AI Geist. Lpvm: A step towards multithread pvm. Journal of Parallel 
and Distributed Computing, July 1995. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

VITA 

David Charles Cronk 

Born in Poughkeepsie. New York. September 30, 1966. Graduated from Franklin Delano 

Roosevelt High School in Hyde Park, New York, June 1984. B.S., Mathematics, Hope 

College, 1988. M.S., Computer Science, l\Iarist College, 1992. 

In September 1993, the author entered the College of \Villiam and l\lary as a graduate 

student in Computer Science. The author worked as a student researcher at the Institute for 

Computer Applications in Science and Engineering from September 1993, through Septem

ber 1998. The author has been working as a Member Technical Staff at Lucent Technologies 

as part of the Inferno Operating System venture since October 1998. 


	Dynamic load balancing via thread migration
	Recommended Citation

	tmp.1539750766.pdf.Xou5w

