
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1999

Dynamic load balancing via thread migration Dynamic load balancing via thread migration

David Cronk
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Cronk, David, "Dynamic load balancing via thread migration" (1999). Dissertations, Theses, and Masters
Projects. Paper 1539623961.
https://dx.doi.org/doi:10.21220/s2-x794-ms26

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623961&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-x794-ms26
mailto:scholarworks@wm.edu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type d

computer printer.

The quality of this ntprocluctlon is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality iUustaations

and photographs, print bleedlhrough, substandard margins, and impropel

alignment can adversely affect raprocluction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a nota will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sec:tions with small overlaps.

Photographs induded in the original manuscript have been reproduced

xerographically in this copy. Higher quality e· x 9" black and white

photographic prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI diradly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DYNAMIC LOAD BALANCING VIA THREAD MIGRATION

A Dissertation

Presented to

The Faculty of the Department of Computer Science

The College of \Villiam and l\Iary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

David Cronk

1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9974942

UMf
UMI Microform9974942

Copyright 2000 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

Of the Requirements for the Degree of

Doctor of Philosophy

Approved, July 1999

w JJA 0V>-=-i:.
William Bynum --
~
r;;t~~
~··.

Vir

~;rL~
Sidey Lawrence

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 llitroduction

2 Background

1 Light-weight Threads.

L 1 Definitions

1.2

1.3

Light-weight Threads in a Distributed Environment

Thread Migration

2 Load Balancing

3 Load Balancing via Thread ~Iigration

3 Related Work

1 NEXUS

2

3

4

5

6

7

8

Panda .

2.1 Panda Interface .

2.2 System Interface

~Iach

Computation Migration

Emerald

5.1 System Design

5.2 Implementation .

Amber

Parallel Adaptive PDEs

PM2 •..........

8.1 Load Balancing in PM2

iv

2

7

8

8

10

13

15

20

23

24

25

26

28

28

30

30

32

34

36

38

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 Xthreads

10 Ariadne

11 UPVM.

12 Thread !\Iigration with Active Threads .

4 Chant

1 Thread Representation

2

3

4

Point-to-Point Communication

Remote Service Requests and Remote Thread Operations

Ropes and Data Parallelism

4.1 Requirements

4.2 Rope Servers

4.3 Relative Indexing .

4.4 Collective Operations

5 Thread Migration

1 Fundamental Design

2

3

4

5

Issues to be Addressed

Functional Requirements.

3.1

3.2

3.3

Pointers to Private Data .

Pointers to Shared Data

Pointer Manipulation

3.4 Handling Communication

Supporting Pointers

4.1

4.2

4.3

Auxiliary Data Structures

Au.xiliary User-level Functions

Updating Pointers

Handling Communication

5.1 .Maintaining the Location of Specific Threads

5.3

Forwarding l\Iessages .

Reposting Receives . .

v

41

43

44

46

48
-') ;:,_

52

56

58

60

60

61

63

67

68

69

73

74

75

76

77

80

82

88

88

89

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Load Balancing

1 Lower Level Load Balancing Routines

2

3

4

1.1

1.2

1.3

Set System Parameters

Thread Characteristics .

Global State Information

1.4 rvianipulating the System

Load Balancing Routines

The Load Balancing Function

Customizability

7 Performance

1 Overheads Associated with Multi-threading

2

3

Application Termination Detection

Thread Migration Performance.

3.1 Migration Times ..

3.2 Message Forwarding

Test Applications

4.1 Traveling Salesman Problem (TSP) .

4.2

4.3

Adaptive Quadrature

Volume Rendering

8 Conclusions

1 Distributed Light-weight Threads .

2 Thread r-.Iigration and Load Balancing

3 Analysis

A Load Balancing API

1 Lower Level Load Balancing Routines

1.1 Control

1.2

1.3

1.4

1.5

Thread Characteristics .

State Information

Queue Manipulation

System l\Ianipulation

vi

96

100

101

102

10i

108

111

119

120

123

124

126

127

128

130

131

132

145

153

163

164

165

168

171

171

172

174

177

178

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Load Balancing Directives

2.1 Decision l\Iaking Routines

2.2 Redistribution Routines .

Bibliography

vii

180

180

183

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

As I look back on the past few years and reflect on what it has taken for me to get
to this point in my life, I realize that this journey has been both challenging and
rewarding. As I look forward to continued challenges and future rewards I realize
that none of this would have been possible without the help and encouragement of
numerous people.

I wish to express my deepest gratitude to Piyush ~Iehrotra for not only being my
mentor. but also for being my friend. Piyush not only taught me how to conduct
research, but also how to work on my own and to strive for my goals. I have learned
many things from Piyush and \\ill remember those lessons forever. and I can only hope
that someday I can be fortunate enough to have the opportunity to return the favor
by having even half as much of an impact on someone else·s life. I would also like to
thank David Nicol for giving me a second chance at attending The College of \Villiam
and ~Iary and for securing my research position at ICASE. The research environment
at ICASE was very stimulating and I had the opportunity to work with many people
at the top of their fields. This experience was more valuable than anything I ever
learned in a class room.

Bill Bynum was a pleasure to have as an academic advisor and I thank him for his
patience, understanding, and willingness to accept me as an advisee in my unusual
circumstances. I also thank Drs. Phil Kearns, Virginia Torczon, and Sidney Lawrence
for agreeing to sit on my committee.

This work would still not have been possible without the help of many other colleagues
and friends. I thank Matt Haines for all the help he offered while we were colleagues
and also for his continued support after he left for a position at the University of
\Vyoming. Bryan Hess and Leon Clancy were tremendous and always willing to help
me with any of my technical problems. Kevin Roe was of invaluable service during
my time away from ICASE helping answer questions as well as performing tasks that
I was unable to perform from a distance. There are too many others to name, but I
am thankful for the help and encouragement I received from all the people with whom
I worked at ICASE.

I would like to say a special thank you to Jeanette Childress who has been my best
friend and has encouraged me through this entire process. She has been by my side
for many years and I could not have done this without her. Thank you Jeanette, you
are a truly special person.

This work was supported in part by the National Aeronautics and Space Adminis
tration under NASA Contract Nos. NASl-97046 and NASl-19480. while I was in
residence at !CASE, NASA Langley Research Center. Hampton VA. 23681.

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

7.1
-') '·-
7.3

7.4

7.5

7.6

Overheads associated with various thread operations . . .

Thread migration time (in ms) with varying si=ed stacks

Forwarding overhead and per message time (in ms.)

Execution time (in sec) for perfectly balanced 17 city TSP

Execution time (in sec) for completely unbalanced 17 city TSP

Execution time (in sec) for randomly generated 17 city TSP ..

125

129

130

135

138

141

7.7 Number of iterations for randomly generated 17 city TSP (in millions) 143

7.8 Execution time (in sec) for Simpson's algorithm integrating Function 1 149

7.9 Execution time (in sec) for Simpson's algorithm integrating function 2 151

7.10 Execution time (in seconds) for volume rendering (Opacity map .4.) 158

7.11 Execution time (in seconds) for volume rendering (Opacity map B) 160

7.12 Execution time (in seconds} for multi-threaded volume rendering . 162

Lx

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1

4.1

4.2

4.3

5.1
-?
~--

5.3

5.4

5.5

5.6

6.1

7.1

-?
(·-
7.3

7.4

7.5

7.6

7.7

7.8

A thread migrates from process p2 to process p1

Chant runtime layers and interfaces

One-dimensional array distributed among four threads in a rope

Data structure for local rope table

Examples of the four types of pointers

Example of the free-list for pt_table

Code for {a) registering and (b) releasing pointers .

Code for thread specific malloc

Steps taken to migrate a thread

Bouncing a message off the sender to the new location

Load Balancing sub-layers

14

49

59

62

79

81

81

82

93

97

Execution time and speedup for perfectly balanced 17 city TSP. 135

Execution time and speedup for completely unbalanced 17 city TSP 138

Execution time and speedup for randomly generated 17 city TSP 141

Function 1 on the interval (0, 0.1 j 146

Function 2 on the interval (0, 16/ 147

Execution time and speedup for Simpson's Algorithm integrating Func-
tion 1 . 149

Execution time and speedup for Simpson's Algorithm integrating Func-
tion 2 151

Folume rendering on a single processor. 154

7.9 Volume rendering on two processor . . . 155

7.10 Execution time and speedup for volume rendering (Opacity map A) 158

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.11 Execution time and speedup for volume rendering (Opacity map B) . . 160

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Light-weight threads are becoming increasingly useful for parallel processing. This is
particularly true for threads running in a distributed memory environment. Light
weight threads can be used to support latency hiding techniques. communication and
computation overlap, and functional parallelism. Additionally, dynamic migration
of light-weight threads supports both data locality and load balancing. Designing a
thread migration mechanism presents some unique and interesting challenges. One
such challenge is maintaining communication between mobile threads. A potentially
more difficult challenge involves maintaining the correctness of pointers within mobile
threads. Since traditional pointers have no concept of address space. mO\ing threads
from processor to processor has a strong impact on the use of pointers. Options
for dealing with pointers include restricting their use, adding a layer of software to
support pointers referencing non-local data, and binding data to threads such that
referenced data is always local to the thread.

This dissertation presents the design and implementation of Chant, an efficient light
weight threads package which runs in a distributed memory environment. Chant
was designed and implemented as a runtime system using !-.-!PI-like and Pthreads-like
calls. Chant supports point-to-point message passing between threads executing in
distributed address spaces. \Ve focus on the use of Chant as a framework to support
dynamic load balancing based on thread migration. \Ve explore many of the issues
that arise when designing and implementing a thread migration mechanism. as well
as the issues that arise when considering the use of thread migration as a means for
performing dynamic load balancing. This load balancing framework uses both system
state information, including communication history, and user input. One of the basic
functionalities of this load balancing framework is the ability of the user to customize
the load balancing to fit particular classes of problems. This dissertation provides
implementation details as well as discussion and justification of design choices. \Ve go
on to show that the overhead associated with our approach is within an acceptable
range, and that significant performance gains can be achieved through the use of
thread migration as a means of performing dynamic load balancing.

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DYNAMIC LOAD BALANCING VIA THREAD MIGRATION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Light-weight threads have become increasingly popular over the past several years.

This is particularly true for threads running in distributed memory environments (-1. 22.

27]. Uses of threads in distributed environments include. but are not limited to, providing

latency tolerance by overlapping communication and computation, and providing support

for dynamic load balancing. Dynamic load balancing involves determining the workload on

each processor at runtime and transferring work from one processor to another to overcome

a load imbalance. In a multi-threaded environment, this movement of work is referred

to as thread migration. where a thread from one processor is moved. or migrated, to a

remote processor. This dissertation describes the design and implementation of Chant,

a multi-layered light-weight threads library for distributed memory architectures. Chant

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 3

was designed and implemented as a runtime system with a user interface using 1\IPI-like

(~Iessage Passing Interface) [20] and Pthreads-like [31] calls. The lower layers support

point-to-point message passing between threads executing in distributed address spaces

and remote procedure calls.

This dissertation focuses on the use of Chant as a framework to support dynamic load

balancing based on thread migration. \Ve explore many of the issues that arise when

designing and implementing a thread migration mechanism, as well as the issues that arise

when considering the use of thread migration as a means for performing dynamic load

balancing.

We describe. in detail, the implementation of the migration mechanism, including the

method used to transfer the thread state a.nd its associated data. Furthermore. we discuss

how we deal with both user-level pointers and system pointers. That is. if data referenced

by pointers resides in a different memory locations following a migration than prior to the

migration. the pointers referencing the data are no longer valid. \Ve describe a method

for tracking pointers and for updating all active pointers following a migration so that

all pointers remain valid. Finally, we discuss issues pertaining to communication among

threads. Since Chant supports point-to-point communication between threads. we must

maintain the location of threads throughout the system, as well as provide a mechanism for

forwarding messages that arrive at a processor and are targeted for a thread that no longer

resides on said processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 4

An important contribution of this work is the use of Chant as a framework for dynamic

load balancing based on thread migration. \Ve describe a separate load balancing layer.

which has been built on top of Chant. There are several issues we address when discussing

this load balancing layer.

One of the first issues that must be addressed when developing any load balancing system

is how to estimate the load of both individual processors as \vell as the entire system. A

common method for estimating load in a multi-threaded system is to simply use the length

of the run queue. This is not always sufficient, however, so we explore other methods of

load estimation.

Another important issue to be considered is the tradeoff between a more balanced exe

cution and increased communication. That is, if balancing the load of a particular execution

causes excessive increase in inter-processor communication. the overall execution time may

increase. \Ve explore ways to track communication and incorporate this information in any

decision making process involving load redistribution.

One of our primary goals in the design of this load balancing layer was the support

of a large variety of programming models. Since a particular load balancing algorithm

may work well for one class of programs, and may work very poorly for another class

of programs, we have attempted to design a generic load balancing layer. \Ve provide

an Application Programmer Interface (API) that allows the user to customize the load

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4.PTER 1. INTRODUCTION 5

balancing to fit particular classes of problems. \Vhile we provide default load balancing

functionality. this API provides the user with the ability to customize the load balancing

to var}';ng degrees. \Ve prO\;de the user with the ability to use nearly no customization, to

near 100% customization.

Since a primary goal of this work is improved performance of distributed memory parallel

computing, it is important that we attempt to quantify the overheads associated with

both multi-threading and thread migration. Furthermore. we attempt to demonstrate that

performance can be improved through the use of thread migration as a means of performing

dynamic load balancing. Therefore, we provide detailed analysis of the overheads associated

with our approach. as well as performance results obtained from using our system on a suite

of test applications.

The rest of this dissertation is organized as follows: Chapter 2 provides background

information on light-weight threads, including the use of threads in a distributed memory

environment as well as background on thread migration. It also provides background infor

mation on load balancing, including a sample of contemporary load balancing algorithms.

Chapter 3 provides a summary of related work. Chapter 4 provides a discussion of the

design and implementation of the lower layers of Chant, including the reasons behind some

of our design decisions. In Chapter 5 we describe both the design and implementation of

the thread migration mechanism used by Chant. This includes how we deal with pointers

and how we handle communication among migrant threads. Chapter 6 provides details of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.-\PTER 1. INTRODUCTION 6

the load balancing layer, including an overview of the API. \Ve provide performance results

in Chapter 7. This includes performance of the threads system itself. performance of the

migration mechanism, and performance of the load balancing layer on a number of test

applications. Finally, in Chapter 8 we offer some conclusions as well some ideas on possible

directions this research can take in the future.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

In this chapter, we provide some background information that is needed to understand some

of the material presented in later chapters. \Ve introduce the concept of light-weight threads

including definitions and motivation for using light-weight threads in a distributed memory

environment. \Ve follow this with some additional information on thread migration.

Next, this chapter provides some background information on load balancing, once again,

including definitions and motivation. \Ve discuss the decision making process, along with

a summary of some contemporary load balancing algorithms. Following this is some back

ground information on the use of thread migration as a means of load redistribution.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 8

1 Light-weight Threads

Light-weight threads have been in use for a number of years. However, most of the work that

has been done with light-weight threads, has been on uni-processor machines or shared mem

ory multi-processor systems. This section introduces the concept of threads. followed by a

discussion of light-weight threads, and why light-weight threads are useful in a distributed

memory environment. This is followed by some background information on migration of

light-weight threads in distributed memory environments.

1.1 Definitions

A thread, as a straightforward concept, is a single independent sequential flow of control. A

normal UnLx process can generally be thought of as a single thread. \Vithin a thread there

is a single point of execution at any instant. Having multiple threads means that at any

instant there are multiple points of execution. one for each thread (5].

Threads are generally classified as ·'heavy-weight". "middle-weight". or "light-weight''.

A thread's weight corresponds to the amount of context associated with the thread. A

thread's context consists of its program counter, machine registers, and other control in

formation needed for its execution (43]. A typical UnLx process represents a heavy weight

thread since its context consists of the entire state of the process. Many contemporary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 2. BACKGROUND 9

operating system kernels, such as Mach, allow multiple threads within a single address

space. This reduces the size of a thread's contex'1: since process state information is kept

separate. However. the context of the thread and all thread operations are controlled by

the kernel and often include more context than the application needs. These kernel-level

threads represent middle-weight threads. Exposing all context and thread operations to the

user-level allows for a minimal context, and thread operations can avoid crossing the kernel

interface. These user-level threads have a much smaller context than kernel-level threads

and represent light-weight threads. Due to their smaller context. light-weight threads have

a much shorter context s'\\itch time (the time it takes to smtch control of the processor

from one thread to another) than either heavy or middle-weight threads. Unless otherwise

specified, the use of the term "'thread" in this dissertation refers to light-weight threads

running within a UnLx process.

Threads that reside in the same process execute within a single address space. This

allows different threads to read and write the same memory locations. In particular. the

off-stack (global) variables are shared among all threads within the process. Each thread

has its own separate call stack and local variables [5].

A thread system uses a Thread Control Block (TCB) for each thread to allow the system

to keep track of each thread's state. A TCB is simply a data structure used to store items

such as the current stack pointer, the current frame pointer, status of the thread, thread

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. B.4.CKGROUND 10

identifier (TID), and other thread specific information. Each thread has a distinct TCB.

which is maintained by the underl}ing threads system.

Threads have traditionally been used in uni-processor and shared memory multi-processor

environments. However, they have recently been utilized in distributed memory environ

ments as well (23, 2i]. In order to move to a distributed memory environment, we must

take into account some additional issues.

1.2 Light-weight Threads in a Distributed Environment

\Yhen running a multi-threaded application, it is often necessary to be able to distinguish

between different threads. In a uni-processor environment this is triviaL since each thread

has a unique thread identifier (TID) associated with it. However, when running in a dis

tributed environment, threads on different processors may share a local TID. This makes

it necessary to also maintain a unique global TID associated with each thread. If threads

are stationary (never move from one processor to another), this is again triviaL as a tuple

consisting of a thread's local TID and its processor id. serves as a unique identifier. How

ever. if thread mobility is to be supported, this is insufficient. In this case, two threads on

different processors cannot share a local TID. since there is no guarantee that one of these

threads will not move to the processor on which the other resides. For this reason, if thread

mobility is to be supported, there must be another way to maintain unique global TIDs.

This will be discussed in more detail in Chapter 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. B.4CKGROUND 11

As stated above, threads running within a single process share an address space. making

information exchange relatively simple. However. when threads are running in a distributed

memory environment, threads clearly do not share an address space and cannot directly

share information with other threads executing in separate address spaces. This makes

information exchange much more difficult. \Vhile there are several possible solutions to

this problem, we employ explicit message passing as a means of sharing data. A common

parallel programming strategy is to use !I.IPL or !I.Iessage Passing Interface [20], to perform

inter-processor communication.

MPI is a standard developed for writing message-passing programs. \Vhen we refer to

l\IPI we are referring to the Application Programming Interface (API) rather than a specific

l\IPI implementation. This allows us to ignore implementation details and concentrate on

the semantics of the standard. Since we use only communication primitives, rather than the

entire standard. we will restrict our discussion to those primitives that relate to our work.

l\IPI supports point-to-point communication between processes running in a distributed

memory environment. The main communication operations we are concerned with are send

ing and receiving messages. \Vhen sending a message. the user must specify a destination

process as well as a buffer from which the message must be copied. When receiving a

message, the user may specify the process from which the message should be sent, or a

wild-card may be used, indicating the message may arrive from any process. Additionally.

a buffer into which the message should be received must be specified. Sends and receives

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4.PTER 2. BACKGROUND 12

are matched up by the use of a message type, or tag. That is. a message sent with tag x,

will only be retrieved by a corresponding receive that also used the value x in the tag field.

Communication operations can be either blocking or non-blocking. A blocking operation

does not return until the resources specified in the call can be reused. \Vhen sending a

message, this means the message has been copied from the send buffer, and the user is

free to reuse this buffer. \\nen receiving a message. this means the message has actually

arrived in the specified buffer, and the buffer's contents are available for use. \\'nen a

blocking operation is called, the entire process is blocked, and does not regain control of

the processor until the call has completed.

Non-blocking operations may return before the operation completes, i.e., before the

user is free to use resources specified in the call. Non-blocking calls return a handle, which

may be used for checking the status of the operation. This handle can be used either to

wait for the operation to complete (a form of blocking call), or to test if the operation has

completed. The resources specified in the call should not be reused until either a wait is

called or a test returns true. Once the user returns from a wait calL or tests positive for

completion, the user may reuse the resources, including the handle. specified in the original

non-blocking call.

Threads running in a distributed memory environment can also make use of MPI, though

there are some problems associated ·with its use. One problem is the way to address messages

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER2. BACKGROUND 13

to particular threads. The problem is that l\IPI only recognizes entities such as processes,

but not individual entities within a process (e.g., a thread). Another problem is that l\IPI

blocking calls block the entire process. while we would prefer to block only the calling

thread. Both these issues will be addressed in more detail in Chapter -1.

\Vhile we have introduced the concept of threads, and have provided some background

on threads running in a distributed memory environment, we have not pro-vided any reasons

for using threads in such a way. That is, what advantages are there to using threads in a

distributed memory environment?

A primary incentive to using threads in a distributed memory environment is the ability

to perform latency hiding. This latency can be due to, among other things. message passing

or IO calls. If a thread needs data from a remote processor, it can obtain this data through

explicit message passing. In this case, the thread may have to wait an unknown amount

of time to receive the data. If the thread has no useful work to perform, it can y;eld the

processor to another thread. one that does have useful work to perform. By doing this, the

processor remains busy while waiting to receive remote data.

1.3 Thread Migration

Thread migration allows a thread residing on one processor to move to another processor.

Figure 2.1 represents a multi-threaded distributed system. In this system, a thread from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 14

I @pO
I c::=J

I c::=J

Figure 2.1: A thread migmtes from process p2 to process pl

process p2 on processor 2 \\-ill migrate to process pl on processor 1. Following the migration,

process pl will contain two threads. both ha...,ing access to the same address space. A thread

may be migrated for a number of reasons, including improved data locality, improved load

balance. and access to system resources that may not exist on all processors.

There are at least two separate models of thread migration. The first model migrates

a thread by transferring the data that defines the thread's computation, but little or none

of the thread"s state [13, 14]. This occurs when threads are migrated before they begin

execution. or at very well-defined break-points, when the amount of state is minimal. One

example of such a break-point is the end of a main loop of computation. Migration is accom-

plished by sending the data associated with the thread, and the minimal state information.

to a remote processor, where a new thread is created.

A second modeL and the one that has been implemented in this work, supports fine-

grain load balancing, by allowing a thread to migrate at any point during its execution.

In this modeL a thread to be migrated is suspended during its execution, and the thread's

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 2. B.4CKGROUND 15

current state and data are sent to a remote processor. On the remote processor. the mi

grated thread resumes execution at the point where it was suspended. This migration takes

place seamlessly, with the thread having no immediate knowledge that it has moved. This

model allows for much better load balancing, because a thread can be migrated at arbitrary

suspension points. However, this model requires the ability to migrate the entire state of a

thread.

2 Load Balancing

The total execution time of a parallel program is equal to the time it takes for the slowest

(most overloaded) processor to complete its computation (13]. It has been shown that in a

network of autonomous processors, there is a large probability that, at some point during

execution, at least one processor will be idle while there are multiple tasks queued for

execution on other processors [17]. In such a situation, it may be advantageous to move

some of the work from the busy processors to the idle processors. This movement of work

(or load) is referred to as load balancing. For some applications, it is sufficient to balance

the load such that every processor has some work at any time. For others, the load must

be distributed nearly evenly across all the processors to achieve optimal performance (33}.

There are three fundamental issues to be addressed when dealing with a load balancing

problem. These issues can be summarized as when, who, and which: lVhen is it necessary to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER2. BACKGROUND 16

perform a load redistribution, who (what processors) gets load increases and who gets load

reduction, and which load units are involved in the redistribution. These factors can vary

greatly depending on the application in which the load balancing is taking place. U nfor

tunately, fe\v systems take the application into account when making these load balancing

decisions.

There are two distinct types of load balancing policies: static and dynamic. Policies

that use only information about the average behavior of the system, ignoring the current

state of the system, are referred to as static policies [17]. Static load balancing policies

are generally evaluated at compile-time and cannot adapt to unexpected load distributions.

Although static load balancing policies work well for regular problems. there exists a large

class of problems that have unpredictable computational requirements [49]. These problems

are best suited for dynamic load balancing policies. Dynamic policies use the current state

of the system to make load balancing decisions at run-time. \Ve focus here on dynamic

policies.

The methods of estimating the load of a processor and determining a maintenance policy

are of primary importance in designing a dynamic load balancing algorithm. An estimating

function can combine several load indicators, including length of the CPU queue, rate of

memory occupancy, rate of CPU utilization, rate of communication, and more. However,

it has been shown that, in most multi-threaded systems, the length of the ready queue is a

good indicator of processor load [37].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 2. BACKGROUND 17

The maintenance policy can be based upon the local load situation itself, the local load

situation along with the load situation of direct neighbors, or the load situation of any

subset of the processors. Additionally, load units (threads in the case of this work) can

have a local or global migration space. In an algorithm that uses a local migration space,

\Vork can only migrate to a direct neighbor. \Vhen a global migration space is used. work

may migrate to any processor in the system [34].

There are a large number of load balancing policies that have been proposed. \Vhat

follows is a non-exhaustive sampling of these different policies.

• Dimension Exchange .Method [49]. In this method, any processor that invokes a load

balancing operation, exchanges load \Vith each of its direct neighbors successively. The

method works by migrating a predefined fraction of excess workload between the two

processors. This exchange is done with each neighbor one at a time. without regard

to the load on other neighbors. Actions that trigger a load balancing operation may

include reaching a load threshold, or expiration of a timer.

• Diffusion Method [49]. This method is similar to the dimension exchange method.

The only difference is that, in this method, the load of all the neighbor processors

is taken into account when deciding the amount of load to exchange between two

neighbors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4.PTER 2. BACKGROUND 18

• Gradient .Model (34]. In this model. a processor may be in any of three states: L (low),

N (normal), or H (high), based on its local load. Additionally. each processor has load

and distance information for all other processing elements. Each processor also knows

which of its direct neighbors lies on the shortest path to a processor in state L. \Vhen

a processor enters a state of H, it sends a load unit to its direct neighbor that lies

on said shortest path. This load unit is not forwarded along the shortest path. but

rather remains on the processor to which it was migrated. However. if this new arrival

causes the processor to enter the state H. a load unit will be sent along this shortest

path via the same mechanism.

• Bidding Algorithm (34]. This algorithm is similar to the gradient model in that it

uses the same states (L, N, H). In this algorithm, however, an initiating processor can

migrate a load unit to any processor, not only a direct neighbor. In this algorithm.

the initiating processor (the one in state H) receives bids from processors within some

distance d. This bid indicates the amount of load the responding processor can accept.

The initiating processor then sends a load unit to the processor from which it received

the highest bid. The distance value, d, changes dynamically, depending upon how

many bids are received. If too many bids are received, then dis decreased, while if

too few bids are received, then d is increased.

• Drafting Algorithm (34]. This algorithm is similar to the bidding algorithm, except

that the under-loaded processor initiates the load balancing operation. In this algo

rithm, each processor has a table of the loads of all the other processors. \Vhen a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 19

processor enters state L it chooses a processor in state H from its local load table,

and instructs said processor to migrate a load unit.

• Centralized [37). A centralized load balancing algorithm uses a master-slave modeL

where the master processor keeps track of the global load state. The master processor

broadcasts, to all the slaves, a table of lightly loaded processors at time intervals

of G_DELA Y. G_DELA Y varies dynamically depending on overall load indications.

Slave processors send local load information to the master processor at intervals of

L_D ELA Y, which also varies dynamically. \Vben work is to be created on a processor,

if said processor is not lightly loaded, then the work is created on a lightly loaded

processor, chosen from the table received from the master processor. The target

processor is chosen in such a way as to avoid flooding a particular processor.

In terms of computational resources used, these different load balancing policies range

from very simple to very complex. However, Eager, et al. [17) contend that the potential

benefits of the complex policies do not justify the added complexity nor the added potential

for poor results. Their findings show that extremely simple policies that collect a very

small amount of state information, and use this information in very simple ways, yield

dramatic performance improvement relative to the no load balancing case. Moreover, these

simple policies };eld performance close to the expected performance of complex policies that

attempt to make the "best" choice, based upon the large amount of state data collected.

They also show these results to be valid over a wide variety of system parameters. They

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER2. BACKGROUND 20

conclude that simple dynamic load balancing, ··is of considerable practical value, and that

there is no firm evidence that the potential costs of collecting and using extensive state

information are justified by the potential benefits" [17]. This conclusion has not yet been

disputed.

3 Load Balancing via Thread Migration

In a multi-threaded distributed environment also, one processor may eventually become

overloaded, ending up with a large number of threads while other processors may have very

few threads. In Figure 2.1, process p2 has four active threads. while process pl has only one

active thread: this represents a load imbalance. assuming all threads do roughly the same

amount of work. To attempt to balance this load, a thread from the overloaded process

(p2) is migrated to the under-loaded process (pl), resulting in a more balanced system.

A load balancing policy of choosing the least loaded node for each thread creation is

not difficult to implement. However, since threads have varying lifetimes. such a policy may

still lead to idle processors when there are more active threads in the system than there are

processors. A good load balancing policy should ensure that there are no idle processors as

long as there are at least as many active threads as there are processors. Thread migration

mechanisms allow the realization of such a dynamic redistribution of threads [38].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4.PTER 2. BACKGROUND 21

The first model for thread migration, which was introduced in Chapter 2 Section 1.3,

consists of migrating data rather than the actual thread. Using this model. load balancing

can be implemented in a very straightforward manner. The data associated with a thread is

viewed as the load unit discussed above. \Vhen a load imbalance is detected. data associated

with a thread is migrated, using any of the policies discussed above. A new thread is created

on the destination node and the computation is continued. The choice of which load unit

to migrate can be arbitrary, or it may depend on known communication patterns. In the

latter case, a load unit is chosen such that added communication is minimized. Although this

model is relatively easy to implement, threads are typically not migrated once they begin

execution, or are migrated at specific points in the execution. The result is a very coarse

grain approach to load balancing, often leaving the system unbalanced for considerable

periods of time between break-points.

The second model. where a thread can be migrated at any arbitrary point in its exe

cution. offers much more flexibility for implementing a load balancing system. \Vith this

model. a load balancing operation can be carried out at any point during the execution of

the program. A coarse-grained approach could have the user set points in the code where

the system checks the global load and performs any necessary load balancing operations. A

finer-grained approach could involve the system checking the global load at either pre-set or

varying time intervals. Using var};ng intervals can allow for the intervals to increase when

the system is experiencing little change in overall load, and decrease when the system is

experiencing significant load changes. Wnen a load imbalance is detected, an entire thread

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BA.CKGROUND 22

is viewed as a load unit and is migrated, state and all, according to the load balancing

policy in use. This model allows for much finer-grained load balancing, because a thread

can be migrated at any arbitrary suspension point. However, this model requires the ability

to migrate the entire state of a thread.

In this chapter, we have introduced the concept of a thread as well as discussed the use

and functionality of light-weight threads. Additionally. we have discussed the use of threads

in a distributed memory em;ronment, as well as the ideas behind the migration of threads

across physical processor boundaries.

\Ve have also prmdded background information on load balancing, as well as some

traditional load balancing algorithms. Finally, we have discussed the idea behind using

thread migration as a means for load redistribution in a dynamic load balancing system.

The following chapter gives a summary of other systems that provide some of these

functionalities. These systems range from simple distributed thread systems, to systems

that support thread migration in various capacities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Related Work

The use of threads in distributed memory systems has received a good deal of attention over

the last several years. \Ve only discuss some of the important systems that provide threads

in a distributed memory en·dronment. Discussion of thread systems for single processor,

shared memory multi-processors, and distributed shared memory machines can be found

elsewhere [5, 40, 50]. Some of the systems we will discuss simply support communication

between threads in different address spaces, while others offer thread migration and other

advanced functionalities.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RELilTED \VORK 24

1 NEXUS

Nexus [22. 23] is designed as a general-purpose runtime system for task parallel languages.

Rather than being a target for end-users, Nexus is intended to be a compiler target. It is cur

rently being used as a compiler target for the languages Fortran l\,I [21] and CC++ [10. 11].

It is designed to run in a heterogeneous as well as a homogeneous environment. The Nexus

system consists of nodes, contexts, threads, global pointers, and remote service requests.

A node is a physical processing resource. such as a processor in a distributed memory

multi-processor, or a shared memory multi-processor. \\'l1en Nexus starts, an initial set of

nodes is created and nodes can be added or deleted dynamically.

Computation takes place v•ithin a context, where each context relates executable code

and one or more data segments to a node. Many contexts can be mapped onto a single

node. Once a context has been created on a particular node, it cannot be migrated to

another node.

Computation takes place in one or more threads, which may be created locally \\<ithin

a context. or within a remote context. Thread routines are modeled after a subset of the

POSIX thread specification known as Pthreads [31]. This was done due to the fact that most

vendors supply either Pthreads or a similar threads package. This improves the portability

of Nexus.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER3. RELATED~VORK 25

Nexus provides the compiler with a global name space by allowing a global name to be

created for any address within a context. This name is called a global pointer. and consists

of a context identifier and a local address. A global pointer can be moved between contexts.

providing the ability to share global references.

A thread can issue a remote serl!ice request to request that an action be performed on

some remote context. This causes the context pointed to by a global pointer to execute a

special function, known as a handler. The handler is invoked asynchronously by the remote

context. which allows two or more handlers to execute concurrently.

2 Panda

Panda (4] is a portable virtual machine designed with the portability requirements of par

allel languages in mind. It is currently used to implement the Orca parallel programming

system (1].

In order to support portability, Panda was designed using a layered approach. There

is a system independent Panda layer on top of a system-dependent layer. This facilitates

portability since only the system layer need be modified to port to other architectures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 3. RELATED \VORK 26

2.1 Panda Interface

The Panda interface provides Remote Procedure Calls (RPC), totally-ordered group com

munication, and thread abstractions, with which Panda applications can be built. Totally

ordered Group Communication assures that all members of a group receive all group

messages in the same order. The thread interface is based upon the Pthreads [31] and

C Threads [15] interfaces.

The RPC interface is based upon the notion of a service that provides a number of

operations. A service is implemented by one or more servers that register the services they

provide. A client obtains a handle to the server, and sends an RPC request to the particular

node on which the server resides. \Vhen a request message arrives, a thread is started. which

calls the registered function associated \vith the request.

The group abstraction provided by Panda supports totally-ordered, closed groups. A

group of threads being closed implies that only members of the group can send messages to

the group. Groups can be created and joined dynamically. If a thread joins a group that

does not exist, then the group is created, and the requesting thread is a member of the

group.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 3. RELATED lVORK 27

2.2 System Interface

Panda"s system interface hides machine dependencies by providing three abstractions: threads,

messages. and communication primitives. Threads are implemented in the system layer.

with an interface identical to that of the Panda layer.

The communication primitives include send primitives (uni-cast and multi-cast) and

addressing primitives. \\tnen the Panda layer is initialized, a message receive handler is

registered with the system. All processes run a system layer receive daemon, which handles

all incoming messages. \Vhen a message arrives, the daemon makes an upcall to the message

receive handler. This handler carries out the necessary operations associated with the

message.

l\Iessages are stack-like. The sender pushes data fields of specified size and alignment

into the message. These fields may include the sequence number and other information

needed if the message has been fragmented. The fields are popped in reverse order by the

receiver. who then handles the messages appropriately.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER3. RELATED~VORK 28

3 Mach

The l\Iach operating system allows for multiple tasks (processes) over multiple nodes (pro

cessors). It uses kernel-level threads to support concurrency within a task. A common

operation in Mach is the Remote Procedure Call (RPC), where a thread in one task re

quests some work be done by another task. Recent work has studied the benefits of thread

migration as a mechanism for RPC [18, 19]. \Vith this approach, when a thread makes a

request for an RPC, rather than a new thread being created in the remote task. the thread

itself \Vill migrate to the task, and carry out the request itself. Although a thread may

request work be done by a task residing on a different node, the thread migration work is

concerned only with local RPC. That is. a thread migrates only when the server task resides

on the same node as the client thread.

4 Computation Migration

Computation migration [30] is a technique where a portion of a running thread is migrated

to a remote processor for the purpose of remote data access. The idea is based solely on data

locality, and can be used as an alternative to either data migration or remote procedure calls.

If the data to be accessed is large, then moving the computation to the data can be cheaper

than moving the large block of data. This has advantages over RPC-style access, which

requires two messages, one for the call, and the second for the reply. These messages can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 3. RELATED \VORK 29

expensive. since marshaling values into and out of messages can add substantial overhead.

However. a major advantage of RPC style access. is that it does not put additional load

on the remote processor, other than load absolutely necessary to handle and carry out the

request.

Computation migration gives the benefits of both thread migration and RPC. By moving

part of the thread's stack to the remote data, locality of access is gained. This can be very

advantageous if there is a series of accesses to the same data. The benefits of RPC can also be

gained by var}ing the granularity of the computation migration. This avoids overloading

the resources of a single processor, since only the amount of state necessary to improve

locality is moved.

Hsieh. \Vang, and \Veihl [30] implement computation migration by use of compile time

transformations. Their implementation generates a special .. continuation'" procedure to

handle the migration. The body of this procedure is the continuation of the migrating

procedure. That is. it is the rest of the procedure, following the migration. Client and

server stubs are generated to handle the message passing required to invoke the migration.

The client stub of the continuation procedure sends a message to the remote procedure

to start the server stub. Following migration, if the computation originated from another

processor, the thread is killed. This happens if a migrated procedure migrates again, or if a

remote procedure call migrates. If the computation originated on the client processor, then

the thread waits for the return of the procedure. This allows for a procedure to migrate from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER3. RELATEDWORK 30

one processor to another several times, and return directly to the original processor, rather

than having to backtrack the steps. This can save a considerable amount of communication.

Hsieh, \Vang, and \Veihl implemented computation migration in the Prelude compiler

and runtime system [48], and ran experiments on the Proteus simulator [8]. Their exper

iments show that computation migration outperforms both data migration and RPC in

many applications. They conclude that computation migration can be a valuable tool in

distributed environments.

5 Emerald

Emerald [6, 7. 32] is a distributed object-based language and runtime system. The primary

goal of the designers is to experiment with the use of mobility in distributed programming.

The unit of distribution and mobility in Emerald is the object. Some objects contain

processes and others contain only data. Emerald offers language support for mobility.

5.1 System Design

Each Emerald object has four components, namely:

• Unique network-\\;de name.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4.PTER 3. RELi\TED "VORK 31

• Data local to the object: Primitive data and references to other objects.

• Set of operations that can be invoked on the object.

• Optional process.

Objects with processes are referred to rus active objects, while objects without an russo

dated process are passive data structures.

Emerald also offers primitives to support mobility. These primitives are as follows:

• Locate an object. This primitive returns the node on which the specified object resides.

• Move an object. This primitive is simply a suggestion given to the system. The system

may choose not to move the object, and additionally, even when an object has been

moved explicitly, the system may move the object again on its own.

• Fix. This allows the user to fix an object to a particular node. Once an object has

been fi.xed to a node, it may not be moved either explicitly or by the system.

• Unfix. By unfi.xing an object you make it a candidate for movement once again.

• Refix. Refix is equivalent to a sequence of calls to unfix, move, fix.

• Attach. This allows a user to attach one object to another. \Vhen an object is attached

to another, if one of the objects moves, then the attached object also moves.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 3. RELATED \<\'"ORK 32

5.2 Implementation

Emerald has been implemented with only one address space per node. where processes

are light-weight threads sharing the address space. By having only a single address space

per node, objects on the same node can access each other directly. \Vhile all objects

are defined in the same way, the compiler chooses an appropriate addressing mechanism,

storage strategy, and invocation protocol by analyzing the characteristics and use of an

object. There are three different styles of object implementation:

• Global Object. A global object can be moved independently. referenced globally, and

invoked by objects not known at compile-time. Global objects are allocated from

within the heap. Invocation of a global object may require remote invocation.

• Local Object. A local object is completely contained within another object. It can only

be invoked by its enclosing object and must always move with its enclosing object.

This means that all invocations on a local object are local. since the object moves

with the only object that may invoke it.

• Direct Object. A direct object is a local object whose data area is allocated directly

in the representation of the enclosing object. Direct objects are primitive types and

simple objects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RELATED \VORK 33

Each node contains an object descriptor for every global object for which references exist

on that node. 'When the last reference is deleted, the descriptor can be garbage collected.

Object descriptors contain state and location information about the object and use direct

memory addresses. This means that pointers within an object must be updated if the object

is moved. \Vnen an object is invoked, its location is first checked. and if it is local it is

invoked directly. If an invocation is remote, then the call traps into the kernel where the

remote invocation is handled.

The location field in this descriptor is a forwarding address as described in Fowler (24].

This is the last known address of the object, and communication is done with this node

for invocation. If the address has been changed, the results will be returned by the new

location and the forwarding address updated.

Each global object is assigned a unique Object Identifier (OlD). Each node has a hash

table for mapping OIDs to object descriptors. This mapping is used to locate the descriptor

and thus locate the object itself.

The way in which object movement is performed is based on the type of object to

be moved. To move a data object, a single message is sent to the destination node. This

message includes the data area of the object along with information for re-mapping location

dependent addresses. The message also includes OIDs for global object pointers, forwarding

addresses. and addresses of object descriptors on the source node.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RELATED ll-'ORK 34

The destination kernel receives the message and allocates space for the moved object,

copies the data into the newly allocated space, and builds a translation table to map original

addresses into addresses in the newly allocated space. Object descriptors are located for

existing global objects, and new descriptors are created if necessary. The kernel then updates

pointers using the translation table.

The literature does not describe the migration of the other types of objects.

6 Amber

Amber (12] is an object based system where the objects are mobile. and the application runs

on a network of shared memory multiprocessors. The active objects in Amber are threads.

Object operations can be invoked either locally or remotely. Amber is implemented on top

of the Topaz operating system for the DEC Firefly. The distribution model and mobility

primitives are derived from the Emerald system.

Data placement in Amber is under complete control of the programmer. Threads may

be created dynamically. The scheduler supports time slicing, and can be customized to use

priority or adaptive policies.

\Vhen a thread invokes an operation on a remote object, the thread migrates to the node

on which the invoked object resides. Similar to Emerald, objects can be moved, located,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4PTER 3. RELATED H'ORK 35

attached, and unattached. Additionally, however, objects may be designated as immutable,

meaning they will not be changed. In the case of moving an immutable object, the object

is replicated on the destination node, rather than moving the object itself. An object may

be moved even if it has active invocations. In this case, the thread invoking the object

moves along with the object. Object location is under direct control of the programmer.

An object is only moved if it is e.xplicitly moved by the user. it is attached to an object

that is explicitly moved, or it is a thread object invoking an object that is explicitly moved.

Additionally, the system always carries out explicit moves.

Amber uses a type of global virtual memory to facilitate mobility. Dynamic objects are

assigned a distinct segment of the global address space, and each object occupies the same

virtual address range on any node it visits. The segment of virtual memory occupied by an

object on one node is reserved for that object on every other node.

Remote references and locating objects are handled the same way as in Emerald.

Thread migration involves simply copying control information and the thread's stack

to the remote node. This is copied to the same address space on the destination node as

it occupied on the source node. The descriptors are updated, and the thread put on the

ready queue of the destination node. All addresses remain valid since the thread occupies

the same memory location.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RELATED WORK 36

7 Parallel Adaptive PDEs

Chrisochoides has done work with a multi-threaded dynamic load balancing implementation

for parallel adaptive POE computations [13]. In this work, processors execute many threads,

each typically dependent on results of other local or remote threads. l\Iulti-threading is

used here for both overlapping communication and computation. and also for overlapping

load balancing operations and computation. Load balancing operations include information

dissemination, decision making, and data migration. Threads in the system can be in any

of five states: new, ready, running, blocked, or dead.

Problems are broken up into domains, blocks, sub-domains, and regions where each

computational thread corresponds to a separate region of grid points. Different sub-domains

are distributed over the different processors. where a set of contiguous regions makes up a

sub-domain. A set of sub-domains makes up a block, where blocks are independent of one

another in the whole application. A domain corresponds to the entire application. Each

sub-domain has interface regions and interior regions. Interior regions need only data local

to the processor to complete their computation and can execute independently of interior

regions on other processors. Interface regions require data from interface regions on other

processors and thus must synchronize their execution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RELATED \-VORK 37

Load balancing is accomplished by migrating threads from overloaded processors to

under-loaded processors. This migration is done in such a way as to minimize future com

munication. The number of grid points within a thread can change during computati<>n in

order to achieve better balancing of work loads.

The load balancing approach in this work attempts to ensure that no processor is waiting

idle while more than one thread remains to be executed on any other processor. \\'ben a

processor becomes idle, it requests threads from a subset of processors that are overloaded.

This subset consists of neighboring processors only, and work is redistributed via thread

migration. Threads are migrated in a way as to minimize overheads due to future message

passing. This is done by minimizing the number of grid points that reside on the interfaces

of the sub-domains.

Only interface threads are migrated. which causes some interface threads to become

interior threads. and some interior threads to become interface threads. Threads are only

migrated at the beginning or end of large blocks of computation, and thus true thread

migration is not necessary. Thus, instead of thread migration, the system actually performs

data migration. During load balancing, a thread that is to be migrated is halted. The data

(grid points) associated with this thread is packed into a message and sent to the destination

processor, and the thread is killed. On the destination processor. the data is received.

unpacked, and stored in appropriate memory locations, and a new thread is created, which

performs the remaining computation on the data. The system uses hardware interrupts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4PTER 3. RELATED l-VORK 38

to ensure that migration requests are handled promptly, minimizing the idle time of the

requesting processor.

PI\12 [38, 42] is part of the ESP ACE project (Execution Support for Parallel Applications in

high-performance Computing Environments), whose basic functionality is the Light-weight

Remote Procedure Call (LRPC). PM2 has been specialized for data parallel programming

and is therefore not a general use package. LRPC is performed by forking a remote thread

to execute a specified service. P~I2 is designed on top of a threads package that is a

large subset of the Pthreads standard [31], with some additional functionalities. It uses

PVl\1 [25] as its communications library. Creations and synchronizations of threads are

implicitly managed by the LRPC primitives, leaving the user free from making explicit

calls to thread primitives.

LRPC can be synchronous, asynchronous, or asynchronous with deferred waiting. Syn

chronous calls must wait for a return value, while asynchronous calls continue \vith com

putation, not expecting a result. Asynchronous calls with deferred waiting continue with

computation, and at some later point, wait for a return value. LRPC calls need arguments

for mode, service identifier, location, priority, a pointer to arguments for the remote thread,

and a pointer to the results (except for asynchronous calls).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4PTER 3. RELATED \VORK 39

Thread migration is the mechanism used for load balancing. Load balancing can be

based upon thread priorities, or more traditional load balancing policies can be used. Thread

migration is carried out in three steps:

1. The thread to be migrated is frozen, and its descriptor and the useful part of its stack

are packed into a buffer.

2. This buffer is sent to the destination processor.

3. The destination processor unpacks the threads descriptor and stack, putting the stack

in a newly allocated address space, and the thread is unfrozen, ready to continue its

computation at the same point in its execution as when it was frozen.

The current implementation only allows for a thread to migrate itself. Additionally,

pointers to heap data are not implicitly maintained. The user is responsible for migrating

heap data as well as maintaining the pointers to said heap data.

There are points in a threads execution when the user may know that a thread should

not be migrated. For this reason. each thread has a "migratable" state attached to it, which

can be set or unset on demand.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. REL.4.TED ~VORK 40

8.1 Load Balancing in PM2

LB.l\IP (Load Balancing with Migration directed by Priorities) is an interesting approach to

load balancing used by the PM2 system. Each thread in PM2 has a priority associated with

it. If thread X has a priority of m. and thread Y has a priority of n. then thread X should

have control of the processor m/n as often as thread Y. However, threads arc scheduled

based on priorities relative to the local processor only. It may be desirable to have priorities

that are relevant across processor boundaries. For this to be true, the sum of all thread

priorities should be equal on each processor. To compute a distribution of threads that will

enforce this condition is an NP-Complete problem (38]. Therefore. a heuristic to determine a

·'good enough" distribution is used. \Vhenever the sum of priorities on a processor changes,

a load-balancing thread is awakened. If the change is great enough, all other processors

are contacted and a ·'good enough" distribution of threads is determined jointly by all

processors. Each processor then carries out the appropriate thread migrations to obtain the

new distribution of threads.

Although PM2 appears similar to the work described in this dissertation, there are

important differences. PM2 is a specialized package, while the work described in this dis

sertation is targeted for a wide variety of progra.'Ilming models. Additionally, P~vl2 supports

neither explicit message passing nor the general use of pointers. That is, the user cannot

generate messages to be exchanged between threads, and the system does not handle point

ers to heap data. On the other hand, the system described in this dissertation provides

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 3. RELATED ~VORK 41

strong support for point-to-point message passing, and efficiently handles all types of point

ers within mobile threads.

Another important difference involves the levels of abstraction offered by the two sys

tems. \\l1ile Pl\!2 attempts to abstract the threading concept away from the user, the

system described here is intended to be used as a light-weight threads package. That is,

P!-.!2 implicitly handles most of the thread primitives, freeing the user from making explicit

calls to thread primitives. On the other hand, Chant attempts to let the user control the

multi-threading, and provides a framework within which the user can take advantage of

known attributes of the particular application.

9 Xthreads

Xthreads [44. 45] is a light-weight threads library that offers logical concurrency within

each processor (via processes and threads). and physical parallelism across processors in a

distributed memory environment. l\Iore than one process is allowed per processor to offer

better performance during blocking system calls. If a thread makes a system call that blocks.

the entire process will block, not allowing other runnable threads access to the processor.

\Vith multiple processes per process. when a thread causes the entire process to block, the

operating system can switch to another process, allowing threads in that process access to

the processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER3. RELATED~VORK 42

The major feature of X threads. besides a threads library, is the ability to migrate threads

across both process and processor boundaries. \Vhen a thread migrates, the migrant thread

resumes execution at the statement following the point of migration. as if nothing happened.

A thread migration is the same thing as a normal context switch. except that the thread

resumes execution in a different process.

The migrate function call requires as arguments: a pointer to the thread to be migrated,

an identifier for the processor to which the thread is to be migrated, and an identifier to

the process within the specified processor to which the thread is to be migrated. The use

of a pointer to the thread to be migrated indicates that a thread can migrate itself or

migrate another thread. When a thread is to be migrated, the thread's stack and useful

state information (program counter and other information) must be sent to the destination

process. In order to save both time and space, the thread's stack is used as a message buffer.

The useful information is pushed on the top of the thread's stack. and the stack is sent as

the message. The destination process receives the message directly into an available stack

area, pops the state information from the stack, does the appropriate operations to get the

thread in a ready state, and puts it on the ready queue.

Since the stack may not reside in the same memory location on the destination process

as on the source, pointers will become invalid. Rather than solve this problem, it is simply

suggested that the user avoid the use of pointers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 3. RELATED \VORK

10 Ariadne

43

Ariadne [36] is a threads library designed to support process-oriented parallel/distributed

simulation. It is designed to run in a Uni..x environment and focuses on three main goals:

1. Support for thread migration. \Vhile thread migration can potentially be used for

load balancing strategies, Ariadne uses it mainly for remote data access. Wllen a

thread tries to access data local to another process, the thread itself is migrated to

that process, rather than the data being migrated to the thread or use of a remote

procedure call.

2. Portability and Flexibility. Portability is supported by the use of Uni..x libraries rather

than machine-dependent calls. This allows Ariadne to be easily ported to other Uni..x

based machines with very little rewriting of code. Flexibility is supported by the use

of a customizable scheduler. This allows the user to customize the scheduling policy

to fit the needs of a particular application.

3. Provide a facility for multi-threaded distributed computing. This is done by providing

a clean interface between Ariadne and communications primitives.

Ariadne is a preemptive threads library, meaning it uses time-slicing for scheduling

threads within the same process. Threads can be taken off the processor either by the timer

expiring (an interrupt), or by explicitly yielding the processor to another thread. Since a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER3. RELATED~VORK 44

thread may be accessing a critical area of its code at the time of an interrupt, the user may

explicitly turn interrupts on and off. The default scheduler uses a priority queue with FIFO

ordering of execution. However. a customized scheduler can be created via library calls to

allow for application specific scheduling policies.

Thread migration in Ariadne is carried out in a way similar to that in X threads, with

one distinct difference. \Vhile Xthreads does not preserve pointers within the threads stack.

Ariadne provides users with a primitive for updating stack references. This allows stack

pointers to be updated following a migration. However, references to heap data are not

preserved following migration.

11 UPVM

UPVl\1 [9. 41] supports multi-threading and transparent migration for PVM applications. A

new abstraction. called a User Level Process (ULP), is defined. ULPs are similar to light

weight threads and communicate only through message passing. The difference between

ULPs and traditional threads is that ULPs define a private data heap from which all dynamic

memory allocations are made. \Vhen a ULP is created, space for its data, stack, and heap,

is allocated on each processor involved in the computation. This space is allocated in the

same memory location on each processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4PTER 3. RELATED \VORK 45

UPVM offers thread migration, which allows finer-grained load redistribution than pro

cess migration. The thread migration protocol goes through four stages.

1. .1\.Iigmtion Event. The global scheduler sends a migration message to the processor

containing the ULP to be migrated. The process is interrupted and the ULP's state

gathered.

2. 1.\fessage Flushing. It is important to preserve messages in any message passing system.

UPV1[takes the approach of assuring all messages intended for a migrating ULP have

been received before allowing the ULP to migrate. This is done by sending a flush

message to all other processors and awaiting acknowledgment. Acknowledgment from

all other processors indicates that all messages have been received and the ULP is

free to migrate. The flush message includes the destination of the migrating ULP for

future communication.

3. State Tmnsfer. The source processor sends the state, data, stack. and private heap

of the migrating ULP to the destination processor. The destination processor places

this information in its allotted address region.

4. Restart. The destination processor then places the migrated ULP in the appropriate

scheduler queue, and the ULP is ready to execute on the new processor.

Since a ULP has the same memory region reserved on each processor, following a mi

gration no address references have changed. This keeps the system from needing to update

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RELA.TED nroRK 46

pointers following a migration. However. this comes at a high cost, since the need for dy

namic memory allocation causes scalability problems. Since each processor must allocate

space for each thread, the system is limited by the resources of the processor with the fewest

resources, rather than the number of processors.

12 Thread Migration with Active Threads

Thread migration with Active Threads (29] supports thread migration between clusters

of shared memory multi-processors. This work supports direct access to stack data, but

distributed shared memory (DS~I) is used for accessing heap data. The implementation is

part of the pSather language, where threads are not under user controL but are system

managed, and handled by explicit language constructs.

Since a DS:M is used for access to heap data, pointers to heap data do not need any

special handling during a migration. Pointers to stack data, however, are handled in much

the same way as previously discussed in UPVM [9, 41]. That is, space for each thread's

stack is reserved on each cluster, so that the stack of a migrant thread can be stored in the

same memory region at the destination as at the source. This causes pointers to remain

valid by default.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4.PTER 3. RELATED \VORK 47

This redundant memory allocation is done at startup, with the stack space for all

possible threads being pre-allocated. This means that all the threads must have the same

stack size and, this size must be known prior to execution.

The thread migration mechanism is used for load balancing, and the initial threads are

all started on a single cluster. The results are inconclusive since there is no comparison

with the work being distributed at startup with no load balancing. \Vhile modest speedup

is achieved, there is no indication that similar or better speedup could not be achieved by

statically dividing the work among the clusters, and using no dynamic load balancing.

In this chapter we have discussed a number of distributed memory light-weight threads

packages of various functionality. These packages ranged from simple systems that only

support communication to systems that support thread migration and even dynamic load

balancing. In the following Chapter we introduce the design of Chant, which is our im

plementation of a distributed light-weight threads library. It will cover the lower layers of

Chant, leaving the discussion of our thread migration and load balancing mechanisms for

subsequent chapters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Chant

\Yhile the previous chapter gave a summary of related work, this chapter gives details

about the design and implementation of Chant. Chant is a distributed light-weight threads

library that supports point-to-point message passing. It was designed and implemented as

a runtime system, with a user interface using MPI-like and Pthreads-like calls.

Chant is designed as a layered system (as shown in Figure 4.1). where the Chant System

Interface makes standard communication and thread package calls for efficient communica

tion and thread manipulation. On top of this communication and threads system interface

is a layer supporting point-to-point communication. In standard communication packages.

such as MPI, there is no concept of any entities besides processes. This means messages

can be sent only to processes, not directly to entities such as threads. Chant is designed

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CHANT 49

I
I Chant User Interface

I I I I Load balancing I
I I I 1--------------------------I
I I I 1 Thread migration I I I

~----------------------------I I I
I I I Ropes
I I -------------------------------
I 1 Remote thread operations
I ~---------------------------------
I Remote service requests 1-----------------------------------

Point-to-point message passing

Chant System Interface

Communication System Threads system
(MPI. P4 •...) (Pthreads. Open Threads •...)

Figure 4.1: Chant 111.ntime layers and interfaces

such that a thread in one address space can send a message directly to a thread in another

address space, with no intermediate processing or buffering of the message. On top of this

layer is the Remote Service Request (RSR) layer, where one processor can instruct another

processor to do some work on its behalf. These RSR requests are carried out by an RSR

server residing on each processor.

On top of this RSR layer is the layer for remote thread operations. This layer uses the

RSR server to perform various remote thread operations, such as remote thread creation.

Next there is a layer, called the ropes layer, which supports collective operations and indexed

communication among threads.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CHANT 50

The next layer is the thread migration layer, which allows threads to be moved across

processor boundaries. The final layer is the load balancing layer, which makes use of thread

migration to perform dynamic load redistribution.

In this chapter, we discuss the lower layers of Chant. leaving the thread migration

and load balancing layers for later chapters. The lower layers of Chant have been imple

mented on a number of different platforms, including a network of Sun workstations. an

Intel Paragon. and an IBM SP2. Additionally, they run on top of several communication

libraries. These include MPI (both the LAM and mpich implementations), P4, and NX

(the native communication library of the Intel Paragon). Finally, these layers run on top of

multiple threads packages, including Pthreads [31]. Ports threads, and Open Threads [26].

Chant currently uses the mpich implementation of !\IPI and Open Threads as its com

munication and thread libraries, respectively. Open Threads [26] is a threads package

developed by Matthew Haines at the University of \Vyoming. Open Threads was chosen

because it allows the user deep access into the threads system, allowing easy manipulation

of the threads and run queues. This allows thread migration to be implemented without

making changes to the thread system itself.

Portability is an important issue to be considered. This is why Chant was designed

to run on top of existing libraries. This reduces the number of portability issues we must

deal with ourselves. \Vhile the are certainly architecture dependancies to be address within

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CHANT 51

the communication library, these dependencies are handled by the implementors of :MPI.

Likewise. there are clearly architecture dependencies involved with porting Open Threads

to a new architecture. However. these dependencies are dealt with by the implementors of

Open Threads. The only are of Chant where there is any architecture dependence is in the

updating of system pointers following a migration of a thread. The details of this will be

covered later in this dissertation. Basically there are three requirements for porting Chant

to new architectures:

1. There must be an MPI implementation running on the new architecture.

2. There must be an Open Threads implementation running on the new architecture.

3. The manner in which system pointers are handled following a migration must be

tailored to the new architecture.

The first two items are managed by the software systems. the message passing and

thread implementations. The third item however. simply requires identify;ng what system

values need to be updated and determining their locations. Once they are identified and

located it is relatively simple to make the necessary changes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 4. CHANT 52

1 Thread Representation

As discussed in Chapter 2 Section 1. L most thread systems maintains a Thread Control

Block (TCB) for each thread. Our current system runs on top of Open Threads, and thus

Open Threads maintains this TCB. We will refer to this as the Open Threads TCB.

While the Open Threads TCB contains all the thread specific information important to

Open Threads, there exists thread specific information that is required by Chant. but does

not pertain to Open Threads. \Vhile it would be possible to add the necessary information

to the Open Threads TCB, in order to maintain portability. we prefer not to make changes

directly to the underlying threads package. Therefore, we introduce a second TCB. which

is maintained by Chant. \Ve will refer to this second TCB as the Chant TCB.

The Chant TCB is used to store Chant specific information. This includes information

needed to support migration, information needed by the load balancing layer. and other

information simply needed to maintain the system.

2 Point-to-Point Communication

The design of Chant addresses many of the issues involved in point-to-point communication

between threads. Specifically, it identifies the naming of global threads within a process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CHANT 53

delivering messages to specific threads, and polling for outstanding messages as primary

concerns.

The naming issue is handled through the use of both a global and local thread identifier

(TID) associated with each thread. The global TID can be converted to a tuple consisting

of a processor identifier and the local TID. This conversion is stored in a statically declared

conversion table on each processor. This conversion table simply provides a mapping.

between a unique global TID, and a <process identifier, local TID> tuple.

Global TIDs are necessary since Chant threads are mobile, and therefore threads on

different processors cannot share the same TID. Consequently, a thread created on one

processor must not be assigned the same global TID as a thread existing on a different

processor. This is prevented by allowing each processor only a subset of the available global

TIDs for assignment to newly created threads. For example, if the maximum number of

threads in the system is 100, and there are 2 processors, processor 0 would only assign

global TIDs 0-49, while processor 1 would only assign global TIDs 50-99. \Vben a thread

migrates from one processor to another, there are no guarantees that the thread's local TID

is not in use on the destination processor, thus a thread ·s local TID may change following a

migration. Furthermore, a thread's process identifier changes when it migrates to another

processor. Therefore, it is necessary to allow the conversion table to be edited at runtime.

Following a migration, the tuple associated with the migrated thread's global TID must be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CHANT 54

updated to reflect the new values. This update must be performed on each processor in the

computation.

\Vhile most communications systems support delivery to a particular process within a

specified processing element, they do not provide direct support for naming entities within

a process. However, in order to support point-to-point communication between threads,

a system must have a way to specify the thread for which a message is intended. Chant

handles this problem by overloading an existing field of the message header. typically the

user-defined tag field. This is done by using half of the field for the TID of the destination

thread and the other half for the actual message tag. Although this reduces the number

of valid tags from, say, NTAGS, to J NTAGS, this is a minor restriction since most tag

fields are 32-bit integers. This still allows for 65536 unique tags and an equal number

of TIDs. An alternative approach would be to put the TID in the body of the message.

However. this would be costly, since it would require a message copy at the source processor

to insert the TID and another message copy at the destination processor to extract the TID.

Additionally, there would need to be an intermediate thread that would receive the message,

determine the destination TID. and forward the message to the appropriate thread. The

use of an intermediate thread causes this to not be true point-to-point communication and

can degrade performance due to the overhead associated with scheduling and executing the

intermediate thread.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CH.-\NT 55

The Chant interface offers both blocking and non-blocking communication operations.

However, when the user makes a call to a blocking receive operation, the system must

not use the corresponding blocking call provided by the underlying communication system.

This would cause the entire process to block, preventing other threads from gaining access

to the processor. Instead, Chant issues a non-blocking communication call. and the system

returns a ··handle'', which can be used to check for the completion of the operation at a later

time. If the operation has not completed, then other ready threads can be scheduled, and

control returned to the blocked thread only after completion of the non-blocking operation.

This approach requires some type of polling mechanism to determine when the non-blocking

communication call has been completed. Three basic approaches can be taken. First, the

scheduler could check for operation completion, and return control of the processor to the

blocked thread only after the operation has completed. However, this requires modification

of the scheduler, and most widely available threads packages do not allow such modifications.

A second approach is to have a separate thread check for operation completion. and

enable blocked threads to be scheduled following the completion of the operation. However,

this creates additional overhead associated with the scheduling and execution of this polling

thread. For this reason, Chant employs a third approach. In this approach a thread

polls for itself (this is done under wraps, the user has no control nor knowledge of the

polling mechanism). Wnen a thread calls a blocking Chant operation, the system calls the

corresponding non-blocking .MPI operation. The system then checks to see if the operation

has completed, and if not, it yields the processor to a ready thread. Once the thread

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4.PTER 4. CHANT 56

returns to the processor, it again checks if the non-blocking operation has completed. If

not. the thread again yields the processor to a ready thread. This cycle continues until

the operation completes. Although this approach introduces additional overhead due to

unnecessary context switches, we feel it is the best solution available to us at this time.

3 Remote Service Requests and Remote Thread Operations

Remote service requests (RSRs) are used to perform operation on a remote processor. They

are different from point-to-point messages in that the destination processor is not expecting

the message. RSRs can be used for any operation. but common examples include getting

the value from a remote address space (remote fetch), executing a function remotely (remote

procedure call), and processing system requests necessary to keep global state up-to-date

(coherence management).

l\Iany RSRs require some acknowledgment to be sent back to the requesting thread.

It is, therefore, important to handle requests in a timely fashion, to minimize the time

the requesting thread is blocked awaiting acknowledgment. However, since MPI does not

support interrupt driven messages, Chant was designed to use a polling mechanism by which

RSRs can be checked without interrupting a computation thread.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4.PTER 4. CHANT 57

Chant has accomplished this by creating a system controlled thread at initialization

called the seruer thread, which is responsible for recehing and handling all RSRs. Using one

of the polling techniques outlined earlier, the server thread continually issues non-blocking

receive requests for any RSR message. The RSR messages are different from point-to

point messages because they are sent to. and handled by, the server thread, instead of a

computation thread. \Vhen an RSR message arrives, the server thread gets control of the

processor. and handles the request.

\Vhen working with threads in a distributed environment, there are certain thread op

erations that may have global significance. Creating a thread on a remote processor, joining

a remote thread (blocking until the joined thread has terminated), and releasing a thread

blocked on a join are the only such function currently supported by Chant. Future enhance

ments might include global mutexes and semaphores along with their associated functions,

as well as other functions with global significance. To accommodate global thread oper

ations, Chant uses a processor identifier as a parameter to thread functions with global

significance. To carry out global thread operations, Chant uses the RSR mechanism dis

cussed above. For example, to create a thread on a remote processor, Chant sends an RSR

to the remote processor, requesting that it create a new thread. The remote processor cre

ates the thread and then returns the global TID to the requesting thread. Other existing

global thread operations are carried out in a similar manner, while future enhancements

would likewise be carried out in a similar manner. The other currently supported remote

thread operations are as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4.PTER 4. CHANT 58

• Joining a thread. Joining a thread causes the calling thread to block until the joined

thread terminates.

• Detaching a thread. Detaching a thread allows the data associated with a detached

thread to be freed upon its termination.

• Unblocking a thread. Any thread may release, or unblock, a thread that has blocked

on a condition.

4 Ropes and Data Parallelism

l\Iost current light-weight thread systems do not provide support for collective operations

and relative indexing among threads. Such operations are commonly used in data parallel

programs. For example, consider a simple data parallel algorithm for computing the sum

over a distributed array (see Figure 4.2). In this example, each thread will compute its local

sum, and then participate in a global reduction to obtain the total sum. To execute this

example as a set of distributed threads in the midst of other thread activity. and without

involving the other threads, a scoping mechanism is needed for identifying the threads that

\Vill contribute to the global reduction. Ropes [28] provide this mechanism.

The key to collective operations is the ability for the programmer (or compiler) to spec

ify the scope of the operation; that is, the entities that will be involved in the operation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CHA.NT

Original Array

l J.
... ·· ..
: ·· ..

~----------__, r-----------~

In
In •

Cl C2

In 111

In
In

)
'· ·.

C3

I T1 I I I •

In

Figure 4.2: One-dimensional array distributed among four threads in a rope

59

Collective operations are typically supported at the process level by the underlying com-

munication system [16], or by standard communication interfaces [20. 46]. For example.

l\IPI (20] provides a mechanism for process scoping called groups. However, support for

grouping threads within a process is not currently supported by either l\IPI or existing

thread-based runtime systems. Yet, such support is clearly needed if threads are to perform

collective operations on a subset of the threads in the system.

Relative indexing allows the programmer to specify spatial relationships among the

parallel execution units that express the natural "neighboring" relationships in data parallel

programs. \Vithout support for relative indexing among threads, the programmer would be

required to assign relative identifiers to the threads. Also, with proper support for mapping

processes to processors, relative indexing can also be used to optimize performance by

ensuring that an algorithm is correctly mapped onto the underlying topology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CHANT 60

4.1 Requirements

A system for implementing collections among a set of threads (i.e .. ropes) must satisfy the

following requirements:

1. The collections are entities whose members can span processor boundaries. and thus

their identifiers must be unique within the system.

2. Each collection must keep track of its constituent processors and threads, and opera

tions to add and delete from this list must be performed atomically.

3. Thread ranks within a collection must be unique, so that there exists a one-to-one

mapping between the thread identifier with respect to the processor (global thread

id). and the thread identifier with respect to the rope (relative index).

4.2 Rope Servers

The requirements listed in the previous section are typically satisfied by having a centralized

name server, responsible for allotting rope identifiers and for performing atomic updates

to the internal data structures. Distributed algorithms for name servers [39] and atomic

operations [35] are well known, but their added overhead and implementation complexity

are often unwarranted in an initial design. However, a centralized solution for naming and

updating ropes will certainly cause hot-spots. Therefore, our initial design is a two-level

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CHANT 61

approach. derived from the idea of two-level page management schemes for distributed

shared memory systems [2], that allows the user to control the contention among servers by

dividing the work between two types of servers:

1. a single, global name server used to allot identifiers for new ropes, and

2. a rope server associated with each rope, which is responsible for all modifications and

requests pertaining to that rope.

4.3 Relative Indexing

Spatial relationships play an important role in data parallel algorithms. l\Iost communi

cation systems provide a linear ordering of the participating processors. which allows for

relative indexing of the processors independent of their actual system address. For example,

processes in an MPI group are numbered from 0 to n-1. In addition to supporting collective

operations, ropes provide a relative ordering for a set of threads that is independent of their

actual global address. Thus we say that each thread within a rope is assigned a unique

rank. starting with zero and increasing linearly. This makes it possible to send a message

from thread i to thread i + 1 \vithin a rope, without regard to the physical location of the

thread. Spatial ordering can also be used to gain performance by exploiting the underlying

connectivity of the architecture. However, for this to happen the user must be able to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CHANT 62

specify a mapping of threads to processes (allowed in Chant) and processes to processors

(allowed in MPI).

To support relative indexing, the system must provide a one-tcrone mapping between

the rank within a rope and the global address of a thread. This is accomplished via a rope

translation table to store and retrieve this mapping information. If the translation table

is kept in a centralized location, then remote references would be needed for translating

all relative indices, which would be prohibitively expensive. Therefore, we replicate this

information, and keep a copy of the table on each processor participating in the rope.

Figure 4.3 depicts the data structure for the local rope table.

2

n

Local Rope Table

•
•
•

Rope Entry
Rope Server Identifier
Consistency Requirement
Context List
Local Thread List
Rope Translation Table

Figure 4.3: Data structure for local rope table

Borrowing from earlier work in the area of page coherence for distributed shared memory

systems [3], two options were adopted for keeping the distributed translation tables consis-

tent: new information is broadcast so that all tables are kept up-tcrdate at all times (strong

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CH~41VT 63

consistency). or tables are allowed to remain out-of-date until a reference for a thread is

generated, causing the information to be retrieved and stored in the local table (weak con

sistency). If each thread in a rope communicates with only a small number of other threads

in a rope, then the weak consistency model should result in better performance since the

creation cost is so much less. If, on the other hand. each thread in a rope ·will communicate

with many other threads in the rope, the strong consistency model should result in better

performance. Determining the crossover point for a given application is an open question

depending on the overheads of the two approaches. Therefore, Chant supports both strong

and weak consistency on a per-rope basis, by providing an argument to the rope creation

routine to specify the consistency requirement. Note that such a system (weak consistency)

only works for non-mobile threads.

4.4 Collective Operations

l\IPI provides the group facility for specifying which processes \vill participate in a collec

tive operation, and ropes extend this idea to the thread level. To do this, each processor

participating in a rope must know the other processors in the rope, as well the list of local

threads in the rope. This information is maintained for each rope in a rope table (refer to

Figure 4.3).

In order to take advantage of system-specific optimizations for collective operations

among processors, all collective operations among threads are performed in two steps: at the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CHANT 64

intra-processor level, and the inter-processor level. For example, consider the rope_barrier

operation, which performs a barrier synchronization among all threads in a rope. The

barrier is performed first among the threads within each processor separately. and then

among the processors, as described by the following algorithm:

1. Each thread. upon executing a barrier command, increments a counter monitoring

the number of threads within the rope that have reached the barrier. If the counter

is not equal to the number of local threads participating in the rope, the thread will

block on an appropriate event.

2. If the counter has reached the number of local threads participating in the rope (this

information is stored in the rope table, see Figure 4.3), an RSR message is sent to the

rope server for this rope. The thread then blocks on the appropriate event.

3. \Vnen the rope server has received a message from each processor in the rope. an

RSR message is sent to each of the participating processors, informing them that the

barrier has been completed.

4. The participating processors receive this RSR message and trigger the events for the

local threads, thus completing the barrier.

Ideally, processor-level primitives from MPL such as /e.tfPLBARRIER, should be used

to replace steps 2 and 3 in the algorithm. However, the lvfPLBARRIER is a blocking calL

and when invoked by the final calling thread on the processor (step 2), would block the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CHANT 65

entire processor, including any threads on that processor not related to the rope. This

would inhibit one of the key features of a multi-threaded system: the ability to overlap

useful computation (in the form of ready, waiting threads) with long-latency, blocking op

erations. Thus, the implemented algorithm does not use A-fPLBA.RRIER, but rather a

simple message-combining algorithm that allows other ready threads to execute while the

barrier operation proceeds. Should MPI ever support non-blocking collective operations,

they would be incorporated into the design as mentioned.

Other collective communication operations, such as reduction functions, can be imple

mented in a similar two-le\·el fashion.

This chapter has discussed the lower layers of Chant, our distributed memory commu

nicating threads system. \Ve have discussed the design of the point-to-point communication

layer, including ways to target specific threads, and ways for polling for messages without

blocking the entire processor. Furthermore, we described the RSR layer, discussing the

use of a special purpose system thread running on each processor. These layers are inte

gral to the design of both the thread migration and the load balancing layers. Finally, we

discussed the concept of ropes, which support collective operations and relative indexing.

At this time, load balancing is not supported within ropes, and therefore this layer has no

effect on the migration and load balancing layers. However, as ropes are an important part

of Chant, and possible future work could concentrate on load balancing within ropes, we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CHANT 66

felt it was appropriate to introduce this concept here. In the next chapter. we will discuss

the design and implementation of the thread migration layer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Thread Migration

In a shared memory environment. thread migration is a relatively straightforward concept.

This is due to the fact that all memory is directly accessible by the thread. thus data need

not be moved. \Vhile deciding when to migrate a thread may be more difficult. due to

effects such as data locality, the actual mechanism for performing the migration is fairly

straight forward. Migrating threads in a distributed environment, however, is a much more

difficult task.

In this chapter, we provide the fundamental design of thread migration. \Ve follow this

by addressing the problems we encountered when designing the thread migration layer for a

distributed memory environment. Furthermore, we present our solutions to these problems

and give a detailed description of the implementation.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4PTER 5. THRE.4D !viiGRATION 68

1 Fundamental Design

Thread migration allows a thread residing on one processor to move to another processor.

The basic design of a thread migration mechanism is independent of whether the thread is

running in a shared-memory or a distributed-memory environment. The basic migration is

performed in three steps:

1. The thread is halted, and its stack. TCB, and any other necessary state information

is packed in a buffer.

2. The buffer is sent to the destination processor, and the thread is removed from the

source processor's run queue.

3. The destination processor unpacks the thread's state. TCB. and stack, and puts the

thread on the run queue.

Following these three steps, the thread is ready to run on the destination processor and

no longer exists on the source processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. THREAD .1\IIGRATION 69

2 Issues to be Addressed

As was mentioned in Chapter 5, this work concentrates on the thread migration model that

allows a thread to migrate at arbitrary suspension points during its execution. This model

presents some difficult problems involving the maintenance of pointers as well as supporting

point-to-point communication in the presence of mobile threads.

It is important to point out that, for this implementation, \Ve assume a strict homo

geneous SPMD programming environment. That is, the same source code is running on

each processor and all processors are identical. This is a very important assumption since

supporting thread migration in a heterogeneous environment introduces many additional

issues. By assuming homogeneity we need not worry about data and instruction represen

tations, nor do we need to worry about instruction and function locations. This is because

global variables and procedures reside in the same location regardless of the processor.

There are several issues involving the use of pointers and support of point-to-point

communication that arise in the design of a thread migration mechanism. ~Iaintaining

pointers is difficult for a number of reasons. If the pointers refer to data in the thread's stack,

then they will only remain defined if the stack is placed in the same memory location on

the destination processor as on the source processor. Additionally, if the pointers reference

data within the heap, either the heap data must be migrated along with the thread, or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. THREAD :MIGRATION 70

there must be a mechanism for a remote data access. since the data will not reside within

the new address space.

There are several "solutions" that have been proposed for the pointer problem. Some

systems do not allow the use of pointers in migratable threads, while others allow pointers to

become undefined following migration [44, 45. 36]. Others still. require the user to maintain

pointers to heap data and make users responsible for migrating heap data [38]. All these

'·solutions" restrict the use of such common data structures as linked lists and trees. and

are not considered practical solutions.

Another solution is to perform all memory allocations on all processors, resen;ng the

memory locations for each thread and its associated data in case a thread must migrate

[9, 12]. In this approach, when a thread migrates, all its associated data can be stored in the

same memory location on the destination processor as on the source processor. This results

in severe memory restrictions on the system. Moreover, the number of threads is limited

by the memory capacity of a single processor, regardless of the total number of processors.

Some systems use a specialized type of pointer, a ·'global" pointer [22]. \Vith this

method, a ··pointer" is a data structure that defines both the processor on which that data

resides, and a local pointer to the data that is valid within the specified processor. This

requires a more complex data access mechanism in which the owner of the data must first be

determined, and if it is not local, a remote data access request must be made. In addition to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. THREAD :MIGRATION 71

requiring more remote data accesses than should be necessary, this approach also requires

at least one level of indirection for each local memory access through a global pointer. This

overhead can cause dramatic performance degradation, particularly in a tight inner loop.

This chapter explores both the design and implementation of a more general approach,

which allows dynamic thread migration at arbitrary suspension points, direct-access pointers

for both heap and stack data, the flexibility to relocate stack and heap data at different

addresses on different processors, and continuing to support point-to-point communication

between threads. Our design requires keeping track of all dynamically allocated memory

in such a way that all the data can be transfered to the destination processor, as well as

keeping track of all pointers. so that their values can be updated upon migration, to reflect

the new data locations.

Some other issues involve message passing in a system supporting migrant threads. In

such a system. there is no guarantee that a thread resides on the processor to which a

message is sent. In this case there must be a mechanism for forwarding the message to

the appropriate processor. This problem is well studied and a common solution is the one

described by Fowler (24]. However, this solution may not be appropriate in a multi-threaded

environment. Additionally. a thread may post a receive for a message while residing on one

processor, and migrate to another before completing the receive. For this reason. there

must be a means for reposting outstanding receive operations following a migration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4PTER 5. THREAD iHIGRATION 72

Sbo:k Heap

eCJ ~ lC
I"!

Heap

s t Scad

D ~
!

I ,..,
! v I

lO

Heap Heap

s t s....k

Figure 5.1: Examples of the four types of pointers

3 Functional Requirements.

This section outlines the functional requirements of thread migration in Chant. It addresses

the different types of pointers that can exist in a multi-threaded system and the ways in

which these pointers can be manipulated. Additionally, it addresses issues arising from

the support of point-to-point communication between threads. Since threads may move,

there must be a mechanism for locating threads, and for handling communication during

migration.

3.1 Pointers to Private Data

Private data refers to data that is being referenced by a single thread. The pointers them-

selves may reside in either the thread's stack, or within the heap, and they may reference

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. THREAD AIIGRATION 73

data located in either the stack or heap. This results in four possible pointer types, as

depicted in Figure 5.1:

1. A pointer located in the thread stack and referencing a data item in the stack.

2. A pointer located in the thread stack and referencing a data item in the heap.

3. A pointer located in the heap and referencing a data item in the thread stack.

4. A pointer located in the heap and referencing a data item in the heap.

3.2 Pointers to Shared Data

Sharing data between threads can occur in two ways in terms of pointer use. The first is

the use of pointers to global data. Global data refers to data that is declared statically

by the process. outside any threads or functions. Since all threads within the process have

access to this data, any thread can use a pointer to reference it. These pointers remain valid

by default due to the strict homogeneous SP~ID assumption. This is because global data

resides in the same location on each processor, thus the pointer values remain the same. It

is important to point out that this data is global only in a per process sense. That is, it is

not accessible to remote processes but has global scope within its own process. A second

method of sharing data between threads occurs when pointers from two or more threads

reference the same location in the heap.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. THREAD ;MIGRATION 74

While the first method for sharing data can be accommodated in a relatively straight

forward fashion, the second method is considerably more difficult and is a problem that has

not been solved in a satisfactory manner for this work.

3.3 Pointer Manipulation

The ways in which a pointer can be manipulated can be subdivided into three main cate

gories: assignments, updates, and pointers as formal arguments. A general solution to the

problem of migrating threads containing pointers should accommodate all three of these

categories.

Assignment refers to changing the value of a pointer. This includes assigning to the

pointer the address of newly-allocated memory, the value of another pointer. or the address

of a variable. Since pointer assignment is such a common operation, it is very important to

minimize the overhead associated with these operations. For example, traversing a linked

list via an auxiliary pointer performs at least one pointer assignment for each element in

the list.

Updates refer to changing the value of the data that the pointer references. It is impor

tant that all such updates survive thread migration. That is, it is not sufficient to ensure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. THREAD .MIGRATION i5

a pointer references a valid memory location following migration. but that the value refer

enced by a pointer following migration is identical to the value that was referenced prior to

migration.

The integrity of pointers as formal arguments must also be protected. For example,

consider a thread that is migrated while invoking a function call. and that has at least one

pointer as a formal argument. If the function later updates the pointer, the data being

referenced must be the same as it was prior to migration.

3.4 Handling Communication

If the thread system supports point-to-point communication between threads. then other

considerations must be taken into account. These include tracking the location of the

threads. If thread A wants to send a message directly to thread B. then the system must be

able to locate thread B. This is necessary so that thread A can send the message directly

to the processor on which thread B resides, and thread B can receive the message directly,

with no intermediate buffering.

Additionally, a thread may post a receive request, and migrate to another processor

before the receive has completed. In this situation, the receive request must be re-posted

following the migration. This is due to the fact that the underlying communication library

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4.PTER 5. THREAD .MIGRATION 76

on the destination processor will have no knowledge of the original request, and will be un

able to place the message, once it arrives, into the appropriate memory location as specified

during the original request.

Finally. a mechanism for forwarding messages must be included. If a message arrives

for a thread that has migrated, that message must be forwarded to the new location of the

target thread. Additionally, a message may have already arrived, prior to the completion of

the receive operation. This would mean the message resides in user space, but the user has

no way of detecting this fact following the migration. This message must also be forwarded

to the destination processor, so the migrant thread can complete the receive operation.

\Vhile there has been work done on message forwarding at the process level (e.g. [24]), we

know of no work on message forwarding at the thread level.

4 Supporting Pointers

This chapter presents the design of a new thread migration system, which supports point:ers.

The design revolves around two basic concepts. The first of these concepts is the use of

a private heap for each thread. This private heap is allocated from the processor's heap

as a contiguous block of memory at thread creation time. All dynamic memory allocation

performed by the thread occurs within the private heap associated with the thread. This

facilitates the calculation of offsets for the purpose of updating pointers following migration,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. THREAD MIGR.4TION 77

and allows us to migrate all of the thread's heap data. in a single message. The second

concept is keeping track of all valid pointers, which allows all of them to be updated following

migration.

This design for thread migration requires the addition of a few new data structures and

user-level functions, which we present below.

4.1 Auxiliary Data Structures

To ensure that heap variables reside in a contiguous block of memory that can be easily

moved. each thread uses a private heap. This thread heap is allocated from the process heap

space. where the size can be specified by the user at thread creation time. For efficiency

purposes. this heap is allocated as part of the thread's stack. Essentially, the stack and heap

are one and the same, with the only difference being that they grow in opposite directions.

This means the stack and heap are part of the same contiguous block of memory.

For the purpose of memory management within a thread's private heap, Chant provides

specialized memory allocation and deallocation routines. It maintains of a list of free blocks

of memory within the heap and utilizes two fields at the front of each memory block. One

field stores the size, in bytes, of the block of memory, while the other stores a flag indicating

if the block is free or in use. \\'"hen a thread attempts to allocate a block of memory from

its private heap, the following steps are taken:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 5. THREAD !YIIGRATION 78

1. Adjust the requested size to make sure the block is double word aligned.

2. Adjust the size requested to reserve space for the size and status fields at the front of

the block.

3. Traverse the free list until a block of sufficient size is found:

• If no block can be found to accommodate the request, merge all adjacent free

blocks.

• Search for a block of sufficient size one more time.

• If there is still no block available to satisfy the request, return an error.

4. If the size of the block is equal to the requested size, remove the block from the free

list.

5. If the block is larger than the requested size:

• Allocate the requested block size from the end of the free block.

• Adjust the size field of the free block to indicate the remaining size of the block.

6. Set the status field of the newly allocated block to indicate it is in use.

7. Return a pointer to the ne\vly allocated block.

Releasing a block is much simpler. The status field is set to indicate the block is available

and the block is added to the free list.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. THREAD JviiGR4.TION 79

free

frcc_list

~u"LL

pl_lable

Figure 5.2: Example of the free_list for pt_table

These two routines allow for the efficient management of the thread's private heap.

It is also necessary to keep track of all the pointers being used by the thread, and this

is done using a table, the pt_table, whose entries consist of two fields: addr and free. The

addr field is used to hold the address of the pointer itself, and the free field is used to

facilitate the creation of a free list of table entries. The table itself (depicted in Figure 5.2)

is statically allocated at the front of the thread heap during thread creation. Again, the

size of the table can be controlled by the user at the time of thread creation.

Finally, the thread control block (TCB) of migratable threads must be supplemented to

contain an additional four fields: pointer to the base of the thread's private heap. the size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. THREAD 1\JIGRATION 80

of the thread's heap, the size of the thread's pt_table, and the head of the free list. These

fields are added to the Chant TCB associated with each thread.

4.2 Auxiliary User-level Functions

Our thread migration system relies on the fact that the runtime system knows about all

active pointers within a thread. Therefore. a mechanism is needed that allows all active

pointers to be registered. \Vithout compiler support we assume that the user will insert the

pointer registration calls, though it would not be difficult to modify a compiler to insert the

calls automatically.

To register a pointer, a free entry in the pt_table must be found, and the addr field

of this entry set to the address of the pointer being registered. Code for this function is

depicted in Figure 5.3(a), where the function find....free_entry locates and removes the

next element from the free list. The system requires that users register all pointers before

they are used, including pointers in dynamically allocated data structures and pointers that

are formal parameters to functions.

In conjunction with a registration function, a function is needed to release pointers when

they are no longer being used, or when they go out of scope. This prevents the pt_table ta

ble from overflowing and prevents stack memory from becoming corrupted following thread

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4.PTER 5. THREAD JviiGRATION

int pt_register(q)
void •q:

int i = find_frec_entry():
pt_table[i].addr = q:
return error_codc:

(a)

int pt_relcase (Q)

void *q:

int i = find_index(q):
pt_uble[i].addr =NULL:
add_to_free_list (i):
return error_code:

(b)

Figure 5.3: Code for (a) registering and (b) releasing pointers

void* thr_malloc (size)
int size:

thread_t •t = thread_self():
void* heap= find_heap(t):
void* p = find_block (size. heap):
I* This will include memory managment

within the thread·s private heap*/
return p:

Figure 5.4: Code for thread specific malloc

81

migration. When a user releases a pointer, the pointer must be found in the pt_table and

added to the free list. Code for the release function is depicted in Figure 5.3(b).

\\~hile adding an element to the free list is straightforward, finding the element from its

address requires a search. A simple linear search will cause on average n/2 comparisons per

release where n is either the size of the table or the highest index of a valid pointer. whichever

is smaller. However, advanced searching and hashing techniques may be employed in the

future to reduce this overhead.

Finally, thread-specific malloc and free routines for managing memory in the thread's

heap are also needed. Code for the former function is given in Figure 5.4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 5. THREAD ~fiGRATION 82

4.3 Updating Pointers

Migrating a thread takes place from two perspectives. sending data and receiving data.

The source processor sends data to the destination processor, which processes this data.

Figure 5.5 gives an outline of the steps taken by each.

Source Process

Send size of thread's stack
Send Open Threads TCB
Send Chant TCB
Send Thread's stack
Receive thread's new local thread id
Inform other processors of new location of thread
Forward mess:~ges intended for thread

Destination Process

Receive size of thread's stack
Receive Open Threads TCB
Receive Chant TCB
Receive thread's stack
Send new local thread id to source
Update pointers
Repast outstanding receives

Figure 5.5: Steps taken to migrate a thread

The source processor first sends a message informing the destination processor that a

migrant thread is about to arrive. This message contains the size of the migrant thread's

stack. The source processor then sends the Open Threads TCB followed by the Chant

TCB. To complete the actual migration, the source processor sends the migrant thread's

stack to the destination processor. Thus, the source processor sends four messages to the

destination processor to migrate a thread. After the thread has been migrated, the source

processor receives, from the destination processor, the new local thread id of the migrant

thread. This new thread id is sent to all the processors allowing each processor to update

the thread's location for future communication. Finally, the source processor leaves a stub

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 5. THREAD 1\JIGRA.TION 83

of the migrant thread for the purpose of forwarding messages. This message forwarding

mechanism will be explained in Chapter 5.2.

The destination processor receives a message letting it know a thread is about to arrive,

including the size of said thread's stack. The destination processor then allocates memory

for the arriving thread's stack, its underl~ing thread package's TCR and its Chant TCB.

Next the two TCBs are received and the fields updated as needed (some fields have processor

specific data that must be updated to reflect the new processor on which the thread resides).

Next the thread's stack is received from the source processor and stored in the newly

allocated memory. Some bookkeeping is required to handle pointers and communication.

This is described in more detail below. Finally, the thread is added to the run queue of

the destination processor. \Vhen it gets control of the processor, the thread will resume by

executing the same instruction it would have executed had there been no migration, making

the migration seamless.

Following a migration, the data referenced by pointers will most likely reside in different

memory locations. This means that, after a migration. the values of pointers are no longer

valid. Consequently, the value of both user-level pointers and system pointers must be

updated on the destination processor if they are to remain valid.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4PTER 5. THREAD !viiGRATION 84

User Level Pointers

Following a migration, the migrant thread's pt_table is available to the system. To update

the pt_table. each valid entry in the pt_table (addr != NULL) is examined. By knowing

both the base of the old stack and heap (available from the thread control block) as well

as the base of the new stack and heap, the addr field of the pt_table entry can be used to

calculate the new address of each pointer. These new addresses are then placed in the addr

field of the table.

The values stored in the pointers themselves also need to be updated, since the location

of the data that they reference has now changed. Since the new address of the pointer has

been computed, the pointer can be accessed directly and its current value, i.e., the value on

the old processor, can be examined. The following scenarios are possible:

• If the pointer is NULL, then it is not referencing anything and should be left alone.

• If the pointer references global data, then nothing is done since it is assumed that the

global data is located at the same addresses on all processors.

• If the pointer references data in the stack or heap, then the same address computa

tion that was done for the pointer addresses is applied, and the value of the pointer

updated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. THREAD 1\JIGR.A.TION 85

An example of this calculation is shown next. Consider a thread with a pointer residing

on the stack, which references data residing in the heap. Let the thread migrate from

processor A to processor B, with the following pertinent values:

Processor A Processor B

• heap base: 1000 • heap base: 1500

• stack base: 200 • stack base: 550

• pointer address: 226 • pointer address: 576

• pointer value: 1013 • new pointer value: 1513

The pointer has an offset of 26 (226-200) from the base of the stack. This translates to

an address of 576 (550 + 26) on processor B. The system now accesses memory location

576 on processor B and retrieves the value 1013. This is an offset of 13 (1013-1000) from

the old base of the heap, and translates to a new value of 1513 (1500 + 13) on processor

B. The system now updates memory location 576 with the value 1513, and the pointer in

question now references the correct data.

A final note on user-level pointers: it is essential that the value of a pointer is checked

before the offset is applied. This is due to things such as linked lists, which use NULL as a

terminating pointer. Updating this final pointer from NULL will result in a non-terminated

linked list and will eventually lead to undefined results in the user-level code.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 5. THREAD AJIGRATION 86

System Pointers

\Vhen we use the term system pointers. we are referring to three different sets of pointers:

pointers used by Open Threads, pointers used by Chant, and machine dependent pointers.

Open Threads has, within its TCB, only two non-machine dependent pointers that must

be updated. The first is the location of the thread's stack. This field is filled in with the

new location of the thread's stack following its allocation. The second is used for queue

management. This pointer is automatically updated properly when the migrant thread is

put back onto the run queue following migration.

The Chant TCB has only one pointer that must be updated following a migration. This

is the pointer to the Open Threads TCB. This field is simply filled in following the allocation

of the Open Threads TCB. This is the only field that requires updating because all the lists

used by Chant are stored as arrays within the Chant TCB, and are thus automatically filled

in when the TCB is received.

This work has been implemented in a strict homogeneous SPl\ID environment, running

on a network of Sun Spare workstations. In this environment, most of the machine depen

dent system pointers are maintained by default. This is because instruction addresses are

the same regardless of process, i.e., pointers such as return addresses remain valid following

a migration, while other system pointers are actually offsets into the stack, and hence are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. THREAD AIIGRATION 87

not affected by the migration. Two exceptions. however, are the stack pointer and frame

pointers. During a context switch, the current stack pointer is stored in the Open Threads

TCB. Following a migration this stack pointer is updated the same way as user-level pointers

are updated. by applying the aforementioned offset to the old value.

Upon a procedure call. a new stack frame is created at the top of the stack. \Vithin this

stack frame, there is a frame pointer, which is a pointer to the previous stack frame. This

frame pointer is located at a machine dependent offset from the current stack frame. This

frame pointer is the address of the previous stack frame, and not an offset within the stack.

Clearly this must be updated using the same offset as discussed above. However, each stack

frame has a frame pointer, referencing the previous stack frame. which is the stack frame

of the calling procedure. Therefore the entire stack must be traversed, applying the offset

to each frame pointer, and then using the new value to access the previous stack frame.

This continues until the frame pointer is NULL, indicating the first stack frame has been

reached.

At this point, all the pointers have been updated and the thread can be put on the run

queue of the destination processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 5. THREAD AJIGRATION 88

This implementation is specific to the Spare architecture, and porting Chant to another

architecture could possibly require significant changes to the current implementation. How

ever. these changes should only affect the maintenance of system pointers. The solution we

have described for user-level pointers is architecture independent.

5 Handling Communication

In our system, a thread can send a message directly to another thread residing in a different

address space. This raises some issues if the threads are allowed to migrate. First, the

system must globally maintain where each thread is currently residing. Second, messages

that arrive for a thread, after the thread has migrated elsewhere, must be forwarded. Finally,

if threads may migrate while receives are pending, these receives must be reposted on the

destination processor.

5.1 Maintaining the Location of Specific Threads

Since we want to allow point-to-point communication between threads, it is important

that each processor maintains a relatively up to date table specifying where each thread

resides. This is done by assigning a global thread id (TID) to each thread upon its creation.

Each processor keeps a translation table, which is used to convert a global TID to a tuple

consisting of <processor, local TID>, which in turn is used for communication.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 5. THRE.4D ;MIGRATION 89

After a thread migrates to another processor, the source processor waits for a message

from the destination processor informing it of the new local TID of the migrant thread.

The source processor then uses the RSR layer to broadcast the new <processor, local TID>

tuple. along with the thread's global TID. to every other processor in the computation.

Each processor then in turn updates its translation table, allowing messages to be directly

sent to the thread on the new processor. rather than being forwarded by the old processor.

Each processor also responds to the source processor with information needed to forward

any messages sent to the migrated thread on the source processor, but not received.

This approach does add non-negligible overhead to the migration operation and raises

questions of scalability. Since one message is broadcast, and another gathered from every

processor. as the number of processors increase so will the overhead. However. for a single

migration, this overhead remains low, even for a large number of processors. For this reason.

this approach should scale reasonably well if the number of thread migrations is relatively

low. However, if an application uses frequent migration, this approach will probably prove

inadequate when running on a large number of processors. Thus, this approach needs to be

studied further if large numbers of processors are to be used.

5.2 Forwarding Messages

Let's consider a computation in three processors, PO, Pl, and P2, in which thread X has

just migrated from P 1 to P2. The system must handle all unprocessed messages sent from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4.PTER 5. THREAD 1\JIGRATION 90

PO to P 1 that were intended for thread X. If we wait to deal with forwarding messages until

after PO has been informed of thread Xs new location, we can assume that all messages

that need to be forwarded have already arrived at processor Pl.

\Vith this assumption, there are two scenarios to be considered. The first scenario is as

follows: thread X posted an asynchronous receive prior to migration, the message arrived

and is in user space on P 1. but the thread has not checked for completion of the receive.

Thread X has no way of knowing the message had arrived once it has migrated to P2, and

thus the message residing in user space on P 1 must be forwarded to thread X on P2.

The second scenario is as follows: A message has been sent from PO, intended for thread

X. but thread X has not posted a receive for this message. In this situation the message

is stored in a system buffer waiting for a matching receive. This message must also be

forwarded to thread X on P2.

As has been explained pre..,;ously, in a multi-threaded environment it makes little sense

to use synchronous receive calls, since these will block the entire processor. Chant, there

fore, forces all receives to be asynchronous, and returns a handle with which to check for

completion. In our system, each processor keeps track, on a per processor basis, of the

number of messages that have been sent to each thread in the computation. That is, pro

cessor PO knows how many messages have been sent from PO to P 1 intended for thread

X. Additionally, each thread maintains a list of unprocessed receives. Wben a receive is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 5. THREAD :MIGRATION 91

posted. the posting thread stores in this list the tag, handle, message size, and address of

the buffer into which the message is to be received. Each thread also keeps track of the

number of messages that have been processed from each processor. \Ve first explore our

message forwarding system below ignoring the issue of message tags.

After it has updated its translation table with thread Xs new location, processor PO

sends a message to P 1, indicating the number of messages intended for thread X that have

been sent from PO to P 1. At the same time. thread X has kept track of the number of

messages it has processed from PO. The difference between these two numbers represents

the number of messages that must be forwarded to P2. \Vhen thread X migrates to P2, a

stub remains on P 1 for the purpose of forwarding messages. This stub has access to all the

private data the system maintained for thread X.

This leaves us with two possible situations on processor Pl. First, there may be more

messages that need to be forwarded than unprocessed receives. In this situation, we know

that all posted but unprocessed receives must have completed, and the messages are in

thread Xs user space. The difference between the number of messages sent and the number

of receives posted represents the number of messages that are in the system buffer waiting for

matching receives. The stub on P 1 uses the handles stored in thread Xs list of unprocessed

receives to complete each receive, and forwards the buffers (the address is stored in this list)

to P2. Then, for the messages that have not been received, the stub simply posts receives

to retrieve the messages from the system buffer, and forwards the messages to P2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4.PTER 5. THRE.4.D AfiGRATION 92

The second situation is when there are more unprocessed receives than messages that

need to be forwarded. This indicates that all the messages that need to be forwarded have

been received by receive calls, and reside in thread Xs user space. However, we do not

know which receive calls have completed and which have not. In this situation. the stub

on P 1 simply checks each unprocessed receive for completion, using the handle stored in

thread Xs list. If the message has been received, the stub forwards the buffer to P2. A

non-completed receive means the message was not sent prior to PO updating its translation

table, and therefore the message will be sent directly to P2.

The system as described above can easily be extended to check for messages with all

possible tags. It can also be easily extended to account for messages from each processor in

the computation.

There is, however, one additional issue that arises with this approach. As stated ear

lier, a receive call can either specify the processor from which the message is supposed to

originate, or it can use a wild-card, receiving a message from any processor. Receives using

a wild-card cause a slight alteration in the message forwarding process described above.

However, receives specifying the processor cause greater problems. Suppose in the above

example, thread X, after it migrates to P2, posts a receive specifying it wants to receive

a message from PO. Suppose also that the message is sent from PO before said migration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH . .:\PTER 5. THRE • .:\D iUIGRATION 93

and must be forwarded to P2. If the message is forwarded. the underl)';ng communica

tion system thinks the message originated from PJ, and the receive operation will never

complete.

Therefore, simply forwarding the messages \\;U not work. To overcome this problem, we

bounce all messages back to the sender rather then forward them directly. That is, when a

message from PO is received by the stub on Pl, and needs to be forwarded, it is sent back

to the RSR server on PO as part of a remote service request. \Vhen the RSR server on PO

processes the remote service request, it knows the new location of thread X, so it simply

resends the message to thread X on processor P2. This way thread X receives the message

from PO, as expected. This sequence of events is pictorially depicted in Figure 5.6.

3: Forward

P2

I : Original message

Figure 5.6: Bouncing a message off the sender to the new location

The primary drawback to this system is that it requires three message transmissions,

while only two messages transmissions would be required if the message could be forwarded

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4PTER 5. THREAD lviiGRATION 94

directly. Additionally, the use of the RSR server adds overhead. The alternative is to

prohibit the user from specifying from which processor a message should arrive. However,

this limits the functionality of the message passing system and would be an unreasonable

restriction.

5.3 Reposting Receives

If a thread posts a receive and then migrates to another processor. the underlying commu

nication system on the destination processor has no knowledge of the earlier receive call.

This would result in the receive never completing. Additionally, the call cannot even be

checked for completion, since the returned handle is a pointer to a structure on the old

processor, and the thread has no access to this structure following migration. Therefore.

all outstanding receive calls must be reposted follO\ving a migration.

This is done by keeping track of all receive calls in a table. This table includes all

the parameters used in the receive call, including the buffer into which the message is to

be received. It also includes a status field, which is set to PENDING when the receive is

posted and to FREE when the message is processed. This allows easy traversal of the table,

checking for pending receives, which must be reposted.

Following the migration, the address of the buffer must be updated in the same way

as other pointers are updated (see Chapter 4.3). Additionally, all the parameters must

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. THREAD AIIGRATION 95

be extracted from the table, and are used to repost the receive. Following the reposting,

the new handle is stored in the table, so subsequent checks for completion use the correct

handle.

This chapter has addressed the design and implementation of the thread migration layer

of Chant. \Ve have discussed issues involving both the use of pointers and the support of

point-to-point communication. \Ve have also supplied various proposed solutions to the

pointer problem, and described our solution to the problem. Finally, we gave a detailed de

scription of our implementation of the thread migration mechanism. This thread migration

layer is now used to develop a new layer on top of Chant. This layer provides a generic

framework within which a user can develop a customized load balancing system. tailored

to specific applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Load Balancing

This chapter uses the thread migration mechanism discussed in Chapter 5 to describe the

design and implementation of a load balancing layer. This load balancing layer is intended

to work as a framework within which users can make use of thread migration, and a supplied

Applications Programmer Interface (API), to customize load balancing to fit their particular

needs. \Ve revisit some of the issues involved in the design of any load balancing system,

as well as introduce some additional concerns that arise in a multi-threaded approach. The

primary goal of the load balancing layer is to offer the user control over the decision making

process, while at the same time allowing the user to ignore unnecessary details.

The primary phase of load balancing is the decision making phase. In this phase the

system must decide: Is a load redistribution necessary? If yes, what processors should be

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. LOAD BALANCING 97

involved in the load redistribution? If a processor should send work to another processor,

which load units (threads) should be migrated? Unfortunately, there are no general answers

to these questions since different applications perform better under different load balancing

algorithms. That is, a load balancing algorithm that performs well for one application.

may perform poorly for another application. There are many factors that can affect this

decision making phase. For this reason, our primary goal while designing the load balancing

layer was to provide support for building customized load balancing systems tailored to

specific applications. This has been accomplished by providing a default load balancing

implementation in which the user can easily override the default choices. The level of

customization is left to the user, from nearly no user support, to a near 100% customized

implementation.

Load Balancing API

Load Balancing Function
'---------------------------

Load Balancing Functionality
'------------------------------

Load Balancing Routines

Figure 6.1: Load Balancing sub-layers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. LOAD BALANCING 98

The load balancing layer is itself built using a layered approach. consisting of three sub

layers. The sub-layers in Figure 6.1 would fit into the Load balancing layer of Figure 4.1

with the Load Balancing API being part of the Chant User Interface from Figure 4.1. The

bottom sub-layer consists of lower level load balancing routines. These routines range from

gathering state information to manipulating the run queue. The middle layer provides load

balancing functionality. These routines either determine which threads to move where, or

instruct the system to move specific threads to specific processors. The routines that are

used for decision making can be customized by the user. while the routines that instruct

the system to move threads are, by their nature. statically implemented. These routines

make use of the lower level routines to make decisions and to move threads. The top-most

sub-layer is the actual load balancing function. This is the function that is called by the

system whenever it is to attempt load balancing, i.e., enter the decision making phase. \Ve

provide a default load balancing function, but allow the user to register a customized load

balancing function that may make use of the two lower layers.

The customizability of the top two layers allows the decision making phase to range

from very simple to extremely complex. If the decision making phase is very simple, it may

be advantageous to attempt load balancing often. However, if the decision making phase

is extremely complex, the system may only wish to attempt load balancing when there

is a good likelihood that a load redistribution is necessary. This is because an extremely

complex decision making phase may take a long time to complete. If this phase is entered

often with no redistribution necessary, the system is spending a lot of time in this phase

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. LOAD BALANCING 99

that could be better spent on the actual computation. For this reason, it is important to

give the user control over how often this phase is entered.

Our load balancing mechanism extends the use of the RSR server, discussed in Chap

ter 4. Section 3, by adapting it to carry out load balancing operations. \Vhen users enable

load balancing, they specify how often the RSR server should attempt to perform load

balancing. Since the situation where load balancing is not necessary often indicates a fairly

stable system, this frequency may vary. The user can specify that the RSR server never

attempts load balancing (on a processor by processor basis), or attempts load balancing

every time it gains control of the processor. Alternatively. this frequency can vary linearly

or exponentially. A linear variation means that load balancing is attempted every nth time

the RSR server gets on the processor, where n starts at 1. and increases by one each time a

load redistribution is not necessary. The parameter n is reset to 1 following an actual load

redistribution. An exponential variation means that load balancing is attempted every nth

time the RSR server gets on the processor, where n starts at 1. and doubles each time a

load redistribution is not necessary. The parameter n is reset to 1 following an actual load

redistribution.

\Vhen the RSR server gets control of the processor, it checks to see when load balancing

was last performed. If it has been long enough (using the frequency discussed above), the

RSR server makes a call to the load balancing function. If load balancing is actually

performed, it resets the frequency counter. If no load balancing is performed, the RSR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 6. LOAD BALANCING 100

server uses the user defined frequency to indicate when load balancing should be attempted

again.

This functionality does not affect the decision making phase itself, rather it simply affects

how often the decision making phase is entered. There remain several factors that affect the

decision making phase itself. These include, but are not limited to, communication histories,

how the load is estimated, and which processors are involved in the decision making. These

factors. and others, are described in more detail below.

The rest of this chapter discusses the sub-layers of the load balancing layer in more detail.

This discussion includes descriptions of default implementations. as well as descriptions of

the information returned by the various routines provided through the load balancing API.

Furthermore, we provide brief discussion on how this information may be used to customize

the load balancing system.

1 Lower Level Load Balancing Routines

The lower level load balancing routines are used to set system parameters, manipulate the

system, and obtain both system and thread characteristics. This sub-layer is accessed by

both the user and the upper sub-layers of the load balancing layer. The characteristics set

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 6. LOAD BALANCING 101

by these routines are used by the system and the decision making phase, while the values

returned by some of these routines can be used to customize the decision making phase.

1.1 Set System Parameters

One of the most important routines in this sub-layer is the one that allows load balancing

to be enabled and disabled dynamically. This may be important for a computation that

goes through phases, some of which require load balancing, and some of which do not.

For example, consider a rendering algorithm that renders multiple images. In many such

applications, the rendering stage is the only one that requires load balancing. In such a

situation, the user may enable load balancing prior to rendering an image, disable it once

the image has been rendered, and re-enable load balancing when the next image is ready

to be rendered.

\Vhen load balancing is enabled, the user must supply three parameters. These are

upper and lower thresholds and a frequency for attempting load balancing. The upper and

lower thresholds are used by the default load balancing function to determine if a load

redistribution is needed. These threshold values are also available to any user-supplied

load balancing function. The default load balancing function will be discussed later in this

chapter. The frequency, as described above, is used by the system to determine how often

the decision making phase should be entered.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4.PTER 6. L0.4.D BALANCING 102

If a computation is running on a large number of processors, gathering information from

each processor in the computation may introduce an excessive amount of overhead. In this

situation, it may be advantageous to only include a small sub-set of the processors in the

decision making phase. A common use of this concept is to only use immediate neighbors

of the processor initiating the load balancing operations. These neighbors can be physical

neighbors. as \vith a mesh architecture. or virtual neighbors in an environment such as

a network of work stations. This is the way the Dimension Exchange and Diffusion [49]

methods work as described in Chapter 2.

This sub-layer provides a routine that sets system parameters to define the load bal

ancing domain, i.e., the set of processors to be involved in load balancing operations. This

domain can include all the processors within the computation, or any sub-set of processors.

This routine is called on each processor in the computation, and sets up processor specific

domains. Different processors may be included in different load balancing domains. This

domain may be used for any subsequent global operation.

1.2 Thread Characteristics

The routines discussed in the previous section neither affect the execution of the application

nor do they gather any information regarding the system. They simply set parameters

that will be used to decide when the decision making phase should be entered and which

processors should be included in the decision making phase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. LOAD BALANCING 103

The routines discussed in this section are used to dynamically alter thread characteristics

as well as obtain information about specific threads. These routines work strictly on a local

basis. That is, they deal with characteristics of threads residing on the processor from which

the routines are called. The routines that dynamically alter a thread's characteristics are

strictly user-level routines. That is, they are called by the application program. and never

from the system itself. The routines that gather information, on the other hand, are used

by the decision making routines. which will be discussed in Chapter 6, Section 2. Default

implementations of these decision making routines are provided, though the user has the

option of providing customized routines.

One important characteristic of a thread is its migratability. The user m&.y create

certain special threads that should remain on the same processor throughout their lifetimes.

Chant supports this by allowing the user to specify, at thread creation time. if a thread

is migratable or non-migratable. A non-migratable thread will never migrate to another

processor. A migratable thread, by default, can be migrated either by the system, or

explicitly by the user. However, there may also be a situation where a thread should be

allowed to migrate at certain times, and not be allowed to migrate at other times. For this

reason, a thread that is created as migratable, may be set to user-migratable, which means

it can only be explicitly migrated by the user, but not by the system. A migratable thread

can be dynamically switched between being system migratable or strictly user-migratable.

Additionally, we provide a routine for checking the migratability of a thread, so one never

attempts to migrate a non-migratable thread.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. LOAD BALANCING 104

Another important characteristic is how much a thread contributes to the overall load

of its processor. The overall load of a processor is equal to the sum of the loads of the

individual threads residing on said processor. By default, all threads contribute equally to

the overall load of the processor, and thus the default load of a newly created thread is L

However. some threads are known to have more work to perform than others. Thus. Chant

supports user specification of a thread's load at the time of its creation.

Often, it is impossible to predict how much work a thread has remaining, and thus

the thread's load should never be altered. However, for some applications, a thread may

have a specified amount of work to perform, such as a certain number of iterations. As the

thread performs work, it knows how much work remains. Additionally, some applications

may execute in a manner such that thread's go through cycles, where the amount of work

remaining is not important, but the current amount of work available to perform varies

with time. For situations like this, we provide a routine that allows a thread's load to be

dynamically altered. For a thread that has a specific amount of work to perform. the user

can regularly reduce the load associated with the thread. For a thread that has a varying

amount of work to perform, the user can alter the load in a manner consistent with the

amount of work the thread has available to perform.

An additional use of this functionality deals with blocked threads. 'While many suggest

the length of the ready queue is a good indicator of load [37], this may not always be true.

This would suggest that blocked threads should not contribute to the load of a processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. LOAD BALANCING 105

However, if a particular application behaves in a manner such that threads do not typically

block for a long time, it may be desirable to have blocked threads contribute some of their

load to the processor's overall load. Since different applications will have threads that block

for different durations, the amount a blocked thread contributes to the overall processor

load should be controlled by the user. \Ve have given the user this ability by allowing a

thread"s load to be dynamically altered. A user can lower a thread·s load just prior to

blocking, and raise it back to what it was after the thread is released.

\Ve also provide a routine for obtaining the amount of load a thread contributes to the

overall processor load.

A final thread characteristic that may affect the decision making phase is communication

patterns. There are two main sources for performance degradation in a distributed memory

parallel execution. The first, as we have been discussing, is load imbalance. The other

important consideration is communication overhead. The more communication required

for a parallel execution, the slower the execution is going to run. For this reason, it is

often important to attempt to minimize communication overhead, while at the same time

maintaining a balanced load. Unfortunately, these two issues can be orthogonal in many

situations, in that balancing the load typically leads to increased communication, and vice

versa. Therefore. it is important that a load balancing system attempt to minimize increased

communication at the same time that it attempts to maintain a good system load balance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. LOAD BALANCING 106

In a multi-threaded environment, this translates to avoiding separating threads that

frequently communicate with each other. Moreover. if load redistribution is necessary. it

is preferable to move threads to processors with which they communicate often. That is,

if thread A is doing a lot of communication with threads residing on the same processor

as it resides, it is a poor choice for migration. If, however, thread A is doing a lot of

communication with threads on processor X, it may be a good candidate for migration to

X.

In order to support such a functionality, Chant keeps track of the communication histo

ries of each thread \'.;thin the system. Since threads are mobile, it would make little sense

to keep this information separate from the threads themselves. Therefore, each thread has,

as part of its TCR a history of the number of messages that it has sent to each processor in

the system. Additionally, Chant keeps track of the number of messages that a thread has

received from each processor in the system. The load balancing API provides a routine for

returning this information to the user. This information can then be used in the decision

making phase in an attempt to minimize additional communication overhead.

While each of these characteristics can be obtained for a specific thread, it is often more

useful to gather statistics relating to every thread on the run queue. Therefore, the routines

for obtaining thread characteristics come in two forms. The first form is as discussed above,

where a thread is specified and a single value (or set of values as in the case of communication

history) is returned. The related routines, however, return the values of every thread on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4PTER 6. LOAD BALANCING 107

the run queue. These values are returned in an array. where the array index indicates the

offset from the front of the run queue. That is, if the values are returned in array X, X[O]

is the value associated with the thread on the front of the run queue, while X[i] is the value

associated with the thread offset i places from the front of the run queue.

1.3 Global State Information

The previous section described routines that access and alter characteristics of local threads.

However, many load balancing algorithms require global state information to make deci

sions. \Vhile it would be possible to make individual thread characteristics available to

remote processors, this would introduce a tremendous amount of overhead. Therefore, we

have made a conscious decision to allow remote processors to determine how much work

should be moved where, but to require the processors from which the threads are migrating

to determine which threads should be involved. That is, while processor A may inform

processor B that processor B must move x amount of work to processor C, it is the re

sponsibility of processor B to determine which threads should be migrated to processor C.

Processor B would use the routines discussed above to make such determinations.

An important piece of information for many load balancing algorithms is the load of

remote processors. For this, Chant provides routines that gather remote load information.

One such routine is used to obtain the processor load of a specific processor. \Vhen this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4.PTER 6. LOAD BALANCING 108

routine is called, the target processor is specified and a RSR message is sent to that pro

cessor. The calling routine then waits for a response containing the current processor load

from the target processor. Another routine retrieves the loads of a set of processors. This

set of processors can include all the processors in the computation, or just the processors

defined in the calling processors load balancing domain, as discussed earlier. The initiating

processor can use this information, along with its o\\--n processor load, to determine if a load

redistribution is necessary, and possibly what the new load distribution should be.

Other information needed by some load balancing algorithms, is the communication

history of certain processors. Though this information cannot aid in determining which

threads need to be migrated from one processor to another, it can be used to help determine

when a processor is doing a large percentage of its communication with threads on remote

processors. This may indicate that it would be helpful to migrate work from this processor

to the processors with which it is communicating. Since this information is not used by

the default load balancing algorithm, it is included so it can be used by a customized load

balancing algorithm. It is assumed the user has customized the other parts of the load

balancing layer such that the choice of threads to migrate is made appropriately.

1.4 Manipulating the System

To this point, none of the routines we have discussed have any impact on the actual execution

of an application. They have simply dealt with setting parameters and setting and gathering

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. LOAD BALANCING 109

state information. Naturally, there are routines that affect the execution of an application.

These routines deal with manipulating the system run queue, synchronization of processors,

and the actual migration of threads.

Since a customized load balancing algorithm may access threads in any number of ways,

we must provide mechanisms for manipulating the system run queue. \Ve pro"ide the user

with three separate routines for removing threads from the run queue. The first routine

allows the user to remove the thread at the front of the run queue. The other two routines

allow the user to remove specific threads from the run queue. The first of these requires the

user to specify an offset into the run queue to identify the thread. Thus thread 0 designates

the thread at the front of the run queue while thread i would reside i spaces behind thread

0. The second way to specify the thread to be removed is to provide a pointer to the Chant

TCB of the targeted thread. In addition to removing threads, threads can also be put back

on the run queue. However, threads can only be added to the end of the queue.

It is important to note that these queue manipulation routines may affect the run

queue extensively. For instance, there is no guarantee that the thread at the front of the

run queue prior to executing one of these routines, will still be at the front of the run

queue following the routine. This queue manipulation can clearly have major impact on

the way an execution proceeds. Great care should be exercised in any use of these queue

manipulation routines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 6. LO.W BALANCING 110

Certain load balancing algorithms may perform best if there is no computation being

performed by any processors during the decision making phase. This can be especially

true for complex algorithms. since other processors continuing computation may change

the overall state of the system before the decision making phase is complete. In order to

accommodate such algorithms, Chant supports the synchronization of all processors within

the calling processor"s load balancing domain. This routine instructs all the processors

\Vithin the domain to stop computation and participate in a load balancing phase. This

accomplishes two possible goals. One, it assures that there will be no change in the state

of the system during the load balancing phase. Second, it can also be useful when the load

balancing domain is small and it is beneficial to have quick responses to remote queries.

For instance, when a query is sent to get load information from one of the synchronized

processors. it is unnecessary to wait for the RSR server to return to the processor to respond

to the query, since it is sitting on the processor. waiting to respond to queries. If the

processors were not synchronized, the request would be queued on the remote processor,

and not handled until the remote RSR server regains control of the processor. Even though

there is still a latency associated with the message transfer and the processing of the query,

with synchronization at least the query is handled immediately by the remote processor.

This synchronization has been implemented so as to ensure that two or more processors

attempting to synchronize at the same time will never deadlock. This is accomplished by

using two types of RSR messages, regular RSR messages and RSR messages associated with

load balancing. \Vhen a processor is synchronized, it only receives RSR messages associated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. LOAD BAL~'VCING 111

with load balancing. Likewise, any processor that has initiated a synchronization, receives

query responses via the same format, receiving only RSR messages associated with load

balancing. This allows a processor that has initiated a s:ynchronization to acknowledge

synchronization requests from other processors, and to respond to load balancing queries

concurrent with its own load balancing phase. Furthermore. each processor keeps a tally

of the number of outstanding synchronization requests it has handled. Thus. when a syn

chronization is released. the server only relinquishes control of the processor if there are no

outstanding synchronization requests.

2 Load Balancing Routines

This section describes the middle sub-layer, which consists of various load balancing rou

tines. These load balancing routines can be divided into two types: those that can be

customized by the user, and those that are statically implemented. The statically imple

mented routines are those that actually carry out the load redistribution. The customizable

routines, on the other hand, are those that constitute the decision making phase of load

balancing. These decision making routines do not carry out any actual load redistribution,

but rather. simply return values indicating the load redistribution that should be performed.

The first of these decision making routines would be called by a centralized load balanc

ing algorithm. This routine takes as input the processor loads of each processor involved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4PTER 6. LOAD BALANCING 112

in the load balancing, be it the entire set of processors in the computation, or just those

in the calling processor's load balancing domain. This routine returns a two dimensional

array, say X. indicating how much load each processor should migrate where. The element

X[i,j} represents the amount of work that processor i should migrate to processor j.

The default implementation of this routine simply attempts to balance the current load

evenly across all processors. It does this by taking the average load of all the processors.

and indicating that processors with load above this average should migrate an appropriate

amount of work to those whose loads are below the average.

Let us use an example to explain the default implementation. Suppose we have an

application running on four processors, PO to P3. Let the array L = [5, 12, 8, 15] represent

the current processor loads of the four processors. In this example the total system load is

40. which computes to an average of a load of 10 for each processor. The algorithm proceeds

as follows:

• Processor PO has a current load of 5, which is below 10, so it does nothing.

• Processor P 1 has a load of 12. so it should move 2 units of work. Since processor PO

has load 5, processor P 1 should move 2 units of work to processor PO. This will cause

processor PO to have a load of 7.

• Processor P2 has a load of 8, which is below 10, so it does nothing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. LOAD BALANCING 113

• Processor P3 has a load of 15. so it should move 5 units of work. Processor PO has

a load of 5, but is scheduled to receive 2 units of work form processor Pl. Therefore,

P3 should send 3 units of work to PO. which would lower P3's load to 12. Processor

P 1 has a load of 12 and is scheduled to move 2 units of work to PO, so no work should

be sent to P 1. Finally, P£ has a load of 8, so P3 should send 2 units of work to P2.

If the redistribution is performed as indicated by the algorithm, each processor will have

a load of 10 following redistribution.

Another of these decision making routines can be called by an under-loaded processor

that needs to get work from other processors. This routine also takes as input the loads

of all the processors involved in the load balancing. It returns an array that contains how

much work should be requested from each processor. That is, if the return array is X, the

\·alue stored in X[ij is the amount of work that should be requested from processor i.

The default implementation simply chooses the most heavily loaded processor from the

list of loads, and indicates work should be requested from it. The amount of work to be

requested is the sum of the calling processor's loads and the most heavily load processor,

divided by two. This would cause the two processors involved to have equal loads following

the redistribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. L0.4.D BAL.4.NCING 114

A related decision making routine can be called by an over-loaded processor that needs

to send work to other processors. This routine also takes as input the loads of all the

processors involved in the load balancing. It returns an array that contains how much work

should be moved to each processor.

The default implementation simply chooses the least loaded processor from the list of

loads, and indicates work should be sent to it. The amount of work to be sent is the sum of

the calling processor's loads and the least load processor. divided by two. This would cause

the two processors involved to have equal loads following the redistribution.

The decision making routines described above are used strictly for determining what

load redistribution should be carried out. These routines have nothing to do with choosing

which threads should be involved in the suggested redistribution. Choosing threads to be

involved in a redistribution is a local decision. That is, the processors owning the threads

are responsible for deciding which threads to migrate where. \Ve provide additional decision

making routines for this purpose. These are local routines that use thread characteristics,

as described in the previous section, to select which threads should be involved in the load

redistribution.

One of these local decision making routines determines which threads to migrate to a

specific processor, based on a specified amount of work to be moved. It takes as input

the amount of work that should be moved, and the destination processor. The output is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. LOAD BAL.WCING 115

a number indicating the number of threads to be migrated, along with an array indicating

which threads should be involved. The output array designates threads based on their

offset from the front of the run queue. This output array would be used as input to the

redistribution routines discussed below. The default implementation simply traverses the

run queue, selecting all migratable threads until the requested load has been reached.

The final decision making routine is related to the one just discussed. This routine

decides which threads to migrate to various other processors, based on the amounts of work

needed to be sent to the processors. This routine takes as input an array, say Z, which

indicates how much work should be migrated to each processor. That is, Z[ij is the amount

of work that should be migrated to processor i. There are three output values: The number

of threads to be migrated, an array, say X, indicating which threads should be migrated,

and an array. say Y, indicating the destination processor of the threads listed in X. That

is. the value of X{if is the offset from the front of the run queue of the ith thread to be

migrated, and Y[ij is the destination processor of the thread indicated by X{if.

This routine is called by the processor when a specific load redistribution is requested.

The default implementation simply traverses the run queue, selecting all the migratable

threads until enough work has been selected to satisfy the request for each destination

processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. L0.4D BALANCLIVG 116

The decision making routines discussed above simply decide which threads to migrate.

These routines do not carry out the actual redistribution. Instead, the output from these

routines is used as the input for various redistribution routines. which initiate the actual

redistribution.

The redistribution routines can be separated into two types: remote redistribution

routines. and local redistribution routines. The remote redistribution routines instruct

remote processors to redistribute their load, while the local redistribution routines carry

out the actual redistribution. The remote redistribution routines make use of Remote

Service Requests, to instruct the remote processor to carry out the redistribution. The

remote processors, upon receiving the RSR message, use one of the decision making routines

discussed above to select which threads will migrate where in order to satisfy the request.

These remote processors then make use of one of the local redistribution routines to perform

the actual redistribution.

There are three different remote redistribution routines. The first of these instructs a

remote processor to send various amounts of work to various processors. This routine takes

as input an integer, say p, identifying the processor to initiate the redistribution, and an

array, say X. which contains the amount of work to be moved to each destination processor.

That is, the value of X{i} is the amount of work that processor p should migrate to processor

i. These input values are obtained from the output of the decision making routines discussed

earlier.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. LOAD BALANCING 117

The remaining two remote redistribution routines instruct remote processors to send

work to the calling processor. One of these instructs a set of processors to each send various

amounts of work to the calling processor. This routine takes as input an array. say X. that

lists the amount of work to be requested from each processor. That is, the value of X{ij

is the amount of work that processor i should send to the calling processor. This routine

then sends RSR messages to each participating processor, requesting the indicated amount

of \vork. The other routine that fits this category instructs a specific remote processor to

send a specified amount of work to the calling processor. This routine takes as input an

integer identifying the remote processor, say p, and an amount of work to be sent, say w.

This will instruct processor p to send w amount of work to the calling processor.

This leaves the local redistribution routines, which initiate and actually carry out the

migration of threads. The first of these send threads to a specific processor. This routine

takes as input an integer, say p, indicating the destination processor. and an array. say X,

indicating which threads should be migrated to p. The threads listed in X are identified as

offsets into the run queue. Thus, this routine instructs the system to send all the threads

in X to processor p.

A related local redistribution routine sends threads to various different processors. This

routine takes as input two arrays. The first array, say X, lists the threads that should be

migrated, while the second array, say P, indicates the destination processors for the threads

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 6. LO.~D BALA..TVCING 118

listed in X. Thus, the thread at offset X[if in the run queue should be migrated to processor

Pfif.

Finally. we provide local redistribution routines, which perform the actual thread migra

tion. The first of these routines allows a thread to migrate itself. This routine simply moves

the thread to a target processor. The other local routine that fits this category is the one

that actually migrates specific threads from one processor to another processor. This rou

tine takes as input an integer, say n, indicating the number of threads to be migrated, along

with an array of pointers to Chant threads, say T. indicating the threads to be migrated.

Additionally, it takes as input an integer, say p, indicating the destination processor for the

threads listed in T. That is, this routine migrates the n threads referenced by T to processor

p. Upon return, the threads have been added to the run queue of the destination processor.

Wilen the migrated thread gains control of the destination processor, it proceeds with the

same instruction it would have executed as if no migration had occurred. Typically. the

threads referenced by T are not on the run queue at the time this routine is called. The

caller must. in that case, return the threads to the run queue on the source processor, so

that the underlying thread system can do some cleaning up following the migration. The

system will know that the thread has migrated, so no additional effort is required of the

user.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. LOAD BALANCING 119

3 The Load Balancing Function

As mentioned above. the load balancing function is called by the system anytime it attempts

to balance the system load. We provide a very simple default implementation for this

function. If the local load (that is, the load of the processor calling the load balancing

function) is below a user defined lower threshold, the processor loads of all the processors

in the execution are gathered using the load gathering routine discussed in Chapter 6,

Section 1.3. This array of loads is then passed to the decision making routine described in

Chapter 6, Section 2, with a load redistribution being returned. This load redistribution is

then passed to the remote redistribution routine described in Chapter 6, Section 2, which

requests work from various processors, in accordance to the indicated redistribution. If none

of the remote processors has enough work to share, load balancing is implicitly turned off.

This is to prevent undue overhead associated with load balancing once the execution is close

to terminating. That is, there would be fewer threads remaining than there are processors.

In this case, no load redistribution will improve execution, and it will degrade performance

if busy processors are forced to exchange load gathering messages \vith idle processors.

If. on the other hand, the local load is above a user defined threshold, the remote loads

are gathered and passed to the global decision making routine intended for overloaded

processors (as described in Chapter 6, Section 2). This routine also returns a load redistri

bution, which is used as input to the local redistribution routine that sends work to various

remote processors (as described in Chapter 6, Section 2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 6. LOAD BALANCING 120

If the user has not registered customized decision making routines, this will be carried

out using the default implementations. If. however, the user has customized the decision

making routines. the default load balancing function \\ill call the user supplied routines,

which must return redistributions consistent in form with the default implementations.

These results will be passed to the non-customizable redistribution routine that will perform

the actual redistribution.

4 Customizability

As was pointed out at the beginning of this chapter. our goal is to provide a load balancing

layer that can work as a framework within which users can make use of thread migration,

and the provided APL to customize load balancing to fit their particular needs. \Ve wish

to allow the user to have near full control over the load balancing algorithm. allowing the

amount of user customization to range from almost zero to near 100%. \Ve have provided

this capability through the load balancing API as well as supplying default implementations

for all decision making routines. The customizability really arises from the ability of the

user to replace these default implementations with their own customized implementations.

Users may decide that the load balancing algorithm provided through the default imple

mentations serves their needs. In this case, no customization is performed, and the default

load balancing function is called by the system, and this load balancing function makes use

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. LOAD BALANCING 121

of the default implementations of the decision making routines. The only input required of

the user in this scenario is the upper and lower thresholds, to be used by the default load

balancing function, as well as how frequently the load balancing function should be called.

Conversely, the user may decide that the default implementations do not provide the

desired functionality. This could be the case if a very complex algorithm is appropriate for

the application. In this case, users can implement their own load balancing function and

register it with the system. This causes the system to call this customized implementa

tion each time it attempts to perform load balancing. Furthermore, this customized load

balancing function can call user-level decision making routines, or the user can customize

the default decision making routines and register those with the system as well. The user

must still specify how frequently the system needs to call this customized load balancing

function.

It is important to point out that these two scenarios. no customization and full cus

tomization, are not the only two choices. These provide the extremes of the range of

customizability. The user has the option of mbdng and matching choices from the two

scenarios. The user may feel that the default load balancing function serves the application

welL but that some or all of the decision making routines do not. In this case the user does

not register a customized load balancing function, but does register customized decision

making routines. Furthermore, some of the decision making routines may be customized

while others are left with their default implementations. In such a case, the default load

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. L0.4.D BALANCING 122

balancing function makes calls to the decision making routines. and the system ensures that

the customized routines are called if they have been registered. It is the responsibility of

the user to ensure that the customized routines return redistributions in a form consistent

with the default routines. This is due to the fact that the default load balancing function

will use the return values as input to the redistribution routines.

A customized load balancing function makes use of the lower level load balancing rou

tines discussed earlier in this chapter, as well as the decision making and redistribution

routines. Some of these decision making routines can also be customized, in which case

they also would make use of the lower level load balancing routines. The user has control

over customizing none, any, or all of the decision making routines as well as the option of

customizing the upper most load balancing function. The ability to mLx and match which

routines are customized, gives the user extensive control over the load balancing algorithm,

allowing it to be tailored to specific application.

This chapter has provided a detailed description of the load balancing layer built on

top of Chant. We have concentrated on the decision making policies, with emphasis on the

ability of the user to decide how much customization is desired. We have also introduced

the default decision making functions and the API prm-;ded for customization. Chapter 7

provides results of performance testing. This v.;ll include quantif};ng the overhead associ

ated with multi-threading and other functionalities, as well as the results of using the load

balancing layer on a small suite of test applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Perform.ance

In this chapter we study the effectiveness of many of our decisions. \Ve present the results

of timing tests for the overhead associated with multi-threading, thread migration, and

message forwarding. \Ve then test our load balancing system on a variety of test applications

under a variety of conditions. \Ve present both the performance results. plus brief analyses

of the overheads associated with the use of thread migration for the purpose of dynamic

load balancing.

Unless otherwise stated, all tests were run on a dedicated network of four Sun SPARC

station 20 workstations, model 612 (dual 60 MHz SuperSPARC processors). Each machine

was running Solaris 2.6 with full patches. Machine PO was the OS server for the rest of the

machines, all of which were auto clients. The experiments were set up with only a single

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. PERFORl\tV\NCE 124

user process running on each processor. so that the tests would not be affected by any other

processes except normal system services. The machines were interconnected via a private

FDDI Net,vork. and thus there was no external network traffic. \Ve used the MPICH version

1.0.13 implementation of MPI with debug flags turned off during compilation.

All the performance numbers were collected by taking the average of ten executions.

1 Overheads Associated with Multi-threading

There is certain overhead associated with any multi-threaded application. Here we attempt

to quantify the overhead associated with various operations in multi-threaded applications.

In a multi-threaded application, the most common overhead is that associated with

switching control of the processor from one thread to another. This is referred to as context

switch time. Additionally, our system requires the registering and releasing of pointers,

for the purpose of supporting thread migration. This introduces additional overhead to a

multi-threaded application. Finally, Chant supplies its own implementation of dynamic

memory allocation and free routines. For any application that does frequent dynamic

memory allocation, we must analyze the difference in time required to perform these different

routines. The memory allocation times reported here are for the block size required for our

implementation of the Traveling Salesman Problem. which is 148 bytes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 7. PERFOR_AiiANCE 125

Routine Time (microseconds)
Creation-termination 1297.77

Context switch 32.36
Register/ release 2.14

System Mallocjfree 3.03
Chant Mallocjfree 2.09

Table 7.1: Overheads associated with various thread operations

Table 7.1 shows the overhead associated with these various routines. The numbers

for memory allocation and deallocation are an artificial benchmark. gathered by simply

looping through a number of iterations doing malloc/free pairs. Therefore, these times

are only approximate as these numbers can be influenced greatly by a number of different

factors. including memory allocation history. Also. the Chant mallocjfree pair performs

significantly better than the system mallocjfree pair. This is because Chant it doing simple

memory management and has a lot less memory information to maintain than does the

system.

As can be seen from this table, the most significant overhead can be attributed to

context switch times. For this reason, it is important in any multi-threaded application to

limit the total number of context sv.itches. These numbers will be used in the analysis of

performance in the following sections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. PERFORNIANCE 126

2 Application Termination Detection

In a typical multi-threaded application running on multiple processors, the application

program knows it has finished its computation for a particular processor when all the threads

terminate on said processor. However, when threads can migrate between processors, this

is not sufficient. That is. just because all the threads have terminated, the processor may

be required to do additional computation if threads migrate to the idle processor. For this

reason, any application program must implement some type of termination detection on its

own. This is on top of the termination detection that has already been implemented within

Chant.

Each of the test application discussed later in this chapter use an additional user-level

thread per processor for this purpose. This thread is created at startup, and its sole purpose

is to determine when the entire computation is completed. The thread checks to see if there

are any other user-level threads on its processor. If there are. it blocks on a mutex. If there

are no other user-level threads, it goes into a busy wait, trying to receive a message from

its neighboring processor. This message is referred to as a token. \\'bile this thread waits

for the token to arrive, it continually checks to see if there are any other user-level threads

on the processor. If a thread migrates to this processor, this termination detection thread

will find it, and block again on its mutex.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER~ PERFO~IANCE 127

\\'nen a user-level thread terminates, it checks to see if it is the last user-level thread on

the processor. If it is not, it simply terminates normally. However. if it determines it is the

final user-level thread, in unblocks the termination detection thread. \\''ben the termination

detection thread wakes up, it sets its state to active. Upon receiving the token, its sets the

token value to its state, sets its state to idle. and sends the token to the next processor.

If the termination detection thread's state is idle and it receives the token as being idle.

it knows all the processors have terminated. This is a variation of Dijkstra's algorithm for

termination detection [47].

The use of this termination detection thread adds a small amount of overhead to the

computation, but is essential for proper termination when thread migration is possible.

3 Thread Migration Performance.

\Ve have implemented thread migration such that the system can migrate a thread to

another processor at arbitrary points during the thread's execution. It is our goal to show

that threads can be migrated across processor boundaries in an efficient manner with low

overhead. \Ve have tested the time it takes to migrate threads across processor boundaries

as well as the time spent forwarding messages. This section presents these test results along

with an analysis of the performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER~ PERFORNIANCE 128

3.1 Migration Times

In order to analyze the time it takes to migrate a thread from one processor to another,

two sets of tests are conducted. The first set of tests uses .MPI primitives with no multi

threading. In this set of tests, machine PO initiates a message of size m. and sends it

to machine Pl. Each processor in turn receives the message and forwards it to the next

processor. The last processor forwards it back to PO. Each test uses four processors and

consists of sending the message around this cycle 100 times. The total time to complete the

test is divided by 400 to give the average message passing time. The size of the message, m.

varies with each test run, giving us the average message passing time for various message

sizes.

The second set of tests creates a thread with stack size m on machine PO. This thread

migrates to machine P 1, which receives it and puts it on a queue. P 1 then removes the

thread from the queue and migrates it to machine P2 which enqueues it, dequeues it, and

migrates it to machine P3. P3 does the same and migrates the thread back to PO. This

loop is carried out 100 times on four processors, and the total time is measured. This total

time is again divided by 400, to get the average migration time for a thread with stack size

m. Stack size m varies using the same values used in the first set of tests.

Table 7.2 shows the results of these tests where Size is the size of the message or the

thread's stack. Communication is the average time to send a message of size m using

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. PERFORAIANCE 129

~!PI primitives (first set of tests), while !vligmtion is the average time it takes to migrate

a thread with a stack of size m (second set of tests). Overhead is simply the difference

between Communication and Migration. The times are all in milliseconds.

Size (m) Communication Migration Overhead
16K 4.1 7.6 3.5
32K 8.2 12.2 4.0
64K 14.3 18.4 4.1
128K 25.7 30.5 4.8
256K 49.8 54.1 4.3

Table 7.2: Thread migmtion time (in ms) with varying sized stacks

Since the migration takes place in several steps, we tried to account for this overhead.

~Iigration is accomplished with four messages being sent to the destination processor. These

messages are: an integer indicating the size of the thread's stack, the underlj;ng thread

packages thread control block (TCBL Chant's TCB, and the thread's stack. The underl);ng

TCB has a size of 72 bytes while Chant's TCB has a size of 4400 bytes. The size of the Chant

TCB is dependent upon the maximum number of processors used in the application and

the ma.ximum number of message tags that can be used for message passing, whose values

were 8 and 100 respectively, for these experiments. These first three messages together take

approximately 3.0 ms to send.

These numbers show that other than communication overhead, which cannot be avoided,

there is very little overhead associated with the thread migration. The small additional

overhead (ranging from 0.5 ms to 1.8 ms) can be attributed to table traversal for updating

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. PERFORlUANCE 130

pointers and a list traversal for reposting pending receive operations. This is a small price

to pay for supporting pointers and communication for migratable threads.

3.2 Message Forwarding

The previous section only studied thread transmission overhead and overhead incurred by

the destination processor. This section presents the overhead associated with forwarding

messages, i.e., the time it takes the source processor to forward messages to a migrant

thread. These tests were run on 2, 4, and 8 processors, \V;th a varying number of messages

needing to be forwarded. Each message that was forwarded was one kilobyte in size.

Number of processors
1\Iessages 2 4 8

No messages 5.5 8.1 13.7
1 message per proc 6.6 10.9 21.5
2 message per proc 7.8 13.6 28.6
3 message per proc 9.6 18.4 41.8

per message +0.51 +0.64 +0.88

Table 7.3: Forwarding overhead and per message time (in ms.)

Table 7.3 shows the results of these tests, where the first row is the amount of time spent

when there are no messages that need to be forwarded. This is overhead associated with the

forwarding algorithm itself. These numbers increase with the number of processors since

each processor must be handled separately. The next three rows show the total time needed

to forward all messages with 1, 2, and 3 messages per processor, respectively. The total

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 7. PERFOR.lHA..IVCE 131

number of messages forwarded is equal to the number of messages per processor multiplied

by the number of processors. The final row indicates the average time per message for

forwarding. The average amount of time it takes to forward a message increases with the

number of processors. This is due to the fact that the .MPI implementation we used takes

longer to retrieve messages from the system buffer when there are more processors.

These times only reflect the extra time spent by the source processors. They do not

take into account any effects of increased network contention or increased work on other

processors. Still, these numbers show acceptable overhead associated with the forwarding

algorithm. and low overhead associated with the actual forwarding of the messages.

4 Test Applications

This section presents the overall execution times for our set of test applications. Each

application has four versions:

• A sequential, non-threaded version

• An r..-IPI based, parallel, non-threaded version

• A parallel, multi-threaded version, with no load balancing

• A parallel, multi-threaded version, with load balancing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 7. PERFOAAIA.NCE 132

4.1 Traveling Salesman Problem (TSP)

The first application is a traveling salesman problem. Since we are only interested in how

well our load balancing layer performs, we used a very naive algorithm. unconcerned with

the relative performance of the algorithm. We tested the algorithm on three sets of data,

or graphs. each consisting of 17 cities. The first graph produces a perfectly balanced search

tree. allowing us to study the overhead associated both with multi-threading, and with load

balancing. The second graph produces a search tree that only searches a single branch

of the tree. This causes the computation to be as unbalanced as possible. forcing all the

computation to a single processor. This allows us tc demonstrate the speedup achievable

by thread migration in a best case scenario. The final graph was randomly generated. This

allows us to study the effectiveness of thread migration for load balancing in what might

be an average case TSP.

The multi-threaded version is set up such that the first 15 computation threads consider

a path starting at city 0, with city 1 being the first city in the path. Each of these threads

designates a different city as the second city in the path. The next 15 computation threads

consider a path starting at city 0, with city 2 being the first city in the path. Each of these

threads designates a different city as the second city in the path. This pattern continues

for each of the 16 cities as the first city visited, for a total of 240 threads. These threads

are spread evenly across the available processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 7. PERFORAIANCE 133

Each of the computation threads, if allowed to, could run to completion. However,

since we are attempting to perform dynamic load balancing, we must assure that there

are opportunities to redistribute the load. This can only be done by the seroer thread.

Thus we must perform a reasonable number of context switches. This requires making

a decision regarding how often a context switch should be performed. The more often we

switch threads, the more often we can attempt load balancing, and thus we can attain finer

grained load balancing. This may suggest that we switch threads following every iteration.

However, each of these test cases performs tens of millions of iterations, and as noted

earlier. context switches are expensive operations. Therefore, it would be unreasonable

to switch threads following each iteration. \Ve must find a comfortable compromise. In

these tests, we decided to switch threads every 10,000 iterations. This requires keeping a

count of the number of iterations, and performing a comparison following each iteration, to

determine if a context switch should be performed. This extra comparison adds additional

overhead to the multi-threaded application. In fact, each comparison takes approximately

0.55 microseconds to perform. This extra time must be taken into account when analyzing

the performance of the multi-threaded code.

The non-threaded parallel version is implemented such that each processor periodically

checks to see if another processor has found a solution better than the previous best. This

means, when a processor finds a solution better than a previous best, it broadcasts this

solution to the other processors. \Ve use kfPLTest to check to see if a message has arrived.

This can be an expensive operation, so once again we do not want to make this call following

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. PERFOAAIANCE 134

every iteration. \Ve decided to check for a message every 10,000 iterations, introducing the

same overhead to the parallel non-threaded implementation as we discussed for the multi

threaded version.

Tables 7.4, 7.5. and 7.6 show the results for a 17 city traveling salesman problem. The

first column shows the application, while the remaining columns show the running time in

seconds for a single processor, two, four, and eight processors. Figures 7.1, 7.2, and 7.3

show the same results in graphical format. The x-axis is the number of processors, while

the left side y-axis is the execution time in seconds, and the right side y-axis is the parallel

speedup, computed \Vith the sequential version as the base.

Table 7.4 and Figure 7.1 show the results for a perfectly balanced search tree. This is a

worst case scenario for load balancing due to the fact that there is no load imbalance, and

therefore performance improvement is not available. This particular search tree performs

about 25.4 million iterations for both the multi-threaded and non-threaded implementa

tions. with about 2660 context switches in the multi-threaded implementation.

If we look at the sequential version vs. the ~!PI based non-threaded version on a single

processor. we see that the MPI version runs slower than the sequential version. This is

due to the additional overhead associated with the comparison operations discussed above.

This overhead accounts for about 14 seconds with 25.4 million iterations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 7. PERFOR_A,fANCE 135

Number of processors
Implementation 1 2 4 8

Sequential non-threaded 216.1 - - -
MPI based non-threaded 231.3 121.3 61.3 31.0

Multi-threaded with no load balancing 241.0 120.8 60.4 31.5
Multi-threaded with load balancing 241.7 120.9 61.0 32.6

Table 7.4: Execution time (in sec) for perfectly balanced 17 city TSP

Perfectly Balanced 17 City TSP

300.0 10.0
..-SQuenllal. non-lllreaded : C----<:l Sequenbal. non-lllreadecl
__. MPI t>asea. non-lllreaded [:::r--£ MPI based. non-111teade<l

- Mulll-lllreaaed. no loacl balanong : v---<> Mulli-111teade<l. no load t>alat1ong

250.0 - Mulll-lllreaaed. load balanCing '~ Mulli-lllreaoed. load tlalanc:lnQ

8.0
(j)
"0
c:: 200.0 0
(.J
Q) 6.0
~ ~
Q) ::I

"0 E 150.0 Q)

i= Q)
~

c:: en
.Q
"5

100.0 (.J
Q)
X
w

2.0
50.0

0.0 0.0
1 2 4 8

Number of Processors

Figure 7.1: Execution time and speedup for perfectly balanced 17 city TSP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. PERFORA-IANCE 136

\Vhen we factor this into account, as well as the fact the even identical processors don't

compute at precisely the same speed from execution to execution. we still see the .MPI based

version running slower than we would hope. After considerable work try;ng to quantify the

additional execution time, we have concluded that it is due to cache effects. \Ve suspect

that parallelizing the code alters the memory access patterns in such a way as to introduce

this additional overhead. This is supported by the fact that when we look at the times for

4 and 8 processors, compared to the time on 2 processors, we see near optimal speedup.

It is impossible to quantify these effects without the help of profiling tools, which were

unavailable to us.

\Vhen we compare the sequential time to the multi-threaded times. we must take into

account that the multi-threaded code is paying the cost of the aforementioned comparison

on a single processor, while the sequential code does not. This accounts for about 14 sec

onds of overhead. Additionally, the multi-threaded code must register and release pointers.

Each iteration accounts for one register /release pair, though some iterations do multiple

registrations while other iterations do no registration. According to our measurements, the

registration/release costs contribute about 54 seconds to the overhead for these tests.

Finally, we must take into account the fact that memory allocationfdeallocation is faster

in Chant. However, using the benchmark presented in the previous chapter, we find that

the multi-threaded version has less overhead than expected. This can be attributed to

the fact that memory management can be affected greatly by various factors. Therefore,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER~ PERFO~lANCE 137

we conclude that memory management in the non-threaded version is costlier than our

estimate.

\Vhen we study Figure 7.1, as should be expected, the multi-threaded version provides

excellent speedup when we move to 2, 4, and 8 processors. Additionally, we see that very

little overhead is introduced to the multi-threaded code when we enable load balancing.

It is encouraging that enabling load balancing produces minimal overhead in an execution

that offers no opportunities for load redistribution.

Finally, we see that the parallel multi-threaded versions run in about the same time

as the parallel non-threaded versions. This is surprising since we know there is certain

overhead associated with multi-threading. However, this can be attributed to the fact that

memory management times vary greatly under different circumstances.

Table 7.5 and Figure 7.2 show the results for a radically unbalanced search tree. This is a

best case scenario for load balancing due to the fact that the load is imbalanced to the point

where all the computation is performed on a single processor. This particular search tree

goes through about 34.6 million iterations for both the multi-threaded and non-threaded

implementations, with about 3960 context switches in the multi-threaded implementation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER~ PERFORA1ANCE

Number of processors
Implementation 1 2 4 8

Sequential non-threaded 296.9 - - -

MPI based non-threaded 317.2 317.1 317.3 317.2
l\Iulti-threaded with no load balancing 327.6 326.2 324.2 326.8

Multi-threaded with load balancing 328.4 171.8 95.6 65.3

Table 7.5: Execution time (in sec) for completely unbalanced 17 city TSP

en-
"C
c
0
0
Q)

~
Q)

E
i=
c
.Q
"5
0
Q)
X
w

450.0

400.0

350.0

300.0 I

i

250.0 i
~

200.0 i

r
150.0 f.

100.0

Completely Unbalanced 17 City TSP

..._.~nllal. non-lllreaded
__. MPI Dased. non-111readed

- Mulli-111readed. no lOad balai101'1Q
6--6 Multl-111readed. load ba1an0t10

: ~J---<J Sequenbal. non-111reaaoo
1 ::--c MPt baSed. non-trveaded
· o---o Multi-II:Vea<led. no load llalat1on9 !

: ~ Mui!J-II:Vea<led. load llalat1on9 :

10.0

- 8.0

6.0

0.0 1'----------'-2-------4"----------8 0.0

Number of Processors

Figure 7.2: Execution time and speedup for completely unbalanced 17 city TSP

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.~TER~ PERFOlli~L~VCE 139

One of the first things we notice is that the non-threaded execution time jumps when

we go from the sequential version to the .MPI based version running on a single processor.

This can be attributed to the comparisons discussed earlier. These comparisons contribute

approximately 19 seconds to the execution time. \Vhen this overhead is added to the

sequential time, we see that the rvfPI based version on a single processor runs in about the

same time as the sequential version. \Ve see no speedup when we go to multiple processors

for the MPI based version. This is what we would expect since the load is imbalanced to

the point that no speedup is available.

Once again we see significant, yet reasonable, overhead associated \'.;th multi-threading.

Again, however, we see that the overhead is less than what would be expected when using

the benchmarks discussed earlier. This can, of course, again be attributed to the fact that

the memory management overhead varies greatly from the artificial benchmarks discussed

previously.

\Vhen we do not enable load balancing in the multi-threaded code, we see no speedup.

This is again due to the radical imbalance of the search tree, and is what would be expected.

However, when we enable load balancing, we see significant speedup. \Ve do not see

near optimal speedup for a couple of reasons. One reason is that there is inherent overhead

involved with the thread migration, as discussed earlier. Another reason is that even though

there are many threads that must perform a significant amount of computation, not all of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. PERFOR.J.VIANCE 140

these threads perform the same amount of computation. Since the amount of work a

thread must perform is unknown at startup, and the amount of computation remaining

is unknown at runtime. we cannot perform ideal load redistributions. Instead. we simply

randomly select threads to migrate. Though this method does not achieve optimal speedup,

it performs significantly better than not using any load balancing technique.

Table 7.6 and Figure 7.3 show the results for a randomly generated search tree. This

represents an average case scenario for load balancing, since some branches will be pruned

early while others will continue deep into the tree.

In the examples discussed above, each implementation performed the same number

of iterations. This is because those test cases were constructed for the sole purpose of

being either balanced or unbalanced. For this reason, all branches of the search tree were

either searched to a leaf, or pruned at the root. Therefore, if a new solution was found.

it \Vas always equal to the best solution, and thus had no effect on any other parts of the

computation. This means that it did not matter in what order the branches were searched.

Once we move to the randomly generated cases, however, this situation changes. Since

we are using a naive algorithm, which does a simple depth first search. the order in which

the branches are searched can affect the amount of computation. This is due to the fact

that a branch that may be searched late in the computation on a single processor may be

searched much earlier in a parallel run. If this branch leads to a good solution, it may cause

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 7. PERFOR.NIANCE 141

Number of processors
Implementation 1 2 4 8

Sequential non-threaded 1332.4 - - -
MPI based non-threaded 1418.9 814.6 477.2 344.4

.rviulti-threaded with no load balancing 1677.4 877.0 526.6 278.3
l'viulti-threaded with load balancing 1678.4 847.4 449.6 243.3

Table 1.6: Execution time (in sec) for randomly generated 17 city TSP

Randomly Generated 17 City TSP

2000.0 10.0
- Squenlial. non-tnreaded : o--£J ~lial. non-liVe-.,

- MPI DaSed. non-tnreaded 1 o---£MPII>IISe<l.non-~ ·

1750.0 -. Mulli-tnreacled. no lOad llaJanOn<l 1 o---o Mulb-ltlreaded. no load balanong 1

- Mulli-ltlreaded.IOad llaJanOng : ~ Mulli-tnr-.loecl DlllanCing
'

8.0

(i) 1500.0
"0
c:
0

I tJ 1250.0 al -: 6.0
~ ~

al ~
"0

E 1000.0 al
i= al

~
c: fi'J
.Q

750.0
-.. 4.0

:;
tJ
Q)
)(

UJ 500.0
-' 2.0

250.0

' 0.0 0.0
1 2 4 8

Number of Processors

Figure 7.3: Execution time and speedup for mndomly generated 17 city TSP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 7. PERFOIU1ANCE 142

branches on other processors to be pruned earlier than they would have been otherwise.

This would lead to fewer iterations. and thus less computation. It is important to point

out however, that the opposite effect is equally as likely. That is, parallelizing the code is

as likely to accelerate the finding of a good solution as it is to delay the finding of a good

solution. in a relative sense.

Let us illustrate this concept by assuming we have two different search trees. \Vith the

first search tree. let's assume that the best solution can be found on the first branch of the

second half of the tree. In a sequential search, this solution will not be found until after the

first half of the tree has been searched, allowing pruning of the remainder of the tree. If

we parallelize this for two processors, however, the second processor will find this solution

immediately, and will send this result to processor 1. This will allow processor 1 to prune

much of the first half of the tree. thus decreasing the amount of computation required.

Now for the second tree. let's assume the best solution can be found on the last branch

of the first half of the tree. In a sequential search this solution will be found in about the

same amount of time as for the first tree, again allowing pruning of the second half of the

tree. If we parallelize this for two processors, the first processor will not find this solution

until it has searched the entire first half of the search tree, while the second processor is busy

searching the second half of the search tree. Since the best solution is not found until the

end of the search, there is no opportunity to prune the second half of the tree accordingly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 7. PERFOR~IA1VCE 143

This results in the work being done by the second processor being wasted, and only minimal

speedup may be achieved.

This can also be seen in a multi-threaded approach on a single processor. Since there are

many threads searching the same tree, better solutions may be found earlier than without

multi-threading. Again, multi-threading is as likely to accelerate the finding of a good

solution as it is to delay the finding of a good solution, in the same way as described above.

Theoretically, there should be no increase in iterations for the multi-threaded code with

additional processors. This is because the threads are searching the branches in the same

relative order as for the single processor case. In practice, however, there should be a

slight increase in iterations as we add processors. This is because of the latency involved

in communicating new best solutions to other processors. That is, when a thread in the

multi-processor case finds a new solution, it must communicate this new value to the other

processors. The time during which this communication is taking place is used by the other

processors to continue searching the tree. This causes them to search branches that need

not be searched, simply because the new best solution is not yet known.

Number of processors
Implementation 1 2 4 8
Non-threaded 144.9 160.2 (83.3) 162.0 (48.7) 164.8 (36.1)

~Iulti-threaded with no load balancing 173.4 172.5 (89.2) 177.6 (54.0) 177.0 (29.1)
!vlulti-threaded with load balancing 173.4 171.8 (87. 7) 183.7 (47.1) 179.8 (25.2)

Table 7.7: Number of iterations for randomly generated 17 city TSP (in millions}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER~ PERFO~IANCE 144

Table 7.7 shows the number of iterations required for the different executions. For the

multi-processor executions, the second number is the number of iterations performed by the

most heavily loaded processor. \Ve can see from the numbers that multi-threading the code

causes additional workload for both the single processor and multi-processor examples. This

should be taken into account when analyzing the performance. \Ve also see that the non

threaded code performs more total iterations when it is parallelized. This can be attributed

to the effects discussed earlier.

Looking back at Table 7.6 we see that the multi-threaded code takes significantly longer

than the non-threaded code to complete on a single processor. This can be attributed to

overhead associated with multi-threading, but most of the additional time is due to the fact

that the multi-threaded code performs approximately 28 million additional iterations. As

we discussed, there is always a chance that we v.ill see additional computation when we

alter the order of the search.

Table 7.7 also shows us that enabling load balancing for the multi-threaded case does

in fact produce a balancing out of the load. In all three cases (2, 4, and 8 processors) we

see that enabling load balancing causes the most heavily loaded processor to perform fewer

iterations. This is what would be expected since we are migrating threads from the most

heavily loaded processor. However, the fact that we achieve lower execution times with

load balancing enabled suggests that the overhead associated with thread migration is low

enough that the performance gains outweigh the costs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER~ PERFO~UUVCE 145

Additionally, we see that enabling load balancing gives us improved performance over

the non-threaded version for both 4 and 8 processors. This shows that the performance gains

we achieve by load redistribution outweigh the costs associated with multi-threading. In

fact. \Ve see a 29% improvement over the non-threaded case when we enable load balancing

on 8 processors.

4.2 Adaptive Quadrature

The next application is an adaptive quadrature application using Simpson's algorithm. \Ve

tested the algorithm on two different integration functions. The first function is

f(x) = 1000 * sin(3000 * x) (1)

where xis in radians. \Ve integrated using an epsilon of 10* 10-10 and an integration interval

of [0, 1]. This function is a simple oscillating function that converges at the same rate within

all integration intervals. This should allow for a perfectly balanced parallel execution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER~ PERFOlliWANCE 146

Figure 7.4 shows a graph of Function 1 for the interval [0,0.1].

Figure 7.4: Function 1 on the interval {0, 0.1 j

The second function we integrated was

f(x) = sin(100 * x) + ((x/14) 100 * sin(3000 * x 2) (2)

where xis in radians. \Ve integrated using an epsilon of 10 * w-·l and an integration interval

of [0,16]. This is an oscillating function that is very flat on the left part of the integration

interval. but which varies greatly as the value of x increases. This causes the integration to

converge quickly when we are close to 0, and much more slowly as we approach 16. This

allows for a very unbalanced parallel execution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER~ PERFO~L4NCE

Figure 7.5 shows a graph of Function 2 for the interval [0,16].

1000000.0

500000.0

0.0

I -500000.0 i
I

-1000000.0
0.0 5.0 10.0

Figure 7.5: Function 2 on the interval (0, 16/

147

15.0

The sequential version uses Simpson's algorithm in a straightforward manner. The

roiPI based parallel non-threaded version divides the integration interval evenly across the

available processors. Each processor will run to completion, with no interaction from other

processors. Therefore, there is no interaction between processors, and there is no direct

overhead associated with parallelizing the code. The multi-threaded version divides the

integration interval evenly across the available processors. and then divides the sub-intervals

evenly across the threads created on each processor. Each processor creates 64 threads for

the multi-threaded version.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER~ PERFORAIANCE 148

As in the traveling salesman problem, each of the computation threads, if allowed to,

could run to completion. Again, since we are attempting to perform dynamic load balancing,

we must assure that there are opportunities to redistribute the load. \Ve must, therefore,

decide once again how often we should perform a context switch. For these tests we perform

a context switch every 1000 iterations.

Table 7.8 and Figure 7.6 show the results for integrating Function 1 across an interval

of [0, 1]. As mentioned above, this function is a simple oscillating function that converges

at the same rate over all areas of the integration interval. This allows for a very balanced

parallel implementation, and there is little or no performance gain available from load

balancing.

\Ve can see from the table and graph that parallelizing the code introduces no additional

overhead, which is what was expected since there is no interaction between processors in

the parallel implementation. Additionally, we see near optimal speedup from the parallel

executions. Again, this is expected. since each processor has the same amount of work to

perform, namely 1/p the amount of work as the sequential version, where pis the number

of processors.

\Vhen we turn our attention to the multi-threaded implementation, with load balancing

disabled, we see a small amount of slowdown. This can be attributed to a small degree

to the overhead associated with multi-threading. The majority of this slowdown. however,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. PERFORAL4NCE

Number of processors
Implementation 1 2 4 8

Sequential non-threaded 163.4 - - -
MPI based non-threaded 163.4 82.4 41.3 20.8

1\Iulti-threaded with no load balancing 172.3 86.8 43.5 22.8
Multi-threaded with load balancing 172.7 87.3 44.5 23.2

Table 7.8: Execution time {in sec) for Simpson's algorithm integrating Function 1

Simpson's Algorithm Integrating Function 1

250.0 ': ---------------,----------- 10.0

Ul
"t:l
c:
0
(.)

200.0

! 150.0

~
i=
c:

.Q 100.0
"5
(.)

~
UJ

e--e Squenllal. non-lllreaded
- MPI based. non-lllreacle<l
__. Mulll-lllreaded. no load balanong
6--6 Mulli-lllreade<l. lOad balanCing

: o-----<J Sequennal. non-lllreaded
':r---c MPII>ased. non-I!Veaded '
I <r--o Multi-I!VeaOe<l. no load balanoi1Q i
i 6---6 MuiiHiveaoed. load ba1ano11Q '

.l. 8.0
'

: 6.0

~ 4.0

- 2.0

0.0 1L---------'-2-------'4---------"8 0.0

Number of Processors

Q.
~
"t:l

~
Q.

(J)

149

Figure 7.6: Execution time and speedup for Simpson's Algorithm integrating Function 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 7. PERFOR_A;fANCE 150

can be attributed to the cost of the comparisons discussed above. After each iteration, the

multi-threaded code checks a counter to see if it should perform a context switch. The time

spent performing this comparison accounts for the majority of the overhead. \Ve again see

near optimal speedup (relative to the single processor multi-threaded execution time) when

we parallelize the multi-threaded execution. Again, this is as expected.

\Vhen we study the times for the multi-threaded implementation with load balancing

enabled. we see very little fluctuation from the times with load balancing disabled. The

small difference in these times can be attributed to overhead associated with going through

the load balancing phase when there is no redistribution needed. Since the computation is

perfectly balanced, there is never an attempt to migrate threads, therefore execution times

should be consistent regardless of if load balancing is enabled or disabled.

Table 7.9 and Figure 7.7 show the results for integrating Function 2 across an interval

of [0. 16]. As mentioned above, this function is an oscillating function that is very flat in

the lower end of the integration interval, and becomes much more pronounced as we move

across said interval. This allows for a very unbalanced parallel implementation, with a great

deal of speedup available from load balancing.

The results show us once again that parallelizing the sequential code introduces little

or no overhead, as the sequential, non-threaded code, runs in about the same time as

the .1\:IPI based non-threaded code running on a single processor. Additionally, we see

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER~ PERFO~IANCE

Number of processors
Implementation 1 2 4 8

Sequential non-threaded 216.4 - - -
l\-IPI based non-threaded 216.5 216.5 216.5 213.5

Multi-threaded with no load balancing 222.9 223.2 223.4 221.6
Multi-threaded \Vith load balancing 222.9 126.6 80.2 50.3

Table 7.9: Execution time (in sec) for Simpson's algorithm integrating function 2

en-

Simpson's Algorithm Integrating Function 2

300.0 ~, --------------~------------~--------------~

250.0

.--. SQuenllal. non-lllreaaed

._ MPI Dase<1. non-lllreaoed

- Mulll-lllreaded. no load DaJanong

G----£> SequeniJaJ. non-lllreaded
:r--c MPI !lased. non-I!Veaded
~ Mulli--lllreaded. no load llalanOnQ
~ Mulb-lllreaded. load balancing

10.0

L. .,_.. Mulll-lllreaaed. lOad Dalanl:lng
I - 8.0

§ 200.0 L
u
~

~
i=
c::
.Q
5

~
w

150.0

100.0

50.0

0.0 '----------'---------'------- 0.0
1 2 4 8

Number of Processors

151

Figure 7.7: Execution time and speedup for Simpson's Algorithm integrating Function 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER~ PERFO~IANCE 152

that parallelizing the non-threaded code achieves no speedup for up to 4 processors, and

negligible speedup on 8 processors. This is due to the fact that the integration is extremely

unbalanced running in parallel.

\Vhen we study the execution times for the multi-threaded implementation with load

balancing disabled, we again see a small amount of overhead associated with the comparison

used to determine when a context switch should be performed. Other than this overhead,

the multi-threaded version performs in much the same way as the non-threaded version,

with no speedup for up to 4 processors and negligible speedup for 8 processors.

\Vhen we enable load balancing in the multi-threaded executions, however, we see signif

icant speedup. This is due to the fact that most of the processors finish integrating across

their sub-interval almost immediately, and then ask for additional work from processors

that are still busy. The executions do not approach optimal speedup due to the overhead

associated with migrating the threads. The overloaded processors lose some processing time

to perform the migration, while the under-loaded processors are idle while they wait for new

threads to arrive. Additionally, since we cannot predict when a thread will converge, all

threads have the same load associated v.rith them, with no estimation of how much work

remains. This causes instances where a thread is migrated though it is about to converge.

This is not advantageous since more time is spent migrating the thread than would have

been required for the thread to terminate on its own. However, the costs associated with

thread migration are far outweighed by the gains attained by load redistribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4PTER 7. PERFORlviANCE 153

4.3 Volume Rendering

The final application is a volume renderer using a real life set of volume data. \Ve ran

two sets of tests, each using different opacity maps. The opacity maps determine how

transparent or opaque the image is. The first set of tests were ran with an opacity map

that made the image almost completely transparent. This allows aU of the rays to traverse

the entire volume, making for a very balanced parallel execution. The second set of tests

used an average opacity map. which allows for some of the rays to terminate more quickly

that others. This can lead to a load imbalance.

There are two issues that should be discussed before we look into the execution times.

The first issue has to do with cache effects. The chosen algorithm uses a large amount of

volume data for the rendering stage. This volume data does not fit into cache. The parallel

execution breaks this volume up among the available processors, affecting the cache locality.

This causes the code to run faster in parallel. This means that for a very balanced rendering,

we can expect super linear speedup. Additionally, if a parallel execution shows excellent

speedup, we must account for the cache effect. That is, a very unbalanced rendering \Vill

show speedup as if it were fairly balanced.

This also affects the multi-threaded implementation. Since each thread has a smaller

set of volume data, threads have better cache locality. This means that a multi-threaded

version may run faster on a single processor than the sequential version.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. PERFOR~IANCE 154

The second issue involves the way the executions are parallelized. \Ve used an existing

algorithm that simply divides the volume evenly among the processors. Each processor then

renders a sub-image based upon this sub-volume. It does this by calculating the part of the

image space that is involved \\-ith its assigned sub-volume, and tracing each pbcel v.ithin

this image space. This is done with no knowledge of the rest of the volume data. This can

affect the rendering times by causing rays to be traced in the parallel version beyond the

point where they terminate in the sequential version. This causes more actual computation

to be performed in the parallel execution. \Ve will attempt to explain this better using a

couple of figures.

c-------- --·-·---- -----·--·--·-----------------~

Figure 7.8: Volume rendering on a single processor

Figure 7.8 represents a volume being rendered on a single processor. This shows what

happens with a ray tracing a single pixel within the image. Using the opacity map, there

may come a point during the trace where the pixel becomes completely opaque. Nothing

beyond this point in the volume will affect the final image, and thus the trace can be

terminated. The point at which a ray terminates varies from pixel to pLxel, with some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4PTER 7. PERFOR_A;I.4NCE 155

tracing through the entire volume, and others tracing only a short distance. In the example

shown in Figure 7.8, the point at which the trace is terminated falls just past the halfway

point into the volume.

-·---- ~-------··-----~--------·-----·-----·---~

------·-- ------ ------------------------~

A

8

Figure 7.9: \t'olume rendering on two processor

Figure 7.9 represents the same rendering being performed on two processors. In this

example, the volume is divided along the x-a."Cis, with one processor rendering based on

sub-volume A, and the other processor rendering based on sub-volume B. In this situation,

the processor rendering sub-volume A has no knowledge of what is happening with sub

volume B. This means that it cannot use the opacity attained by the processor rendering

sub-volume Bin its decision on when to terminate tracing the ray. In this example, each

processor traces the ray through its entire sub-volume. This is the equivalent amount of

\vork as would have been done if the single processor case had traced the ray through the

entire volume, which was not the case as stated above. In fact, since we stated that the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. PERFORAJ.4.NCE 156

single processor case terminated the trace just past the halfway point into the volume. the

two processor case performs almost twice the amount of work.

This problem is exacerbated by multi-threading. Even when running on a single proces

sor. multi-threading divides the volume into sub-volumes. with each thread being responsible

for rendering based upon only its sub-volume. This causes the multi-threaded version to

sometimes trace a ray through portions of the volume that are unnecessary. in the same

way as multi-processing does. Additionally, when multi-threading on multiple processors,

portions of rays are traced that need not be traced in the non-threaded multi-processor

version.

These issues are orthogonal in that they have opposite effects. The cache effect tends to

improve performance both when multi-threading and when running on multiple processors.

Conversely, the opacity issue tends to increase the work being performed in both the multi

threaded and multiple processor cases. \Vhich issue affects the total execution time the

most depends on the conditions. The higher the opacity of the image, the worse the multi

threaded and parallel executions are going to perform. The smaller the cache, the more

the cache effect is going to improve performance by multi-threading and parallelizing the

execution.

Table 7.10 and Figure 7.10 show the results for the tests using the opacity map that

made the image almost completely transparent. This not only makes for a very balanced

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER~ PERFO~l~~CE 157

parallel execution, it eliminates the performance degradation associated with opacity. That

is. each ray will trace through the entire volume, never being truncated early. This means

the same amount of work is performed regardless of the number of processors used or the

number of threads used. This leaves cache effect as the only issue affecting execution times.

As we can see from the numbers for non-threaded executions, cache effect has a dramatic

effect. producing super-linear speedup. Each time we increase the number of processors. we

see greater cache effect.

\Vhen we turn our attention to the multi-threaded numbers, we see better performance

from the multi-threaded executions than we saw with the non-threaded executions. This

is again due to cache effect. By breaking up the volume into smaller sub-volumes, the

multi-threaded executions have better cache locality. and thus perform better. \Ve again

see super-linear speedup in the multi-threaded case running on multiple processors. due to

yet smaller sub-volumes.

This makes it difficult to judge the overhead associated with multi-threading, as we could

get the same results by changing the non-threaded version. \Ve therefore concentrate on

the overhead associated with enabling load balancing. \Vhat we see is a slight performance

hit when load balancing is enabled. This will be further explained below.

Table 7.11 and Figure 7.10 show the execution times for rendering the same volume,

but using an opacity map that represents a more average case situation. By looking at the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. PERFOAAIANCE

Number of processors
Implementation 1 2 4 8

Sequential non-threaded 308.0 - - -

:r..IPI based non-threaded 308.0 144.6 68.1 33.9
:r..Iulti-threaded with no load balancing 258.4 128.5 63.1 31.7

Multi-threaded with load balancing 258.3 129.7 64.6 33.4

Table 7.10: Execution time {in seconds) for volume rendering (Opacity map A)

Ci)
"C
c
0
(,)
CD .e
CD
E
i=
c

.Q
'S
(,)
CD
X
w

400.0

350.0

300.0

250.0

200.0

150.0

100.0

50.0 I

Volume Rendering (Opacity Map A)

------ SQuenbal. non-111reade<l
._. MPI baSed. non-11\readed

- Mu!li-11\reade<l. no load balanonQ
..----. Mulll-11\reade<l. lOad balanCing

10.0
· o----<J Sequenllal, non-11\readed · ~·
, OJ--<J MPI based, non-lnreaoe<l '
~~ Muftl-llllea<led. no lOad Dalat'OncJ 1 '
~ Muiii-I!Vea<led, load ba1anc:1nQ ;.-' :

_; 6.0

!
I 4.0

: 2.0

0.0 ~------------~------------------------~1 0.0
1 2 4 8

Number of Processors

c..
~

"C

m
c..

(J)

Figure 7.10: Execution time and speedup for volume rendering (Opacity map A)

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 7. PERFOR_A,fANCE 159

execution times for the non-threaded case. we see very good speedup. This may lead us

to believe that the load is fairly balanced across the processors. However. as we discussed

above, the cache effects should cause super-linear speedup for a balanced load distribution.

In this example, the performance degradation associated with opacity outweighs the benefits

achieved from better cache locality. This can be seen clearly when we compare the sequential

time to the execution time for the multi-threaded implementation on a single processor.

The fact is. this example does not have a good load balance. and significant performance

improvement should be available via load balancing.

\Vhen we compare the numbers for the non-threaded parallel version with the multi

threaded version with load balancing disabled, we see the multi-threaded version has longer

execution times. This is due to the fact that the multi-threaded version has significantly

more \vork to perform, as discussed above. This shows that the performance gains achieved

by better cache locality are far outweighed by the increased work required due to the opacity

effect.

It is important to point out that this is a product of the parallel algorithm, and not a

shortcoming of multi-threading. Since the algorithm itself will not scale well in terms of the

number of processors, it does not perform well in a multi-threaded environment.

In this case, it is difficult to evaluate the efficiency of multi-threading. However, we can

still study the effects of enabling load balancing. \Ve see from this comparison. that modest

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER~ PERFO~I~VCE

Number of processors
Implementation 1 2 4 8

Sequential non-threaded 364.3 - - -
.l\,IPI based non-threaded 364.3 185.0 115.9 62.3

l\Iulti-threaded with no load balancing 402.2 221.8 117.5 69.0
Multi-threaded with load balancing 402.8 216.1 109.5 58.0

Table 7.11: Execution time (in seconds) for volume rendering (Opacity map B)

c;;-
"0
c:
0
(.J
Q)

~
Q)

E
i=
c:
.Q
"5
(.J
Q)
X

UJ

450.0

400.0

350.0

300.0

250.0

200.0

150.0

100.0

Volume Rendering (Opacity Map B)

10.0
...._ 5Quenoal. non-lhreaded :c---<:JSequenDaJ. non-lhreaded
.-MPI based. non-lhreaded i
- Mulli-I!Ueaded. no lOad tJaJancmg i
.._ MultJ-I!Ueaded. load balancJnQ

: ~ MPI Dased. non-lhlea<le<l
'o----.> Mulb-lhreade<l. ro lOad baJanc1n0
: L'r---6 Mulb-l!veaded. lOad balanclnO

~~========~F====----===~t==========---- 8.0

i

0.0 1.__ _____ _.:...2 _______ 4'---------8 0.0

Number of Processors

Figure 7.11: Execution time and speedup for volume rendering (Opacity map B)

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. PERFOR..l\I.4NCE 161

performance gain can be achieved from enabling load balancing. However, studying the

results led us to believe that there was a small amount of necessary overhead. The way the

load balancing is being done in this example, all threads have the same load attributed to

them throughout their life. This was similar to the previous examples where there was no

good way to estimate how much computation was left for a thread.

The issue is that some threads that are very nearly done with their work may be

migrated. The problem is, often these threads need less time to complete their computation

than it takes to migrate them to another processor. This means that once the entire

computation is nearly finished, we have threads migrating between processors when it would

be faster for them to simply complete their computation. This accounts for the slight

performance degradation we saw when enabling migration for opacity map .4 (Table 7.10).

In these volume rendering examples, however, we can estimate the amount of work

remaining by the number of rows left to be scanned. The algorithm works by computing

a sub-space of the image field for the final image. That is, it computes which parts of the

final image will be affected by each sub-volume. It then scans each row of pixels within this

sub-image. Thus, we know how many pbcels remain that need to be traced. \Ve used this

information and set a thread's load to be equal to the number of rows it must scan. \Ve

then decrement the thread's load after each row has been scanned. This allows us to alter

the load balancing policy to never migrate a thread with a load less than some value. \Ve

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. PERFOR.71.JANCE 162

re-ran our multi-threaded executions with this new load balancing policy setting it up to

never migrate a thread \\<ith a load of less than 5.

Number of processors
Opacity Map 2 4 8

A 128.4(129. 7) 63.1(64.6) 31.8(33.4)
8 213. 7(216.1) 108.6(109.5) 57.1(58.0)

Table 7.12: Execution time (in seconds) for multi-threaded volume rendering

Table 7.12 shows the execution times for the multi-threaded implementation with load

balancing enabled and load for threads taken into account. The numbers in parentheses are

the numbers for the old load balancing policy, taken from Tables 7.10 and 7.11.

\Ve see from this table that this new load balancing policy slightly improves the exe-

cution times. In fact, if we look back to Table 7.10, we see that the execution times with

this new load balancing policy are about identical to the times we saw with load balancing

disabled. This suggests that there is no performance gain available for executions using

opacity map .4. This is what we would expect since it is nearly perfectly balanced. It also

suggests that, though the performance gains are minimal, performance can be affected by

the load balancing policy in use.

This chapter has presented the overhead associated with multi-threading as well as the

overhead associated with thread migration. Furthermore, it has presented performance

results for a number of test applications under varying conditions. These test were run

sequentially, in parallel, and multi-threaded with and without load balancing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Conclusions

This dissertation can generally be divided into two parts. The first part is the design and

implementation of a distributed light-weight threads system that supports point-to-point

communication. The second part is the design and implementation of a thread migration

mechanism, and the use of said mechanism for the purpose of dynamic load balancing.

This chapter explores what we have learned through both of these phases of work. \Ve

offer our conclusions regarding the effectiveness of using threads in a distributed memory

environment, and our conclusions regarding the use of thread migration as a mechanism for

dynamic load balancing. Finally, we discuss what we feel are the contributions of this work,

and future work that may be pursued in the area of thread migration and load balancing.

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSIONS 164

1 Distributed Light-weight Threads

When we first started the work that led to this dissertation. the use of light-weight threads

wa.s just emerging as a model for parallel computation. However, this use was limited to

shared-memory multi-processing. We noticed the lack of research on the use of light-weight

threads by the distributed memory, multi-processing community, and decided it would be

a worthwhile undertaking. Since that time, the use of light-weight threads in a distributed

memory environment has received increased interest. In fact, some significant developments

have come out of this interest. Today there are a number of packages that support this

programming model.

However. these packages tend to be focused on specific problems. None of these existing

packages support the wide range of programming models for which Chant is targeted.

I\Ioreover, since they are geared towards specific problems. they do not offer the generic

solution provided through Chant.

\Ve have created a light-weight threads package that runs in a distributed memory en

vironment while supporting a wide range of functionality. This package supports remote

thread operations, point-to-point communication, remote service requests, collective oper

ations, and relative indexing. Chant also supports explicit message passing, explicit data

sharing, or a combination of the two! as its programming model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 8. CONCLUSIONS 165

\Ve have shown in Chapter 4. Section 4, that Chant introduces minimal overhead in the

test cases studied. The majority of the overhead can be attributed to effects of supporting

thread migration and load balancing. Thus we have shown that the base case of Chant

(without migration support) is an efficient means for distributed memory multi-processing.

\Ve have, therefore, demonstrated that light-weight threads running in a distributed memory

environment is a viable programming modeL even when the threads package supports such

a wide range of functionality.

2 Thread Migration and Load Balancing

Light-weight thread migration has received increased attention in recent years. However,

the few packages that have actually been implemented have serious limitations. These

limitations include, but are not limited to, redundant memory allocation, poor support for

user-level pointers, and unacceptably high costs for accessing heap data.

Chant supports thread migration in a way that is unique. Chant is implemented totally

as a runtime system, requiring no compiler support. Additionally, Chant performs migration

in a manner that maintains all user-level pointers, at the cost of user registration of all

pointers, and provides for continued point-to-point communication capabilities between

migrant threads. Furthermore, Chant accomplishes this in a way that keeps overhead at a

manageable level.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSIONS 166

\Ve have shown that the time it takes to migrate a thread across processor boundaries

is linearly proportional to the size of the thread's stack and private heap, and that the

additional overhead is within an acceptable range. This additional overhead includes the

time it takes to forward messages, and the time necessary for registering and releasing

pointers.

The use of thread migration for the purpose of load balancing is mentioned in almost

all papers on thread migration. However, very little work has been done to study the

feasibility of this approach. While Chrisochoides has proposed the use of thread migration

as a means for achieving load balancing in Parallel Adaptive PDEs [13], he has not yet

finished a working implementation. In fact. the last we knew he was no longer working on

this problem.

The P1!2 [38, 42] project has published performance numbers for a single test case,

a hand-written Gaussian elimination. While they show reasonable speedup for a very

unbalanced distribution, they make no comparisons for relatively balanced distributions.

Therefore we have no indication of the overhead associated with their implementation. Also,

this is a very specialized package, only intended to be used for data parallel programming.

The work on load balancing with Active Threads [29] is also inconclusive. For starters,

this package runs on a cluster of SMPs, which is clearly different that the work described in

this dissertation. More importantly, however, as discussed earlier (Chapter 3, Section 12)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSIONS 167

the only performance numbers are based on starting the entire computation on a single

Sl\IP, and then migrating threads to the other Sl\-!Ps within the cluster. This gives no

indication of the effectiveness of this load balancing, since there is no static distribution

across all the SMPs in the cluster against which to compare.

\Ve have developed a load balancing system that is both simple and complex. That is, we

have provided a default load balancing function that can be used with very little input from

the user. At the same time, we have provided a complete load balancing API that allows a

user to customize the load balancing layer, from simple changes, to complex changes. This

provides a general purpose load balancing layer, which has been shown to perform well as

is, but which can be manipulated to meet specific needs of individual applications.

\Ve have tested this load balancing layer and arrived at three major conclusions. The

first conclusion is that for executions that are already well-balanced across the available

processors. our system adds minimal overhead. This is important, since for many applica

tions it is not known before the actual execution how much imbalance may be present. A

system that adds significant overhead would not perform well for well-balanced executions.

Secondly, we have seen that we can attain significant performance improvement for

severely unbalanced executions. This performance improvement comes at a very low cost,

due to the simple API we provide, which makes it easy for users to implement their code

using our system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSIONS 168

Finally, we have seen that even for moderately unbalanced executions, we can achieve

reasonable performance gain. This shows that the costs associated with thread migration,

and with the decision making process of the load balancing layer. can easily be outweighed

by the performance gained from the load redistribution.

3 Analysis

\Ve feel that we have made significant contributions to the distributed memory multi

processing community. \Ve have shown that multi-threading in a distributed memory

environment can be useful, not only for ease of programming, but also for improved per

formance via thread migration. We have demonstrated that thread migration is a viable

means of load redistribution and that significant performance gains can be attained. \Ve

have shown this to be true for a variety of applications, including branch and bound (TSP).

divide and conquer (adaptive quadrature), and irregular scientific computation (volume

rendering).

It is our belief that, as long as a technology is useful and or interesting, work on that

topic is never finished. The same holds here. \Ve have shown that thread migration is

both interesting and useful. For that reason, this is by no means a finished work. \Ve

sincerely hope this research continues for many years to come, and that some day thread

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH.4.PTER 8. CONCLUSIONS 169

migration is so efficient and well understood that it is a common means of performing load

redistribution.

\Vith that in mind, it would be negligent of us not to point out some of the areas of this

work that require further investigation. One of these areas is in message forwarding. \Vhile

the current implementation performs reasonably well. we believe significant improvements

are possible. There may indeed be a better way of both keeping track of messages as well

ensuring that they arrive on the same processor as the target thread. This would be much

easier if we were not interested in true point-to-point message passing, but we truly believe

that point-to-point message passing is important, and the task is that much more difficult.

Another area that can use some more work is in keeping track of pointers. The current

implementation works extremely well when there is not a lot of dynamic memory allocation

and deallocation, but for problems like the Traveling Salesman Problem. significant time

is spent in the register-release functions. An alternative would be indirect access to heap

data. but for many applications this adds too much overhead. Therefore, other alternatives

must be studied.

Finally, there is the issue of preemptive vs. non-preemptive threads. The current im

plementation uses a non-preemptive threads package. This means threads only block when

the user explicitly yields the processor, or the runtime system blocks a thread for things

such as message passing. This causes load balancing to be much coarser-grained than we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA.PTER 8. CONCLUSIONS 170

would like. The use of preemptive threads would allow for much finer-grained load balanc

ing, which would make this system attractive to a wider range of applications. However,

converting Chant to a preemptive threads system would be a major undertaking. This is

because there were many assumptions made during the implementation that would not hold

for a preemptive package. Still. a preemptive package may offer significant advantages and

this is definitely worth investigating.

These are only some of the areas that may offer future challenges. There surely are

many other ares of interest for thread migration. As multi-processing research continues

and processing speeds continue to increase, we must explore software techniques in an

attempt to exploit new hardware technologies as the become available. Thread migration

is one of these software techniques, and deserves continuing attention.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Load Balancing API

This appendbc provides a summary of the load balancing layer of the Chant run-time system,

as described in Chapter 6.

1 Lower Level Load Balancing Routines

The routines in the lower sub-layer of the load balancing layer (see Figure 6.1) are described

in the following Subsection.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.4PPENDIX A. LOAD BALANCING API 172

1.1 Control

The following routines are used to control the way load balancing works in a particular

execution.

reg_lb_funetion (June_t June)

This function registers the user defined load balancing function June. which will be

called by the system when load balancing is to be performed. If this function is not

called, the default load balancing mechanism will be used.

reg_get_globaLredistribution (June_t June}

This function registers the user defined function June, which can be called by the

system or any user supplied function in place of the default implementation of the

get_globaLredistribution routine, as described later in this appendLx. If this function

is not called, the default implementation of get_globaLredistribution will be used.

reg_geUoeaLredistribution (June_t June)

This function registers the user defined function June, which can be called by the

system or any user supplied function in place of the default implementation of the

get_loeaLredistribution routine, as described later in this appendLx. If this function is

not called, the default implementation of geLlocaLredistribution will be used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A.. LOAD BALANCING . .:\PI 173

reg_get_requesUist (func_t June)

This function registers the user defined function June, which can be called by the

system or any user supplied function in place of the default implementation of the

get_requesUist routine, as described later in this appendi.x. If this function is not

called. the default implementation of get_requesUist will be used.

reg_get_thread_redistribution (func_t June)

This function registers the user defined function June. which can be called by the

system or any user supplied function in place of the default implementation of the

get_thread_redistribution routine, as described later in this appendi.x. If this function

is not called, the default implementation of get_thread_redistribution will be used.

reg_get_spec_redistribution (func_t June)

This function registers the user defined function June. which can be called by the

system or any user supplied function in place of the default implementation of the

geLspec_redistribution routine, as described later in this appendi.x. If this function is

not called, the default implementation of get_spec_redistribution will be used.

begin_load_balancing (int upper, int Lower, freq_t frequency)

This function enables load balancing. upper, lower, and frequency are all input param

eters, where upper indicates the upper threshold, Lower is the lower threshold used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

:\PPENDIX A.. LOAD BALANCING .4.PI 174

by either the default or user supplied load balancing routines. and frequency indi

cates the frequency of load balancing attempts. These values are used as described in

Chapter 6. Section 1.1.

end_Load_balancing ()

This function disables load balancing.

define_neighborhood (int num, int *procs)

This function defines the load balancing domain as described in Chapter 6. Section 1.1.

Both num and procs are input parameters, where num is the number of processors

in the load balancing domain, and procs is an array specif}ing the processors in the

domain.

get_neighborhood {int *num, int *procs)

This function retrieves the current load balancing domain of the calling processor.

Both num and procs are out parameters. On return, num is the number of processors

in the load balancing domain, and procs is an array of length num specif}ing the

processors in the domain.

1.2 Thread Characteristics

The following routines are used to retrieve thread characteristics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX .-\. LOAD BALANCING API 175

get_my_load ()

This function returns the current load of the calling thread.

alter_load (int amt)

This function changes the load of the calling thread by amt.

get_thread_load (chanter_t t)

This function returns the load associated ·with the thread referred to by t.

geUocaLthread_loads (int * loads)

This function retrieves the loads associated with all the threads on the run queue.

The function returns the number of threads on the run queue and loads is an array

containing the loads of each thread on the run queue.

get_my_migmtability (int *mig)

This function returns, in mig, the migratability of the calling thread, as discussed in

Chapter 6, Section 1.2.

get_migratability {chanter_t t)

This function returns the migratability, as discussed in Chapter 6, Section 1.2, of the

thread referred to by t.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.4.PPENDIX A. LOAD BALANCING API 176

get_all_migratability (int* migs)

This function returns, in the array migs, as discussed in Chapter 6. Section 1.2,

the migratability of all the threads on the run queue. Upon return. migs{if is the

migratability of the ith thread on the run queue.

seLmigratability (int mig)

This function sets the migratability, as discussed m Chapter 6, Section 1.2, of the

calling thread to mig.

get_thread_total_comms (int *sends}

This function sums up the total number of messages sent from each thread on the run

queue. Upon return, sends{ij is the total number of messages sent by the thread in

the ith position on the run queue.

geLthread_comms_proc (int proc, int sends[/)

This function returns, in the array sends, the number of messages sent from each

thread on the run queue to processor proc. Upon return, sends{ij is the number of

messages sent from the ith thread on the run queue to processor proc.

get_thread_comms (int flag, int *sends{/)

This function returns, in the array of pointers sends, the number of messages sent from

each thread on the run queue to each processor in either the load balancing domain

(flag= D0!\-1) or the application (flag= ALL). If flag is ALL, upon return, sends(ij{jf

is the number of messages sent from the ith thread on the run queue to processor j.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. LOAD BAL.4NCING API 177

If flag is DO.M. upon return, sends{if{jj is the number of messages sent from the ith

thread on the run queue to the jth processor in the load balancing domain. sends{Oj{jj

are unused slots in the array.

get_spec_thread_comms {chanter_t t, int* comm)

This function returns. in array comm, the number of messages sent by thread t to

each processor.

1.3 State Information

This section discusses routines used for gathering global state information.

geUocaUoad ()

This function returns the load of the local processor

get_total_comms {int flag, int *sends)

This function returns, in the array sends. the communication history of the local

processor. If flag equals DOM, it returns the number of messages sent to each processor

in the load balancing domain. If flag equals ALL, it returns the number of messages

sent to each processor in the entire computation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDLX A. LOAD BALANCING API 178

get_remote_loads {int flag, int* loads)

This function returns, in the array loads, the load of processors within the computa

tion. If flag equals DO!vl, it returns the load of each processor in the load balancing

domain. If flag equals ALL, it returns the load of each processor in the entire com

putation.

get_remote_comms (int flag, int* sends{])

This function returns, in the array sends, the communication histories of the processors

within the computation. If flag equals DO!vl, it returns the communication histories

of each processor in the load balancing domain. If flag equals .4LL, it returns the

communication histories of each processor in the entire computation.

1.4 Queue Manipulation

get_num_runq_threads ()

This function returns the number of threads on the local run queue.

get_first_thread ()

This function removes the first thread from the run queue, and returns a pointer to

the Chant thread.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. LOAD BALANCING 1\PI 179

get_thread (int i)

This function removes the ith thread from the run queue. and returns a pointer to the

Chant thread. If i is 0, it returns nil. If i is greater than the number of threads on the

run queue, this function will wrap around the run queue and remove the appropriate

thread. Upon return. the thread that had been in the i + 1st position on the run

queue will be at the head of the run queue. with all previous threads in the same

order, but at the end of the run queue.

put_thread (chanter_t t)

This function puts the thread referenced by t on the end of the run queue.

1.5 System Manipulation

synch_for_load_balancing ()

This routine synchronizes all the processors that are part of the calling processor's

load balancing domain.

release_synch ()

This routine releases the processors that were synchronized with a corresponding call

to the function synch_for_load_balancing(}. Calling this routine without a correspond

ing synchronization is erroneous, and the results are undefined.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.PPENDIX A. LOAD B.-\LANCING API

2 Load Balancing Directives

180

These routines are used to determine load redistributions that should be carried out (de

cision making routines), and to actually carry out the load redistributions (redistribution

routines).

2.1 Decision Making Routines

ret[][] get_globaLredistribution (int flag, int *loads)

This routine takes as input the load of each processor either in the calling processor's

load balancing domain (flag= DO.M), or the entire computation (flag= ALL). It uses

this input to determine how much work each processor should move where. It returns

a two-dimensional array, ret, where ret[i,j} indicates that processor i should move

r-et[i,j} work to processor j. i and j are processor ids relative to the entire computation

(flag= ALL) or relative to the load balancing domain (flag= DOM).

The default implementation attempts to redistribute the work evenly, as described in

Chapter 6, Section 2.

get_locaLredistribution (int flag, int *procs, int *remote_[oads)

This routine is called by an overloaded processor and is used to determine how much

work should be sent to each processor in the computation (flag= ALL) or in the calling

processor's load balancing domain (flag= DOM). remote_loads is an input array that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. LOAD BAL.AJ.VCING . .<\PI 181

provides the loads associated with the processors in the entire computation (flag =

ALL) or in the load balancing domain flag= DO!v[). Upon return, procs contains the

amount of work that should be moved to each participating processor. This array

would be used as input to geUhread_redistribution as described below.

The default implementation selects the least loaded processor from remote_loads and

indicates that half the calling processor's work should be moved to that processor.

get_requesUist (int flag, int *Loads, int *remote_Loads)

This routine is called by an under-loaded processor and is used to determine how

much work should be requested from each processor in the computation (flag= ALL)

or in the calling processor's load balancing domain (flag = DOlv[). remote_loads is

an input array that provides the loads associated with the processors in the entire

computation (flag= ALL) or in the load balancing domain flag= DOM). Upon return,

procs contains the amount of work that should be requested from each participating

processor.

The default implementation selects the most heavily loaded processor, and indicates

that half that processor's work should be moved to the calling processor.

get_thread_redistribution (int *num, int *threads, int *procs, int *loads)

This routine determines which threads from the calling processor are to be migrated to

which processors in the load balancing domain of the calling processor (flag= DOM)

or to which processors in the entire computation (flag= ALL). loads is an input array

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.PPENDIX 1\. LOi\.D BALANCING API 182

that states loads{ij work should be migrated to processor i (flag = ALL) or the ith

processor in the load balancing domain (flag= DOkf). Upon return. num contains the

number of threads that must be migrated, threads is an array in increasing order that

holds the displacement from the front of the run queue of the threads that must be

migrated. and procs is an array indicating the processors to which the threads should

be migrated.

The default implementation traverses the run queue, selecting migratable threads to

be migrated to the destination processors. It selects threads for the first destina

tion processor until enough work has been selected to satisfy that request and then

continues with the remaining destination processors.

get_spec_redistribution (int *num, int *threads, int proc, int load)

This routine determines which threads from the calling processor are to be migrated

to a specific processor. The input parameter load indicates ho\\' much work should be

moved to specific processor proc. Upon return, num contains the number of threads

that must be migrated, and threads is an array in increasing order that indicates the

displacement from the front of the run queue of the threads that must be migrated.

The default implementation traverses the run queue, selecting migratable threads to

migrate until enough load hru5 been selected to satisfy the request.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.PPENDIX A. LOAD BALANCING API 183

2.2 Redistribution Routines

redistribute (int proc, int* loads)

This routine instructs a remote processor to migrate work to the other processors

in the computation. loads is an input array that indicates the amount of work proc

should move to each processor in the computation.

Upon return there is no guarantee that the migrations have been completed. This

routine is not used by the default load balancing system and is provided solely for use

in customized implementations. Care should be taken with its use.

send_work (int num, int *threads, int proc)

This routine instructs the calling processor to migrate num threads to processor proc.

threads is an array in increasing order, indicating the displacement from the front of

the run queue of the threads that are to be migrated.

Upon return, all indicated threads have been migrated.

scatter_work (int num, int *threads, int *procs)

This routine instructs the calling processor to migrate num threads to the processors

indicated by procs. threads is an array in increasing order, indicating the displacement

from the front of the run queue of the threads that are to be migrated. The thread

at displacement threads(i] is to be migrated to processor procs{i].

Upon return, all indicated threads have been migrated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.PPENDIX A. LOAD BALANCING A.PI 184

get_work (int proc, int load)

This routine requests that load amount of work be migrated from processor proc to

the calling processor.

Upon return. any migration to be performed has been completed.

gather_work {int *loads)

This routine requests work from remote processors. loads is an array indicating the

amount of work to be requested from each processor in the computation.

Upon return, any migration to be performed has been completed.

migrate_threads (int num, chanter_t *t, int proc)

This routine instructs the system to migrate num threads to processor proc. t is an

array containing pointers to the actual threads to be migrated. The threads referenced

by t should NOT reside on the run queue. That is, the threads referenced by t should

have been previously removed from the run queue using the routines described in

Chapter 6, Section 1.4.

Upon return, all indicated threads have been migrated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] H.E. Bal, l\·LF. Kaashoek, and A.S. Tanenbaum. Orca: A language for parallel
programming of distributed systems. IEEE Transactions on Software Engineering,
18(3):190-205, March 1992.

[2] John K. Bennett, John B. Carter, and \Villy Zwaenepoel. Adaptive software cache
management for distributed shared memory architectures. In Proceedings of the 17th
International Symposium on Computer .4rchitecture, pages 125-134, May 1990.

[3] John K. Bennett, John B. Carter. and \Villy Zwaenpoel. Munin: Distributed shared
memory based on type-specific memory coherence. In Proceedings of the Second ACM
SIGPLAN Symposium on Principles and Practices of Parallel Programming (PPoPP),
pages 168-176, March 1990.

[4] Raoul Bhoedjang, Tim Riihl, Rutger Hofman, Koen Langendoen, Henri Bal, and Frans
Kaashoek. Panda: A portable platform to support parallel programming languages.
In Symposium on Experiences with Distributed and Multiprocessor Systems IV, pages
213-226, San Diego, CA, September 1993.

[5] Andrew D. Birrell. An introduction to programming ·with threads. Technical Re
port 35, Digital Equiptment Corporation, January 1989.

[6] A. Black, N. Hutchinson. E. Jul. and H. Levy. Object structure in the Emerald sys
tem. In Proceedings of the .4CM Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 78-86, Portland, OR, October 1986.

[7] A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and abstract
types in Emerald. IEEE Transactions on Software Engineering, 13(1), January 1987.

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 186

[8] E.A. Brewer, C.N. Dellarocas, A. Colbrook, and \V.E. Weihl. Proteus: A high
performance parallel architecture simulator. Technical Report MIT /LCS/TR-516,
.MIT, September 1991.

[9] Jeremy Casas, Ravi Konuru, Steve W. Otto. Robert Prouty. and Jonathan Walpole.
Adaptive load migration systems for PVM. In Proceedings of Supercomputing, pages
390-399, \Vashington D.C., November 1994. ACM/IEEE.

[10] K. Mani Chandy and Carl Kesselman. CC++: A declarative concurrent object oriented
programming notation. In Research Directions in Object Oriented Programming. l\HT
Press, 1993.

[11] K. l\Iani Chandy and Carl Kesselman. Compositional C++: Compositional parallel
programming. In Proceedings of the Fifth lntern.ational Workshop on Parallel Lan
guages and Compilers, 1993.

[12] J.S. Chase, F.G. Amador, E.D. Lazowska, H.M. Levy. and R.J. Littlefield. The Amber
system: Parallel programming on a network of multipocessors. In A C!vf Symposium
on Operating System Principles, December 1989.

[13] Nikos P. Chrisochoides. tvlultithreaded model for dynamic load balancing parallel adap
tive POE computations. Technical Report CTC95TR221, Cornell University, October
1995.

[14] Nikos P. Chrisochoides. 1\Iultithreadecl model for dynamic load balancing parallel adap
tive POE computations. Technical Report 95-83, Institute for Computer Applications
in Science and Engineering, February 1996.

[15] E.C. Cooper and R.P. Draves. C Threads. Technical Report C~IU-CS-88-154. Carnegie
Mellon University, February 1988.

[16] Intel Corporation. Paragon OSF /1 User's Guide. Beaverton, OR. April 1979.

[17] Derek L. Eager, Edward D. Lazowska, and John Jahorjan. Adaptive load sharing in
homogeneous distributed systems. IEEE Transactions on Software Engineering, May
1986.

[18] Bryan Ford, Mike Hibler, and Jay Lepreau. Notes on thread models in l\Iach 3.0.
Technical Report UUCS-93-012, Department of Computer Science, University of Utal1,
April 1993.

[19] Bryan Ford and Jay Lepreau. Evolving Mach 3.0 to a migrating thread model. In
Proceedings of the Winter 1994 USENIX Conference, January 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 187

[20] Message Passing Interface Forum. Document for a Standard IY!essage Passing Interface.
version 1.1 edition, June 1994. http:/ jwww.mcs.anl.gov/mpi/.

[21] Ian Foster, Carl Kesselman, Robert Olsen, and Steve Tuecke. Fortran M: A language
for modular parallel programming. Journal of Parallel and Distributed Computing,
25(1), February 1995.

[22] Ian Foster, Carl Kesselman, Robert Olson, and Steven Tuecke. Nexus: An interoper
ability layer for parallel and distributed computer systems. Technical Report Version
1.3, Argonne National Labs, December 1993.

[23] Ian Foster, Carl Kesselman, and Steven Thecke. The Nexus approach to integrating
multithreading and communication. Journal of Parallel and Distributed Computing.
37:70-82. 1996.

[24] R. J. Fowler. Decentralized object finding using forwarding addresses. Technical Re
port 85-12-1, University of Washington, December 1985.

[25] A. Geist, A. Beguelin, and et. al. PVM: Parallel Virtual Machine - A User's Guide
and Tutorial for Networked Parallel Computing. AC!v[Press, 1994.

[26] l\L Haines. On designing lightweight threads for substrate software. In Proceedings of
the Annual Technical Conference on UNIX and Advanced Computing Systems, Ana
heim. California, January 1997. USENIX.

[27] Matthew Haines, David Cronk, and Piyush Mehrotra. On the design of Chant: A
talking threads package. In Proceedings of Supercomputing, pages 350-359, \Vashington
D.C., November 1994. ACM/IEEE.

[28] Matthew Haines, Piyush Mehrotra, and David Cronk. Ropes: Support for collective
operations among distributed threads. Technical Report 95-36, Institute for Computer
Applications in Science and Engineering, November 1994.

[29] l\Iichael Holtkamp. Thread migration with Active Threads. Technical Report TR-97-
038. International Computer Science Institute, September 1997.

[30] 'Wilson C Hsieh, Paul Wang, and \Villiam E \Veihl. Computation migration: Enhancing
locality for distributed-memory parallel systems. In Symposium on Principles and
Practice of Parallel Programming, 1993.

[31] IEEE. Threads Extension for Portable Operating Systems (Draft 7), February 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 188

[32] Eric Jul, Henry Levy, Norman Hutchinson. and Andrew Black. Fine-grained mobility in
the Emerald system. ACM Transactions on Computer Systems, 6(1):109-133, February
1988.

[33] Reinhard Luling and Burkhard 1\!onien. A dynamic distributed load balancing al
gorithm with provabale good performance. In Proceedings of ACM Symposium on
Parallel Algorithms and .4rchitectures, 1993.

[34] Reinhard Luling, Burkhard Monien, and F. Ramme. A study on dynamic load
balancing algorithms. Technical Report TR-001-92. Paderborn Center for Parallel
Computing, June 1992.

[35] 1\Iamoru 1\Iaekawa. A ../N algorithm for mutual exclusion in decentralized systems.
ACM Transactions on Computer Systems, 3(2):145-159, May 1985.

[36] Edward Mascarenhas and Vernon Rego. Ariadne: Architecture of a portable thread
system supporting mobile processes. Technical Report CSD-TR-95-017, Purdue Uni
versity, March 1995.

[37] N. Melab. N. Devesa, M.P. Lecouffe, and B. Toursel. An adaptive load balancing
algorithm with a multithreaded implementation. In Eleventh International Conference
On Systems Engineering (JCSE'96), Las Vegas, Nevada, July 1996.

[38] R. Namyst and J. F. Mehaut. PM2 : Parallel Multithreaded Machine. In Proceedings
of Parco '95, Gent. Belgium, September 1995.

[39] R.l\1. Needham. Distributed Sytems. ACM Press, 1989.

[40] Shashank S. Nemawarkar and Guang R Gao. 1\Ieasurement and modeling of earth
manna multithreaded architecture. Technical Report ACAPS96, School of Computer
Science, McGill University, July 1995.

[41] Steve \V Otto. Processor virtualization and migration for PVM. In Proceedings of the
Second Workshop on Environments and Tools for Parallel Scientific Computing, pages
66-75, Townsend, TN, May 1994. SIAM.

[42] C. Perez and R. Namyst. On the compilation of data-parallel languages on a distributed
memory multithreaded environment with thread migration. Technical Report RR97-
20, IP, July 1997.

[43] James Pinakis. Remote thread execution. In Proceedings of the 16th Australian Com
puter Science Conference, pages 489-500, Brisbane, Australia, February 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 189

[44] J. Sang, F. Knop. V. Rego, J.K. Lee, and C.T. King. The Xthreads Library: Design,
implementation. and application. In Proceedings of the COlv!PSAC. 1993.

[45] Janche Sang and Vernon Rego. Efficient implementation of thread migration on
distributed memory multiprocessors. Technical Report CSD-TR-93-065, Purdue Uni
versity, October 1993.

[46] Neelakantan Sundaresan and Linda Lee. An object-oriented thread model for parallel
numerical applications. In Proceedings of the Second Annual Object-Oriented Numerics
Conference, pages 291-308, Sunriver, OR, April 1994.

[47] Dijkstra E. \V., Feijen \V. H. J., and Van Gasteren A. J. M. Derivation of a termination
detection algorithm for distributed comnputations. Information Processing Letters.
16:217-219, June 1983.

[48] \V.E. Weihl. E. Brewer, A. Colbrook, C. Dellarocas, \V. Hsieh, A. Joseph, C. \Vald
spurger, and P. Wang. Prelude: A system for portable parallel software. Technical
Report l\llT/LCS/TR-519, l\llT, October 1991.

[49] C. Xu. R. Luling, B. Monien, and F .C.l\L Lau. An analytical comparison of nearest
neighbours algorithms for load balancing in parallel computers. In Proceedings of the
9th International Parallel Processing Symposium, 1995.

[50] Honbo Zhou and AI Geist. Lpvm: A step towards multithread pvm. Journal of Parallel
and Distributed Computing, July 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

David Charles Cronk

Born in Poughkeepsie. New York. September 30, 1966. Graduated from Franklin Delano

Roosevelt High School in Hyde Park, New York, June 1984. B.S., Mathematics, Hope

College, 1988. M.S., Computer Science, l\Iarist College, 1992.

In September 1993, the author entered the College of \Villiam and l\lary as a graduate

student in Computer Science. The author worked as a student researcher at the Institute for

Computer Applications in Science and Engineering from September 1993, through Septem

ber 1998. The author has been working as a Member Technical Staff at Lucent Technologies

as part of the Inferno Operating System venture since October 1998.

	Dynamic load balancing via thread migration
	Recommended Citation

	tmp.1539750766.pdf.Xou5w

