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A b stra c t

An m -by-n  m atrix A  is called totally nonnegative (resp. totally positive) if the deter
m inant of every square subm atrix (i.e., minor) of A  is nonnegative (resp. positive). 
T he class of totally nonnegative m atrices has been studied considerably, and this class 
arises in a variety of applications such as differential equations, statistics, m athem at
ical biology, approximation theory, integral equations and combinatorics. The m ain 
purpose of this thesis is to investigate several aspects of totally nonnegative m atrices 
such 5.S spectral problems, cletermmaiital inequalities, factorizations and entry-wise 
products. It is well-known tha t the eigenvalues of a totally nonnegative m atrix  are 
nonnegative. However, there are m any open problems about what other properties 
exist for the eigenvalues of such m atrices. In this thesis we extend classical results 
concerning the eigenvalues of a totally nonnegative matrix and prove th a t the positive 
eigenvalues of an irreducible totally nonnegative m atrix are distinct. We also demon
s tra te  various new relationships between the sizes and the number of Jordan blocks 
corresponding to the zero eigenvalue of an irreducible totally nonnegative m atrix. 
These relationships are a necessary first step to characterizing ail possible Jordan 
canonical forms of totally nonnegative matrices. Another notion investigated is de- 
term inantal inequalities among principal minors of totally nonnegative matrices. A 
characterization of all inequalities th a t hold among products of principal minors of 
to tally  nonnegative matrices up to a t most 5 indices is proved, along with general 
conditions which guarantee when the product of two principal minors is less than 
another product of two principal minors. A third component of this thesis is a study 
of entry-wise products of totally nonnegative matrices. In particular, we consider 
such topics as: closure under this product, questions related to zero/non-zero p a t
terns, and determ inantal inequalities associated with this special product. Finally, a 
survey of classical results and recent developments, including: commonalities and dif
ferences among totally nonnegative m atrices and other positivity classes of matrices; 
perturbations and factorizations of to tally  nonnegative matrices, are discussed.

viii
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C h a p ter  1

In tr o d u c tio n

The central them e in this dissertation is to investigate various properties of the class 

of totally nonnegative matrices (see definition to follow). We will begin by providing 

some notation and prelim inary material followed by an overview of this dissertation 

including brief introductions to each of the (next four) chapters.

1.1 Notation and Matrix Theoretic Background

The set of all m -by-n matrices with entries from a field IF will be denoted by jV/mrI(IF), 

and if m  =  n, M n<n(lF) will be abbreviated to M„(IF). If IF =  IR, the set of all real 

numbers, then we m ay shorten this notation to M m,n. For A  £ Mm,n(IF) the notation 

A  =  [a,j] will indicate th a t the entries of A  are a,y £  IF, for i =  1 ,2 , . . .  , m and 

j  =  1, 2 , . . .  , n. The transpose of a given m-by-n m atrix  A  will be denoted by A T. 

For A  £ M m7n(W), a  C {1, 2 , . . .  , m}, and (3 C {1, 2 , . . .  , n}, the subm atrix of A

9
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3

lying in rows indexed by a  and the columns indexed by (3 will be denoted by  A[cc\f3\.

Similarly, A(a.\(3) is the subm atrix obtained from A  by deleting the rows indexed by

a  and columns indexed by (3. If A 6  ibfn(IF) and a  =  /?, then the principal subm atrix

A [a |a] is abbreviated to A [a], and the complementary principal submatrix: is A (a).

In  the same manner, for an n-vector x  £ IF", x[a] denotes the entries of x  in the

positions indexed by a  and x (a ) denotes the complementary vector. If x =  [xt] £  IF",

then we let diag(x,) denote the n-bv-n diagonal m atrix with main diagonal entries

x;. For brevity, we often denote the sets {1, 2 , . . .  , m}, and {1, 2 , . . .  , n} by M  and

N ,  respectively. A m inor  in a given m atrix A is by definition the determ inant of a

(square) subm atrix of A £ M m.n(IF). For example, the (a . -minor of A will be

denoted by detA[a|/?], and the a-principal minor is naturally denoted by det A[a], in

the case when A is square. For a  =  {ii, *2, •. - , ik} Q N , with ii < i-i < ■ • - <  u-, the
k-1

dispersion o f a, denoted by d (a ), is defined to be — ij — 1) =  ik — i\ — (A: — 1),
j = i

w ith the convention th a t d(a) =  0, when a  is a singleton. The dispersion of a  set a  

represents a  measure of the “gaps” in the set a. In particular, observe that d{a) = 0, 

whenever a  is a contiguous subset of N . Also, for a  C iV, we let a c denote the set 

N  \  q , or the complement of a ,  and we let |a | denote the cardinality of th e  set a. 

Note th a t this means that A(a\f3) =  A[ac\(3c\. The i th standard basis vector, th a t is 

the n-vector whose only nonzero entry  occurs in the ith component and th a t entry 

is a one, is denoted by e,-, and the (i , j ) th standard basis matrix, that is the  m-by-n 

m atrix  whose only nonzero entry is in the (i , j ) th position and this entry is a one, will 

be denoted by Eij. Observe th a t if m  =  n, then FJ.y =  e ,e j. We also let e denote

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4

the n-vector consisting of all ones (the size o f e will be determined from the context). 

Finally, we let J m,n (J n>n =  J„) and /„ denote the m-by-n m atrix of all ones and the 

n-by-n identity  m atrix , respectively. The subscript is dropped when the sizes of these 

matrices is clear from the context.

1.2 Certain Determinantal Identities

In this section we list and briefly describe various classical determ inantal identities 

that will be used throughout this dissertation. We begin the classical identity  a t

tributed to Jacobi (see, for example, [HJl]).

J a c o b i’s Id e n tity :  If A  6  M n (IF) is nonsingular, then  the minors of A -1 are related 

to those of A  by Jacobi’s identity. Jacobi’s identity states that for a. 3  C N .  both 

nonempty, in which |a | =  |/?|,

where s = £),-€q i -t- Yljep j-  Observe th a t if a  and (3 are both singletons, th a t is 

a  =  {z}, (3 =  {j} (1 <  i . j  < n ), then (1.1) becomes

n- i  _  / i  v+7de t-4({ j}[{{}-)
Uij — t L) J . A 1
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in. which a f /  denotes the ( i , j )  entry of A ~ l . This expression is the classical adjoint 

form ula for the inverse of a m atrix , so th a t Jacobi’s identity  m ay be viewed as a 

generalization of the adjoint formula. W hen a  =  /3, (1.1) takes the form

detA - 1a] =  (1„

We now present some identities discovered by Sylvester (see [HJl]).

S y lv e s te r ’s id e n titie s : Let A  G Mn(IF), a  C iV, and suppose |a | =  k. Define the 

(u -k )-u y -{ n —k ) m atrix  B  =  [t»,-y], with tty  G c r, by setting c/tJ =  ueL4[«U{'f}ja:U{./}], 

for every i , j  G a c. Then Sylvester’s identity states th a t for each 5,7  C a c. with

1*1 =  ItI =  1,

de tS [^ |7 ] =  (det.4[o:])/ Ldet.4[a U J |a U  7 ]. (1-3)

Observe that a special case of (1.3) is that detB  =  (det.4[a])n ldet.4. Another very

useful special case is the following. Let A  G M„(IF) be the partitioned  m atrix
,T

A  =
a l l  a l2  °1 3

®21 A 22 0.23
T

0 3 1  o 32 &33

where A 22 G  Mn_2(IF) and a n ,  < 233  are scalars. Define the m atrices

B
- r t *

O il 12 C  = al2 ^13
Cl21 A22 A 22 ^23

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



If we let b =  detZ?, c =  detC , d =  detZ?, and e =  detB , then by (1.3) it follows th a t

The next determ inantal identity  relates the minors of a  product to the minors of 

each of the factors.

C a u c h y -B in e t: Let .4 E Mm>n(IF) and B  E M„iP(IF), and suppose a  C {1, 2 , . . .  . m} 

and j3 C { 1 ,2 ,. . .  , p} are two index sets each of cardinality k. where 1 <  k < 

m in(m ,n ,p ) .  Then an expression for the (a,/3)-m inor of A B  is

d e

Hence, provided det.4 22 7̂  0, we have

det.4 =
detHdeti5J — detCdetZ)

det^22

detAB[a\{3] — ^  detA [a|7 ]detB[7 |/3], (1.4)

where the sum is taken over all index sets 7  C {1. 2 , . . .  , n} of cardinality k.

This useful identity bears a resemblance to the formula for m atrix  m ultiplication

(and in fact can be thought of as a  generalization of m atrix  m ultiplication). A con

sequence of the Cauchy-Binet identity  is the m ultiplicativity of compound m atrices
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(see chapter 3). Finally, a special case of the above identity is the  classical fact that 

the determ inant is multiplicative, i.e., if -4, B  €  M„(IF), then d e tA B  =  detA detB .

The final notion we wish to discuss here is the so-called Schur-complement of a 

principal subm atrix of a given m atrix  A (see [HJl]).

S ch u r-co m p lem en ts : For $ / a C  Ar and A € Mn (IF), if A[q] is nonsingular, then 

the Schur-complement o f A[a\ in A  is the m atrix A[ac] — A [ac|a](A [a])-xA [a |ac]. 

Suppose A is partitioned as

A = A n A 12 
A21 A22

in which A n  is k-hy-k and nonsingular. Then

i  rr r  o i  rL U
- A 21AZI I

--Lll -"‘■I 2
A21 A22

r «—I « 1  r
1 —-^n -'I12
0 /

-"‘•11 u
0 5

where S  is the Schur-complement of A n  in A. Hence it follows th a t det A =  detA ndetS . 

Finally, we note tha t if A [a] is a nonsingular principal subm atrix  of a nonsingular 

m atrix  A, then A- l [ac] =  5 ~ L, where now S  is the Schur-complement of A [a] in A.

1.3 Overview

Notions of “positivity” appear in essentially all branches of m athem atics, from pos

itive numbers, to positive functions, to positive matrices. In fact, there is now an 

entire international journal devoted to the theory and applications of positivity in 

analysis, which is naturally titled -  “Positivity.” Linear algebra is no different, here 

positivity has taken many forms, for example, positive definite m atrices, entry-wise 

positive matrices, positive stability of a m atrix, and matrices w ith certain collections
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8

of positive minors (these ideas are not mutually exclusive). Applications associated 

with positivity in Linear Algebra vary from economic models to Markov process (in 

form of stochastic m atrices) in statistics, to stability of system s of linear differential 

equations.

We begin our introduction to positivity in Linear Algebra by briefly discussing 

positive definite matrices. An n-by-rt symmetric (A T =  A ) m atrix  A  is said to be 

•positive (semi) definite if for every 0 IRn, x T A x  > 0 (xT A x  > 0 ) .  In other words

A  is positive definite if A  is symmetric and has positive quadratic form. The class 

of positive definite m atrices has been well-studied and appears in most textbooks 

on Linear Algebra and M atrix Theory (see, for example, [HJl]). Many equivalent 

conditions are known for a  m atrix  to be positive definite. For example, A  is positive 

definite if and only if A  is symmetric and A has positive eigenvalues, or A  is positive 

definite if and only if A  is symmetric and has positive principal minors. The next 

notion of positivity we wish to discuss is positive stability, or all eigenvalues having 

positive real parts. Adm ittedly, ‘‘stability” of systems of linear differential equations 

usually means th a t a certain associated m atrix has all its eigenvalues in the left-half 

plane. However, among linear algebraists (and with good reason), stability is usually 

taken to mean all eigenvalues are in the right-half plane. (We rem ark here th a t the 

connections between these two ideas is obvious.) There are two results which are 

often associated with stability: the celebrated stability result due to Lyapunov, and 

the Routh-Hurwitz stability  criterion (see also Chapter 5 of this dissertation). We 

have already seen that positive definite matrices are positive stable, but Lyapunov's
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9

theorem shows th a t positive stable matrices are even m ore intim ately related to all 

positive definite m atrices. (Recall that A '  denotes the conjugate transpose of .4.)

T H E O R E M  1 .3 .1  (Lyapunov) Let A  €  Mra((D) be given. Then A  is positive stable 

i f  and only i f  there exists a positive definite m atrix G E M n (C ) such that G A  +  A 'G  

is positive definite.

Much work has been done related to and extending Lyapunov's result, see. for 

example, [HJ2] for a m odest discussion along these lines. The next result is known as 

the Routh-Hurwitz stability  criterion (see Chapter 5 for definitions and discussion). 

W ithout going into m uch detail here, this criterion sta tes that: the roots of a given 

polynomial He in  the left-half plane if and only if a  certain  m atrix  (defined in term s 

of this polynomial) has positive leading minors (principal minors whose index sets 

are {1, 2 , . . .  , A:}, for A: =  1 ,2 , . . .  , n). There is an obvious analog for polynomials to 

have all roots in  the right-half plane.

The next idea of positivity is matrices w ith positive (or nonnegative) entries, or 

entry-wise positive (nonnegative) matrices. Entry-wise positive matrices have had 

a long illustrious history in M atrix Theory. Such m atrices arise in statistics, often 

in the form of stochastic matrices, and are usually associated with Markov chains 

or processes. T he actual origin of entry-wise positive m atrices in M atrix Theory is 

unclear, however, the first (and still very im portant) serious result for entry-wise 

positive m atrices was due to Perron (1907).

T H E O R E M  1 .3 .2  (Perron) Suppose A  is an n-by-n entry-wise positive matrix.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



10

Then there exists a simple eigenvalue r, with associated entry-wise positive eigen

vector x , such that r  > |A|, fo r  all eigenvalues A of A  different than r.

This result was significantly extended by Frobenius soon afterwards, and so began 

the so-called “Perron-Frobenius Theory” of entry-wise nonnegative matrices. Many 

experts in the field have continued to work in the area of entry-wise positive matrices. 

One particular topic of interest is inverse positivity, th a t is, an n-by-n invertible 

m atrix  has an entry-wise positive inverse. One well-studied subclass of inverse positive 

m atrices is known as the Af-matrices. An n-by-n m atrix  A  is said to be an M -m atrix  

if A =  t l  — F , where B  is an entry-wise nonnegative m atrix  and t >  max{|A| : 

A an eigenvalue of B \ .  Then M -m atrices have nonpositive oif-diagonal entries, and 

are (rather obviously) related to entry-wise nonnegative m atrices. Moreover, (see 

[HJ2]) it is known that any M -m atrix  is positive stable: has positive principal minors; 

and is, indeed, inverse positive.

The final topic concerned with positivity (and probably m ost related to the work 

in this dissertation) is m atrices with certain collections of positive (or nonnegative) 

minors. We call an n-by-n m atrix  A  a P-m atrix  (PQ-matrix) if detA[a] >  0 (detA[a] >  

0), for every a  C N . T hat is, A is a P -m atrix  (P0-m atrix) is every principal minor of A 

is positive (nonnegative). Observe that positive definite and iV/-matrices are examples 

of F-m atrices (see [HJ2] for a brief discussion on F-m atrices). T he m atrices of interest 

here are referred to as totally nonnegative matrices and are contained among the class 

of Fo-matrices (in the case of square matrices).

An m-by-n m atrix  A is said to be totally nonnegative (TN) if the determ inant of
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every square subm atrix (i.e., minor) is nonnegative. Similarly, an m-by-n m atrix  A  

is totally positive (TP) if every minor of A  is positive. A well-studied class tha t lies 

between the above two classes (in the square case) is the class of oscillatory matrices. 

An n-by-n m atrix  A  is oscillatory if A  is totally nonnegative and A k is to tally  positive 

for some k > 1.

A t first it may appear tha t the notion of total positivity is artificial, however, this 

class of matrices arises in a variety of applications. For example, totally  positive (or 

nonnegative) m atrices can be found in statistics (see [GM, Go, He]), m athem atical 

biology (see [GM]), combinatorics (see [BFZ, B, G3, P2]), dynamics (see [GK2]), ap

proximation theory (see [GM. Pr. CPI]), operator theory fsee [So]), and geometrv 

(see [St]). Historically, the theory of totally positive matrices originated from the pio

neering work of G antm acher and Ivrein ([GKl]) and was elegantly brought together in 

their monograph [GK2]. Also, under the influence of I. Schoenberg (see, for example, 

[Sc]), Karlin published an influential treatise, Total Positivity ([Iv2]), which mostly 

concerns totally positive kernels but also deals with the discrete version, totally  posi

tive matrices. Since then there has been a considerable amount of work done on total 

positivity, some of which is contained in the exceptional survey paper by T . Ando 

([A]). (See also [Ivol, M l, M2] for other general references on to tal nonnegativity.)

We begin this dissertation with a survey of known results on the theory of totally 

nonnegative matrices. This survey is complemented with some recent (some of which 

are new) results on other properties of totally nonnegative m atrices. We include 

results on certain perturbations of totally nonnegative matrices and zero/nonzero
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patterns of totally nonnegative matrices. We close chapter 2 w ith two (new) topics 

on totally nonnegative m atrices. The first is concerned w ith  extending a result for 

positive semidefinite m atrices, known as c o lu m n  (row) inclusion (which offers yet 

another connection between these two classes). Finally, we consider a new type of 

“sum” of square m atrices, which contains the usual sum  and direct sum as special 

cases. We refer to this sum  as a sub-direct sum.

In chapter 3, we seek to extend some classical results of G antm acher and Ivrein on 

the eigenvalues of to tally  nonnegative matrices. As will be shown, the nonzero eigen

values of an irreducible totally nonnegative m atrix  are distinct. We also investigate 

other issues concerning the eigenvalues of totallv nonnegative m atrices, bv determin

ing all possible Jordan canonical forms of irreducible to tally  nonnegative matrices. 

We complete this description through n =  6 , and include m any general related results 

and interesting open problems.

Recall th a t the class of totally nonnegative m atrices is defined in terms of minors. 

Along these fines, in chapter 4, we investigate inequalities th a t hold among products 

of principal minors for every totally nonnegative m atrix . We offer a complete char

acterization through n =  5, and prove that m any special types of inequalities hold 

for all n. For example, we determ ine necessary and sufficient conditions on the index 

sets c*i, a:2,/? i,/?2 Q N  so th a t

det.4[Q1]detA[Q2] <  detA[/?!]detA[/?2],
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for every n-by-n  to tally  nonnegative m atrix  A.

Finally, in chapter 5 we consider the entry-wise (or Hadamard) product of totally  

nonnegative matrices. We denote this product by o. Of particular interest is describ

ing the set of m-by-n matrices A, for which A  o B  is totally nonnegative, whenever 

B  is totally nonnegative. We completely describe this set for m in(m ,n) <  3, and 

derive many interesting properties about the matrices in this set. Also considered are 

zero/nonzero patterns of matrices in this set, and a certain determ inantal inequality 

related to Hadam ard products of m atrices.
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C h ap ter  2

P re lim in a ry  R e su lts  and  D isc u ss io n

In this chapter we present a survey of known results both of the classical variety and of 

the modem sort. This survey will be divided into two basic parts. The first will simply 

list, in a logical and clear manner, various classical results on the properties of totally 

nonnegative matrices. Most will be stated  without proof, but will be accompanied 

by numerous references where proofs, etc. m ay be found. The second component will 

feature more modern results some of which are novel to this thesis. Accompanying 

proofs and references will be supplied for the results in this portion. Since m any of 

the results in later chapters rely upon the results contained within this im portant 

ground laying chapter, we trust th a t all readers will benefit from this preparatory 

discussion.

14
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2.1 Background Results

To begin our study of the class of totally nonnegative m atrices we s ta te  the following 

elementary result which contains a list of simple but useful facts, m ost of which follow 

directly from the definition of total nonnegativity and various well-known determi- 

nantal identities, which axe discussed in chapter 1.

P R O P O S IT IO N  2.1 .1  [G Kl, GK2, A] Suppose A  and B  are two totally nonneg

ative (positive) rectangular matrices. Then

(i) A B  is totally nonnegative (positive), assuming the product exists,

(ii) A t , the transpose o f A , is totally nonnegative (positive),

(i n ) A [a |/3] is totally nonnegative (positive) for any row index set a  and column index 

set [3.

Note that a special case of (i) above is that pre- and post-m ultiplication of a 

totally nonnegative (positive) m atrix  by a nonnegative (positive) diagonal m atrix is 

totally nonnegative (positive). Another relatively simple but extrem ely useful result 

is the following relating the inverse of an invertible totally nonnegative m atrix  to the 

class of totally nonnegative matrices (see also [GKl, GK2, A]).

P R O P O S IT IO N  2 .1. 2 I f  A  is a square invertible totally nonnegative matrix (or 

totally positive), then S A ~ l S  is totally nonnegative (or totally positive) fo r  S  =  

diag(l, —1, 1, —1, ■ • - , ± 1).
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An im m ediate consequence of the above result is the next fact about the Schur- 

complement of totally nonnegative m atrices (see also [A]). Recall from chapter 1 th a t 

the Schur-complement of an invertible subm atrix  A[7 ] in A, denoted by A /A fr], is 

A/A[7 ] =  A[7 c] -  A [7 °17 ] (A [7 ] ) - 1A[7 17 C].

P R O P O S IT IO N  2 .1 .3  I f  A  is a square invertible totally nonnegative m atrix (or 

totally 'positive), then A /A [a c\, the Schur-complement o f A[ac] in A , is totally non

negative (or totally positive), fo r  all index sets a  with d(a.) =  0 .

We note here that an auxiliary assum ption was m ade in the above, nam ely the 

m atrix  was assumed to be invertible. However, “Schur-complements” can exist when 

A is singular, as long as the appropriate principal subm atrix is nonsingular. Thus our 

goal here is to prove a similar result as the proposition above without the assum ption 

th a t A is nonsingular. Curiously, this next result does not seem to appear in the liter

ature. However, since it does follow rather easily from some classical ideas we consider 

this result a ’prelim inary’ result and it is probably known to m any researchers.

P R O P O S IT IO N  2 .1 .4  I f  A  is a square totally nonnegative matrix ■with A [ac] in

vertible, then A /A [qc] . the Schur-complement o f A[ac] in  A, is totally nonnegative, 

fo r  all index sets a  with d(a) =  0 .

P ro o f. Firstly, assume th a t a  =  {k  +  1, k  +  2 , . . .  ,n }  and suppose that A [ac] is 

invertible. Define the (n — fc)-by-(n — k) m atrix  C  =  [c,y] by c,y =  detA [ac U { i} |a c U 

{_/}], where i , j  E a. Then Sylvester’s determ inantal identity (1.3) can be w ritten  as 

detC[{z’i , . . .  , i s} |{ j i , . . .  , i j ]  =  (detA [ac])s_1detA[Q;cu O 'i , . . .  , i s} \a cU { j i , . . .
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From  the  above identity it follows th a t C  =  (det A[ctc]) (A /A [ac]). Moreover, since A is 

to ta lly  nonnegative, by the identity  above, C  is totally nonnegative and hence A /A [a c\ 

is to tally  nonnegative. A sim ilar argum ent holds for the case when a  =  {1, 2 , . . . . & } .  

Thus we have shown that A /A [a c\ is totally nonnegative whenever a  =  {1 ,2 , . . .  ,k }  

or a  =  {k , k  +  1, . . .  , n}. The next step is to use the so-called quotient property of 

Schur-complements. Recall th a t if j3 C a , then A /A  [a] =  [(A/A[/?])/(A[a]/A[/?])]. 

Suppose a  is a  fixed index set w ith d(a) =  0 and |a | <  n. Then we may w rite a  as 

a  =  {z, i +  1, - - - , i +  k}, where 1 <  i < i +  k < n. Thus a c =  {1 ,2 , . . .  , i — 1, i + k  + 

1, . . .  , n}, and define (3 =  {1, 2 , . . .  i — 1} if z >  1, otherwise (3 =  {z +  k  +  1, . . .  , n} if 

i + k < n. Then bv the quotient property described above we have that .4/.4[o'c] =  

[(A/A[(3\)/ (A[a°\lA[f3])]. By the previous remarks A/A\J3\ is totally  nonnegative, and 

moreover, since A[ac\jA[(3] is a subm atrix of A/A[f3] in the bottom  right corner it 

follows th a t (A[A[(3})[ {A[ac\/A[(3\) is totally nonnegative, and hence that .4/.4[qc], 

is to tally  nonnegative. This completes the proof. |

We note here that the requirem ent of d(a) =  0 is necessary, as in general Schur- 

complements of totally nonnegative m atrices need not be to tally  nonnegative.

We now move onto more general results concerning the properties of totally non

negative matrices. The first of these results is a very useful and appealing criterion 

(or characterization) of totally positive matrices which was first proved by Fekete [F] 

in 1913.

T H E O R E M  2.1.5 (Fekete’s Criterion) A n  m-by-n m atrix  A is totally -positive i f  

and only i f  detA[a\0] > 0, fo r  all a  C {1 ,2 , . . .  ,m} and (3 C {1 ,2 , . . .  ,n},  with
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|q | =  \(3\ and d(a) =  d(0) = 0.

In. other words a m atrix  is totally positive if and only if the determ inant of every 

square subm atrix based on contiguous row and column index sets is positive. In  the 

n-by-n  case, for example, this reduces the num ber of minors to check from 4" to the 

order of n4. Later Cryer [C2], improved upon this result and reduced the complexity 

to the order of n3. More recently, Gasca and Pena [GP4] have even further reduced 

the num ber of minors to the order of n 2. These counts do not take into account 

the num ber of operations required to compute the determinant of a given m atrix. 

Unfortunately, Fekete’s criterion, in its above form, does not hold in general if "‘totally 

positive” is replaced with “totally nonnegative” and “>  0” is replaced with “>  0” . 

Consider the following simple example:

A  =
1 0  2 
1 0  1 
2 0 1

I t  is not difficult to verify that the every minor of .4 based on contiguous row and 

column sets is nonnegative, but det.4[{l, 3}] =  —3. Thus A  is not totally nonnegative. 

However, weaker versions (and not as useful) of Fekete’s criterion depending on the 

rank of the m atrix do exist for totally nonnegative matrices, see for example [A]. 

Various generalizations of Fekete’s criterion were also obtained in [BFZ] and [FZ] 

(see also [SS], for other work along these lines). Later we shall describe an efficient 

m ethod for checking whether a given m atrix  is totally nonnegative based on triangular 

factorizations of totally nonnegative m atrices (see also [GP4]).
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Our next result is a  continuity type result which, basically, states tha t every 

to tally  nonnegative m atrix  can be approximated arbitrarily  closely by totally positive 

matrices. This result m ay be found in [A, GK2, W], and  for a sim ilar result in the 

case of infinite matrices see [BoP]. See also [C2] for a proof of this fact using certain 

triangular factorizations th a t exist for totally nonnegative m atrices.

T H E O R E M  2 .1. 6 The closure o f the totally positive matrices (in the usual topology 

on M mjTl) is the totally nonnegative matrices.

The next result is concerned w ith the so-called variation-diminishing property of 

totally positive matrices. This result was proved by Schoenberg [Sc], and is used in 

m any applications. In particular, this result was used to extend some eigenvalue inter

lacing results for totally positive m atrices (see [P il]). We begin w ith some background 

including both notation and definitions. For a given vector c =  (ci, C2, . . .  , Cn)T E IRn 

we define two quantities associated with the num ber of sign changes of the vector c. 

These are:

V~(c)  — the num ber of sign changes in the sequence ci,C2, . . .  , cn with the zero 

elements discarded; and

V’+(c) — the m axim um  num ber of sign changes in the sequence cj, C2, . . .  , cn, where 

the zero elements axe arbitrarily  assigned the values +1  and —1 .

For example, V ” ( ( l , 0 , 1, —1,0,1))  = 2 , and V+((l,  0,1. — 1, 0 ,1)) = 4 .  Schoenberg’s 

variation-diminishing result can now be stated as follows (see also [A]).
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T H E O R E M  2 .1 .7  Let A  be an m -by-n real matrix with m  >  n. Then A  is totally 

■positive i f  and only i f V +(Ax)  <  V~(x) ,  fo r  all nonzero x £  IRn.

An im portant topic concerning to tally  nonnegative matrices, which, will be dis

cussed in m uch more detail in the next chapter, is the location and d istribution of the 

eigenvalues of such matrices. Similarly, knowledge concerning the associated eigenvec

tors is also v ital to the study of m atrix  theory. See [Kl] for various results concerning 

the eigenvalues and eigenvectors of oscillatory matrices. Consider the following result 

which can be found in [GKl, GK2] and also [A].

T H E O R E M  2 .1 .8  Let A  be an n-by-n oscillatory matrix. Then the eigenvalues o f 

A  are positive, real and distinct. Moreover, the eigenvector xu corresponding to the 

k th largest eigenvalue has exactly k  — 1 variations in sign (i.e., V~(xf:) =  k  — 1) fo r  

k =  1, 2 , . . .  , n.

Let ai > a2 > • ■ ■ > an and bi > b2 > ■ ■ • > 6„-i arranged in decreasing order. 

Then we say the sequence {6t} interlaces the sequence {a,} if an <  &„_! <  a n_! • • • <  

&i <  a*. Further, if all of the above inequalities can be taken to be stric t, we say the 

sequence {&,-} strictly interlaces the sequence {a,}

This result was originally proved by Gantm acher and Ivrein [GKl], and  can also 

be found in [Gl].

T H E O R E M  2 .1 .9  I f  A  is an n-by-n oscillatory matrix, then the eigenvalues o f 

A  strictly interlace the eigenvalues o f the two principal submatrices o f order n — 1 

obtained from  A  by deleting the first row and column or the last row and column.
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In [GK2] it is also shown th a t these are (in general) the only two submatrices 

of order n  — 1 of A  for which an interlacing result is guaranteed. The above result 

was extended slightly by Friedland [Fr], and generalized even further by Pinkus [P il]. 

Later, Garloff [Gl] used Theorem  2.1.9 to prove a m ajorization result between the 

diagonal entries and the eigenvalues of a totally nonnegative m atrix. We recall the 

definition of majorization here. Let ax >  ai >  • • • >  an and &i >  62 >  • • • >  bn be 

two sequences of numbers arranged in decreasing order. We say the sequence {a,-} 

majorizes the sequence {&,-} if

ic k n n
k  =  1 , 2 , . . .  , n  — 1. and =

i=l 1 = 1 i=l i=l

T H E O R E M  2 .1.10  Let n > 2 and .4 =  [atJ] be an oscillatory matrix. Then the 

m ain diagonal entries o f A  are majorized by the eigenvalues o f A .

Observe that this result parallels the classical result for positive definite m atrices 

(see [HJ1]).
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2.2 Factorizations of Totally Nonnegative Matri

ces

We devote an entire section to factorizations (mostly triangular) of totally nonnega

tive matrices. This topic is very im portant in m atrix  theory and has received much 

attention in the specific case of totally nonnegative m atrices. The list of references 

for this topic is considerably lengthy, see for example, [A, BFZ, CPI,  CP2, C l, C2 , 

FZ, GP1, GP2, GP3, GP4, L, P I, RH, W] for further discussion on factorizations of 

totally nonnegative m atrices

Recall that an n-by-n m atrix A is said to have an L U  factorization if A  can be 

w ritten as .4 =  LU , where L is an n-by-n lower t r ia n g u la r  m atrix and U is an n-by-n 

upper triangular m atrix. The following remarkable resu lt is, in some sense, one of 

the most im portant and useful results in the study of to ta lly  nonnegative m atrices. 

This result first appeared in [Cl] (although the reduction process proved in [W] is a 

necessary first step to a L U -factorization result) for nonsingular totally nonnegative 

matrices and later was proved in [C2] for general totally  nonnegative m atrices, see 

also [A] for another proof of this fact.

T H E O R E M  2 .2.1 Let A  be an n-by-n matrix. Then A  is totally nonnegative i f  

and only i f  A  has an LU  factorization such that both L  and U are n-by-n totally 

nonnegative matrices.

See also chapter 4 of this thesis where we use factorizations of totally nonnegative 

m atrices in studying certain determinantal inequalities. (In  fact LU  factorizations of
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TN  m atrices comes up in each subsequent chapter in this thesis.)

There has been a considerable am ount of work done on factorizations of totally  

nonnegative m atrices particularly into upper and lower elementary bidiagonal m atri

ces. By definition, an elementary bidiagonal matrix  is an n-by-n m atrix  whose m ain 

diagonal entries are all equal to one, and there is at most one nonzero off-diagonal 

en try  and this entry must occur on the super- or subdiagonal. To this end, we denote 

by Ek(fJ') =  [dj] (2 <  k  <  n), the lower elem entary bidiagonal m atrix  whose elem ents 

are given by

C'tj  —  <

1, if I = j ,

fi, if i = k, j  = k  -  1,

0 , otherwise,

th a t is,
1 0 ••• 0

o ;
: fj, ' • • 0
0 . . .  0 1

Some very useful properties of these elem entary bidiagonal m atrices are =

Eki —fi); E k(fj.)Ek{is) = Ek[fi+i/)] and E k (/J.)Ei(u) =  Ei(u)Ek{fj.) except when |fc—1\ = 

1, and fj,i/  ^  0. Observe that if fj. > 0, then E k{fi) is totally nonnegative. These facts 

axe interesting exercises and their proofs are om itted. The next result m ay be found
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in m any places, but see [GP4] for the version stated here.

T H E O R E M  2.2.2 Let A  be an n-by-n nonsingular totally nonnegative matrix. Then 

A  can be written as

A  = (E2(lk ))(E3(lk^ ) E 2(lk. 2)) • - • (£„(/„_!) • ■ • E3(l2)E2( h) ) D

(EZ(ul ) E j ( u 2) - - - E T ( u n_ l ) ) - - - ( E j ( u k- 2) E j ( u k_ l ) ) ( E j ( u k))r

where k  =  Q ) ;  U,uj >  0 fo r  all i , j  £ {1,2, . . .  and D is a positive diagonal 

matrix.

Note th a t in the above factorization each elementary bidiagonal m atrix  is in fact

^  tx *  „  _  i— ^  _____  a i, -  ~ -
o u o a u j t u u i u x ^ c i o x v v ; .  x x  cx  x x x c x u x x ^ v  u u x x x x i i o  a t x v * i x  c t  i c t i r t u x i ^ c t u i o x x  v v c  o cx ^ y  o x x c x x  f ou, o  c t

bidiagonal factorization.

As far as we can figure Theorem  2.2.2 was first stated  in [L], where it was used 

for an application to Lie-group theory. Loewner [L] a ttribu ted  this result to W hitney 

[W], although W hitney did not make such a claim in her paper. More accurately, 

W hitney [W] proved a lem m a th a t is required to prove such a result. More recently, 

such authors as Gasca. Pena and others considered certain bidiagonal factorizations 

for which a specified order of row operations is required to ensure a special and 

appealing form for the factorization. They refer to this particu lar factorization as a 

Neville factorization or ehm ination (see [CP2, GP1, GP2, G P3, GP4]). Cryer [C2] 

(see also [Cl]) seems to be the first to prove that singular to tally  nonnegative matrices 

also adm it a bidiagonal factorization. See [BFZ] and the sequel [FZ] for an excellent 

treatm ent of the com binatorial and algebraic aspects of bidiagonal factorizations.
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Some of the graphical representations provided in [BFZ] axe employed throughout 

this thesis, and have been very useful for proving many results (see chapter 4. for 

example).

We discuss this graphical representation in more detail now. The connection that 

was observed in [BFZ] and later in [FZ] is a very im portant and extrem ely useful 

one between the products of elem entary bidiagonal matrices and combinatorics. To 

begin, consider the following example. Let

L = E 3(l) =

be a 3-by-3 lower elementary bidiagonal m atrix. Associated with such bidiagonal 

m atrices is the following weighted diagram (or digraph) see Figure 2.1. This diagram

Figure 2.1: Elementary Diagram.

is to be interpreted by reading left to right. All horizontal edges correspond to 

the main diagonal entries of L  and have a weight of 1, whereas the slanted edge 

corresponds to the (3.2) entry of L (this is the reason it connects the horizontal 

edges between vertices 3 and 2), and it has weight I. We consider collections of 

vertex disjoint (or independent) directed paths from a subset of indices on the left 

(corresponding to the row indices of a given minor) to a (possibly different) subset
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of indices on the  right (corresponding to the column indices of a  given minor). Each 

such collection constitutes a term in a given minor, and we sum  all such term s to 

compute the m inor. For instance, suppose we are given the diagram, in Figure 2.1, 

and we wish to com pute the (3,2) entry of the corresponding m atrix  (which of course 

is a special m inor of the m atrix). To do this we consider all the paths initiating at 

3 and term inating at 2. Because of the simplicity of this particular diagram there is 

only one such p a th . To calculate the corresponding term  in the minor (or in this case 

an entry) simply m ultiply all the weights of the edges included along this path. In 

this case the (3,2) entry is equal to 1 • I ■ 1 =  /. Also, by convention, if there does 

not exist a  desired collection of paths we assign the value 0 to this expression. Such 

a convention is well-defined since in this case the corresponding minor will be zero. 

Since all directions are left to right it follows th a t every other off-diagonal entry (using 

this diagram) is 0. Finally, observe th a t each m ain diagonal en try  of the corresponding 

m atrix  is equal to 1. Thus we obtain the m atrix  L.  To com pute a  nontrivial minor of 

L using this diagram  we consider collections of vertex disjoint paths. For example, to 

compute detA [{l, 3} |{1 ,2}], we consider pairs (since the m inor is of size 2) of vertex 

disjoint paths in itiating at the set {1,3} and term inating at the set {1,2}. In this 

case there exists only one such pair of independent paths with associated term  I.

In the case of an upper elementary bidiagonal m atrix, say L T, we have the follow

ing associated diagram  (see Figure 2.2). A diagonal m atrix  D =  diag(dx, d2, d3) may 

be represented by the diagram depicted in Figure 2.3. The real beauty of this device 

is in the adaptation  of it to a product of elem entary bidiagonal matrices. We illustrate
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Figure 2.2: Second Elementary Diagram.

d 

d

3
3 -------------------- 3

2 --   2
d x

1 --  1

Figure 2.3: Diagonal Elementary Diagram.

this notion with the following example. Suppose .4 is a 3-by-3 m atrix  which is fac

tored as A  =  E 2 (l3)E3 (l2 ) E 2 ( l i ) D E j ( u l ) E j ( u 2 ) E j ( u 3 ), where D  =  diag(d!, d2. d3). 

The associated diagram for .4 is obtained simply by concatenating the  diagrams cor

responding to each m atrix  in  the factorization according to the order in which they 

appear. In this case the diagram  corresponding to .4 is given by Figure 2.4. Minors

d

2 V ;  d ,  “/
J V i  \ /  d ,  u/

Figure 2.4: General 3-by-3 Diagram, 

are computed from the above figure in the same m anner as before. For example.
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to compute detA[{2, 3} |{1,2}], consider all pairs of independent paths initiating a t 

{2,3} and term inating at {1,2}. In order to have non-intersecting paths, the path  be

ginning at 3 m ust term inate a t 2, and the path  beginning at 2 m ust term inate a t 1. In 

this case there exists only one such pair, and hence detA[{2, 3}|{1,2}] =  (l2d2)(l3di )• 

W hat about the principal m inor detA[{2,3}]? Observe th a t one possible pair of in

dependent paths from {2,3} to {2,3} is the pair th a t proceeds straight across the 

diagram, and yields the term  d2d3. For all other possible pairs of paths we consider 

two cases:

1. The pa th  beginning at 3 on the left goes straight across the diagram to 3 on 

the right.

2. The path  beginning at 3 on the left uses the edge with weight l2.

Case (1): In this case this path  yields a weight of d3. There are four possibilities 

for the path  beginning and ending at 2 (ignoring the p a th  th a t goes straight across). 

These paths yield the weights dil3ui, d il3u3. dJiUi ,  and dxliii3. So in this case the 

expression for the  sum  of all of these paths is given by d3((lx +  l3 )(ux u3))di-

Case (2): For this case the path  from 3 to 3 has the weighting l2d2u2. Notice th a t 

in this case there is only one possible path  from 2 to 2 which does not intersect the 

path from 3 to 3, and it has the weighting l3dxu3, which gives rise to the expression 

( l 2d 2U 2 ) ( l 3 d i U 3 ) .

Thus the sum  of all of these expression is equal to the m inor detA[{2, 3}], th a t is 

detA[{2,3}] =  d2d3 +  d3((lx -f- l3){ui +  u3))di +  (l2d2n 2)(l3dxii3).
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In. the general case we know that any n-by-n nonsingular to ta lly  nonnegative 

m atrix admits a bidiagonal factorization (see Theorem 2.2.2). For the  factorization 

given in Theorem 2.2.2 the corresponding diagram is given in Figure 2.5.

Other factorizations have also been considered for totally nonnegative matrices 

see, for example, [C2, GP3, P I , RH]. The following factorization seems to be useful 

for various spectral problems for totally nonnegative matrices.

T H E O R E M  2.2 .3  I f  A  is an n-by-n totally nonnegative matrix, then there exists 

a totally nonnegative matrix S  and a tridiagonal totally nonnegative matrix T  such 

that

(i) T S  =  FA, and

(n ) the matrices A  and T  have the same eigenvalues.

Moreover, i f  A  is nonsingular, then S  is nonsingular.

This result was first proved in the nonsingular case by Rainey and H abettler [RH] 

and the general case was later proved by Cryer [C2]. In chapter 3 we will make use 

of a slightly modified version of this factorization to aid in characterizing properties 

about the positive eigenvalues of an irreducible totally nonnegative m atrix .

2.3 Classical Determinantal Inequalities

Relationships among principal minors, in particular determ ining inequalities th a t ex

ists among products of principal minors, is very im portant and a well-studied topic for
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Figure 2.5: General n-by-n diagram.

m any special subclcisses of m atrices. In the case of positive semidefinite m atrices and 

iV/-matrices m any (classical) inequalities are known to hold and are associated with 

names like: H adam ard, Fischer and Koteljanskii. Not surprisingly, such inequalities 

a re  known to  h o ld  fo r th e  c lass o f  to ta lly  n o n n e g a tiv e  m a tr ic e s  (a l th o u g h  th e  p ro o fs  

are vastly different), and we sta te  them  here in increasing order of generality.

Let A  =  [a,j] be an n-by-n totally nonnegative m atrix . Then the following in

equalities hold:

• Hadamard: ([GK2, A, Ko2])

n
detA  <  J J  a,-,-,

t=i

• Fischer: ([GK2, A, Ko2]) Let 5 C i Y  =  { 1 , 2 , . . .  , n},

detA  <  detA[5] • det A[iV \  5],

•  Koteljanskii:([Ko2]) Let S, T  C iV,

det A[5 U T] • detA [5 D T] <  detA[5] • detAtT].

In chapter 4 we investigate fu rther inequalities among principal minors of totally 

nonnegative matrices.
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2.4 Altering Totally Nonnegative Matrices

Often it is useful to classify and understand various operations or alterations which 

leave a given class of m atrices invariant. For example, if A  is an  n-by-n positive semi- 

definite m atrix, then C~AC  is a positive semidefinite m atrix  for all n-by-m matrices 

C . T ha t is, the class of positive semidefinite m atrices is closed under congruence (see 

also [HJl]). In this section we outline various operations which leave the class of 

totally  nonnegative matrices invariant. We have already discussed at least one such 

operation, namely m atrix  m ultiplication (see Proposition 2.1.1). The first topic we 

consider here is insertion.

P R O P O S IT IO N  2.4 .1  Let .4 =  [ai,ct2, . . .  ,a„] be an m -by-n totally nonnegative 

m atrix whose ith column is a, (i = 1 , 2 , . . .  .n) .  Then fo r  fixed but arbitrary k (0 < k  <  

n), the m-by-(n +  1) matrix A  =  [eti,. . .  , a a*,, a^+1, - - • , an] is a totally nonnegative 

matrix.

P ro o f . The proof follows by observing th a t any m inor of .4 excluding column k 

or column k + 1 is a minor of .4, which is nonnegative: otherwise the minor includes 

both  columns k  and k +  1 and hence is zero. |

A similar statem ent concerning repeating rows follows from  the above proposition 

and transposition. Furthermore, we can describe properties enjoyed by the set of all 

column vectors th a t may be inserted into a totally nonnegative m atrix  and remain a 

totally  nonnegative m atrix.
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P R O P O S IT IO N  2.4 .2  Let A  =  [ a i , a2,-- - 5Qn] be an m-by-n totally nonnegative 

m atrix whose i th column is a,- (i =  1, 2 , . . .  ,n) .  Suppose C denotes the set o f all 

column vectors b fo r  which the m -by-(n  +  1) matrix A  =  [al r . . .  . a^, 6, a/t+1, . . . .  a„] 

is a totally nonnegative matrix (here k  is fixed but arbitrary). Then C is a nonempty 

convex cone.

P ro o f . By the preceding proposition we have that C ^  0. The rem aining claims 

are elem entary exercises using the m ulti-linearity of the determ inant. For example, 

suppose 6, c G C, t £ (0 , 1) and consider any square subm atrix of [ a i , . . .  .a^. tb + 

(1 — t )c, afc+i, . . .  , an], that involves column k +  1. Denote this subm atrix  as follows 

[a'-,. . .  , a'-, tb' +  (1 — t)c', a'h . . .  , a ']. Then det[a(, . . .  , a'-, tb' +  (1 — f)c', a'h . . .  , a '] =  

tdet[a(-,. . .  , a'-, b\ a'h . . .  , a '] +  (1 — t)det[a( , . . .  , a'-, c', a{,. . .  , a ;r] >  0, since 6, c G C. 

Similar calculations can be used to show that C is a cone, g

Observe th a t as a special case inserting a zero column vector preserves the property 

of being totally nonnegative.

Inserting columns (or rows) and preserving total positivity seems to be a more 

difficult problem and requires a delicate argum ent. However, we do have the following 

result, which, after discussion with experts, seems to be new.

T H E O R E M  2.4.3 Let A  = [al5 a-i,. . .  , an] be an m-by-n totally positive matrix  

whose i lh column is ai (i = 1, 2 , . . .  , n ) .  Then fo r  fixed but arbitrary k , there exists 

an n-vector b such that the m-by-[n +  1) matrix A  — [ a i , . . .  , a*,, 6, a^+1, . . .  , an] is a 

totally positive matrix.
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The proof of this result is complicated and requires a couple of technical lem m as, 

and can be found in [FJSl]. (Theorem  2.4.3 was also used in conjunction w ith cer

ta in  to tally  positive m atrix  completion problems, see [FJS2].) Consider the case of 

nonsingular totally nonnegative m atrices (a class that lies between T P  and TN).  A 

natural question is: Is it possible to insert a  row and a column into an n-by-n non

singular totally  nonnegative m atrix  and produce an (n +  l)-by-(n +  1) nonsingular 

totally  nonnegative m atrix? In general this question is still open, however, in many 

special cases, such as, direct summing such a  m atrix  with the identity  m atrix  (i.e., the

direct sum of A  and B  is the m atrix A  0 
0 B ) the answer is positive. We conjecture

th a t in general the answer to this question is positive, that is, it is always possible 

to insert a row and column and preserve the property of being an invertible totally 

nonnegative matrix. Also note that an im m ediate consequence of Proposition 2.4.2 

and Theorem  2.4.3 is that we may border a totally nonnegative or totally  positive 

m atrix  and remain totally nonnegative or totally positive, respectively.

Also of interest are perturbations which leave a given class invariant. For example, 

if A  is a positive semidefinite m atrix, then A  + D is positive semidefinite for all 

nonnegative diagonal matrices D. It is an easy exercise to show this result does 

not hold in general for the class of totally  nonnegative matrices, bu t a much weaker 

version does hold.

P R O P O S IT IO N  2 .4 .4  I f  A  is an m -by-n totally nonnegative matrix, then increas

ing the (1,1) or the ( m, n)  entries o f A  results in  a totally nonnegative matrix.
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The proof basically follows from the fact th a t both  the (1,1) an<i  the (m, n) entries 

en ter positively into any square m inor that includes them . In general, these are 

the only two entries th a t m ay be arbitrarily increased and leave the class of totally 

nonnegative m atrices invariant. See also a later section (section 2.6) on decreasing 

certain  entries of a totally  nonnegative m atrix and preserve to tal nonnegativity.

Let e,- denote the i th standard  basis vector (tha t is, the vector consisting of a 1 in 

the i th position and zeros otherwise).

C O R O L L A R Y  2.4 .5  Let A  be an m-by-n totally nonnegative matrix, and let 8 >  0. 

Then

[<>e i |.4j,[.4|<>emj, 

are all totally nonnegative matrices.

A
. and Se1'

The above result follows directly from Propositions 2.4.2 and 2.4.4.

We close this section w ith  a result concerning sim ultaneous row and column per

m utations of a totally nonnegative m atrix. Recall th a t such classes as the positive 

semidefinite, M -  and P-m atrices are all closed under sim ultaneous perm utation of 

rows and columns. However, in general, the class of to tally  nonnegative m atrices is 

not closed under simultaneous perm utation of rows and columns. Nevertheless the 

following result holds (a proof is included for completeness).

P R O P O S IT IO N  2 .4 .6  Let p denote the n-by-n perm utation m atrix induced by the 

permutation i —¥ n — i + \ ,  (1 <  i <  n), and suppose .4. is an n-by-n totally nonnegative 

(positive) matrix. Then pA p is a totally nonnegative (positive) matrix.
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P ro o f. Consider an arb itrary  minor of pAp. Then by the Cauchy-Binet identity 

for determ inants (see (1.4)),

detpAp[a\(3\ =  ^  detpA[a|7]det/9[7|/?].
M=M

By the definition of p it follows th a t the above sum reduces to det/oA[a:|,j]detp[.j|.j]. 

where (3 is defined by j  6  P if and only if n — j  +  1 6  p . Another application of 

Cauchy-Binet reveals that

f
detpAp[a\P\ = ^ 2  detp [q 17 ] det A [7 [ /?] detp[3\P\. 

Vb l=M /

Similarly, the above sum reduces to detp[o|d]detA[d|/3]detp[/3|/?], where a  is defined 

similarly as p . It is not difficult to show that detp[7 |7 ] =  1, if I7 I =  0, or 1 (mod 4), 

otherwise detp[7 |7 ] =  —1. Since |a | =  \P\, we have th a t &etpAp[ot\p] =  detA[d|/3] > 0 

(>  0). Hence pAp  is totally nonnegative (positive), g
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2.5 Zero-Nonzero Patterns of Totally Nonnegative 

Matrices

In this section we are concerned with, zero-nonzero patterns of totally  nonnegative 

m atrices. As observed in the previous section inserting a zero row (or column) into a 

totally  nonnegative m atrix preserves the property of being totally nonnegative. Thus 

for the remainder of this section we assume tha t our matrices do not contain any zero 

rows or columns. To begin our analysis we make the following definitions.

D E F IN IT IO N  2.5.1 An m-by-n sign pattern is an m-by-n array of symbols chosen 

from { + , 0 , —}. A realization of a sign pattern, 5, is a real m-by-n m atrix  .4 such 

that:

aij >  0 when stJ = +; atJ < 0 when Sij =  —; and atJ =  0 when s tJ =  0 .

We also let * denote a nonzero entry of a m atrix whenever a sign is not specified. 

There axe two natural m athem atical notions associated with various sign-pattern 

problems. They are the notions of require and allow. We say an m -by-n sign pa tte rn  

S  requires property P  if every realization of S  has property P. On the other hand we 

say a sign pattern S  allows property P  if there exists a realization of S  w ith property 

P.

An m-by-n m atrix is TNfc (TP/t) for 1 <  k <  min(m,n),  if all minors of size at 

most k  are nonnegative (positive). We call an m-by-n m atrix TN+ if  each square
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subm atrix is either sign-singular (singular by v irtue of the its sign-pattem ) or has 

positive determ inant.

D E F IN IT IO N  2 .5 .2  An m-by-n m atrix  is said to be in double echelon fo rm  if

(z) Each row of A  has one of the following forms:

1. ( * , * , • • •  , * ) ,

2 . ( * , - - ■  , * , 0 , - - -  , 0 ),

3. (0,-- - ,*),  or

4. (0,••• , 0, *. • • • , *, 0, • • ■ .0).

(z’z) The first and last nonzero entries in row i -f-1 are not to the left of the  first and 

last nonzero entries in row z, respectively (z’ =  1, 2 , . . .  , n — 1).

Note that there is an obvious analog of the above definition for m-by-n sign-

pattem s. Thus a m atrix  in double echelon form m ay appear as follows

* * 0 0 '

* j

0 0

*
0 0 * *

Recall th a t increasing the (1,1) or (m,n)  en try  of an m-by-n totally nonnegative 

m atrix  preserves the property of being totally nonnegative. This observation is needed 

in the proof of the next result.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



38

T H E O R E M  2.5.3 Let S  be an m-by-n  (0 ,+)-.S2gn pattern in double echelon form . 

Then S  allo ws a TN+ matrix.

P ro o f . Since S  has no zero rows or columns s u  =  + . Assign the  value 1 to

all the positive positions in row 1. Consider the left most +  in row 2 , say s2j =

+ , but s2k =  0 for all k < j .  Let B  =  5 [{1 ,2}|{1, 2 , . . .  , j}] . Then s 2j enters

positively into any minor of B , hence there exists a choice for the value of s 2j so that

B  is TN + . Continue to choose values s2i (I > j )  large enough so th a t there exists

a  2-by-I m atrix  with sign p a tte rn  S[{1, 2} |{ l, 2 , . . .  ,/}] that is T N + un til a  zero

elem ent is encountered. Thus we have a 2-by-n TN + m atrix C  th a t is a  realization 

c m  o im  o _ u  o  __ — : - J _____  a - __ u.. ~ n> ..^  ^ |  x , ,  .  .  .  « / 1 f  j .  k j y  c . v i o o o  c t  vj \  x x x c t i - x  i - v  x - /  <x

realization of S[{1, 2 , . . .  ,p } |{ l, 2 , . . .  , <7}], in which the (p, <7) has not been specified, 

bu t both  R[{1, 2 , . . .  , p } | { l , . . .  , q — 1}] and f?[{l . . . .  ,p  — 1}|{1. 2 , . . .  , <7}] axe TN+ 

matrices. Observe that any subm atrix  which does not involve bpq is contained in 

either 5 [ { 1 , 2 , . . .  , p } | { l , . . .  ,q  -  1}] or S [ {1, . . .  ,p -  1}|{1, 2 , . . .  ,<?}], and  hence is 

T N + . Thus we are only concerned with submatrices which involve bpq. Then we 

claim  th a t the (p,q)th entry of B  can be chosen so that B  is T N + . If Spq =  0. then 

since S  is in double echelon form either row p or column q of B  is zero, and hence 

B  is a T N + matrix. Otherwise Spq =  + , and we m ay choose a value bm for large 

enough so th a t B  is a TN  m atrix . If B  is TN+,  then we are done. Thus assume 

there exists a  k-hy-k subm atrix of B  (which m ust involve bpq) th a t is singular but not 

sign-singular. Denote this subm atrix  by C  and suppose C is in the following form

C = r c u C l2

C21 b p q
. Since C  is not sign-singular, it follows that C u  is not sign-singular.
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To see this suppose th a t C n  is sign-singular. Then there exists a zero block in C n  

of size at least k  (see [Ry]). Since C  is in double echelon form it follows th a t there 

exists a zero block of size at least k  +  1, and hence C  is sign-singular, which is a 

contradiction. Since C n  is not sign-singular, it must be nonsingular and in this case 

we may increase the value bpq so that C  is nonsingular. The proof now follows by 

induction, g

We now come to our main observations for this section.

T H E O R E M  2 .5 .4  Let S  be an m-by-n (0, + )-pattern with no zero rows or columns. 

Then the following are equivalent:

1. S  allows a TN+ matrix;

2. S  allows a T N  matrix;

3. S  allows a TN> matrix;

4 . S  is a double echelon pattern.

P ro o f. The implications (1) => (2) =>- (3) are trivial since the containments 

TN + C TN C T N 2 are obvious. Suppose 5  allows a TN 2 m atrix  denoted by .4, and 

assume th a t some entry, say spq = 0, otherwise S  has no zero entries, and we are 

done. Hence apq =  0. Since S  has no zero rows or columns some entry of .4 in row 

p is nonzero. Assume apt > 0. There are two cases to  consider: t  > q; or t < q. 

Suppose t > q. Since A  is TN 2 it follows that asq =  0 for all s >  p. Since 5  has 

no zero lines, some entry in the qth column must be nonzero. Moreover, this entry
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m ust occur with a row index less th an  p. Again since A  is TN 2 i t  follows th a t aps = 0 

for all s <  q. Continuing this argum ent implies th a t a tJ =  0 for all p < i < m  and 

1 <  j  <  f/. For case 2, a similar argum ent shows tha t a,y =  0 for all 1 <  i < p and 

q <  j  < n .  A routine induction implies that A  and hence S  is in double echelon form. 

The implication (4) =>■ (1) is Theorem  2.5.3. |

Observe that a similar argum ent used in the proof of (3) => (4) above may also 

be used to the prove the following result.

C O R O L L A R Y  2.5 .5  Let A  be an m-by-n totally nonnegative m atrix with no zero 

rows or columns. Then .4 is in double echelon form .

A result similar to the above corollary, though stated slightly differently, appeared 

in [R]. We conclude this section w ith some results on (0 ,l)-to ta lly  nonnegative ma

trices.

L E M M A  2.5 .6  Let .4 be an n-by-n (0,l)-lower (upper) triangular m atrix with ones 

on and below (above) the main diagonal. Then A  is a totally nonnegative matrix.

P ro o f. Consider the (0 ,l)-m atrix , .4 = 1 0 
1 1 It is easy to verify th a t .4 is totally

nonnegative. By Proposition 2.4.2 we can border .4 by a column of zeros on the right

and then repeat the bottom  row of .4 without affecting total nonnegativity. Next, by

Proposition 2.4.4 we may increase the  lower right entry to 1, which does not disturb
[ 1 0  0 '

the property of being TN. Thus, our new matrix, .4 =  1 1 0  , is TN. We may
[ 1 1 1 J

continue this procedure to show th a t an n-by-n full lower triangular (0 ,l)-m atrix  is 

TN. The upper triangular version follows by transposition. |
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L E M M A  2 .5 .7  A ny (0 ,l)-m atrix  in the form

Vs

is totally nonnegative.

P ro o f . This follows im m ediately from Proposition 2.4.1 and  Lemma 2.5.6. |

T H E O R E M  2 .5 .8  Let A  =  [a,-y] be an m-by-n (0 ,l)-m a trix  with no zero rows or 

columns. Then .4 is totally nonnegative i f  and only i f  A  is in  double echelon form  

and does not contain the submatrix:

B  =
1 1 0 
1 1 1  
0 1 1

P ro o f . First, observe th a t the m atrix, B  is not TN because det (R)  =  —1. The 

necessity is trivial since B  is not TN and the property of to tal nonnegativity is 

inherited. To prove sufficiency we will proceed by induction on m  +  n. Note that this 

statem ent is not difficult to verify if n < 3. Suppose m  +  n =  k, and th a t the result 

holds for all m '-by-n' such m atrices with m ' + n' < k. Consider the m-by-n m atrix .4. 

We may assume th a t A  has no repeated consecutive rows or columns, otherwise the 

subm atrix .4 of .4 obtained by deleting a repeated row or column satisfies the induction 

hypothesis and hence is TN. Therefore .4 is TN by Proposition 2.4.1. Hence we may 

assume that a n  =  1. If  =  0, then the subm atrix -4[{2, 3 , . . .  , m } | { l , 2 , . . .  ,n}] 

satisfies the induction hypothesis and hence is TN. In this case A  is again TN by
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Proposition 2.4.4. Therefore we assume a 12 =  1. and a21 =  1 (by transposition). 

Observe, tha t since A is in  double echelon form and a 12 =  0.21 =  1 it follows that 

a22 =  1. If a33 =  0, then either =  a23 =  0 or a31 =  a32 =  0. In each case, since 

A is in double echelon form, either row 1 =  row 2 (when a 13 =  a23 =  0) or column 

1 =  column 2 (otherwise), and hence we may delete a row (column) and apply the 

induction hypothesis. Therefore, we may assume a33 =  1, and similarly, we assume 

th a t a23 =  «32 =  1, because otherwise, either row 1 =  row 2 or column 1 =  column 2 . 

There are three cases to consider: a 13 =  0; a I3 =  1 and <231 =  0: and a 13 =  a3l =  1.

C ase 1: ai3 =  0.

‘ 1 1 0 •••
1 1 1 ---
1 1 1

: : *

In which case we have th a t 031 =  1, because if a21 =  0, then the subm atrix B  

would appear in the upper left comer of A. Now, if a44 =  0, then  either row 2 

=  row 3 (if <234 =  a 24 =  0), or column 1 =  column 2 (if a42 =  a 43 =  0). Thus, 

we may assume a44 =  1. Similarly, a42 =  a43 =  1, otherwise column 1 =  column

2. Additionally. <234 =  1, or else row 2 =  row 3. Together, this implies that

a4i - 1.

' l  1 0 *
1 1 1 *
1 1 1 1
1 1 1 1
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If 055 =  0 , then either column 1 =  column 2 (if a 51 =  a 52 =  053 =  <254 =  0) or else 

row 3 =  row 4 (if a35 =  a45 =  0), and thus we may assume a55 =  1. Similarly, 

<252 =  <253 =  o54 =  1, because otherwise column 1 =  column 2. Therefore, 

a51 =  1, because if 051 =  0, then B  would appear as a  subm atrix  of A .  We may 

also assume that a45 =  1, for otherwise, row 3 =  row 4. Thus, our m atrix  has 

the form:

'  1 1 0 * *  . . .

1 1 1 * *  . . .

1 1 1 1 *

1 1 1 1 1
1 1 1 1 1

L : ’ " '  J

Continuing this method of analysis implies that every en try  of .4 on and below 

the m ain diagonal must be equal to 1. Thus, .4 is TN by Lemma 2.5.7.

C ase  2: a 13 =  1, a31 =  0.

Observe tha t this case follows from Case 1 and transposition. The conclusion in 

this case, however, will be th a t every entry of .4 on and above the m ain diagonal 

must be equal to 1.

C ase  3: a i3 =  1 and a31 =  1.

Applying similar reasoning as in the previous two cases we can assume that 

a44 =  a24 =  a34 =  a43 =  a42 =  1. Then the argument proceeds in the same 

m anner as before with three cases to consider: (1): a 14 =  0 ; (2 ): a i4 =  1 

and a4i =  0, or (3): a t4 =  a 41 =  1. Each of these cases is handled by similar 

arguments as the cases (1), (2) and (3) above, and the conclusions are similar in
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each. case. Continuing in this manner will prove th a t any (0 ,l)-m atrix  in double 

echelon form th a t does not contain B  as a subm atrix  is totally nonnegative. |

2.6 Retractibility of Totally Nonnegative Matrices

We have already seen th a t if we increase the (1,1) or th e  (m ,n ) entry of an m-by-n 

totally nonnegative (positive) m atrix, then the resulting m atrix  is totally nonnegative 

(positive). In this section we investigate further which entries of a totally nonnegative 

(positive) m atrix  m ay be perturbed (that is, increased or decreased) so th a t the result 

is a  totally nonnegative (positive) matrix. Such issues have already been addressed for 

other positivity classes of m atrices, for example, if A is an n-by-n positive semidefinite, 

M -, P-, or inverse JVZ-matrix, then A  + D (D  a nonnegative diagonal m atrix) is a 

positive semidefinite, M -, P-, or inverse M -m atrix , respectively (see [HJ1, HJ2]). 

Recall th a t Eij denotes the n-by-n (i , j ) th standard basis matrix , tha t is the m atrix 

whose (i , j ) th entry is 1, and all remaining entries are zero. Suppose .4 is an n-by-n

matrix. Then det(.4 — tE u )  =  detA — idetA ({l}). Therefore, if det.4({l}) ^  0, then

det(A  — tE n )  =  0, when t  =  We are now in a position to make the following

definitions.

D E F IN IT IO N  2 .6 .1  Let C denote a given subclass of the n-by-n Po-matrices. and 

suppose A is an n-by-n m atrix . Then we define:

(i) A r =  {A — tE u  ■ t €  [0, d^ ( f i})]} — “the set of retractions of A” ,

(it) =  {A €  C: A R C C }  — “the retractable subset of C” ,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



45

(fzf) Cr  =  UAecAR — “the set of all retractions of matrices in C"‘.

If, in (z), detA ({l}) =  0, then  the interval for t  is defined to be the single point zero. 

The notions of retractib ility  (of a m atrix) and retractible sets are very im portant 

for studying certain determ inantal inequalities, such as Oppenheim ’s inequality  for 

entry-wise (or Hadam ard) products of positive semidefinite matrices (see [H Jl]), see. 

for example, Chapter 5, where entry-wise products of totally nonnegative m atrices is 

discussed. It is well-known (see [HJl] or [HJ2]), and is not difficult to prove, th a t if C 

= P S D , the set of all positive semidefinite m atrices, then P S D ^  =  P S D r =  P S D .  

Also if C = M,  the set of all M -m atrices, then =  Mr =  M.  A somewhat

more subtle result is th a t if C =  T N ,  the set of ail totally nonnegative m atrices, then 

T N ('R'> = T Nr = T N .  This fact will follow immediately from the next lem m a.

L E M M A  2.6.2 Let .4 be an n-by-n totally nonnegative matrix with de tA ({ l}) ^  0. 

Then  .4 — x E u  is totally nonnegative for  all x  E [0, ,jet4(fi})] •

P ro o f . Firstly, observe th a t for every value x  £  [0, det( A — x E u ) >  0.

Recall th a t A  adm its a UT-factorization (follows from the LCf-factorization result 

and reversal) into totally nonnegative m atrices. Partition A  as follows,

.4 =
T1̂1 *̂ 12

<221 A22

where a n  is 1-by-l and A22 =  A ({l}). P artition  L and U conformally w ith  A. Then 

A = a n T  1 a l2 =  UL = Un T  1 
U 12 h i 0 u a h i  +  uf2l2i u f 2L 22

021 A22 0 u 22 . 2̂1 l 22 U22l2i u 22l 22
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Consider the m atrix  A  — x E n ,  w ith x  €  [0 , detd̂ ^ ^ ]. Then

A  — x E u  = ^ 11̂ 11 +  Ui2h i  — x  ^ 12-^22 _  „  ni
C/22̂ 21 U22L  22

T  
1:

0 U22

U l l - J -  U12 1̂1
I—0

1 «—«4 to L22
=  U'L.

if Zn 7̂  0. Note that if In  =  0, then L , and hence A, is singular. In this case x  =  0 

is the only allowed value for x. But in this case the desired result is trivial. Thus 

we assume tha t Zu  >  0. To show th a t A — x E u  is totally  nonnegative it is enough 

to verify th a t u n  — x / l n  > 0. Since if this was the case U' is totally nonnegative 

by Corollary 2.4.5 and as L is totally nonnegative by assum ption, we have that their 

product, A — x E n  is totally nonnegative. Since Zu  > 0 and detA ({l}) > 0 it follows 

tha t L and U22 are nonsingular. Hence 0 <  det(A — x E n )  =  (tin  — x/Zu )detZ722detL, 

from which it follows th a t u u  — x / l n  > 0 . I

Note th a t a similar result holds for decreasing the (n, n) en try  by considering the 

m atrix  pAp  as in Proposition 2.4.6.

C O RO LLARY 2 .6 .3  Let T N  denote the class of all n-by-n totally nonnegative ma

trices. Then T N =  T N R = T N .

For the remainder of this section we restrict ourselves to the set of totally positive 

matrices. The first result for this class is a slight strengthing of Lemma 2.6.2. Recall 

th a t an n-by-n triangular m atrix  A is said to a triangular T P  matrix, if all minors 

of A are positive, except for those that are zero by virtue of the zero pattern  of A. 

(Recall the definitions of TN*, and TPjt from page 36.)

T H E O R E M  2 .6 .4  Let A  be an n-by-n totally positive matrix. Then A  — tE n  Is a 

TPn- 1 matrix, fo r  all t  6  [0, dê 1})].
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P ro o f. Following the proof of Lemma 2.6.2 we can w rite

A — t E u  — “ “ - / I T
0

‘ 12

U22

o
1

h i Lo2
=  U'L,

where U' = U — (j^-)Eu, and both U,L  are triangular T P  m atrices (see [C2]). If 

« n  — t / l u  >  0, then U' and L  axe triangular T P  m atrices and hence .4 — tE u  

is TP. So consider the case « u  — t / l u  = 0, or equivalently. det(A  — tE u )  =  0, 

or * =  deu (fi»  ~ ^ et B  = A  — t E u - Observe tha t f?[{l, 2 , .  . .  , rz}|{2,3 , . . .  , n}] and 

B[{2 ,3  . . .  , n } |{ l, 2 , . . .  , n}] are T P  matrices since A  is TP. Thus the only contiguous 

minors left to verify are the leading contiguous minors of B .  Consider the subm atrix 

2 , . . .  , A:}] for 1 <  k  < n. Then detJ5[{I, 2 , . . .  , A:}] =  det.4[{l, 2 , . . .  , k }] — 

tdet.4[{2,. . . .  A}]. This minor is positive if and only if

det.4[{l, 2 , . . .  , k}} > fdet.4[{2,. . .  , A:}],

which is equivalent to det.4[{l. 2 , . . .  , &}]det.4({l}) > detA det.4[{2,. . .  , Ar}], an ex

ample of a Koteljanskii inequality. The only issue left to settle is whether or not 

equality holds for the above Koteljanskii inequality. We claim  here that for a TP m a

trix  every Koteljanskii inequality is strict. Suppose to the contrary, th a t is, assume 

there exist two index sets a  and fi such that detA[aU/?]detA [an/?] =  detA[a]detA[/?]. 

For simplicity, we may assume th a t a  U (3 =  iY, otherwise replace A by A[a U (3] in 

the following. By Jacobi’s identity (1.1) we have detA -1 [(a U /3)c]detA-1 [(a D @)c\ =
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det A_ 1[ac]det A -1 [/?c]. Let C  =  S A ~ lS ,  for S  =  d ia g ( l , - 1, - • • , ± 1). Then C is TP 

and the above equation implies detC  =  de tC [ac]detC \j3c]. By a result in [Ca], C 

is reducible, which is nonsense since C  is TP. Thus A — tE u  is TP„_i ,  by Fekete’s 

criterion. This completes the proof. |

Observe that from the proof above it follows tha t A — tE u  is T P  for all t E 

[0, de'̂ { \} ) )> and is T P n_ t when t — An obvious next question is what other

entries can be increased/decreased to the point of singularity so th a t the m atrix  is 

T P n_ t . As it turns out retracting (or decreasing) the (2,2) entry of a TP m atrix  

results in a TP„_ t m atrix.

T H E O R E M  2.6 .5  Let A  be an n-by-n totally positive matrix. Then A  — t E 22 is 

TPn—i for  all t G [0 , detdf f 2})].

P ro o f . Using the fact that all Koteljanskii inequalities are strict it follows tha t 

all of the leading principal minors of A — tE 22 are positive. Consider the subm atrix 

B  =  (A — tE 22)[{l, 2 , . . .  , n} | {2 ,3 , . . .  , n}]. To show th a t B  is T P  we need only 

consider the contiguous minors of B  th a t involve the first and second row and first 

column, all other minors are positive by assumption. Let C  denote such a subm atrix  

of B .  To compute detC , expand the determ inant along the second row of C . Then 

detC  =  (—1)1+2(— t)detC ({2} |{ l}) +  detA[o;|/3], where detA [a|(d] is some m inor of 

A. Thus detC  is a positive linear com bination of minors of A, and hence is positive. 

Therefore B  is TP. Similar arguments show th a t (A — t E 22)[{2 , . . .  , n } |{ l, 2 , . . .  , n}] 

is TP. This completes the proof. |
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A similar fact holds for the retractibility of the (n — 1, n  — 1 ) entry of a TP matrix. 

The next result follows directly from Theorems 2.6.4 and 2.6.5.

C O R O L L A R Y  2 .6 .6  Let n < 4. I f  A  is a n-by-n totally positive matrix and 

1 < i < n, then A  — tE u  is  TPn- i  fo r  all t 6  [0 ,

According to the next example we cannot decrease any o ther interior m ain diag

onal entry (in general) of a  T P  m atrix  and stay T P n_i.

E X A M P L E  2 .6 .7  Consider the following matrix.

100 10 7/5 2 1
22 5 2 3 2

A —

1 1 2 5 12
1/2 2 5 15 50

Then .4 is a totally positive m atrix  with ~  -03. However, d^  4^’t ’2}j[4’5 =

.01. Thus for t  £ (.01,.03], det(.4 — tE 33)[{ l,2 ,3}|{3,4,5}] <  0, and hence A  — tE 33

is not T P 4.

Up to this point we have only considered retracting on a single diagonal entry, 

and obvious next step is to consider increasing or decreasing off-diagonal entries in a 

T P  m atrix. We begin our study of perturbing off-diagonal entries by considering the

(1,2) entry.

T H E O R E M  2 .6 .8  Let A  be an n-by-n totally positive matrix. Then A  +  t E u  is 

TPn- 1 fo r  all t E [0 , det.4d{J}|{2})] •
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P ro o f. Since the (1,2) entry of A  enters negatively into det.4 we increase ai2 to 

+  det.-ffihm) so th a t detA  +  tE ™ =  °- Observe that the submatrix 

(.4 +  tE i 2)[{2 , . . .  , n } |{ l, 2 , . . .  , n}] is equal to -4[{2,. . .  , n } |{ l, 2 , . . .  , n}] and hence 

is TP. Moreover, (.4 +  t-Ei2)[{l, 2 , . . .  , n} |{2 , . . .  , n}] is TP since we have increased 

the “(1,1)” entry of a T P  m atrix. The only rem aining minors to verify are the leading 

principal minors of .4 +  tE i 2. Observe th a t for t E [0, ~

0 <  det(.4 +  f£^i2)det.4 [{2 , 3 , . . .  , n — 1}]

=  det(.4 +  f £ i2)[{l, 2 , . . .  , n — l}]det.4[{2,3 , . . .  , n}]

—det(.4 +  f£J12)[{l, 2 , . . .  , n -  1} |{2 ,. . .  , n}]det.4[{2,. . .  , n } | { l , 2 , . . .  , n  -  1}],

follows by Sylvester’s identity  (see chapter 1). Hence det(.4+t£?12)[{l, 2 , . . .  , n —1}] > 

0. Replacing A  +  tE i 2 by (.4 +  t JB12) [{ l,2 , . . .  , n  — 1}] in the above identity  yields 

det(A  +  t£ ’12)[{l, 2 , . . .  , n  — 2}] > 0  and so on. This completes the proof. |

Using transposition and reversal the conclusion of Theorem 2.6.S holds when the

(1,2) entry of a totally positive m atrix  A  is replaced by the (2 ,1) — 1. n ) and

( n ,n  —1) entries of A. Unfortunately, this is all th a t can be said positively concerning 

increasing or decreasing off-diagonal entries. Consider the following example.

E X A M P L E  2 .6 .9  Let
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13 33 31 10
132 383 371 120
13 3S 37 12
1 3 3 1

T h“  d ^ r , ) | ( 3» =  1 “ d  =  1/12. Thus for f £  (1/12,1] det(.4  -

t£Jx3)[{l,2}j{3,4}] <  0. Thus A  — t E l3  is not T P 3.

Similar examples can also be constructed in the case of the (2.3) and (1,4) entries, 

and consequently in all remaining off-diagonal entries of an n-by-n totally positive 

m atrix.

2.7 Row and Column Inclusion

In this section we generalize in a certain way a fact known for positive semidefinite 

(PSD) matrices to a much wider setting that includes most totally nonnegative m a

trices and most (possibly singular) M-matrices. In  this way we provide a further 

direction of unification between these classes.

It is known tha t if A  =  [a*,-] is positive semidefinite, then any column vector of 

the form

an i
a*2j

- aiki .

m ust lie in the column space of the principal subm atrix  A [{ ii,i2, . . .  ,**}]• (This 

classical fact may be seen in a variety of ways. For exam ple, consider an H erm itian 

m atrix  of the form
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B  c 
c" d '

If the column vector c is not in the range of B,  null space/range orthogonality implies 

there is a vector x  in the null space of B  such th a t x 'c  <  0. There is then an c > 0 

such that

Since A t  is also positive semidefinite, there is an analogous statem ent about rows. 

Moreover, for positive semidefinite matrices (though both inclusions are valid), it is 

equivalent to say th a t for each j  either the row lies in  the row space or the column 

lies in the column space of the indicated principal subm atrix. It is precisely this 

statem ent tha t m ay be substantially generalized. This fact has been known to several 

researchers for some tim e, see [FJ2] for more history and motivation.

For a given m -by-n  m atrix  .4, we let Row (A) {Col {A)) denote the row (column) 

space of .4, and let rank(.4) denote the rank of A.

Let T q ( T )  denote the set of n-by-n Pq— (P -) m atrices which also satisfy Fis

cher’s inequality. The class T o contains m any fam iliar classes of matrices for example: 

positive semidefinite, M-matrices, totally nonnegative m atrices (and their perm uta

tion similarities) and triangular matrices with nonnegative main diagonal.

Using the notation developed above, we can reform ulate the column inclusion re

sult for positive semidefinite matrices as follows: If A is an n-by-n positive semidefinite 

m atrix , then for any a  C IV and for each j ,  A [a|{j}] E Col{A[a\).
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The next result can be found in [FJ2, Th m . 6 .1]

T H E O R E M  2 .7 .1  I f  A  £  J~o and a  C N , is such that rank( A[a]) >  |q | — 1, then 

fo r  each j  either A[{j}|a:] E /2ou;(A[q;]) or A [a|{j}] E Col{A[a\).

Some condition im posed upon rank(.4[a]) is necessary, as may be seen from the 

following example.

E X A M P L E  2 .7 .2  Let

A  =
0 1 0  
0 0 1 
0 0 0

Then .4 E T q. Let a = f l .3} .  Then A[a] =  0. However. .4[{2}|q] ^  0 and 

.4[o|{2}] ?  0.

Note the above m atrix  is a reducible TN m atrix. To generalize further, we use the 

following concept.

D E F IN IT IO N  2 .7 .3  An n-by-n m atrix A satisfies the principal rank property (PUP). 

if every principal subm atrix  A' of .4 has in turn an invertible principal subm atrix that 

is of the order rank (A').

The following is sim ply a  recasting of the previous definition. A satisfies the PR P 

if for every a , there exists /? C a , with \(3\ =  rank( A[a]) so th a t A[/?j is invertible.

Observe th a t the principal rank property is inherited by principal submatrices. 

The next lemma (perhaps of independent interest) gives a sufficient condition for a 

m atrix  to satisfv the PRP.
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L E M M A  2 .7 .4  Let A  be an n-by-n matrix. Suppose the algebraic multiplicity of 0 

equals the geometric multiplicity o f  0, fo r  every principal submatrix o f  A . Then .4 

satisfies the PRP.

P ro o f. Let A'  be any k-hy-k  principal submatrix of A. If A' is nonsingular, then 

there is nothing to do. Thus suppose rank(.4') =  r  (r <  k). Since the algebraic 

multiplicity of 0 equals the geometric multiplicity of 0 for .4'. it follows th a t the 

characteristic polynomial of A' is equal to

d e t f r f  -  A') =  x k~r(xr -  Slx r~l 4------4- ( - 1  )r.O .

in which sr ^  0. Since s r is equal to the sum of all the r-by-r principal minors of .4'. 

it follows that there exists at least one nonsingular r-by-r principal subm atrix  of .4'. 

This completes the proof. |

Note that symmetric matrices are examples of matrices which satisfy the above 

lemma, and hence satisfy the PRP. The converse to the above general lem m a is easily 

seen not to hold in general. The simplest example dem onstrating th is fact is

.4 =  [ 1 - M .1 - 1

However, for P0-m atrices the condition given in the above lem m a is clearly also 

necessary, since for a Po-matrix, the coefficient sr will be nonzero if and  only if there 

is a nonsingular r-by-r principal subm atrix of A.
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T H E O R E M  2 .7 .5  ([FJ2, Thm. 6.5]) I f  A  G T 0, satisfies the PRP, and a  C N ,  

then for  each j  either A [{j} |a] G -Ron; (.4 [a]) or -4[a[{j}] G Col(A[a\).

Theorem 2.7.5 has two hypotheses: JF0 and PRP. N either of these can be om itted 

in general. For exam ple,

.4 = 0 1 
1 0

satisfies PR P but no t the row or column inclusion conclusion of Theorem 2.7.5. and

A  =
0 1 0 
0 0 1 
0 0 0

is in T q, does not satisfy PRP, and does not satisfy the conclusion of Theorem 2.7.5 

for a  =  {1,3}.

Since any positive semidefinite m atrix satisfies the P R P  (by the previous lemma) 

and is in T q (see [H J1]) we have the following.

C O R O L L A R Y  2 .7 .6  I f  A  is an n-by-n positive semidefinite matrix, then fo r  any 

a  C N  and fo r  each j , .4[q;|{j}] G Col(A{a\).

We now specialize to  the class of totally nonnegative m atrices (TN), a subclass of 

T q. We may extend our row or column inclusion results somewhat to non-principal 

submatrices for this class. Before we state our next result we need the following

notation. Let a , (3 C N  and let i i <  i2 < • • • <  ik be the elements of a  ar

ranged in increasing order, and let j i  < j 2 < • • • <  jk  be the elements of (3 ar

ranged in increasing order. Define i0 = 1, j Q =  1, u-+i =  n and jk+i =  n. For
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t  =  0 , 1 , . . .  , k, let A[*i, . . .  , it, {it, it+i),it+i, ■ ■ ■ , ik\@] denote the subm atrix of A ob

tained from A[a|/3] by inserting any row s, for which i t < s < it+i- Similarly, let 

, j t ,  {jt,jt+ i),jt+ i,  - • - ,jk] denote the subm atrix  obtained from A[a|/3] by 

inserting any column q. for which j t < q < jt+i-

T H E O R E M  2 .7 .7  Let A  be an n-by-n TN matrix and let a , 3  C N , with |a | =  \3\- 

Suppose that rank(A[a|/3]) =  p, and either p > |a | — 1 or at least one o f  d(a) =  0 or 

d(3) = 0. Then either

rank( A[z’i , . . .  , i t, {it, it+1), it+i, , ik\0}) =  P

or

rank(A [Q |i1, . . .  , j t , {jt,jt+i),jt+i, - • - , jk \ = P ,

fo r  t  = 0 ,1, . . .  , k.

P ro o f. Let a, 3  C. N ,  w ith |a | =  |/?|. Firstly, suppose d(a)  =  0. The case 

when d{3) = 0 will then follow by transposition. Let s , q 6  A', w ith s < and 

q < j i  (if such an s .q  exist). The case in which s > ik and q > jk  is handled 

similarly. Assume for the purpose of contradiction th a t rank(A[o: U {s}|/3]) > p and 

rank(A[a|/3 U {?}]) >  p■ Consider the submatrix A[a  U {s}|/3 U {<?}], which is totally 

nonnegative and has rank equal to p +  2. Thus there exists a nonsingular subm atrix 

A! of A[q U {5} |/3 U {q}] of order p + 2. Since the rank(A[a|/3]) =  p, it follows that 

A'  =  A[7 U {s}|£ U {q}], in  which 7  C a , I7 I = p + 1 and 5 C /3, |<i"| = p + 1. Further. 

A[7 |<5] is principal in A', since s <  it and q < j  1. Observe th a t since rank(A[o:|/3]) =  p.
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A[7 |<£] is singular. Consequently,

0 <  detA ' <  detA[7 |<J] • asq =  0.

This is a contradiction and hence the conclusion holds.

Finally, suppose rank(A[a|/3]) >  |a | — 1, and let |a | =  k. Define io =  jo =  1 

and i/c+i =  jk+i = n. Let t be any fixed integer, 0 < t  <  k. Assume there exists a 

row indexed by s, i t < s < i t+1, and a column indexed by q, j t < q < j t+1, in which 

rank(A[zx,. . .  . . .  , ik\P\) > p a n d  rank(A[aj j i , . . .  1, - • • ,Jk)) > P- In

fact both must equal p + 1. Then rankA[a U {s}|/3 U {q}] =  p +  2. Again consider 

the nonsingular subm atrix A! of A[a U {s}|/? U {q}], which (as before) must be of the 

form A [7 U {-s}|£ U {q}]. Applying similar arguments as above we will arrive at a 

contradiction. This completes the proof, g

We wish to remark here th a t if for some t  (0 <  t < k) it =  — 1 and j t < jt+1 — 1,

then there may exist a q. with j t < q < j t+1 and

rank(A[aj/3 U {q}]) >  rank(A[a|/?]).

Thus, the conclusion of the above theorem holds only if for a fixed t
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(0 <  t < k) i t < i t+l -  1 and j t < j t+l — 1.

We complete this discussion with an example, which illustrates three possibilities. 

The first two give insight into the necessity of the hypotheses in Theorem 2.7.7. The 

final one illustrates the previous remark.

E X A M P L E  2.7.8 Let

A  =

0 1 0  0 0 
0 1 0  1 0  
0 0 0 0 0 
0 1 0  1 1  
0 0 0 0 0

It is not difficult to determ ine tha t .4 is TN.

( i \  L e t  nr =  12. 4 l and /•? =  12.41. Then ra.nkf .4 lV v l/311 =  1 .  H o w e v e r ,  if w e  l e t  s  =  1
V /  C  • '  >  • • '  >  V L I '  J  /  -  -  '  -  —

and q =  5, then rank(.4[a U {5}!/?]) =  2 and rank(.4[a|/? U {<?}]) =  2. Thus it is 

necessary to include a row and a column from the same "gap" in a  and 3.

(ii) Similar arguments can be applied in the case a = {1, 3} and 3 = {4.5}, and with 

s = q = 2 .

(Hi) Let ct =  {2,3} and 3  =  {1,3}. Suppose q =  2. Then

rank(A [ a \ p  U {<?}]) >  rank(.4[a|/3]).

2.8 Sub-direct Sums
Let 0 <  k  <  m, n and suppose that

A A n A 12 
A21 A22

G Mm((D) and B  = B 22 B 23 

B32 Bz3
E M n (€),
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in which. A22, B22 €  M*. ((D). Then we call

C  =
A-u -4-12 0
-4-21 -4-22 +  B22 B23

0 B 32 B 33

the k-subdirect sum  of A  and B , which we denote by A  ®k B . W hen the value of 

k  is irrelevant or clear, we may ju s t refer to a subdirect sum , and, when k  =  0, a

0-subdirect sum is a familiar direct sum, and ®0 will be abbreviated to ®. Of course, 

the fc-subdirect sum of two m atrices is generally not com m utative. See [FJ1] for 

more information and background (including references) on sub-direct sums of other 

positivity classes of matrices.

For a given class of m atrices II we address four natural questions: (I) If .4 and B  

are in II must a 1-subdirect sum C  be in II; (II) If

Cn C12 0
c = C21 C22 C23

0 C32 C33

is in II, may C  be w ritten as C — A ® j B , such that A  and B  are bo th  in H, when C22 

is 1-by-l; and (III) and (IV) the corresponding questions w ith 1 replaced by k > 1.

We begin with a simple determ inantal identity, that is useful in  consideration of

1-subdirect sums. We provide a proof here for completeness.

L E M M A  2.8.1 Let

.4 = A n  o-12 
(221 2̂2

6 M m((D) and B  - 622 &23
&32 B33 € M„(<C),
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in which <222 and. 622 are both  1-by-l. Then

det(A  ©1 B )  =  detA u d e tS  +  d e tA d etP 33. (2.1)

P roof. It is routine to verify th a t if A n  and S 33 are both singular, then A ®i B  

is necessarily singular; hence (2.1) holds in this special case. Suppose, then, w ithout 

loss of generality, th a t Au  is nonsingular. Using Schur complements (see chapter 1) 

it follows that

d e t

A u

<221

a  12 

a 2 2  +  & 2 2

0  ■ 

i >23 =  d e tA u  d e t
0 - 2 2  +  & 2 2  ~  < 2 2 1  A - i / ^  1 2

L

& 2 3
n

0 f> 3 2 B 3 3
» 3 2 - £ > 3 3

Expanding the latter determ inant by the first row gives

detA u det 622 623
&32 B 33

+  d e tA u (022 ~  fl2iAu  ^12) d e tP 33

=  d e tA u  detB  +  detAdetf?33. g

In [FJ1] we considered questions (I)-(IV) for various positivity classes: positive 

(semi) definite; Af-matrices; sym m etric M-matrices; P-m atrices; P0-matrices; dou

bly nonnegative matrices (entry-wise nonnegative positive semidefinite m atrices); and 

completely positive matrices (m atrices of the form B B T w ith B  entry-wise nonnega

tive). One of the results proved in [FJl] is the next result which addresses specifically 

questions (I) and (II) for each of the above positivity classes.
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T H E O R E M  2.8 .2  ([FJ1]) Let II denote any one o f the above positivity classes. 

Suppose

C  =
Cn C12 0
C21 C22 C23
0 C32 C33

is an n-by-n matrix with C n  and C33 square, and with C22 1-by-l. Then C is in  II i f  

and only i f  C may be written as C  =  A © i B , in which both A  and B  are in  II.

For more information, on questions (III) and (IV) for these positivity classes see 

[FJ1]. We now turn  our attention to the class of totally nonnegative matrices (see 

also [FJ1]). The next result answers questions (I) and (II) for the class TN. 

T H E O R E M  2 .8.3  Let

C  =
C n  C12 0
C21 C22 C23

0  C 3 2  C 3 3

€ M n(JR)

be an n-by-n m atrix with C n  and C33 square, and with C22 1-by-l. Then C  is TN if 

and only if C may be w ritten  as C  =  A  ®i B, in which both  A  and B  are TN.

P ro o f. First, suppose both  A  and B  are TN, and let 

.4 = -4 xx <Zl2
E Mm(]R) and B  = 622

7
623
TJ

(121 0-12 032 B 3 3
€ Mr (IR).

where a22 and 622 are both 1-by-l. Firstly, we note that any principal submatrix of 

.4 ®i B  either involves the overlapping entry and hence is nonnegative by (2.1); or 

does not involve the overlapping entry and is nonnegative since it is a direct sum of 

TN  matrices. Let C  =  A  ®i B , and let C[a\(d] be any square subm atrix of C. Let 

ax =  a  D {1, 2 , . . .  , m — 1}, a 2 =  a  D {m +  1, m  +  2, . . .  , n},  /?i =  /? n  {1, 2 , . . .  , m — 1} 

and /?2 =  0  D {m +  1, m  +  2 , . . .  , n}. Further, we can assume ax, 0:2, /?i and /?2 are all
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nonempty, otherwise it is straightforw ard to verify th a t de tC [a |/3] >  0 . Suppose 

m  ^  a  n  (3. Then either m  a  and m  ^  f3 or, without loss of generality, m  £  a  and 

m  £  f3. First assume m  0  a  and m  ^  (3. Then

c m /?] =

If [qi| =  I/?! |, then C [a |/3] is a direct sum  of TN  matrices, and hence is TN . Otherwise 

|o:i| 7̂  |/3x|, and without loss of generality, assume |q i| >  |/?x| (the  case |c*i| <  |/3x| 

follows by symmetry). Therefore the size of the larger zero block is |ax |-by-|/32|. 

Furtherm ore,

|<*i| +  |/̂ 21 >  \fli\ +  |/?2| +  1 =  |/3| +  1 =  |a |  +  1,

hence detC [a |/3] =  0 (see [Ry, p. 55]). Now assume m  G a  and m  (fc (5 . Then

C[a\0 ] =
-•4-u[c*i|/?i] 0

<22l[/?l] ^23 [^2 ]

0 f?33[a21/̂ 2]

If |ax| =  |/?i|, then |o;21 +  1 =  |/?2|- Hence C [a |/3] is block triangular and it follows 

th a t detC [a |/3] >  0. Otherwise, |ax| ^  \Px\- H |a i | >  |/3x|, then detC [a[/3] =  0 (see 

[Ry, p. 55]), and if |a i | <  |/3x|, then either C [a |/3] is block triangular or C [a |/3] is 

singular. Thus suppose m G a  fl /3. Again there are two cases to consider. Suppose 

[orx.| =  |/?i|. Then |a2| =  |/?21, and detC [a |/3] >  0 follows from (2 .1). O therwise sup

pose |qx| 7̂  |/3x|, and without loss of generality, assume |qx| >  |/3L| (the  case |ax[ <  |/?x|
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follows by sym m etry). The order of the larger zero block is |cki|-by-|/?21, and

|c * i| +  1/^21 >  l/? i] +  | A |  +  1 =  |/?| =  la l-

If |o:t[ +  |/?21 > [/?|, then, as before, detC[o|,d] =  0, see [Rv, p. 55]. So assume 

[or!| +  |/?2| =  |/?|, in which case, it follows that C[a|/?] is a block triangular m atrix  

w ith the diagonal blocks being TN, hence detC[a|/?] > 0.

Conversely, suppose C is TN. Since

r  r . .  1w t i  — and
C21 c22 C32 C33

are TN, choose a22 >  0 and &22 >  0 as small as possible so that

■1 = C u Cl2 and B  = &22 C23
C21 a22 _ c32 C33

are both  TN. Assume .4. E Mm(IR) and B  E Mr (IR). In what follows we are only 

concerned with square subm atrices of A and B . Let 

T =  |A [a|/?] : m  E a ,  j3 C {1 ,2 , . . .  , m} and A[a\(3\ is singular} , and let 

A =  |R [7 |5 ] : 1 E 7 , S C { 1 ,2 . . .  , r} and B[7|£] is singular}. Observe th a t F (simi

larly A) is nonempty. Since if T was empty, then for every m  E a , (3 C {1, 2 , . .. , m}, 

detA[a[/?] > 0. Then by continuity we m ay decrease a22, while A  remains TN , which 

contradicts the m inim ality of a22. Therefore F is nonempty and similarly so is A.

Suppose for the mom ent th a t a22 + 622 <  c22. Then increase a22 to a -22 and  increase
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622 £*22 so that ct22 “I- £*22 — -̂22? and. let

A = C n Cl2 and B  = £>22 C23
c2i 0-22 C32 C33

By the observation preceding Theorem 2 .8.3, A and B  are TN , and C  =  At~nB. Thus, 

if we can show a22 +  622 <  c22, then the proof is complete. So suppose <222 +  £>22 >  C22- 

Then one of two possibilities can occur. Either A[a — {m }|/3  — {m}] is singular, for 

every A[a|/3] £  T, or there exists A[a0|/3o] £ V such th a t A[qo — {rn}\Po — {m}] is 

nonsingular. Suppose th a t A[q — { m }\/3 — {m}] is singular, for every A[a|/?] £ T. In 

this case, each such detA [a|/3] does not depend on <222, and hence a22 m ay be decreased 

without affecting detA[a|/?]. Also, as previously noted, if m  £  a ', (3' C {1 , 2 , • • - , 772} 

and detAja'I/?'] >  0 , then a.22 may be decreased in this case. However, this contradicts 

the minimality of <222- Thus there exists A[a0 |/?o] £  T such th a t A[q0 — {m }|/?0 — {m}] 

is nonsingular. Similar argum ents also show tha t there exists f?[7o|^o] £  A such 

th a t B[7o — {1}|£0 — {1}] is nonsingular. Furthermore, if <222 is decreased, then 

detA[ao|/3o] < 0 . Since <222 +  £>22 > c22, decrease (222 to a'22 such th a t a22 +  622 =  c22• 

Then

C' = A[q0 — {m }\0 o -  { m } ]  c 1 2 [ q 0  —  { m } ] ®i -H[7o|6q],C21W0 ~  {m}] a'22

is a submatrix of C. However, 0 <  detC" < 0 , by (2 .1). This is a contradiction, hence 

a22 +  622 < C22, which completes the proof. |

Recall that totally nonnegative matrices are closed under usual m atrix  m ulti

plication. Roy M athias offered the following (in a private communication) simple 

argument to show th a t the 1-subdirect sum. of totally nonnegative m atrices is totally
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nonnegative. Suppose A and B  are m-by-m  and n-by-n to tally  nonnegative m atrices, 

respectively. Then let X  =  A  © B ,  and define the following (m +  n)-by-(m +  n — 1) 

totally nonnegative m atrix

5  =

1 0 

0

0
0

0

1 0 

1 0 

0
. . . .  0 1

where the identity m atrix  in the upper left comer is m -by-m  (the same size as A).

Then a routine com putation yields that S TX S  = A  ®i B , and since both S  and X

are totally nonnegative it follows that A ©L B  is totally nonnegative.

It is easy to verify th a t the class TN is not closed under addition, hence it follows

tha t the an sw e r  to question (III) is negative. However, even more can go wrong. 
E X A M P L E  2 .8 .4

‘ 2 1 0 ‘ ‘  1 2 0 '

A = 1 1 0 and B  = 0 1 0
0 2 1 0 0 1 _

Then A and B  are both totally nonnegative matrices. However,

A ©2 B  =

2 1 0  0 
1 2  2 0 
0 2 2 0 
0 0 0 1

is not a totally nonnegative m atrix  since det(A ©2 B )  =  —2. Note that the sum in 

the overlapping positions is a totally nonnegative m atrix .

To address question (IV), we will make strong use o f the fact th a t TN matrices 

are LU  factorable into TN  matrices L and U , but we need rather more than what is 

known. W hen the TN m atrix  C  has our form
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C  ii C12 0 '

c  = C21 C22 C23 1
0 C32 C33

we need that, in addition to  being lower and upper triangular, respectively, the (cor

respondingly partitioned) L  has its 3,1 block and U its 1,3 block 0 . In case C u  is 

invertible, a simple partitioned calculation reveals th a t th is m ust occur in any LU 

factorization of C  (since L u  and Un will be invertible). However, when C n  is sin

gular (which implies by Fischer’s inequality that C  is singular), there can occur TN 

matrices C of our form th a t have TN LU  factorizations w ith  positive entries in the 

£-31 or U13 blocks. Fortunately, though, LU factorizations will be highly non unique 

in this case, and there will always exist ones of the desired form. Thus, an auxiliary 

assumption that C n  is invertible would avoid the need for Lem m a 2.8.5 in the proof 

of Theorem 2.8 .6, but this somewhat specialized lem m a (perhaps of independent in

terest, though it requires an elaborate proof) shows tha t such an auxiliary assumption 

is unnecessary.

For simplicity of notation (see also [C2]), we let

G'2 =
0 1 
0 1

and let Fr(c), c >  0, denote the following r-by-r m atrix,

Fr(c) =
1 0  0 
0 0r_2 0
c 0 1

Observe, that both of the above matrices are T N . We also note th a t the property 

T N  is not in general preserved under row and colu m n  operations. However, it follows
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(see, for example, [W]), th a t if A  — [a,-y] is TN and say a ty, a lj+1 >  0, and a lk =  0, 

for k  > j  +  1, then the m atrix  A" obtained from A  by subtracting a ij+ i/a ^ -  times 

column j  from column j  -F1 is TN. T hat is A  — A mU, where U is the  upper triangular 

TN  m atrix  given by U =  I j - i  © F j ( a i yJ+i/ai j)  © This notion was generalized

in [C2]. Suppose A  =  [a,-y] is TN , a iy >  0, and for some t  > j ,  au  >  0 , but a li: =  0 

for all j  < k < t  and k > t. Then, since A  is TN it follows th a t a ,t  =  0 for 1 <  i < n 

and j  < k  <  t. Let .4 “ be obtained from A  by subtracting au / a i y  times column j  

from column t. Thus A  = A “U , where U is the upper triangular T N  m atrix  given by 

U =  iy_i © F^_j+1(ait/ai j )  © It is shown in [C2] th a t the m atrix  .4 “ is TN.

L E M M A  2.8.5 Let

T h e n

C n Cj2 0
c  = C21 C22 C23 1

0 C32 C33

a n d  C33 axe s q u a r e  a n d  C u  is 772-b y -772 (7 7 2  >  1).

f u OO

U n  U12 0

O II II L21 L22  0 • 0 U 12 U23
0 L32 L33 0

----1

0

in  w h ic h  L a n d  U ( p a r t i t i o n e d  c o n fo rm a lly  w ith  C) a re  b o t h  T N .

P roof. F i r s t ,  w e  n o te  t h a t  t h e  a lg o r i th m  g iv e n  in  [C 2] a p p l i e d  to  C , a lw a y s  

p ro d u c e s  a  U , w i th  U13 =  0 . T h e  p r o o f  o f  t h e  le m m a  w ill  u s e  i n d u c t i o n  o n  m , t h e  s ize  

o f  C u -  S u p p o s e  m  =  1, a n d  c o n s id e r  tw o  cases; C n  >  0 ( C u  is  1 - b y - l ) ,  o r  C u  =  0 . 

I f  C u  >  0 , t h e n  C u  is n o n s in g u la r  a n d  w e a re  d o n e  b y  p re v io u s  o b s e r v a t io n s .  T h u s  

s u p p o s e  C n  =  0 . S in c e  C  is  T N ,  e i t h e r  ro w  o r  c o lu m n  1 m u s t  b e  z e ro . A s s u m e ,
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£11 0 0
c  = L21 L22 0

T31 L32 L33

without loss of generality, th a t C12 =  0; otherwise consider C T. If C21 =  0 as 

well, then by the comments on the previous page, C has a desired LCC-factorization. 

Therefore assume C21 7̂  0. By the algorithm given in [C2] C may be written as,

Un Ui 2 0
0 U22 U23
0 0 C/33

Since C2i 7̂  0 , it follows tha t Z7U 7̂  0. However, L3lUn = 0, hence L31 =  0. Now 

assume the result is true for all such C, w ith  C u  /-by-/, 1 <  / <  m  — 1. Suppose 

C =  [cij] is as above, with C u  m-by-m. Again we consider two cases; clt =  0 and 

cu  >  0. Suppose cu =  0 , and assume, w ithout loss of generality, column 1 of C 

is zero. Let j  be the smallest integer (larger than 1) for which cLj > 0. If no such 

j  exists, then the result follows easily by induction. Since C is TN it follows that 

cn =  0 , for all i , t  such that t < j .  Applying column operations like those discussed 

before the lemma, C may be w ritten as

C =  L'U ' =

' 0 0 C \ j 0 ‘
0 0 C-2 j

\ : C'
.  0 0 Cnj .

{ C  is (n — l)-by-(n — j ) )  where U  and U' are TN. Since the first j  — 1 columns of C 

are all 0, observe that L' may be w ritten as

Z/ =

r cu 0 0 0 1
0 0 C2j
• ; C '
0 0 ^nj

• i / M u V * )  . ..  ifU-i-J)^

in which Z7h’r+1) =  / r_ t @ G'2 0  1. Note, when r =  1 we ignore the first summand.

It is easy to verify that C/(r,r+1* is TN. Let
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00

'•-I

01 
.. 0 1OO

'  ;  * C'OO
 . 
1

L" =

and let U" =  [/(L’2>Cr(2-3) • - - 1,j)6r/. Then U" is TN since U" is a product of TN

matrices and L" is TN  since L' is TN , and C  =  L"U" . Now let

0 c2j
C" = ; • C'

1 O P

(C " is (n  — l)-by-(n — 1)). By induction, C" =  LU, in which L and U are TN . and 

w ith L 31 =  0 and 3 =  0. Then
„  1 r  .

c  = C l j u 1 u

0 L 0 U ■U",

is a  desired LU  factorization. Finally, suppose cu > 0, and ass rune c o l u m n  1 of C  

is equal to [cn ,c2i , . . .  , c u ,0 , . . .  , 0, Cji, 0 , . . .  ,0]T, where cu, cji > 0 and 1 <  / <  

j  — 1. Since C is TN and c(1 =  0, for / < i < j , cit =  0. for I < i < j  and 

1 < t  < n. Observe that if =  L1-1 © , then £ ( /j) is TN.

Furtherm ore, C may be w ritten as C  =  L ^ '^C '. in which the first c o l u m n  of C' is 

equal to [cu,C2i , . . .  , c ; i ,0 ,. . .  ,0]T. Moreover, it follows from  a result in [C2], th a t 

C ' is TN. Applying similar row operations we obtain C  =  U C , in which L' and C  

axe both  TN and with the first column of C  given by [cu , 0 , . . .  , 0]T. Note th a t L' is 

equal to a product of lower triangular TN m atrices each of the form  Applying

the first step of the algorithm  given in [C2] we may write C  as

C  =  LU' =
cn  0
0 C" U',
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in which. L and U' are both. TN. By induction we may write C" — L"U", in which. L" 

and U" are TN, and with L3l =  0 and C "3 =  0. Thus we may write C as

C = l ! Cu 0 ' 1 0
0 L" 0 U"

C',

which is a desired decomposition. This completes the proof. |

We are now in a position to prove an affirm ative answer to question (IV) for the 

class TN.

T H E O R E M  2 .8 .6  Let

Cu C12 0
c  = C21 C22 C23

0 C32 C33

in which C n and C33 are square, and w ith C22 k-by-k. If C is TN. then  C can be 

w ritten  as C =  A  B  so tha t .4 and B  are TN.

P ro o f . By Lemma 2.8.5, C = L U , in which both  L  and U are TN, and L 31 

and J7i3 =  0. Then it is easy to check that

=  0

C = LU  =  

Hence C can be w ritten as

L n U n  L11U12 0
L21 C n  L22U22 +  L21V12 -^2 2 ^ 2 3

0 L32U22 L33U33 +  L32L23

■ L u U n L11U12 0 ' ■ 0 0 0
c  = L 21U11 L21U12 0 + 0 L22U22 L22U23

0 0 0 0 L32U22 L33U33  +  L32U23

Notice that if

and

B  =

.4  =

1 
1

Cn
Cu

L11C12
■L21C12

—
C u
C21  ̂

0
to 1 

■

•

1 
1

C12
0

L 2 2 U 2 2 L 2 2 U 2 3 C22 0 ' C22 C23
L 3 2 U 2 2 C33C33 +  L 3 2 U 2 3 C32 C33 0 C33
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then C = A  © t B . Each of the four matrices on the right is easily seen to be TN 

because L and U are, and it follows from the m ultiplicative closure of the class TN 

that both A  and B  are TN , which completes the proof of the theorem. |
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C h ap ter  3

S p ectra l P ro p er tie s  and J o rd a n  

S tru ctu res

A very im portant topic in m atrix theory is the location and d istribution of the eigen

values of a given m atrix or a fixed class of matrices. Some classical results include the 

discs of Gershgorin and the ovals of Cassini for general complex m atrices. O ther ex

amples are the inclusion/exclusion wedges for P-matrices, and the celebrated Perron- 

Frobenius theory for entry-wise nonnegative matrices (see [H Jl, HJ2]).

Approximately sixty years ago Gantm acher and Krein [GK2], who were originally 

interested in oscillation dynamics, undertook a careful study into th e  theory of totally 

nonnegative matrices. Of the many topics they considered, one was the properties of 

the eigenvalues of totally nonnegative m atrices. In particular, they  proved that the 

eigenvalues of a totally positive m atrix are real, positive and d istinct. We include a 

proof of this fact for completeness of composition, and also because this particular

72
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proof offers an interesting application of the aforementioned Perron-Frobenius theory. 

By continuity (see Theorem 2.1.6), for example, it follows th a t the eigenvalues of a 

totally  nonnegative m atrix  are real and nonnegative.

Before we prove this result we need some definitions. Given an m-by-n m atrix  .4 

we define the k th compo und o f  A , which we denote by C/t( A), to be the 

(T )-b y -ft) m atrix  whose (i , j ) lh entry  is detA [a,|/?_,], where a , and  0 j are k-subsets, 

order lexicographically, of { 1 ,2 , . . .  ,m } and { 1 ,2 ,. . .  ,n } , respectively. It follows 

from a classical theorem  of Ivronecker (see also [HJ1]) th a t if m =  n. then the eigen

values of Cfc(A) are all of the fc-fold products of the eigenvalues of A.

We are now in a position to  prove the classical result of G antm acher and Krein 

[GK2] on the eigenvalues of a  to tally  positive m atrix.

T H E O R E M  3 .0 .7  Let A  be an n-by-n totally positive matrix. Then the eigenvalues 

o f A  are real, positive and distinct.

P ro o f. Suppose A^ A2, . . .  . An are the eigenvalues of A, arranged such that 

|At | >  |A2| >  • • • >  |An|. By Perron's Theorem (see [HJl]) it follows tha t \ i  is real 

positive and strictly  larger in m odulus than any other eigenvalue of A. Suppose, to 

the contrary, th a t A j  (j  > 2 )  is the  first eigenvalue of A tha t is not a real number. It is 

clear th a t the product At A2 • • • A i s  an eigenvalue of Cj(A) of m axim um  modulus, and 

hence since Cj ( A)  is an entry-wise positive m atrix it follows from  Perron’s Theorem 

th a t AlA2 • • • Ay is a real positive number. Applying similar argum ents to C_,_i(A) 

implies that Aj.A2 • • • A i s  a real positive number. Consequently, Xj is a real positive 

num ber. Therefore, every eigenvalue of A is real and also positive.
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Applying Perron’s Theorem  to Cy(.4 ) yields, AtA2 - - - Ay >  AiA2 • - • Ay_tAy+1, which 

implies Ay >  Ay+ i . Thus, the  eigenvalues of A  axe d istinct. |

A simple consequence of the previous result (also observed in [GK2] and in [GK1]) 

is tha t the eigenvalues of an oscillatory m atrix  are real, positive and distinct. Another 

less obvious consequence, which follows from a continuity argum ent (using Theorem 

2.1.6), is th a t the eigenvalues of a totally nonnegative m atrix  are real and nonnega

tive. See also [R] for m ore background information on classes of matrices with real 

distinct spectrum . See [Fr] and [Pil] for weak interlacing properties of the eigenval

ues of totally positive m atrices, and see [Ev] for some rem arks on the distribution 

of eigenvalues of oscillatory matrices. In [BJl] it is shown th a t anv collection of n 

positive distinct numbers can be realized as the spectrum  of an n-by-n totally positive 

m atrix. (For other results along these lines we refer the  reader to [G2].)

For the most part this is the extent of what is known about the properties of the 

eigenvalues of a totally nonnegative matrix. It is our purpose here to explore further 

the properties of the eigenvalues of a general totally nonnegative m atrix.

We say th a t an n-by-n (n >  2) m atrix .4 is reducible if there exists a perm utation 

m atrix  P  (a ■permutation m atrix  P  is an n-by-n (0,1) m atrix  that satisfies P P T = 

P TP  = / ) ,  so that

P A P  = B  C 
0 D

where the m atrix  0 is an (n — r)-by-r zero m atrix  (n — 1 >  r > 1). Otherwise we say 

.4 is an irreducible m atrix . We begin our discussion by assum ing tha t A  is irreducible.
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This assumption is not w ithout of loss of generality assum ption, but is made to avoid 

certain trivialities. Observe that any collection of n nonnegative real numbers m ay be 

realized as the eigenvalues of a reducible totally nonnegative m atrix, simply by using 

entry-wise (and hence totally) nonnegative diagonal matrices. The next result was 

originally observed in [GK2], and can also be found in [R], although stated slightly 

differently. The proof we present here utilizes the fact th a t certain totally nonnegative 

m atrices are in double echelon form. This fact will be used later in this chapter.

L E M M A  3 .0 .8  Suppose A  =  [ a is a totally nonnegative matrix. Then A  is irre

ducible i f  and only i f  atj  > 0 fo r  all i . j  such that |f — j |  < 1 .

P ro o f. The sufficiency of the condition tha t a,-y >  0 for all i . j  with |i — j \  < 1 is 

trivial. On the other hand suppose .4 is irreducible. Thus .4 has no zero lines, and 

hence must be in double echelon form. Suppose an =  0 for some i. Then ast = 0 for 

1 <  s <  i and i <  t <  n, or ast =  0 for i < s <  n and 1 <  t  <  i, from which it follows 

th a t A  is reducible, and hence we have a contradiction. Therefore we m ay assume 

an > 0 for all i. Similarly, if a 1 =  0 for some i — 1 ,2 , . . .  , n — 1, then ast =  0 

for all 1 <  s <  i and i < t < n. Again A  is reducible, another contradiction. This 

completes the proof. |

Note that if A  is a T P 2 matrix, then in fact, it follows that .4 is irreducible 

if and only if a.y >  0 for all i , j  such th a t |z — j \  < 1 (see Theorem 2.5.4). We 

call an n-by-n m atrix  A  =  [a,y] tridiagonal if a,j =  0, for all i . j  with \i — j \  >  2. 

Hence tridiagonal m atrices and irreducible totally nonnegative matrices are somewhat
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related (see lemma above). The following result is well-known and m any elementary 

proofs of this result have been presented, however, a more difficult problem  is locating 

a proof of this fact in the literature.

L E M M A  3 .0 .9  Let T  be an n-by-n irreducible entry-wise nonnegative tridiagonal 

matrix. Then the eigenvalues o f T  are real and distinct.

It is well-known (see [A, GK2]) th a t a nonsingular irreducible to tally  nonnegative 

m atrix  is oscillatory, and hence has positive distinct spectrum . Henceforth we consider 

(for the next section) only irreducible totally nonnegative m atrices th a t are singular.

3.1 Main Result

Before we come to our key lemma for this section we include a brief discussion con

cerning elementary row operations applied to totally nonnegative m atrices.

As in Section 1.8 (see also [C2]), we let Fr(c), c >  0, denote the following r-by-r 

m atrix,

Fr(c) =
1 0 0
0 0r_2 0
c 0 1

Observe, that Fr(c) is a totally nonnegative m atrix. Unfortunately, the property 

of being totally nonnegative is not in general preserved under row and column op

erations. However, in  [W] it is proved that if A  =  [ a i s  totally nonnegative and 

a ij > 0 and a^. =  0 for k > j  +  1, then the m atrix  A '  obtained from A  by sub

tracting  a i,j+ i/a ij tim es column j  from column j  + 1 is totally  nonnegative. In this
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case A  = A mU, where U is the upper triangular totally nonnegative m atrix given by 

U  =  I j - i  © F £ {a ij+i/a.ij) © I n- j - 1- This result was generalized in [C2]. Suppose 

A  =  [a.ij] is totally nonnegative, a ij > 0, and for some t  > j , a 1£ >  0, but a n  =  0 

for all j  < k < t  and k > t. Then, since A  is totally nonnegative the restrictions 

concerning the zero-nonzero patterns imply that a,* =  0 for 1 <  i <  n and j  < k < t. 

Let A" be obtained from -4 by subtracting au fa \ j  times column j  from column t. 

Thus A  =  A mU, where U is the  upper triangular totally nonnegative m atrix  given by 

U — Jj_i © © In-t- In [02] it is proved th a t the m atrix  A ” is totally

nonnegative.

We begin our analvsis w ith  a central lemma, referred to as the "basic lemma” . from 

which the main result m ay be obtained by a sequential application of this lemma. 

In [RH] a similar “reduction” type basic lem m a was proved for lower Hessenberg 

(a m atrix  B  = [6,-j] is said to be a lower Hessenberg m atrix  if b,j = 0, for all i . j  

w ith i +  1 < j )  totally nonnegative matrices, and later extended to general totally 

nonnegative matrices. This lem m a in [RH] was then used to prove Theorem 2.2.3 

for nonsingular totally nonnegative matrices. Since the auxiliary assumption of irre- 

ducibility is necessary for our analysis (and was not in [RH]), we are required to prove 

a different reduction type lem m a (see Lemma 3.1.2). F irstly, consider the following 

definition.

D E F IN IT IO N  3.1 .1  Let A  and B  be two square m atrices, not necessarily of the 

same size. Then we say th a t A  and B  have the same nonzero Jordan structure if 

the  nonzero eigenvalues of A  and B  can be put into 1-1 correspondence so th a t each
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corresponding pair has the same number and sizes of Jordan blocks. Further, if A 

and B  have the same size, we say that A  and B  have the same qualitative Jordan 

structure, if  they have the same nonzero Jordan structure, and if the num ber and 

sizes of the Jordan blocks corresponding to zero coincide.

For example, suppose A has eigenvalues 2 (with one 2-by-2 Jordan block) and 3 

(with one 3-by-3 Jordan block). Then any 5-by-5 m atrix  with two nonzero eigenvalues, 

one of which has 1 2-bv-2 Jordan block and the other with a 3-by-3 Jordan block has 

the same nonzero and qualitative Jordan structure as A. Recall that if A  is an n- 

by-m  m atrix  and B  is a m-by-n m atrix then A B  and B A  have the sam e nonzero

T  1 ____- 4 . _________4.______  - . . - 1   4 . . :  . .  i l  4 . . V .  - 1  , 1  . .  . 1  T .  . •  T  1uuiu.clxi auj.uA.bu.ic, emu. bw«j uj.ctbiii.co buctb cue oiiiuicti uctvc tile octLue quctuiabive ju ruan

structmre.

We are now in a position to state and prove the ‘"basic lem m a".

L E M M A  3 .1 .2  (B asic  L em m a) Suppose A  = [a,y] is an n-by-n irreducible totally 

nonnegative matrix in which Qij+i > 0, fo r  some j  with 2 <  j  +  1 <  n and  a u =  0 

fo r  all t > j  + 1 ( if  j  +  1 =  n, then ignore t) . Then there exists an irreducible totally 

nonnegative matrix A ' such that:

CO = o.’ and

( i i ) A! is either n-by-n and sim ilar to A, or is {n — 1 )-by-{n — 1) and has the same 

nonzero Jordan structure as A.

P ro o f. Define ii to be the smallest row index such that a tl,j+ 2 > 0. (Note that 

since A is irreducible <  j  -f- 1.) If j  +  1 =  2, then proceed to row ii- Since
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.4 is irreducible, ast > 0 for all s , t  w ith |s — t\ < 1 (by Lemma 3.0.8), hence it 

follows th a t ii  =  2, in the case when j  +  1 =  2. Otherwise j  + 1 >  2. Use column 

j  > 2 to eliminate a ij.f i (note th a t since .4 is in double echelon form a^j >  0). 

via the elementary upper triangular bidiagonal nonsingular m atrix  5  =  I  — aejeJ+l. 

Consider the m atrix .4' =  5 - I .45. It is shown in [W] that .45 is totally nonnegative, 

and since S ~ l is totally nonnegative, we have that A ' is totally nonnegative. Clearly 

the ( l , j  +  l ) st entry of A! is zero. Observe tha t A ' will be in double echelon form, 

unless A ' contains a zero column, which necessarily must be the ( j  + l ) s' column of 

A'. Assume for the moment that the ( j  + l ) sf column of A ' is nonzero. Then we 

m ust show th a t A ' is irreducible. There are two cases to consider: (1): i\ < j  4- 1: 

or (2): ii =  j  +  1. Suppose that the first nonzero entry in column j  +  1 of A ' is in 

row t. where 2 <  t < ■il . If ii < j  +  1, then we have t < ii < j  + 1 and in this 

case let A' =  [c*/]. Thus Cki > 0 whenever \k — l\ <  1, so in particular. cj.j+i > 0. 

cJ+1j +1 >  0, and Cj+2.j+i >  0- Otherwise, suppose = j  + 1. Now if t  <  z’L, then 

the same reasoning as above applies. Therefore assume that t — ii =  j  +  1. After 

elim inating U ij+l, the worst possible case for column j  +  1 of .45 is th a t it has the 

form [0 ,0 ,.. .  , 0, * , . . .  ]T, where the first nonzero occurs in row j  +  1. However, upon 

premultiplying A S  by 5 -1 we add a positive multiple of row j  + 1 to row j . By the 

definition of t, it follows that the (j +  1, J +  l ) s* entry of A S  is nonzero, and hence 

Cjj+i > 0. Consider the entry Cj+2,j+1- We claim that this entry is positive. To prove 

this suppose this was not the case, i.e., assume Cj+2,j+i =  0. But in this case a.j+2,j 

m ust be positive since it was used to eliminate this entry. However, since A ' is in
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double echelon (because it  does not have any nonzero columns) it is not possible th a t 

Cj+2,j+i =  0. Therefore A! is irreducible since Cki > 0 for all k, I with \k — l\ < 1. 

We rem ark here th a t adding  row j  +  1 to row j  m ight (inadvertanly) alter the zero 

nonzero pattern  above the  superdiagonal and to the right of column j  + 1. But this 

does not affect the proof, since the resulting m atrix  will still be in double echelon 

form, as needed. Finally, suppose the {j +  l ) s£ column of A ' is zero. Then (as in [RH] 

and [C2]) consider the m a trix  obtained by deleting the ( j  -j- l ) s£ row and column of .4', 

and denote it by A". Since A"  can be obtained from .4' by a  projection, the nonzero 

Jordan structure of A" is the  same as A r, which in turn  is the same as .4. Moreover, 

since A" is a subm atrix of .4', A" is totally nonnegative. T he only point remaining to 

prove is that A" is irreducible. Assume that the j th, (j  +  l ) si and ( j  +  2)"** columns 

of A! are [* ,* ,.. .  , *, ? , . . .  ]T (here the ? occurs in the row j  +  2), [0 ,0 ,.. .  , 0]T, and 

[ . . .  , ?, . ]T (here the  ? occurs in row j ) ,  respectively. To show A" is irreducible

it is enough to show th a t cJ+2j  >  0 and Cjj+2 >  0, where A ' =  [ct-/]. Since .4' is 

obtained from A S  by adding a positive multiple of row j  +  1 to row j . it follows 

th a t c j j+2 > 0, as aj+i j +2 >  0, by the irreducibility of .4. For the purpose of a 

contradiction, assume th a t cJ+2,y (=  a.j+2,j) =  0. Since A  is in double echelon form 

it follows that a*,- (=  Ckj) = 0, for all k  >  j  +  2. However, column j  was used to 

annihilate column j  + 1, and  hence akj+i =  0, for all k > j  +  2. But this contradicts 

the irreducibility of A . Therefore c,-+2j  > 0 and Cjj+2 >  0, and thus A" is irreducible. 

Thus completes the proof of the basic lemma. |

We are now in a position to s ta te  our m ain results concerning the eigenvalues of
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an irreducible totally nonnegative m atrix.

T H E O R E M  3 .1 .3  Let .4 be an irreducible totally nonnegative m atrix. Then there 

exists a irreducible tridiagonal totally nonnegative matrix T  (not necessarily of the 

same size) with the same nonzero Jordan structure as A . M oreover, T  is obtained 

from  A  by a sequence o f sim ilarity transformations and ■projections.

P ro o f. Successive application of the basic lemma (Lem m a 3.1.2) results in a 

k-hy-k (k <  n) irreducible lower Hessenberg totally nonnegative m atrix  L. which 

has the same nonzero Jo rdan  structure as A. Consider the m atrix  H  =  L T. Apply 

successive application of the basic lemma to H, so as to reduce H  to an irreducible 

tocaiiy nonnegative tridiagonai m atrix  T. Observe that the zero-nonzero pattern  of 

H  below the subdiagonal is preserved by successive application of the basic lemma. 

Furthermore, if a zero colum n is not encountered along the way, then  it is clear that 

the resulting m atrix  is an  irreducible totally nonnegative tridiagonal m atrix. Thus, 

suppose that at some stage in the reduction process a zero colum n is produced, say 

the j lh column is the first zero column obtained in this process. In this case column 

j  — 1 was used to annihilate column j .  Since H  is upper Hessenberg (the transpose of 

a  lower Hessenberg m atrix ), h tj - 1  =  0 for t > j  + 1. Thus in order for column j  — 1 to 

annihilate column j , htJ =  0 for t > j  -1-1. However, this contradicts the irreducibility 

of H  for the case j  < n. Therefore only the final column of H  can possibly be 

annihilated. Hence it follows th a t after applying the basic lem m a repeatedly to H , 

the resulting m atrix  T  is an irreducible totally nonnegative tridiagonal w ith the same 

nonzero Jordan structure as H . Since any m atrix is sim ilar to its transpose (see
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[HJ1]) it follows th a t T  has the same nonzero Jordan structure as .4. The fact th a t 

T  is obtained from A  by a sequence of similarity transform ations and projections is 

evident from applying the basic lemma, and using the fact th a t any m atrix is similar 

to its transpose. This completes the proof. |

T H E O R E M  3 .1 .4  Let A  be an n-by-n irreducible totally nonnegative matrix. Then 

the 'positive eigenvalues o f  A  are distinct.

P ro o f. By the previous theorem there exists an irreducible totally nonnegative 

tridiagonal m atrix T , w ith the same nonzero Jordan structu re  as A. By Lem m a 3.0.9 

the positive eigenvalues of T  are distinct, hence the positive eigenvalues of A  are 

distinct. |

C O R O L L A R Y  3.1 .5  The eigenvalues o f a totally positive matrix are real positive 

and distinct.

We note here that the size of the tridiagonal m atrix  obtained in Theorem 3.1.3 

is either the same as the num ber of nonzero eigenvalues of .4. or is this num ber 

plus one. In the next section we will see that this quantity  (namely, the number of 

nonzero eigenvalues of .4) will play a central role in our analysis of the qualitative 

Jordan structures of to tally  nonnegative matrices.
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3.2 Jordan Structures of Totally Nonnegative Ma

trices

In an attem pt to characterize all possible (qualitative) Jordan structures of totally 

nonnegative m atrices, we take the first natural step and consider all possible ranks and 

principal ranks of to tally  nonnegative matrices. For more inform ation of the Jordan 

canonical form of a m atrix , and its implications see [HJI]. (Recall the definitions 

of nonzero and qualitative Jordan structure from the previous section.) Recall that 

the rank of a given m -by-n  m atrix A, denoted by rank(A), is the size of the largest 

invertible square subm atrix  of A. Naturally, the principal rank of an n-by-n m atrix 

A, denoted by prank(A ), is the size of the largest invertible principal subm atrix of 

A (see also chapter 2, section 2.7 for similar notions). Note th a t the inequality, 

1 <  prank(A) <  rank(A ) <  m in(m ,n) follows directly from the definitions above. 

One topic of interest is characterizing all the triples (n, rank( A). prank( A)), where n 

is the size of the to tally  nonnegative m atrix A.

Firstly, we note th a t a k-hy-k  Jordan block corresponding to a nonnegative eigen

value is a totally nonnegative m atrix (see also chapter 5, section 5.2). Hence in the 

reducible case all possible Jordan structures (or all possible Jordan canonical forms) 

exist for the class of reducible totally nonnegative m atrices. Henceforth, we consider 

only totally nonnegative matrices that are irreducible. Recall th a t in this case (see 

previous section), the positive eigenvalues of every such to tally  nonnegative m atrix 

are distinct. Hence the  Jordan blocks corresponding to the positive eigenvalues are
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necessarily 1-by-l. Therefore the only issue left to consider is the sizes and the number 

of Jordan blocks corresponding to the eigenvalue zero.

It follows from Lemma 2.7.4 th a t if A is a P0-naatrix (and in particu lar totally 

nonnegative), then prank(A ) is equal to the number of nonzero (positive) eigenvalues 

of A. Hence if A is an n-by-n totally nonnegative m atrix, then n — prank( A) is equal 

to the sum of the sizes of the Jordan blocks corresponding to the eigenvalue zero of 

A, and n — rank(.4) is equal to the num ber of Jordan blocks corresponding to zero. 

A nother well-known notion is how to determine the size of the largest Jordan block 

corresponding to the eigenvalue zero (in fact it is known for any eigenvalue). In the 

case of irreducible totally nonnegative matrices this reduces to the following: if k  is 

the smallest positive integer such tha t rank(Afc) =  prank(A ), then k  is equal to the 

size of the largest Jordan block corresponding to the eigenvalue zero. Observe th a t 

k , as defined above, satisfies k  <  rank(A) — prank( A) +  1.

We begin by considering the following examples which dem onstrate th a t there do 

exist nontrivial (larger than  one) Jordan blocks corresponding to zero for irreducible 

to tally  nonnegative m atrices.

E X A M P L E  3 .2 .1  Let A =
3 2 1
2 3 2
1 2 3

Consider the 4-by-4 irreducible totally nonnegative m atrix,

. Then A is a 3-by-3 totally  positive m atrix.

B  =

3 3 2 1 
2 2 3 2 
1 1 2  3 
1 1 2  3

Then rank(P ) =  3 and prank(H ) =  2, from which it follows th a t B  has one 2-by-2 

Jordan block corresponding to zero, and two positive distinct eigenvalues.
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We note here that in general this "asym m etric” bordering of a totally nonnegative 

m atrix  preserves the rank, but m ay change the principal rank. Observe, th a t if we 

border the m atrix  B  above in a  sim ilar m anner, then the resulting totally  nonnegative 

m atrix  has the same rank and principal rank as B. We will come back to this 

asym m etric bordering later in this section.

E X A M P L E  3.2.2 Consider the n-by-n lower Hessenberg (O.l)-matrix

'  1 1 0 . . .  0 '

1 1 1  :

H =  \ :  0 •

1 1 - - -  1 1
. 1 1 - - -  1 1 .

Then, by Lemma 2.5.7. H  is totally nonnegative matrix, and it is d e a r  th a t H  is 

irreducible (see Lemma 3.0.8). Moreover, it is not difficult to verify that the rank(A) =  

n — 1 (observe, that H  is singular, and th a t 77’[{ l ,2 ,. . .  ,n  — 1}|{2,3 , . . .  ,n}] is 

a nonsingular lower triangular m atrix). A more difficult exercise is to prove tha t 

prank(A) =  [*y]. To prove this observe th a t if n  is odd (even), then H[{ 1 ,3 ,5 , . . .  , n}] 

(iT[{2,4 ,6 , . . .  , n}]) is a nonsingular lower triangular matrix. Hence p rank(H ) >  [y ] . 

To show prank(H ) <  [y ], suppose there exists an index set a  such th a t |a | >  [y ], 

and detiTjo:] >  0. Then a  must contain a t least one consecutive pair of indices, say i 

and i + 1  are in a , where 1 < i < n — 1. Since H  is lower Hessenberg and detH[a] > 0, 

it follows th a t index i +  2 £ a . Applying the same reasoning to the pair i +  1 and 

i -+- 2, we m ay conclude i -f 3 E a. However, continuing in this manner will show that 

H[a\ is singular, since either both indices n — 1 and n will be in a , or the m axim um  

of a  is less than  n, in which case there will exist a pair of indices fc, k  +  1 in a  and
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k + 2  not in a.

The fact that any totally nonnegative m atrix has a bidiagonal factorization can 

also be employed to  tackle certain problems concerning Jordan structures. In particu

lar, the quantities rank and principal rank of a given m atrix  and irreducibility can all 

be interpreted via the diagram associated with a particular bidiagonal factorization 

of a totally nonnegative matrix. For example, from a given diagram we can  verify 

whether or not the associated totally nonnegative m atrix  is irreducible by determ in

ing if there exists a p a th  in this diagram from any index i to each of i — 1, i and i +  1 

(ignoring i — 1, when i =  1 and i +  1, when i =  n). If such a path  exists, then  for 

each i, a,-,- and a l>t+i are ail positive, which implies by Lemma 3.U.8, th a t the

associated totally nonnegative matrix is irreducible. Since rank and principal rank 

are defined in term s of nonsingular submatrices, it follows that rank and principal 

rank can be interpreted as the largest collection of vertex disjoint paths beginning on 

the left and term inating on the right, in the diagram, and the largest collection of 

vertex disjoint paths which begin and term inate in the same index set, respectively.

We begin our analysis by considering the triple (n, rank, prank) among the class of 

irreducible totally nonnegative matrices. Firstly, observe that the triples (n, 1,1) and 

(n, n, n) certainly exist, for all n > 1, by considering the m atrix J  of all ones, and any 

n-by-n totally positive m atrix, respectively. Thus for n <  2, we have com pletely char

acterized all possible triples. However, for n =  3, the triples (3,2, 2) and (3 ,2 ,1 ) have 

not been shown to be realizable. Consider, firstly, the triple (3 ,2 ,2), and suppose that
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„  L a b b ‘
CL 0

c d is a 2-by-2 totally positive m atrix . Then the m atrix  B  = c d d
c d d

A  =

is a  3-by-3 irreducible totally  nonnegative m atrix  w ith rank(R ) =  prank(B ) =  2. 

Hence the trip le (3 ,2 ,2) is realizable. W hat about the triple (3 .2 .1 )?  Suppose there 

exists an irreducible to tally  nonnegative m atrix  A  = [a,y] w ith rank(A) =  2 and 

prank(A) =  1. Then a,j >  0, for all i , j  w ith ji — j \  < 1. Observe th a t m ultiplying A  

by a positive diagonal m atrix  does not affect rank or principal rank. Hence we may as-
1 di2 ai3

sume th a t <zn =  0.22 ~  ^33 =  1 £md a 12 ~  U211 2̂3 ~  ^32- Thus A  — <212 1 2̂3
031 <L23 1

Since prank(A) =  1 it follows th a t a l2 =  a23 =  1 and a i3a31 =  1. It is not difficult 

to determ ine th a t if 01303! =  1, then a 13 =  031 =  1, as A is totally  nonnegative. 

However, in this case A =  J , which is a contradiction since rank(A ) =  2. Thus the 

triple (3 ,2 ,1) is not realizable. This leads us to our first result on these triples, with 

fixed principal rank. Recall th a t U =  0 (or u j =  0) means th a t the corresponding 

edge does not appear in the diagram.

P R O P O S IT IO N  3 .2 .3  The triple (n,k,  1) is realizable by an n-by-n irreducible to

tally nonnegative m atrix i f  and only i f  k  =  1.

P ro o f. We have already seen th a t the triple (n, 1,1) is realizable for all n. Now 

assume the triple (n ,k , 1) is realizable by an n-by-n irreducible totally nonnegative 

m atrix  A. Then A has a  bidiagonal factorization, which can be represented by an 

associated diagram. Since A is irreducible there exists a path  from index n to n. Let 

P  denote a shortest such path  from n to n. Then we claim th a t  P  m ust intersect the 

bottom  row of this diagram. If not, then since there always exists a p a th  from index 1
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to 1 by going along this bottom  row, it follows that the principal rank of A  would be 

a t least 2, which is a contradiction (see diagram  on the left in Figure 3.1). Otherwise, 

P  intersects the bottom  row (see diagram  on the right in Figure 3.1), then  since P  is 

a  shortest path  it follows th a t any m axim al collection of vertex disjoint paths must 

intersect P. Hence the rank of A  is at most one. Since {P }  is one m axim al collection 

the rank of A  is one. |

n

1±.

n

Figure 3.1: Fixed Principal Rank One.

We note here that the above proposition could also have been proved in a similar 

m anner by proving th a t the triple (3, 2,1) is not realizable.

Observe that if rank(.4) =  prank(.4), then .4 has n — prank(A ), 1-by-l Jordan 

blocks corresponding to  zero, and if rank(.4) =  prank(_4) +  1, then .4 has exactly one 

2-by-2 Jordan block and n  — prank(A) — 1, 1-by-l Jordan blocks corresponding to 

zero.

We now move onto the case when the principal rank is two.

P R O P O S IT IO N  3 .2 .4  Suppose the triple (n,k,2)  is realizable by an n-by-n irre

ducible totally nonnegative matrix. Then 2 <  k  <  [ " .  Moreover, each such k  is 

realizable.
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P ro o f. First observe tha t k > 2 is obvious. As before we m ay assume that the 

given m atrix has a bidiagonal factorization and an associated diagram . Choose a 

shortest path  P  from n  to n. Since prank(A) =  2, this path  cannot intersect that 

bottom  row. Suppose the  path  P  uses the edge with weight cZ,-. Since prank(A) =  2, 

it follows that any path  beginning at i — 1 which is disjoint from P  m ust intersect the 

bottom  row. Hence any m aximal collection of vertex disjoint paths from the indices 

{ 1 ,2 ,. . .  , i — 1} th a t are disjoint from P  contains at most one path . In this case it 

follows that rank(A) =  k < majc{min(i, n — i +  2)}. Hence k < To show that

every such triple (n, fc, 2) with 2 <  k < can be realized, consider the diagram

in Figure 3.2 where i — 2 ,3 , . . .  , n. |

n
n- 1

i

1

2
1

Figure 3.2: Fixed Principal Rank Two.

We can also apply sim ilar techniques to prove the next result. Recall tha t the (0,1) 

lower Hessenberg m atrix  discussed previously has rank equal to  n — 1 and principal 

rank equal to [2] . The next result shows th a t {2] is the smallest possible value for 

principal rank in the case when rank is n — 1.
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P R O P O S IT IO N  3 .2 .5  Suppose the triple ( n ,n  — I, fc) (n > 2) is realizable by an 

n-by-n irreducible totally nonnegative matrix. Then  [y] <  k  <  n — 1. Moreover, fo r  

each such k, the triple is realizable.

P ro o f. F irst observe tha t the inequality k  < n — 1 is obvious. The proof is by 

induction on n. The claim  has already been verified for n < 3. Let A be an n-by-n 

irreducible totally nonnegative m atrix with rank equal to n — 1. As before we assume 

A  has a bidiagonal factorization and an associated diagram, and suppose P  denotes 

the shortest path  from n to n. Then there are three cases to consider: (1): P  uses 

the edge with weight di w ith i < n — 2: (2): P  uses the edge with weight dn_i; or (3): 

P  uses the edge w ith weight dn.

Case 1: If P  uses the edge with weight di w ith i < n — 2, then it is not difficult 

to check that, since P  was a shortest such path , the rank of A  is at most n — 2. a 

contradiction.

Case 2: If P  uses the edge with weight dn_ 1? then since .4 has rank n — 1 the 

shortest path  from each index j  to itself (1 <  j  < n — 2) can drop at most one level. 

Moreover, the shortest pa th  from index n — 2 to itself cannot intersect P  (otherwise 

rank(A) <  n — 1). Consider the diagram induced by the vertices { 1 ,2 ,. . .  , n — 2}. 

Observe that for this diagram  the associated totally  nonnegative m atrix A ' (which is 

not a subm atrix of A ), satisfies n — 3 <  rank(-4/) <  n — 2. If rank(.4/) =  n — 2, then 

since the vertex disjoint paths that constitute rank(A ') do not intersect P  we have 

prank(A) =  n  — 1. If rank(A ') =  n — 3, then by induction <  prank(A ') <  n — 3,

and every such value is achievable. Hence [ +  1 <  prank(A) <  n — 3 +  1 or
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[ j ]  <  prank(A) <  n  — 2, and every such value is realizable.

Case 3: Suppose P  uses the edge w ith weight dn (i.e., P  goes straight across the dia

gram). Consider the diagram  induced by the indices { 1 ,2 , . . .  , n — 1}. By induction, 

the associated totally  nonnegative m atrix  A7 is (n—l)-by-(n —1) w ith  rank( A7) =  n —2, 

hence <  prank (A7) <  n — 2, and every such value is achievable. Thus it follows

th a t <  prank(A ) <  n — 1, and every such value is achievable. This completes

the proof, g

We are now in a position to classify all possible triples for n =  4.

E X A M P L E  3 .2 .6  Suppose the triple (4, k,p)  is realizable by a 4-by-4 irreducible 

totally nonnegative m atrix. The triples (4,4,4) and (4,1,1) are certainly realizable 

(by Proposition 3.2.3, the triple (4,1,1) is the only possible trip le  w ith principal rank 

equal to one). If the rank (k ) is fixed to be 3, then, by Proposition 3.2.5, the only 

realizable triples are (4,3,3) and (4,3,2). Similarly, if the rank  is fixed a t 2. then by 

Proposition 3.2.4 the triple (4,2,2) is the only realizable triple. Hence all possible 

triples have been determ ined.

We now move onto a more general result on the Jordan s tru c tu re  of totally non

negative matrices. Recall th a t in general that if A is an n-by-n m atrix  and D is 

a positive diagonal m atrix , then  the Jordan structure of A and A D  can be vastly 

different. (For example, it is known th a t if A is a P-m atrix , then there exists a 

positive diagonal m atrix  D  so th a t the eigenvalues of A D  are positive and distinct, 

even though A m ay not even be diagonalizable.) However, in the case of irreducible
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to tally  nonnegative m atrices it turns out that the Jordan s tructure of A  and A D  (D  

a positive diagonal m atrix) coincide. We begin with the following lemma.

L E M M A  3 .2 .7  Let .4 be an n-by-n totally nonnegative m atrix and suppose D an 

n-by-n positive diagonal m atrix. Then

rank((.4£>)fc) =  rank(.4fc) and prank((.4D )fc) =  prank(A*),

where k > 1.

P ro o f. Let C,(A) denote the j th compound of A.  Since D  is a positive di

agonal m atrix it follows th a t Cj{D)  =  D',  is a positive diagonal m atrix  for all j .  

Hence Cj ( AD)  = Cj ( A ) Cj ( D)  =  Cj (A)D' ,  where the first equality follows from the 

Cauchy-Binet identity for determ inants (see (1.4)). Since D 1 is a positive diagonal 

m atrix  the zero/nonzero patterns of Cj ( AD)  and C,-(A) are the same. Moreover, 

since Cj (A)  and Cj ( AD)  are entry-wise nonnegative m atrices and C j ( A k ) =  (Cj (A) )k 

it follows tha t the zero/nonzero patterns of each C j ( A k) is completely determined 

by Cj (A) .  Since the zero/non-zero patterns of Cj ( A D)  and Cy(A) are the same, it 

follows that the zero/nonzero patterns of Cj ( Ak) and C j ( ( A D ) k ) axe the same. Ob

serve that the rank and the  principal rank of a given m atrix  is given by the largest 

j ,  such that j th compound is nonzero, and the largest j ,  such th a t the j th com

pound has a nonzero diagonal, respectively. Hence it follows th a t rank (( A D) k ) =
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rank(Afc) and prank(( A_D)fc) =  prank(Afc), where k  >  1. This completes the proof.\k\ _

We are now in a position to prove that the Jordan structure of A and A D  are the 

same, whenever A is to tally  nonnegative and irreducible.

T H E O R E M  3.2 .8  Suppose A  is an n-by-n irreducible totally nonnegative matrix 

and D is positive diagonal matrix. Then A and AD  have the same qualitative Jordan 

structure.

P ro o f. Since A is irreducible (and hence AD  is) and since prank(A£>) =  prank( A), 

we have that the num ber of distinct positive eigenvalues of A and AD  are equal. 

Moreover, since the num ber and sizes of the Jordan blocks corresponding to zero are 

completely determined by rank(A fc) for k > 1, it follows th a t A and AD  have the 

same qualitative Jordan structure, since rank((.4 D)k) =  rank(A^), for k >  1 (by 

Lemma 3.2.7). g

The assumption of irreducibility in the above result is necessary as seen by the

1  1  0  ,

. Then A is TN and is itself a Jordan

owever, if D =  diag(1.2,3). then A D  =

following example. Let A  — O i l
0 0 1

block, and hence is not diagonalizable. E 
1 2 0 1
0 2 3 , which has distinct eigenvalues and hence is diagonalizable. Thus A and
0 0 3 J

A D  do not have the same qualitative Jordan structure.

We now present of couple of interesting consequences to the above theorem.

C O R O L L A R Y  3.2 .9  Suppose A is an n-by-n irreducible totally nonnegative matrix

partitioned as follows, A  — A n a 12 
a 21  a 22

, where A n  is (ra — 1 )-by-{n — 1) and a22 is
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a scalar. Define the (n  +  1 )-by-(n +  1) matrix B  as follows

B  =
-4-11 “ l 2  “ l 2

<221 <222 <222

a 12 022 0.22

Then:

(/) B  is totally nonnegative and irreducible,

( i i ) rank(B) =  ra.nl-(.4) and prank(I?) =  prank(A),

(Hi) The Jordan structure o f B  is the same as A , except B  has one more 1 -by-l 
Jordan block associated with the eigenvalue zero.

P ro o f. Let S  =  E n( —1), the n-by-n elementary bidiagonal m atrix  w ith a -1 in 

the (n ,n  — 1) entry. Then an  easy calculation reveals th a t

r» r-» r*— 1

I

2 < 2 l 2 a l 2 AD CL 1 2

3DO = U 2 1 Z U 22 “ 2 2 ---- U 22

0 0 0 0 0

rank
<212 '

a 22 =  rank((A£>)fc).

where D =  /  ® [2]. Observe th a t rank(i?fc) =  ra n k (5 5 fc5  l ) =  rank((S B S  l )k ).

Since ( S B S ~ l )k = (-4-^) Q̂   ̂ “ 12 -g -n gpg^ Q£ -t
[ 0 0

follows that

(A D ) k (A D ) k~l 

0 0

By Theorem 3.2.S, we have rank(I?*) =  rank((AD)fc) =  rank(A *). The fact that 

B  is totally nonnegative is trivial, and since a22 > 0 (because A is irreducible), B  is 

irreducible. Also by the sym m etry  of the bordering, it follows th a t rank(f?) =  rank(A) 

and prank(B) =  prank(A ). Finally, (Hi) now follows easily. |

C O R O L L A R Y  3 .2 .10  I f  the triple (n , k , p ) is realizable by an irreducible totally 

nonnegative matrix, then the triple (n +  l . k . p)  is also realizable by an irreducible 

totally nonnegative matrix.
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Using the above results we can now classify all possible triples for n =  5 and 6.

E X A M P L E  3 .2 .11  Suppose the triple (5 ,k ,p) is realizable by a  5-by-5 irreducible 

totally  nonnegative m atrix . T he triples (5,5,5) and (5,1,1) are certainly realizable (by 

Proposition 3.2.3, the triple (5.1,1) is the only possible trip le  with a principal rank 

equal one realization). If the rank (k ) is fixed to be 4, then, by Proposition 3.2.5, 

the only realizable triples are (5,4,4) and (5,4,3). Similarly, if the rank is fixed at 

2, then by Proposition 3.2.4 the triple (5,2,2) is the only realizable triple. Finally, 

suppose the rank is fixed to be 3. Then there are only two possible values for the 

principal rank: 2 or 3. Recall from Example 3.2.6 that th e  triples (4,3,2) and (4.3.3) 

were both realizable. Hence by Corollary 3.2.10, the triples (5,3,2) and (5,3.3) are 

both  realizable.

For the case n =  6, the argum ents are much the same as above and are omitted 

here. Following is a list of all the triples that are realizable by 6-by-6 irreducible 

totally nonnegative m atrices: (6,6,6); (6,5,5), (6,5,4), (6.5,3); (6.4.4). (6.4.3). (6.4.2); 

(6,3,3), (6,3,2); (6,2,2); (6,1,1). Hence all possible triples for n =  5 and 6 have been 

determined.

We now turn  our a tten tion  to proving some general results on the triples:

(n , rank, prank).

P R O P O S IT IO N  3 .2 .12  F o r n  >  1 andr  < n, the triple (n , r ,  r ) is realizable by an 

irreducible n-by-n totally nonnegative matrix.
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P ro o f. Let A be an r-by-r totally  positive matrix. Then the triple (r, r, r) is real

izable by an irreducible totally nonnegative m atrix (namely, A). Hence, by Corollary

3.2.10, the triple (n ,r ,  r) is realizable, since r < n .  |

Recall that any m atrix w ith the triple (n ,r , r), has n — r , 1-by-l Jordan blocks 

corresponding to zero.

The asymmetric bordering notion used in Example 3.2.1 m ay also be used to prove 

the existence of a general class of triples.

P R O P O S IT IO N  3.2 .13  For r  >  3 and r < n, the triple (n ,r ,  r  — 1) is realizable 

by an irreducible n-by-n totally nonnegative matrix.

P ro o f. We first prove the following claim: The triple (r 1, r, r — 1) is realizable 

for r > 3. To prove this claim let A be an r-by-r totally positive m atrix  partitioned 

as follows,

A = <211 A 12 
Go 1 <̂ 22

where A i2 is (n — l)-by-(n — 1). Define the (r +  l)-by-(r +  1) m atrix  A! as

A ' =
a n  a n  A12 
021 ^21 0-22 
a 2i a2i 022

Then A! is an irreducible totally nonnegative m atrix, and it is clear th a t rank (A') =  

rank(A) =  r. W hat about the prank(A /)? First observe that

detA '[{2,3 , . . .  , r}] =  detA[{2, 3 , . . .  ,r} |{ l , 2 , . . .  , r  — 1}] > 0,
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since A is totally positive. Thus r > prank(A') >  r  — 1. Suppose prank(A ') =  r, 

and let a  C { 1 ,2 ,. . .  , r  +  1}, w ith  |a | =  r  and detA ja] >  0. There are two cases 

to consider: 1 6  a ; or 1 ^  a .  Suppose 1 6 a. Then 2 ^  a  since detA[a] > 

0, so a  =  { 1 ,3 ,4 . . .  , r  +  1}. B ut since rows r  and r  +  1 of A! are the same, it 

follows that detA[cc] =  0, which is a contradiction. Otherwise, suppose 1 $  a. Then 

a =  { 2 ,3 ,...  , r  +  1}, and again detA[a] =  0, which is also a contradiction. Hence 

prank(A') =  r  — 1. Thus the triple (r -f- l , r, r — 1) is realizable. Then, by Corollary

3.2.10, the triple (n ,r . r — 1) is realizable for all n > r. This completes the proof. |

We note that the requirem ent that r  >  3 is necessary since if the principal rank 

is equal to one, then the rank is necessarily equal to one. Similarly, r < n is also 

necessary. Recall that any m atrix  with the triple (n, r, r — 1), has one 2-by-2 and 

n — r  — 1 1-by-l Jordan blocks corresponding to zero. We now consider a more 

general result whose proof follows slightly the proof of the previous result.

T H E O R E M  3 .2 .14  For k  > 0, r > k + 2, and n > r + k, the triple (n, r, r — k) is 

realizable by an irreducible n-by-n totally nonnegative matrix.

P ro o f. We first prove th a t the triple (r +  k, r ,r  — k ) is realizable, from which 

the general result will follow by Corollary 3.2.10. Let A be an r-by-r totally pos

itive matrix. Let A ^  be the (r +  k)-by-(r +  k) irreducible totally nonnegative 

m atrix  obtained from A by fc successive applications of the asym m etric bordering 

scheme used in the proof of the previous result. Then r a n k (A ^ )  =  r. Moreover, 

detA (fc)[{fc+ 1 , . . .  , r}] =  detA[{fc +  1 , . . . .  r} |{ l, 2 , . . .  , r  — k }] >  0, since A is totally
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positive. Hence r  >  p ra n k (A ^ ) > r  — k. Finally, suppose a  C {1, 2 , . . .  , r  +  k}  with 

d e t(A ^ [a ])  >  0. Then by the construction of A ^  it follows th a t a  can contain at 

m ost one index from { 1 ,2 , . . .  , fc +  1} and at m ost one index from {r. r + 1 . . . .  ,r-\-k}. 

In other words |a | <  \{k  +  2 , . . .  , r  — 1}| +  2 = r — k. Hence p ra n k (A ^ )  = r — k. 

This completes the proof. |

It is worth mentioning that while this asymm etric bordering scheme has proved 

useful for determ ining certain triples, it is not clear how this bordering scheme affects 

the Jordan structure of an irreducible totally nonnegative m atrix.

We are now in a position to prove the next result for the case when the principal 

rank is fixed to be two.

T H E O R E M  3.2 .15 Let A  be an irreducible totally nonnegative m atrix -with fixed 

-principal rank equal to two. Then the size o f the largest Jordan block corresponding 

to zero is at most two.

P ro o f . As before we assume th a t A has a  bidiagonal factorization, and an asso

ciated diagram. Let P  be a shortest p a th  from index n on the left to index n on the 

right. Since prank(A) =  2, it follows th a t this pa th  P  does not intersect the bottom  

of this diagram. Suppose P  drops to level i , th a t is, does not use any edges of the 

diagram  induced by the set { 1 ,2 ,. . .  , z — 1}. Then (as in the case of Proposition 3.2.4) 

any pa th  from any index 2 ,3 , . . .  , i — 1, disjoint from P , m ust intersect the bottom  

row, otherwise prank(A) >  2. To show th a t the size of the largest Jordan  block is at 

m ost two we will show rank(A 2) =  2. To prove this it is enough to show th a t any path
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from  any of the indices {z, z +  1 , . . .  , n  — 1} to { 1 ,2 ,. . .  , rz} m ust e ither intersect P , 

or the bottom  row, or term inate among the indices { 1 ,2 ,. . .  , z‘ — 1}. Suppose there 

exists a  path  Q originating at some index t E {z, z +  1 , . . .  , n — 1} and term inating at 

s E {z, z +  1 , . . .  , n — 1} w ithout intersecting P  or the bottom  row. Since Q does not 

intersect P  it m ust drop below level z. as P  was a shortest path. Assume t > s (the 

argum ent for s < t  is similar). Since A  is irreducible there exists a pa th  from s to 

s +  1, bu t in this case such a p a th  m ust intersect Q. We claim th a t any path  from s, 

disjoint from P , m ust intersect the bottom  level. To see this suppose there exists a 

p a th  R  from s, th a t does not intersect the bottom  level, (see also Figure 3.3). Recall

t

S

1

1

Figure 3.3: Principal Rank Two.

th a t any path  T  from s to s, disjoint from P , must intersect the bo ttom  level (since 

prank(A ) =  2), and hence any such p a th  m ust intersect R. Thus there exists a path  

from s to 5 that does not intersect P  and is disjoint from the bottom  level: Take R  

until the intersection of R  and T , then  follow T  until it intersects Q (which may be at 

s), and then proceed to s. This contradicts th a t fact th a t p r a n k (4 ) =  2. Therefore
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any path, originating from  {z, i +  1 . . . .  , n — 1} must satisfy one of the following:

1. intersects P ,

2. intersects the bo ttom  row,

3. terminates in { 1 ,2 , . . .  , i — 1}, or

4. if it terminates a t s  >  z, then any path  beginning a t s, tha t is disjoint from P , 

m ust intersect the bottom  row.

(We note that these cases are not mutually exclusive.) It now follows that the rank 

of A2 is two. Certainly, the rank (A2) > 2, as prank(A) =  2. Suppose there exists 

at least three vertex disjoint paths constituting the rank of A2. Since P  was chosen 

to be a shortest such p a th  at most one of these paths can intersect P . Moreover, 

since these paths are vertex disjoint at most one can term inate among the vertices 

{ 1 ,2 ,. . .  , i — 1} (which also includes that case of a path  intersecting the bottom  level). 

Thus the only possibility left is case 4. But in this case, any path  beginning from s, 

tha t is disjoint from P , m ust intersect the bottom  level. Hence these paths c a n n o t :  be 

disjoint for the diagram representing A2 (which is obtained simply by concatenating 

two diagrams associated w ith A). This completes the proof. |

C O R O L L A R Y  3 .2 .16  Let A  be an n-by-n irreducible totally nonnegative matrix 

with prank(A) =  2. Then rank(A 2) =  prank(A) =  2.

Through n =  6 it is not difficult to show that given a complete description of 

all the triples (n ,rank , prank), and using Theorem 3.2.15, we can completely char
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acterize all possible Jo rdan  structures (or all possible Jordan  canonical forms) for 

every n-by-n irreducible totally nonnegative matrices w ith  n < 6. For example, when 

n =  6 and (for example) rank fixed at four, the triples (6,4,4), (6,4,3), and (6,4,2) 

are the only realizable triples in this case. Since n — rank(A ) =  2, we know th a t 

there must exist two Jordan  blocks corresponding to zero. By the remarks following 

Propositions 3.2.12 and 3.2.13 it follows that for (6,4,4) there are two 1-by-l Jordan 

blocks corresponding to zero, and for (6,4,3) there is one 2-by-2 and one 1-by-l Jor

dan block corresponding to zero. For the case (6,4,2) there are two possible Jordan 

structures: (1): one 3-by-3 and one 1-by-l Jordan block corresponding to zero, or (2): 

two 2-by-2 Jordan blocks corresponding to zero. By Theorem  3.2.15 it follows th a t 

case (1) cannot occur, hence any 6-by-6 irreducible to tally  nonnegative m atrix  w ith 

rank equal to 4 and principal rank equal to 2 (which do exist) m ust have two 2-by-2 

Jordan blocks corresponding to zero.

In the following list we use JB to mean Jordan block corresponding to zero. Also 

in this fist we do not include the cases when rank(.4) =  1 or n. This fist represents a 

complete classification of all possible Jordan structures through n =  6.

1. n = 3:

(a) rank(A) =  2

i. prank(-4) =  2 => one 1-by-l JB,

2. n =  4:

(a) rank(A) =  3

i. prank(A ) =  3 => one 1-by-l JB,
ii. prank(A ) = 2 => one 2-by-2 JB,

(b) rank(A) =  2
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i. prank(A ) =  2 =>■ two 1-by-l JB ’s,

3. n  =  5:

(a) rank(A) =  4
i. prank(A ) =  4 =>• one 1-by-l JB,

ii. prank (A) =  3 =>- one 2-by-2 JB,

(b) rank(A) =  3

i. prank(A ) =  3 =>- two 1-by-l JB ’s,
ii. prank(A ) =  2 =>■ one 2-by-2 JB and one 1-by-l JB ,

(c) rank(A) =  2

i. prank(A ) =  2 three 1-by-l JB ’s,

4. n = 6:

(a) rank(A) =  5

i. prank(A ) =  5 =>• one 1-by-l JB.
ii n r a n l ' f  -i \ — A. —K. nnp  J B .

iii. prank(A ) =  3 =?■ one 3-by-3 JB,

(b) rank(A) =  4

i. prank(A ) =  4 =>• two 1-by-l JB ’s,
ii. prank(A ) =  3 =3- one 2-by-2 JB and one 1-by-l JB ,

iii. prank(A ) =  2 =>- two 2-by-2 JB ’s,

(c) rank(A) =  3

i. prank(A ) =  3 =>• three 1-by-l JB ’s,
ii. pranlc(A) =  2 =>- one 2-by-2 JB and two 1-by-l J B ’s,

(d) rank(A) = 2

i. prank(A ) =  2 four 1-by-l JB ’s.

For the case n  =  7, we can use the previous results to classify all possible triples. 

(We ignore the trivial triples (7,7,7) and (7,1,1) in this discussion.) For instance, by 

Proposition 3.2.5 the triples (7,6,6), (7,6,5) and (7,6,4) are the only realizable triples 

when the rank is fixed a t 6. All of the remaining realizable triples (which are listed 

below) follow from the  list for n  =  6 and Corollary 3.2.10, and also by Proposition
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3.2.4. The realizable triples for n =  7 are: (7,6,6), (7,6,5), (7,6,4); (7,5,5), (7.5.4), 

(7,5,3); (7,4,4), (7,4,3), (7,4,2); (7,3,3), (7,3,2); (7,2,2). In the  case when n = 7 using 

the complete list of triples above and Theorem 3.2.15, it follows that all possible 

Jordan structures can be characterized (see list to follow) w ith  the exception of one 

case, namely the triple (7,5,3). For this particular triple there are two possible Jordan 

structures: (1): one 3-by-3 JB and one 1-by-l JB , or (2): two 2-by-2 JB ’s. The Jordan 

structure in case (1) is possible by considering a m atrix  which realizes the triple (6,5,3) 

(which exists), and then  using Corollary 3.2.9 to construct a  7-by-7 irreducible totally 

nonnegative m atrix  w ith the desired Jordan structure. For case (2), we do not know 

of a general technique to rule out or guarantee such a Jordan  structure. However, 

after some effort we came up with the following example. Consider the following 

matrix,
' i l l 0 0 0

r—
 

O

1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Then .4 is a 7-by-7 irreducible totally nonnegative with rank(.4) =  5 and 

prank(.4) =  3, and has Jordan structure,

*
*

*
0 1 
0 0

0 1 

0 0

Hence the second possible Jordan structure does indeed occur for some 7-by-7 irre
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ducible totally nonnegative matrix. The complete list of all possible Jordan, structures 

for n =  7 is given below.

• n  =  7:

1. rank(A) =  6

(a) prank(A) =  6 => one 1-by-l JB,
(b) prank(A ) = 5 => one 2-by-2 JB,
(c) prank(A ) =  4 =>• one 3-by-3 JB,

2. rank(A) =  5

(a) prank(A) =  5 => two 1-by-l JB ’s,
(b) prank(A ) =  4 => one 2-by-2 JB and one 1-by-l JB .
(c) prank(A ) =  3 =$■ one 3-by-3 JB and one L-by-1 JB: or two 2-by-2 JB ’s.

3. rank(A) =  4

(a) prank(A ) =  4 =$■ three 1-by-l JB ’s,
(b) prank(A ) =  3 => one 2-bv-2 JB and two l-bv -l JB ’s.
(c) prank(A) =  2 => two 2-by-2 JB ’s and one 1-by-l JB,

4. rank(A) = 3

(a) prank(A) =  3 => four 1-by-l JB ’s,
(b) prank(A ) =  2 =>• one 2-by-2 JB and th ree  1-by-l JB ’s.

5. rank(A) =  2

(a) prank(A) =  2 =$■ five 1-by-l JB ’s.

We conclude this section with a discussion about fu tu re  work along these lines 

and a couple of open problems, which we continue to work on.

Firstly, and the most im portant issue, is classifying all possible Jordan structures 

for n-by-n irreducible totally nonnegative matrices. By th e  results presented thus far 

we have completed this classification through n =  7. (In fact, we have now completed 

this classification through n  =  S.) We are in the process of working on many new 

and worthwhile ideas to continue this classification.
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A related, but apparently  less difficult (although by no means easy), problem 

is determining which triples (n, rank, prank) are realizable by the class of n-by-n 

irreducible totally nonnegative m atrices. Again it follows from the analysis in this 

section that this issue has been settled through n = 7. (As with the above problem 

we have now settled this issue through n =  S.) It seems th a t, at least thus far, a 

general result for all realizable triples is very possible, and we continue to develop 

new techniques and ideas to obtain such a general result.

There are two problems th a t we wish to touch upon here for a couple of reasons. 

Firstly, answering these questions will definitely shed some fight into the previous un

resolved issues, and secondly, they were both unexpected, and still (for th e  m ost part) 

rem ain unexplained. The first problem is concerned with the size of the largest Jor

dan block corresponding to zero for an n-by-n irreducible totally nonnegative m atrix. 

Through n = 7 (and in fact n =  S) the size of the largest Jordan block corresponding 

to zero is at most the principal rank. Moreover, in general this result holds when 

prank(.4) >  [ j ] ,  or when prank(A ) >  rank(A) — 1, or also when prank(A ) =  1 or 2 

(by Theorem 3.2.15). Recall th a t the size of the largest Jordan block corresponding 

to zero is at most rank(A) — prank(A ) +  1. Thus if prank(A) >  rankW +l ? then the 

result holds. At this point this question is still unresolved in general, and  we do not 

know of a good reason for why such a result should hold. As a final note on this 

problem, we note th a t this claim on the size of the largest Jordan block is equivalent
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to the following equality,

rank(A prank(-4)) =  prank(.4).

The next and final problem  we discuss here is concerned with the existence of the 

triple, (n, rank, prank). Consider the triple (6,4,2), which was shown to be a  realizable 

triple. (Observe th a t the Jo rdan  structure associated with such a triple m ust consist 

of: 2 positive distinct eigenvalues, and two, 2-by-2 Jordan blocks corresponding to 

zero.) Then note tha t the trip le (6,6 — 2 1, 6 — 4 + 1) =  (6 ,5 .3 ) is also a  realizable

triple. Moreover, this particu lar rearrangem ent gives rise to realizable triples for every 

known realizable triple (com pare Propositions 3.2.4 and 3.2.5). If the trip le  (n ,k ,p ) 

can be realized, then the trip le  (n ,n  — p +  l , n  — k + 1) can also be realized by an 

n-by-n irreducible totally nonnegative m atrix. Again we have little  to offer about 

why such a result should be true, but nevertheless, it is an interesting property  that 

these triples seem to enjoy.
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C h ap ter  4

D eterm in a n ta l In eq u a lities

In this chapter we investigate possible relationships among the principal minors of 

totally nonnegative matrices. A natu ra l and important task is to examine all of the 

inequalities that exist among the principal minors of totally nonnegative matrices.

Determinantal inequalities have been studied extensively for various classes of ma

trices. Many of the classical inequalities of Hadamard, Fischer, and Koteljanskii (see 

C hapter 2) and Szasz (see [H J 1]) were first verified for the class of positive semi def

inite matrices, and later were shown to also hold for totally nonnegative matrices 

(see Chapter 2). These inequalities have also been dem onstrated for other positivity 

classes of matrices such as M -m atrices and inverse M -matrices (see [HJ2]). More 

recently, the study of determ inantal inequalities has seen a re emergence in modern 

research among linear algebraists (see [BJ2]).

An im portant theme developed by B arrett and Johnson [BJ2] was to describe 

all possible inequalities tha t exist among products of principal minors of positive

107

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 0 8

definite matrices via set-theoretic conditions. This natural idea seems to have escaped 

other experts. Employing this completely combinatorial notion allowed B arrett and 

Johnson to describe necessary and sufficient conditions for all such inequalities on 

three or fewer indices, and also verified other inequalities for cases of more indices.

In [FHJ] we utilized the idea in [BJ2] to answer similar questions for the classes 

of M-matrices and inverse M -m atrices. In this paper ([FHJ]) we completely charac

terized all the inequalities th a t exist among products of principal minors for both  of 

these classes.

Our intentions here are to employ these previous notions in the case of totally  

nonnegative matrices. One notable difference between the class of totally nonnegative 

matrices and the previous classes discussed above is tha t totally nonnegative m atrices 

are not in general closed under simultaneous perm utation of rows and columns, while 

all of the other classes mentioned above are closed under such an operation.

4.1 Preliminaries

Recall, that for a given rz-by-n m atrix  A  we let -4[5], S  C N  =  { 1 ,2 ,. . .  , n} denote 

the principal subm atrix lying in rows and columns indexed by S. For brevity, we m ay 

let (S) denote det.4[5].
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D E F IN IT IO N  4 .1 .1  Let a  =  { a i , a 2,  5a p} denote a collection of index sets,

where a,- C IV, i =  1 ,2 , . . .  ,p. Then we define

a(A ) =  detA [ai]detA [a2] • • • detA [ap].

If, further, = {/?i,/?2, - • - , (3q} is another collection of index sets w ith 3t C iV, for 

all z, then we say that

a  <  (3 w ith respect to TN

if a(A ) <  (3(A),  for every n-by-n TN m atrix  A.

We shall also consider ratios of products of principal minors. For two given col

lections q  and 3 of index sets we shall interpret ^ as both a num erical ratio 

for a given TN m atrix A and also as a formal ratio to be m anipulated according to 

natural rules. When in terpretated  numerically, such ratios are well-defined because 

the class of nonsingular TN  is preserved under extraction of principal submatrices, 

so th a t (3(A)  0 whenever A is a nonsingular TN m atrix. Since, by convention,

clet A[0] =  1, we also assume, w ithout loss of generality, th a t in  any ratio ^ both 

collections a  and 3  have the same num ber of index sets, since if there is a disparity in 

the to tal number of index sets between a  and (3, the one w ith th e  fewer sets may be 

padded out with copies of 4>. E ither a  or /? may include repeated  index sets (which 

count).
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In chapter 2 section 3 we discussed the most famous determ inantal inequalities 

th a t exist for TN matrices. Each of these inequalities m ay be w ritten  in our form 

a  <  (3. For example, H adam ard’s inequality, detA  <  n?=i au-, has a  =  {iV, d>,. . .  ,0} 

and (3 =  { { l} ,{ 2 } ,.. .  , {n}}, and Ivoteljanskii’s inequality has the collections a  =  

{S U T, i? fl T }  and 3  =  {S, T }.  Our m ain and most general problem  of interest is 

to characterize, via set-theoretic conditions, all pairs of collections of index sets such 

th a t

q (A)
P(A)

<  A',

for some constant K  > 0 (which depends on n) and for all n-by-n T N  m atrices A. If 

such a constant exists for all TN m atrices A we say that the ratio j  is bounded with 

respect to the class of TN matrices.

As mentioned earlier (see [FHJ]) this problem was resolved for the classes of M - 

and inverse M-matrices, and has received much attention for the class of positive 

definite matrices. We now present a  couple of simple examples to accompany the 

ideas and definitions discussed above.

E X A M P L E  4.1.2 Let a  = {{1, 2}, {3}} and (3 =  {{1, 3}, {2}}. Suppose A =  [a(J] is 

an arbitrary 3-by-3 TN m atrix. Since A is TN, detA[{l, 2}|{2, 3}] =  a l2a23 — a i3<z22 ^

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



I l l

0, and detA[{2,3}|{1,3}] =  0-21033 — o23031 >  0. Now consider the product

det.4[{l, 3}]detA[{2}] =  (011033 — 013031)022,

= 0 1 1 0 3 3 0 2 2 — 0 1 3 0 3 1 0 2 2,
>  011033022 — 012023031, since a 12O23 ^  013022,

>  011033022 — 012021033, since a21O33 >  O23O31,

=  (011022 — 012021)033

=  detA[{l,2}]detA[{3}].

Thus a(A) <  /3(A), for all 3-by-3 TN matrices .4. Also observe that if the indices 2 

and 3 are interchanged in the above collections, then the inequality a < 0  no longer 

holds.

Let ol be any given collection of index sets. For i € { 1 ,2 , . . .  , n} we define f a(i) 

to be the number of index sets in a  that contain the element i. In other words f a(i ) 

counts the multiplicity (or num ber of occurrences) of the index i in the collection a  

(see also [BJ2, FHJ]). The next proposition demonstrates a simple necessary (and 

by no means sufficient) condition for a given ratio of principal minors to be bounded 

with respect to TN m atrices.

P R O P O S IT IO N  4 .1 .3  Let a  and 0  be two collections o f index sets. I f  is bounded 

with respect to the class o f T N  matrices, then f a(i) =  fp{i), fo r  every i =  1 ,2 , . . .  ,n .
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P ro o f . Suppose there exists an index i for which f Q(i) > fa ( i ) (if f a (i) < fn{i) 

consider the inverse of the m atrix  used in the argum ent to follow). For k > 1 let 

Dk =  d ia g ( l, . . .  , 1, k, 1, . . .  ,1 ), where the number k  occurs in the (z, i)th entry  of Dk- 

Then Dk is an invertible TN m atrix for every value k , and  =  fc£,

where t > 1. Hence is not a bounded ratio. |

If a given ratio j  satisfies the condition f a(i) =  then we say the ratio

satisfies STO (set-theoretic) (see also [BJ2, FHJ]).

As discussed in chapter 2 the fact that a TN m atrix  has an elementary bidiagonal 

factorization proves to be a very useful fact for verifying when a ratio is botmded 

with respect to the class of TN matrices (see also exam ples to follow). Moreover, the 

combinatorial diagram s th a t are associated with each such factorization aides in this 

verification process, and in the identification of other possible bounded ratios. We 

have already seen th a t an arbitrary  n-by-n nonsingular T N  m atrix  can be represented 

by the following diagram  (see Figure 4.1). Here all variables are nonnegative, and

n-1 -------------------- *-------^---------------------------------------- +■------- 7-------------------- n-1V - / d n. « „ / /
\  \

\  \
\  \

\  \
\  \

/
/

/  /  
/  /

/  /

/
/

d , • % , /

\ ' *  N «  ......  V .  \ ' < d , “/  “« / ....... % } /  V

{  \h-,   d,   1;/ ~ I

j  V i    \ t ,  V j  d , “< /  “. /    y 1 I

Figure 4.1: General n-by-n diagram .
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since A  is assumed to be nonsingular it follows tha t d,- >  0, for all i =  1 ,2 , . . .  , n.

Suppose we are given a particu lar ratio ^ of index sets, and  we wish to verify 

whether or not it is bounded w ith  respect to the class of TN  m atrices. By Proposition 

4.1.3, |  is bounded only if ^  satisfies the condition STO. From which it follows that

a (D A ) c*(-4)
J [ D A ) = J [A Y

for every positive diagonal m atrix  D. Thus we m ay assume, by m ultiplication of 

an appropriate diagonal factor, that a’,- =  1, for ail i. Hence it is enough to test 

a given ratio on all nonsingular TN matrices A, for which det.4[{l, 2 , . . .  , /c}] =  

1, for k =  1 ,2 , . . .  , n. U nder this normalization, it follows th a t det.4[5] =  1 +  

(nonnegative term s), and hence is always bounded away from zero. Similarly, in this 

case (3(A) > 1. To prove a given ratio is unbounded using a bidiagonal factorization 

under this normalization we m ust show th a t there exist choices for {!,} and {u,-} such 

th a t a(.4) increases without bound faster than /3(A). Observe th a t both  a(-4) and 

/3(A) are subtraction free polynomial expressions in the nonnegative variables {/,} 

and {u,-}. We are interested in the to tal degree of some sub collection (possibly all) 

of the s and u / s  in q(-4) and (3(A). If there exists a sub collection C  for which the 

degree with respect to this sub collection in o(.4) exceeds the corresponding degree
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in /3(A), then we may assign

f, if li(uj) is in C,

1, otherwise.

In this case a(.4) and d(A) are polynomials in the single variable t w ith t > 0, and 

deg(a(.4)) >  deg(/?(.4)). Letting t  —*■ oo implies tha t the ratio ^ is not a bounded 

ratio. We illustrate these ideas with the following example.

E X A M P L E  4 .1 .4  Suppose a  =  {{1,3}, {2}} and p =  {{1,2}, {3}} (note th a t this 

is the perm uted version of the collections in the previous example). We claim that the 

ratio ^ is an unbounded ratio. To prove this claim we make use of the ideas discussed 

above. Let A  be an arbitrary nonsingular TN  m atrix, and assume A  is w ritten in the 

following form

' 1 ' 1 ' 1

1
H " 1 1 u3

A  = h  1 • 1 • h  1 • 1 • 1 «2 - 1
1 _ h  1 1 _ 1 1 1 _

In this case we may also represent A  via the following diagram (see Figure 4.2). A

V ; / ' t
j  \ /  i  u/  y 7 j

Figure 4.2: 3-by-3 diagram.
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simple computation reveals tha t (1,3) =  1 +  /2U2, and (2) =  1 +  (/i +  h){u i +  W3), in 

which case o:(̂ 4.) =  (1 —(— 2̂ 2 )(1 -b(^i “t- 3̂)(itj. -FU3)). Similarly. /3(A) =  (1)(1 I2 U2 ~F 

I1I2U1U2). Note th a t neither I3 or u3 appeax in the expression corresponding to ,3(.4), 

while they each appear once in the expression a(A ). So if we let l3 = t (for example) 

and set all other variables equal to 1. then the m atrix  A is equal to

A  =
1 2 1

t  +  1 2f +  3 t  + 2
1 3 3

and in this case a(A ) =  4t +  6, and /3(A) =  3. Consequently. ~  which

increases without bound as t —> cc.

It is also possible to use the bidiagonal factorization of a  TN m atrix to prove th a t 

a ratio is bounded. Consider the following example.

E X A M P L E  4 .1 .5  Let a  =  {{1,2}, {3}} and (3 = {{1,3}, {2}}. Note that we have 

already proven that this ratio is bounded without using these new ideas. Recall 

from the previous example that a(A ) =  (1)(1 +  I2U2 +  and /3(A) =  (1 +

2̂^ 2)(1 +  ( î +  lz)(u i +  uz))- Observe that /3(A) — a:(A) =  ^uzi^z^z lzu i ~F 1̂̂ 3)1 

which is a subtraction free expression in the nonnegative variables {/,-} and {tiy} and. 

in particular, is always nonnegative. Hence | |d i  <  1, and therefore the given ratio  is 

bounded with respect to the class TN (in fact. a(A ) <  /3(A)).

We call a ratio j  a  basic n-ratio if the collection a  contains all of the subsets of 

{ 1 ,2 ,. . .  , n} with cardinality th a t is the same parity  as n and 3  consists of all the
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rem aining subsets of { 1 ,2 , . . .  , n}. For example, the basic 2-ratio is

(1>2)(*) ,T,  t l .
~( i K?)~ 7 Îvoteljanslai)

and the basic 3-ratio is

(1.2,3)(1)(2)(3)
(152)(1,3)(2,3)(<p) ’

and so-on. The class of basic n-ratios, first defined in [BJ2], were essential in [FHJ]

*.------------   J   - .1 1  - . - f  U „ . . ~  -\,r  „ „  J
C I O  b l l V J  O U I U V ^ U  u u o  b U  C / W  O I X ^  O l  C t l i  U l  U X X V _ L / ^ U i i U V U  X  U b X W O  I V ^ l  i n  *  ( L U U

inverse M -matrices. Their role here in the study of bounded ratios w ith respect to 

the class of TN m atrices is short lived, and in this case they are not so vital, but we 

include them as an example class for completeness. We note here th a t the basic 1- 

and 2-ratios are bounded with respect to the class TN.

P R O P O S IT IO N  4 .1 .6  For n > 3, the basic n-ratio is unbounded with respect to 

the class TN.

P ro o f . Suppose j  denotes the basic n-ratio and let S  =  { 1 ,2 , . . .  , n — 2}. We 

assume for simplicity th a t n  is even, say n =  2k. The argum ent when n is odd is very 

similar. The idea is to count the number of sets in a  which do not contain S  and are
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not contained in S. A routine counting argument shows th a t this number is equal to,

k —2

£
j=i

'n — 2
V 2 j  ,

n
+  ' n - 2 ) - 1’

(4.1)

and the same count for the collection (3 is

it- 1

£
j=1

n — 2 s 

v2i  -  1;
+

n
:n — 1.

_  9 (4.2)

Thus the difference (4.1)-(4.2) can be written as

£ ( - l ) ’ ( " )  - £ ( - ! ) >
j=l \J / j= 1

. (n  -  2 
3 j

+  1.

,v/ Av/\
Recall the  well-known elem entary combinatorial identity, from

j=0 \  3 /
which it follows the the difference (4.1)-(4.2) is also equal to ( — 1 — ( — 1)") — ( — 1 — 

( —l ) n-2) +  1 =  1. Thus there are more such sets in a  (exactly one more) than in 

0 . Suppose J  C N  which does not contain S  and is not contained in S. Consider 

the general diagram given by Figure 4.1. Using the rules for calculating the m inor 

( J )  via the diagram (i.e., counting independent paths originating and term inating
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in J ) it follows tha t the variable u„_2 appears in the expression given by (J )  w ith 

positive degree. This can be most easily seen by observing that such a set J  m ust 

contain index n — 1 or n, and must be missing a t least one of the indices less than  

n — 1. Moreover, u„ -2 only appears with positive degree in the principal minors (J )  

for which J  is not contained in and does not contain S . Thus if we assign all variables 

except un_2 the value 1, and let un_2 =  t  it follows th a t the degree of t in a(A ) is 

greater than the degree of t  in (3. Consequently, the basic n-ratio is not bounded with 

respect to the class TN. |

Note that in the proof above the key ingredient was the fact the number of sets in 

a  tha t do not contain S  and are not contained in S  was greater than the corresponding 

num ber in (3. This notion gives the following result.

P R O P O S IT IO N  4 .1 .7  Let ^ be a given ratio. I f  there exists more sets in ci that are 

not contained in {1, 2 , . . .  , k}, and do not contain {1, 2 , . . .  , k} (for some 1 <  k < n ), 

then in the collection 3 . then the ratio ^ is not bounded with respect to the class TN.

We finish this prelim inary discussion with the following definition. Let a  =  

{q 15 Q2, . . .  , orp} be a given collection of index sets. We let f a {J) denote the number 

of index sets in a  tha t contain J ,  where J  C N.  In [B J2] it is shown that if a ratio ^ 

is bounded with respect to the class of positive definite m atrices, then f a(J)  >  fp(J ) ,  

for every subset J  C N.  B arrett and Johnson also showed that this condition is 

not sufficient for a ratio  to be bounded with respect to  the class of positive definite 

matrices. In [FHJ] p art of one of the main results can be stated as follows: A ratio 

^  is bounded with respect to the class of M -m atrices if and only if it satisfies:
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!• fa({i})  =  /s (0 '} ) , for all i =  1 ,2 , . . .  , n, and

2- /<*(</) >  /a(*f), for every subset /  CAT.

We have already seen th a t the condition f Q( J ) > f p ( J )  is neither necessary (see 

Example 4.1.2) nor sufficient (the basic 4-ratio for example) for a ratio to be bounded 

w ith respect to the class of TN matrices. However, we can prove the following corre

sponding result. Recall th a t the dispersion of a given set S  = ■ - - -*/-}. where

ij  < ij+i (j  =  1 ,2, . . .  ,k  — 1) is given by d[S) =  u- — z’i — (k  — 1).

P R O P O S IT IO N  4 .1 .8  Let ^  be a given ratio. I f  ^ is bounded with respect to the

✓ ''//- to o *  T A T  ■*Y >/r-fir*n/»/'<» •£ (  7"^ N  £  7 ^  ^ / > r  o i l  T AT" n n  rf (  7 \  ----- 0  1 0-«* -» jcc\*'/ ~ - * 7 ~ r

/o r  a/Z contiguous subsets J  o f N .

P ro o f. Suppose there exists a  set J  C iV, with d (J)  =  0 and f Q{ J ) <  fp^J) .  By 

Proposition 4.1.3 we m ay assume that (J\ >  2. We consider two cases.

Case (1): J  = N  = {1, 2 , . . .  , n}.

Consider the diagram  in Figure 4.1, which represents an  arb itrary  nonsingular TN 

m atrix. Observe th a t the variable un- i  appears w ith positive degree in a m inor (5) if 

and only if n E S,  and S  ^  N.  Hence if we set all weights to 1 except u n- i  which we 

set to f, then the degree of t in a(A ) is equal to f a ({n})  — /a(-N) =  fa{{n})  — f a(N).  

Since f a { N ) < fp{N)  it follows tha t the degree of t in a (A ) is larger then  the degree 

of t  in /3(A). Consequently, the ratio is not bounded w ith  respect to the class of 

TN matrices.
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Case (2): J  =£ N.

In this case we set all weights of the edges not contained among the indices in J  to 

zero. W ith  this assignm ent it follows that any m inor (5) is equal to ( S  H J).  Thus 

if a  =  {c*!, a 2, - • - ? <*P}, then define a  =  {au fl J, a 2 D J , . . .  , a p fl J }  and define 0  

similarly. By the previous remarks (using such a choice of weights) Buc

for the new ratio ^ we have f&{J) <  /^ (-/), where J  now represents all possible indices. 

Thus by the previous case £ is an unbounded ratio, and hence ^ is unbounded with 

respect to the class of TN  matrices. This completes the proof. |

4.2 Or>erators Preserving Bounded Ratios

In the interest of describing all the inequalities th a t exist among products of principal 

minors of totally nonnegative matrices we identify various operations th a t m ay be ap

plied to ratios and preserve the property of being bounded with respect to the totally 

nonnegative m atrices. Understanding of how a bounded ratio may be m anipulated is 

vital to our goal of characterizing all such determ inantal inequalities.

F irstly we define each operation and then prove that each such operation preserves 

bounded ratios w ith respect to the totally nonnegative matrices.

D E F IN IT IO N  4 .2 .1  Let a  =  {qi, q 2, . . . .  q p} and 0  =  {/?!, 32, . . . .  @q} be an}*- two 

collections of index sets from { 1 ,2 ,. . .  , n}.  Then

(z) C o m p le m e n t: C{ac/f3) =  , where

J c =  { 1 ,2 , . . .  , 77.} \  J.  for J  C { 1 ,2 ,. . .  , n}.
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(ii)  R ev e rsa l: R(a/p) ;  every index j  in each index set of a  and (3 is replaced (or 

reversed) by (to) n — j  +  1. Example: R  ( =  {fS}{5}-

(m  ) S h ift: Si(a/P).  Suppose index i does not appear among any of the index sets 

in either a  or 0.  Then S i ( a / p ) shifts every index, in each index set, greater 

than i down by 1. Example: S 2 (

(iv)  In se r tio n : Ai(a//3).  Suppose index i does not appear among any of the index 

sets in either a  or p.  Then A t( a / p )  = -

(u) D e le tio n : Di(a/p) .  Suppose th a t index i appears in every index set in both a 

and P. Then Di(a/P)  = xI’feMlxT ^•
S'— *• n . * i /  * S'—— S V.* t * U f f  \  C* i  /

We begin our analysis with the complement operator. F irst we recall two well- 

known facts. If A  is an n-by-n invertible matrix, then det.4- l [J] =  (Jacobrs

identity  (1-1)) for every index set J ,  and if A  is an invertible TN m atrix , then S A ~ lS  

is TN, for S =  diag(l. —1, • • • ,± 1 ). Also we note here that de t5 A 5 [J] =  det.4[J], 

for every index set J .

P R O P O S IT IO N  4.2 .2  Suppose a  =  { a l5 a 2, . . .  , ap} and P = {Pi, p-2, . . .  , Pp} are 

two collections o f index sets. Then a /P  is a bounded ratio with respect to the totally 

nonnegative matrices i f  and only i f  C (a / P)  is bounded with respect to the totally 

nonnegative matrices.

P ro o f. Suppose a /P  is bounded. We let a c denote the collection a \ , . . .  , a?}
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(and define /?c similarly). Let A  be any invertible totally nonnegative m atrix . Then

oc(A) _  detA[af] • • • det-4[a£]
PC(A) detA[/3f] - • • det.4[/3p]

detA _ I[ai] • • - det.4-1 [a!p] (det.4)p
detA -1 [/?i] • • • det.4.- l [/3p] (det.4)p
det(5 .4_ I5)[a i] • • • det(5.4-15 )[ap] 
d e t(5 .4 "15)[/?l] • • • det(S-4- l S)[/3p] 
a ( 5 A " 15)
/3(SA~lS y

which is bounded as S A ~ lS  is totally nonnegative. For the converse, observe th a t by 

definition C 2(a/(3) = C(C(a/[3))  =  a / (3, hence it follows th a t a / 3  is a  bounded ratio 

w ith respect to the totally nonnegative m atrices if and only if C{ct[Q) is bounded 

w ith respect to the totally nonnegative m atrices. |

Recall that if A  is totally nonnegative then pAp  is totally nonnegative (see Propo

sition 2.4.6), where p is the perm utation m atrix  induced by the perm utation 

i —> n — i +  1, for each i. In other words if A  =  [ a i s  TN , then the m atrix  

pAp = [an— j-f-i] is TN. These facts prove the following result.

P R O P O S IT IO N  4.2.3 Suppose a  = {a j, a ? , . . . ,  qp} and (3 = {fli, j3 2, . . .  , /3p } are 

two collections o f index sets. Then a  f  (3 is a bounded ratio with respect to the totally 

nonnegative matrices i f  and only i f  R (a /(3 ) is bounded with respect to the totally 

nonnegative matrices.

We also note here that the reversal operator satisfies the relation R 2(a/{3) — ct/i3.
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The next operation of interest is shifting. We first consider an  example. Suppose 

we are given the ratio  Then 5 2( ^ | j^ |y )  =  |^§ ^§ y . For simplicity, we

also define a shift of an index set by the operator s,-. T h a t is, if J  is an index 

set for which the index i  does not appear, then we define s,-(J) to be the index 

set where every index in J  greater than  i is shifted down by one. For example, 

s3({ l, 2 ,4 ,5 ,6}) =  {1.2 , 3 ,4 ,5} . If a  =  {qi, q2, • • • , <*P} denotes a collection of index 

sets for which i is not a m em ber of any index set, then S;(a)  =  { s ^ q i  ) ,  Si(aP)}.

P R O P O S IT IO N  4 .2 .4  Suppose a  =  { q i , q 2 , . . .  , q p }  and 3  = { 0 i , 0 2, . . .  . 0 p} are 

two collections o f index sets fo r  which index i is not a member o f any index set in

- :x  i. _ . .  .  _ 7 7 . / t o . - . ,  -  I a  ~ L  J  -  J  . j . :  ~ . . . . m l  ______- - 4 4 -  4 h  -  4 - 4 * 1 1 ................................ * 4 : . . .
0 0 0 / 0 0 /  o u o o o o o o u / o .  j .  t o o / e  c t f  f^/ 6 0  u . u u t o t  t t o o t o  t o o o c u  u jo o t o  t o o j j o o o  o u  o / o o  u u o u o o o y  t o t / /  01 o o y  t o o o u o

matrices i f  and only i f  S i ( a / 0 )  is bounded with respect to the totally nonnegative 

matrices.

P roof. Suppose a / 0  is not bounded with respect to  the totally nonnegative 

m atrices. Then there exists a sequence of totally nonnegative matrices {.4n} such 

th a t {^ -4")} is an unbounded set. Define B n to be B n — .4n({i}). Then B n is TN, 

and

q(A„) =  I J  det.4„[ay] =  J J  detBn[s,-(Qj)] =  S i { a ) ( B n ).
j=i j= 1

The second equality above follows from the fact that the index i does not appear in the 

collection a . Thus S { ( a / 0 )  is not bounded. On the other hand  suppose S i ( a / 0 )  is not 

bounded. Then there exists a sequence of totally nonnegative m atrices {.4n} such th a t 

is an unbounded set. Em bed A n (by inserting a  row and a  column) into
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a n-by-n  TN m atrix  B n so th a t B n({i})  =  .4n. Then detA„[s,-(/?_,-)] =  de tB n\j3j\ > 0 

for each j ,  and hence it follows th a t there exists a sequence of TN  m atrices {B n} for 

which { ̂ [gn)} is 311 unbounded set. |

Before we come to the operations of insertion and deletion we present the following 

exam ple illustrating th a t (in general) to preserve bounded ratios it is necessary to 

insert (and similarly delete) an index into (from) every set.

E X A M P L E  4 .2 .5  Consider the ratio  • Then this ratio is bounded by one
(2,3)(3,4) j

w ith respect to the totally nonnegative matrices since it is a Ivoteljanskii type ratio. 

However, the ratio which satisfies (STO). is not bounded w ith respect to the

totally  nonnegative m atrices since it fails the condition in Proposition 4.1.S for the 

set J  =  {1,2,3}. Of course, in  this case, if we insert the index one into every set of 

the ratio we obtain another Ivoteljanskii type ratio, and hence it is bounded

by one.

For our analysis we need the following key lemma which m ay also be of indepen

dent interest. We call an n-by-n m atrix  S  a signature matrix  if S  is a diagonal m atrix 

whose main diagonal entries are either 1 or -1. Observe tha t if S' is a  signature matrix, 

then S  =  S T =  S ~ L. An n-by-n m atrix  A  is signature similar to an  n-by-n m atrix B  

if there exists an n-by-n signature m atrix  S  such that A  =  S B S .

L E M M A  4 .2 .6  Let A  be an invertible n-by-n totally nonnegative matrix. Then 

A/A[a], the Schur-complement o f A[a] in A, is signature sim ilar to a totally nonneg

ative matrix.
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P ro o f. Recall the well-known, fact th a t A/A[a] =  (A- 1[ac])-1 (see [H Jl]). Since A 

is TN, we have that A-1 =  S B S ,  for S  =  diag(l, — 1, • - - , ±1) and B  to tally  nonneg

ative. Then A/A[a] =  (5 S 5 [o :c])-1 =  (S [ac]B [ac]S [ac])~ 1 =  S [qc](B [ac])~ 1 5 [qc]. 

Since B  is TN, B[ac\ is TN, and hence (f?[ac])-1 is signature similar to a totally 

nonnegative m atrix C. that is (S [q c])_1 =  S 'C S ', where S ' is a signature m atrix. 

Therefore

A/A[q] =  S [ac]S 'CS"S[ac] =  S "C S ",

where S"  =  5 [ac]S' is a signature m atrix. This completes the proof. |

Recall that if d(ac) =  0. then A /A [a] is a  totally nonnegative m atrix  (see Propositions 

2.1.3 and 2.1.4).

We are now in a position to prove th a t insertion preserves bounded ratios.

P R O P O S IT IO N  4 .2 .7  Suppose a  =  { a t , <22, . . .  , a p} and j3 = {{31,/?2, . - -  ,0 P} are 

two collections o f index sets such that the index i is not a member o f any index set 

in either a or 8 . I f  cxj 8  is a bounded ratio with respect to the totally nonnegative 

matrices, then A fc x /8 ) is bounded with respect to the totally nonnegative matrices.

P ro o f. Define a' =  { a t U {i}, a 2 U {?}, • • • , ap U {£}} and 8 ' = {3 \ U {/}, ,d2 U 

{z},. . .  , /3qU {z}}. It is well-known th a t detA[7 U {z}] =  a,-t-det(A/a,•,•)[5,-(7 )], for every 

index set 7 that does not contain z‘, whenever an > 0. Therefore if A is an arbitrary
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nonsingular TN m atrix  it follows tha t

p
c/(A ) =  J J  detA[ay U {z}] 

i = i

= (a a ) p  n  det (A/a.-.Ofs^Qj)]
i =  i

=  (a a)pS ,(a )(A /an)

=  (aa)pS i(a ) (S B S ), by Lemma 4.2.6 

=  (a ,i fS i  (a )(B )

< K  ■ (au)pSi(/3)(B), by Lemma 4.2.4

=  K  ■ (a u r S M K S B S )

=  I\ ■ (aa)pS i(P )(A /au ). by Lemma 4.2.6

=  A' • {ati)p J J  d e t(A /a1-,)[.s[(^_,)j 
j= i

p
=  K  • J J  det A[(3j U {z}] 

j =  i

=  A '-/? '(A ),

where K  is a constant. Thus ex' j  3 ' is a bounded ratio, g

Before we consider the deletion operator we first dem onstrate a very useful and

elementary relationship between the operators A,- and D,-.

L E M M A  4 .2 .8  Let a  =  {qi , c*2, • • • , cxp} and. (3 =  , /?2, . . .  , /3P} fie tzz/o collections

o f index sets such that the index i is not a member o f any index set in  either a  or 3.
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Then

C ( A , - ( o / / ? ) )  =  Di (C{ a / 0 ) ) .

P ro o f . F irst observe th a t all of the above operations are well-defined. Since each of 

these operations is applied set-wise (or set by set) it is enough to consider the case 

when both  a  and f3 contain only a single set. Consider the left-hand side:

and the right-hand side is equal to

J c)  £ c n { i} c '

Thus the left-hand side equals the right-hand side, which completes the proof. |  

Some obvious consequences of the above lemma are th a t A,- =  CZ),C. and that 

Di =  CA.-C, whenever the operators are defined. A less im m ediate consequence of 

the above lemma, is the fact th a t D{ preserves bounded ratios.

P R O P O S IT IO N  4 .2 .9  Suppose a  =  {01 , 0:2, . . .  ,o p} and (3 =  {/?i, ,8 2 , ■.. ,/5P} are
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two collections o f index sets such that the index i is a member o f every index set in 

a  and 0.  I f  a / 0  is a bounded ratio with respect to the totally nonnegative matrices, 

then D i ( a / 0 ) is bounded with respect to the totally nonnegative matrices.

P ro o f. Since a / 0  is a  bounded ratio with respect to the totally nonnegative 

matrices, it follows from Propositions 4.2.2 and 4.2.7 that (C .4 ,C )(q /0) is a bounded 

ratio. But by the remarks above D i ( a / 0 )  =  ( C A i C ) ( a / 0 ) 7 and hence D { ( a / 0 ) is a 

bounded ratio. |

Propositions 4.2.2. 4.2.3, 4.2.4, 4.2.7, and 4.2.9 show tha t the following are equiv

alent:

(z) a / 0  is bounded with respect to the TN matrices.

( i i )  C ( a / 0 )  is bounded w ith respect to the TN matrices,

(Hi) R ( a / 0 )  is bounded w ith respect to the TN matrices,

(iv) S i ( a / 0 )  is bounded w ith respect to the TN matrices,

(u) A{ (a / 0 )  is bounded w ith respect to the TN matrices,

(v i ) A-( a / 0 ) is bounded w ith respect to the TN matrices.

As a final rem ark in this section we note that if a ratio a / 0  is bounded by one, 

then it follows that applying any of the above five operations preserves the inequality 

between the products of principal minors.
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4.3 Special Ratio Types

In this section we dem onstrate various types of bounded ratios with respect to the 

totally nonnegative m atrices. Our aim in this section is to use these results as a 

foundation and hopefully build on them in an attem pt to describe all bounded ratios 

for specific values of n. We begin with the following definition.

D E F IN IT IO N  4 .3 .1  Let a  =  {q1,q 25-- - , <*p} and (3 = {/?1, /d2, - . .  ,(3P} be two 

partitions of {1,2 . . .  , n}. Then the ratio a / (3 is called an  order-one ratio.

We have already discussed many examples of bounded (in fact bounded by one) 

order-one ratios, nam ely the classical ratios of H adam ard and  Fischer. However, there 

are many other types of order-one ratios that are bounded with respect to the totally 

nonnegative m atrices. Consider the following result.

T H E O R E M  4.3 .2  Let a  be a partition o f {1, 2 , . . .  , rz} consisting o f the pair {p, q} 

(P <  (i) and the remaining singletons, and let 3 be another partition o f { 1 ,2 ,. . .  , n} 

consisting o f the pair {s. i} (s < t )  and the remaining singletons. Then the order-one 

ratio a/(3 is bounded i f  and only i f  s < p < q < t.

P ro o f. We first verify that the condition s < p < q < t is necessary. Suppose 

th a t this condition fails for the collections a  and (3. T his gives rise to five possible 

cases: (1): p < s < q < t \  (2): p < s < t < q; (3): s < p <  t < q; (4): s < t < p < q; 

(5): p < q < s < t. Before we investigate each case we note here that the ratio 

a / (3 simplifies when it is evaluated at a given m atrix, nam ely Since
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totally nonnegative m atrices are closed under extraction of principal subm atrices it 

suffices to assume th a t {p, q, s ,t}  =  {1, 2 ,3 ,4}  (in other words we are shifting the 

indices in this ratio). Consider case (1), namely p < s < q < t. I f  s = q or q = t. 

then the ratio a  [(3 does not satisfy the condition given in Proposition 4.1.8 for the 

contiguous subset {2, 3}. Thus we m ay assume th a t p < s < q < t. In  this case 

iff}  =  (2 4)[i)(3)- Consider the following 4-by-4 totally nonnegative m atrix .

A  =

1 3  3 1
0 1 2 1
0 1 + 1 3 +  21 2 + t
0 t  1 +  2f 2 +  t

with t > 0. Then it can be easily verified that

a(A ) (3 +  2t ) ( l )(2 +  t) 2 + t 
/3(A) (2)(l)(3  +  21) ~  2 '

Hence this ratio is not bounded with respect to the totally nonnegative m atrices. For 

cases (2) and (3) it is not difficult to check that the ratio a/j3  does not satisfy the 

condition given in Proposition 4.1.8, since in both cases s and t  will be consecutive 

integers. The rem aining two cases follow from cases (1) and (2) by reversing the 

indices. This proves the necessity of the condition s <  p < q < t. To prove sufficiency 

we consider two cases: (1): s =  p (there is a similar proof for the case when q = t): 

and (2): s < p < q <  t. For case (1), we have s = p  =  l ,  q — 2 and t  =  3. B ut in this 

case the ratio a/(3 =  [ffjjf), which has already been shown to be bounded by one 

in Example 4.1.2. For case (2), the ratio a/(3 = • Since th is ratio  satisfies
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(STO) it follows th a t m ultiplication via a positive diagonal m atrix  does change the 

value of the ratio, hence we m ay assume th a t the to tally  nonnegative m atrix A  has 

ones on the m ain diagonal. Therefore the inequality a (.4) <  ,.1(.4) is equivalent to 

823832 >  <214841- Observe tha t a 14 <  a i3a34, and a41 <  a3ia43. Hence a i4a41 <  

813834831843 <  8 12823a2ia 32a34a43, as a l3 <  a i2a 23 and a31 <  a3282i- Since a l2an  and 

a34a43 are both  less th an  one, the result follows. This completes the proof. |

The above result m ay be used to verify m any o ther bounded order-one ratios.

C O R O L L A R Y  4 .3 .3  For k  >  2, (L̂ ’2’ k-i^k+i)(k) — w' ^  respect to the totally

nonnegative matrices.

P ro o f. The proof is by induction on k. T he case A: =  2 is verified in Ex

ample 4.1.2. Assume the ratio is bounded for all values less than k -f- 1. Let 

q(.4) =  (1, 2 , . . .  , k) (k  4 - 1) and (3(A) =  ( 1 ,2 , . . .  , k  — 1, k  1 )(k). Again we assume 

th a t .4 has all m ain diagonal entries equal to one. Consider the Schur-complement 

of .4 with respect the the (1,1) entry, A /a n , which is totally nonnegative. Then 

q(.4) =  a u d e t( .4 /au ) [ { l ,2 , . . .  , k  — l}]afc+lifc+1 =  d e t( .4 /a u )[{L 2 , . . .  , A: — 1}], and 

similarly, (3(A) =  d e t( .4 /a u )[{ l, 2 , . . .  ,k  — 2, A}]. We make the following claim 

th a t ^  1- Observe tha t this inequality is equivalent to 1 — a ^ a ^x >

1 — 8t_ ltlanfc_i, or ( l , k ) ( k  — 1) >  (1 , k  — 1)(&), since the m ain diagonal entries all 

equal to 1. However, th e  inequality ( l , k ) (k  — 1) >  ( 1 , k  — l ) (k)  follows from Theorem 

4.3.2, which proves the claim. Thus

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 3 2

ct(A) _  d e t(A /au )[{l, 2 , . . .  , k  -  1}]
0 (A)  d e t(A /au )[{l, 2 , . . .  , fc — 2, A:}]

^  d e t(A /au )[{l, 2 , . . .  , k  — l}](A /an)[{fc}]
-  d e t(A /au ) [{ l,2 ,. . .  , k  -  2, Ar}](A/au )[{fc -  1}]

<  1,

by Theorem 4.3.2 since A /a n  is totally nonnegative. g

Applying the reversal operator to the previous inequality yields the inequality

(2 , . . . , f e  +  l ) ( l )  
( 1 ,3 , . . .  ,fc +  l)(2) -  ’

for k > 2 , with respect to the class of totally nonnegative matrices.

C O R O L L A R Y  4 .3 .4  For k > 3, (2)(i 32 "a:’-2 fc/(fc-i) — W ^ 1 resPect to the totally

nonnegative matrices.

P ro o f. Applying Theorem 4.3.3 and the corresponding reversed inequality gives

(1)(2 , . . .  , k  — l)(fc) <  (1)(2 , . . .  , k -  2, k)(k  -  1) <  (2 )(1, 3 , . . .  , k -  2 , k)(k  -  1). |
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We now present a general result concerning a special class of order-one ratios th a t 

have at most one set of cardinality greater than one.

T H E O R E M  4 .3 .5  The following inequality holds, fo r  any nonsingular totally non

negative matrix

U u j 2 : - - • ~

i f  and only i f  j \  < i l < ik <  jk  and is =  js, for s =  2, 3 , . . .  , k — 1.

P ro o f. The argument to verify that j \  <  i l < ik < jk  is necessary is similar 

to the argument presented in the proof of Theorem 4.3.2, and it om itted here. To 

show that the condition is =  j s , for s =  2 , 3 , . . .  , k  — 1 is necessary, suppose So is 

the smallest s £ { 2 .3 .. . .  , k  — 1} such that is f  j s. Then there are two cases to 

consider: (1): iSQ < j SQ; or (2): iSQ > j SQ. Suppose iSQ < j SQ. In what follows we 

consider the general diagram corresponding to an n-by-n to tally  nonnegative m atrix 

given in Figure 4.1, and we assign the value of one to the all of the variables Z,-. 

Assign the weight of zero to each variable uj below the vertex j SQ, and assign the 

value of t to each variable u j between the vertices j so and j SQ +  1, and ones elsewhere. 

Note that in this case the degree of t  in the minor ( j\ , j 2, • - - - j k ) is zero. Assume 

th a t there are I indices in {z 1, 2-2, - . -  , ik} that are strictly  larger than  j Sg. If I = 0, 

then since the ratio satisfies (STO) all of the singleton minors in 0( A)  have degree 

zero with respect to t. but the singletons in the num erator consisting of the indices 

j SQ+j , . . .  ,  jk  all have degree equal to one. Thus it follows (since the list j Sq+ i: • • • .  jk  

consists of at least one index) th a t the ratio is unbounded. If I > 0, then the degree
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of t  in  the m inor (z\, i2, . . .  , ik) is 1, and since the  ratio satisfies (STO) it follows th a t 

the to ta l degree of the singleton minors in the  num erator equals the to tal degree of 

the singleton minors in the denominator, and  hence again the ratio is unbounded. 

Finally, assume th a t iSo > j ao. In this case we assign the following weighting: zero to 

all the variables uj  above the vertex j 3Q and below the vertex j SQ-i', for the variables 

uj between the vertices j SQ- i  and j SQ assign the weight of one, except for the variables 

uj between j so- i  and j SQ- i  +  1, which we assign the weight of t. Then the degree of t 

in • - - - j k ) is 0 . all singletons in the num erator have degree zero, except ( jso).

which has degree 1. All singletons in the denom inator have degree 0. except a t m ost 

one, in the special case when So =  2 and j \  < z’i <  j 2. But in this case the singleton 

(z!) has degree of t  equal to one, and the degree of (z’x, 22, . . .  , ik) is I. Thus in either 

scenario the ratio  is unbounded.

To prove sufficiency it suffices to prove the following inequalities hold w ith  respect 

to the totally  nonnegative matrices:

z p .  ( 1 ,2  f c - i ) ( f c )  ^  -I j
V1! ' (1,2 k—2,k)(k—l) — 3,11(1

( l ) ( 2 , — ,fc—l)(fc)  -I
( 2 ) ( 1 , 3 , 2 , fc)(fc—l )  —

These inequalities are verified in Corollaries 4.3.3 and 4.3.4. This completes the proof. 

I

Before we come to our main observations for this section we first consider the 

following very interesting and somewhat unexpected ratio. At present the only known 

proof of the boundedness of this ratio is w ith  the aid of the symbolic com putation
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package M aple©.

P R O P O S IT IO N  4 .3 .6  For any 4~by~4 nonsingular totally nonnegative matrix the 

following inequality holds.

(1- 4 )(2 ,3)
( 1 ,3 ) (2 ,4 ) "

P ro o f. Using the diagram  to generate an arbitrary 4-by-4 nonsingular totally 

nonnegative m atrix  we can then calculate each of the four 2-by-2 minors above. In 

fact, (1,4) =  1 +  U 3U 2^3^2  +  u 3^3 i (2,3) =  1 + U 6 / 4  +  tf6^1 + U 4 Z 6  +  U 4 I 4  +  U q I q  +  U \ I q  +  U  1/4 +  

U i l i  - F U 4 /1  +  ' U e i s ' U s i s  +  U q I q U ^ I o  +  U q I q ^ I s  4" ' U q I q I ^ I z  4~ Ug^4 ’u 5^2 "+■ U6^4 U2^2 4* '^ 4^61*2^5 4* 

U 4 I Q U 2 I 2  4~ U 4 /4 U 2 /2 5  (1-3) =  1 4 - U 5 /5  +  U5Z2 +  U 2 I 5  +  u 2^2 , and finally (2,4) =  1 +  1*6/4 4~ 

u3̂ 3 +  ^ 6̂ 1 +  U 4 J .Q  +  U 4 /4  -{-UqIq-^-UxIq 4~ ^ 1 / 4  +  U \ l \  +  U 4 I 1  -{-UqIqU^Iz +  U S I 4 U 3 I 3  4" U Q I 1 U 3 I 3  4*

^4^6U3̂ 3 +  U4̂ 4U3̂ 3 +  W4̂ 1 +  +  ti3̂ 3 +  n6/6W3 u2^3^2+u6̂ 4M3u2̂ 3̂ 2 +

“ 4 6̂W3U2/3/2+W4 4̂«3ii2 3̂ 2̂- Next we com pute the difference between the expressions for 

the denominator and the num erator, namely, (1 ,3)(2 ,4) — (1,4)(2,3) =  u5Z5 + u5l2 4- 

1*2/5 +  U2I2 4- U5U4 I5I4 +  U5U4Z1/5 +  U5U4 I1I2 4* U5U1Z5Z4 +  U5U1I1I5 +  U5 U1I1I2 4- U2U1Z5/4 +  

U2Uyl\l§ +  U2U1I1I2 4" UQI4U5I5 4* UQI4U2 I3 4" U6/1U5/5 +  U5I1U5I2 4~ UqIi^Is  +  U6I1U2I2 4* 

u^Iqu^I^ -f- U4J.QU5I2 I- U4I4U5I2 4~ U4I4U2I5 4- U4Z1U2Z5 4- U4I1U2I2 4- uiIqu^Is +  u\Iqu$12 4~ 

**1/51*2/5 4* U1IQU2I2 4- U1I4U5 I2 4- U1I4U2I2 4” U5I5U3I3 +  U5I2U3I3 +  U2I5U3I3 +  u5l5 u.Ql4u.3lz +

U 5 I 5 U Q I 1 U 3 I 3  +  U 5 I 5 U 4 I 6 U 3 I 3  4-  U 5 I 5 U 4 I 4 U 3 I 3  -F  U 5 I 5 U 4 1 1 U 3 I 3  -f- 1*5/5 U  1 /51*3 /3  4-  U 5 I 5 U 1 I 4 U 3 I 3

U 5 I 5 U 1 I 1 U 3 I 3  +  U 5 I 5 U Q I 4 U 3 U 2 I 3 I 2  4 - U 5 I 5 U 4 I Q U 3 U 2 I 3 I 2  4-  U 5 I 5 U 4 I 4 U 3 U 2 I 3 I 2  4-  U 5 I 2 U Q I 1 U 3 I 3  +  

U 5 I 2 U 4 I Q U 3 I 3  +  U 5 I 2 U 4 I 4 U 3 I 3  4~ U 5 I 2 U 4 I 1 U 3 I 3  +  U 5 I 2 U X I 5 U 3 I 3  +  U 5 I 2 U 1 I 4 U 3 I 3  -+- U 5 I 2 U 1 I 1 U 3 I 3  +
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U5 2̂2U4 6̂*t3^ 2̂ 3+ u5 2̂2 u4 4̂'u3U2̂ 3+ u2 5̂u6 4̂'u3 3̂+ 'u2̂ 5 ti6 l̂'u3 3̂+'u2̂ 5 U4^4'̂ 3^3+^2^5'U4^1 U3/3 +

u2 5̂'u i^6'^3̂ 3 +  U2I5U1I4U3I3 +  U2I5U1I1U3I3 +  +  u-^l^u^l^uzlz^- Observe

th a t the  above expression, is a  subtraction free expression in nonnegative variables 

and hence is nonnegative. This completes the proof, g

Arguably, we could perform the calculations presented above by hand and  draw 

the same conclusions, but in this case there is no doubt about the calculations above. 

We note here that the above ratio is self-complementary, self-reversing and appears 

to be a very “tight” inequality in general.

We now move on to a different class of ratios which include as a subclass special 

order-one ratios. As we shall see in the next section the following class of ratios 

turns out to be a very im portant class for classifying all possible bounded ratios with 

respect to the totally nonnegative matrices for specific values of n. Our m ain  result 

for this new class of ratios is the following.

T H E O R E M  4.3.7 Let a i , a 2 , 0 i and 0 2  be subsets o f {1 ,2 .. .  , n}. Then the ratio 

(AKfe) bounded with respect to the totally nonnegative matrices i f  and only i f  it 

satisfies (STO) and

max(|c*i fl L |, \a2 fl L\) >  max(|/?i fl £ |, |/?2 0  £ |) ,

fo r  every contiguous index set L C { 1 ,2 ,. . .  ,n }  (i.e., d(L) = 0 ) .
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To begin our analysis and proof of the above result we m ake a few definitions and 

develop some notation. We call an index set L an interval if  L  is a contiguous subset of 

{ 1 ,2 .. .  , n} (i.e., d(L) =  0). Thus any interval L  m ust be a set of the following form 

L =  {z, z +  1, . . .  , i +  &}, where 1 <  i < i + k  < n. Suppose 7  is a subset of {1.2  . . .  . u} 

and L is a given interval of {1, 2 , . . .  , n}. Then we let <7(7 , L)  =  m ax(|7 flZ |, |7CDL|). 

Finally, suppose th a t i x < i2 <  • • • <  ik and j \  <  j 2 <  ••• <  ji are indices of 

{ 1 ,2 ,. . .  , n}, so th a t k  — 1 < / < f c  +  l .  Then we say the sequence {it} interlaces the 

sequence { jf} if one of following cases occur:

1. I — k + 1 and j \  < i t < j 2 < i2 < • • • < > <  h  < jr,

2 . I = k  and i t <  j i  <  i2 < j 2 < ■ ■ ■ < j k- i  < U- <  jr, or

3. I = k  — 1 and n  <  j i  < i2 < j 2 <  • • • <  ji < ik-

In the event 7 =  {i'i, i2, . . .  . ik} with ij < ij+l and 5 = { j i , j 2, - . .  . j i}  with j ,  <  j i+l

(k — 1 < I < k + 1 ), and the sequence {/«} interlaces the sequence {jt}, then we say

tha t 7 interlaces S. T he next proposition follows im m ediately from the definitions 

above.

P R O P O S IT IO N  4 .3 .8  Let 7 and 5 be two nonem pty index sets o /{ l .  2 , . . .  , n}. I f  

5 interlaces 5°, then g( 'y.L) > g(6 ,L)  fo r  every interval L.
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Suppose a  = {ai,or2} and  0  =  {0 i , 0 2} are two collections of index sets each, 

consisting of two sets. Then we say th a t the ratio a /0  satisfies condition (M) if

maxdc*! D L |, |o:2 H L \) >  max(|/2i fl L\, \02 H I | ) ,

for every contiguous index set L  C {1 , 2 , . . .  , n}. The next observation will be very 

useful later. Suppose a /0  satisfies condition (M), then C ( a / 0 ) ,  R ( a / 0 ) ,  S ,(a//?) 

(when defined), Ai (a / 0)  (when defined), and Di(a/0)  (when defined) all satisfy con-

l ’ i : . . .  TT7 V*. * 1 r  C  <T»1 4 0  —  •  , C l  . t t *uibiuu (ivx;. vvc spuir iuc ptuui ui lucu icm  t.o .i lulu a sequeuce ui lem m ata. we 

begin with following result.

L E M M A  4.3.9 Let y  and 8  be two nonempty index sets o f N  =  { 1 ,2 , . . .  , n}. I f  the 

ratio is bounded with respect to the totally nonnegative matrices, then g(y.  N)  >

</(£, N) ,  in other words m ax(|7 |, |7C|) >  m ax(|£|, |̂ 'c|).

P ro o f . Suppose, on the contrary, th a t m ax(|7|, |7C|) <  m ax(|£ |, |£c|)- Consider

the following assignment of weights to the general diagram given in  Figure 4 .1 . Let

lj =  1 for ally, and u,- =  t  for all i. Then it is not difficult to show th a t for this special
k

weighting the degree of t  in the principal minor (7 , i2, . . .  , ik) is equal to ^C (ij — j ) .
j= 1

Therefore the degree of t in the  product (7)(7C) is equal to ("£1) — ^( M 2 +  b l  +  b 'c|2 +  

|7C|). A similar expression exists for the degree of t  in the product (£)(£c). Thus the 

degree of t  in the ratio is given by |  (b l2 +  |£c|2 + n — b |2 — [7 C|2 — n) which is
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equal to 1 (|(5]2 +  |£c|2 — |-y|2 — |7e|2)- Notice that since m ax(|7 |, |7 C|) <  max(|<5], |<ic|) 

and |<5] +  |5C| =  17 {-f [7°| it follows th a t |<5]2 +  [5C|2 >  [7 j2 +  |7 C|2 . Thus the degree of 

t  in the ratio is positive, and hence the ratio is unbounded w ith respect to the

to tally  nonnegative m atrices, g

The previous lem m a can extended as follows.

L E M M A  4 .3 .10  Let 7 and S be two nonempty index sets o f N  =  { 1 ,2 , . . .  ,n} . 

I f  the ratio is bounded with respect to the totally nonnegative matrices, then

<7(7 , L) >  g(S,L),  fo r  every interval L o f N .

P ro o f. Suppose there exists an interval L such that g(~f,L) < g(S.L) .  Consider 

the new ratio where =  7 fl L,  7  ̂ =  7cfl L. Si = 6 (1  L.  and S£ =  5cf)L.  Then

the condition g(7 , L) < g{5, L ) is equivalent to m ax(|71|, |q f |) <  m ax(|£ i|, |£{|). Thus 

by Lemma 4.3.9 this new ratio  is unbounded with respect to the to tally  nonnegative 

matrices. Hence there exists a sequence of totally nonnegative m atrices {A,} (of size 

[L|-by-|L|) so that the ratio increases without bound when evaluated at this

sequence. Define Bi =  I  0  A,- ® / ,  such th a t B,[L\ =  A,- for all i. Then B, is totally 

nonnegative and the ratio evaluated at Bi is equal to evaluated at A,-,

which implies the ratio is unbounded with respect to the to tally  nonnegative

m atrices, g

Recall tha t we have already established the following inequalities w ith respect to 

the totally nonnegative matrices:

1. (1,2)(<£) <  (1)(2) (Koteljanskii),
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2. (1,2)(3) <  (1,3)(2) (Example 4.1.2), and

3. (1,4)(2,3) < (1 ,3 )(2 ,4 )  (Proposition 4.3.6).

The above inequalities will serve as the base cases for the next proof, which uses 

induction on the number of indices.

T H E O R E M  4.3.11 Let 7  and 5 be two nonempty index sets o f N  =  { 1 ,2 ,. . .  ,n} .  

Then the ratio is bounded with respect to the totally nonnegative matrices i f

and only i f  g( j ,  L ) >  g(6 , L),  fo r  every interval L  o f N .

P ro o f. In Lemma 4.3.10 we proved th a t the condition <7(7, L) >  g(5, L), for every 

interval L of N  is necessary for this ratio to be bounded. Moreover, we note that this 

condition is sufficient for the aforementioned inequalities above. To verify sufficiency 

in general suppose is a given ratio and tha t 5 (7 , L) > g[S.L).  for every interval

L  of N.  Recall that by Proposition 4.3.S that if 5 interlaces 5C, then the ratio 

m ust satisfy g(7, L) > g(S, L).  Define the following new sets: 71 =  7 fl 5 . 72 =  7 fl Sc,

61 =  7 C fl 6 , and S2 =  7 C fl Sc. Then we can w rite the ratio rjr/fyr as 1 1 •' 1 = ) (Ti ,02)(0102)

Consider the following decomposition (or factorization) of :

( 7 l ; 7 2 ) f y l ; £ i )  _  ( 7 l ; 7 2 ) ( 7 l l ^ l 2 , < ^ 2 )  ( 7 l l , ^ 1 2 , 7 2 ) ( ^ l , ^ 2 )  ,  .

( 7 l , ^ 2 ) f y l , 7 2 )  ( 7 l , ^ 2 ) ( 7 x i , ^ 1 2 , 7 2 )  ( 7 1 1 ^ 12 , ^ 2 ) (<^ 1 , 7 2 ) ’

where 71 =  {711, 712} and 81 =  {^11,^ 12}- Observe th a t the case 71 and 81 are both 

em pty cannot occur since the sets 7  and 8  are assumed to be nonempty. Consider the
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first factor ^  S1272) w^ere 7 i  =  { 7 1 1 5 7 1 2 } -  Then the boundedness of this ra tio  is

equivalent to the boundedness of s n̂ce deletion of common indices (here

we deleted the common set 7 U) from every index set preserves the boundedness of 

a ratio (see Proposition 4.2.9). Similarly, the second factor is bounded if and only 

if 7*j is bounded. We now make the following key claim. Suppose we are

able to decompose 71 =  { 7 1 1 , 7 1 2 }  and Si =  {Sn, £12} such th a t (7'lt sa^isfies

condition (M), namely.

m ax(|7i n  L|, |£x (7 L\) >  m ax(|(7u  U £12) (7 £[, |(^n  U 7 l2) D L\).

Then each of the factors. and must satisfv condition (M ) .
( 7 l2 .4 2 ) (» I 2 .T f2 )  (711 .< > 2 ) ( i l l . 7 2 )  '  v '

T o  p ro v e  th i s  c la im  f ix  a n  in te r v a l  L .  T h e n  th e r e  a re  th r e e  p o s s ib le  c a se s : ( 1 ): 

|7 f l £ |  >  |7 cn £ [ ;  (2 ): |7 f l £ |  <  |7 cn Z | ;  o r  (3 ): h /H Z ) =  |7 cf lZ |.  S u p p o s e  c a se  (1 ) h o ld s .  

T h e n  s in c e  g(7 ,  L )  >  g(S, Z ) i t  fo llo w s t h a t  |7 X fl Z | >  |<$i fl Z | a n d  [72 fl Z | >  \S2 H Z |.  

H o w e v e r, i f  (7;'t~f r ‘j'ffi; 7l2) s a tis f ie s  c o n d i t io n  (M )  a n d  I71 fl Z | >  [<7x fl Z | ,  t h e n  a p p ly in g  

s im ila r  r e a s o n in g  re v e a ls  t h a t  |7 n  n  Z | >  |^ u  fl Z | a n d  |7 12 fl Z | >  \Si2  f l  Z |.  T h u s  t h e  

fo llo w in g  fo u r  in e q u a l i t ie s  h o ld : (z): |7 X f l  Z | > fl Z |; [ii): I72 D Z | > \S2 H Z |: {Hi): 

|7 n  H Z | >  1 D Z/ [; a n d  (iv): \-'(i2 f \ L \  >  [6̂ 12 n  | . B u t  th e  in e q u a l i t i e s  ( i ) - ( z r )  im p ly

t h a t  b o th  o f  t h e  r a t io s  (^*2)(£12 72) 72) s a frsfy  c o n d i t io n  (M ) ,  fo r  t h e

f ix e d  in te rv a l  Z . S im i la r  a n a ly s is  h o ld s  f o r  c a se s  (2 ) a n d  (3 ) w h e n  [7 f! X| <  \-yc f l  Z | 

a n d  is  o m i t t e d  h e r e .  T h is  c o m p le te s  t h e  p r o o f  o f  t h e  c la im . T h e  p r o o f  o f  t h e  r e s u l t
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will be complete if we can show th a t there always exists a  choice for 71 and £1 so that 

we m ay decompose them  and ensure tha t the ratio ---- r satisfies condition
J c  (7n,<>i2)(<>ii,7l2)

(M). It is not difficult show th a t no such decomposition of 71 and £1 exists only if 71 

and £1 interlace. Consider the original ratio and suppose that 71 and £t

(and hence that j 2 and £2) interlace independent of the choice for 7! and Si. In this 

case we may assume, (by complementation) without loss of generality, that {71,^2} 

consists of all the odd integers of N  and {£1,72} consists of all the even integers of 

N.  Since if this was not the case, then there would exist (a t least) one consecutive 

pair in at least one of the sets {71,^2} or {£1,72}, and since g(-'f.L) > g(S ,L ) there 

m ust exist (at least) one consecutive pair in 7 or 5. Hence it follows that there exists 

a choice for 71 and Si so th a t they do not interlace, contradicting our assumption.

Thus we assume th a t {71,^2} consists of all the odd integers of N  and {51,72} 

consists of all the even integers of N,  and that 71 and Si interlace, and 72 and S-2 

interlace. We also assume th a t 1 E 71. Then there are two cases to consider: (1): 

2 e S i : ( 2 ) :  2 E 72-

Case (1): 2 E Si. Then j i  == { 1 ,3 ,5 ,.. .  , 2k — I ,* } , for some k > 1: 72 =  

{2/ +  2,*}, for some I > 1; Si = { 2 ,4 ,. . .  , 2/,*}; and S2 = {2k + 1,*}. There 

are two subcases to consider: (la ): I > k; or (lb): I < k. For the case (la) let 

7 ii =  {l}i 712 =  { 3 ,5 , . . .  , 2 k — 1,*}, £u =  {2}, and Si2  =  { 4 , . . .  ,21,*}. Then 

we claim that the sets {712,^2} and {£12, 72} interlace and {711,£2} and {£11, 72} 

interlace. Note th a t if this was the case then the factors /'Yl2’72wxl2~‘H  and rYkl '72!/fll'(52!
(•712 .“2 ) (d 12 <12 } (711 ,02 ) (611.72 )

would satisfy condition (M). To verify tha t the above sets interlace observe that
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{7 i i ;^ 2},{<^u;72} =  {1;2k  +  1,*}{2;21 +  2,*}. Since I > k  we have that 2k + 1 < 

21 +  2, hence interlacing follows, since 72 and S2 interlace by assumption. Similarly,

{712; ^2}, {^12; 72} =  { 3 ,5 , . . .  ,2  k — 1, *; 2k -f 1,*}{4---- , 2Z;21 +  2,*}, and again

interlacing follows since I > k  and 72 and S2 interlace. For case (lb ), let 711 =  

{1, 3 , 5 , . . .  , 2/ +  1}, 712 =  71 n  7 in  ^  let <$11 =  {2 , - • - , 2 /}, S l2 =  ^  n  Then 

in this case {711;£2}, {£11; 72} =  {1, 3 , 5 , . . .  , 2/ +  1; 2k +  1 , *}{2 . 4 . . .  , :2l .2l  + 2. *}. 

and since I <  k  and 72 and S2 interlace it follows that {711, <$2} and {<£u, 72} interlace. 

Similarly, {712, £2} and {<$12,72} interlace since we have ju st discarded the first 21 +  1 

consecutive integers. Thus in either subcase the factors in the decomposition given 

in (4 .3 ) satisfy condition (M).

Case (2): 2 G 72- In this case note that 3 G S2, since otherwise 3 G 71, and hence 

the triple {1,2,3} is contained in 7 , and therefore there is no choice for 71 and tit so 

th a t they interlace which contradicts our assumption. For simplicity we relabel the 

sets in question as follows: 71 = S2, 72 = S[, Si = J2, and S2 = j[ .  So using the new 

labels we have that 1 G S2, 2 G S[ and 3 G 7}  Moreover, 7  ̂ =  { 3 ,5 ,. . .  , 2k — 1. *}. 

for some k > 2, 72 =  {21 +  1,*} for some / > 1, =  { 2 ,4 . . .  . 2/.*} , and S2 =

{1.2fc +  1.*}. Now we let 7 ^  =  {3}, -)[2 =  {0 , . . .  ,2k  — 1.*}, =  {2}. and

S[2 =  { 4 ,.. .  ,21,*}. As before it now follows that {7 ^ , ^ }  {^11*72} interlace,

and th a t {7 (2^ 2} and {S'i^ I ^ }  interlace.

Thus in all cases each of the factors in (4.3) satisfy condition (M) and since 

both  factors involve fewer indices, we have that both are bounded ratios by induc

tion. As noted before the base cases for this induction argum ent are the inequalities:
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(1,2)(<£) <  (1)(2), (1 ,2)(3) <  (1 ,3)(2), and (1,4)(2,3) <  (1 ,3 )(2 ,4 ), which have been 

previously verified. This completes the proof. g

P ro o f  o f T h e o re m  4 .3 .7 : Note th a t the ratio is bounded with respect

to the totally nonnegative m atrices if and only if is bounded with respect to

the totally nonnegative m atrices, for some S  and T  obtained from 0 :1,02 and /3i ,d 2, 

respectively, by deleting common indices and shifting (as these operations preserve 

boundedness), g

There are m any very useful consequences to Theorems 4.3.7 and 4.3.11, which we 

sta te  here.

n r v D A T  r  a  o v  - < 0 1 0  r . i  .   1 c  l  -  x ........ .........................  i . .  j . ,  . r  \ r  r - i  o  . , 1
V / V / l t V / U U A l t l  t . U .  U Z . U  J U t l C U ,  V  C/C O L U U  !  U U  t  b & n u p u y  C I I L L C U ,  o c t o  U J  1  v ----- ^  J .. . f t  f  .

Then the ratio 15 bounded with respect to the totally nonnegative matrices i f  and

only i f  it is bounded by one.

The proof of the above result follows directly from Theorem 4.3.11 and the fact 

tha t the base case ratios are bounded by one.

C O R O L L A R Y  4 .3 .13  Let Oi, o 2, 0 2  omd f t C {  1 ,2 . . .  , n } .  Then the ratio 

is bounded with respect to the totally nonnegative matrices i f  and only i f  it is bounded 

by one.

This result follows from Corollary 4.3.12 and the fact tha t applying the operations of 

deletion and shifting preserves the inequality.

C O R O L L A R Y  4 .3 .1 4  Let 7  and S be two nonempty index sets o f N  =  { 1 ,2 ,. . .  , n} 

with n >  5. I f  the ratio ^  bounded, then it can be factored into ratios o f the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 4 5

same type with fewer indices.

For the next consequence we let (odds) =  ( 1 ,3 ,5 , . . . )  (i.e., the minors consisting 

of all the odd integers of N)  and (evens)  =  (2,4, 6, . . . )  (the minor consisting of all 

the even integers of N) .  Then the next result follows directly from Theorem  4.3.11.

C O R O L L A R Y  4 .3 .15  For n > 2, and 7  C {1, 2 , . . .  , n},

( 1 ,2 ,3 . . .  ,n)(<p) < (7 )(7C) <  (odds)(evens).

fo r  any totally nonnegative matrix.

Of course the first inequality is Fischer’s inequality.

The next two results are very useful for studying the relationships between ex

trem al ratios for specific values of n (see the next section for more inform ation).

C O R O L L A R Y  4 .3 .16  Suppose 7 and 5 are nonempty subsets o f { 1 ,2 , . . .  , n}, and 

assume that j  £  7 U 5. Then 5; T with respect to the totally nonnegative

matrices i f  and only i f  |<£ fl L\ >  I7  PI L\, fo r  every interval L with j  E L.

P ro o f . Assume th a t 7 and 5 are nonem pty subsets of { 1 ,2 .. . .  , n}, and assume 

th a t j  £  7 U S. Then, by Theorem 4.3.11, the ratio <  1 if and only if

m ax(|7  fl L | , | (5  U {j}) fl L\) > m ax(|(7  U {j}) fl L\, |<£ fl L|), for each interval L. 

Observe that if j  £  L, then equality holds for the m axim a above. If j  £  L, then
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m ax(|7  H £ |, |( £  U {j}) fl L\) >  m ax(|(7  U {j}) C L\, |£ fl L\) holds if  and only if 

| £ n L |  >  |7 n L | .  ■

C O R O L L A R Y  4 .3 .17  Suppose 7  and 5 are nonempty subsets o f {1 , 2 , . . .  , n}, and 

assume t h a t i , j  7 U8 . Then  (£u{i‘}H7u{j}) — !• with respect to the totally nonnegative 

matrices i f  and only i f  the following conditions hold.

(0  I f  i E L and j  0  L, then  I7  PI L\ > |£ fl L\,

(n ) I f  j  6  L and i ^  L, then  |£ fl L\ >  I7  fl L\,

fo r  each such interval L.

4 .4  General Case for n  < 5

D E F IN IT IO N  4 .4 .1  A collection C  of bounded ratios is referred to as generators if 

and only if any bounded ratio  can be written as products of positive powers of ratios 

from C.

The idea used throughout this section is to assign the weights of 0, l , t , t ~ l , where 

1 is a nonnegative variable, which we make arbitrarily large, to the variables {/,} 

{uj}. We do this in different combinations to produce as m any necessary conditions 

for boundedness as possible. For such a weighting each principal minor will then be a 

function in terms of t. For a  ratio of principal minors to be bounded, the degree of t 

in the denominator must be greater than  or equal to the degree of t  in the numerator.
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Therefore, we com pute the degree of t  iu each minor and note th a t the total degree 

of t  in the ratio m ust be less than  0 for the ratio to be bounded.

Firstly, we consider the 3-by-3 case in full detail. Every ratio on 3 indices can be 

w ritten in the following way: ( l)Xl(2)X2(3)X3(12)Xl2(13)Xl3(23)X23(123)Xl23, where x Q{ 

is the degree of (or,) in the ratio (tha t is, x ai is negative when there are more copies of 

(a,-) in the denom inator of the given ratio). Let yQi be the degree of t  in (a,-). Then the 

expression 2/iX1+ 2/2X2+ 2/3X3+ 2/i2Xi2+ 2/i3Xi3+ 2/23X23+ 2/i23Xi23, represents the degree of 

t  in this ratio. Since by assum ption (1) =  (12) =  (123) =  1, 2/1 =  y 12 =  2/123 =  0, and 

it is sufficient to consider the expression 1/2X2 +  2/32:3 +  2/132:13 +  2/23X23- For this ratio to 

be bounded, 2/2X2+ 2/32:3 +  2/132:13+ 2/232:23 <  0. Using diagrams w ith edges set to various 

values, we develop a list of conditions, each of the form 2/22:2+ 2/32:3+ 2/13X13+ 2/232:23 <  0. 

Observe th a t these conditions are linear inequalities in the variables x Qi and represent 

hyperplanes in the space given by the variables {xQi}. We also note here that a 

given ratio satisfies STO (for n =  3) if and only if: £1 +  0:12 +  £13 +  £ 123 =  0,

x 2 +  X12 +  X23 +  Xi23 =  0, and £3 +  £13 +  £23 +  X123 =  0.

E X A M P L E  4.4 .2  Let A  be a 3-by-3 nonsingular to tally  nonnegative m atrix, with

the corresponding diagram  in Figure 4.3.

\ / 1 ' /
V  V 1 . 1 y

Figure 4.3: 3-by-3 example diagram.
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If an edge does not appear, it is assumed to have a  weight of 0. Using this diagram 

we compute all possible principal minors. Recall th a t (1) =  (12) =  (123) =  1. There 

are three possible paths for (2). First, it can go straight across the diagram  and yield 

a weight of 1. Second, this path  can use the first edge (joining 1 and 2 ), w ith a 

weight of 1, and then traverse the edge with weight f -1 , yielding a to tal weight of 

t ~ l . Finally, this path  can use the second edge (joining 1 and 2) and then traverse 

the edge with f-1 . Again this yields a to tal weight of f -1 . Therefore, (2) =  1 +  2 t-1 . 

Employing similar techniques we can also show th a t (3) =  1 +  f, (13) =  1 +  t. and 

(23) = 2  +  2 f 1.

Using this information, it follows th a t y2 =  0, y3 =  1, y  13 =  1, and y23 =  0.

Therefore, the expression ar3 +  r 13 represents the to tal degree of t in any ratio for the

diagram in Figure 4.3. Thus in order for a ratio to be bounded, it m ust satisfy the

condition x3 +  ar13 <  0. For completeness we note that in this case

“ 1 t ~ l 0
A  = 2 1 +  2t-1 t

1 1 +  f 1 1 + t

By considering various diagrams, we derive m any necessary conditions which a 

ratio m ust satisfy in order for it to be bounded.

Each ratio can be w ritten  as a vector, with each entry  representing the degree of 

a specific principal minor in the ratio. We label the entries lexicographically. Since 

(1) =  (12) =  (123) =  1, we disregard these minors, because they  do not affect whether 

or not the ratio is bounded. This vector, therefore, takes the  form: [x2, + 5, ^ 13, ^ 23]T- 

If a  ratio is bounded, its corresponding vector will lie in the convex hull of the 

cone formed by the intersection of these hyperplanes.
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E X A M P L E  4 .4 .3  By Fischer’s inequality, the ratio is bounded. Therefore,

the vector [0 , —1, 1, 0]T will lie in the cone of bounded ratios (or, in our case it even 

is an extrem al of our cone).

Note th a t some specific weightings will produce redundant conditions. So. we 

search for conditions which are positively linearly independent (in other words, they 

cannot be w ritten  as a nonnegative linear combination of the rem aining conditions). 

The intersection of these hyperplanes forms the cone of interest, and the extremals 

of this cone happen to be the generators.

In the 3-by-3 case, four necessary conditions were found (see Figure 4.4) to define 

the cone of bounded ratios. Because the edges of the left side of each diagram axe ail 

weighted 1, it is sufficient to consider the right side only.

7 7  3 J L  2  7  2
1    I

( i )  ( i i )

H .
3---------------  7 -----------  3
2   V .   2

( H i )  ( i v )

Figure 4.4: Necessary diagrams for 3-by-3 case.

Each of these graphs (in Figure 4.4) gives rise to a new hyperplane: 

4 .4 .i x3 +  x i3 <  0,

4 .4 .ii X2 +  ^23 ^  0?
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4 .4 .iii X 2 +  x3 +  £23 <  0,

4 .4 .iv  x3 +  x 13 +  a;23 <  0.

Suppose we axe given a list of inequalities in n variables. A set C  C IRn is a 

;•polyhedral cone if and only if C  =  {x  E IR" : A x  <  0}, where .4 is an m-hy-n  real 

m atrix.

T H E O R E M  4 .4 .4  Suppose a / (3 is a ratio o f principal minors on three indices. 

Then a/j3 is bounded with respect to the totally nonnegative matrices i f  and only 

i f  a [ (3 can be written as a product o f positive powers o f the following bounded ratios:

(13)(0) (123)(2) (12)(3) (23)(1)
(1)(3) ’ (12)(23)’ (13)(2)’ (13)(2)

P ro o f. We first note that the boundedness of the above four ratios has already 

been verified. The two ratios on the left are Koteljanskii ratios; the th ird  was shown 

to be bounded in Example 4.1.2; and the boundedness of the final ratio follows from 

the th ird  by reversing the indices. The four diagrams in Figure 4.4 give rise to the 

following four necessary conditions:

(a) x 3 +  £ i3 <  0;

(b ) £2 +  £23 <  0 ;

(c) x 2 +  x3 +  r 23 <  0; and
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(d) £ 3  +  XI3 +  X23 <  0 .

Recall th a t the necessary conditions (STO) are equivalent to the following three 

equations: X]_ +  x 12 +  £13 +  £123 =  0, x 2 +  £12 +  £23 +  £123 =  0, and x3 +  x 13 +  £23 +  

£123 =  0. For simplicity of the analysis we use the equations above to convert the four 

inequalities to "greater than” inequalities, namely.

(a) £23 +  £123 >  0;

(b ) £12 +  -̂ 123 >  0;

(c) £12 +  £13 +  £23 +  2x 123 >  0; and

(d ) £123 >  0.

Fix £123 =  k  >  0. Then the intersection given by the linear inequalities: £23 >  —k, 

£12 >  —k. and £ i2 +  £ i3 +  £23 ^  —2k. forms a polyhedral cone. Translate the variables 

(£ i2,£ 23,£ i3)T to (£ i2 +  fc, x 23 +  k, x l3)T =  ( z l2, z23, zi3)t  so th a t the corresponding 

inequalities, in terms of the z's. are translated to the origin. The extrem als of this 

polyhedral cone are determ ined by the rays formed from the intersection of any two 

of the three hyperplanes. For example, the intersection of z l2 =  ~23 =  0 is the ray 

given by {(0,0, t)r  : t > 0}. The rem aining extrem e rays are determ ined similarly. In 

this case the polyhedral cone C  formed by the intersection of the above hyperplanes is 

given by C  =  {^(0 ,0 , l ) T + t 2(0 ,1, —l ) r +*3( l,  0, —1)T : >  0, 5 2  *«' =  !}• Therefore
i

any vector v £ C, may be wrritten as v — (£12, £23, z i3)t  =  (t3, t2, 11 —t 2 — t3)T . W riting 

these equations in terms of the x's  gives £12 =  t3 — k, x 23 =  t 2 — k, and £13 =  t\ —t2—t3.
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Using the equations given by (STO) we m ay now solve for the remaining variables, for 

example, aq =  — x l2 — ^13 — ^123 = t 2 — k. Similarly, it follows that x 2 =  k  — t2 — £3- 

and X3 =  £3 — ti. Finally, we substitu te  the above x-values back into the original 

ratio, th a t is

(123)Xl23 (12)Xl2 (13)Xl3 (23)X23 (1)XI (2)X2 (3)X3

=  (123)*(12)t3-A:(13)tl-t2 '-t3(23)t2-fc( l) f2-tl (2)fc-'2-t3(3)t3_£l

[ ( 123X 2)1
k

r a w ) ]
i 1 [ ( 23X 1)1 h |"(12) ( 3 ) j

[ ( 12) (23 ) j L ( ! ) ( 3 )  J L(13)(2)J L(13)(2)J

where k . t i ,  t 2, > 0. Observe th a t the two ratios on the left are bounded (in fact

by one) as they are special Ivoteljanskii ratios, and the la tte r two ratios are bounded 

(again by one) by Theorem 4.3.7. This completes the proof. |

C O R O L L A R Y  4.4 .5  The cone o f bounded ratios on three indices with respect to 

the totally nonnegative matrices is generated by

(13)(0) (123)(2) (12)(3) (23)(1)
(1)(3) ’ (12)(23) ’ (13)(2)’ (13)(2)’

C O R O L L A R Y  4.4 .6  A ny ratio a / 0  o f principal minors on three indices is bounded

with respect to the totally nonnegative matrices i f  and only i f  it is bounded by one.

The next result provides some extra information concerning the relationships 

among the list of generators for bounded ratios on three indices.
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P R O P O S IT IO N  4 .4 .7  Each o f the 3-by-3 generators can be derived from  

and |^ |||||, by using the operators which preserve bounded ratios in Propositions 4 -2.3 

and 4 -2 .7.

_  ( 123)(2) 
^  (1)(3) J  ~  ( l'2)(23)

P / ( 1 2 ) ( 3 ) >. _  (23)(1)
( 1 3 ) (2 ) / ~  ( 1 3 ) ( 2 ) ’

For the cases n =  4 and 5 the  analysis is similar but not surprisingly m ore involved. 

The num ber of necessary conditions increase, the number of variables increase, and 

the num ber of generators (or extremals) increases. However, the m athem atics in 

q u e s tio n  is very s im ila r , a rid  to  a ru  o u r  c o m p u ta tio n s  we use a  p ro g ra m  (see

[Fu]) specifically designed to compute the extreme rays of a given polyhedral cone 

(not to mention other tasks associated with linear programming). Thus most of the 

technical details are hidden and taken care of, by this program. O ur plan here is 

to describe the idea of how the  conditions were found, and how they were used to 

eventually determine the extrem als, which in our case are ratios of principal minors 

(see [FGG]).

We begin by taking the four diagrams from the 3-by-3 case in Figure 4.4 and 

system atically append a fourth  vertex, and some extra edges, to generate various 

conditions again using only the four possible weights 0 ,l,t,t~ L (as in  the  3-by-3 case). 

We set up the problem in a sim ilar m anner, namely, we know th a t any ratio on four 

indices m ay be represented by (1234)Xl234(123)Xl2I(124)Xl24 • • • (2)X2( l) Xl, where xQ is 

the m ultiplicity of (a) in  the ratio. We also let (as before) ya denote the degree of
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t  in the minor (a). Recall th a t we assume the above ratio satisfies (STO), which is 

equivalent to the following four equations: (1): x t +  x 12 +  2:13 +  +  x 123 +  x vlA +

•E134 +  ^1234 =  0; (2): X 2  +  Xi2 +  2:23 +  ^24 +  ^123 +  ^124 +  ^234 +  ^1234 =  0; (3): 

^ 3  +  ^ 1 3  +  % 23  +  ^ 3 4  +  ^ 1 2 3  +  ^ 1 3 4  +  ^ 2 3 4  +  ^ 1 2 3 4  =  ( 4 ) :  X 4  +  X 1 4  +  ^ 2 4  +  ^ ' 3 4  +

x  124 +  Z134 +  X234 +  x  1234 =  0. Using these four equations we are able to reduce the 

number of variables in our system from 15 to 11.

After a sufficient list of conditions, in the form of linear inequalities in the variables 

x a, has been determ ined we then input these conditions in th e  form of a m atrix  system 

of inequalities A x  < 0 into the program [Fu], and analyze the output. The output will 

be in the form of a list of vectors each of which are the extrem e rays of the polyhedral 

cone {x £ IR11 : .4x <  0}. For each extremal we m ust verify whether or not it is 

a bounded ratio with respect to the totally nonnegative m atrices. If it is, then we 

have found a generator for all of the bounded ratios on four indices. If we prove 

that the extreme ratio is not bounded, then we must develop another condition (or 

geometrically, cut the existing polyhedral cone by another hyperplane) to exclude this 

ratio. Consider the following example. Suppose for simplicity, the following ratio was 

outputted from a run of this program, • We conclude th is ratio is not bounded

since it does not satisfy the condition given in Proposition 4.1.S for the set {2,3}. 

However, we need to derive conditions in terms of the variables x a to exclude this 

ratio. To do this we use the symbolic software package M aple© . This package aids 

in designing a diagram for which the degree of t in the num erator of the above ratio is 

larger than the degree of t in the denominator. We note here th a t these diagrams are
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by no means unique and m any different diagrams may give rise to the sam e condition. 

For this particular ratio we m ight come up with the following diagram  (see Figure 

4 .5 ).

4
3
?

I

Figure 4.5: Particular Diagram

Using this diagram we obtain  the inequality X3+X13 +  X34 +  X134 <  0. We note here 

th a t  the susnec t ra .tio  a b o ve  does n o t  s a t is fv  th is  in e m ia litv .  and hence  add iner th is
A. — J. V  / O

inequality to our list will discard this suspect ratio from the list of extrem als. One of 

the drawbacks to this type of search and destroy method is that we m ay (and often 

do) develop redundant constraints or conditions. However, one of the by-products 

of the program [Fu] is tha t a list of the redundant condition is also ou tpu tted , and 

eventually can be discarded. T he final diagrams (twelve in total) produced for the 

4-by-4 case are shown in Figure 4.6 at the end of this chapter, and as in the 3-by-3 

case the left-hand side of the diagram  is om itted as all edges are assigned the weight 

of 1, and any missing edges are assumed to have weight 0 .

The corresponding inequalities are as follows:

(i) : X4 +  Xi4 +  X24 +  X124 <  0 ,

( f t ) :  +  £ 4  +  ^ 1 3  +  X 1 4  +  X 2 3  +  X 2 4  +  £ 3 4  +  #124  +  134 +  ^234  5 :

(m ) :  x 2 +  x3 +  x4 -(- x 13 +  x i4 +  x34 +  Xi34 <  0 ,

(in ): X4 +  X14 +  X24 +  x34 +  X124 4" ^134 ^  0 ,
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( v ) l  X3  +  X1 3  +  X3 4  +  X1 3 4  <  0 ,

(v i): x 2 +  x 3 +  X23 +  x24 +  £34 +  X234 <  0 ,

(v ii) :  x 3 +  x4 4- x 13 +  x 14 +  x23 +  x24 +  x 234 <  0,

(v iii) :  x2 +  x 23 +  x 24 -+- x234 <  0,

( i x ) z  X 4  +  X 1 4  +  X 24 +  X 34 +  X i 24  4* X 134 +  X 234 <  0 ,

( x ) :  X 3  +  X 13 +  X 23 +  ^34 +  3:134 +  X 234 <  0 ,

( x j ) :  X 2 +  X 4  +  X 14 +  X 23 +  2 x 24 +  X 34 +  X \ 2 4  +  X 234 <  0 ,

(x ii): X3 +  X4 -f- X13 +  X14 +  X23 +  X24 +  2X34 +  3:134 +  X234 <  0.

The above twelve linear inequalities m ay be represented via the following m atrix  

system:

A x  =

'  0 0 1 0 1 0 1 0 1 0 0 ‘

0 1 1 1 1 0 0 1 0 1 0 X2

1 1 1 0 0 1 1 1 0 0 1 3 :3

0 0 1 0 1 0 1 1 1 1 0
X4

0 1 0 1 0 0 0 1 0 1 0 3 :1 3

1 1 0 0 0 1 1 1 0 0 1 3-14

0 1 1 1 1 1 1 1 0 1 1 3 :2 3

1 0 0 0 0 1 1 0 0 0 1 X24

0 0 1 0 1 0 1 1 1 1 1 3 :3 4

0 1 0 1 0 1 0 1 0 1 1 x i24

1 0 1 0 1 1 2 1 1 0 1 3 :1 3 4

0 1 1 1 1 1 1 2 0 1 1 .  2̂34 .

< 0.

Using the  above twelve inequalities we obtained the following result. (See Propo

sition 4.4.10 for dem onstration of the boundedness of the listed ratios.)

T H E O R E M  4 .4 .8  Suppose a / (3 is a ratio o f principal minors on fou r indices. Then 

a ./(3 is bounded with respect to the totally nonnegative m atrices if and only ifctj'S  can 

be written as a product o f positive powers o f  the following bounded ratios:
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(14)(0) (2)(124) (3)(134) (23)(1234) (12)(3) (1)(24) (2)(34)
(1)(4) ’ (12)(24)’ (13)(34)’ (123)(123)’ (13)(2)’ (2)(14)’ (3)(24)’

(4)(13) (12)(134) (13X234) (34)(124) (24)(123) (14)(23)
(3)(14) ’ (13)(124) ’ (23)(134) ’ (24)(134)’ (23)(124)r (13)(24)‘

We can make conclusions th a t are remarkably similar to the consequences for the 

case when n = 3. One surprising similarity between the above list of generators for 

n =  4, and the list for n  =  3, is tha t each generator consists of two sets over two sets.

C O R O L L A R Y  4 .4 .9  The cone o f bounded ratios on four indices with respect to the

totally nonnegative matrices is generated by

(14)(0) (2)(124) (3)(134) (23)(1234) (12)(3) (1)(24) (2)(34)
(1)(4) (12)(24)’ (13)(34)' (123)(123)’ (13)(2)’ (2)(14)’ (3)(24)’

(4)(13) (12)(134) (13)(234) (34)(124) (24)(123) (14)(23)
(3)(14)’ (13)(124)’ (23)(134)’ (24)(134)’ (23)(124)’ (13)(24)*

The next result provides some extra information concerning the relationships 

among the list of generators for bounded ratios on four indices. Recall that the 

following inequalities are valid for any totally nonnegative m atrix: (1.2)(<?>) <  (1)(2) 

(Koteljanskii), (1,2)(3) <  (1,3)(2) (Example 4.1.2), and (1 ,4)(2 ,3) <  (1,3)(2,4) 

(Proposition 4.3.6).

P R O P O S IT IO N  4 .4 .1 0  Each o f the 4~by~4 generators can be derived from  .• 

(ii}(~2p an<̂  (i3)(i4)’ by using the operators which preserve bounded ratios in Proposi

tions 4-2.3 and 4-2.7.
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Since the ratios (Mu!)’ (i3)(24) 3X6 not ou^  bounded, but bounded by one

with respect to the totally nonnegative matrices, we have the following result.

C O R O L L A R Y  4.4 .11  A ny ratio cl/ (3 o f principal minors on four indices is bounded 

with respect to the totally nonnegative matrices i f  and only i f  it is bounded by one.

As discussed previously we used similar analysis to tackle the n =  5 case. How

ever, for this case the com putation becam e increasingly more involved and more time 

consuming. We now have 26 variables x a and many more possibilities for diagrams, 

and hence constraints. Never the less, using the program [Fu] we were able to com

pletely characterize all the bounded ratios on five indices. (An interested reader in 

encouraged to consult the REU report [FGG] for more details on the n = 5 case 

including diagrams and analysis.)

T H E O R E M  4.4 .12 Suppose a / (3 is a ratio o f principal m inors on five indices.

Then a / (3 is bounded with respect to the totally nonnegative matrices i f  and only

i f  a / (3 can be written as a product o f  positive powers o f the following bounded ratios:

(15)(0) (2)(125) (3)(135) (4)(145) (23)(1235) (24)(1245) (34)(1345) (234)(12345)
(1)(5) ’ (12)(25) ’ (13)(35) ’ (14X 45)’ (235)(123)’ (124)(245)' (134)(345) ’ (1234)(2345) ’

(12)(3) (13)(4) (14)(5) (1)(25) (2)(35) (3)(45) (12)(135) (13)(235) (14)(245)
(2)(13)’ (3)(14) ’ (15)(4)’ (2)(15) ’ (3)(25)’ (4)(35)’ (13)(125)’ (23)(135)’ (24)(145)’

(13)(145) (23)(245) (123)(24) (124)(25) (34)(124) (35)(134) (45)(135) (35)(125)
(14)(135)’ (24)(235)’ (124)(23)’ (24)(125)’ (24)(134) ’ (34)(135) ’ (35)(145)’ (25)(135)’ 

(24)(345) (123)(1245) (124)(1345) (134)(2345) (235)(1234) (245)(1235)
(34)(245) ’ (124)(1235) ’ (134)(1245) ’ (234)(1345)’ (234)(1235) ’ (235)(1245) ’
(345)(1245) (14)(23) (15)(24) (25)(34) (125)(134) (135)(234) (145)(235) 
(245)(1345) ’ (13)(24) ’ (14)(25)’ (24)(35)’ (124)(135)’ (134)(235)’ (135)(245)
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Again we note th a t this list of generators (38 in to ta l) all consist of two sets over 

two sets just as in the n  =  3 and n = 4 cases. Moreover, this list really only depends 

on three “basic” ratios (also similar to the n =  3 and n =  4 cases).

P R O P O S IT IO N  4 .4 .1 3  Each o f the 5-by-5 generators can be derived from  , 

( if  j(f j > an<̂  (i3)(24) ’ us n̂9 the operators which preserve bounded ratios in Proposi

tions 4-2.3 and 4-2.7.

We also have the following result tha t parallels the previous cases.

C O R O L L A R Y  4 .4 .1 4  A ny ratio a / (3 o f principal m inors on five indices is bounded 

with respect to the iotaiiy nonnegaiive matrices i f  and only i f  it is bounded by one.

4.5 Summary and Further Discussion

In this chapter we completely characterized all m ultiplicative principal m inor in

equalities through n = 5. Moreover, we have dem onstrated many particular classes 

of bounded ratios, for example, f°r all values of n. However, as with m ost

topics in m athem atics m any unresolved issues still rem ain. It is the purpose of this 

section to address some of these issues.

We begin with the topic of the existence of a bounded ratio w ith respect to the 

totally nonnegative m atrices th a t is not bounded by one. F irst we rem ark that in the 

case of bounded ratios w ith respect to the positive definite matrices, there do exist 

bounded ratios which are not bounded by one (see [BJ2]). On the other hand, any

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 6 0

ratio th a t is bounded with, respect to the M -m atrices is necessarily bounded by one 

(see [FHJ]). Throughout this chapter we have dem onstrated m any bounded ratios 

and in every case these ratios were bounded by one. In fact, we do not know of a 

single ratio th a t is bounded with respect to the totally  nonnegative matrices and is 

n o t bounded by one. Furtherm ore, a consequence of the  results in section 4 is that 

any bounded ratio on a t most 5 indices is, indeed, bounded by one. Moreover, we 

conjecture this to be the case in general, namely, tha t any bounded ratio with respect 

to the totally nonnegative m atrices is necessarily bounded by one.

Another remarkable characteristic of bounded ratios for totally nonnegative ma

trices is the notion of subtraction free expressions in the nonnegative variables from 

a bidiagonal factorization of an arbitrary totally nonnegative m atrix . Recall that in 

Proposition 4.3.6 and Example 4.1.5 we dem onstrated the boundedness of the ratios

[11)(24) (13)(2)T respectively, by showing tha t (13)(24) — (14)(23), and (13)(2) —

(12)(3) are subtraction free expressions in the nonnegative variables {/,}. {uy} and 

{dfc} from a bidiagonal factorization of an arbitrary totally  nonnegative matrix. More

over, this phenomenon holds for every extremal (or generator) through n — 5, from 

which it follows that any bounded ratio with respect to the totally nonnegative ma

trices on at most five indices also satisfies this phenomenon. At present every ratio 

that is known to be bounded by one satisfies this property. Clearly, if a given ratio 

satisfies the property th a t the difference between the denom inator and numerator is 

a subtraction free expression in nonnegative variables, then this ratio  is bounded by 

one. The resolution of the issue of whether or not a ratio  can be bounded with respect
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to the totally nonnegative m atrices, and the difference between the denom inator and 

num erator is a subtraction free expression will definitely shed some light on whether 

there exist bounded ratios with respect to the totally nonnegative matrices that are 

not bounded by one.

A natural next step in studying these types of determ inantal inequalities is to 

classify all such inequalities for n =  6, and so on. We have begun such analysis for 

the case n  =  6, however, we have encountered some difficulties w ith sufficient (or lack 

there of) computer support. For the case n =  6, there are 57 unknown variables and at 

present we have approximately 400 necessary conditions. Using some (rudimentary) 

prediction criteria we anticipate roughly 1300 necessary conditions and around a 130 

generators. In order to continue the analysis on the n = 6 case we have to develop 

some different techniques and ideas. We axe currently pursuing many different ideas 

along these fines.

The final topic we address here is the notion of extremality. At present, we know 

very little  about extremal ratios, and predicting when a given ratio is extrem al or 

not. Consider the Koteljanskii ratio . Through n =  5, this ratio is extremal,

however, we cannot prove this in general, nor show that it is not extrem al for some 

n. (Although we do conjecture th a t this ratio is extrem al for all n.) Also through 

n  =  5, it can be shown tha t if a //?  is extremal, then A,-(a//3) and Dj(a/(3)  (when 

defined) are extremal ratios. Currently, this is also a mystery. Finally, we comment 

on the appearance of the extrem al ratios through n =  5. Each such extrem al is of the 

form • This was unexpected and for the most part still remains unexplained.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 6 2

However, during the com putation in the n =  6 case, the following ratio  was outputted,

(1346)(1256)(124)(34)(25) 
(1246)(356)(134)(125)(24) ’

This ratio seems to represent a “new” class of bounded ratios w ith respect to the 

totally nonnegative m atrices. The proof that this ratio is bounded is very computa

tional and is om itted here. However, given that this ratio is bounded we may conclude 

th a t this ratio is extrem al. Thus our initial guess th a t a ll extrem als are of the form

(at i )for?) • •  i ^ i i  * 11 * . i *  i * • . i i
(gl)(fe) incorrect, -rvuotner curious open prooieiu concerning tins rctLiu is tnax we 

do not know if this ratio is bounded by one. P art of th e  reason for this is various 

computer limitations, although we were able to dem onstrate boundedness. Perhaps 

this is an example of a bounded ratio that is not bounded by one.
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Figure 4.6: The 4-by-4 Diagrams.
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C h ap ter  5 

H ad am ard  P r o d u c ts  o f  T o ta lly  

N o n n eg a tiv e  M atr ices

In this chapter we investigate the entry-wise (or Hadam ard) product of totally non

negative matrices. Let A  =  [a,y] and B  =  be two m-by-n m atrices. Then the 

Hadamard product of A  and B, denoted by A o  B . is the m -by-n m atrix  whose (i , j ) th 

entry is given by See [HJ1, HJ2] for a more detailed discussion of the Hadamard

product and its role in m atrix theory.

The Hadamard product of certain TN matrices has come up before in the study 

of the roots of a given polynomial. We discuss this role briefly now for background
n

and motivation. Let f ( x )  =  £  a{Xl be an nth degree polynomial in x. By the
1= 0

Routh-Hurwitz matrix we mean the n-by-n m atrix given by

164
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.4 =

a  1 0 3 a s a? • 0 0 '

ao a2 a4 a6 • 0 0
0 ai 0 5  * 0 0
0 ao a 2 CL<\ 0 0

0 0 0 0 - an_i 0
0 0 0 0 • a„_2 a n  _

A polynomial f ( x )  is said to be stable if all the zeros of f ( x )  have negative 

real parts. It is proved in [As], for exam ple, that f ( x )  is stable if and only if the
n

Routh-Hurwitz m atrix formed from f  is to tally  nonnegative. Suppose f ( x )  =  ^  atx ‘
t=0m

and g(x) =  ^  6,-x' are two polynomials of degree n and m, respectively. Then the
i=0

k
Hadamard 'prodv.ct o f f  azid q is defined to  de tlio polynom \2.1 f̂  o x^ :=r a 4 bt x 17

i=0
where k = min(7n,rz). In [GW1] it is proved that the Hadam ard product of stable 

polynomials is stable. Thus a consequence of this result (which is also noced in [G W l]) 

is the th a t the Hadamard product of two totally  nonnegative Routh-Hurwitz m atrices 

is in tu rn  a totally nonnegative m atrix. See also [GW2] for a list of o ther subclasses 

of TN  matrices that are closed under H adam ard multiplication. This list includes 

such classes as: totally nonnegative Vandermonde matrices; tridiagonal and inverse 

tridiagonal TN matrices, and others. T he reader is also referred to [Wa] where yet 

another class of totally nonnegative m atrices is shown to be closed under H adam ard 

multiplication.

Our interest lay in studying when in  general the Hadam ard product of two totally  

nonnegative matrices is again totally nonnegative. Recall the celebrated classical re

sult of I. Schur (see [HJ1], for example) which states that the Hadamaxd product
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of two positive semidefinite m atrices is again a positive semidefinite m atrix . Unfor

tunately, this is not the case for two general TN m atrices. Consider the following 

exam ple (see also [J] for another example).

E X A M P L E  5 .0 .1  Let A  =

Furtherm ore, A o  B  

TN.

1 1 0 
1 1 1 
1 1 1  

1 1 0 
1 1 1  
0 1 1

, and let B  =  A T. Then .4 and B  are TN. 

, and det(_4 o B ) — — 1 <  0. Thus .4 o B  is not

In light of this example and  previous remarks a  characterization of when the 

H adam ard product of two TN m atrices is a TN m atrix  is delicate and difficult.

We close this introduction w ith an overview of this chapter. We begin with def

initions and a prelim inary discussion of the Hadam ard dual of totally nonnegative 

m atrices. In the next section we present some general results and completely char

acterize the Hadam ard dual for 3-by-n totally nonnegative m atrices. We then show 

th a t the matrices in the H adam ard dual satisfy the classical inequality of Oppenheim 

concerning det(.4of?). Also considered are sign patterns of m atrices in the Hadam ard 

dual.

5.1 Notation and General Set-up

We begin with the definition of the Hadam ard dual of the m -by-n totally nonnegative

matrices.
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D E F IN IT IO N  5.1 .1  The Hadamard dual for the totally  normegative matrices is 

defined to be the set of all m-by-n m atrices A  such that A o B  is to tally  nonnegative, 

for all m-by-n totally nonnegative m atrices B .

In symbols,

{ A :  A o  B  E TN, VB G TN}.

Often we may just refer to the H adam ard dual to mean the H adam ard dual for TN 

m atrices. We now present various elem entary properties for m atrices in the Hadamard 

dual.

Observe chat J , che m-by-n macrix of all ones is cue H adam ard identity, chat is 

A  o J  = J  o A  = A. Thus, it is clear th a t J  is in the Hadam ard dual. Also note that 

J  is TN. This simple fact turns out to be quite useful for proving other results about 

m atrices in the Hadamard dual, as dem onstrated in the next result.

C O R O L L A R Y  5.1.2 Let .4 be an m-by-n matrix in the Hadamard dual. Then .4 

is totally nonnegative.

P ro o f . Since J  is TN and A  is in the Hadamard dual, we have A o  J  =  .4 is TN.

I

Thus the Hadam ard dual is nonem pty and is contained among the totally nonnegative 

m atrices, for all m and n.

P R O P O S IT IO N  5.1 .3  Suppose A  and B  are two m-by-n matrices in the Hadamard 

dual. Then A o  B , the Hadamard product o f A  and B , is in the Hadamard dual.
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P ro o f. Let C be any m-by-n TN  matrix. Then B  o C  is TN since B  is in the 

Hadam ard dual. Hence A o { B o C )  is TN. But A o  ( B o  C)  =  (A o  B)  o C.  Thus A o  B  

is in the Hadam ard dual, since C  was arbitrary. |

Recall th a t if D — [<Z,-y] is a diagonal matrix, then &etDA[a\(3\ =  detD[a]det.4[a[/3]. 

Hence if .4 is TN, then D A  is TN, for every entry-wise nonnegative (and hence to

tally nonnegative) diagonal m atrix  D. Moreover, observe th a t D ( A o B )  =  DA o  B  =  

A  o D B ,  from which it follows tha t D A  is in the H adam ard dual whenever D is a TN 

diagonal m atrix  and .4 is in the Hadamard dual. The above facts aid in the proof of 

the next proposition.

T>r>/'MD/~»CT'T'T/'MV c 1 4 A --- /- ----- +    J-U „ U—1  1
X  J .c v y  X  V / O X  JL X V /  X 'I « / • X  a /X  I b y  t U/l Oils IS i (rU OKS UUjb b y  t UlS I bib  l^ y  11 012/01 bU* OxS Ut b tsl OL* XX UtU/U/l I OU/I u>

dual.

P ro o f. Let .4 be a rank one TN matrix, say .4 =  x y T, where x =  [x,-] E IRm and 

y  =  [z/t] G IR" are entry-wise nonnegative vectors. Let D  =  diag(ar, ) and E  = diag(y,-). 

Then it is easy to show th a t A  =  D J E .  (Observe that J  = eeT, where e is the vector 

of all ones. Then D J E  — D(eeT)E = (De)(eTE) = x y T = A.)  Since J  is in the 

H adam ard dual, we have th a t D J E  is in the Hadam ard dual, in other words .4 is in 

the Hadamard dual. |

Note that Example 5.0.1 implies that not all rank two TN matrices are in the 

Hadam ard dual, and in fact by directly summing the m atrix  A  in Example 5.0.1 with 

an identity m atrix  it follows tha t there exist TN m atrices of all ranks greater than 

one th a t are not in the H adam ard dual. We now state a  very useful result concerning 

an inheritance property for m atrices in the Hadamard dual.
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P R O P O S IT IO N  5 .1 .5  A n m -by-n totally nonnegative m atrix A  is in the Hadamard 

dual i f  and only i f  every submatrix o f A  is in  the corresponding Hadamard dual.

P ro o f . The sufficiency is triv ial since A is a  submatrix of itself. To prove necessity, 

suppose there exists a subm atrix, say A[a|/3], th a t is not in the H adam ard dual. Then 

there exists a TN m atrix  B  such th a t A[a|/5] o B  is not TN. E m bed B  into an m-by-n 

m atrix  C  =  [c,-y] such th a t C[a|/3] =  B ,  and c,y =  0 otherwise. I t is not difficult to 

show th a t C  is TN. Now consider A o C . Since A[a|/3] o B  is a  subm atrix  of Ao C  and 

A[a|/?] o B  is not TN, we have th a t A o C  is not TN. This com pletes the proof. |

We conclude this section w ith a  result concerning the colum n vectors th a t can be 

appended to a given m atrix  in the H adam ard dual in such a way so th a t the resulting 

m atrix  remains in the H adam ard dual.

P R O P O S IT IO N  5 .1 .6  The set o f columns (or rows) that can be appended to an 

m-by-n T N  matrix in the Hadamard dual so that the resulting m atrix remains in the 

Hadamard dual is a nonempty convex set.

P ro o f . Suppose A is an m -by-n TN  m atrix  in the H adam ard dual. Let S  denote 

the set of columns th a t can be appended to A so that the new  m atrix  remains in 

the Hadam ard dual. Since 0 £  S', we have that S  ^  cp- Let x, y £ 5. Then 

the augm ented matrices [A|x] and [A|y] are both in the H adam ard dual. Suppose 

t  £  [0,1] and consider the m atrix  [A |tx +  (1 — t)y\. Let [B\z\ be any m-by-(n +  1) TN
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m atrix . Then

[A|tx +  (1 — t)y\ o [B\z\ =  [A o B\ t (x  o z) -f (1 -  t){y o r)].

Since A  is in the H adam ard dual any subm atrix of A o B  is TN . Therefore we only need 

to consider the submatrices of [A |tx +  (1 — t)y\ o [B\z\ tha t involve column n +  1. Let 

[A 'lfx '-f (1 — t)y'\ 0 [B'\z'} denote any such square subm atrix of [A|fx +  (1 — t)y\ o [f?|c]. 

Then

d e tU A ^ x ' +  U - ^ j / ' j o  [£?>'])

=  d e t( [A 'o B '|f(a : 'o  r')])

+  d e t([A 'o  H '|( l - t ) ( y 'o : ' ) ] )

=  tdet ([A7 o B '\x  o -'])

4- (1 — f )det ([A' o B '\y ' o z'})

=  fdet ([A, |x/] o

+  ( l - t ) d e t ( [ A V ] o [ H '|^ ] )

> 0,

since both  [A|x] and [A|y] are in the Hadamard dual. This completes the proof. |
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5.2 Elements of the Hadamard Dual

In this section we axe concerned with describing various elements in the H adam ard 

dual. This description is two fold, either we will describe elements in the H adam ard 

dual for certain values of m, n; or we will describe certain special subclasses of totally 

nonnegative matrices that are contained in the Hadamard dual for all m ,  n. Recall, 

for example, that all rank one TN m atrices are members of the H adam ard dual (see 

Proposition 5.1.4). Firstly, we explore other possible subclasses th a t are contained in 

the H adam ard dual.

Observe that an n-by-n diagonal m atrix  D is TN if and only if D is entry-wise 

nonnegative. This fact is a simple exercise and we do not bother proving it here. A 

consequence of this fact is the next result.

P R O P O S IT IO N  5.2.1 Any n-by-n diagonal totally nonnegative m atrix is in the 

Hadamard dual.

P ro o f . Let D  be any n-by-n diagonal TN matrix, and let B  be an arbitrary  

n-by-n TN matrix. Then D o B  is an entry-wise nonnegative diagonal m atrix , and 

hence is TN. g

Recall tha t an n-by-n m atrix is called an upper (lower) bidiagonal m atrix  if the 

only possible nonzero entries occur on the main diagonal and on the super- (sub-) di

agonal, and all remaining entries are necessarily zero. We claim tha t an n-by-n upper 

bidiagonal (similar arguments apply for the case of a lower bidiagonal m atrix) m atrix  

is TN  if and only if it is entry-wise nonnegative. We offer the following argum ent
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for completeness. The necessity of this claim is clear and verification of sufficiency 

for n  <  2 is trivial. Thus suppose the sufficiency of the claim  holds for all t-by-t 

upper bidiagonal matrices with t  < rt. Let U be as in the claim . Then, by induc

tion, U[{1,2 , . . .  , n — 1}] is TN. Hence 17[{1,2 , . . .  , n  — 1}|{1,2 , . . .  , n}] is TN  since

it is obtained from U[{ 1 , 2 , . . .  ,n  — 1}] by appending a zero colum n and (possibly) 

increasing the (n — 1 ,n)th entry (see Proposition 2.4.4). Then U is obtained from 

17[{1,2,. . .  , n — 1}|{ 1 .2 .. . .  , n}] by appending a zero row and (possibly) increasing 

the (n,n) entry. An immediate consequence of this claim is the following fact.

P R O P O S IT IO N  5 .2 .2  Every n-by-n totally nonnegative bidiagonal matrix is a 

member o f the Hadamard dual.

P ro o f. Similar to the proof of Proposition 5.2.1. |

An n-by-n m atrix .4 =  [a,j] is said to be a tridiagonal m atrix  if atJ =  0 when

ever, \i — j \  >  1. A non-obvious, bu t well-known fact is the nex t proposition. The 

proof presented here offers a nice application of A-sub direct sum s th a t is discussed in 

Chapter 2.

P R O P O S IT IO N  5 .2 .3  Let T  be an n-by-n tridiagonal m atrix. Then T  is totally 

nonnegative i f  and only i f T  is an entry-wise nonnegative Po-matrix.

P ro o f. The necessity is obvious. The proof of sufficiency is by induction on the 

size of T . Observe th a t this result is trivial for n <  2. Suppose the result holds for 

all such tridiagonal matrices of size k, where k < n. Let T  be as in the statem ent of
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the proposition. Notice that T  may be partitioned as follows

In tl2 0
T  = 121 t22 %23

0 2/32 T33

where T33 is (n — 2)-by-(n — 2 ) and t,j axe scalars for 1 <  i , j  < 2. Hence T  is in 

the special 1-subdirect sum form. Since T  is assumed to be a P0-m atrix , by Theorem  

2.S.2, T  can be w ritten as T  =  T\ ©1 T2, where Ti is 2-by-2 and T2 is (n — l)-by- 

(n — 1), and both T\ and T2 are P0-m.atrices. Since both Ti and Ti are also entry-wise 

nonnegative tridiagonal Po-matrices, by induction 7\ and T2 are both  TN matrices. 

Now, by Theorem 2.S.3, Ti ®i T2 =  T is a TN  m atrix. This completes the proof. |

The above fact was probably first proved in [GK2], where they refer to tridiagonal 

m atrices as Jacobi matrices. We are now in a position to extend the result of Garloff 

and Wagner [GW2] concerning the H adam ard product of tridiagonal m atrices.

T H E O R E M  5.2 .4  L e t T  be an n-by-n totally nonnegative tridiagonal matrix. Then 

T  is in  the Hadamard dual.

P ro o f . It is enough to prove this result for the case when T  is irreducible, other

wise apply the following argum ent to each irreducible block. Let B  be an arbitrary  

n-by-n TN  matrix. Similarly we may assume B  is irreducible, which implies > 0 

for all such that \i — j \  < 1, i.e.. B  has positive "tri-diagonal p a r t” (see Lemma 

3.0.S). Since pre- and postm ultiplication by positive diagonal m atrices does not af

fect the property of being TN or whether or not a m atrix is in the  H adam ard dual, 

we m ay assume tha t bn =  1, for i =  1 , 2 , . . .  , n  and that 6,-y =  bji for all i , j  with 

I* — j | =  1- Notice that if S  =  d iag (l, —1,1, —1, • • • , ±1), then S T S  has nonpositive
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off-diagonal entries, and since T  was TN  it follows th a t S T S  is a (possibly singular) 

M -m atrix  (see [HJ2]). In  this case there exists a positive diagonal m atrix  D\ such 

th a t D i S T S D i 1 =  S ( D i T D f l )S  is a row diagonally dom inant m atrix  (see [HJ2]). 

(A m atrix  C  =  [c,-y] is said to be row diagonally dominant if | >  for

i  =  1 , 2 , . . .  ,n.) Let C = [dj\ = S { D xT D ^ l )S  o B  = S { D xT D f l o B ) S .  Since B  is 

TN  with bn =  1 and btJ =  whenever |i — j | =  1, it follows th a t 0 < 6,-y <  1 for 

all i , j  w ith \i — j \  =  1. Hence D\TD~[l o B  is row diagonally dom inant. Now since 

D i T D ^ 1 ° B  is tridiagonal we have th a t S { D i T D ^ 1 o B ) S  has nonpositive off-diagonal 

entries. By a result in [HJ2] we have that S { D \ T D i 1 o B ) S  is a (possibly singular) 

iW-matrix. Therefore D i T D ^ 1 o B  is a nonnegative tridiagonal Po-matrix. Hence, 

by Proposition 5.2.3, D i T D ^ 1 o B i s a  TN m atrix, and hence T  o B  is a TN matrix. 

Thus T  is in the Hadam ard dual. |

We obtain a result of Garloff and Wagner [GW2] as a special case.

C O R O L L A R Y  5.2 .5  The Hadamard product of any two n-by-n tridiagonal totally 

nonnegative matrices is again totally nonnegative.

We now consider describing the Hadam ard dual for some specific values of m  and 

n. We begin with the simple case m  =  n =  2.

L E M M A  5.2.6 Let A  =  [ a be any 2-by-2 totally nonnegative matrix. Then A  is 

in  the Hadamard dual.

P ro o f . Let B  =  [6,-j] be any 2-by-2 TN m atrix. Then A  o B  is entry-wise 

nonnegative and det(.4L o P )  =  011022^11̂ 22 — ® 12̂ 21̂ 12̂ 21 ^  0, since 011022 ^  ^ 12̂ 21
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and &11&22 >  &12&21- |

C O R O L L A R Y  5 .2 .7  Let A  be an 2-by-n totally nonnegative matrix. Then A  is in 

the Hadamard dual.

P ro o f. If n < 2, then we are done. Thus assume n > 3. By Proposition 5.1.5 it 

is enough to check that all of the 2-by-2 submatrices of A  axe in the Hadamard dual. 

By Lemma 5.2.6 all such submatrices are members of the H adam ard dual. Hence A  

is in the Hadam ard dual. |

5.3 The 3-by-ra Case

The analysis for the 3-by-3 Hadamard dual differs significantly from the 2-by-2 case,

and unfortunately unlike the 2-by-2 case, not all 3-by-3 totally nonnegative matrices
[ 1 1 0

are in the Hadam ard dual. Recall from Example 5.0.1 that the m atrix  1 1 1
[ i l l

does not belong in the H adam ard dual. We let W  denote the above 3-by-3 m atrix

We will see that W  plays an im portant role concerning m atrices in the Hadamard 

dual. We begin our analysis of the 3-by-3 Hadamard dual w ith a preliminary lemma 

concerning a special class of 3-by-3 totally nonnegative m atrices in the Hadamard 

dual.

L E M M A  5.3 .1  Let A =

i f  A  is totally nonnegative.

1 1  a 
1 1  a 
a a 1

. Then A  is in the Hadamard dual i f  and only

P ro o f. The necessity follows from Proposition 5.1.2. To verify sufficiency sup

pose A is TN. Let B  =  [6,-y] be any 3-by-3 TN m atrix. By virtue of the 2-by-
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2 case it is enough to show th a t det(A  o B )  >  0. We m ake use of Sylvester’s

identity  for determ inants (see (1.3)). Note that we may assum e th a t 622 >  0,

otherwise B  is reducible in which case verification of det(A  o B ) > 0 is trivial.

Using Sylvester’s identity (see chapter 1) we see that d e tB  > 0 is equivalent to 

(611622—̂12̂ 21 H&22633— 633632) (6126̂ 3— 62261a 1(62163; — 631622) Since 4. is XN 0 ^  a ^  1 Ob-
622 — 622 ' ’ — —

serve th a t

(611622 — 612621) (622633 — 623632^)

622

(&U&22 — 612621) (622633 — 623632) .

>  ------------------------------------------- , since 0 <  a <  1
622

(612623 — 622613) (621632 — 63x622) . , D _> ------------------------------------------- , since det±> >  0
622

2 ( 6 1 2 6 2 3  ~  6 2 2 6 1 3 X 6 2 1 6 3 2  —  63 !& 22 ) . _  ^>  a --------------------------------  , since 0 <  a <  1.
622

Therefore (611622-612621 )(622633 - 633632a2) ^  2̂ (612623- 6226131(621632—631622) which implies
622 — 622 ’ ^

det(A  o 5 )  > 0 ,  and hence A is in the Hadamard dual. |

L E M M A  5.3.2 Let A be a 3-by-3 singular totally nonnegative matrix. I f  A o W  and. 

A o W T are both totally nonnegative, then A  is in the Hadamard dual.

P ro o f . In light of the 2-by-2 case we may assume th a t A is irreducible. Moreover,

up to positive diagonal equivalence we may also assume A is in the following form, 
l a c

A =  a 1 6 . Since A is singular, detA  =  1 + abc +  abd — a2 — 62 — cd =  0, or
d b 1
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1 abc +  abd — a2 + b2 + cd. By hypothesis A o W  and A  o W T are both totally 

nonnegative, hence

1. det(A  o W ) =  1 +  abd — a2 — b2 > 0, and

2. det(A  o W T ) =  1 +  abc — a2 — b2 > 0.

Since A is a singular TN  m atrix it follows th a t equality m ust hold in both 1. and 2.

above. This gives gives rise to one of the following four cases:

1. c =  0, and ab =  c,

2. c =  0, and d =  0,

3. d =  0, and ab = d,

4. ab = d, and ab = c.

Suppose B  is an arbitrary 3-by-3 TN m atrix , as with A, we m ay assume that B
1 a  7  

a  1 (3 
8 (3 1

Observe th a t cases (1) and (3) cannot occur since A was assum ed to be irreducible.

is in the following form  B  =

In case (2) A is tridiagonal, and hence is in the Hadam ard dual by Theorem 5.2.4. 

Finally, consider case (4) and suppose tha t ab =  d, and ab =  c. Then detA  = 

1 +  {ab)2 — a2 — 62 =  (1 — <z2)(l — 62) =  0. Therefore either a =  1 or 6 =  1. In either 

case A is of the form in Lemma 5.3.1 and hence is in the H adam ard dual. |

We axe now in a  position to characterize all 3-by-3 TN m atrices th a t axe members 

of the Hadamard dual.

T H E O R E M  5 .3 .3  Let A  be a S-by-3 totally nonnegative m atrix. Then A  is in the

Hadamard dual i f  and only i f  A  o W  and A  o W T are both totally nonnegative, where 
1 1 0 

W =  1 1 1  
1 1 1
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P ro o f. The necessity is clear since W  (and hence W T ) is TN . Assume that Ao W  

and Ao W T are both  TN. By Lemma 5.3.2 it suffices to assume th a t A is nonsingular. 

In this case by Theorem 2.2.2 A adm its a bidiagonal factorization which up to positive 

diagonal factor we may assume is

■ 1 0 0 ‘ ' 1 0  0 ' ' 1 0 0 ' ' 1 d O ' ‘ 1 0 0 ' ' 1 / 0
= a 1 0 0 1 0 c 1 0 0 1 0 0 1 e 0 1 0

. 0 0 1 O b i 0 0 1 _ 0 0 i 0 0 1 0 0 1

1 f  + d de
= a + c (a +  c ) f  +  (a +  c)d +  1 ((a +  c)d +  1) e

be b e f +  bed +  b 1 +  (bed + b)e

where a, 6, c, d, e, /  >  0. Let B  be any nonsingular TN m atrix. Similarly, we assume 

th a t B  is in the form

B  =
1 z + x  xy

u +  w (u -i- w)z +  (u +  w )x  +  1 ((u +  w)x + 1 )y
vw vw z  +  vw x + v 1 +  (uwx + v)y

where u, u, w, x. y, z > 0. A routine com putation reveals that det( A o W ) =  1 — abde, 

hence 1 >  abde, since A o W  is TN. Similarly, one can show th a t det( A o W T ) =  1—beef, 

and hence 1 >  beef. Now we compute de t(A o B ).  A routine but lengthy com putation 

shows that

det(A  o B ) =  zw yv — zwyvabde +  x u vy  — xuvybcef +  (nonnegative terms) 

>  z w y v ( l  — abde) +  xu yv(  1 — beef) > 0.
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Hence A o B  is TN for all nonsingular TN  m atrices B  (the 2-by-2 submatrices follow 

from Lemma 5.2.6). The fact that A o  B  Is TN  for all 3-by-3 TN matrices B  follows 

by a routine continuity argument since any TN  m atrix  is the limit of nonsingular (in 

particular TP) TN matrices (see Theorem 2.1.6 and  [W]). |

We now present many different consequences and equivalent statem ents of Theo

rem  5.3.3.

C O R O L L A R Y  5 .3 .4  Let A  =
a b c  
cl e f  

_ g h i
Then A  is in the Hadamard dual i f  and only i f

be a 3-by-3 totally nonnegative matrix.

aei +  gb f > a fh  dbi,

aei + dch >  a fh  -j- dbi.

1 P2 P4 ’
E X A M P L E  5.3 .5  Let P  = P2 1 P2 , where p E (0,1). Then A  is TN  and

.  P4 P2 1
claim that A  is in the Hadamard dual. To see this observe that the inequalities in 

Corollary 5.3.4 are equivalent to 1 +  p8 >  p4 +  p4, which is of course equivalent to

( 1 - p 4)2 > 0 .

E X A M P L E  5 .3 .6  (P o ly a  M a tr ix )  Let q E (0 ,1). Define the n-by-n Polya m atrix  

Q whose (i , j ) th entry is equal to q~2tJ. Then it is well-known (see [W]) th a t Q is
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totally positive for all n  (in fact Q is diagonally equivalent to a T P  Vandermonde 

m atrix). Suppose Q represents the 3-by-3 Polya m atrix. We wish to  determ ine when 

(if ever) Q is in the Hadamard dual. By Corollary 5.3.4 and the  fact th a t Q is 

sym m etric implies Q is in the H adam ard dual if and only if q~28 +  q~22 >  q~26 +  q-26, 

which is equivalent to q~28( 1 — q2 — q2( l  — q4)) >  0. This inequality holds if and only 

if 1 — q2 >  q2( 1 — q4) =  q2( 1 — q2) ( l  +  q2)- Thus q m ust satisfy q4 +  q2 — 1 <  0. It is 

easy to check tha t the inequality holds for q2 E (0,1 //j.), where fi =  (the golden

mean). Hence Q is in  the Hadam ard dual for all q E (0, sjl/jj.).

C O R O L L A R Y  5 .3 .7  Let .4 =  [a,y] be a 3-by-3 totally nonnegative matrix. Suppose 

B  =  [6,-j] is the unsigned classical adjoint matrix. Then A  is in the Hadamard dual i f  

and only i f

1. Qii&n — ^ 12̂ 12 ^  0, and

2 . a n b n  — 0 2 1 ^ 2 1  ^  0 .

Even though Corollary 5.3.7 is ju s t a recapitulation of Corollary 5.3.4, s ta ted  in 

this form aides in the proof of the following result on the inverse of nonsingular TN 

m atrices in  the H adam ard dual. Recall th a t if .4 is a nonsingular TN  m atrix , then 

SA -1 .? is a TN m atrix , where S  =  d iag (l, —1,1, —1, • • • , ±1).

T H E O R E M  5.3 .8  Suppose A  is a 3-by-3 nonsingular T N  matrix in  the Hadamard 

dual. Then  SA -1^  is in  the Hadamard dual.
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Proof. Observe th a t S A ~ lS  is TN  and, furtherm ore 5 A _ l5  =  where

B  =  [&ij] is the unsigned classical adjoint of A. Hence S A - l 5  is in the Hadamard 

dual if and only if B  is a  m em ber of the Hadamard dual. Observe th a t the inequalities 

(1) and (2) in Corollary 5.3.7 are symmetric in A  and B . Thus B  is in the Hadamard 

dual. This completes the proof. |

C O R O L L A R Y  5 .3 .9  Let A be a 3-by-3 totally nonnegative m atrix whose inverse 

in tridiagonal. Then .4 is in the Hadamard dual.

Proof. Proof follows from Theorems 5.3.3 and 5.3.S. |

Garloff and W agner [GW1] noted that the set of all inverse tridiagonal totally 

nonnegative m atrices is closed under Hadamard m ultiplication. The above result 

extends this fact in the 3-by-3 case. However, the general case is still unresolved, 

although we conjecture th a t the set of all inverse tridiagonal totally  nonnegative 

matrices is contained in the H adam ard dual for all n.

For 3 <  k < n, let =  (w j^) be the 3-by-rc totally nonnegative m atrix

consisting of entries:

w(k) _  f 0 if i =  l , i  >  k,
^ 1 otherwise.

For 1 <  k  <  n —2, let =  (u\j *) be the 3-by-n totally  nonnegative m atrix  consisting 

of entries:

u (fcj f 0 if i = 3,1 <  j  < k,
| 1 otherwise.
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For example, if n =  5 and k  = 3, then =  

6r(3) =

1 1 0  0 0 
1 1 1 1 1  
1 1 1 1 1

. and

1 1 1 1 1  
1 1 1 1 1  
0 0 0 1 1

T H E O R E M ! 5 .3 .10  Let A  be a S-by-n (n > 3 )  totally nonnegative matrix. Then A  

is in the Hadamard dual i f  and only i f  A  o is totally nonnegative fo r  3 <  k  < n 

and A  o is totally nonnegative fo r  1 <  j  < n — 2 .

P ro o f. The necessity is obvious, since P P ^ an d  are both TN. Observe that 

it is enough to show th a t every 3-by-3 subm atrix of A  is in the Hadamard dual, 

by Proposition 5.1.5. Let B  be any 3-by-3 subm atrix of A. Consider the matrices 

A  o pp'F') and A  o U^'K By hypothesis .4 o PF(fc) and .4 o are TN. Hence by 

considering appropriate submatrices, it follows that B  o W  and B  o W T are both TN. 

Therefore B  is in the Hadam ard dual by Theorem 5.3.3. Thus .4 is in the Hadam ard 

dual. |

Of course by transposition we may obtain a similar characterization of the n-bv- 

3 Hadamard dual. At present no characterization of the Hadam ard dual for 4-bv-4 

totally nonnegative m atrices is known, but we offer the following ideas and conjectures 

on this issue.

C O N J E C T U R E  5 .3 .11  A 4~by~4 totally nonnegative matrix, .4 is in the Hadamard 

dual i f  and only i f  .4 o V4, A  o V4 , A  o V 5 ,  and A  o V ?  are all totally nonnegative 

matrices, where
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■ 1 1 0 0 ■ ’ 1 1 0 0 ■
1 1 1 0 and V5 = 1 1 1 1
1 1 1 1 1 1 1 1

_ 1 1 1 1 . .  0 0 1 1 .

A fter examination of the 3-by-3 and 3-by-n test matrices, a list of potential 4-by-4 

test matrices can be proposed. This list includes the following six m atrices as well as 

their transposes:

1 0 0 ■ 1 1 0 ' 1 1 0 ■

1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1
1 1 1 . 1 1 1 . 1 1 1 .

1 0 0 ■ ■  1 1 0 0 ■ 1 0 0 ■

1 1 0 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 . 1 0 0 1 1 . 1 1 1 .

We refer to these matrices as V x th ru  V G, respectively. By observation, we are able 

to eliminate two of these m atrices almost immediately, for det(.4 o ) >  det(.4) and 

det(.4o  Vq) > det(.4).

Instead of using the rem aining four matrices and their transposes, we first assume

that all of the 3-by-3 submatrices of .4 (where we w'ant to decide if A is in the

Hadam ard dual) have passed the 3-by-3 tests. Thus, assuming th is inform ation, the

following inequalities are apparent:

det(A  o VI) <  det(A  o V2) and det(A o V3) <  det( A o V2).

det(.4 o Vi) >  det(.4 o V4) and det(A o V2) > det(A  o V,r ),

det(A  o Vi) >  det(A  o V3) and det(A o V2) >  det(A  o V3),

det(A) >  det(A  o Vi) > det(A  o V3) and det(A) >  det(A  o V 2 ) > det(A  o V 3 ) .
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Here we axe assuming det.4[{2,3}] >  0. Using the above inequalities implies th a t we 

m ay elim inate two more of these potential test matrices as well as their transposes. 

Thus only V4 and V5 remain. Unfortunately, we have been unable to determ ine other 

relevant inequalities relating these two m atrices to each other, or to A.

Additionally, we would like to note th a t the methods employed in proving The

orem  5.3.3 have not proved fruitful for the  4-by-4 case. In conclusion, although the 

H adam ard dual is not completely described in general, considerable inform ation con

cerning characteristics of the H adam ard dual members is known. Further research on 

this problem  will hopefully lead to a com plete description of the H adam ard dual, or 

perhaps more general qualities that members of the Hadamard dual m ust possess.

5.4 (0,+)-Patterns

In this section we consider (0, + )-p a ttem s (see also Chapter 2) of totally  nonnegative 

m atrices in the Hadamard dual. Recall th a t an m-by-n (0,+)-sign p a tte rn  is an m- 

by-n array of symbols chosen from {+ ,0 } , and a realization of a sign p a tte rn , S, is a 

real m-by-n m atrix  .4 such that:

ciij >  0 when Sij =  + ; and aij =  0 when s ^  =  0.

As seen in chapter 2 there are two natu ral m athem atical notions associated with 

sign-pattern problems. They are the notions of require and allow. We say an m-by-n 

sign pa tte rn  S  requires property P  if every realization of S  has property P . On the 

other hand we say a sign pattern  S  allows property P  if there exists a  realization of
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S  w ith property P. We begin our analysis here by completely characterizing all the 

sign patterns S  th a t require m atrices in the Hadamard dual of the totally  nonnegative 

m atrices.

D E F IN IT IO N  5.4 .1  Given an m -by-n  sign pattern, 5, we say th a t S  requires 

Hadamard duality o f a T N  matrix  if any totally nonnegative realization of S  is in 

the Hadamard dual.

Observe th a t in order for a  given sign pattern, S, to require H adam ard duality, it 

is necessary th a t S  is of double echelon form described in Theorem  2.5.4

E X A M P L E  5.4 .2  Any 1-by-l, 2-by-2 or 2-by-3 pattern  other than any one of

'  + + +  ■ ' + + 0 ■ ' + + +  '
+ + + + + + , or + + +
+ + +  . . + + + . 0 + +  .

requires Hadamard duality of a TN matrix.

To verify this, first observe that by Examples 5.0.1 and 5.3.6 there exist matrices 

w ith the above sign patterns that are not in the Hadamard dual. Thus, suppose S  

is a 3-by-3 sign pattern  different from the three patterns above. Then, 5  is a (with 

possibly more zeros) tridiagonal pattern , and hence S  requires H adam ard duality of 

a TN  matrix, by Theorem 5.2.4.

L E M M A  5.4 .3  Suppose A  is an m-by-n totally nonnegative matrix, and let X  be

.4
any 1-by-n sign pattern. Then, there exists a realization, x  o f X . such that ----- is

x
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totally nonnegative i f  and only i f
X

is o f double echelon form .

P ro o f . The above condition is obviously necessary. Now suppose
A

X
is of double

echelon form. Assume without loss of generality that 0 ^  X  (because otherwise we are 

adding a zero row to a TN m atrix, which preserves the property of being TN  see chap

te r 2). Assume that X  is in following form: X  = o ••• 0. 4- ••• -K 0 ••• 0

where the plus signs span columns j  to j  + k < n. Observe that if j  +  k < n, then

A
columns j +  k + 1 , . . .  , n of A  m ust be all zero columns since is in double

echelon form. Thus, since zero columns do not affect total nonnegativity, it is enough

0 ••• 0. + +to prove this lemma for the case j  + k  = n. Hence, X  =

where the first plus sign occurs in the j th column. Let x  be any realization of X ,  and 

A
let C  =

x
. We will choose values for r,-, i > j  sequentially.

By Proposition 2.4.4, we may choose Xj positive and large enough so tha t

C [ { 1 ,2 ,...  ,m  +  1} | { 1 ,.. .  , i }  ] = -4 [{1 ,2 ,... ,m } |{ l------ , j}]
0 ••• 0. Xj

is TN . Similarly, choose xJ+i so th a t C { 1 , 2 , . . .  ,m +  1} is TN.

Continuing in this manner until we choose x n such that C  =
.4

x
is TN. Observe
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th a t a t each stage, x,- (/ > j )  enters positively into each m inor th a t includes x,-. Thus, 

there is no upper bound for the  choice of x,- at each stage. This completes the proof.

I

T H E O R E M  5 .4 .4  Let S  be an n-by-n sign ■pattern that is in doable echelon form. 

Then, S  requires Hadamard duality o f a TN  matrix i f  and only i f  S  does not contain 

any one o f the following sign patterns as a subpattem:

'  + + +  ' ■ + + 0 ' ' + + +  '
+ + + • + + + , or + + +

_ + + +  . . + + + . 0 + +  _

P ro o f . Suppose S  is in double echelon form for which

+ + 0 
+ + +
+  +  +

is a subpattem . The analysis is similar for the other two patterns. F irst observe 

th a t we may assume this su b p a ttem  occurs as a contiguous pattern , since S  is in

double echelon form. Suppose this 3-by-3 subpattem  is indexed by rows j ,  j  +  1, j  +  2
+  +  0

of S. Let B  be a 3-by-3 to ta lly  nonnegative m atrix with sign pa tte rn  +  +  +
+ + +

tha t is not in the H adam ard dual (Recall Example 5.0.1). Extend B  to an 3-by-n

TN  m atrix  B  by any one of the  following operations depending on the sign pattern 

in rows j , j  +  1, j  +  2 of S  :

1. By repeating columns,

T  r  -| r

2. By adding columns of the  form 0 0 5 or 5 0 0 , 5 > 0  or
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3. By invoking Lemm a 5.4.3 applied to the transpose of the m atrix  constructed 

thus far.

Now, by Lemma 5.4.3 we may construct an n-by-n TN m atrix  B  w ith sign patte rn  

S. However, B  is not in the Hadamard dual since B  contains a subm atrix  tha t is not 

in the H adam ard dual (see Proposition 5.1.5).

Suppose S  is of double echelon form and does not contain

' + + +  ■ ' + + 0 ■ ' + + +  ‘
+ + + , + + + , or + + +

. + + +  . r
T + + . 0 + +  .

as a subpattern. We proceed by using induction on n. This claim has already been 

verified for n <  3, so assume the result is true for all such patterns of size less than 

or equal to n — 1. Let S  be as assumed above. Observe th a t, by induction, any TN 

realization of S  has all of its proper submatrices in the H adam ard dual. Thus, we 

only need to check the det(.4 o B ), where .4 is any realization of S  and B  is TN. We 

consider three cases:

C ase  1: Suppose the  ilh diagonal entry of S  is zero. Then, S  contains a zero block 

of size n — i + l +  i = n + l. Hence, A o  B  has a zero block of size n + 1 for any 

realization .4 of S. But, in this case, det(A o B )  =  0 (see [Ry]). Thus, .4 is in 

the H adam ard dual.

C ase  2: Suppose S  has positive main diagonal entries, bu t th a t some entry on che 

superdiagonal is zero (similar arguments hold if an entry  on the sub diagonal 

is zero). Assum e the (£,z +  l ) st entry of S  is zero. Since S  has positive m ain
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diagonal entries in addition to being in double echelon form, it follows that S  

contains a block of zeros of size n —i + i =  n. Hence, 5  is block triangular, and 

by induction, we have det(A  o B ) > 0, for any realization .4 of 5  and B  is TN

C ase  3: Finally, suppose S  has positive main super and subdiagonal entries. Since 

S  does not contain any of the three subpattem s (by assum ption), it follows that 

the (i, i +  2) and (/ +  2, i) entries of S  must be zero for i  =  1 ,..., n — 2. Since S  

is in double echelon form, it follows that S  is a tridiagonal pattern . Thus, any 

realization .4 of S  is in the H adam ard dual by Theorem 5.2.4. |

Note that if .4 is m-by-n w ith  n > m  (without loss of generality), then .4 is in the 

H adam ard dual if and only if every m-by-m submatrix of .4 is in the H adam ard dual. 

This follows from Proposition 5.1.5. The above remark combined with Theorem  5.4.4 

gives rise to the following corollary:

C O R O L L A R Y  5.4 .5  Let S  be any m-by-n sign pattern that is in double echelon 

form . Then, S  requires Hadamard duality o f a T N  matrix i f  and only i f  S  does not 

contain

'  + + +  ' ' + + 0 ■ ' + + i“T
+ + + 9 + + + , or + + +

_ + + +  . . + + + . 0 + +  .
as a subpattem.

The corresponding “allow” question seems much more difficult. One reason for 

this is that we do not have a general description of the m atrices in the Hadamard 

dual for larger sizes. However, at the very least we can say the following.
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T H E O R E M  5.4 .6  L e tS  be any 3-by-n (0, + ) double echelon pattern. Then S  allows 

a totally nonnegative matrix in the Hadamard dual.

P ro o f . It is not difficult (given Corollary 5.3.4) to show th a t any 3-by-3 (0 ,+ ) 

double echelon pattern  allows a TN m atrix  in the Hadamard dual. Suppose by 

induction th a t any 3-by-(n — 1) (0 ,+ ) double echelon pattern  allows a  TN  m atrix  

in the H adam ard dual. Let S  be any 3-by-n (0, + ) double echelon pattern . Let B  be 

a realization of the first n — 1 columns of S  th a t is in the H adam ard dual. Such a B  

exists by the induction hypothesis. Let x =  (x 1; x2, x 3)T be a column vector w ith the 

same (0, + ) pattern  as the n th column of S . If x  =  0, then we are done. So suppose 

r  ^  0. It is clear that if i !  is a  fixed nonnegative number, then we m ay choose x 2 

large enough (if x 2 =  0, then aq =  0 by the assumption that S  is double echelon) so 

that the first two rows of [B \x ] are in the H adam ard dual. Observe th a t x 3 lies in the 

(3,3) entry of any submatrix including row 3 and column n. Since B  is TN  x 3 enters 

positively into the determinant of any such 3-by-3 submatrix. Thus x 3 can be chosen 

large enough so that all of the conditions of Theorem 5.3.10 (which are really ju st 

determ inantal conditions) hold and so tha t [P|x] is TN. This completes the proof. |

The corresponding "allow" question for larger sizes is currently unresolved, how

ever, we conjecture that any m-by-n  (0 ,+ ) double echelon sign pattern  allows a TN 

m atrix  in the Hadamard dual. Certainly, the full pattern does, since J  is in the 

H adam ard dual.
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5.5 Oppenheim’s Inequality

Suppose A and B  are two n-by-n positive semi definite m atrices. T hen  by a classical 

result of Schur (see [HJ1]), A o  B  is again positive semidefinite. Therefore, in particu

lar, det(A o B) >  0 in this case. However, even more is true here. Oppenheim  proved
n

th a t if A  and B  are positive semidefinite, then det(A o B ) > d e tB  J J  an (see [HJ1]).
i=i

For the case in which A  and B  axe n-by-n totally nonnegative m atrices it is 

certainly not true that th a t det(A  o B ) > 0 (see Example 5.0.1). However, if A  is 

totally nonnegative and in the H adam ard dual, then A  o B  is to tally  nonnegative 

(whenever B  is TN) and det(A o B ) >  0. Furthermore, O ppenheim ’s inequality holds 

in this case.

T H E O R E M  5.5 .1  Let A  be an n-by-n totally nonnegative m atrix in  the Hadamard 

dual, and suppose B  is any n-by-n totally nonnegative matrix. Then

n

det (A o B ) > detB  J J  an.
i=i

P ro o f . If B  is singular, then there is nothing to show, since det (A o B )  >  0, as A 

is in the Hadamard dual. Assume B  is nonsingular. If n =  1. then  the inequality 

is trivial. Suppose, by induction, th a t Oppenheim’s inequality holds for all (n — 1)- 

by-(n — 1) TN matrices A and B  w ith  A in the Hadamard dual. Suppose A and B
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axe n-by-n TN  matrices and assume th a t A is in the Hadam ard dual. Let A n ( Bn)  

denote the principal subm atrix obtained from A  (B)  by deleting row and column
r

n

1. Then by induction d e t ( A n  o B n ) >  det£?n JJa,-,-. Since B  is nonsingular, by
i = 2

Fischer’s inequality B n  is nonsingular. Consider the m atrix B  =  B  — x E n -  where 

x ~  detBii E u  is the (1,1) standard basis m atrix. Then detH  =  0, and B  is 

TN  (see Lemma 2.6.2). Therefore A o  B  is TN and det(A o B )  >  0. Observe that 

d e t(A o  B ) =  det(A  o B ) — x a u det(A ii ° -^ii) >  0. Thus

d e t(A o H ) >  x a u det(A u o B n )
n

>  x a u d e t H u  J J  an
i = 2

n

=  d e tB  J J  an,
i=i

as desired, g

We close this section with some further remarks concerning O ppenheim ’s inequal

ity. In the case when A and B  are n-by-n positive semidefinite m atrices it is known 

th a t the following inequality holds: det(A  o B ) > max < detH J J  an, detA  J J  bn >.
I  i = x  1 = 1  J

However, in the case when A is in the H adam ard dual and B  is an n-by-n TN m atrix
n

it is not true in general that det(AoH) >  detA  J J  Consider the following example.
1=1

E X A M P L E  5 .5 .2  Let A be any 3-by-3 totally  positive m atrix  in the  Hadam ard
[ 1 1 0

dual, and let B  =  W , the 3-by-3 totally nonnegative m atrix equal to  1 1 1
1 1 1
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Then since the (1,3) entry of A enters positively into detA  it follows that
3

det(A  o B )  <  detA  =  detA J J  6,-,-.
i=i

The next rem ark settles the issue of the possibility that Oppenheim ’s inequality

offers a characterization of all TN  matrices in the H adam ard dual, namely, if a given

TN m atrix  A satisfies Oppenheim ’s inequality, then A is in the H adam ard dual.

Note that this is true for n <  3. For n =  4 consider the following m atrix. Let 
1 1 1 0

A = 1 1 1 1
1 1 1 1
1 1 1 1

Suppose B  is any 4-by-4 TN m atrix. Then since the (1,4)

4

enters negatively into detf? it follows that det (A o B ) > det B  =  det B  J J  a,-,-. Hence A
t=i

r> i-\ <■-%▼-» V» <->» rv̂  ̂  A  to »r* XT /-I ▼» rlttol ctrt/'A J
■ - J  ^ .  4  X i_» XXX. UXXW X X U U U X X X U tX  U  •  X

a subm atrix (A[{1,2, 3} |{2,3,4}]) that is not in the dual.
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