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ABSTRACT

This dissertation discusses the mathematical existence and the numerical identification o f 
linear and nonlinear aerodynamic impulse response functions. Differences between 
continuous-time and discrete-time system theories, which permit the identification and 
efficient use o f these functions, will be detailed. Important input/output definitions and the 
concept o f  linear and nonlinear systems with memory will also be discussed. It will be 
shown that indicial (step or steady) responses (such as Wagner’s function), forced 
harmonic responses (such as Theodorsen’s function or those from doublet lattice theory), 
and responses to random inputs (such as gusts) can all be obtained from an aerodynamic 
impulse response function. This will establish the aerodynamic discrete-time impulse 
response function as the most fundamental and computationally efficient aerodynamic 
function that can be extracted from any given discrete-time, aerodynamic system. The 
results presented in this dissertation help to unify the understanding of classical two- 
dimensional continuous-time theories with modem three-dimensional, discrete-time 
theories.

Nonlinear aerodynamic impulse responses are identified using the Volterra theory o f 
nonlinear systems. The theory is described and a discrete-time kernel identification 
technique is presented. The kernel identification technique is applied to a simple nonlinear 
circuit for illustrative purposes. The method is then applied to the nonlinear viscous 
Burger’s equation as an example of an application to a simple CFD model. Finally, the 
method is applied to a three-dimensional aeroelastic model using the CAP-iTSD 
(Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a 
two-dimensional model using the CFL3D Navier-Stokes code. Comparisons o f  accuracy 
and computational cost savings are presented. Because of its mathematical generality, an 
important attribute of this methodology is that it is applicable to a wide range o f nonlinear, 
discrete-time systems.

xvi
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2

INTRODUCTION

Motivation

Nonlinear unsteady aerodynamics is of great interest in the aerospace community 

because these phenomena can have a significant effect on the performance and stability o f a 

flight vehicle, particularly at transonic speeds where detrimental aeroelastic phenomena are 

most likely to occur. At transonic speeds, complex aerodynamic flows can develop. These 

complex flows can include shocks, boundary layer interactions, and separated flows. 

Typically, these nonlinear aerodynamic phenomena tend to induce complex aeroelastic 

behavior which can significantly destabilize the vehicle. This destabilization in turn can 

result in limited flight operations of the vehicle or added weight to reduce the aeroelastic 

response. In either case, an economic and/or performance penalty is incurred. It is 

important, therefore, to be able to accurately predict and understand nonlinear unsteady 

aerodynamic behavior.

The most powerful and sophisticated tools for predicting nonlinear unsteady 

aerodynamic characteristics are being developed in the field of computational fluid 

dynamics (CFD)'. The nature and detail of the nonlinear fluid flow predicted by a 

particular flow solver depends on the governing equations that are discretized in the solver. 

The order of the governing flow equations can vary from the transonic small disturbance 

(TSD) level to the full Navier-Stokes equations. As CFD methods improve, it is a natural 

and important step to investigate methods for controlling the response to unsteady nonlinear 

flows in order to improve the performance and/or stability of a flight vehicle.
■y

Modem aeroservoelastic (ASE) analysis tools, such as ISAC' (Interaction of Structures, 

Aerodynamics, and Controls) and ADAM3 (Analog and Digital Aeroservoelastic Method), 

are used routinely for predicting the interaction between the structural system, the
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aerodynamic system, and the control system o f a flexible aircraft so that control laws that 

account for and take advantage of this flexibility can be designed. Even though the goal of

4
the control law design may be for flutter suppression (stability) and/or for load alleviation 

(performance), the control system design in the past has been primarily limited to linear 

aerodynamic responses. This limitation inhibits the design and analysis of control systems 

that can account for nonlinear responses induced by flow nonlinearities such as shocks, 

boundary layer effects, and separated flows. Although nonlinear aerodynamics are 

eventually incorporated into the control system design via wind-tunnel studies and/or semi- 

empirical simulations, there is a need for including nonlinear aerodynamic behavior, such 

as that predicted by CFD codes, early in the design phase. Direct incorporation o f a CFD 

code into the ASE process is currently not a practical consideration due to the high 

computational costs and turnaround time required by CFD codes. As computational speeds 

improve and as new algorithms are developed to address this problem, the practicality of 

this approach may improve. At the moment, however, the efficient incorporation of the 

information provided by a CFD code into related disciplines, such as aeroelasticity and 

aeroservoelasticity, remains a problem. This is described in more detail in a subsequent 

section of this dissertation.

Background

Although some work has been done in directly incorporating simple control laws into

5.6
CFD codes , these approaches do not generate a mathematical model of the nonlinear 

aerodynamic system. Instead, the control law gains are varied, in an expensive manner 

(multiple linearized models or trial-and-error, for example) as flight conditions are varied, 

to achieve a desired response. A significantly more efficient approach is to develop 

mathematical models that completely characterize the aerodynamic system of interest and 

then use these models in various analyses without costly re-execution of the CFD code. A 

new method for generating these mathematical models is presented in this dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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During the early development o f mathematical models of unsteady aerodynamic 

responses, the efficiency and power o f superposition of scaled and shifted fundamental 

responses, or convolution, was quickly recognized. This led to the classical Wagner’s 

function7, which is the response of a two-dimensional airfoil, in incompressible flow, to a 

unit step variation in angle of attack. Similar functions such as Kussner’s function, which 

is the response of a two-dimensional airfoil to a sharp-edged gust in incompressible flow, 

were developed as well7. Theodorsen’s function is the frequency response function due to 

sinusoidal motion for a two-dimensional airfoil in incompressible flow. Sear’s function is 

the frequency response function due to a sinusoidal gust for a two-dimensional airfoil in 

incompressible flow. These are classical, analytically-derived unsteady aerodynamic 

responses that are studied in a modem course in unsteady aerodynamics or aeroelasticity. 

It is surprising to the author, however, that given these step and frequency responses, no 

mention is ever made o f aerodynamic impulse responses, the origin of all these functions. 

The results presented in this dissertation are, therefore, a contribution to classical 

(continuous time) unsteady aerodynamic theory because of the new and fundamental 

perspective that is presented. Application of these concepts to numerical (discrete time) 

methods results in significant computational efficiencies.

As geometric complexity increased, the analytical derivation of these time-domain 

functions became impractical. Ultimately, for three-dimensional configurations, the 

computation of linear unsteady aerodynamic responses8 in the frequency domain became 

the method of choice. For the case where geometry- and/or flow-induced nonlinearities are 

significant in the aerodynamic response, time integration of the nonlinear equations is 

necessary. This requirement for time integration imposes severe computational costs when 

analyzing complex configurations using CFD codes. This is particularly true for CFD 

aeroelastic analyses where the nonlinear aerodynamic system is coupled to a linear 

structural system. Post-processing of the resulting time transients provides information on 

the stability of the coupled system. When this method is applied at several flight
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conditions, the computational costs become prohibitively expensive, both in terms of CPU 

costs and turnaround time. The turnaround time is the time it takes for a solution to be 

obtained from the moment it is submitted to the computer for execution to the moment it 

completes execution. This can be on the order of days, depending on the user demand for 

a particular computer.

Attempts to address this problem include the development of transonic indicial 

responses91011. Transonic indicial (step) responses are responses due to a step excitation 

of a particular input, such as angle of attack, about a transonic (or nonlinear) steady state 

condition. However, as will be discussed, if these step inputs are not identified and used 

correctly, errors will be introduced into the analysis.

Reference 12 develops models o f nonlinear aerodynamic maneuvers from an 

experimental database using neural networks. Since neural networks and Volterra series 

involve the characterization of a system via an input-output mapping, it is not surprising to 

realize that similarities exist between these two methods13. The direct relationship between 

the weights of a neural network and the kernels of a Volterra series representation for a 

particular system is discussed in Ref. 14. Reference 15 applies neural networks and 

genetic algorithms to the development of nonlinear unsteady aerodynamic models while 

recognizing the similarity with Volterra models. There is, clearly, valuable work that needs 

to be done in this area.

A potential difficulty with neural networks, however, is the effort required for 

training12. A benefit o f the present method is that there is no training period required nor is 

there a  need for curve Fitting of any kind. Also, the Volterra kernels provide a direct means 

for physical interpretation o f the system’s response characteristics, both in the time and 

frequency domains. Potential disadvantages o f the Volterra theory approach include input 

amplitude limitations related to convergence issues and the need for higher order kernels. 

These issues will be discussed in subsequent sections of this dissertation.
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Another approach to reduce the computational cost o f CFD codes is to linearize the

response about a nonlinear steady-state condition, obtain a linear state-space representation

of the system at that condition and then reduce the order of the state-space model using

various techniques1617. If a linearized, frequency-domain aerodynamic model from a CFD

model is preferred, the method of the exponential pulse input can be applied18. Issues

regarding the application of this input are discussed in detail later in this dissertation.

However, in order to develop robust, mathematically-correct and efficient nonlinear

models o f the CFD response, a mathematically-formal method is required that is well

defined in the time and frequency domains and that is well defined for continuous- and

discrete-time systems. The Volterra theory of nonlinear systems fulfills these requirements

and has been applied in the present research. In particular, this theory has found wide

application in the field of nonlinear discrete-time systems19 and nonlinear digital filters for

telecommunications and image processing20. Additional references, for continous- and

discrete-time formulations of the Volterra theory, are discussed in detail in Chapter 4 of this

dissertation and the Appendix.

Application o f nonlinear system theories, including the Volterra theory, to the problem

of modeling nonlinear unsteady aerodynamic responses has not been extensive. Ueda and 

21
Dowell's application of the concept of describing functions to unsteady transonic

- n

aerodynamic responses is one approach. The work by Tobak and Pearson”  involved the 

application o f the continuous-time Volterra concept o f functionals to indicial (step) 

aerodynamic responses for the analytical derivation and experimental determination of 

nonlinear stability derivatives. The work by Jenkins23 is also an investigation into the 

determination of nonlinear aerodynamic indicial responses and nonlinear stability

24
derivatives. Stalford, Bauman, Garrett, and Herdman successfully developed Volterra 

models for simulating the behavior of a simplified nonlinear stall/post-stall aircraft model 

and the limit cycle oscillations of a simplified model of wing rock.
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In Ref. 24, the nonlinear aerodynamic response is analytically defined a priori so that 

derivation of the Volterra kernels is a straightforward analytical procedure. The output 

from a CFD code provides information regarding the nonlinear aerodynamic response o f a 

complex configuration to a selected input at a particular flight condition. It does not, 

however, provide general information regarding the nonlinear aerodynamic response of the 

configuration to a variation of the input, or the flight condition or both. As a result, 

repeated use of the CFD code is necessary as input parameters and flight conditions are 

varied. Characterization of the nonlinear aerodynamic response of a configuration to an 

arbitrary input, via the Volterra theory, requires identification of the nonlinear Volterra 

kernels for the particular configuration and at a particular flight condition.

25
The problem of Volterra kernel identification has been addressed by Rugh , Clancy and

26 27 ">8
Rugh , Schetzen , and more recently by Boyd, Tang, and Chua . There are several 

ways of identifying the Volterra kernels in the time and frequency domains. The methods

can be applied to continuous-time or discrete-time systems. Tramp and Jenkins used 

aerodynamic indicial (step) responses from a Navier-Stokes flow solver and a Laplace 

domain scheme to identify the first-order kernel of a two-dimensional airfoil undergoing

pitching motions. The second-order kernel was identified for a sample problem and the

28
method of Boyd, Tang, and Chua was suggested for identification of the second-order 

nonlinear kernel of the airfoil response. Rodriguez30 performed realizations of state-affine 

systems for aeroelastic analyses. These state-affine systems are related to discrete-time 

Volterra kernels. Silva31 introduced the concept of discrete-time, linear and nonlinear 

aerodynamic impulse responses, or kernels, for a rectangular wing under linear (subsonic) 

and nonlinear (transonic) conditions. These early results, however, were limited to high- 

frequency responses. Silva32 improved upon these results and extended the methodology 

to arbitrary frequencies, resulting in discrete-time, linear and nonlinear aerodynamic 

impulse responses valid for arbitrary inputs. The identification technique, which involved 

separation of the input terms, had limited applicability for the identification o f the nonlinear
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kernels. This problem is addressed and treated in a mathematically correct fashion in a 

subsequent section o f this dissertation. Reference 32 represents the first time that discrete

time, aerodynamic impulse responses were identified. This is significant because o f the 

prevailing misconception that aerodynamic impulse responses are difficult, if not 

impossible, to compute. Reference 33 states this directly while Ref. 34 has the step 

response (Wagner’s function) mislabeled as an impulse response in a section of the text. 

Reference 35, on the other hand, discusses aerodynamic step responses but aerodynamic 

impulse responses are not mentioned. It is interesting to note that Refs. 33-35 discuss the 

definition and application of the aerodynamic step (or indicial) response but do not mention 

the aerodynamic impulse response explicitly. Clearly, if a step response can be computed 

for a linear system, then the system’s impulse response, which is the derivative o f the step 

response, can be computed as well. As will be shown, the misconception that the impulse 

response is difficult to obtain is the result of fundamental differences in continuous-time 

and discrete-time theories. Whereas computational aerodynamic methods have, in the past, 

been dominated by continuous-time concepts, this dissertation presents a new perspective 

on computational aerodynamics based on a discrete-time approach. The implications of this 

research to linear and nonlinear, steady and unsteady aerodynamics, as well as to related 

fields that depend on computational aerodynamic models, such as aeroelasticity and 

aeroservoelasticity, will be discussed.

Outline o f  Dissertation

This dissertation begins with a description of the fundamentals o f linear, discrete-time 

systems. The differences between continuous-time and discrete-time system theories and 

the impact of these differences on the historical development of linear aerodynamic models 

is discussed. An analytically-derived aerodynamic impulse response function is derived 

from an approximation to the classical Wagner’s function. A similar derivation is presented 

for Kussner’s function. Although these are simple and straightforward derivations, they
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are presented here for the first time. As previously mentioned, the concept of an 

aerodynamic impulse response function is not addressed consistently in any o f the standard 

texts on unsteady aerodynamics and aeroelasticity. Therefore, this dissertation provides a 

new perspective of classical linear unsteady aerodynamic theory. Since an aerodynamic 

impulse response also can be used for computing steady-state results, this perspective 

applies to steady aerodynamic theory as well.

Continuous-time and discrete-time versions of the Volterra theory o f nonlinear systems 

are then presented. The concept of memory of a linear and nonlinear system will be 

discussed. A time-domain kernel identification technique, using discrete-time impulse 

inputs, is described and then applied to a simple nonlinear circuit as an example. This 

example will demonstrate the relationship between the parameters of a nonlinear differential 

equation and the corresponding Volterra kernels for that system.

Application of the kernel identification technique to CFD models begins with a 

discussion of the functional nature of the Navier-Stokes equations. The important 

realization that the discrete-time, Navier-Stokes equations belong to the set o f discrete-time, 

nonlinear, time-invariant systems, is discussed. This realization, presented here for the 

first time, allows the formal application of the time-invariant version o f the Volterra theory 

to Navier-Stokes computational models.

The first- and second-order kernels of a simple CFD model governed by the nonlinear 

viscous Burger’s equation are then generated. The kernels are used to predict the response 

o f the system to arbitrary inputs ranging from step (steady) to quasi-random inputs. These 

results demonstrate the applicability and efficiency of the Volterra theory when applied to 

simple nonlinear, discrete-time fluid dynamics models.

Application of the Volterra method to more complex CFD models is introduced by the 

discussion a conceptually new perspective on input definitions for discrete-time, 

aerodynamic systems. This perspective enables the numerically-correct identification of 

Volterra kernels for CFD models of arbitrary complexity using any CFD code.
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The kernel identification technique is applied, via appropriate inputs, to a three- 

dimensional aeroelastic model using the CAP-TSD36 (Computational Aeroelasticity 

Program - Transonic Small Disturbance) code and to a two-dimensional model using the 

CFL3D37 Navier-Stokes code. Comparisons o f accuracy and computational cost savings 

will be presented. Finally, the Appendix discusses some of the fundamentals of the 

Volterra series.

The results presented in this dissertation represent a new approach and a new 

perspective on linear and nonlinear, steady and unsteady computational aerodynamic 

systems in general. Because of its mathematical generality, an important attribute of this 

methodology is that it is applicable to a wide range of nonlinear, time-invariant, discrete

time systems.

Contributions o f Dissertation

The contributions o f this dissertation can be grouped into three categories: Linear 

Computational Aerodynamics, Nonlinear Computational Aerodynamics, and Nonlinear 

Systems.

Linear Computational Aerodynamics:

- Practical identification and application of aerodynamic impulse responses

- New perspective on classical and modem indicial (step) response methods

- New perspective of computational aerodynamic system inputs and outputs

- Digital convolution o f impulse response (unit sample response) with arbitrary inputs

(step, sinusoidal, and random) yields steady, harmonic, and random responses

- Method may offer new approach to simulation, optimization, and control 

Nonlinear Computational Aerodynamics:

- Existence of nonlinear aerodynamic unit impulse (sample) responses (first- and

second-order kernels)
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- First- and second-order kernels can be used to efficiently compute the nonlinear

response due to arbitrary inputs without costly re-execution o f the CFD code

- May provide new insights into nonlinear aerodynamic behavior

- Potential for CFD diagnostic tool to separate physical from numerical effects

- Method may offer new approach to simulation, optimization, and control with

nonlinear aerodynamics

- Classification of Navier-Stokes equations as time-invariant system 

Nonlinear Systems

- Expansion of Volterra system identification techniques to aerodynamic systems

- Enhanced knowledge regarding amplitude-dependence of Volterra kernels

Related Publications
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1993, pp. 660-668.
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Using Digital Filter Techniques,” AIAA Paper No. 97-3712, Presented at the AIAA 

Atmospheric Flight Mechanics Conference, August 11-13, 1997, New Orleans, LA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2 

LINEAR DISCRETE-TIME SYSTEMS

The Unit Sample Response

The modem field of discrete-time signal processing38 is a mathematical systems field 

that addresses more concepts than just the sampling of a continuous-time signal. For 

example, main topics in this field are digital filter design and digital signal processing. In 

digital filter design, there exist mathematical concepts that are quite different from their 

continuous-time counterparts. One of these concepts is the unit impulse function, or the 

Dirac delta function. The continuous-time unit impulse is typically considered a generalized 

function, impractical for numerical applications33. On the other hand, the discrete-time 

equivalent, known as the unit sample function, is well-defined and easy to apply. Digital 

filters are designed using this function and its resultant output known as the unit sample 

response. The unit sample function is defined as

f 1.0 for n = no 
u[n] = <

|  0.0 for n * no (1)

where ‘n’ is the discrete-time variable. The application of this input to a linear, discrete

time system will yield the system’s unit sample response, the discrete-time equivalent of the 

unit impulse response. The properties of the unit sample response are similar to those of 

the unit impulse response (see Appendix). Both responses completely define a linear 

system and, through convolution, the response of the system to any arbitrary input can be 

predicted exactly without actually processing the arbitrary input through the system. This 

is because the unit sample response captures the system’s entire frequency content.

12
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A linear system’s frequency characteristics can be determined by applying multiple 

sinusoids of varying frequency, applying band-limited white noise, or by computing the 

fast Fourier transform (FFT) of the unit sample response. The application of multiple 

sinusoids is how linear, unsteady aerodynamics are currently generated. The band-limited, 

white-noise technique implies exploration of different segments of the system’s bandwidth 

in a piecewise, overlapping fashion. The most efficient approach is to compute the FFT of 

the unit sample response, yielding the system’s frequency response. This efficiency is the 

result o f the fundamental properties o f the unit sample response.

Additional evidence of this efficiency is the fact that the response of the system to 

multiple sinusoidal inputs and the band-limited white noise can be computed via 

convolution of these inputs with the unit sample response. Therefore, from the single 

computation of the unit sample response, all system responses, from steady (step) to 

random, can be generated as well. This concept is well understood and routinely applied in 

the design of digital filters yet appears to be uncommon in fields dominated by continous- 

time concepts, such as aerodynamics. In aerodynamics research, the application of 

convolution techniques has, in the past, been limited to the convolution of step (indicial) 

responses.

Discrete-Time Convolution

The concept of convolution is another idea that is routinely used in digital filter design 

but that has found only limited applications in the continuous-time community. This is due 

to the fact that the definition of the continuous-time unit impulse function is different 

(though related) from that o f the discrete-time unit sample response. This leads to different 

interpretations of how the continuous-time unit impulse can be applied to a particular 

system or if it can be applied at all. This vagueness disappears in the context of discrete

time systems.

Convolution, in discrete-time, is defined as
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y[n] = X h[n - k] x[k] 
k=0

(2)

where h[n-k] is the unit sample response and x[k] is the arbitrary input. It is important to 

understand that this is not the discrete-time version of Duhamel’s integral39, which is the 

convolution of a unit step response with the derivative of an arbitrary input. The unit step 

(indicial) response is not the same as the unit sample (impulse) response. As discussed in 

the introduction to this dissertation, all research involving convolution of aerodynamic 

responses by other researchers has been limited to the convolution of step responses. 

Convolution using the unit impulse response (or unit sample response), however, is more 

efficient, as will be seen. In fact, convolution using the unit sample response is the method 

of choice in the fields of digital signal processing and digital filter design.

Unit Sample Response vs. the Unit Step Response

Consider three methods to compute the response of a linear system to an arbitrary 

function of time, x[k]. The first, or trivial method, is to process the input through the 

system itself. If the system is complex and computationally intensive, significant 

computational costs, including turnaround time, will be incurred. The second method is to 

identify the system’s unit step response and then, via convolution with the derivative of the 

arbitrary input, obtain the response of the system using

where S[n] is the unit step response and x’[k] is the derivative o f the arbitrary input. 

Equation (3) is the discrete-time equivalent of Duhamel’s integral. The first term in Eq.(3)

oo

y[n] = x[0]S[n] + XS[n-k] x’[k] At (3)
k=0
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must, of course, be included whenever x[0] is nonzero or else a static (DC offset) error will 

result. Equation (3) is the correct discrete-time implementation for indicial (or step) 

aerodynamics. It is mathematically valid if and only if the step response is correctly 

identified and applied in Equation (3). The application of step functions has typically been 

a problem in computational unsteady aerodynamics because of the downwash (input) 

equation and the perceived problem with the derivative of a step input. This issue is 

addressed and clarified in a subsequent section of this dissertation.

The third method is to identify the system’s unit sample response and, via convolution 

with the arbitrary input, x[k], (Eq. (2)), obtain the response of the system. Again, proper 

identification o f the unit sample response is a requirement for the successful application of 

this method.

Clearly, for complex and computationally-intensive linear systems, the second and third 

methods provide the most efficient method for computing responses because repeated 

execution of the system is not required. The unit sample response and the unit step 

response contain all the necessary information regarding the system’s behavior in a concise 

form. In addition, the derivative of the unit step response is the unit sample response so 

that only one response, the step or the unit sample response, is needed to compute the 

other.

In the present research, the identification and use of linear and nonlinear aerodynamic 

unit sample responses is favored over that of the unit step responses for the following 

reasons: (1) Identification of the unit sample response is computationally more efficient 

than identification of the unit step response; (2) The unit step response can be computed via 

convolution o f the unit sample response with a step input, yielding the steady-state 

solution; and (3) Convolution using the unit sample response involves the actual input (Eq. 

(2)) whereas convolution using the unit step response involves the derivative of the input 

(Eq. (3)), requiring additional, unnecessary computational effort. The unit sample 

response is the most concise representation of a linear system from which all other steady
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and unsteady responses can be generated. Extension of this concept to nonlinear systems, 

via the Volterra theory, enables the efficient computation of nonlinear steady and unsteady 

responses due to arbitrary inputs.

Application to Classical Aerodynamic Functions

These concepts can be applied directly to classical, unsteady aerodynamic theory. 

Wagner’s function is the response of a two-dimensional airfoil in incompressible flow to a 

unit step variation in angle of attack; an approximation to this response33 is

O(T) = I. - 0.165e'a04lT  - 0.335e'032T

This function is plotted in Figure I. The derivative of this approximation to Wagner’s 

function yields an approximation to the incompressible, aerodynamic impulse response due 

to plunge for a two-dimensional airfoil, shown in Figure 2. Kussner’s function33 is the 

response of a two-dimensional airfoil in incompressible flow to a step change in gust 

velocity. An approximation to Kussner’s function33 is

vF(x) = I. - 0.500e"°'130t - 0.500e‘x

This function is plotted in Figure 3. The derivative of this approximation to Kussner’s 

function yields an approximation to the incompressible, aerodynamic impulse response due 

to a gust for a two-dimensional airfoil. This function is shown in Figure 4. Surprisingly, 

these simply-defined aerodynamic impulse response functions are not presented in any o f 

the classical textbooks on aeroelasticity. Figures 1-4 clearly demonstrate that identification 

of the impulse response requires less computational time than the identification of the unit 

step response, with no loss of information.
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Figure 1 W. P. Jones’ approximation to W agner’s function for an 
airfoil in incompressible flow (Reference 33).
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Figure 2 Impulse response in angle of attack of an  airfoil in 
incompressible flow (derivative of Figure 1).
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Figure 3 R. T. Jo n e s  approximation to Kussner’s  function, the response 
of an airfoil to a  sharp-edged (step) gust in incompressible flow.
(from Reference 33)
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New Perspective o f  Computational Aerodynamics

The results from this dissertation may hopefully provide a unique and important 

perspective of unsteady aerodynamics and aeroelasticity. A schematic presenting this new 

perspective for linear computational aerodynamics is presented in Figure 5. This figure 

shows the relationship between the aerodynamic impulse responses presented in this 

dissertation and the classical methods for linear unsteady aerodynamics. Whereas classical 

methods begin with discussion of the indicial (or step) response or the forced harmonic 

response (Theodorsen’s function, doublet lattice), the present research expands this view 

by introducing the aerodynamic impulse response. As has been mentioned previously, the 

aerodynamic impulse response can be used to compute the indicial response, the forced 

harmonic response, and the response of the aerodynamic system to any other arbitrary 

input. Proper use o f  the impulse response function (of any system, including aerodynamic 

systems) can yield significant computational efficiencies due to the fundamental nature of 

this function. This dissertation presents and demonstrates these concepts for linear and 

nonlinear aerodynamic systems.
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CHAPTER 3

BRIEF DESCRIPTION OF AN AEROELASTIC SYSTEM

Excellent detailed descriptions of the theory of aeroelasticity can be found in Refs. 33- 

35 and the references therein. The purpose of this chapter is not to reproduce any of the 

information available in those references but rather to provide a global perspective of the 

various systems involved in the simulation of linear and nonlinear aeroelastic responses.

Aeroelasticity is the coupling and resultant interaction of two systems: a structural 

system and an aerodynamic system. Linear aeroelasticity is the interaction of a linear 

structural system with a linear aerodynamic system. Due to the linearity o f both systems, 

and, therefore, the linearity of the combined aeroelastic system, several efficient methods 

exist for solving the governing equations. In nonlinear aeroelasticity, either the structural 

system or the aerodynamic system, or both, are nonlinear.

Linear Aeroelasticity

In linear aeroelasticity, the linear structure is typically modeled in state-space form. The 

states o f this system are the structural modes of vibration. A structural mode is a vibratory 

shape o f the structure. The solution o f a linear vibration, or modal, problem for a given 

structure yields an orthogonal set o f eigenvectors (modes, or modeshapes) and a 

corresponding set of eigenvalues (frequencies of vibration). Every structure exhibits some 

type of vibratory characteristics, although the spectrum can range from the very flexible to 

the very rigid.

The first step in an aeroelastic analysis is to obtain the vibratory characteristics of the 

structure of interest in terms of its modes o f vibration (eigenvectors) and the corresponding 

vibratory frequencies (eigenvalues). The development o f a state-space model for this

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

system is a well-known process that includes the generalized mass, damping, and stiffness 

o f the structure (see Ref. 2, for example). The input to the structural system consists of 

forces and the output is the structural response, or motion, of the structure due to these 

forces.

Characterization o f the linear aerodynamic system consists o f determining the 

aerodynamic loads due to each of the structural modes. Because the systems are coupled, 

excitation o f one o f the structural modes induces an aerodynamic response in all of the 

modes. If the structure under investigation consists of four modes, the aerodynamic 

system will consist o f a four-by-four matrix. The first value o f the diagonal o f this matrix 

(the (1,1) term) would consist of the aerodynamic response in mode 1 due to a motion of 

mode 1. The second diagonal value, the (2,2) term, would be the aerodynamic response in 

mode 2 due to a motion of mode 2, and so on. The off-diagonal terms are a measure of the 

aeroelastic coupling between modes and the matrix is typically not symmetric. Due to the 

historical developments mentioned in the Introduction, the majority o f linear unsteady 

aerodynamic analyses define this matrix in the frequency domain, composed of 

aerodynamic frequency responses. This complex matrix is obtained by applying a simple 

harmonic perturbation to each of the modes at discrete frequencies, computing the resultant 

frequency responses, and populating the corresponding elements of the matrix. This 

aerodynamic matrix is the frequency-domain equivalent o f an impulse response matrix. 

The input to the aerodynamic system is motion of the structure and the output is the force 

due to that motion.

The governing aerodynamic equations require that this analysis be repeated for every 

Mach number of interest. The resultant aerodynamic system consists of tabular information 

defining aerodynamic frequency responses due to structural motions at a specified set of 

input frequencies for each Mach number of interest. Several methods can be used to couple 

the aerodynamic and structural systems to obtain the flutter solution. The flutter solution is 

the condition at which this coupled, or aeroelastic, system achieves neutral stability. The
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parameter that is varied is dynamic pressure, which can be considered to be a “closed-loop 

gain”. It is the value of this “gain” that helps determine the flight condition at which the 

aeroelastic system becomes neutrally stable.

A time-domain approach for defining the linear aerodynamic system10 consists of using 

step responses that are converted into state-space form. This method has not received 

much attention but recent results from other researchers16 are clearly related. In this 

technique, the linear state-space structural system is connected to the state-space 

aerodynamic system in a closed-loop sense. Again, with dynamic pressure as the gain, the 

time transients output from this closed-loop system are studied for signs o f convergence 

(stable) or divergence (unstable).

Yet another important technique to mention is that of rational function approximations 

(RFAs)40. Since the frequency-domain aerodynamic matrix is not amenable for use with 

modem control theory (i.e., ume-domain methods), RFAs were developed. Simply put, 

RFAs are s-plane approximations of the aerodynamic frequency responses. Since the 

frequency-domain aerodynamic matrix is valid only along the imaginary axis, due to the 

fact that it was generated using simple harmonic motion, the s-plane approximations extend 

the applicability o f the aerodynamic system to the complex plane. The s-plane 

approximation is then defined in state-space form and the result is an approximate, time- 

domain representation of the aerodynamic system. A stability analysis is performed by 

augmenting the structural state-space matrix with the aerodynamic state-space matrices. An 

eigenvalue analysis of the resultant system, as dynamic pressure is varied, provides 

stability information.

One of the difficulties associated with RFAs, however, is that a tradeoff must be made 

between accuracy and model order. If the approximation is to include the entire bandwidth 

of a given aerodynamic frequency response, then the order o f the resultant state-space 

system increases significandy. In order to keep state-space model order low, a particular
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frequency range of interest is usually selected where the approximation (curve fit) is desired 

and optimized.

A classical, or typical, flutter mechanism that is often described is that of a simple, two- 

degree-of-ffeedom system. An airfoil is given plunge (vertical translation) and pitch 

(rotation about a point on the airfoil) degrees o f freedom. The plunge structural frequency 

of vibration is lower than the pitch frequency of vibration. As the velocity of the flow (or 

dynamic pressure) is increased, the loading induced by the aerodynamic system is such that 

the two degrees of freedom (plunge and pitch) approach each other in frequency. 

Eventually, the modes coalesce, or combine into a single motion at a single frequency. 

This frequency is typically somewhere between the plunge (lower) frequency and the pitch 

(higher) frequency. This is the neutrally-stable condition known as flutter and it can result 

in damage to or destruction of the structure. More complex structures will exhibit different, 

more complex mechanisms, but the fundamental principles are basically the same. For this 

reason, two-degree-of-freedom systems (plunge and pitch) are studied often. A schematic 

of this process for linear aeroelasticity is presented in Figure 6a.

Nonlinear Aeroelasticity

In nonlinear aeroelasticity, the efficiency of linear analysis techniques are not direcdy 

applicable. In the present dissertation, the nonlinearity is limited to the aerodynamic 

system. The present method might be useful in characterizing the response of a nonlinear 

structure but the development o f such a system is beyond the scope of this dissertation.

An obvious difficulty with a nonlinear structure is that the concept of eigenmodes and 

eigenvalues, valid for linear structures undergoing small perturbations, may no longer 

apply.

Nonlinear aerodynamic responses are computed using CFD models, as mentioned in the 

introduction (Figure 6b). Because these codes solve nonlinear equations in a time- 

marching sense, the nonlinear flutter (stability) analyses are, inevitably, performed in the
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Figure 6 a  Schem atic of process for computing linear aeroelastic responses.
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Figure 6b Schem atic showing a  potential flutter situation not predicted by 
linear m ethods (symbols) and the various types of nonlinear aerodynam ic 
m ethods available for flutter analysis.
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time domain as well. The approach is to transmit the nonlinear aerodynamic responses 

from the CFD model into the linear structural system. The structure then responds to these 

forces with a structural deformation, or motion. This motion is then passed back to the 

CFD model for the computation o f a new, nonlinear aerodynamic load due to this new 

structural deformation. This closed-loop iteration continues and the resultant time histories 

are analyzed for stability (convergence vs. divergence) information (Figure 6c). These 

analyses are performed at each Mach number of interest. At each Mach number, the gain, 

or dynamic pressure, is varied until an unstable transient is encountered. The flutter 

dynamic pressure is therefore between the unstable dynamic pressure and the last stable 

dynamic pressure prior to the instability. It is this repetitive execution of the costly and 

time-consuming CFD code that causes a computational bottleneck in nonlinear aeroelastic 

analyses and all other analyses that involve the nonlinear aeroelastic system 

(aeroservoelasticity, optimization). If the problem of having to re-execute the CFD code 

can be alleviated, then the impact on all CFD-related analyses would be significant. This is 

a primary goal of this dissertation.

Implications

Identification of linear aerodynamic unit sample responses32 has interesting implications. 

First, it provides an alternative to the forced harmonic method for computing unsteady 

aerodynamic forces. Computing the unit sample responses for each structural mode and 

then performing the convolutions with sinusoidal inputs of varying frequency yields the 

aerodynamic frequency response functions. This could be done more directly by 

performing a Fourier transform of each of the modal unit sample responses.

The generation of aerodynamic frequency response functions may be avoided altogether 

by performing the aeroelastic analyses directly in the time domain31. This is done by 

coupling the aerodynamic unit sample responses with the linear, state-space structural 

model in a closed-loop sense and obtaining the aeroelastic transients. Since the
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aerodynamic unit sample response is valid in the complex plane, there is no need for 

rational function approximations (RFAs). As mentioned above, RFAs are s-plane 

approximations of the linear aerodynamic system obtained from the linear aerodynamic 

frequency response functions (FRFs). The aerodynamic FRFs are also referred to as the 

generalized aerodynamic forces (GAFs) computed at discrete values o f frequency and 

stored in tabular form.

Current methods for generating RFAs, limited by a specified frequency range of interest 

to generate a low-order, state-space model, are actually modeling that portion of the unit 

sample response that contains the particular frequency range of interest31. Recall that RFAs 

were developed in order to approximate the aerodynamic FRFs with an s-plane 

approximation amenable for use with modem control theory, i.e., time domain. Since the 

aerodynamic unit sample response function is already in the time domain, there is no need 

to generate the unsteady aerodynamic responses in the frequency domain only to transform 

them back to the time domain. Therefore, RFAs would not be necessary.

Instead, the aerodynamic unit sample response can be used to directly realize a linear, 

discrete-time, state-space system41. This approach has been investigated by the author on a 

preliminary basis, although it certainly merits further investigation. A fundamental problem 

with this technique, however, is that in order to capture the complete frequency response of 

the system, a high-order state-space system will need to be realized. Therefore, in order to 

obtain a reduced-order model, filtering of the unit sample response will be necessary prior 

to application o f the realization technique. This filtering in the time domain is consistent 

with the selection of a frequency range within the FRFs when applying the RFA technique.

Linear frequency-domain and RFA methods are not directly applicable to nonlinear 

aerodynamics and, consequently, the generation of time-domain, aeroelastic responses is 

necessary. The discrete-time Volterra theory of nonlinear systems, along with new 

aerodynamic system input definitions presented in this dissertation, will provide a formal 

method for the identification of nonlinear aerodynamic unit sample responses. The
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application o f these nonlinear aerodynamic unit sample responses will result in significant 

CFD computational efficiency.
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CHAPTER 4 

VOLTERRA THEORY

Introduction

The Volterra42 theory was developed in 1930. The theory is based on functionals, or 

functions o f other functions, and subsequently became a generalization of the linear 

convolution integral approach that is applied to linear, time-invariant (LTI) systems. The 

Appendix o f this dissertation reviews some of the fundamental aspects of the theory.

The basic premise of the Volterra theory of nonlinear systems25,43 is that any nonlinear 

system can be modeled as an infinite sum of multidimensional convolution integrals of 

increasing order. This infinite sum, presented here in continuous-time form, is known as 

the Volterra series and it has the form

oo

y(t) = h 0 + J h ^ t - x J u C O d t  +
0

oooo

J  J h 2( t - xt , t - x2) u ( t! )  u(x2) dx t dx2 + ...
0 0

oo oo

+  J"...J"hjj(t •  x ^ ,  ..., t  * X j j )  u ( X j ) . . .  u ( X | j )  d x j . . .  d X j |  +  . . .  ( 4 )

0 0

where y(t) is the response of the nonlinear system to u(t), an arbitrary input; h0 is a steady 

value about which the response is computed; h [ is the first-order kernel or the linear unit

33
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impulse response; h is the second-order kernel, and h is the nth order kernel. It is
-  n

assumed that:

1) the kernels, input function, and subsequently, the output function are real-valued 

functions defined for

t; e  (-oo, +oo) for i = 1,..., n ,....

2) the system is causal so that hB(tlt...,t) = 0 if any ti < 0

3) the system is time invariant

Mathematical System Definitions

A time-invariant system, also referred to as a stationary or autonomous system, is a 

system whose fundamental properties do not change with time. That is,

f = f(x, x, x, ...)

An example o f a simple, time-invariant, nonlinear system is a pendulum. Although the full 

nonlinear equation of a pendulum is certainly a function o f time which can exhibit 

nonlinear, unsteady responses if an unsteady excitation is applied, neither the length o f the 

pendulum nor the mass at the end of the pendulum are functions of time44. Simply stated, 

the equations defining a time-invariant system are not explicit functions of time.

In the case o f a differential equation, for example, time-invariance refers to constant 

coefficients as opposed to coefficients that are explicit functions of time. Time-invariance 

is sometimes mistakenly interpreted as implying functions that are independent of time4S. 

Even a classical, fundamental text such as Ref. 35 misinterprets nonlinear, time-invariant 

systems as systems that do not accept time-dependent forcing functions. This is clearly not
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correct since the time-invariance of a system refers to the system itself and not to the 

characterization of the inputs or outputs (i.e., steady or unsteady) of the system.

A time-varying system, also referred to as a non-stationary or non-autonomous system, 

is a system whose fundamental properties do change with time. That is

f  = f(x, x, x t)

An example of a time-varying system is a rocket during launch. The mass of the rocket, 

mostly fuel, is spent very quickly. The mass of the rocket, and therefore the rocket’s 

dynamics, are changing with time. The identification of impulse responses for a time- 

varying system is typically more complicated than for a time-invariant system. Reference 

46 addresses the problem o f Volterra kernel identification for time-varying, nonlinear 

systems.

Fortunately, for many of the problems in aircraft unsteady aerodynamics, aeroelasticity, 

and aeroservoelasticity, the governing nonlinear equations are time-invariant. Although an 

airplane’s fuel quantity, or mass, is certainly not constant, present-day analyses treat an 

airplane’s fuel loading as separate, constant mass cases (full fuel to near empty, for 

example) as opposed to a continuously-varying quantity. The linearization of these time- 

invariant, nonlinear equations about an operating point yields the familiar time-invariant, 

linear equations that comprise the majority of modern-day, linear analysis techniques in 

these fields.

The impulse response of a linear system is a temporal representation of how long a unit 

perturbation remains active in the response of the system. This is referred to as the memory 

of the system. Convolution then allows exact prediction of the response of the system to an 

arbitrary input because all responses of the system are scaled and shifted superpositions of 

this memory function (see Appendix). It is important to understand that the set of arbitrary 

inputs includes any and all possible inputs, from steady (step) inputs to random inputs,
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thus the term “arbitrary”. For the linear case, the arbitrary input has no amplitude or 

frequency limitations.

For a nonlinear system approximated by a Volterra series, the higher-order kernels are a 

measure o f the nonlinear memory of the system. Unlike the linear system, however, the 

arbitrary nature of the input does have some limitations due to the fact that the series is 

usually truncated. As Boyd47 has shown, the convergence of the Volterra series is limited 

by the infinity norm of the input (maximum value). If this norm exceeds a particular value, 

then convergence o f the series, and, therefore, the predicdve ability o f the series, is not 

guaranteed (see Appendix). The critical norm of the input is, o f course, system dependent 

and will not usually be known a priori. Similarly, the convergence of the series is a 

function o f the number of components that are identified for a particular kernel. In an 

example to be presented subsequently, this relationship between number of components of 

a kernel and the predictive accuracy of the series will be discussed. Rugh25 and Boyd47 

discuss Volterra’s (and Frechet’s) extension of the Weierstrass theorem to nonlinear 

systems with finite (or fading) memory, and its relationship to the Volterra series. This is 

presented in greater detail in the Appendix.

Wiener48 contributed significantly to the development of the Volterra theory and, as a 

result, the theory is sometimes referred to as the Volterra-Wiener theory of nonlinear 

systems. Reference 49 presents a kernel identification technique based on auto- and cross

correlation functions. References 50-57 are additional, excellent sources of information 

regarding the Volterra theory o f nonlinear systems.

This research focuses on the time-domain Volterra theory because CFD analyses are 

typically performed in the time domain. There exists, however, a great deal of information 

on the frequency-domain Volterra theory25-43-58. The frequency-domain Volterra theory 

deals with the multidimensional Fourier transforms of the time-domain kernels. The 

resultant functions are referred to as higher-order spectra59. A double Fourier transform of 

a second-order kernel is referred to as a bispectrum. An excellent textbook on the subject is
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Ref. 60. Whereas time-domain Volterra kernels may be better suited for computational 

methods, the frequency-domain methods appear to be better suited for experimental 

identification techniques. Boyd et al28 describe a frequency-domain technique that was 

successfully applied to the experimental identification of the second-order kernel o f a 

nonlinear electroacoustic transducer (speaker) system. The theory also has some very 

interesting applications in the fields of general turbulence61 and low-frequency drift 

oscillations (LFDO) experienced by moored vessels in turbulent seas62. As mentioned 

previously, a time-domain kernel identification technique and the time-domain Volterra 

theory are applied to the systems investigated in this dissertation.

Kernel Definition

Inspection o f Equation (4) reveals some very interesting and characteristic features of the 

Volterra series. The value of ho is known based on the steady-state value of the system at a 

particular condition. It does not require any special identification technique. This will be 

discussed in more detail when applied to an aerodynamic system. Also, if the kernels of 

order two and above are zero, then the response of the system is linear and is completely 

described by the unit impulse response h ((t), and the first-order convolution integral. The 

assumption underlying the first-order, or linear, convolution integral is that the response of 

the system at a given time, t, is the result o f superposition o f scaled and shifted impulse 

responses.

The higher order kernels, hn, are the responses of the nonlinear system to multiple unit 

impulses, with the number of impulses applied to the system equal to the order of the kernel 

o f interest: e.g., h2 is the response of the nonlinear system to two unit impulses applied at 

two points in time, ^ and t2. The variation o f the time difference between these two times 

characterizes the second-order memory of the system. Therefore, the second-order kernel 

is a two-dimensional function of time: t and the time difference T = t - t . This mathematical 

definition follows directly for the ‘nth’ order kernel, although visualization of these
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functions can become difficult for orders greater than three. As will be shown, these 

kernels are also a function o f the amplitude of the input used for identification, which can 

be used to improve the accuracy of the kernels. The Appendix provides a more detailed 

interpretation of Volterra kernels.

The higher-order (nonlinear) kernels presented in Equation (4) are defined as 

'symmetric' since h,(t ,t,) = h , ( t , , t ). Although, depending on the domain of integration 

that is chosen, the kernels can be defined in 'triangular' or 'regular' form, any kernel can be 

symmetrized without affecting the input/output relation. This is done by realizing that

where the indicated summation is over all n! permutations of the integers I through n. For 

the present study, only symmetric kernels will be investigated since these are 

mathematically easier to interpret and intuitively easier to visualize. Additional details 

regarding this issue can be found in Refs. 25 and 43.

Weakly Nonlinear Systems

One approach for obtaining Volterra series representations of physical systems is to 

assume that the system is a 'weakly' nonlinear system. A system that is weakly nonlinear

is a system that is well defined by the first few kernels o f the Volterra series so that the

28
kernels greater than third order and above are negligible. Boyd, Tang, and Chua mention 

some physical systems that are accurately modeled as weakly nonlinear systems including 

electromechanical and electroacoustic transducers and some biological systems. In this 

study, it is assumed that the nonlinear aerodynamic systems that are identified from the 

transonic small-disturbance (TSD) potential equation and the Navier-Stokes equations are 

weakly nonlinear, second-order systems. It is important to develop expertise with the
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application of Volterra methods to nonlinear aerodynamic models in a gradual manner and a 

weakly-nonlinear model provides this type of gradual approach to the problem.

Although this truncation might exacerbate known convergence and amplitude restrictions 

o f the Volterra series, it is of interest to investigate the effectiveness of this truncated model 

to practical applications. Results are therefore, limited to the identification of the second- 

order kernel, or h2. The discrete-time Volterra series for a truncated, second-order, time- 

invariant, system has the form

N 
y[n] = ho + Xhi[n-k]u[k] + 

k=0

N N
X Xh2 [n-k l,n -k2]u[kl]u[k2 ] (6)

k l=0 k2=0

For the applications considered in this dissertation, kernel identification will consist o f the 

identification of h, and h2, with ho clearly stated as appropriate.

It should also be noted that the kernels, linear and nonlinear, are input dependent. For 

example, for a linear system, if the response of the system to an arbitrary input is desired, 

the unit impulse response of the system due to that particular type of input must first be 

defined. For a single-input-single-output (SISO) system, there is only one unit impulse 

response. For a multiple-input-multiple-output (MIMO) system, there are n x m unit 

impulse responses where n is the number of inputs and m is the number of outputs. 

These unit impulse responses are then combined to form the unit impulse response matrix.

The advantage of the Volterra series approach for modeling nonlinear systems is that 

once the kernels are identified, the response of the nonlinear system to an arbitrary input 

can be predicted. The problem of kernel identification, therefore, is central to the 

successful generation of an accurate Volterra series representation of a nonlinear system.
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The most obvious approach for identifying the kernels is to derive analytical expressions 

for the kernels from the governing nonlinear equations of the system of interest48’50’51. 

Although this approach is theoretically applicable to any set of nonlinear equations, 

including the nonlinear fluid flow equations such as TSD, Euler, and Navier-Stokes 

equations, it would require a significant amount o f effort to analytically compute the kernels 

for different configurations and for various inputs. Instead, a kernel identification 

technique is desired that uses the output of a CFD model directly for quick and efficient 

kernel identification, regardless of the CFD code being used and the particular model 

geometry.

In what follows, the kernel identification technique using unit impulse responses from 

Ref. 25, is presented. The technique is then applied to a simple problem in order to 

illustrate the discrete-time application of the technique and the nature of the second-order 

kernel that is identified.

Kernel Identification

Consider a weakly nonlinear, second-order system described by

t 
y(t) = J hift-x) u ( t ) dt +

0

11
J Jh2(t-x1 , t - t 2) uf^) u(x2) dt£ dx2 (7)
00

with ^  assumed to be zero. Inputs consisting of single and double impulse functions can 

be defined as

u0(t) = 5 0(t)
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ut(t) = 50(t) + 80(t + T)

where T is a positive number. The responses o f the system (Eq. (7)) to these two inputs 

are

y0(t) = Jh^t-iOSoCtJdT + 
o 

f  J h2(t- t j , t - x2) 50(t)50(t) dx2 dx2 
0 0

yi(t) = Jhj(t-T) (80(t) + 80(t + T)) dx +
o

J /h2(t-xlf  t -x 2)(50(t) + 80(t+T))(80(t) + 50(t + T))dx1dx2 
0 0

Applying the sifting property of the impulse function to the first-order integral of the first 

response is straightforward. Application of the sifting property to the second-order integral 

yields the components of the second-order kernel that correspond to the times for which the 

impulse functions are defined. Therefore, for the first response,

The second response can be expanded as follows,
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y x ( t )  =  J h j a - T j f i o W d T  +  J h ^ t - x l S o f t  +  T l d x  +  
0 0

JJh2(t-xl5 t-x2)(8o(t) + 280(t + T)80(t) + 8jl(t + T)) dxx dx2 
0 0

or

yi(t) = Jhx(t-x)80(t)dx + Jh1(t-x)80(t + T) dx + 
o o

JJh2(t-Xj, t-x2) 8o(t)dxxdx2 + / /  h2(t-xt , t -x 2)(280(t + T)S0(t)) dxx dx2 
0 0 0 0

+ JJh2(t-x15 t-x2)(8o(t +  T ) ) d X j  d x 2 
0 0

This yields

y,(t) = h,(t) + ht(t + T) + h2(t,t) + 2h2(t, t + T) + h2(t + T, t + T)

The 2h,(t, t + T) term is a result of the symmetry of the kernel since

h2(t, t + T) = h2(t + T,t)

Then

y,(t) = y0(t) + h((t + T) + 2h2(t, t + T) + h2(t + T, t + T)

and noticing that
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y0(t + T) = h,(t + T) + h2(t + T, t + T)

results in

y,(t) = y0(t) + y#(t + T) + 2h2(t, t + T)

Solving for the second-order kernel

h2(t,t+T) = (1/2) (y1(t)-yo(t)-yo(t+T)) (8)

which is the value of the second-order kernel for any value of T.

The procedure for computing h7 is presented in Figure 7. First, y0(t), which is the 

response of the system to a unit impulse applied at time t, is generated. Then, since the 

system is time invariant, yQ is shifted in time to a new time (t + T), which becomes yQ(t + 

T). Then the response of the system to two unit impulses, one at time t and one at time t + 

T  is generated. This is the y((t) response. All three responses are then substituted into 

equation (8) to yield one component of the second-order kernel. As can be seen, the 

second-order kernel, h,, is a two-dimensional function of time. It is a function of time t 

and a function of time lag T so that for every value of T  that is used, a new function of time 

t is defined. These functions of time are referred to as "components" o f the second-order 

kernel. These components are sometimes referred to as “terms” but that phrasing is 

avoided here in order to avoid confusion with other uses of that phrase.

The first component of h, is defined when T = 0, or when both unit impulse inputs are 

applied at the same point in time. When T=0, equation (8) reduces to

h2(t, t) = (l/2)(yi(t) - yfl(t) - yQ(t))
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KERNEL DEFINITION AND IDENTIFICATION

Vi

T

y , L i U t
I I

^12
I I

II l2

Linear system: h = y
1

higher order = 0.0 

Nonlinear system: 

hi =  2y, - .5 yln I *  h

yfl is double input 

h., is f(t, amplitude)

h2 =  ( 1 /2 )  ( v y ^ )

hg is f(t, T, amplitude)

Figure 7 Equations that define the first- and second-order kernels for a  
second-order truncated Volterra approximation and a  schematic of the required 
responses.
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= (l/2)yt(t) - yfl(t) (9)

The second component of the kernel depends on the next value of T selected. The number 

o f components needed to accurately define a second-order kernel depends on the nonlinear 

system under investigation. As will be shown, the greater the nonlinearity, the greater the 

number o f components required. Recall that these components are measures of the second- 

order memory of the system

In addition, the linear portion of the nonlinear response can be identified when T = 0. It 

is important to realize that the linear portion of the nonlinear response is not, in general, 

equivalent to the purely linear response. For example, for an aerodynamic system, the 

linear response computed using the linear equations (an airfoil represented by a flat plate) is 

not identical to the linear portion o f the response computed using the nonlinear equations 

(an airfoil with thickness). One is a linear solution while the other is a linearized solution 

about a nonlinear condition. This difference will be demonstrated with the CFD 

applications later in this dissertation.

The linear portion of the nonlinear response is defined as follows. The response o f the 

system represented by equation (7) to 2uQ(t) is

y2(t) = 2ht(t) + 4h2(t,t)

Then, solving simultaneously with yQ(t) results in

hj(t)=2y0(t) - (l/2)y2(t) (10)
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which is the unit impulse response of the linear portion of the nonlinear response.

The equations derived above for h, and h2 are measures o f deviation from linearity 

which implies nonlinearity. For a linear system, h, (Eq. (10)) defaults to the value o f the 

linear impulse response and h, (Eq. (8)) is identically zero by the principle of 

superposition. For a nonlinear system, h, captures some level of amplitude dependence 

and will therefore be different from the purely linear impulse response. The second-order 

kernel will be non-zero and the particular characteristics of this kernel provide some 

information regarding the level o f nonlinearity o f the system. Therefore, an additional 

benefit o f the second-order kernel is that it can be used to establish boundaries beyond 

which the assumptions of linearity begin to fail. Definitions of higher-order kernels can be 

derived in the same way as for h7 by applying the appropriate number of unit impulses to 

the system.

Once h2 is identified, the nonlinear response o f the weakly nonlinear, second-order 

system to an arbitrary input can be determined, keeping in mind convergence issues 

associated with this type of modeling. Figure 8 is a general representation o f what the 

components of a second-order kernel might look like, how it is viewed in three 

dimensions, and its symmetric nature. It is worth mentioning that most kernel 

identification techniques applied in the literature are frequency-domain techniques with 

inherent complexity. The time-domain kernel identification technique presented, 

developed, and applied in this dissertation (Ref. 25) is computationally efficient and is 

directly applicable to many discrete-time, nonlinear, time-invariant systems. This kernel 

identification technique is now applied to a nonlinear circuit for illustrative purposes.
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S e c o n d -o rd e r kernel (Sym m etric)

Nth com ponen t t , = tz + T.

S econd  co m ponen t t, = u  + T 
■ ^  ^  F irst com ponen t t  ̂ = t2

^  S econd  co m p o n en t ^  = tn + j  
Nth co m p o n en t t2 = t 1 + Tj

Figure 8 Schem atic of the different com ponents that comprise a  symmetric 
second-order kernel.
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Example - Nonlinear Circuit 

A simple nonlinear system that can be used to illustrate the kernel identification technique 

is a series circuit consisting of a linear inductance, a nonlinear resistance, and a voltage 

source54, shown in Figure 9. The governing equation for this circuit is the Riccati equation

dy 2
—  + a y  + ey = x(t)
dt

with y(t) the current around the circuit, x(t) the input voltage, and a  and e parameters from

the nonlinear resistance. After discretization of the Riccati equation, Equation (8) is used to 

compute the various components of the second-order kernel for this system. The first- 

order kernel is computed using Equation (10). The system is discretized using a finite- 

difference approximation and the responses are obtained using a time step of 0.01.

Case 1: a  = 1.0. e =  0.0001

The first-order kernel for this case is presented in Figure 10 for 5000 time steps. This 

kernel goes to zero very quickly, in less than 1000 time steps. Selected components for the 

corresponding second-order kernel are presented in Figure 11. Shown in Figure 11 are the 

first (1) component, the one-hundred-and-first (101) component, and so on. As can be 

seen, the largest component of the second-order kernel (the first) is quite small in 

magnitude as compared to the first-order kernel (Fig. 10) and goes to zero very quickly as 

well. Figures 10 and 11 indicate that nonlinear effects for this case are quite small, as

would be expected with £ = 0.0001. Verification of this is presented in Figure 12, a

comparison of various step responses obtained directly from the model of the circuit and 

those obtained from the convolution of the step inputs with the first-order kernel of Fig.
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Nonlinear 
R esistance

X(t) 0 Linear
Inductance

y(t)

Riccati Equation: (dy/dt) + a y  + e y 2 =  x(t)

Figure 9 Simple nonlinear circuit defined by the  Riccati equation shown with 
x(t) a s  the input to the system and y(t) a s  the output of the system .
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Time Steps

Figure 10 First-order kernel for the Riccati nonlinear circuit, C ase  1, 
alpha=1.0, epsilon=0.0001, DT=0.01.
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Figure 11 Selected  com ponents of the second-order kernel for the 
Riccati nonlinear circuit, Case 1, alpha=1.0, epsilon=0.0001, DT=0.01.
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Figure 12 Comparison of Actual and First-Order responses due 
to three different step inputs for Riccati nonlinear circuit, C ase 1, 
alpha=1.0, epsilon=0.0001, DT=0.01.
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10. These identical results indicate that the first-order kernel is sufficient to capture the 

response of this system for the range of amplitudes investigated.

Case 2: a  = 0.1. e = 0.001

The first-order kernel for this case is presented in Figure 13, along with the first-order 

kernel from Case 1 (Fig. 10) for comparison purposes. The net effect o f the change in the 

two parameters results in an increased effect of the nonlinearity of the Riccati equation. 

This is evidenced by the increased memory of the first-order kernel (slower approach to 

zero) as compared with the first-order kernel of Case 1. Figure 14 is a comparison of step 

responses obtained directly from the circuit and those obtained via convolution of the step 

inputs with the first-order kernel of Figure 13. Increased deviation between comparisons, 

as step amplitude is increased, indicates the effect of increased nonlinearity in the system 

and the need for the second-order kernel. Selected components from the second-order 

kernel for this case are presented in Figure 15, revealing a kernel larger in magnitude and 

memory than the second-order kernel of Case I (Fig. 11).

The dominant sign of the second-order kernel is actually quite important since it is an 

indication of the effect of the second-order nonlinearity on the total response of the system. 

That is, since the second-order kernel of Fig. 15 is negative, then the effect o f the second- 

order convolution, which provides the effect of the second-order kernel, is to decrease the 

magnitude of the total response of the system from that obtained from the first-order 

convolution alone. This is clear in Figure 14 which shows that the response due to the 

first-order term “overshoots” the actual response. Addition of the negative second-order 

response would then approach the actual response. The second-order kernel can therefore 

provide an indication of the additive effect of the second-order nonlinearity with respect to 

the first-order term.

This example demonstrates the identification of first- and second-order kernels o f a 

simple nonlinear system. Inspection of the kernels can provide very useful information
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regarding the level of nonlinearity as well as the net effect of the nonlinearity of a particular 

system. These techniques will now be applied to CFD models.
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Figure 13 First-order kernels for C ase 1 and C ase  2 for the 
Riccati nonlinear circuit.
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Figure 14 Comparison of Actual and First-Order responses due to 
three s tep  inputs for the Riccati nonlinear circuit, C ase 2, 
alpha=0.1, epsilon=0.001, DT=0.01.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

Current/Unit Voltage2
O.OOOOEO

1001st component
-5.0000E-8

-1.0000E-7

-1.5000E-7
 501st component

401 st component
 301st component
 201 st component
—101st component 
1 st component

-2.0000E-7

d 1th
-2.5000E-7

10000 2000 3000 4000 5000
Time Steps

Figure 15 Selected com ponents of the second-order kernel for the 
Riccati nonlinear circuit, C ase 2, alpha=0.1, epsilon=0.001, DT=0.01.
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CHAPTER 5 

APPLICATION TO CFD MODELS

Navier-Stokes Equations

The application of CFD codes involves, in general, the application of the discretized 

Navier-Stokes (NS) equations. This is true for the entire spectrum of equation levels, from 

the linear equations to the full Navier-Stokes equations, including transonic small- 

disturbance (TSD) and Euler equations. The only difference between the different 

equations is the number and type o f simplifying assumptions used to derive the resultant 

governing equations. A flowchart of this process, from Ref. 63, is presented as Figure 16. 

It is important, therefore, to understand the functional nature of the NS equations64.

The compressible Navier-Stokes equations without body forces or external heat 

addition, in Cartesian coordinates, can be written

8U 9E dF 8G
IT + a7 + 37 + aT =0

with

U =

P
p u

p v

p w

Et.

58
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R gure 16 Equation hierarchy (from R eference 63).
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pu

pu + p - XXX

E = puv Lxy
puw - xxz 

(Et + p)u - utxx - vxxy - wxM + q x

pv

F =

P U V  -  T x y  

PV2 + P - Tyy 
P U W  -  T y Z 

(Et + p)v - U T Xy ■ VTyy '  WTyz + Qy

pw 
puw - Txz

G = Pvw - Tyz

p W 2  +  p  ■ T z z

(Et + p)w - U TXZ - v x y z  - w tzz + q z

The p is the density; u,v, and w are flow velocities in the x, y, and z directions 

respectively; the x are the components of the viscous stress tensor; Et is the total energy per 

unit volume; p is the pressure and q is the heat transfer. By inspection, it is clear that this 

system of equations is time invariant since there are no terms that are explicit functions of 

time. Discretization of these equations, however, can alter this condition, but only 

temporarily due to the residual of the numerical solution.

The rapid and often large variation of the numerical residual during the initial time 

stepping of a solution creates a time-varying numerical system. A converged, steady-state
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solution is therefore required to drive the residual down to a level where the resultant 

numerical system is time invariant. Upon convergence of an initial, steady-state solution, 

the discretized NS equations form a discrete-time, nonlinear, time-invariant system. 

Reynold’s averaging o f the NS equations and inclusion of turbulence models to provide 

closure does not alter this aspect o f the equations. Inspection of turbulence model 

equations reveals their time-invariant characterization as well. The realization that the 

discretized NS equations are a discrete-time, nonlinear, time-invariant system of equations 

allows the application o f techniques routinely used in the modeling and design of nonlinear, 

discrete-time filters. In particular, Ref. 65 proves that discrete-time, nonlinear, time- 

invariant systems with memory can be modeled arbitrarily well using Volterra models, 

neural networks, or radial basis functions. The identification of impulse responses and 

their subsequent use in a convolution scheme requires knowledge of the classification of 

the system under investigation (time-varying vs. time-invariant). Because aerodynamic 

impulse responses were previously not identified (until Ref. 32), the classification o f  the 

Navier-Stokes (NS) equations regarding their shift (time) invariance was not addressed. 

The author has not been able to find references that discuss this simple yet powerful 

property of the NS equations.

Related Concepts

Numerical approximations to ordinary and partial differential equations, such as finite- 

difference techniques, are defined by the dependence o f the response on previous values o f 

input and output. This applies to auto-regressive (AR), moving average (MA), and auto

regressive moving average (ARMA) systems as well. The similarity between finite- 

difference techniques and ARMA-type systems is obvious. Clearly then, time-accurate, 

discretized models, such as finite-difference models, are systems with memory, by 

definition. A discretized version of the NS equations (after steady-state convergence) is, 

therefore, a time-invariant, nonlinear, discrete-time system with memory and the
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application o f the discrete-time Volterra theory to this system of equations is a valid 

mathematical approach as proved by Ref. 65.

An intuitive explanation of the application of the Volterra theory to a CFD model (or any 

nonlinear system) can be described as follows. It is a well-established procedure to 

linearize a time-invariant, nonlinear system by expanding the nonlinear terms in a Taylor 

series about an operating point. The resultant Taylor series, if expanded to sufficient 

terms, is an excellent approximation to the actual nonlinearity. That is, there are no 

restrictions on the range o f applicability regarding input amplitudes. As the series is 

truncated by gradual elimination of the higher-order terms, starting from highest to lowest, 

limitations on the range of applicability of the series approximation become more restrictive 

until the only term left is the linear term, the most severely restricted term of all. If higher- 

order terms are gradually added back to the series approximation, one at a time, the 

accuracy o f the approximation is improved and the range of applicability is increased as 

well. The present method is, therefore, a method that re-instates higher-order terms that 

were, in a sense, removed during the linearization of the equations. This will yield 

improved accuracy over the purely linear solution and will increase the range of 

applicability as well. The relationship between the Volterra series and the Taylor series is 

discussed by Boyd47 and others as well.

Also, when a “small” (or “linear”) input is applied to a time-invariant, nonlinear system, 

there is an implicit assumption of the equivalence between the nonlinear system and its 

series expansion. This is evident because it is in the presence of a series expansion 

formulation that a “small” input will, in fact, yield the “linear” portion o f the response 

since the higher-order terms (second-order and above) are much smaller and, therefore, 

negligible. The accepted practice of using a “small” amplitude exponential pulse response 

within a CFD code, for example, to excite only the “linear” portion of the response about a 

nonlinear, steady-state solution implies a series approximation of the nonlinear response. 

As a result, this “small” input approach offers addidonal validation to the present
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application o f the discrete-time Volterra theory, which seeks to identify the next term o f the 

Volterra series. The exponential pulse method is described later in this dissertation.

Furthermore, the first-order term is more accurate than the purely linear term because 

the first-order term is derived with knowledge of the second-order, or higher-order, terms. 

This is clear from the derivation of Equation (10). Therefore, for a second-order 

nonlinearity, the first-order term is the proper and correct linearization. The first-order term 

can be considered to represent a “mean” value of the response with the second-order term 

representing a higher-order variation about that mean.

The successful application of linearized aerodynamic methods, under certain geometrical 

and flow conditions, does not mean that rotational, viscous, and turbulent effects disappear 

from the flow at these conditions. What it does mean is that these effects are so small 

and/or so localized that they do not contribute significantly to the overall response. If one 

considers an aerodynamic response as a series expansion consisting of a linear term plus 

higher-order terms, then linearized aerodynamic methods are those methods where the 

response is dominated by the first (linear) term. As the flow- and/or geometry-induced 

nonlinearities begin to grow and the linear term is no longer adequate, it makes sense to 

expand our model to include the effects of the higher-order terms.

It is also important to realize that the level of aerodynamic nonlinearity, as measured by 

the series expansion, for example, depends on the macroscopic level being investigated. 

That is, it seems rather intuitive that the series expansion for the nonlinear response o f a 

pressure sensing device (mounted somewhere on a wing) located in the vicinity of a shock 

will be different from that of the lift response of the wing. The response of the pressure 

sensing device will be dominated by the highly nonlinear effect o f the shock and may 

require several higher-order terms to fully capture the nonlinear response. The lift o f the 

wing, on the other hand, is the result of integration of pressures over the entire wing. The 

effect of this integration may be to reduce the effect of the localized shock on the global 

(lift) response of the wing. The series expansion for the lift response of the wing may
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require less higher-order terms (if any) than the series expansion for the response of the 

pressure sensing device. Since loads are o f primary importance in the preliminary design 

phase o f a vehicle, it is quite reasonable to investigate the feasibility of a weakly-nonlinear 

model for the global (load) responses, even for conditions where highly nonlinear, but 

localized, flow phenomenon may exist.

Computational Benefits

As will be shown, the computational efficiency o f the present technique for CFD 

analyses is due to the following features o f the method: 1) Identification of the first- and 

second-order kernels eliminates the need to re-execute the code. 2) The kernels can be 

coupled with a structure in a closed-loop sense “outside” of the CFD code, on a 

workstation for example, to generate aeroelastic responses thus sidestepping the current, 

very expensive method of solving the aeroelastic equations o f motion within the CFD code. 

3) The identification of the kernels is geometry independent. The first- and second-order 

kernels of a three-dimensional configuration are, topologically, the same as the kernels of a 

two-dimensional configuration. The only difference between the kernels of the two 

geometries is the initial cost of identification that requires the use of the CFD code. The 

complex CFD model, consisting of three spatial variables and one temporal variable, is 

mapped onto the unit sample response, a concise function of time only. The modal 

approach and the definition of boundary conditions within a CFD code make this mapping 

possible. 4) This technique permits a unified approach for the generation of concise 

mathematical models that can be used to compute linearized and nonlinear, steady and 

unsteady responses from a single, arbitrarily complex CFD model (complete configuration, 

finest grid, most detail).

The kernel identification technique is now applied to the viscous Burger’s equation as an 

example o f the application of this technique to a simplified model of the Navier-Stokes 

equations.
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Example - Viscous Burger’s Equation

The 1-D viscous Burger’s equation is defined as

du 3u 32u+ u = u (11)
3t 3x ax2

and is typically used as a simplified model of the Navier-Stokes equations for evaluating 

the effectiveness of numerical methods66. It is used here to demonstrate the effectiveness 

of the discrete-time Volterra technique when applied to a simple CFD model. Note that 

Equation (11) is clearly a time-invariant, nonlinear equation since it is not an explicit 

function o f time. The numerical solution is implemented via a simple forward-in-time, 

central-in-space (FTCS) method with 40 grid points and a time step of 0.01. Figure 17 is a 

sketch that summarizes the application of the discrete-time Volterra theory to this example. 

The boundary condition (BC) grid point (grid point #1) is perturbed and the response to 

this perturbation is recorded at the fifth grid point, chosen arbitrarily.

The identification part of the process (Figure 17) consists o f the generation of the first- 

and second-order kernels of the fifth grid point due to perturbation of the end-point 

boundary condition (BC) grid point. Shown in Figure 18 is the first-order kernel of the 

system, revealing a well-behaved, first-order memory function that goes to zero quickly. 

Shown in Figure 19 are the first twenty components of the second-order kernel. These 

components indicate a second-order nonlinear memory that goes to zero fairly quickly as 

well. Figure 20 is a three-dimensional visualization of the twenty components of this 

second-order kernel. The dominance of the first component is clear. Zooming in, in Fig. 

21, the additional components are more visible.

It is helpful to consider the second-order kernel of a nonlinear system as a matrix. The
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Figure 17 Application of the discrete-time Volterra theory to the viscous 
Burger’s  equation consisting of identification and application phases.
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Figure 18 First-order kernel for viscous Burger’s equation problem.
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Figure 19 Twenty com ponents of the second-order kernel for the 
viscous Burger’s equation problem.
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Figure 20 Three-dimensional perspective of the first twenty com ponents of the 
symmetric second-order kernel for the viscous Burger’s equation problem.
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diagonal o f this symmetric matrix would be the first component of the second-order kernel. 

The lower (or upper since it is symmetric) diagonals are the additional components, with 

the second component o f the kernel being the lower diagonal closest to the main diagonal 

and so on. This is typically the form used in nonlinear digital filtering techniques.

The application/validation part o f the process (Figure 17) can now be carried out. 

Shown in Figure 22 is a comparison of several responses due to step inputs o f increasing 

amplitude for the actual numerical solution, the convolution of the first-order kernel with 

each of the inputs, and the convolution of first- and second-order kernels with each of the 

inputs. As the amplitude is increased, the error between the actual (“true”) response and 

the first-order response increases, indicating an increasing effect of the nonlinearity with 

amplitude. Addition o f the second-order convolution shows a significant improvement in 

accuracy. The crossing over of the convolved response for the largest step response could 

be an indication of a convergence limit or the need for additional components of the second- 

order kernel. The improvement in response with the addition of the second-order term is, 

nonetheless, evident.

Using only the first- and second-order kernels, steady-state responses of the nonlinear 

system can be computed without re-execution of the actual numerical system. It is 

interesting to note that, for a certain range of amplitudes, the first-order response may be 

sufficient, depending on the level o f accuracy desired. This is consistent with the well- 

established concept of linearization of a nonlinear system for small amplitudes.

Actual and convolved responses, using the same first- and second-order kernels, due to 

sinusoidal inputs were generated. Shown in Figures 23 and 24 is the comparison for a 

low-frequency input and a high-frequency input, respectively. Again, the comparisons 

were excellent with the combined first- and second-order response showing the best 

agreement with the actual responses. For the case of a purely linear system, these 

responses could be used to generate the frequency response function of the system, as is 

currently done for linear aerodynamic systems. Therefore, whereas the unit sample
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Figure 22 Comparison of Actual, First-Order only (1 st only), and 
First- Plus Second-Order (1 st+2nd) responses due to step inputs 
at four different amplitudes (0.25, 0 .50,1.0, 2.0) for the viscous 
Burger’s  equation problem.
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Figure 23 Comparison of Actual, First-Order only, and First- 
Plus Second-Order responses due to a  low-frequency (5 Hz) 
sinusoidal input for the  viscous Burger’s  equation problem.
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Figure 24 Comparison of Actual, First-Order only, and First- 
Plus Second-Order responses due to a  high-frequency (20Hz) 
sinusoidal input for the viscous Burger’s  equation problem.
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responses are valid in the complex plane, the forced harmonic response, which can be 

generated from the unit sample response, is valid only along the imaginary axis. The unit 

sample responses (linear) and first- and second-order kernels (nonlinear) do not have any 

such limitation. The only limitation of the nonlinear kernels is that the radius of 

convergence of the series is limited by the infinity norm of the input, which depends on the 

system being investigated. These kernels are therefore more powerful and, at the same 

time, more efficient than any other responses that can be obtained from a given system. 

This is because all other system responses are the result of a convolution o f the system’s 

unit sample response with some arbitrary input.

Shown in Figure 25 is a comparison of the actual, first-order, and first- plus second- 

order responses due to a low-amplitude (0.5) quasi-random input from a uniform 

probability distribution. The comparison is reasonable for the first-order only and excellent 

for the first- plus second-order response. It is interesting to note that the first-order only 

response captures the phasing very well while it is clearly deficient in amplitude. The 

addition of the second-order convolution yields a response identical to the actual response. 

The actual response and the first- plus second-order response are indistinguishable in 

Figure 25.

Shown in Figure 26 is a comparison of the actual, first-order, and first- plus second- 

order responses due to a medium-amplitude (1.0) quasi-random input from a uniform 

probability distribution. The first-order only response again captures the phasing 

accurately but the difference in amplitude with the actual response has increased. Addition 

of the second-order convolution to the first-order only response yields significant 

improvement over the first-order only response. Although improved, the comparison 

between the actual response and the first- plus second-order response is not as good as that 

of Figure 25 since slight differences between the two responses are visible in some 

portions of the responses.
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Figure 25 Comparison of low-amplitude, quasi-random 
responses including actual, first-order, and first- plus second- 
order responses for viscous Burger’s equation problem.
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Figure 26  Comparison of medium-amplitude, quasi-random  
responses including actual, first-order, and first- plus second- 
order responses for viscous Burger’s  equation problem.
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Shown in Figure 27 is a comparison of the actual, first-order, and first- plus second- 

order responses due to a large-amplitude (2.0) quasi-random input from a uniform 

probability distribution. The accuracy of the first-order only response continues to 

diminish with increasing input amplitude. Although the first- plus second-order response 

is still significantly better than the first-order only response, differences between the actual 

response and the first- plus second-order response are more noticeable.

The effect o f input amplitude on the predictive accuracy of the first- and second-order 

kernels for this example is again revealed in Figures 25-27 as it was for the step responses. 

However, for a particular amplitude range, the first- and second-order kernels can be used 

to predict the response of the nonlinear system to any arbitrary input.

Application of the discrete-time Volterra kernel identification technique to more complex 

CFD models requires an understanding of the process by which the boundary conditions 

can be perturbed. The next section addresses this topic.

Aerodynamic System Input Definition

An important conceptual development of Ref. 32 was the mathematically-correct 

definition of the input to a discrete-time, unsteady aerodynamic system. The input for the 

excitation o f a given structural mode (motion), known as the downwash function, is 

written as

w(x,y,t) = <D ’(x,y)«u(t) + <D (x,y)*u’(t) (12)

where 4>(x,y) is the modeshape (shape of the structural motion), 0 ’(x,y) are the slopes of

the modeshape, u(t) is the motion, and u’(t) is the rate-of-change of this motion. In the 

CAP-TSD code, for example, there are additional terms included in Equation (12) that 

account for the thickness of the wing. These terms are clearly not a function of time (shape
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Figure 27 Comparison of high-amplitude, quasi-random  
responses including actual, first-order, and first- plus 
second-order responses for viscous Burger’s equation 
problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

of the wing is constant) and only impact the nonlinear, mean value of the response. For the 

linear solution, airfoil thickness is not included in the boundary conditions (downwash 

functions) to simulate a flat plate. The present discussion will be limited, temporarily, to 

the linear case for illustrative purposes.

The current method for the locally-linear excitation of aeroelastic modes within a CFD 

code involves the definition of a “smooth” pulse function defined as

u(t) = D0 exp(-w(t-t0)2) (13)

and its derivative

u’(t) = -2w(t-t0) u(t) (14)

where D0 is the maximum pulse amplitude desired, w is the width of the pulse, and t„ is the 

time at which the maximum amplitude is reached. This curve (Equation (13)) is referred to 

as the exponential pulse function and an example of an exponential pulse, u(t), and its 

derivative, u’(t), is shown in Figure 28. This exponential pulse is input to each of the 

modes o f the system, via Equation (12), with a “small” D0. The downwash equation (Eq. 

(12)) is then input to the aerodynamic flow solver to obtain small perturbation responses, 

about a nonlinear steady state solution67-68. These responses are then transformed to the 

frequency domain for use in standard linear analyses techniques. Equations (13) and (14)

can be used to define some arbitrary motion and the rate-of-change of that motion which is

then passed on to the flow solver via Eq. (12).

This exponential pulse function should not be confused with the unit pulse response 

mentioned throughout this dissertation. Whereas the unit pulse input (Eq. (1)) excites all 

the frequencies for a given mode, the exponential pulse input will excite only the particular 

range of frequencies defined by the width of the exponential pulse and its corresponding 

derivative. This can be explained using Eq. (12) as follows.
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Figure 28 Example of an  arbitrary plunge motion, u(t), and 
corresponding rate-of-change of motion, u’(t).
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The downwash equation consists of the first term which multiplies u(t) (Eq. (13)) by the 

slopes o f the modeshape. This term is then added to the second term which is the mode 

multiplied by u’(t) (Eq. (14)). When the shape of u(t) is narrowed, the derivative term, 

u ’(t), gets bigger and changes more rapidly than it does for a  wider pulse. Therefore, a 

narrow u(t) will yield a large u’(t) and the input function (Eq. (12)) will be dominated by 

the u’(t) term. Because this u’(t) term will be large and will change quickly, the combined 

input to the flow solver (Eq. (12)) will excite primarily higher frequencies. Figure 29 

shows a narrow u(t) and its derivative u’(t)- Shape optimization may, therefore, have to be 

performed in order to obtain the desired frequency range of interest. Typically, a “wide” 

pulse is recommended, forcing the u’(t) term to be small, resulting in a combined input that 

will excite primarily lower frequencies. The lower frequency range is usually the range of 

interest for aeroelastic analyses. This is particularly true for nonlinear aeroelastic analyses 

since the lower frequencies typically induce greater nonlinearities in the response.

A potential drawback, however, is that the exponential pulse is sometimes perceived as 

a single input. That is, the fast Fourier Transform (FFT) o f the output response is divided 

by the FFT1 of the perceived single input, u(t), to obtain the linearized frequency response 

function for that particular mode, or motion. But inspection o f Eq. (12) clearly shows that 

the downwash function is, mathematically speaking, a two-input function since it is a 

summation of two distinct terms. The user defines u(t), Eq. (13), but the quantity that is 

input to the flow solver is Eq. (12), which also includes the effect of u’(t) (Eq. (14)). 

Because this derivative is computed analytically within the code, it is invisible to the user, 

giving the impression that u(t) is the only input to the system. But it is clear from Eq. (12) 

that the u’(t) term is a contributor to the combined mathematical function that is input to the 

flow solver.

Equation (12) for a plunge (vertical translation) mode reveals that the first term is 

identically zero because the slopes of a plunge mode are zero. Therefore, the only temporal 

function that is actually input to the flow solver is u ’(t). For a plunge mode, the
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Figure 29 Example of a  narrower arbitrary plunge motion, u(t), 
and corresponding rate-of-change of motion, u’(t).
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computation of the frequency response function should use the FFT o f u’(t) as the 

denominator, not the FFT of u(t). This will be demonstrated using convolution with 

examples from CAP-TSD and CFL3D in a  subsequent section of this dissertation.

The reason for the success of the technique to date is that for most modes, a very wide 

u(t) term results in a very small u’(t) term, thereby exciting, predominantly, the lower 

frequency range. For most aeroelastic analyses, the lower frequency range is, typically, 

the frequency range of interest. If an accurate determination of the entire frequency range 

of a mode is desired, however, then the second term of the downwash function must be 

included in the FFT analysis. In terms o f computational efficiency, the exponential pulse 

response does not possess any of the mathematical properties of the unit sample response 

nor can it be formally extended to the analysis of nonlinear systems. The exponential pulse 

response method is, nonetheless, a standard approach for computing locally-linear 

responses from modem CFD aeroelastic codes.

The perception of the downwash as a single input can lead to the false conclusion that 

impulse (or unit pulse) and step inputs cannot be applied to a CFD code because these 

inputs will result in numerical difficulties. The reasoning being that the application of a unit 

pulse, or unit step, input as u(t) would lead to a very large, if not infinite, derivative term, 

u'(t). So typically, a step input is modified, or made “smoother”, so that the u’(t) does not 

cause numerical problems. These “smoother” responses, however, are not mathematically 

consistent with the strict definition of unit pulses or unit step inputs and so will yield 

inaccuracies when used in convolution. The unit pulse and unit step functions have a very 

precise mathematical description which allows for convolution to be applied. Any 

deviation from this precise definition will reduce, or possibly eliminate, the accuracy of the 

convolution.

Mathematically, the downwash equation (for a given mode) is clearly a two-channel 

input: the first “channel” is u(t) and the second “channel” is u’(t). For the linear case, each 

term of the downwash equation can, and should, be treated as a separate input channel.
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The correct excitation input, for the linear case, should be the application o f a unit sample 

input to each temporal function (u(t) and u’(t)) of the downwash equation, one at a time. It 

is important to temporarily ignore the relationship between u(t) and u’(t) as one o f a 

function and its derivative. This physical relationship will be reinstated when convolution 

is applied, as will be seen. Instead, each temporal function should be viewed as an input 

“channel” that merits its own excitation input, and, thus, its own impulse (or unit sample) 

response. Based on this reasoning, the unit pulse inputs were defined as

u(t) = 1.0 @ t=t0 with u’(t) = 0.0 for all t

which yields the unit sample response for the u(t) term, or the first “channel”. The unit 

sample response for the second “channel” is identified by setting

u’(t) = 1.0 @ t=t0 with u(t) = 0.0 for all t

which yields the unit sample response for the u’(t) term. These two unit sample responses 

can then be used to predict the response of the system to an arbitrary temporal variation of 

this particular mode. An arbitrary u(t) is convolved with the unit sample response 

identified for the first “channel”. The corresponding u’(t) for that arbitrary motion is 

convolved with the unit sample response for the second “channel”. These two 

convolutions are then added to obtain the complete response o f the linear system to that 

input motion. This separation o f input “channels” and subsequent superposition of 

convolution responses is certainly appropriate for the linear responses. Application of this 

concept using the linear equations within the CAP-TSD code are presented in a subsequent 

section of this dissertation.

For the nonlinear case, the response due to the sum of the terms of the downwash will 

not, in general, be equal to the sum of the separate responses due to each term of the
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downwash. The inputs, however, still need to be treated as independent inputs. At first it 

might appear that the addition of the u(t) function with the u’(t) function would yield the 

correct input. This, however, is not correct due to the fact that each one of these functions 

is multiplied (or scaled) by the spatial functions in Eq. (12). Therefore, a different 

approach had to be developed as follows:

The unit sample response for each term of Eq.(l2) was computed separately for the 

linear case as described above. The total linear response due to some arbitrary input 

consisting o f u(t) and u’(t) was then computed, also as described above. A combined unit 

sample response for the linear equations, that consists of a unit sample input applied to each 

of the two inputs simultaneously, was then computed. Since the linear response has been 

computed and the linear combined unit sample response has also been computed, a simple 

deconvolution technique yields the necessary single, temporal input function. This single, 

temporal input function replaces u(t) and u ’(t). Therefore, when the combined linear unit 

sample response is convolved with this single input function, the result is the linear 

response.

A combined unit sample response is then computed for the nonlinear case. The net 

combined motion of the system, due to the combined inputs of the downwash, must 

obviously be the same for the linear and nonlinear cases. That is, the linear and nonlinear 

system of equations “see” the same input as it is being applied in time. Therefore, the 

nonlinear response to this motion can be computed by convolving the single, temporal 

input motion (obtained from the linear deconvolution) with the nonlinear, combined unit 

sample response. The effectiveness of this method will be presented in the final section of 

this dissertation.
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CHAPTER 6 

RESULTS USING THE CAP-TSD CODE

The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) 

code is a finite-difference program that solves the general-frequency modified TSD 

potential equation

M i (<t>t + 2<})x)t = [(1 - Mi)<f>x + F<J>x +

+ G<t>y]x + (<t>y + H<t>x(j)y)y + (<t>Z)Z

where is the freestream Mach number, <j> is the disturbance velocity potential, and the

subscripts represent partial derivatives. Details regarding the coefficients F, G, and H and 

discretization o f this equation in the CAP-TSD code can be found in Reference 36. An 

application o f this inviscid code to the prediction of the aeroelastic stability of a complex, 

full-span wind-tunnel model is presented in Reference 69. A viscous version of this code, 

based on an interacted boundary layer method, has recently been developed70.

The linear CAP-TSD results that follow were computed using the linear potential 

equation available within the code by setting the F, G, and H coefficients to zero.

Linear CAP-TSD  - Plunge

The linear equations within the CAP-TSD code were used for comparisons o f unit 

sample and step responses. The computational model is a rectangular wing with an aspect 

ratio o f two. The wing is treated as a flat plate (no thickness) and the linear potential 

equation is invoked in order to obtain the linear solution. The wing has plunge and pitch 

degrees o f freedom. All results presented are for nondimensional, normal aerodynamic 

force coefficient, at a Mach number of 0.9, and a time step o f 0.001. Shown in Figure 30
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ormal Force due to Plunge
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Figure 30 C om parison  of p lunge unit sa m p le  re sp o n se  and  p lu n g e  

unit s te p  re sp o n se , linear CAP-TSD, M =0.9, D T=0.001.
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is a comparison of the plunge unit sample response and the plunge unit step response. 

Convolution of the unit sample response with a unit step yields the unit step response, as 

shown in Figure 31. But, clearly, it is computationally more efficient to compute the unit 

sample response rather than the unit step response since the unit sample response reaches 

its steady state much faster than the step response. Both of these responses contain 

physical as well as numerical frequencies. Convolution with physically realistic motions, 

however, filters out the high-frequency content, as will be seen.

An arbitrary input consisting of u(t) (Eq. (13)) and the corresponding u’(t) (Eq. (14)) is 

applied to the plunge motion via Eq. (12). But as previously discussed, a plunging motion 

only affects the u’(t) term of the downwash input function, Eq. (12). Therefore, 

convolution of the plunge unit sample response with the input shown in Figure 32a, u’(t), 

yields the exact, CAP-TSD-generated result, also shown in Figure 32a. Convolution of the 

plunge unit sample response with u’(t), instead of u(t), yields the correct result, consistent 

with the discussion regarding Equation (12) in a previous section. Comparison with a 

different (longer) arbitrary plunge motion is presented in Figure 32b, again showing 

excellent comparison. The same unit sample response can be used to predict the plunge 

response to an arbitrary plunge motion; any frequency, any amplitude, any time length.

The plunge step response is used to predict the response to the input u’(t) using 

Equation (4). The result is presented in Figure 33, along with the actual response, for an 

excellent comparison. Consistent with the discussion regarding Equation (4), the input 

used in the convolution with the step response is the derivative of u’(t), also shown in 

Figure 33. For this case, it is important to include the first term of Equation (4) in order to 

correctly predict the actual response since the initial value of the input (u” (0)) is non-zero.

The computational costs associated with the computation of ten of these types of 

responses, for the linear case, are presented in Table 1. Although linear solutions are not 

computationally intensive, it is important to demonstrate the effectiveness of this technique 

to linear systems before applying it to nonlinear systems. More importantly, the plunge
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Figure 31 S tep  resp o n se  com puted  via convolution of unit sam p le  

re sp o n se  with a  unit s tep  input, linear CAP-TSD.
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Normal Force or
Plunge Motion
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Figure 32a Comparison of Actual and Convolved Plunge 
R esponse, Linear CAP-TSD, M=0.9, DT=0.001.
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Figure 32b Comparison of Actual and Convolved R esponses 
for lower frequency (longer timelength) arbitrary plunge motion, 
linear CAP-TSD, M=0.9, DT=0.001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

Normal Force or
Plunge Motion 

0.04 r
Actual ResponseUnit Step Response 

convolved with u”(t)

0.02

0.00

- 0.02

u”(t)-0.04

-0.06

-0.08

Nondimensional Time

Figure 33 Comparison of Actual and Unit Step R esponse convolved 
with u”(t), Linear CAP-TSD, M=0.9, DT=0.001.
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TABLE 1

COMPUTATIONAL COST COMPARISONS: LINEAR RESPONSES

CAP-TSD UNIT SAMPLE RESPONSE

Cost Cost
Run # C P U s Turnaround Run# C P U s Turnaround

1 3800 1.5hr -1 day ID / 1000 0.5hr -1 day
2 3800 1.5hr -1 day ID // 1000 0.5hr -1 day
3 u II 1 15 15 secs
4 u II 2 ii »

For 10 runs, total costs  are:

38,000 15hrs (mininum) 2150 1.04hrs (min)
10 days (max) 2 days,150s(max)
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unit sample response can now be used to predict the linear response in plunge due to any 

arbitrary plunging motion, from steady to random motions, without re-execution of the 

CFD code.

Linear CAP-TSD - Pitch

The responses due to a pitching (rotation) motion about the wing mid-chord, v/here both 

terms of Equation (12) are involved, are now presented. Presented in Figure 34 is the unit 

sample response in pitch due to the first term of Equation (12). Figure 35 is the unit 

sample response in pitch due to the second term of Equation (12). The arbitrary pitching 

motion, shown in Figure 36, was input to the CAP-TSD code (via Eq. (12)) and is referred 

to as the actual response. The first unit sample response (Fig. 34) is convolved with u(t) 

(Fig. 36) and the second unit sample response (Fig. 35) is convolved with u’(t) (Fig. 36). 

These two convolutions are then added to obtain the total convolved response. This 

response is plotted in Figure 37 along with the actual response, showing exact agreement. 

Additional verification of this method is demonstrated using a different arbitrary input, 

shown in Figure 38. Once again, the (same) first unit sample response is convolved with 

u(t) of Figure 38, the (same) second unit sample response is convolved with u’(t) of Figure 

38, and these two convolutions are added. This response is compared to the actual result 

from the CAP-TSD code in Figure 39, showing identical agreement.

A different type o f input consisting of a sinusoidal pitching motion was then applied. 

Figure 40 is a comparison of an actual CAP-TSD linear response and a convolved 

response. The same unit sample responses (Figures 34 and 35) were used for the 

convolutions. Again, the comparisons are identical. It is particularly interesting to “zoom” 

in on the first few time steps of the responses shown in Figure 40. As can be seen in 

Figure 41, the “zoom” comparison between the two responses is identical even for the 

initial time transients. This is not surprising since this transient is, in fact, the result of the 

initial part of the convolution of the unit sample responses.
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Figure 34  Linear unit sam ple response due to unit pulse 
applied to  the motion "input channel" of the  downwash 
equation.
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Figure 35 Linear unit sample response due to unit pulse 
applied to rate-of-change of motion "input channel" of the 
downwash equation.
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Figure 36 Arbitrary pitching motion, low frequency.
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Figure 37 Comparison of actual and convolved plunge resp o n ses  due to arbitrary 
pitch motion of Fig. 36, linear CAP-TSD, M=0.8, DT=0.001.
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Figure 38 Arbitrary pitching motion, high frequency.
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O  CAP-TSD linear 
□  Linear convolution
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Figure 39 Comparison of actual and convolved plunge responses due to arbitrary 
pitch motion of Fig. 38, linear CAP-TSD, M=0.8, DT=0.001.
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□  Linear convolution
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Figure 40 Comparison of actual and convolved plunge responses due to a sinusoidal 
pitch motion (1.5 degrees amplitude).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



103

2.5
O  CAP-TSD linear 
□  Linear convolution

2.0

Amplitude

0.5

0 1 2
Nondimensional time 

Figure 41 Enlarged view of initial portion of Figure 40.
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Summary fo r  Linear CAP-TSD Results

These results demonstrate the relationship between a unit sample response and a unit 

step response for a linear unsteady aerodynamic system and the correct application o f these 

functions. Also, it is important to realize that the unit sample response, when convolved 

with a step input results in the steady-state solution. Therefore, unit sample responses can 

be used for predicting the linear steady and unsteady responses of a system.

These results also demonstrate the validity o f the concept o f an aerodynamic impulse 

response and the correct numerical identification and implementation of this function for a 

linear aerodynamic system. The pitch results validate the interpretation of the downwash 

function as a two-input function. If only one convolution had been performed with the unit 

sample response due to the u(t) term (the single-input perspective), it would not have 

matched the CAP-TSD results. These results apply to the nonlinear case as well where the 

savings in computational cost and time are of greater significance and value, as is discussed 

in the next section.

Nonlinear CAP-TSD - Plunge

The nonlinear TSD equation is solved for the same rectangular wing used for the linear 

analyses but now with a NACA0012 airfoil section (symmetric airfoil thickness). Results 

were computed for a Mach number of 0.9 and using a time step of 0.001. At zero degrees 

angle of attack, this symmetric airfoil induces a zero net normal force. Therefore, for this 

case, the first term of the Volterra series, the hg term, is zero.

Figure 42 is the first-order kernel for this configuration in plunge. Comparison with the 

linear kernel (Fig. 30) shows only slight differences. These slight differences, however, 

are sufficient to differentiate between the purely linear response and the “linearized” portion 

of the nonlinear response. Figure 43 is a comparison of nonlinear CAP-TSD plunge 

responses, due to exponential pulse inputs at three different amplitudes, with the convolved 

results of the first-order kernel with those three inputs. The three amplitudes, normalized
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Figure 42 First-order kernel in plunge, nonlinear CAP-TSD.
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Figure 43 Com parison of actual nonlinear and  first-order convolved 
re sp o n se s  for th ree  different plunge m otions; linear re sp o n se  for first 
is a lso  p resen ted .
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to the airfoil chord length, are D0 = 0.064, 0.128, and 0.25. The linear CAP-TSD result 

for the first, and smallest, amplitude (D0 = 0.064) is also shown for comparison. At this 

amplitude there is a noticeable difference between the linear and nonlinear CAP-TSD 

solutions. Notice, however, that the first-order kernel accurately predicts the nonlinear 

plunge responses with a slight deterioration as amplitude is increased.

A comparison of the computational costs associated with ten of these types o f responses 

is presented in Table 2. Most of the cost o f the first-order convolution is the initial 

identification part of the process since each convolution itself took only 75 seconds on a 

workstation. As the need for the response o f the system to arbitrary inputs (motions) 

increases, the cost o f the method decreases because once the unit sample responses are 

obtained, the CFD code need not be re-executed.

The five components of the second-order kernel for the plunge mode are presented in 

Figure 44. Their relatively small size is an indication that for this configuration, for plunge 

motions at this condition, the first-order kernel is sufficient to adequately predict the 

nonlinear plunge responses for the amplitudes investigated. This is consistent with the 

results o f Figure 43.

Figure 45 is the combined first-order kernel for pitch due to the combined input. This 

combined first-order kernel was computed as described in the previous chapter. It is a 

well-behaved kernel and its computation posed no numerical difficulties. Figure 46 is a 

comparison of the actual linear and nonlinear CAP-TSD solutions for the same wing 

undergoing an arbitrary pitching motion; the single, temporal response (from 

deconvolution); the response obtained by the convolution o f the combined linear kernel 

with the single, temporal input; and the response obtained by the convolution of the 

combined first-order kernel with the single, temporal input. The single, temporal input was 

obtained using a linear deconvolution technique described in an earlier section of this 

dissertation. The comparison for the linear solutions is exact, as expected. The 

comparison for the nonlinear case is reasonable, but for this mode at this amplitude, the
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TABLE 2

COMPUTATIONAL COST COMPARISONS: FIRST-ORDER RESPONSES 

CAP-TSD FIRST-ORDER RESPONSE

Cost Cost
Run # CPU s Turnaround Run # C P U s Turnaround

1 3800 1.5h r-1 day ID / 1000 0.5hr -1 day
2 3800 1.5h r-1 day ID // 1000 0 .5 h r -1 day
3 u u ID /// 1000 0.5hr -1 day
4 u M ID iv 1000 0.5hr -1 day
5 u (i 1 15 15 sec

For 10 runs, total costs are:

38,000 15hrs (mininum) 
10 days (max)

4150 2.04hrs (min)
4 days,150s(max)
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Figure 44 Four com ponents of the  plunge second-order kernel, 
nonlinear CAP-TSD, M=0.9, DT=0.001.
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Figure 4 5  C om bined  pitch first-order kernel, nonlinear C A P-TSD .
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Figure 46  Single pitching motion (deconvolution) an d  com parison of 
linear an d  nonlinear, actual and convolved re sp o n se s .
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second-order components are needed. The computational efficiency, however, has been 

significantly improved. The reason being that instead of computing two responses per 

mode (one for each term of the downwash function, Eq. (12)), only one response per 

mode is needed. In addition, the identification technique, as applied to the downwash 

function, is now mathematically correct for nonlinear responses.

A selected number o f components of the second-order kernel for pitch are presented in 

Figure 47. These are clearly larger than any of the second-order kernels presented thus far, 

an indication of the greater nonlinearity induced by this motion.
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Figure 47 Four selected  components of the second-order kernel for 
the combined pitch motion, nonlinear CAP-TSD, M=0.9, DT=0.001.
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CHAPTER 7 

RESULTS USING THE CFL3D CODE

The CFL3D code71 solves the time-dependent, Reynolds-averaged Navier-Stokes 

equations in conservation law form. Upwind-biasing is used for the pressure and 

convective terms, central differencing is used for the shear stress and heat transfer terms, 

and the spatial discretization is based on a semi-discrete finite-volume concept. Accelerated 

convergence can be achieved using multigrid and mesh sequencing capabilities and implicit 

time-stepping is used. The code provides several turbulence models, including the Spalart- 

Allmaras turbulence model used in the subsequent analyses.

Results fo r  RAE Airfoil

Navier-Stokes results (CFL3D version 5.0) for a dense-grid RAE airfoil71 (Figure 48) 

with the Spalart-Allmaras turbulence model undergoing plunge at M=0.75 and a zero 

degree angle of attack were computed at a time step of 0.001. At this Mach number and 

zero degrees angle o f attack, this non-symmetric airfoil induces a net normal force 

coefficient of 0.2953. When generating the first- and second-order kernels for this system, 

this “DC offset” has to be subtracted from the kernel computations. The response to a 

particular input is computed using the convolution procedures and then the ho (= 0.2953) o f 

the Volterra series is added back to obtain the total response.

This code has several computational options, depending on the type o f analysis desired. 

Accelerated convergence can be obtained using the sub-iteration and multigrid 

capabilities72. In addition, a method is available that diagonalizes the governing matrices 

(diagonally dominant) based on the spectral radius. Experimentation with these techniques 

revealed the numerical method that resulted in the most accurate Volterra kernels.
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Figure 48 RAE 2822 airfoil grid, from Ref. 71.
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Figure 49 is a comparison o f the first-order kernel, with and without diagonalization, 

using the first-order, time-accurate option. As can be seen, both kernels go to zero very 

quickly, in less than 30 time steps. Both kernels exhibit the square-integrable nature that is 

characteristic o f impulse responses but the diagonalized kernel appears somewhat 

attenuated compared to the non-diagonalized kernel. Diagonalization is a clear advantage 

when accelerated convergence to steady state is desired. However, recall that the function 

that needs to be identified is a memory function that contains the entire frequency range of 

the system. The diagonalized kernel appears to be a function that is optimized for steady- 

state results. This is consistent with a warning in the User’s Manual regarding the use of 

this option for unsteady analyses. Therefore, at least for results similar to those presented 

in this chapter, it is recommended that the full matrix solution (non-diagonalization) be used 

when identifying Volterra kernels with this CFD code.

Figure 50 is a comparison o f the first-order kernel without diagonalization, with and 

without multigrid capability. The nature of a multigrid scheme is to accelerate convergence 

by filtering out high- and low-frequency numerical error by using grids o f varying 

coarseness. For the cases investigated in this chapter, this filtering tended to attenuate the 

memory of the system, similar to the diagonalization scheme. This effect is clear in Figure 

50 where the multigrid result very quickly converges on the steady state solution. But, 

again, since the goal in identifying Volterra kernels is to excite as much of the system’s 

memory as possible, it is recommended that kernels be identified without multigrid. A 

method might exist that uses multigrid to optimize the frequency content of a Volterra 

kernel. That is, this optimal Volterra kernel would contain mostly physical frequencies and 

very little or no numerical frequencies. But the computational cost associated with that 

method may not justify its application. As will be seen, the Volterra kernel identified 

without multigrid, for the RAE airfoil model, is highly accurate and computed directly at a 

minimal CPU cost and a fast turnaround time.

Figure 51 is a comparison of the non-diagonalized, no multigrid first-order kernel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



117

Normal Force
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Nondimensional time
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Figure 49 First-order kernel for RAE airfoil in plunge, first-order 
accurate in time, with and without diagonalization; M=0.75, alpha=0.0.
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Figure 50 First-order kernel for RAE airfoil in plunge, first-order 
accurate in time, with and without diagonalization, with and without 
multigrid; M=0.75, alpha=0.0.
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Figure 51 First-order kernel for RAE airfoil in plunge, non-diagonalized, 
no multigrid, M=0.75, alpha=0.0.
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computed using first-order time accuracy and second-order time accuracy. This first- and 

second-order accuracy refers to the error associated with different time-integration 

schemes, not to the order o f the kernels. There exist clear differences between these two 

kernels, an indication that second-order accuracy should be used in order to keep numerical 

error down to a minimum.

Finally, Figure 52 is a comparison of non-diagonalized, no-multigrid, second-order 

accurate-in-time first-order kernels for two different identification input amplitudes. Recall 

that the first-order kernel is identified using a response due to a primary amplitude (1.0, for 

example) and a second response due to double that amplitude (2.0, correspondingly). This 

is evident in Equation (10). An important question is “What is the effect o f varying these 

amplitudes on the identification of the kernels and on their predictive capability?” The 

small-amplitude kernel o f Figure 52 was identified using the primary input amplitude of 

0.01 and a corresponding amplitude of 0.02. The first-order convolved response, using 

this kernel, was multiplied by 100 to compensate for the primary input amplitude of 0.01, 

yielding the final response for this kernel. This input excitation was also used for the 

kernels in the previous figures. The Iarge-amplitude kernel shown in Figure 52 was 

identified using the primary input amplitude of 0.1 and a corresponding amplitude of 0.2. 

The first-order convolved response, due to this kernel,was multiplied by 10 to compensate 

for the primary input amplitude of 0.1, yielding the final response for this kernel.

The correlation between these two kernels is not exactly linear. That is, one kernel is 

not exactly ten times the other, indicating a deviation from linearity or some measure of 

nonlinearity. In order to evaluate the accuracy of each of these kernels, several sinusoidal 

plunging motions at different amplitudes were computed using CFL3D and used for 

comparison with convolved results using each kernel. The three amplitudes, as a fraction 

o f chord length, are 0.002, 0.005, and 0.01. Figure 53 is a comparison of these plunging 

motions with the convolved results using the small-amplitude first-order kernel. As can be 

seen, the accuracy of this particular kernel diminishes as amplitude is increased. Figure 54
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Figure 52 First-order kernel for RAE airfoil in plunge, non-diagonalized, 
no multigrid, effect of ID amplitudes.
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Figure 53 Comparison of actual nonlinear responses and first-order 
convolved responses (small amplitude, 1st-order in time) for three 
different plunge motions.
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Figure 54 C om parison of actual nonlinear an d  first-order (2nd-order 

accu racy ,la rge  am p.) re sp o n ses  for th ree  different p lunge  m otions an d  
a  linear re sp o n se  for the largest plunge m otion.
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is a comparison o f two nonlinear sinusoidal plunge responses from CFL3D (actual, 

nonlinear), one linear plunge response, and the convolved responses using the large- 

amplitude first-order kernel. The smaller, nonlinear actual response corresponds to a 

plunge amplitude o f  0.01. This response is the largest o f the three responses in Figure 53. 

The larger, nonlinear actual response corresponds to a plunge amplitude o f 0.05. The 

linear result shown in Figure 54 is the linear response due to a plunge amplitude of 0.05. 

Since the CFL3D code cannot be used directly to compute a linear response, the linear 

response of Figure 54 was computed by multiplying the smaller nonlinear response (due to 

plunge amplitude o f 0.01) by 5.0.

Clearly, Figure 54 shows improved accuracy of the large-amplitude first-order kernel 

over that of the small-amplitude first-order kernel (Figure 53), even for a larger range of 

amplitudes. These results indicate that improved accuracy can be obtained over a larger 

amplitude range if the input amplitude used to identify the first-order kernel is chosen 

appropriately. One possible approach for determining this identification amplitude is to 

base it on 1) physical considerations and 2) code execution limitations. If the CFD code 

executes properly for the largest input amplitude o f interest (a sinusoidal input, for 

example) and the input amplitude is physically realistic, then the accuracy and effectiveness 

o f the first- and second-order kernels, identified within this amplitude range, will be 

improved.

The first five components of the second-order kernel for this airfoil in plunge are 

presented in Figure 55. The input amplitude used to identify these components of the 

second-order kernel was 0.10, consistent with the large-amplitude first-order kernel of 

Figure 54. Even so, the first component of the second-order kernel is an order of 

magnitude smaller than the large-amplitude first-order kernel (Figure 54). The remaining 

components approach zero rather quickly, an indication that, for this condition and for this 

motion (plunge), the first-order kernel may be sufficient for predicting nonlinear plunge 

responses.
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Figure 55 First five com ponents of the second-order kernel for the 
RAE airfoil in plunge, non-diagonalized, no multigrid, second-order 
accurate in time, largest ID amplitudes, CFL3D, M=0.75, DT=0.001.
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It is also interesting to note that the components shown in Figure 55 go to zero in less 

than 15 time steps. Because both the first- and second-order kernels for this CFD model 

go to zero very quickly, computation of these kernels is obtained extremely fast. In fact, 

the author was able to completely avoid the high turnaround time on a supercomputer by 

submitting these jobs on the DEBUG queue. The DEBUG queu is for the execution of 

small to large CPU memory jobs but constrained to a very small amount of execution time 

(time steps) for the purposes o f code debugging. The average turnaround time on a 

standard queu can be as high as a day to a day-and-a-half whereas the DEBUG queue 

executes almost immediately. As a result, CFL3D jobs submitted to the DEBUG queu, for 

kernel identification, executed within minutes or even seconds.

The computational turnaround time associated with a CFD code consists o f time spent 

waiting for the job to execute (time in the queu) in addition to the execution time itself.

It is also interesting to discuss the differences between the first-order kernels obtained 

using the CAP-TSD code and those obtained using the CFL3D code. Although the results 

are for different configurations at different conditions, the time constant associated with 

each is indicative of the numerical algorithm and equation level. Whereas the CAP-TSD 

results take longer to “die out” , the CFL3D results go to zero very quickly. This could be 

an indication of the dissipative nature of each of the codes. Additional research in this area 

could be of significant interest to CFD code developers.

The preferred identification technique for the first- and second-order kernels using the 

CFL3D code, therefore, consists of using second-order accuracy (in addition to the small 

time step), no multigrid, no diagonalization, and a large kernel identification amplitude.

These results demonstrate the applicability of discrete-time, nonlinear, unit sample 

responses at the NS equation level, as discussed in the beginning o f the dissertation. A 

clear understanding of time-invariant impulse responses and time-invariant convolution, as 

presented in this dissertation and Appendix,provides additional verification of the time- 

invariant nature o f the NS equations. That is, if the NS equations were time varying, the
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convolved results o f Figures 53 and 54 would not have been possible.

Computational Efficiency

The cost of each sinusoidal plunge CFL3D response was about 2,000 CPU seconds. 

These responses were for a particular frequency of motion that required a particular length 

of time for a certain number of cycles. The DEBUG queu, obviously, could not be used 

for these analyses due to its strict time limitations. Instead, the standard job submittal 

queue had to be used, resulting in large turnaround times. The current procedure for using 

CFD codes, such as CFL3D, results in large turnaround times due to: 1) the time spent 

waiting for job execution in the queu and 2) the time spent in actual execution.

On the other hand, results from this dissertation show that the application of the Volterra 

theory to CFD codes reduces computational turnaround time significantly. The actual 

execution time (CPU) is reduced because repeated execution of the CFD code is reduced or 

eliminated. The time spent waiting in the queu, for execution of kernel identification 

analyses, is also significantly reduced from days to seconds due to the nature o f the 

Volterra kernels and the identification technique that is used.

In terms of actual costs for the RAE airfoil using the CFL3D code, the cost o f the first- 

order kernel identification was 400 CPU seconds; 200 for each of the two required 

responses. Because the kernel goes to zero in less than 100 time steps, execution of these 

jobs was performed in the DEBUG queue with a turnaround time of seconds. The cost of 

each convolution, for the plunge motions investigated, was 30 seconds on a workstation. 

Identification of the first five components of the second-order kernel was performed on the 

DEBUG queu as well. As a result, these five components were completely identified 

within minutes.

A concise mathematical model, consisting of a first-order and a second-order discrete- 

time Volterra kernel, has been identified. This model can be used to accurately predict the 

nonlinear plunge response of the CFL3D/RAE airfoil model, due to any arbitrary plunge
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motion, over a wide range of plunge amplitudes. The range of valid plunge amplitudes for 

this model is greater than the range associated with “small”, or linear, responses. Most 

importantly, these nonlinear responses can be computed on a workstation, completely 

sidestepping the costly (time and CPU) re-execution of the CFD code73.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CONCLUSIONS

The mathematically-correct and numerically-accurate identification o f linear and 

nonlinear, discrete-time aerodynamic impulse responses, based on the Volterra theory of 

nonlinear systems, was presented. Important differences between continous-time and 

discrete-time concepts, critical to the successful identification o f these aerodynamic 

functions, were described.

For the linear case, the aerodynamic impulse response functions were used to reproduce 

exactly the responses of a linearized three-dimensional aeroelastic CFD model, to arbitrary 

aeroelastic input motions, at a fraction of the computational cost and time. It was shown 

that the aerodynamic response to step (steady), sinusoidal, and arbitrary motions can all be 

computed from an aerodynamic impulse response. This establishes the aerodynamic 

impulse response function as the most fundamental aerodynamic function that can be 

extracted from a discrete-time, aerodynamic system.

For the nonlinear case, the existence, identification, and application o f nonlinear, 

discrete-time, aerodynamic impulse responses was presented. Applications of the discrete

time Volterra theory to the nonlinear viscous Burger’s equation revealed the existence of 

well-behaved first- and second-order impulse response functions. The method was then 

applied to nonlinear aeroelastic CFD models using the CAP-TSD (TSD) and CFL3D 

(Navier-Stokes) codes. Results demonstrate the existence of these functions for complex, 

two- and three-dimensional CFD models. Applications based on predicting the nonlinear 

responses of the CFD models demonstrate the accuracy and significant computational 

efficiency of these functions. Computational turnaround time for the range of nonlinear 

responses investigated was reduced from days to minutes. The method sidesteps the costly 

and time-consuming re-execution of the CFD code as inputs are varied.
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These results represent a new perspective on linear and nonlinear, steady and unsteady 

computational aerodynamics. Modem textbooks on aeroelasticity and unsteady 

aerodynamics do not adequately address discrete-time aerodynamic impulse responses. 

The work presented in this dissertation will, hopefully, have an impact on our 

understanding of fundamental computational aerodynamic principles, the teaching o f these 

ideas in appropriate courses, and, most importantly, on the efficient use of CFD codes in 

analyses where the information from these codes is needed.
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AREAS OF FUTURE RESEARCH

Additonal research, related to the research presented in this dissertation, is needed in the 

following areas:

- CFU/Aerodynamics/Aeroelasticity

- Evaluation of the aerodynamic Volterra kernels as numerical diagnostic tools to 

address dissipation and dispersion issues

- Effect of various levels of physical modeling on the aerodynamic Volterra kernels 

(such as viscosity, shocks, and different turbulence models)

- Additional investigations regarding multigrid

- Efficient computation of nonlinear, steady and unsteady stability derivatives using 

aerodynamic Volterra kernels

- Identification of higher-order kernels (third-order, and so on)

- Determination of the equilibrium points for a given Navier-Stokes CFD model

- Experimental identification o f aerodynamic Volterra kernels

- Frequency-domain Volterra theory related to nonlinear aerodynamics

- Couple aerodynamic kernels with structural model to obtain aeroelastic transients

- Apply Volterra theory to the modeling of nonlinear structures for use in 

aeroelasticity

- Discrete-time Systems and Control

- Bilinear aerodynamic state-space models from Volterra kernels

- Application of method to other nonlinear systems

- Nonlinear aeroservoelasticity

- Application of Volterra theory to the determination of nonlinear maximized gust 

loads and alleviation methods
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- Optimization and design using Volterra kernels

- Accelerated neural network training using Volterra kernels

- Effect o f discretization on the identification of the Volterra kernels

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133

APPENDIX

Fundamental Aspects of the Volterra Theory of Nonlinear Systems

The body of literature that addresses the Volterra theory of nonlinear systems 

(sometimes referred to as the Volterra-Wiener theory) is quite large. This dissertation and 

Appendix identify and discuss most of the major references on this topic. Additional 

references can be found within the cited references and textbooks25-43-58. The frequency- 

domain version of the Volterra series is a significant area of interest that was not addressed 

in this dissertation. References regarding the frequency-domain theory, however, are 

provided in the Introduction. Reference 59 is an excellent source of information on this 

topic.

However, in order to provide the reader with some of the fundamentals o f the time- 

domain theory, this Appendix is included. This Appendix addresses the following areas: 

1) Mathematical Classification of Systems, 2) Impulse Response, Convolution, and 

Memory, 3) Functional Origins and Interpretation of the Volterra Kernels and, 4) 

Convergence Issues. The figures are meant to be of a qualitative nature in order to enhance 

the explanation of fundamental concepts.

Mathematical Classification o f  Systems

Application of system identification techniques (linear or nonlinear) requires an 

understanding of the mathematical nature of the system under investigation. For example, 

the method used for the identification of the impulse response of a linear system, and its 

subsequent use in an appropriate convolution scheme, varies depending on whether the
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system is time invariant or time varying. Likewise, the proper identification of the Volterra 

kernels o f a nonlinear system, and their subsequent application, depends on whether the 

nonlinear system is time invariant or time varying. This is discussed in Chapter 4 but is 

discussed in greater detail in this Appendix.

The mathematical system classifications that are important to the application of the 

Volterra theory, and some examples of each type of system, are presented in Figure A 1. 

The focus o f this dissertation is on time-invariant (TI), linear and nonlinear systems with 

memory. Note that included in this classification are the Navier-Stokes equations, as 

discussed in Chapter 5. The Van der Pol equation, which exhibits limit cycle oscillations 

(LCO), also belongs to this category. For rigorous details, see Khalil'14. The application of 

the Volterra series to time-varying (TV) nonlinear systems is discussed in Ref. 46 as well 

as other references.

Time Invariant Time Varying
Linear Nonlinear Linear Nonlinear

Zero
Memory

y = mx + b
y=x?
Saturation,
Deadband

y = m(t)x + b
Saturation, 
Deadband 
a s f(t)

Memory x = Ax + Bu
Van der Pol, 
Duffing and x = A(t)x + 

B(t)u

Mathieu

N-S Eqs

Figure A1 Mathematical system  classifications and some exam ples.
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A time-invariant system, also referred to as an autonomous or stationary system, is a 

system with the characteristic that its response to an input is independent o f the time of 

application of the input. A time-invariant system is therefore a “shift invariant” system. 

That is, shifting of the input in time yields the same response, only shifted in time.

Inspection of the governing equations o f the system provides the necessary information 

for classifying the system as TI or TV. The governing equations of a time-invariant system 

are not explicit functions o f time. The governing equations of a time-varying system, on 

the other hand, are explicit functions of time. A time-varying system is also referred to as a 

non-autonomous or non-stationary system. Figure A2 is a graphical depiction of the 

difference between a time-invariant and a time-varying system with u(t) as an input with a 

time of application that is shifted in time.

•  Time Invariant--> y(u(ti)) = y(u(t2)) (Shift Invariant)

y = y(x, x, x , ...)

\ r ' = — t

t2

•  Time Varying --> y(u(ti)) *  y(u(t2))

y

Figure A2 Response characteristics of time-invariant and time-varying system s.

y
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Once the temporal classification of the system is defined (TI or TV), the memory 

classification o f the system (with memory or zero memory) can be determined. Because 

the concept o f the memory of a system is directly related to the impulse response of the 

system, and, subsequently, to its application in a convolution scheme, the impulse 

response function and convolution are briefly reviewed. A thorough understanding of the 

Volterra theory requires a thorough understanding of these concepts. These concepts are 

described for both continous-time and discrete-time systems so that similarities and 

differences can be emphasized. Also, for simplicity, single-input-single-output (SISO) 

systems are assumed without loss of generality.

Impulse Response, Convolution, and Memory

It is well-known that the unit impulse response of a continuous-time, linear time- 

invariant (CT-LTI) system can be obtained by applying a unit impulse input to the system.

This is shown schematically in Figure A3 with the unit impulse, 8(t), defined as shown.

h(t)

CT-LTI

+ 0 0

j 8(t)dt = 1  a s  e -> 0

Figure A3 Application of a  continuous-time unit impulse function to a  
continuous-tim e linear time-invariant system  to yield the continuous-time unit 
impulse resp o n se  function.

Once the linear unit impulse response function is computed, the response of the linear 

time-invariant system to any input can be obtained via convolution. Because the system is
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time invariant, the impulse response o f the system is the same regardless of the time at 

which the unit impulse is applied. Shifting the time at which the unit impulse is applied 

simply shifts the (same) unit impulse response by the corresponding time shift. Shifting 

the time at which the unit impulse is applied to a linear time-varying system, however, 

yields different (and, therefore, multiple) impulse responses. A linear time-varying system 

is, therefore, not shift invariant. As a result, the convolution scheme used for a time- 

invariant system is different from the convolution scheme used for a time-varying system. 

The focus o f this dissertation (and Appendix) is on time-invariant systems and the 

convolution technique appropriate for time-invariant systems.

The traditional approach to convolution is to “flip” one of the functions involved in the 

convolution and then perform the convolution. An alternative way to visualize time- 

invariant convolution is presented in Figure A4. Figure A4 shows how convolution can be 

viewed as a three-part process: 1) scaling: the entire unit impulse response, h(t), is scaled 

(multiplied) by the value of the input at a particular point in time, u(t0), for example, 2) 

shifting: as each scaled response is computed, it is shifted so that it corresponds to the 

point in time when the particular value of the input was applied, and 3) addition: all the 

scaled and shifted responses are added to yield the total response of the system.

It is clear that the impulse response of a linear system is, in fact, the memory o f that 

system. Convolution simply scales and shifts that memory function, based on some 

arbitrary input, and combines all the scaled and shifted functions to yield the total response 

of the system. The shift invariance of the system justifies the use o f one and the same 

memory function for the convolution process described (scaling, shifting, and adding).

The next question is “How can the continuous-time unit impulse, shown in Figure A2,
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Convolution

y(t) = J h(t - x) u (x ) dx
0

u(t)

| ! ! l

u(t.) • h(t)

y(t>

Figure A4 Convolution as a  three-part process: scaling, shifting, and  
summ ation of memory function (impulse response).

be applied to a problem of computational interest such as a discrete-time aerodynamic 

system, for example?” According to the literature cited in the Introduction to this 

dissertation, the answer to this question is mixed, at best. The definition of the continuous

time unit impulse function introduces a certain amount o f vagueness when considered for 

numerical (discrete-time) applications. One of the contributions o f this dissertation is the 

realization that classical linear aerodynamic theories and modem nonlinear computational 

theories can be viewed from a discrete-time perspective, resulting in significant 

computational efficiency. The transition from continuous-time to discrete-time is described 

in the following paragraphs.

Instead of applying a continous-time function to a discrete-time model, the solution to 

this problem is to apply the discrete-time unit impulse (unit pulse) to the discrete-time 

model. The discrete-time unit impulse response, known as the unit sample response in the
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fields o f digital signal processing and digital filter design, has a simple definition that is 

suitable for direct application to discrete-time models. Application of the unit pulse to a 

discrete-time, linear time-invariant (DT-LTI) system, yielding that system’s unit sample 

response, is shown schematically in Figure A5. Also shown in Figure A5 is the equation 

for discrete-time convolution which involves a straightforward summation.

5(k) Unit pulse 

1.0 --

I  5(k) = 1
for all time

•  •

h(k)

DT-LTI

Unit Sample 
Response

DISCRETE-TIME y ( j )
CONVOLUTION 7  V 7 I h ( k ) u ( i - k )

k=0

Figure A5 Application of the discrete-time unit pulse to a  discrete-time linear 
time-invariant (DT-LTI) system , yielding the system ’s unit sam ple response. The 
unit sam ple response is then used in the  discrete-time convolution process.

The continuous-time unit impulse response and the discrete-time unit sample response 

share similar properties as discussed in Chapter 2 and Oppenheim and Schafer38. In the 

limit, the unit sample response approaches the unit impulse response and so discretization 

issues need to be understood in the identification and application of the unit sample 

response. The convolution process for a discrete-time system involves the summation of 

sequences rather than the integration of functions, a computationally simpler task. Clearly,
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for a discrete-time system, such as a CFD code, the unit sample response is the function 

that needs to be identified and applied in a discrete-time convolution process.

For a nonlinear system, the concepts of memory and convolution can be expanded to 

include higher-order memory functions and corresponding higher-order convolution 

processes. This is discussed in the next section.

Functional Origins and Interpretation o f the Volterra Kernels

An important question to ask is “Can the concepts of memory and convolution be 

applied to nonlinear systems?” The answer to this question is yes and this is, in fact, what 

Volterra42 and Frechet74 did in their development of the Volterra theory.

An understanding of the theory begins with a fundamental theorem of mathematics, the 

Weierstrass Theorem (see, for example Rugh25, Dieudonne75, Boyd47):

“If f(t) is a continuous, real-valued function on the closed interval [t,,t,], then given

any 8 > 0, there exists a real polynomial p(t) such that

| f(t) - p(t) | < e for t e  [t15t 2]

A modem embodiment of this theorem, based on topological concepts, is known as the 

Stone-Weierstrass theorem. In either case, this is the well-known theorem for the 

polynomial approximation of arbitrary functions, subject to the stated conditions. These 

approximations, however, are valid only on the interval [t,,^]. Extension of this concept to 

the response of a nonlinear system with memory is the fundamental seed of the Volterra 

theory of nonlinear systems.

The functions f(t) and p(t) in the theorem above are, clearly, zero-memory functions 

since their range (values) depends only on the present value of the input, t. As it stands, 

the Weierstrass theorem is directly applicable to zero-memory linear and nonlinear
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functions, or systems. The application of a regression technique to obtain the best linear 

slope for a particular data scatter is a simple example of the identification of a zero-memory 

linear system. In this case, the polynomial function that approximates the system consists 

of only the first-order term, a constant slope. If the first-order term does not provide 

adequate correlation with the data, then additional higher-order terms may be added to 

improve the approximation. This fundamental concept o f polynomial approximations can 

be applied to systems with memory as well.

Recall that the response o f a linear system with memory, to an arbitrary input, is the 

result o f scaled and shifted superpositions (convolution) o f its memory function (impulse 

response). Also, the memory function for this linear system defines the first-order 

relationship between the output and the input of the system. This is analogous to the 

regression example with the only difference being that this system is characterized by a 

first-order memory function instead of a constant slope.

Likewise, for a (particular type of) nonlinear system with memory, the Weierstrass 

theorem is applied and indicates the existence of a polynomial approximation to the 

output/input relationship of the system. The polynomial approximation in this case consists 

of a polynomial expansion o f memory functions, including a first-order memory function, 

a second-order memory function, and so on. This is the basis for the Volterra theory of 

nonlinear systems where the Volterra series for a TI, continuous-time system is defined as

y(t) = h0 + Jh^t-x) u(x) dx +
0

oooo

J Jh2(t-x1 , t -x 2) u(xx) u ( x 2 ) dXj dx2 + ...
00

+ J...Jhn(t-Xj, ..., t -x n) u ( X j ) ... u(xn) dxj... dxn + ... (Al)
0 0
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with y(t) the response of the nonlinear system, u(t) the input to the system, and the h ,, h2, 

and hn are the first-order, second-order, and nth order kernels (memory functions) 

respectively. An important point to be made is that the Volterra series is not limited to a 

particular interval [t, ,t2] as are the functions defined in the Weierstrass theorem. This is 

due to the fact that memory functions are now involved in the approximation process. Due 

to the convolution process, these memory functions can be scaled and shifted accordingly 

to follow an arbitrary input o f arbitrary length. This is a significant improvement for the 

applicability o f the Volterra series for practical problems (see Boyd47). This discussion is 

continued in the last section of this Appendix.

Physical interpretation o f the Volterra kernels begins with a simplification of Equation 

(A l) as

y(t) = h0 + yx + y2 + y3 + ... (A2)

where the interpretation of y,, y2, and subsequent y^s is shown in Figure A6. The h0 term 

is typically a constant that is included to account for a non-zero steady-state value. For 

illustrative purposes, it can be assumed to be zero without loss o f generality.

It can be seen in Figure A6 that each term o f the series (y ,, y 2, and subsequent y^s) 

corresponds to a memory function and a corresponding convolution at a particular order 

(i.e., first-order, second-order, and so on). The higher-order kernels (second-order and 

above) are in fact the memory functions that capture the input’s effect on the output for that 

particular order. This is analogous to determining the coefficients o f a polynomial fit for a 

zero-memory nonlinear function. For the case of time-invariant nonlinear systems with 

memory, the coefficients o f the polynomial expansion are memory functions involving 

higher-order convolutions. The appropriate convolution technique is applied to each 

memory function to yield the first-order response (y,), second-order response (y2), and so

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



143

on. The sum total of these responses yields the total response of the system to some 

arbitrary input.

U(t) y(t)

Convolution of:

First-order memory and u(t)
+

Second-order memory and u^t) 
+

Third-order memory and u3(t)
+

y(t)

yz(t)

Figure A6 Interpretation of each  of the term s of the Volterra series for a  
nonlinear time-invariant (NLTI) system  with input u(t) and output y(t).

Improved understanding of the nature of each of the memory functions (kernels) can be 

obtained by focusing on one kernel at a time; the second-order kernel, for example. The 

second-order kernel o f a system defines the memory of the system that relates the response 

o f  the system to squaring of the input. Therefore, this kernel is composed of impulse 

responses that correspond to all the possible ways that the input can be squared. This is 

depicted in Figure A7. The input function can be squared at the same point in time (i=j 

component) and it can be squared at different points in time (i*j components). Each one of 

those squaring operations has a corresponding memory component associated with it. The 

grouping of all these memory components due to squaring of the input yields the second-
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order kernel as described in Chapter 4. Similar interpretations can be made for the other 

kernels in the series.

The conditions for valid application and convergence of the Volterra series are discussed 

in the next section.

y2(t)

Second-Order Memory Function: 
i=j component 

components

then second-order convolution

Figure A7 The various com ponents that define the second-order memory 
function (kernel) and the resultant response (y2(t)) due to a  second-order 
convolution of this second-order memory function with som e arbitrary input.

Convergence Issues

Like any infinite series, the Volterra series has convergence issues that need to be 

understood. A discussion of the similarity between the Volterra series (Eq. (Al)) and 

Taylor series can be found in Boyd47. Sandberg76 investigates Volterra-like series 

solutions for nonlinear integral equations and nonlinear differential equations. Additional 

references of significant interest are Sandberg77,78, Barrett79 and Thapar and Leon80.

The Volterra theory is applicable to a particular class of nonlinear systems under certain 

conditions. The first condition is that the nonlinearities of the system of interest be
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analytic. As Boyd47-54 and Park and Sandberg65 show, this is related to the concept of 

fading memory. Volterra [pg. 188] defines fading memory as:

“A first extremely natural postulate is to suppose that the influence 

o f the heredity corresponding to states [input] a long time before 

the given moment gradually fades out;...”

A fading memory function returns to the system’s steady state value after some finite 

amount of time. Boyd47 introduces a weighting function and provides a mathematically- 

formal definition o f fading memory. The importance of the fading memory concept is 

related to three items: 1) fading memory is a slight strengthening of continuity while being 

an easier concept to investigate than analyticity from an engineering perspective; 2) fading 

memory removes the limited interval of applicability associated with the Weierstrass 

theorem; and 3) fading memory is related to a dynamical system’s unique steady state, 

which is important for understanding convergence limitations, as will be seen.

Convergence issues of Volterra series have been studied by several researchers, 

primarily Ku and Wolf55 and Barrett79. Interesting work regarding methods for 

approximating the error due to the truncated series is investigated by Thapar and Leon80. 

For the discrete-time case, where the series is truncated at some order (i.e., second-order) 

and the kernel at that order is truncated as well, the work of Sandberg81 is appropriate. 

This “double truncation” of the series is referred to as a doubly finite Volterra series by 

Sandberg81 and corresponds to the models developed in this dissertation.

In general terms, a radius of convergence can be associated with a Volterra series in 

much the same way that a radius of convergence exists for an ordinary power series. The 

following results, from Ku and W olf55, are presented without proof. See Ku and W olf55 

for proofs.

Theorem I: The nth-order response of a Volterra series can be defined as
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yn(t) — J ...J h n (X j,..., xD) u (t-X j)... u (t-xn)dxj ...dxn 
0 0

with u(t) as the input function. Then, for a bounded forcing function u(t), that is, there 

exists a constant M > 0 such that

I u(t) I <  M for all t,

then

£y„«)
n=l

with

oo oo

an = J... J |h n (X j,..., xn) | dxj ...dxn 
0 0

Clearly, the maximum amplitude o f the input defines the condition for convergence of 

the series. A direct result of Theorem I is the definition of the radius of convergence of a 

Volterra series as

p = (Iim n->°° sup ||hn I1711 )_1

which is Theorem II of Ku and Wolf55. Boyd47 relates these theorems to the gain bound 

function and the gain bound theorem.

Limiting the amplitude o f the input and the concept of fading memory are necessary 

conditions for the definition a Volterra series representation of a nonlinear system. More 

specifically, these conditions help to define the nature of the equilibrium points of the 

nonlinear system about which a Volterra series representation is admissable. That is, 

fading memory implies a unique steady state (stable equilibrium point) and limiting the 

maximum value of the input implies constraining the responses o f the system to the region 

of attraction of the equilibrium point.

s  £ a „ M "
n=l
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For discrete-time systems, the convergence issues defined above apply directly, 

according to Rugh25. For additional details and insight regarding the discrete-time version 

of the Volterra theory, the reader is referred to Diaz19, Park and Sandberg65, Sandberg81, 

and Alper82.

The definition of the error bound for a truncated Volterra series (Boyd47, Thapar and 

Ieon80) is valuable and the form from Boyd45 is presented henceforth.

Error Bound fo ra  Truncated Volterra Series

The truncated Volterra series is defined as

k  k  oo oo

y ( k ) ( t )  =  £ y n ( t )  =  Z  x n ) u ( t - T 1 ) . . . u ( t - T n ) d T 1 . . . d T n

n = l  n = l  0  0

which satisfies

[y(t) - y(k)(t)j| s  £ | M | u f

n = k + l

which is o f order

Therefore, if

O ( II u II k )

S I M M ”
n = k + l

is small, then the full Volterra series (no truncation), y(t), is well modeled by the truncated 

Volterra series, y<k)(t), for inputs whose peaks do not exceed M.
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