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Abstract

For some time now, first-principles calculation methods have proven to be an ef
fective tool for investigating the physics of condensed m atter systems. The additional 
use of density functional theory (DFT) and the local density approximation (LDA) 
has permitted even complex materials to be studied on desktop workstations with 
remarkable success. The incorporation of linear response theory into these methods 
has extended their power, allowing investigation of important dynamical properties.

Contained within the following pages are the results of a  first-principles study 
of S rT i03. This transition metal oxide is often grouped with ferroelectric materials, 
due to its similar composition and perovskite structure. Although it behaves as if it 
were to become ferroelectric, it fails to do so, even at the lowest temperatures.

Using the LAPW method for bulk materials, the ground-state equilibrium prop
erties for the cubic phase were found. Additional linear response calculations pro
duced the phonon frequencies throughout the Brillouin zone. Imaginary values for 
these frequencies revealed two distinct regions of reciprocal space corresponding to 
structural instabilities of the ferroelectric (FE) and antiferrodistortive (AFD) types. 
A cell-doubling AFD transition to tetragonal structure is observed experimentally, 
so subsequent calculations were continued in this phase. Total energy calculations 
were performed for both FE and AFD distortions in this new phase, and it was found 
that the AFD instability is enhanced with decreasing lattice parameter, while the FE 
instability is diminished. Furthermore, these calculations suggest that this material 
is marginally stable against FE distortions, even a t the 105 K volume.

xi
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Chapter 1

Introduction

1.1 Ferroelectrics

When placed in an external electric field, a typical dielectric crystal develops 

a macroscopic polarization P, whose magnitude depends upon the strength of the 

applied field. For weak to moderate values of E, the relationship between the two is 

linear. W ith increased field strength, the polarization begins to saturate and eventu

ally reaches its highest value just before breakdown. Usually, when the external field 

is removed, the polarization also disappears. However, a class of materials known 

as pyroelectrics can retain a residual polarization after the external electric field is 

removed, as long as their temperature is below some critical value T c. Ferroelectric 

materials are a subset of pyroelectrics and are characterized by the fact that the di

rection of the remnant polarization may be reversed by the application of an external 

electric field of sufficient strength. A distinguishing sign of ferroelectric behavior is 

the appearance of a hysteresis loop on a plot of the polarization verses electric field

2
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Figure 1.1: Ferroelectric materials exhibit a characteristic hysteresis loop (left), which 
is absent for ordinary dielectrics (right).

strength (Fig. 1.1). The magnitude of the remnant polarization is dependent upon 

the crystal’s temperature, decreasing as the temperature rises, and disappearing al

together at and above T c. In analogy to the temperature-dependent behavior of 

magnetic materials, this transition temperature is known as the Curie temperature, 

above which the material is said to be in its paraelectric state.

Even when no external field is present, a  macroscopic spontaneous polarization 

will develop as the temperature drops below T c; however, it is usually negligible or 

small. Depending upon the symmetry of the paraelectric phase, more than one polar

ization axis may develop during the transition, leading to the formation of domains. 

The polarization within each domain is homogeneous, but is randomly oriented along 

one of the possible polarization directions. If an electric field is applied after the  tran

sition to the ferroelectric state, many of these domains will grow or combine through 

the motion of domain walls, producing a nonzero macroscopic polarization which 

remains even after the external field is removed, as shown in Fig. 1.2. In th is dis

sertation, we are chiefly concerned with the behavior of monodomain single crystals,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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(a)

(b)

(c)

T >T
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Figure 1.2: Development of spontaneous polarization in a multidomain ferroelectric 
crystal as T  drops below Tc. (a) paraelectric phase; (b) ferroelectric phase with no 
net polarization; (c) ferroelectric phase after exposure to an external electric field.
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and this should be assumed for the remainder of the work.

In order for a crystal to maintain a macroscopic polarization, the centers of 

positive and negative charge within it cannot overlap. As a consequence, ferroelectric 

crystals do not possess a center of symmetry below T c. Because the paraelectric phase 

lacks a dipole moment, it is highly likely that the ferroelectric transition is a structural 

one. The reversibility of the remnant polarization also suggests that the crystal passes 

through the non-polar paraelectric structure on its way to the alternative ferroelectric 

state.

Ferroelectric structural transitions have traditionally been classified as belonging 

to two distinct types. When the transition is brought on by the individual ordering 

of ions or molecules, it is called an order-disorder transition. However, if a  whole 

sublattice of ions becomes displaced relative to another sublattice, then the transition 

is referred to as a displacive transition. Examples of order-disorder transitions are seen 

in materials such as KH2 PO 4 , wherein the location of the proton in each hydrogen 

bond becomes asymmetric below the Curie temperature (123 K). Perhaps the most 

famous displacive transition occurs in BaTi03. The high-temperature paraelectric 

phase of B aT i0 3 has the cubic perovskite structure shown in Fig. 1.3. When the 

temperature drops below 393 K, a shift occurs in the metal ion sublattices with respect 

to the oxygen sublattice, leading to the formation of a dipole in each unit cell. Since 

the high temperature phase is cubic, the spontaneous polarization can appear along 

one of three identical axes, making the new crystal symmetry tetragonal with the 

polarization parallel to the c-axis [001]. BaTi0 3 undergoes two more ferroelectric 

transitions to orthorhombic (278 K) and rhombohedral (183 K) structure as new

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



• Ba

• Ti

• O

(a) (b)

Figure 1.3: (a) The cubic perovskite structure of BaTiC>3 . (b) Below Tc the Ba2+ 
and Ti4+ ions are slightly displaced relative to the 0 2~ ions giving the cell a dipole 
moment and a tetragonal structure.

0.2------------------------------------------------------------------------------------

rf-* 0.16i.E
£  0.12
co
g  0.08  
S
S . 0 . 0 4 ,

0
-2 0 0  -1 6 0  -1 2 0  -8 0  -4 0  0  40 80 120

Temperature (°C)

Figure 1.4: The spontaneous polarization in BaTiC>3 appears first along the [001] 
direction, and then along the [1 1 0 ] and [1 1 1 ] directions as the temperature is lowered. 
(After W. J. Merz.[77] )
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components are added to the polarization, appearing from the addition of displacive 

ordering along the other two possible polarization axes successively (Fig. 1.4). Similar 

behavior is seen in other perovskites as well. KNbC>3 undergoes the same sequence 

of transitions as BaTiOa, whereas PbTi0 3  only transforms to a  tetragonal structure. 

SrTiC>3 , which is the subject of the present work, gives experimental evidence for a 

possible ferroelectric transition occurring near 0 K, even though it first undergoes a 

non-ferroelectric structural transition at 105 K.

Originally, it was thought that the relative simplicity of the 5-atom perovskite 

structure would quickly lead to an understanding of the ferroelectric transition. How

ever, it is now known tha t the delicate interplay between the short-range repulsive 

and the long-range attractive forces at work can result in a complex array of observed 

phase transitions. [6 8 ] Even so, the perovskite structure serves as a good framework 

for a discussion of the mechanism behind displacive transitions. Although the next 

section discusses the general thermodynamic principles involved in ferroelectric transi

tions, the focus will be on how they are related to the behavior seen in the perovskites.

1.2 Thermodynamics of ferroelectric transitions

Prior to the onset of a ferroelectric transition, the low-frequency dielectric con

stant often rises dramatically. This behavior is consistent with a relaxation of the 

restoring forces acting on the ions due to a reduction in the temperature-dependent 

components of these forces. Consequently, ions will have a greater response to exter

nal electric fields. Above the transition temperature Tc, experimental measurements 

of the dielectric constant at different temperatures usually fit well to the empirical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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form

€
T - T c'

(1.1)

Here, f  is a constant factor determined by the specific material under investigation. 

For BaTiOs and S rT i0 3  (and their alloys), the fit is a remarkedly good one.[89] The

transition via Landau's theory of phase transitions.[6 6 ] F irst, we conveniently expand 

the Landau free energy density F  in one dimension in terms of the polarization

When E=0, odd powers of P  do not appear, since we are assuming that the unpo

larized phase of the crystal has a center of inversion symmetry. The value of the 

polarization corresponding to a minimum in F  will satisfy

In the paraelectric phase, the crystal behaves similarly to a normal dielectric, indicat

ing tha t C2  and higher-order coefficients are positive quantities above the transition 

temperature. Once the tem perature drops below Tc, a  spontaneous polarization Ps 

will appear, even if E=0. This would be expected if the value of C2 were to become 

negative. Thus, let us assume that C2  changes sign as the tem perature passes through 

some value T0, which we shall see may be equal to or lower than the transition 

tem perature T c. Near To, we take

reason for this can be understood from an analysis of the thermodynamics of the

F(E,T;  P ) =  - E P  +  co +  j  c2 P 2  +  i  C4 P 4  +  i  ceP6  +  ■ • • . (1.2)

(1.3)

C2 =  7(7’ -T o ), (1.4)
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with 7  as a positive constant. Variations in c2 with temperature are not unphysical, 

and can be accounted for by thermal expansion and other anharmonic lattice effects.

Although a negative value of c2 can account for the appearance of a spontaneous 

polarization, it alone does not explain the temperature dependence of P s near the 

transition. For this we must examine the sign of c4. When c4 >  0, we can ignore 

higher order terms, and solve for Ps in zero applied field via

c4 P s3  +  7 ( T - T 0 )Ps = 0 ,  (1.5)

resulting in either

P, =  0 or |Pa| =  (7 /c 4 ) 2 (Po - T ) * -

Because the polarization drops to zero in a continuous fashion as T approaches To

from below, such a transition is known as a second-order transition. Since the free 

energy densities of both the paraelectric and ferroelectric phases are equal at the 

transition temperature, this implies that T 0 =  T c for second-order transitions. If c4 

is negative rather than positive, then the spontaneous polarization in zero applied 

field will satisfy

c6 P s5  -  |c4 |P 3 +  7 (T  -  T0)PS =  0, (1 .6 )

meaning that either Ps is zero, or

c6 P 4  -  |c4 |P 2  +  7 (T -  T0) =  0 . (1.7)

Here we have explicitly assumed c6 > 0 to restrain the free energy density from

becoming asymptotically negative. Consider the situation now where T = T q. When

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 1.5: The behavior of the spontaneous polarization in first- and second-order 
ferroelectric transitions in chemically similar ammonium salts. After S. Hoshino et 
al. [52]

this occurs, Eq. (1.7) has solutions

Ps = 0  or Ps =  ^ / M .

If the free energy density is evaluated (to sixth order in the polarization) at both of 

these roots, one finds that the non-zero root yields a lower value. Since the phase 

transition takes place when the free energies of the polarized and unpolarized states 

are equal, it must be true that the actual transition temperature T c is higher than 

To- Because of this, when T =T C, the curvature of the free energy density function 

is positive about P=0, meaning that when the transition takes place, a non-zero 

polarization appears suddenly, rather than increasing continuously from zero value. 

For this reason, this type of transition is called a first-order transition. Both types of 

transition are illustrated in Fig. 1.5.

In either case, we can find the dielectric constant for temperatures above Tc

(NHJ.SO.

3
3
a.*

0.10
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In the paraelectric phase, for weak or moderate applied electric fields, we can ignore 

the nonlinear terms of Eq. (1.3) to give

« * l  +  - 7= ^ = T  for T > T C. (1.9)
7 (T  -  T0)

Since the second-order term on the right is usually much greater than unity, the 

empirical form of Eq. (1.1) results.

1.3 The soft-mode concept

If a crystal is stable against small deformations, then as a consequence, all of its 

normal modes will have non-imaginary values for their frequencies. [10] Consequently, 

Cochran and Anderson took the approach of treating the ferroelectric transition in 

terms of lattice dynamics. [21, 3] They proposed that the ferroelectric transition in 

the perovskites and other ionic crystals could be explained by a  strong tem perature 

dependence of a particular normal mode of vibration. As the temperature approaches 

Tc, this normal mode “softens” , i.e. its frequency decreases to zero, making the 

crystal unstable. The new atomic positions in the ferroelectric phase represent the 

frozen-in displacements of the unstable phonon. Since these displacements lead to a 

macroscopic spontaneous polarization, the soft phonon must necessarily be a polar 

mode of long wavelength (q —> 0). In addition, for diatomic or cubic perovskite 

ferroelectrics, the rise in the low-frequency dielectric constant near T c is predicted by
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the generalized Lyddane-Sachs-Teller (LST) [71, 21, 22] relation

^  =  n  r # '  ( 1 -10>i t  (wr) i

where (u)r)i and (u;*,),- are the frequencies of the transverse and longitudinal optic 

phonons at the Brillouin zone center (q  =  0), n  is the number of atoms in the primitive 

cell, and the acoustic modes (i= l) have been excluded. The e0 and £„ terms represent 

the dielectric constants of the material when subjected to low-frequency and high- 

frequency EM fields, respectively. Eq. (1.10) may also be derived from the Kramers- 

Kronig relations [55] where (w/J, and are the zeros and the poles of the dielectric 

function c(u/), respectively.[9] Since u>l is typically independent of temperature, the 

presence of a soft transverse phonon will result in a dramatic increase in e0. In fact,

if the behavior of the dielectric constant follows a Curie-Weiss form, then we should

expect that

<4oc ( T - T c). ( 1 .1 1 )

In Fig. 1 .6 , we see that experimental measurements performed in SrTiC>3 agree very 

well with the conclusions of the lattice dynamical approach. This and other exper

imental results have since established the validity of the soft phonon concept for 

perovskite and diatomic ferroelectrics.

1.4 Brief History of Ferroelectricity

Ferroelectricity was originally discovered in 1920 in Rochelle salt (NaKC6 H406 

• 4 H2 O) [107] and later in KH2 PO 4  and related salts [12, 13, 101]. The ferroelectric
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Figure 1.6: Experimental measurements by Cowley of the temperature dependence of 
the zone-center transverse optic mode in SrTi0 3 .[28] The broken line is the reciprocal 
of the dielectric constant measurements of Mitsui and Westphal[79].
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properties of B aT i0 3 were revealed near the end of World War II, and since that 

time it has become one of the most widely studied materials, helping to establish the 

modern understanding of ferroelectricity. [6 8 ] The relative simplicity of its perovskite 

structure led to searches for ferroelectricity in other transition m etal oxides with the 

same ABO3 formula unit. These efforts were rewarded by the discovery of a whole se

ries of ferroelectric titanates (PbTiC>3 , S rT i03), tantalates (K Ta03, N aT a03, LiTa03, 

RbTa03), and niobates (KNb03, LiN b03), as well as mixed alloys (Pb(ZrIT ii_I ) 0 3, 

also known as PZT), each with a single ferroelectric phase transition or a  sequence of 

multiple transitions at successively lower temperatures.

The simple 5-atom formula unit permitted a microscopic analysis of the tran

sition that later resulted in the lattice dynamical description mentioned above. The 

origin of the soft-mode instability is apparently caused by the anisotropic polariz- 

ability of the oxygen atoms, created by dynamical hybridization between the oxygen 

p-states and the transition metal d-states.[78, 8 , 26,14] Contemporary with these suc

cessful descriptions were the results of diffuse X-ray scattering in B aT i0 3 and K N b0 3 

by Comes et al, which suggest that the local atomic structure might not be the same as 

the apparent structure seen in elastic X-ray and neutron scattering experiments.[27] 

The picture suggested by these results is one where short-range chains of similarly 

distorted unit cells exist prior to the actual transition, but only become macroscop- 

ically correlated below the transition temperature, similar to an order-disorder type 

of transition. Thus, although the results of the past few decades have greatly con

tributed to our knowledge of the ferroelectric transition in the perovskites, it appears 

that there is still more to be learned.
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Much of the recent progress in our theoretical understanding of ferroelectric 

behavior has been largely due to a rapid increase in the computational power and 

availability of hardware; so much so that relevant research efforts may now be car

ried out on a  desktop platform. Moreover, advances in the computational methods 

themselves have resulted in high-quality calculations. One such method, the Linear 

Augmented Plane-Wave (LAPW) method has emerged as the standard against which 

other theoretical calculations are compared. In the present work, this method is used 

to predict both the ground state and first-order dynamical properties of S rT i03. Be

fore delving into the results of this investigation, the background theoretical basis and 

principal assumptions behind the LAPW and most other modem calculation methods 

will be presented in the next chapter.
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Chapter 2 

First-principles calculations in 

condensed matter

2.1 The Born-Oppenheimer approximation

Any attem pt to accurately describe the physics of a condensed m atter system 

must necessarily begin with the Schrodinger equation. Most often, we are concerned 

only with time-independent interactions, so tha t the ground-state of a  system of 

nuclei and electrons can be found using the time-independent form of the Schrodinger 

equation

ff ( r ,R )  $ ( r ,R )  =  £ $ ( r , R ) ,  (2.1)

where r= { r i, r 2> . . .  } and R = { R l5  R 2, . . .  } are the positions of the Ne electrons 

and the Na atomic nuclei, respectively. $  is the many-body wavefunction and de

pends upon the positions of all of the particles. E is the total energy, and H is the

16
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Hamiltonian operator, given by

H (r, R) =  T„(R) +  Te(r) +  f/n_n(R) +  Ue. e{r] +  C/e_„(r, R ). (2.2)

The kinetic energy operators for the nuclei and electrons are, respectively,

a

(2.3)

(2.4)

Here we have used atomic units, where me= l ,  e = l, and h=  1. The other terms, Un_„, 

Ue_e, and Ue- n, are the electrostatic potential energy operators for the nuclei, the 

electrons, and the interactions between them:

Here, both the electrons and the nuclei are treated as point charges. Due to the fact

tion. Born and Huang [10] have shown that using this mass ratio in a perturbative 

expansion, one can write the many-body wavefunction as a product of an electronic 

wavefunction and a nuclear wavefunction. The physical interpretation of this is that 

during the nuclear motion, the electrons behave as if the nuclei were fixed. This 

is what is known as the adiabatic or Bom-Oppenheimer approximation. With fixed

(2.5)

(2.7)

(2.6 )

that the mass of a nucleus is much greater than that of an electron, the motion of the 

former is much slower than that of the latter, and T„ can be treated as a perturba-
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nuclei, U„_n reduces to a scalar, and all that remains is to solve the corresponding 

electronic Schrodinger equation:

ffc/(r ,R )*(r)= £eZ *(?)- (2-8)

Here, He/ is the electronic Hamiltonian given by

Hel(r, R) =  Te(r) +  U e - e ( r) +  U e - n { F, R ), (2.9)

and

E el =  E e +  E e - e  +  E e - n  (2-10)

is the electronic energy, composed of the total kinetic energy of the electrons and 

the electrostatic interaction energies. The many-body electronic wavefunction, ^ ( r ) ,  

is quite complicated and is the subject of the next section. As we shall see later, 

minimizing Ee/ with respect to ^ ( r) , under the constraint tha t it be antisymmetric 

and normalized, is equivalent to solving Eq. (2.8) for the ground state. Once the 

ground-state value of Ee/ is determined, the total energy of the system, Ee/+U n_n 

can be evaluated. The nuclear positions can then be shifted, and a new total energy 

found. In this way, we can perform structural optimizations and determine linear 

response coefficients from first-principles.
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2.2 The many-body electronic wavefunction

The physical interpretation of the many-body electronic wavefunction is that 

| ^ | 2 is a probability density function in the following sense:

=  ^ * (r 1 , r 2, . . .  ,Fiv) *£(?!, F2, . . .  , r N) dxldx2 . . . d f N 

=  the probability of finding electron 1  between ?! and (2 -1 1 )

+  dxu  electron 2 between F2  and r 2 +  dr2; and so on.

Here, N=Ne, the number of electrons. Thus, | ^ | 2  represents the probability density 

of finding the system in a particular configuration. Note that although we have not 

accounted for the spin variables, the concepts here can be easily extended to include 

them. The appropriate boundary conditions must be applied during the solution of 

Eq. (2.8). |'Ir [2 must be periodic when dealing with an infinite crystal; or it must 

decay to zero at infinite distance for isolated atoms and molecules. Also, because the 

electrons are fermions, 'Ir must be antisymmetric under the exchange of any pair:

t f ( . . .  ,?*, . . .  , F j , . . . )  =  - $ ( . . .  , Fy,. . .  ,F i , . . . ) .  (2.12)

In addition, since the system will be found in some configuration, #  will be normal

ized:

/  |^(F!,F2, . . .  ,F^ ) | 2  d fxd f2 . . .d x N =  1. (2.13)

The resulting solutions of Eq. (2.8) are the eigenfunctions 'If*, with corresponding 

eigenvalues Efc. Since this set is complete, we can also assert an orthogonalization 

condition:

/  * k d r =  =  Ski. (2.14)
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The solution we are looking for is the ground-state wavefunction, # 0 , having eigen

value Eo-

2.2.1 D en sity  m atrices

Even more general than the probability density is the density matrix, whose 

elements are defined as

If we set r , =  r /  for all i, then we get a diagonal element of this matrix, which is the 

original probability density shown in Eq. (2.11). This alternative formulation can be 

thought of as a coordinate representation of the density operator,

The density operator can be used to evaluate the expectation values of observables.

■ ? h )  3  # (F i ',F 2' , . . .  ,Fjv') * * (F i,F 2, . . .  ,F jf). (2 .15)

(2 .16 )

because

(r1, ,F2,J. . .  , r(v, |7JV|ri,r2, . . .  ,?ff) =  ( r / ,  r2' , . . .  |r i ,r2, . . .  , r N )

= r2\  . . .  , rAr')^*(ri, r2, . . .  , rN).

The normalization condition can now be expressed as a trace:

(2 .18)

The expectation value of a Hermitian linear operator A, is given by

I A \  =  =
'  '  ~  ( * 1* )  / * " ^ d F  ’

(2.19)
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If ^  is normalized, then (A) can be written in the position representation:

(A )= (tf |A |tf )  (2.20)

=  /  (^ |? )(r | A |r ')(F / |^ r) dr* dr (2.21)

=  /  ^r*(r)A(r, r ,)^ r( r /) dr'dr (2.22)

=  tr  (7 nA) =  tr  (A7 w ). (2.23)

Here, r={Fi, r 2, . . .  } and r '= { r ( ,  t '2, . . .  }. The matrix elements of A in Eq. (2.22) 

indicate that it is possible for an operator to be nonlocal. An operator is only local if

■A(?i, ?i') =  A(Fi)J(r1/ -  Ft). (2.24)

2.2.2 R educed  d en sity  m atrices

Because we will be dealing with symmetric one-electron and two-electron op

erators, the expectation value given by Eq. (2.23) can be simplified by integrations 

over the position variables which do not appear in these operators. This will result 

in a reduced density matrix. Eq. (2.15) is called the N th order density matrix. The 

reduced density matrix of order m  is given by

> I'm J r i ? r 2, - - ■ , rm)

- O f  7^ ( ^ i , • • - , r m , . . .  , r^v, r i , . . .  , r m, Tm+i,. . .  , r/v) drm+x. . .  dvpf,

(2.25)

where (^) is a binomial coefficent. The first-order density matrix 7 t is given by

7 , ( r / ;  fx) = N  J  # ( F / , r 2, . . .  , r^ )  ^* (ru  r 2, . . .  , r^v) dr2 . . .  d?N, (2.26)
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which normalizes to the total number of electrons:

tr(7 ,(F l';F i)) =  f  =AT. (2.27)

Thus, the diagonal part of the first-order density m atrix is just the ordinary electron 

density, n(Fi). Similarly, the second-order density m atrix 7 2, which is written

7 2 (F /, F2'; r L, r 2)

=  f  * ( r 1\ r 2\ r 3, . . . , T N)* * (r u r2jT3, . . . , f N)d r3 . . .d r N, (2.28)

normalizes to the number of electron pairs:

tr  (7 2 { r i, t2 ; Fi, r 2)) =  J J  7 2 (Fx, F2; Flt F2) d rid f2 = . (2.29)

Here, the diagonal part of the second-order density m atrix n (F i,r2) is the density of 

pairs of electrons, one at Fi, and the other a t F2. Both the first and second order den

sities are positive semidefinite and Hermitian, and obey antisymmetry requirements. 

They are related to each other by

=  j v - 1 (2‘3°)

It is now possible to evaluate the expectation values of the components of the elec

tronic Hamiltonian using these results.

2.3 The electronic energy

The expectation value of the electronic Hamiltonian is dependent upon the 

wavefunction, and for this reason, the electronic energy is a functional of

£«[#] =  (Hel) =  (2.31)
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To determine Ee/f'If], it is necessary to evaluate the expectation value of the  individual 

contributing terms. Since we have imposed the normalization condition, these terms

become:

N
(\&\* .[* ]  =  <#|T.|*> =  - V  (#1 |*>, (2.32)

t= l

£ U [ * ]  =  <*|V«-«|*) =  5  £  <*l iF T T T  (2'33)
* v*j |r*' ril 

w
£■«_[*] =  =  y ,  <*i » = .« >  i*>- <2  34)

i= l

Here, ucx£(ri) represents the external potential energy due to the fixed nuclei, and 

is therefore only explicitly dependent on the positions of the electrons. Each of 

these quantities can be evaluated using the reduced density matrix formalism. Both 

the kinetic energy and the ion-electron electrostatic energy are local, single-particle 

operators. Their contributions to the electronic energy can be written as:

( * |T . |# ) = t r ( r . 7 „)
r  i  <2.35)

= J  J ( r i ' - r 1) ( - - v j I)7 ,(F l ' , ? i)<iriiffi',

(* |C 4-nW  = tr ( « ,- „ 7 „ )
f  f  (236)

=  I v „ ,(r i )7 ,(r i ;r i )d r ,  =  I n(Ti) d fi.

It is im portant to note that it is not possible to evaluate the kinetic energy unless 

we know the off-diagonal terms of In contrast, Ue_n can be evaluated

using only the diagonal terms, which make up the electron density n(?i). The repul

sive Coulomb interaction between electrons is a local, two-particle operator, and the
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interaction energy can be written using the second-order density matrix:

(^ |f /e-e |^ )  =~ [ S(fi -  ?i) S(r2r ~  r 2) -z t t  7 2 (ri', r 2'; r l7  r 2) d r f  dr2' d T ^
1 J |r i — r 2|
I f  1= r  /  -=----zrr 72 (?i > ?2; r!, f 2) dr i df2
2 J  |ri — r2|

= 5  / i ? r L^ ! " (F' ’?2,<<F,<iF2-
(2.37)

If the electron-electron interaction were classical, one would expect to be able to write 

its energy as a function of the single-electron density:

= i J J  <gl<ff2- (2-38>
From this observation, it would seem possible to use the classical form if an extra term

is added to represent the non-classical deviations. Let us propose a pair-correlation 

function w (r i , r 2) such that

n(Fi, r 2) =  i n ( r i )  n (r2) [ 1  +  w(?i, r 2)], (2.39)

which, when inserted into Eq. (2.30), gives

= j f - i ' +  f  n ^  (2‘40)

This implies that

J  n (r2) w(Tu r2) dr2 =  - 1 .  (2-41)

The integrand above is called the exchange-correlation hole, due to the fact that it

integrates to the absence of one electron. It can also be written as

nxc(?i, r 2) =  n(r2) w (ru  r 2). (2.42)
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Using nxc(r1, r 2), we can separate Ee_e into a classical part, known as the Hartree 

energy, and an exchange-correlation part:

(tflOUel*) =  Ea m  +  Exc{%  (2.43)

where

E * w = \ f nJw ^ - ^

E „ m = \  [  (2.45)4 7 |ri — r2|

Here, Eh , is the repulsion energy of the electrons as if they were independent of each 

other’s positions. The exchange-correlation energy is comprised of differences from 

Eh due to the presence of the exchange-correlation hole. We may now write the entire 

expression for the electronic energy functional:

£„[*] =  =  f u r , '  -  f i ) ( - i v | , )  7 ,(?l';F i)

+  J  ««,(?>) n (r,) d r, + d ^ d r2 (2.46)

+  1  / - n t q ^ r ^ )
2 J  \t i  -  r2|

The task now is to find the ground state, \&o, which will minimize the value of Ee/ 

under the constraints of Eqs. 2.12 and 2.13. This is done by making use of the 

variational principle.

2.4 The variational principle

When a system is in an eigenstate \&fc, or a  linear combination of degenerate 

eigenstates, every measurement of He/ will result in the same eigenvalue E*. However,
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when ^  is a linear combination of non-degenerate eigenstates, the eigenvalue produced 

upon measurement is not pre-determined. As a consequence, the expectation value 

of Hef, being a statistical average of the E*, will always be greater than  or equal to

the ground-state value. This can be proven by expanding a general wavefunction ^

in terms of the eigenstates

l*> =  (2-47)
k

so that the energy becomes

EW
£ U * 1 =  * E M »  ( 2 -4 8 )

k=0

T ,\c t\H E k -  E0)
k= 1

EM2
fc=0

+  E q  >  E 0j (2.49)

where E0  is the ground-state energy and the orthogonality of the has been used. 

Obviously, the ground-state energy is reached when 'Ir=co'Iro. Thus, minimization of 

Ee/[^] with respect to all possible N-electron wavefunctions satisfying the conditions 

of normalization and antisymmetry will result in the true electronic ground-state:

Eq =  Ee/f'J'o] =  nun (2.50)

The task of actually finding this minimum can be achieved using the variational

principle, written as

=  0. (2.51)

This is equivalent to requiring that

5 E ^ \  _  n  (9  r o )
- s *  ~  ° ’ (2’5 ’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



which is the Euler-Lagrange equation. Substituting Eq. (2.31) into Eq. (2.52) and 

carrying out the functional derivative explicitly yields Eq. (2.8). Consequently, solving 

Eq. (2.52) for 'fr is equivalent to solving the electronic Schrodinger equation. Eq. (2.52) 

is also an expression of the fact that all of the eigenstates of He/ are extrema of 

the electronic energy functional. Using the method of Lagrange multipliers, we can 

minimize Ee/['Jr] under the constraint that (^ |^ )  =  1. This is the same as requiring 

that

A  [<»[J5Trf|®> -  =  0, (2.53)

using Eei as the Lagrange multiplier, without imposing the constraint. This equation 

is then solved for #  as a function of Eei, and then Eei is modified to satisfy normal

ization. Typically, one constructs a trial wavefunction out of some linear combination 

of acceptable (antisymmetric, but not necessarily orthonormal) and completely de

termined basis functions:

I*') =  (2.54)
k

so that

(tf'| Hel I®') =  ^ 2 c f c k(Xl\ffei\Xk) =  (2-55)
l,k l,k

<*'!*'> =  5> -c* (jab ft>  =  (2.56)
l,k l,k

where H'lk and 0'lk are the m atrix elements of He/ and the overlap m atrix in the trial

basis, respectively. Applying the variational principle as in Eq. (2.53) gives

^  (cfckH'ik — Eeic*CkO'tk) ] =  0* (2-57)
l,k
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resulting in the standard form for generalized m atrix eigenvalue equations

£ [ / 4 - E dOit ]c * = 0 , (2.58)
k

which have a nontrivial solution when

det (.H'lk -  E elO'lk) =  0. (2.59)

The energy roots and the normalization condition are then used to find the expansion 

coefficients. This procedure will produce the set of ck which give the minimum energy 

possible for a given choice of basis functions. In addition, it is guaranteed that as 

we use an increasingly flexible trial wavefunction, the error between Ee/ and Eo is 

reduced. In fact, even a relatively poor trial wavefunction can give a good estimate 

of the ground-state energy because if

|tf') =  l*o) +  |<ftf), (2.60)

then by Eq. (2.49),

E elm  = Eel + 0 [ 6 * 2}. (2.61)

However, for the problem of electrons in a solid, ^  is a  complicated many-body wave

function, and direct minimization as in Eq. (2.53) is impossible. From the results 

of Eq. (2.30) and Eqs. (2.35-2.37), it is evident that only the second-order density 

matrix y2 is needed to produce a solution. However, using a trial form for 7 , presents 

its own difficulties. For any guessed 7 2, it must be derivable from some antisym

metric wavefunction This is the N-representability problem for 7 2. It is not clear 

at this time what the conditions are for to be representative of an acceptable 

wavefunction. [24, 25]
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2.5 Density functional theory

Once one choses an external potential vcxt(r), whether it be due to the positively 

charged nuclei or ions, or due to some other external field, the electronic Hamiltonian 

is fixed. Therefore, for an N-electron system, the ground-state energy and wavefunc

tion are completely determined by the choice of vcxt(r). In a landmark paper by 

Hohenberg and Kohn[51], it was demonstrated that in the place of N and vcxt (r), one 

could use the electron density n(r) as the basic variable. Obviously, N is determined 

by the density:

The proof that n(r) comes from only one vext (F) to within an additive constant is 

proven by showing that different external potentials must necessarily lead to different

where Eeit is the classical Coulomb energy of the nuclei or ions. Here, F[n(r)] contains 

the kinetic and electron interaction energies, and is a  universal functional of the

It forms the basis of density functional theory, which is an  exact theory with no 

approximations. A second result of Hohenberg and Kohn, which was later extended 

by Levy,[67] proved tha t for ra(r) >  0 satisfying Eq. (2.62),

(2.62)

ground-state densities. Since n(r) can determine N and u„ t (r), it also produces all of 

the ground-state properties; in particular, the total energy

(2.63)

density in the sense that it has the same form regardless of the external potential.

(2.64)
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Actually finding the electronic ground-state energy Eo requires use of the variational 

procedure discussed previously. The most significant result of this development is 

tha t a problem of 3N variables has been reduced to one of only 3 variables. The only 

drawback is that the form for F[n(r)] is as of yet unknown. This requires th a t some 

further approximation be made in order to perform practical caluclations.

2.5 .1  T h e K ohn-Sham  m eth od

It is traditional to separate out the classical Coulomb repulsion term  from 

F[n(r)], so that all of the non-classical many-body effects are contained within another 

functional:

F[n(r)] = E h [n(r)] +  G[n(r)] (2.65)
=  1  r  n (ri) n(T2 ) +  ( 2  66)

L J  |r i  — *2 |
Kohn and Sham[63] proposed the use of a fictitious non-interacting system of elec

trons, described by single-particle wavefiinctions. This allows one to roughly calculate 

the kinetic energy, ignoring correlated motion. The corrections to this approximation 

could then be absorbed into another term which also accounted for the exchange en

ergy of the real system given in Eq. (2.45). The density of this hypothetical system

would simply be
occ

n(r> = X > - ' ( f )l2. (2-67)
i

where the sum is over the N occupied lowest-energy orbitals of both spins. The 

Kohn-Sham kinetic energy is just
OCC  -

T .K f)]  =  (2 .6 8 )
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so th a t the exchange-correlation functional is defined by

E«[n(r)] =  G[n(?)] -  r,[n(F)]. (2.69)

This is not the same quantity given in Eq. (2.45), but rather also contains the differ

ence between the real kinetic energy and Ts[n(f)]:

£ IC[n(F)] =  T[n(r)] -  T,[n(r)] +  Ue- e[n^)\ ~  E B [n(j)]. (2.70)

The to ta l electronic energy of the real system then becomes

E ei[n(f}\ =  Ts[n(r)] +  J  u«t (r) n(r) dr +  E ff[n(r)] +  Exc[n{j)\, (2.71)

which, when minimized under the constraint of Eq. (2.62), yields the chemical poten

tial,

#Ts[n(F)] f  n (r') .
M =  6n(r) + Vcxt^  + J |F -  r ' |  +   ̂ ^

where

« - »  -  » ■ '»

is defined to be the exchange-correlation potential. The key assumption in the Kohn- 

Sham method is that there exists some effective potential for the non-interacting 

system which can result in the same ground-state density as the real interacting 

system. That is to say if

Eei,Ks[n(r)} =  Ts[n(r)] 4- J  vcff{r) n(r) dr  (2.74)

is minimized under the constraint of Eq. (2.62), then

" '~  =  £W i + t ’- " (f)- <2/r5>
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As a result, the non-interacting system will give the same ground state density as the 

real interacting system when fi =  fj,KS or when

/  jjrT F f-ff'+  #•-(*)• (2-76)

The whole problem may now be recast, using this effective external potential, into a 

pair of single-particle equations:

[ - | V 2 + t ; .„ ( r ) ] * = £i* ,  (2.77)
OCC

» « = £ ! * ( * )  I2- (2.78)

which must be solved self-consistently, under the conditions of orthonormalization of 

the single-particle wavefunctions:

{ i ’d (2.79)

Iterative methods are used to perform the calculations, since the density, n ( r /), ap

pearing in the integral operator for the electron interaction, is necessarily dependent 

upon the wavefunctions. It should be noted that the ground-state electronic energy of 

the real interacting system is not ju st the sum of the fictitious independent-particle 

eigenenergies, but may be obtained from the self-consistent ground-state density:

= f>  -  \  f
(2.80)

. r .  r_ f S E xc[ n ( ^+ Exc[n0 (r)] j  Sn^ n0(r) dr.
no

2.5 .2  T he local-density approxim ation

The Kohn-Sham method is simple and elegant, but the exchange-correlation 

functional has still not been defined. Kohn and Sham suggested to use a form for
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Exc[n(r)] which was a  local function of the density:

(2.81)

where £IC(n(r)) is the exchange-correlation energy per particle of a uniform gas of

is what is known as the local density approximation or the LDA. The exchange- 

correlation potential pxc{j) is now written as

Since density functional theory is exact, the LDA is the only approximation, and is 

therefore, in principle, the only source of error in the Kohn-Sham formalism. Even 

though the LDA was originally used for calculations in systems with slowly varying 

densities, it has performed surprisingly well in atomic and molecular systems where 

the density gradients can be rather large.[57] Despite this success, it should be re

membered that the exchange-correlation energy is a actually a non-local function of 

the density everywhere., and for this reason, the LDA fails to accurately reproduce 

certain characteristics of materials. For example, the LDA has a tendency to over

estimate the dielectric constant by about 10 to 30%. It also can underestimate the 

lattice parameters of crystals by about 1-2%. There have been numerous proposed 

forms for s ic(n(f))] [63, 121, 93, 47, 108, 109] the most successful of which are the 

quantum Monte Carlo results of Ceperley and Alder. [17, 18] The form used in the 

present work is the Wigner interpolation formula[121, 44],

electrons, and n(r) is the density of the electrons for a particular problem. This

(2.82)

(2.83)

e.x e (71(F)) =  ri3 -0.984 -
0.944 +  8.90 7i3
(1 + 12.57ti5)2 J ’ (2.84)
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which attem pts to  reproduce both the high density data  and low density Wigner 

crystal energy.

Two notable methods which attem pt to improve the LDA are the weighted 

density approximation (WDA) and the generalized gradient approximation (GGA). 

The approach taken in the GGA is to modify eic by making it a function of not 

only the local density, but also of |V n(r)|. Some initial results of this approach can 

be found in Refs.[85, 97, 62, 34, 43]. The WDA is more complicated, incorporating 

the non-local effects by using model exchange-correlation holes.[42] It is exact in 

the limits of a uniform electron gas, and a single electron system. Both methods 

greatly improve results for the ground-state properties of low mass atoms, but the 

GGA errors in lattice parameters can be greater than the LDA for some m aterials 

containing heavy elements. The WDA can yield poor results for metallic surfaces, 

and the increased computational difficulty required to implement it has resulted in a 

preference for the GGA over the WDA.

2.5 .3  G eneral calculational procedure for solids

Most modern calculations for crystalline solids utilize the single-particle Kohn- 

Sham method along with the LDA, and are commonly known as first-principles or 

ab-initio methods. In solid crystalline materials, we have the advantage th a t the 

potential and the density (and consequently, the Hamiltonian) are periodic in space, 

allowing us to invoke Bloch’s theorem. The single-particle wavefunctions therefore 

have the crystal momentum wavevector k as a good quantum number and satisfy the
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boundary condition,

^  £(F +  fi) =  £(f), (2.85)

where n  is the band index, and R  is a direct lattice vector. These wavefunctions are 

formed from some linear combination of known basis functions, similar to what was 

done in Eq. (2.54) for the many-body wavefunction. The variational single-particle 

wavefunction is written as

^ - w  =  E c '.£(e ) ^ w .  <2-86)
G

where G  is a reciprocal-lattice wavevector, and k  is restricted to the first Brillouin 

zone. The LDA total energy is minimized with respect to the unknown coefficients, 

Cn-(G ), when the secular equations are satisfied:

£  [ " * * * « .  -  «j  C *  (O ') =  0 . (2.87)
g '

Here, H_ and O . ,  _ , ,  are the Hamiltonian and overlap m atrix elements,
k + G . k + 6  k+ < 3 ,k+ < 3  r

respectively,

(2-88)

(2.89)

with H = —̂ V 2 -(- veff(r) as in Eq. (2.77). The rank of these matrices is equal to 

the number of basis functions used in Eq. (2.86), resulting in an equivalent number 

of eigenvalues and eigenfunctions at the wavevector k. However, only the N lowest 

states will be occupied. The secular equation is solved on a 3-dimensional mesh of 

k-points in reciprocal space, but in such a  manner that these points lie only within the
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symmetry-reduced wedge of the first Brillouin zone. The charge density is constructed 

using the resulting wavefunctions of the occupied states:

OCC

p W  =  £ /  (2.90)
71

In practice, the integral above is replaced by a symmetry-weighted sum over the 

same grid points where the time-consuming diagonalizations take place. The loca

tion and density of these grid points is chosen so as to maximize the computational 

efficiency. [81] For an insulator with a large number of electrons, even a low density 

grid can perform rather well. The new charge density is “mixed” with the previ

ous one in some algebraic fashion, and the resulting density is used to create a new 

ve//(r), which is incorporated into a subsequent Hamiltonian. The diagonalization is 

repeated, and the process continues until self-consistency is achieved. To start this 

iterative technique, it is necessary to create an inital “guess” for the charge density. 

This is typically produced from some preliminary calculations for the component 

atoms in the material.

The sum in Eq. (2.86) is over as many basis functions as are necessary for an ac

curate representation of ip _(r). If the true Kohn-Sham single-particle wavefunctions
n,fc

can be expressed exactly in terms of the basis functions, then finding the Onj.(G ) 

will give the exact self-consistent solution to the problem. However, this may require 

a large number of basis functions. A larger basis set will produce larger matrices, 

requiring more time for diagonalization. Even if the choice of basis does not permit 

exact representation of the if) _(r), this procedure will yield an optimal set of coeffi-
n ,k

cients which minimize the total energy. Thus, the quality of a given basis set is judged 

upon its ability to achieve an acceptable compromise between accurate results and
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minimum computation time. Many initial LDA calculations used plane waves as basis 

functions, since they form a complete set, and do not treat any region of the crystal 

with preference (they are unbiased). However, the large number of basis functions 

required to mimic the atomic-like states near the nuclei can make this approach quite 

expensive computationally. A more complicated method uses linear combinations of 

atomic orbitals (LCAO). This leads to improved computational efficiency, especially 

for large systems. However, attem pting to achieve good convergence by using more 

basis functions encounters problems due to the fact that the orbitals a t each nuclear 

site are already complete, making the variational wavefunction overcomplete. The 

linearized augmented plane wave method (LAPYV), described in the next chapter, 

with its dual representation of the wavefunction, overcomes many of the limitations 

of these earlier methods. It can efficiently deal with the core electronic states (in

cluding relativistic effects), and has no difficulty treating materials with localized 

orbitals. The development of a formalism for the accurate calculation of forces has 

made possible the investigation of dynamical properties from first-principles. [125] Be

cause of these capabilities, the LAPW method has become perhaps the most accurate 

method for producing accurate electronic structure calculations for m aterials contain

ing transition metal atoms (with their localized d orbitals), making it an ideal tool 

for first-principles studies of many modem ferroelectric materials.
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Chapter 3 

The Linearized Augmented Plane 

Wave (LAPW) Method

3.1 Background

The linearized, augmented plane wave or LAPW method is a natural extension 

of Slater’s original (APW) method. [99, 69] In the regions near the nucleus, the wave- 

functions will be rapidly varying due to the steep potential gradient, while in the 

bonding regions, they will be much smoother, as will the potential. The idea is to 

use dual-representation basis functions which can express both of these characteris

tics. Inside non-overlapping muffin-tin spheres, centered on each atom, one uses a 

product of spherical harmonic functions multiplied by numerical solutions to a radial 

Schrodinger equation having the form

-^ 2  + +  v (r) -  Ei\ rMr) =  o. (3.1)

38
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The radial functions, uj(r), depend upon E* as a parameter, and V(r) is the spherical 

part of the potential within the sphere. Outside the spheres, plane waves are used, 

and the two representations are forced to match a t the spherical boundary. Thus, 

the expansion coefficients inside the muffin-tin sphere are completely determined by 

the plane wave expansion coefficients outside and the energy parameters Ej. In the 

original APW method, the E/ were used as non-linear variational parameters, and 

resulted in a standard secular equation which was dependent upon Ej, requiring a 

costly root-finding algorithm. Another less severe problem, known as the asymptote 

problem, was that it was possible for some of the u/(r) to have a node on the sphere 

boundary, causing the secular determinant to vary wildly. These problems were later 

solved when Andersen, Koelling, and Arbman[2, 60] proposed including the derivative 

of the radial functions with respect to Ej in the basis, and forcing continuity of both 

the basis functions and their first radial derivatives a t fixed E;. This is the essence of 

the LAPW method. The addition of the energy derivative introduces errors of order 

(e — Ei)2 in the wavefunction, which translates into errors in the band energy of order 

(e — Ei)A. This high order for the error means that the LAPW basis functions become 

useable over a relatively wide range of energies, allowing all of the valence bands to be 

treated with a single set of E/. Furthermore, a single diagonalization a t a particular 

k-point is able to produce accurate energy bands. The establishment of the LAPW 

method as one of the most powerful and accurate techniques to date began with with 

the use of model atomic potentials [60], and was extended to fully self-consistent 

calculation methods for slabs [56, 64, 46] and for bulk materials [44, 122, 115].

Since then, Yu, Singh and Krakauer have developed a formalism for force cal
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culations within the LAPW method,[125] and this work has recently been extended 

into the linear response regime, allowing accurate LAPW studies of the dynamical 

properties of materials from first principles.[126, 110, 111, 113] Details of the  LAPW 

method have been reviewed by Singh[98], Wei[115], and Lu[70]. The m aterial cov

ered in the next few sections will give a basic overview of the LAPW basis functions, 

charge density, potential, and total energy. This will be followed by a discussion of 

pseudopotentials and their use within the LAPW method. Forces and linear-response 

calculations will be covered in the next chapter.

3.2 LAPW basis functions

In the LAPW method, the Kohn-Sham orbitals are expanded as in Eq. (2.86),

with

_]= r  6  In terstitia l

T , [aim (k 4- G ) ut(Ei; rt) 4- 6jm(k  4- G ) ui(E\\r,-)] Ylm(ri), r,- <  Ri,
l ,m

(3.2)

where ft is the volume of the unit cell. The dot in the expression ui(E};ri) indicates 

the first derivative with respect to E\. Also, r* =  r  — r t, where r ,  is the position 

of the i-th muffin-tin sphere of radius R,- in the unit cell. As usual, I and m  are the 

orbital angular momentum quantum numbers. The expansion coefficients ajm(k + G )  

and 6 (m(k 4- G) are determined by forcing both the basis functions and their radial 

derivatives to be continuous at the muffin-tin sphere boundary. Not only do the radial

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

functions satisfy Eq. (3.1), but their energy derivatives solve a similar equation:

*  + « i ± i J + v w - s r ui{r) = r  u i(r). (3.3)
dr2 r2

The ui are chosen to be normalized within the muffin-tin sphere.

r Ri
I r2u?(r) dr =  1, (3.4)

Jo

which implies that «i(r) and uj(r) are orthogonal:

I" f  r2uf(r) dr = 2  [  r2U[(r)iti(r) dr — 0. (3-5)
dEi L/o Jo

In general, the tt;(r) are non-normalized:

r Ri
I r2 iif(r) dr = Ni- (3-6)

Jo

One of the identities from the APW method [15], which still holds in the LAPW 

method, is

R2 [ut{E}, Ri) ui(El, Ri) -  ui(Ef, R,) u'^El, R*)] =  1. (3.7)

Here, the prime symbol indicates a radial derivative. From this we can see that 

even if m (r ) has a node at the sphere boundary, then in general, u[{Ri) and ui(Ri)

will be non-zero. This removes the asymptote problem inherent in the APW  method.

Using the energy derivative gives the additional advantage of more variational freedom 

within the spheres. Even if we do not know the band energy £i, it may be possible to 

approximate the correct APW  wavefunction using the energy derivative:

r) = ui{Et, r) +  (ef -  Ei)ui(r) +  0{{ei — E t)2). (3.8)
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If the error in the wavefunction is second-order, then the error in the energy will be 

fourth-order. Thus, the LAPW basis can produce good results over a  range of band 

energies. Usually, the E* are chosen to  lie near the center of the bands of interest. 

In this way, accurate energy bands can be obtained with only one diagonalization at

often the case, but problems can develop, especially with physically extended semi- 

core states having the same angular momentum as some of the valence states. This

energy windows. This approach, and the problems it can generate, are discussed by 

Mattheiss and H a.m a .n n , [74] as well as by Singh and Krakauer.[95, 98] If the kinetic 

energies of the electrons are large, as they will be for high-mass atoms, then relativistic 

effects cannot be ignored. In this case, the radial Schrodinger equations (Eq. (3.1) 

and Eq. (3.3)) are replaced by the j-weighted averaged Dirac equation and its energy 

derivative.[61] The spin-orbit interaction term is dropped in this treatm ent, but it can 

be added later on. When constructing the charge density and the Hamiltonian m atrix 

elements, both the large and small radial components are used, whereas only the large 

component and its derivative are used to match the functions a t the boundary, since 

the valence electrons surrounding the sphere surface are typically non-relativistic.

each k-point, which greatly improves the efficiency over the APW method. This is

is usually dealt with by performing two independent calculations within separate

3.3 The charge density

The charge density is determined from the occupied Kohn-Sham orbitals,

occ

(3.9)
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where nt- is the occupation number of the state i  a t the k-point, k,-, times the symmetry 

weighting of the k-point. This summation replaces the integral in Eq. (2.90), and is 

performed over a mesh of k-points, as mentioned earlier. The generation of this 

mesh is accomplished using a special k-point method,[19, 81] which optimizes the 

convergence of this sum for relatively smooth bands as a mesh of increasing density 

is used. The diagonalizations, which determine the wavefunctions used to construct 

p(f), are necessarily also performed at each k-point of this mesh. In the LAPW 

method, a dual representation is used for the charge density and the potential as well, 

but the natural crystalline symmetry can drastically reduce the number of expansion 

coefficients in both the interstitial and the muffin-tin regions. The real charge density 

is written as

p{ f) =  <
€ ilh sphere

** (3.10)
5 3 p ,0 a(r), r  €  interstitial

where the functions K^Vi), called lattice harmonics, are created from linear combi

nations of the ordinary spherical harmonics using the site symmetry of the i th atom:

Ki,u{Ti) =  (ri). (3.11)
m

Here, the coefficients clVTn are determined under the conditions that the lattice har

monics are real-valued, orthonormal, and invariant under the point symmetry of the 

ith atom site. Any function within the spheres may now be expanded in terms of 

the appropriate lattice harmonics. Symmetry-related atoms will have the same lat

tice harmonic expansions, differing only in a  rotation of the local coordinate system. 

Similarly, any function which has the space group symmetry of the crystal can be
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expanded in terms of star functions, which are constructed from symmetrized

plane waves:

Here, R  and are the rotation and translation components of each space group 

operation, of which there are Nop. The p3 are the expansion coefficients of the charge 

density in the star basis.

W ithin the m uffin-tin  spheres, the density and the potential are expanded on a 

discrete radial mesh. A logarithmic mesh is used so th a t more points cover regions 

of rapid variation near the center:

0 + , =  rje**, (3.13)

where typically, A x  ~  0.025.

A single self-consistent calculation begins with the generation of the potential 

from an input charge density. This input density is created by mixing the most recent 

output density with the previous input density. The simplest scheme for doing this 

is straight mixing

PW £ + 1  =  (1 -  a) />(?)£+ a  f>(f ) £ „  (3.14)

which will converge if the mixing parameter, a , is not too large. It is a crude mixing 

method which converges poorly for large systems. In this dissertation, the straight 

mixing method was used for the initial input charge density. For subsequent iterations, 

Broyden’s mixing m ethod,[11] which utilizes information about how the density is 

changing, yields much better convergence.
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3.4 The potential

For crystals, the effective potential appearing in the Kohn-Sham equations is a

which is usually calculated in reciprocal space, via Fourier transform, since the equa-

However, since the charge density within the core (near the nucleus) is rapidly varying, 

a Fourier expansion in this region converges extremely slowly. A real-space solution 

to Poisson’s equation is also complicated by the long range of the Coulomb potential. 

Fortunately, a method for solving Poisson’s equation was proposed by Weinert,[118]

density, q\m, inside of the spheres. This means that a given exterior potential can 

come from a variety of charge densities within the sphere, as long as the muitipole 

moments are the same for each. Because of this, a smoother pseudocharge density 

may be constructed so that it maintains the same real charge density in the interstitial 

region, while having the same multipole moments as the true charge density within 

the spheres. This is done by adding a difference charge density, which can easily be 

Fourier transformed, and which possesses multipoles equal to the difference between

combination of the exchange-correlation potential and the Coulomb potentials due to 

the nuclei and the electron charge density. The Coulomb terms can be determined 

from Poisson’s equation,

V 2Fc(r) =  47rp(r), (3.15)

tion is diagonal in G , giving

4 7rp(G)
(3.16)

which utilizes the fact that the potential outside of the muffin tin spheres is dependent 

only upon the interstitial charge density and the multipole moments of the charge
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the true sphere multipoles and the plane wave multipoles:

-  4 (3-17)

This difference charge density is somewhat arbitrary, and in the work presented in 

this dissertation, the Weinert polynomial form,

v « )  =  £  A  i .  ^  [x -  J ]  “ n .  A ,  (3.18)

was used since its Nj-1 derivatives are continuous and its Fourier transform is analytic. 

N/ is a parameter chosen to optimize the convergence of the Fourier transform of this 

difference charge density. Now the pseudocharge would normally be defined in terms 

of star functions and lattice harmonics

pit) =  £ > ,< M f )  +  £  A  (3.19)
s i,fi

where 0 (rt) is the step function, which is unity when rt lies within the itfl sphere 

boundary, and zero otherwise. Choosing the Ap^(rj) such that

A ^ ( f j)  =  £  A  ^ ( r .■)*„«•), (3.20)

the pseudocharge density is written entirely in terms of star functions:

P(f) = ] P p s0 ,(f). (3.21)
3

The interstitial Coulomb potential can then be simply obtained as

Vc(r) =  V "  ~ ^ r  0s(r)> * €  interstitial. (3.22)G i3 S

Once the interstitial potential is computed, it can be used as a boundary condition 

for solving Poisson’s equation inside the spheres with the true charge density. This is
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done in real space using a standard Green’s function approach for solving Poisson’s 

equation inside a sphere.

The exchange-correlation potential must be calculated in real space from the 

charge density. The interstitial contribution to fixc is obtained by a complex fast 

Fourier transform (CFFT) to values on the real space F F T  grid. /zIC(p(r)) is calculated 

on each grid point, and is then back-transformed into a  plane wave representation. 

W ithin the muffin-tin spheres, /ixc is determined directly from the charge density at 

the radial mesh points. The exchange-correlation potential is then expanded in terms 

of the lattice harmonics via a least squares fitting technique.

3.5 The Hamiltonian and overlap matrices

The Hamiltonian and overlap matrix elements (Eqs. 2.88 and 2.89) are also 

broken into interstitial and muffin-tin components:

®  +  £  5 -(e - e ')> (3-23>

and

Hg&' =  77 [  e -‘(e+C) F[T +  Vpw] ei(e '+C) Fe ( r )  dr 
J f i

+ £  [ « , ( e ,  6 )  +  v s s (S , g ' )  i.
(3.24)

The step function, 0 (r) , in these expressions is zero if the position vector lies within a 

muffin-tin sphere, and unity in the interstitial. Note th a t this definiton is opposite of 

that used for the pseudocharge density. The muffin-tin portions of the overlap matrix 

are contained in Sa(G, G  ). The interstitial potential is Vpw,  and T is the kinetic
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energy operator. The m uffin-tin  part of the Hamiltonian has been further separated
f.

into spherical and non-spherical terms, where Htt(G , G  ) includes the kinetic energy 

and 1 = 0 potential terms, and V ^ 5 (G, G  ) represents the 1 ^ 0  contributions to 

the potential. Details of the construction of these m atrix elements are described by 

Singh. [98]

3.6 The total energy

The calculation of the total energy is often the ultimate objective of any first- 

principles calculation. Its minimization with respect to structural perturbations yields 

the ground state structure and its corresponding physical properties. In addition, the 

forces on the atoms may be determined, giving information about the linear response 

of the system. The to tal energy in the Kohn-Sham formulation is not just the sum of 

the single particle eigenvalues, for if it were, it would double count for the electron- 

electron interactions. They can be used however, to rewrite the total energy per unit 

cell in the LDA as:

Etot =  n i £ i ~ \ f  f  d r d f > ~  f Pxc^ d r

n „ ~ (3-25)
+ / , ( * ) . „ ( ? , « r + l £ 2 ;

Ja  a*b ft |R  +  r a - r 6|

where again, the sum over the single-particle eigenvalues is only for the occupied 

states, with defined as it was for the charge density. The difficulty with this form 

for the total energy is the inherent Coulomb singularities present in the Hartree term.
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These may be forced to cancel, if we write the total energy per unit cell as

occ 1 r  1
-  -  /  p(r) X(F) d F -  -  $ 2  Z., (3.26)

* n v
where %  locates only the nuclei within the unit cell,

x(?) = f  1̂ =7, -  52 5 2 5" g, + 2("»w -  £»w>' <3-27)V |r — r | ^  ^  |r -  r a -  R |

and V m (1u) is a generalized Madelung potential [119] due to all of the charges in the 

crystal except for the nuclear charge at the site %:

Expanding x (r) in terms of the lattice harmonics and star functions, the form actually 

used for the present LAPW calculations is [115]:

p  V ' n -  1 ^  [ 2 (2a -  Q m t ) . V a ( R  \
E tot ~  2 ^  Tli £i ~ 2  2 Lf a --------# -----------------MT\ a)

t a  ̂ a
1 f  1 -

-  2 J  *(*) d F _  2  ^  J0 Xfi^  Pfl^  r“ rfr“ (3‘29)

f Q [ 2Za7̂ (r° ) +  ^ « r ( r a ) ff(r«) dra,

where Q a/t number of electrons inside sphere a, and <x(ra) =  4 7T r2p(ra). The

quantity V ^T(/?a) is the spherical average of the Coulomb potential on the surface 

of sphere a. Subscript I  indicates integration in the interstitial region only.

3.7 Pseudopotentials

Before the development of the LAPW  method, the majority of computational 

techniques were purely planewave-based. Not only is the use of a. plane wave basis
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set conceptually simpler, but it also posesses numerical advantages. Fast Fourier 

transform (FFT) techniques permit real-space and reciprocal space representations 

to be determined easily, and the solution of Poisson’s equation is simple (Eq. (3.15)). 

In addition, the matrix elements are much easier to construct. Practical calculations 

use a finite set of plane waves up to some cutoff value for |G |, such that the accuracy 

is maximized while the computational time is kept to a minimum. The chief drawback 

to plane wave methods is that the valence wavefunctions oscillate rapidly near the 

atomic nuclei as a result of othogonalization to the core states. The high cutoff energy 

in such systems makes the basis set too large to be practical. One way to get around 

this limitation is to replace the strong atomic potential with a weaker pseudopotential 

that projects out the core electron states. By doing so, the original Hamiltonian 

is replaced by an effective Hamiltonian having pseudo-states corresponding to the 

valence electrons only. The success of the method is based on the validity of the 

frozen core approximation, which is justified by the fact tha t the chemical properties 

of materials are determined by the valence electrons only.

Early pseudopotentials were empirical in nature, but have since been superceded 

by the development of first-principles pseudopotentials, introduced by Hamann, 

Schliiter, and Chiang (HSC).[45] These are constrained to have the following charac

teristics: (i) the pseudowavefunctions are nodeless for all r; (ii) the pseudopotential 

and the real potential are identical for r  greater than or equal to some core radius 

r c; (iii) the eigenvalues of the pseudo valence states are the same as the true valence 

states; (iv) the pseudo valence wavefunctions and the real valence wavefunctions are 

identical beyond rc; (v) the integrals of the real charge density and the pseudocharge
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Figure 3.1: Kerker non-local ionic pseudopotential and pseudovalence wavefunctions 
for 4s and 4p states in Sr+2.

density up to the core radius are equal for each valence state. This last condition, 

known as norm conservation, ensures that the electrostatic and scattering properties 

of the pseudopotential are reproduced with minimum error as the pseudo-atom is 

placed in different chemical environments. Since the true valence wavefunctions have 

different eigenvalues for each angular momentum value, /, the pseudopotential must 

necessarily be dependent upon I as well. Thus, these kinds of pseudopotentials are 

called non-local. Each I value will have a corresponding rc, a t which the matching 

conditions stated above are to be satisfied. If the core radius is chosen to be rela

tively small, then the pseudowavefunction can more accurately reproduce the true 

wavefunction near the nucleus, and the resulting pseudopotential is acceptable for 

use in a larger variety of environments. This is the issue of transferability. However, 

this means that the pseudowavefunctions will have sharper features, and may not 

necessarily lend themselves to efficient plane wave representation. The choice of r c is
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Figure 3.2: The pseudowavefunctions for 4s and 4p states of Sr+ 2  are nodeless and 
identical to the true wavefunctions beyond rc in the Kerker scheme.

one of quality and transferability, and should not be thought of as a  free parameter. 

The HSC method was later refined by Bachelet, Hamann, and Schliiter [4] (BHS) and 

yielded high-quality pseudopotentials with good transferability. Kerker [58] proposed 

a scheme which was simpler than that of BHS, yet produced pseudopotentials of the 

same quality. In the Kerker construction, the pseudopotential is strictly local for 

r  >  r c.

Although the LAPW method can easily handle the characteristics of the core 

regions, the utilization of pseudopotentials means tha t the chemically inactive core 

states can be ignored. Hamann,[44] compared full potential and pseudopotential re

sults, illustrating that the pseudopotential approach was workable within the LAPW 

method and gave good results. In order that the method not be complicated by the 

use of pseudopotentials, it is desirable to keep the Z-dependence within the muffin-tin
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sphere, such that the pseudopotential is local and equal to the screened all-electron 

value beyond the surface of the sphere. This can be assured by setting the muffin 

tin radius to be larger than the largest value of r c. W ith this in mind, the simplicity 

of Kerker pseudopotentials makes them a natural choice for use within the LAPW 

method. More recently, LAPW force calculations using these pseudopotentials were 

performed by Yu, Singh, and Krakauer,[125] which showed excellent agreement with 

the all-electron forces.

In order to incorporate the pseudopotential into the LAPW formalism, it is split 

into local and non-local parts
Imax

w  = £  t3-30)
(= 0

rln
£  -  V ' f t r )

L 1=0
(3.31)

+  £  vt(r) P,, (3.32)
1=0

where an arbitrarily chosen I' angular momentum component of the atomic pseudopo

tential is used as a local potential, V£(r). The term Pt is an operator which projects 

out the component of the wavefunction having angular momentum I. The local part 

is then rewritten using the ionic potential, Zfm / r , to define a much smoother local 

potential v%(r):

V£(r) =  -  %  + V~(r ) _ ( _ 3 k ) (3.33)

=  - ^ + « ! ( r ) .  (3.34)r

The ionic potential then replaces the nuclear potential of the all-electron problem. 

Since the redefined local potential will extend beyond the muffin-tin sphere slightly,
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it is further decomposed as:

vl(r)  =wa(r) + v a(r),

54

(3.35)

where

wa(r) =  i
vl ( r ) ~  (-4a +  B ar2) , r < R a  

0  , r  >  Ra,
(3.36)

and

va(r) =
A a +  Bar2 , r < Ra

(3.37)
vl(r)  , r > R a.

The coefficients Aa and B a are obtained by imposing the condition that va(r) and 

its derivative are continuous at r  =  R a. Now va(r) is smooth and slowly-varying, 

allowing the expansion of

V{v) =  J ^ i ; a( | r - f a - R | ) (3.38)
a R

in terms of plane waves only. It is then further written in terms of the star functions 

and lattice harmonics. The total expression for the pseudopotential can now be 

written as

The Kohn-Sham equations are now solved using a new Hamiltonian

H  = T + V ps(r )+ V eff(r), (3.40)
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where Ve/ f  is given by

The radial functions and their energy derivatives, u/(r) and uj(r), are also determined 

using a new muffinTtin portion of the Hamiltonian:

H l r r  =  T  +  w * ( r )  +  Y ,  « f ( r )  P i +  V s {r) +  Vff f (r), (3.42)
I

where S  refers to the spherical part of each term.
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Chapter 4

Lattice Dynamics from First 

Principles

4.1 Forces in the LAPW method

Although density functional theory and the LDA provide a route to the ground 

state total energy for a given configuration of atoms, the determination of the lowest 

energy structure often requires many such calculations for a variety of atomic posi

tions. Mapping out the Bom-Oppenheimer energy surface in this manner can become 

prohibitively difficult for systems containing a  large number of atoms or many inter

nal degrees of freedom. The ability to calculate forces on the constituent atoms can 

greatly speed up the search for the ground state structure. This idea is essential in the 

Car-Parrinello approach to molecular dynamics simulations. [16] Once the structural 

energy minimum is found, the lattice dynamical properties can also be determined 

using the forces which result from phonon-like distortions.

56
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The force on atom a is evaluated by displacing the nucleus by a small amount 

5-ra, and calculating the resulting first-order changes in the total energy:

8T[p\ Sni + Set -  J  5p(f) veff (?) dr -  j  p(r) Sveff (?) dr

SU[p] = J  8p(r) vc(r) dr -  F „ F - 8¥a (4-1)

5Exc[p] =  J  8p(r) pxc{r) dr.

The effective potential vcff(r) is the sum of the Coulomb potential vc(r),

- - ? ■ . (4.2)
J  |r -  r I |r -  r 6 -  R |

and the exchange-correlation potential pXc(X)-

n fr ) ~  d E * * \p W \ ( i
"  a m  ■ (4'3)

The Hellmann-Feynman (HF) force [49, 31] is the classical electrostatic force on the 

nucleus, given by

E f f f  = ZaV r (?), |r=Ta (4-4)

where v“(r) is the electrostatic potential due to all of the other charges in the system:

u“(?) =  ve(r) + *  (4.5)

Due to conservation of electron number, the first term in the expression for ST  dis

appears, yielding a total force of

1

F 53 n ' Se< ~  I  m
- t J

(4.6)
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The existence of the term in brackets was demonstrated by Pulay and it depends

upon the basis set used to solve the Kohn-Sham equations.[87] Normally, the single-

particle wavefunctions ipi(r) are expanded in a linear combination of basis functions 

0 (r):

* ( r ) = £ c ,  *,(?), (4.7)
<7

leading to the m atrix equations

Y  C; (H „  -  eO„) C, =  0 . (4.8)
p?

When atom a is shifted by S ra, the m atrix elements change by:

(4.9)

(4.10)

so that to first order, Eq. (4.8) transforms into

Y  C;Cq(5Hpv -  e 5 0 „  -  SeOpq) =  0. (4.11)
p<t

Using the normalization of ^ ( r ) ,  this yields the first-order change in the eigenvalue, 

5et =  Y  C;Cq{5Hpq -  £iSOpq)
p<t

=  £  C'pCq[(6<t>r\H  -  e M ,)  +  (<y -  £.164>,) +  (<f.p\S f  + &/,„(f)|<6,>j,
PI

allowing us to write

F“ =  FffF -  Y U  n'C'vC«

(4.12)

I pq
' d f a

dT
' d r  a

dTn d f a '

(4.13)
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The second term  on the right side of the equation is known as the incomplete basis 

set (IBS) correction to the HF force. [53, 87, 7] If the first-order changes in the basis 

functions can be expressed in terms of the original basis functions,

i.e. if the basis set is complete, then the IBS correction to the HF force will vanish. 

This can also occur if the basis functions are not dependent upon the positions of the 

atoms, as in the case of planewaves.

In the LAPW method, the basis functions are dependent upon the atomic posi

tions, which complicates the formalism significantly. IBS forces [125] come from both 

the core states and the valence states. The first-order change in the sum of the core 

eigenvalues for atom a is

which satisfy a spherical muffin-tin version of the Kohn-Sham equations. The core 

state correction to the HF force is thus

(4.14)
J

6ei = f  Pc(*)[Sv'ff (?) +  Vue//(r) • £ra] dr, (4.15)

where p“(r) is the spherical core charge density of atom  a, resulting from core states

(4.16)

The valence state  correction is given by

(4.17)
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dSa (4.18)

— a
where D t- is

6 “ =  ^ ( # ( i | r * ( i ) ) „ -

and takes account of the fact that the second derivative of the basis functions is not 

continuous at the surface of the muffin-tin sphere. The integral is over the surface 

of the sphere, while the MT and I subscripts indicate tha t the proper representation 

of the basis function is used within the muffin-tin and interstitial regions. W hen the 

wavefunction is represented in the LAPW basis, moving atom a changes the basis 

function only inside of its muffin-tin sphere, giving

i(£i  +  G ) ^ a - V ^ g , (4.19)

where the subscript G  has been used to replace k,- 4- G . Here, the variations in 

ui{F) and iii{r) are neglected, as their determination is computationally impractical. 

Typically, this omission does not introduce significant errors in the force. [125] Finally, 

the total IBS correction is given by

f /B s  =  .• £  ( 6  -  a  j c ,- (d )  a t e  > (0a i (h  -  Si) i <i,e .) M T

GtG' (4.20)

-  ( Vipi\ (H -  e{) | (H -  £i) | V ^ )MT +  D ,

If pseudopotentials are being used, then above term is computed using the ionic 

charge instead of the nuclear charge in vcff(v). Once this is done, an additional IBS 

correction must be added:

K >  =  - Y . n> (g - g ) c ; ( S ) c , ( 3  > v „ \ M T

g ,g '
SV

(4.21)

-  ( v * |  V\ib,)UT -  < * |  V I V * ) „ T +  ( i/>i| —  I if.) 

with V  and Vps being given by Eqs. 3.38 and 3.39, respectively.
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Many physical quantities of interest are related to first and higher order deriva

tives of the total energy with respect to displacements of the atoms or variations 

in applied fields. Many of these are directly measurable from experiment, such as 

the macroscopic dielectric, piezoelectric, and elastic constants, lattice constants, bulk 

modulus and phonon frequencies. Knowledge of the phonon frequencies and energy 

dispersions give access to the dynamical properties of materials, such as electron- 

phonon interactions, thermal expansion coefficients, and heat capacity. Of key interest 

in this dissertation is the issue of dynamical stability. Transitions from one structural 

symmetry to another can occur due to phonon-related instabilities, which themselves 

occur when a particular phonon distortion lowers the total energy. These are espe

cially important within the soft-mode description for ferroelectric transitions.[2 1 ]

Within the Bom-Oppenheimer approximation, the dynamical properties may 

be determined by examining the system’s response to real-space periodic displace

ments of the atoms, which can be specified by a reciprocal space wavevector q. At 

the present, there are basically two approaches for the calculation of the system’s 

response to these phonon-like perturbations. In the first approach, known as the 

direct approach, small but finite phonon displacements are frozen in time, and the 

subsequent geometry is calculated just as it was for the unperturbed system. This 

“frozen phonon” technique was initially carried out successfully within the Kohn- 

Sham formalism by Wendel and Martin, [120] and later by others, [124, 65] establish

ing tha t the LDA density functional theory could accurately describe the dynamics 

of materials from first principles. The advantage to the direct approach is that no
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additional programming is required. However, it is limited by the fact that periodic 

phonon-like displacements of the atoms can only be simulated using supercells whose 

dimensions are commensurate with the phonon wavelength. Because of the unfa

vorable computational scaling which accompanies the increased number of atoms, 

the number of wavevectors, q, for which calculations can be performed is small, be

ing mostly restricted to high-symmetry points in the Brillouin zone. Determination 

of the dynamical m atrix a t an arbitrary wavevector is highly desirable, as this will 

yield the full phonon dispersions. This can be done within the direct method, via 

an interpolation technique that depends upon the calculation of interplanar force 

constants.[116, 117, 33] Because standard LDA methods depend upon the Bom-von 

Karman periodic boundary conditions, the effect of macroscopic electric fields cannot 

be addressed directly, but rather must be determined by introducing a very long- 

wavelength (q -* 0) phonon distortion, [76] which is again limited by the use of large 

supercells.

In the second approach, only the linear response of the system to the perturba

tion is considered. This is not a significant hinderance, however, since many experi

mental quantities can be exactly expressed in terms of the first-order changes in the 

system. Early work in this area focused on using the inverse dielectric matrix, [8 6 , 5] 

which is calculated from the results for the unperturbed ground state only. Since the 

effort spent in calculating the dielectric matrix is not significantly increased as one 

moves from a high-symmetry q-point to one of minimal symmetry, the restriction 

to special wavevectors is removed, permitting access to the entire Brillouin zone. 

However, the drawbacks inherent in this method axe significant. Since this is a
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planewave-based method, it is not well-suited for materials with localized orbitals, 

and it quickly becomes complicated if other types of basis functions are used. Also, 

modern planewave calculations require the use of non-local pseudopotentials in order 

to achieve accurate results, and the inclusion of these effects within the dielectric ma

trix formalism is difficult. Finally, the required inversion of the dielectric m atrix, as 

well as the complicated summation over the conduction bands at k  points in the Bril

louin zone, have made this technique computationally inferior to other approaches.

Later, Baroni, Giannozzi, and Testa [6 ] introduced a new scheme for study

ing the linear response of crystals, modeled after the Stemheimer theory for atomic 

polarizabilities.[102, 73] The main feature of this technique is that the electronic re

sponse is obtained via perturbation theory through iteration to self-consistency, rather 

than through the dielectric matrix. Assuming that the ground state problem has been 

solved, and we know the single-particle eigenvalues and eigenfunctions along with the 

density, a  perturbation, specified by the parameter A, is introduced into the system. 

The task is then to solve the new set of single-particle equations,

[2 7 (A )-ei(A )]|^ -(A ))= 0 , (4.22)

subject to the orthonormalization condition for occupied states

(V’i(A)l ^j(A)) =  Sij, V i, j  e  {occ}. (4-23)

Expanding the quantities appearing in the above pair of equations in powers of A, 

keeping only first-order terms, leads to the Stemheimer equation [102]

(tf<°> _  e<°>) | =  _(flU> _  ff(») | (4 .2 4 )
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and the constraint

(W0)| +  (^ i1}| ^ T )  =  0, V i , j  6  {occ}. (4-25)

The first-order wavefunctions can be expanded in terms of the complete set of ground- 

state wavefunctions, making a distinction between the occupied (valence) and unoc

cupied (conduction) single-particle states,

I 4 I}) = P v  I ^ 1}> +  P c  I # }) (4.26)
va l co n d

= £  I I ^ l’> +  S I  I Wl)) (4.2T)
V  c

va l co n d

=  5 3  “ ii} I ^ 0)) +  5 3  o f f  I ^c0)> - (4-28)
V  C

Here, Pv and Pc are the projection operators for the valence and conduction manifolds, 

respectively. Substitution of Eq. (4.28) into Eq. (4.24) with an additional multipi- 

cation on the left by a valence ground state reveals that ajp  cannot be determined 

uniquely. However, we do arrive at

e™ =  (W0)l # (l) I (4.29)

and

=  (,30)
£ i  ~ £ v

The normalization condition for occupied ground states dictates that the real parts 

of the or,-̂  coefficients (and o :^) must be zero. As a consequence, the contribution to 

from the valence manifold does not affect the charge density or the to tal energy.

Furthermore, we may impose a unitary transformation on this contribution such that
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it is fully aligned with | ip ^} . Once this is done, the indeterminate quality of 

allows us to force it to be zero, replacing the normalization condition with the stronger 

constraint:

| i>f]) =  Ckj-tl) =  0, Vi, j  e  {occ}, (4.31)

which is also known as the parallel transport gauge.[41] The task now is to find the

projection of the first-order wavefunction within the conduction manifold. Thus,

Eq. (4.24) is replaced by a modified Stemheimer equation

PC( P (0) - e f ])P c \ 4 l)) = - P cH w \ 4 0)), (4.32)

where H ^  is the first-order Kohn-Sham effective potential

»$(*) = ^  W + f  + *>“’(*) J j k  • (4-33)"  J  |r — r | dp{r) p=p(o)(F)

which is constructed from the general first-order charge density

OCC r

P(1)(f) =  ^ 2  ^ 0)* ( r ) ^ L)(r) + ^ 1)*(r)^J0 )(r) . (4.34)
i L J

The iterative procedure begins with H ^  and Eq. (4.32) is solved for

the first-order wavefunctions These are used to create the first-order charge

density, which allows construction of a new This is reinserted into Eq. (4.32) 

and the process is iterated to self-consistency. Because the self-consistent response 

is obtained via iteration, as in the unperturbed problem, incorporation of non-local 

pseudopotentials is possible, as is the use of wavefunctions other than plane waves. 

Also, since the projection operator, Pc , is easily created from knowledge of only 

the valence states, there is no explicit sum over the conduction bands as in the
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dielectric matrix method, and the computational scaling of the  problem is on the same 

order as that of the direct approach. In this way, phonon-like perturbations can be 

performed independent of the specific wavevector. Finally, the effects of macroscopic 

electric fields can be studied by taking the long wavelength limit. [6 , 38, 37] Gonze and 

Vigneron have extended this idea so that even higher-order energy corrections may 

calculated. [39, 41] They demonstrate that for density functional perturbation theory, 

the first n-order changes in the wavefunctions and charge density are sufficient for 

determination of the first 2 n + l order changes in the to ta l energy. W ithin the linear 

response regime, to tal energy may be determined up to th ird  order:

Etot{A) =  £ (0 )[p(0)] +  A£(1)[p(0)] 4- A2EW[pM,pW] +  A3 £ (3 )[p(0), P(1)] (4.35)

Consequently, as mentioned before, the dynamical properties of materials can also be 

determined from the linear electronic response; specifically from the first-order forces 

(second-order energy).

4.2.1 Incom m ensurate period ic p ertu rb ation s

The external perturbation of most interest to the present work is one corre

sponding to a periodic lattice displacement wave, or “frozen” phonon, specified by a 

reciprocal space wavevector q :

wia(R ) =  wia (4.36)

where a  is a Cartesian index, and w is the displacement from equilibrium of atom i 

in the unit cell specified by R . The wavelength of this perturbation is, in general, not 

commensurate with the real-space lattice. The first-order change in the self-consistent
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potential due to this perturbation is given by Eq. (4.33) with the first-order external 

potential

=  Z , w , ( R ) - ( f - r , - R )
i ft I F - T j - R I 3

Notice that this potential is non-Hermitian unless 2q is a  reciprocal lattice vector. 

This does not present a fundamental problem in the linear response method, as the 

electronic response to the sum of this potential and it’s Hermitian conjugate is equal 

to the sum of the response to each perturbation separately. Translation by a lattice 

vector results in

» £ ( F +  R ) =  s '* *  «&>(*), (4.38)

which suggests that the perturbing external potential can be written as a product of 

a cell-dependent phase factor and a potential which has the periodicity of the original 

ground state problem. For the moment, let us suppose that this feature is a property 

of the entire first-order potential as it appears in Eq. (4.33). Since we have chosen to 

use the parallel transport gauge, the first-order valence wavefunction can be written 

entirely in terms of the conduction ground states,
c a n d

= X) “Is ' (4-39)
c

with

(i) =  ^ c,kl c / / l  V  , .
c,a c o ) _  (o )  •

v , k  c,k
Now, upon translation by a lattice vector, the Bloch form of the ground state wave

functions implies that

^ ( F + R )  =  (4.41)
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Constructing the charge density according to Eq. (4.34), utilizing time reversal sym

metry, we arrive a t

u,ic

where summation is over the occupied bands. Translation by a lattice vector reveals

same periodicity as the phonon perturbation. Since it has now been shown possi

ble to write the potential and wavefunctions as a cell-dependent phase factor times 

lattice periodic functions, this phase can be factored out of Eq. (4.32), and the incom

mensurate problem is effectively mapped onto one which has the periodicity of the 

unperturbed system. This approach is known as the traveling-wave representation.

4.2 .2  L A P W  linear response m eth od

The implementation of the linear response method within the LAPW formal

ism was first performed by Yu and Krakauer,[126] permitting direct calculation of 

dynamical matrices at a general wavevector. In the LAPW linear response method 

(LAPW-LR), the first-order wavefunction results from the changes in the LAPW 

basis functions and the variational coefficients of Eq. (2.86),

Since the plane wave representation used outside of the muflfin-tin spheres is not

OCC

(4.42)

(4.43)

which is consistent with the assumption that the entire first-order potential has the

dependent upon the atomic positions, the only contribution to 0 ^ |g ( r )  comes from
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the muffin-tin spheres. As mentioned previously in the description of the LAP W force 

formalism,[125] the relaxation of the muffin-tin orbitals ui(r) and ui(r) is rather small 

and can be neglected. Thus, the linear-order change in the basis function is

<£(i } . ( f )  =  — • w
k + G ' (4.45)

Here, w  is used to represent all of the ionic displacements without reference to in

dividual ions. The first term in brackets results from the gradient of a  term which 

appears when the basis functions and their first derivatives in Eq. (3.2) axe matched at 

the muffin-tin boundary. This was encountered before in Eq. (4.19). The problem of 

determining the first-order wavefunctions now becomes one of finding the first-order 

variational coefficients. Yu and Krakauer showed that these could be determined from 

the following m atrix equation:

g '

Y  ( -'  \  k+q+G (£(0> -tf(0 ))n,k

= £
g '

-k+q+G
v w

S C F

ddK1 - 
V g +g &

+  < C f + f i ( f r ( ° ) - e(°))<<
s (  0(- } -  t  -  A\  k+q+G  k + G /

W
dw

dw

M T

0(-°>.A
k+G  // / (4.46)

^ ( G  )•

where the suffix MT indicates integration over the muffin-tin spheres only. The last 

term on the right-hand side represents the change in kinetic energy which comes about 

from the discontinuity in the second derivative of the basis functions:

£ ( 0 (-o) - |T |< ^ .U _.'  k+q+G  ie+G
dO)

d S t ■
(4.47)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

where the subscript I denotes integration in the interstitial region, and the index i 

refers to individual muffin-tin spheres. The m atrix equation above only deals with 

the occupied states of the unperturbed system, and one should take notice th a t each 

m atrix element within this equation has the full periodicity of the lattice, despite the 

use of the traveling wave representation. The first-order potential only couples states 

that differ by the wavevector q. An iterative diagonalization technique is used to solve 

Eq. (4.46), and the resulting first-order variational coefficients are used along with 

Eq. (4.45) to create the first-order wavefunctions as per Eq. (4.44). These, in turn, 

go into Eq. (4.42) to yield the first-order charge density, which is used to calculate 

a new first-order self-consistent potential. This new V^cf *s inserted into Eq. (4.46), 

and the whole process is iterated to self-consistency.

4.3 The dynamical matrix

The dynamical properties of a specific material can be derived from knowledge 

of the dynamical matrix. The elements of the dynamical matrix are determined from 

the first-order forces, which result from atomic displacements about the equilibrium 

positions. In the harmonic approximation, the second-order energy is given by

E<2) =  \  E  £  -  f i ')  u U t t )  w0 {& ), (4.48)
R.R.' iadP

where the force constants, Ctaj/?(R — R  ), are the second derivatives of the to tal 

energy with respect to the displacements specified by w. The subscripts i and j  

label individual atoms, while a  and /? denote the regular Cartesian directions. The
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first-order forces are defined in terms of the force constants by

* £ ’(* )  =  = ~ 1 2 1 2 C^ ( &  -  * '>  (4-49)5n;iQ(R)

= MiWia( R ). (4.50)

The instantaneous displacements and accelerations of the atoms in a general phonon 

are given by

u(ia(R 1i ) = « f ia ei(9-M 5 , t )

Wia(R , t) =  —co’2 (q) wia (4)*) (4.51)

=  -u ; 2 (q) wtQ(R, t),

with wia =  tUiQ(R  =  0), such that for a “frozen” phonon of the form Eq. (4.36), the 

first-order force becomes

/£ > (£ )  =  f l 1) ei* fi, (4.52)

where

Fia — ~ u}2(*\) Mi Wia (4.53)

C ry p ts .')  w j/ie * * ' (4.54)
r '  if*

=  ^ ia JP^  WjP' (4-55)
i<8

Here, the Ciajp (q) are the Fourier transforms of the real-space force constants, and 

aj(q) is the wavevector-dependent phonon frequency. Now, the reciprocal-space force 

constants a t a specific wavevector q  may be determined by a t most 3Na lattice distor

tions, where Na is the number of atoms in the primitive unit cell. For example, setting
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all but one of the Wjp to zero immediately yields the contents of a single column of the 

3Na x 3Na force constant m atrix in reciprocal space, provided the first-order forces 

on the atoms are known.

As was mentioned earlier, the second-order energy can be determined from the 

unperturbed and first-order wavefunctions and charge densities. [39] It is therefore 

possible to find the first-order forces within the linear response approach. Yu and 

Krakauer [126] have described in extensive detail how the first-order forces may be 

calculated within the LAPW formalism, so it will not be repeated here. The sought- 

after dynamical m atrix is simply related to the reciprocal-space force constants by 

the masses of the atoms:

(4.56)

Thus, the dynamical equation becomes

-a/2 (q) y/WiWia =  A QJ^ ( q )  wjp y/Mj,
iP

(4.57)

leading to

E
30

DiaJM  u) (q)6f, Sap y /M j Wjp =  0. (4.58)

The 3Na phonon frequencies, cu(q), and the 3Na normal modes (eigenvectors) ^(q), 

are then determined by solving the standard secular equation

=  0 . (4.59)

Any structural symmetries that exist in the reciprocal-space Brillouin zone, (i.e. a 

four-fold rotation axis) will appear in the structure of the dynamical matrices, and will
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help reduce the actual number of distortions needed to compute the entire dynamical 

matrix.

4.4 Macroscopic fields

The linear response method as formulated above offers the advantage of deter

mining the system’s response to macroscopic electric fields. When placed between 

conductive plates having a  potential difference across them, the external potential 

acting on the system is replaced by

This form results by Fourier transforming the external field and applying the traveling- 

wave representation in the long wavelength limit, allowing us to utilize the results for 

phonon-like perturbations. In practice however, a small but finite wavevector is used, 

which is typically only 1 % of a reciprocal lattice vector, and the response is computed 

directly. The electronic contribution to the dielectric tensor is determined from

tensor, while in the ferroelectric phases, there may be longitudinal, transverse, and 

possibly off-diagonal elements as well, depending upon the crystal symmetries of these 

phases.

(4.60)

^ ( q )
* w ( q ) J ’

(4.61)

where

to ta l (4.62)

is the induced potential in the system when the external field is present.[1] In the 

perovskites, the cubic paraelectric phase will have an isotropic (diagonal) dielectric
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4 .4 .1  T he B orn  effective charge ten sor

In their comprehensive work on the theory of lattice vibrations, Bom and Huang 

[1 0 ] demonstrated that during a sublattice distortion, the normal ionic charges of the 

atoms may be replaced by effective charge values which describe the modifications 

to the macroscopic polarization generated by the distortion. Because these effective 

charges are dynamical in nature, their values are dependent upon the direction of the 

motion, and are thus represented by a tensor. The B om  effective charge is defined as 

the linear change in the macroscopic polarization created by an atomic displacement:

dPa
(4.63)

E—Qdw^p

Here, Z, is the normal ionic charge on atom i, and a  and /? are Cartesian directions. To 

determine the Bom effective charges, the polarization is evaluated using the Fourier 

transform of Poisson’s equation

V - P  =  - p (1)(r)

V  ’ e i(5+ a l'? ] =  -  5 ^ / > <l)( 9  +  6 )e i(5 + e ) ' '  (4  64)
G
iP = q P(0) =  Urn -  (q)-q->o q

Ideally, the zone-center dynamical matrix should allow for pure translations as eigen

vectors, requiring that the following “acoustic sum rule” [8 6 ] be obeyed:

E ^ ( 3  =  0 ) = 0 ,  (4.65)
j

from which charge neutrality is implied:

Y .  Z l , s  =  (4-66)
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In practice, this requirement is not satisfied ideally due to the finite k-point sam

pling used for the Brillouin zone integrations. Increasing the density of the sampling 

typically improves the agreement.[126]

4.4 .2  Z one center m ode sp littin g

In non-metals and polar semiconductors, a long wavelength q  —» 0 optical 

phonon mode creates a  non-vanishing macroscopic polarization P  due to the op

positely directed motions of oppositely charged ions. In general, this will necessarily 

be accompanied by a macroscopic displacement field and a macroscopic electric field 

as well;

D =  E  +  4ttP . (4.67)

In crystals having cubic symmetry, these fields are all parallel to one another, and 

the effective local electric field at the positions of the ions can be written as [54]

g'“ “, (?) =  g (f )  +  (4.68)

In a purely longitudinal optic (LO) phonon, the polarization is parallel to the wavevec

tor, requiring that

D =  0, or E  =  —4 7 tP  (4.69)

However, in the case of a purely transverse optic (TO) phonon, the polarization is 

perpendicular to the wavevector, requiring tha t E  =0. Thus, for each type of phonon,
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there axe differing local fields at each atom:

E iocai(r) =  — — longitudinal,  (4-70)

~iocai,. 4 7rP (r)
E  (?) = ---- ---- transverse. (4-71)

o

As a consequence, the local field enhances the short-range restoring forces in the 

longitudinal case by reducing the polarization, and weakens these same forces in the 

transverse case by boosting the polarization. If the increase in polarization is large 

enough, a ferroelectric instability can develop due to a sign change in the restoring 

force. In a TO mode, the presence of a  non-vanishing polarization and a vanishing 

macroscopic electric field implies that e—̂oo, while a LO mode must necessarily have 

e =  0. The relationship between the dielectric constant and the phonon frequency 

is given by the dielectric dispersion formula [1 0 ] for the interaction of phonons with 

transverse electromagnetic waves:

« =  <«,+ , (4-72)1 -  (w/u>0)2

where e0 is the static or low frequency ( u < w 0) dielectric constant, is the high- 

frequency (u> cj0) or electronic dielectric constant. The u>0 term is the infrared 

dispersion frequency at which the dielectric constant diverges. Thus, u)0 =  ojt o , 

since we’ve already seen that e —> oo for a TO phonon. Similarly, for a LO phonon, 

Eq. (4.72) reduces to the Lyydane-Sachs-Teller relation

(4-73)
oo

So the effect of the long-range Coulomb interactions on zone-center phonons is to

split the degenerate frequencies such that the LO mode is elevated relative to the TO

mode.
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To account for the macroscopic field effects in the linear response calculations 

a t the zone-center, proper treatment of the dynamical matrix elements is necessary. 

Although such effects are automatically included in the linear response approach at 

finite wavevectors, calculations for zone-center phonons are performed by breaking 

the dynamical m atrix into the sum of two terms: [1 0 , 8 6 ]

D L°e  =  D T °e + D Zjg . (4.74)

The first term corresponds to the motions of the atoms with no macroscopic electric

field, and is analytic in q, so that the Fourier transform to real space is easily obtained. 

It corresponds to the zone center TO mode. The second term is nonanalytic, and has 

the general form

f j n a  _  47re2 (Z i - q ) a ( Z j  - q ) ^Diajpiq) — n  /- j. - = ■=—  ^  , (4-75)
Q y / M i M j  q • €„ • q

where Z* and M,- are the Born effective charge tensor and mass for atom z, Q is the

volume of the unit cell, and a, (3 are Cartesian indices.

4.5 Phonon dispersion curves

Since the phonon frequencies are dependent upon the wavevector, it is tremen

dously useful to determine the phonon dispersions throughout the Brillouin zone. 

Once acquired, this information may be used to predict thermodynamic properties 

such as the specific heat and will reveal any structural instabilities responsible for 

phase transitions such as those seen in ferroelectrics. Fortunately, a  full mapping of 

the dispersion curves can be obtained through linear response calculations. First, the
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dynamical m atrix is computed on a uniform grid of q-points within the Brilloiun zone. 

Crystal symmetries reduce the actual number of mesh points at which calculations 

must be performed. The phonon frequencies at any wavevector are then obtained us

ing an interpolation technique which properly accounts for the LO-TO splitting a t the 

zone center. The long-range dipolar forces responsible for the splitting are determined 

analytically, via the Bom effective charges and the dielectric tensor, using

<W 3 rQr0C f Z f ( R  -  ft' )  = (4.76)1*3

where r  =  R  —R  + Tj  + t , .  Utilizing Ewald summation methods,[29, 30, 10, 37] this 

expression is Fourier transformed and subtracted from each Diajp(q) to obtain the 

reciprocal-space short-range force constants on the grid. [40] These short-range force 

constants undergo Fourier transformation to generate interpolation coefficients, and 

the inverse transform is performed to give their reciprocal space values a t any desired 

wavevector. Recombination with the analytic dipolar term results in a dynamical 

m atrix at an arbitrary q-point.
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Chapter 5

Structural instabilities in SrTi0 3

5.1 Introduction

The temperature-dependent phase transitions of SrTiC>3 differ from similar ma

terials such as KNbC>3 , BaTi0 3 , and PbTiOs, which undergo ferroelectric (FE) phase 

transitions as the temperature is lowered. Although SrTiC>3 possesses the same high- 

temperature cubic perovskite structure, its behavior is markedly different. Despite 

early indications of a FE transition close to 0 K, no such transition has yet been ob

served without the application of external stress [105] or an external electric field. [50] 

However, it does undergo an antiferrodistortive (AFD) transition from cubic to tetrag

onal symmetry as the temperature drops below about 105 K. The AFD distortion is 

associated with the softening of the lowest frequency triply degenerate Brillouin-zone 

corner (R-point) vibrational mode R25-[104, 32, 94] The possibility of a transition 

of this type was first postulated by Cochran and Zia [20] during their extension 

of the original zone-center soft mode concept from diatomic cubic materials to the

79
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o

o CJ>

Figure 5.1: The R2 5  AFD vibration mode in perovskite SrTiC>3 . The stationary 
titanium atoms rest inside the oxygen octahedra. Strontium atoms are not shown.

perovskites. SrTiC>3 was the first material to provide conclusive evidence for a zone- 

boundary soft mode transition. In the R2s mode, the TiC>6 octahedra rotate about 

parallel Cartesian axes, but in opposite directions in all neighboring cells as illus

trated in Fig. 5.1 and Fig. 5.2. The new tetragonal structure does not differ too 

greatly from the paraelectric phase, assuming a small distortion c/a  of 1.0005 after 

the oxygen octahedra move into their new rotated positions. This occurs without any 

apparent change in cell volume per formula unit.[72] The new symmetry is D \® and
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Figure 5.2: The rotation direction of the octahedra in the R 2 5  mode alternates in 
adjacent cells. The axis of rotation is out of the page.

Figure 5.3: The new primitive cell in the tetragonal phase. Former lattice vectors are 
indicated by broken lines.
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represents a cell-doubling to an unusual primitive cell shown in Fig. 5.3.

W ith decreasing temperature, the static dielectric constant e begins to rise with 

Curie-Weiss behavior, indicative of a FE  transition a t about 35 K (see Fig. 1.6). 

This transition never occurs however, and instead, e saturates at values in excess 

of 104 at the lowest temperatures.[114, 90, 82, 106] This behavior was well known 

prior to the explanation of the AFD transition, and together with neutron scattering 

experiments, [28] was considered to be strong evidence in support of the soft mode 

concept.[21] Moreover, electric-field-induced Raman scattering shows a softening of 

the lowest frequency zone-center TO phonon mode as the temperature approaches 

absolute zero, [123] which is also a characteristic feature of an incipient displacive- 

type FE transition. However, the failure of S rT i03 to become ferroelectric has thus far 

eluded definitive explanation. It has been suggested that the long-range FE order in 

S rT i03 is suppressed by the zero-point motion of the Ti atoms, resulting in a quantum  

paraelectric phase.[82, 83] More recently, Zhongand Vanderbilt have performed path- 

integral Monte Carlo (MC) simulations, using an ab-initio effective Hamiltonian, in 

which the inclusion of quantum fluctuations is found to suppress the FE transition 

entirely.[130] In view of the two different types of soft phonons in SrT i03, the R-point 

mode associated with the AFD instability and the T-point mode associated with the 

incipient FE instability, it is of great interest to fully characterize the wavevector 

dependence of these instabilities, and to determine whether or not the tetragonal 

phase is energetically stable against FE-type distortions. In the present work, a 

full mapping of all of the structural instabilities of S rT i03 in the ideal cubic phase 

is presented. In addition, the interaction between the AFD and FE instabilities is
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examined in the tetragonal phase, using frozen-phonon total energy calculations.

5.2 Method

The first-principles LAPW method described in Chapter 3 was used to deter

mine the ground state properties of SrTiC>3 , and the first-principles linear response 

method of Chapter 4 was carried out within the LAPW formalism to determine the 

phonons and wavevector dependence of structural instabilities. [126, 6] The linear re

sponse approach also permits the effects of external macroscopic electric fields to be 

studied. The electronic contribution to the dielectric constant, ex , the macroscopic 

polarization, and the Bom effective charges can also be found using the procedures 

detailed in Chapter 4. In order to map the phonon dispersion curves throughout 

the Brillouin zone (BZ), the dynamical m atrix is first computed on a uniform grid 

of q-points. The interpolation procedure described in Chapter 4 is used to compute 

the dynamical matrix at an arbitrary wavevector q. The signature of any structural 

instabilities at a given wavevector is that some of the eigenvalues of the dynamical 

matrix are negative (corresponding to imaginary phonon frequencies).

A uniform 6 x 6x 6  special Appoint mesh was used for the BZ integrations.[81] 

Pseudopotentials of the Kerker form [58] were used to exclude the tightly-bound core 

states. The higher-lying Sr(4s,4pj and Ti(3s,3p) semi-core states were also pseudized, 

and were included in a  two-window variational calculation. About 570 LAPW basis 

functions were used at each fc-point, corresponding to a kinetic energy cut-off of about 

19 Ry.

The FE instability results from a delicate cancellation of long-range dipolar in
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teractions, favoring the instability, and short-range repulsive chemical interactions 

that oppose it. Covalent interactions, manifested by Ti(3d) and 0(2p) hybridization, 

soften the short-range repulsion, perm itting the FE transition to occur. Increas

ing the volume reduces the repulsion, enhancing the FE instability, while decreasing 

volume increases the short-range repulsion, and opposes the instability. The treat

ment of these different interactions requires accurate self-consistent calculations. The 

typically 1% LDA underestimates of equilibrium lattice parameter can eliminate or 

suppress the ferroelectric instabilities, [26, 75] and the use of generalized gradient ap

proximations (GGA) may not improve the agreement, since the GGA can overcorrect 

by the same amount.[75] The weighted density approximation (WDA) is superior to 

both LDA and GGA in these materials, [75] but is much less computationally efficient 

even for planewave-based methods. However, good agreement with experiment is 

usually obtained when LDA calculations are performed at the experimental volume. 

Using the Wigner [121] formula for the LDA exchange-correlation potential is a  sim

ple alternative that has corrected the volume in KNbC>3 and yielded good agreement 

with other experimental measurements,[127, 112] and this form was used here.

To find the dynamical matrix over the entire BZ, a uniform 6 x 6 x 6  grid of 

q-points was used, and the dynamical m atrix was calculated at the 20 resulting ir

reducible q-points shown in Fig. 5.4. Due to the reduced symmetry of q-dependent 

perturbations induced by atomic distortions, the first-order change in the Kohn Sham 

wavefunctions must in general be calculated a t many more k-points than in the smaller 

irreducible BZ-wedge of the high-symmetry cubic reference phase. Moreover, the de

termination of all elements of the dynamical matrix a t a  general q-point requires in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



85
R

X

xr

Figure 5.4: The wavevectors of the symmetry-reduced Brillouin zone wedge at which 
the dynamical matrix was calculated.

general 3N separate self-consistent calculations. As a result, the full calculation of 

the dynamical matrix is very time consuming, so it was prohibitive to do this at more 

than one volume. Instead, additional investigations of the volume dependence and 

the interaction between structural instabilities were carried out for selected combina

tions of representative eigenmodes using LAPW total energy frozen-phonon supercell 

calculations.

5.3 Results and Discussion

First, self-consistent total-energy calculations were performed in the cubic phase 

to determine the equilibrium bulk properties. The ground state  wavefunctions pro

duced were later used in the linear response calculations. As mentioned, the use of the
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Table 5.1: Calculated equilibrium properties and Bom effective charges for SrTiC>3 .

Lattice parameter a Bulk modulus 
______ (a.u.)_______________ (GPa)

Present 7.412 190
PW ° 7.303 200
Exp.6 7.380 179 ± 6

Bom effective charge Present PW -BPC

Z*(Sr) 2.55 2.54
Z*(Ti) 7.56 7.12
Z*(0)„ -5.92 -5.66
Z*(0)x -2.12 -2.00

“Reference [59], planewave pseudopotential calculations. 
6Reference [80], 298 K.
“Reference [128], planewave Berry phase calculation.

Wigner exchange-correlation potential yields an LDA equilibrium lattice param eter 

close to experiment as shown in Table 5.1, and this LDA value was used in the linear 

response calculations. Also shown in the upper part of Table 5.1 are the bulk moduli 

for the present work, along with the results of King-Smith and Vanderbilt, [59] as well 

as some experimental values. The bulk modulus was determined by fitting the to ta l 

energy a t differing volumes to Mumaghan’s equation.[84] The electronic contribution 

to the dielectric constant, eM, was found to be 6.63, which is about 28% larger than  

the value of 5.18 extrapolated from experiment. This overestimation of eM is typical
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for the LDA.[38, 37] The lower portion of Table 5.1 compares the Bom effective charge 

tensors (Z*), which are diagonal in the cubic phase. The m etal atoms have isotropic 

tensors, whereas the oxygen atoms have two distinct values, for displacements along 

and perpendicular to the Ti-O bonds, labeled || and J_, respectively. The anoma

lously large values for Z*(Ti) and Z*(0)u created by dynamical modifications of the 

strong covalent interactions between these atoms have been noted before. [88, 128] 

Also listed are the results of planewave Berry phase calculations by Zhong, King- 

Smith, and Vanderbilt.[128] The respective theoretical lattice parameters were used 

in both calculations, and the results appear to be generally in good agreement. The 

acoustic sum rule for the linear response Bom effective charges is satisfied to within 

0.05, reflecting the adequacy of the 6x6x6 special BZ Appoint sampling.

Table 5.2 compares theoretical and experimental zone-center and zone-comer 

phonon frequencies. Unstable transverse optic (TO) modes with imaginary frequen

cies are found at the T-point and at the R point. The T-point longitudinal optic (LO) 

mode frequencies are obtained from Eq. (4.74). The results of Zhong, King-Smith, and 

Vanderbilt were determined using £^=5.18 extracted from experiment,[128] whereas 

a larger calculated value of 6.63 was used for the present work. To determine what 

effect eM has on the LO mode eigenvalues, a second calculation was performed using 

6^=5.18. The highest LO mode is most sensitive, changing from 751 to 832 cm-1.

The calculated phonon dispersion curves for the cubic phase have been plotted 

along high-symmetry directions in Fig. 5.5. The TX, TM, and TR lines correspond 

to the (100), (110), and (111) directions, respectively. The symmetry character of 

the modes a t the zone-center and zone-boundaries has been labeled according to
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Table 5.2: A comparison of linear response (LR) phonon frequencies (in cm l) with 
theoretical and experimental values at high-symmetry points.

Longitudinal modes Transverse modes
T-point TlS P 25 r  15 Ti5 Tis TlS I'm P 15

LR 146 219 4 3 9 751 IOOz 151 219 522
LR“ [449] [832]
PW 6 158 454 829 41z 165 546
90 Kc 170 265 42 170 265

296 K d 175 460 830 88 178 543
297 Ke 169 265 457 823 92 169 265 547

R-point R 25 R l5 R l5 R-25' H-25 R l5 R l 5 R-25'

LR 86z 122 417 426 86* 122 417 426
297 K4 52 145 450 473 52 145 450 473

“Computed using £^=5.18, extracted from experiment; other LO frequencies did not change. 
^Reference [128], planewave pseudopotential frozen-phonon calculations.
“Reference [28], neutron scattering results.
^Computed in Reference [28] from infrared reflectivity data of Reference [100].
“Reference [103], neutron scattering results.
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Figure 5.5: Calculated phonon dispersion curves for cubic SrT i03 a t the LDA lattice 
parameter a=7.412 Bohr. Imaginary frequencies lie below the dashed zero-frequency 
line.
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Figure 5.6: Motion of the atoms in the T15 TO mode.

the notation of Cowley.[28] Structural instabilities are indicated by portions of the 

dispersion curves lying below the o; = 0  dashed line in Fig. 5.5, indicating a large phase 

space for unstable modes. Instabilities appear a t the R-point ( R 25) ,  zone-center (Fis), 

and M-point (M3). The characters of these instabilities are of two types: FE (T 1 5 ),  

and AFD ( R 25 and M3). The r  l5  mode is a TO mode where the Ti atoms and the 

oxygen octahedra roughly move antiparallel along the (100) direction. This is the 

displacive FE mode and is similar to that in B aT i0 3 and K N b03. The M3  mode is 

nearly identical to the R25 mode, except that the octahedra are twisted in the same 

sense in adjacent cells along the c-axis.

The regions of instability in the BZ are better visualized in Fig. 5.8 as cu= 0  

isosurfaces, for the lowest unstable phonon modes. The cubic BZ is also shown 

in outline, with the T point a t the center, the R point at the cube comers, and 

the M point at the center of the cube edges. The inner isosurface, centered about 

the F-point, can be visualized as three interpenetrating disks, one perpendicular to
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Figure 5.7: The rotations of the oxygen octahedra in the M3 mode are in-phase along 
the rotation axis.
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each Cartesian direction. The region of FE-type instability is interior to this first 

isosurface. Between the first and the second isosurface, which lies near the zone 

edges, all modes are stable. Unstable modes corresponding to the AFD instability 

are present in the regions adjacent to the R-M-R edge of the BZ. In a repeated-zone 

scheme, this region of instabilitiy would appear as cylindrical tubes centered on the 

R-M-R line. As discussed below, with decreasing volume the inner FE  isosurface 

shrinks and the outer AFD surface grows, corresponding to the suppression of the FE 

and enhancement of the AFD instabilities. As pictured in Fig. 5.8, the phase space 

volume of the FE instability is greatly diminished compared to tha t in ferroelectric 

KNbC>3 [126] and BaTiC>3 [36] a t their experimental volumes. In these materials, 

the region of FE instability consists of three interpenetrating planar slabs extending 

all the way out to the BZ boundary. Results discussed below demonstrate that the 

energy gain associated with the FE instability in SrTiC>3 is also much smaller than 

in these materials, showing that the instability is only marginal in SrTiC>3 compared 

to BaTiC>3 and KNbC>3 .

As mentioned, the transformation to the tetragonal phase is due to the ener

getically favorable anti-phase rotations of the oxygen octahedra characteristic of the 

R-point instability. This is a second-order phase transition, and is not accompanied 

by a discrete volume change. Thus, both the equilibrium twist angle, <£, and the c/a  

ratio change smoothly from the transition point to experimentally observed maxi

mum values of 2.1 degrees [104] and 1.0009 [48] at the lowest temperatures, respec

tively. The LDA equilibrium value of <j> in the tetragonal phase (10 atom primitive 

cell) was determined by performing toteil energy calculations using the all-electron
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Figure 5.8: Zero-frequency isosurfaces of the lowest unstable phonon modes over the 
entire BZ. The T-point is located at the center of the cube. Unstable modes exist 
inside the central surface and along the full length of the zone-edges.
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10-Atom Tetragonal P hase  with c/a=1.0005

94

LAPW + LO all-electron calculations

a  2 x Cubic volume at 298 K = 803.9 Bohr3 
o  2 x Cubic volume at 105 K = 799.3 Bohr3

- 8  - 4  0 4  8

Angle (degrees)

Figure 5.9: Total energy calculations for the AFD mode a t two experimental volumes. 
A reduction in volume enhances the AFD instability.

LAPW +LO method, [96] where extra local orbitals are used in the basis. This was 

done using a fixed value of c/a=1.0005 at both the 298 K and 105 K experimental 

volumes, resulting in equilibrium angles of 5.4 and 5.6 degrees, respectively, as shown 

in Fig. 5.9. Work reported by Schwarz shows a similar overestimation of the equi

librium twist angle. [92] Calculations were also performed for M-point distortions and 

the well-depth was found to be much smaller than that for the antiphase rotations, in 

agreement with the smaller imaginary frequency of the cubic linear response results 

of Fig. 5.5. Schwarz, however, reports a deeper double well M-point distortion.

Using the curvature of the total energy double well minimum in Fig. 5.9, a  value 

of 124 cm-1 was extracted for the Alff AFD twist mode phonon frequency. This is 

somewhat larger than the measured value of only 48 cm-1.[32] This overestimate is
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Figure 5.10: Total energy calculations for the M3 mode reveal a very shallow well- 
depth compared to the R 2 5  mode at the same 105 K volume.
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probably related to the larger result for the LDA equilibrium tw ist angle. Reducing 

the volume in the calculations enhances the AFD instabilities a t both the R and 

M points, as was also seen in the MC calculations of Zhong and Vanderbilt.[129] 

Changing the value of cfa  did not significantly affect the results.

We now address the coupling of the ferroelectric and AFD instabilities. One 

im portant question is whether the FE instability, which is present in the cubic lin

ear response calculations, is still present in the AFD tetragonal phase. In all of the 

remaining calculations discussed here, the all-electron LAPW +LO m ethod was used. 

The first step in this analysis was to examine the effect of the smaller 105 K volume 

on the FE instability. Total energy calculations were performed in the 5-atom cubic 

phase to assess the effects of volume reduction. This was done by imposing the Ti5 

eigenmode displacements in the cell for different mode amplitudes, and calculating 

the to tal energies. The results for three volumes are illustrated in Fig. 5.11, and show 

that a reduction in the volume from our LDA value to the 105 K value has the effect 

of eliminating the FE instability altogether. It should be noted, tha t compared to 

BaTiC>3 and KNb03, where the double-well depths are 1-2 mRy deep, the FE insta

bility is very marginal in S rT i03, and its presence or absence is thus more sensitive 

to the choice of exchange-correlation potential. To test the effect of the exchange- 

correlation potential, the calculations were repeated using the Hedin-Lundqvist form. 

This yields a FE instability a t the 298 K and 105 K volumes, but the energy scale 

is similar to that in Fig. 5.11 at the 7.41 a.u. lattice parameter. This indicates the 

marginal character of the FE instability in S rT i03.

To examine the direct coupling between the AFD and FE  distortions, cubic
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Figure 5.11: The TO soft phonon energy curves in the cubic phase at the LDA 
theoretical, 105 K experimental, and near 0 K lattice parameters.

eigenmode distortions were added to the slightly rotated octahedra. Although this is 

not the exact A 2u or Eu FE-type eigenmode in the tetragonal cell, the actual atomic 

distortions are very small (less than about 1% of the lattice parameter), so this should 

be a good approximation. This approximation also underlies the use of the effective 

Hamiltonian in Ref.[130] At the 105 K volume, fixing c/a  = 1.0005, and setting 

0=1.4  degrees, total energy calculations as a function of FE distortion along the c- 

and a-axes were performed and are shown in Fig. 5.12. These curves are essentially 

similar, and the crystal is seen to be stable with respect to the FE distortion. 44/l- 

order polynomial fits yielded phonon frequencies of 27 cm-1 and 30 cm-1 for the 

c- and a-axes respectively. Electric-field-induced Raman scattering results show the 

soft mode frequency to be about 11 cm-1 a t 8 K for a 400 V/cm field.[123] At this 

field strength, splitting between soft modes parallel or perpendicular to the field was
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observed. The coexistent AFD and FE (a-axis) mode calculations were repeated at 

the 105 K volume for additional twist angles of 0, 2.1, and 5.6 degrees, spanning the 

range of experimental and LDA values. This resulted in a series of total energy curves 

which were virtually identical to the curves in Fig. 5.12, again showing essentially no 

interaction between the AFD and FE modes. These calculations were repeated at 

the 298 K volume, and again there was no appreciable interaction between the AFD 

and FE modes.

5.4 Conclusions

In summary, the direct coupling between the AFD and FE instabilities in SrTiC>3 

is negligible. Their opposite volume dependence is the dominant factor determining 

the presence or absence of these instabilities, with volume reduction stabilizing the 

cell against a FE transition while enhancing the AFD transition. Moreover, the FE 

instability is much weaker compared to related materials like BaTiC>3 and PbTiOs, 

making it difficult to determine whether the FE instability is even present as the 

volume is reduced upon cooling below room tem perature. The absence of any de- 

tectible FE phase at low temperatures could thus be explained by the absence of the 

instability. On the other hand, if it were present, quantum fluctuations appear to be 

sufficient to suppress it. In either case, the shallow anharmonic character of the FE 

energetics may explain the Curie-Weiss behavior of the dielectric constant caused by 

the temperature-dependent anharmonic softening of the FE TO mode.
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