Electroproduction of the $\mathrm{S}(11)$ meson(1535) resonance at high momentum transfer

Christopher Stephen Armstrong
College of William \& Mary - Arts \& Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd
Part of the Physics Commons

Recommended Citation

Armstrong, Christopher Stephen, "Electroproduction of the $\mathrm{S}(11)$ meson(1535) resonance at high momentum transfer" (1998). Dissertations, Theses, and Masters Projects. Paper 1539623925. https://dx.doi.org/doi:10.21220/s2-45ag-7c85

This Dissertation is brought to you for free and open access by the Theses, Dissertations, \& Master Projects at W\&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W\&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overiaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6 " \times 9$ " black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

Electroproduction of the S_{11} (1535) Resonance at High Momentum Transfer

A Dissertation Presented to
The Faculty of the Department of Physics
The College of William \& Mary in Virginia

In Partial Fulfillment
of the Requirements for the Degree of
Doctor of Philosophy
by
Christopher S. Armstrong

1998

This microform edition is protected against unauthorized copying under Title 17, United States Code.

300 North Zeeb Road
Ann Arbor, MI 48103

Approval Sheet

This dissertation is submitted in partial fulfillment of the requirements for the degree of

Approved, July 1998

R. D. Carlini (Thesis Adviser)

P. Stolen

Rensselaer Polytechnic Institute

Dedication

Dedicated with love and appreciation to Alejandra, who, while I played physics, was busy with the immeasurably more important job of giving a good start to our children;
and dedicated also to my parents, for giving me my own good start.

Contents

1 Introduction 2
1.1 The Goal of the Experiment 3
1.2 The S_{11} (1535) Resonance and the $p \eta$ Decay Channel 5
1.3 Experimental Formalism 11
1.3.1 Kinematic Definitions 11
1.3.2 Cross Section and Multipole Definitions 14
1.3.3 Helicity Amplitudes 17
1.4 The Nonrelativistic Constituent Quark Model 21
1.5 Historical Review and Literature Survey 25
1.5.1 Quark Models of Hadrons 25
1.5.2 Perturbative QCD 29
1.5.3 Other Theoretical Approaches 29
2 Experimental Apparatus and Data Acquisition 33
2.1 Overview of the Experiment 33
2.2 The Accelerator 38
2.3 The Hall C Beamline Instrumentation 39
2.3.1 Beam Energy Measurement 39
2.3.2 Beam Position Measurement 39
2.3.3 Beam Current Measurement 41
2.4 The Cryogenic Target 41
2.5 Target Rastering 43
2.6 The Electron Spectrometer 43
2.6.1 The SOS Magnetic Elements 46
2.6.2 The SOS Scintillator Arrays 46
2.6.3 The SOS Drift Chambers 50
2.6.4 The SOS Gas C̈erenkov Detector 50
2.6.5 The SOS Lead-Glass Calorimeter 52
2.7 The Proton Spectrometer 52
2.7.1 The HMS Magnetic Elements 54
2.7.2 The HMS Scintillator Arrays 56
2.7.3 The HMS Drift Chambers 57
2.8 Trigger Electronics and Data Acquisition 37
2.9 Materials in the Experimental Apparatus 61
3 Monte Carlo Simulation of the Experiment 63
3.1 Overview of the Simulation 63
3.1.1 Calculation of the Monte Carlo Yield 65
3.1.2 Passage Through Material 68
3.2 Event Generation 69
3.2.1 Resonance Production 69
3.2.2 Multi-Pion Background 71
3.2.3 Elastic Scattering 72
3.3 Radiative Processes 74
3.3.1 The Multi-Photon Prescription 78
3.4 The Spectrometer Monte Carlos 81
4 Data Analysis 83
4.1 Overview of the Analysis 83
4.2 Hall C Replay Software 85
4.2.1 Drift Distance Mapping and Track Reconstruction 86
4.2.2 Reconstruction of Target Quantities 88
4.2.3 Scintillator Timing Corrections 89
4.2.4 Particle Identification and Real-Accidental Separation 93
4.2.5 Calculation of Physics Quantities 99
4.2.6 Efficiencies 99
4.3 Post-Replay Analysis 104
4.3.1 Data Checks 105
4.3.2 Normalization for Beam Charge 105
4.3.3 Target Density and Length 106
4.3.4 Proton Absorption 108
4.3.5 Target Window Background 110
4.3.6 Accidental Coincidence and HMS ytar Background Subtractions 110
4.3.7 Multi-Pion Background Subtraction 111
4.3.8 Data Cuts 118
4.3.9 Corrections 120
4.3.10 Extraction of the Differential Cross Section 122
5 Results and Conclusions 124
5.1 Estimation of Systematic Uncertainties 124
5.2 Extraction of $A_{1 / 2}^{P}$ 129
5.2.1 Fits to the Angular Distributions 132
5.2.2 Assumed Form of R 133
5.2.3 Fits to $\left|E_{0+}(W)\right|^{2}$ 133
5.2.4 Calculation of $A_{1 / 2}^{P}$ 137
5.3 A Constraint on the $S_{11} \rightarrow p \eta$ Branching Fraction 142
5.4 Conclusions 144
A Beam Current Measurement in Hall C 147
A. 1 The Unser Monitor 148
A. 2 The Beam Current Monitors (BCM1 and BCM2) 149
A. 3 The BCM Electronics 152
A. 4 Frequency Structure of the Hall C Beam 152
B Reconstruction Optimization 156
C Tabulated Cross Section Data 162
D List of Collaborators 177

List of Tables

2.1 Kinematics for $Q^{2} \approx 2.4 \mathrm{GeV}^{2} / c^{2}$ 35
2.2 Kinematics for $Q^{2} \approx 3.6 \mathrm{GeV}^{2} / c^{2}$ 36
2.3 SOS Specifications 44
2.4 HMS Specifications 54
2.5 Materials List 62
4.1 Experimental Backgrounds 110
4.2 Standard Cuts 121
4.3 Corrections Applied to the Data 123
5.1 Estimates of Systematic Uncertainties 127
5.2 Cut Dependence of Final Results 128
5.3 Definition of Fits 1-3 135
5.4 $S_{11}(1535)$ Parameters 138
5.5 Uncertainties Specific to $A_{1 / 2}^{p}$ 138
5.6 Results of Three Fits to $\left|E_{0+}(W)\right|^{2}$ 138
5.7 Preferred Results 139

List of Figures

1.1 Inclusive Electron Scattering Data 6
1.2 The Proton- η Decay Channel 7
1.3 The World's Data for $\sigma_{\mathrm{res}}\left(e p \rightarrow e^{\prime} p \eta\right)$ at $W \approx 1535 \mathrm{MeV}$ (Previous Data) 8
$1.4 R=\sigma_{L} / \sigma_{\tau}$ for $e p \rightarrow e^{\prime} p \eta$ 9
1.5 Disparity in W Dependence of Previous Measurements 10
1.6 Born Diagram for Resonance Electroproduction 12
1.7 Q^{2} Versus ν for ${ }^{1} H\left(e, e^{\prime}\right) X$ 13
1.8 Reaction Plane Coordinates 13
1.9 Target Coordinates 14
1.10 Feynman Diagrams 18
1.11 The Proton Helicity Amplitudes 20
1.12 The NRCQM System 22
1.13 A Cartoon $S_{11}(1535)$ 22
1.14 The NRCQM Potential 24
1.15 The World's Data for $A_{1 / 2}^{p}\left(S_{11}\right)$ via $e p \rightarrow e^{\prime} p \eta$ (Previous Data) 28
1.16 Leading Order pQCD Diagrams 30
$1.17 Q^{3} A_{1 / 2}^{p}$ for the $S_{11}(1535)$ (Previous Data) 31
2.1 Plan View of Hall C 34
2.2 Proton Momentum Versus $\theta_{p q, t a b}$ for $Q^{2} \approx 2.4 \mathrm{GeV}^{2} / c^{2}$ 37
2.3 Proton Momentum Versus $\theta_{p q, \text { tab }}$ for $Q^{2} \approx 3.6 \mathrm{GeV}^{2} / c^{2}$ 37
2.4 The Accelerator 38
2.5 Hall C Beamline Instrumentation 40
2.6 A Cryogenic Loop 42
2.7 The Target Cells 42
2.8 The Electron Spectrometer (SOS) 45
2.9 The SOS Detectors 45
2.10 The SOS Scintillator Arrays 47
2.11 The SOS Scintillator Array Electronics 48
2.12 The SOS Trigger Electronics 49
2.13 An SOS Drift Chamber 51
2.14 Cross Section of an SOS Drift Chamber 51
2.15 The SOS Gas Čerenkov and Calorimeter Electronics 53
2.16 The Proton Spectrometer (HMS) 55
2.17 The HMS Detectors 55
2.18 The HMS Scintillator Arrays 56
2.19 An HMS Drift Chamber 58
2.20 Cross Section of an HMS Drift Chamber 58
2.21 The Coincidence Electronics 60
3.1 Monte Carlo Flow Diagram 66
3.2 Background Distributions (Data and MC) 73
3.3 SOS Focal Plane Quantities, ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ 75
3.4 SOS Reconstructed Quantities, ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ 75
3.5 HMS Focal Plane Quantities, ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ 76
3.6 HMS Reconstructed Quantities, ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ 76
3.7 Data to Monte Carlo Ratios for ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ 77
3.8 Data and Monte Carlo W Distributions for an ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ Setting 77
3.9 External Bremsstrahlung 79
3.10 Internal Bremsstrahlung 79
3.11 Internal Hard Corrections 79
4.1 Time Walk 91
4.2 Calorimeter and C̈erenkov Signals, I 96
4.3 Calorimeter and C̈erenkov Signals, II 97
4.4 $\beta_{\text {tof }}$ and Coincidence Time, I 100
4.5 $\beta_{\text {tof }}$ and Coincidence Time, II 101
4.6 $\beta_{\text {tof }}$ and Coincidence Time, III 102
4.7 Typical M_{x}^{2} Distribution 103
4.8 SOS Pretrigger to BCM3 Ratio for $Q^{2} \approx 2.4$ 107
4.9 SOS Pretrigger to $B C M 3$ Ratio for $Q^{2} \approx 3.6$ 107
4.10 The Proton Cone 109
4.11 Proton Absorption Measurements 110
4.12 W Versus M_{x}^{2} 114
4.13 Individual M_{x}^{2} Fits, Technique 1 115
4.14 Integrated M_{x}^{2} Fits, Technique 1 116
4.15 Integrated M_{x}^{2} Fits, Technique 2 119
4.16 The Q^{2} Correction 122
5.1 $Q^{2}=2.4 \mathrm{GeV}^{2} / c^{2}$ Angular Distributions 130
5.2 $Q^{2}=3.6 \mathrm{GeV}^{2} / c^{2}$ Angular Distributions 131
5.3 Threshold Breit-Wigner Energy Dependence 134
5.4 W Dependence of the Cross Section 136
5.5 Disparity in W Dependence 136
5.6 The World's Data for $\sigma_{\text {res }}\left(e p \rightarrow e^{\prime} p \eta\right)$ at $W \approx 1535 \mathrm{MeV}$ 137
5.7 The World's Data for $A_{1 / 2}^{p}\left(S_{11}\right)$ via $e p \rightarrow e^{\prime} p \eta$ 140
$5.8 Q^{3} A_{1 / 2}^{p}$ for the $S_{11}(1535)$ 141
5.9 Comparison Between Inclusive and Exclusive Data, $W \approx 1535 \mathrm{MeV}$ 144
A. 1 The Unser Monitor 148
A. 2 BCM Calibration 150
A. 3 The BCM Cavity 151
A. 4 The Electronics for BCM1 and BCM2 153
B. 1 SOS Reconstruction 159
B. 2 HMS Reconstruction 160
B. 3 Elastic $\theta_{p q}$ Distribution. 161

Acknowledgements

My thanks go first and foremost to Alex, whose help made this work possible and whose presence in my life made the effort worthwhile. If I were able to, I would convey the happiness she has brought to me, but words do not suffice. Thank you.

Special thanks, too, to Mom and to Dad and Amy, who have always encouraged me to take on new challenges, and to Carola, for all she has done for Alex and me. The two of us have been the beneficiaries of a tremendous amount of support from our parents and from others in both of our families, and I thank them all.

On the technical side, I owe much to those who assisted me on a day-to-day basis (both early in my stay at CEBAF-er, Jefferson Lab-and later, during analysis of data, when the chain binding my ankle to my desk reached only the length of the C wing in CEBAF Center): Dave Mack, Joe Mitchell, Rolf Ent, and Steve Wood. I've benefitted enormously from their accessibility and their willingness to help a neophyte learn the ropes. Dave Mack in particular has been instrumental in making my time at Jefferson Lab productive and enriching, and much of my growth as a physicist over the last several years is a direct result of his guidance. Dave was also very generous with his time when it came to revising this dissertation; if it serves as a useful document in the future, he deserves a large amount of credit.

I would like to thank several members of our collaboration who did much of the initial work on this experiment, who offered me the opportunity to analyze these data, and who together gave me many insights: Paul Stoler, Valera Frolov, John Price, and Jim Napolitano.

I am grateful to the first of my two advisers, Mike Finn, for the leeway he gave me in my studies. From the start of our association he was mindful of my best interests (whether or not they happened to coincide with his!), and he graciously allowed me to pursue a bit of physics in which I had true ownership. My second adviser, Roger Carlini, has been a reliable source of excellent advice during my stay at Jefferson Lab. I also appreciate the time and feedback the other members of my committee-Franz Gross, David Armstrong, and Paul Stoler-have given me over the last several years. Special thanks go to John Price and David Armstrong for their helpful comments on this dissertation.

The magnitude of work that weat into this experiment and the other early experiments in Hall C is quite impressive. As I now take stock of the construction (most of which I missed) and commissioning of the Hall and of the initial set of experiments, I am struck by those accomplishments and by the number of people who took part in them. In what follows, my apologies to anyone I've forgotten and to those whose work I am not even aware of.

Taken collectively, the construction of the spectrometers and associated detector packages required more effort than anything else in Hall C. Those whose contributions I'm most aware of are Ben Zeidman, Chen Yan, Bill Vulcan, Derek VanWestrum, Vardan Tadevosyan, David Potterveld, Hamlet Mkrtchyan, Dave Mack, Steve Lassiter, Hal Jackson, Paul Hood, Steve Hickson, Don Geesaman, Mike Fowler, Rolf Ent, Donal Day, Roger Carlini, Paul Brindza, Herbert Breuer, Joe

Beaufait, Keith Baker, and Kevin Bailey.
John Arrington is responsible for more of the Hall C replay software than any student has a right to be. Steve Wood and John, together with Don Geesaman, Pat Welch, and Kevin Beard, wrote the bulk of the Hall C analyzer. Steve Wood and Dave Abbott were responsible for much of the data acquisition hardware and software.

Joe Mitchell, Dave Meekins, Jim Dunne, and Bart Terburg were instrumental in getting the Hall C cryotarget into operation. I'd wager that together they put in hours as long as anyone at the Lab, and for that I'm grateful. My hat is also off to Kétévi Assamagan for his patient work on the SOS matrix elements and to Dipangkar Dutta, Gabriel Niculescu, and Jinsoek Cha for their work with the HMS reconstruction. The reconstruction effort for both spectrometers took place under the guidance of Rolf Ent. Dave Mack and Chris Bochna did much of the development work on the Hall C current monitors. Chen Yan and Paul Guèye were responsible for the beam position monitors and the fast rasters.

Several people had a hand in too many projects to list. Among those whose fingerprints are found all over the Hall are Bill Vulcan, Steve Hickson, and Joe Beaufait. I also must not forget to give special thanks to the families of Mike Fowler, Steve Lassiter, Bill Vulcan, and Steve Wood for the many late-night novice-user phone calls we made to their homes. My thanks also go to other Laboratory staff, post-docs, and fellow students who played roles in getting quality physics results out of Hall C: Pawel Ambrozowicz, Steve Avery, Chris Cothran, Bill Cummings, Dave Gaskell, Kenneth Gustafsson, Wendy Hinton, Adrian Honneger, Cynthia Keppel, Doug Koltenuk, Mike Miller, Rick Mohring, Ioana Niculescu, Joerg Reinhold, and Jochen Volmer.

I would like to acknowledge the excellent work of the Jefferson Lab accelerator group; during our experiment, when running the machine was not yet routine, this group delivered quality beam. Thumbs-up to S.U.R.A. and to Jefferson Lab, who directly bankrolled a substantial fraction of my graduate schooling, and to the U. S. Department of Energy and the National Science Foundation for indirect funding. Many thanks to the Jefferson Lab computer center staff, who kept my tired workstation in operation and fielded numerous dumb-user questions as I came down many learning curves, and to Marti Bennett, Cindy Garwood, Rachel Harris, and Heather Ashley for all their day-to-day help. Thanks also to Robert Michaels, who (to my amazement) allowed me to squat in his office during my time at the Lab; to Simon Capstick for communicating preliminary results; and to Volker Burkert, Latifa Elouadrhiri, and Steve Dytman for helpful discussions.

Hugs and wet slobbery kisses to the Game Night crowd, who helped make the last six years in W'burg a great time: Bari, Sandy, Jenn, Dave, Doug, Justin, and other sometimes visitors. What began as a way of blowing off steam in between homework sets soon became a weekly gathering of good friends. Memories of our nights together will be with Alex and the kids and I for a long time.

Thanks to all of my acquiantances for tolerating my increasingly frequent discourses on the issue of animal rights. I know that as my eyes have been opened to the injustices that occur in this society, I've tended to vent on those nearby; sorry about that... (Yikes, here he goes!) I still find
it hard to believe that in the time I've been in graduate school, we in the U.S. have killed roughly $48,000,000,000$ (yes, that's forty-eight billion) animals. That's almost 200 animals for every human in the U.S. That is nearly one million animals for every American who died in the war in Vietnam.

The majority of those 4.8×10^{10} animals we killed for food (cow, pig, and chicken carcasses are current favorites), or in the course of making food from animal products (baby cows killed so their mothers produced breast milk, mother cows killed once their milk production declined in young adulthood, male 'layer' chicks killed because they could not produce eggs and didn't grow quickly enough to be efficiently turned into food), with the byproducts used for clothing (in the form of dead-animal skin); others we killed in the name of science (often in search of cures for diseases that arise from eating dead animals and animal products) or hunted for 'sport'. Don't get me started lecturing about the fact that these practices are extracting an enormous toll on the environment; or the fact that raising and killing animals is an incredible waste of food and other resources; or the facts that, as primates closely related to chimpanzees, bonobos, and gorillas, our diet has until recently consisted mostly of vegetables and fruits (and insects, too, but I won't go there), and that most western diseases occur in large part because we've deviated from this diet; or the fact that the history of human society involves a long march towards inclusion and the granting of rights to sentient beings previously given no moral consideration. Don't get me started lecturing about the fact that a rational person objectively assessing the philosophy of rights must acknowledge that nonhuman animals deserve basic rights. These topics I leave to the literature [Veg98, Mar97, Spi96, Rol92]. This is not, after all, the appropriate forum for a discussion of moral, health, and environmental issues. And besides, if you get me started we'll be here all night.

Finally, thanks to you, dear reader, for putting up with me this long (now you know what my friends endure). What follows is science.

Abstract

The amplitude of the $S_{11}(1535)$ resonance at values of four-momentum transfer $Q^{2}>0$ is not explained by the nonrelativistic constituent quark model, and is currently a topic of theoretical interest; in addition, the large branching fraction of this resonance to the proton- η decay channel is not well understood. There is also controversy concerning the Q^{2} regime in which perturbative QCD becomes important in describing nucleon resonances such as the S_{11}. The $p\left(e, e^{\prime} p\right) \eta$ reaction is an excellent system in which to study this resonance and address the issue of possible perturbative effects: the $p \eta$ channel is not accessible to the Δ (isospin- $\frac{3}{2}$) resonances and couples only weakly to N^{*} (isospin- $\frac{1}{2}$) resonances other than the $S_{11}(1535)$.

The differential cross section for the process $p\left(e, e^{\prime} p\right) \eta$ was measured in Hall C of the Thomas Jefferson National Accelerator Facility (TJNAF) in experiment E94-14 in December 1996. The angular distribution at center-of-momentum energies near the $S_{11}(1535)$ was measured for $Q^{2} \approx 2.4$ and $3.6 \mathrm{GeV}^{2} / c^{2}$ (the latter being the highest- Q^{2} exclusive measurement of this process to date). The Short Orbit Spectrometer (SOS) was used to detect recoil electrons and the High Momentum Spectrometer (HMS) was used to detect outgoing protons, with the η identified via missing mass. Results of fits to the differential cross section and an extraction of the helicity amplitude $A_{1 / 2}^{p}$ are presented. The cross section obtained from these new data is about 30% lower than that of the only other high- Q^{2} exclusive measurement of this process. Comparison with a recent analysis of inclusive (e, e^{\prime}) data provides a lower bound on the $S_{11}(1535) \rightarrow p \eta$ branching fraction of $b_{\eta}=0.45$.

Electroproduction of the $S_{11}(1535)$ Resonance at High Momentum Transfer

Chapter 1

Introduction

This thesis describes a measurement of the differential cross section for the process $p\left(e, e^{t} p\right) \eta$ performed in Hall C of the Thomas Jefferson National Accelerator Facility (TJNAF or Jefferson Lab, formerly CEBAF) in November and December of 1996 and the subsequent data analysis. The experiment E94-14 measured the angular distribution of the $e+p \rightarrow e^{\prime}+p+\eta$ process in the invariant mass region around 1535 MeV , where it is dominated by electroproduction of the S_{11} (1535) resonance [i.e., the process $e+p \rightarrow e^{\prime}+S_{11}(1535)$]. We present the result of multipole fits to the angular distribution and extract the helicity amplitude $A_{1 / 2}^{p}$, which is a quantity important for constraining quark models. We also use the high- Q^{2} datum of this work together with a fit to inclusive data to put a lower bound on the $S_{11}(1535) \rightarrow p \eta$ branching fraction.

In this chapter we discuss the goals of the experiment, which were to test quark models of the baryon and to search for the scaling that might indicate the onset of Perturbative Quantum Chromodynamics (pQCD). We review the experimental formalism necessary to describe the measurement. We review the basic quark model and give a historical survey of the theoretical and experimental developments surrounding the study of baryon resonances in general and the S_{11} (1535) resonance in particular.

Chapter 2 explains the electron accelerator, cryogenic liquid hydrogen target, magnetic spectrometers, detectors, electronics, and other instrumentation used in the measurement.

Chapter 3 describes the Monte Carlo simulation of the experiment. This simulation included radiative processes, multiple scattering, ionization energy losses, and experimental resolutions. It
modeled background processes as well as the resonance process of interest. The simulation was used to obtain radiative corrections and the experimental acceptance, and it played a key role in the subtraction of the physics background.

Chapter 4 explicitly lists all steps taken during analysis of the data. We describe the techniques used to obtain corrections for various inefficiencies and used to perform normalization for beam charge. We detail the techniques used to subtract the physics background, and explain the checks performed on data and cuts made on those data.

In Chapter 5 we give our estimates of systematic uncertainties and explain how we arrived at those estimates. We also discuss the technique used to extract the helicity amplitude $A_{1 / 2}^{p}$ from the differential cross sections. We discuss the results of the analysis and highlight where important work remains to be done.

Appendix A is an overview of the techniques used to measure the beam current in Hall C. Appendix B discusses the procedure used to optimize the reconstruction matrix elements of the two spectrometers. Appendix C gives tabulated differential cross sections, and Appendix D lists the collaborators on the experiment.

1.1 The Goal of the Experiment

The quark model originated about thirty years ago. Since that time it has progressed from a simple mechanism with which to explain the low-lying baryon mass splittings into a family of sophisticated models that take conceptual cues from Quantum Chromodynamics (QCD). The Constituent Quark Model ${ }^{1}$, or CQM, has enjoyed rather remarkable success on several fronts. The earliest models could qualitatively account for mass splittings among the ground-state baryons, and today various models give reasonable predictions for many charge radii, magnetic moments, and decay amplitudes. In this model the $S_{11}(1535)$ is an excited uud resonance in which one of the three quarks orbits the other two in an $l=1$ state.

Ultimately, however, we know that the CQM is simply not the correct picture of reality. There is wide belief that QCD is the appropriate theory of the strong interaction; the naive model of the baryon as a collection of nonrelativistic massive quark states bound by an effective gluon

[^0]confinement potential fails to represent baryonic structure, and it is perhaps surprising that the CQM describes hadrons as well as it does.

The first S_{11} electroproduction measurements in the mid 1970 s showed that the form factor of this resonance fell more slowly with Q^{2} than the dipole form factor and more slowly than the form factor of other baryons (such as the $D_{13}(1520)$, which is from the same $S U(6) \otimes O(3)$ [dimension, $\left.l^{\pi}\right]=\left[70,1^{-}\right]$multiplet). ${ }^{2}$ One possible explanation for this behavior at low Q^{2}, a large longitudinal cross section, was effectively ruled out by a pair of longitudinal/transverse separation measurements that took place in the late 1970s. Subsequent measurements at higher Q^{2} confirmed the surprising 'stiffness' of the S_{11} form factor.

Attempts to relativize ${ }^{3}$ the CQM have met with some success, especially in recent years, and some models now give reasonable predictions for hadronic form factors at moderate values of Q^{2} ($\sim 2 \mathrm{GeV}^{2} / c^{2}$). In regimes where the CQM fails, we hope to gain further understanding of the baryon by discovering what degrees of freedom must be invoked to account for experimental data.

In the high- Q^{2} regime we believe that $Q C D$ can be approximated using perturbative methods. Here it is expected that the quark-gluon couplings become small, and that baryon interactions can be treated using lowest-order Feynman diagrams. On one hand there are indications that PQCD applies only at very high gluon virtualities. On the other hand there is some reason to believe that nonperturbative contributions to hadronic form factors are radiatively suppressed (Sudakov corrections), which would result in perturbative manifestations in the low to medium- Q^{2} regime. ${ }^{4}$ The point at which perturbative processes dominate hadronic form factors is currently the subject of debate.

There were two primary goals of this measurement. The first goal was to obtain high statistics exclusive differential cross section data on the process ep $\rightarrow e^{\prime} p \eta$ at high Q^{2}, which can reveal information about the S_{11} (1535) resonance and, possibly, the composition of the second resonance region. The second goal was to extract the helicity amplitude $A_{1 / 2}^{p}$ for the $S_{11}(1535)$ resonance, which is useful not only for constraining quark models but also as a test of scaling, which is a possible indicator of perturbative effects. [The constraint on the S_{11} branching fraction to the proton η decay channel was not an original goal of the measurement.]

[^1]These data were taken concurrently with a measurement of the angular distribution of the process $e p \rightarrow e^{\prime} p \pi^{0}$, from which one can extract multipoles of the $\Delta(1232)$ resonance, in particular the ratio $\mathrm{E}_{1++} / \mathrm{M}_{1++}$. Analysis of the Δ data formed the dissertation of V. Frolov [Fro98].

1.2 The $S_{11}(1535)$ Resonance and the $p \eta$ Decay Channel

Hadronic resonances decay via the strong force, and we can roughly characterize their decay time as the time it takes for light to propagate across the object. We estimate the lifetime of a hadronic resonance as

$$
\begin{equation*}
\Delta t \sim \frac{\Delta d}{\Delta v} \sim \frac{1 \mathrm{fm}}{c} \sim 3 \times 10^{-24} \mathrm{~s} . \tag{1.1}
\end{equation*}
$$

The uncertainty principle gives us a relationship between the minimum uncertainty in the energy of a particle and its lifetime. In natural units ($\hbar=c=1$) we estimate the width of a typical hadron to be

$$
\begin{equation*}
\Delta m \sim \Delta E \sim \frac{1}{\Delta t} \sim \frac{1}{3 \times 10^{-24} \mathrm{~s}} \sim 200 \mathrm{MeV} . \tag{1.2}
\end{equation*}
$$

In the second resonance region (spanning roughly 200 MeV) there are at least eight resonances (see Fig. 1.1). There is clearly much overlap between different resonances, making the study of any single state rather difficult (particularly if it is not strong relative to its neighbors). Any technique that allows experimentalists to isolate a single resonance is very useful.

In the case of the S_{11} (1535) just such an opportunity exists. This resonance is unique in that it dominates the proton- η decay channel. As shown schematically in Fig. 1.2, the N^{*} resonances ${ }^{5}$ can decay through the proton $-\eta$ channel while the Δ resonances cannot. In addition, it happens that of the isospin $-\frac{1}{2}$ resonances eligible for decay to a proton and an η meson, only the S_{11} (1535) does so to any appreciable extent. ${ }^{6}$ Thus when we detect an outgoing electron together with an outgoing proton and select the η in the final state using missing mass we largely isolate the $S_{11}(1535)$ resonance.

The (neutral) η meson was first observed in 1961 [Pev61]. The initial η photoproduction

[^2]

Figure 1.1: Data for ${ }^{1} \mathrm{H}\left(e, e^{\prime}\right) X$ (inclusive electron scattering from the proton) in the resonance region at four average values of momentum transfer, together with a global fit [Nic98]. From upper left to lower right, the plots are for $Q^{2}=1.3,1.7,2.2$, and $3.1 \mathrm{GeV}^{2} / c^{2}$ (the value of Q^{2} for each plot varies by $\approx 25 \%$ from low to high W^{2}; we give the value of Q^{2} at the second resonance region). The gray triangles are recent data from TJNAF, and the black stars give the total fit (resonant plus nonresonant parts). The monotonically increasing line in each plot shows the nonresonant part of the fit to the data, and the other line shows the resonant part. In each case the three resonance regions are clearly visible, but all three decrease rapidly with increasing Q^{2}. The figure is courtesy of I. Niculescu.

Figure 1.2: The proton- η decay channel. The top figure indicates that the Δ resonances, which are isospin $-\frac{3}{2}$, do not have access to the proton- η decay channel. The bottom figure gives rough values of the branching fractions into the proton η and $N \pi$ channels for some of the resonances in the second region.

Figure 1.3: The world's data for the cross section $\sigma_{\text {res }}\left(e p \rightarrow e^{\prime} p \eta\right)$ at $W \approx 1535 \mathrm{MeV}$, prior to the present measurement. The NRCQM (from Ref. [War90]), dipole [$\left.\sigma_{\text {res }} \propto\left(1+Q^{2} / 0.71\right)^{-4}\right]$, and Ravindal [Rav71] results have been normalized at $Q^{2}=0$ to recent photoproduction data.
measurements took place in the 1960 s, and it shortly became clear that the $p \eta$ channel was predominantly S-wave (see Ref. [Baj69] and references therein).

During the early 1970s there were a series of measurements of the S_{11} via the proton- η decay channel (see Fig. 1.3). The first measurement of the η electroproduction cross section was made at NIN.A [Kum73], followed shortly thereafter by measurements at Bonn [Bec74] and at DESY [Ald75]. Taken together these measurements covered the Q^{2} range from 0 to $1.5 \mathrm{GeV}^{2} / c^{2}$. Assuming S_{11} dominance of the $p \eta$ channel (as was indicated by previous photoproduction results [Baj69]), these early electroproduction experiments indicated that the S_{11} cross section was significantly stronger as a function of Q^{2} than the dipole form factor [Ald75] and other baryons, such as the $D_{13}(1520)$ [Bra78, Bra84].

One possible explanation at low Q^{2} for the unexpected strength as a function of Q^{2} (or 'stiffness') of the S_{11} (1535) was that the cross section contained a large longitudinal component (which, as noted in footnote 12 on page 18, would not be seen in photoproduction). Two longitudinal/transverse separations were performed in the late 1970s [Bre78, Bra78] that effectively ruled out this possibility (see Fig. 1.4). While these measurements have large uncertainties associated

Figure 1.4: Measurements of $R=\sigma_{L} / \sigma_{\tau}$ for the process $e p \rightarrow e^{\prime} p \eta$. The error bars reflect both statistical and systematic errors. The curve is a calculation from the quark model (Ref. [Rav71] as presented in Ref. [Bra84]), with the inset showing an extension to high Q^{2}. This parameterization of the momentum dependence of R (which is given in Section 5.2.2) was assumed in this work for purposes of calculating the helicity amplitude $A_{1 / 2}^{p}$.
with them, they are the only data we presently have on the longitudinal component of this resonance. Most theoretical models predict that any longitudinal component would drop somewhat faster with Q^{2} than the transverse piece. Therefore, the most that we can say about the ratio $R=\sigma_{L} / \sigma_{\tau}$ in the Q^{2} region of the present work ($\sim 3 \mathrm{GeV}^{2} / c^{2}$) is that it is probably less than 10%, with some large uncertainty.

In the late 1970s a coincidence experiment was performed at DESY that probed higher in Q^{2} than any previous measurement [Hai79, Bra84]. The experiment, similar to the present work, obtained angular distributions at $Q^{2} \approx 2$ and $3 \mathrm{GeV}^{2} / \mathrm{c}^{2}$ that confirmed the basic S-wave nature of the $p \eta$ channel and showed a larger cross section at high Q^{2} than the earlier measurement at $Q^{2} \approx 1.5 \mathrm{GeV}^{2} / c^{2}$.

There is considerable disagreement about the energy dependence of the $e p \rightarrow e^{\prime} p \eta$ cross section (and thus the resonance width Γ_{R}) (see Fig. 1.5). Note that the threshold of the $p \eta$ channel is at $W_{\text {thr }}=m_{p}+m_{\eta} \approx 1486 \mathrm{MeV}$ (oniy about 50 MeV away from the resonant mass), and has a noticeable effect on the energy dependence.

Figure 1.5: There is significant disparity in the W dependence of the $e p \rightarrow e^{\prime} p \eta$ cross section as reported by different groups. Here we plot the energy-dependent Breit-Wigner curve using W_{R} and Γ_{R} as measured by Refs. [Bra84] and [Kru95], and using the estimated values given by the Particle Data Group, or PDG [PDG98]. The curves have been normalized to the same peak magnitude.

Until the current measurement, no high- Q^{2} electroproduction experiments had taken place after the 1970s DESY measurement. Within the last five years, however, there have been a number of photoproduction experiments. In 1995 the results of three $\gamma p \rightarrow p \eta$ measurements were reported [Kru95, Pri95, Dyt95]. Most notably, the former obtained precise angular distributions and found a small interference contribution to the $p \eta$ channel from the $D_{13}(1520)$. The present work extends exclusive data on the $S_{11}(1535)$ to $Q^{2} \approx 3.6 \mathrm{GeV}^{2} / c^{2}$, also achieving higher statistics than previous electroproduction measurements.

1.3 Experimental Formalism

1.3.1 Kinematic Definitions

We use the metric

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{1.3}\\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

so that the inner product of two four-vectors $A=\left(E_{a}, \mathrm{p}_{a}\right)$ and $B=\left(E_{b}, \mathrm{p}_{b}\right)$ is given by $A \cdot B=$ $E_{a} E_{b}-p_{a} \cdot p_{b}$. It follows that the square of the mass associated with a particle of four-momentum A is given by $m_{A}^{2}=A \cdot A=E_{a}^{2}-\left|p_{a}\right|^{2}>0$ (a quantity which is invariant with choice of reference frame).

For the present experiment we are considering the interaction between an electron and a hydrogen nucleus (proton), which we model using the one-photon-exchange approximation. We picture the reaction schematically as shown in Fig. 1.6 and define the following quantities:

- $k_{i}=\left(E, \mathrm{k}_{i}\right)$, the four-momentum of the incident electron, with $\left|\mathbf{k}_{i}\right| \approx E$ (i.e., $m_{e} \approx 0$;
- $k_{f}=\left(E^{\prime}, \mathbf{k}_{f}\right)$, the four-momentum of the outgoing electron, with $\left|\mathbf{k}_{f}\right| \approx E^{\prime}$;
- $p_{i}=\left(m_{p}, 0\right)$, the four-momentum of the target proton (at rest in the lab frame);
- $p_{f}=\left(E_{p}^{\prime}, \mathbf{p}_{f}\right)$, the four-momentum of the outgoing proton;
- $q=(\nu, q)$, the four-momentum transferred to the target.

With the above definitions and approximations we find that the mass-squared of the virtual photon is $q^{2}=\nu^{2}-|q|^{2}=-4 E E^{\prime} \sin ^{2}\left(\theta_{c} / 2\right)<0$. A quantity more commonly used is the negative of the mass-squared, $Q^{2} \equiv-q^{2}>0$. In similar fashion the square of the mass of the resonant state is $W^{2}=\left(q+p_{i}\right)^{2}=q^{2}+m_{p}^{2}+2 m_{p} \nu$ (see Fig. 1.7). Some other quantities that we will make use of are:

- the electromagnetic coupling constant $\alpha=\frac{e^{2}}{2 \pi} \approx \frac{1}{137}$;
- the missing energy $E_{x}=E-E^{\prime}+m_{p}-E_{p}^{\prime}$;

Figure 1.6: The Born diagram of the resonance electroproduction process.

- the missing momentum $\mathrm{p}_{x}=\mathrm{k}_{\mathrm{i}}-\mathrm{k}_{f}-\mathrm{p}_{f}$;
- the square of the missing mass for $e+p \rightarrow e^{t}+p+X, M_{x}^{2}=E_{x}^{2}-\left|\mathbf{p}_{x}\right|^{2}$;
- the electron scattering angle θ_{c}; the angle of the outgoing proton with respect to $\mathbf{q}, \theta_{p q}$; and the missing momentum polar and azimuthal angles θ_{x}^{*} and ϕ_{x}, defined with respect to \mathbf{q} and the electron scattering plane. See Figure 1.8. A '*' superscript on θ_{x}^{*} or ϕ_{x} denotes measurement in the center-of-momentum (c.m.) of the $p X$ system.

We also define several coordinate system variables used both in the analysis of these data and in much of the Hall C literature. Coordinates used at the target and in the detectors of either spectrometer are based on the coordinate system used in Transport (a program for modeling magnetic optics [Tra80]). We define \bar{z} to be along the central ray of the spectrometer in the direction of motion of the particles, \hat{x} to be in the dispersive direction towards higher momentum (roughly towards the floor), and $\hat{y}=\hat{z} \times \hat{x}$ (to the left when looking towards positive z). See Figure 1.9.

Given the above definitions of x and y relative to the central ray of the spectrometer, we define two slopes, x^{\prime} and $y^{\prime}: x^{\prime}$ is the slope of the particle trajectory projected onto the $x-z$ plane (i.e., $x^{\prime} \equiv \frac{d x}{d z}$), and y^{\prime} the slope projected onto the $y-z$ plane ($y^{\prime} \equiv \frac{d y}{d z}$). In particular, we make use of these four quantities measured at $z=0\left(x_{\mathrm{tar}}, y_{\mathrm{tar}}, x_{\mathrm{tar}}^{\prime}\right.$, and $\left.y_{\mathrm{tar}}^{\prime}\right)$ and at z of a plane nominally centered between the two drift chambers in the detector hut of either spectrometer ($x_{\mathrm{fp}}, y_{\mathrm{fp}}, x_{\mathrm{fp}}^{\prime}$,

Figure 1.7: A diagrammatic figure of Q^{2} versus ν for ${ }^{1} \mathrm{H}\left(e, e^{\prime}\right) X . Q^{2}, \nu$, and W are related by $W^{2}=-Q^{2}+m_{p}^{2}+2 m_{p} \nu$. The dashed lines are lines of constant W.

Figure 1.8: The scattering and reaction plane coordinate systems. For the events of interest the 'missing' quantities (p_{x}, θ_{x}, and ϕ_{x}) correspond to those for the η meson (p_{η}, θ_{η}, and ϕ_{η}).

Figure 1.9: The definition of the target coordinates. Shown is a momentum vector originating at $x_{\mathrm{tar}}=y_{\mathrm{tar}}=0$ with $x_{\mathrm{tar}}^{\prime}>0, y_{\mathrm{tar}}^{\prime}>0$.
and y_{fp}^{\prime}). ${ }^{7}$ In addition, we define δ to be the fractional deviation of particle momentum (p) from the spectrometer central momentum (p_{0}): $\delta \equiv\left(p-p_{0}\right) / p_{0}$.

To reiterate: $x_{\text {tar }}^{\prime}$ is the slope of the particle trajectory projected onto a vertical plane through the optical axis of the spectrometer (with positive $x_{\mathrm{tar}}^{\prime}$ toward the floor); $y_{\mathrm{tar}}^{\prime}$ is the slope of the particle trajectory projected onto the floor (with positive $y_{\text {tar }}^{\prime}$ towards beam-left, looking into the spectrometer).

1.3.2 Cross Section and Multipole Definitions

The reaction of interest in the present work is ep $\rightarrow e^{\prime} p \eta$. Following standard convention [Kum73, Bec74, Ald75] we express the five-fold differential cross section in terms of the virtual photon flux factor and, given a virtual photon, the c.m. cross section for the electroproduction of the proton- η pair (sometimes called the virtual photon cross section):

$$
\begin{equation*}
\frac{d^{5} \sigma}{d \Omega_{e} d E_{e}^{\prime} d \Omega_{\eta}^{*}}=\Gamma_{\tau}\left(E, E^{\prime}, \theta_{e}\right) \frac{d^{2} \sigma}{d \Omega_{\eta}^{*}}\left(\gamma_{v} p \rightarrow p \eta\right) \tag{1.4}
\end{equation*}
$$

[^3]Here $\Gamma_{T}\left(E, E^{\prime}, \theta_{e}\right)$ is the flux of transverse virtual photons (using the Hand convention [Han63]),

$$
\begin{equation*}
\Gamma_{T}\left(E, E^{\prime}, \theta_{e}\right)=\frac{\alpha}{2 \pi^{2}} \frac{E^{\prime}}{E} \frac{K}{Q^{2}} \frac{1}{1-\varepsilon}, \tag{1.5}
\end{equation*}
$$

and the quantity K, called the equivalent real photon energy, is the energy required of a real photon to excite a proton into a resonance of mass W

$$
\begin{equation*}
K=\frac{W^{2}-m_{p}^{2}}{2 m_{p}} \tag{1.6}
\end{equation*}
$$

The longitudinal polarization of the virtual photon is given by

$$
\begin{equation*}
\varepsilon=\frac{1}{1+2 \frac{|\underline{q}|^{2}}{Q^{2}} \tan ^{2}\left(\theta_{c} / 2\right)} \tag{1.7}
\end{equation*}
$$

We will also make use of the cross section differential in the variables W, Q^{2}, and ϕ_{e},

$$
\begin{equation*}
\frac{d^{5} \sigma}{d W d Q^{2} d \phi_{e} d \Omega_{\eta}^{*}}=\Gamma_{r}\left(W, Q^{2}\right) \frac{d^{2} \sigma}{d \Omega_{\eta}^{*}}\left(\gamma_{v} p \rightarrow p \eta\right) \tag{1.8}
\end{equation*}
$$

where we incorporate the Jacobian $J\left(E, E^{\prime}, \theta_{e} \mid W, Q^{2}, \phi_{e}\right)=W /\left(2 m_{p} E E^{\prime}\right)$ into the expression for the virtual photon flux,

$$
\begin{equation*}
\Gamma_{\tau}\left(W, Q^{2}\right)=\frac{\alpha}{4 \pi^{2}} \frac{W}{m_{p} E^{2}} \frac{K}{Q^{2}} \frac{1}{1-\varepsilon} . \tag{1.9}
\end{equation*}
$$

We write the unpolarized virtual photon cross section in terms of transverse, longitudinal, ${ }^{8}$ and interference contributions:

$$
\begin{align*}
\frac{d^{2} \sigma}{d \Omega_{\eta}^{*}}= & \frac{d^{2} \sigma_{\mathrm{T}}}{d \Omega_{\eta}^{*}}+\varepsilon \frac{d^{2} \sigma_{\mathrm{L}}}{d \Omega_{\eta}^{*}} \\
& +\sqrt{2 \varepsilon(\varepsilon+1)} \frac{d^{2} \sigma_{\mathrm{TL}}}{d \Omega_{\eta}^{*}} \cos \phi_{\eta}+\varepsilon \frac{d^{2} \sigma_{\mathrm{TT}}}{d \Omega_{\eta}^{\tau}} \cos 2 \phi_{\eta} \tag{1.10}
\end{align*}
$$

Following the normal procedure the individual contributions $\frac{d^{2} \sigma_{i j}}{d \Omega_{j}^{2}}(i=T, L, T L, T T)$ are expressed in terms of multipoles [Wal69, War90]. In this notation, $E_{l \pm}, M_{l \pm}$, and $S_{l \pm}$ denote electric, magnetic, and scaler excitation multipoles, respectively; l gives the orbital angular momentum, and the ' \pm ' gives the total angular momentum via $j=l \pm \frac{1}{2}$. If we retain only S, P, and D-waves that

[^4]are proportional to the dominant E_{0+} and S_{0+} multipoles, we have [Kno95]: ${ }^{9}$
\[

$$
\begin{align*}
\frac{d^{2} \sigma_{\tau}}{d \Omega_{\eta}^{-}}= & \frac{\left|\mathrm{p}_{\eta}^{*}\right| W}{m_{p} K}\left\{\left|E_{0+}\right|^{2}-\operatorname{Re}\left[E _ { 0 + } ^ { * } \left\{2 \cos \theta_{\eta}^{*} M_{1-}\right.\right.\right. \\
& \left.\left.\left.-\left(3 \cos ^{2} \theta_{\eta}^{*}-1\right)\left(E_{2-}-3 M_{2-}\right)\right\}\right]\right\} ; \tag{1.11}\\
\frac{d^{2} \sigma_{L}}{d \Omega_{\eta}^{*}}= & \frac{Q^{2}}{\left|\mathrm{q}^{*}\right|^{2}} \frac{\left|\mathrm{p}_{\eta}^{*}\right| W}{m_{p} K}\left\{\left|S_{0+}\right|^{2}+2 \operatorname{Re}\left[S _ { 0 + } ^ { * } \left\{\cos \theta_{\eta}^{*} S_{1-}\right.\right.\right. \\
& \left.\left.\left.-2\left(1-3 \cos ^{2} \theta_{\eta}^{*}\right) S_{2-}\right\}\right]\right\} ; \tag{1.12}\\
\frac{d^{2} \sigma_{\mathrm{TL}}}{d \Omega_{\eta}^{*}}= & \sqrt{\frac{Q^{2}}{\left|\mathrm{q}^{*}\right|^{2}}} \left\lvert\, \begin{array}{l}
\left|\mathrm{p}_{\eta}^{*}\right| W \\
m_{p} K
\end{array}-\sin \theta_{\eta}^{*} \operatorname{Re}\left[E_{0+}^{*}\left(S_{1-}+6 \cos \theta_{\eta}^{*} S_{2-}\right)\right.\right. \\
& \left.\left.+S_{0+}^{*}\left\{M_{1-}+3 \cos \theta_{\eta}^{*}\left(M_{2-}-E_{2-}\right)\right\}\right]\right\} ; \tag{1.13}\\
\frac{d^{2} \sigma_{\mathrm{TI}}}{d \Omega_{\eta}^{*}}= & \frac{\left|\mathrm{p}_{\eta}^{*}\right| W}{m_{p} K}\left\{-3 \sin ^{2} \theta_{\eta}^{*} \operatorname{Re}\left[E_{0+}^{*}\left(E_{2-}+M_{2-}\right)\right]\right\}, \tag{1.14}
\end{align*}
$$
\]

where $\theta_{\eta}^{*}\left(\phi_{\eta}\right)$ is the polar (azimuthal) angle of the η meson as defined in Section 1.3.1, and the momentum of the η in the $\mathrm{c} . \mathrm{m}$. of the hadronic resonance, $\left|\mathrm{p}_{\eta}^{*}\right|$, is given by

$$
\begin{equation*}
\left|\mathbf{p}_{\eta}^{*}\right|=\frac{\left\{\left[W^{2}-\left(m_{p}+m_{\eta}\right)^{2}\right]\left[W^{2}-\left(m_{p}-m_{\eta}\right)^{2}\right]\right\}^{1 / 2}}{2 W} \tag{1.15}
\end{equation*}
$$

The photon polarization ε was fixed (at about 0.5) for this experiment, so separation of the longitudinal and transverse contributions to the cross section was not possible. Therefore we can parameterize the virtual photon cross section in terms of its angular dependence:

$$
\begin{align*}
\frac{d^{2} \sigma}{d \Omega_{\eta}^{*}}= & A+B \cos \theta_{\eta}^{*}+C \cos ^{2} \theta_{\eta}^{*}+D \sin \theta_{\eta}^{*} \cos \phi_{\eta} \\
& +E \sin \theta_{\eta}^{*} \cos \theta_{\eta}^{*} \cos \phi_{\eta}+F \sin ^{2} \theta_{\eta}^{*} \cos 2 \phi_{\eta} \tag{1.16}
\end{align*}
$$

where the parameters $A-F$ are given by

$$
A=\frac{\left|\mathrm{p}_{\eta}^{-}\right| W}{m_{p} K}\left\{\left|E_{0+}\right|^{2}+\varepsilon \frac{Q^{2}}{\left|\alpha^{*}\right|^{2}}\left|S_{0+}\right|^{2}\right.
$$

[^5]\[

$$
\begin{align*}
& \left.-\left(\operatorname{Re}\left[E_{0+}^{-}\left(E_{2-}-3 M_{2-}\right)\right]+4 \varepsilon \frac{Q^{2}}{\left|q^{-}\right|^{2}} \operatorname{Re}\left[S_{0+}^{-} S_{2-}\right]\right)\right\} ; \tag{1.17}\\
& B=\frac{\left|\mathbf{p}_{\eta}^{-}\right| W}{m_{p} K}\left\{-2 \operatorname{Re}\left[E_{0+}^{-} M_{1-}\right]+2 \equiv \frac{Q^{2}}{\left|\mathbf{q}^{-}\right|^{2}} \operatorname{Re}\left[S_{0+}^{-} S_{1-}\right]\right\} ; \tag{1.18}\\
& C=\frac{\left|\mathbf{p}_{\eta}^{*}\right| W}{m_{p} K}\left\{3\left(\operatorname{Re}\left[E_{0+}^{-}\left(E_{2-}-3 M_{2-}\right)\right]+4 \varepsilon \frac{Q^{2}}{\left|\mathbf{q}^{-}\right|^{2}} \operatorname{Re}\left[S_{0+}^{-} S_{2-}\right]\right)\right\} ; \tag{1.19}\\
& D=\frac{\left|\mathbf{p}_{\eta}^{*}\right| W}{m_{p} K}\left\{-\sqrt{2 \varepsilon(\varepsilon+1)} \sqrt{\frac{Q^{2}}{\left|\mathbf{q}^{*}\right|^{2}}} \operatorname{Re}\left[E_{0+}^{*} S_{1-}+S_{0+}^{*} M_{1-}\right]\right\} ; \tag{1.20}\\
& E=\frac{\left|\mathrm{p}_{\eta}^{*}\right| W}{m_{p} K}\left\{-3 \sqrt{2 \varepsilon(\varepsilon+1)} \sqrt{\frac{Q^{2}}{\left|\mathrm{q}^{*}\right|^{2}}} \operatorname{Re}\left[2 E_{0+}^{*} S_{2-}+S_{0+}^{*}\left(M_{2-}-E_{2-}\right)\right]\right\} \\
& F=\frac{\left|\mathrm{p}_{\eta}^{*}\right| W}{m_{p} K}\left\{-3 \varepsilon \operatorname{Re}\left[E_{0+}^{*}\left(E_{2-}+M_{2-}\right)\right]\right\} . \tag{1.22}
\end{align*}
$$
\]

The parameters $A-C$ contain contributions from both transverse $\left(\sigma_{\tau}\right)$ and longitudinal (σ_{L}) components of the cross section, while the D and E terms arise from longitudinal-transverse interference ($\sigma_{\tau L}$), and the F term arises from transverse-transverse interference ($\sigma_{\tau r}$). Note that the parameters A and C share some common terms, and if $A \gg C$, the former reduces to

$$
\begin{align*}
A & \approx \frac{\left|\mathbf{p}_{\eta}^{-}\right| W}{m_{p} K}\left\{\left|E_{0+}\right|^{2}+\varepsilon \frac{Q^{2}}{\left|\mathbf{q}^{*}\right|^{2}}\left|S_{0+}\right|^{2}\right\} \\
& \approx \frac{\left|\mathbf{p}_{\eta}^{*}\right| W}{m_{p} K}\left|E_{0+}\right|^{2}(1+\varepsilon R) \tag{1.23}
\end{align*}
$$

Assuming that the resonant part of the exclusive cross section dominates the nonresonant part, R here refers to the longitudinal-to-transverse ratio of the resonance itself [i.e., not the ratio that is directly measured from inclusive (e, e^{\prime}) scattering).

1.3.3 Helicity Amplitudes

The Born diagrams for the s, u, and t-channel processes resulting in a proton- η final state are shown in Fig. 1.10. For the two resonance diagrams, three terms enter the cross section: the $\gamma p N^{*}$

N^{*}

Figure 1.10: Born-level Feynman diagrams for the s, u, and t-channel processes that result in a proton- η final state. Since the η meson is neutral there is no contact (or 'seagull') diagram.
coupling (or 'decay amplitude'), the N^{*} propagator, and the $\eta p N^{*}$ coupling. The former coupling is governed by the electromagnetic force, the latter by the strong force. Likewise, the three terms entering the t-channel process are the $p p \pi$ and $\gamma \pi \eta$ couplings and the meson propagator.

One of the goals of the experimental hadronic physics community in the last few decades has been to devise measurements against which predictions of QCD-inspired quark models can be tested. While predictions of the observed hadronic mass splittings (spectroscopy), magnetic moments, and charge radii are all requisite for a successful quark model, it has been pointed out that predictions of coupling strength are a more fundamental quark model test [Dre72]. In particular, measurements of couplings and their Q^{2} dependence test the quark model wave functions. These couplings are conveniently expressed in terms of the transition matrix elements between states of different helicity.

The helicity λ of a particle is defined as the projection of its spin in its direction of motion. Massive particles with spin s can in general have the $2 s+1$ helicity states $-s,-s+1, \ldots, s-1$, s, while massless objects are restricted to helicity $\pm s .{ }^{10,11}$ In particular, virtual photons (nonzero mass) may assume the helicity states $\lambda_{\gamma}=0, \pm 1$, while real (massless) photons are restricted to $\lambda_{\gamma}= \pm 1 .{ }^{12}$ For the present work we are interested in proton targets, which are states of helicity $\lambda= \pm \frac{1}{2}$.

The helicity amplitude is the matrix element which connects states of different helicity. For an

[^6]initial nucleon state $|N\rangle$ with helicity λ and final excited state $\left|N^{*}\right\rangle$ with helicity λ^{\prime} we can write
\[

$$
\begin{equation*}
A_{\lambda^{\prime}}^{N N^{-}}=\left\langle N^{*}, \lambda^{\prime}\right| \mathcal{H}_{e m}|N, \lambda\rangle, \tag{1.24}
\end{equation*}
$$

\]

where $\mathcal{H}_{e m}$ is the electromagnetic transition Hamiltonian. We use superscripts to denote the initial and final hadrons (or, more commonly, just the initial hadron) and a subscript to indicate the final state helicity. Dependence on Q^{2} or on the initial hadron and photon helicities may be indicated parenthetically. We use ' A ' to denote amplitudes due to excitation by transverse photons, ' S ' to denote those associated with longitudinal photons.

We represent the helicity transition of a proton into an excited resonant state schematically in Fig. 1.11. A consequence of parity conservation is that, for a transition from helicity λ to λ^{\prime},

$$
\begin{equation*}
A\left(-\lambda^{\prime},-\lambda\right)=P P^{\prime}(-1)^{\left(J^{\prime}-J\right)} A\left(\lambda^{\prime}, \lambda\right) \tag{1.25}
\end{equation*}
$$

where $P\left(P^{\prime}\right)$ and $J\left(J^{\prime}\right)$ are the intrinsic parity and spin of the initial (final) state, respectively [Jac59]. In the case of a proton $\left(J^{P}=\frac{1}{2}^{+}\right)$excited to an S_{11} resonance ($J^{P}=\frac{1}{2}^{-}$), we have that

$$
\begin{equation*}
A\left(-\lambda^{\prime},-\lambda\right)=A\left(\lambda^{\prime}, \lambda\right) \tag{1.26}
\end{equation*}
$$

In other words, there are two ways to combine photon and proton helicities to get (say) a final state of helicity $\frac{1}{2}$, but for parity-conserving electromagnetic interactions those two $A_{1 / 2}$ amplitudes are the same. Furthermore note that, since the $S_{11}(1535)$ is a spin $-\frac{1}{2}$ resonance, the $A_{3 / 2}$ amplitude does not apply to this work.

The amplitude $A_{1 / 2}$ for the process $\gamma p \rightarrow S_{11}(1535)$ is expressed in terms of the contribution of the $S_{11}(1535)$ to the E_{0+} multipole at the resonance mass $W=W_{R}$ by Ref. [PDG76] ${ }^{13}$

$$
\begin{align*}
A_{1 / 2} & =\left[(2 J+1) \pi \frac{\left|\mathbf{p}_{\eta}^{*}\right|_{R} W_{R}}{m_{p} K} \frac{W_{R}}{m_{p}} \frac{\Gamma_{R}^{2}}{\Gamma_{\eta}}\right]^{1 / 2} \operatorname{Im}\left[E_{0+}\left(W=W_{R}\right)\right] \\
& =\left[2 \pi \frac{\left|\mathbf{p}_{\eta}^{*}\right|_{R} W_{R}}{m_{p} K} \frac{W_{R}}{m_{p}} \frac{\Gamma_{R}}{b_{\eta}}\right]^{1 / 2}\left|E_{0+}\left(W=W_{R}\right)\right| . \tag{1.27}
\end{align*}
$$

[^7]

Figure 1.11: Proton helicity amplitudes in the c.m. frame. Note that $A_{1 / 2}$ and $A_{3 / 2}$ both apply to real and virtual photons while $S_{1 / 2}$ applies only to virtual photons. Only the $A_{1 / 2}$ and $S_{1 / 2}$ apply to the present experiment, since the $S_{11}(1535)$ is a spin- $\frac{1}{2}$ object.

Here Γ_{η} and Γ_{R} are the partial and full widths of the resonance, and we have made use of $J=\frac{1}{2}$ and the branching fraction $b_{\eta}=\Gamma_{\eta} / \Gamma_{R}$ for the process $S_{11}(1535) \rightarrow p \eta$. For reference we also relate $A_{i / 2}$ to the resonant part of the experimentally measured cross section at the resonance mass. If S-wave multipoles dominate, integration of the resonant part of Eq. 1.10 over Ω_{η}^{*} yields

$$
\begin{align*}
\sigma_{\mathrm{res}} & =\sigma_{T}+\varepsilon \sigma_{L} \\
& =\sigma_{T}(1+\varepsilon R) \tag{1.28}
\end{align*}
$$

with

$$
\begin{equation*}
\sigma_{T}=4 \pi \frac{\left|\mathrm{p}_{\eta}^{*}\right|_{R} W_{R}}{m_{p} K_{R}}\left|E_{0+}\left(W_{R}\right)\right|^{2} \tag{1.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{L}=4 \pi \frac{\left|\mathrm{p}_{\eta}^{-}\right|_{R} W_{R}}{m_{p} K_{R}} \frac{Q^{2}}{\left|\mathrm{q}^{-}\right|^{2}}\left|S_{0+}\left(W_{R}\right)\right|^{2} . \tag{1.30}
\end{equation*}
$$

Neglecting contributions of resonances other than the S_{11} (1535), the combination of Eqs. 1.27, 1.29 , and 1.28 yields

$$
\begin{align*}
A_{1 / 2} & =\left[\frac{W_{R} \Gamma_{R}}{2 m_{p} b_{\eta}} \sigma_{\tau}\left(W=W_{R}\right)\right]^{1 / 2} \tag{1.31}\\
& =\left[\frac{W_{R} \Gamma_{R}}{2 m_{p} b_{\eta}} \frac{\sigma_{\mathrm{res}}\left(W=W_{R}\right)}{1+\varepsilon K}\right]^{1 / 2} \tag{1.32}
\end{align*}
$$

1.4 The Nonrelativistic Constituent Quark Model

Here we review the basic concepts underlying the Nonrelativistic Constituent Quark Model (NRCQM) of Isgur and Karl as it pertains to baryons [Isg77, Isg78], borrowing directly from reviews by Capstick [Cap88] and Isgur [Isg91]. In Section 1.5.1 we place this model in the proper historical context and review more recent developments.

The baryon in the Isgur-Karl NRCQM is treated as a system of three constituent quarks. Each constituent quark represents a state consisting of a current (massless) quark plus an associated gluon cloud, the whole of which is massive (on the order of a few hundred MeV) and effectively point-like. The model is inspired by the 'flux tube picture' [Isg83], in which the quarks move in an adiabatic potential bound by three gluonic flux tubes.

Working in the c.m. of the entire system, we have quarks ' 1 ' and ' 2 ' (which we label the ρ system) in some relative state of orbital angular momentum (see Fig. 1.12). The third quark, ' 3 ', is in some orbital angular momentum state relative to the ρ system [we label the (ρ, quark 3) pair the λ system]. The nucleon, for example, consists of a ρ system in an S-wave $(l=0)$ state together with a λ system in an S-wave state. For the $S_{11}(1535)$ the ρ system is in an S-wave state ${ }^{14}$ while the λ system is in a P-wave ($l=1$) state (See Fig. 1.13).

The assumed form of the Hamiltonian consists of spin-independent and spin-dependent parts:

$$
\begin{equation*}
H=H_{\text {s.i. }}+H_{\text {s.d. }} \tag{1.33}
\end{equation*}
$$

[^8]

Figure 1.12: A schematic representation of the NRCQM system.

Figure 1.13: A cartoon of the S_{11} (1535) in the constituent quark picture, together with an explanation of the notation.

The spin-independent part is given by

$$
\begin{equation*}
H_{\text {s.i. }}=\sum_{i}\left(m_{i}+\frac{p_{i}^{2}}{2 m_{i}}\right)+\sum_{i<j} v\left(r_{i j}\right), \tag{1.34}
\end{equation*}
$$

where the potential $V\left(r_{i j}\right)$ contains color, linear confinement, and Coulomb terms (with $r_{i j}$ denoting the separation between the $i^{\text {th }}$ and $j^{\text {th }}$ quarks):

$$
\begin{equation*}
V\left(r_{i j}\right)=C_{q q q}+\frac{1}{2} b r_{i j}-\frac{2 \alpha_{s}}{3 r_{i j}} . \tag{1.35}
\end{equation*}
$$

The problem is rendered solvable by the assumption that the potential $V\left(r_{i j}\right)$ can be approximated by a harmonic oscillator potential plus perturbation (see Fig. 1.14):

$$
\begin{equation*}
V\left(r_{i j}\right) \approx \frac{1}{2} K r_{i j}^{2}+U\left(r_{i j}\right) \tag{1.36}
\end{equation*}
$$

or, collecting all spin-independent terms except the perturbation into the harmonic oscillator Hamiltonian H_{0},

$$
\begin{equation*}
H_{\text {s.i. }}=H_{0}+\sum_{i<j} U\left(r_{i j}\right) \tag{1.37}
\end{equation*}
$$

In the Isgur-Karl model the spin-dependent term is analogous to the hyperfine interaction of atomic physics (i.e., the interaction between two intrinsic magnetic moments), with both a contact term and a tensor term:

$$
\begin{align*}
H_{\mathrm{s} . \mathrm{d} .}= & H_{\mathrm{hyp}}^{i j} \\
= & \sum_{i<j} \frac{2 \alpha_{s} r_{i j}}{3 m_{i} m_{j}}(\underbrace{\frac{8 \pi}{3} \vec{S}_{i} \cdot \vec{S}_{j} \delta^{3}\left(\vec{r}_{i j}\right)}_{\text {contact }} \\
& +\underbrace{\frac{1}{r_{i j}^{3}}\left[\frac{3 \vec{S}_{i} \cdot \vec{r}_{i j} \vec{S}_{j} \cdot \vec{r}_{i j}}{r_{i j}^{2}}-\vec{S}_{i} \cdot \vec{S}_{j}\right]}_{\text {tensor }}) . \tag{1.38}
\end{align*}
$$

The contact term enters when the two magnetic dipoles have zero relative orbital angular momentum, while the tensor term enters only when the pair has nonzero orbital angular momentum. Notably absent from the spin-dependent Hamiltonian are spin-orbit interactions; they are not

Figure 1.14: A figure showing the interquark potential in the NRCQM. The model assumes that the total potential (heavy solid line), which is the sum of the linear confinement term, the Coulomb $1 / r$ term (thin solid lines), and the color potential $C_{q q q}$ (not shown), can be approximated by a harmonic oscillator (dashed line) plus a perturbation over some range of quark separation distance $\tau_{i j}$.
included because they result in mass splittings larger than those observed.
The wavefunctions used in the Isgur-Karl model consist of spatial (ψ), spin (χ), flavor (ϕ), and color (C) parts. The spatial wavefunctions ψ are taken to be the eigenstates of H_{0}, the usual harmonic oscillator wavefunctions with a change of variables appropriate for the $\rho-\lambda$ system. In the case of the zero-strangeness sector (only u and d quarks), the quark masses are roughly equal, and the ρ and λ harmonic oscillators are degenerate. The spin wavefunctions are the usual angular momentum multiplets ($\chi=\uparrow \uparrow \uparrow, \frac{1}{\sqrt{2}}(\uparrow \uparrow \uparrow-\downarrow \uparrow \uparrow$), etc.) and the flavor wavefunctions the usual flavor multiplets $\left(\phi=u u u, \frac{1}{\sqrt{3}}(u u s+u s u+s u u)\right.$, etc). The color singlet $C=\frac{1}{\sqrt{6}}($ RBY $-\operatorname{BRY}+$ $B Y R-Y B R+Y R B-R Y B)$ is antisymmetric; since the Pauli exclusion principle requires that the final baryon states are antisymmetric, the (space \times spin \times flavor) parts of the wavefunctions are constructed to be totally symmetric.

The matrix elements of both the perturbation $U\left(r_{i j}\right)$ and the hyperfine interaction $H_{\text {hyp }}^{i j}$ are calculated in these eigenstates of H_{0} and diagonalized, yielding predictions for mass splittings of the light-quark baryons. The spectroscopic results of the model are quite successful [Cap88].

We forego discussion of the various ways in which relativistic effects have been incorporated into this model; the reader is referred to the literature pertaining to the individual models. It is worth noting, however, that relativization as performed by Godfrey and Isgur [God85] and Capstick and Isgur [Cap86] overcomes several criticisms of the model. In addition to the fact that relativistic kinematics and dynamics are incorporated, the value of the strong coupling α_{s} is smaller (and closer to the fundamental $Q C D$ value) than that required in the nonrelativistic formulation. The smaller α_{s} results in smaller spin-orbit forces, which no longer need be neglected. The spectroscopic predictions of the relativized model are better in some sectors and somewhat worse in others than those of the nonrelativistic model, but are in general very good for both mesons and baryons using the same set of model parameters. For more detail the interested reader is again referred to Ref. [Cap88].

We also forego discussion of the calculation of form factors (i.e., the Q^{2} dependence of amplitudes). A overview of the general concept is given in Ref. [Hal84], and discussion of how Q^{2} dependence enters the calculations of a particular model may be found, for example, in Ref. [War90].

1.5 Historical Review and Literature Survey

1.5.1 Quark Models of Hadrons

We now take a step back and review the development of the quark model from a historical perspective, focussing in the later material on results specific to the S_{11} (1535), to electroproduction, and to proton targets. Our intent is not to provide a comprehensive review but to touch on highlights and to give a starting point for further study.

In 1964 Gell-Mann [Gel64] and Zweig [Zwe64] introduced the idea of fractionally charged quarks (u, d, s) in a broken $S U(3)$ symmetry as a means of explaining the multiplet structure of spin- $\frac{1}{2}$ elementary particles (p,n, $\Sigma^{+}, \Sigma^{0}, \Sigma^{-}, \Lambda, \Xi^{0}$, and Ξ^{-}). In this model the baryons are represented by quarks in various states of orbital excitation. The proton, for example, is a three-quark state with no orbital angular momentum; the S_{11} (1535) consists of one quark in an $l=1$ state relative to an $l=0$ quark pair.

Shortly afterwards, color $S U(3)$ was applied to this simple ($u, \mathrm{~d}, \mathrm{~s}$) quark model in order to solve
the fermion statistics problem of three identical up quarks in the Δ^{++}system, thus preserving the exclusion principle for quarks [Gre64]. By requiring colored quarks to exist only in 'colorless' combinations (color singlets) one could also explain why the observed hadrons were limited to states of $q q q$ (baryons), $\bar{q} \bar{q} \bar{q}$ (antibaryons), and $q \bar{q}$ (mesons) (and not other combinations, like $q q$ or qqqq).

In 1969 Copley, Karl, and Obryk formulated a NRCQM using harmonic forces between pairs of quarks [Cop69]. Using this model they calculated matrix elements for single pion photoproduction off the proton and the neutron. The amplitudes compared reasonably well with experimental photoproduction data.

In 1971 Feynman, Kislinger, and Ravndal obtained a naive relativization of a quark model, also using harmonic interactions [Fey71]. The model was intentionally simplistic in order that they could use it to calculate as many observables as possible. They were able to predict photoproduction amplitudes (i.e., amplitudes for $\gamma_{v} N \rightarrow N^{*}$) for a number of hadronic resonances. Ravndal extended those results to electroproduction by assuming a dipole form factor Q^{2} dependence and deriving cross sections ${ }^{15}$ of many resonances [Rav71]. The model agreed reasonably well with the inclusive resonance data that existed at the time. In addition, it correctly indicated small longitudinal contributions in the resonance region, and it predicted the existence of the $\mathrm{P}_{13}(1720)$.

By the early 1970s quark models were having some success predicting the spectroscopy of hadronic states. At the same time there was new experimental evidence indicating the existence of nucleon constituents; both the onset of Bjorken scaling in deep inelastic lepton scattering and the back-to-back jets arising from $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation were clear signals of substructure.

Meanwhile some of the consequences of QCD (asymptotic freedom, infrared slavery) had been worked out, and the theory of exact color $S U(3)$ symmetry was rather well-supported (albeit indirectly) by several pieces of experimental evidence. Firstly, the experimental values of $R=$ σ (hadrons) $/ \sigma\left(\mu^{+} \mu^{-}\right)$from $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation were close to those predicted by incorporating color into quark counting (off by a factor of three without color). Secondly, the presence of large transverse-momentum $\left(p_{T}\right)$ events in $\mu \mathrm{N}$ scattering hinted at the existence of glue. Thirdly, the π^{0} decay rate predicted using colored quarks agreed well with experiment (off by an order of magnitude without color).

[^9]By the mid 1970s several quark models of hadrons included QCD-inspired features. Horgan and Dalitz [Hor73, Hor74] and DeRújula, Georgi, and Glashow [Ruj75] used a one-gluon exchange (Coulomb-like) plus linear confinement potential together with constituent quarks to predict mass splittings between ground-state baryons. Kubata and Ohta predicted photoproduction amplitudes with a model that included the spin-orbit excitation [Kub76]. Foster and Hughes added quark form factors to a similar model and used it to predict the Q^{2}-dependence of several resonance amplitudes [Fos82].

Isgur and Karl added the color hyperfine part of the two-body interaction potential to a quark model and used the model to calculate mass splittings and photon decay amplitudes for many baryons [$\operatorname{Isg} 77, \operatorname{Isg} 78$]. Koniuk and Isgur combined this model with a model for strong decays to explain the disparity between resonant states predicted by the quark model and those observed experimentally [Kon80]. Godfrey and Isgur later incorporated relativistic effects into this model and obtained mass predictions for mesons [God85], and Capstick and Isgur extended the relativization to baryons [Cap86].

One of the major shortcomings of the NRCQM has been its failure to reproduce hadronic form factors above a few $\mathrm{GeV}^{2} / \mathrm{c}^{2}$ or [as in the case of the $S_{11}(1535)$] even lower (see Fig. 1.15). As a result, much work in the last decade has gone towards incorporating relativistic effects in the CQM. Konen and Weber relativized the model using light-cone dynamics and obtained S_{11} helicity amplitudes [Kon90], and this work was more recently extended by Stanley and Weber [Sta95].

Warns and collaborators [War90] and Close and Li [Clo90, Li90] used relativized Hamiltonians togther with the Isgur-Karl model wavefunctions to predict helicity amplitudes as a function of Q^{2}. Both of these works used transition operators that included higher order terms consistent with those in the wavefunctions.

Capstick applied the transition operator of Close and Li to relativized-model wavefunctions and calculated photoproduction amplitudes for many baryon resonances [Cap92]. He pointed out the problematic nature of using such a model to rigorously calculate these amplitudes at $Q^{2}>0$. Helicity asymmetries (e.g., $\frac{A_{1 / 2}^{2}-A_{3 / 2}^{2}}{A_{1 / 2}^{2}+A_{3 / 2}^{2}}$) and ratios of helicity amplitudes (e.g., $\frac{A_{1 / 2}\left(D_{13}\right)}{A_{1 / 2}\left(S_{11}\right)}$), which do not suffer the same problems at $Q^{2}>0$ as the amplitudes themselves, were calculated. More recently, Capstick and Keister have investigated the effects of relativity by calculating helicity amplitudes for a number of baryons using light-front Hamiltonian dynamics [Cap95, Cap98].

Figure 1.15: The world's data for $A_{1 / 2}^{p}\left(S_{11}(1535)\right)$ measured via the $p \eta$ channel, prior to the present measurement, together with some theoretical predictions. The data points are calculated from ep $\rightarrow e^{\prime} p \eta, W \approx 1535 \mathrm{MeV}$ cross section data assuming an S_{11} full width $\Gamma_{R}=150 \mathrm{MeV}$, $b_{\eta}=0.45$, and R as shown in Fig. 1.4. The errors shown are statistical only; in particular, they do not reflect the substantial uncertainties in Γ_{R} and b_{η}. If any of these quantities differ from the values assumed here, all data points will scale together. Even with these uncertainties, however, the NRCQM cannot account for the data.

Diquark-Quark Model

The diquark-quark model, due to Anselmino, Kroll, and collaborators (see Refs. 17-22 of Ref. [Kro92]), represents an attempt to bridge the gap between CQM representations of baryons at low Q^{2} and pQCD at high Q^{2}. The diquark itself serves as a description of two-quark correlations, and it plays the role of an elementary baryon constituent that is bound to another constituent quark. The diquark form factor is parameterized in such a way as to asymptotically yield the 'Hard Scattering Picture' of Brodsky and Lepage [Lep80].

Kroll and collaborators [Kro92] and later Bolz and collaborators [Bol94] calculated the S_{11} transition form factors using this model. The calculations, which do not include radiative effects, are applicable mainly at high Q^{2}. In this regime the model, while not yet refined, compares fairly
well with inclusive data.

1.5.2 Perturbative QCD

At high Q^{2} (short distance scales), where the QCD coupling $\alpha_{s}\left(Q^{2}\right)$ becomes small and we approach asymptotic freedom, QCD can be treated perturbatively. It is expected that the reaction mechanism at high momentum transfer is dominated by leading order diagrams, which are those consisting of two gluons exchanged between three current quarks (See Fig. 1.16). ${ }^{16}$ Evaluation of the leading order diagrams yields the result that the quantity $Q^{3} A_{1 / 2}^{p}$ approaches a constant at high Q^{2} (see Ref. [Car86] for a nice explanation). As shown in Fig. 1.17, this asymptotic behavior is not seen in the existing exclusive electroproduction data.

In 1988 Carlson and Poor calculated the absolute normalization of the helicity amplitudes for several low-lying baryons in the pQCD limit [Car88]. The prediction for the asymptotic value of $Q^{3} A_{1 / 2}^{p}$ for the linear combination of $S_{11}(1535)$ and D_{13} (1520) (dominated by the former at high Q^{2}) ranged from 0.11 to $0.14 \mathrm{GeV}^{5 / 2}$, depending on the distribution amplitude ${ }^{17}$ assumed for the calculation. While the predicted value is somewhat lower than the data (even before it is approaching a constant), there were large uncertainties in this calculation arising from the distribution amplitudes. In addition, Stoler has pointed out that several questions have been raised regarding the validity of the procedure itself (see Ref. [Sto93]). Other authors have pointed out (see Refs. [Isg84, Rad91] and the references therein) that 'soft' (nonperturbative) effects might also cause the same type of scaling behavior as that predicted by pQCD.

1.5.3 Other Theoretical Approaches

Effective Lagrangian Approach

The effective lagrangian approach uses a Lagrangian calculated from tree-level diagrams (nucleon Born terms, resonance excitations, and t-channel vector meson exchange) together with the appropriate electromagnetic and strong coupling constants to phenomenologically describe a physical process. Benmerrouche, Mukhopadhyay, and collaborators have studied the $\gamma p \rightarrow p \eta$

[^10]

Figure 1.16: Leading order PQCD diagrams for an electromagnetically-induced baryon transition.
reaction, focussing first on photoproduction \{Ben91, Ben95\} and more recently on electroproduction [Muk96, Ben96, Ben97]. Using their model, fits to data allow the extraction of background terms, coupling constants, and helicity amplitudes. In the latest of these works, Benmerrouche has proposed a parameterization of the S_{11} form factors based on pQCD scaling laws [Ben97].

As pointed out in Section 1.3.3, the full width Γ_{R} of the S_{11} and the S_{11} branching fractions are needed to extract the helicity amplitude $A_{1 / 2}^{p}$ from data on η production. The uncertainty in our current knowledge of $A_{1 / 2}^{p}$ is in fact dominated by the uncertainties in these quantities. As a way of working around this problem, Benmerrouche, Mukhopadhyay, and Zhang have recently suggested extracting an 'electrostrong' form factor from η electroproduction data [Ben96]. This parameter, when combined with future knowledge of the N^{*} decay via the strong force (from hadron facilities, for example), could be used to find the helicity amplitude $A_{1 / 2}^{p}$.

Several recent effective lagrangian approach calculations have investigated the role of polarization observables in η photoproduction [Tia94, Kno95, Ben95]. This class of observables will likely play a large role in future experiments aimed at unfolding the contributions of the nondominant states to the $p \eta$ channel.

Figure 1.17: The quantity $Q^{3} A_{1 / 2}^{p}$ for the S_{11} (1535), calculated from ep $\rightarrow e^{\prime} p \eta, W \approx 1535 \mathrm{MeV}$ cross section data prior to the present measurement. We assume $\Gamma_{R}=150 \mathrm{MeV}, b_{\eta}=0.45$, and R as shown in Fig. 1.4. The substantial uncertainties in Γ_{R} and b_{η} are not shown (but all data would scale together). Ref. [Car88] gives three results, depending on the distribution amplitude used in the calculation.

Lattice QCD

Numerical simulations of QCD (lattice QCD) hold promise but at present such calculations are limited in scope. As of this writing several rough spectroscopic calculations have been performed in the valence (quenched) approximation [Lei92, All94, But94].

Coupled-Channel Model (Dynamical Formation)

Recent work has suggested that what we have so far been calling the S_{11} (1535) resonance may in fact not be an s-channel resonance at all (that is to say, it may not be the result of a pole in the interaction potential). Denschlag showed that a strong background combined with the $p \eta$ threshold could exhibit resonance-like behavior [Den94].

More recently Kaiser, Siegel, and Weise have developed a model based on the $S U(3)$ chiral lagrangian in which the dynamics of coupled channels give rise to many of the features of the S_{11} (1535) [Kai95, Kai97]. Most notably, they can at least partially account for the large
$S_{11}(1535) \rightarrow p \eta$ branching fraction (something that is problematic in the CQM), together with a reasonable prediction for the resonance width. In this model, the S_{11} is actually a quasi-bound $K \Sigma$ state, and the large branching fraction results from the strong $K \Sigma$ attraction together with the strong coupling of this state to the $N \eta$ channel. The Q^{2} dependence for such a state has not yet been calculated; it should be noted, however, that the form factor for such a five-quark object would naively be expected to drop rapidly with Q^{2} [Bur98].

Chapter 2

Experimental Apparatus and Data

Acquisition

2.1 Overview of the Experiment

As stated in Chapter 1, this experiment measured the (unpolarized) differential cross section for the process $p\left(e, e^{\prime} p\right) \eta$. It was performed in Hall C of TJNAF in November and December of 1996. The Short Orbit Spectrometer, or SOS, was used to detect outgoing electrons while the High Momentum Spectrometer, or HMS, was used to detect outgoing protons (see Fig. 2.1).

The data were taken at two average values of Q^{2}, about 2.4 and $3.6 \mathrm{GeV}^{2} / c^{2}$, with electron beam currents ranging from 80 to $100 \mu \mathrm{~A}$. At each of the two Q^{2} points the electron spectrometer was fixed in both angle and momentum, thus defining a central three-momentum transfer q. The vector q in turn determined the direction of a boosted decay cone of protons. ${ }^{1}$ The proton spectrometer was stepped in angle and in momentum to capture as much of this decay cone as possible, with the kinematics chosen such that adjacent settings overlapped in these two variables. This approach reduced systematic uncertainties associated with imperfect knowledge of the spectrometer acceptance. The data used here consisted of 33 kinematic settings (78 runs of roughly one-half hour each) for the low- Q^{2} point (see Table 2.1) and 21 settings (232 runs) for the high- Q^{2}

[^11]

Figure 2.1: A bird's eye view of the Hall C end-station at TJNAF. The electron beam enters from the right, and the scattering takes place in the cryogenic target placed in the beamline. In this experiment, outgoing particles were detected by two magnetic spectrometers: the Short-Orbit Spectrometer (SOS) was used to detect electrons and the High-Momentum Spectrometer (HMS) was used to detect protons.

Electron Arm		Proton Arm	
$\begin{gathered} \hline P_{\text {SOS }} \\ {[\mathrm{GeV} / \mathrm{c}]} \end{gathered}$	$\begin{gathered} \theta_{S O S} \\ \text { [degrees] } \end{gathered}$	$\begin{gathered} \hline P_{H M S} \\ {[\mathrm{GeV} / \mathrm{c}]} \end{gathered}$	$\theta_{H M S}$ [degrees]
1.40	46.0	1.35	15, 17, 19, 21, 23, 25
		1.55	15, 17, 19, 21, 23, 25, 27, 29
		1.70	15, 17, 19, 21, 23, 25, 27, 29
		1.90	15, 17, 19, 21, 23, 25, 27
		2.15	17, 19, 21, 23

Table 2.1: Spectrometer settings for the $Q^{2} \approx 2.4 \mathrm{GeV}^{2} / c^{2}(E=3.245 \mathrm{GeV})$ data.
point (see Table 2.2).
Figures 2.2 and 2.3 show the laboratory proton momentum versus $\theta_{p q, l a b}$ (the angle between the proton and three-momentum; see $\theta_{p q}$ of Fig. 1.8 on page 13) for the central electron kinematics of the two Q^{2} points. The solid lines in the figures are equally spaced lines of constant W from $W_{\text {thr }} \approx 1486 \mathrm{MeV}$ to 1585 MeV . The dots along the solid lines indicate 10 degree increments in $\theta_{p q, c m}$. The dotted lines are contours at 15% of the maximum proton density (as determined by Monte Carlo simulation), which give a rough indication of the experimental coverage in $\theta_{p q, \mathrm{~cm}}$ (integrated over $\phi_{c m}$).

The momentum acceptance of the electron spectrometer is large (in the neighborhood of 40%), allowing the simultaneous detection of electrons from elastic reactions ($W=m_{p}$), the first resonance region ($W \approx 1.2 \mathrm{GeV}$), and the second resonance region ($W \approx 1.5 \mathrm{GeV}$). The target nucleus in the experiment was ${ }^{1} \mathrm{H}$, supplied in liquid form by a cryogenic loop positioned in the beam of incident electrons.

In the electron spectrometer (SOS), both a threshold gas Čerenkov detector and a lead-glass calorimeter were used to separate electrons from negatively charged pions. In the HMS, protons were separated from positively charged pions using a combination of coincidence time (the difference between the trigger times of the two spectrometers) and particle velocity, or β_{tof} (as measured by four planes of scintillator arrays in the detector stack). Details of the particle identification techniques are given in Chapter 4.

Electron Arm		Proton Arm	
$P_{\text {SOS }}$ $[\mathrm{GeV} / \mathrm{c}]$	$\theta_{\text {SOS }}$ [degrees]	$P_{H M S}$ $[\mathrm{GeV} / \mathrm{c}]$	$\theta_{H M S}$ [degrees]
1.50	48.0		1.80
		2.00	$14,17,20,23,26$
		2.20	$14,17,20,23,26$
		2.45	$14,17,20,23$

Table 2.2: Spectrometer settings for the $Q^{2} \approx 3.6 \mathrm{GeV}^{2} / c^{2}(E=4.045 \mathrm{GeV})$ data.

Figure 2.2: Proton momentum in the lab versus $\theta_{p q, 1 a b}$ for the $Q^{2} \approx 2.4 \mathrm{GeV}^{2} / c^{2}$ central electron kinematics. See the text for a description of the curves.

Figure 2.3: Proton momentum in the lab versus $\theta_{p q, l a b}$ for the $Q^{2} \approx 3.6 \mathrm{GeV}^{2} / c^{2}$ central electron kinematics.

Figure 2.4: A schematic of the accelerator.

2.2 The Accelerator

One of the principle advantages of the electron accelerator at TJNAF is that it is capable of delivering a high-current, continuous-wave (CW) beam of electrons. ${ }^{2}$ It is this current, and the resulting high luminosity, that makes possible experiments such as this one (where we sought good statistics even when studying an exclusive process at high Q^{2}).

The accelerator is in an oblong loop, or 'racetrack', configuration with a pair of linear accelerators (a split linac) situated on the two straightaways (see Fig. 2.4). Electrons are injected into the first linac at 45 MeV , acquire an additional 400 MeV , undergo a 180 degree bend, and gain another 400 MeV in the second linac. After the second linac the beam is either directed to one of the three experimental halls or sent around the loop again for further acceleration. The higher electron energies are achieved using the same linacs but separate beamlines in the arcs (because the required bending field is energy dependent), up to a maximum of five trips around the loop. Thus the beam energies available at the time of this experiment were discrete: $0.845,1.645,2.445$, 3.245 , or 4.045 GeV (i.e., multiples of 0.8 GeV plus the 45 MeV injection energy). ${ }^{3}$ The present data were taken at the two highest beam energies, 3.245 GeV for the $Q^{2} \approx 2.4 \mathrm{GeV}^{2} / c^{2}$ data and 4.045 GeV for the $Q^{2} \approx 3.6 \mathrm{GeV}^{2} / c^{2}$ data.

[^12]
2.3 The Hall C Beamline Instrumentation

2.3.1 Beam Energy Measurement

In October, 1996 (just prior to the start of the experiment) an absolute measurement of the energy of the nominal 4.045 GeV electron beam was made using the arc between the beam switchyard and Hall C as a spectrometer. Only the dispersive elements were energized to bend the beam (i.e., all sextupoles, octupoles, and beam correctors were degaussed and turned off), giving the arc a dispersion of $12 \mathrm{~cm} / \%$. The position and direction of the beam was determined at the entrance and exit of the arc using two high-resolution movable-wire scanners [Yan94] (superharps $\mathrm{C07}$ and Cl 7 in Fig. 2.5). This absolute beam position and direction together with knowledge of the absolute $\int B \cdot d l$ of the arc dipoles as a function of current [Har89] allowed a calculation of the beam energy via

$$
\begin{equation*}
p=\frac{e}{\Theta_{\operatorname{arc}}} \int B \cdot d l \tag{2.1}
\end{equation*}
$$

where e is the electron charge and $\Theta_{\text {arc }}$ is the bend radius of the arc $\left(34.3^{\circ}\right)$. The measured beam energy was 4.055 GeV , or 0.25% higher than nominal. Further discussion of this measurement technique may be found in Refs. [Neu92, Yan92, Yan93, Yan95], and details of this particular measurement in Ref. [Gue96].

During the analysis of data the constraints imposed by inclusive and coincidence elastic data indicated a beam energy of $4.040 \pm 0.005 \mathrm{GeV}$, and this value was used in the analysis of the resonance data. This topic is discussed in Appendix B.

2.3.2 Beam Position Measurement

In the beamline preceding the target were five stripline cavity Beam Position Monitors (BPMs), whose outputs were recorded at 30 second intervals when taking data. Information from the two nearest the target (BPMs H00A and HOOB in Fig. 2.5) together provided a measurement of the beam position on the target and the angle of incidence on the target. The position of the beam on the target in the horizontal and vertical directions was stable to within $\pm 1.25 \mathrm{~mm}$, and the angles stable to within ± 0.5 mrad. The BPMs are described in Ref. [Kra93].

Figure 2.5: A schematic showing placement of the Hall C beamline instrumentation.

2.3.3 Beam Current Measurement

The charge delivered to Hall C was measured using several devices. Three resonant-cavity Beam Current Monitors (BCMs) made a continuous relative measurement of the beam current. These devices were periodically calibrated absolutely using an Unser current monitor. For a detailed description of these devices see Appendix A.

2.4 The Cryogenic Target

The target nucleus in this experiment was hydrogen, provided in liquid form in a loop with circulation maintained by an axial pump (see Fig. 2.6). The liquid H_{2} was cooled with helium gas ($15 \mathrm{~K}, 19 \mathrm{Atm}$) using a heat exchanger. The target liquid was maintained at (19.00 ± 0.05) Kelvin and about 26 psia (which corresponds to 2 K subcooling), and the target length was (4.36 ± 0.01) cm . The temperature was controlled using a calibrated heat-dependent resistor in the feedback loop of a dual-resistive-heater temperature control system.

The upstream window of the target was a piece of $71 \mu \mathrm{~m}$ (2.8 mil) 6061 series aluminum (see Fig. 2.7). The downstream window was formed from 3004 series aluminum (blank beer can stock) which had been chemically etched to a thickness of $137 \mu \mathrm{~m}$ (5.4 mils).

In addition to the liquid cryogenic targets there were 'dummy' targets (simple aluminum plates). These dummy targets mimicked the windows of an empty target to facilitate measurement of the background originating from target window interactions. The dummy targets were ten times as thick as the corresponding target windows in order to reduce the time needed for background measurement.

The cryogenic target stack was raised or lowered by an actuator in order to put the appropriate target cell in the beamline. Alternately, by rotating the cryotargets out of the way a ladder containing several solid targets could be lowered into the beamline. The solid targets were used for visual checks of the beam position and spot size (solid BeO_{2} target) and for optics tests and calibrations (solid ${ }^{12} \mathrm{C}$ targets).

More information about the target system is available in Refs. [Dun97], [Mee98], and [Ter98].

Figure 2.6: A head-on view of one of the three loops in the cryogenic target. The beam direction is out of the page. The figure is courtesy of D. Meekins.

Figure 2.7: A side view of the three cryogenic target cell blocks, with two targets in each block (nominal lengths of 4.4 and 15 cm). Not shown are vertical baffles attached to the inner cell tubes which force liquid flow into the plane of the page where the beam traverses the target. Also not shown are 'dummy' targets used for measuring target window rates and a separate ladder holding several solid targets. All of the resonance data for this experiment were taken using liquid hydrogen in the 4.4 cm target of loop 1 .

2.5 Target Rastering

As noted above, the electron beam at TJNAF was CW and high current. In addition, the size of the beam envelope was only about $\sigma \approx 140 \mu \mathrm{~m}$. In order to prevent the beam from burning a hole through the windows of the target there were two steering magnets about 21 m upstream of the target (see the target rasters in Fig. 2.5) which rastered (or steered) the position of the beam on the target by $\pm 1 \mathrm{~mm}$ (with a corresponding angular change of less than $\pm 0.05 \mathrm{mrad}$).

The beam was steered independently in the vertical (x) and horizontal (y) directions according to sinusoidal signals. The frequencies of the magnet currents (17.0 kHz in the $x, 24.2 \mathrm{kHz}$ in y) were chosen to prevent the beam from tracing Lissajous figures on the target windows. The heat deposited by the beam in the windows and target liquid resulted in some localized density change; this effect and the correction for it are discussed in Chapter 4.

In addition to the target raster, there was a raster about 2.5 m upstream of the target designed to protect the beam dump (see the dump rasters in Fig. 2.5). This raster operated at a much lower frequency than the target raster (62.0 Hz in $x, 91.0 \mathrm{~Hz}$ in y), and was designed to prevent excess localized heating on the beam dump. At the time of this experiment the dump raster had not been commissioned, and it was not used.

2.6 The Electron Spectrometer

The Hall C Short Orbit Spectrometer (SOS) (see Fig. 2.8) was used to detect outgoing electrons. This device was specifically designed with a short optical length in order to study short-lived hadrons, and in most Hall C coincidence experiments it was used to detect hadrons, whether decaying or not. The requirements of this experiment were unusual, though, in that the outgoing protons had momenta above the $1.75 \mathrm{GeV} / \mathrm{c}$ upper limit of the SOS (see Table 2.3). This fact necessitated the use of the High Momentum Spectrometer (HMS) to detect protons, leaving the SOS for electron detection.

In addition to its short optical length, the SOS was designed to have large acceptance in both scattering angle and momentum. Toward this end, the device consists of a horizontally focussing quadrupole followed by two edge-focussing (primarily in the horizontal direction) dipoles

Quantity	Specification
Maximum Central Momentum	$1.75 \mathrm{GeV} / \mathrm{c}$
Momentum Acceptance / Resolution (σ)	$\approx 40 \% / \approx 0.1 \%$
Dispersion	$<0.92 \mathrm{~cm} / \%$
Solid Angle (large collimator)	
\quad Point Target	$\approx 7.5 \mathrm{msr}$
4.4 cm Target	$\approx 6.5 \mathrm{msr}$
Angular Acceptance / Resolution (σ)	
\quad Horizontal	$\pm 60 \mathrm{mrad} / \pm 5 \mathrm{mrad}$
Vertical	$\pm 40 \mathrm{mrad} / \pm 1 \mathrm{mrad}$
Optical Length	7.4 m
Angular Range	13.4° to 165°
Net Upward Bend Angle	18°
Minimum Opening Angle with HMS	$\approx 29^{\circ}$

Table 2.3: The SOS operating specifications. Sources are Ref. [Ent97] (solid angles), data from this experiment (resolutions), and Ref. [Cum96] (other).
with opposing bend directions. The first dipole has an upward bend angle of 33 degrees and the second a downward bend of 15 degrees for a net upward bend of 18 degrees with respect to the horizontal. The magnetic tune used in this experiment was point-to-point ${ }^{4}$ in both the horizontal and dispersive directions. Changes in spectrometer rotation and magnetic field were made remotely from the counting room.

The spectrometer's angular acceptance was defined by an octagonal collimator made of 3.175 cm (1.25 inch) thick HeavyMet (a dense, machinable Tungsten-CuNi alloy). ${ }^{5}$ The aperture was machined with a taper, with edges parallel to a ray coming from a point target. In addition to the octagonal collimator, there was a so-called sieve slit (a collimator with many small holes) which was used to find the matrix elements of the focal-plane-to-target transformation (this procedure is discussed in Section 4.2.2 and Appendix B). For drawings of the collimator and sieve slit, as well as further details about many aspects of the Short Orbit Spectrometer, the reader is referred to Ref. [Cum96].

While the SOS was designed with the capability of being elevated out of plane, at the time of this experiment that feature had not been implemented. The SOS was equipped with two pairs of scintillator arrays, two drift chambers, and two threshold Čerenkov detectors, one gas and one aerogel. The aerogel detector was not used for this experiment and will not be discussed further.

[^13]

Figure 2.8: A side view of the electron spectrometer (SOS).

Figure 2.9: A side view of the electron spectrometer (SOS) detector stack, as seen from the door of the detector hut. The detected particles travel from right to left (along positive z). The y axis is out of the page.

2.6.1 The SOS Magnetic Elements

As noted above, the SOS consists of a horizontally-focussing quadrupole followed by two edgefocussing dipoles. The three magnets are all nonsuperconducting, and cooled by pressurized water. The magnets were operated in a point-to-point tune in both the bend (vertical) and nonbend (horizontal) directions. The fields for the quadrupole and both dipoles were determined by Hall probes situated in regions where the magnetic field was uniform.

The magnetic fields were set remotely from the counting room. In general the magnets were operated such that they began in a demagnetized state and followed this hysteresis curve to increasing current. When a decrease in current was necessary, the magnets were first demagnetized ${ }^{6}$ and the desired field approached from below. In practice, the kinematics of this experiment called for a single SOS magnet and angle setting at each of the two Q^{2} points, and care was taken to not change the field setting during data taking.

2.6.2 The SOS Scintillator Arrays

The SOS detectors included four planes of scintillators, two towards the front of the detector stack and two towards the rear (jee Fig. 2.9). Each plane consisted of staggered, slightly overlapping strips of scintillator (see Fig. 2.10) equipped at each end with light guides and photomultiplier tubes (PMTs) (Philips Components XP2282B). The first plane encountered by a particle, S1Y, had 9 scintillators arranged along the x direction (roughly vertically). ${ }^{7}$ The second plane, S1X, had 9 scintillators arranged in the y direction (horizontally). Towards the rear of the detector hut this arrangement was repeated with planes S2Y and S2X (9 and 16 scintillators, respectively).

The scintillator planes served two purposes: triggering of the data acquisition system and measurement of particle velocity using time-of-flight ($\beta_{\text {tof }}$) from the front to the rear of the detector hut. For triggering purposes, the signals from all of the PMTs on one side of each plane were OR'd together, and the resulting pair of signals AND'd together to form the trigger signal for that plane (see Fig. 2.11). In the case of the S1X plane, for example, the output signals of all PMTs on the left, or positive y, side were OR'd together into a signal SIX + . The AND of S1X + and the

[^14]

Figure 2.10: A schematic view of the forward pair of SOS scintillator arrays (S 1). The light guides and PMTs are not shown; the figure is intended only to show the orientation and positioning of the scintillators. The rear pair of arrays (S2) was similar but was larger in the vertical direction and had $16^{\prime} x$ ' scintillators.
corresponding signal from the opposite side, S1X-, formed the signal S1X used for triggering purposes. A plane recorded a hit whenever an above-threshold signal from any PMT on one side of the plane arrived within about $\pm 60 \mathrm{~ns}$ of a signal from the opposite side of the plane. When three of the four scintillator planes recorded a hit within about $\pm 30 \mathrm{~ns}$ a pretrigger (or raw trigger) was formed in the trigger electronics (see Fig. 2.12).

High voltage for the PMTs was supplied locally but monitored and controlled remotely from the Hall C electronics room using EPICS (the Experimental Physics Industrial Control System) [EPI94]. The analog signals coming from the PMTs were routed directly up to the electronics room (which held all of the electronics shown in Figs. 2.11, 2.15, 2.12, and 2.21, as well as the corresponding HMS electronics).

Once in the electronics room the analog signal from the each of the PMTs was split by a $2: 1$ voltage divider. The smaller signal went to an analog-to-digital converter (ADC), the output of which was used to make pulse-height corrections to the timing (Section 4.2.3). The larger signal was discriminated, and the resulting logic signal was sent to a time-to-digital converter (TDC), a scaler, and to the logic devices that formed pretriggers.

Figure 2.11: The SOS scintillator array electronics. Parenthetical numbers above a line indicate the multiplicity of signals.

Figure 2.12: The SOS trigger electronics.

2.6.3 The SOS Drift Chambers

A pair of drift chambers (DC 1 and DC 2) provided track information for events in the SOS. Each chamber consisted of six planes of sense wires oriented as shown in Fig. 2.13.

The cell size of the chambers (the spacing between sense wires) was 1 cm . The field wires and inter-plane foils were kept at negative high voltage, while the sense wires were held at ground. The unprimed and primed planes were offset by one-half of a cell width in order to help remove the left-right ambiguity inherent in the drift-time measurement of a single plane (see Fig. 2.14). The chambers were located at the front of the detector stack to minimize the effect of multiple-scattering in the preceding vacuum window and air.

The gas used in the drift chambers was a $50: 50$ (by weight) argon-ethane mixture. The ethane acted as a quenching agent to decrease the electron drift velocity and hence increase the spatial resolution [Leo94]. The maximum drift time using this gas mixture was about 150 ns . The gas mixture was passed through alcohol bubblers at $0^{\circ} \mathrm{C}$ in order to extend the lifetime of the chambers. ${ }^{8}$ The flow rate through each of the chambers was maintained at about 200 SCCM (standard cubic centimeters per minute).

Each sense wire was directly connected to a circuit board (LRS2735DC) that amplified and discriminated the chamber signal. The discriminator thresholds were remotely adjustable but unchanged for the duration of the experiment.

When a trigger signal was sent from the trigger supervisor, multi-hit pipeline TDCs (LRS1887, located in a rack at the back of the SOS carriage) read timing information for all drift chamber channels that exceeded the discriminator threshold within the previous $4 \mu \mathrm{~s}$. Read-out controllers assembled the drift chamber information into event fragments and sent the data upstairs to the data acquisition computer. The algorithm used to find tracks from the drift chamber information is discussed in Section 4.2.1.

2.6.4 The SOS Gas C̄erenkov Detector

The SOS had a threshold gas Čerenkov detector designed to distinguish electrons from negatively charged pions. The detector had four mirrors which focussed Cerenkov light onto four

[^15]

Figure 2.13: Left) An exploded view of the wires in a single SOS drift chamber. Neither the dimensions nor the number of wires are accurate, and the inter-plane foils are not shown; the figure is intended only to show the orientation of the wires and the ordering of the planes. The cross section A-A' is given in Fig. 2.14. Right) The orientation of the SOS drift chamber wires as seen by the incoming electrons.

Figure 2.14: Cross section of a single SOS drift chamber.

PMTs (Burle 8854). During the experiment the detector was filled with Freon $12\left(\mathrm{CCl}_{2} \mathrm{~F}_{2}\right)$ at one atmosphere, yielding a velocity threshold of $\beta_{t}=1 / n=0.9989$. The highest momenta seen by the SOS in this experiment was about $1.73 \mathrm{GeV} / c$, which corresponds to $\beta=0.9967$ for pions and $\beta>0.9999$ for electrons.

The Čerenkov PMT outputs were sent up to the Hall C electronics room, where they were split by a 1:1 voltage divider (see Fig. 2.15). One of the outputs went to an ADC which was read out when a trigger occurred. The other output was discriminated and sent to trigger electronics that were not used in this experiment.

The mirrors in place during the experiment had slight misalignments as well as some degradation of the surface finish. As a result the detector was slightly inefficient; nevertheless, it was deemed suitable for use in the analysis. See Section 4.2.4 for details.

2.6.5 The SOS Lead-Glass Calorimeter

At the rear of the SOS detector hut was an array of 44 blocks of TFI lead glass, each 10 cm by 10 cm by 70 cm long, stacked 11 blocks high by four blocks (16 radiation lengths) deep. Each block was equipped at one side with a PMT (Philips Components XP3462B). The entire structure was tilted at 5 degrees with respect to the optical axis in order to prevent inefficiencies due to particles travelling along the interface between blocks.

The array served as an electromagnetic calorimeter. The measured energy deposition in the individual calorimeter blocks was summed and the resulting quantity used to separate electrons from negatively charged pions. The PMT outputs were sent up to the Hall C electronics room, where they were split by a $1: 1$ voltage divider (see Fig. 2.15). One of the outputs went to an ADC which was read out when a trigger occurred. The other output was sent to trigger electronics that were not used in this experiment. The performance of this detector is discussed in Section 4.2.4.

2.7 The Proton Spectrometer

The Hall C High Momentum Spectrometer (HMS) (see Fig. 2.16) was used to detect outgoing protons. As noted above, this decision was driven by the need to detect protons with momenta exceeding the upper limit of the SOS.

Figure 2.15: The SOS gas Ċerenkov and calorimeter electronics. Parenthetical numbers above a line indicate the multiplicity of signals.

Quantity	Specification
Maximum Central Momentum	$4.0 \mathrm{GeV} / \mathrm{c}$
Momentum Acceptance / Resolution (σ)	$\approx 18 \% / \approx 0.1 \%$
Dispersion	$\approx 3.9 \mathrm{~cm} / \%$ at $\delta=0$
Solid Angle (large collimator)	
\quad Point Target	$\approx 7.0 \mathrm{msr}$
$\quad 4.4 \mathrm{~cm}$ Target	$\approx 6.5 \mathrm{msr}$
Angular Acceptance / Resolution (σ)	
\quad Horizontal	$\pm 25 \mathrm{mrad} / \pm 2 \mathrm{mrad}$
\quad Vertical	$\pm 70 \mathrm{mrad} / \pm 2 \mathrm{mrad}$
Optical Length	26.0 m
Angular Range	12.5° to 85°
Upward Bend Angle	25°
Minimum Opening Angle with SOS	$\approx 29^{\circ}$

Table 2.4: The HMS operating specifications. Sources are Ref. [Ent97] (solid angle), data from this experiment (angular resolutions), and Ref. [Yan91] (other).

The HMS consisted of three superconducting quadrupoles followed by a superconducting dipole, operated in point-to-point tune (in both directions) for this experiment. Changes in spectrometer rotation and magnetic field were made remotely from the counting room.

The angular acceptance of the spectrometer (see Table 2.4) was defined by an octagonal collimator made of 6.3 cm (2.48 inch) thick HeavyMet. ${ }^{9}$ As in the case of the SOS, the matrix elements of the HMS were optimized using data taken with a sieve slit (see Section 4.2.2 and Appendix B).

The HMS detector package was similar to that in the SOS. The HMS was equipped with two pairs of scintillator arrays, two drift chambers, a threshold gas Cerenkov detector, and a lead-glass electromagnetic calorimeter. The last two detectors were not used in this experiment, and will not be discussed further.

2.7.1 The HMS Magnetic Elements

The HMS is in a Quad-Quad-Quad-Dipole configuration, using a point-to-point tune ${ }^{10}$ in both the dispersive and nondispersive directions. The three quadrupoles were superconducting cold iron magnets with passive quench protection. The dipole was a cryogenically stable superconducting magnet.

[^16]

Figure 2.16: A side view of the proton spectrometer (HMS).

Figure 2.17: A side view of the proton spectrometer (HMS) detector stack, as seen from the door of the detector hut. The detected particles travel from left to right (along positive z). The y axis is into the page.

Figure 2.18: A schematic view of a pair of HMS scintillator arrays. The light guides and PMTs are not shown; the figure is intended only to show the orientation and positioning of the scintillators.

The magnetic fields were set remotely from the counting room. The field of the dipole was regulated using the output of an NMR (nuclear magnetic resonance) probe located outside the vacuum can in a region of uniform field. The quadrupoles were regulated by current. After each polarity change the magnets were cycled up to $p_{\max }$ in order to put them on a repeatable hysteresis curve.

2.7.2 The HMS Scintillator Arrays

The HMS, like the SOS, had four planes of scintillators, two towards the front of the detector stack and two towards the rear (see Fig. 2.17). Each plane consisted of staggered, slightly overlapping strips of scintillator (see Fig. 2.18) equipped at each end with light guides and photomultiplier tubes (PMTs). The first plane encountered by a particle, SIX, had 16 scintillators arranged in the y direction (horizontally). The second plane, S1Y, had 9 scintillators arranged in the x direction (roughly vertically). Towards the rear of the detector hut this arrangement was repeated with planes S2X and S2Y, identical to SIX and S1Y, respectively.

The scintillator planes served two purposes: triggering of the data acquisition system and measurement of particle velocity using time-of-flight ($\beta_{\text {tof }}$) from the front to the rear of the detector hut. The trigger scheme and electronics were nearly identical to those used in the SOS (discussed
in Section 2.6.2 and shown in Fig. 2.12 on page 49).

2.7.3 The HMS Drift Chambers

Two drift chambers, DCl and DC 2 , were used to provide track information for events in the HMS. Each chamber consisted of six planes of sense wires oriented as shown in Fig. 2.19.

The cell size of the chambers (the spacing between sense wires) was 1 cm . The field wires were held at negative high voltage, while the sense wires were grounded. The unprimed and primed planes were offset by one-half of a cell width in order help remove the left-right ambiguity inherent in a drift-time measurement of a single plane. The chambers were located at the front of the detector stack to minimize the effect of multiple-scattering in the preceding vacuum window and air.

The gas used in the drift chambers was the same argon-ethane mixture as that used in the SOS, flowed at a rate of 400 SCCM . The maximum drift time using this gas mixture was about 150 ns .

The sense wires were connected to circuit boards (LeCroy or Nanometrics) that amplified and discriminated the chamber signals. The discrimator thresholds were remotely adjustable but unchanged during the experiment. The electronics were similar to those used in the SOS, with the exception that they were located inside the HMS detector hut itself. The tracking algorithms used in the analysis are discussed in Section 4.2.1.

2.8 Trigger Electronics and Data Acquisition

The coincidence event rates in this experiment were modest ($<60 \mathrm{~Hz}$), which allowed the use of a very simple triggering scheme. A valid SOS or HMS pretrigger was defined as any three-offour coincidence of the four scintillator plane signals (S1X, S1Y, S2X, S2Y) of the corresponding spectrometer (pretrigger rates were less than 3 kHz in the SOS, 850 kHz in the HMS). Fig. 2.12 on page 49 shows the SOS trigger electronics (the HMS electronics were identical). The four gates in the upper right were used to measure electronic deadtime (less than 1.5% for either spectrometer throughout this experiment).

Figure 2.19: Left) An exploded view of the sense wires in a single HMS drift chamber. Neither the dimensions nor the number of wires are accurate, and the field wires are not shown; the figure is intended only to show the orientation of the sense wires and the ordering of the planes. The cross section B-B' is given in Fig. 2.20. Right) The orientation of the HMS drift chamber sense wires as seen by the incoming protons.

Figure 2.20: Cross section of a single HMS drift chamber.

A valid SOS or HMS pretrigger passed to the coincidence electronics (Fig. 2.21), where logic modules (the 8LM logic) determined the trigger type (SOS single, HAS single, or coincidence) and whether or not the data acquisition system was ready to accept an event. The SOS and HMS pretriggers into the coincidence logic were adjusted to give a coincidence window of about 60 ns .

If the 8LM logic passed an event, the resulting single-arm or coincidence trigger signal was sent to the trigger supervisor (a high-speed trigger interface designed by the TJNAF Data Acquisition group). The trigger supervisor handled prescaling and, for those events that passed the prescale, sent gates to the front-end electronics (ADCs and TDCs) for all detectors of the appropriate spectrometer(s). For coincidence events the triggers to each arm were retimed to the respective single-arm trigger (i.e., the gate timing relative to the trigger was the same in each spectrometer for coincidence events as it was for single-arm events.)

The data acquisition software used in this experiment was CODA (CEBAF On-line Data Acquisition) version 1.4, written by TJNAF's Data Acquisition group [Abb95]. The code ran on a Hewlett-Packard 735 workstation located in the Hall C counting room and performed two main functions: run control and event building. Several FastBus crate controllers and VME/CAMAC computers (collectively referred to as Read-Out Controllers, or ROCs) served as the interface between the data acquisition computer running CODA and the front-end detector electronics.

The individual ROCs ran a multi-tasking operating system called VxWorks. They collected detector information directly from the front-end electronics and assembled the information into event fragments which were sent back to the data acquisition computer.

The run control portion of CODA performed initialization of the detectors (via user-supplied routines) and acquired event fragments, both via communication with the ROCs over a TCP/IP network. The CODA Event Builder merged the event fragments from individual ROCs into complete events, which were then written to disk. After the data obtained during the course of a run were recorded on hard-disk drives, they were backed up to the TJNAF tape 'silo' (a StorageTek robotic tape library) where they were available for subsequent off-line analysis.

Figure 2.21: The coincidence electronics.

2.9 Materials in the Experimental Apparatus

The simulation of multiple scattering and ionization energy loss (Section 3.1.2) and external Bremsstrahlung (Section 3.3) requires information about materials in the experimental setup. Table 2.5 lists those materials traversed by the detected particles from the target through the detectors.

Object	Material	Density $\left[\mathrm{g} / \mathrm{cm}^{3}\right.$]	Thickness [cm]	$\underset{\left[\mathrm{g} / \mathrm{cm}^{2}\right]}{X_{0}}$	Radiation Lengths [\%]
Upstream target window	Al 6061	2.70	0.0069	23.39	0.080
Target ${ }^{11}$	Liquid H_{2}	0.0723	4.36	61.28	0.514
Downstream target window	Al 3004	2.70	0.0137	23.64	0.157
Tgt. Chamb. win.	AI	2.70	0.0203	24.01	0.228
Tgt. Chamb.-SOS gap	air	0.00121	≈ 15.	36.66	≈ 0.050
SOS entr. win.	kevlar	0.74	0.0127	55.2	0.017
	mylar	1.39	0.0076	39.95	0.026
SOS exit win.	kevlar	0.74	0.0381	55.2	0.051
	mylar	1.39	0.0127	39.95	0.044
Dipole-DC gap	air	0.00121	≈ 12.	36.66	≈ 0.04
SOS DC cathode foils	mylar	1.39	14(0.00127)	39.95	0.062
SOS DC serse/field wires ${ }^{12}$	W, $30 \mu \mathrm{~m}, 12$ planes. $60 \mu \mathrm{~m}, 12$ planes	19.3	$12\left(35.4 \times 10^{-6}\right)$	6.76	0.121
SOS DC gas	Arg/ethane, 50/50 by weight	0.00154	12(0.6178)	27.38	0.042
Gaps through calorimeter	air	0.00121	≈ 257.	36.66	0.848
SOS SIY ${ }^{13}$	polystyrene	1.03	1.098	43.8	2.58
$\operatorname{sos} \mathrm{SiX}^{13}$	polystyrene	1.03	1.04	43.8	2.45
SOS C windows	A1	2.70	2(0.05)	24.01	1.12
SOS Ćg gas	Freon 12	0.00493	≈ 100.	23.67	≈ 2.08
SOS C Mirror and support	SiO_{2}, Rohacell	-	-	-	≈ 0.5
SOS S $2 \mathrm{Y}^{13}$	polystyrene	1.03	1.098	43.8	2.58
SOS Aerogel Ć windows	Al	2.70	2(0.0625)	24.01	1.41
SOS Aerogel C	Aerogel	-	9.0	-	≈ 6.
SOS S2X ${ }^{13}$	polystyrene	1.03	1.04	43.8	2.45
SOS Calorimeter	TF1 lead glass	-	40.	-	1600.
Tgt. Chamb. wind.	Al	2.70	0.0406	24.01	0.457
Tgt. Chamb.-HMS gap	air	0.00121	≈ 15.	36.66	≈ 0.050
HMS entr. win.	kevlar	0.74	0.0381	55.2	0.051
	mylar	1.39	0.0127	39.95	0.044
HMS exit win.	kevlar	0.74	0.0381	55.2	0.051
	mylar	1.39	0.0127	39.95	0.044
Dipole-DC gap	air	0.00121	≈ 35.	36.66	≈ 0.12
HMS DC windows	mylar	1.39	4(0.00254)	39.95	0.035
HMS DC sense wires ${ }^{12}$	W, $25 \mu \mathrm{~m}$, 12 planes	19.3	12(6.33 $\times 10^{-6}$)	6.76	0.022
HMS DC field wires ${ }^{12}$	Al/Au (99/1), $150 \mu \mathrm{~m}, 36$ planes	2.70	36(0.00038)	23.38	0.158
HMS DC gas	Arg/ethane, 50/50 by weight	0.00154	12(1.8)	27.38	0.122
Gaps through S2Y	air	0.00121	≈ 239.	36.66	0.79
HMS SIX ${ }^{13}$	polystyrene	1.03	1.067	43.8	2.51
HMS SIY ${ }^{13}$	polystyrene	1.03	1.067	43.8	2.51
HMS C windows	Al	2.70	2(0.102)	24.01	2.29
HMS ट gas	N_{2}	0.00125	150.	37.99	0.494
HMS C Mirror and support	SiO_{2}, Rohacell	-	-	-	≈ 0.5
HMS S2X ${ }^{13}$	polystyrene	1.03	1.067	43.8	2.51
HMS S2Y ${ }^{13}$	polystyrene	1.03	1.067	43.8	2.51
HMS Calorimeter	TFi lead glass	-	40.	-	1600.

Table 2.5: Materials in the experimental setup. The first group is that material traversed (in part) by the incoming electron and (in part) both outgoing particles. The second group is that traversed by outgoing electrons only. The third group is that encountered by outgoing protons only. The entries in this table were used in the Monte Carlo calculations of multiple scattering, ionization energy loss, and external Bremsstrahlung.

[^17]
Chapter 3

Monte Carlo Simulation of the Experiment

This chapter describes the Monte Carlo simulation of the experiment. The program employed detailed models of both magnetic spectrometers and simulated the effects of radiative processes, multiple scattering, and ionization energy loss. It was used to obtain the experimental acceptance and radiative corrections for the resonance process under study as well as for ${ }^{1} \mathrm{H}\left(e, e^{\prime}\right) p$ and ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ scattering (used to verify understanding of the apparatus and to check the simulation of radiative processes) and to simulate the multi-pion background to the resonance production. In particular, for the resonance analysis the cross section in each ($W, \cos \theta_{\eta}^{*}, \phi_{\eta}$) bin was obtained by multiplying the ratio of data to Monte Carlo yields for that bin by the value of the Monte Carlo model cross section at the bin center. In subsequent analyses the model cross section was iterated until convergence was reached. The details of this procedure are explained in Chapter 4.

3.1 Overview of the Simulation

Five different physical processes were modeled in the Monte Carlo (all of which are described more fully in Section 3.2):

- Electroproduction of an S_{11} (1535) from hydrogen and its subsequent decay into a proton and
$\eta:$

$$
\begin{equation*}
e+p \rightarrow e^{\prime}+S_{11} \rightarrow e^{\prime}+p \eta \tag{3.1}
\end{equation*}
$$

- Two-pion electroproduction via random population of three-body $p \pi \pi$ phase space:

$$
\begin{equation*}
e+p \rightarrow e^{\prime}+p \pi^{+} \pi^{-} \tag{3.2}
\end{equation*}
$$

- Two-pion electroproduction via a doubly-charged Delta resonance:

$$
\begin{equation*}
e+p \rightarrow e^{\prime}+\Delta^{++} \pi^{-} \rightarrow e^{\prime}+p \pi^{+} \pi^{-} \tag{3.3}
\end{equation*}
$$

- A crude model of multi-pion electroproduction in which the electron spectrometer was populated randomly in (W, Q^{2}) space, weighted and subject to physical constraints, and the proton spectrometer was populated randomly in $\left(\Omega_{p},\left|p_{p}^{\prime}\right|\right)$ space. This model and the previous two pion production models simulated the background to the S_{11} electroproduction.
- Elastic scattering from hydrogen $\left({ }^{1} \mathrm{H}\left(e, e^{\prime}\right) p\right.$ and ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$), used to verify the spectrometer acceptances, target reconstruction, and the modeling of radiative processes.

Prior to entering the main event loop, the Monte Carlo executed a preliminary event loop to determine central kinematics for the setting. These kinematics were used when calculating parameters (associated with radiative processes and ionization energy loss) whose event-to-event variation was not significant. Once in the main event loop the simulation proceeded as follows (see Fig. 3.1):

1. An interaction point in the target was chosen. The position $z_{\text {tar }}$ along the beam was chosen randomly. The horizontal and vertical positions were chosen according to a sinusiod with randomly selected phase in order to simulate the $\pm 1 \mathrm{~mm}$ target rastering described in Section 2.5.
2. Energy loss in the target was applied to the incident electron (Section 3.1.2). Using $z_{\text {tar }}$ together with the central kinematics for this setting the effects of external and internal Bremsstrahlung on the incoming electron were modeled (Section 3.3).
3. All quantities necessary to completely specify the vertex kinematics of the event were generated randomly in the appropriate phase space.
4. With all vertex quantities known, the effects of external and internal Bremsstrahlung on the outgoing electron and (optionally) proton were modeled. Ionization energy loss and multiple scattering in the target and related materials was simulated for both outgoing particles.
5. The model cross section (Section 3.2) was evaluated and scaled by a multiplicative radiation factor $M_{\text {corr }}$ (Section 3.3), and the event accepted with a probability proportional to that scaled cross section.
6. The passage of each particle through its respective spectrometer was simulated. In addition to modeling the magnetic elements of the spectrometers, the 'single arm' Monte Carlo routines included the effects of drift chamber resolution and multiple scattering in the spectrometer materials. Particles that failed to pass through the fiducial volumes of the trigger detectors (hodoscopes) and, in the case of electrons, the volumes of the gas Cerenkov and calorimeter, were considered undetected. Target quantities were reconstructed. Detector efficiencies were not modeled.
7. Coincidence quantities were calculated and event information saved.

Once the main loop over events was complete the Monte Carlo code performed end-of-run calculations and stored event-by-event information in a CERNLIB HBOOK ntuple [CERNL].

3.1.1 Calculation of the Monte Carlo Yield

The simulated experimental yield Y for each process (e.g., $S_{11}, \Delta^{++} \pi^{-}$) may be expressed as: ${ }^{1}$

$$
\begin{equation*}
Y=N_{e}\left(\frac{N_{p}}{u \text { uit area }}\right)\left[\int \sigma_{\mathrm{Mc}}\left(\nu_{\mathrm{gen}}\right) \mathcal{A} R d V_{\mathrm{gen}}\right], \tag{3.4}
\end{equation*}
$$

where

- N_{e} is the number of incident electrons, given by $\frac{Q}{1.602 \times 10^{-15}}$, where Q is the beam charge in Coulombs.

[^18]

Figure 3.1: Flow diagram for the Monte Carlo simulation. The quantities n_tried ($N_{\text {tried }}$), n_acc ($N_{\text {accept }}$), and $V_{-g e n}\left(\nu_{\text {gen }}\right)$ are discussed in Section 3.1.1. The multiplicative part of the radiative correction, M_corr ($M_{\text {corr }}$), is discussed in Section 3.3.

- $N_{p} /$ (unit area) is the number of target protons per unit area, given by $\frac{p_{\text {enr }} T_{\text {ior }} N_{A}}{M_{\text {tar }}}$, where
- $\rho_{\text {Lar }}$ is the density of the target in $\mathrm{g} \mathrm{cm}^{-3}$;
- $T_{\text {tar }}$ is the thickness of the target in cm ;
- N_{A} is the Avogadro constant, $6.0221 \times 10^{23} \mathrm{~mol}^{-1}$;
- $M_{\text {tar }}$ is the target mass in atomic mass units (amu);
- $\sigma_{\mathrm{mc}}\left(\mathcal{V}_{\mathrm{gen}}\right)$ is the model cross section, which in general depends on the variables of the generation volume $\mathcal{V}_{\text {gen }}$ (in the case of the S_{11} the generation volume corresponds to ($W, Q^{2}, \phi_{e}, \Omega_{\eta}^{-}$) space);
- \mathcal{A} represents the acceptance of the experimental apparatus, and
- R represents the effect of radiative processes.

The integration of the model cross section is over the appropriate phase space $\mathcal{V}_{\text {gen }}$. The Monte Carlo performs this integration using the acceptance-rejection technique, ${ }^{2}$ calculating the value of the model cross section for each event and testing it against a trial value generated randomly on the interval $\left[0, \sigma_{\text {max }}\right]$, where $\sigma_{\text {max }}$ is a constant chosen to be equal to or greater than the maximum value of $\sigma_{\mathrm{mc}}\left(\mathcal{V}_{\mathrm{gen}}\right)$. The acceptance \mathcal{A} and radiative correction R are taken into account by accepting or rejecting the particles in their respective 'single arm' Monte Carlo routines and, in the case of radiation, modification of the model cross section. ${ }^{3}$ Once the Monte Carlo simulation has been performed (thus integrating the bracketed quantity in Eq. 3.4), we have for the general process

$$
\begin{equation*}
Y=N_{e}\left(\frac{N_{p}}{\text { unit area }}\right) \frac{N_{\text {accept }}}{N_{\text {tried }}} \Delta V_{\text {gen }} \sigma_{\max }, \tag{3.5}
\end{equation*}
$$

[^19]where we have $N_{\text {accept }}$ successful events out of $N_{\text {tried }}$ events thrown into the volume $\mathcal{V}_{\text {gen }}{ }^{4}$ For the case of S_{11} production this becomes
\[

$$
\begin{equation*}
Y=N_{e}\left(\frac{N_{p}}{\text { unit area }}\right) \frac{N_{\text {accept }}}{N_{\text {tried }}}\left(\Delta W \Delta Q^{2} \Delta \phi_{e} \Delta \Omega_{\eta}^{*}\right) \sigma_{\text {max }} . \tag{3.6}
\end{equation*}
$$

\]

3.1.2 Passage Through Material

Multiple Scattering

The effect of small-angle multiple scattering on the electron and proton as they traversed material in the target and spectrometers was simulated (see Table 2.5 on page 62 for a list of materials). The angle θ_{i} in either the x or y plane was modified according to

$$
\begin{equation*}
\theta_{i}^{\prime}=\theta_{i}+g \delta \theta_{i}, \tag{3.7}
\end{equation*}
$$

where g is a random variable, Gaussian distributed with mean 0 and $\sigma=1$, and the width is given by a fit to a Molière distribution [PDG98]:

$$
\begin{equation*}
\delta \theta_{i}=\frac{0.0136 \mathrm{GeV}}{\beta c p} \sqrt{x / X_{0}}\left[1+0.038 \ln \left(x / X_{0}\right)\right] \tag{3.8}
\end{equation*}
$$

Here $\delta \theta_{i}$ is the angular change in either x or y plane, βc and p are the velocity and momentum of the incident particle, and x / X_{0} is, the thickness of the scattering material in radiation lengths.

Ionization Energy Loss

The effect of energy loss due to ionization on the electron and proton as they travelled through the target was small but simulated nevertheless. For protons the most probable rate of energy loss was given by the Bethe-Bloch equation (see, for example, Refs. [Leo94] or [PDG98]):

$$
\begin{equation*}
-\frac{d E}{d x}=0.3071 \frac{Z}{A} \frac{1}{\beta^{2}}\left[\ln \left(\frac{2 m_{e} \beta^{2} c^{2} \gamma^{2}}{I}\right)-\beta^{2}\right] \tag{3.9}
\end{equation*}
$$

where $d E / d x$ is the rate of energy loss in $\mathrm{MeV}^{-1} \mathrm{~cm}^{2}, Z$ and A are the atomic number and mass of the material being traversed, and $\gamma=\left(1-\beta^{2}\right)^{-1 / 2}$. The density effect and shell corrections

[^20]were neglected, since the protons in this experiment were nearly minimum-ionizing. The average ionization potential I depends on the material through which the proton is travelling. Here we used a parameterization found in Ref. [Leo94]:
\[

$$
\begin{array}{lll}
I=Z\left(12+7 Z^{-1}\right) \mathrm{eV} & Z<13 \\
I=Z\left(9.76+58.8 Z^{-1.19}\right) \mathrm{eV} & Z \geq 13 \tag{3.10}
\end{array}
$$
\]

A typical value for proton energy loss in the target hydrogen was 0.6 MeV , which in the worst case corresponded to 0.05% of the energy of the outgoing proton.

For electrons we used for most probable rate of energy loss the relativistic approximation of the Bethe-Bloch equation due to Ref. [OBr74]:

$$
\begin{equation*}
-\frac{d E}{d x}=0.3071 \frac{Z}{A} \frac{1}{2}\left[19.26+\ln \left(\frac{t}{\rho}\right)\right] \tag{3.11}
\end{equation*}
$$

where t is the thickness of the material in $\mathrm{g} / \mathrm{cm}^{2}$ and ρ is the density of the material in $\mathrm{g} / \mathrm{cm}^{3}$. A typical value for electron energy loss in the target hydrogen was 0.9 MeV , which in the worst case corresponded to $0.08 \%(0.03 \%)$ of the energy of the outgoing (incident) electron.

3.2 Event Generation

3.2.1 Resonance Production

The cross section for electroproduction of the S_{11} (1535) is conventionally expressed as a differential in electron solid angle Ω_{e}, incident electron energy E_{e}, and Ω_{η}^{*}, the solid angle of the η in the center-of-momentum (c.m.) frame of the hadronic resonance:

$$
\begin{equation*}
\frac{d^{5} \sigma}{d \Omega_{e} d E_{e}^{\prime} d \Omega_{\eta}^{-}}=\Gamma_{T}\left(E, E^{\prime}, \theta_{e}\right) \frac{d^{2} \sigma}{d \Omega_{\eta}^{-}}, \tag{3.12}
\end{equation*}
$$

where Γ_{r} is the virtual photon flux. In practice, since a region of the ($E_{e}^{\prime}, \Omega_{e}$) phase space is excluded by the threshold of the S_{11} at $W_{\mathrm{thr}}=\left(m_{p}+m_{\eta}\right)$, it is more efficient to generate events in the variables W, Q^{2}, ϕ_{e} (the azimuthal angle of the outgoing electron), and Ω_{η}^{*} (where the Jacobian between the two spaces is taken into account by using the appropriate form of the transverse virtual
photon flux Γ_{T}, given in Eq. 1.9 on page 15):

$$
\begin{equation*}
\frac{d^{5} \sigma}{d W d Q^{2} d \phi_{e} d \Omega_{\eta}^{-}}=\Gamma_{\tau}\left(W, Q^{2}\right) \frac{d^{2} \sigma}{d \Omega_{\eta}^{-}} . \tag{3.13}
\end{equation*}
$$

In the Monte Carlo simulation, electron quantities were generated randomly ${ }^{5}$ over set limits in the variables W, Q^{2}, and ϕ_{e}, and accepted within a volume somewhat larger than the acceptance of the electron spectrometer. If an event passed these tests then the quantities $\cos \theta_{\eta}$ and ϕ_{η} were randomly generated over 4π in the $c . m$. frame and all remaining kinematic quantities calculated. The resulting proton was boosted to the lab and the event retained only if the proton was in a volume somewhat larger than the acceptance of the proton spectrometer.

Remaining events were then accepted with a weight proportional to the product of Eq. 3.13 and $M_{\text {corr }}$, the multiplicative part of the radiative correction (discussed in Section 3.3). The form corresponding to Eq. 3.13 used to model the cross section in the Monte Carlo was

$$
\begin{equation*}
\sigma_{\mathrm{mc}}\left(W, Q^{2}, \Omega_{\eta}^{*}\right)=\Gamma_{r}\left(W, Q^{2}\right) \sigma_{\mathrm{mc}, \mathrm{~cm}}\left(W, Q^{2}, \Omega_{\eta}^{*}\right), \tag{3.14}
\end{equation*}
$$

with the model c.m. cross section of the form ${ }^{6}$

$$
\begin{equation*}
\sigma_{\mathrm{mc}, \mathrm{~cm}}\left(W, Q^{2}, \Omega_{\eta}^{*}\right)=A^{2} \frac{\left|\mathrm{p}_{\eta}^{*}\right| W}{m_{p} K} \frac{W_{R}^{2} \Gamma_{R}^{2}}{\left(W^{2}-W_{R}^{2}\right)^{2}+W_{R}^{2} \Gamma^{2}(W)}+B_{\mathrm{nr}} \sqrt{W-W_{\mathrm{thr}}}, \tag{3.15}
\end{equation*}
$$

where

- the momentum of the η in the c.m. of the hadronic resonance, $\left|\mathbf{p}_{\boldsymbol{\eta}}^{*}\right|$, was given in Section 1.3.2;
- the energy-dependent resonance width $\Gamma(W)$ was parameterized in terms of the full S_{11} width Γ_{R} and the three largest S_{11} decay branching fractions, b_{η}, b_{π}, and $b_{\pi \pi}$:

$$
\begin{equation*}
\Gamma(W)=\Gamma_{R}\left(b_{\eta} \frac{\left|\mathrm{p}_{\eta}^{*}\right|}{\left|\mathrm{P}_{\eta}^{*}\right|_{R}}+b_{\pi} \frac{\left|\mathrm{p}_{\pi}^{*}\right|}{\left|\mathrm{p}_{\pi}^{*}\right|_{R}}+b_{\pi \pi}\right), \tag{3.16}
\end{equation*}
$$

where the subscript ' R ' in $\left|\mathbf{p}_{\eta}^{*}\right|_{R}$ denotes evaluation at $W=W_{R}=1535 \mathrm{MeV}$;

[^21]- the equivalent real photon energy $K=\frac{W^{2}-m_{p}^{2}}{2 m_{p}}$;
- The parameters A and B_{nr} are the magnitude of the resonant and nonresonant parts of the cross section.

The parameters A, B_{nr}, and Γ_{R} used in the Monte Carlo were assigned initial values (based on the findings of Ref. [Bra84]) at each Q^{2} point and subsequently iterated. The fitted nonresonant term in the analysis was consistent with zero in all advanced stages, so $B_{\text {nr }}$ was set to zero in the Monte Carlo. The value of Γ_{R} used in the Monte Carlo was iterated based on each successive analysis, with the result converging in a few iterations to that quoted in the final results (\approx 150 MeV). The resonance mass in the simulation was fixed at $W_{R}=1535 \mathrm{MeV}$, and the branching fractions were fixed at $b_{\pi}: b_{\pi}: b_{\pi \pi}=0.45: 0.45: 0.10$.
S_{11} events that passed the cross section acceptance-rejection test were then passed in turn to the two spectrometer Monte Carlos (described in Section 3.4). Note that the Monte Carlo model cross section did not have an explicit Q^{2} dependence (aside from a gross difference between the two Q^{2} values). The data were instead corrected for Q^{2} dependence, or 'bin-centered', at both of the points. This correction is described in Section 4.3.9.

3.2.2 Multi-Pion Background

As noted above, three processes were used to simulate the multi-pion background. In each case electrons were generated randomly in (W, Q^{2}) space and accepted with a probability proportional to the product of the virtual photon flux Γ_{T} (Eq. 1.9 on page 15) and the square of a dipole form factor $\left(G_{D}^{2}=\left[1+Q^{2} / 0.71\right]^{-4}\right)$.

The first process (which we call 'Model l') simulated two-pion electroproduction by randomly populating the three-body $p \pi \pi$ phase space. After generation of the electron quantities, proton and pion energies and angles were generated randomly in the c.m. frame, subject to the constraints of energy and momentum conservation.

The second process ('Model 2') simulated two-pion electroproduction via production of a $\Delta^{++} \pi^{-}$pair and subsequent decay of the Δ^{++}into a $p \pi^{+}$pair. The model was derived from a DESY streamer-chamber experiment [Wac76]. The doubly-charged Δ (1232) was distributed in
the c.m. frame according to Refs. [Sau78, Breis],

$$
\begin{equation*}
\frac{d^{2} \sigma}{d \Omega_{\Delta^{+}}^{-}}=0.6-0.9 \cos \theta^{-}+1.1 \cos ^{2} \theta^{-} . \tag{3.17}
\end{equation*}
$$

The mass of the Δ was generated according to a Breit-Wigner expression, and the Δ subsequently allowed to decay isotropically in its c.m. frame.

The third process ('Model 3 ') simply generated proton quantities randomly in ($\left.\Omega_{p},\left|p_{p}^{\prime}\right|\right)$ space subject to the physical constraints $W>m_{p}+2 m_{\pi}$ and $M_{x}>2 m_{\pi}$.

All three models represented the background reasonably well (see Fig. 3.2, and Fig. 4.15 on page 119). Discrepancies in final physics results using the models were fairly small ($\sim 5 \%$); these differences were used to estimate the systematic uncertainty arising from the use of the models (Section 5.1).

3.2.3 Elastic Scattering

In the case of elastic scattering the model cross section was differential in Ω_{e}. Events were generated randomly in the quantities $\cos \theta_{e}$ and ϕ_{e}, subjected to a cross section acceptance-rejection test, and passed through the electron spectrometer Monte Carlo. The model cross section used was ([Hal84], p. 177)

$$
\begin{equation*}
\frac{d^{2} \sigma}{d \Omega_{c}}=\frac{\alpha^{2} \cos ^{2} \frac{\theta}{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}} \frac{E^{\prime}}{E}\left(\frac{G_{E_{p}}^{2}+\tau G_{M_{p}}^{2}}{1+\tau}+2 \tau G_{M_{p}}^{2} \tan ^{2} \frac{\theta}{2}\right) \tag{3.18}
\end{equation*}
$$

where θ, E, and E^{\prime} are the usual electron quantities, α is the fine structure constant, and $\tau \equiv$ $-q^{2} / 4 m_{p}^{2}$. The dipole form factor was used for $G_{E_{p}}$:

$$
\begin{align*}
G_{E_{p}}\left(Q^{2}\right) & =G_{D}\left(Q^{2}\right) \\
& =\left(1+\frac{Q^{2}}{0.71}\right)^{-2} \tag{3.19}
\end{align*}
$$

and the Gari-Krümpelmann parameterization [Gar85] was used for $G_{M_{p}}$:

$$
\begin{equation*}
G_{M_{p}}\left(Q^{2}\right)=F_{1}^{p}\left(Q^{2}\right)+F_{2}^{p}\left(Q^{2}\right), \tag{3.20}
\end{equation*}
$$

Figure 3.2: A comparison of data to Monte Carlo simulation for a typical kinematic setting. The top row shows $\cos \theta_{\eta}^{*}$ and ϕ_{η} versus M_{x}^{2}, and M_{x}^{2}, for the data. The second row shows the corresponding distributions for the Monte Carlo simulation, where the background was generated by 'Model 1'. The third row shows the Monte Carlo result using 'Model 3'. The 'Model 2' result is not shown but looked similar; this model was not used in later stages of analysis (see Section 5.1). Normalizations are arbitrary.
where

$$
\begin{equation*}
F_{1}^{p}\left(Q^{2}\right)=\frac{1}{2}\left[F_{1}^{I S}\left(Q^{2}\right)+F_{1}^{I V}\left(Q^{2}\right)\right] \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2}^{p}\left(Q^{2}\right)=\frac{1}{2}\left[\kappa_{s} F_{1}^{I S}\left(Q^{2}\right)+\kappa_{v} F_{1}^{I V}\left(Q^{2}\right)\right] . \tag{3.22}
\end{equation*}
$$

Definitions for $F_{1}^{I S}, F_{1}^{I V}, \kappa_{s}$, and κ_{v} are given in Ref. [Gar85].
The simulation of inclusive elastic scattering, or ${ }^{1} \mathrm{H}\left(e, e^{\prime}\right) p$, and exclusive elastic scattering, or ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$, was the same except that exclusive Monte Carlo events were tested for passage through the proton spectrometer. Figures 3.3 and 3.4 show the agreement between data and Monte Carlo simulation for SOS focal plane and reconstructed target quantities (and similarly, Figures 3.5 and 3.6 for the HMS). Figure 3.7 shows the ratio of data to Monte Carlo yields for six settings in which the angle of the SOS was changed, sweeping the elastic electrons across the momentum acceptance of the spectrometer. Most of the S_{11} resonance data in this experiment occupied the range $-15 \%<\delta<0 \%$. Figure 3.8 shows the excellent reproduction of the radiative tail in the Monte Carlo.

3.3 Radiative Processes

When the experimentalist measures an ($e, e^{\prime} p$) cross section she is measuring not only the process depicted by the Born term (Fig. 1.6 in Chapter 1) but also associated higher-order processes. We separate these processes into three classes. The most straightforward to treat are external Bremsstrahlung (Fig. 3.9), in which the incoming or outgoing particle radiates one or more real photons in the field of a nucleus other than that which undergoes the hard scattering in which we are interested. In the present experiment external Bremsstrahlung was negligible for the proton; we only needed to treat that which occurred to the incoming and outgoing electron. External Bremsstrahlung is relatively easy to handle because the nuclei involved are physically distant from the hard interaction of interest, and so the cross sections add without interference.

The second class of processes is internal Bremsstrahlung (Fig. 3.10). The incoming or outgoing particle radiates one or more real ('soft') photons but, in contrast to the case above, the radiation occurs in the field of the nucleon that is also involved in the hard scattering (hence the label

Figure 3.3: SOS focal plane quantities for ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$, data (points) and Monte Carlo (lines).

Figure 3.4: SOS reconstructed target quantities for ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$, data (points) and Monte Carlo (lines).

Figure 3.5: HMS focal plane quantities for ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$, data (points) and Monte Carlo (lines).

Figure 3.6: HMS reconstructed target quantities for ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$, data (points) and Monte Carlo (lines).

Figure 3.7: The ratio of data to Monte Carlo yields for $\operatorname{six}{ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ settings.

Figure 3.8: Data (points) and Monte Carlo (line) W distributions for an ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ setting.
'internal'). The amplitudes for the different diagrams interfere, making evaluation of the effect more complicated than in the case of external Bremsstrahlung. In addition, for this experiment the case of internal Bremsstrahlung of the proton was modeled.

The third class of processes we label internal hard processes (Fig. 3.11). It includes virtual ('hard') photon vertex processes as well as vacuum polarization (loop diagrams).

3.3.1 The Multi-Photon Prescription

The procedure (and notation) used in this work to generate radiative corrections was the multiphoton prescription of Wasson and collaborators, discussed in detail in Refs. [Mak94, Mak98]. Here we give only the main result of the procedure, which is an extension to a coincidence framework of the standard techniques of inclusive radiative corrections of Mo and Tsai [Tsa61, Mo69, Ear73, Tsa74]. The Wasson work uses the soft photon approximation (the limit in which the energy E_{γ} of the radiated photon is much less than $k_{i}, p_{i}, k_{f}, p_{f}$, the momenta of the fermions in the initial and final states) and an 'extended' peaking approximation (in which the contributions of nonpeaked $e p$ interference and $e e$ terms are retained, thus preserving the total radiated strength).

There are two manifestations of radiative processes. The diagrams involving real photons (external and internal Bremsstrahlung) give rise to cut-dependent effects in which the event kinematics are modified. As a result of these processes events may radiate into or out of the region of interest (or the spectrometer altogether). The soft effects were simulated in the Monte Carlo by generating radiative events (for the incoming and outgoing electrons and outgoing protons) with the appropriate distribution in photon energy E_{γ} up to a maximum photon energy $\Delta E .{ }^{7}$

The internal hard diagrams (the vertex and vacuum polarization diagrams), on the other hand, give rise to cut-independent effects. In this case the kinematics of the event are unaffected, and the result is a scaling of the cross section. The effect of the hard processes enters as a cutindependent multiplicative factor ($1-\delta_{\text {hard }}$) that is applied to the cross section before undergoing acceptance/rejection testing (which is discussed in Section 3.1.1). ${ }^{8}$

For reference we list here the key equations of the multi-photon prescription of Wasson, et al.,

[^22]

Figure 3.9: Feynman diagram for external Bremsstrahlung.

Figure 3.10: Feynman diagrams for internal Bremsstrahlung.

Figure 3.11: Feynman diagrams for internal hard corrections.
starting with the final result. The radiative effects are expressed as

$$
\begin{align*}
\frac{d^{8} \sigma}{d \Omega_{e} d E_{e}^{\prime} d \Omega_{\eta}^{*} d E_{\gamma_{\mathrm{i}}} d E_{\gamma_{s}} d E_{\gamma_{p}}}= & \frac{d^{5} \sigma^{(1)}}{d \Omega_{e} d E_{e}^{\prime} d \Omega_{\eta}^{*}} M_{\text {corr }} \\
& \times \frac{d E_{\gamma_{i}}}{E_{\gamma_{\mathrm{i}}}^{1-\lambda_{i}-b t_{i}}} \frac{d E_{\gamma_{\rho}}}{E_{\gamma_{f}}^{1-\lambda_{j}-b t_{s}}} \frac{d E_{\gamma_{p}}}{E_{\gamma_{p}}^{1-\lambda_{p}}} . \tag{3.23}
\end{align*}
$$

Here the i, f, and p subscripts denote quantities that apply to the incoming and outgoing electron and outgoing proton, respectively. The quantity $\frac{d^{5} \sigma^{(1)}}{d \Omega_{e} d E_{\epsilon}^{\prime} d \Omega_{\eta}^{\sigma}}$ is the one-photon-exchange cross section.

The integration of Eq. 3.23 over the photon energies $E_{\gamma_{i}}, E_{\gamma_{\rho}}$, and $E_{\gamma_{p}}$ is performed using the Monte Carlo method. We have defined $M_{\text {corr }}$ to contain the multiplicative factors

$$
\begin{equation*}
M_{\mathrm{corr}}=\left(1-\delta_{\mathrm{hard}}\right) M_{\mathrm{soft}} \bar{\Phi}_{i}^{\mathrm{ext}}\left(E_{\gamma_{\mathrm{i}}}\right) \bar{\Phi}_{f}^{\mathrm{ext}}\left(E_{\gamma \delta}\right) \tag{3.24}
\end{equation*}
$$

where the internal hard effects are given by

$$
\begin{equation*}
\delta_{\text {hard }}=\delta_{e \text { vert }}+\delta_{e \text { vac }}+\delta_{\mu \text { vac }}+\delta_{q \text { vac }} \tag{3.25}
\end{equation*}
$$

with the first three terms as given by Ref. [Mo69], and the quark vacuum polarization correction as given in Ref. [TAS82]:

$$
\begin{gather*}
\delta_{\text {evert }}=\frac{2 \alpha}{\pi}\left\{1-\frac{3}{4} \ln \left(\frac{Q^{2}}{m_{e}^{2}}\right)\right\} ; \tag{3.26}\\
\delta_{\text {evac }}=\frac{2 \alpha}{\pi}\left\{\frac{5}{9}-\frac{1}{3} \ln \left(\frac{Q^{2}}{m_{e}^{2}}\right)\right\} ; \tag{3.27}\\
\delta_{\mu \text { vac }}=\frac{2 \alpha}{\pi}\left\{\frac{5}{9}-\frac{1}{3} \ln \left(\frac{Q^{2}}{m_{\mu}^{2}}\right)\right\} ; \tag{3.28}\\
\delta_{q \text { vac }}=2\left\{-1.523 \times 10^{-3}-2.822 \times 10^{-3} \ln \left(1+1.218 Q^{2}\right)\right\} \tag{3.29}
\end{gather*}
$$

The multiplicative piece of the soft processes is given by

$$
\begin{align*}
M_{\text {soft }}= & \frac{1}{\Gamma\left(1+b t_{i}\right)} \frac{1}{\Gamma\left(1+b t_{f}\right)} \\
& \times \frac{b t_{i}+\lambda_{i}}{\left(k_{i}\right)^{b t_{i}}\left(\sqrt{k_{i} k_{f}}\right)^{\lambda_{i}}} \frac{b t_{f}+\lambda_{f}}{\left(k_{f}\right)^{b t_{f}}\left(\sqrt{k_{i} k_{f}}\right)^{\lambda_{s}}} \frac{\lambda_{p^{\prime}}}{\left(\sqrt{m_{p} p^{\prime 0}}\right)^{\lambda_{p^{\prime}}}} . \tag{3.30}
\end{align*}
$$

Here the $k \mathrm{~s}$ are electron momenta, $p^{\prime 0}$ is the energy of the outgoing proton, and the $\Gamma \mathrm{s}$ are the standard Gamma function. The factors bt represent sums of (thickness t).(parameter b) over all materials in the target and scattering chamber. The thickness t is in units of radiation lengths, and the parameter b is given in terms of the atomic charge Z of each material by

$$
\begin{equation*}
b=\frac{1}{9}\left(12+\frac{Z+1}{Z L_{1}+L_{2}}\right), \tag{3.31}
\end{equation*}
$$

with

$$
\begin{align*}
L_{1} & =\ln (184.15)-\frac{1}{3} \ln (Z) ; \tag{3.32}\\
L_{2} & =\ln (1194 .)-\frac{2}{3} \ln (Z) . \tag{3.33}
\end{align*}
$$

The $\lambda \mathrm{s}$ are given by

$$
\begin{gather*}
\lambda_{e}=\frac{\alpha}{\pi}\left[\ln \left(\frac{4 k_{i}^{2}}{m_{p}^{2}}\right)-1+2 \ln \left(\frac{k_{i}}{k_{f}}\right)+\ln \left(\frac{1-\cos \left(\theta_{e}\right)}{2}\right)\right] ; \tag{3.34}\\
\lambda_{e^{\prime}}=\frac{\alpha}{\pi}\left[\ln \left(\frac{4 k_{f}^{2}}{m_{p}^{2}}\right)-1+2 \ln \left(\frac{k_{i}}{k_{f}}\right)+\ln \left(\frac{1-\cos \left(\theta_{e}\right)}{2}\right)\right] ; \tag{3.35}\\
\lambda_{p^{\prime}}=\frac{\alpha}{\pi}\left[\ln \left(\frac{p^{\prime 0}+\left|\mathbf{p}^{\prime}\right|}{p^{\prime 0}-\left|\mathbf{p}^{\prime}\right|}\right)-2\right] . \tag{3.36}
\end{gather*}
$$

The $\bar{\Phi}^{\text {ext }}\left(E_{\gamma}\right)$, which are energy distributions of the single-photon Bremsstrahlung spectrum, are included to first order using

$$
\begin{equation*}
\bar{\Phi}_{i}^{\text {ext }}\left(E_{\gamma_{i}}\right)=1-\frac{b t_{i}}{b t_{i}+\lambda_{i}} \frac{E_{\gamma_{i}}}{k_{i}}, \tag{3.37}
\end{equation*}
$$

and similar for E_{γ}.
Figure 3.8 shows the excellent agreement between data and the Monte Carlo simulation for ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ scattering. Both the yield and the energy dependence of the tail are well-reproduced by the Monte Carlo simulation.

3.4 The Spectrometer Monte Carlos

If an event passed the cross section acceptance-rejection test, all kinematic quantities for the electron and proton were calculated and passed to routines that simulated the magnetic spectrom-
eters. These 'single-arm' Monte Carlos modeled the effects of various apertures in the devices and passage through both the magnetic elements and the detectors. ${ }^{9}$ 'Detected' events then underwent reconstruction back to the target.

Given an initial position and direction leaving the target, the electrons and protons were drifted (in field-free regions) or transported (in magnetic elements) forward in z. At strategic points their position was checked against that of collimators, magnetic elements, and other various apertures. If the particle impinged on any of these objects it was considered to have stopped. ${ }^{10}$

The forward transport of the electrons through the SOS model was done using eight sequential $6^{\text {th }}$ order transport maps, with aperture checks at each point in between. The maps were obtained from COSY INFINITY ${ }^{11}$ using the results of a field map of the magnetic elements. The transport of protons through the HMS magnetic elements was performed using eleven nonsequential $5^{\text {th }}$ order transport maps (i.e., each starting from the target interaction point), with aperture checks at every point in between. The maps were obtained from a COSY model of the HMS magnetic elements. In both spectrometers, the aperture checks were made at the entrance and exit positions of each magnetic element and at the z-position inside each magnetic element where the beam envelope was expected to reach its maximum size.

Events that were transported successfully through the magnetic elements of the spectrometers were then passed to code that simulated the detector huts. Here the particles were drifted through all the detectors, undergoing multiple scattering (Section 3.1.2) whenever they encountered air or other material. If a particle failed to pass through the fiducial volume of three of the four scintillator planes or, in the case of electrons in the SOS, failed to pass through the fiducial volume of the gas Čerenkov detector or electromagnetic calorimeter, the event was stopped.

If the event was considered detected, the hit positions at the drift chambers were smeared by the chamber resolution and the resulting values fit to a track at the focal plane. The track was then reconstructed back to the target using transport maps generated by COSY.

[^23]
Chapter 4

Data Analysis

4.1 Overview of the Analysis

The general approach taken in this analysis was to generate Monte Carlo results as close to actual data as practicable, and to subsequently analyze the data and Monte Carlo results using the same software routines. As described in the last chapter, the Monte Carlo simulation employed detailed models of the spectrometers, modeled the effects of radiation, multiple scattering, and ionization energy loss, and incorporated both the resonance process of interest as well as processes mimicing the multi-pion background. Both the data and Monte Carlo results were then subjected to the same multi-pion background fit and subtraction algorithms.

Yields per unit charge (binned in $W, \cos \theta_{\eta}^{*}$, and ϕ_{η}) were extracted for both data and Monte Carlo. Angular distributions were calculated by taking, for each bin, the ratio of data yield to Monte Carlo yield and multiplying by the Monte Carlo model cross section ($\sigma_{\mathrm{mc}, \mathrm{cm}}$ of Eq. 3.15 on page 70) integrated over that bin. The resulting differential cross sections were fit to a multipole expansion. The Monte Carlo model cross section was then iterated based on the results of the fit, and the process repeated.

The decision to analyze the data in this fashion, as opposed to the alternative application of Monte-Carlo-derived acceptance and radiation corrections to the data, was driven by the fact that the multi-pion background fit and subtraction were a potential source of large errors. Applying the same fit and subtraction algorithms to the data and to a good facsimile of the data and utilizing
the resulting ratio minimized those errors.
This chapter explains in detail each step taken during the analysis. In overview those steps were as follows (reference to more detailed discussion is given parenthetically):

1. The individual data runs were analyzed using the Hall C replay software, which performed timing analysis and track reconstruction and generated event ntuples as well as various reports and diagnostic histograms. Everything performed in the replay software is described in Section 4.2.
2. Histograms and scaler reports for each run were checked to ensure that no problems were evident in the data (Section 4.3.1).
3. A Monte Carlo simulation was performed for each kinematic setting (Chapter 3).
4. Cuts to spectrometer momenta and a loose cut to target position as determined by the HMS were made to both the coincidence data events and to the Monte Carlo results. Cuts to the coincidence data (but not Monte Carlo results) were made on particle ID (PID) quantities and coincidence time (Section 4.3.8).
5. Data and Monte Carlo results for each run were binned in $W, \cos \theta_{\eta}^{*}, \phi_{\eta}$, and M_{x}^{2}.
6. The binned data for each run were normalized for beam charge (Sections 4.3.2 and 4.3.3) and corrected for trigger, track reconstruction, and computer live time efficiencies (Section 4.2.6), proton absorption (Section 4.3.4), and then combined with data from other runs at the same kinematic setting.
7. The multi-pion background was fit and subtracted from the data at each setting (Section 4.3.7). The same algorithm was used to perform a background fit and subtraction on the Monte Carlo results for that setting.
8. A missing mass squared (M_{x}^{2}) cut was applied to the data and to the Monte Carlo results, and the results integrated over M_{x}^{2}.
9. A correction was applied to bin-center the data to the nominal Q^{2} (Section 4.3.9).
10. The differential cross section at each bin was calculated by multiplying the ratio of data yield to Monte Carlo yield by the integral of the model cross section over that bin. The results for
all settings at each Q^{2} point were combined. The differential cross section data for each W bin were fit to a multipole expansion (Section 4.3.10).

4.2 Hall C Replay Software

The raw data obtained during the experiment were recorded to hard-disk drive and backed up within about a day to the TJNAF mass storage silo. Once in storage on the silo the data were available for retrieval and analysis by the Hall C replay software. The replay software performed the following for each physics event:

1. CODA event decoding-decode the hardware event information and translate into detector arrays.
2. HMS and SOS reconstruction-If the event had a trigger in the HMS (SOS), perform event reconstruction:
(a) Track-independent time of fight (TOF) analysis-Do pre-tracking analysis of scintillator information. Most importantly, find the time $t_{\text {start }}$ of the particle's traversal of the focal plane (necessary to determine drift times in the drift chambers). Also estimate the hit position at each scintillator based on relative timing of signals from the two scintillator photomultiplier tubes (PMTs) and get a preliminary measurement of the particle velocity $\beta_{\text {tof }}$ (used to reject cosmic rays when calculating the efficiency of track reconstruction).
(b) Track-independent calorimeter analysis (SOS only)-Perform pre-tracking analysis of calorimeter information to estimate the rate of energy loss $d E / d x$ and total energy deposition $E_{\text {tot }}$ (Section 4.2.4).
(c) Track-independent Čerenkov analysis (SOS only)-use ADC information from the Čerenkov detector to calculate the number of photo-electrons detected (Section 4.2.4).
(d) Track reconstruction-Use information from the two wire chambers to fit candidate tracks in the detector stack (Section 4.2.1). For each candidate track, do
i. Target quantity reconstruction-use matrix transformations to translate focal plane quantities into quantities at the target (Section 4.2.2);
ii. TOF analysis-use timing information from the scintillators hit along the track to find $\beta_{\text {tof }}$ associated with the track (Sections 4.2 .3 and 4.2.4);
(e) Track selection-From all candidate tracks that meet loose requirements on $\beta_{\mathrm{tof}}, d E / d x$ (SOS only), and $E_{\text {tot }}$ (SOS only), select the one with the best fit (lowest χ^{2}).
(f) Single-arm calculations-Calculate all single-arm physics quantities for the selected track (Section 4.2.5).
3. Coincidence calculations-If the event had both HMS and SOS triggers, calculate coincidence physics quantities (Section 4.2.5) and store all results.

Once all events had been analyzed, the replay software calculated various efficiencies (Section 4.2.6). The primary output of the replay software was a CERNLIB HBOOK ntuple [CERNL] containing event-by-event track information, reconstructed target quantities, timing and PID information, beam information, and calculated physics quantities. Predefined diagnostic histograms and reports detailing scaler activity during the run were also produced.

Many features of the SOS and HMS detectors were similar, as were many components of the replay software. Here we will discuss the two cases together, pointing out differences where they arise.

4.2.1 Drift Distance Mapping and Track Reconstruction

In the detector stack of each spectrometer was a pair of drift chambers used to determine particle tracks. The drift time $t_{\text {drift }}$ (ranging from 0 to about 150 ns) of the electrons from the track to the chamber wire had to be mapped to a drift distance $d_{d r i f t}$ (ranging from 0 to 0.5 cm , the half-size of a drift cell) in order to supply useful tracking information. The drift distance corresponding to a particular drift time was in the form of a look-up table, with 138 entries from -24 to 250 ns .

The values in the table were obtained from data runs in which there was roughly uniform illumination of the chambers. The distribution of drift times summed over all cells was obtained for each chamber plane, and the map for each plane was determined by assuming the summed distribution to be flat. ${ }^{1}$ In particular, for the vector $v_{i}(1 \leq i \leq 138)$ of binned drift times for a

[^24]plane, the entries of the drift distance look-up table (a vector of length 138) were given by
\[

$$
\begin{equation*}
d_{i}=\frac{\sum_{j=1}^{i} v_{j}}{\sum_{j=1}^{138} v_{j}} \tag{4.1}
\end{equation*}
$$

\]

The table was obtained periodically (every few days or so) or at any sign of change to the track residuals, ${ }^{2}$ since the time-to-distance translation depended on the composition of the drift chamber gas. ${ }^{3}$

With a satisfactory time-to-distance map in place the residuals to the single-chamber tracks typically had $\sigma \approx 70 \mu \mathrm{~m}$ for the SOS and $\sigma \approx 150 \mu \mathrm{~m}$ for the HMS. ${ }^{4}$ At this point the tracking portion of the replay software could construct tracks from the drift chamber information. For each event the tracking software would

1. Find drift times-The drift chambers yielded TDC values $t_{t d c}$ for hits at individual wires, where the common stop of the TDC was formed by the trigger from the scintillators. An offset, $t_{\text {start }}$, was therefore necessary to translate $t_{\text {tdc }}$ into a drift time. The final drift time was also corrected for timing offsets in circuit board traces and cables between the wire and the TDC as well as for the propagation time of the signal along the hit wire (this last correction was position dependent and relied on preliminary hit position information):

$$
\begin{equation*}
t_{\text {drift }}=t_{\text {tdc }}+t_{\text {start }}-t_{\text {trace }}-t_{\text {cable }}-t_{\text {prop }} \tag{4.2}
\end{equation*}
$$

2. Map drift times to drift distances-For each hit wire the measured drift time was converted to a drift distance using a linear interpolation between entries of the table decribed above.
3. Find space points-Individual hits in a single chamber were identified with space points, or clusters of hits. In order to qualify for consideration, a space point needed to have five (out of six) planes registering a hit (so-called 'five out of six tracking').

[^25]4. Resolve left-right ambiguities-For each space point, left-right ambiguities were resolved by fitting stubs (single-chamber tracks) to all possible combinations and selecting the stub with the best χ^{2}.
5. Construct candidate tracks-Where a pair of stubs met loose criteria, candidate tracks were constructed by combining stubs from both chambers. ${ }^{5}$
6. Fit tracks -For each candidate track perform a fit and evaluate the goodness of that fit (final selection of a single track took place later).

A more detailed explanation of the HMS and SOS track reconstruction can be found in Refs. [Gee93] and [Abb94].

4.2.2 Reconstruction of Target Quantities

The detectors for both the electron spectrometer (SOS) and the proton spectrometer (HMS) directly measured particle position and angle (relative to the central ray) in the detector hut after passage through the magnetic elements of the spectrometer. In particular, the drift chamber tracks were expressed in terms of the quantities $x_{f \mathrm{p}}, y_{\mathrm{fp}}, x_{f \mathrm{p}}^{\prime}$, and $y_{f \mathrm{p}}^{\prime}$ (as defined in Section 1.3.1). From these four focal plane quantities the replay software reconstructed the momentum of the particle (p) relative to the central momentum setting of the spectrometer $\left(p_{0}\right), \delta \equiv\left(p-p_{0}\right) / p_{0}$, together with three target quantities, $y_{\mathrm{tar}}, x_{\mathrm{tar}}^{\prime}$, and $y_{\mathrm{tar}}^{\prime}$, using an $N^{\text {th }}$ order transformation (where $N=6$ for the SOS, 5 for the HMS). Collectively denoting the four reconstructed quantities by $X_{t a r}$ we have for $i^{\text {th }}$ event

$$
\begin{equation*}
X_{t a r}^{i}=\sum_{j, k, l, m=0}^{N} M_{j k l m}\left(x_{f \mathrm{p}}^{i}-x_{0}\right)^{j}\left(y_{f \mathrm{p}}^{i}-y_{0}\right)^{k}\left(x_{f \mathrm{p}}^{\prime i}-x_{0}^{\prime}\right)^{l}\left(y_{\mathrm{fp}}^{\prime i}-y_{0}^{\prime}\right)^{m} \tag{4.3}
\end{equation*}
$$

where x_{0} was a constant offset in $x_{f_{p}}$ at the focal plane (and similarly for the other quantities). Each target quantity $X_{t a r}$ had its own set of reconstruction matrix elements $M_{j k l m}$, the optimization of which was rather involved. An overview of the procedure as well as plots indicating the quality of the reconstruction are given in Appendix B. The procedure is discussed in detail in Ref. [Ass97].

[^26]It should be noted that, although the beam was rastered by $\pm 1 \mathrm{~mm}$ on the target, the resulting effect on reconstructed target quantities was within the resolution of the spectrometers. Since no correlation between the resonance data and the raster signals was observable, no explicit correction was made for this effect. ${ }^{6}$

4.2.3 Scintillator Timing Corrections

As described in Chapter 2, the analog signals from the four scintillator arrays of each spectrometer were routed up to the Hall C electronics room, where they were input to discriminators. One of the discriminator outputs was sent to a TDC, providing a measurement of the arrival time of each PMT signal. The measurement of particle velocity $\beta_{\text {tof }}$ (discussed in Section 4.2.4) relied on reasonably accurate timing information from the scintillator arrays. Corrections were made to the scintillator timing to account for three effects:

1. propagation of light through the scintillator;
2. time walk induced by pulse-height variation;
3. cable and electronics timing offsets.

The first effect was corrected using the distance $d_{\text {prop }}$ from the impact point of the detected particle (as determined by the reconstructed track) to the PMT, together with an effective propagation velocity $v_{\text {scin }}$ for light in the scintillator. Since the light arriving at a PMT did not all travel directly (some arrived only after multiple internal reflections), the effective velocity depended on both the index of refraction of the material and dimensions of the scintillator paddle. Frior to this experiment, the value of $v_{\text {scin }}$ for the scintillator geometries used in the Hall C spectrometers was determined from fits to data [Mac98] ($v_{\text {scin }} \approx 15 \mathrm{~cm} / \mathrm{ns}$, where the velocity of light in the scintillator is $v=c / n \approx 20 \mathrm{~cm} / \mathrm{ns}) .{ }^{7}$ The time

$$
\begin{equation*}
t_{\text {prop }}^{i, e}=d_{\text {prop }}^{e} / v_{\text {scin }}^{i} \tag{4.4}
\end{equation*}
$$

[^27]was subtracted from $t_{\mathrm{pmt}}^{i, e}$, the hit time of the $e^{\text {th }}$ event at the $i^{\text {th }} \mathrm{PMT}$, to account for this propagation time (for the remainder of this section we will denote event-specific quantities with a superscript e and PMT-specific quantities with a superscript i). The propagation correction $t_{\text {prop }}^{\text {i.e }}$ varied from 0 to 8 ns .

The second effect, time walk, refers to the correlation between the ADC value $A_{\mathrm{pmt}}^{i, e}$ of a PMT signal (its integrated strength) and its arrival time $t_{\mathrm{pmt}}^{\text {i, }}$ as measured when discriminated and sent to a TDC. The pulse shape of the analog signal from a PMT is only a weak function of amplitude; thus the greater the signal amplitude $A_{\mathrm{pmt}}^{\mathrm{i}, \mathrm{e}}$, the sooner it crosses the threshold voltage of the discriminator (see Fig. 4.1). This effect is corrected ${ }^{8}$ by assuming a mathematical form for the leading edge of the analog PMT signal. Knowledge of $A_{\mathrm{pmt}}^{i, e}$ then allows calculation of the expected time walk. Here we modeled the leading edge of the time-domain signal $P(t)$ seen by the ADC with a Lorentzian [ONe94]:

$$
\begin{equation*}
P^{i}(t)=\frac{k^{i} A_{p \mathrm{mt}}^{i, e}}{\left(t^{i, e}-t_{0}\right)^{2}+\left(\Gamma^{i} / 2\right)^{2}} \quad\left(t^{i, e}<t_{0}\right), \tag{4.5}
\end{equation*}
$$

where t_{0} is the time at the peak of the pulse, Γ^{i} is the FWHM of the pulse, and k^{i} is a constant relating the pulse height at its maximum, $P_{\max }^{i, e}$, to the ADC (integrated) readout $A_{\mathrm{pmt}}^{i, e}$,

$$
\begin{align*}
P_{\max }^{i, e} & =\left.P^{i}(t)\right|_{i, i \cdot c}=t_{0} \\
& =\frac{k^{i} A_{\mathrm{pmt}}^{i, e}}{\left(\Gamma^{i} / 2\right)^{2}} . \tag{4.6}
\end{align*}
$$

When sent to a discriminator with threshold P_{thr}^{i}, the difference between t_{0} and the time $t_{\mathrm{thr}}^{i, e}$ at which the pulse crosses the threshold (i.e., the 'walk' time, within a constant offset) is

$$
\begin{align*}
t_{\mathrm{w}}^{i, e} & =t_{0}-t_{\mathrm{thr}}^{i, e} \\
& =\sqrt{\frac{k^{i} A_{p m t}^{i, e}}{P_{\mathrm{thr}}^{i}}-\left(\Gamma^{i} / 2\right)^{2}} \\
& =C_{1}^{i} \sqrt{A_{\mathrm{pmt}}^{i, e}-C_{2}^{i}}, \tag{4.7}
\end{align*}
$$

[^28]

Figure 4.1: The time walk $\left(t_{\mathrm{thr}}-t_{0}\right)$ is caused by variations in the pulse height P_{thr} from the maximum value $P_{\text {max }}$.
where C_{1}^{i} and C_{2}^{i} are constants. The pulse height correction actually used in this analysis was

$$
\begin{equation*}
t_{\mathrm{phc}}^{i, e}=C_{1}^{i} \sqrt{\max \left[0,\left(A_{\mathrm{pmt}}^{i, e}-C_{2}^{i}\right)\right]}, \tag{4.8}
\end{equation*}
$$

where the 'max' function prevented runaway corrections for pulses near the discriminator threshold. The pulse height correction $t_{\text {phc }}^{i, e}$, which was usually less than 2 ns , was subtracted from the hit time at each PMT.
C_{1}^{i} and C_{2}^{i} were determined for each PMT using off-line software to perform fits to a subset of the actual data. ${ }^{9}$ The code used data files, created by the standard replay software, that gave event-byevent ADC and TDC outputs from individual PMTs as well as focal plane track quantities and β. ${ }^{10}$ Differences in PMT times between certain reference scintillators and perpendicular scintillators in other planes were used, together with the known hit positions and particle velocities, to fit the constants C_{1}^{i} and C_{2}^{i} for optimal timing resolution.

The third effect, constant offsets from one PMT to another, was due to mismatch in cabling and electronics delays between the PMTs and their respective TDCs. ${ }^{11}$ These offsets were corrected using software similar to the pulse height correction software discussed above. Using the same

[^29]data file, the software calculated differences in scintillator mean times (the mean of the two $t_{\text {pmt }}^{\text {i,e, }}$ for a scintillator) between certain reference scintillators and perpendicular ('crossed') scintillators in other planes. With $\Delta t_{j, k, \text { meas }}^{e}$ the flight time as measured by the mean time of two scintillators, and $\Delta t_{j, k, \text { calc }}^{e}$ the expected time difference (from knowledge of scintillator positions together with particle velocity), values of C_{3}^{i} were obtained that minimized the difference $\Delta t_{j, k}^{e}$ between measured and calculated flight times between the $j^{\text {th }}$ and $k^{\text {th }}$ crossed scintillators:
\[

$$
\begin{align*}
\Delta t_{j, k}^{e}= & \Delta t_{j, k, \text { meas }}^{e}-\Delta t_{j, k, c \mathrm{calc}}^{e} \\
= & \left\{t_{\mathrm{MT}, \text { corr }}^{j, e}-t_{\mathrm{MT}, \mathrm{corr}}^{k_{2}, e}\right\}-\Delta t_{j, k, \text { calc }}^{e} \\
= & \left\{\left[\frac{\left(t_{\mathrm{pmt}}^{j_{1}, e}-C_{3}^{j_{1}}\right)+\left(t_{\mathrm{pmt}}^{j_{2, e}}-C_{3}^{j_{2}}\right)}{2}\right]\right. \\
& \left.-\left[\frac{\left(t_{\mathrm{pmt}}^{k_{1}, e}-C_{3}^{k_{1}}\right)+\left(t_{\mathrm{pmt}}^{k_{2}, e}-C_{3}^{k_{2}}\right)}{2}\right]\right\}-\Delta t_{j, k, \text { calc }}^{e} \tag{4.9}
\end{align*}
$$
\]

over all scintillator pairs and all events. Here the $t_{p m t}^{j, e}$ have been corrected for propagation time and pulse height walk using Eqs. 4.4 and 4.8. The correction for timing offsets was then

$$
\begin{equation*}
t_{\mathrm{off}}^{i}=C_{3}^{i} . \tag{4.10}
\end{equation*}
$$

This offset correction was up to 25 ns . As expected there was some interaction between the pulse height corrections and the offset corrections, and the final resolution benefitted from iterating the above analysis.

With all three corrections (Eqs. 4.4, 4.8, and 4.10) applied, we had for the corrected hit time at the $i^{\text {th }}$ PMT for the $e^{\text {th }}$ event

$$
\begin{equation*}
t_{\mathrm{pmt}, \mathrm{corf}}^{i, e}=t_{\mathrm{pmt}}^{i, e}-t_{\mathrm{prop}}^{i, e}-t_{\mathrm{phc}}^{i, e}-t_{\mathrm{off}}^{i} . \tag{4.11}
\end{equation*}
$$

The mean time $t_{\text {scin }}^{j, e}$ for the $j^{\text {th }}$ scintillator was then the average of $t_{\text {pmt.corr }}^{\text {i, }}$ for the two scintillator PMTs (or just one if only one reported a good TDC time). The time was projected back to the
focal plane using the known travel distance $d_{\mathrm{fp}}^{j, e}$ and particle velocity $\beta^{e} c$ according to

$$
\begin{equation*}
t_{f p}^{j, c}=t_{\mathrm{scin}}^{j . \mathrm{c}}-\frac{\frac{d}{f p}_{j, \mathrm{e}}^{\beta^{\mathrm{e}} c}}{}, \tag{4.12}
\end{equation*}
$$

and the time at the focal plane for the track, t_{fp}, was the average of all $t_{\mathrm{fp}}^{j, e}$ for scintillator hits along the track.

4.2.4 Particle Identification and Real-Accidental Separation

In the electron spectrometer (SOS) two detectors distinguished between electrons and negativelycharged pions, a threshold gas C̈erenkov detector and a lead-glass electromagnetic calorimeter. In the proton spectrometer (HMS) protons were separated from positively-charged pions using the particle velocity (measured using time of flight, or TOF, in the detector stack). The coincidence time between the two spectrometers was used to separate real from accidental coincidences.

Gas Čerenkov

The pedestal-subtracted ADC readout $A_{i, A D C}$ from each of the four Cerenkov PMTs was scaled to units of photo-electrons using a calibration constant C_{i}, and the sum of photo-electrons served as the Čerenkov signal:

$$
\begin{align*}
N_{\text {sum,p.e. }} & =\sum_{i=1}^{4} N_{i, \text { p.e. }} \\
& =\sum_{i=1}^{4} C_{i} A_{i, \mathrm{ADC}} \tag{4.13}
\end{align*}
$$

At the time of this experiment the mirrors of the SOS Čerenkov detector had small misalignments and some degradation of the reflective surfaces. As a result, the number of photo-electrons was low in a small area around the central axis; nevertheless, with the loose cut $N_{\text {sum,p.e. }}>1$ the efficiency in this region was acceptable at a cost of rather poor rejection effciency. A study using a clean sample of elastic electrons populating the same fiducial region and energy range as the actual data showed an efficiency of better than $\varepsilon_{\text {cer }}=99.5 \%$ in the problematic area, but $99.9 \pm 0.1 \%$ overall, with this cut (see Figs. 4.2 and 4.3), with a corresponding rejection efficiency (i.e., the fraction of
pions correctly identified as such) of $\bar{\varepsilon}_{\text {cer }} \approx 98 \%$ (i.e., a rejection ratio of $49: 1$). ${ }^{12}$

Electromagnetic Calorimeter

The pedestal-subtracted signals from the 44 lead blocks of the calorimeter were summed to form a single calorimeter quantity, the total energy deposition:

$$
\begin{align*}
E_{\mathrm{tot}} & =\sum_{i=1}^{44} E_{i} \\
& =\sum_{i=1}^{44} C_{i} A_{i, \mathrm{ADC}} \tag{4.14}
\end{align*}
$$

After selection of a single track, the energy deposition was normalized to the momentum associated with that track, ${ }^{13}$

$$
\begin{equation*}
E_{\mathrm{norm}}=\frac{E_{\mathrm{tot}}}{p_{\mathrm{track}}} . \tag{4.15}
\end{equation*}
$$

The lead-glass of the calorimeter was sufficiently thick (16 radiation lengths) to bring virtually all electrons below the critical energy (forming a peak at $E_{\text {norm }} \approx 1$; see Figs. 4.2 and 4.3). The resolution of the electron signal was $\sigma \approx 5 \% / \sqrt{E[\mathrm{GeV}]}$. The calorimeter signal due to pions was dominated by the creation of Čerenkov light (forming a peak at $E_{\text {norm }} \approx 0.25$) but had a long tail (at high $E_{\text {norm }}$) due to hadronic interactions. As a result, the calorimeter was highly efficient for detection of electrons, but with a poor rejection efficiency. A study using a clean electron sample similar to the actual data yielded a detection efficiency of $\varepsilon_{\text {cal }}>99.7 \pm 0.1 \%$ for the cut $E_{\text {norm }}>0.7$. The rejection efficiency for the same cut, on the other hand, was $\bar{\varepsilon}_{\text {cal }} \approx 95 \%$.

Electron Identification

Pion rejection was desirable but not critical, because accidental pions that passed all PID cuts populated the M_{x}^{2} distribution smoothly and were removed by the background subtraction. In addition, the worst-case pion-to-electron ratios were modest in the kinematics of this experiment ($\pi^{-}: e^{-} \approx 5: 1$ once loose cuts were applied to the electron spectrometer momentum). Since both PID detectors had good detection efficiency with loose cuts, it was decided to require hits in both.

[^30]Based on the studies noted above, the detection efficiency of the combined calorimeter-Cerenkov cuts was found to be $\varepsilon=\varepsilon_{\text {cer }} \varepsilon_{\text {cal }}=99.6 \pm 0.14 \%$. The rejection efficiency. which for reasons stated above was not crucial, was determined to be $\bar{\varepsilon}=1-\left(1-\bar{\varepsilon}_{\text {cer }}\right)\left(1-\bar{\varepsilon}_{\text {cal }}\right) \approx 99.9 \%$.

Calculation of TOF Particle Velocity ($\beta_{\text {tof }}$)

The particle velocity $\beta_{\text {tof }}$ was calculated in both spectrometers for each candidate track which had at least one scintillator hit along the track in both the front (S1) and rear (S2) pair of scintillator planes. The calculation was done by performing a least-squares fit of $\beta_{\text {tof }}$ to the known scintillator positions z_{i} and corrected hit times $t_{\text {pmt,corr }}^{i, e}$ for scintillators on the track, using $\beta_{\mathrm{tof}} c=z_{i} /\left(t_{\mathrm{pmt}, \mathrm{corr}}^{i^{i, e}}-t_{\mathrm{fp}}\right)$.

For the electron spectrometer, $\beta_{\text {tof }}$ was used as a criterion in selecting a single track when more than one candidate existed. The distribution of β_{tof} for electrons in the SOS exhibited $\sigma_{\mathcal{\beta}} \approx 0.029$, which corresponded to a scintillator resolution of $\sigma_{\text {scin }} \approx 170 \mathrm{ps} .{ }^{14}$ The efficiency of the $\beta_{\text {tof }}$ calculation in the SOS was virtually 100%. No explicit cut was made on this quantity.

For the proton spectrometer, $\beta_{\text {tof }}$ was used as a criterion in selecting a single track. In addition, after a track was selected the corresponding $\beta_{\text {rof }}$ was used to distinguish between protons ($\beta_{p}<1$) and pions ($\beta_{\pi^{+}} \approx 1$) (Section 4.2.4 discusses the situation for those kinematics where β_{p} approached 1). The distribution of $\beta_{\text {tof }}$ for pions in the HMS exhibited $\sigma_{\beta} \approx 0.019$, which corresponded to a scintillator resolution of $\sigma_{\text {scin }} \approx 140 \mathrm{ps}$. The efficiency of the $\beta_{\text {rof }}$ calculation in the HMS was about 98% (this issue is discussed in the 'Proton Identification' part of this Section, following).

Coincidence Time

Coincidence time, or the difference in time of target interaction as determined by the two spectrometer triggers, was used to separate true coincidences from accidentals (see Figs. 4.4, 4.5, and 4.6). A raw time difference $t_{\text {diff }}$ was measured by using the trigger of one spectrometer to start a TDC which was stopped by a delayed version of the other spectrometer's trigger. The coincidence time $t_{\text {coin }}$ was obtained by projecting back to the focal plane of each spectrometer and correcting for the actual paths of the particles in the spectrometers. Using $t_{\text {dif }}$ from the TDC

[^31]SOS Particle ID

Figure 4.2: The response of the calorimeter and the C̈erenkov for events of a typical run. The events at $N_{\text {sum,p.e. }}=0$ are π^{-}(note the peak at $E_{\text {norm }} \approx 0.25$). The events at $N_{\text {sum,p.e. }}>0$, $E_{\text {norm }}>0.7$ are electrons. The events at $N_{\text {sum,p.e. }}=E_{\text {norm }}=0$ are probably π^{-}that missed the calorimeter. The events at $N_{\text {sum,p.e. }}>0, E_{\text {norm }} \approx 0.3$ are probably caused by π^{-}that produced knock-on electrons that triggered the Čerenkov. Note that the z axis is on a log scale.

SOS Particle ID

Figure 4.3: (Note log scales on all plots.) Upper Left) The response of the calorimeter to a clean sample of electrons (elastics, with a high-threshold Cerenkov cut). It is clear that in order to keep detection efficiency approaching 100% one requires a calorimeter cut of no higher than $E_{\text {norm }}=0.7$. Upper Right) The response of the Čerenkov detector to a clean sample of electrons (elastics, with a high-threshold calorimeter cut). Here we see that, due to the fact that the signal extends closer to zero than is desirable, one requires a cut of no higher than $N_{\text {sum,p.e. }}>1$ in order to keep detection efficiency near 100%. Lower Left) The unshaded curve is the response of the lead-glass calorimeter to a sample of both π^{-}and electrons. Note the long tail of the pion peak extending under the electron peak at $E_{\text {norm }} \approx 1$. The shaded histogram is the same sample after a $N_{\text {sum,p.e. }}>1$ Čerenkov cut; the remaining pions indicate that the rejection efficiency of the Cerenkov with such a loose cut is roughly 98%. Lower Right) The unshaded curve is the response of the gas C̈erenkov detector to a sample of both π^{-}and electrons. The shaded curve is with an $E_{\text {norm }}>0.7$ calorimeter cut; the remaining pions (the shaded spike at zero) indicate that the rejection efficiency of the calorimeter with such a loose cut is roughly 95%. In all four cases the electron sample populates roughly the same fiducial region and energy range as do the electrons corresponding to resonance production.
started by the HMS we have

$$
\begin{equation*}
t_{\mathrm{coin}}=t_{\mathrm{diff}}-\left(t_{\mathrm{fp}, \mathrm{HMS}}+\Delta t_{\mathrm{path}, \mathrm{HMS}}\right)+\left(t_{\mathrm{fp}, \mathrm{SOS}}+\Delta t_{\mathrm{path}, \mathrm{SOS}}\right) \tag{4.16}
\end{equation*}
$$

where we use the $t_{\mathrm{f}_{\mathrm{p}}}$ of Section 4.2.3, and the travel time correction for the HMS is

$$
\begin{equation*}
\Delta t_{\mathrm{path}, \mathrm{HMS}}\left(X_{f p, i}\right)=\frac{\Delta d_{\mathrm{HMS}}\left(X_{f p, i}\right)}{\beta_{\mathrm{HMS}} c} \tag{4.17}
\end{equation*}
$$

(and similarly for the SOS). Here Δd, the path-length corrections for the event, were a function of the four focal plane quantities $x_{f p}, y_{f p}, x_{f p}^{\prime}$, and $y_{f p}^{\prime}$ (denoted collectively by $X_{f p, i}$). The corrections $\Delta t_{\text {path }}$ were on the order of 1 ns for each spectrometer. At the time of this experiment Δd were determined from the COSY models of the spectrometers [Nic97]. The coincidence time resolution was typically $\sigma \approx 220 \mathrm{ps}$ for $\left(e, e^{\prime} p\right)$.

Proton Identification

A combination of coincidence time and β_{tof} in the proton spectrometer (HMS) was used to separate real coincidence protons from accidental protons and from accidental positively charged pions. At the lower proton arm momentum settings, the proton- π^{+}velocity separation was sufficient to distinguish between the two particle types (see Fig. 4.5). At the higher momentum settings, where the proton and $\pi^{+} \beta_{\text {rof }}$ peaks began to overlap, fewer pions were kinematically allowed and contributed a small ($<1 \%$) background after the coincidence time and $\beta_{\text {tor }}$ cuts (see Fig. 4.6). In both cases the coincidence time was used to separate accidental from real coincidences. The accidental contamination of the real coincidence time peak (ranging from 0% to 11% after all other cuts, and consisting primarily of protons) was removed by sampling adjacent accidental peaks and performing a background subtraction (discussed in Section 4.3.6).

The calculation of $\beta_{\text {tof }}$ in the HMS had an efficiency of roughly 98%. In other words, some 2% of tracked events failed to calculate a time of flight (and returned $\beta_{\text {tof }}=0$). A similar number of events were distributed in a low- $\beta_{\text {tof }}$ tail (see Fig. 4.4). The most likely explanation for both of these classes of events is that the proton underwent an interaction somewhere in the detector stack after the drift chambers. In such cases the reaction products could create a valid $3 / 4$ trigger but the replay software might a) fail to find enough hit scintillators along the track to calculate
$\beta_{\text {tof }}$, or b) return a value of $\beta_{\text {tof }}$ that was biased to the low side by decay products. A sample of $\beta_{\text {tof }}=0$ and low- $\beta_{\text {tof }}$ events revealed that they otherwise looked like a random sample of physics events (which is consistent with the above explanation). Based on this study the final data cuts (discussed in Section 4.3.8) did not exclude these $\beta_{\text {tof }}=0$ and low- $\beta_{\text {tof }}$ events.

4.2.5 Calculation of Physics Quantities

Once the events of interest were selected using PID and coincidence time cuts, the momentum components of each particle in the lab frame were calculated. The physics quantities Q^{2}, W, and M_{x}^{2} (as defined in Section 1.3.1) were then found and, after performing a boost to express proton (and η) components in the c.m. frame, $\cos \theta_{\eta}^{*}$ and ϕ_{η} were calculated.

A typical M_{x}^{2} spectrum is shown in Fig. 4.7. Note that for this particular kinematic setting, peaks for both the π^{0} (at $.018 \mathrm{GeV}^{2} / c^{4}$) and the η (at $.30 \mathrm{GeV}^{2} / c^{4}$) are clearly visible (both peaks were not in the acceptance for all kinematic settings). The threshold for two-pion production is at $M_{x}^{2}=\left(2 m_{\pi}\right)^{2}=.073 \mathrm{GeV}^{2} / c^{4}$, and there is a sizable multi-pion background beneath the η peak. At this point in the analysis a cut on M_{x}^{2} around the η peak defined the final state of the system (with the caveat that a substantial fraction of the events within the cut were from the multi-pion background). ${ }^{15}$

4.2.6 Efficiencies

Trigger Efficiency

The trigger for both the electron and proton spectrometer required that three of the four scintillator arrays fired (as discussed in Section 2.6.2). In the most naive analysis, one can calculate the $3 / 4$ trigger efficiency from the individual plane efficiencies P_{i} and the appropriate combinatorics (the probability of planes 1 through 4 firing plus the probability of only planes 1,2 , and 3 firing, and so on):

$$
P_{3 / 4}=P_{1} \cdot P_{2} \cdot P_{3} \cdot P_{4}+P_{1} \cdot P_{2} \cdot P_{3} \cdot\left(1-P_{4}\right)+P_{1} \cdot P_{2} \cdot\left(1-P_{3}\right) \cdot P_{4}+
$$

[^32]
HMS Particle ID and Coincidence Time

Figure 4.4: $\beta_{\text {tof,HMS }}$ and coincidence time for events of a typical run. The band of events at $\beta_{\mathrm{tof}, \mathrm{HMS}} \approx 1$ are π^{+}, while the protons are at $\beta_{\mathrm{tof}, \mathrm{HMS}} \approx 0.8$. The real proton coincidences are at $t=0 \mathrm{~ns}$, and the nominal 2 ns radio frequency (RF) structure of the beam is visible in the adjacent accidental peaks. The likely explanation for the low- $\beta_{\text {tof }}$ tail emanating from the real coincidence peak is discussed in the 'Proton Identification' part of Section 4.2.4.

HMS Particle ID and Coincidence Time

Figure 4.5: Upper Left) $\beta_{\text {tof,HMs }}$ and coincidence time for a kinematic setting at low proton momentum ($p_{\text {нмs }}=1.35 \mathrm{GeV} / \mathrm{c}$). Accidental coincidence pions occupy the upper ($\beta \approx 1$) band while protons occupy the lower band. Real coincidence protons are at $t=0 \mathrm{~ns}$, and real coincidence pions are faintly visible at $t \approx 18 \mathrm{~ns}$. Note the (nominal) 2 ns RF structure of the beam in the proton band. The center box indicates the final cuts used to identify real coincident protons, and the two adjacent boxes indicate regions used for subtraction of accidental protons from the coincidence peak. Upper Right) Projection of the previous plot onto β, before (unshaded) and after (shaded) a cut around the real coincidence proton peak. Once this cut was made the protons and pions were easily separable using $\beta_{\text {tof,HMS }}$. Bottom) Projection of the 2-D plot onto coincidence time, before (unshaded) and after (shaded) a cut on β. This kinematic setting is representative of those with the greatest accidental:true ratios, here about $1: 10$. Note \log scale.

HMS Particle ID and Coincidence Time

Figure 4.6: $\beta_{\text {tof,Hms }}$ and coincidence time for a kinematic setting at high proton momentum ($p_{\text {нмм }}=1.9 \mathrm{GeV} / \mathrm{c}$). The plot descriptions follow those of Fig. 4.5. At this kinematic setting the protons were closer in β to the pions, but the number of pions relative to protons was lower and the pions were still easily separable.

Figure 4.7: A plot of M_{x}^{2} for one kinematic setting. Note the presence of the radiative tail extending to the right of each peak.

$$
\begin{equation*}
P_{1} \cdot\left(1-P_{2}\right) \cdot P_{3} \cdot P_{4}+\left(1-P_{1}\right) \cdot P_{2} \cdot P_{3} \cdot P_{4} . \tag{4.18}
\end{equation*}
$$

The trigger efficiency calculated in this manner was always greater than 99.7% for each spectrometer. This is consistent with the expectation that virtually 100% of nearly-minimum-ionizing particles (as both electrons and protons were in this experiment) passing through a 1 cm scintillator will be detected. ${ }^{16}$ The systematic uncertainty in this correction was assumed negligible.

Track Reconstruction Efficiency

The track reconstruction efficiency of each spectrometer was determined on a run-to-run basis using a subset of the data from that run. During replay, those events that fired one of the centermost scintillators in every one of the four scintillator planes were tagged. The tight fiducial constraints on these events ensured that they represented particles that had passed through the

[^33]drift chambers and should have reconstructed a track. The reconstruction efficiency was simply the fraction of those tagged events for which a track was indeed reconstructed.

A study [Wes96] performed two tests of this quantity as a measure of the actual reconstruction efficiency. The first test verified that two data runs, similar except in the reported tracking efficiency (79% versus 98%), did indeed give the same yield to better than 1% when corrected for the efficiency. The second test verified that this efficiency compared well (generally within 1.5%) with the efficiency naively expected by applying the appropriate combinatorics to the individual chamber plane efficiencies (indicating that the reconstruction inefficiencies were consistent with the inefficiencies of individual planes). In the study, roughly half of the track reconstruction failures were due to only four of the six planes firing; the remainder of the time there were too many hits (>30), or the reconstruction software failed to find space points or to link stubs (see Section 4.2.1).

In this experiment, run-to-run track reconstruction efficiency ranged from 94% to 98% for the electron spectrometer (SOS) and from 92% to 97% for the proton spectrometer (HMS). Systematic uncertainty in tracking efficiency was (conservatively) estimated to be $\sigma=1.5 \%$.

Computer and Electronic Live Time

Computer and electronic live times were calculated for each run using scaler results. The rates in this experiment were modest, and the live times correspondingly high. Computer live time ranged from 95% to 98%, and electronic live time was always greater than $98.8 \%(99.7 \%)$ for the HMS (SOS). The uncertainty in these corrections (based on the statistics of the scaler counts used in the calculations) was less than $\sigma=0.1 \%$ in all cases, and taken to be zero.

4.3 Post-Replay Analysis

Once event ntuples were created by the replay software, the remainder of the analysis was done using these ntuples in the framework of the Physics Analysis Workstation (PAW) from CERNLIB, utilizing custom Fortran routines where necessary. The CERNLIB program MINUIT [CERNL] was used for background and all other fitting.

4.3.1 Data Checks

For each of the data runs a number of checks were performed to ensure that no obvious problems existed:

- All detectors properly functioning.
- Stable ratio of SOS raw triggers to beam charge as reported by BCM3.
- Stable target reconstruction.
- Target temperature okay (recorded every 30 seconds).
- Beam position on target okay (recorded every 30 seconds).

In addition, any run-to-run parameters that were necessary for the analysis were extracted and checked:

- Trigger and tracking efficiencies for the HMS.
- Live time of the data acquisition computer.
- Appropriate cut positions for coincidence time, proton time of flight ($\beta_{\text {tof, HMS }}$), and calorimeter energy sum ($E_{\text {norm }}$).

4.3.2 Normalization for Beam Charge

The normalization for beam charge was performed using the output of a resonant-cavity beam current monitor (BCM3), which was calibrated periodically using an Unser current monitor. The devices and the calibration procedure are explained in Appendix A.

For purposes of assigning a systematic uncertainty to the beam charge measurement we define the ratio $R_{Q} \equiv$ (SOS pretriggers)/($Q_{\text {bem3 }}$), where the SOS pretrigger is caused by any event firing three of the four SOS scintillator planes. This ratio is histogrammed in Figs. 4.8 and 4.9 for all runs. Note that changes in R_{Q} are due not only to errors in the charge measurement itself but also to any conditions that could change the relative flux of particles into the spectrometer (such
as beam scraping in the beamline upstream of the target). The fact that R_{Q} was stable to within a few percent is indicative of the generally high quality of the beam in this experiment. ${ }^{17}$

Based on the stability of R_{Q} together with previous experience indicating that the error associated with calibration of the monitor was roughly $\sigma=1 \%$, a systematic uncertainty of $\sigma=1.5 \%$ was attributed to the measurement of beam charge. Further investigation may well have determined that the actual uncertainty was smaller, but the presence of other sizable systematic uncertainties (those associated with experimental acceptance, the multi-pion background subtraction, and kinematic errors) obviated the need for such studies.

4.3.3 Target Density and Length

The temperature of the liquid hydrogen was maintained at (19.00 ± 0.05) K by a calibrated heat-dependent resistor in the feedback control loop of a resistive heater. The density of the hydrogen was calculated to be $(0.07230 \pm 0.00036) \mathrm{gm} / \mathrm{cm}^{3}$. The target length was $(4.36 \pm 0.01) \mathrm{cm}$ [Dun97]. ${ }^{18}$ The purity of the target hydrogen gas was measured in March of 1997 and determined to be 99.81%.

The electron beam at TJNAF was continuous and high-current with a small beam spot, and as a result there were small density changes in the target due to deposition of heat from the beam. A study [Gus96] based on data taken prior to this experiment indicated that the effective change in target density was $(-3.8 \pm 0.4) \%$ per $100 \mu \mathrm{~A}$ per mm of raster amplitude, assuming the same raster size in x and y and assuming that the spectrometer $y_{t a r}$ acceptance was 100%. The corresponding density change with $70 \% y_{\text {rar }}$ acceptance was (-2.4 ± 0.4) \% per $100 \mu \mathrm{~A}$ per mm (the density change, in other words, appears to be greater near the target windows). A study of the average conditions (SOS $y_{\text {tar }}$ acceptance and beam current) of the experiment determined that the target density correction was $\approx(3.0 \pm 0.5) \%$.

[^34]

Figure 4.8: A histogram of the ratio $R_{Q} \equiv($ SOS pretriggers $) /\left(Q_{\mathrm{bcm}}\right)$ for all $Q^{2} \approx 2.4 \mathrm{GeV}^{2} / c^{2}$ runs (arbitrary units). The distribution of R_{Q} appears to be non-Gaussian and, in fact, these high- R_{Q} runs were grouped in one period of time. Calibration of the current monitor during this period did not remove this effect, which lends weight to the possibility that the beam tune changed slightly. The estimate of systematic uncertainty was conservative, however, and assumed that this effect was due to charge measurement error.

Figure 4.9: A histogram of $R_{Q} \equiv$ (SOS pretriggers) $/\left(Q_{\mathrm{bcm}}\right)$ for all $Q^{2} \approx 3.6 \mathrm{GeV}^{2} / \mathrm{c}^{2}$ runs (arbitrary units).

4.3.4 Proton Absorption

In order for a proton to cause a trigger in the HMS it had to deposit enough energy to create above-threshold signals in at least three of the four scintillator planes in the detector stack. A small fraction ($\approx 3 \%$) of protons incident upon the detectors underwent interactions in material encountered after the primary scattering and were either absorbed or deflected, and as a result created no trigger. The transmission T denotes the probability that a proton escaped such interactions and succeeded in creating a trigger in the HMS.
${ }^{1} \mathrm{H}\left(e, e^{\prime}\right) p$ and ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ data were used to measure the magnitude of T as follows. Runs were selected in which elastic events were within the spectrometer acceptances, and cuts were applied to the invariant mass W and gas C Cerenkov and calorimeter signals in order to select purely elastic coincidence electrons that had lost little energy to Bremsstrahlung. Cuts on the reconstructed quantities $\delta, y_{t a r}^{\prime}$ and $x_{t a r}^{\prime}$ as determined by the SOS were then made to ensure that the elastic electrons were well inside the solid angle and momentum acceptances of the spectrometer.

Since the events were elastic, the solid angle cut on the coincidence electrons defined a corresponding cone of protons (see Fig. 4.10). It was verified that these protons were well within the solid angle and momentum acceptances of the HMS. Thus from an arbitrary initial number of events, using only cuts on SOS (electron) quantities, we selected N_{c} coincidence elastic events for each of the runs.

The same set of cuts were then applied to the SOS singles (events for which only the SOS received a trigger) for the same runs, thus defining the corresponding sets of N_{s} elastic electron events for which a proton was expected in the HMS but was not detected. These remaining SOSonly events were then checked to ensure that they exhibited roughly the same dependence on reconstructed quantities as that of the coincidence events. ${ }^{19}$ The measured transmission $T_{\text {meas }}$ was $N_{c} /\left(N_{c}+N_{s}\right)$.

The results of the study are shown in Fig. 4.11 (both points are the sum of several lowstatistics runs). The measured transmission, which shows no momentum dependence, was $T_{\text {meas }}=$ 0.972 (uncertainty given below). Note also that the total proton-deuteron cross section is roughly invariant with proton momentum $\left|\mathbf{p}_{f}\right|$ from about 1.5 to $3 \mathrm{GeV} / c$ (see, for example, Ref. [PDG98]);

[^35]Proton Absorption Study

Figure 4.10: The distribution of ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ proton tracks reconstructed to the HMS collimator, before (left) and after (right) cuts made to the electron (SOS) quantities to restrict the proton cone. The $\pm 2 \mathrm{~cm}$ vertical cutoff in the left plot was caused by the limited out-of-plane acceptance of the SOS.
one might naively expect the probability for proton absorption in the detector materials to have a similar insensitivity to incident proton momentum. Based on this fact, together with the results presented above, a global 2.8% factor was applied to the resonance data to correct for proton absorption. ${ }^{20}$

The statistical error associated with a straight-line fit to the two measured values of T shown in Fig. 4.11 ranged from 1.2% at $\left|p_{f}\right|=1.25 \mathrm{GeV} / c$ to less than 0.4% at $\left|\mathbf{p}_{f}\right|=3 \mathrm{GeV} / c$. We assumed an overall 1% statistical error in the measurement of T and estimated the systematic error to be less than 0.5%. A total error of $\sigma=1.2 \%$ was assigned to the value of T quoted above (i.e., $T=0.972 \pm 0.012$). Information on similar proton absorption measurements (for both the HMS and SOS) is available in Ref. [Wes97].

[^36]

Figure 4.11: Results of the proton absorption measurements. The errors shown are statistical only.

Background Source	Contribution	Discussed in Section
Target windows $\left[{ }^{27} \mathrm{Al}\left(e, e^{\prime} p\right)\right]$	$<2 \%$	4.3 .5
Accidental coincidences	0% to 11%	4.3 .6
Proton collimator/magnet rescattering (HMS $\left.y_{\text {tar }}\right)$	0% to 7%	4.3 .6
Multi-pion events	29% to 48%	4.3 .7

Table 4.1: Experimental backgrounds.

4.3.5 Target Window Background

The windows of the cryogenic target were made of aluminum, and contributed events to the experimental acceptance. The coincidence acceptance for such events was small, however. Data taken using 'dummy' empty targets indicated that after final cuts, less than 2% of coincidence events were from the target windows. Those events were distributed smoothly in M_{x}^{2} and so were removed in the multi-pion background subtraction. Table 4.1 gives the various sources of experimental backgrounds.

4.3.6 Accidental Coincidence and HMS $y_{\text {tar }}$ Background Subtractions

The real coincidence proton peak contained 0% to 11% accidentals, depending on the kinematic setting. This background was removed by sampling regions in coincidence time adjacent to the reals peak, scaling the sample for relative coincidence time ranges, and subtracting the normalized
accidental sample from the reals on a bin-by-bin basis.
Another background process arose from protons that penetrated the HMS collimator or rescattered from an aperture in the magnets. These events often resulted in a proton inside the experimental acceptance. It was discovered that these events, by virtue of multiple scattering in the collimator, suffered poor reconstruction of target position $y_{\text {tar }} .^{21,22}$ In particular, studies with ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ data showed that these events, which could be identified by a missing mass inconsistent with elastic scattering, resulted in long, very flat tails in $y_{\text {tar }}$. For these events the expected position of the proton (based on electron kinematic information) was at the edge of the angular acceptance of the HMS (i.e., at the edge of the collimator).

This collimator/magnet rescattering background was removed by sampling the $y_{\text {tar }}$ tails outside the region of the target ($2.5 \mathrm{~cm}<\left|y_{\mathrm{tar}}\right|<6 \mathrm{~cm}$), performing the appropriate scaling for relative $y_{\text {tar }}$ ranges, and subtracting the normalized sample from the data on a bin-by-bin basis. This subtraction ranged from 0 to 7% of the yield after all other cuts. See Ref. [Fro98] for further details.

4.3.7 Multi-Pion Background Subtraction

One of the most critical (and potentially problematic) steps in the analysis was the subtraction of background processes. In addition to the reaction

$$
\begin{equation*}
e+p \rightarrow e^{\prime}+S_{11} \rightarrow e^{\prime}+p \eta \tag{4.19}
\end{equation*}
$$

we simultaneously detected processes such as

$$
\begin{align*}
e+p & \rightarrow e^{\prime}+\Delta^{++} \pi^{-} \rightarrow e^{\prime}+p \pi^{+} \pi^{-} \tag{4.20}\\
& \rightarrow e^{\prime}+p \pi^{0} \pi^{0} \\
& \rightarrow e^{\prime}+p \pi^{+} \pi^{-} .
\end{align*}
$$

[^37]After all cuts (including the M_{x}^{2} cut) these processes taken together ranged from 29% to 48% of the resonance data. In addition to these background processes, the data contained events from interactions in the target windows ($<2 \%$ of the resonance data after final cuts), which contributed smoothly to the M_{x}^{2} distributions in the neighborhood of the $M_{x}^{2}=m_{\eta}^{2}$ peak. After data from all runs at a single kinematic setting were combined, therefore, the background in M_{x}^{2} was subtracted.

Two independent background subtraction techniques were used. Here we give an overview of the techniques; details are given later in this Section. The first method (which we call 'Technique 1') used a functional fit to the data (peak plus polynomial background) for every $\left(\cos \theta_{\eta}^{*}, \phi_{\eta}\right)$ bin of a kinematic setting (integrated over W). The same procedure was carried out on both the actual data and the 'data' from the Monte Carlo, with the final result [for a particular ($\cos \theta_{\eta}^{*}, \phi_{\eta}$) bin] obtained by renormalizing the ratio $Y_{\text {data }} / Y_{M C}$ with the Monte Carlo generating function (as described in Section 4.3.10). The advantage of this technique was that any systematic fitting problem affecting actual and Monte Carlo data in a similar way would cancel in the ratio $Y_{\text {data }} / Y_{\mathrm{MC}}$. In principle, the disadvantage with this technique was that (for reasons discussed below) the data could not be binned in W, thus implicitly assuming a W-independent background for a particular setting. In practice, this assumption was not problematic for the kinematics of this experiment for two reasons. First, the method did allow for M_{x}^{2} binning (hence background dependence); since the experimental acceptance imposed a tight correlation between W and M_{x}^{2}, the need for explicit W dependence was effectively circumvented. Second, the experimental acceptance of the S_{11} was such that a typical kinematic setting spanned only $W \sim 50 \mathrm{MeV}$ (in other words, the different settings themselves were in a sense single W bins).

The second subtraction method ('Technique 2') applied a simple transformation to the background generated by the Monte Carlo [for each ($W, \cos \theta_{\eta}^{*}, \phi_{\eta}$) bin] such that the integrated strength (for the entire setting) below and above the m_{η} peak matched that for the data. This transformed background was then subtracted from the data. The advantages of this technique were that the data could be binned in W (so the subtraction allowed an explicit W dependence within a setting), and that the overall strength of the peak was preserved. The relative disadvantage was that it relied more heavily on the ability of the Monte Carlo to accurately describe the experimental acceptance. In both cases, once the subtractions were made to the data for a particular bin, the yield over a small range in M_{x}^{2} about m_{η}^{2} was integrated.

The final results obtained with the two techniques agreed very well (total cross sections agreed to $\approx 2 \%$; see Section 5.1). The final results quoted in Chapter 5 are those obtained using Technique 1 , because fits to those angular distributions resulted in marginally lower χ^{2}. We now discuss both strategies in detail, since they were both used to aid in understanding the systematic uncertainties associated with the multi-pion background subtraction.

Technique 1: Polynomial Fit to the Background

The data (actual or from Monte Carlo) for each setting were binned in $\cos \theta_{\eta}^{*}$ (10 bins), ϕ_{η} (6 bins), and $M_{x}^{2}(20 \mathrm{bins})$. To each of the $60\left(\cos \theta_{\eta}^{*}, \phi_{\eta}\right)$ bins for a particular kinematic setting was fit a function describing the M_{x}^{2} distribution:

$$
\begin{equation*}
f\left(x_{i}\right)=f_{\text {peak }}\left(x_{i}\right)+f_{\mathrm{bg}}\left(x_{i}\right), \tag{4.21}
\end{equation*}
$$

where

$$
f_{\text {peak }}\left(x_{i}\right)=\left\{\begin{array}{cc}
p_{1} \exp \left\{-\frac{\left(x_{i}-x_{0}\right)^{2}}{2 p_{2}^{2}}\right\} & x_{i}<x_{0} \tag{4.22}\\
p_{1} \frac{\left(p_{3} / 2\right)^{2}}{\left(x_{i}-x_{0}\right)^{2}+\left(p_{3} / 2\right)^{2}} & x_{i}>x_{0}
\end{array}\right\}
$$

and

$$
\begin{equation*}
f_{\mathrm{bg}}\left(x_{i}\right)=b_{0}+b_{1}\left(x_{i}-x_{0}\right)+b_{2}\left(x_{i}-x_{0}\right)^{2}+b_{3}\left(x_{i}-x_{0}\right)^{3}+b_{4}\left(x_{i}-x_{0}\right)^{4} \tag{4.23}
\end{equation*}
$$

Here x_{i} is the value of M_{x}^{2} at the center of the $i^{\text {th }} M_{x}^{2}$ bin and x_{0} is the position of the peak (nominally m_{η}^{2} but allowed to vary slightly during the fit), while $p_{1}-p_{3}$ and $b_{1}-b_{4}$ are parameters describing the peak and background, respectively. This form of $f_{\text {peak }}\left(x_{i}\right)$ was chosen because it did a good job of describing the M_{x}^{2} distribution of the $S_{11} \rightarrow p \eta$ events (both data and Monte Carlo).

The coincidence acceptance for this experiment exhibited a tight correlation between W and M_{x}^{2}, and most settings had a W acceptance of only about 30 to 80 MeV FWHM. Since the two variables were so highly correlated, binning in W would have also coarsely binned in M_{x}^{2} (see Fig. 4.12), leaving M_{x}^{2} distributions with poor (and therefore unsubtractable) 'sidebands.' For this reason the background fits were done with no binning in W. The results of the fits were subsequently used to perform subtractions on data that were binned in W. This approach was justified since any single background fit was applied to data constrained to a narrow range in W.

Figure 4.12: Left) A plot of W versus M_{x}^{2} for one run. In this experiment the acceptance imposed a tight constraint between these two variables for any particular setting. The horizontal lines demark four $25 \mathrm{MeV} W$ bins. Right) In each case the unshaded histogram is the M_{x}^{2} distribution integrated over all four bins. The shaded histogram is the M_{x}^{2} distribution for a single W bin. The high degree of correlation between W and M_{x}^{2} means that data in a single W bin (i.e., the data in a single shaded histogram) generally did not have 'sidebands' on both sides of the m_{η}^{2} peak, and performing a fit to data binned in W was therefore not feasible.

Figure 4.13 shows the results for several $\left(\cos \theta_{\eta}^{*}, \phi_{\eta}\right)$ bins of one setting. Figure 4.14 shows the results for several settings, integrated over all $\left(W, \cos \theta_{\eta}^{*}, \phi_{\eta}\right)$ bins for each setting.

Technique 2: Subtraction of the Monte Carlo Background

The second background subtraction technique involved subtracting from the data a transformed version of the Monte Carlo-generated background. The transformation was a 'tilting' and 'scaling' (i.e., a linear transformation) in the variable M_{x}^{2} such that the integrated yields below and above the m_{η}^{2} peak equaled that of the actual data. A single set of transformation parameters was derived

Figure 4.13: Fits to the M_{x}^{2} distribution for several typical $\left(\cos \theta_{\eta}^{*}, \phi_{\eta}\right)$ bins, one kinematic setting, Technique 1 (data) (all yields have been normalized to 1 Coulomb of beam charge).

Yield (per Coulomb) vs. $M_{x}^{2}\left[\mathrm{GeV}^{2} / c^{4}\right]$

Figure 4.14: Results of background fits, using Technique 1, for several typical kinematic settings (all yields have been normalized to 1 Coulomb of beam charge). Each figure shows the integration of sixty individual $\left(\cos \theta_{\eta}^{*}, \phi_{\eta}\right)$ bins and their respective fits (like those shown in Fig. 4.13). Data are on the left and the corresponding Monte Carlo result is on the right. The solid line is the sum of the background and peak fits; the dashed line shows the background only. A small contribution from the accidental coincidence and HMS $y_{\text {tar }}$ backgrounds is just visible at the bottom of the data plots (see Section 4.3.6).
for each setting, and the transformation was applied to each ($W, \cos \theta_{\eta}^{*}, \phi_{\eta}, M_{x}^{2}$) bin.
Let the indices i, j, k, and l label $W, \cos \theta_{\eta}^{*}, \phi_{\eta}$, and M_{x}^{2} bins, respectively, with $d_{i j k l}$ the data yield for a particular bin. Then

$$
\begin{equation*}
D_{\text {below }}=\sum_{i, j, k} \sum_{l}^{\text {below } m_{\eta}^{2}} d_{i j k l} \tag{4.24}
\end{equation*}
$$

is the yield for a particular setting integrated over all $\left(W, \cos \theta_{\eta}^{*}, \phi_{\eta}\right)$ bins and over some M_{x}^{2}-region below the m_{η}^{2} peak. Similarly,

$$
\begin{equation*}
D_{\mathrm{above}}=\sum_{i, j, k} \sum_{l}^{\text {above } m_{\eta}^{2}} d_{i j k l} \tag{4.25}
\end{equation*}
$$

is the yield for that setting integrated over all ($W, \cos \theta_{\eta}^{*}, \phi_{\eta}$) bins and over some M_{x}^{2}-region above the $\boldsymbol{m}_{\eta}^{2}$ peak. The corresponding quantities for the Monte Carlo-generated background are

$$
\begin{equation*}
B_{\text {below }}=\sum_{i, j, k} \sum_{l}^{\text {below } m_{\eta}^{2}} b_{i j k l} \tag{4.26}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{\mathrm{above}}=\sum_{i, j, k} \sum_{l}^{\text {above } m_{\eta}^{2}} b_{i j k l} . \tag{4.27}
\end{equation*}
$$

We want to find the transformation that takes b to b^{\prime} such that the integrated yield in a region below the peak equals that of the data:

$$
\begin{align*}
B_{\text {below }}^{\prime} & =\sum_{i, j, k} \sum_{i}^{\text {below } m_{\eta}^{2}} b_{i j k l}^{\prime} \\
& =D_{\text {below }} \tag{4.28}
\end{align*}
$$

and similarly for a region above the peak. We let x_{l} be the center of the $l^{\text {th }} M_{x}^{2}$ bin, and x_{0} the center of the nominal peak bin (or any arbitrary bin about which the transformation will rotate the Monte Carlo output). The assumption for b^{\prime} of the form

$$
\begin{equation*}
b_{i j k l}^{\prime}=b_{i j k l}\left[c_{1}\left(x_{l}-x_{0}\right)+c_{2}\right] \tag{4.29}
\end{equation*}
$$

(c_{1} and c_{2} constants) together with the conditions $B_{\text {below }}^{\prime}=D_{\text {below }}$ and $B_{\text {above }}^{\prime}=D_{\text {above }}$ leads to
equations for constants c_{1} and c_{2} :

$$
\begin{equation*}
c_{1}=\frac{D_{\text {below }}-\left(\frac{B_{\text {balow }}}{B_{\text {bove }}}\right) D_{\text {albove }}}{\langle B x\rangle_{\text {below }}-\left(\frac{B_{\text {balow }}}{B_{\text {above }}}\right)\langle B x\rangle_{\text {above }}} \tag{4.30}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{2}=\frac{D_{\text {below }}-c_{1}\langle B x\rangle_{\text {below }}}{B_{\text {below }}} \tag{4.31}
\end{equation*}
$$

where we've introduced the shorthand

$$
\begin{equation*}
\langle B x\rangle_{\text {below }}=\sum_{i, j, k} \sum_{l}^{\text {below } m_{\eta}^{2}} b_{i j k l}\left(x_{l}-x_{0}\right), \tag{4.32}
\end{equation*}
$$

and similar for $(B x)_{\text {above }}$.
The Monte Carlo background yield for each ($W, \cos \theta_{\eta}^{-}, \phi_{\eta}, M_{x}^{2}$) bin was transformed according to Eq. 4.29, and the result subtracted from the data yield in the corresponding bin. Figure 4.15 shows the results for several settings, integrated over all $\left(W, \cos \theta_{\eta}^{*}, \phi_{\eta}\right)$ bins. As in the case of Technique 1, we apply the 'fit' and subtraction to both data and Monte Carlo; in this case, however, the result of applying the technique to the Monte Carlo output is the virtually identical subtraction of the background, as expected.

The subtraction from the Monte Carlo result does not result in the exact removal of the Monte Carlo background because we are forcing the transformed background in the region above the peak to have the same yield as the background plus radiative tail. To minimize errors arising from this effect, the integration region above the peak was chosen away from the m_{η}^{2} peak (the integration regions used were 0.23 to 0.27 and 0.38 to $0.42 \mathrm{GeV}^{2} / c^{4}$). Note that these small errors entered both the Monte Carlo and the data subtractions, and in principle cancelled in the ratio $Y_{\text {data }} / Y_{\text {MC }}$.

4.3.8 Data Cuts

The 'standard' cuts (those used in obtaining final results) are given in Table 4.2. The dependence of final results on variations in these cuts is discussed in Section 5.1. In addition to cuts on variables discussed in previous sections (spectrometer momentum, PID, etc.), a cut was made on coincidence acceptance in order to avoid errors arising from regions of low experimental acceptance.

Yield (per Coulomb) vs. $\mathrm{M}_{\mathrm{x}}^{2}\left[\mathrm{GeV}^{2} / \mathrm{c}^{4}\right]$

Figure 4.15: Results of background fits, using Technique 2, for several typical kinematic settings (all yields have been normalized to 1 Coulomb of beam charge). Here the solid line, which represents the background generated by the Monte Carlo simulation, is scaled to the data outside the peak region and then subtracted from the data.

In particular, when combining data for a single bin from different kinematic settings, contributions from settings in which that bin was below some acceptance threshold were neglected.

For purposes of this cut, the acceptance was calculated by Monte Carlo simulation, using resonance events only. We define the relative coincidence acceptance of a particular bin, particular setting, as

$$
\begin{equation*}
\mathcal{A}_{\text {rel }}=\frac{\mathcal{A}}{\mathcal{A}_{\max }} \tag{4.33}
\end{equation*}
$$

where

- \mathcal{A}, the coincidence acceptance for the bin, is given by $N_{\text {det }} / N_{\text {in }}$, with
- $N_{\text {in }}$ equal to the number of Monte Carlo events generated in the bin (i.e., the number of events passing the acceptance/rejection test of Fig. 3.1 on page 66), where the binning is done using ($W, \cos \theta_{\eta}^{*}, \phi_{\eta}$) calculated at the vertex of the interaction;
- $N_{\text {det }}$ equal to the number of Monte Carlo events detected in the bin (i.e., the number of events passing both spectrometer simulations and all final cuts), where the binning is again done in vertex quantities;
- $\mathcal{A}_{\text {max }}$ is the maximum value of \mathcal{A} for the setting in question.

The estimate of systematic uncertainty of the Monte Carlo acceptance was obtained by observing the dependence of final results on the value of this relative acceptance cut. This procedure is discussed in Section 5.1.

4.3.9 Corrections

Corrections to the data for trigger and tracking efficiencies and for target density effects and proton absorption were discussed above. In addition, the data were corrected for Q^{2} dependence at each of the two kinematic points. All corrections are summarized in Table 4.3. Acceptance and radiative effects were taken into account by the procedure used to extract the differential c.m. cross section (Section 4.3.10).

Quantity	Variable	Cut
Electron momentum	$\delta_{\text {SOS }}$	$<+5 \%$
		$>-19 \%$
Proton momentum	$\delta_{\text {HMS }}$	$<+10 \%$
		$>-8 \%$
Relative Acceptance	$\mathcal{A}_{\text {rel }}$	$>25 \%$
SOS CCerenkov	$N_{\text {sum,p.e. }}$	>1
SOS calorimeter	$E_{\text {norm }}$	>0.7
HMS TOF	$\beta_{\text {tor }}$	<0.93 to <1.0
		(setting dependent)
Coincidence time	$t_{\text {coin }}$	centroid ± 2 ns
Missing mass	M_{x}^{2}	$<0.34 \mathrm{GeV}^{2} / \mathrm{c}^{4}$
		$>0.27 \mathrm{GeV}^{2} / \mathrm{c}^{4}$
HMS target position	$y_{\text {tar }}$	$<+2.5 \mathrm{~cm}$
		$>-2.5 \mathrm{~cm}$

Table 4.2: The set of standard cuts applied to the data.

Q^{2} Correction

The Monte Carlo model cross section had no Q^{2} dependence (aside from the gross difference between the two nominal values, $Q_{\text {nom }}^{2}=2.4$ and $3.6 \mathrm{GeV}^{2} / c^{2}$). The data yields were corrected ('bin-centered') in order to account for the fact that the data at each nominal Q^{2} point actually covered a finite range in Q^{2} [roughly $\pm 0.2(0.35) \mathrm{GeV}^{2} / c^{2}$ for the low (high) Q^{2} point].

The procedure used the Monte Carlo simulation to find the average Q^{2} value, $\left\langle Q^{2}\right\rangle$, for each ($W, \cos \theta_{\eta}^{*}, \phi_{\eta}$) bin. The data yield for each bin was then adjusted according to an exponential parameterization of the Q^{2} dependence:

$$
\begin{equation*}
Y_{\mathrm{cort}}=Y \exp \left[C *\left(Q_{\mathrm{nom}}^{2}-\left\langle Q^{2}\right\rangle\right)\right], \tag{4.34}
\end{equation*}
$$

where the constant C was initially taken to be $C=-0.39 c^{2} / \mathrm{GeV}^{2}$ (from Ref. [Bras4]; see Fig. 4.16) and subsequently iterated to $C=-0.565 c^{2} / \mathrm{GeV}^{2}$ ('Exponential Fit 1' of Fig. 4.16). The maximum correction to the yield of any bin was 22 (34) \% for the low (high) Q^{2} point, and 90% of bins were corrected by less than $15(22) \%$.

The uncertainty arising from this Q^{2} correction was estimated by considering the impact on final results of two alternative forms for the correction ('Exponential Fit 2' and 'Polynomial Fit' of Fig. 4.16). The estimated systematic uncertainty in the differential cross section due to the Q^{2}

Figure 4.16: A plot of the Q^{2} dependence of the cross section $\sigma_{\text {res }}\left(e p \rightarrow e^{\prime} p \eta\right)$ at $W \approx 1535 \mathrm{MeV}$, showing several reasonable parameterizations of the Q^{2} dependence. The curve labeled Exponential Fit 1 ($\sigma_{\text {res }}=16.5 e^{-0.565 Q^{2}} \mu \mathrm{~b}$, where Q^{2} is in $\left[\mathrm{GeV}^{2} / c^{2}\right]$) passes through the two data points of this experiment, and was used in the final analysis to perform the Q^{2} correction. Exponential Fit 2 is constrained to go through the photoproduction data ($\sigma_{\text {res }}=16 \mu \mathrm{~b}$ at $Q^{2}=0$). Polynomial Fit is a quadratic through the photoproduction data and the two data points of this experiment. Bra84 Fit is an exponential fit given in Ref. [Bra84] to their two data points. References to previous data are given in Fig. 5.6 on page 137.
correction was $\sigma=1 \%$ for both the low and high Q^{2} points. Note that when referring to the value of Q^{2} of bin-centered data we will use equality ($Q^{2}=\cdots$) instead of an approximation ($Q^{2} \approx \cdots$).

4.3.10 Extraction of the Differential Cross Section

The extraction of the differential c.m. cross section began with the application of run-dependent corrections (efficiencies and dead times) and the subtraction of the accidental coincidence and HMS $y_{\text {tar }}$ backgrounds for each run. The yields for each setting (binned in $W, \cos \theta_{\eta}^{*}, \phi_{\eta}$, and M_{x}^{2}) were then obtained by taking a weighted mean of the yields for the runs in that setting, where the weight for each run was the measured beam charge. At the setting level the multi-pion background was subtracted and the data were integrated over the appropriate M_{x}^{2} range. The Q^{2} correction was applied to each $\left(W, \cos \theta_{\eta}^{*}, \phi_{\eta}\right)$ bin.

The binned yields $Y_{\text {data }}$ for each setting were then converted to c.m. cross sections. For each

Effect	Correction	Discussed in Section
PID inefficiency electron (SOS)	0.4%	4.2 .4
Trigger inefficiencies electron (SOS)	$<0.3 \%$	4.2 .6
proton (HMS)	$<0.3 \%$	
Tracking inefficiencies	2.0% to 6.0%	4.2 .6
\quad electron (SOS)	3.0% to 8.0%	
\quad proton (HMS)	2.0% to 5.0%	4.2 .6
Dead times	0% to 1.2%	
\quad computer	3.0%	4.3 .3
\quad electronic (product of SOS and HMS)		
Beam-induced target density change	2.8%	4.3 .4
Proton absorption	$< \pm 34 \%$	4.3 .9

Table 4.3: Corrections applied to the data.
$\left(W, \cos \theta_{\eta}^{*}, \phi_{\eta}\right) \mathrm{bin}$,

$$
\begin{equation*}
\sigma_{\text {data.cm }}=\frac{Y_{\text {data }}}{Y_{\mathrm{Mc}}} \sigma_{\mathrm{Mc}, \mathrm{~cm}} \tag{4.35}
\end{equation*}
$$

where the Monte Carlo yield $Y_{\text {mc }}$ is given by Eq. 3.6 on page 68, and the Monte Carlo model cross section $\sigma_{\text {mc.em }}$ is obtained by evaluating Eq. 3.15 on page 70 at the center of the bin. The cut on relative acceptance $\mathcal{A}_{\text {rel }}$ was applied to each bin.

The different kinematic settings were then combined. The contribution to each global (W, $\cos \theta_{\eta}^{*}, \phi_{\eta}$) bin was obtained by taking the mean result from all settings (weighted by the appropriate function of statistical uncertainties). Errors were propagated throughout the analysis, included covariance terms where appropriate (viz., for the background subtractions). The angular distributions for the two Q^{2} points are shown in Fig. 5.1 on page 130 and Fig. 5.2 on page 131. Tabulated cross section data are given in Appendix C.

Chapter 5

Results and Conclusions

This chapter describes the estimation of systematic uncertainties in the data, and details the procedure used to extract the W dependence and helicity amplitude $A_{1 / 2}^{p}\left(S_{11}\right)$ from the differential cross sections. We compare our results to the world's data and to recent theoretical models. We then compare our measurement to a recent analysis of inclusive (e, e^{\prime}) scattering and use the result to constrain the $S_{11}(1535) \rightarrow p \eta$ branching fraction.

5.1 Estimation of Systematic Uncertainties

In order to perform a meaningful fit to any data set it is important that the statistical uncertainties be correct and the estimates for systematic uncertainties be reasonable. In the case of the the differential c.m. cross section, $\frac{d^{2} \sigma}{d \sum_{\eta}^{2}}$, we propagated the statistical uncertainties of the data itself and the Monte Carlo simulation, ${ }^{1}$ including the appropriate covariance terms when performing the background subtractions.

The statistical uncertainties obviously varied from point to point in the differential cross sections. Estimates of systematic uncertainties, however, were treated in one of two ways. Where the uncertainty was small or roughly uniform over the data set, or where there was no information regarding its dependence on any of the binned variables ($W, \cos \theta_{\eta}^{*}$, and ϕ_{η}), a global uncertainty was assumed. In some cases, however, there was clear dependence of the uncertainty on W. In

[^38]particular, point-to-point uncertainties were assigned to the multi-pion modeling, fit and subtraction, the kinematic quantities, and the acceptance. In these cases, the uncertainty assigned to the cross section data carries the appropriate W dependence. Our cross section results are presented (Appendix C) with separate statistical and estimated systematic errors for each ($W, \cos \theta_{\eta}^{*}, \phi_{\eta}$) bin.

Many of the sources of systematic error were discussed in Chapter 4. Here we cover the remaining systematic uncertainties in the differential cross sections and how we undertook their estimation. A summary of results is given in Tables 5.1 and 5.2. The statistical and systematic uncertainties that apply to the extracted values of $A_{1 / 2}^{p}$ are given in Section 5.2.4. Note that $A_{1 / 2}^{p}$ goes as the square root of the cross section (Eq. 1.32 on page 21), so the corresponding fractional uncertainties are reduced by a factor of two from those in the cross section.

The uncertainty associated with the simulation of the multi-pion background in the Monte Carlo was investigated by comparing the analysis results using different background models (Section 3.2.2). Preliminary analysis indicated that all three models yielded results that agreed within roughly 5%; at that point the use of the Δ^{++}model (Model 2) was discontinued, because it required significantly greater computation time. In final versions of the analysis, the other two models of the multi-pion background (Model 1 and Model 3) yielded cross section fits for each W bin that differed by 1% to 6% (where the largest disagreement occurred at the highest W). These W-dependent values were used for the estimated uncertainties in the corresponding cross sections. The total cross sections differed by about 2%, and the extracted values of $A_{1 / 2}^{p}$ (which are dominated by the bins nearest the resonance mass) differed by less than 1%. An uncertainty of $\sigma=1.0 \%$ was assigned to the effects of the multi-pion background model on $A_{1 / 2}^{p}$.

The uncertainty associated with the background subtraction technique was investigated in a similar manner. The results of two independent subtraction techniques (Section 4.3.7) were compared. Cross section fits for each W bin differed by 1% to 7% (where the greatest disagreement again occurred at the highest W). These W-dependent values were used for the estimated uncertainties in the corresponding cross sections. The total cross sections differed by about 2%, and the extracted values of $A_{1 / 2}^{p}$ by less than 1%. An uncertainty of $\sigma=1.0 \%$ was assigned to the effects of the multi-pion background subtraction on the helicity amplitude.

Radiative effects on the cross section were dominated by Bremsstrahiung, which lowered the
cross section by about 30% (with all data cuts) over what would be observed in the absence of radiation. The hard corrections, in contrast, raised the cross section by about 9%. Aside from theoretical uncertainties in the method of Mo and Tsai, the uncertainty in the knowledge of radiative effects was primarily that due to the reproduction of the radiative tail. This uncertainty was estimated by studying the variation in the measured, radiatively corrected ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ cross section as a function of W cut (applied to both the data and the Monte Carlo). The upper cutoff for this region was varied from $W=1000 \mathrm{MeV}$ to $W=1150 \mathrm{MeV}$ in 30 MeV steps, and the ratio of data to Monte Carlo yields ranged from 0.978 to 1.01 . The uncertainty due to 'soft' radiative effects was estimated to be $\sigma=1.5 \%$. The uncertainty due to 'hard' effects was neglected.

Uncertainty due to errors in measurement of kinematic quantities $E,\left|\mathbf{k}_{f}\right|, \theta_{e}, \phi_{e},\left|\mathrm{p}_{f}\right|, \theta_{p}$, and ϕ_{p} (the $\theta \mathrm{s}$ and ϕ are the in-plane and out-of-plane laboratory spectrometer angles, and the other quantities were defined in Section 1.3.1) was simulated by performing a mock analysis. The mock analysis followed the prescription of Eq. 4.35 on page 123, but used 'data' generated by Monte Carlo simulation. Measurement errors were simulated in the Monte Carlo 'data', and the analysis gave the sensitivity to these errors.

In general, the largest uncertainties encountered in this experiment were those arising from kinematic quantities associated with the incoming and outgoing electron ($E,\left|\mathbf{k}_{f}\right|$, and θ_{e} in particular). The calculation of W depends on these quantities, and measurement errors generally resulted in misbinning in W. The mock analysis indicated that the uncertainties arising from errors in these kinematic quantities were very W dependent, but in general were smallest around the resonance mass. ${ }^{2}$ As a result, the final systematic errors are rather large for the measurement of the S_{11} width Γ_{R}, but are much smaller for the cross section at the resonance mass (and thus the amplitude $A_{1 / 2}^{p}$).

In order to minimize errors in the final physics result, ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ calibration data taken during the experiment were studied extensively. In addition to verifying the absolute cross section, the zeroth-order reconstruction matrix elements were carefully adjusted to ensure that elastic events were accurately reproduced, and that the angular agreement between the two spectrometers was good (see Appendix B).

Dependence of the cross sections on various data cuts were checked by varying those cuts

[^39]| Quantity | Uncertainty (σ) in | | Discussed in Section |
| :---: | :---: | :---: | :---: |
| | $\frac{d^{2} \sigma}{d \Omega_{n}^{2}}$ | $A_{1 / 2}^{p}$ | |
| PID inefficiency | | | 4.2.4 |
| electron (SOS) | $\pm 0.14 \%$ | $\pm 0.07 \%$ | |
| Trigger inefficiencies | | | 4.2 .6 |
| electron (SOS) | $\pm 0.3 \%$ | $\pm 0.15 \%$ | |
| proton (HMS) | $\pm 0.3 \%$ | $\pm 0.15 \%$ | |
| Tracking inefficiencies | | | 4.2.6 |
| electron (SOS) | $\pm 1.5 \%$ | $\pm 0.75 \%$ | |
| proton (HMS) | $\pm 1.5 \%$ | $\pm 0.75 \%$ | |
| Dead times | | | 4.2.6 |
| computer | $\approx 0 \%$ | $\approx 0 \%$ | |
| electronic (combined) | $\approx 0 \%$ | $\approx 0 \%$ | |
| Charge measurement | $\pm 1.5 \%$ | $\pm 0.75 \%$ | 4.3.2 |
| Target length and density | $\pm 0.6 \%$ | $\pm 0.3 \%$ | 4.3.3 |
| Beam-induced target density change | $\pm 0.5 \%$ | $\pm 0.25 \%$ | 4.3.3 |
| Proton absorption | $\pm 1.2 \%$ | $\pm 0.6 \%$ | 4.3.4 |
| Q^{2} correction | $\pm 1.0 \%$ | $\pm 0.5 \%$ | 4.3.9 |
| Radiative effects | $\pm 1.5 \%$ | $\pm 0.75 \%$ | 3.1.1, 3.3 |
| Monte Carlo background generation | $\pm 1.0 \%$ to 7\% | $\pm 1.0 \%$ | 3.2.2, 5.1 |
| Multi-pion subtraction technique | $\pm 1.0 \%$ to 6% | $\pm 1.0 \%$ | 4.3.7, 5.1 |
| Kinematic quantities | | | 5.1 |
| E | $\pm 1.0 \%$ to 10% | $\pm 0.8 \%$ | |
| $\left\|\mathbf{k}_{f}\right\|$ | $\pm 0.1 \%$ to 8% | $\pm 0.5 \%$ | |
| θ_{e} | $\pm 0.2 \%$ to 11% | $\pm 1.0 \%$ | |
| $\phi_{e},\left\|\mathbf{p}_{f}\right\|, \theta_{p}, \phi_{p}$ | $\approx 0 \%$ | $\approx 0 \%$ | |
| Quadrature Sum | $\pm 4.4 \%$ to 17% | $\pm 2.6 \%$ | |

Table 5.1: Estimates of systematic uncertainties in $\frac{d^{2} \sigma}{d \Omega_{\eta}^{*}}$ and $A_{1 / 2}^{p}$, not including those arising from explicit cuts on the data. The uncertainty in $\frac{d^{2} \sigma}{d \Omega_{\eta}^{\circ}}$ gives a single number in the case of a global uncertainty and a range of values (for single W bins) in the case of a W-dependent uncertainty. The third column gives the resulting uncertainty in the helicity amplitude $A_{1 / 2}^{p}$ (in the case of different estimates between the two Q^{2} points, the larger of the uncertainties is given).

			Uncertainty (σ) in	
Quantity	Variable	Cut Variation	$\frac{d^{2} \sigma}{d S \Omega_{n}^{2}}$	$A_{1 / 2}^{p}$
Relative Acceptance	$\mathcal{A}_{\text {rel }}$	Standard $+35 \%$	$\pm 1.0 \%$ to 6%	$\pm 1.0 \%$
SOS Cerenkov	$N_{\text {sum,p.e. }}$	Standard +5 p.e.	$\pm 0.6 \%$	$\pm 0.3 \%$
SOS calorimeter	$E_{\text {norm }}$	Standard ± 0.1	$\pm 0.3 \%$	$\pm 0.15 \%$
HMS time of flight	$\beta_{\text {tof }}$	Standard ± 0.02	$\pm 0.1 \%$	$\pm 0.05 \%$
Coincidence time	$t_{\text {coin }}$	Standard +2 ns	$\pm 0.5 \%$	$\pm 0.25 \%$
Missing mass	M_{x}^{2}	Standard $\pm 0.01 \mathrm{GeV}^{2} / c^{4}$	$\pm 1.0 \%$	$\pm 0.5 \%$
HMS target position	$y_{\text {car }}$	Standard $\pm 0.5 \mathrm{~cm}$	$\pm 0.5 \%$	$\pm 0.25 \%$
Quadrature Sum				$\pm 1.7 \%$ to 6.2%

Table 5.2: The dependence of the final results on changes to explicit cuts used in the analysis. 'Standard' cuts refer to those given in Table 4.2.
over reasonable (albeit arbitrary) limits. The relative acceptance as determined by Monte Carlo simulation (Section 4.3.8) was used to estimate the uncertainty in the Monte Carlo acceptance. The acceptance cut was varied from 0% (i.e., no acceptance cut) to 60% (which removed roughly 50% of the data from consideration). The range of variation in the measured resonance cross section (from the 'standard' cut at 25%) ranged from under 1% up to 6% (at the highest W) for the low Q^{2} point, and these W dependent variations were used for the estimated uncertainty σ. The high Q^{2} point exhibited an estimated uncertainty of $\sigma=1.5 \%$, with no clear W dependence. The dependence on other cuts was checked in similar fashion. Note that there is no cut dependence explicitly listed for the δ (spectrometer momentum) cuts, because these dependences enter when varying the relative acceptance cut.

The estimation of uncertainties specific to the calculation of the amplitude $A_{1 / 2}^{p}$ are discussed in Section 5.2.4.

5.2 Extraction of $A_{1 / 2}^{p}$

Differential resonance cross sections are most appropriately analyzed in a partial-wave framework, especially when the angular distributions themselves exhibit clear energy dependence (indicating the presence of two or more partial waves). In the case of the present data, however, the overwhelming dominance of S-wave multipoles ${ }^{3}$ allows much of the physics to be extracted using a more primitive analysis. The angular distributions for the two Q^{2} points are shown in Figs. 5.1 and 5.2.

The extraction of the helicity amplitude $A_{1 / 2}^{p}$ presented here is deliberately simplistic (details are given in Sections 5.2 .1 through 5.2.4, following). In overview, the calculation involved performing a separate fit of Eq. 1.16 on page 16 to $\frac{d^{2} \sigma}{d \Omega_{\eta}^{2}}$ at each W bin (the parameterization was subsequently simplified) (Section 5.2.1). From these fits we obtained the magnitude of the E_{0+} multipole as a function of W (via Eq. 1.23 on page 17, together with an assumed value for $R=\sigma_{L} / \sigma_{\tau}$) (Section 5.2.2). $\left|E_{0+}(W)\right|^{2}$ was then fit with a Breit-Wigner plus background curve, which requires the assumption of S_{11} branching fractions (Section 5.2.3). The helicity amplitude was calculated from the value of $\left|E_{0+}\right|$ at the resonance mass using Eq. 1.27 on page 19 and fit values of the resonance mass W_{R} and the full width Γ_{R} (Section 5.2.4).

We had two goals for this extraction of results. First, we wanted a benchmark quantity for use when studying systematic errors. Second, we wanted a reasonably accurate extraction of $A_{1 / 2}^{p}$ (of less interest to this investigation were possible contributions from other multipoles, which are expected to be very small at this value of Q^{2}). The extent of the S-wave dominance of the differential cross sections presented here leads us to believe that the results obtained from our analysis, while not optimum, are quite accurate.

At the time of this writing the cross section data are being given to other groups that will perform more sophisticated extractions of the helicity amplitude. Note that the uncertainty of the $A_{1 / 2}^{p}$ helicity amplitude is presently dominated by uncertainties in other parameters needed for the

[^40]

Figure 5.1: Angular distributions for the $Q^{2}=2.4 \mathrm{GeV}^{2} / c^{2}$ data. Each plot shows the $\cos \theta_{\eta}^{*}$ distribution for a single (W, ϕ_{η}) bin. The rows correspond to different bins in W, the columns to different bins in ϕ_{η}. The threshold for $p \eta$ production is at $W=1.486 \mathrm{GeV}$ (in the lowest W bin). Note that data corresponding to $\phi_{\boldsymbol{\eta}}= \pm 90$ degrees are not shown. The out-of-plane experimental coverage was complete only for the lowest W bin (where the data looked similar to that in the ϕ_{η} bins shown here), and was almost nonexistent at higher W. The lines are fits to the data, described in Section 5.2.1.

Figure 5.2: Angular distributions for the $Q^{2}=3.6 \mathrm{GeV}^{2} / c^{2}$ data. The general description follows that of Fig. 5.1.
calculation. In particular, the S_{11} full width Γ_{R}, the S_{11} branching fractions $b_{\eta}\left(\equiv \Gamma_{\eta} / \Gamma_{R}\right), b_{\pi}$, $b_{\pi \pi}$, and the ratio R all have substantial uncertainties. We anticipate that this data set will be re-fit as knowledge of these quantities and of neighboring resonances improves, which justifies the simple analysis presented here.

5.2.1 Fits to the Angular Distributions

In preliminary stages of analysis we allowed the full parameterization of Eq. 1.16 on page 16 in the least-squares fits to the data. ${ }^{4}$ At the lowest W bin, where experimental coverage was complete, the fit parameters D, E, and F of Eq. 1.16 (those containing ϕ_{η} dependence) were less than 5% and consistent with zero within statistical uncertainty. The out-of-plane coverage diminished rapidly with increasing W, however, and at the higher W bins the data did not properly constrain these parameters, resulting in clearly nonphysical fits (very small improvements to the regions with coverage together with pathological behavior in the unpopulated regions). ${ }^{5}$ The results that we quote in this work were obtained with $D=E=F=0$.

Setting the D, E, and F parameters to zero resulted in a change in the magnitude of the A term of less than 1% at $W=1.49 \mathrm{GeV}$, and the uncertainties quoted for $A_{1 / 2}^{p}$ take this into account. The $\chi^{2} / N_{\mathrm{df}}$ of the fits (which ranged from 0.8 to 1.7 for all W bins at both Q^{2} points) were almost unchanged [$\Delta\left(\chi^{2} / N_{\mathrm{df}}\right)$ ranged from 0% to 8%] by setting these three parameters to zero.

With the reduced parameterization $\frac{d^{2} \sigma}{d \Omega_{\eta}^{*}}=A+B \cos \theta_{\eta}^{*}+C \cos ^{2} \theta_{\eta}^{*}$, the fit parameters B and C were less than 7% for the low- W bins, but were poorly constrained at high W. The values were generally consistent with zero within statistical uncertainty. Since our interest lay in extracting the magnitude of the cross section at the resonance mass (as opposed to looking for small contributions from other multipoles), these two fit parameters were also set to zero for the results quoted in this work. As in the case above, setting these parameters to zero resulted in only small changes to the extracted value of the fit coefficient A (which are reflected in the systematic uncertainties), and resulted in almost no change to the $\chi^{2} / N_{\mathrm{df}}$ of the fits. The results that we

[^41]quote in this work were obtained with $B=C=0$.

5.2.2 Assumed Form of R

For the purposes of helicity amplitude calculations, the value of $R=\sigma_{L} / \sigma_{T}$ for the S_{11} was taken to be

$$
\begin{equation*}
R=0.5 \sqrt{Q^{2}} e^{-1.3 Q^{2}} \tag{5.1}
\end{equation*}
$$

which is shown in Fig. 1.4 on page 9. This is a simple parameterization of the result of Ref. [Rav71] as given in Ref. [Bra84]. Note that the expected impact of the longitudinal-to-transverse ratio on the final physics result is small; our parameterization gives $R<4 \%$ at $Q^{2}=2.4 \mathrm{GeV}^{2} / c^{2}$, with a corresponding effect on the cross section (given $\epsilon \approx 0.5$) of about 1.5% (and less than 1% on $A_{1 / 2}^{p}$). A 100% error in this assumption, which is possible given the poor knowledge of this quantity; corresponds to an uncertainty of less than 1% in the quoted value of $A_{1 / 2}^{p}$.

5.2.3 Fits to $\left|E_{0+}(W)\right|^{2}$

The E_{0+} multipole was calculated for each W bin from the angular distribution fit coefficients A and the assumed form of R using Eq. 1.23 on page 17. At each Q^{2} point, a relativistic Breit-Wigner plus background curve was fit to $\left|E_{0+}(W)\right|^{2}$:

$$
\begin{align*}
\sigma_{\mathrm{tot}}(W) & =\sigma_{\mathrm{res}}(W)+\sigma_{\mathrm{nr}}(W) \\
& =4 \pi \frac{\left|\mathbf{p}_{\eta}^{*}\right| W}{m_{p} K}\left|E_{0+}(W)\right|^{2} \\
& =4 \pi \frac{\left|\mathbf{p}_{\eta}^{*}\right| W}{m_{p} K} \frac{W_{R}^{2} \Gamma_{R}^{2}\left|E_{0+}\left(W_{R}\right)\right|^{2}}{\left(W^{2}-W_{R}^{2}\right)^{2}+W_{R}^{2} \Gamma^{2}(W)}+B_{\mathrm{nr}} \sqrt{W-W_{\mathrm{thr}}} \tag{5.2}
\end{align*}
$$

The parameterization of the energy-dependent width $\Gamma(W)$ in terms of S_{11} branching fractions was given in Section 3.2.1, and the other terms were defined in Section 1.3.2.

An interesting feature of the $S_{11} \rightarrow p \eta$ process arises from the threshold dependence of the cross section. As a result of the $p \eta$ threshold, a cross section measurement of the process is largely insensitive to the effects of branching fractions and W_{R} individually. Consider a relativistic

Figure 5.3: The energy dependence of a relativistic threshold Breit-Wigner curve (Eq. 5.3) for several choices of resonance mass W_{R} and branching fractions. The overall normalization is arbitrary.

Breit-Wigner form for the process,

$$
\begin{equation*}
\sigma(W)=A_{B W}^{2} \frac{\left|p_{\eta}^{*}\right|}{m_{p}} \frac{W}{K} \frac{W_{R}^{2} \Gamma_{R}^{2}}{\left(W^{2}-W_{R}^{2}\right)^{2}+W_{R}^{2} \Gamma^{2}(W)}, \tag{5.3}
\end{equation*}
$$

where $A_{B W}$ is an arbitrary amplitude. Figure 5.3 shows this curve for several values of branching fractions and W_{R}. The effect of changing the branching fractions alone is rather obvious (the dashed and solid curves are distinguishable). Note, however, that a simultaneous change in W_{R} (together with a change in the amplitude $A_{B W}$) can largely compensate for the change in branching fractions (the dashed and dotted curves are similar, especially near threshold). Measurement of the $S_{11} \rightarrow p \eta$ process alone is insufficient to clearly distinguish between the effects of these two parameters.

As a result of this effect, we performed fits to the W distributions assuming three sets of values for the branching fractions ($b_{\eta}: b_{\pi}: b_{\pi \pi}$), as defined in Table 5.3 (we use the same values as used in Ref. [Kru95]]. As expected based on the discussion above, the fits arrived at different values for the resonance mass W_{R}, with little difference in χ^{2} to distinguish between them (the curves are nearly indistinguishable). The extracted value of Γ_{R} is nearly independent of the branching fraction assumption, and we find that $\Gamma_{R}=(154 \pm 20) \mathrm{MeV}$ (see Fig. 5.4). The impact of the branching fraction assumption on the extracted value of $A_{1 / 2}^{p}$, however, was substantial (as can be

Fit 1	Fit 2	Fit 3
$(0.55: 0.35: 0.10)$	$(0.45: 0.45: 0.10)$	$(0.35: 0.55: 0.10)$

Table 5.3: Branching fractions ($b_{\eta}: b_{\pi}: b_{\pi \pi}$) defining Fits 1-3.
seen from Eq. 1.27 on page 19). We quote full results for the three branching fraction assumptions later, in Section 5.2.4, after a discussion of the helicity calculation. At both values of Q^{2} the fitted nonresonant background term ($B_{\mathrm{nr}} \sqrt{W-W_{\text {thr }}}$) was consistent with zero, with an uncertainty of 1% of the resonant term.

Note that there is considerable disagreement between the value of Γ_{R} as determined by different experiments (see Fig. 5.5). In particular, note that the data of Ref. [Bra84] indicate a full width of less than 70 MeV for the S_{11}. The recent photoproduction measurement at Mainz [Kru95] tagged the 2γ decay of the outgoing η meson, which cleanly identified the final state (they did not suffer from a multi-pion background). This fact, together with the high statistics of that experiment, lends considerable weight to that collaboration's claim of $\Gamma_{R}=(203 \pm 35) \mathrm{MeV}$ for the S_{11} (1535) full width. That measurement, however, only extended up to the resonance mass. It is worth pointing out that the form of the Breit-Wigner parameterization can impact the extracted resonance parameters. The parameterization used by the two other groups mentioned here is essentially the same as that used in this work, however, and so cannot account for the differences in Γ_{R}.

The world's data for $\sigma_{\text {res }}\left(e p \rightarrow e^{\prime} p \eta\right.$) (at the resonance mass) are shown in Fig. 5.6. The data of the present work are about 30% below that of Ref. [Bra84] (found by interpolating the results of this work to $Q^{2}=3 \mathrm{GeV}^{2} / c^{2}$). The trend of the two new data points is also somewhat different than that found in the older data. Both of these issues will be discussed more fully in the context of the helicity amplitude calculation (Section 5.2.4).

We point out that, although the present data were taken at a different value of ε than those of Ref. [Bra84], a longitudinal cross section is almost certainly not responsible for the entire difference between the two measurements; a value of $R \approx 2.3$ (which is ruled out at low Q^{2} [Bre78, Bra78]) would be necessary to account for the discrepancy.

Figure 5.4: The W dependence of $\sigma_{\text {res }}\left(e p \rightarrow e^{\prime} p \eta\right)$ for the two Q^{2} points. The error bars are statistical only.

Figure 5.5: There is significant disparity in the W dependence of $\sigma_{\text {res }}\left(e p \rightarrow e^{\prime} p \eta\right)$ as reported by different groups. Here we plot the energy-dependent Breit-Wigner curve using W_{R} and Γ_{R} as measured by Refs. [Bra84], [Kru95], and the present work. The curve resulting from the estimated values given by [PDG98] is also shown. The curves have been normalized to the same peak magnitude.

Figure 5.6: The world's data for the cross section $\sigma_{\text {res }}\left(e p \rightarrow e^{\prime} p \eta\right)$ at $W \approx 1535 \mathrm{MeV}$. The exponential fit to the two points of this work is $\sigma_{\mathrm{res}}=16.5 e^{-0.565} Q^{2} \mu \mathrm{~b}$, where Q^{2} is in $\left[\mathrm{GeV}^{2} / c^{2}\right]$.

5.2.4 Calculation of $A_{1 / 2}^{p}$

The helicity amplitude is defined in terms of $\left|E_{0+}\right|$ at the resonance mass (Eq. 1.27 on page 19). The calculation also requires the S_{11} resonance mass W_{R} and full width Γ_{R}, as well as b_{η}, the branching fraction of the S_{11} to the $p \eta$ channel [the other S_{11} branching fractions enter via the energy dependent width $\Gamma(W)$ in Eq. 5.2]. The dominant uncertainty in the calculation is due to the poor knowledge of the full width Γ_{R} and the $p \eta$ branching fraction. The estimated values and ranges for these quantities (according to the Particle Data Group) are shown in Table 5.4. We estimated the uncertainty in $A_{1 / 2}^{p}$ due to uncertainties in Γ_{R} and b_{η} by allowing these two parameters to vary over reasonable ranges ($150-200 \mathrm{MeV}$ and $0.45-0.6$, respectively) and looking at the resulting distribution of helicity amplitudes. This study yielded an uncertainty of $\sigma \approx$ $7(5) \times 10^{-3} \mathrm{GeV}^{-1 / 2}$ at the low (high) Q^{2} point.

Final results of the fits to $\left|E_{0+}(W)\right|^{2}$ and the amplitude calculation are given in Table 5.6, where we have used our fitted values (which are very close to the PDG estimates) to calculate $A_{1 / 2}^{p}$. Based on the branching fraction constraint discussed in Section 5.3, we quote in Table 5.7 final results from Fit $1\left(b_{\eta}=0.55\right)$. The quoted uncertainties in $A_{1 / 2}^{p}$ are systematic and statistical

Quantity	Estimated Value	Range
W_{R}	$\approx 1535 \mathrm{MeV}$	1520 to 1555 MeV
Γ_{R}	$\approx 150 \mathrm{MeV}$	100 to 250 MeV
b_{η}	-	0.30 to 0.55
b_{π}	-	0.35 to 0.55
$b_{\pi \pi}$	-	0.01 to 0.10

Table 5.4: Current values for the $S_{11}(1535)$ mass, full width, and major branching fractions (according to Ref. [PDG98]).

	Uncertainty (σ) in	Discussed in
Quantity	$A_{1 / 2}^{p}$	Section
Assumption of $D=E=F=0$	$\pm 0.4 \%$	5.2 .1
Assumption of $B=C=0$	$\pm 1.0 \%$	5.2 .1
Assumed value of $R=\sigma_{L} / \sigma_{T}$	$\pm 0.75 \%$	5.2 .3
Assumed values of Γ_{R}, b_{η}	$\pm 11 \%$ to 14%	5.2 .4
Quadrature Sum (except $\left.\Gamma_{R}, b_{\eta}\right)$	$\pm 1.3 \%$	
Quadrature Sum	$\pm 11 \%$ to 14%	

Table 5.5: Uncertainties specific to the calculation of $A_{1 / 2}^{p}$.
in quadrature; in Table 5.7 we have included estimates (discussed above) for the uncertainties due to Γ_{R} and b_{η}.

Figure 5.7 shows the helicity amplitude results, along with points calculated from the rest of the world's ep $\rightarrow e^{\prime} p \eta$ data. ${ }^{6}$ We differ with Ref. [Bra84] about both the amplitude of the S_{11} and the slope of its form factor. Here the 30% cross section difference between the two measurements is reduced by the square root relating $A_{1 / 2}^{p}$ to the cross section (see Eq. 1.32 on page 21).

[^42]| Quantity | $Q^{2}=2.4 \mathrm{GeV}^{2} / \mathrm{c}^{2}$ | | | | $Q^{2}=3.6 \mathrm{GeV}^{2} / \mathrm{c}^{2}$ | | | | PDG98 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Fit 1 | Fit 2 | Fit 3 | Abs. Uncert. | Fit 1 | Fit 2 | Fit 3 | Abs. Uncert. | |
| $W_{R} \quad[\mathrm{MeV}]$ | 1534 | 1530 | 1524 | ± 3 (1) | 1530 | 1524 | 1518 | ± 8 (4) | ≈ 1535 |
| $\Gamma_{R} \quad[\mathrm{MeV}]$ | 151 | 148 | 145 | ± 16 (5) | 157 | 152 | 148 | ± 24 (8) | ≈ 150 |
| $A_{1 / 2}^{p}\left[10^{-3} \mathrm{GeV}^{-1 / 2}\right]$ | 49.8 | 55.3 | 62.7 | ± 2 (0.5) | 35.2 | 39.1 | 44.3 | ± 1 (0.5) | - |

Table 5.6: Results of the three fits to $\left|E_{0+}(W)\right|^{2}$ (see Section 5.2.3) and extracted values for the helicity amplitude $A_{1 / 2}^{p}$. The (absolute) uncertainties are statistical and systematic combined in quadrature, with statistical uncertainties in parentheses. Here the uncertainties arising from the S_{11} full width and branching fractions are not included in the systematic uncertainty in $A_{1 / 2}^{p}$. Based on results presented in Section 5.3, we prefer Fit 1.

Quantity	Preferred Value
W_{R}	$1532 \pm 5 \mathrm{MeV}$
Γ_{R}	$154 \pm 20 \mathrm{MeV}$
$A_{1 / 2}^{p}\left(Q^{2}=2.4 \mathrm{GeV}^{2} / c^{2}\right)$	$(50 \pm 7) \times 10^{-3} \mathrm{GeV}^{-1 / 2}$
$A_{1 / 2}^{p}\left(Q^{2}=3.6 \mathrm{GeV}^{2} / c^{2}\right)$	$(35 \pm 5) \times 10^{-3} \mathrm{GeV}^{-1 / 2}$
$b_{\eta}=\Gamma_{\eta} / \Gamma_{R}$	$>0.45 ;$ best value ≈ 0.55

Table 5.7: Preferred results (Fit 1), based on the b_{η} constraint discussed in Section 5.3. The uncertainties are systematic (including estimated uncertainties in Γ_{R} and b_{η} for $A_{1 / 2}^{p}$) and statistical in quadrature. The 'best value' for b_{η} assumes complete S_{11} dominance at $Q^{2}=4 \mathrm{GeV}^{2} / c^{2}$.

Of the various CQM curves shown in Fig. 5.7, none-with the possible exception of the Ref. [War90] curve-exhibit a stiffness approaching that of the data. The calculation of Ref. [War90], which has (at least at low Q^{2}) the stiffest form factor of all the CQM variants shown, also gives an amplitude that appears too low. It should be pointed out that the proton and neutron electric and magnetic form factors predicted by this model are not well behaved above $\sim 2 \mathrm{GeV}^{2} / c^{2}$. Capstick and Keister [Cap95], working in a light-front framework, specifically set out to investigate the effects of relativization on baryon photo- and electroproduction observables. One of the notable results of their work is that, while the transition amplitudes of many resonances show appreciable relativistic effects, the transverse amplitude $A_{1 / 2}^{p}\left(S_{11}(1535)\right)$ does not. We point out, however, that their effort is ongoing at the time of this writing [Cap98]. It appears, then, that the CQM so far fails to account for the experimentally observed Q^{2} behavior of the S_{11} (1535).

Figure 5.8 shows the quantity $Q^{3} A_{1 / 2}^{p}$ for the S_{11} (1535). This quantity is predicted by PQCD to asymptotically approach a constant at high Q^{2} [Car88]; as has been pointed out previously [Isg84, Rad91], such scaling may also arise from nonperturbative contributions. While there is no strong scaling evident in the figure, there is (as noted above) a definite disagreement with the older highQ^{2} measurement about the slope of the Q^{2} dependence. We point out that an extension [Sto97] of the present experiment to $Q^{2} \approx 7 \mathrm{GeV}^{2} / c^{2}$ has been approved to run at TJNAF in the near future, and should shed more light on the Q^{2} evolution of this quantity.

Figure 5.7: The world's data for $A_{1 / 2}^{p}\left(S_{11}(1535)\right)$, measured via the $p \eta$ channel, together with some theoretical predictions. The data points are calculated from ep $\rightarrow e^{\prime} p \eta, W \approx 1535 \mathrm{MeV}$ cross section data using Eq. 1.31 on page 21 and assuming an S_{11} full width $\Gamma_{R}=150 \mathrm{MeV}$, $b_{\eta}=0.55$, and R as given by Eq. 5.1. The errors shown on previous data are statistical only. The errors shown for the present work include both statistical and systematic uncertainties, except for those associated with Γ_{R} and b_{η}. If either of these quantities differ from the values assumed here, all data.points will scale together. The theoretical curves labeled [Li90] through [Sta95] are variants of the CQM. Note that the calculation of $A_{1 / 2}^{p}$ based on the fit to inclusive data, [Kep94], assumes that the second resonance region is entirely due to the $S_{11}(1535)$, which is only expected to be true at high Q^{2} [Bra84]. The curve labeled [Car88] is a PQCD calculation (only the central result of that work is shown).

Figure 5.8: The quantity $Q^{3} A_{1 / 2}^{p}\left(Q^{2}\right)$ for the $S_{11}(1535)$. The dashed line is an ad hoc exponential fit to the cross section given by the two points of the present work (see Fig. 5.6), and the solid line is a fit to inclusive data (as in Fig. 5.7). The errors that are shown, and the assumed values for Γ_{R}, b_{η}, and R, are the same as in Fig. 5.7. Ref. [Car88] gives three results, depending on the distribution amplitude used in the calculation.

5.3 A Constraint on the $S_{11} \rightarrow p \eta$ Branching Fraction

If we assume that the resonant part of the inclusive (e, e^{\prime}) cross section is the incoherent sum of the contributions of resonances via their various decay channels, we can use the inclusive and exclusive resonant cross sections to put a lower bound on the $S_{11}(1535) \rightarrow p \eta$ branching fraction b_{η}. It appears that at high momentum transfer the $S_{11}(1535)$ resonance is responsible for most of the resonant cross section in the neighborhood of $W=1535 \mathrm{MeV}$ (see footnote 3 on page 129). At an arbitrarily high value of Q^{2}, where this resonance nearly or completely dominates, we can rearrange Eq. 1.32 on page 21 to write

$$
\begin{equation*}
\sigma_{\text {res }}\left(S_{11} \rightarrow p \eta\right)=\frac{2 m_{p} b_{\eta}}{W_{R} \Gamma_{R}}(1+\varepsilon R)\left[A_{1 / 2}^{p}\left(S_{11}\right)\right]^{2} \tag{5.4}
\end{equation*}
$$

where ' S_{11} ' refers to the $S_{11}(1535)$ resonance, and the cross section is at $W \approx 1535 \mathrm{MeV}$. We can write analogous equations for other S_{11} decay channels:

$$
\begin{gather*}
\sigma_{\text {res }}\left(S_{11} \rightarrow N \pi\right)=\frac{2 m_{p} b_{\pi}}{W_{R} \Gamma_{R}}(1+\varepsilon R)\left[A_{1 / 2}^{p}\left(S_{11}\right)\right]^{2} \tag{5.5}\\
\sigma_{\text {res }}\left(S_{11} \rightarrow N \pi \pi\right)=\frac{2 m_{p} b_{\pi \pi}}{W_{R} \Gamma_{R}}(1+\varepsilon R)\left[A_{1 / 2}^{p}\left(S_{11}\right)\right]^{2} \tag{5.6}
\end{gather*}
$$

With the incoherent summation ansatz given above, we can express the resonant part of the inclusive cross section in the second resonance region (LHS) in terms of the exclusive cross sections (RHS) (here too, all cross sections are at the S_{11} resonance mass):

$$
\begin{align*}
\sigma_{\text {res }} \text { (inclusive) }= & \sigma_{\text {res }}\left(S_{11} \rightarrow p \eta\right)+\sigma_{\text {res }}\left(S_{11} \rightarrow N \pi\right)+\sigma_{\text {res }}\left(S_{11} \rightarrow N \pi \pi\right) \\
& +\left\{\text { small contributions from } D_{13}\right\} \\
& +\{\text { small contributions from other resonances }\} . \tag{5.7}
\end{align*}
$$

We express the S_{11} contributions using Eqs. 5.4 through 5.6 , and change the equality to an inequality to account for the (small) contributions from other resonances:

$$
\sigma_{\text {res }} \text { (inclusive) } \geq \frac{2 m_{p}\left(b_{\eta}+b_{\pi}+b_{\pi \pi}\right)}{W_{R} \Gamma_{R}}(1+\varepsilon R)\left[A_{1 / 2}^{p}\left(S_{11}\right)\right]^{2}
$$

$$
\begin{equation*}
\geq \frac{2 m_{p}}{W_{R} \Gamma_{R}}(1+\varepsilon R)\left[A_{1 / 2}^{p}\left(S_{11}\right)\right]^{2} \tag{5.8}
\end{equation*}
$$

Solving Eq. 5.4 for $\frac{2 m_{r}}{W_{R} \Gamma_{R}}(1+\varepsilon R)\left[A_{1 / 2}^{p}\left(S_{11}\right)\right]^{2}$ and substituting into Eq. 5.8 yields

$$
\begin{equation*}
\sigma_{\text {res }}(\text { inclusive }) \geq \frac{\sigma_{\text {res }}\left(S_{11} \rightarrow p \eta\right)}{b_{\eta}} \tag{5.9}
\end{equation*}
$$

or

$$
\begin{equation*}
b_{\eta} \geq \frac{\sigma_{\text {res }}\left(S_{11} \rightarrow p \eta\right)}{\left.\sigma_{\text {res }} \text { (inclusive }\right)} \tag{5.10}
\end{equation*}
$$

Thus the resonant part of the inclusive (e, e^{\prime}) cross section in the second resonance region provides an upper bound on the S_{11} (1535) cross section that one can measure exclusively.

Figure 5.9 shows a comparison between the resonant part of a fit to measured inclusive data [Kep94] (solid line) and exclusive ep $\rightarrow e^{\prime} p \eta$ data (both at $W \approx 1535 \mathrm{MeV}$). The data points have been scaled by $1 / b_{\eta}$, with $b_{\eta}=0.55$ (the dashed curve is an exponential fit to the two data points of this experiment). This value of b_{η} results in good agreement between the high- Q^{2} datum of this work and the inclusive fit. As pointed out above (footnote 3 on page 129), the inclusive cross section is dominated by the $D_{13}(1520)$ at low Q^{2} and the $S_{11}(1535)$ at high Q^{2}.

The inset of Fig. 5.9 shows the inclusive fit and the two points of this work (with exponential fit), where the exclusive data (and fit) have been scaled by $1 / b_{\eta}$, with $b_{\eta}=0.35$. This value of b_{η} implies an exclusive cross section 50% greater than the fit to the measured inclusive cross section. Even with the ad hoc $\pm 10 \%$ uncertainty we have attributed to the inclusive measurement, ${ }^{7}$ this discrepancy is strong evidence that the branching fraction is not this low. At present the PDG gives an estimated range of $0.30 \leq b_{\eta} \leq 0.55$ [PDG98], but a branching fraction at the lower end of that range is unlikely. With the incoherent summation ansatz, we find a lower bound of $b_{\eta}=0.45$ with a 95% confidence level. Assuming complete $S_{11}(1535)$ dominance at $Q^{2}=4 \mathrm{GeV}^{2} / c^{2}$, we find a best value of $b_{\eta}=0.55$.

[^43]

Figure 5.9: (Note \log scale.) The main figure is a comparison between the resonant part of a fit to inclusive data in the second resonance region (solid line) and a fit to the two points of the present work (dashed line, see Fig. 5.6). Previous ep $\rightarrow e^{\prime} p \eta$ data are shown as well, with data points and corresponding errors as in Fig. 5.7. The dashed-dotted curve (D_{13}) is the difference between the inclusive and S_{11} fits. Note the good agreement between inclusive and S_{11} (1535) fits for $b_{\eta}=0.55$.

The inset is a close-up of the high- Q^{2} region, showing the inclusive and S_{11} fits, but here we have assumed $b_{\eta}=0.35$ (both fits are shown with error bands). This assumption puts the S_{11} several σ above the inclusive fit, which is strong evidence that the branching fraction is not this low.

5.4 Conclusions

The data presented here are of high precision and have greater statistics than any previous measurement of the ep $\rightarrow e^{\prime} p \eta$ process at substantial momentum transfer; in addition, the $Q^{2}=$ $3.6 \mathrm{GeV}^{2} / c^{2}$ point is the highest- Q^{2} measurement of this process to date. The dominance of S wave multipoles is confirmed and, as would be expected from previous measurements, the presence of other multipole terms is excluded down to about the 5% level.

The recent ep $\rightarrow e^{\prime} p \eta$ photoproduction measurement at Mainz [Kru95] did a superb job of mapping out the energy dependence of this process up to the resonance mass, and their experimental technique precluded the need for a large background subtraction. That result, which is quite convincing, indicates a full width $\Gamma_{R}=(203 \pm 35) \mathrm{MeV}$. The energy dependence that we measure for this process bolsters the considerable evidence that the S_{11} has a full width in the range of 150
to 200 MeV (Fig. 5.4). Our data go well above the resonance mass and thus add useful information to the existing knowledge base; our analysis puts the full width at $\Gamma_{R}=(154 \pm 20) \mathrm{MeV}$. Of special note is the fact that our energy dependence is in serious disagreement with that of Ref. [Bra84] (which was, from an experimental point of view, similar to the present measurement). The results of that analysis yielded a full width for the S_{11} of less than 70 MeV -half that measured in the present work, and roughly one-third that claimed by the Mainz collaboration. The form of the Breit-Wigner parameterization used by the three groups is essentially the same, and so does not account for the differences in Γ_{R}.

More importantly, the new data improve our knowledge of the Q^{2} evolution of the $S_{11}(1535)$ cross section and helicity amplitude $A_{1 / 2}^{p}$. While there is no doubt that the form factor of this resonance is stiff (strong at high Q^{2}) when compared to, say, the $D_{13}(1520)$, our data indicate a cross section about 30% lower at $Q^{2}=3 \mathrm{GeV}^{2} / \mathrm{c}^{2}$ than that of the only other high- Q^{2} exclusive measurement (Ref. [Bra84]) (Fig. 5.6).

Some recent relativized versions of the CQM indicate a greater S_{11} amplitude at high Q^{2} than does the NRCQM (Fig. 5.7). Even given the lower amplitude obtained from this measurement, however, the quark models consistently fail to reproduce the Q^{2} dependence seen experimentally. While some of the newer variants indicate an amplitude at $Q^{2} \sim 3 \mathrm{GeV}^{2} / c^{2}$ roughly consistent with experimental data, they also predict excess amplitude at lower Q^{2}. As pointed out elsewhere [Ben96], the present situation clearly calls for continued work on nonperturbative QCD lattice calculations.

In part, the present work was intended as a search for scaling of the quantity $Q^{3} A_{1 / 2}^{p}$, which could be a sign of the effects of $p Q C D$. We see no strong evidence that this quantity is approaching a constant, but our data exhibit a markedly different trend than that of Ref. [Bra84] (Fig. 5.8), and would be consistent with an approach to scaling by $Q^{2} \sim 5 \mathrm{GeV}^{2} / c^{2}$.

Comparison of these new data to recent inclusive data provides a constraint on the branching fraction of the S_{11} to the $p \eta$ decay channel, which is poorly known. The comparison offers strong evidence that a branching fraction near the low end of the $0.30 \leq b_{\eta} \leq 0.55$ range currently given by the PDG is unlikely (Fig. 5.9). We find a lower bound of $b_{\eta}=0.45$.

We emphasize again that an analysis of the angular distributions presented here should ultimately be undertaken in the framework of a more complete physics model. Such a model would
take into account not only realistic background terms but would also include possible contributions from other resonances. While the results should not differ greatly from those presented here (because of the extent of the S-wave dominance), there is no doubt that our (energy independent) analysis is overly simplistic.

Several avenues of future experimental investigation promise to shed light on these and related topics. It is clear that the full value of this and other exclusive measurements of the $e p \rightarrow e^{\prime} p \eta$ and $e p \rightarrow e^{\prime} N \pi$ processes will only be realized once the full width and branching fractions of the $S_{11}(1535)$ are more precisely known. Only with these constraints will experimental results be able to make conclusive statements about the validity of theoretical $A_{1 / 2}^{p}$ predictions.

Polarization observables offer an exciting opportunity (especially at low Q^{2}) to gain insight into the structure of this resonance and to unravel the contributions of other resonances to the $p \eta$ channel. At least one such experiment now approved at TJNAF [Kel97] should obtain a fairly precise measurement of the longitudinal-to-transverse ratio R for the S_{11}. Finally, we point out that an extension [Sto97] of the present experiment to $Q^{2} \approx 7 \mathrm{GeV}^{2} / c^{2}$ has been approved, and should run within a few years of this writing. The upcoming experiment will also (like the present work) measure the $\Delta(1232)$ via the $p \pi^{0}$ channel.

Appendix A

Beam Current Measurement in

Hall C

There were four current measurement devices in use in Hall C around the time of this experiment. The first was a parametric current transformer (Unser monitor) and the other three were resonant-cavity Beam Current Monitors (BCM1, BCM2, and BCM3). The Unser monitor and the first two BCM cavities were on the beamline between the final arc and the Hall C target (see Fig 2.5 on page 40), while most of the associated electronics were upstairs in the Hall C electronics room. BCM3, positioned immediately upstream of the target, was a cavity used by the accelerator division's beam accounting system. While Hall C personnel did not have control of the hardware associated with this monitor, we were able to record the output of this device.

As discussed in Chapter 4, the beam charge for this experiment was measured using BCM3. At various times during the experiment BCM1 and BCM2 experienced unacceptable drifts (the causes of which were later discovered), and the output of these monitors was not used in the analysis. Therefore this Appendix has limited applicability to the present work. We offer it here partly for historical purposes, since the hardware (save minor modifications) and techniques were common to all TJNAF Hall C experiments from commissioning in 1995 through early 1997.

Figure A.1: A block diagram of the Unser monitor and associated electronics. The magnetic modulator in particular is oversimplified; the actual device consisted of several individual toroids.

A. 1 The Unser Monitor

The Unser monitor consisted of two separate transformers in the feedback loop of a nulling amplifier, with the electron beam itself serving as the single-turn primary for both transformers (see Fig. A.1). The first transformer acted as a simple beam toroid, which could respond to transient beam conditions but not to CW beam. The second transformer (the modulation transformer) extended the frequency response of the device down to direct current (DC). An alternating current (AC) signal drove the modulation transformer into saturation at either end of its hysteresis loop. As long as the DC magnetic flux in the transformer was zero, the hysteresis loop was symmetric: there was no second-order harmonic in the voltage at the secondary. When beam with DC current i was present, the nulling circuit minimized the second harmonic of the secondary by forcing current $-i$ through the nulling winding. ${ }^{1}$ This nulling gave the Unser monitor excellent linearity.

The Unser electronics supplied an analog signal which was input to a preamplifier/level shifter and then to a Voltage-to-Frequency (V-F) converter. The preamplifier had a gain of 10 to reduce the effects of drifts in the downstream electronics. The voltage offset provided by the level shifter ensured that the input to the V-F converter was in the linear region of that device. The output

[^44]of the V-F converter was fed to a scaler whose output was read by the data acquisition system every two seconds. This V-F/scaler scheme allowed convenient data acquisition, since we were ultimately interested in knowing the integrated charge (as opposed to the current on a short time scale).

The Unser monitor had a gain which was well known (about $4 \mathrm{mV} / \mu \mathrm{A}$ for the Unser itself, about $4000 \mathrm{~Hz} / \mu \mathrm{A}$ for the entire system) and very stable. It did suffer from fairly small offset drifts which changed over the course of minutes (these drifts had been large, but prior to this experiment were improved by thermally insulating the Unser) as well as a poor signal-to-noise ratio. However, it was the only current monitor we had that could be accurately calibrated with absolute standards. Therefore the other current monitors were calibrated against the Unser (as described below).

The gain of the Unser was measured in November, 1996, midway through the present experiment. A precision DC voltage source and precision series resistors were used to supply current to a wire running through the Unser monitor, thereby simulating beam current. The scaler rates together with knowledge of the simulated beam current (measured independently) yielded for the Unser monitor and associated electronics a gain of $3.988 \pm 0.004 \mathrm{mV} / \mu \mathrm{A} .{ }^{2}$

A. 2 The Beam Current Monitors (BCM1 and BCM2)

The two other current measuring devices operated by measuring the radio-frequency (RF) power coupled out of resonant cavities in the beamline. These two BCM's had reasonable gain stability (over the course of a few days) and good noise performance. They could not measure current absolutely, however, because the ratio of output power to beam current through the cavity could be determined only by calculation or numerical simulation and was sensitive to details such as the quality of the surface finish on the interior of the cavity.

Every several days or so the well-known Unser gain was used to calibrate the BCM's. A calibration run consisted of alternating two-minute intervals of beam-on/beam-off (see Fig. A.2). The beam-off periods gave the zero offset of the Unser, and comparison of the Unser output to the BCM outputs during the beam-on periods yielded the BCM gains.

[^45]

Figure A.2: Current (as reported by the Unser monitor and BCM2) versus time for a typical BCM calibration.

The RF cavities for the two BCM's were identical. They were simple (nonreentrant) cylinders constructed from \#304 stainless steel positioned coaxially along the beamline. The 499 MHz time structure of the beam in the Hall C beamline excited the $1497 \mathrm{MHz} \mathrm{TM}_{010}$ mode of resonance, shown in Fig. A.3. This mode is suitable for current measurements because the electric field is radially symmetric and coupling to the beam was therefore relatively insensitive to beam position when that position was near the center of the cavity.

The quality factor of a resonant cavity is defined as $Q \equiv f_{0} / \Delta f$, where f_{0} is the resonant frequency and Δf is the full-width at half-maximum of the resonance shape. For the $T M_{010}$ mode in a cylindrical cavity, the resonant fequency is given by

$$
\begin{equation*}
f_{0}=f_{010}=\frac{c}{2 \pi} \frac{\chi_{01}}{R} \tag{A.1}
\end{equation*}
$$

Here χ_{01} is the first root of the Bessel function J_{0} and R is the radius of the cavity. At high frequencies the width Δf depends largely on the quality of the surface finish inside the cavity.
Q is, in other words, a measure of the sharpness (in frequency) of the cavity response to excitation. In addition, we must define the quality factor for two cases. The first is when the

Figure A.3: Cross sections of a BCM cavity showing E_{z} and B_{ϕ} fields for the TM_{010} mode. The 'TM' stands for Transverse Magnetic, meaning that the magnetic field lines are transverse to the axis of the cavity (electric field lines along the axis). The ' 010 ' subscript means that the magnetic field variation is one-half cycle along a radial line from one side of the cylinder to the other (with no variations in the axial or circumferential directions). Note that the output antenna couples to the magnetic component of the resonance.
cavity has no output coupling, for which we have quality factor Q_{0}. The second is when we have an antenna coupling power out of the cavity, for which we have loaded quality factor Q_{1}.

In a current monitor application, the power output is a maximum when $Q_{l}=Q_{0} / 2$. The higher the Q_{l}, however, the more the output power depends on temperature if the cavity is not correctly tuned to the excitation frequency. The unloaded quality factor Q_{0} of the BCM1 and BCM2 cavities was near 3000 , while the loaded quality factor Q_{l} was nominally $500 .{ }^{3}$

A. 3 The BCM Electronics

BCM1 and BCM2 employed a down-converter and an RMS-to-DC device to measure RF power coupled from the cavity (see Fig. A.4). The 1497 MHz signal from the cavity was mixed down to 100 kHz , filtered, and input to a precision RMS-to-DC chip, the Analog Devices AD637. Switchable gain preceded the AD637, which allowed us to keep the input signal level in the nominal operating range of the device for a wide range of beam currents. As with the Unser monitor, the analog output of the AD637 was input to a preamplifier/level shifter, a V-F converter, and finally to a scaler (which was read out by the data acquisition system every two seconds).

BCM3 employed electronics similar to those of BCM1 and BCM2. The major differences were a higher down-conversion frequency of 1 MHz , a lack of switchable gain, and the method used to read out the scaler.

A. 4 Frequency Structure of the Hall C Beam

It is useful when dealing with the resonant cavities to look at a simple model of the frequency structure of the beam delivered to Hall C. We assume that the beam is composed of an infinite train of identical pulses (arriving at 499 MHz). First we note two properties of the Fourier Transform (FT):

1. $f\left(t+t_{0}\right) \Longleftrightarrow F(\omega) e^{j \omega t_{0}} \quad$ (time translation)
2. $a f(t)+b g(t) \Longleftrightarrow a F(\omega) \div b G(\omega)$
(linearity)

[^46]

Figure A.4: A simplified schematic of the electronics used with BCM1 and BCM2.

Let each pulse in the train be described by the FT pair $f(t) \Longleftrightarrow F(\omega)$. Then in the time domain the pulse train is

$$
\begin{aligned}
\operatorname{train}(t) & =\sum_{n=-\infty}^{\infty} f\left(t+n t_{0}\right) \\
& =\cdots+j\left(t-2 t_{0}\right)+f\left(t-t_{0}\right)+f(t)+f\left(t+t_{0}\right)+\ldots
\end{aligned}
$$

whose FT (using properties 1 and 2) is

$$
\begin{aligned}
\operatorname{Train}(\omega) & =\ldots+F(\omega) e^{-j \omega 2 t_{0}}+F(\omega) e^{-j \omega t_{0}}+F(\omega) e^{-j 0}+F(\omega) e^{j \omega t_{0}}+\ldots \\
& =F(\omega) \sum_{n=-\infty}^{\infty} e^{j \omega n t_{0}}
\end{aligned}
$$

The infinite sum is an infinite train of δ functions (in the ω domain) at $\omega=\left(2 \pi / t_{0}\right) i$, where $i=-\infty, \ldots,-1,0,1, \ldots, \infty$. In other words, The FT of an infinite train of pulses (with
period t_{0}) each of form $f\left(t_{0}\right)$ is $F(\omega)$ - [an infinite train of δ functions (with period $\left.\left.\omega=(2 \pi) / t_{0}\right)\right]$. We may apply this to a simple model of the beam, modeling the individual beam pulse as a Gaussian (whose FT is also a Gaussian):

The FT of the infinite pulse train is then the FT of the individual pulse multiplied by a train of delta functions:

And the end result in the frequency domain is

Thus while the normal 'chopped' beam into Hall C was 499 MHz , the resonant cavity was excited by the third harmonic at 1497 MHz .

Note that since the Gaussian beam pulse (in the time domain) would have a duration on the order of a few picoseconds, the Gaussian envelope of the δ functions (in the frequency domain) would be very wide (on the order of several hundred GHz). For all practical purposes, the magnitude of the 1497 MHz third harmonic was the same as that of the 499 HMz fundamental. Therefore: operation of the BCM's was the same with 'chopped' 499 MHz beam as it would have been with 'unchopped' 1497 MHz structure.

Appendix B

Optimization of Reconstruction

Matrix Elements

Optimization of the matrix elements $M_{j k l m}$ for each reconstructed quantity $X_{t a r}$ of each spectrometer was done using stand-alone code. Reconstruction of each quantity ($\delta, y_{\text {tar }}, x_{\text {tar }}^{\prime}$, and $y_{\text {tar }}^{\prime}$) was optimized individually, with iteration over all four quantities as necessary.

For any of the four quantities the optimization involved several steps, utilizing data taken during previous experiments and later checked using similar data taken during the present experiment. An initial set of matrix elements was obtained from a COSY model of the spectrometer's magnetic elements. The resulting reconstructed quantities were then compared with known values, and the difference between the two minimized by varying the matrix elements.

In the case of the two slopes $x_{\text {tar }}^{\prime}$ and $y_{\text {tar }}^{\prime}$, reconstruction was optimized using sieve slit data. ${ }^{1}$ For a fixed z target position the data were mapped (on an event-by-event basis)

1. from the midplane of the drift chambers to the true optical focal plane via a drift and rotation;
2. from the optical focal plane back to the target using Eq. 4.3 on page 88 (which yielded reconstructed target quantities);

[^47]3. from the target back to the sieve slit via a drift.

If the difference between the reconstructed position at the sieve and the center of an actual sieve hole was less than the radius of the hole, the event was assumed to have passed through that hole. Those events for which a successful hole assignment had been made were then used to find matrix elements that minimized the difference between the reconstructed target angles and the known angles through the center of the corresponding sieve holes. ${ }^{2}$ A portion of the sieve data was reserved for checking the results of the fit.

After an initial fit was completed for the central target position $z=0$, the sieve runs for other target positions were added to the initial data set and the procedure repeated. For every event the z position was known, and the matrix elements contributing to $y_{\text {tar }}$ were optimized by minimizing the difference between reconstructed and actual $y_{\text {tar }}$. After reasonable fits to $x_{\text {tar }}^{\prime}$, $y_{\text {tar }}^{\prime}$, and $y_{\text {tar }}$ were obtained, the optimization process was applied in similar fashion to the data sets at different δ. Here again the matrix elements were optimized by minimizing the difference between reconstructed and actual δ. The entire procedure was iterated until the matrix elements converged (see Figs. B.I and B.2). At that point, focal plane quantities for ${ }^{1} \mathrm{H}\left(e, e^{\prime}\right) p$ data were checked to ensure that they exhibited no dependence on W^{2}.

Once the fits of the matrix elements $M_{j k l m}$ for the individual spectrometers were satisfactory, the constraints imposed by the known solid target and sieve slit positions, together with ${ }^{1} \mathrm{H}\left(e, e^{\prime}\right) p$ and ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ data taken during this experiment, were used to determine zeroth-order matrix elements (i.e., the offsets x_{0} and similar of Eq. 4.3 on page 88). ${ }^{3}$ The general procedure was to

1. Fix $y_{\text {tar }}^{\prime}$ and $x_{\text {tar }}^{\prime}$ offsets of the SOS to about the 1 mrad level using the known sieve position.
2. Adjust $S O S$ and HMS $y_{t a r}$ offsets so that the reconstructed positions reflected known position of the cryogenic target.
3. Adjust the SOS momentum and $y_{\text {tar }}^{\prime}$ offsets together with the beam energy in order to find the best match to the Monte Carlo δ and $y_{\text {tar }}^{\prime}$ distributions and the most robust reproduction

[^48]of $W=m_{p}$ and $\left|\mathrm{k}_{f}\right|-\left|\mathrm{k}_{f, \text { calc }}\right|=0$ over all available ${ }^{1} \mathrm{H}\left(e, e^{\prime}\right) p$ data. Here $\left|\mathbf{k}_{f, \text { calc }}\right|=E[1+$ $\left.\left(2 E / m_{p}\right) \sin ^{2}\left(\theta_{c} / 2\right)\right]^{-1}$, the momentum of the elastically scattered electron as calculated from its scattering angle.
4. Adjust the $x_{\text {tar }}^{\prime}$ offset of the HMS to center the out-of-plane component of missing momentum for ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$.
5. Adjust the $y_{\text {tar }}^{\prime}$ offset of the HMS to correctly reconstruct the scattering angle of the proton in ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ as calculated from the scattering angle of the elastic electron.
6. Adjust the momentum offset of the HMS to correctly reconstruct the momentum of the proton in ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ as calculated from the scattering angle of the elastic electron.

In all cases, the adjustments to zeroth-order matrix elements were within the expected uncertainties of the quantity in question.

For ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ scattering, the three-momentum transfer q (calculated from electron spectrometer and beam quantities) and the three-momentum p_{f} of the outgoing proton (measured by the proton spectrometer) should lie in the same direction. ${ }^{4}$ Fig. B. 3 shows the distribution of $\theta_{p q}$, the angle between \mathbf{q} and \mathbf{p}_{f}, summed over three elastic settings covering much of the spectrometer phase space populated by the resonance data in this experiment. The narrow distribution (zero is excluded by vanishing phase space) is indicative of the quality of the reconstruction and the good angular agreement between the spectrometers.

[^49]SOS Sieve Reconstruction

Figure B.1: SOS $y_{\text {tar }}$ and sieve slit reconstruction. Upper Left) Reconstructed $y_{\text {tar }}$. Three runs are shown, each using a different solid target position along the beamline $\left(z_{\text {tar }}=-2,0\right.$, and 2 cm , corresponding to $y_{\text {tar }}=-1,0$, and 1 cm , indicated by lines). Upper Right) Reconstructed $y_{\text {tar }}^{\prime}$ (inplane slope) projected to the sieve slit. The lines indicate the hole positions. The filled histogram is that of the $y_{\mathrm{tar}}=0$ run, while the unfilled is the sum of all three runs. Lower Left) Reconstructed $x_{\text {tar }}^{\prime}$ (out-of-plane slope) projected to the sieve slit. The lines indicate the hole positions. Filled and unfilled histograms are the same as in the previous plot. Lower Right) Reconstructed $x_{\text {tar }}^{\prime}$ versus $y_{\text {tar }}^{\prime}$, projected to the sieve, showing the sieve hole pattern. For orientation purposes, two of the off-center hole positions actually have no holes, and the central hole is half the diameter of the other holes.

HMS Sieve Reconstruction

Figure B.2: HMS $y_{\text {tar }}$ and sieve slit reconstruction. The four histograms are the same as those in Fig. B.1.

Figure B.3: The distribution of $\theta_{p q}$ summed over three ${ }^{1} \mathrm{H}\left(e, e^{\prime} p\right)$ settings.

Appendix C

Tabulated Cross Section Data

The differential cross section data are given below. The data are also available in electronic form upon request from Jefferson Lab (contact Chris Armstrong, csa@jlab.org, or the Jefferson Lab User Liaison office). The data include the correction to the nominal Q^{2} value (see Section 4.3.9). Entries containing zeros for the cross section and for the corresponding errors are those without experimental coverage, and must be handled appropriately when performing fits to the data. Both the statistical and systematic uncertainties are absolute (not fractional).

$Q^{2}=2.4 \mathrm{GeV}^{2} / c^{2}$						
W	$\cos \theta_{\eta}^{*}$	ϕ_{η}	ε	$\frac{d^{2} \sigma}{d \Omega_{\eta}}$	stat err	syst err
$[\mathrm{GeV}]$		$[\mathrm{deg}]$.		$\left[\frac{\mu b}{s r}\right]$	$[\sigma]$	$[\sigma]$
1.490	-.90	-150.0	.515	.186	.023	.026
1.490	-.90	-90.0	.517	.188	.022	.027
1.490	-.90	-30.0	.515	.148	.021	.021
1.490	-.90	30.0	.511	.136	.019	.019
1.490	-.90	90.0	.516	.125	.016	.018
1.490	-.90	150.0	.515	.184	.023	.026
1.490	-.70	-150.0	.520	.156	.024	.022
1.490	-.70	-90.0	.512	.140	.021	.020
1.490	-.70	-30.0	.509	.181	.027	.026
1.490	-.70	30.0	.514	.214	.028	.030
1.490	-.70	90.0	.514	.140	.022	.020
1.490	-.70	150.0	.514	.184	.023	.026
1.490	-.50	-150.0	.512	.181	.023	.025
1.490	-.50	-90.0	.513	.162	.023	.023
1.490	-.50	-30.0	.509	.179	.025	.025
					162	

1.490	-. 50	30.0	. 510	. 163	. 025	. 023
1.490	-. 50	90.0	. 516	. 196	. 025	. 028
1.490	-. 50	150.0	. 514	. 170	. 022	. 024
1.490	-. 30	-150.0	. 513	. 123	. 016	. 017
1.490	-. 30	-90.0	. 510	. 145	. 022	. 020
1.490	-. 30	-30.0	. 514	. 179	. 021	. 025
1.490	-. 30	30.0	. 517	. 190	. 025	. 027
1.490	-. 30	90.0	. 516	. 149	. 021	. 021
1.490	-. 30	150.0	. 514	. 172	. 021	. 024
1.490	-. 10	-150.0	. 515	. 133	. 019	. 019
1.490	-. 10	-90.0	. 515	. 193	. 028	. 027
1.490	-. 10	-30.0	. 513	. 151	. 019	. 021
1.490	-. 10	30.0	. 511	. 179	. 021	. 025
1.490	-. 10	90.0	. 512	. 190	. 029	. 027
1.490	-. 10	150.0	. 511	. 139	. 018	. 020
1.490	. 10	-150.0	. 515	. 145	. 023	. 020
1.490	. 10	-90.0	. 514	. 198	. 036	. 028
1.490	. 10	-30.0	. 514	. 155	. 022	. 022
1.490	. 10	30.0	. 516	. 175	. 027	. 025
1.490	. 10	90.0	. 510	. 189	. 032	. 027
1.490	. 10	150.0	. 514	. 131	. 021	. 018
1.490	. 30	-150.0	. 514	. 153	. 027	. 022
1.490	. 30	-90.0	. 512	. 162	. 041	. 023
1.490	. 30	-30.0	. 516	. 120	. 024	. 017
1.490	. 30	30.0	. 512	. 152	. 025	. 021
1.490	. 30	90.0	. 515	. 109	. 030	. 015
1.490	. 30	150.0	. 516	. 189	. 034	. 027
1.490	. 50	-150.0	. 516	. 170	. 030	. 024
1.490	. 50	-90.0	. 515	. 165	. 037	. 023
1.490	. 50	-30.0	. 515	. 175	. 028	. 025
1.490	. 50	30.0	. 512	. 149	. 026	. 021
1.490	. 50	90.0	. 512	. 179	. 038	. 025
1.490	. 50	150.0	. 517	. 175	. 034	. 025
1.490	. 70	-150.0	. 507	. 172	. 029	. 024
1.490	. 70	-90.0	. 519	. 149	. 029	. 021
1.490	. 70	-30.0	. 516	. 143	. 023	. 020
1.490	. 70	30.0	. 515	. 153	. 029	. 022
1.490	. 70	90.0	. 511	. 153	. 033	. 022
1.490	. 70	150.0	. 517	. 178	. 031	. 025
1.490	. 90	-150.0	. 518	. 164	. 028	. 023
1.490	. 90	-90.0	. 514	. 168	. 029	. 024
1.490	. 90	-30.0	. 512	. 170	. 027	. 024
1.490	. 90	30.0	. 520	. 160	. 026	. 023
1.490	. 90	90.0	. 510	. 130	. 025	. 018
1.490	. 90	150.0	. 511	. 119	. 022	. 017
1.515	-. 90	-150.0	. 512	. 356	. 029	. 017
1.515	-. 90	-90.0	. 513	. 350	. 025	. 017
1.515	-. 90	-30.0	. 513	. 312	. 022	. 015
1.515	-. 90	30.0	. 512	. 371	. 026	. 018
1.515	-. 90	90.0	. 513	. 292	. 023	. 014
1.515	-. 90	150.0	. 512	. 330	. 028	. 016
1.515	-. 70	-150.0	. 513	. 332	. 025	. 016
1.515	-. 70	-90.0	. 514	. 259	. 027	. 013
1.515	-. 70	-30.0	. 512	. 311	. 023	. 015
1.515	-. 70	30.0	. 512	. 362	. 026	. 018

1.515	-. 70	90.0	. 512	. 287	. 027	. 014
1.515	-. 70	150.0	. 511	. 349	. 025	. 017
1.515	-. 50	-150.0	. 512	. 311	. 028	. 015
1.515	-. 50	-90.0	. 000	. 000	. 000	. 000
1.515	-. 50	-30.0	. 513	. 339	. 030	. 017
1.515	-. 50	30.0	. 515	. 378	. 034	. 018
1.515	-. 50	90.0	. 515	. 392	. 051	. 019
1.515	-. 50	150.0	. 515	. 355	. 029	. 017
1.515	-. 30	-150.0	. 513	. 327	. 028	. 016
1.515	-. 30	-90.0	. 000	. 000	. 000	. 000
1.515	-. 30	-30.0	. 514	. 348	. 030	. 017
1.515	-. 30	30.0	. 515	. 376	. 033	. 018
1.515	-. 30	90.0	. 000	. 000	. 000	. 000
1.515	-. 30	150.0	. 510	. 341	. 028	. 017
1.515	-. 10	-150.0	. 511	. 350	. 031	. 017
1.515	-. 10	-90.0	. 000	. 000	. 000	. 000
1.515	-. 10	-30.0	. 515	. 343	. 028	. 017
1.515	-. 10	30.0	. 514	. 375	. 030	. 018
1.515	-. 10	90.0	. 000	. 000	. 000	. 000
1.515	-. 10	150.0	. 513	. 323	. 028	. 016
1.515	. 10	-150.0	. 514	. 298	. 034	. 015
1.515	. 10	-90.0	. 000	. 000	. 000	. 000
1.515	. 10	-30.0	. 512	. 285	. 029	. 014
1.515	. 10	30.0	. 513	. 385	. 037	. 019
1.515	. 10	90.0	. 000	. 000	. 000	. 000
1.515	. 10	150.0	. 515	. 401	. 045	. 020
1.515	. 30	-150.0	. 512	. 317	. 042	. 015
1.515	. 30	-90.0	. 000	. 000	. 000	. 000
1.515	. 30	-30.0	. 508	. 332	. 040	. 016
1.515	. 30	30.0	. 511	. 339	. 040	. 016
1.515	. 30	90.0	. 000	. 000	. 000	. 000
1.515	. 30	150.0	. 511	. 264	. 041	. 013
1.515	. 50	-150.0	. 513	. 309	. 037	. 015
1.515	. 50	-90.0	. 000	. 000	. 000	. 000
1.515	. 50	-30.0	. 512	. 373	. 036	. 018
1.515	. 50	30.0	. 511	. 319	. 032	. 016
1.515	. 50	90.0	. 000	. 000	. 000	. 000
1.515	. 50	150.0	. 512	. 369	. 042	. 018
1.515	. 70	-150.0	. 515	. 271	. 042	. 013
1.515	. 70	-90.0	. 507	. 430	. 105	. 021
1.515	. 70	-30.0	. 517	. 348	. 046	. 017
1.515	. 70	30.0	. 515	. 367	. 048	. 018
1.515	. 70	90.0	. 512	. 435	. 082	. 021
1.515	. 70	150.0	. 515	. 429	. 051	. 021
1.515	. 90	-150.0	. 512	. 389	. 047	. 019
1.515	. 90	-90.0	. 513	. 398	. 053	. 019
1.515	. 90	-30.0	. 513	. 296	. 040	. 014
1.515	. 90	30.0	. 512	. 348	. 043	. 017
1.515	. 90	90.0	. 514	. 244	. 038	. 012
1.515	. 90	150.0	. 512	. 287	. 039	. 014
1.540	-. 90	-150.0	. 513	. 408	. 038	. 028
1.540	-. 90	-90.0	. 511	. 317	. 031	. 021
1.540	-. 90	-30.0	. 511	. 312	. 026	. 021
1.540	-. 90	30.0	. 509	. 356	. 029	. 024
1.540	-. 90	90.0	. 508	. 315	. 031	. 021

1.540	-. 90	150.0	. 512	. 336	. 033	. 023
1.540	-. 70	-150.0	. 511	. 311	. 024	. 021
1.540	-. 70	-90.0	. 000	. 000	. 000	. 000
1.540	-. 70	-30.0	. 507	. 373	. 025	. 025
1.540	-. 70	30.0	. 512	. 342	. 024	. 023
1.540	-. 70	90.0	. 000	. 000	. 000	. 000
1.540	-. 70	150.0	. 510	. 339	. 025	. 023
1.540	-. 50	-150.0	. 509	. 353	. 036	. 024
1.540	-. 50	-90.0	. 000	. 000	. 000	. 000
1.540	-. 50	-30.0	. 509	. 394	. 029	. 027
1.540	-. 50	30.0	. 510	. 326	. 026	. 022
1.540	-. 50	90.0	. 000	. 000	. 000	. 000
1.540	-. 50	150.0	. 507	. 306	. 028	. 021
1.540	-. 30	-150.0	. 509	. 330	. 042	. 022
1.540	-. 30	-90.0	. 000	. 000	. 000	. 000
1.540	-. 30	-30.0	. 510	. 367	. 035	. 025
1.540	-. 30	30.0	. 509	. 450	. 038	. 030
1.540	-. 30	90.0	. 000	. 000	. 000	. 000
1.540	-. 30	150.0	. 508	. 362	. 044	. 024
1.540	-. 10	-150.0	. 515	. 303	. 046	. 020
1.540	-. 10	-90.0	. 000	. 000	. 000	. 000
1.540	-. 10	-30.0	. 508	. 314	. 030	. 021
1.540	-. 10	30.0	. 513	. 360	. 033	. 024
1.540	-. 10	90.0	. 000	. 000	. 000	. 000
1.540	-. 10	150.0	. 515	. 313	. 045	. 021
1.540	. 10	-150.0	. 000	. 000	. 000	. 000
1.540	. 10	-90.0	. 000	. 000	. 000	. 000
1.540	. 10	-30.0	. 509	. 351	. 038	. 024
1.540	. 10	30.0	. 511	. 404	. 042	. 027
1.540	. 10	90.0	. 000	. 000	. 000	. 000
1.540	. 10	150.0	. 510	. 354	. 080	. 024
1.540	. 30	-150.0	. 000	. 000	. 000	. 000
1.540	. 30	-90.0	. 000	. 000	. 000	. 000
1.540	. 30	-30.0	. 511	. 334	. 048	. 023
1.540	. 30	30.0	. 510	. 307	. 043	. 021
1.540	. 30	90.0	. 000	. 000	. 000	. 000
1.540	. 30	150.0	. 000	. 000	. 000	. 000
1.540	. 50	-150.0	. 514	. 194	. 084	. 013
1.540	. 50	-90.0	. 000	. 000	. 000	. 000
1.540	. 50	-30.0	. 508	. 361	. 066	. 024
1.540	. 50	30.0	. 512	. 330	. 064	. 022
1.540	. 50	90.0	. 000	. 000	. 000	. 000
1.540	. 50	150.0	. 516	. 377	. 099	. 025
1.540	. 70	-150.0	. 509	. 325	. 082	. 022
1.540	. 70	-90.0	. 000	. 000	. 000	. 000
1.540	. 70	-30.0	. 512	. 299	. 056	. 020
1.540	. 70	30.0	. 510	. 340	. 063	. 023
1.540	. 70	90.0	. 000	. 000	. 000	. 000
1.540	. 70	150.0	. 512	. 343	. 078	. 023
1.540	. 90	-150.0	. 504	. 355	. 072	. 024
1.540	. 90	-90.0	. 000	. 000	. 000	. 000
1.540	. 90	-30.0	. 504	. 266	. 061	. 018
1.540	. 90	30.0	. 504	. 324	. 060	. 022
1.540	. 90	90.0	. 000	. 000	. 000	. 000
1.540	. 90	150.0	. 506	. 286	. 060	. 019

1.565	-.90	-150.0	.507	.260	.022	.018
1.565	-.90	-90.0	.505	.198	.021	.014
1.565	-.90	-30.0	.508	.239	.019	.017
1.565	-.90	30.0	.505	.291	.021	.020
1.565	-.90	90.0	.507	.239	.024	.017
1.565	-.90	150.0	.506	.286	.021	.020
1.565	-.70	-150.0	.506	.310	.042	.021
1.565	-.70	-90.0	.000	.000	.000	.000
1.565	-.70	-30.0	.506	.314	.030	.022
1.565	-.70	30.0	.505	.273	.027	.019
1.565	-.70	90.0	.000	.000	.000	.000
1.565	-.70	150.0	.508	.232	.027	.016
1.565	-.50	-150.0	.511	.280	.040	.019
1.565	-.50	-90.0	.000	.000	.000	.000
1.565	-.50	-30.0	.506	.337	.029	.023
1.565	-.50	30.0	.509	.267	.024	.018
1.565	-.50	90.0	.000	.000	.000	.000
1.565	-.50	150.0	.509	.254	.035	.018
1.565	-.30	-150.0	.000	.000	.000	.000
1.565	-.30	-90.0	.000	.000	.000	.000
1.565	-.30	-30.0	.507	.313	.036	.022
1.565	-.30	30.0	.506	.379	.040	.026
1.565	-.30	90.0	.000	.000	.000	.000
1.565	-.30	150.0	.000	.000	.000	.000
1.565	-.10	-150.0	.000	.000	.000	.000
1.565	-.10	-90.0	.000	.000	.000	.000
1.565	-.10	-30.0	.507	.249	.029	.017
1.565	-.10	30.0	.506	.311	.034	.021
1.565	-.10	90.0	.000	.000	.000	.000
1.565	-.10	150.0	.000	.000	.000	.000
1.565	.10	-150.0	.000	.000	.000	.000
1.565	.10	-90.0	.000	.000	.000	.000
1.565	.10	-30.0	.503	.310	.047	.021
1.565	.10	30.0	.507	.285	.042	.020
1.565	.10	90.0	.000	.000	.000	.000
1.565	.10	150.0	.000	.000	.000	.000
1.565	.30	-150.0	.000	.000	.000	.000
1.565	.30	-90.0	.000	.000	.000	.000
1.565	.30	-30.0	.502	.240	.050	.017
1.565	.30	30.0	.506	.275	.051	.019
1.565	.30	90.0	.000	.000	.000	.000
1.565	.30	150.0	.000	.000	.000	.000
1.565	.50	-150.0	.000	.000	.000	.000
1.565	.50	-90.0	.000	.000	.000	.000
1.565	.50	-30.0	.000	.000	.000	.000
1.565	.50	30.0	.000	.000	.000	.000
1.565	.50	90.0	.000	.000	.000	.000
1.565	.50	150.0	.000	.000	.000	.000
1.565	.70	-150.0	.000	.000	.000	.000
1.565	.70	-90.0	.000	.000	.000	.000
1.565	.70	-30.0	.000	.000	.000	.000
1.565	.70	30.0	.503	.309	.087	.021
1.565	.70	90.0	.000	.000	.000	.000
1.70	150.0	.000	.000	.000	.000	
1.90	-150.0	.000	.000	.000	.000	
1						
105						

1.565	. 90	-90.0	. 000	. 000	. 000	. 000
1.565	. 90	-30.0	. 000	. 000	. 000	. 000
1.565	. 90	30.0	. 000	. 000	. 000	. 000
1.565	. 90	90.0	. 000	. 000	. 000	. 000
1.565	. 90	150.0	. 000	. 000	. 000	. 000
1.590	-. 90	-150.0	. 504	. 200	. 019	. 016
1.590	-. 90	-90.0	. 507	. 182	. 023	. 015
1.590	-. 90	-30.0	. 505	. 177	. 015	. 014
1.590	-. 90	30.0	. 507	. 226	. 017	. 018
1.590	-. 90	90.0	. 503	. 203	. 024	. 016
1.590	-. 90	150.0	. 504	. 198	. 018	. 016
1.590	-. 70	-150.0	. 507	. 195	. 037	. 016
1.590	-. 70	-90.0	. 000	. 000	. 000	. 000
1.590	-. 70	-30.0	. 510	. 210	. 026	. 017
1.590	-. 70	30.0	. 504	. 214	. 025	. 017
1.590	-. 70	90.0	. 000	. 000	. 000	. 000
1.590	-. 70	150.0	. 506	. 236	. 039	. 019
1.590	-. 50	-150.0	. 000	. 000	. 000	. 000
1.590	-. 50	-90.0	. 000	. 000	. 000	. 000
1.590	-. 50	-30.0	. 501	. 298	. 033	. 024
1.590	-. 50	30.0	. 504	. 236	. 027	. 019
1.590	-. 50	90.0	. 000	. 000	. 000	. 000
1.590	-. 50	150.0	. 000	. 000	. 000	. 000
1.590	-. 30	-150.0	. 000	. 000	. 000	. 000
1.590	-. 30	-90.0	. 000	. 000	. 000	. 000
1.590	-. 30	-30.0	. 502	. 192	. 036	. 015
1.590	-. 30	30.0	. 505	. 254	. 038	. 020
1.590	-. 30	90.0	. 000	. 000	. 000	. 000
1.590	-. 30	150.0	. 000	. 000	. 000	. 000
1.590	-. 10	-150.0	. 000	. 000	. 000	. 000
1.590	-. 10	-90.0	. 000	. 000	. 000	. 000
1.590	-. 10	-30.0	. 504	. 185	. 025	. 015
1.590	-. 10	30.0	. 506	. 170	. 029	. 014
1.590	-. 10	90.0	. 000	. 000	. 000	. 000
1.590	-. 10	150.0	. 000	. 000	. 000	. 000
1.590	. 10	-150.0	. 000	. 000	. 000	. 000
1.590	. 10	-90.0	. 000	. 000	. 000	. 000
1.590	. 10	-30.0	. 499	. 220	. 057	. 018
1.590	. 10	30.0	. 503	. 201	. 053	. 016
1.590	. 10	90.0	. 000	. 000	. 000	. 000
1.590	. 10	150.0	. 000	. 000	. 000	. 000
1.590	. 30	-150.0	. 000	. 000	. 000	. 000
1.590	. 30	-90.0	. 000	. 000	. 000	. 000
1.590	. 30	-30.0	. 498	. 471	. 131	. 038
1.590	. 30	30.0	. 497	. 215	. 074	. 017
1.590	. 30	90.0	. 000	. 000	. 000	. 000
1.590	. 30	150.0	. 000	. 000	. 000	. 000
1.590	. 50	-150.0	. 000	. 000	. 000	. 000
1.590	. 50	-90.0	. 000	. 000	. 000	. 000
1.590	. 50	-30.0	. 000	. 000	. 000	. 000
1.590	. 50	30.0	. 000	. 000	. 000	. 000
1.590	. 50	90.0	. 000	. 000	. 000	. 000
1.590	. 50	150.0	. 000	. 000	. 000	. 000
1.590	. 70	-150.0	. 000	. 000	. 000	. 000
1.590	. 70	-90.0	. 000	. 000	. 000	. 000

1.590	.70	-30.0	.000	.000	.000	.000
1.590	.70	30.0	.000	.000	.000	.000
1.590	.70	90.0	.000	.000	.000	.000
1.590	.70	150.0	.000	.000	.000	.000
1.590	.90	-150.0	.000	.000	.000	.000
1.590	.90	-90.0	.000	.000	.000	.000
1.590	.90	-30.0	.000	.000	.000	.000
1.590	.90	30.0	.000	.000	.000	.000
1.590	.90	90.0	.000	.000	.000	.000
1.590	.90	150.0	.000	.000	.000	.000
1.615	-.90	-150.0	.503	.149	.024	.017
1.615	-.90	-90.0	.499	.158	.033	.018
1.615	-.90	-30.0	.502	.154	.018	.017
1.615	-.90	30.0	.504	.187	.020	.021
1.615	-.90	90.0	.505	.106	.025	.012
1.615	-.90	150.0	.503	.114	.018	.013
1.615	-.70	-150.0	.000	.000	.000	.000
1.615	-.70	-90.0	.000	.000	.000	.000
1.615	-.70	-30.0	.502	.145	.024	.016
1.615	-.70	30.0	.505	.149	.027	.017
1.615	-.70	90.0	.000	.000	.000	.000
1.615	-.70	150.0	.000	.000	.000	.000
1.615	-.50	-150.0	.000	.000	.000	.000
1.615	-.50	-90.0	.000	.000	.000	.000
1.615	-.50	-30.0	.501	.158	.029	.018
1.615	-.50	30.0	.501	.148	.029	.017
1.615	-.50	90.0	.000	.000	.000	.000
1.615	-.50	150.0	.000	.000	.000	.000
1.615	-.30	-150.0	.000	.000	.000	.000
1.615	-.30	-90.0	.000	.000	.000	.000
1.615	-.30	-30.0	.502	.190	.040	.021
1.615	-.30	30.0	.505	.198	.037	.022
1.615	-.30	90.0	.000	.000	.000	.000
1.615	-.30	150.0	.000	.000	.000	.000
1.615	-.10	-150.0	.000	.000	.000	.000
1.615	-.10	-90.0	.000	.000	.000	.000
1.615	-.10	-30.0	.500	.138	.033	.016
1.615	-.10	30.0	.499	.118	.030	.013
1.615	-.10	90.0	.000	.000	.000	.000
1.615	-.10	150.0	.000	.000	.000	.000
1.615	.10	-150.0	.000	.000	.000	.000
1.615	.10	-90.0	.000	.000	.000	.000
1.615	.10	-30.0	.492	.129	.058	.014
1.615	.10	30.0	.503	.120	.056	.014
1.615	.10	90.0	.000	.000	.000	.000
1.615	.10	150.0	.000	.000	.000	.000
1.615	.30	-150.0	.000	.000	.000	.000
1.615	.30	-90.0	.000	.000	.000	.000
1.615	. .30	-30.0	.000	.000	.000	.000
1.615	.30	30.0	.000	.000	.000	.000
1.615	.30	90.0	.000	.000	.000	.000
1.615	.30	150.0	.000	.000	.000	.000
1.615	.50	-150.0	.000	.000	.000	.000
1.615	. .50	-90.0	.000	.000	.000	.000
	.50	-30.0	.000	.000	.000	.000
15						
10						

1.615	.50	30.0	.000	.000	.000	.000
1.615	.50	90.0	.000	.000	.000	.000
1.615	.50	150.0	.000	.000	.000	.000
1.615	.70	-150.0	.000	.000	.000	.000
1.615	.70	-90.0	.000	.000	.000	.000
1.615	.70	-30.0	.000	.000	.000	.000
1.615	.70	30.0	.000	.000	.000	.000
1.615	.70	90.0	.000	.000	.000	.000
1.615	.70	150.0	.000	.000	.000	.000
1.615	.90	-150.0	.000	.000	.000	.000
1.615	.90	-90.0	.000	.000	.000	.000
1.615	.90	-30.0	.000	.000	.000	.000
1.615	.90	30.0	.000	.000	.000	.000
1.615	.90	90.0	.000	.000	.000	.000
1.615	.90	150.0	.000	.000	.000	.000

$Q^{2}=3.6 \mathrm{GeV}^{2} / c^{2}$						
$\begin{gathered} W \\ {[\mathrm{GeV}]} \end{gathered}$	$\cos \theta_{\eta}^{*}$	$\begin{gathered} \phi_{\eta} \\ \text { [deg.] } \end{gathered}$	ε	$\begin{aligned} & \frac{d^{2} \pi}{d \Omega} \\ & {\left[\frac{\mu b}{s r}\right]} \end{aligned}$	stat err $[\sigma]$	syst err $[\sigma]$
1.490	-. 90	-150.0	. 464	. 091	. 014	. 015
1.490	-. 90	-90.0	. 468	. 081	. 013	. 014
1.490	-. 90	-30.0	. 462	. 091	. 016	. 015
1.490	-. 90	30.0	. 468	. 107	. 020	. 018
1.490	-. 90	90.0	. 466	. 095	. 015	. 016
1.490	-. 90	150.0	. 461	. 070	. 013	. 012
1.490	-. 70	-150.0	. 468	. 086	. 015	. 015
1.490	-. 70	-90.0	. 463	. 094	. 017	. 016
1.490	-. 70	-30.0	. 466	. 080	. 016	. 014
1.490	-. 70	30.0	. 465	. 094	. 016	. 016
1.490	-. 70	90.0	. 464	. 110	. 018	. 019
1.490	-. 70	150.0	. 461	. 084	. 016	. 014
1.490	-. 50	-150.0	. 463	. 088	. 015	. 015
1.490	-. 50	-90.0	. 461	. 072	. 013	. 012
1.490	-. 50	-30.0	. 462	. 099	. 017	. 017
1.490	-. 50	30.0	. 464	. 085	. 016	. 014
1.490	-. 50	90.0	. 462	. 109	. 016	. 019
1.490	-. 50	150.0	. 463	. 110	. 018	. 019
1.490	-. 30	-150.0	. 464	. 077	. 015	. 013
1.490	-. 30	-90.0	. 461	. 079	. 013	. 013
1.490	-. 30	-30.0	. 465	. 071	. 013	. 012
1.490	-. 30	30.0	. 469	. 088	. 015	. 015
1.490	-. 30	90.0	. 462	. 108	. 017	. 018
1.490	-. 30	150.0	. 464	. 112	. 019	. 019
1.490	-. 10	-150.0	. 464	. 091	. 015	. 016
1.490	-. 10	-90.0	. 460	. 093	. 016	. 016
1.490	-. 10	-30.0	. 463	. 076	. 014	. 013
1.490	-. 10	30.0	. 466	. 091	. 016	. 015
1.490	-. 10	90.0	. 461	. 095	. 015	. 016
1.490	-. 10	150.0	. 463	. 096	. 016	. 016
1.490	. 10	-150.0	. 461	. 130	. 023	. 022
1.490	. 10	-90.0	. 465	. 071	. 017	. 012
1.490	. 10	-30.0	. 464	. 089	. 017	. 015
1.490	. 10	30.0	. 463	. 109	. 020	. 019
1.490	. 10	90.0	. 465	. 111	. 019	. 019
1.490	. 10	150.0	. 465	. 103	. 018	. 017
1.490	. 30	-150.0	. 462	. 119	. 024	. 020
1.490	. 30	-90.0	. 465	. 085	. 018	. 014
1.490	. 30	-30.0	. 466	. 119	. 029	. 020
1.490	. 30	30.0	. 465	. 073	. 022	. 012
1.490	. 30	90.0	. 466	. 103	. 026	. 018
1.490	. 30	150.0	. 461	. 105	. 022	. 018
1.490	. 50	-150.0	. 462	. 114	. 022	. 019
1.490	. 50	-90.0	. 460	. 118	. 021	. 020
1.490	. 50	-30.0	. 469	. 089	. 017	. 015
1.490	. 50	30.0	. 464	. 108	. 021	. 018
1.490	. 50	90.0	. 468	. 100	. 021	. 017
1.490	. 50	150.0	. 464	. 090	. 021	. 015

1.490	. 70	-150.0	. 463	. 066	. 016	. 011
1.490	. 70	-90.0	. 464	. 091	. 017	. 016
1.490	. 70	-30.0	. 460	. 081	. 016	. 014
1.490	. 70	30.0	. 463	. 089	. 018	. 015
1.490	. 70	90.0	. 464	. 098	. 019	. 017
1.490	. 70	150.0	. 461	. 101	. 018	. 017
1.490	. 90	-150.0	. 467	. 087	. 018	. 015
1.490	. 90	-90.0	. 463	. 105	. 020	. 018
1.490	. 90	-30.0	. 466	. 107	. 024	. 018
1.490	. 90	30.0	. 464	. 103	. 019	. 018
1.490	. 90	90.0	. 465	. 111	. 024	. 019
1.490	. 90	150.0	. 466	. 063	. 021	. 011
1.515	-. 90	-150.0	. 463	. 168	. 015	. 009
1.515	-. 90	-90.0	. 465	. 181	. 015	. 010
1.515	-. 90	-30.0	. 465	. 167	. 015	. 009
1.515	-. 90	30.0	. 465	. 152	. 014	. 008
1.515	-. 90	90.0	. 467	. 165	. 015	. 009
1.515	-. 90	150.0	. 462	. 154	. 015	. 008
1.515	-. 70	-150.0	. 462	. 152	. 014	. 008
1.515	-. 70	-90.0	. 462	. 145	. 016	. 008
1.515	-. 70	-30.0	. 467	. 171	. 016	. 009
1.515	-. 70	30.0	. 463	. 150	. 015	. 008
1.515	-. 70	90.0	. 461	. 209	. 020	. 011
1.515	-. 70	150.0	. 463	. 167	. 015	. 009
1.515	-. 50	-150.0	. 462	. 168	. 017	. 009
1.515	-. 50	-90.0	. 464	. 300	. 044	. 016
1.515	-. 50	-30.0	. 464	. 151	. 018	. 008
1.515	-. 50	30.0	. 462	. 158	. 018	. 008
1.515	-. 50	90.0	. 464	. 213	. 025	. 011
1.515	-. 50	150.0	. 462	. 151	. 018	. 008
1.515	-. 30	-150.0	. 463	. 132	. 019	. 007
1.515	-. 30	-90.0	. 459	. 171	. 028	. 009
1.515	-. 30	-30.0	. 461	. 171	. 016	. 009
1.515	-. 30	30.0	. 465	. 172	. 018	. 009
1.515	-. 30	90.0	. 466	. 142	. 031	. 008
1.515	-. 30	150.0	. 463	. 181	. 022	. 010
1.515	-. 10	-150.0	. 466	. 182	. 023	. 010
1.515	-. 10	-90.0	. 465	. 142	. 041	. 008
1.515	-. 10	-30.0	. 464	. 189	. 019	. 010
1.515	-. 10	30.0	. 460	. 178	. 018	. 010
1.515	-. 10	90.0	. 463	. 178	. 029	. 010
1.515	-. 10	150.0	. 462	. 145	. 021	. 008
1.515	. 10	-150.0	. 464	. 205	. 038	. 011
1.515	. 10	-90.0	. 000	. 000	. 000	. 000
1.515	. 10	-30.0	. 464	. 166	. 021	. 009
1.515	. 10	30.0	. 465	. 163	. 021	. 009
1.515	. 10	90.0	. 463	. 252	. 054	. 013
1.515	. 10	150.0	. 462	. 142	. 023	. 008
1.515	. 30	-150.0	. 461	. 218	. 043	. 012
1.515	. 30	-90.0	. 000	. 000	. 000	. 000
1.515	. 30	-30.0	. 465	. 216	. 024	. 012
1.515	. 30	30.0	. 464	. 171	. 022	. 009
1.515	. 30	90.0	. 458	. 207	. 056	. 011
1.515	. 30	150.0	. 463	. 143	. 031	. 008
1.515	. 50	-150.0	. 462	. 132	. 037	. 007

1.515	.50	-90.0	.461	.175	.036	.009
1.515	.50	-30.0	.464	.143	.017	.008
1.515	.50	30.0	.464	.212	.023	.011
1.515	.50	90.0	.459	.256	.044	.014
1.515	.50	150.0	.462	.182	.031	.010
1.515	.70	-150.0	.463	.146	.031	.008
1.515	.70	-90.0	.465	.299	.061	.016
1.515	.70	-30.0	.463	.169	.023	.009
1.515	.70	30.0	.463	.165	.022	.009
1.515	.70	90.0	.466	.218	.030	.012
1.515	.70	150.0	.463	.227	.038	.012
1.515	.90	-150.0	.461	.200	.036	.011
1.515	.90	-90.0	.463	.163	.027	.009
1.515	.90	-30.0	.466	.240	.039	.013
1.515	.90	30.0	.460	.196	.031	.010
1.515	.90	90.0	.461	.181	.032	.010
1.515	.90	150.0	.462	.142	.027	.008
1.540	-.90	-150.0	.460	.146	.014	.009
1.540	-.90	-90.0	.459	.138	.015	.008
1.540	-.90	-30.0	.460	.171	.014	.010
1.540	-.90	30.0	.457	.169	.015	.010
1.540	-.90	90.0	.459	.149	.015	.009
1.540	-.90	150.0	.460	.164	.015	.010
1.540	-.70	-150.0	.460	.149	.018	.009
1.540	-.70	-90.0	.460	.180	.021	.011
1.540	-.70	-30.0	.461	.167	.014	.010
1.540	-.70	30.0	.463	.142	.013	.008
1.540	-.70	90.0	.459	.183	.019	.011
1.540	-.70	150.0	.458	.155	.015	.009
1.540	-.50	-150.0	.462	.180	.018	.011
1.540	-.50	-90.0	.000	.000	.000	.000
1.540	-.50	-30.0	.459	.156	.015	.009
1.540	-.50	30.0	.458	.183	.016	.011
1.540	-.50	90.0	.000	.000	.000	.000
1.540	-.50	150.0	.463	.177	.019	.010
1.540	-.30	-150.0	.462	.134	.019	.008
1.540	-.30	-90.0	.000	.000	.000	.000
1.540	-.30	-30.0	.460	.161	.020	.009
1.540	-.30	30.0	.458	.170	.018	.010
1.540	-.30	90.0	.000	.000	.000	.000
1.540	-.30	150.0	.459	.190	.022	.011
1.540	-.10	-150.0	.463	.167	.022	.010
1.540	-.10	-90.0	.000	.000	.000	.000
1.540	-.10	-30.0	.461	.183	.020	.011
1.540	-.10	30.0	.458	.152	.018	.009
1.540	-.10	90.0	.000	.000	.000	.000
1.540	-.10	150.0	.462	.146	.018	.009
1.540	.10	-150.0	.462	.187	.037	.011
1.540	.10	-90.0	.000	.000	.000	.000
1.540	.10	-30.0	.459	.166	.023	.010
1.540	.10	30.0	.459	.158	.023	.009
1.540	.10	90.0	.000	.000	.000	.000
1.540	.10	150.0	.463	.163	.032	.010
1.540	.30	-150.0	-90.0	.463	.204	.039
	.012					
100	.000	.000	.000			
1						

1.540	.30	-30.0	.462	.164	.021	.010
1.540	.30	30.0	.460	.188	.022	.011
1.540	.30	90.0	.000	.000	.000	.000
1.540	.30	150.0	.463	.133	.031	.008
1.540	.50	-150.0	.000	.000	.000	.000
1.540	.50	-90.0	.000	.000	.000	.000
1.540	.50	-30.0	.458	.162	.031	.010
1.540	.50	30.0	.461	.178	.031	.010
1.540	.50	90.0	.000	.000	.000	.000
1.540	.50	150.0	.000	.000	.000	.000
1.540	.70	-150.0	.000	.000	.000	.000
1.540	.70	-90.0	.000	.000	.000	.000
1.540	.70	-30.0	.459	.173	.028	.010
1.540	.70	30.0	.460	.143	.024	.008
1.540	.70	90.0	.000	.000	.000	.000
1.540	.70	150.0	.000	.000	.000	.000
1.540	.90	-150.0	.000	.000	.000	.000
1.540	.90	-90.0	.000	.000	.000	.000
1.540	.90	-30.0	.449	.212	.049	.012
1.540	.90	30.0	.452	.151	.034	.009
1.540	.90	90.0	.000	.000	.000	.000
1.540	.90	150.0	.000	.000	.000	.000
1.565	-.90	-150.0	.455	.135	.011	.010
1.565	-.90	-90.0	.459	.111	.011	.008
1.565	-.90	-30.0	.457	.119	.011	.009
1.565	-.90	30.0	.454	.112	.009	.008
1.565	-.90	90.0	.457	.118	.011	.009
1.565	-.90	150.0	.454	.126	.011	.009
1.565	-.70	-150.0	.456	.137	.014	.010
1.565	-.70	-90.0	.457	.153	.030	.011
1.565	-.70	-30.0	.453	.142	.014	.010
1.565	-.70	30.0	.455	.160	.015	.012
1.565	-.70	90.0	.456	.106	.019	.008
1.565	-.70	150.0	.457	.159	.015	.012
1.565	-.50	-150.0	.458	.136	.016	.010
1.565	-.50	-90.0	.000	.000	.000	.000
1.565	-.50	-30.0	.455	.151	.016	.011
1.565	-.50	30.0	.456	.135	.014	.010
1.565	-.50	90.0	.000	.000	.000	.000
1.565	-.50	150.0	.457	.159	.017	.012
1.565	-.30	-150.0	.000	.000	.000	.000
1.565	-.30	-90.0	.000	.000	.000	.000
1.565	-.30	-30.0	.454	.132	.017	.010
1.565	-.30	30.0	.455	.156	.017	.011
1.565	-.30	90.0	.000	.000	.000	.000
1.565	-.30	150.0	.461	.121	.029	.009
1.565	-.10	-150.0	.000	.000	.000	.000
1.565	-.10	-90.0	.000	.000	.000	.000
1.565	-.10	-30.0	.457	.154	.017	.011
1.565	-.10	30.0	.458	.126	.016	.009
1.565	-.10	90.0	.000	.000	.000	.000
1.565	-.10	150.0	.000	.000	.000	.000
1.10	-150.0	.000	.000	.000	.000	
	.10	-90.0	.000	.000	.000	.000
10	-30.0	.455	.135	.025	.010	
1						
105						

1.565	. 10	30.0	. 453	. 131	. 025	. 010
1.565	. 10	90.0	. 000	. 000	. 000	. 000
1.565	. 10	150.0	. 000	. 000	. 000	. 000
1.565	. 30	-150.0	. 000	. 000	. 000	. 000
1.565	. 30	-90.0	. 000	. 000	. 000	. 000
1.565	. 30	-30.0	. 456	. 148	. 020	. 011
1.565	. 30	30.0	. 454	. 153	. 020	. 011
1.565	. 30	90.0	. 000	. 000	. 000	. 000
1.565	. 30	150.0	. 000	. 000	. 000	. 000
1.565	. 50	-150.0	. 000	. 000	. 000	. 000
1.565	. 50	-90.0	. 000	. 000	. 000	. 000
1.565	. 50	-30.0	. 456	. 157	. 032	. 012
1.565	. 50	30.0	. 454	. 147	. 029	. 011
1.565	. 50	90.0	. 000	. 000	. 000	. 000
1.565	. 50	150.0	. 000	. 000	. 000	. 000
1.565	. 70	-150.0	. 000	. 000	. 000	. 000
1.565	. 70	-90.0	. 000	. 000	. 000	. 000
1.565	. 70	-30.0	. 450	. 111	. 035	. 008
1.565	. 70	30.0	. 452	. 155	. 041	. 011
1.565	. 70	90.0	. 000	. 000	. 000	. 000
1.565	. 70	150.0	. 000	. 000	. 000	. 000
1.565	. 90	-150.0	. 000	. 000	. 000	. 000
1.565	. 90	-90.0	. 000	. 000	. 000	. 000
1.565	. 90	-30.0	. 000	. 000	. 000	. 000
1.565	. 90	30.0	. 000	. 000	. 000	. 000
1.565	. 90	90.0	. 000	. 000	. 000	. 000
1.565	. 90	150.0	. 000	. 000	. 000	. 000
1.590	-. 90	-150.0	. 455	. 096	. 008	. 007
1.590	-. 90	-90.0	. 453	. 095	. 009	. 007
1.590	-. 90	-30.0	. 454	. 091	. 008	. 006
1.590	-. 90	30.0	. 452	. 093	. 008	. 007
1.590	-. 90	90.0	. 452	. 123	. 011	. 009
1.590	-. 90	150.0	. 452	. 097	. 008	. 007
1.590	-. 70	-150.0	. 457	. 098	. 012	. 007
1.590	-. 70	-90.0	. 000	. 000	. 000	. 000
1.590	-. 70	-30.0	. 453	. 104	. 011	. 007
1.590	-. 70	30.0	. 454	. 127	. 012	. 009
1.590	-. 70	90.0	. 000	. 000	. 000	. 000
1.590	-. 70	150.0	. 453	. 125	. 013	. 009
1.590	-. 50	-150.0	. 000	. 000	. 000	. 000
1.590	-. 50	-90.0	. 000	. 000	. 000	. 000
1.590	-. 50	-30.0	. 453	. 110	. 013	. 008
1.590	-. 50	30.0	. 453	. 114	. 013	. 008
1.590	-. 50	90.0	. 000	. 000	. 000	. 000
1.590	-. 50	150.0	. 000	. 000	. 000	. 000
1.590	-. 30	-150.0	. 000	. 000	. 000	. 000
1.590	-. 30	-90.0	. 000	. 000	. 000	. 000
1.590	-. 30	-30.0	. 454	. 118	. 020	. 008
1.590	-. 30	30.0	. 451	. 113	. 018	. 008
1.590	-. 30	90.0	. 000	. 000	. 000	. 000
1.590	-. 30	150.0	. 000	. 000	. 000	. 000
1.590	-. 10	-150.0	. 000	. 000	. 000	. 000
1.590	-. 10	-90.0	. 000	. 000	. 000	. 000
1.590	-. 10	-30.0	. 453	. 117	. 015	. 008
1.590	-. 10	30.0	. 451	. 098	. 014	. 007

1.590	-. 10	90.0	. 000	. 000	. 000	. 000
1.590	-. 10	150.0	. 000	. 000	. 000	. 000
1.590	. 10	-150.0	. 000	. 000	. 000	. 000
1.590	. 10	-90.0	. 000	. 000	. 000	. 000
1.590	. 10	-30.0	. 453	. 088	. 023	. 006
1.590	. 10	30.0	. 449	. 071	. 016	. 005
1.590	. 10	90.0	. 000	. 000	. 000	. 000
1.590	. 10	150.0	. 000	. 000	. 000	. 000
1.590	. 30	-150.0	. 000	. 000	. 000	. 000
1.590	. 30	-90.0	. 000	. 000	. 000	. 000
1.590	. 30	-30.0	. 452	. 112	. 029	. 008
1.590	. 30	30.0	. 453	. 127	. 029	. 009
1.590	. 30	90.0	. 000	. 000	. 000	. 000
1.590	. 30	150.0	. 000	. 000	. 000	. 000
1.590	. 50	-150.0	. 000	. 000	. 000	. 000
1.590	. 50	-90.0	. 000	. 000	. 000	. 000
1.590	. 50	-30.0	. 456	. 073	. 029	. 005
1.590	. 50	30.0	. 450	. 097	. 026	. 007
1.590	. 50	90.0	. 000	. 000	. 000	. 000
1.590	. 50	150.0	. 000	. 000	. 000	. 000
1.590	. 70	-150.0	. 000	. 000	. 000	. 000
1.590	. 70	-90.0	. 000	. 000	. 000	. 000
1.590	. 70	-30.0	. 000	. 000	. 000	. 000
1.590	. 70	30.0	. 000	. 000	. 000	. 000
1.590	. 70	90.0	. 000	. 000	. 000	. 000
1.590	. 70	150.0	. 000	. 000	. 000	. 000
1.590	. 90	-150.0	. 000	. 000	. 000	. 000
1.590	. 90	-90.0	. 000	. 000	. 000	. 000
1.590	. 90	-30.0	. 000	. 000	. 000	. 000
1.590	. 90	30.0	. 000	. 000	. 000	. 000
1.590	. 90	90.0	. 000	. 000	. 000	. 000
1.590	. 90	150.0	. 000	. 000	. 000	. 000
1.615	-. 90	-150.0	. 451	. 065	. 007	. 007
1.615	-. 90	-90.0	. 449	. 074	. 008	. 008
1.615	-. 90	-30.0	. 449	. 075	. 007	. 008
1.615	-. 90	30.0	. 453	. 077	. 007	. 008
1.615	-. 90	90.0	. 448	. 080	. 009	. 008
1.615	-. 90	150.0	. 448	. 076	. 008	. 008
1.615	-. 70	-150.0	. 451	. 078	. 011	. 008
1.615	-. 70	-90.0	. 000	. 000	. 000	. 000
1.615	-. 70	-30.0	. 450	. 077	. 009	. 008
1.615	-. 70	30.0	. 451	. 086	. 009	. 009
1.615	-. 70	90.0	. 000	. 000	. 000	. 000
1.615	-. 70	150.0	. 455	. 084	. 011	. 009
1.615	-. 50	-150.0	. 000	. 000	. 000	. 000
1.615	-. 50	-90.0	. 000	. 000	. 000	. 000
1.615	-. 50	-30.0	. 448	. 086	. 011	. 009
1.615	-. 50	30.0	. 446	. 095	. 012	. 010
1.615	-. 50	90.0	. 000	. 000	. 000	. 000
1.615	-. 50	150.0	. 000	. 000	. 000	. 000
1.615	-. 30	-150.0	. 000	. 000	. 000	. 000
1.615	-. 30	-90.0	. 000	. 000	. 000	. 000
1.615	-. 30	-30.0	. 454	. 100	. 017	. 010
1.615	-. 30	30.0	. 451	. 070	. 013	. 007
1.615	-. 30	90.0	. 000	. 000	. 000	. 000

1.615	-.30	150.0	.000	.000	.000	.000
1.615	-.10	-150.0	.000	.000	.000	.000
1.615	-.10	-90.0	.000	.000	.000	.000
1.615	-.10	-30.0	.450	.089	.019	.009
1.615	-.10	30.0	.452	.089	.018	.009
1.615	-.10	90.0	.000	.000	.000	.000
1.615	-.10	150.0	.000	.000	.000	.000
1.615	.10	-150.0	.000	.000	.000	.000
1.615	.10	-90.0	.000	.000	.000	.000
1.615	.10	-30.0	.448	.068	.017	.007
1.615	.10	30.0	.454	.042	.013	.004
1.615	.10	90.0	.000	.000	.000	.000
1.615	.10	150.0	.000	.000	.000	.000
1.615	.30	-150.0	.000	.000	.000	.000
1.615	.30	-90.0	.000	.000	.000	.000
1.615	.30	-30.0	.451	.081	.024	.008
1.615	.30	30.0	.446	.075	.018	.008
1.615	.30	90.0	.000	.000	.000	.000
1.615	.30	150.0	.000	.000	.000	.000
1.615	.50	-150.0	.000	.000	.000	.000
1.615	.50	-90.0	.000	.000	.000	.000
1.615	.50	-30.0	.450	.061	.030	.006
1.615	.50	30.0	.450	.059	.029	.006
1.615	.50	90.0	.000	.000	.000	.000
1.615	.50	150.0	.000	.000	.000	.000
1.615	.70	-150.0	.000	.000	.000	.000
1.615	.70	-90.0	.000	.000	.000	.000
1.615	.70	-30.0	.000	.000	.000	.000
1.615	.70	30.0	.000	.000	.000	.000
1.615	.70	90.0	.000	.000	.000	.000
1.615	.70	150.0	.000	.000	.000	.000
1.615	.90	-150.0	.000	.000	.000	.000
1.615	.90	-90.0	.000	.000	.000	.000
1.615	.90	-30.0	.000	.000	.000	.000
1.615	.90	30.0	.000	.000	.000	.000
1.615	.90	90.0	.000	.000	.000	.000
1.615	.90	150.0	.000	.000	.000	.000

Appendix D

List of Collaborators

C. S. Armstrong ${ }^{2}$, V. V. Frolov ${ }^{7}$, P. Stoler ${ }^{7}$ (co-spokesman), J. Napolitano ${ }^{7}$ (co-spokesman), G. Adams ${ }^{7}$, A. Ahmidouch ${ }^{3,4}$, K. Assamagan ${ }^{3}$, S. Avery ${ }^{3}$, O. K. Baker ${ }^{3,8}$, P. Bosted ${ }^{1}$, V. Burkert ${ }^{8}$, R. Carlini ${ }^{8}$, J. Dunne ${ }^{8}$, T. Eden ${ }^{3}$, R. Ent ${ }^{8}$, D. Gaskell ${ }^{6}$, A. P. Grosse ${ }^{12}$, P. Guèye ${ }^{3}$, W. Hinton ${ }^{3}$, C. E. Keppel ${ }^{3},{ }^{8}$, W. Kim ${ }^{5}$, M. Klusman ${ }^{7}$, D. Koltenuk ${ }^{9}$, D. Mack ${ }^{8}$, R. Madey ${ }^{3,4}$, D. Meekins ${ }^{2}$, R. Minehart ${ }^{10}$, J. Mitchell ${ }^{8}$, H. Mkrtchyan ${ }^{11}$, G. Niculescu ${ }^{3}$, I. Niculescu ${ }^{3}$, M. Nozar ${ }^{7}$, J. W. Price ${ }^{7}$, V. Tadevosyan ${ }^{11}$, L. Tang ${ }^{3,8}$, M. Witkowski ${ }^{7}$, S. Wood ${ }^{8}$
${ }^{1}$ Physics Department, American University, Washington D.C. 20016, USA
${ }^{2}$ Department of Physics, College of William \& Mary, Williambsburg, VA 23187, USA
${ }^{3}$ Physics Department, Hampton University, Hampton, VA 23668, USA
${ }^{4}$ Physics Department, Kent State University, Kent, OH 44242, USA
${ }^{5}$ Physics Department, Kyungpook National University, Taegu, South Korea
${ }^{6}$ Physics Department, Oregon State University, Cornvallis, OR 97331, USA
${ }^{7}$ Physics Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
${ }^{8}$ Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
${ }^{9}$ Physics Department, University of Pennsylvania, Philadelphia, PA 19104, USA
${ }^{10}$ Physics Department, University of Virginia, Charlottesville, VA 22903, USA
${ }^{11}$ Yerevan Physics Institute, Yerevan, Armenia
${ }^{12}$ Honorary Collaborator (wink!)

Bibliography

[NOTE] The Jefferson Lab User Liaison office can provide assistance locating unpublished TJNAF documents.
[Abb94] D. Abbott and D. F. Geesaman, Wire translation in the HMS and SOS Spectrometers, TJNAF Hall C document (unpublished) (1994).
[Abb95] D. J. Abbott, et al., The CODA System and its Performance in the First Online Experiments at CEBAF, Proceedings of the 1995 IEEE Conference on Real-Time Computer Applications in Nuclear, Particle and Plasma Physics (May 1995), pp. 147-151.
[Ald75] J. Alder, et al., Nuc. Phys. B91 386 (1975).
[All94] C. R. Allton, et al., Phys. Rev. D49 474 (1994).
[Alt79] K. H. Althoff, et al., Z. Phys. C1 327 (1979).
[Arr96] J. Arrington, Optimizing the Performance of the Hall C Detectors (talk proceedings), (unpublished) (1996).
[Ass97] K. A. Assamagan, D. Dutta, and P. Welch, Hall C Matrix Element Optimization Package, TJNAF Hall C document (unpublished) (1997).
[Baj69] R. Bajpai and A. Donnachie, Nuc. Phys. B12 274 (1969).
[Bec74] U. Beck, et al., Phys. Lett. 51B 103 (1974).
[Ben91] M. Benmerrouche and N. Mukhopadhyay, Phys. Rev. Lett. 671070 (1991), and references therein.
[Ben95] M. Benmerrouche, et al., Phys. Rev. D51 3237 (1995).
[Ben96] M. Benmerrouche, et al., Phys. Rev. Lett 774716 (1996).
[Ben97] M. Benmerrouche, George Washington/TJNAF Workshop on N^{*} Physics (October 1997).
[Benn91] C. Bennhold and H. Tanabe, Nuc. Phys. A530 625 (1991).
[Bev69] P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, McGrawHill (1969).
[Ber90] M. Berz, Nuc. Inst. and Meth., A298 426 (1990); Nuc. Inst. and Meth., A298 473 (1990).
[Blu93] W. Blum and L. Rolandi, Particle Detection with Drift Chambers, Springer-Verlag (1993).
[Boc96] C. Bochna, Unser Monitor Absolute Calibration, TJNAF Hall C Document (unpublished) (1996).
[Bol94] J. Bolz, P. Kroll, and J. G. Körner, Z. Phys. A350 145 (1994).
[Bra78] F. Brasse, et al., Nuc. Phys. B139 37 (1978).
[Bra84] F. Brasse, et al., Z. Phys. C22 33 (1984).
[Bre78] H. Breuker, et al., Phys. Lett. 74B 409 (1978).
[Bur88] V. Burkert, Excited Baryons 1988, Proceedings of the Topical Workshop, World Scientific (1988), pp. 122-139.
[Bur98] V. Burkert, personal communication (1998).
[But94] F. Butler, et al., Nuc. Phys. B430 179 (1994).
[Cap86] S. Capstick and N. Isgur, Phys. Rev. D34 2809 (1986).
[Cap88] S. Capstick, Excited Baryons 1988, Proceedings of the Topical Workshop, World Scientific (1988), pp. 32-53.
[Cap92] S. Capstick, Phys. Rev. D46 1965 (1992); Phys. Rev. D46 2864 (1992).
[Cap95] S. Capstick and B. D. Keister, Phys. Rev. D51 3598 (1995).
[Cap98] This is a calculation in the light-front model of Ref. [Cap95], but (in contrast to the published work) using standard convention for the normalization of states, and incorporating several other changes to the calculation. This effort is ongoing at the time of this writing. S. Capstick, personal communication, (1998).
[Car86] C. E. Carlson, Phys. Rev. D34 2704 (1986).
[Car88] C. E. Carlson and J. L. Poor, Phys. Rev. D38 2758 (1988).
[Car95] C. E. Carlson and N. Mukhopadhyay, Phys. Rev. Lett. 741288 (1995).
[CDR91] Conceptual Design Report, TJNAF Document (unpublished) (1991).
[CERNL] HBOOK-Statistical Analysis and Histogramming, CERN Program Library Long Writeup Y250, Version 4.24 (1995); PAW—Physics Analysis Workstation, CERN Program Library Long Writeup Q121, (1995); MINUIT - Function Minimization and Etror Analysis, CERN Program Library Long Writeup D506, Version 94.1 (1994).
[Clo90] F. Close and Z. Li, Phys. Rev. D42 2194 (1990).
[Cop69] L. A. Copley, G. Karl, and E. Obryk, Nuc. Phys. B13 303 (1969).
[Cum96] W. Cummings, The SOS Handbook, Rev. 1.1, TJNAF Hall C Document (unpublished) (1996).
[Den94] J. Denschlag, Diplomarbeit, Universität Mainz (1994).
[Dre72] S. D. Drell and K. Johnson, Phys. Rev. D6 3249 (1972).
[Dun97] J. Dunne, Cryo and Dummy Target Information, TJNAF Hall C document (unpublished) (1997).
[Dyt95] S. Dytman, et al., Phys. Rev. C51 2710 (1995).
[Ear73] R. A. Early, Nucl. Inst. and Meth., 10993 (1973).
[Ent97] R. Ent, personal communication (1997).
[EPI94] W. A. Watson III, et al., Nuc. Inst. and Meth., A352 118 (1994); M.Knott, et al., Nuc. Inst. and Meth., A352 486 (1994).
[Fey71] R. P. Feynman, et al., Phys. Rev. D3 2706 (1971).
[FosS2] F. Foster and G. Hughes, Z. Phys. C14 123 (1982).
[Fro98] V. Frolov, dissertation, Rensselaer Polytechnic Institute (unpublished) (1998).
[Gar85] M. Gari and W. Krümpelmann, Z. Phys. A322 689 (1985).
[Gee93] D. F. Geesaman, Tracking in the SOS Spectrometer, TJNAF Hall C document (unpublished) (1993).
[Gel64] M. Gell-Mann, Phys. Lett. 8214 (1964).
[God85] S. Godfrey and N. Isgur, Phys. Rev. D32 189 (1985).
[Gre64] O. W. Greenberg, Phys. Rev. Lett. 13598 (1964).
[Gro93] F. Gross, Relativistic Quantum Mechanics and Field Theory, John Wiley \& Sons, Inc. (1993).
[Gue96] P. Guèye, et al., Hall C Beam Energy Measurement, TJNAF Hall C document (unpublished) (1996).
[Gus96] K. Gustafsson, Cryotarget Density Dependence on Beam Current, TJNAF Hall C document (unpublished) (1996).
[Hai79] R. Haidan, dissertation, Hamburg University (unpublished) (1979).
[Hal84] F. Halzen and A. D. Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics, John Wiley \& Sons (1984).
[Han63] L. N. Hand, Phys. Rev. 1291834 (1963).
[Har89] L. H. Harwood, et al., CEBAF-PR-89-006 (1989).
[Hen65] A. Hendry, et al., Phys. Lett. 18171 (1965).
[Heu70] C. Heusch, et al., Phys. Rev. Lett. 251381 (1970).
[Hor73] R. Horgan and R. H. Dalitz, Nuc. Phys. B66 135 (1973).
[Hor74] R. Horgan, Nuc. Phys. B71 514 (1974).
[Isg77] N. Isgur and G. Karl, Phys. Lett. 72B 109 (1977).
[Isg78] N. Isgur and G. Karl, Phys. Lett. 74B 353 (1978).
[Isg83] N. Isgur and J. Paton, Phys. Lett. 124B 247 (1983); Phys. Rev. D31 2910 (1985).
[Isg84] N. Isgur and C. H. Llewellyn Smith, Phys. Rev. Lett. 521080 (1984).
[Isg91] N. Isgur, Modern Topics in Electron Scattering, B. Frois and I. Sick, eds., World Scientific (1991), pp. 2-27.
[Jac59] M. Jacob and G. C. Wick, Ann. Phys. 7404 (1959).
[Jon65] H. F. Jones, Nuovo Cimento 401018 (1965).
[Kai95] N. Kaiser, et al., Phys. Lett. B362 23 (1995).
[Kai97] N. Kaiser, et al., Nuc. Phys. A612 297 (1997).
[Kel97] J. J. Kelly, et al., TJNAF Proposal E96-01, Recoil Polarization in η Electroproduction (1996).
[Kep94] C. Keppel, et al., Workshop on CEBAF at Higher Energies, p. 237 (1994). This is a global fit to SLAC resonance electroproduction data. A similar fit, but to a reduced data set, is found in L. M. Stuart, et al., preprint hep-ph/9612416, referenced with the author's permission (accepted for publication in Phys. Rev. D, 1998). In the kinematic region where we employ these fits (i.e., $Q^{2} \approx 3.6 \mathrm{GeV}^{2} / c^{2}, W \approx 1.5 \mathrm{GeV}$), they are in agreement at the 2% level. Both of these fits are similar to earlier work done by Bodek [A. Bodek, Phys. Rev. D20 1471 (1979)] and by Stoler (Refs. [Sto91a, Sto91b]).
[Kon80] R. Koniuk and N. Isgur, Phys. Rev. D21 1868 (1980).
[Kon90] W. Konen \& H. J. Weber, Phys. Rev. D41 2201 (1990).
[Kno95] G. Knöchlein, et al., Z. Phys. A352 327 (1995).
[Kra93] G. Krafft and A. Hofler, How the Linac Beam Position Monitors Work, CEBAF-TN-93004 (1993).
[Kro92] P. Kroll, M. Schürmann, and W. Schweiger, Z. Phys. A342 429 (1992).
[Kru95] B. Krusche, et al., Phys. Rev. Lett. 743736 (1995).
[Kub76] T. Kubata and K. Ohta, Phys. Lett. 65B 374 (1976).
[Kum73] P. Kummer, et al., Phys. Rev. Lett. 30873 (1973).
[Lee74] M. Leenen, dissertation, Bonn University, P.L.B. 1-248 (1974).
[Lei92] D. Leinweber, et al., Phys. Rev. D46 3067 (1992).
[Leo94] W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer-Veriag (1994).
[Lep80] G. P. Lepage and S. J. Brodsky, Phys. Rev. D22 2157 (1980).
[Li90] Z. Li and F. Close, Phys. Rev. D42 2207 (1990).
[Li95] Z. Li Phys. Rev. D52 4961 (1995).
[Li96] Z. Li and R. Workman, preprint (1995).
[Mac98] D. Mack, personal communication (1998).
[Mak94] N. Makins, dissertation, Massachusetts Institute of Technology (unpublished) (1994).
[Mak98] N. Makins, R. Ent, D. Wasson, et al., to be published.
[Mar97] E. Marcus, Vegan: The New Ethics of Eating, McBooks Press, Ithaca, NY (1997).
[Mee98] D. Meekins, dissertation, College of William \& Mary (unpublished) (1998).
[Mo69] L. W. Mo and Y. S. Tsai, Rev. Mod. Phys. 41205 (1969).
[Muk95] N. Mukhopadhyay, et al., Phys. Lett. 364B 1 (1995).
[Muk96] N. Mukhopadhyay, et al., CEBAF/INT Workshop on N^{*} Physics (September, 1996).
[Neu92] D. Neuffer, et al., A Brief Summary of Hall C Beam Energy Measurement, TJNAF Hall C document (unpublished) (1992).
[Nic96] G. Niculescu, Resonant Cavities Used as Beam Current Monitors, TJNAF Hall C document (unpublished) (1996).
[Nic97] G. Niculescu, On Pathlengths and Corrected Coincidence Time, TJNAF Hall C document (unpublished) (1997).
[Nic98] I. Niculescu, dissertation, Hampton University (unpublished) (1998). At the time of this writing, the dissertation of I. Niculescu (which revolves around a fit to recent TJNAF inclusive data) was in progress. The fitting strategy is similar to that of Ref. [Kep94], which we use elsewhere in this work.
[OBr74] J. T. O'Brien, H. Crannel, et al., Phys. Rev. C9, 1418 (1974).
[ONe94] T. G. O'Neill, dissertation, California Institute of Technology (unpublished) (1994).
[PDG76] Particle Data Group, Rev. Mod. Phys. 48 S157 (1976).
[PDG98] C. Caso, et al., European Physical Journal, C3, 1 (1998).
[Per87] D. H. Perkins, Introduction to High Energy Physics, Third Edition, Addison-Wesley Publishing Co., Inc. (1987).
[Pev61] A. Pevsner, et al., Phys. Rev. Lett. 7421 (1961).
[Pot98] D. Potterveld, personal communication.
[Pre92] W. H. Press, et al., Numerical Recipes in Fortran, Second Ed., Cambridge University Press (1992).
[Pri95] J. W. Price, et al., Phys. Rev. C51 R2283 (1995).
[Rad91] A. V. Radyushkin, Nuc. Phys. A527 153c (1991).
[Rav71] F. Ravndal, Phys. Rev. D4 1466 (1971).
[Rol92] B. Rollin, Animal Rights and Humàn Morality, Prometheus Books, Buffalo, NY (1992).
[Ruj75] A. De Rújula, H. Georgi, S. L. Glashow, Phys. Rev. D12 147 (1975).
[Sau78] R. Sauerwein, dissertation, Bonn University, Bonn-IR-78-13 (1978).
[Spi96] M. Spiegel, The Dreaded Comparison: Human and Animal Slavery, Mirror Books, New York (1996).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
[Sta95] R. Stanley and H. Weber, Phys. Rev. C52 435 (1995).
[Sto91a] P. Stoler, Phys. Rev. Lett. 661003 (1991).
[Sto91b] P. Stoler, Phys. Rev. D44 73 (1991).
[Sto93] P. Stoler, Phys. Reports 226103 (1993).
[Sto97] P. Stoler, et al., Extension to TJNAF E94-14, Baryon Resonance Electroproduction at High Momentum Transfer, (1997).
[TAS82] TASSO Note 192, (1982).
[Ter98] B. Terburg, dissertation, University of Ilinois (unpublished) (1998).
[Tia94] L. Tiator, Nuc. Phys. A580 455 (1994).
[Tra80] "Transport-A Computer Program for Designing Charged Particle Beam Transport Systems," K. L. Brown, et al., CERN 80-04, Super Proton Synchrotron Division (1980).
[Tsa61] Y. S. Tsai, Phys. Rev. 1221898 (1961).
[Tsa74] Y. S. Tsai, Rev. Mod. Phys. 46815 (1974).
[Uns91] K.B. Unser, "The Parametric Current Transformer, a Beam Current Monitor Developed for LEP" ${ }^{\text {, CERN SL/91-42 (1991); documentation on the Unser is also available from the }}$ manufacturer, Bergoz.
[Veg98] Vegan Outreach, Why Vegan?, 211 Indian Dr., Pittsburgh, PA 15238 (1998).
[Wac76] K. Wacker, DESY, Internal Report F1-76/4 (1976).
[Wal69] R. L. Walker, Phys. Rev 1821729 (1969).
[War90] M. Warns, et al., Z. Phys. C45 613 (1990); Z. Phys. C45 627 (1990); Phys. Rev. D42 2215 (1990).
[Wes96] D. van Westrum, Measurement of the Tracking Efficiency, TJNAF Hall C document (unpublished) (1996).
[Wes97] D. van Westrum, Measurement and Estimation of Proton Absorption in the Hall C Spectrometers, TJNAF Hall C document (unpublished) (1997).
[Yan91] C. Yan, Preliminary User's Manual of the High Momentum Specirometer at CEBAF, TJNAF Hall C document (unpublished) (1991).
[Yan92] C. Yan, et al., CEBAF-PR-92-003 (1992).
[Yan93] C. Yan, et al., CEBAF-PR-93-004 (1993).
[Yan94] C. Yan, CEBAF-PR-94-002 (1994).
[Yan95] C. Yan, et al., CEBAF-PR-95-049 (1995).
[Zwe64] G. Zweig, CERN Report No. 8182/Th. 401 (unpublished) (1964); CERN Report No. 8419/Th. 412 (unpublished) (1964).

Vita

Christopher Stephen Armstrong

The author was born in Pasadena, California, May 2, 1964. He graduated from Robinson High School in Fairfax, Virginia, June 1982 and received a B.S. Electrical Engineering from the University of Virginia in May 1987. He then spent several years working for Texas Instruments in Dallas and later at two companies in northern Virginia. He was married to Alejandra Patricia Grosse in May 1990, and began graduate school at the College of William \& Mary in 1992. In May, 1994 he received a M.S. Physics, and in August 1998 a Ph.D., both from the College. He and his wife and his kids (raised in Williamsburg while Dad finished school) consider the future wide open.

[^0]: ${ }^{1}$ By constituent quark we mean a 'dressed' quark, i.e., a bare quark together with a gluonic cloud, the whole of which has a mass on the order of several hundred MeV.

[^1]: ${ }^{2}$ A more complete discussion of the experimental history, with references, follows (Section 1.2).
 ${ }^{3}$ 'Relativizing' a model, an expression used commonly but loosely in the literature, refers to any attempt to incorporate the effects of relativistic kinematics or dynamics into the model.
 ${ }^{4}$ See Ref. [Sto93] for a good overview of this subject.

[^2]: ${ }^{5}$ We use N^{*} generally to denote isospin- $\frac{1}{2}$ baryon resonances, and the name $N^{-}(1535)$ interchangeably with S_{11} (1535). Here the asterisk $\left(^{*}\right.$) denotes the fact that the N^{*} is an excited state. The '11' subscript on the S_{11} indicates that the resonance is isospin $-\frac{1}{2}$, spin $-\frac{1}{2}$. The ' S ' (for S-wave) is a carry-over from π production, and denotes the zero orbital angular momentum of the final state in $N^{-}(1535) \rightarrow N \pi$.
 ${ }^{6}$ The physical cause for this large $S_{11} \rightarrow p \eta$ branching fraction is not well understood in the context of the CQM. While the topic is largely beyond the scope of this work, we mention one possible explanation in Section 1.5.3.

[^3]: ${ }^{7}$ This plane between drift chambers, commonly called the 'focal plane' in Hall C documentation and elsewhere in this work, is not in fact the true optical focal plane of the spectrometer.

[^4]: ${ }^{8}$ See footnote 12 on page 18 for a brief description of these terms

[^5]: ${ }^{9}$ Here the asterisk (*) is used to denote both a c.m. quantity (p_{η}^{*}) and the complex conjugate of a complex number ($E_{0_{+}^{-}}$).

[^6]: ${ }^{10}$ See, for example, Ref. [Gro93], pp. 53-56.
 ${ }^{11}$ Note that the sign of the helicity for a massive particle is necessarily frame-dependent; one can always choose a Lorentz transformation such that the direction of motion of the particle (and thus its helicity) is reversed.
 ${ }^{12}$ Photons with helicity ± 1 have electromagnetic fields transverse to their direction of motion, and are called 'transverse'; photons of helicity 0 have an electric field aligned with their direction of motion, and are called 'longitudinal' or 'scaler'. Photoproduction (with photon mass $q^{2}=-Q^{2}=0$) measures only the transverse component of the cross section; electroproduction ($q^{2}<0$) probes both the transverse and longitudinal components. See, for example, Ref. [Per87], pp. 82-83.

[^7]: ${ }^{13}$ Note the distinction between multipoles, which characterize the reaction ep $\rightarrow e^{\prime} p \eta$ (i.e., specific to the $p \eta$ channel, but through all possible intermediate states), and the helicity amplitude, which applies only to the excitation process ep $\rightarrow N^{*}$ (i.e., specific to the resonant state N^{*} but independent of any particular decay channel).

[^8]: ${ }^{14}$ Note that the ' S ' of ' $S_{11}(1535)$ ' does not refer to this S-wave state; see footnote 5 on page 5.

[^9]: ${ }^{15}$ These cross sections fell more slowly than a pure dipole because of quark spin excitation terms.

[^10]: ${ }^{16}$ Here we are discussing (massless) current quarks, which are not to be confused with the constituent quarks of the CQM.
 ${ }^{17}$ The distribution amplitude is the momentum-space wavefunction integrated over transverse momentum.

[^11]: ${ }^{1}$ The opening angle of the cone (taking into account the finite acceptance of the electron spectrometer) was $\approx 20^{\circ}$ at the low- Q^{2} point and $\approx 15^{\circ}$ at the high- Q^{2} point.

[^12]: ${ }^{2}$ As described in Appendix A, the beam is not truly CW. The term applies, however, because the event-to-event time spread in the spectrometers and detectors is broader than the separation of the radio frequency (RF) pulses; thus the distribution of events as seen by the data acquisition system is effectively continuous.
 ${ }^{3}$ In the terminology used at the Laboratory, beam delivered to the experimental areas after one (two, three, four, five) trip(s) throught the pair of linacs is one (two, three, four, five) pass bearm.

[^13]: ${ }^{4}$ A point-to-point tune maps each distinct point at the target to a distinct point at the focal plane.
 ${ }^{5}$ A second, smaller acceptance-defining collimator was available but not used in this experiment.

[^14]: ${ }^{6}$ The demagnetization procedure consisted of setting the field to the maximum current $i_{\text {max }}$; setting to zero current; reversing magnet polarity and setting to a reverse current $i_{\text {rev }}$; and setting to zero current. The reverse current $i_{\text {rev }}$ required to end the procedure in a demagnetized state was determined from previous measurements [Pot98].
 ${ }^{7}$ The ' Y ' in SIY denotes not the orientation of the scintillators but the coordinate which was indicated by a hit.

[^15]: ${ }^{8}$ The addition of small amounts of alcohol to the gas mixture inhibits the growth of 'whiskers' from the cathodes and suppresses so-called dark currents; see Ref. [Blu93].

[^16]: ${ }^{9}$ A second, smaller acceptance-defining collimator was available but not used in this experiment.
 ${ }^{10}$ The HMS-1 tune of Ref. [Yan91].

[^17]: ${ }^{11}$ The length given for the target liquid is that along the beamline.
 ${ }^{12}$ The thickness given is an effective thickness that accounts for wire spacing.
 ${ }^{13}$ The scintillators are 1.0 cm thick; the additional factor accounts for the overlap between paddles.

[^18]: ${ }^{1}$ Here Y can refer to the yield in any particular piece of phase space (one small physics bin, say, or the entire acceptance) as long as that same phase space is understood throughout the equation.

[^19]: ${ }^{2}$ It is instructive to recall the one-dimensional case of integration by Monte Carlo. Given some function $y=$ $f(x) \geq 0$ we approximate the definite integral $I=\int_{x_{\min }}^{x_{\max }} f(x) d x$ by selecting $N_{\text {tried }}$ random values of x on the interval [$x_{\min }, x_{\text {max }}$]. For each x_{i} we calculate $y_{i}=f\left(x_{i}\right)$ and select a random trial y_{t} on the interval [$0, y_{\text {max }}$] (where all y are guaranteed to lie within 0 and $y_{\max }$). A trial y_{t} is accepted if $y_{t}<y_{i}$, and the approximation to the definite integral is then given by $I_{\mathrm{mc}}=\left(N_{\text {accept }} / N_{\text {tried }}\right) \cdot \mathcal{V}_{\mathrm{gen}} \cdot y_{\text {max }}$, where the generation volume V_{gen} in this case is simply ($x_{\max }-x_{\min }$). A nice discussion of the general topic is found in Ref. [Pre92].
 ${ }^{3}$ Note that the quantities \mathcal{A} and R are not numbers available on an event-by-event basis. They are instead quantities that arise from the use of the Monte Carlo to perform the integration of the bracketed quantity in Eq. 3.4.

[^20]: ${ }^{4}$ The Monte Carlo yield given here corresponds to a data yield that has been corrected for efficiencies.

[^21]: ${ }^{5}$ The random number generator used throughout the Monte Carlo simulation was ran3 of Ref. [Pre92].
 ${ }^{6}$ Note that the validity of the final results were not dependent on having in the Monte Carlo an accurate form for the resonance cross section. Since the general analysis procedure (detailed in Section 4.3.10) was to renormalize the ratio of data to Monte Carlo yields by the Monte Carlo model cross section on a bin-by-bin basis, the final result was in principle not sensitive to the precise form of the model cross section. The fact that the iteration procedure converged served simply as a check on the procedure.

[^22]: ${ }^{7}$ This is not to be confused with the case for the original Mo and Tsai prescription, in which the integration is up to a maximum total energy loss ΔE.
 ${ }^{8}$ As noted above, we follow the notation of Wasson and collaborators; elsewhere in the literature the 'hard' correction is called the 'finite' correction.

[^23]: ${ }^{9}$ The effect of proton absorption was not included in the Monte Cario, but an overall correction was applied to the data. This correction is discussed in Section 4.3.4.
 ${ }^{10}$ Passage through these objects was not modeled; the effect of this process on the data (in particular, for protons in the HMS) is discussed in Section 4.3.6.
 ${ }^{11}$ COSY INFINITY is a program that uses differential algebraic methods to model optical systems to arbitrary order [Ber90].

[^24]: ${ }^{1}$ This assumption gave rise to tracking errors on the order of $\pm 20 \mu \mathrm{~m}$ [Arr96].

[^25]: ${ }^{2}$ By track residual we mean (for a particular hit on a drift chamber wire) the difference between the position at the wire as determined by the wire hit and the position at the wire as determined from the final track fit to either one or two chambers.
 ${ }^{3}$ In particular, the mobility of the chamber gas depended on the alcohol concentration, which in tum was a function of the alcohol temperature at the bubbler (Section 2.6.3).
 ${ }^{4}$ The residuals to complete tracks found between both chambers were larger ($\sigma \approx 150 \mu \mathrm{~m}$ and $\sigma \approx 250 \mu \mathrm{~m}$ for the SOS and HMS, respectively), in part because of multiple scattering. The residuals to single-chamber tracks, or stubs, were more indicative of the actual chamber resolution.

[^26]: ${ }^{5}$ Track multiplicity was generally low in this experiment. In the worst conditions (seen by the HMS), $\approx 5 \%$ of all tracked coincidence events yielded 2 candidate tracks; $\approx 1 \%$ yielded 3 candidates; $<1 \%$ yielded 4 or more.

[^27]: ${ }^{6}$ As noted in Chapter 3, the raster was nevertheless included in the Monte Carlo simulation.
 ${ }^{7}$ In principle the value of $v_{\text {scin }}$ itself also varied with the hit position along the length of the scintillator. For scintillation originating close to the end of a paddle a greater fraction of light reaching the PMT traveled directly (rather than via multiple reflections) than was the case for scintillation originating far away. In other words, $v_{\text {scin }}$ was greater when $d_{\text {prop }}$ was small than when it was large. Bench tests indicated that the magnitude of this effect was comparable to that due to the intrinsic resolution of the scintillators. Since timing resolution was not critical for this experiment no correction was made for this effect.

[^28]: ${ }^{8}$ The correction for time walk used here is a software correction; there also exist so-called constant fraction discriminators which correct for the effect in hardware.

[^29]: ${ }^{9}$ The pulse-height correction and offset fitting code was adapted by J. Arrington from similar SLAC software.
 ${ }^{10}$ The quantity β used here was either 1 (when using a clean sample of electrons or pions) or the value of β derived from reconstructed momentum (with knowledge, via kinematics, of the particle type). The quantity $\beta_{\text {tof }}$ measured using time of flight in the detector stack (discussed in Section 4.2.4) could not be used for this analysis; rather, optimization of $\beta_{\text {tof }}$ resulted from the scintillator corrections discussed here.
 ${ }^{11}$ Although the cables were matched to within about 1 ns , timing variations of order 10 ns were introduced by the electronic delays (nominally 400 ns) used for timing adjustments.

[^30]: ${ }^{12}$ To clarify the notation: suppose $\varepsilon=99 \%, \varepsilon=90 \%$. If we detect 1000 electrons and 500 pions, we properly identify some $1000 \varepsilon=990$ electrons and mistakenly identify some $500(1-\bar{\varepsilon})=50$ pions as electrons.
 ${ }^{13}$ The standard Hall C analysis software also contained a calorimeter signal that summed energy deposition within some fiducial region of the selected track at the calorimeter; the signal used in this analysis had no such requirement.

[^31]: ${ }^{14}$ The potential resolution is better than this; as noted above, the timing requirements of this experiment were not critical, so minimal effort was made to optimize this resolution.

[^32]: ${ }^{15}$ Take care to distinguish between the various types of backgrounds: even after the removal of pions and accidental protons using coincidence time cuts, PID cuts, and an accidental background subtraction, there remained a (true coincidence) background due the processes given in Eqs. 4.20 on page 111.

[^33]: ${ }^{16} \mathrm{~A}$ minimum-ionizing particle passing through 1 cm of scintillator will lose roughly 2 MeV to ionization. If we assume a photon yield of 1 photon per 100 eV of ionization energy loss, a 10% collection efficiency, 50% attenuation, and a 25% photomultiplier cathode quantum efficiency [PDG98], we can expect to collect over 200 photo-electrons for that event.

[^34]: ${ }^{17}$ The beam current in this experiment varied from 80 to $100 \mu \mathrm{~A}$. If the range had been much greater than this, the ratio R_{Q} might not have been so stable, because in principle the SOS pretrigger rate has a linear dependence on beam current only over some limited range.
 ${ }^{18}$ There was an additional target length uncertainty arising from changes of the beam position on the convex target windows. The position of the beam on the target was recorded every 30 seconds (Section 2.3) and it was determined, based on this measurement together with knowledge of the window shape, that the associated uncertainty in target length was less than $\sigma=0.2 \%(0.009 \mathrm{~cm})$. This change in target length, however, entered the ratio R_{Q} (Section 4.3.2) and was taken into account in the associated uncertainty.

[^35]: ${ }^{19}$ SOS-only events which exhibited, say, a ytar dependence not seen in the coincidence data could be due to target window interactions (i.e., from ${ }^{27} \mathrm{Al}\left(e, e^{\prime} p\right)$), and should not be counted as absorbed-proton events. Where such dependences were observed, the cuts were tightened to remove these events from consideration.

[^36]: ${ }^{20}$ Independent of changes in absorption due to changing cross sections, one naively expects the proton absorption to decrease with increasing proton momentum due to the increased focussing of forward-peaked scattering. Based on the limited data presented here it appears that this effect is either small or offset by cross section changes.

[^37]: ${ }^{21}$ This fact was pointed out by V. Frolov.
 ${ }^{22}$ Protons that passed through the entire HMS collimator lost $\approx 130 \mathrm{MeV}$ of kinetic energy, which (at a momentum of roughly $2 \mathrm{GeV} / \mathrm{c}$) results in a change in coincidence time of $\approx 1.5 \mathrm{~ns}$; if the proton's momentum were reasonably well-measured, however, much of this 1.5 ns offset would be removed in the coincidence time calculation. In general, one must assume that these events fall within the ± 2 ns coincidence time cut.

[^38]: ${ }^{1}$ The Moate Carlo simulations generally had statistics $\approx 4-8$ times greater than the data.

[^39]: In other words, these errors resulted in the misplacement of events from (say) low W to high W. Such a shift has little effect near the maximum of a broad peak.

[^40]: ${ }^{3}$ This dominance is expected from previous data; see Refs. [Bec74, Ald75, Bra78, Bra84]. With the exception of the $D_{13}(1520)$, there is no experimental evidence to suggest that any resonance other than the $S_{11}(1535)$ contributes substantially to the $p \eta$ channel in the second resonance region at high momentum transfer. Figure 8 of Ref. [Bra84] shows the stiffness of the S_{11} relative to the D_{13} as a function of Q^{2}; according to that figure, at $Q^{2}=3(4) \mathrm{GeV}^{2} / c^{2}$ the cross section (through all channels) of the S_{11} is over 7 (20) times the cross section of the D_{13}. Given the small $D_{13} \rightarrow p \eta$ branching fraction ($<1 \%$; no listing in [PDG98]), we expect a D_{13} contribution to the $p \eta$ channel of order 0.1% or less at our values of Q^{2}. See also Ref. [Kru95], keeping in mind that the small D-wave interference seen in that photoproduction measurement ($p \eta$ channel only) is expected to diminish by roughly a factor of thirty at our high Q^{2}, due to the rapid drop of the D_{13} relative to the S_{11} as a function of Q^{2}.

[^41]: ${ }^{4}$ The method of least squares applied to Poisson-distributed data underestimates the integrated area of the data by a quantity related to the χ^{2} of the fit [Bev69]. These fits were corrected for this effect (which was about 1% to 3%).
 ${ }^{5}$ Note that in a more appropriate (energy dependent) analysis these terms would be constrained by the data at low W.

[^42]: ${ }^{6}$ When comparing the results of this work to other measurements, as in Fig. 5.7 , we calculate $A_{1 / 2}^{p}$ using the same values of W_{R}, Γ_{R}, and b_{η} for all data points.

[^43]: ${ }^{7}$ When making such comparisons between inclusive and exclusive measurements, one must realize that there is a fairly large uncertainty associated the subtraction of the nonresonant background from inclusive data. In addition, we are neglecting unitarity and the resulting 'cusp' effect that the threshold in one channel causes in another [Alt79]. It is in order to account for these effects that we assume an uncertainty of 10% in the inclusive measurement (the statistical uncertainties of the fit are $\approx 2 \%$).

[^44]: ${ }^{1}$ The reader interested in the details of the Unser monitor design is referred to Ref. [Uns91].

[^45]: ${ }^{2}$ A detailed account of the gain measurement procedure can be found in Ref. [Boc96].

[^46]: ${ }^{3}$ For complete specifications and a more thorough discussion of the operating principles of the BCM cavities, see Ref. [Nic96].

[^47]: ${ }^{1}$ Sieve slit data was taken with a special sieve collimator (a collimator with many small holes) preceding the spectrometer and using a thin slanted carbon target whose z position along the beamline was controlled. Target position scans, or ' z scans', were obtained by changing the effective z position of the slanted carbon target. ' δ scans' were obtained by changing the cc:t:al momentum of the spectrometer, allowing the quasielastic carbon peak to step across the focal plane.

[^48]: ${ }^{2}$ The technique used to optimize the matrix elements was that of singular value decomposition. The treatment given here is somewhat simplified; a more thorough discussion of the technique and the software used to perform it are available in Ref. [Ass97].
 ${ }^{3}$ The offsets in focal plane quantities were in general a function of not only the spectrometers themselves but also the position of the beam on the target. For this reason, these offsets were determined using data taken during this experiment.

[^49]: ${ }^{4}$ This is strictly true only in the absence of Bremsstrahlung, which we approximate by considering only those events for which $W \approx m_{p}$.

