
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

1998 

Stability of quark-antiquark models of mesons: A study on the Stability of quark-antiquark models of mesons: A study on the 

validity of the spectator, Dirac, and Salpeter equations validity of the spectator, Dirac, and Salpeter equations 

Michael Uzzo 
College of William & Mary - Arts & Sciences 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Uzzo, Michael, "Stability of quark-antiquark models of mesons: A study on the validity of the spectator, 
Dirac, and Salpeter equations" (1998). Dissertations, Theses, and Masters Projects. Paper 1539623942. 
https://dx.doi.org/doi:10.21220/s2-jkcm-a386 

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M 
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized 
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623942&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarworks.wm.edu%2Fetd%2F1539623942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-jkcm-a386
mailto:scholarworks@wm.edu


Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

lt.jFQRMA TION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI films the 

text directly from the original or copy submitted. Thus, some thesis and 

dissertation copies are in typewriter face, while others may be from any type of 

computer printer. 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleedthrough, substandard margins, and improper alignment 

can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete manuscript and 

there are missing pages, these will be noted. Also, if unauthorized copyright 

material had to be removed, a note will indicate the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning 

the original, beginning at the upper left-hand comer and continuing from left to 

right in equal sections with small overlaps. Each original is also photographed in 

one exposure and is included in reduced form at the back of the book. 

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6" x 9" black and white photographic 

prints are available for any photographs or illustrations appearing in this copy for 

an additional charge. Contact UMI directly to order. 

UMf 
Bell & Howell Information and Learning 

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 
800-521-0600 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

STABILITY OF QUARK-ANTIQUARK MODELS OF 

1viESONS 

A Study on the Validity of the Spectator, Dirac, and Salpeter Equations 

A Dissertation 

Presented to 

The Faculty of the Department of Physics 

The College of William and Mary in Virginia 

In Partial Fulfillment 

Of the Requirements for the Degree of 

Doctor of Philosophy 

by 

Michael Uzzo 

1998 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

UMI Number: 9936908 

UMI Microform 9936908 
Copyright l999, by UMI Company. All rights reserved. 

This microform edition is protected against unauthorized 
copying under Title l7, United States Code. 

UMI 
300 North Zeeb Road 
Ann Arbor, MI 48l03 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPROVAL SHEET 

This dissertation is submitted in partial fulfillment of 

the requirements for the degree of 

Doctor of Philosophy 

Michael Uzzo 

Approved, September 1998 

(/; ~ 
f. fll:?. Gross 

Prof. Marc Sher 

Thomas Jefferson National Accelerator Facility 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

I want to thank all of the people who helped me through the years, too 

numerous to be listed here but you know who you are. I should single out 

a fev .. · in particular. For starters my parents who were there from the very 

beginning and without whom none of tllis would be possible. Also Kelly 

Herbst, in whom I found the sister I never had. Finally Echo Simmons, the 

latest addition to my life and who means so very much to me. All my love. 

iii 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS vii 

LIST OF TABLES vii 

LIST OF FIGURES xi 

NOTATIONS AND CONVENTIONS XX 

ABSTRACT XX 

1 Introduction 2 

1.1 Mesons and their quark structure 2 

1.2 Definition of Stability .. 10 

1.3 The Stability Conditions 15 

1.4 Sunm1ary and Outline 19 

2 The Dirac Equation 21 

iv 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

2.1 Derivation . . . 

2.2 The Equations . 

2.3 Stability Results 

3 Single Channel Spectator Equation 

3.1 Derivation . . . 

3.2 The Equations . 

3.3 Stability Results 

4 The Salpeter Equation 

4. L Derivation . . . 

4.2 The Equations . 

4.3 Stability Analysis 

5 Theoretical Analysis 

5.1 Derivation of the general equations 

5.2 

5.3 

Theoretical Analysis of the Dirac Equation 

Theoretical Analysis of the lCS Equation .... 

21 

29 

33 

40 

41 

50 

52 

75 

76 

77 

78 

95 

96 

97 

102 

6 Conclusions 114 

A Derivation of the Form of the Negative Energy Dirac Spinor 121 

B Spectator Equation in the Limit when m 1 ---+ oo 123 

v 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

C Definition of the Spline Function 126 

D Momentum Space Wave Function Structures 132 

REFERENCES 138 

VITA 141 

vi 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS 

The author wishes to thank Prof. Franz Gross for all of the help he gave 

over the years, and especially for his contributions to the theoretical analysis 

technique. Many thanks to the faculty at the Physics Department of the 

College of vVilliam and rvlary, especially to the members of his committee, 

which include Prof. J. D. \iValecka, Prof. M. Sher, Prof. Keith Griffioen, and 

Nathan Isgur. Finally, the author expresses his gratitude to his friends and 

family for all their support. 

vii 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

LIST OF TABLES 

2.1 Helicity spinors . . . . . . . . . . . . . . . . . . . . . . . . . 22 

2.2 First four positive and negative Dirac energy levels for y=O.O, 

0.4, and 0.6 with spline ranks of 20, 16, and 12. The energies 

are in GeV. The bold face numbers are unstable states with 

energies greater than the stable ground state, as discussed in 

the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

3.1 

3.2 

8 1 Term Identities for scalar and time-like vector 

8 2 Term Identities for scalar and time-like vector 

44 

44 

3.3 Results for XA 1T CTiXA 11 XA21T CTiXA2 where A1 = . ..\2 and A~ =A~ 46 

3.4 First four positive and negative 1CS ;;;=5.0, and 10.0 binding 

energy levels for y=O.O, and 0.4 with Spline ranks of 20, and 

12. (Energy in GeV) . . . . . . . . . . . . . . . . . . . . . . 54 

viii 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

3.5 First four positive and negative 1CS n:=LO binding energy 

levels for y=O.O, and 0.4 with Spline ranks of 24, 20, 16, and 

12. (Energy in Ge V) . . . . . . . . . . . . . . . . . . . . . . 61 

3.6 First four positive and negative binding energy levels for y=OA 

n:=LO, 2.0, 5.0, and 10.0 ·with Spline ranks of 20, and 24 of 

the l CS ~~ systems (Energy in Ge V). . . . . . . . . 

4.1 First four bound state mass levels squared of the Salpeter 

Equation for y=O.O, and 0.4 'vith various Spline ranks. (En-

ergy in GeV) 

4.2 First Six bound state mass levels of the Salpeter Equation for 

y=O.O \vith m=0.85 GeV and various Spline ranks. (Energy 

66 

79 

in GeV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

4.3 First Six bound state mass levels of the Salpeter Equation for 

y=O.O with m=l.625 GeV and various Spline ranks. (Energy 

in GeV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 

5.1 Comparison of the exact and estimated solutions for the Dirac 

and 1 CS equations. All energies are in Ge V, and the symbol 

- indicates that there is no stable solution. . . . . . . . . . . 106 

ix 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

6.1 Stability Results for scalar versus time-like vector mixed Lorentz 

structures (the table lists the region of stability or the first of 

the four tests that the system fails). . . . . . . . . . . . . . . 115 

6.2 Stability Results for scalar versus full four vector mixed Lorentz 

structures (the table lists the region of stability or the first of 

the four tests that the system fails). . . . . . . . . . . . . . . 116 

X 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

LIST OF FIGURES 

1.1 Energy is applied to quark-antiquark bound state system (a), 

until pair production is achieved resulting in two new mesons 

1.2 

1.3 

(b) ......................... . 

Example of electroweak decay of the p+ meson. 

Example of strong decay of the p+ meson. . . . 

1.4 Sketch of the solution to the Dirac equation for the scalar case, 

8 

11 

11 

where Vs > 0 and Vv = 0. . . . . . . . . . . . . . . . . . . . . 13 

1.5 Sketch of the solution to the Dirac equation for the vector 

case, where Vv > 0 and Vs = 0. . . . . . . . . . . . . . . . . . 13 

2.1 Dirac positive ground state solutions for three values of the 

vector strength y: y = 0.0, £ 1=0.976 GeV (circles and squares); 

y = 0.4, Er=l.028 GeV (solid and long dashed lines); and for 

y = 0.6, £ 1=1.065 GeV (heavy short dashed and dotted lines). 37 

xi 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

2.2 Dirac positive first excited state solutions for y = 0.0, E2 = 

1.394 GeV (circles and squares), for y = 0.4, £ 2=1.456 GeV 

(solid and long dashed lines), and for y = 0.6, £2=1.496 GeV 

(heavy short dashed and dotted lines). 

2.3 Dirac negative ground state solutions for y = 0.0, £_1 = 

-1.249 GeV (circles and squares), for y = 0.4, E_1=-0.660 

GeV (solid and long dashed lines), and for y = 0.6, E_1 = 

38 

2.028 GeV (heavy short dasheded and dotted lines). . . . . . 39 

3.1 Feynman diagram for the meson bound state vertex function. 

The kerneL or potential, is denoted by V. . . . . . . . . . . . 43 

3.2 This figure shows the position of the four poles associated \vith 

the four propagators Cf in the bound state equations. . . . . 47 

3.3 Positive ground state soutions for the quasirelativistic lCS 

equation with a pure scalar interaction. The solid and long 

clashed lines are for n:=5.0, £ 1=0.940 GeV; the heavy short 

dashed and dotted lines are for n:=lO.O, E 1 =0.964 GeV. The 

scalar grmmd state Dirac solution for E 1 = 0.976 Ge Vis sho·wn 

for comparison (circles and squares). . . . . . . . . . . . . . 55 

xii 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

3.4 Positive first excited state solutions labeled as in the previous 

figure. Here then.= 5.0 solution has an energy of E2 = 1.443 

Ge V and the n. = 10.0 solution an energy of E2 = 1.435 Ge V 

compared to the Dirac energy of E2 = 1.394 GeV. . . . . . . 56 

3.5 Negative ground state soutions labeled as in the previous fig­

ure. Here the n. = 5.0 solution has an energy of E_ 1 = -0.936 

GeV and the n. = 10.0 solution an energy of E_ 1 = -1.091 

GeV compared to the Dirac energy of E_ 1 = -1.249 GeV. . 57 

3.6 Positive ground state solutions of the quasirelativistic 1CS 

equation ·with a mixed scalar and vector interaction (y = 0.40) 

for two mass ratios n.. The solid and long dashed lines are for 

K = 5.0, E 1 = 0.992 GeV, and the heavy short dashed and 

dotted lines are for K = 10.0, E 1 = 1.013 GeV. The circles 

and squares show the solution for the Dirac equation with 

E 1 = 1.028 GeV. 

3.7 Negative ground state solutions of the quasirelativistic 1CS 

equation for y = 0.40 labeled as in previous figure. Here n. = 

5.0, E_ 1 = -0.548 GeV and K = 10.0, E_ 1 = -0.619 GeV. 

59 

The comparison Dirac level has energy E_ 1 = 0.660 GeV. 60 

xiii 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

3.8 Positive ground state soutions for the quasirelativistic lCS 

equation with a pure scalar interaction. The solid and long 

dashed lines are for ~~:=1.0, E 1=0.745 GeV; the heavy short 

dashed and dotted lines are for ~~:=2.0, £ 1=0.857 GeV. The 

scalar ground state Dirac solution for E 1 = 0.976 Ge Vis shown 

for comparison (circles and squares). . . . . . . . . . . . . . 63 

3.9 Negative ground state solutions labeled as in previous figure. 

Here then.= 1.0 solution has an energy of £_ 1 = -0.330 GeV 

and the n. = 2.0 solution an energy of E_ 1 = -0.607 GeV 

compared to the Dirac energy of E_ 1 = -1.249 Ge V. . . . . 64 

3.10 Positive ground state solutions for the quasirelativistic lCS 

equation with a four vector stength of y=0.4. For ~~:=5.0 the 

energy is E 1=0.992 GeV with the circles and squares used. 

The solid and long dashed lines are for ~~:=2.0, £ 1=0.0.918 

GeV; the heavy short dashed and dotted lines are for ~~:=1.0, 

E 1 =0.828 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . 67 

3 .l i Positive second excited states here are labeled as in the pre­

vious figure. The 11: = 5.0 solution has an energy of £ 3=1.973 

GeV and the ,.., = 2.0 solution an energy of £ 3=2.055 GeV. 

For the equal mass system the level is E 3=2.071 GeV. . . . . 68 

xiv 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

3.12 Negative grOLmd state solutions for the quasirelativistic ICS 

equation with a four vector stength of y=OA. For n:=5.0 the 

energy is £_ 1=-0.599 GeV where the solid and long dashed 

lines are are used. The heavy short dashed and dotted lines 

are for n:=2.0, £_1=-0.480 GeV. The Dirac system used as a 

comparison state is represented by circles and squares with 

E_ 1=-0.660 GeV. . . . . . . . . . . . . . . . . . . . . . . . . 70 

3.13 Negative second excited states here are labeled as in the previ­

ous figure. The n: = 5.0 solution has an energy of £_3=-0.774 

GeV and the n: = 2.0 solution an energy of £_3=-0.480 GeV. 

For the Dirac system £_3 =-0.879 GeV. . . . . . . . . . . . . 71 

3.14 Negative ground state solutions for the quasirelativistic 1CS 

equation with a four vector stength of y=OA. For n:=LO the 

energy is E_1=-0.318 GeV for both a spline rank of 30 (circles 

and squares) and 20 (solid and long dashed lines). 

3.15 Negative second excited state solutions for the quasirelativistic 

lCS equation \Vith a four vector stength of y=OA. For n:=l.O 

the energy is £_3 =-0.324 Ge V for both a spline rank of 30 

73 

(circles and squares) and 20 (solid and long dashed lines). 74 

XV 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

4.1 Positive and negative ground state solutions for the y = 0.4 

quasirelativistic equal mass Salpeter equation, f.L 1=1.157 GeV 

(solid and long dashed lines) and f.L- 1=-1.157 GeV (heavy 

short dashed and dotted lines). The positive ground state 

Dirac solutions for y=OA, £ 1=1.028 GeV (circles and squares) 

are shown for comparison. . . . . . . . . . . . . . . . . . . . 81 

4.2 The positive second excited state solutions for the y=OA equal 

mass Sal peter equation, IL3 = 2.094 Ge V (solid and long dashed 

lines) are compared to the second positive excited state Dirac 

solution for y = 0.4, £ 3 =1.772 GeV (circles and squares). . . 82 

4.3 Positive second excited state solutions for the Salpeter equa­

tion for a variety of scalar/vector mixings: pure vector y=l.O, 

/L3=2.565 GeV (circles and squares); y=0.6, f.L3=2.284 GeV 

(solid and long dashed lines); and y=0.4tt3=2.094 GeV (heavy 

short dashed and clotted lines). 

4.4 Positive ground state pure scalar solutions for the Salpeter 

equation IL 1 =2.185 Ge V spline rank of 20 (circles and squares) 

83 

and spline rank of 30 (solid and long dashed lines). . . . . . 86 

xvi 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

4.5 Positive fourth excited state pure scalar solutions for the Salpeter 

equation j.Ls=3.354 GeV spline rank of 20 (circles and squares) 

and spline rank of 30 J.Ls=3.347 GeV (solid and long dashed 

lines). 87 

4.6 Positive fifth excited state pure scalar solutions for the Sal peter 

equation ,L.£6 =3.482 spline rank of 20 (circles and squares) and 

spline rank of 30 j.L6=3.375 GeV (solid and long dashed lines). 88 

4.7 Positive second excited state, 'YJ.L y=0.4, solutions for the Salpeter 

equation j.L3 =4.448 GeV spline rank of 20 (circles and squares) 

and spline rank of 30 (solid and long dashed lines). . . . . . 92 

4.8 Positive third excited state, 'YJ.L y=0.4, solutions for the Salpeter 

equation p.4 =4.508 GeV with a spline rank of 30 (solid and 

heavy long dashed lines). . . . 

4.9 Salpeter equation, 'YJ.L y=0.4, third excited state j.L4 =4.686 

spline rank of 20 (circles and squares) and fourth excited state 

with a spline rank of 30 j.Ls=4.687 GeV (solid and long dashed 

lines). . ...... . 

93 

94 

5.1 The Dirac energy E = E 8 as a function of the variational 

parameter 1 for different mass ratios y = 0 (solid line), y = 0.4 

(dot-dashed), y = 0.6 (dashed), andy= 1.0 (dotted). . . . . 101 

xvii 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

-? u.- The trial wave functions f(x) and g(x) as a function of x = ;r. 

The different tails are for the cases w/"f = 0.1 (biggest tail), 

0.5, and 2.0 (smallest tail), as discussed in the te..xt. . . . . . 104 

5.3 Energies E = EB as a function of the variational parameter 'Y 

for the Dirac equation (solid line) and the lCS equation with 

m1 = 10m2 (dashed line). In both cases, y = 0. 109 

5.4 The lCS energy E = EB as a function of the variational pa-

rameter 'Y for different mass ratios K, = m 1/m2 = 10 (solid 

line), K, = 5 (dot-dashed), K, = 2 (dashed), and K, = 1 (dot-

ted). In all cases, y = 0 . . . . . . . . . . . . . . . . . . . . . 110 

5.5 The lCS energy E = EB as a ftmction of the variational pa-

rameter 'Y for different mixing ratios y = 0 (solid line), y = 0.4 

(dot-dashed), y = 0.6 (dashed), andy= LO (dotted). In all 

cases md·TT~r2 = 10. . . . . . . . . . . . . . . . . . . . . . . . 112 

5.6 The lCS energy E = EB as a function of the variational pa-

rameter 'Y for different mixing ratios y = 0 (solid line), y = 0.4 

(dot-dashed), y = 0.6 (dashed), andy= LO (dotted). In all 

cases m 1/m2 = L . . . . . . . . . . . . . . . . . . . . . . . . 113 

C.l" Spline Rank 4 Curves (Inde..x 1 Solid, 2 Long Dash, 3 Short 

Dash, and 4 Dot). . . . . . . . . . . . . . . . . . . . . . . . . 130 

xviii 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

C.2 Spline Rank 4 Curves (Inde.x 1 Solid, 2 Long Dash, 3 Short 

Dash, and 4 Dot) with Momentum Arguement. 

D.l Non-Relativistic linear potential ground state wave functions, 

Airy solution £ 1=6.483 GeV (Solid Line), Spline Rank 20 

131 

E 1=6.485 GeV (Circle), Spline Rank 16 £ 1=6.486 (Square). 135 

D.2 Non-Relativistic linear potential first excited state wave func-

tions, Airy solution £ 2 =11.337 GeV (Solid Line), Spline Rank 

20 £ 2=11.356 GeV (Circle), Spline Rank 16 £ 2=11.355 (Square). 136 

D.3 Non-Relativistic linear potential second excited state wave 

ftmctions, Airy solution £ 3 =15.309 GeV (Solid Line), Spline 

Rank 20 £ 3 =15.464 GeV (Circle), Spline Rank 16 £ 3 =15.341 

(Square). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 

XIX 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

NOTATIONS AND CONVENTIONS 

At this time it is appropriate to introduce some of the conventions used 
throughout this dissertation. Any vector variables written in bold face are 
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light antiquark is set to 0.325 Ge V, the rest mass of the up quark, while the 
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ABSTRACT 

Mesons are made of quark-antiquark pairs held together by the strong 
force. The one channel spectator, Dirac, and Salpeter equations can each be 
used to model this pairing. We look at cases where the relativistic kernel of 
these equations corresponds to a linear combination of scalar exchange and 
vector exchange. The vector exchange will be either the time-like component 
or the full four vector. The systems covered here are referred to as quasirel­
ativistic, which means retardation, regularization, and form factors are not 
included. Since the model used in this paper describes mesons which cannot 
decay physically, the equations must describe stable states. We find that 
this requirement is not always satisfied, and give a complete discussion of 
the conditions under which the various equations give unphysical, unstable 
solutions. 

xxi 
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Chapter 1 

Introduction 

1.1 Mesons and their quark structure 

In the simplest models, mesons are bound states of a valence quark-antiquark 

pair confined by the strong force. Even for such a simple case, a covariant 

model is needed when the mesons are composed of light quarks with high 

momentum components. However, covariant models require knowledge of 

the Lorentz structure of the confining interaction, and it turns out that some 

choices of Lorentz structure for some equations will produce mesons which 

decay. vVhen no mechanism for decay has been included in the model, which 

will be the situation for the cases discussed in this paper, this is a sign that 

the solutions are unstable clue to mathematical inconsistency. For this reason 

2 
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3 

such a c.:"1.se will be rejected. In this research \Ve studied confining potentials 

with scalar and either time-like or four vector exchanges, and found that the 

stability of such interactions depends on the kind of relativistic equation used 

for the description of the interaction. 

Our knowledge of mesons in both experiment and theory have grown 

greatly since the concept was first developed by Yukawa in 1935 [1]. This 

first theory on mesons was developed as a means to explain the properties 

of nuclear forces. The concept was inspired by the model for the Coulomb 

force e:teting bet\veen two charged particles. The nucleon constantly emits 

particles with a finite rest mass, which are now referred to as pions. However, 

the production of these pions alters the rest mass of the nucleon which is a 

violation of the mass-energy conservation law. The way around this dilemma 

is supplied by the Heisenberg uncertainty principle. The pion in question can 

only exist for a short period of time before being absorbed by the nucleon. 

Such a pion is referred to as a virtual particle. 

Suppose that two nucleons are close enough so that the virtual pion can 

travel the distance between them. There will then be a transfer of momentum 

carried by the pion from the pa.rent nucleon to the second. This results in 

the same effect as a force acting between the two nucleons. When Yukawa 

developed his theory, mesons had yet to be detected. However, by observing 
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4 

the range of the nuclear force phenomena he was able to deteTIPir.te the pion 

rest mass. 

The experimental confirmation of the existance on pions as real particles 

would have to wait until 1947 [2]. Lattes, Occhialini, and Powell discovered 

that an abundant particle in cosmic rays, the muon or J.L, is actually a decay 

product of the pion [3]. They also confirmed that the pion, or 1r meson, does 

interact with nucleons through the strong force. 

It did not take long for the number of new mesons detected to grow 

tremendously. A new unifying principle had to e..'cist to explain all of these 

different yet similiar particles. Perhaps some underlying structure would 

enable the mesons to be broken down into a grouping not unlike the periodic 

table for grouping atoms. The most popular explanation is the theory of 

quarks. By this theory all particles can be divided into three groups: gauge 

bosons, leptons, and hadrons. Gauge bosons are the particles which convey 

the fundamental forces, such as the photon. Leptons include the electron, 

muon, and tau along with each of their neutrinos, like the electron neutrino. 

These six fundamental particles each have their own antiparticle. Leptons 

do not interact via the strong force, but do experience the electroweak force. 

Hadrons on the other hand are not elementary particles. They are composed 

of constituent particles called quarks. Hadrons are then divided into two 
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5 

families, baryons and mesons. Baryons, which include protons and neutrons, 

are made up of a triplet of quarks or antiquarks. These particles have half­

integral spin. Mesons are made out of a quark-antiquark pair and have integer 

spin. 

This is the proper time to review some of the unique properties of quarks 

and their bound state systems. Quarks have spin 4 with the fractional charges 

±~and ±t. The six flavors of quarks are up, down, charmed, strange, top, 

and bottom along with their six anti quark counterparts. The exact properties 

of quarks can be found in most current textbooks, such as Ref. [4]. The fact 

that they possess non-integer charges, a phenomenon not observed in nature, 

is not a problem since an isolated quark cannot occur. The reason for this 

will be covered shortly. 

The triplet of quarks for the baryon and the quark-antiquark pair of 

the meson are referred to as valence quarks. These quarks determine the 

properties. such as spin and cha.rge, of the bOtmd state particle. The particle 

of force which binds the quarks together is the gluon, which has spin 1, 

and no charge or mass. In nature, the picture of these bound states is not 

this simple. In addition to the valence quarks there is also a sea of virtual 

quark-antiquark pairs and gluons. To make matters more complex, gluons 

can interact with one another to produce glueballs. The existence of this sea 
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of virtual quarks and glue interactions will be ignored in this research. The 

systems studied here will also be isolated from the outside environment. 

There is another feature of the quark model which must be addressed. 

Consider the ~ ++ baryon which is composed of three up quarks in identical 

states. The resulting system is a symmetric state. From Fermi statistics we 

know that the bmmd state must instead be antisymmetric. The solution to 

this dilemma is provided by QCD in the new property of color. There are 

three colors, which are sometimes cc.uled reel, green, and blue, along with 

their anti-colors. Of course the term color does not refer to any form of 

pigmentation. Each of the three up quarks has one of these colors \Vith no 

duplications. The resulting combination of all three colors is referred to as a 

white or color neutral botmd state. \Vhen this principle of quantum number 

is applied, the system gains a new antisymmetric property. This results in the 

bound state system being antisymmetric. This new color property therefore 

provides the satisfaction of Fermi statistics. 

\,Yhen the system is an anti-baryon, then the three anti-colors would be 

utilized. For mesons the quark has one color and the antiquark has the 

corresponding anti-color, thus producing a neutral color bound state. The 

gluons must also have color in order to convey the strong force which keeps 

not only the quarks bound together, but the nucleons as well. For gluons 
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however, the property is a bicolor in which the particle has one color and a 

diferent anti-color. An e.xarnple is a gluon possesing color G R, or green and 

anti-red. 

A method of numerically solving QCD is lattice gauge theory. In fact, 

from such numerical simulations the force between quarks was determined 

to be produced by a linear potentiaL However, lattice techniques require a 

great deal of computer power to accomplish their predictions. This in turn 

has limited their applications. 

It is believed that an isolated quark can not exist, which is also due to 

the linear confining potentiaL The qq pair of a meson may be forced apart by 

dumping energy into the system. The farther apart a quark and antiquark 

become the stonger the confinement. \Vhen energy of at least twice the rest 

mass of a quark has been applied to the bound state the quark-antiquark 

pair splits. However, the energy applied to the system causes a new qq pair 

to be produced. The result is the production of two separate mesons from 

the original, as illustrated in Fig. L L 

The currently accepted potential of QCD, the one gluon exchange plus 

linear confinement, has been utilized in several studies such as Ref. [5]. Such 

studies have shown very encouraging results for the quark model in predict­

ing such hadron properties as the mass spectra. In our research the one 
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(a) 

(b) 

Figure Ll: Energy is applied to quark-antiquark bound state system (a), 

until pair production is achieved resulting in two new mesons (b). 

gluon exchange component has been dropped from the potential in order to 

simplify the models. However, the same stability criteria presented here can 

be applied to any form of the potential so long as the linear confinement is 

present. 

This is not the first time that the stability of covariant models of confine­

ment has been addressed. Several papers have been written on this topic, 

some with contradictory conclusions. Two examples which illustrate this are 

papers titled An exact argument against an effective vector exchange for the 

confining q·uark-antiquark potential [6], and Evidence against a scalar con­

fining potential in QCD [7]. If both papers are correct, this would indicate 

that, at best, the Lorentz stntcture for the potential is more complex than a 

simple scalar or vector exchange. 
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Our research into the question of stability was motivated by a previous 

paper on the subject [8]. In this paper Parramore and Piekarewicz based their 

stability condition on whether the eigenvalues were real, and then confirmed 

the results based on the wave function structures. They found that the 

Salpeter equation was stable when the vector strength y >0.5 regardless of 

the quark masses. The basis nmctions used to model their solutions were 

non-relativistic harmonic oscillators. 

A second group, Ref. [9], also fmmd the Salpeter equation with a scalar 

Lorentz structure to be tmstable. They too cite the existence of imaginary 

eigenvalues as proof of their conclusions. In addition, they also point out that 

the time-like vector confinement has several problems of its own, including 

the fact that its one body limit is tmstable. To solve their numerical systems 

\Vallace and his group utilized cubic spline functions. 

However, a third group found that the Salpeter equation was stable with 

a pure scalar system for a large quark mass and a weak linear confinement 

coefficient [!OJ. All other time-like vector strengths are also stable so long 

a.s the appropriate quark masses are used. ~Ai.inz and his collegues solved 

their numerical systems using the variational principle based on Laguerre 

polynomials. In the paper they identify two criteria for physically acceptable 

solutions. First, the norm of the solution cannot be zero, which automatically 
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implies that the bound state mass lvf is reaL Second, the eigenvalue bound 

state mass and the norm have to be positive to fulfill the normalization 

condition< 7/Jiw >= (2;r) 22.NI. As a result of their second condition they are 

forced to neglect the negative mass eigenvalues. 

1. 2 Definition of Stability 

Before beginning the discussion on the stability results we must first be clear 

about what kind of instabilities we are talking about. Mesons have a finite 

lifetime, and can decay either through the strong interaction or the elec­

troweak interaction. For example, the p+ can decay into a photon and 1r+ 

through the electroweak interaction shown in Fig. 1.2. It can also decay into 

a ;r+ and ;r0 via the strong interaction. as shown in Fig. 1.3. According to 

QCD, mesons are made of a valence quark-antiquark pair and a sea of gluons 

and quark-antiquark pairs. The interactions occur via strong and electroweak 

forces. In the model considered here, the presence of the sea will be ignored 

and the system will be totally isolated, so no interactions with the external 

environment a.re possible. This means that we will ignore the electroweak 

interactions, which eliminates the first of the decay mechanisms described 

above from the modeL Furthermore, we will not include any mechanism for 

quark-antiquark pair production, thus eliminating the strong decay modes 
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u / u 

p+ 1t+ 

-
d d 

Figure 1.2: Example of electrmveak decay of the p+ meson. 

as well. The result is a meson which cannot decay. This means that the 

presence of decay in the equations for the meson will imply a mathematical 

instability, and not the e..xistence of some physical decay process. 

The next question to be addressed is how to examine these equations 

of state for this mathematical instability. The easiest way to do this is by 

examining a \vell-known stable and unstable system, the simple Dirac system 

Figure 1.3: Example of strong decay of the p+ meson. 
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for a scalar and vector linear potential. Let us start by considering the Dirac 

equation 

Esr0¢(r) = (m + V + 1· \l)¢(r) (1.1) 

where V = Vsr + v;,r{0
, and the scalar and vector coefficents, Vs and Vv, 

are both constants. The solutions of this equation have both positive and 

negative binding energy eigenvalues Es. If the system described by this 

equation could interact w·ith the outside world (e.g. absorb or emit photons), 

the positive energy states could decay to negative energy states (unless all 

of the negative energy states were occupied and we were to invoke the Pauli 

principle, as in hole theory). However, we have assumed that there is no 

coupling to the outside world, and hence this equation will be assumed to 

describe a stable system as long as all the binding energy eigenvalues are reaL 

The reason for this particular stability condition will be explained shortly, 

however it is not the only stability condition which must be satisfied. Even 

with all of these simplifications. it is well known that the Dirac equation does 

not give stable solutions for all forms of the potential, and as an introduction 

to the analysis methods used in this research, we review this result now. 

The nature of the solutions to the Dirac equation can be studied by 

looking at the expectation value of U = m+ V. The form of this expectation 
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u 

Figure 1.4: Sketch of the solution to the Dirac equation for the scalar case, 

where Vs > 0 and Vv = 0. 

value, which describes how the wave ftmction behaves, is 

(U)± = ±(m + Vsr) + Vvr, (1.2) 

where the upper sign is for the positive energy states, described by u-type pos­

itive energy spinors, and the lower is for the negative energy states, described 

-m 

Figure 1.5: Sketch of the solution to the Dirac equation for the vector case, 

where Vv > 0 and Vs = 0. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

14 

by v-type negative energy spinors, and (U)+ = fi.Uu, and (U)_ = vUv. The 

signs come from the matrix elements 

iiu = 1 = -vv 

(1.3) 

which hold when the total momentum p = 0. \\-.hen Eq. (1.2) is sketched for 

pure scalar or vector cases, Fig. 1.4 and Fig. 1.5 are produced, respectively. 

The resulting wave ftmctions for a particle with energy E are sketched on 

the figures, along with the form of (U) which produces it. 

To understand these results, first neglect the coupling between positive 

and negative energy states. Then the positive energy states move under 

the influence of the potential (U)+ and the negative energy states under the 

infiuen.ce of (U)_. For the scalar case, the choice Vs > 0 produces confinement 

for both positive and negative energy states. Coupling the two solutions does 

not change this picture significantly, and t~1e exact solution is a total wave 

function which drops to zero at large distances. This means that both positive 

and negative energy solutions describe particles permanently confined around 

the point r = 0. 

Ne...-xt look at the vector case, and begin again by neglecting the coupling 

between the positive and negative energy states. In this case, however, either 
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the positive or negative energy state is always unconfined. For the example 

shown in Fig. 1.5, Vv > 0 and the positive energy states are confined and 

the negative energy states are not. Including coupling between the positive 

and negative energy states mixes the two states, and the wave function for 

the exact positive energy solution acquires a component \Vith a "tail" which 

oscillates to infinity, signaling deconfinement. The effect of the coupling 

is to produce an effective potential composed of two regions separated by 

a finite potential barrier through which the quark can tunnel. Once it is 

free of the potential barrier it can propagate endlessly through space, thus 

becoming a free quark. In this case, the exact coupled solutions do not 

confine either the positive or negative energy states, and the bound state 

is unstable. This example, known as the Klein paradox [11], is one of the 

unphysical instabilities we are trying to avoid. 

1.3 The Stability Conditions 

Now tli.at we have illustrated the stablity and instability of the simple Dirac 

equation with a scalar and vector Lorentz stntcture respectively, we can make 

the connection to the first stability technique to be used in this paper. It 

was mentioned earlier that the binding energy must be real for the system to 

have a chance at being stable. This first stability test is based on a technique 
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used ill a pre\'ious paper on tt-Js st1bject It utilizes the principle that 

the eigenstate wave ftmction which describes a meson in momentum space, 

?j;(p, t), can be written as 

7/J(p, t) = ¢(p )e-iEt, (1.4) 

where E = J J-L2 + Ps 2. To simplify the discussion the particle will be 

chosen to be at rest, PB = 0, and the bound state mass, J-L, is just the 

binding energy E 8 for the Dirac system. If the binding energy of the meson 

is complex, £ 8 = £ 0 ±if /2, the absolute square of the meson wave function 

is 

(1.5) 

As time increases, this goes exponentially either to zero or to infinity, showing 

that the meson is tmstable if its bound state mass is complex. This means 

that if the total energy of the meson (the bound state mass or binding energy 

depending on the equation used) is real then the time component of the 

system is stable. 

The next three stability tests turn out to be even more critical then the 

first one. As in the previous exa.mple, where even after assuming the binding 

energy_ is real the vector case still turned out to be unstable, most of the 

cases examined pass the first but not the remaining tests. It turns out that 
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the three additional stability requirements are essential and must be satisfied 

for the system to be stable. 

The three different relativistic equations will be solved numerically us-

. 
ing spline functions to model the wave functions in momentum space. A 

description of the properties of the spline functions is given in Appendix C. 

The validity of using spline ftmctions to model the solutions to these sys-

terns is shown in Appendix D. So long as enough spline functions are used 

to model the system, the lower eigenvalues will not vary much as the spline 

rank is changed for a stable system. This means that the lower positive and 

negative eigenvalues must agree for different spline ranks, which will be the 

second stability condition. If the eigenvalues vary with the spline rank, it is 

an indication that the system has a continuous spectrum of energies and is 

thus unstable. 

It was fotmd that for some systems the positive energy states were stable 

but the negative states were not. The unstable negative states were in fact 

completely isolated from the positive states. The only system that this fea-

ture was observed in was the one channel spectator, referred to as lCS. The 

validity of utilizing a system where only the positive energy states are stable 

is still under investigation. Such a partially stable system may prove useful in 

cases where the negative energy states can be rejected for phenomenological 
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reasons. The third stability requirement is therefore introduced. For a sys­

tem to be stable when the negative states are unstable, the positive ground 

state energy levels must always be greater than any negative state. It will be 

shown in the numerical analysis that the unstable negative states can possess 

positive eigenvalues which can grow with the spline rank until their value is 

greater than the positive ground state. 

The final stability condition is that a system is stable only if it possesses 

the correct wave ftmction stmcture for each specific state. \Vhen the state 

in question is among the most excited, there are not enough spline func­

tions to define it, and therefore it can be discarded. The magnitude and 

the locations of the wave function nodes does not matter, however the basic 

structure and the number of nodes does. To determine the proper structure 

of the wave functions in question the scalar Dirac wave functions are utilized 

e:lS a comparison since this has already been proven to be a stable system. 

As an additional check, Appendix D illustrates the momentum space wave 

functions for the one-dimensional Schrodinye-r equation. The position space 

solutions for this equation are Airy functions, and the resulting momentum 

space wave functions display the san1e characteristics expected for those par­

ticular energy levels. Only the positive energy states can be exanlined this 
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way, however, using the first three energy level wave functions as an example, 

one can easily predict the structure for all other positive states. 

It \\rill be shown that any stable system will fulfill all four conditions 

mentioned above. 

1.4 Summary and Outline 

For a system to be stable these four conditions must be met; 

(1) the binding energy, or the bmmd state mass for the lCS and Salpeter 

. 
equations, must be real; 

(2) the energy eigenvalues must be independent of the numerical approx-

imations used to obtain them; 

(3) if there are any unphysical solutions they must be confined to an iden-

tifiable part of the spectrmn which is clearly separated from the physical 

solutions; and 

( 4) the resulting wave functions must have the correct structure. 

In Chapter 2 the Dirac equation is derived, modified to be solved numer-

ically tttilizing spline ftmctions, and the stability analysis conducted. These 

same three steps are repeated for the one channel spectator equation in Chap-
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ter 3, and the Salpeter equation in Chapter 4. Then in Chapter 5 these three 

equations are studied using an approximation technique which gives insight 

into th_e origin of the instabilities. The estimated binding energies or bound 

state masses of stable states from this approximation technique are also pro­

vided with their exact numerical counterparts. Finally, the conclusions of 

this research are given in Chapter 6. 

The derivation of the negative energy Dirac spinor is provided in Ap­

pendix A. The Dirac equation can be derived from the lCS equation by 

taking the m 1 -j. oo limit, \vhich is presented in Appendix B. The defining 

equations cmd properties of the spline ftmctions can be found in Appendix C. 

Appendix D confirms that spline functions are capable of correctly modeling 

the confining potential systems. [t also demonstrates the structtue a stable 

wave function must have for any positive energy leveL 
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Chapter 2 

The Dirac Equation 

In this chapter the Dirac equation for e:m antiquark moving tmder the influ­

ence of a confining field generated by a fixed source \vith spin 1/2 is explored. 

This fixed source is a heavy quark, so the Dirac equation will model a Qq 

system, such as a D meson. 

2.1 Derivation 

In the usual applications the Dirac equation describes the motion of a particle 

tmder the influence of a potential generated by a spin zero source. It can be 

obtained by taking the m 1 ---;. oo limit of the relativistic two-body spectator 

equation which describes the motion of a spin 1/2 particle with mass m2 

and a spin zero particle with mass m 17 where the heavy spin zero particle is 

21 
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Table 2.1: Helicity spinors 

external quarks 

1 
2 

A·-_.!. 
t- 2 

internal quarks 

1 
2 

N = _.!. 
t 2 

cos !l 
2 

sin !l 
2 

. 0 -sm 2 

cos Q. 
2 
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restricted to its mass-shelL A discussion of how the Dirac equation emerges 

when m 1 - oo is presented in Appendix B. Since the field is generated by 

a heavy quark (a spin l/2 particle) the source of the confining potential has 

helicity ±4- This helicity will affect the solutions. The only features of the 

heavy quark that can be seen by the antiquark are the strong force and the 

effect of the quark helici ty. 

\Ve begin by defining the helicity form of the Dirac spinors, since all of 

the work will be clone in helicity space. In spin space the 7.£ spinor, defined 
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1 

o-·p 

Ev+m 

23 

(2.1) 

which contains the vector operator a-· p. In helicity space a-· p x" = 2-Aiplx\ 

giving an eigenvalue times the helicity spinor x". The u spinor in helicity 

space is therefore 

1 

where 

- IPI 
Pi= N"2 

• Pi 

(2.2) 

(2.3) 

and the index j denotes a quark (j = 1) or antiquark (j = 2). The values of 

p range from 0 to 1. The helicity spinors are defined in Table 2.1 for cases 

when the momentum is along the z axis (external quarks), and when the 

momentum is in the xz plane at an angle () \Vith respect to the z axis. We 

will use a prime to distinguish the latter from the former. These definitions 
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are consistent with those used in Ref. [14]. The v spinor used in this paper, 

(2.4) 

1 

is derived in Appendix A. It is convenient to use the helicity representation 

because helicity is invariant tmder rotations, and because the vector operator 

CY • p is replaced by scalar eigenvalues, thus simplifying the algebra. 

The Dirac equation for a spin 1/2 source is 

(2.5) 

where the .-\ 1 and A'1 are the helicities of the source, and m 2 = m, the mass 

of the lighter particle. Recalling that the time dependence of the antiquark 

eigenfunctions is eiEet. and transforming the equation to momentum space 

yields 

0 "'] dk ' (-Ea! -~-p-m)¢>.1 (p)=L (? ) 3 V>. 1 >.~(p-k)cp>.~(k). 
>.' _r. 

1 

(2.6) 

Using the notation P8 = (£8 , -p), we obtain 

_ -f.: J (2~, v,,,; (p- k)¢,; (k), (2. 7) 
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where 

for a scalar vertex 
(2.8) 

for a vector vertex . 

It should be noted that for the Dirac equation the potential vertex with a 

four vector Lorentz structure is the same as the time-like case. Equation (2.8) 

displays the fact that the helicity dependence of the potential is due exclu-

sively to the helicity dependence of the source, e.,'(pessed through the matrix 

elements of the helicity spinors given in Table 2.l. These matrix elements 

are 

(~I~(B)) = (-~1- ~(B))= 

-(~1- ~(B)) = (-!I~(B)) = (2.9) 

To reduce the equation, \Ve first expand the wave function in terms of the 

u and v spinors 

¢>.t (p) = L { ¢~t>.2 (p )u(p, A2) + ¢~1>.2 (p )v( -p, ,\2)} . (2.10) 
,\2 

vVe will limit our discussion to the ground state of a spin zero system at 

rest, in which case the antiquark and the source of the potential (quark) 

are traveling in opposite directions with their spins also pointing in opposite 

directions. Hence their helicities must be equal, ...\ 1 = >.2 • Imposing this 
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restriction, Eq. (2.10) reduces to 

C/J>. 1 (p) = 7,b~1 u(p. At) + 1/J~1 v( -p, At) , (2.11) 

where 7.f;>. 1 = ¢>-r>..r_ Introducing the notation PB = (EB,p), p = (Ep,p), and 

p' = (Ep, -p), and using the relations 

(p-m)u(p) = (p' +m)v(-p) = 0, (2.12) 

gives 

(p'tJ +m)v(-p) = (EB- Ep)-/v(-p) 

(2.13) 

Taking Eq. (2.11), inserting it into Eq. (2.7), and using Eq. (2.13) gives 

The 7./J+ and 7./J- components on the left side of Eq. (2.14) can be separated 

out by multiplying by ii. and v, and using the fact that 

Using the notation 

a=F = (1 =F pk) C± = (p ± k) r = J ~, (2.16) 
lk (2r.) 3 
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and substituting Eqns. (2.8) and (2.9), gives the following set of coupled 

equations: 

1 

-2Ep(Ea + Ep)'I/J~ 

1 1 

=FC± cos2 (B /2)'l//!_ =F c=l= sin2 (B /2)7f:=2
] 

1 

-2Ep(E8 + Ep)¢-;_ 2 

1 1 

±c=1= sin2(0 /2)7f)~ ± C± cos2 (B /2)7f:= 2 j 

1 

-2Ep(E8 - Ep)¢~ 

1 1 

=t=a± sin2 (0 /2)¢!.. =F a=l= cos2(B /2)7f:=2 ], (2.17) 

where the upper sign refers to the scalar case and the lower one to the vector 

case. As will be discussed later in the paper, this Dirac equation is identical 

to the equation derived from the m 1 _,. oo limit of the spectator equation 

(the details are given in Appendix B). 
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The spin zero components of the wave function can be separated from 

Eq. (2.17) by taking the combinations 

(2.18) 

This gives: 

At this time it would be prudent to adjust Eq. (2.19) to facilitate the 

numerical solution derivation and the comparison to the lCS and Salpeter 

equations. First, the wave functions will absorb a square root of the kinetic 

energy factor, j£;7/J(p) ---r '1/;(p). Second, using trigonometric relations the 

cosine and sine terms will be combined. Finally, the equations will be rear-

ranged and the substitution '1/J- ---r 7/J 1a and '1/J+ ---r 'l/J 1b made. The system 

then becomes 

( 

=F 1 + p-k cos e 

=FP- k cosfJ 

=Fk ~pease) 

=Fpk + cosfJ 

(2.20) 
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2.2 The Equations 

\Ve are now ready to conduct the stability analysis of the Dirac Equation, 

utilizing the stability conditions outlined in the Introduction. The system 

described by Eq. (2.20) is for either a scalar or vector confining potentiaL 

In order to create a mixed state, one with a percentage of scalar versus 

vector structure, we introduce a quantity called the vector mixing factor, 

y. By taking a linear combination of the scalar component of Eq. (2.20), 

multiplied by the factor (1 - y), and the vector component, multiplied by 

-y, we generate the mixed state sought. The minus sign for the vector term 

is due to the nature of the u and v spinors as outlined in Eq. (1.3). In the 

nonrelativistic limit, the Dirac equation reduces to a Schrodinger equation 

for the upper component, and we will choose the sign of our potential so that 

it confines the positive energy solution in the nonrelativistic limit. Hence, in 

order to obtain a nonrelativistic confining potential equal to ar, dependent 

on the mixing parameter y, the operator form 0 of a mixed kernel must be 

0 = (1- y) 1 0 1- Y"/ 0 "/. (2.21) 
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vVhen the linear combination is constructed and the system is algebraically 

reduced it becomes 

d2) ( 7/Jla(k) ) 

d4 7/Jlb(k) ' 

(2.22) 

where di = ai + bi cos(} and 

a1 = -1 b1 = (1- 2y)kp 

a2 = -k b2 = -(1 - 2y)ji 

a3 = -ji b3 = -(1- 2y)k 

a4 = -kp b4 = (1- 2y) (2.23) 

vVhen y = 0 it is the pure scalar case, andy= 1 is the pure vector case. 

There are still two more steps required before we can numerically solve 

this system. The first is the definition of the confining potential V. Starting 

with a simple linear potential in position space [15], 

d-'2 e-£r 
V(r) = ar = 1imare-£r = limad 

2
--. 

£-0 £-o c r 

In momentum space this potential is 

V( q) = 811a lim ( 
£-0 

(2.24) 

(2.25) 
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The limit can not be taken at this time for two reasons; the potential q-4 is 

singular at q = 0 and when Fourier transformed to position space the result 

is not the original linear potential. Instead, an alternative potential will 

be used which is finite for all momenta and reproduces the linear confining 

potential. 

8r.u 3 j d3cf 
V(q) = --q:I + 8r.u5 (q) q'4 

(2.26) 

where q = p - k and q' = p- k'. V(q) defined in Eq. (2.26) is then 

substituted for V in Eq. (2.22). A more detailed explanation can be found 

in Ref. [15]. 

The system as it stands now is not a scalar eigensystem, it is still a 

function of the momentum variable p. This brings us to the second step 

which involves a substitution for the wave function ·t/.J and the integration of 

p out of the system. As stated earlier \Ve shall use splines to model the wave 

functions, defined in Appendix C, 

·tf-r(p) = L O:j,tJj(p). 
j 

(2.27) 

where ·ai is the eigenvector and ,::Jj is the spline function. Since tllis is a 

spherically symmetric potential the wave function depends only on the mo-

mentum magnitude p. Once Eq. (2.27) is substituted in for 'l/J1a and 'l/J1b, then 
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both s~des of Eq. (2.22) are operated on by the integral operator 

(2.28) 

Once all of the algebra and angular integration is completed the system 

becomes a 2*SN by 2*SN eigensystem, where SN stands for the number of 

spline functions used to model the system. This eigensystem has the form 

(2.29) 

where T]iLi = PT[(PTlii + PT2ii + PT3ii)- The rest of the identities are 

e p2 +- k2 

f -21PIIkl 

wj NpNk: j3i(k) 
JEpEk 

T¥~ 
J 

Hli(k = p) 

a~ - ai(k = p) t 

b~ 
t bi(k = p) 

PTl 
(I 

,Bt(p)-
4rr 

IV ·a· - {tlf~ (a~ + b~) 
PTlii ~ !2 J t J t t 

- ? J2 e--
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2feHiibi 
e2 _ j2 

l,V·b·ln (e + !) 
J t f , e-

with tq.e primes representing the original function with k = p. 

2.3 Stability Results 

33 

(2.30) 

Finally, all of the pieces are in place. The system described by Eq. (2.29) 

and Eq. (2.30) can be solved numerically on a PC in a reasonable amount of 

time. The value for the antiquark mass will be set at m=0.325 GeV. The light 

antiquark mass will not change. even for the lCS cases, in order to maintain 

consistence between models. Rather than examine the Dirac system for many 

values of the vector strength, \Ve shall look at a few important cases. The 

system·s examined here will be y=O.O (pure scalar), 0.4, 0.6, and 1.0 (pure 

vector) cases. The first four positive and negative binding energy levels for 

the y=O.O, 0.4, and 0.6 systems are given in Table 2.2 below with spline ranks 

of 20, 16, and 12. Only the first four positive and negative levels are listed 

but all are considered in the analysis. 

It \vas found that the pure vector case had similiar properties as the y=0.6, 

which is why it was omitted here. The eigenvalues are all real, therefore they 

pass the first stability conditions. Out of the four cases the pure vector and 
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y=0.6 cases fail both the second and third conditions. This is due to the fact 

that the negative levels vary with the spline rank, and these states continue 

to increase \Vith the spline rank until they surpass the positive levels. The 

reasons why the negative states eventually become greater than the positive 

eigenvalues, which are shown in bold face in Table 2.2, will be discussed in the 

chapter on the approximate theoretical solutions. This is enough to declare 

it an nnstable system, but we \Vill examine the wave functions anyway. 

This leaves us with only stability condition four, the structure of the wave 

functions, to consider. As mentioned in the Notations and Conventions, for 

the figures the first wave function mentioned in each set of two represents 

W1a, while the second is for '1/-'lb· The positive ground state Fig. 2.1, and first 

excited state Fig. 2.2, in addition to the negative grotmd state Fig. 2.3 will be 

examined for y = 0.0, 0.4 and 0.6. The pure scalar \vave functions are used 

as our accepted structures since it has been well established that tllis state 

is stable. In fact, the stntcture of the wave functions in momentum space 

matches exactly to \vhat one would expect the position space structure to be 

for corresponcling levels. By comparing these three systems, as well as others 

not shown here, we come to the conclusion that the Dirac system is stable 

when the vector mixing is y < 0.5. \Vhile the positive levels have the correct 

structure, the negative unstable state of y=0.6 does not. It can therefore 
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Table 2.2: First four positive and negative Dirac energy levels for y=O.O, 0.4, and 0.6 with 

spline ranks of 20, 16, and 12. The energies are in Ge V. The bold face numbers are unstable 

states with energies g-reate-r than the stable ground state, as discussed in the text. 

y = 0.0 y = 0.4 y= 0.6 

Level SN=20 SN=16 SN=12 SN=20 SN=16 SN=12 SN=20 SN=16 SN12 

4 
. 

1.945 1.945 1.946 2.0:35 2.035 2.035 2.092 2.092 2.093 

3 1.695 1.695 1.695 1.772 1.772 1.772 1.821 1.821 1.821 

2 1.394 1.393 1.393 1.456 1.455 1.455 1.496 1.496 1.496 

1 0.976 0.976 0.976 1.028 1.028 1.028 1.065 1.065 1.065 

-1 -1.249 -1.249 -1.248 -0.660 -0.660 -0.660 2.028 1.576 1.120 

-2 -1.575 -1.575 -1.574 -0.781 -0.781 -0.780 1.190 0.861 0.525 

-3 -1.839 -1.839 -1.838 -0.879 -0.878 -0.879 0.899 0.590 0.278 

-4 -2.067 -2.067 -2.078 -0.963 -0.963 -0.964 0.692 0.396 0.090 
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be concluded that the fourth stability condition largely reinforces the con­

clusions we have already drawn. however, it is less reliable than the other 

three. The stability of a single state cannot easily be determined by tracking 

(with changing spline number) its behavior. A reliable conclusion requires 

the examination of the entire spectrum, including the negative energy states, 

\vith particular attention to condition 3. 

The positive ground states and first excited states have almost identical 

wave function structures. Although at first glance the pure scalar and y = 

0.4 cases do not look similiar for the negative ground state, they are. The 

magnitude, value of the momentmn at which the wave function drops to zero, 

and location of any nodes may vary from case to case. It is the number of 

nodes and basic structure which determines if the wave function represented 

is stable. 

Another conclusion can be drawn from Fig. 2.3. The wave functions of 

the pure scalar system extend further into momentum space before dropping 

to zero than they= 0.4 case. This means that in position space the opposite 

is true, the y = 0.4 system travels further from the origin than the y = 0.0 

system. Thus, the pure scalar system is more tightly bound than when a 

vector strength of 0.4 is present. 
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0 

0 0.5 1 1 .5 2 
p (GeV) 

Figure 2.1: Dirac positive ground state solutions for three values of the vector 

strength y: y = 0.0, E 1=0.976 GeV (circles and squares); y = 0.4, E 1=1.028 

GeV (solid and long dashed lines); and for y = 0.6, E 1=1.065 GeV (heavy 

short dashed and dotted lines). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

38 

0 

0 1 1 .5 2 
p (GeV) 

Figure.2.2: Dirac positive first excited state solutions for y = 0.0, E 2 = 1.394 

GeV (circles and squares), for y = 0.4, £ 2=1.456 GeV (solid and long dashed 

lines), and for y = 0.6, £ 2=1.496 GeV (heavy short dashed and dotted lines). 
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1 1.5 2 
p (GeV) 

Figure 2.3: Dirac negative grmmd state solutions for y = 0.0, E_ 1 = -1.249 

GeV (circles and squares), for y = 0.4, £_1=-0.660 GeV (solid and long 

dashed lines), and for y = 0.6, E_1 = 2.028 GeV (heavy short dasheded and 

dotted lines). 
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Chapter 3 

Single Channel Spectator 

Equation 

In this chapter we examine the spectator equation with one channel defined 

by confining particle 1 to its positive energy mass shell, fixing the k0 inte­

gration. and thus producing t\vo coupled equations. The derivation of these 

equations utilizes the helicity spinors from the Dirac equation as well as many 

of the same concepts. In this research what will be referred to as a Quasi­

relativistic system is examined. This means that the equation is relativistic 

except for the potential. The potential does not contain such features as 

form factors, a regularization term, or retardation. The stability of these 

equations is then determined and compared with the results found for the 

40 
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Dirac equation. E.xamination of a fully relativistic system will be the subject 

of future research. 

3.1 Derivation 

The Feynman diagram for the bound state meson vertex is shown in Fig. 3. L 

Particle 1 represents the quark, particle 2 the antiquark, and 8 is the poten-

tial vertex function. This vertex function c~u1 be one of two possible linear 

combinations. The first is a mixed Lorentz structure of a scalar and the time 

component of a four-vector, 1°. The second is the scalar and full four vector 

mixture, as shown belO\v. 

0 = ( 1 - y) 1 ·~ 1 - y /Jl 0 /Jl (3.1) 

The full four vector is defined as 

(3.2) 

where 

(3.3) 

and a-i ·is just the ith Pauli matrix. 

The kernel V represents the confining potentiaL The equations are de-

rived in the center of mass rest fran1e, P = (f.L, 0). Later, the quark will 
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be placed on shell, thus producing the single channel equation. The four 

momenta used in the cliagTam are 

k+lP 
2 

P2 
1 

=p--P 
2 

1 
=k--P 

2 

P = Pl- P2· 

(3.4) 

The vector k is the average internal momentum, and vector p is the av-

erage external momenta of the quark-antiquark pair. With this notation, 

the Bethe-Salpeter equation (12] for the bound state vertex function for the 

meson is 

L(p) = i J d-'k v e m.; + ,k~ f(k) m~+ ,k2 e. (3.5) 
('J-)-' m- - k·- ·m- - k2 

- 11 ·L l 2 2 

Decomposing the propagators into u (p = +1) a.ncl v (p - -1) spin 

contributions (13], 

and operating on the left and right sides of Eq. (3.5) by u and v-spinors, so 

that all four possible combinations of spinors are present, gives the p-spin 

decomposition of the bound state vertex equation 

(3.7) 
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Figure 3.1: Feynman diagram for the meson bound state vertex function. 

The kernel, or potential, is denoted by V. 

The de.pendences of 8 and ron the helicities X1 <mel A.~ in the equation above 

have been suppressed. 

The terms ei represent the potential vertex of particle i. They are con­

structed by combinations of u and v spinors, determined by the index p, 

operating on either side of the confining potential Lorentz structure. The 

identities of these 8 terms are derived, with the results shown in Table 3.1 
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and Table 3.2 when the vector component is time-like. The identities of the 

Cs and Sn terms are cos(~B) and sin(~B) respectively. 

Table 3.1: 8t Term Identities for scalar and time-like vector 

At=~ A1 = ~ At=-~ AI=-~ 

..\' -.!. l- 2 
..\' - _.!. 1- 2 ..\' -.!. l- 2 ..\' --1 l- 2 

et+ afCs +s -ar n afSn afCs 

8t- =FcfCs ±cfS'n ±cfSn ±cfCs 

8[+ -cfCs cfS'n =rs Ct n cfCs 

8[- =FafCs ±afSn =FafSn =Fa[Cs 

Table 3.2: 8 2 Term Identities for scalar and time-like vector 

A?=.!. 
- 2 ).2 = t ).2 = -~ A?=_.!. 

- 2 

..\' -.!. 2- 2 >.' - _.!. 2- 2 ).' - l 2 - 2 
..\'- _.!. 
2- 2 

8t+ afCs -ai"Sn ai"Sn afCs 

8t- -ci-Cs cfS'n cfSn ci-Cs 

82+ =Fci-Cs ±cfSn ±cfSn ±ci-Cs 

82- =FafCs ±ai-Sn =FafS'n =fafCs 
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When the vector component is 1 1• the algebra is even more complex. The 

set of ~quations below is used to define the e terms with j defining particle 

1 or 2, and i determining which three vector component is considered. 

8 -:-:+ H "' >..·T >..·'(1 4'- ''k-) Jt - 1vp1 1Yk1X 1 aix 1 
- "'-iPi"\i i 

e-­
ji (3.8) 

The equations above are set up for particle 1, for particle 2 the primed in-

dicies of x must be unprimed and vice-versa. To condense the information 

on the results from the Pauli-spinor matrix products to one table a partie-

ular property will be utilized. Later in this section it will be shown that 

only when .-\1 = .-\2 and .,\~ = .,\~ does a nonzero result for the bound state 

vertex functions occur. \\r'ben this principle is applied to the expression 

junction with Eq. (3.8) in order to produce the gamma functions as was done 

in the 1° case. 

The components Gj are the p-spin propagators 

G~= 
±1 
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).'-.!. -2 
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).' = _.!. 

2 

0"! 0"! 

).-1 -2 ). = -4 
Sn2 Cs2 

Cs2 Sn2 

G±_ 
2 -

0"2 

).-.!. -2 

5' 'J n-

Cs2 

±1 
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0"2 0"3 0"3 

). = _.!. 
2 

).-.!. -2 ). = -t 
Cs2 Cs2 Sn2 

Sn2 Sn2 Cs2 

(3.9) 

The first p of each term in Eq. (3. 7) tells which spinor appears to the left 

and the second indicates which is on the right. The location of the poles 

produced by GJ= are shown in Fig. 3.2 and listed belmv. 

pole 1 (Gt)-l = Ekt- (ko +tiL)- iE = 0 ko = Ek1 - t~£- if. 

pole 3 ccn-l = Ekl + (ko + 41L)- if.= 0 ko = -Ek1 - 4~£ +if. 

pole 2 (Gt)- 1 = £1.."2- (ko- 41d- ic = 0 ko = Ek2 + t~£- if. 

pole 4 (G~2)-t = Ek2 + (ko- 41t)- ic = 0 ko = -Ek2 + 4~£ +if. 

(3.10) 

To place particle 1 on the positive energy mass shell, only the contribution 

from pole 1 is retained. This automatically fixes p't = +- To close the set 

of equations we also restrict the external particle to its mass shell, fixing 

P1 = +. This gives 
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lm k0 

3 4 
X X 

Re k0 

Figure 3.2: This figure shows the position of the four poles associated with 

the four propagators Gf in the bound state equations. 

(3.11) 

\vhere -V(1 = -Vll/(4Ek1 Ek2 ). The subscript 1 on V11 and f 1 indicates that 

the value at pole 1 has been substituted in for both k0 and p0 , and, since the 

quark (particle 1) is on its positive mass shell, it is described by its positive 

energy spinor only. 
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To further reduce Eq. (3.11) we will assume that the states are either 

pure scalar or pseudoscalar. The most general form for the bound state 

vertex function r in these two cases is 

(3.12) 

and 

Using these forms we can show that for both the scalar and pseudoscalar 

cases, the only non zero helicity matrix elements occur when .-\1 = .-\2 for all 

possible rP1P'2. Furthermore. the only possible combination of helicity states 

with spin zero which are not identically zero are 

r++ = -
1
- [rtt + r+t , ] 

1 /?\') :;:; -:;-:; 
v~ -- - -

r ++ - 1 [r++ r++ J s-- 11- 11 .., v'2 22 -:r-2 

+- 1 [ +- +- ] rr = M') rl~ -r_~_l 
V.£. 2- _ 2 

In this work we shall restrict ourselves to the pseudoscalar bound state which 

means a pseudoscalar meson. The reason for this is consistency since the 

pseudoscalar 1 CS system reduces to the s-state Dirac system in the m 1 ---+ oo 

limit as shown in Appendix B. The connection between the bound state 

vertex ftmctions and the wave functions are the relations 

(3.15) 
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where 11 is the mass eigenvalue of the meson. Bringing all of these elements 

together generates the single channel spectator equation 

(3.16) 

. 
where the upper sign holds for scalar confinement and the lower for vector 

confinement. and 

(3.17) 

S- = p--- krk?p--, 
J J - J 

with j' =/: j and 

(3.18) 

When the full four vector Lorentz structure is used for the potential vertex 

the matrix elements for the vector components alone are 

a1 = Q + 3H1 br = R- X 

a2 = T2- 3Tr b2 = Sr- 82 
(3.19) 

a3 = S2- 3Sr b3 = Tr- T2 

a 4 = R -3X b4 = Q +IV. 
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3.2 The Equations 

Now that the general !-channel spectator equation has been generated for a 

pseudoscalar bound state with either a scalar or vector potential interaction, 

we are ready to specify the potentiaL The potential used here should have 

the same properties as the one used in the Dirac system. However, there will 

be a slight difference between the potential used here and that of the Dirac 

system_, Eq. (2.26). The delta term of the potential, required to eliminate 

the pole at k = p, possess an energy ratio of the on-shell-mass m 1 

(3.20) 

The energy ratio is required because the quark was placed on its mass shell. 

The identity of the wave function Eq. (2.27), and the integration oper-

ation Eq. (2.28) is then applied to Eq. (3.17) with the potential Eq. (3.20) 

substituted in. The two separate mixed states of vector and scalar Lorentz 

structure is utilized here. At this time the system could be listed, and in 

fact it would be a perfectly applicable matrix equation, however one more 

step remains. In order to directly compare to the Dirac system, the wave 

function for the lCS equation will be redefined. A factor of one over the 

square root of the energy of the antiquark will be absorbed into the wave 

functions on both sides of the equation, J~~<2 'l/J1a(k) --+ 'l/; 1a(k). This will 
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also facilitate the observation that the 1 CS equation reduces to the Dirac 

equation when m 1 --+ oo. The equation solved for by the computer after the 

angular integration is completed is 

T/2lj) ' 

T/4lj 

(3.21) 

where T/ilj, e, and f are the sc.une as the Dirac case. The primes once again 

indicate the original identity with lkl = IPI· Let N; = Np 1 NP2, then the new 

terms needed to define Eq. (3.21) are 

PTt 
O".dl (p) 

8iT£kl 

2f2 Ng1 Ng2/3i(p)(a~ + b~) 
EP2 (e2 - J2) 

bd3i(k)Ng N'f ( -2ef + ln (e +f)) 
JEP2EJ..."2 e2

- ! 2 e- f 
(3.22) 

vVhen the linear combination of scalar c.u1d vector structures of Eq. (3.17) and 

Eq. (3.19) are taken we calculate the iclenti ties of di for the ~t0 , Eq. (3.23), 
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a1 = -Q 

a 1 = -Q- 3yl•V 

a2 = -T2 + 3yTt 

a3 = -S2 + 3St 

a4 = -R+3yX 

b1 = (1- 2y)R 

b2 = -(1- 2y)S2 

b3 = -(1- 2y)T2 

b4 = (l - 2y) Q . 

b 1 = ( l - 2y) R + y .. X 

b2 = -(1 - 2y)S2- yS1 

b3 = -(1- 2y)T2- yTt 

b4 = (l- 2y)Q- yW. 
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(3.23) 

(3.24) 

This concludes the discussion on preparing the equations for the numerical 

analysis of stability. Next, the results of this examination are explored. 

3.3 . Stability Results 

3.3.1 lCS with scalar versus time-like vector struc-

ture 

We begin the analysis with a system containing a mixed linear Lorentz struc­

ture of scalar versus time-like vector. As mentioned in the Dirac case the 

anti quark mass will be set at m 2 = 0.325 Ge V and only the quark mass 

shall vary by a mass factor n., m 1 = n.m2 • This is clone to avoid unnecessary 
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complications when comparing results. Four mass ratios will be examined 

here, n. = 1.0, 2.0, 5.0, and 10.0. In order to make a clirect comparison to the 

Dirac equation we note the approximate relation between the bound state 

mass and the bincling energy below. 

(3.25) 

This relation holds for when m 1 is large, such e:ls n.= 10.0 or even 5.0. The 

eigenvalue spectra given in Tables 3.4 and ;~.5 are the corresponcling bincling 

energies for those systems. Although it does not truly apply to the case when 

n.=l.O it \vill be utilized anyway for consistency. This is not a problem since 

the 1 CS equation is not designed for an equal mass system a.nd was only 

included as a comparison with the other systems. \Vhen the bound state is 

made up of equal mass particles then the equation must be symmetrized in 

order to obey the Pauli principle. The system must also be symmetrized in 

order to insw·e charge conjugation invmiance. For e:m equal mass system the 

Sa.lpeter equation or the two channel spectator equation, not covered here 

[ 18] , niust be used. 

All cases pass condition 1, however only systems with a vector strength of 

0.0 and 0.4 pass conclition 2. For expediency those cases which fail the first 

two stability conditions will not be listed in the following eigenvalue tables. 

First the five and ten-to-one mass ratios will be considered since it was found 
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Table 3.4: First four positive and negative lCS n:=5.0, and 10.0 binding energy levels 

for y=O.O, and 0.4 with Spline ranks of 20, and 12. (Energy in GeV) 

y = 0.0 "' = 5.0 y = 0.0 "' = 10.0 y = 0.4 "' = 5.0 y = 0.4 K = 10.0 

Level SN=20 SN=l2 SN=20 SN=12 SN=20 SN=l2 SN=20 

4 2.109 2.113 2.073 2.078 2.225 2.227 2.165 

3 1.808 1.808 1.783 1.783 1.898 1.899 1.858 

2 1.443 1.443 1.435 1.4:35 1.509 1.509 1.495 

1 0.940 0.939 0.964 0.964 0.992 0.992 1.013 

-1 -0.936 -0.936 -1.091 -1.090 -0.548 -0.569 -0.619 

-2 -1.084 -1.084 -1.333 -1.332 -0.570 -0.607 -0.715 

-3 -1.173 -1.170 -1.511 -1.515 -0.600 -0.637 -0.786 

-4 -1.233 -1.259 -1.650 -1.642 -0.630 -0.675 -0.841 

that they were closely related to the Dirac systems. By examining Table 3.4 

it can be seen that all four cases, n.=5.0 and 10.0 with y=O.O and 0.4, all pass 

condition 3. So now \Ve turn our attention to the structure of the individual 

wave ftmctions. 

In Fig. 3.3 through Fig. 3.5 the wave functions show that for a pure scalar 

Lorentz potential the structures of the lCS models match those of the corre-

SN12 

2.168 

1.858 

1.494 

1.013 

-0.619 

-0.715 

-0.785 

-0.848 
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0.5 1 1 .5 2 
p (GeV) 

Figure 3.3: Positive ground state soutions for the quasirelativistic lCS equa-

tion with a pure scalar interaction. The solid and long dashed lines are 

for n:=5.0, £ 1=0.940 GeV; the heavy short clashed and clotted lines are 

for n:=lO.O, £ 1=0.964 GeV. The scalar ground state Dirac solution for 

E 1 = 0.976 GeV is shown for comparison (circles and squares). 
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1.5 2 

Figure 3.4: Positive first excited state solutions labeled as in the previous 

figure. Here the K = 5.0 solution has an energy of £ 2 = 1.443 GeV and 

the K = 10.0 solution an energy of B2 = 1.435 GeV compared to the Dirac 

energy of £ 2 = 1.394 Ge V. 
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Figure 3.5: Negative ground state soutions labeled as in the previous figure. 

Here the 1\. = 5.0 solution has an energy of E_ 1 = -0.936 GeV and the 

n. = 10.0 solution an energy of E_ 1 = -1.091 GeV compared to the Dirac 

energy of E_ 1 = -1.249 GeV. 
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sponding Dirac systems. Therefore these two systems are completely stable, 

both positive and negative states. \Ve can also observe how the lCS binding 

energi~s approach the Dirac values as n. is increased in Table 3.4 and how 

the wave functions increasingly overlap those of the Dirac system. In addi­

tion, the negative ground states demonstrate a greater lack of overlapping 

structures than the two positive states do. 

\Vhen the vector strength of y = 0.4 is examined in Fig. 3.6 and Fig. 3. 7, a 

slightly different result is found. For n.=lO.O the system is once again totally 

stable, while for n.=5.0 only the positive states are stable. This causes some 

concern, although stability condition 3 is ma.intained the ramifications of this 

feature on the usefulness of this system are as of yet unclear. 

The n. = 2.0 system will be skipped and the equal mass case will be 

examined now. lt was found that the ;;. = 2.0 analysis finds the same results 

as the n. = 1.0. By examining Table 3.5 it can be seen that condition 3 is 

violated for y=0.4 as demonstrated by the negative state binding energy in 

bold face when the spline rank is 24. As a result, only the pure scalar systems 

for n.= l.O and 2.0 remain. 

The positive and negative ground states for n. = 1.0 and 2.0 are examined 

in Fig. 3.8 and Fig. 3.9. From these figures it can be determined that the 

positive states are stable while the negative ones are not. The conclusion 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

59 

0 

0 0.5 1 1 .5 2 
p (GeV) 

Figure 3.6: Positive ground state solutions of the quasirelativistic lCS equa-

tion with a mixed scalar and vector interaction (y = 0.40) for two mass ratios 

"-· The solid and long dashed lines are for"-= 5.0, E 1 = 0.992 GeV, and the 

heavy short dashed and dotted lines are for"-= 10.0, E 1 = 1.013 GeV. The 

circles and squares show the solution for the Dirac equation with £ 1 = 1.028 

GeV. 
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Figure 3. 7: Negative ground state solutions of the quasi relativistic 1 CS equa-

tion for y = 0.40 labeled as in previous fig·ure. Here K. = 5.0, E_ 1 = -0.548 

GeV and K. = 10.0, E_L = -0.619 GeV. The comparison Dirac level has 

energy E_ 1 = 0.660 GeV. 
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Table 3.5: First four positive and negative 1CS n:=l.O binding energy levels for y=O.O, 

and 0.4 with Spline ranks of 24. 20. 16, and 12. (Energy in GeV) 

y = 0.0 y = 0.4 

Level SN=24 SN=20 SN=16 SN=l2 SN=24 SN=20 SN=16 SN12 

4 1.881 1.881 1.881 1.881 2.222 2.222 2.222 2.223 

3 1.630 1.630 1.630 1.632 1.884 1.884 1.884 1.884 

2 1.294 1.293 1.293 1.293 1.461 1.461 1.461 1.461 

1 0.745 0.745 0.745 0.745 0.853 0.853 0.853 0.853 

-1 -0.329 -0.330 -0.331 -0.334 0.933 0.724 0.508 0.284 

-2 -0.331 -0.332 -0.335 -0.341 0.727 0.527 0.326 0.122 

-3 -0.334 -0.337 -0.342 -0.354 0.577 0.387 0.196 0.005 

-4 -0.338 -0.343 -0.353 -0.379 0.454 0.272 0.091 -0.087 
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can therefore be made that the lCS system becomes more stable as the 1° 

strength is decreased and the mass of the quark is increased. This can be 

seen by examining the Table 6.1 of the stability results in the conclusions 

chapter. 

3.3.2. lCS with scalar versus four vector structure 

The time has finally come to explore the stability results when the full four 

vector is used instead of just the r 0 component. The same sets of values for 

the vector strength and mass ratio parameters a.re used here as before. It 

should be pointed out that the pure scalar systems here will of course match 

the y=O.O systems in the previous analysis. The null vector strength was only 

considered here as a means to confirm the calculations and will therefore not 

be included. vVhile all the systems are reaL only the scalar-dominant cases 

for the 1 CS equation can be stable. This is clue to the fact that the vector­

dominant half of the systems can be eliminated because they violate stability 

condition number two. These are the eight eases with a vector strength of 

y=0.6 or 1.0 and the four mass ratios. As a result, only the four cases where 

the vector strength is y=0.4 remain. 

By examining Table 3.6 it can be seen that none of these systems violate 

the third stability condition. By comparing Table 3.6 with Table 3.4 and 
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Figure·3.8: Positive grotmd state soutions for the quasirelativistic lCS equa-

tion with a pure scalar interaction. The solid and long clashed lines are for 

n:=l.O, £1 =0.745 GeV; the heavy short clashed and dotted lines are for n:=2.0, 

£1=0.857 GeV. The scalar ground state Dirac solution for E1 = 0.976 GeV 

is shown for comparison (circles and squares). 
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Figure 3.9: Negative ground state solutions labeled as in previous figure. 

Here the n, = 1.0 solution has an energy of E_ 1 = -0.330 GeV and the 

"' = 2.0 solution an energ,_y of £_ 1 = -0.607 GeV compared to the Dirac 

energy·of £_ 1 = -1.249 GeV. 
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Table 3.5 it can be observed that as n. increases the binding energy levels for 

the four vector system approaches the corresponding values for the time-like 

vector system. This in turn means that as the mass ratio increases, both 

y=OA systems approach the Dirac limit with identical vector strength. 

An9ther interesting phenomenon to note from this table concerns the 

energy level separation as the mass ratio changes. For the positive levels the 

magnitude of the separation between adjoining states does not vary much 

for each system. On the other hand, as n. decreases the negative energy 

levels get closer together. As an example, consider the equal mass case 

where the difference between the negative ground and third excited states 

is approximately 0.006 GeV. Alternatively, when the mass ratio is 10.0 the 

difference between the same states is approximately 0.281 GeV. This would 

seem to indicate that the systems \\"ill stan to t,rrow unstable as the value of 

ll. is decreased. In other words, the negative states become degenerate. 

The mass ratios n.= 10.0. 5.0. 2.0, and 1.0 now have only the fourth sta­

bility condition left to pass. Since both choices for the vector component 

converge to the Dirac limit, the n.=lO.O case will be declared completely sta­

ble, and skipped from further investigation. Now the wave function stnlCture 

of the three remaining systems is examined for stability. 
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Table 3.6: First four positive and negative binding energy levels for y=0.4 l'b=l.O, 2.0, 

5.0, and 10.0 with Spline ranks of 20. and 24 of the lCS ~~systems (Energy in GeV). 

tb = 1.0 tb = 2.0 K = 5.0 K = 10.0 

. 
Level SN=20 SN=24 SN=20 SN=24 SN=20 SN=24 SN=20 SN=24 

4 2.490 2.490 2.455 2.455 2.332 2.332 2.227 2.227 

3 2.071 2.071 2.055 2.055 1.973 1.973 1.902 1.902 

2 1.554 1.554 1.573 1.573 1.549 1.549 1.519 1.519 

1 0.828 0.828 0.918 0.918 0.992 0.993 1.016 1.016 

-1 -0.318 -0.318 -0.480 -0.480 -0.599 -0.599 -0.633 -0.633 

-2 -0.323 -0.323 -0.526 -0.526 -0.699 -0.699 -0.746 -0.747 

-3 -0.324 -0.324 -0.550 -0.550 -0.774 -0.774 -0.837 -0.837 

-4 -0.324 -0.324 -0.565 -0.565 -0.834 -0.834 -0.914 -0.914 
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Figure 3.10: Positive ground state solutions for the quasirelativistic lCS 

equation with a four vector stength of y=0.4. For K=5.0 the energy is 

£ 1=0.992 GeV with the circles and squares used. The solid and long dashed 

lines are for K=2.0, £ 1=0.0.918 GeV; the heavy short dashed and dotted 

lines are for K=l.O, £ 1=0.828 GeV. 
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Figure 3.11: Positive second excited states here are labeled as in the previous 

figure. The K. = 5.0 solution has <lll energy of £ 3=1.973 GeV and then;= 2.0 

solution an energy of £ 3 =2.055 GeV. For the equal mass system the level is 
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In Fig. 3.10 the positive ground states of n:=5.0, 2.0 and 1.0 are shown 

to all have the correct structures. This is also true for the positive second 

excited state depicted in Fig. 3.11. These results for the full four vector are 

contrary to those found when the time-like vector only was used. For those 

earlier r 0 systems only the five-to-one mass ratio was stable for the positive 

energy levels and the rest were unstable. In fact when the negative ground, 

Fig. 3.12, and second excited states, l-ig. :3.1:3, are examined the differences 

become greater. The n:=5.0 and 2.0 are compared to the corresponding Dirac 

levels and the structures indicate stability. The equal mass system was not 

shown on these two figures because of the momentum space scaling. 

Examples of the equal mass system for the negative ground and second 

excited states are shown in Fig. 3.14 and Fig. 3.15 respectively. In these two 

cases the wave functions generated by a spline rank of 20 and 30 are shown 

together in order to confirm that the results are not a coincidence. The 

structures c.1re correct but the momentum range extends out to approximately 

8 GeV for the ground and 20 GeV for the second excited states. This is a 

significant change in the momentum mnge which would indicated that these 

negative states are more tightly confined around the position space origin 

than other systems examined thus far. This is unexpected given the fact 

that the negative energy levels are so close together. Such a condition would 
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Figure 3.12: Negative ground state solutions for the quasirelativistic lCS 

equation \vith a four vector stength of y=0.4. For ;;:=5.0 the energy is E_1 =-

0.599 Ge V where the solid and long clashed lines are are used. The heavy 

short dashed and dotted lines are for ;;:=2.0, E_ 1 =-0.480 Ge V. The Dirac 

system used as a comparison state is represented by circles and squares with 

E-1=-0.660 GeV. 
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Figure 3.13: Negative second excited states here are labeled as in the previous 

figure. The n. = 5.0 solution has an energy of E_3 =-0. 774 GeV and the 

n. = 2.0 solution an energy of £_3 =-0.480 Ge V. For the Dirac system E-3=-

0.879 GeV. 
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imply that the negative states are degenerate, but one can see that they each 

have a distinct and proper structure. However, one must remember that the 

equal mass system is not a valid choice for the 1 CS equation. 

From this analysis we can conclude that the lCS equation is stable when 

the four vector strength is y=0.4, and unstable for vector dominant systems. 

In fact, the y=0.4 system is stable for both positive and negative states as 

well as. over all mass ratios. This is a considerable improvement over the { 0 

systems where only the positive pure scalar states were stable for all mass 

ratios. It is therefore of no surprise that the favored lorentz structure for the 

lCS system is a scalar dominant mixed state with a four vector component 

greater than zero. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

73 

I I I I I I 

r 
/cfPo \ 

cr. e Do\ c 
0 
_. 

b o\ u 
c 
~ u.. 
v c 0\ > 
Q 

~ 0 ~ f .. -n- - ~ 0 ~,.., = 
~ ~ ~ ~ ,_ 

I I I I 

0 1 2 3 4 5 6 7 8 
p (GeV) 

Figure 3.14: Negative ground state solutions for the quasirelativistic lCS 

equation with a four vector stength of y=OA. ForK.= 1.0 the energy is E_ 1 =-

0.318 GeV for both a spline rank of 30 (circles and squares) and 20 (solid 

and long dashed lines). 
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Figure 3.15: Negative second excited state solutions for the quasirelativistic 

lCS equation with a four vector stength of y=0.4. For n:=LO the energy is 

E_3=-0.324 GeV for both a spline rank of 30 (circles and squares) and 20 

(solid and long dashed lines). 
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Chapter 4 

The Salpeter Equation 

The Salpeter, or instantaneous Bethe-Salpeter equation, uses the approxi­

mation that the potential, or kernel, of the Bethe-Salpeter equation is in­

dependent of ko and p0 • Therefore, in coordinate space the potentials and 

the wave ftmctions are instantaneous, i.e. t 1 = t2 • At this time it should 

be stated that the Salpeter Equation has two tmdesirable features. First, 

neglecting the energy dependence of the kernel is unphysical. Second, there 

is no Dirac limit for this equation. \Vhen the mass of one of the particles is 

taken to infinity, the resulting equations do not reduce to a Dirac equation 

for the light quark moving in the field created by the heavy quark. Since the 

equal mass 1 CS system is not a valid model and the Sal peter equation has 

75 
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no Dirac limit, it was decided that only the equal mass limit ~ = 1.0 system 

would be examined. 

4.1 Derivation 

The Salpeter equation uses the same steps as those for the lCS equation, with 

one exception. In the derivation of the lCS equation we placed particle 1 on 

shell, meaning that only pole one of Fig. 3.2 is included in the k0 integration, 

thus producing Eq. (3.11). For the Salpeter equation pole 2, as defined in 

Eq. (3.·10) must be included. vVhen the fact that the potential, and thus the 

wave functions, are time independent is considered, the terms 7/J 1b of pole 1 

and 7j;2b of pole 2 are found to be equivalent and therefore cancel each other 

out. 

\i\Then the equations are rederi ved utilizing these concepts the general 

equation is fotmd to be 

( 4.1) 

where p1 i= p2 a.ncl p'1 i= p~. The second channel wave ftmction, denoted 

7/J2a, corresponds to propagation of the quark and antiquark in their negative 

energy. state, and is equal to 

·'· -'f-'2a- (4.2) 
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The two wave functions, 'lj.1 1a and 'lj.12a satisfy the coupled equations 

with 

b1 = R 

as= ±vV bs = .. '( 
(4.4) 

R= 2pk 

X =2pk 

or for the four vector case the vector terms are 

a1 = Q + 3IV bt = R- X 
(4.5) 

as= -l'V- 3Q b'f. =X- R. 

All other terms have the sa.me definitions as before. 

4.2 The Equations 

The same quasirelativistic potential used in the lCS system Eq. (3.20) is 

applied here . Utilizing the same steps as in corresponding sections the 

eigensystem used in the computer analysis is generated, 

'T/5lj ) 

-TJllj 

(4.6) 
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where the same identities of Eq. (3.22) are used with ·ryili = P'Il(PTlii + 

PT2ii + PT3ii)- The alternate form of Eq. (4.4) and Eq. (4.5) containing 

the mh:ed Lorentz structure is 

and 

respectively. 

a1 = -Q 

as= vV 

a 1 = -Q- 3yl:V 

as= vV + 3yQ 

b1 = (1- 2y)R 

bs = (1- 2y)X 

bt = (l- 2y)R + yX 

bs = (l - 2y) X + y R 

4.3 Stability Analysis 

(4.7) 

(4.8) 

4.3.1 Salpeter with scalar versus time-like vector struc-

ture 

As \vas the case in the lCS analysis. the ,..o case is exe:l.Illined first. \Vhen the 

Salpeter equation is considered the pure scalar case proves to be the only sys­

tem which fails stability condition l by possessing complex eigenvalues. Not 

only are imaginary bound state masses present, there is also no relation be­

tween the eigenvalues as the spline rank is varied. This is shown in Table 4.1 

for the squared of the bOtmd state masses. However, the remaining vector 
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Table 4.1: First four bound state mass levels squared of the Salpeter Equation for 

y=O.O, and 0.4 with various Spline ranks. (Energy in GeV) 

y = 0.0 y = 0.4 

Level SN=20 SN=12 SN=20 SN=16 SN=12 

±4 0.685 2.173 5.632 5.632 5.674 

±3 -1.074 1.538 4.:38:3 4.:383 4.:385 

±2 -3.869 0.931 2.977 2.977 2.976 

± l -8.705 -0.051 1.339 1.339 1.339 

strengths pass condition 2 cmd condition 3. Taking y=0.4 as an example, 

the spectra shows there is a. positive and negative state of equal magnitude 

which do not vary with the spline rank. This symmetry is of no surprise 

when you consider the Salpeter matrix Eq. ( 4.3). This same symmetry is 

also evident in the wave functions, as illustrated in Fig. 4.1. The wave func­

tions for the positive and negative ground states are a perfect match with 

the only difference being '!f.t(L _... 'ti'2(L and vice-versa. 

The two figures, Fig. 4.1 (ground state) and Fig. 4.2 (second e.x:cited 

state), demonstrate that these Salpeter systems have the correct structure 

compared to their Dirac counterparts. In addition, Fig. 4.3 helps to illustrates 
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that y=0.6 and 1.0 are indeed stable by showing their correct structure for 

the second excited state. It was detem1inecl that only the pure scalar Salpeter 

equation is unstable. 

vVhile it is true that the scalar Salpeter equation is unstable for an equal 

quark-antiquark mass of 0.325 Ge V, the question is what happens when the 

mass is increased. It turns out that increasing the mass of the components 

has a similiar effect as decreasing the linear confining coefficient. It would 

seem reasonable to conclude that by decreasing the confining coefficient the 

system would not be as tightly bound and would therefore still produce 

unstable solutions for the pure scalar case. This is the opposite of what was 

found when the solutions for a mass of 0.85 Ge V was explored. The y=O.O 

Salpeter system was determined to IJe stable up to a point. This means that 

the system completely satisfies condition 1, and condition 3 is always met 

by virtue of the symmetry between the postive and negative states, however, 

the other two are another story. 

The requirement that the system does not vary with the spline rank is a 

much more difficult concept. By examining Table 4.2 the point can be made 

clearly. The first six positive energy levels are listed for a spline rank of 30, 

20, and 12. It can be observed that the ground state energy does not vary 
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Figure 4.1: Positive and negative ground state solutions for the y = 0.4 

qua.sirelativistic equal mass Salpeter equation, p. 1 =1.157 GeV (solid and long 

dashed lines) and P.- 1=-1.157 GeV (heavy short dashed and dotted lines). 

The positive ground state Dirac solutions for y=0.4, £ 1=1.028 GeV (circles 

and squares) are shown for comparison. 
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Figu.re-4.2: The positive second excited state solutions for the y=OA equal 

mass Sal peter equation, J-L 3 = 2.094 Ge V (solid and long dashed lines) are 

compared to the second positive excited state Dirac solution for y = 0.4, 

£3=1.772 GeV (circles and squares). 
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Figure 4.3: Positive second excited state solutions for the Salpeter equation 

for a variety of scalar/vector rnixings: pure vector y=l.O, f.£3=2.565 GeV 

(circles and squares); y=0.6, p 3 =2.284 GeV (solid and long dashed lines); 

and y=0.4 f.£3 =2.094 GeV (heavy short dashed and dotted lines). 
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Table 4.2: First Six bound state mass levels of the Salpeter Equation 

for y=O.O with m=0.85 Ge V and various Spline ranks. (Energy in Ge V) 

Level SN=30 SN=20 SN=l2 

6 3.375 3.482 ;3.655 

5 3.347 3.354 3.434 

4 3.194 3.195 3.202 

3 2.974 2.974 2.977 

2 2.665 2.664 2.665 

1 2.185 2.185 2.185 

much with the spline rank. The stability of this level is further demonstrated 

in Fig. 4.4 which plots the wave functions for a spline rank of 20 and 30. 

\t\Then the fourth excited state is examined the magnitudes are still in 

agreement but something is wrong with their wave functions. In Fig. 4.5 

we can see that the 7/J 1a and 't/-'tb wave functions agree by spline rank but 

their structures degrade from the accepted norm as the momentum increases. 

This degradation becomes more pronounced as the spline rank increases. 

This would seem to indicate that the problem lies in the asymptotic limit of 

the system. Note, as the spline rank is increased the structure of the wave 
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functions at higher momentum are more precisely defined. As such, any 

resulting instabilities become more pronounced as the spline rank increases. 

Finally, by the time the fifth excited state is reached both the energy levels 

and the wave functions, Fig. 4.6, no longer pass the two stability conditions. 

However, this does not mean that the system is useless. In fact, even 

systems which have been found to be completely stable previously have their 

problems as well. Since more energy levels are defined as the spline rank 

increases it is natural that the highly excited states for that spline rank 

would be unstable. For instance. the fact that the 28th excited state does 

not exist for a spline nmk of 20 but does for a nmk of 30 would automatically 

violate condition number 2. In adclition the \\:ave functions for such a state 

would have very poor structure since there are not enough spline functions 

to define that highly stntctured state at large p. Another fact to remember 

is that this is a numerical calculation and as such it can only be as accurate 

as its integration and eigensystem solvinp; tolerances. The point here is that 

these stable states do have a limit to their stability. The only difference is 

that their instability occurs at higher levels than the y=O.O case considered 

here. Therefore, so long as the system is stable in the region of energy that 

you are interested in and for the tolerances you prescribe, it may be used as 

a stable system. 
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Figure 4.4: Positive ground state pure scalar solutions for the Salpeter equa-

tion J.L 1=2.185 GeV spline nmk of20 (cirdes a.ncl squares) and spline rank of 

30 (soljd and long dashed lines). 
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Figure 4.5: Positive fourth excited state pure scalar solutions for the Salpeter 

equation p 5 =3.354 GeV spline rank of 20 (circles and squares) and spline rank 

of 30 p 5 =3.347 GeV (solid and long dashed lines). 
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Figure 4.6: Positive fifth excited state pure scalar solutions for the Salpeter 

equation J.Ls=3.482 spline rank of 20 (circles and squares) and spline rank of 

30 J.L6=3.375 GeV (solid and long clashed lines). 
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Salpeter with scalar versus four vector struc­

ture 

From the very beginning the results for this version of the Salpeter equation 

do not look good. It turns out that all eigenvalues for the vector strength 

are complex, which of course violates stability condition L This would be 

the end of a very short section if it \\"as left at that. Instead, the masses 

of the quark and antiquark will be increased from 0.325 GeV until stability 

is found, if at alL To start, the masses were increased by a factor of ten 

for the three vector strengths, y= 1.0, 0.6. and 0.4. The only system fmmd 

not to-have complex eigenvalues was y=OA. As was the case for the lCS 

equation, this was a dramatic change from the previous 1° results where the 

vector dominant systems were stable. Since it is resonable to say that only 

the y=0.4 system might be ste:t.ble, it will be the only one considered from 

here on. 

The mass of the quark and antiquark \vill be set to five times the light 

quark mass, or m=L625 GeV. Table 4.3 lists the bound state mass values 

for the first six positive levels with a spline rank of 30, 20, and 12. From 

the ground state to the second excited state the values for all three spline 

cases r:1atch up. This is also true for the wave functions as well, as shown in 

Fig. 4. 7 which demonstrates the second excited state. 
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Table 4.3: First Six bound state mass levels of the Salpeter Equation 

for y=O.O with m= 1.625 Ge V and various Spline ranks. (Energy in 

GeV) 

Level SN=30 SN=20 SN=l2 

6 4.885 5.054 5.065 

5 4.687 4.885 4.887 

4 4.508 4.686 4.687 

3 4.448 4.448 4.448 

2 4.150 4.150 4.150 

1 3.735 3.735 :3.735 
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The problem arises for the third ex:cited state where the spline rank is 

30, which is shmvn in bold face in Table 4.3. The bound state mass does 

not match the values from the other two cases. The structure of the wave 

functions illustrate its unstable nature, as seen in Fig. 4.8. In addition to its 

oscilatory nature, the visible structure is at very low momentum. This is the 

first time such a property has been observed and its significance is unclear 

at this. time. 

On the other hand the fourth excited state does have the correct energy 

for a third excited state. In fact the fifth excited state energy matches what 

the fourth energy should be. In addition, the structure of the fourth excited 

state's wave functions correspond to that of the third excited state given by 

the case where the spline nu1k is 20. Fig. 4.9. This indicates that the energy 

level in question is spontaneously generated and could be caused by either the 

physics of the system or a mathematice:Ll manifestation. Regardless, the lesson 

learned here is the same as that from the pure scalar Salpeter equation. Some 

systems have a limited stability which varies with the mass of the quark and 

antiquark. So long as you are aware of the range of the stability the system 

could be utilized. 
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Figure 4.7: Positive second excited state."/' y=OA, solutions for the Salpeter 

equatiqn 1£3 =4.448 GeV spline rank of20 (circles and squares) and spline rank 

of 30 (solid and long dashed lines). 
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Figure 4.8: Positive third excited state, -yl' y=0.4, solutions for the Salpeter 

equation J.L4 =4.508 Ge V with a spline rank of 30 (solid and heavy long clashed 

lines). 
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Figure 4.9: Salpeter equation, /'1' y=0.4, third excited state ,u4 =4.686 spline 

rank of 20 (circles and squares) and fourth excited state with a spline rank 

of 30 J.Ls=4.687 GeV (solid and long clashed lines). 
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Chapter 5 

Theoretical Analysis 

In this chapter the Dirac, and lCS equations will be investigated using ap­

proximation techniques to solve their coupled eque:t.tions. This will be done 

using only the time-like structure for the vector component of the mixed 

Lorentz structure. The reason for this is simple, we are not trying to redo 

the stability analysis done already. Instead, the purpose is to gain insight 

into why the different systems exhibit certain characteristics. 

Unfortunately, the approximation techniques used here for both systems 

require a different form of their defining equations than were generated in the 

chapters on their numerical solutions. In fact, it was found that the systems 

were easier to solve in position space. Ra.ther than giving a complete outline 

of the calculations needed to derive these new equations, an abbreviated 

95 
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version is shown instead. A more complete derivation of these systems is 

illustrated in a paper submitted for publication by Dr. Gross and myself 

[19]. 

5.1 Derivation of the general equations 

Both equations can be derived from a simple general equation, 

where the upper sign once again stands for the scalar structure and the 

lower is the vector structure of the potential vertex. The derivation of this 

equation can be found in the aforementioned article, Ref. [19]. The term 

C (p2
) is defined as 

C(p2) = 2o- { m1 + m! log (Ep 1 + p)} , 
1rm1 Ep1 pEP1 m1 

(5.2) 

E1 = Jmy- \72 and ./'i = Np1 NkJJ4Ep 1 Ek 1 - The same mixed kernel used 

in the numerical derivations is applied here as welL A little hindsight will 

be applied here, thanks to the numerical results we can correctly assume a 

ground state solution of the form 

<I>(r) = 
( 

f(r) ) 

-ig(r)o- · f X. 
(5.3) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

97 

Applying both of these principles to Eq. (5.1) will result in its reduction to 

a set of coupled equations shown below for radial wave functions f(r) and 

g(r). 

dg 2 
(EB- m2- [E1- mr]) f + - + -g 

dr r 

=(car- C) [1- fii (1- 2y)]-; (~~ ~::::)2) N J 

elf 
( E B + m2 - [ E1 - m d) g - -l 

cr 

=-((aT-C)[(l-2y)-Pi]-a(E l )2 )Ng. (5.4) 
r ·1 + m1 

5.2 Theoretical Analysis of the Dirac Equa-

tion 

In order to derive the Dirac equation the limit m 1 ---+ oo is applied to 

Eq. (5.4). The result is 

df 
E B g = ( -m2 - ar( l - 2y)) g + dr , (5.5) 

which _turns out to be the exact Dirac equation. \Vhen these coupled equa-

tions are take to large r they simplify to 

f dg = 0 
ar - dr 
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df 
-ar(l - 2y) g + -

dr 
=0. 
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(5.6) 

The solutions to Eq. (5.6) depend on the \'rune for the vector strength. 

When y < 1/2 the two radial wave functions are 

~1., 

( ) - N' -v .-,.y -:;ar-gr-.9e -, (5.7) 

where 

(5.8) 

It should be noted that these equations approach zero as r ---+ oo, and become 

less confined as y ---+ 1/2. 

For y > 1/2 the solutions are a linear combination of the two independent 

solutions 

with 

(5.10) 

These wave functions a.re oscillatory and escape to large r. Both the scalar 

and vector dominant solutions match the results shown in Fig. 1.4 (stability) 

and Fig. 1.5 (instability) respectively. 
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The Dirac system ttL.'"Iled out to be the simplest case to solve, not surpris-

ingly. The lCS equation will require a more complex technique to solve it. 

The method chosen is a variational-like technique, which can also be applied 

to the Dirac equation. When this is accomplished the result is Fig. 5.1 which 

shows how the binding energy varies with the variational parameter I· The 

variational parameter can be linked to the momentum of the system. The 

four vector strengths y=O.O, 0.4. 0.6. and 1.0 have the same characteristics in 

the positive energy region. They drop clown from infinity at 1=0.0 to some 

minimum value, which corresponds to that curves solution for the ground 

state energy. Then the curves continue on to infinity as 1 -+ oo. 

The negative states however are not so simple, and it is here that the 

stability of the system is determined. In Fig. 5.1 the scalar dominant curves 

come from negative infinity at ~t=O.O, reach a max:imium still in the negative 

region and proceed back to negative infinity as the variational parameter 

increases. The vector dominant curves however start at positive infinity at 

low 1 and then drop to the negative energy region where they eventually 

mimic the same trajectory as the y=O.O and 0.4 curves at high 'Y· The y=0.6 

and 1.0 curves have no critical point resulting in a calculated maximium 

which would have been its negative ground state energy. 
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The significance of this feature is important, for here we can graphically 

see what is happening. Consider a positive or negative state for either of 

the vector-dominant cases. \Vhen trying to find its energy, either positive or 

negative, the state can begin on one curve and tunnel through to the other 

at the same energy level it started with. Due to the physics of quantum 

mechanics a state has a certain probability of quantum tunneling through 

a barrier, thus appearing on the other side. The probability of this event 

incree:l.Ses as the thickness of this barrier. the division between the positive 

and nega.ti ve curves at the same enerf:,>Jr. decreases. 

As a result of this property the energy level of the state in question can be 

found anywhere the two curves cover, which is positive to negative infinity. 

This is e."Xactly what is found from the numerical results. The energy levels 

of the vector-dominant systems vary with the spline rank used to calculate 

that case. This is a violation of stability condition 2. The application of this 

variational technique will be illustrated in the next section which deals with 

the 1 CS system. 
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Figure 5.1: The Dirac energy E = Es as a function of the variational pa-

rameter 1 for different mass ratios y = 0 (solid line), y = 0.4 (dot-dashed), 

y = 0.6 (dashed), andy= 1.0 (clotted). 
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5.3 Theoretical Analysis of the lCS Equa-

tion 

The difficulty in solving the l CS equations is the presence of the operators 

Jmy - \72 and 'Pi- The way to solve this problem is to reduce Eq. (5.4) to its 

simplest form and find the ftmctions which will solve it. Then, parameters 

may be added to these ftmctions which will be adjusted in order to solve the 

original coupled equations. This is the variational-like method utilized at the 

end of the Dirac section. 

The first step is to set the linear potential coefficient, u, to zero. The 

exact solutions to these equations for a pair of free particles are a set of 

spherical Bessel functions of order l. 

(5.11) 

Once again we have used the knowledge gained from the numerical analysis 

to choose the basic form of the solution functions. The energy of this system, 

which is a function of the parameter 1, 

(5.12) 
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Already the positive and negative energy regions ce.n be observed as well as 

the Dirac limit where the energy is defined by J~ + .-.p. 

When we set a =f 0 the system can no longer be solved analytically. 

Instead a matrix system based on Bessel functions rather than splines will 

be utilized in order to estimate the energies of the systems. These estimates 

will be optimized by adjusting the parameter 'Y· A plot of the functions f(x) 

and g(x) is illustrated as the heavy lines in Fig. 5.2 where x = [T. It should 

be not~d that the form of f(x) represents a s-wave while g(x) is a p-wave. 

To improve the accuracy of the calculations a tail constntcting function 

was added to the simple Bessel functions which makes them resemble the 

numerical wave functions. The spherical Bessel function hl(wr) was joined 

with jl(r·r) so that the new function and its first derivative are continuous. 

These new solutions are also depicted in Fig. 5.2 with three different tails. 

However, it was found that these tails clid not improve the calculations sig­

nifcantly . Therefore they were dropped and the simple wave function was 

used instead which has the range 

f(r) = 
{ ~oiohr) /T < 'ii' 

,.,. > 'ii' 

{ :·ji(-yr] /T < n1 
(5.13) 

/T > n1 

g(r) = 

The constant n 1=4.493 is the location of the zero for j 1• 
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Figure 5.2: The trial wave functions f(x) and g(x) as a ftmction of x ="fT. 

The different tails are for the cases ;;J /1 = 0.1 (biggest tail), 0.5, and 2.0 

(sma.llt::st tail). a.s discussed in the text. 

The benefit of using Bessel functions is that they are eigenfunctions of 

\72
, which allows for the calculation of the operators Jmr - \72 and fii. 

= --? r- _:_ g(r) = -"(2 g(r) . (
lfJ2 <)) 
r or- r 2 

(5.14) 

The functions f and g are substituted into Eq. (5.4). with the first equation 

multiplied by j0 (~rr) and the second by j 1(!r). The coupled equations are 

then integrated over d3r resulting in 
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{(
ac3 2 ) ( -2) ac4 -2} ~r _ = - --:y- C(t ) 1 - 2y- Pt - ---:yPt JV 9o = -Su 9o, (5.15) 

where 

and 

1o xdxj6(x) _ 
c2 = fTr 2d ·2c ) = 0.716 

JO X X]o X 

;nt x 3dxy'2 (x) 
- Jo t - ? 6~9 

C3 - ;n '>( - -· .J 
Jo 1 x 2dxji x) 

(5.16) 

(5.17) 

vVhen Eq. (5.15) is solved for the eigenvalues of the binding energies the 

result is a. ftmction of r. 

\iVhen the estimated eigenvalues are computed for the same group of 

systems as in the numerical analysis Table 5.1 is generated. The results 

shown in this comparison demonstrate the validity of this approximation 

technique. 

The time has come to examine these results more closely. Vve start with 

the comparison between the Dirac and the 1CS with a n:=10.0, both are the 
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Table 5.1: Comparison of the e..·mct and estimated solutions for the 

Dirac and 1CS equations. All energies are in GeV, and the symbol-

indicates that there is no stable solution. 

parameters positive energy negative energy 

exact estimate exact estimate 

m1/m2 y E1 E I E-1 E I 
. 

Dirac 

00 0.0 0.976 0.950 0.715 -1.249 -1.226 0.859 

0.4 1.028 1.014 0.673 -0.660 -0.650 0.463 

One Channel Spectator 

10 0.0 0.964 0.946 0.635 -1.091 -1.034 0.988 

0.4 1.013 1.007 0.603 -0.619 -0.598 0.505 

5 0.0 0.940 0.926 0.579 -0.936 -0.828 1.272 

0.4 0.992 0.992 0.552 -0.548 -0.532 0.563 

2 0.0 0.857 0.857 0.4 71 -0.607 

0.4 0.928 0.952 0.452 

1 0.0 0.745 0.777 0.379 -0.330 

0.4 0.853 0.928 0.367 
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pure scalar systems. The energy curves e)...-plored in this chapter are given in 

units of GeV, and are ftmctions of the parameter r· The pure scalar case 

shown in Fig. 5.3 demonstrates how the positive energy is approximately 

the same for both the Dirac and n:=lO systems. The n:=lO positive curve 

goes to infinity more rapidly than the Dirac curve while the negative curve 

goes much slower to negative infinity than its counterpart. The important 

features of this figure is that the n:=lO system is stable and how is diverges 

from the Dirac case. 

The question now is what happens when the mass ratio changes. To do 

this we turn our attention to Fig. 5.4 where the energy curves of the 1 CS 

systems for the mass ratios LO. 5. 2. and l are plotted. The positive energy 

curves indicate that as n: decreases so does the ground state energy. 

For the negative curves the n:= 1 and 2 systems do not possess a critical 

point because they continue through the zero energy boundary and become 

positive at high r· This would indicate that these states have negative en­

ergies which vary with the spline rank. However, this is not seen in the 

numerical analysis. Instead, the instability is clue to the negative energy 

wave functions losing their proper structure. Two factors come into play 

here which might explain the lack of energy variance with the spline rank. 

First, this is only an approximate solution \Vhich means we loose much of the 
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finer points of the systems. Second, the barrier tunneling occurs at high 1 

instead of at the low end as was seen in the previous case. In addition, the 

distance to tunnel through the barrier is much greater. As a result, unrea­

sonable wave functions may be exactly how this cause of instability manifests 

itself. 

The n:=5 curve is too close to the border line to tell whether it behaves 

like the ten-to-one mass ratio system or the other two cases. Of course, we 

do know from the numerical analysis that it is completely stable. 

To see the effects of a change in the vector strength we shall examine 

Fig. 5.5 and Fig. 5.6 for the n:=lO and 1 systems respectively. First note 

that for both mass ratios the y=0.6 and 1.0 negative curves depict the same 

feature which was linked earlier to energ_y variance with the spline rank. 

These four states fail their stability analysis for exactly that reason. Next, 

the y=0.4 with a n:= 10 is stable just a~ the pure scalar example was. 

Since the pure scalar equal mass case was already covered from Fig. 5.4, 

this leaves only the y=0.4 m 1 = m 2 system to hanclle. Here we see the 

first example of the negative states gTowing until they gain positive energy 

eigenvalues, as shown in the numerical analysis. The only difference here (as 

opposed to the pure scalar case with equal mass) is that the negative curve 

becomes positive at lower 'Y· Recall that the pure scalar case had isolated 
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Figure 5.3: Energies E = Ea as a function of the variational parameter 1 

for the Dirac equation (solid line) and the lCS equation with m 1 = l07n2 

(dashed line). In both cases, y = 0. 
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Figure 5.4: The lCS energ;y E = £ 8 as a function of the variational pa-

rameter 1 for different mass ratios K = m 1/m2 = 10 (solid line), n. = 5 

(dot-dashed), K = 2 (dashed), and"'= l (clotted). [n all cases, y = 0 
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stable positive states and negative tmstable states due to their wave fnnctions. 

Either the y=OA negative energy curves become positive early enough to 

allow a significantly greater amount of quantum tunneling to occur, which 

apparently has new consequenses, or some critical feature of this curve is lost 

due to the technique employed to solve the system. 

From the analysis of this chapter it can be concluded that the positive 

energy curves vary little compared to the negative curves as both the mass 

ratio and vector strength are varied. It is the structure of the negative 

curves which determines the question of stability for a system. The general 

conclusion from this analysis is that, when the time-like vector component is 

employed, the stability of a system increases as the mass ratio increases and 

the vector strength decreases. \Vhich of course matches the findings from the 

numerical analysis. This variational-like technique does not give the accuracy 

of the eigenvalues, the certainty concerning stabilty. or the speed of analysis 

that the numerical analysis provides. Hmvever, it did give us a greater insight 

into the causes of instability. 
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Figure 5.5: The lCS energy E = Es as a function of the variational param-

eter 1 for different mixing ratios y = 0 (solid line), y = 0.4 (dot-dashed), 

y = 0.6 (dashed), andy= 1.0 (clotted). In all ca.ses mrfm2 = 10. 
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Figure 5.6: The lCS energy E =En as a function of the variational param-

eter 1 for different mixing ratios y = 0 (solid line), y = 0.4 (dot-dashed), 

y = 0.6 (dashed), andy= 1.0 (dotted). [n all cases mtf'm2 = 1. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Chapter 6 

Conclusions 

The results of the stability analysis when the time-like vector and the 

full four vector Lorentz structures are examined are given by Table 6.1 and 

Table 6.2 respectively. 

• The Dirac equation is completely stable when the potential vertex 

Lorentz structure is scalar dominant. (y < l/2). 

• The one channel spectator equation with time-like vector structure 1° 

is completely stable when the mass ratio n:=lO with y=O.O and 0.4 

systems, or when n:=5.0 for the pure scalar system. As the mass ratio is 

decreased for the pure scalar system the negative energy states become 

unstable, as is the case when ti:=2.0 and l.O. For the system with 

y=0.4 this happens sooner. at ti:=5.0. and below this mass ratio the 

114 
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Table 6.1: Stability Results for scalar versus time-like vector mixed Lorentz structures 

(the table lists the region of stability or the first of the four tests that the system 

fails). 

y = 0.0 

Dirac stable 

lCS ti:=LO positive 

lCS ti:=2.0 positive 

1 CS A:=5.0 stable 

lCS ti:=lO.O stable 

y = 0.4 y = 0.6 y = l.O 

stable Concl3 Cond 2 

Concl 3 Concl 2 Concl 2 

Concl 3 Cond 2 Concl 2 

positive Cond 2 Concl 2 

stable Cond 2 Concl 2 

Sal peter m~0.85 stable stable stable 
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Table 6.2: Stability Results for scalar versus full four vector mixed Lorentz structures 

(the table lists the region of stability or the first of the four tests that the system 

fails). 

y = 0.0 y = 0.4 y = 0.6 y = 1.0 

lCS !i=LO positive stable Cond 2 Concl 2 

lCS !i=2.0 positive stable Concl 2 Concl 2 

lCS !i=5.0 stable stable Concl 2 Cond 2 

lCS h:=lO.O stable stable Cond 2 Concl 2 

Sal peter m;;::::0.85 m;;:::: 1.625 unstable unstable 

systems are completely unstable. This means that the lCS equation 

becomes more stable as the vector strength decreases and the mass ratio 

increases. In other words the equation has the proper Dirac equation 

limit when y < 1/2. 

• The 1 CS with full four vector structure ''/' is completely stable for all 

mass ratios when the vector strength is scalar dominant, as in the case 

when y=OA, but not pure scalar. The pure scalar case is the same as in 

the -y0 analysis. For the vector dominant cases the systems are totally 
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unstable. \Vhen y=0.4 the lCS system has the correct Dirac limit for 

that vector strength. 

• The Sal peter equation with vector structure 1° and equal quark-antiquark 

masses are completely stable for all vector strengths e..xcept for y=O.O. 

\Vhen the pure scalar system is examined it was discovered that by in­

creasing the quark masses the system becomes stable. Unstable states 

are still present in the system, however they do not affect neighboring 

states and may be rejected. As the masses are increased from approxi­

mately 0.85 GeV the systems become more stable, higher excited states 

retain their proper characteristics. Unlike the cases where the negative 

states of the l CS equation were unstable. the negative states of the 

pure scalar systems are also stable if their positive counterparts are 

stable. 

• The Salpeter equation with vector structure 1~-' with m 1 = ~ is un­

stable for all vector strengths except for scalar dominant cases, such as 

y=0.4. For this vector strength the system is tmstable until the quark 

masses are increased to approximately 1.625 GeV. The system then has 

the same properties as the pure scalar case explained above. 
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The usefulness of a system where only part of the spectrum is stable is still 

open to question. Others have had to deal with such partially stable systems. 

Through their research Tiemeijer and Tjon [20] have found such systems for 

the Blankenbecler-Sugar-Logtmov-Tavkheliclze equation. They found that 

the unstable states could be isolated <mel removed from the systems, stability 

concliti"on 3 presented in this thesis is se:1tisfiecl. These remaining stable states 

produced good results for the meson mass spectra and the Regge trajectories. 

As mentioned earlier, so long as the unstable states can be isolated in the 

system, and energy levels you are interested in are withln the remaining 

stable states, these partiaily stable states may be used with caution. 

The answer to the fundamental question presented by this research has 

therefore been found. The stability of the linear combination of scalar and 

vector Lorentz structures of the confining potential directly depends on the 

relativistic equation used to model the meson. 

The study of the spectator equation is st.ill preliminary at this time for 

two reasons. First. only the 1 CS equation has been studied which is in­

valid when the quark and antiqua.rk masses are equal. For a bound state 

with equal masses the two channel spectator equation must be utilized after 

being explicitly symmetrized. Second, the study of the lCS equation was 

limited to the quasirelativistic approximation, which means that retardation 
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is neglected. However, leaving out retardation leads to the Salpeter equa-

tion. This undermines the purpose of the lCS equation so investigation of 

the equation with retardation is very important. In addition, the regular-

ization term and form factors were also left out. In order to reproduce the 

meson spectrum both properties must be replaced, which of course means 

their stability must be investigated. 

The results from the Sa.lpeter equation with a time-like vector structure 

agree with those found in Ref. [10]. [-[owever they disagree \vith the conclu-

. 
sions of Parramore and Piekarewicz [8]. They found the Salpeter equation 

to be tmstable for any scalar dominant confining potential regardless of the 

quark mass. This is contradictory to the results we fmmd, the y=OA was 

stable and the pure scalar case was stable for a high enough quark mass. To 

confirm these results we examined a specific case they had also looked at, 

a-=0.29 GeV2
, m=0.9 GeV, y=O.O for a pseudoscalar system, and 25 basis 

states. They found such a system to be unstable, were as we fotmd it to be 

partially stable and valid clue to stabilit:r· condition 3. One possible explana-

tion for this discrepancy concerns the choice of basis functions. They used 

nonrelativistic harmonic oscillator functions, and we used cubic splines for 

our wave ftmctions. vVhile it is true that they might not consider a partially 
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stable system as being valid, this would not explain our different views of the 

system with y=OA. 

Vve have introduced four stability conditions which must be satisfied for 

a system to be stable. It was also determined that the stability of these 

relativistic equations demand the examination of the eigensystems on both 

an individual eigenstate level and the system as a whole. It was shown 

through these stability criteria that the Lorentz structure of the confining 

potential and the relativistic equation utilized to model the meson bound 

state are both critical in determining the stability of the system. 

Clearly this topic requires further investigation. The lCS equation \vith 

a fully relativistic potential needs to be investigated as does the two channel 

spectator equation. The expansion of the potential to include a one gluon 

exchange would also need to be aclressecl. Of course the ultimate objective 

of this research is to properly reproduce the meson phenonema and enable 

predictions to be made. 
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Appendix A 

Derivation of the Form of the 

Negative Energy Dirac Spinor 

The purpose of this appendix is to show hmv v( -p, ).) is calculated, since 

it is not just a matter of replacing p \Vith -p. Recall that the Lorentz 

transformations on the Dirac space can be written[l3l 

(A.l) 

where a are the generators of the boosts (not needed here) and 1 5 a are the 

generators of rotations. The matrices 1 5ai are 

(A.2) 

where O"i = (a1, a 2, a3) are the Pauli matrices. 
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Now the u and v helicity spinors are 

( 

-2>-iPi ) 
v(p, Aj) = iVPi 

1 

( -iu2)x.>.i 

(A.3) 

where the X,\ are given in Table 2.1. To transform v(p,>.) into v(-p,>.), we 

rotate v(p, A) by an angle 0 = 7r about the y 11 .. '<iS (in our applications p lies 

in the xz plane). This rotation, R:r, reduces to 

(A.4) 

Hence the v-spinor for -p becomes 

(A.5) 

This is the v spinor utilized in this paper; note that it has the same two-

component spinor as 'l.L. The minus sign is a phase factor which has no effect 

on the results. 
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Appendix B 

Spectator Equation in the 

Limit when m1 ----+ oo 

In this Appendix we will derive the Dirac equation from the single channel 

spectator equation by taking the mass of the quark, m 1, to infinity. The 

Dirac equation we obtain then describes clil a.ntiquark in the presence of a 

potential generated by the heavy quark. The Saine equation was obtained 

from first principles in Chapter 2 and we will see that the result obtained in 

this way is identical. 

The spectator equation describes two particles interacting with one an­

other, while the Dirac equation describes a single particle interacting with a 

potential. In order to reduce the two-body system to a one-body system, the 
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mass of the quark must be taken to be extremely large compared to the anti­

quark. Taking the quark (particle 1) mass to infinity will cause it to behave 

as a simple potential source. Evidence that this source is actually caused 

by another fermion will follow from the helici ty properties of the effective 

potential. It should be noted that taking the quark mass to be large is not 

arbitrary. In Fig. 3.2 we chose to close the contour in the lower half plane, 

thereby placing the quark on its positive energy mass shell (this choice is ap­

propriate only if m 1 ~ m 2 ). Since them - oo limit corresponds physically 

to removing a particle from the influence of the interaction, which includes 

putting it on its mass shell, it is the quark mass which must be set to infinity 

in this case. 

Taking the m 1 - oc limit will lead t.o p1 - 0. k-1 - 0, Ep 1 - m 1, and 

Ek1 - m1. The quantities given in Eq. (:3.17) reduce to 

Q- 1 

As m 1 - oo, the mass of the bound state also approaches infinity [Eq. (3.25)], 

but so does the kinetic energ_y of pmticle one, Ep 1 - m1 - oo. Cancelling 

out the m 1 terms the system is now solved for the binding energy. Assuming 

the wave functions are finite as m 1 - oo m1cl inserting the identities of 
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Eq. (B.1) into Eq. (3.16) generates the following set of coupled equations 

(~k- p COS B)) ( 1/Jia(k) ) 

(~kp +cos B) 1jJ1b(k) 

(B.2) 

Since all terms above are with regards to particle 2 the subscript has been 

dropped. This is exactly the same equation as found through direct deriva-

tion of the Dirac equation. 
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Appendix C 

Definition of the Spline 

Function 

The solution to the wave functions used in this paper are based on a set 

of third order polynomial functions called cubic splines. Used previously in 

papers such as Ref. [16], they have proven versatile enough to model all of the 

wave functions examined in this paper. The definition of the wave function 

is 
SN 

7/Ji(P) = L aii.3i(P) (C.l) 
j=l 

where SN is the spline rank, .!3 is the spline function, and a is the eigenvector 

which is solved for along with the eigenvalues. A spline rank of 20 was chosen 

-
as the standard which means that 20 spline curves are added together to 
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model a given wave function stmcture. Each of these spline curves is defined 

according to four separate functions listed below. The function or functions 

used depends on the argument and the spline index j. The spline indices 

goes from 1 to SN and while the sum over all spline index is taken to define 

the wave function, each spline curve j is defined seperately. 

2 . 3 

1 + 3 (x-x;-d + 3 cx-x~-d _ 3(x-x{-d E [ ] 
h h- h:J ' X Xj-I,Xj 

0 otherwise. 

(C.2) 

The argument of the splines ranges from zero to one. This range is divided 

into sectors whose size. h = 1/(SI'v' + 1). depends on the spline rank chosen. 

Each sector is defined by nodes, x1 , \Vith the number of nodes equal to SN +2. 

The first node is always located at zero, called x 1, and the last at one, called 

XSN+2· An example of the spline curves for a spline rank of 4 is given in 

Fig. C.L None of the nodes are labeled less the:m 1 so for j = 1 the first 

sector is defined by the third function of Eq. (C.2). The first sector of j = 2 

is a special case, and is defined as the second function with node x 1 plus the 

fourth function with node x 2 • 
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Now some important points must be addressed. First, the value of the 

spline function of one sector matches that of the next function in any ad­

joining sector at the node. However, these values do not match up for all 

orders of differentiation of the functions. Therefore, in order to obtain con­

vergence the integrals must be divided into pieces, between the nodes and 

then summed up afterwards. Spec-ial care must be used since the numerical 

integn:tion is accomplished by Gaussian quadrature. For the double integral 

of the potential the subintegral which possesses the pole must be split in two. 

Now the pole can be isolated such that e:t.n equal spacing on either side of it is 

present. This is an essential concept when numerically integrating, since con­

vergence is found by approaching the pole from both sides but never reaching 

it. The remainder of the subintegra.l is then handled alone and added to the 

first piece. 

The second point is that. the spline argument ranges from zero to one, 

however, the integrals go from zero to infinity. The versatility of specifying 

the wave ftmction identity is utilized to m·errome this. A subroutine is used to 

generate Gauss points from zero t.o one along with the corresponding weights. 

These values are then tangent mapped so that the range now extends to the 

limit of infinity. Essentially, the argument of the spline is defined as the 
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inverse tangent of the momentum. In other words, 

~ 
x = .:: arctan(p) . 

1i 

The result of this mapping is shown in Fig. C.2. 

129 

(C.3) 

When the spline rank is increased the sectors become smaller resulting 

in a higher density of spline curves for a set range. This also means that 

the distance in momentum space the last spline curve reaches before leveling 

out to zero increases. Thus, a more accurate modeling of the actual wave 

function curve is obtained. Of course this higher precision must be balanced 

by consideration of computation time. 
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Figure C.l: Spline Rank 4 Curves (Index 1 Solid, 2 Long Dash, 3 Short Dash, 

and 4 Dot). 
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Figure C.2: Spline Rank 4 Curves (Index l Solid, 2 Long Dash, 3 Short Dash, 

and 4 Dot) with Momentum Arguement. 
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Appendix D 

Momentum Space Wave 

Function Structures 

The fourth stability condition says the structure of the wave ftmction must 

be correct for the specific state being considered. The question is, how do we 

know what the appropriate structure should be? One argument points out 

the fact that certain structures keep reappearing for specific energy states 

which have already passed the first three stability conditions. These wave 

fnnctions are what one would expect from a position space solution. They 

have the correct number of nodes and behavior for the specific energy level 

wave fnnction. In addition. their structures vary little when the spline rank 

is changed. 
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The problem is that these solutions are in momentum space, not position 

space. Another issue is the fact that other papers which deal with stability do 

not have such wave function structures for their stable solutions, for example 

Ref. [20]. It is therefore neccessary to confirm our conclusions concerning 

what stable momentum space wave functions should look like. 

The best way to determine what the structure of stable momentum space 

wave functions are, is to return to the basics. The equation for a non-

relativistic linear potential is 

(D.1) 

This is the one-dimensional SchrodingeT equation in pos1tion space. The 

solutions to this system, detailed in H.ef [21 J, are the Airy functions. Because 

this is ~1. non-relativistic system there are no negative energy states, however 

we can examine the gTotmd and excited states with positive energy. By 

conducting a Fourier transform, the momentum space wave functions for the 

ground, first, and second excited states can be found, Fig. 0.1 to Fig. D.3 

respectively. 

This is more than enough to determine the correct wave ftmction struc-

ture, however, let us add one more component to this investigation. The 

system can be solved directly in momentum space using cubic splines to 
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model the solutions. The Schrodinger equation in momentum space is 

(D.2) 

where the terms with the subscript naught have been rescaled by the reduced 

mass. For a complete account of this three-dimensional linear potential equa-

tion see Ref. [15]. 

The ground, first, and second excited states resulting from Eq. 0.2 are 

shown in Fig. D .1 to Fig. D .3 respectively along with their Fourier trans-

formed Airy solution cotmterparts. This is confirmed by the close agreement 

between the solutions derived from the Airy versus spline functions. The 

energy levels found for the Airy, spline rm1k 20, cmcl spline rank 16 cases are 

given in the caption of the appropriate figure. Their agreement, and that 

of the momentum space wave functions, confirm the validity of using splines 

to model the solutions for a confining potential. They also validate our con-

elusions concerning the expected structure of stable momentum space wave 

functions. The figures shown in this study demonstrate the same character-

istics as those deemed stable in the quasi-relati vist.ic stability analysis. 
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Figure D.1: Non-Relativistic linear potential t,rrouncl state wave functions, 

Airy solution £ 1=6.483 GeV (Solid Line), Spline Rank 20 £ 1=6.485 GeV 

(Circle), Spline Rank 16 E 1 =6.486 (Square). 
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Figure D.2: Non-Relativistic linear potential first excited state wave func-

tions, Airy solution £ 2 =11.337 GeV (Solid Line), Spline Rank 20 £ 2=11.356 

GeV (Circle), Spline Rank 16 £ 2 = ll.355 (Square). 
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Figure D.3: Non-Relativistic linecli potential second excited state wave func-

tions, Airy solution £ 3=15.309 GeV (Solid Line), Spline Rank 20 £3=15.464 

GeV (Circle), Spline Rank 16 £ 3=15.341 (Square). 
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