
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1997

On-line system identification for control system applications in On-line system identification for control system applications in

particle accelerators particle accelerators

Mahesh Chowdhary
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Applied Mechanics Commons, Electrical and Computer Engineering Commons, and the

Physics Commons

Recommended Citation Recommended Citation
Chowdhary, Mahesh, "On-line system identification for control system applications in particle
accelerators" (1997). Dissertations, Theses, and Masters Projects. Paper 1539623898.
https://dx.doi.org/doi:10.21220/s2-dem7-wt14

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623898&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/295?utm_source=scholarworks.wm.edu%2Fetd%2F1539623898&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.wm.edu%2Fetd%2F1539623898&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarworks.wm.edu%2Fetd%2F1539623898&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-dem7-wt14
mailto:scholarworks@wm.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type o f computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back o f the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Hcrwell Information Company

300 North Zed) Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ON-LINE SYSTEM IDENTIFICATION FOR
CONTROL SYSTEM APPLICATIONS IN

PARTICLE ACCELERATORS

A Dissertation

Presented to

The Faculty o f the Department of Applied Science

The College of William and Mary in Virginia

In Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

by

Mahesh Chowdhary

1996

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9805155

UMI Microform 9805155
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of
Doctor of Philosophy

Mahesh Chowdhary

Approved, December 1996

Dennis M. Manos, Ph.D.
CSX Professor of Applied Science and Physics

William A. Watson, III, Ph.D.
Adjunct Professor of Applied Science

JdSeph J. Bisogn
adjunct Professor of Applied Science and Physics

Mark K. Hinders, Ph.D.
Assistant Professor of Applied Science and Physics

toy C. Mathias, Ph.D.
Assdsiata Professor of Mathematics

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS
Page

ACKNOWLEDGEMENTS iv

LIST OF TABLES v

LIST OF FIGURES vi

ABSTRACT ix

CHAPTER I INTRODUCTION 2

CHAPTER n. FAST FEEDBACK SYSTEMS AT CEBAF 12

CHAPTER m APPLICATION OF ON-LINE SYSTEM IDENTIFICATION 40

CHAPTER IV ANALOG COMPUTER SIMULATION 65

CHAPTER V SUMMARY OF RESULTS AND CONCLUSIONS 87

APPENDIX A 92

APPENDIX B 95

ENDNOTES 147

BIBLIOGRAPHY 152

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

Author wishes to gratefully acknowledge contributions of the following
individuals to this work :
Dr. William A. Watson for his support to this work and his technical advice
regarding real-time implementation issues. Dr. Jer-Nan Juang of NASA Langley
Research Center for his technical advice regarding system identification
algorithms. Dr. Dennis Manos for encouraging and supporting this work and
providing inspiration. Dr. Andrew Hutton for providing an opportunity to pursue
this research. Drs. Bisognano, Hinders, and Mathias for sparing their precious
time to serve on the committee and providing constructive criticism and support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table Page

1. Beam parameter variations observed at IPMIS10 20

2. Beam parameter variations observed using 500 Hz data acquisition system 21

A. 1 Beam requirements - general characteristics 92

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure .. Page

1. Schematic diagram of CEBAF... 12

2. Power spectrum for X-position observed at IPM1S10.....................................14

3. Time domain data for X-position observed at IPM1S10................................. 15

4. Power Spectrum for beam energy variation observed at IPM 1S10................. 16

5. Time domain data for beam energy variation observed at EPM1S10............... 17

6. Power Spectra for states X, X \ Y, and Y’ observed at IPM2A01................... 18

7. Power spectrum for AE/E variations at IPM2A01... 19

8. Power spectrum for X-position at location IPM3 C07..................................... 22

9. Phase variation of 60 Hz noise component observed at location IPM3C07
in Hall C line... 23

10. Screen Capture image of GUI for Fast Energy Feedback System................... 36

11. AE/E with and without feedback correction (sample rate 60 Hz).....................38

12. Power spectra of AE/E before and after correction signal was applied............ 39

13. Comparison between Output 1 and the difference between the estimated
and actual output for the noise free case.. 62

14. Estimation error for Output 1 for noise free case...63

15. Comparison between output 1 and estimation error for the case where
10% random noise was added to input/output data... 64

16. Schematic diagram of the system simulated using an analog computer..........70

17. Comparison between actual and identified output 1. The dynamics of
simulated plant was changed at 4 instances by varying attenuators R11,
and R12... 72

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18. Comparison between actual and identified output 2. The dynamics of
simulated plant affecting state 2 was changed at 6 instances by varying
attenuators R21 and R22..73

19. Estimation error between actual and identified output 1..................................74

20. Disturbance suppression achieved by application of feedback correction
using input 1 for the case where system dynamics was changed..................... 75

21. Comparison between identified and actual output 1 for the case where 5%
random noise was added to measurement and control input data and at
points dl 1 and d l2 ...76

22. Estimation error between actual and identified output 1 for the case where
5% random noise was added to points dl 1 and d l2 .. 77

23. Disturbance suppression achieved after application of feedback correction
using input 1 for the case where 5% random noise was added at points
d ll anddl2..78

24. Comparison between actual and identified output 1 for the case where
amplitude and frequency of noise signal applied at dl 1 and dl2 was
changed.. 79

25. Estimation error between actual and identified output 1 for the case where
amplitude and frequency of noise were changed... 80

26. Disturbance suppression achieved by application of feedback correction
using input 1 for the case where amplitude and frequency of noise were
changed..81

27. Comparison between actual and identified output 1 for the case where
dynamics of the system and noise characteristics were changed
simultaneously...82

28. Estimation error between actual and identified output 1 where system
dynamics and noise characteristics were varied simultaneously......................83

29. Disturbance suppression achieved by application of feedback correction
using input 1 for the case where system dynamics and noise
characteristics were varied simultaneously.. 84

30. Loss function vs. Model order.. 86

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31. CPU time/FTF iteration vs. Model order... 89

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Particle accelerators require a number of feedback systems in order to stabilize

a variety of parameters. The Continuous Electron Beam Accelerator at Thomas

Jefferson National Accelerator Facility presents a unique set o f control and

identification problems. This accelerator produces a continuous electron beam

with energies between 0.5 and 4.0 GeV to be delivered to the experimental halls.

In order to meet stringent beam quality requirements specified by the experimental

halls, the position and the energy of the electron beam needs to stabilized at

various locations in the accelerator.

r

A number of noise measurement tests were conducted at various locations in

the accelerator to obtain accurate information about the amplitude and the

frequency of disturbances on the beam orbit and energy. Results of these

measurements indicate that the line power harmonics were the primary source of

disturbance on the beam orbit and energy.

A prototype fast feedback system was implemented in the injector and the

East Arc regions of the accelerator to stabilize the beam position and energy at

these locations. The scheme of implementation of these systems and

measurements of their performance are presented here.

These feedback systems have to operate under conditions of varying noise

characteristics and changing dynamics of the systems. For the feedback systems to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

always perform optimally, the knowledge of time varying noise characteristics and

changing system dynamics needs to be incorporated into the feedback strategy.

The approach presented in this work is to perform on-line system identification

using a formulation of Fast Transversal Filter (FTF) in order to extract the time

varying information from input/output data of the feedback system.

A simulation test stand was developed using an analog computer to represent

a continuous time system whose noise characteristics and dynamics could be

changed in a controlled manner. An on-line system identification algorithm was

implemented on a microprocessor similar to the ones used in the accelerator

control system. Experience with the hardware-in-loop simulation for various cases

of changing system dynamics and noise characteristics and the performance results

of the on-line system identification algorithm operating under these conditions are

presented in this dissertation.

Mahesh Chowdhary
Applied Science Department

Adviser: Dr. Dennis M. Manos
CSX Professor of Applied Science and Physics

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ON-LINE SYSTEM IDENTIFICATION FOR CONTROL SYSTEM

APPLICATIONS IN PARICLE ACCELERATORS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I

INTRODUCTION

1.1 Background

The age of modem control theory was ushered in with the launching of first

Sputnik in 1957. During the last several decades, developments in control

theories have continued and applications of these theories in various aerospace,

military and civilian industries have increased tremendously. Availability of

powerful and inexpensive digital computers has been a crucial reason for this

success. Digital computers have been used not only to implement control

algorithms, but also to develop, validate and test control theory applications. The

necessity of controlling large and complex physical plants, such as a major

petroleum refinery, or a jumbo airliner, is another important reason for

proliferation of control theories in various industries.

The core problem of controlling a physical plant is to determine appropriate

control forces which can assume that the physical plant behaves in the desired

fashion. For linear systems, the “state-feedback” strategy is the most common

technique used in calculating the control forces. State information of a dynamic

system is a set of physical quantities, the specification of which, in the absence

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3
of external disturbances, completely determines the time evolution of the

system. However, in general, the state information cannot be measured directly

using available sensors. Hence, a technique for extracting state information from

measured data is essential to a feedback control strategy.

Since the performance of a feedback system is dependent on the accuracy of

reconstructed state, effective reconstruction of state from the measured data is

very important. There are various factors involved in reconstructing state

information from input/output data o f a physical system. The measured data is

almost always contaminated by noise from imperfect sensors. The number of

sensors is usually less than the number of states of interest, so measured data at a

given time alone is not sufficient to determine the state, and previous data has to

be used. Since systems are usually affected by unpredictable, time-varying

noises, uncertainty is introduced between the previous data and the current state.

This problem is further complicated when the dynamics of the system also varies

with time.

1.2 Literature Survey

From earliest times people have been concerned with estimating unknown

quantities from observed data and making prediction. The least squares method

has been an important milestone in the development of estimation theory. This

well known method was apparently used by Gauss in 1795 in his studies of

astronomy, though it was first published by Legendre in 1805. Since then, there

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4
have been vast amounts of literature on various aspects of least squares method.

A survey of such work on least square estimation for random variables has been

presented by Sorenson [1].

First studies in applying least square estimation to stochastic process were

done by Kolmogrov, Krein, and Weiner [2]-[3]. Kolmogrov applied the mean

square theory to the prediction problem for discrete-time stationary process. A

process is called stationary if all its statistical parameters are invariant to a

translation in time. Kolmogrov and Krein’s work did not focus on optimality of

the predictor. Weiner [2] formulated the continuous-time linear prediction

problem and derived an expression for optimal predictor. Various practical

applications such as anti-aircraft fire control mechanism benefited from this

work. Weiner developed the first explicit solutions of least square estimates of

stochastic process [2]. Weiner’s work was further extended by Van Trees [4]-

[5], Stiffler [6], and Lindsey [7] into fields such as modulation theory.

Kalman changed the conventional least squares problem by developing a

model [8] (commonly known as state space model) for a signal process. He

described the signal process y(t) with a system of equation described as

y (0 = G r(0
x(t) = Ax(t) +Bu(f) ^

In 1960 Kalman published his renowned method for sequential state

estimation of discrete systems, known as the Kalman filter [9], using a state

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5
space formulation. Two years later he published another version [10] of the

Kalman filter for continuous time systems. Significant contribution in system

realization theory in terms of concepts of controllability and observability of

system were presented by Gilbert [11] and Kalman [12] in the same time period.

Since then a large number of papers were published showing the importance of

the Kalman filter, and at the same time revealing its unsatisfactory features.

A well known limitation in applying the conventional Kalman filter is its

requirement of a priori knowledge about the system state space model and the

covariances of process and measurement noises. This data in most cases is either

partially known or completely unknown. Another drawback of the conventional

Kalman filter is its inability to adjust itself to trace a changing environment or

correct for the error caused by incorrect a priori information. After reaching

steady state the filter “sleeps”, which means no matter how large the estimation

error gets, the filter remains unaffected. This phenomenon is called filter

divergence [13]-[16].

If the system state space model is known, but the noise covariances are

unknown, then one must estimate noise statistics, or conduct a systematic

analysis to provide noise covariances or filter gain in order to use the Kalman

filter [17]-[21], Adaptive filtering techniques [23]-[26] need to be used in order

to improve upon the a priori assumptions made for the filter design. Adaptive

Kalman filtering [25]-[26] uses the Kalman filter structure, but modifies the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6
scheme for computing the filter gain. The filter monitors the estimation error and

improve its performance accordingly. Most existing adaptive Kalman filters and

methods of estimating noise covariances or filter gain are complicated and are

not suitable for on-line implementation. Furthermore, adaptive Kalman filtering

methods are derived under the assumption that the system state space model is

accurately known and that it does not change with time. The problem of adaptive

Kalman filtering for unknown systems is more complicated. Goodwin [23]

introduced a method of estimation for uncertain systems where the state vector is

augmented by undetermined system parameters. Using this scheme the system

parameters and states can be estimated at the same time. However, a nonlinear

state estimation technique such as an extended Kalman filter has to be used for

such systems because the system model becomes nonlinear due to state

augmentation. To solve a nonlinear estimation problem, the system is usually

linearized at each estimated state. The linearization is computationally

inefficient for large order system and convergence of the estimate is not

guaranteed.

To solve the problem of state estimation under unknown model and noise

covariances, a system model needs to be identified before state estimation can be

done. There are various cases where direct mathematical model generation is not

possible. In some cases the knowledge of a system’s mechanism is not

completely known. In other cases the properties exhibited by the system may

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7
change with time in an unpredictable manner. Further more, modeling process

can be very time consuming and can lead to models that are unnecessarily

complex. In many of the above mentioned cases the signals produced by the

system can be measured and used for computation of mathematical models. This

approach of system identification has been applied to solve many practical

problems.

Astrom [27] and van Amerongen [28] have studied the problem of a ship-

steering regulator. A ship’s heading angle and position is controlled by its rudder

angle. For a large ship, the position control is a fairly difficult problem because

ship’s response to a change in rudder angle is very slow and is affected by

random components such as wave motion and wind. Most ships have a regulator

that measures relevant variables and determines the rudder angle. The design of

the regulator is based on the steering dynamics o f the ship, which depend on a

number of factors such as the shape and the size of ship, loading and trim, and

water depth. Some of these factors vary during the journey; the disturbances

from wind and waves may also change rapidly. Therefore, the regulator has to be

constantly retuned to match the current dynamics of the system. This work in

presented in references [27] and [28]. Many control problems in airplanes and

missiles exhibit similar features where dynamic properties depend on speed,

loading etc. and change with time. Machinery in paper-making plants is affected

by many randomly changing factors. Researchers such as Landau [29] have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8
presented work in this area.

Short term prediction of power demand from an electricity generation

system is a similar problem that requires good design of an adaptive predictor.

There is a substantial random component in the power demand which depends

on the time of the day and the day of the week, month or year. For efficient

production of electricity a good prediction of demand a few hours ahead of time

is very useful. Research in the area of power demand predictors is presented by

Gupta and Yamada [30].

Channel equalization in communication networks is another problem where

recursive techniques are very useful. Each channel in a communication network

can be seen as a linear filter with a certain impulse response characteristic that

differs from the ideal delta function response, distort the transmitted signal. The

signal must be restored at the receiver using an equalizer, which is a filter whose

impulse response resembles the inverse of that of the channel. However, in a

communications network the channel between transmitter and receiver can be

quite arbitrary and therefore it is desirable that the equalizer adapt itself to the

actual properties of the chosen channel. Work done in this area has been

published by Lucky [31] and Goddard [32].

Active control of aerospace structures is another complex problem. Large

aerospace structures can accurately be represented by large mathematical models

with dimensions in the order of hundreds. Besides, most aerospace structures

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9
possess significant uncertainties and nonlinearities which make identification of

mathematical model very difficult. A modal parameter identification algorithm

for flexible structures known as Eigensystem Realization Algorithm (ERA) was

developed by Juang [33] in 1984. A frequency-domain ERA and a recursive

ERA were also developed by Juang [34].

1.3 Problem Statement

The Continuous Electron Beam Accelerator (CEBAF) at Jefferson Lab

presents a unique set of control and identification problems. The accelerator

produces a continuous electron beam, with energies between 0.5 and 4.0 GeV, to

be delivered to three experimental halls. The beam quality requirements specified

by the experimental halls are very stringent, (see table A.1 in Appendix A). In

order to meet these requirements the position and energy of the electron beam

needs to be stabilized at various locations in the accelerator against various

disturbances. Feedback systems that regulate the position and energy of the beam

at several locations in the accelerator have to operate under time-varying noise

characteristics and changing dynamics of the system. A much clearer picture of the

problem will be developed in Chapter 2 of this dissertation where details of the

feedback system and noise measurement analysis and results are presented.

For the feedback systems to always perform optimally the knowledge of time-

varying noise characteristics and changing system dynamics need to incorporated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10
into the feedback strategy. One approach to solve this problem is to perform on­

line system identification and extract the time-varying information from the

input/output data of the feedback system. The theory, analysis, simulation, and

implementation of this approach are presented in this dissertation.

1.4 Dissertation Outline

Chapter 2 presents with a description of the Continuous Electron Beam

Accelerator. The relevant subsystems needed for beam orbit and energy

stabilization are described in that chapter. Various noise measurements that were

performed and various systems that were used to perform these measurements are

described. The feedback algorithm and the performance measurements obtained

with the feedback systems are described in that chapter.

Chapter 3 describes the theory and implementation of an on-line system

identification algorithm. The mathematical formulation of the Fast Transversal

Filter (FTF) is described there. Details about the implementation of FTF using

VxWorks as the real-time operating system on a MVME167 VMEbus CPU is also

described. The catchup technique, which is used to further improve the

performance o f the FTF implementation, is described.

Chapter 4 contains details about the simulation test stand that was used to test

the implementation of FTF using an analog computer for hardware-in-the-loop

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11
simulation. Description of an analog computer used to simulate a continuous-time

plant whose dynamics and noise characteristics can be varied in a controlled

manner is presented in that chapter. Results from performance measurements of

the implementation of the FTF algorithm for on-line system identification of a

continuous system simulated using the simulation test-stand are also described.

Chapter 5 presents a review and a summary of various results obtained and

described in previous chapters. Conclusions from this study are also presented.

Future directions of research from the present work are also presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER II

FAST FEEDBACK SYSTEMS FOR CEBAF

2.1 Overview

The Continuous Electron Beam Accelerator (CEBAF) a provides

continuous beam of electrons at any energy between 0.5 and 4.0 GeV. The

CEBAF accelerator, Fig. 1, consists of 45 MeV injector, two side-by-side

superconducting linacs, and 9 arcs that recirculate the beam through the linacs

up to 5 times for 4 GeV total energy.

EL.OL

45-MeV Injector EL>.OL
(21(4 Qjomodules) I /

OL,BL

Injector

OL

End
Stationi

Fig. 1 Schematic Diagram of CEBAF

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13
The key component of the superconducting linac is the superconducting

accelerating cavity which allows for continuous acceleration of beam without

excessive power loss in the cavity walls. Beams of different energies are

separated at the first spreader and are transported through isochronous arcs to the

recombiner at the entrance to the second linac. At the exit of the second linac,

the beams of different energies are separated again to be sent to either one of the

experimental halls or through the recirculation arcs.

The stability and quality of electron beam to be delivered to the

Experimental Halls are important for experimenters. Few noise measurement

exercises were conducted in order to determine the variation in orbit and energy

of the beam at various locations in the accelerator.

2.2 Noise Measurements

A number of tests were conducted to obtain accurate information about the

amplitude and frequency of disturbances on beam position and energy when the

accelerator was operating in CW mode. These tests used Switched Electrode

Electronics (SEE) Beam Position Monitors (BPM) [35] low level data

acquisition software which can acquire beam position data at 119 kHz into 32k

buffers / per antenna/ per BPM. A detailed description of the SEE BPM

hardware and electronics is presented in section 2.5.1.2. When appropriately

triggered, a routine in the SEE BPM low level data acquisition software acquires

beam position data at 119kHz rate and stores it in on-board memory. Once the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14
required amount of data (32k buffer / per antenna/ per BPM) is collected, it is

transferred to an ASCII file on a Unix host. The first series of tests were done

using 5 SEE BPMs in the first pass line of the East Arc.

11 ii n n n u n i yin Hi in n n i H i u iin n !! ini 11 n i : m ii

HHHbUHi/HHiiRHiHKH; HHdHHEU : HRiEbiHHHEHUHEiRRiRi

i

!!! I ! I !-!!! ib ??! i! Ill ! !̂ 11 n ! M la!? 0

mn

r n H: E! H:: H H E: n 1 ERR H H! EH Hi! HR IH R 101:1 MI i H n H t

iii j imiiHimmnmHHiimnnnnHm

fjHHRHHHHRiHEHHHHHMHHHRHHR EH H H H H H R! m m

10 n n i U H n H n H E Hi ; ; i i * RR! i ! = H i I i i ? i : i M : i i H E ; : i I > nnniHRiRRp

10 10‘ 10“ 10’
Fequency in Hz.

Fig. 2 Power Spectrum for X position observed at IPM1S10

The beam position data was later separated into beam orbit (position and

angle in X and Y plane) and beam energy variations at a point in the vicinity of

these five BPMs using a design model of this region of the accelerator. Fig. 2

shows a power spectrum of beam position variation in X direction in frequency

domain. As seen from Fig. 2, the largest disturbance component in X position

variation is centered at 60 Hz and the second peak is seen at 180 Hz.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

J----------------- 1----------------1___________ I___________
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

samples

Fig. 3 Time Domain data for X-position observed at IPM1S10

Fig. 3 shows that the 60 Hz component of disturbance corresponds to a beam

motion of approximately 0.6 mm in X plane. Time domain data and power

spectrum for the beam energy variation are shown in Fig.(s) 4 and 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 102
Fequency in Hz.

10

Fig. 4 Power Spectrum for beam energy variation observed at
IPM1S10

The largest component of disturbance on beam energy again is centered at

60 Hz and the second largest component is located at 180 Hz. From Fig. 5 it can

be seen that peak to peak energy variation is approximately 1.2 x lO'4 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

x 10'-4 .8

-5 .2

-5 .4

-5.6

co -5.8

-6

- 6.2

-6.4

- 6.6

- 6.8
1000 2000 3000 4000 5000 6000 7000 8000 9000

samples

Fig. 5 Time domain data for beam energy variation observed at
IPM1S10

Because the largest component of disturbance is observed at 180 Hz,

another system known as 500 Hz system, was developed to simultaneously

measure and quantify the noise on beam orbit and energy at different locations

in the accelerator. This system samples the beam position at 500 Hz rate from

various 4 channel electronics BPMs [36] at various location in the accelerator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18
simultaneously and stores the data in an ASCII file for later analysis. The

analysis of the 500 Hz system data produced results similar to those from the

SEE BPM system. The disturbance components associated with line power, at

60 Hz and 180 Hz, were observed in the data on beam orbit and energy. The

power spectra and time domain data for one data set are shown Fig.(s) 6 and 7.

t X Position IPM2A01
flTTTTTTTrrnTTTTTTTrrrTTTTTTTTrrslTnTTTTTTnTTTTTTTTiTT

Y Position IPM2A01

1 i ! ! ! ! ! ! ! ! B ! l ! ' ! ! ! ! ! ! ! I ! ! ! ! ! ! ! ! ! 3 n ! ! i ! ! ! ! ! ! ! i ! ! ! ! ! ! ! !

! ! ! ! ! ! M ! ! B j | ; ! ! n ! ! ! ! ! ! ! n ! ! ! ! n ! ! l ! ! U ^ ! ! ! ! ! ! ! ! ! ! n :

I 1®
“■1 °"* ft!!! ?!!! 11 fi 1!!!!!! I i ! l'l!!!!!!!! ftl!! !!!!!!!!!!!!

1 0 h ! ! ! ! ! ! ! ! ! B ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! n ! B ! ! ! ! ! ! ! ! ! ! j ! ! ! ! !

0 50 "too ISO 200 250
Frequency in Hz.

X Angle IPM2A01

1'!!!!!!!!t!!j!!!!!!!!!!!!!!!!!!!0!!!!!!!!!!!!!!!!!!!!!
I ! ! ! ! ! l l ! ! f l % ! U ! ! ! j i ! ! ! ! i n ! ! ! r ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! !

muimmnmm !!!!!!!!!!!!!!!!!!!!

50 100 1S0 200
Frequency in Hz.

Y Angle IPM2A01

250

100 150
Frequency in Hz.

250 10O 150 200
Frequency in Hz.

250

Fig. 6 Power Spectra for states X, X’, Y, and Y’ observed at
IPM2A01

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

r - i ! ! ! i ! n ! l l ! i n ! i ! ! i i ! l ! l i

cnHiHufliinHl!!!!!!!?!!:!:!:!”!!!!!!!!:;!!!

100 150
Frequency in Hz.

200

Fig. 7 Power spectrum for AE/E variation at IPM2A01

2.2.1 Variations in Noise Statistics

The noise components observed on the beam orbit and energy have exhibited

variations in both amplitudes and frequencies for different sets of data. The

variation in noise characteristics observed using five SEE BPMs in the first pass

line of East Arc is shown in Table 1. The states X, X’, Y, Y \ AE/E displayed in

Table 1 correspond to location IPM1S10 in the East Arc region. The fast

acquisition data was collected using five SEE BPMs in the first pass line of East

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20
Arc at a time interval of approximately 2 minutes. This data indicates that there is

more than 20% variation in the amplitude of the states.

Table 1 BPM parameter variation observed at IPM1S10

Data Set X (mm) X’ (mrad) Y (mm) Y’ (mrad) AE/E

2 0.714 0.0914 0.2811 0.0916 3.51 x 10"

3 0.5616 0.0801 0.4421 0.1451 1.818 x 10"

4 0.5791 0.0772 0.1691 0.054 1.838 x 10"

5 0.5913 0.0774 0.2309 0.0683 2.026 x 10"

6 0.5857 0.0771 0.2113 0.0661 1.845 x 10"

Table 2 shows the noise statistics collected using the 4-channel electronics

BPMs in various regions of the accelerator as indicated in the table. The amplitude

variation in beam orbit (X, Y), beam trajectory (X’, Y’) and energy (AE/E) are

shown for various regions in the accelerator. This data was collect over a period of

several days as indicated by time and date for each entry in the table

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Table 2 Beam parameter variations observed using 500 Hz system

Location X

(mm)

X’

(mrad)

Y

(mm)

Y’

(mrad)

AE/E Date

INJ0L10 1.9861 0.2659 0.9356 0.2119 1.1762x1 O'3 4/1/96 15:15

INJ0L10 1.98 0.2532 0.SI 16 0.1956 1.018x10'* 4/18/96 14:27

INJ0L10 2.134 0.3005 0.9025 0.2123 1.385x10-* 5/15/96 13:40

EA1A01 0.6055 0.0425 0.2378 0.0926 0.2041x10’* 3/29/96 16:31

EA1A01 0.4492 0.0321 0.1985 0.0907 0.2979x10"3 4/1/96 15:15

EA1A01 0.3817 0.0266 0.2131 0.07 0.2703x10'* 4/18/96 14:27

EA1A01 0.492 0.0474 0.2602 0.0675 0.3192x10’* 5/15/96 13:40

WA2A01 0.4444 0.016 0.2713 0.0784 0.2021x10'* 3/29/96 16:31

WA2A01 0.4348 0.0185 0.2876 0.0344 0.1586x10-* 4/1/96 15:15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22
The power spectrum for X-position at location EPM3C07 is shown in Fig. 8.

This power spectrum shows two distinct peaks around 60 Hz frequency. Upon

further analysis, the cause for two peaks was found to be variation in the phase of

60 Hz noise component at approximately 1 Hz rate. Fig. 9 shows the phase

variation of 60 Hz noise component observed in data acquired from 4-channel

BPMs in the Hall C line.

n i i i i i i i i inmmnn

R M I H H i ! i i i I ! 1 1 1 ! H i i H M i i ! ! ! ! ! ! i ! 1 i H ! ! H H H ! H : I H i M ; H H H I L M ! ! ! ! H I ! I ! ! i i H i H ! M i ! 1

10 n m n i n n n n n n I : ! ! ; n i ! ! ; ! ! ; ! ! ! ! !■;!: H ; = ! i l l n n : ! ! M : i l ! l ! ! ! ! ; ! i i n i n U l l i ; : ! H I ! i l l ! n = n i l

10'

50 100 150
frequency (Hz)

200 250

Fig. 8 Power spectrum for X-position at location IPM3C07

This phenomena of phase variation of 60 Hz component in the Hall C line is

still under investigation. The data acquisition scheme of the 500 Hz system is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23
being investigated to eliminate timing problems as a possible source of this phase

variation.

30

20

a -20

-30

-40

-50
5 20
Time (sec.)

30

Fig. 9 Phase variation of 60 Hz noise component observed at location
IPM3C07 in Hall C line

2.3 Fast Feedback Systems

The beam properties requirements specified by the three experimental halls

are very stringent. The nominal value of beam emittance (momentum spread) is

specified at 20p < crx, cry < 50 p. in terms of r.m.s. spot size. The phase space area

occupied by the beam is called as emittance. For a source of particles with width

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24
w, from each point of which particles are produced within an angle 0, the phase

space area (or the emittance) at the source will be wO. The nominal value of

average beam energy ranges between 0.5 to 4.0 GeV with the energy variation in

the range 3 x 10"* to 1 x 10'3. The relative energy spread specification for cte/E

ranges between 5 x 10'5 to 5 x 10"4 with a stability requirement of 25% of the

nominal value. Table A.l in Appendix A describes the beam properties

requirements specified by the experimental halls in detail. The results obtained

from the noise measurement studies described in previous sections indicate that

the beam orbit and energy variations are large when compared to the beam quality

requirements specified by the experimental halls. Beam instabilities of the

observed magnitude are not convenient for propagation through septa in the

accelerator which have clearances of a few millimeters. Therefore feedback

systems are needed to stabilize the beam orbit and energy.

2.4 Algorithms

The objective of using fast energy and orbit locks is to lock the beam energy

and beam orbit at desired locations in the accelerator. Thus, the quantities of

interest at the desired lock location are position, angle of trajectory of the beam in

X and Y directions, and the energy variation. The variations in these quantities

needs to be estimated from BPM measurements in the presence of sensor noise.

Corrective action needs to be taken using actuators such as corrector magnets or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25
RF vernier cavities, in the presence of process noise. A suitable solution is to

model the system in state space formalism of digital control theory [37] and to

design of an optimal state estimator and an optimal controller. The description of

the system in state space formalism is given by

x(k +1) = Ax(k) + Bu(k) + w(k) (1)

y(k) = Cx{k) + Du{k) + v(k) (2)

x(k) is the state vector containing the attributes of the system that are

dynamically significant. The state vector is x = [Xo,X 0,Yo,Y0,AE/E]. A is the

system dynamic matrix which takes system states from time instant k to k+\, B is

the control input matrix which takes the control inputs to the state vector, u(k) is

the vector of control inputs to the system, w(k) is the process noise vector, y(k) is

the vector of measurements, C is the measurement matrix which takes the states to

measurements, and v(k) is the measurement noise vector.

A Kalman filter is used to estimate the states from the BPM measurements.

The measurement update from sample instant k is obtained using

x(k) = x(k) + L(y(k) - Cx(k) - Du(k)) (3)

and the time update that takes the state vector from sample instant k to k+J is

obtained using

x (k +1) = Ax(k) + Bu(k) (4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26
Here x(k) is the estimated state vector and 5c (k +1) is the predicted state

vector for sample k+ 1 obtained from the estimated state at sample k. The

controller equations that are used for the feedback loop can be obtained by

combining the two equations above, described as

5c(k +1) = A5c(k) + Bu(k) + AL(y(k) - C5c(k) - Du(k)) (5)

u(k) = -Kx(k) (6)

L is the state estimator gain matrix and K is the controller gain matrix. Eq. (5)

is used to propagate the state vector to sample k+1. The first term in Eq. (5) uses

the system dynamic matrix A and the state vector at time k to calculate the new

state. The second term uses the control input matrix B and incorporates the effect

of actuator settings on the state. The third term is the correction term between

estimated and actual states obtained from the measurements. Eq. (6) is used to

calculate the actuator setting based on the current state estimate using negative

state feedback through an optimal gain matrix K.

Matrices A, B, C, D, K and L that are used to compute control input u(k) can

be calculated from the analytically obtained model of the relevant subsystem of the

accelerator and from an estimate of process and measurement noises. These

matrices can also be extracted from input/output data from the feedback loop by

applying system identification techniques which will be discussed in detail in next

chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

2.5 Fast Energy Feedback System

The fast energy feedback system [38] is designed to stabilize the energy of the

beam at a particular location in the accelerator against beam variations caused by

effects such as phase and gradient fluctuations in the superconducting RF cavities

of the accelerating system upstream. The beam energy variations for a particular

lock location is determined from position measurements obtained from 5 BPMs in

the vicinity of lock location. This set of 5 BPMs has at least one BPM in the

dispersive region of the accelerator such that the position variation measured at

this BPM can be related to energy variation at the lock location. A minimum set of

3 BPMs is needed to estimate 5 quantities describing the state of the beam at the

lock location, namely [X,,, X’0, Y0, Y0\ AE/E], from 6 position measurements (3

X and 3 Y positions). A set of 5 BPMs is used to maintain redundency in case of

failure of BPMs.

The energy correction signal computed by the feedback algorithm is applied

using the vernier input available on the analog RF control module hardware. A

differential signal applied to the vernier input changes the setpoint of individual

analog feedback loop of the RF control system that regulates the amplitude and

phase of the RF field in the cavity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

2.5.1 Beam Position Monitors (BPMs)

As mentioned in the previous sections there are two kinds of Beam position

monitors currently being used in the accelerator. The mechanical hardware for

both of these systems is essentially the same but the electronic hardware that

processes the analog signal to produce the beam position is different. The

mechanical hardware for a BPM consists of four thin-wire quarter wave pickup

antennas which are symmetrically placed at the comers of a square in a plane

perpendicular to the beam axis and centered on the beam axis. The pickup

antennas are parallel to the direction of beam motion. Considering there are no

errors in the system, and that the X+ and X- as well as Y+ and Y- signals are

proportional to the amplitude of beam generated signal on the on each wire, then

the beam position can be calculated using the expression

, , X + - X - Y + - Y -
x = k i r ^ r - w A Y = k T ^ 7 : (7)

The sensitivity of each BPM, k, is measured and its nominal value lies within

1% of 18.5 mm.

The different electronics and the scheme of computation for Switched

Electrode Electronics (SEE) and 4-channel electronics BPMs is described now.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29
2.5.1.1 4-channel Electronics BPMs

The electronics portion of this type of BPM is composed of a heterodyne

preamplifier located in the accelerator tunnel and the synchronous amplitude

detector located upstairs in the service buildings. The fundamental frequency of

the beam is picked up by the four antennas and this signal is transmitted to the

front end preamplifier known as B0005 electronics. The preamplifier amplifies

these signals and then they are downconverted from 1.5 GHz to 1 MHz in the

B005 electronics chassis. The downconverted signals are sent upstairs to B0007

electronics, resident in a CAMAC crate, and which consists of programmable gain

amplifier, synchronous detector, and 12 bit ADC. The gain of the programmable

gain amplifier is adjustable over a 30 dB range to be set according to the expected

value of the beam current in the accelerator.

Eq. (7), which describes the calculation of beam position, cannot be directly

applied for the 4-channel electronics BPMs because of the errors in the system

which violate the assumptions for the calculation. There are two kinds of errors in

the system. First, the amplitude gain in different channels, namely X+, X-, Y+, Y-,

might be different. Second, there are offsets that exist for each of the four

channels. Therefore the computation has to be modified as

v- , (X + *) ~ a*(.X - - Xoff-)
{X + -Xoff+) + ccx(X --Xoir-) K '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

and similarly for Y position. The offsets and a*, cty are measured by the

automatic calibration circuit. This computation of beam position still needs to be

rotated by 45° to extract the beam position in physical coordinates used by

accelerator physicists.

2.5.1.2 Switched Electrode Electronics (SEE) BPMs

There are several advantages that SEE BPMs provide over 4-channel

electronics. The 4 channel system does not have sufficient dynamic range to

operate outside the beam current range of 10A to 100 A. The 4-channel electronics

have different drifting gains for X+, X- pair and Y+ and Y- pair of antennas. The

4-channel system does not have capability to detect multiple passes of beam

through the same beam line in the linacs. The SEE BPMs were designed to

overcome these difficulties.

SEE BPM electronics, for each channel, consists of a BPM detector, RF

module located in the tunnel, IF module, timing module, data acquisition board

resident in a VME crate. The timing module is used to synchronize the BPM

system with the accelerator timing. The RF module accepts four inputs (X+, X-,

Y+, Y-). The RF module switches between the plus and minus channels, amplifies

the signal by 23 dB and downconverts the RF signal to 45 MHz before

transmitting the signal to the IF module. The IF module amplifies the signal sent

by the RF module and downconverts it to baseband signal such that it is ready to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31
be digitized by high speed commercial (VMIC 3115) 12 bit, data acquisition

module. The beam position data is acquired at 248 kHz rate by the VMIC 3115

data acquisition module and is processed by the Motorola MV167 single board

VME computer running a data processing routine in real-time, using VxWorks

operating system [39]. This routine also regulates the digital gain for the linear

operation of the video detectors in the IF module. The highest rate of processed

beam position updates from the data acquisition and processing routine is currently

limited to 60 Hz.

2.6 RF Control System

The RF control system [40] has to regulate the phase and gradient of the RF

accelerating field in the cavities to a high degree of accuracy in order to achieve

the stringent beam quality requirements. Microphonic noises in the form of

mechanical vibrations modulate the resonance frequency of the cavity, and cause

the phase of the accelerating field to fluctuate by as much as 20° and the gradient

to fluctuate up to 5%. These fluctuations have to be suppressed by the RF control

system by a factor of 100 for phase variations and by a factor of 1000 for gradient

variations. The CEBAF design of the accelerating system uses a separate control

system for individual cavity. The RF control system uses a heterodyne scheme to

convert the cavity frequency of 1497 MHz to 70 MHz.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

The major components of the RF control system include a high power

amplifier (HPA), the power transmission system, the cryostat with

superconducting cavity, and the low level RF control module. The HPA houses 8

klystrons, a common cathode power supply, and separate power supplies for the

filaments and modulating anodes. Each klystron can deliver up 5 kW of CW RF

power to an individual cavity. The RF power from klystron is provided to the

cavity through a transmission system which consists of a waveguide (WR-650)

with a circulator and directional couplers on the klystron side, and a higher-order­

mode filter on the cavity side.

The RF control module can be further classified into five components based

on functionality : RF convertor board, IF board, Analog Board, I/O board, and

CPU board. The RF convertor board transforms the 1497 MHz cavity field probe

signal to 70 MHz IF signal. The IF board contains a phase detector and controller

for gradient and phase. The Analog Board provides gain stages for gradient and

phase control. The I/O board provides 32 digital inputs, 32 digital outputs, 20

analog outputs, and 40 multiplexed analog inputs. The CPU board provides local

intelligence and communicates with the hardware via the I/O board and the control

computer. The CPU board has Intel 80186 microprocessor which runs embedded

software for data acquisition, signal calibration, and interlock functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

2.7 Fast Orbit Feedback System

A fast orbit feedback system is designed to stabilize the orbit of the beam at

a particular location in the accelerator against beam variations caused by various

effects. The beam orbit variations for a particular lock location is determined

from position measurements obtained from 5 BPMs in the vicinity of lock

location.

The correction signal computed by the feedback algorithm is applied using the

VME DAC that sends this signal to a modified trim (power supply). The trim card

maintains a desired level of current flowing to the fast air core magnets in order to

produce appropriate correction field against beam orbit variations.

2.7.1 Air Core Correctors

The air core corrector magnets [41] were designed to be able to suppress the

line power harmonics disturbances at location in the East Arc. Based on noise

measurement data presented in section 2.2, an estimate is made of the necessary

field to provide the angular kick to be applied to these air core correctors without

exceeding a ±5 mm offset from the reference beam orbit. The determined angular

kick requirement can be translated into integrated field of approximately 750

Gauss-cm for a beam energy of 445 MeV. The existing iron core magnets in the

accelerator cannot be used to suppress line power harmonics disturbances. A test

performed [41] on an iron core magnet indicated that when a 60 Hz, Software­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34
generated signal was sent to the magnet, the field produced was highly distorted.

This resulted in a decision to construct air core correctors that had a sufficient

frequency response and field strength to correct for fast disturbances.

The six inch long fast air core correctors are designed to be mountable on a

three inch beam pipe. The integrated field produced by these magnets is 970

Gauss-cm at 5 Amp current. Modified CEBAF trim cards are used for power

supply to the fast air core correctors. The existing trim cards, initially tuned for

slow response iron core correctors, were modified by changing a few resistive and

inductive elements on the board in order to provide faster response. These cards

accept a ±3 Volt signal, through the backplane connector to control the ±10 Amp

output current going to correctors.

2.8 Performance of Feedback Systems

The fast energy and orbit feedback systems [38] described in section 2.5 and

2.7 have been successfully tested on the accelerator. The fast energy feedback

system has been used to stabilize the beam energy in the injector for over a week

without any problem. The fast orbit and energy feedback system in the East Arc

have also been run for several days without interruptions.

The performance of feedback control system is generally expressed in terms

of criteria such as stability, accuracy, transient response, residual noise, RMS error

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35
criterion [42] etc. The exact specifications are usually dictated by the required

system performance for individual system.

The transient response characteristics of fast energy feedback system in the

injector can be observed in Fig. 10. This figure shows a screen capture image of

the graphical user interface for the injector fast energy feedback system. The data

for states X, X’, and AE/E acquired at 60 Hz rate is shown. The feedback loop was

running in “compute only” mode up to sample instant 95. In this mode of

operation the states and the feedback correction signal are computed but the

correction is not applied to the system. It can been seen in Fig. 10 that while in

“compute only” mode there was a DC error of approximately 0.005 in AE/E. This

DC error was corrected within 4 samples (66.67 msec.) after the correction signal

was applied. Fast energy and orbit feedback systems in the East Arc display

similar transient response behavior.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

Fig. 10 Screen Capture image of GUI for Fast Energy Feedback
System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

RMS error criterion for the Injector fast energy feedback system was studied.

This was accomplished by adding a disturbance on beam energy and running the

feedback system to suppress the disturbance. Simultaneously the BPM position

data was collected for analysis. The disturbance that was added to beam energy

can be written as Asxn(2ircot) + d { t) . In this expression d(t) is a uniformly

distributed random noise component with an amplitude which was 6% of the

amplitude of the deterministic component. Fig. 11 shows the state AE/E for a

disturbance frequency, co, of 6 Hz. Feedback correction was applied between

samples 570 and 1300 approximately. The RMS error before correction 3.1 x 10'3

and it was reduced to 3.237 x KT* after application of feedback correction signal.

Fig 12 shows the power spectra of AE/E signal before and after application of

correction signal. It can been seen from this figure that the deterministic noise

component (6 Hz) has been reduced by over two orders of magnitude. The noise

floor in the power spectrum for corrected signal is also lower than the uncorrected

signal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dE
/E

38

^0 - - - -1 t I I
0 500 1000 1500 2000 2500

samples (sample rate 60 Hz)

Fig. 11 AE/E with and without feedback correction (sample rate
60 Hz) .When feedback correction is applied, the peak to peak
variation in AE/E is reduced from ±4 x 10'3 to less than ±1 x 10'3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Po
we

r
1/H

z
Po

we
r

1/
H

z
39

Power Spectrum for dE/E before correction
10“

.-12

20 25
Frequency Hz.

Power Spectrum for dE/E AFTER correction

.-10

10"

-14

20
Frequency Hz.

Fig. 12 Power spectra of AE/E before and after correction signal
was applied. The power in disturbance component at 6 Hz is
reduced by over two orders of magnitude by application of
feedback correction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER HI

APPLICATION OF ON-LINE SYSTEM IDENTIFICATION

3.1 Background Theory

The selection of mathematical formulation is an important decision in

developing recursive system identification algorithms. The state space formalism,

briefly described in section 2.4, is widely used and most convenient form for

expressing the mathematical model for control systems engineering applications.

x{k +1) = Ax(k) + Bu(k) (9)

y(k) = Cx(k) + Du{k) (10)

Eq. (9) and (10) represent a discrete time state space model of a dynamic

system. This form is useful for implementation of control algorithm on a digital

computer because the input/output data for the physical system is discretized.

Starting with zero initial conditions (x(0) = 0) and solving for the outputs

y(k) in terms of previous inputs produces the following

x(0)=0,

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41
* 0) - / M O)

jc(1) = Bu(0)

y(l) = CBu(Q) + Du(\)

x(2) = ABu(0) + Bu(l)

y(2) = CABu(0) + CBu(1) + Du(2)

and generalized summation series can be written for the expression of states

and measurements at sample instant k as

xik) = J ? A ‘- 'Bu(k- i) (11)
/=!

k
yik) = Y*CA‘- 'Bu(k- i) + Du{k) (12)

»=i

In the expression of x(k) and y(k) above if a unit pulse is applied as input at

time instant k= 0 such that «/(0) = 1 for r=l, 2, ...,r and uj(k) = 0 for k=\, 2, ...

then the results can be assembled in a matrix form as

e0 = D,ex = c b ,g2 = c a b , b3 = CA2B,....ek = c a ' - ' b

These matrices are known as system Markov parameters. Markov parameters

are unique for a given system. The system matrices A, B, C, and D are contained in

the system Markov parameters, therefore they can be used for system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42
identification. The system outputs at various instants k = 0, 1,2, can be written in

terms of Markov parameters and inputs as

The state vector of system which relates to physical quantities is generally not

accessible for direct measurement If the system is observable then it is possible to

use an observer (or state estimator) to estimate the state variables from

input/output data. In some circumstances state variable estimates are preferable to

their directly measured values because the error introduced by the sensors may be

larger than the error in estimating these variables.

The equation for a state observer can be written as

where x(k) is the estimated state vector and y(k) is the estimated output.

The above equations can be rewritten as

k
(13)

x(k +1) = Ax(k) + Bu(k) - L[y(k) - Cx(k) - Du(k)] (14)

y(k) = Cx(k) + Du(k) (15)

x(k + 1) = (A + LC)x(k) + (B + LD)u(k) - Ly(k)

y(k) = Cx(k) + Du(k)+v(k)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43
_ _ u(k)

Now defining A = A + LC, B = [B + LD - L\ and y/(k)=[] the
y{k)

above equation can be rewritten as

x(k +1) = Ax{k) + B y/{k) (16)

y(k) = Cx(k) + Du(k) (17)

The pulse response characteristics of this observer system can be obtained

using the same scheme as described above to obtain the system Markov

parameters. Starting with zero initial conditions and solving for the estimated

output, generalized summation series can be written for the expression of

estimated states and estimated measurements at instant k as

k k
*(k) = £ (A + LQ'~l (B + LD)u(k - i) - £ (A + ZC)'_I Ly(k - i) (18)

;=1 /=l

k
K k) = X C(A + LCT1 (5 + LD)u(k - i) + Du(k)

'=i * (19)
- £ C 0 4 + LC)'-' L y i k - i) ^

<=i i=i

If a unit pulse is applied as input at instant k= 0 such that k/(0) = 1 for /=1, 2,

...,r and «/(&) = 0 for k= 1, 2, ... and then the results can be assembled in a matrix

form as

0O = D , ^ = C[B + LD - L] , Q = C (A + LC)[B + LD - L],...

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44
% = C (A + LQ*-'[B + LD - L] = [C(A + LC)k~' (B + LD) - C(A + LC)*_I L]

These matrices written sequentially are called as observer Markov parameters.

They contain the system matrices A, B, C, D and estimator gain matrix L.

The equation for estimated output can be rewritten as

k k
K *) + Z C(A + ic y - ' Ly{k - 0 = Z C(A + LQ " ' (B + LD)u(k - i) + Du(fc)

< = i 1=1

For system with an appropriate design of observer the difference between the

estimated output and measured will approach zero after p (k > p) samples.

Therefore the above equation for estimated output can be written as

y(k) + £ O^y ik - 1) = X d™ u(k - /) + Du(k) (20)
/=! /=!

where 0™ = C(A + LC)'~' and ^ (2) = C(A + LC)"'(B + LD).

This equation is known as ARX model of order p. ARX model is used in

developing recursive system identification techniques such as Fast Transversal

Filter which is described later in this chapter.

3.2 Classical Least Squares Approach for System Identification

Consider the ARX model as described in Eq. (20) and rewrite it as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45
y(k) = 0 V,p(k - 1)

where y/p(k - 1) contains the input/output data and 0 contains the observer

Markov parameters written as

¥ Pik - \) = [u {k) y (k - 1) u (k - 1) ... y (k - p) u (k - p)] T

0 =[D - 0 ™ 0™ ... - 0 pl2) 0p(,)]

Collecting all y(k) for instants 0 through present above equation can be

written in a matrix form as

Y{k) = f f ¥ ' { k - 1) (21)

0) «(1) u(2) u(p) u(k)
V(o) V(\) ... i y (p - l) ... y s { k - 1)

where 4^ (& — !) = <K0) ... y / (p - 2) ... y / (k - 2)

K 0) y/ (k-p)_

Y(k) = [y(0) j/(l) y(2) ... y(p) ... y(k)]

^ p{k -1) is input/output data matrix with dimensions

[(m + r)p + r~\x. (k + 1) where m is the number of outputs, r is the number of

inputs and p is the order of ARX model. Y(k) contains the measurement data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46
The observer Markov parameters, 0 , can be obtained by applying a least

squares solution to Eq (21) as

K = Y (k W Tp (* - 1)PF, (k - 1) (* -1)]-' (22)

The least squares solution can be obtained once sufficient number of data

points, k>((r + m)p + r) for input/output data have been collected. The least

squares solution for observer Markov parameters described using Eq. (22) has two

drawbacks. First, the observer Markov parameters can only be obtained once all

the data for k time instants has been collected. Second, it requires inverting a large

covariance matrix [^ (^ - l)*Fj (k - 1)] every time new data becomes available.

Matrix inversion is a computationally intensive task and cannot be used in a

solution for on-line implementation.

3.3 Recursive Technique

Recursive techniques can be applied in order to overcome the difficulties of

least squares solution described in the previous section.

Eq. (22) can be written for time instant k+1 as

4, (* +1) = Y(k + 1)»f; (*)[¥ , (*) ¥ ; (*)]-* (23)

such that Y{k +1) = [Y(k) y(k +1)] and *Fp (k) = [¥ p (k - 1) y/p (k)].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

Now define the inverse of the input/output data covariance matrix as

PP(k) = ['¥p(k)'¥Tp (k)Yl

Further expanding the terms on the right hand side in this definition

' V l (k - l)
W , { k - D ¥pm i p¥ r {k)]

i-i

= ¥ , (* - 1) ^ ; (k - 1) + iffp(k-)wTp (*)]"' (24)

= [P;l(k - l) + it,p(k) r t (k)) -1 (25)

Eq. (25) can be simplified by application of matrix inversion lemma

(Sherman-Morrison formula) [43] as

V D(k) w TA k) P A k - \)
Pp(k) = P (k - l) [I - Vp)Wp p :] (26)

{\ + yrTp (k)Pp(k- \)yrp{ky

The Eq. (26) has been now been transformed in form useful for recursively

updating the inverse of covariance matrix, Pp (k) , without having to perform a

large matrix inversion.

Define G (k) =
yrTA k) P A k - \)

\ + V Tp { k) P (k - \) y , (k)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

Notice that the denominator in above equation is a scalar. Utilizing the

recursive formulation for Pp(k)anA. Eq. (23) an expression for updating the

observer Markov parameters can be written as

£p(k + l) = Y(k + l)'i'Tp (k)Pp(k)

= [Y{k)^Tp (k - 1) + y(k + \)¥ Tp 0k)\Pp (k - 1)[7 - Wp(k)Gp(At)]

Now applying the expression Op (k) = Y(k)KYp (k - 1)Pp (k - 1) to above

equation

5P (k +1) = [4 (i) - i (*)G ,(*) + y(k + \) v Tt (k) P„ (k -1)

simplifying the third and fourth terms in the above expression

&P(k + 1) = (k) + [y(k +1) -S p (k)¥p (k)]Gp (k) (27)

The above equation presents an expression for obtaining the observer Markov

parameters recursively. This expression can be simplified by defining the

following

* * + l) = ^ (*)p ,(*) (28)

e(k +1) = y(k + 1) - y(k + 1) (29)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49
Finally, the recursive updating of the observer Markov parameters can be

written as

t p (k + 1) = Sp (k) + e(k +1)Gp (k) (30)

Formulas presented in Eqs. (26), (28) ,(29) and (30) constitute the Recursive

Least Squares (RLS) algorithm [44]-[45].

In the above definitions y(k +1) is the predicted output at next time instant

and e(k+1) is the difference between estimated output and measured output at time

instant k+1. Gp(k) can be considered as the gain vector which determines how the

output estimation error affects the update of observer Markov parameters

9p(k +1). The estimated output computed by y(k + 1) = 9p(k)y/p(k) can be

called as a priori estimate since the Y (k) uses measurement at time instant k and

not £+l..The expressions for a priori and a posteriori output estimates and errors

can be written as

y~ (k +1) = 6p (k)y/p (k) - a priori output estimate

y + (k + 1) = 9p (k +1)\f/p (k) - a posteriori output estimate

e~ (k +1) = y(k + l) - y ~ (k + 1) - a priori estimation error

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50
e+(k +1) = y{k +1) - y + {k +1) - a posteriori estimation error

Based on these definitions the equation for parameter update can be written as

(k +1) = 9p (k) + e~(k + 1)Gp (k) (31)

Substituting the expression for a posteriori output estimate into a posteriori

estimation

e \ k +1) = y{k +1) - t p{k +1)iyp(k)

which upon simplification results in

e*(k + l) = ______ e ' (t + 1)______

This equation shows a recursive procedure of updating the a posteriori

estimation error using the a priori estimation error.

As indicated earlier Y(k) contains the various output measurements such that

Y(k) = [XO) ^(1) y{2) ... y(p) ... y(k)]. The output estimation error

corresponding to difference between y(k) and y(k) has an analog known as

equation error which is the difference between Y(k) and predicted values as

described by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E p (* +1) = Y{k +1) - 9p (Ar + iyF , (Ar)

51

Utilizing the definitions of a priori and a posteriori estimation errors, Y(k)

and p{k) the above equation can be rewritten as

E p{k +1) = [Ep{k) - e-p{k + Y)Gp{k +1)¥ ,(* +1) «;(* +1)]

Now defining equation estimation square as

E p(k+l)=Ep(k + l)Erp (k + l)

This equation can be simplified in terms of output estimation errors as

E p(k+\)=Ep (At) + e; (k + l)[e; (k + l)]r

The above equation shows how the equation estimation error squares can be

recursively obtained from a priori and a posteriori errors.

3.4 Fast Transversal Filter (FTF)

The recursive least square algorithm described in the previous section can

very well be implemented to perform on-line system identification, but, the

number of mathematical operations that need to performed for this algorithm place

a constraint for a system with a large system order p and large number of inputs

and outputs. The number of mathematical operations for recursive least squares

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52
algorithm are proportional to [(r + m)1 p 1], therefore increase quadratically with

the increase in system order p.

Computationally efficient versions of RLS known as Fast Transversal Filter

(FTF) and Least Squares Lattice (LSL) filter were first presented by Cioffi and

Kailath [46] and Lee and Morf [47]. Other formulations of FTF have been

presented in references [44] and [45]. The implementation of on-line system

identification algorithm developed and presented in this work is based on the

formulation of FTF presented in reference [44].

Fast Transversal Filter (FTF) reduces the number of mathematical operations

by utilizing the shifting property of input/output data that becomes available

serially. The number of mathematical operations for FTF are proportional to [(r +

m)-*]. The system order does not have any effect on the number of mathematical

operations for FTF.

The functionality of FTF can be broken up into three parts: 1) Initialization of

variables, 2) Forward time estimation, 3) Backward time estimation. Forward time

estimation and backward time estimation share a common data matrix and update

each other recursively. The computational steps of FTF are described in this

section. Variables with -> correspond to the forward time estimation and those

with <— correspond to backward time estimation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53
Initialization:

The initialization begins when sufficient amount of input/output data has been

collected such that k> (r + m) p + r. The vector y/p{k — 1) and input/output data

matrix 4^ (k - 2) are formed as shown below in steps 1 and 2

1) y/Tp (k - \) = [y/T(k) i//T(k - 1) y/T(k - 2) ... y/T(k - p) \

2) *¥ (k - 2) =

u{ 0) u(1) u(2)
K0) ^(1)

HO)

<P)
H p - i)
H p - Z)

HO)

u (k - 1)
y/ (k- 2)

H k ' l)

H k - P ~ 1)

3) T /, a - l) = ['Pp(^:-2) ^ (4 - 1)]

Matrix vPp+1 (k) can be partitioned in two different ways for use in forward

prediction and backward prediction calculations. Matrices Yu(k-1) and Fu(-1)

relevant to forward prediction calculation are obtained as shown in steps 4 and 5

below

4) Y , (k - 1) =
m(1) h(2) m(3) ... u(j> + \) w(ifc)

MO) Ml) M2) ••• M/0 ••• M * - i)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

5) Ya(r D =
'u(O)'

0

Yj/k-l-p) used in backward prediction calculation is obtained as

6) Yu(k - l - p) =
0 0 0 ••• «(0) ••• u (k - l - p)
0 0 0 ••• _y(0) ••• y (k - l - p)

Initialization of Forward Time Estimation parameters is performed as follows:

7) P (k - 2) = [' ¥ (k - 2) ' ¥ T(k - 2) r '

y/TA k - \) P (k - 2)
8) Gp W - i + y T , k _ l) p (k _ 2) (A r _ D

9) 0 (k - l) = Yu(k - \) ^ (k - 2) P (k - 2)

10)
E(k -1) = Yu (-1)7 / (-1) + [Yu (k - 1) - §,(k - l y v j (k - 2)]

x[7u(* - l) - d p(* - l) 4 / (f c - 2)] r

11) y (k - \) = \ - G (k - \) i f / (k - \)

Initialization of Backward-Time Estimation parameters is performed as

12) P J k -1) = P J k - 2) [/ - V J k - » G J k -1)]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The recursion procedure begins with forward-time prediction with formation

of vectors if/p(k -1) and Yu(k) using last measured output y(k) and input «(&+!).

u(k)
y(k - 1)
u(k - 1)

y (k - p)
u (k - p)

2) ¥u(k) =
u(k +1)

y{k)

3) e:{k) = Yu{ k) - d (k - \) i y (k - \)

4) e;{k) = y (k - \) e - A k)

5) 0 J k) = 0 (k - l) + eUk)Gp(k - l)

6) E p(k) = E p(k - l) + e;(k)[e;(k)]r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

7) Gp+l(k) = [e;(k)T! ; '(*) G ,(* - i) - * ;c *) r § ; '(*)! ,(*)

8) W = r,(* ■-i) - e ; v c) TE-pl(k)e;(k)

The gain vector (shown in step 7) that is used by each of the forward and

backward time estimations is partitioned G , (k) = [G(r̂ (k) G(£ x (&)] where

The backward-time update recursion steps are as follows:

u(k +1)
y(k)
u(k - 2)

y (k - p +1)
u(k - p +1)

2) r . (k - P) =
y{k - p)
u (k - p)

3) e~(k) = Yu(k - p) ~ O A k - \)y/ (k)

4) e U k) = y A k - l) e U k)

r m a%(k)+a%et(k-\)
5) ° ' W = i-oJ?,(t)*;(t)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6) ep{k) = 9p{ k - \) + e;{k)Gp(k)

57

Y . (k - 1)

75 r , (*) = i - G ^ , (*)«;(*)

8) ep (k) = / p(k)e;(k)

9) E / *) = E , (* - l) + ? ;(*)[e ;(*)]r

After performing the above the computational steps the forward time

recursion again begins for time index k

3.5 Implementation of FTF

The development of FTF as on-line system identification routine was planned

and conducted with the goal of implementing it for control system applications

(e.g. fast orbit and energy feedback systems) in the CEBAF control system. The

accelerator has a distributed real-time control system [48], known as EPICS [49],

which is implemented on more than 50 VMEbus CPUs (Motorola 68040 uP)

located in service buildings around the racetrack shaped accelerator. These CPUs

are connected via Ethernet. Each CPU runs a multitasking real-time operating

system known as VxWorks [39]. Most of the development work for VxWorks

target system is done on multi-user UNIX host system which provides tools such

as text editors, make, source-code control etc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58
Since the response time and data rate through the top level control system, ie.

EPICS, is limited due to network constraints and indeterminacy of Unix, FTF

routines have been implemented as VxWorks tasks, which can be triggered and

monitored by routines of top level control system.

FTF routines are programmed in C and compiled with a C cross-compiler for

combination of UNIX as host system and Motorola 68040 on MVME167

VMEbus single board computer running VxWorks as the target system. FTF

routines also utilize some of the VxWorks libraries in order to use various

VxWorks functions, such as circular (ring) buffers. Various modules of the FTF

routines do not need to be linked with VxWorks system libraries or even with each

other. The object modules are loaded directly onto the VxWorks system which

using the symbol table contained in object modules dynamically resolves external

symbol references. The C code for various routines of FTF is shown in Appendix

B.

3.6 Catchup Technique

As described earlier, the functionality of FTF can be broken up into three

parts : initialization, forward time estimation and backward time estimation. Once

sufficient number of data points, (k >(r + m)p + r), become available, the

initialization routine can be executed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59
The initialization routine consumes the largest amount of time on the

microprocessor. For a two input/two output system with model order of 5 the

initialization routine consumed 19.661 msecs. Each iteration of forward-time

recursion takes 3.795 msecs.

While the initialization is taking place, new input/output data keeps coming

in. Before the forward time recursion can begin, a certain number of data points

will be lost if recursion begins at the latest data point. In most cases this would not

be a matter of concern. However, since the backward time recursion routines are

sensitive to a loss of data between the initialization and the actual beginning of the

recursive procedure, the performance of the FTF could be improved if a catchup

technique were implemented. Such a facility can prevent the discontinuity between

the initialization data and the set where recursion begins.

The VxWorks operating system [39] provides a facility of circular buffers (or

ring buffers) which has been used to implement the catchup technique. In this

scheme all the incoming input/output data goes into circular buffers. The

initialization routine begins when sufficient number of data points have been

accumulated in the circular buffer. While the initialization is taking place the new

data keeps filling the circular buffer. Once the initialization process is complete the

forward-time recursion begins by reading the data point in the circular buffer

where the initialization routine left off. If the processor time consumption for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60
forward and backward time recursion is smaller than the sample rate then catchup

can be completed within a finite number of time steps. The catchup technique will

mostly be useful for the systems with a high levels of noise.

3.7 Performance of FTF routine

A two input, two output system was simulated in MATLAB to study the

performance of FTF routine. The system matrices for the system that was

simulated are as follows

'0 1 ' 1 O ' ■ 1 1 0 ' ' 1 O '

, 5 = , c = ,D =
1 - 0 . 5 0 1 0 . ! 5

9 0 1_

The simulated input/output data for this system for various test cases was

recorded in text files and was used to test the performance of system identification

routine.

The first test case involved identification with noise free data for inputs and

outputs. In second case identification was performed with noisy data, where 10%

(zero mean, uniformly distributed, random) noise was added to the input and

output data.

The error between estimated output and measured output of the system can be

used as a criterion to determine how well does the system algorithm perform.

Fig. 13 shows a comparison between output 1 and estimation error (residual) for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61
the noise free case. The estimation error is very small. Peak to peak variation is

estimation error approximately 10'5. Fig.14 shows a plot of estimation error

(residual) for output 1. For ±1V amplitude outputl signal, the RMS value of

estimation error was 1.248 x 10"6.

Fig. 15 shows a comparison between output 1 and estimation error for the

case where 10% random noise was added to input/output data. For ± IV amplitude

output 1 signal, the RMS of estimation error for the 10% noise added to

input/output data is 0.0392

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ou
tp

ut
 1

and

re
sid

ua
l f

or
ou

tp
ut

 1
62

1.5

0.5

-1.5
40 90 100

samples

Fig. 13 Comparison between Output 1 and the difference between
the estimated and actual output for the noise free case. Peak to
peak variation in estimation error is 10'5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

re
sid

ua
l f

or
ou

tp
ut

 1
63

. x 10'

V

100 150 200 250 300 350 400 450 500
samples

Fig. 14 Estimation error for Output 1 for noise free case. Peak to
peak variation in estimation error is 10'5.The RMS value of
estimation error is 1.2486 x I O'6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

1.5

- — output 1
- • - residual

CL
0.5

2 -0 .5

-1.5
20 30 40 50

samples
70 90 100

Fig. 15 Comparison between output 1 and estimation error for the
case where 10% random noise was added to input/output data.
Peak to peak variation in estimation error for output 1 is 0.1901.
RMS of estimation error is 0.0392.

Next chapter describes a hardware-in-loop simulation that was performed

using an analog computer and a teststand VMEbus CPU to test the functionality of

on-line system identification algorithm under conditions of varying plant

dynamics and process and measurement noise.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER IV

ANALOG COMPUTER SIMULATIONS

4.1 Description of Analog Computer

An analog computer solves a real world problem by rendering the abstract

mathematical system into electrical operations whose functions in reality are

governed by the same equations as mathematical system. Two problems or

systems are said to be analogous if certain or all of their respective measurable

quantities obey the same mathematical laws. Analog computers benefit from using

active electrical circuits as analogous system because they have no moving parts,

they have a high speed of operation, yield good accuracy, and have a high degree

of versatility. Active electrical networks consisting of resistors, capacitors, and op-

amps connected together are capable of simulating any linear system. The forward

voltage transfer characteristics of these networks are analogous to the basic linear

mathematical operations encountered in the system’s mathematical model. By

using diode function generators and special circuits which have nonlinear voltage

transfer characteristics, it is also possible to simulate some nonlinear systems on

analog computers.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

The input and output voltages of the analog computer are analogous to the

corresponding mathematical variables of the problem. In some cases because of

limitations of the analog computer or its associated input/output hardware, it

becomes necessary to change the scale of the analog computer variables. It is

important to realize that an analog computer solution is simply a voltage

waveform whose time dependence is the same as that of the desired mathematical

solution of the system equations the computer represents.

The procedure for simulating a system on an analog computer starts by

determining the mathematical model describing the physical system of interest. An

analog block diagram of the system is constructed to relate the sequence of

mathematical operations and to aid in scaling the analog computer variables, if

necessary. Using the analog block diagram, the electrical components are

assembled together on the analog computer.

A typical simulation of a physical system involves a mathematical model of a

system consisting a set of one or more differential equations and initial conditions

on the variables. If the system is linear, the differential equations are linear. The

operations required for a linear system are summation, sign inversion,

multiplication by a constant, integration and differentiation. Each of these

operations can be performed by different elements of the analog computer that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

need to be assembled together in order to represent a complete differential

equation.

4.2 Simulation Setup

A simulation test-stand was assembled to test the performance of an on-line

system identification algorithm. A continuous-time plant whose dynamics and

noise characteristics could be varied was simulated on an analog computer.

A Comadyna GP-10S [50] analog computer was used in this simulation test-

stand. This analog computer has eight patch-panel operational amplifiers (op-

amps). Each of these amplifiers have a provision of up to four integrating

capacitors (two slow, two high speed). Amplifiers 1-6 have individual boards that

connect 50K and 5K patch-panel input resistors. Amplifiers 1-4 have individual

attenuators to adjust integrator initial conditions. There are eight potentiometers

(5K variable resistance) available to be used as attenuators with any of the

amplifiers. Besides these components, the analog computer has discrete modular

elements such as multipliers, invertors etc.

The on-line system identification algorithms runs on a Motorola 68040

microprocessor mounted on MVME167 board resident in a VME crate. The

input/output data from the plant, simulated by the analog computer is sampled

using a 16 bit-16 channel Analog to Digital Convertor (ADC). The ADC used for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

this simulation test stand is a Greenspring computers Industry Pack® IP-16 ADC

[51].

The IP-16ADC provides 16 single-ended input lines or eight differential input

lines. The IP-16ADC provides 16 resolution. Software programmable gains of 1 or

0.5 and software programmable modes, unipolar or bipolar, enable the IP-16ADC

to input ranges of 0 to 5 V, ±5 V, 0 to 10V , and ±10 V. The bipolar mode with a

input range of ±10 V was used for the simulation test stand. The conversion time

for IP-16ADC is 8 pseconds, which provides a usable throughput of 100000

conversions per second. The IP-16ADC can work in either single conversion or

continuous conversion mode. In continuous mode the first conversion is initiated

by writing to a unique address in I/O memory space. The subsequent conversions

take place automatically after the previous conversion has been completed. In

single conversion mode each conversion is started by writing to a unique I/O

memory space. Data is ready to read after the Ready bit (SDL bit) has been set.

The single conversion mode was selected for the test stand. A device driver was

written in C programming language for this ADC. The source code for this device

driver can be seen in Appendix B. The device driver performs all the operations

needed to read the ADC data and make it available to the system identification

algorithm running on the microprocessor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69
The EP-16ADC IndustryPack is installed on a VME6U slave board VMESC5

[52] that can support five IndustryPacks. This board is manufactured by Systran

Corporation.

The control signal generated by the algorithm running on the microprocessor

is sent to the analog computer through a VME Digital to Analog Convertor

(DAC). The DAC card, DVME-628 [53], manufactured by Datel Corporation is

used for this test stand. It provides eight channels of digital-to-analog conversion

with 12 bit resolution. Each channel has its own D/A convertor which settles to an

overall accuracy of ±0.05% of full scale within 6 jiseconds. The DAC card can

deliver the analog output signal between the ranges of 0 to 5V, 0 to 10 V, ±2.5 V,

±5.0 V, and ±10 V. A device driver was written for this card which can perform all

operations needed to generate an analog correction signal from the digital output

generated by the microprocessor.

Two Tektronix 2400 digital oscilloscopes were used to observe the various

input/output data generated during the course of simulation on the test stand. A

Hewlett-Packard 3132A model function generator was used to generate the

various disturbances and reference signals. A two input/two output system was

configured on the analog computer to be simulated as the plant. A circuit diagram

for the simulated system is shown in Fig. 16.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

4.3 Simulation Cases

A two input/two output system was configured on the analog computer to be

simulated as the plant.

d12
1C

R11

R12

Y1

d22
IC

C21R21
A A

12

Ri2
d21 R 22

Y2

C22

Fig. 16 Schematic diagram of the system simulated using an
analog computer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71
The circuit diagram of the simulated system shown in figure 15 represents a

two state system that is decoupled. The input points for this system are denoted as

II and 12 and the output measurements are available at 01 and 02. The initial

conditions can be applied at points denoted by IC. R l l , R12, R21, and R22

represent the attenuators that can be varied to change the plant dynamics by

changing the RC time constant and integrating action for each of the states.

Various noise sources can be applied at points dl 1, dl2, d21, and d22 to affect the

process and measurement noise characteristics of the system.

4.3.1 Variation in dynamics of the plant

The first simulated case involved observing the performance of the system

identification algorithm under conditions of time-varying dynamics. This was

accomplished by varying attenuators R11 and R12 for state 1 and R21 and R22 for

state 2 during the course of simulation while the system identification algorithm

was running.

Fig. 17 shows a comparison between the actual output and the estimated

output generated from the identified system for state 1. The estimated output of the

system is computed from identified observer Markov parameters using

y(k + 1) = &p(k)y/p(k) . Fig. 17 shows the same comparison for output 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 50 100 150 200 250 300 350 400 450 500
samples

Fig. 17 Comparison between actual and identified output 1. The
dynamics of simulated plant was changed at 4 instances by
varying attenuators R11, and R12.First change was introduced at
sample 90, 2nd at sample 155, 3rd at sample 300 and 4th at sample
395.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

actual ;
identified

CM

-2

-3
50 100 150 200 250 300 350

samples
400 450 500

Fig. 18 Comparison between actual and identified output 2. The
dynamics of simulated plant affecting state 2 was changed at 6
instances by varying attenuators R21 and R22. First change was
introduced at sample 25, 2nd at sample 75, 3rd at sample 145, 4th at
sampler 200, 5th at sample 260 and 6th at sample 310

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74
Fig. 19 shows a plot of error between identified and actual output for state 1.

This plot shows that estimation error is large at the moment that system dynamics

is changed, however the error rapidly drops to a nominal value within 2-3 cycles.

The dynamics of the system was changed using attentuators R12, R22. The effect

of this change is apparent at sample instant 90 in this plot.

1.5

0.5

I??-0.5

-1.5
100 150 200 250 300 350 400 450

samples
500

Fig. 19 Estimation error between actual and identified output
1. Spikes at samples 90, 155, 300 and 395 correspond to
instances when the dynamics of system affecting state 1 was
changed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75
Fig. 20 shows disturbance suppression achieved by applying the correction

signal generated by the system identification algorithm. This figure shows that

disturbance is suppressed to within 4% most of the time. However it rises to 8%

momentarily when the dynamics is changed.

0.04

I

£ - 0.02

© _n.04

° -0.06

-0.08
50 100 150 200 250 300 350 400 450

samples

Fig. 20 Disturbance suppression achieved by application of
feedback correction using input 1 for the case where system
dynamics was changed. Spike observed at sample 90 corresponds
to the first instance where system dynamics was changed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76
4.3.2 Variation in noise characteristics

The first test involved adding 5% random noise to input d ll and dl2 and

varying the input signal during the course of simulation. The system dynamics was

not changed. Fig. 21 shows a comparison between actual and identified output 1.

1.5

 ider trf ed
- - acttal

0.5

-0.5

-1.5
50 100 150 200 250 300

samples
350 400 450 500

Fig. 21 Comparison between identified and actual output 1 for the
case where 5% random noise was added to measurement and
control input data and at points dl 1 and dl2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77
The estimation error for output 1 shown in Fig. 22 indicates that the nominal

value of estimation error is larger compared to the noise-free case where system

dynamics was changed as shown in Fig. 19.

t i i i---------- 1----------r

-0 .2 h

_ Q 3 1__________ i__________ i__________ i___________ i__________ i__________ i__________ i___________ i__________ i___________I

‘ 0 50 100 150 200 250 300 350 400 450 500
samples

Fig. 22 Estimation error between actual and identified output 1
for the case where 5% random noise was added to points d l l and
dl2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78
Fig. 23 shows that, with application of feedback correction signal generated

for the identified system, the disturbance is suppressed to within 8-10% for this

case.

0.1

0.08

^ 0.06

3
S 0.04
o> cm _
=> 0.02
c0
1 0
o0
© - 0.02
CD

1-0.04 00
1
“ -0.06 Q

-0.08

“° '10 50 100 150 200 250 300 350 400 450
samples

Fig. 23 Disturbance suppression achieved after application of
feedback correction using input 1 for the case where 5% random
noise was added at points d ll and dl2.

In the second simulation case, the process noise characteristics were varied by

changing the amplitude and frequency of the disturbance source applied to point

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79
d ll and dl2 shown in circuit diagram in Fig. 16. A comparison of the actual

output with the estimated output 1 is shown in Fig. 24.

1.5

identif ed
actual

0.5
>

3
Q.3o

-0.5

200 250 300 350 400 450 500100 150
samples

Fig. 24 Comparison between actual and identified output 1 for the
case where amplitude and frequency of noise signal applied at
d ll and dl2 was changed.

Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.

Es
tia

m
tio

n
Er

ro
r

for
 O

ut
pu

t
1

(V
)

80
Fig. 25 shows the estimation error between actual and identified output. The

estimation error becomes large momentarily when the amplitude and frequency of

the disturbance is increased.

- 0.1 -

-0.15 -

- 0.2 -

-0 .2 5 ---------- '---------- 1---------- 1---------- 1---------- 1---------- 1---------- 1-----------'---------- 1----------
0 50 100 150 200 250 300 350 400 450 500

samples

Fig. 25 Estimation error between actual and identified output 1 for the
case where amplitude and frequency of noise was changed. Error
becomes large at sample 110 when amplitude and frequency of noise are
increased.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81
Fig. 26 shows that by applying a feedback correction signal generated by

system identification algorithm, the disturbance is suppressed to within 6% most

of the time. However the residual error rises to 8% momentarily when the noise

characteristics are changed.

0.2

0.15

0.1

o>
0.05

-0.15

- 0.2
50 100 150 200 250 400 450300 350

samples

Fig. 26 Disturbance suppression achieved by application of
feedback correction using input 1 for the case where amplitude
and frequency of noise are changed. Suppression reduces at
sample 110 when amplitude and frequency of are increased.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

4.3.3 Variation in noise characteristics and dynamics

In this simulation both the noise characteristics and the system dynamics were

changed while the performance of the system identification algorithm was

observed. The system dynamics were varied by changing the attenuator R12 and

adding capacitor C12 in the feedback circuit Fig. 27 shows a comparison between

the actual and the identified output.

0.8

0.6

0.4

0.2

- 0.2

-0.4

: r identif ed
 actual

- 0.6

- 0.8
100 150 200 250 300 350 400 450 500

samples

Fig. 27 Comparison between actual and identified output 1 for the
case where dynamics of the system and noise characteristics were
changed simultaneously.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

. Noise characteristics were changed by changing the frequency and amplitude

of disturbance applied at points dl 1 and dl2. Fig. 27 shows the estimation error

between identified and actual output 1. Estimation error becomes large when the

system dynamics and noise characteristics are changed. The error drops to nominal

value within 3 cycles. The estimation error observed for this case is the larger than

the cases where either the dynamics or noise were changed separately.

0.31 i 1----------1---------- 1----------1----------1--------- 1----------1---------- 1----------

0 .2 -

- 0.2 -

_ 0 3 1----------1----------1----------1----------1---------- 1----------1----------1----------1----------1----------
' 0 50 100 150 200 250 300 350 400 450 500

samples

Fig. 28 Estimation error between actual and identified output 1
where system dynamics and noise characteristics were varied
simultaneously. Spike at sample 110 corresponds to the instance
where dynamics of system was changed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84
Fig. 29 show the disturbance suppression achieved by application of feedback

correction in this case. It can be observed from Fig.(s) 27 and 29 that the

disturbance suppression is smaller when the output measurement signal amplitude

is decreased.

0.1

0.08

>
- 0.06
5Q.c
at 0.04 .c
CO3
0 0.02

1
8 o
<D
%
g -0.02
ca
-e
•2 -0.04jo
Q

-0.06

-0.08
0 50 100 150 200 250 300 350 400 450

samples

Fig. 29 Disturbance suppression achieved by application of
feedback correction using input 1 for the case where system
dynamics and noise characteristics were varied simultaneously.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85
4.4 Model Order Selection

Model order for a system may not be known accurately a priori. A higher

model order often results in a better fit between identified and actual system

model. However, for some system identification algorithms a higher model order

would result in a disproportionately large computational load. FTF has an

advantage in this regard for on-line implementation.

Increasing the model order beyond a certain point will not result in any more

improvement in model fit. There are various criteria that can be applied to

determine the model order which would result in the best model fit. The one

applied in this work is described as

tr[Ejr(^)Ep(A:)] = fr[(T(*) - 9p^ p(k - 1))(T(A:) - 9p^ p{k - l))r]

which is the trace of the equation error squared. This is also known the as

“loss function”. The experimental data collected from the analog computer test

stand indicates that the model order greater than 5 will not result in any added

improvement in the model fit. Fig. 30 shows a graph of loss function plotted

against model order p.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lo
ss

Fu

nc
tio

n
86

order - p

Fig. 30 Loss function vs. Model order

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER V

SUMMARY OF RESULTS AND CONCLUSIONS

In this chapter a review of various results presented in previous chapters and

conclusion drawn from this study are presented. Possible extensions of this

research are also presented.

5.1 Summary and Conclusions

Results of various noise measurements conducted on the accelerator were

presented in Chapter 2. These results indicate that line power harmonics are the

primary sources of disturbance on beam orbit and energy. The strongest

disturbance component corresponds to 60 Hz frequency and the largest frequency

component observed is at 180 Hz. The amplitude of the 60 Hz component for

beam position variation can be as large as 1.98 mm in the X plane, observed at

BPM locations in the injector. The largest amplitude of the beam energy variation

tsE/E was observed in the injector. Its amplitude was 1.38 x 10°. These

disturbance components vary with time. Table 1 displays variations in amplitude

of the 60 Hz component at various locations in the accelerator. Table 2 shows the

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88
variation in these disturbance components observed from data collected using SEE

BPM low level data acquisition software.

The performance data of the prototype fast feedback system that has been

implemented in the injector and East Arc region of the accelerator was described

in chapter 2. The transient response characteristics of fast orbit and energy lock

systems, sampling at 60 Hz rate, indicate that these systems can correct a DC error

within 4 samples (66.67 msec.). The disturbance suppression observed for fast

energy lock indicates that the RMS error can be reduced by a factor of 10 by

application of feedback control. The power spectra for the AE/E observed before

and after application of a correction signal indicates that the power of deterministic

disturbance signal (6 Hz) was reduced by over two orders of magnitude by

application of the correction signal.

The theory and implementation of an on-line system identification algorithm,

Fast Transversal Filter, was described in chapter 3. Computation efficiency of FTF

makes it attractive for on-line implementation. Timing studies performed on the

algorithm indicate that model order p does not affect the CPU computational load

of FTF for a given number of inputs and outputs. Fig. 31 shows a plot between

CPU time and model order. Increasing the number of inputs and outputs does

affect the time required for one FTF iteration, which is approximately proportional

to (r + m) 3, where r is the number of inputs and m is the number of outputs. A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

catchup technique has been implemented to further improve the performance of

the FTF algorithm for on-line implementation.

5

4.5

4

3.5
*35**o
o 3 o © jn

! 2.5
®
E
5 2
a.
o

1.5

1

0.5

n

I 1 i i i i

1 1 1 i i
4 6 8 10 12 14 16 18

model order - p

Fig. 31 CPU time/FTF iteration vs. Model order

Performance of the implementation of the FTF algorithm for on-line system

identification was verified on a simulation test-stand whose detailed description

was presented in chapter 4. An analog computer was used to simulate a

continuous-time plant. The FTF algorithm was executed on the test-stand

microprocessor, which is similar to CEBAF control system microprocessors.

Various test cases that were studied included on-line identification under

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90
conditions of varying plant dynamics, disturbance signal, and noise characteristics.

Results from a simulation where the plant dynamics and the noise characteristics

both vary with time indicate that the disturbance can be suppressed to within 8%

nominally. Observations of processor time consumption indicate that one iteration

of FTF for a two input/two output system with model order of 5 consumes 3.795

milliseconds.

The FTF algorithm implementation described in this dissertation, with added

exception handling and minor modifications can be used to monitor and improve

the performance of the fast orbit and energy feedback systems currently installed

in the CEB AF control system.

5.2 Future Work

The processor time consumption per iteration of FTF for a system with large

number of inputs and outputs can further be reduced by applying a recursive

scheme for obtaining the matrix inverse of Ep described in step 7 of forward time

estimation computation procedure.

On-line FTF implementation as described in this work could further be

enhanced to perform the task of on-line system diagnostics and fault prediction.

Since the observer Markov parameters have in them embedded all the system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91
matrices relevant to a feedback loop they can provide a wealth of information

about the state of various actuators and sensors.

FTF algorithm could be implemented on a specialized microprocessor, with

access to ADCs and DACs that interface with the dynamic system, to solve a

general class of control problems. By applying a known excitation to available

inputs of the plant and monitoring the outputs, FTF can construct the information

about the system model and start generating control action for a desired

performance objective thereafter. It can also tune itself to varying conditions of

plant dynamics and noise characteristics by constantly observing the input/output

data from the system. The processor power will be the limiting factor for the

sample rate, and the number of inputs and outputs that could be considered for

such a solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

Table A .l: Beam Requirements - general characteristics

Parameter Nominal Value and Range Stability d (for
hours)

Beam Emittance: rms spot
size for achromatic beam
tune (1 a) (> 1 Hz)

Hall Ab,c: 20 um < a T < 50 pm
20 pm < a y < 50 pm

Hall B: 20 um < c„ < 70 um
20 pm < c y < 70 pm

Hall Cc: 50 um < aT < 100 pm
50 pm < oy < 100 pm

25% of value

Beam Emittance: angular
divergence (1 a) (> 1 Hz)3

ctx., oy. < 100 pr 25% of value

Beam position (< 1 Hz)3 0 pm (relative to monitor axis) rms deviation is
less than 25% of
the beam spot’s
rms radius

Beam direction (< 1Hz)3 0 pr (relative to monitor axis) rms deviation is
less than 25% of
the beam angular
divergence rms
!4 cone angle

Energy Spectrum (1 cr) (> 1
Hz)3

Hall A: cte/E < 5 E-5
Hall B: a E/E < 4.0 E-4
Hall C: ctf /E < 2.5 E-4

25% of value

Energy (average) (< 1 Hz)3 0.5 - 4 GeV Hall A: < 3 E-4
Hall B: < 1 E-3
Hall C: < IE-3
(also < 3E-3
over days for all)

Background (Beam Halo) < IE-6 of Total Current at 5a
(with diagnostic to be
provided by the experiment)

any value within
nominal range

Current (dc average) (< 1
Hz)3-'
(Note: any single hall is

Hall A: 40 nA - 180 pA
Hall B: 1 nA -10 pA
Hall C: 40 nA - 180 pA

within 10% of
value requested
by experimenter

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93
restricted to < 120 pA
unless it has exclusive use
of the beam, and total
current delivered to all 3
halls must be less < 180
pA)
Polarization (current range
to be determined by
agreement between Physics
and Accelerator Divisions)

>35% (from bulk Gas, with
expected currents of order 100
pA)
> 75% (from strained
cathodes, with currents of
order 30 pA expected)

< 10% of value

Effective Duty Factor > 90% (lower values may be
negotiated with the
Accelerator Division)

any value within
nominal range (
90%-100%)

Proper Impingement on
Beam Dump (raster)

rastered beam spot size >100
pm stability of position < 1
cm (not including rastering)

a Note: We include in the definitions of beam emittance and energy and energy

spectrum all components of the beam emittance at frequencies above 1 Hz;

components at frequencies below 1 Hz are considered part of the beam position

and direction (for transverse phase space) and as part of energy average (for

longitudinal phase space)

bNote: Hall A also requires an achromatic tune in which the beam spot is 2 mm <

c x < 3mm and 20 pm < ny < 50 pm

c Note: Hall A and C also require a dispersive tune which results in larger spot

sizes on the target depending on the energy spread in the beam

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94
d Note: The limits identified in all stability specifications are to be considered as

“windows” on the measured values o f the quantities

e Note: The high frequency (> 1 Hz) fluctuations in the beam current are specified

through the effective duty factor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B

SOURCE CODE FOR THE ON-LINE SYSTEM

IDENTIFICATION ROUTINES

/* DAQftf.c V

/ * */

/* */
/* Module : DAQftf.c */
/* Function: */
/* This program collects the input/output data by reading the ADC. Input/ */
/* output data is filled in separate ring buffers which are accessed by the */
/* Initialization and FTF forward prediction routines for implementation */
/* of catchup technique */
/* */
/* Rel Date Author Comments */
/* 0 8 Aug96 Mahesh Chowdhary Initial Release */
/ * */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mgLib.h>
#include <taskLib.h>

#define BUFFERSIZE 1000

/* Id for Ring Buffers to store Input/Output data */

RINGJLD mgUl, mgU2, mgYl, mgY2;

/* variables for the IP ADC */

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96
/* Control and Status register */
unsigned short *cnsr = (unsigned short *)0xff£K)000;

/* Data register */
unsigned short *dreg = (unsigned short *)0xffff0004;

/* Trigger ADC Conversion Register */
unsigned short *trig = (unsigned short *)0xffff000c;

unsigned short data, ccnsr;

int points=0;
int FTFDone=l;

DAQftf()
{

FILE *fpinput, *fpoutput;
void resetADC();
void setChanl();
void setChan2();
void setChan3();
void setChan4();
void readADC();

int i, status;
double tmp, Ul[5000], U2[5000], Yl[5000], Y2[5000];

/* create ring buffers to store input/output data */

mgUl = mgCreate(BUFFERSIZE*sizeof(double));
mgU2 = mgCreate(BUFFERSIZE*sizeof(double));
mgYl = rngCreate(BUFFERSIZE*sizeof(double));
mgY2 = mgCreate(BUFFERSIZE*sizeof(double));

/* Open files to store input/output data for later analysis */

if((fpinput = fopen(" input", "w"))= 0)
{
printf("cannot open the input file \n");
exit(l);
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97
if((fpoutput = fopen("output","w"))==0)

{
printf("caimot open the output file \n");
exit(l);
}

/* perform the software reset of ADC */
resetADC();

while(! FTFDone)
{
setChanl();
readADC();
trap = (data - 32768)*(10.0/65536);
Ul[points]=tmp;
status = mgBufPut(rngUl, (char *)&tmp, 8);

setChan2();
readADC();
tmp = (data - 32768)*(10.0/65536);
U2[points] = tmp;
status = mgBufPut(mgU2, (char *)&tmp, 8);

setChan3();
readADC();
tmp = (data - 32768)*(10.0/65536);
Y1 [points] = tmp;
status = mgBufPut(mgYl, (char *)&tmp, 8);

setChan4();
readADC();
tmp = (data - 32768)*(10.0/65536);
Y2[points] = tmp;
status = mgBufPut(mgY2, (char *)&tmp, 8);

points-H-;
if(points > 5000) points = 0; /* don't need > 5000 points for analysis */
}

taskPrioritySet(taskNameToId("DAQftf'), 185);

for(i=0;i<points;i++)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98
{
fprintf(fpinput,"%g %g \n", Ul[i], U2[i]);
f^rintf(fjpoutput,"%g %g \n", Yl[i], Y2[i]);
}

fclose(fpinput);
fcIose(fpoutput);
}

/* function to perform a software reset of ADC */
void resetADC()
{
*cnsr = 0x2168;
ccnsr = 0;
ccnsr = *cnsr;
while((ccnsr & 0x2000) = 0)

{
ccnsr = *cnsr;
printf("Reset the ADC, cnsr = %x \n", ccnsr);
}

/* select ADC channel 1 to be read */
void setChanl()
{
/* write to bits 3, 5, and 6 of Control& stat reg for +/- 10 V for chan 1 */
*cnsr = 0x2168;
ccnsr = 0;
ccnsr = *cnsr;
}

/* select ADC channel 2 to be read */
void setChan2()
{
/* write to bits 4, 5, and 6 of ControI& stat reg for +/- 10 V for chan 2 */
*cnsr = 0x2170;
ccnsr = 0;
ccnsr = *cnsr;
}

/* select ADC channel 3 to be read */
void setChan3()

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99
{
*cnsr = 0x2169;
ccnsr = 0;
ccnsr = *cnsr;
}

/* select ADC channel 4 to be read */
void setChan4()
{
*cnsr = 0x2171;
ccnsr = 0;
ccnsr = *cnsr;
}

/* perform an ADC read on the selected channel */
void readADC()
{
/* trigger the adc to convert data */

*trig = Oxffif;

/* delay for 16 msec */
taskDelay(l);

/* read the sdl register */
ccnsr = *cnsr;
data = *dreg;

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100
/* runftf.c */

/* — */
/* */
/* Module : runftf.c */
/* Function: Reads the input/output data from ring buffers in order */
/* implement catchup technique. First, initialization */
/* routine (ftflnit) is called after k > (r+m)p+r data */
/* points have been collected, ftf routine is called */
/* thereafter for each new measurement. */
/* The vector and matrix memory allocations and matrix inversion */
/* routines us?d here are from the book: */
/* Numerical Recipes in C by Press, W.H., W.H., Teukolsky, S.A.,*/
/* Vetterling, W.T., and Flannery, B.P, Cambridge University */
/* Press, 1983 */
/* */
/* Rel Date Author Comments */
/* 0 8 Aug96 Mahesh Chowdhary Initial Release */
/* --- */

#include <stdio.h>
#include <stdlib.h>
#include "nrutil.h"
#include <string.h>
#include <mgLib.h>
#include <taskLib.h>

/* global variables declared in DAQftf.o */

extern int FTFDone;
extern int points;

/* ring buffers for input/out data (declared in DAQftf.o) */

extern RING_ID mgUl, mgU2, mgYl, mgY2;

runftfO
{

FILE *fp;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101
int i=0j,n=500,init_pts, status;
int m=2,r=2,p=5,SizeX,mm;
float **utemp,**ytemp,*u,*y,*ukl,**Up,**Yp;
float **ulnit,**ylnit;
double uInp[2],yMeas[2];
double * *ThetaF, * * ThetaB, * * EsqF, * * EsqB, *error;
double *Gammak,*Gpk;
double *GpA,*GpR,GmP[l],*Yh;

SizeX=(r+m)*p+r;
mm=r+m;
init_pts=2*((r+m)*p+r);

/* memory allocation for vector */

u=vector(0,r-l);
y=vector(0,m-l);
Yh=dvector(0,mm-1);
error=dvector(0,mm-1);
Gpk=dvector(0,SizeX-1);
GpA=dvector(0,mm-1);
GpR=dvector(0,SizeX-1);
Gammak=dvector(0,1);

/* memory allocation for matrices */
utemp=matrix(0,r-1,0,n);
ytemp=matrix(0,m-1,0,n-1);
Up=matrix(0,r-1,0,p-1);
Yp=matrix(0,m-1,0,p-1);
ulnit=matrix(0,r-1,0,init_pts-1);
ylnit=matrix(0,m-1,0,init_pts-1);
ukl =vector(0,r-1);
Up=matrix(0,r-1,0,p-1);
Yp=matrix(0,m-1,0,p-1);
ThetaF=dmatrix(0,mm-1,0, SizeX-1);
ThetaB=dmatrix(0,mm-l ,0,SizeX-l);
EsqF=dmatrix(0,mm-1,0,mm-1);
EsqB=dmatrix(0,mm-1,0,mm-1);

if((fp = fopen("results","w"))==0)
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102
printf("cannot open the results file \n");
exit(l);
}

/* read in the data */

/* Check for sufficient number of data points for FTF initialization */
/* k > ((r+m)*p+r */

if(points < init_pts)
{
printf("ERROR: not sufficient number of DATA points for initialization \n");
printf("FTF Initialization could not begin \n");
exit(l);
}
for(j=0y<=n-1 y++)

{
status = mgBufGet(mgUl, (char *)&utemp[0][i], 8);
status = mgBufGet(mgU2, (char *)&utemp[l][i], 8);
status = mgBufGet(mgYl, (char *)&ytemp[0][i], 8);
status = mgBufGet(mgY2, (char *)&ytemp[l][i], 8);
}

/* prepare input/output data matrices for FTF initialization */

for(i=0;i<=r-1 ;i++)utemp[i] [n]=0;

for(i=0;i<=init_pts-1 ;i++)
{
for(j=0y <=r-1 y++)

{
ulnit[j][i]=utemp[j][i];
}

for(j=0y <=m-1 y++)
{
ylnit[j][i]=ytemp[j][i];
}

}
/* prepare matrices for ftf iteration */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103
for(i=0;i<=p-1 :i++)

{
for(j=0y <=r-1 y++)

{
Up[j] [i]=ulnit[j] [(init_pts-1 -p+i)];

}
}

for(j=0y<=r-l y++)
{
u|j]=utemp[j][init_pts-1];
}

for(i=0;i<=p-1 ;i++)
{
for(j=0y<=m-l y++)
{

Yp [j] [i]=ylnit[j] [(init_pts-1 -p+i)];
}

}

/* the FTF initialization routine */

ftflnit(r,m,p,(init_pts-1),SizeX,uInit,yInit,ThetaF,ThetaB,EsqF,EsqB,Gammak,
Gpk);

/* FTF forward and backward time iterations until FTFDone */

while(! FTFDone)
{

/* read the data from ring buffers */

/* The i/o data comes from the ring buffers starting at the last time
index used by ftflnit initialization routine.There is no loss of
data, estimated Yh and Theta's computed by the ftf will lag in time
in the beginning but catchup will take only a few iterations */

if(mgIsEmpty(mgU 1))
{
whilefmglsEmpty (mgU 1))
{

mv 167Delay(300);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104
}

}
status = mgBufGet(mgUl, (char *)&ulnp[0], 8);

if(ragIsEmpty(mgU2))
{
while(mgIsEmpty(mgU2))
{

mvl67Delay(300);
>

}
status = mgBufGet(mgU2, (char *)&ulnp[l], 8);

if(mgIsEmpty(mg Y1))
{
while(mgIsEmpty(rng Y1))
{

mvl67Delay(300);
}

}
status = mgBufGet(mgYl, (char *)&yMeas[0], 8);

if(ragIsEmpty(mgY2))
{
while(mgIsEmpty(mgY2))
{

mvl67Delay(300);
}

}
status = mgBufGet(mgY2, (char *)&yMeas[l], 8);

/* fill in the new i/o data */

for(j=0y<=r-1 y++)
{
ukl[j]=ulnp[j];
}
for(j=0y<=m-ly-H-)

{
y[j]=yMeas[j];
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105
/* call ftf routine */

ftf(r,m,p,SizeX,ukl,u,y,Up,Yp,ThetaF,ThetaB,EsqF,error,EsqB,Gammak,GpR,
GpA,Gpk,GmP,Yh);

fprintf(fp,"%g %g %g %g %g %g\n", Yh[2], Yh[3], error[2],
error[3],Yh[0],Yh[l]);
/* prepare i/o matrices for next iteration */

for(i=0;i<=(p-2);i-H-)
{
for(j=0ij<=r-l y++)

{
UPD][i]=UpD][i+l];

}
}

for(j=0 y <=r-1 y ++)
{
U[j]=ukl[j];

}

for(i=0;i<=(p-2);i++)
{
for(j=0y <=m-1 y++)

{
Yp[j][i]=YpD][i+l];

}
}

fclose(fp);

/* free the memory allocation for vectors */

free_vector(y,0,m-l);
free_vector(u,0,r-1);
free_vector(uk 1,0,r-1);
free_dvector(error,0,mm-1);
free_dvector(GpR,0,SizeX-1);
free_dvector(GpA,0,mm-1);
free_dvector(Gpk,0,SizeX-1);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106
firee_dvector(Gammak,0,1);

/* free the memory allocation for matrices */
free_matrix(utemp,0,r-l ,0,n);
free_matrix(ytemp,0,m-1,0,n-1);
free_matrix(Up,0,r-1,0,p-1);
free_matrix(Yp,0,m-1,0,p-1);
free_matrix(nlnit,0,r-1,0,init_pts-1);
free_matrix(ylnit,0,m-1,0,init_pts-1);
free_dmatrix(ThetaF,0,mm-1,0,SizeX-1);
free_dmatrix(ThetaB,0,mm-l ,0,SizeX-l);
free_dmatrix(EsqF,0,mm-1,0,mm-1);
free_dmatrix(EsqB,0,mm-1,0,mm-1);
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

/* ftflnit.c */

/* --*/
I* * /
/* Module : ftflnit.c */
/* Function : Performs initialization for FTF forward and backward time */
/* recursion routines. Reads the input/out data and computes */
/* forward and backward time OMPs, gain vector at k-l, gamma at */
/* k-l and the inverse of covariance matrix Pp at k-l, k-2 */
/* The vector and matrix memory allocations and matrix inversion */
/* routines used here are from the book: */
/* Numerical Recipes in C by Press, W.H., W.H., Teukolsky, S.A.,*/
/* Vetterling, W.T., and Flannery, B.P, Cambridge University */
/* Press, 1983 */
/* */
/* Rel Date Author Comments */
/* 0 8 Aug96 Mahesh Chowdhary Initial Release */
/* */

#include <stdio.h>
#include <stdlib.h>
#include "nrutil.h"

#define N 100

float **unt, **ynt;
double *xip,**Xipl,**Xip2,**yn2,*ynl,**Yukl,**templ,**temp2,

*numGp,denGp,temp,**Ppk,**temp3,**tPp;

void ftflnit(int r,int m,int p,int n,int SizeX,float **uInit,float **ylnit,
double **ThetaF, double **ThetaB,double **EsqF,double **EsqB,
double *Gammak,double *Gpk)

/*
Variables:

r - number of inputs
m - number o f outputs
p - model order

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108
n - number of data points used for initialization
SizeX - (r+m)*p + r
ulnit - input data matrix
ylnit - measurement data matrix
ThetaF - Forward time OMPs estimated
ThetaB - Backward time OMPs estimated
EsqF - Forward time Equation estimation-error squares
EsqB - Backward time Equation estimation-error squares
Gammak - conversion factor
Gpk - gain vector that weighs the update for estimation

*/

{
int i, j, 1, mm, k, il, ill_cond[l];
denGp= 1 ;mm=r+m;

/* Memory allocation for vectors */

yn 1 =dvector(0,mm-1);
xip=dvector(0,SizeX-1);
numGp=dvector(0,SizeX-1);

/* Memory allocation for vectors */

unt=matrix(0,r,0,n+l +p);
ynt=matrix(0,m,0,n+1 +p);
Xip 1 =dmatrix(0, SizeX-1,0,N);
Xip2=dmatrix(0,SizeX-1,0,N);
yn2=dmatrix(0,mm-1,0,N);
Yukl =dmatrix(0,mm-1,0,N);
tPp=dmatrix(l,SizeX, 1,SizeX);
Ppk=dmatrix(0, SizeX-1,0,SizeX-1);
temp 1 =dmatrix(0,N,0, SizeX-1);
temp2=dmatrix(0,mm-1,0,N);
temp3=dmatrix(0,SizeX-1,0,SizeX-1);

for(j=0y <=r-1 y++)
{
ynl[j]=ulnit[j][0];
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109
for(i=0;i<=n;i-H-)
{
il=i+p;

for(j=0 J<=m-1 y++)
{
yntD'][i+p]=yInitG][i];
}

for(j=0y<=r-l y++)
{
unt[j][i+p]=uInitG][i];
}

}

il=0;

/* prepre I/O data matrix Xip and regressor xip */

for(k=p;k<=n+p;k++) ,
{
for(i=0;i<=r-l ;i++)
{
xip[i]=unt[i][k];

}
for(j=0y<=p-I y++)
{
for(i=0;i<=m-1 ;i++)

{
xip [(mm*j)+r+i]=ynt[i] [k-1 -j];

}
for (i=0; i<=r-1 ;i++)

{
xip[(mm*j)+mm+i]=unt[i] [k-l-j];

}
}

for(i=0;i<=SizeX-1 ;i++)
{
Xip 1 [i] [i 1]=xip[i];
Xip2 [i] [i 1]=xip [i];
}

il= il+ l;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110
}

for(i=0;i<=SizeX-1 ;i++)
{

Xipl[i][n]=xip[i];
}

for(i=0;i<=n-l ;i++)
{
for(j=0y<=m-l y++)
{
yn2[r+j][i]=ylnit[j][i];

}
for(j=0y<=r-l J++)
{
yn2D][i]=uInit[j][i+l];

}
}

for(i=0;i<:=n-p-1 ;i++)
{
for(j=0y <=m-1 y++)

{
YuklD][i+l+p]=yInit[j][i3;
}

for(j=0y<=r-l y++)
{
Y uk 1 [m+j] [i+1 +p]=ulnit[j] [i];
}

}

temp=0;

/* Prepare covariance matrix Pp */

for(i=0;i<=SizeX-l ;i++)
{
for(j=Oy<=SizeX-l y++)
{
for(l=0;l<=n-1 ;1++)

{
temp=temp+Xip2 [i] [I] *Xip2 [j] [1];

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l
Ppk[i][j]=temp;
tPp[i+l][j+l]=Ppk[i][j];
temp=0;

}

/* compute the inverse of covariance matrix */
/* The matrix inversion routine used here based on svdcmp

routine from the book: Numerical Recipes in C by
Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P,
Cambridge University Press, 1983 */

matInv(tPp,SizeX,SizeX,ill_cond);

if(ill_cond[0]=0)
{
printf("ERROR: ill conditioned matrix \n");
exit(l);
}

for(i=l ;i<=SizeX;i++)
{
for(j=l y<=SizeXy++)
{
Ppk[i-1] D-1]=tPp [i] D];

}
}

for(j=Oy<=SizeX-l ij++)
{
for(i=0;i<=SizeX-1 ;i++)
{
numGp[j]=xip[i]*Ppk[i][j]+numGp[j];

}
denGp=denGp+xip [j] * numGp [j];

}

/* compute the gain vector Gp used to weigh the estimation update */

for(i=0;i<=SizeX-1 ;i++)
{
Gpk[i]=numGp[i]/denGp;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112
}

/* compute the conversion factor gamma k */

Gammak[0]=l;
for(i=0;i<=SizeX-l ;i++)
{
Gammak[0]=Gammak[0]-Gpk[i]*xip[i];

}

temp=0;
for(i=0;i<=n-l ;i-H-)
{
for(j=Oy<=SizeX-l y++)
{
for(l=0;l<=SizeX-l ;1++)

{
temp=temp+Xip2 [1] [i]*Ppk[l][j];

}
tempi [i][j]=temp;
temp=0;

}
}

temp=0;

/* compute the forward time OMPs, ThetaF */

for(i=0;i<=mm-1 ;i++)
{
for(j=0y <=SizeX-1 y++)
{
for(l=0;l<=n-l;!++)

{
temp=temp+yn2[i][l]*templ [I][j];

}
ThetaF[i][j]=temp;
temp=0;

}
}

temp=0;
for(i=0;i<=mm-l ;i++)
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113
for(j=Oy<=n-l y++)
{
for(l=0;l<=S izeX-1 ;1++)

{
temp=temp+ThetaF [i] [1] * Xip2 [1] [j];

}
temp2[i][j] = yn2[i]0] - temp;
temp=0;

}
}

temp=0;

/* compute the Equation forward-time Error Squares */

for(i=0;i<=mm-1 ;i++)
{
for(j=0y<=mm-1 y++)
{
for(l=0;l<=n-l ;1++)

{
temp=temp+temp2[j][l]*temp2[i][l];

}
EsqF [i] [j]=temp+ynl [j]*ynl [i];
temp=0;

}
}

for(j=Oy<=SizeX-1 y++)
{
for(i=0;i<=SizeX-1 ;i-H-)
{
temp3[j][i]=-1.0*xip[j]*Gpk[i];

}
}

for(i=0;i<=SizeX-l ;i++)
{
temp3 [i] [i]=1 +temp3 [i] [i];

}

/* Pp for backward time iteration */

temp=0;
for(i=0;i<=SizeX-l ;i++)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114
{
for(j=Oy <=SizeX-1 y++)
{
for(l=0;l<=SizeX-1 ;l++)

{
temp=temp+tPp[i+l][l+l]*temp3 [l][j];

}
Ppk[i][j]=temp;
temp=0;

}
}

temp=0;
for(i=0;i<=n;i++)
{
for(j =0 y <=SizeX-1 y ++)
{
for(l=0;l<=SizeX-1 ;!++)

{
temp=temp+Xipl [l][i]*Ppk[l][j];

}
temp 1 [i] [j]=temp;
temp=0;

}
}

temp=0;

/* compute the Backward time OMPs ThetaB*/

for(i=0;i<=mm-l ;i++)
{
for(j=0y<=SizeX-l y++)
{
for(l=0; l<=n;l-H-)

{
temp=temp+Yuk 1 [i] [1] *temp 1 [1] [j];

}
ThetaB [i] [j]=temp;
temp=0;

}
}

temp=0;
for(i=0;i<=mm-1 ;i++)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115
{
for(j=Oy<=ny++)
{
for(l=0;l<=SizeX-l ;1++)

{
temp==temp+ThetaB [i] [1] *Xip 1 [1] [j];

}
temp2[i][j]=Yukl [i][j]-temp;
temp=0;

}
}

temp=0;

/* compute the backward time Equation error squares */

for(i=0;i<=mm-l ;i++)
{
for(j=0y <=mm-1 y++)
{
for(l=0;l<=n;l++)

{
temp=temp+temp2[j] [1] *temp2[i] [1];

}
EsqB[i][j]=temp;
temp=0;

}
}

/* free the memory allocation for vectors */

free_dVector(xip,0,SizeX-1);
free_dvector(numGp,0,SizeX-1);
free_dvector(ynl ,0,mm-1);

/* free the memory allocation for matrices */

free_matrix(unt,0,r,0,n+1 +p);
free_matrix(ynt,0,m,0,n+1 +p);
free_dmatrix(Xip 1,0,SizeX-1,0,N);
free_dmatrix(Xip2,0,SizeX-1,0,N);
free_dmatrix(yn2,0,mm-1,0,N);
free_dmatrix(Yuk 1,0,mm-1,0,N);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116
free_dmatrix(tPp, 1 ,SizeX, 1 ,SizeX);
free_dmatrix(Ppk,0,SizeX-1,0,SizeX-1);
free_dmatrix(temp 1,0,N,0,SizeX-1);
free_dmatrix(temp2,0,mm-1,0,N);
free_dmatrix(temp3,0,SizeX-1,0,SizeX-1);
}

/* ftf.c */

/* --*/
/* */
I* Module : ftf.c */
/* Function : Performs one recursion of FTF forward time estimation and */
/* calls the backward time recursion rotuine. Updates the */
/* Observer Markov Parameters (OMPs), Equation error squares, */
/* gain Gp, and conversion factor gamma k. This routine is based */
/* on formulation of Fast Transversal Filter presented in the book: */
/* Applied System Identification by Jer-Nan Juang, PTR Prentice */
/* Hall, 1994 */
/* The vector and matrix memory allocations and matrix inversion */
/* routines used here are from the book: *1
/* Numerical Recipes in C by Press, W.H., W.H., Teukolsky, S.A.,*/
/* Vetterling, W.T., and Flannery, B.P, Cambridge University */
/* Press, 1983 */
/* */
/* Rel Date Author Comments */
/* 0 8 Aug96 Mahesh Chowdhary Initial Release *1
/* */

#include<stdio.h>
#include<stdlib.h>
#include "nrutil.h"

void ftf(int r, int m, int p, int SizeX, float *ukl,float *u,float *y, float **Up,
float ** Yp, double **ThetaF, double **ThetaB, double **EsqF,
double * error,double **EsqB,double *Gammak, double *GpR,
double *GpA,double *Gpk,double GmPQ,double *Yh)

/*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117
Variables:

r - number of inputs
m - number of outputs
P - model order
SizeX - (r+m)*p + r
u - input time at k
y - output time at k
ukl - input time at k+1
Up - input time at k-1
Yp - output time at k-1
ThetaF - Forward time OMPs estimated
ThetaB - Backward time OMPs estimated
EsqF - Forward time Equation estimation error squares
EsqB - Backward time Equation estimation error squares
error - difference between estimated and measure output
Gammak - conversion factor
GpR - first <1 x SizeX> elements of the augmented gain vector
GpA - remaining elements of the augmented gain vector
GmP - update of conversion factor
Gpk - gain vector
Yh - estimated output at time k

*/

{
int ij,k,l,mm,ill_cond[l];
double *Yf, *xip, *epriF, *epstF, *GainP, *Gtal, *Gtrl;
double **EsqInvF;
double temp;
ill_cond[0]=0;

mm=r+m;

/* Memory allocation for vectors */

Yf==dvector(0,mm-1);
xip=dvector(0,SizeX-1);
epriF=dvector(0,mm-1);
epstF=dvector(0,mm-1);
GainP=dvector(0,SizeX-1 +mm);
Gta 1 =dvector(0,mm-1);
Gtr 1 =dvector(0,SizeX-1);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

/* Memory allocation for matrices */

EsqInvF=dmatrix(1 ,mm, 1 ,mm);

/* prepare the i/o data matrices */

for(i=0;i<=m-1 ;i++)
{
Yf[r+i]=y[i];
}

for(i=0;i<=r-1 ;i++)
{
xip[i]=u[i];
Yf[i]=ukl[i];
}

/* form the input/output data matrices for forward time recuresion */

for(j=0y<=p-1 y++)
{
for(i=0;i<=m-1 ;i++)

{
xip [(mm*j)+r+i]=Yp [i] [p-1 -j];
}

}

for(j=0J<=p-l y++)
{
for(i=0;i<=r-1 ;i++)

{
xip[(mm*j)+mm+i]=Up[i][p-1-j];
}

}
temp=0;

/* Compute the estimated output, the a priori forward-time estimation error
and the a posteriori forward-time estimation error */

for(i=0;i<=mm-l ;i++)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

{
for(l=0; l<=SizeX-1 ;1++)

{
temp=temp+ThetaF [i] [1] *xip [1];
Yh[i]=temp;
}

error[i]=epriF[i]=Yf[i]-temp;
temp=0;
epstF[i]=Gammak[0]*epriF[i];
Gtal[i]=0;
}

/* compute the forward time Equation error squares matrix */

for(i=0;i<=mm-1 ;i++)
{
forO*=0 J<=mm-1 y++)

{
EsqF[i][)]=EsqF[i]0]+epstF[i]*epriF[j];
}

}

/* Prepare EsqF for inversion */

for(i=l ;i<=mm;i++)
{
for(j=l a*'<smmy++)
{
EsqInvF[i][j]=EsqF[i][j];
}

}

/* Use the matrixc inversion routine from Numerical Recipes in C */

matInv(EsqInvF,mm,mm,ill_cond);

if(ill_cond[0]=0)
{
printf("ERROR: ill conditioned matrix \n");
exit(l);
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120
/* compute the forward time OMPs *1

for(i=0;i<=mm-l ;i++)
{
for(j=0y<=SizeX-l y++)

{
ThetaF [i] [j]=ThetaF [i J [j]+epriF [i] * Gpk[j];

}
}

/* compute the updated gain matrix */

GmP [0]=Gammak[0];

for(i=0;i<=mm-l ;i++)
{
for(j=0y <=mm-1 j++)

{
Gtal [i]=epstF[j]*EsqInvF[j+l][i+l]+Gtal [i];
}

GainP[i]=Gtal[i];
GmP[0]=GmP[0]-Gtal [i]*epstF[i];
}

temp=0;

/* partition of the gain matrix */

for(i=0;i<=SizeX-1 ;i++)
{
for(j=0 J<=mm-1 y++)
{
temp=temp+Gtal [j]*ThetaF[j][i];
}

Gtrl [i]=Gpk[i]-temp;
GainP[mm+i]=Gtrl [i];
GpR[i]=GainP[i];
temp=0;
}

for(i=0;i<=mm-1 ;i++)
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GpA[i]=GainP[SizeX+i];
}

121

/* call the backward time FTF recursion */

ftfB(r,m,p,SizeX,ukl,u,y,Up,Yp,ThetaB,GpA,GpR,Gpk,Gammak,GmP,EsqB);

/* free memory from vectors */

free_dvector(Yf,0,mm-1);
ffee_dvector(xip,0,SizeX-1);
free_dvector(epriF,0,mm-l);
free_dvector(epstF,0,mm-1);
free_dvector(GainP,0,SizeX-1 +mm);
free_dvector(Gtal ,0,mm-l);
free_dvector(Gtr 1,0,SizeX-1);

/* free memory from matrices */
free_dmatrix(EsqInvF, 1 ,mm, 1 ,mm);
}

/ * f t f f l . c */

/ * */
/* Module : ftfB.c */
f* Function : Performs one recursion of FTF backward time estimation */
/* Updates the backward time OMPs, Equation error sqares, gain */
/* Gp, and the conversion factor gamma k. This routine is based on */
/* formulation of Fast Transversal Filter presented in the book: */
/* Applied System Identification by Jer-Nan Juang, PTR Prentice */
/* Hall, 1994 */
/* The vector and matrix memory allocations routines used here */
/* are from the book: */
/* Numerical Recipes in C by Press, W.H., W.H., Teukolsky, S.A., */
/* Vetterling, W.T., and Flannery, B.P, Cambridge University */
/* Press, 1983 */
/* */
/* Rel Date Author Comments */
/* 0 8 Aug96 Mahesh Chowdhary Initial Release */
/* */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

#include <stdio.h>
#include <stdlib.h>
#include "nrutil.h"

void ftfB(int r, int m, int p, int SizeX, float *ukl,float *u,float *y, float **Up,
float **Yp,double **ThetaB, double *GpA, double *GpR,

double *GpK,double *Gammak,double GmpQ,double **EsqB)

/*
Variables:
r - number of inputs
m - number of outputs
p - model order
SizeX - (r+m)*p + r
u - input time at k
y - output time at k
ukl - input time at k+1
Up - input time at k-1
Yp - output time at k-1
ThetaB - Backward time OMPs estimated
EsqB - Backward time Equation estimation error squares
error - difference between estimated and measured output
Gammak - conversion factor
GpR - first <1 x SizeX> elements of the augmented gain vector
GpA - remaining elements of the augmented gain vector
GmP - update of conversion factor
Gpk - gain vector

*/

{
int i j,l,mm;
double *Yb, *xip,*epriB,*epstB;
double tempi, temp2;
mm=r+m;

/* Memory allocation for temporary vectors and matrices */

Yb=dvector(0,mm-1);
xip=dvector(0,SizeX-1);
epriB=dvector(0,mm-1);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123
epstB=dvector(0,rmn-1);

/* prepare i/o data matrices */

for(i=0;i<=m;i-H-)
{
Yb[i]=Yp[i][0];

}

for(i=0;i<=r;i-H-)
{
xip[i]=ukl[i];
Yb[m+i]=Up [i] [0];

}

for(j=0y<=my++)
{
for(i=0;i<=p-2;i++)
{
YpQ][i]=Yp[j][i+l];
}

YPD][p-i]=yD];
}

for(j=0y‘<=ry-H-)
{
for(i=0;i<=p-2;i++)
{
Up[j][i]—Up[j][i+1];
}

UpD][p-l]=u[j];
}

/* form the input/output data matrix for backward time recursion */

for(j=0y<=p-l y++)
{
for(i=0;i<=m;i++)
{
xip[(mm*j)+r-l+i]=Yp[i][p-l-j];

}
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

for(j =0 y <=p-1J ++)
{
for(i=0;i<=r;i-H-)
{
xip[(mm*j)+mm+i]=Up[i] [p-l-j];
}

}
temp 1=0;

/* compute the backward time a priori and a posteriori estimation errors */

temp2=l;

for(i=0;i<=mm-1 ;i++)
{
for(l=0;l<=SizeX-1 ;1++)

{
temp 1 =temp 1+ThetaB [i] [I] * xip [1];
}

epriB [i]=Yb[i]-temp 1;
temp2=temp2-GpA[i] *epriB [i];
temp 1=0;
}

temp 1=0;

/* compute the updated gain matrix */

for(i=0;i<=SizeX-1 ;i-H-)
{
for(j=0y<=mm-1J++)
{
temp l=temp l+GpA[j]*ThetaB[j] [i];
}

GpK[i]=(GpR[i]+temp 1)/temp2;
temp 1=0;
}

/* compute the backward time OMPs ThetaB */

for(i=0;i<=mm-1 ;i++)
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

for(j=Oy <=SizeX-1 y++)
{
ThetaB[i]Q]=ThetaB[i][j]+epriB[i]*GpK[j];

}
}

Gammak[0]=Gmp[0]/temp2;

/* compute the backward time Equation error equares */

for(i=0;i<=mm-l ;i++)
{
epstB [i]=Gammak[0] *epriB [i];
for(j=0y<=mm-l y++)
{
EsqB [i] 0]=EsqB [i] [j]+epstB [i] *epriB [j];

}
}

free_dvector(Yb,0,mm-1);
free_dvector(xip,0, SizeX-1);
free_dvector(epriB,0,mm-1);
free_dvector(epstB,0,mm-l);
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126
/ * * /
/* Module: mvl67Clk.c */
/* Function: Provides a variable length delay for mvl67 */
I* code. Uses the auxiliary clock to delay the */
/* required time period, and then returns the */
/* function mvl 67DelayO- The delay can be set */
/* between 1 second and 200 usee. */
/* */
/* Rel Date Authors Comments. */
/* 0 8 Sep 94 D.Barker, M.Chowdhary First Release. */
/ * * /

/* include files */
#include <vxWorks.h>
#include <semLib.h>

SEM_ID mvl67DelaySem;

void mvl67DelayInit();
void mvl67DelayO;
void mvl67DelayISR();

/ * --- */
/* * /

!* External Procedure: mvl67DelayInit() */
/* Function: Initialises the delay system by creating the */
/* semaphore needed for delay pending. Connects */
/* the mv 167 Aux Clk to the mv 167DelayISR. */
/ * --- * /

void mvl67DelayInit()
{

mvl67DelaySem = semBCreate(0,SEM_EMPTY);
sys AuxClkConnect(mv 167DeIayISR);

}

/ * --- */

/* External Procedure: mvl67DelayO */
/* Function: Delays for set period of time. Time period in */
/* the range 333333 to 200 micro seconds are */
/* allowed. */
/* * /

/ * --- * /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127
void mvl67Delay (delay)
long delay;
{
int result;
long rate;

if(delay>333333 || delay<200)
{
printf("mvl67Delay: Delay out of bounds.\n!l);

/* exitO; */
}

rate=l 000000/delay;
sysAuxClkRateSet (rate);
sysAuxClkEnableO;
/* pend this task on taking the semaphore */
result = semTake(mvl67DelaySem,WAIT_FOREVER);
sysAuxClkDisableO;

/ * --* /

/* * /
/* Internal Procedure: mvl67DelayISR() */
/* */
/* Function: Interrupt Service Routine for aux clock */
/* interrupts. Gives the mvl67DelaySem semaphore. */
/* * /
/ * --* /

void mvl67DelayISR0
{

semGive(mvl 67DelaySem);
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128
/* nrutil.h */

/*

This header file declares the data types of the memory allocation routines used
in the programs.

This header file was obtained from the book:
Numerical Recipes in C

by, W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery
Cambridge University Press, 1983
*/
#ifndef_NR_UTILS_H_
#define _NR_UTILS_H_

static double sqrarg;
#define SQR(a) ((sqrarg=(a)) = 0.0 ? 0.0 : sqrarg*sqrarg)

static double dsqrarg;
#define DSQR(a) ((dsqrarg=(a)) = 0.0 ? 0.0 : dsqrarg*dsqrarg)

static double dmaxarg 1 ,dmaxarg2;
#define DMAX(a,b) (dmaxarg l=(a),dmaxarg2=(b),(dmaxarg 1) > (dmaxarg2) ?\

(dmaxarg 1): (dmaxarg2))

static double dminargl,dminarg2;
#define DMIN(a,b) (dminarg 1 =(a),dminarg2=(b),(dminarg 1) < (dminarg2) ?\

(dminarg 1): (dminarg2))

static double maxarg 1 ,maxarg2;
#define FMAX(a,b) (maxarg 1 =(a),maxarg2=(b),(maxarg 1) > (maxarg2) ?\

(maxarg 1) : (maxarg2))

static double minargl,minarg2;
#define FMIN(a,b) (minarg 1 =(a),minarg2=(b),(minarg 1) < (minarg2) ?\

(m inargl): (minarg2))

static long lmaxarg 1 ,lmaxarg2;
#define LMAX(a,b) (lmaxarg l=(a),lmaxarg2=(b),(lmaxarg 1) > (lmaxarg2) ?\

(lmaxarg 1): (lmaxarg2))

static long lminargl,lminarg2;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

#define LMIN(a,b) (lminarg 1 ̂ a),hninarg2=(b),(lminarg 1) < (lminarg2) ?\
(lm inargl): (lminarg2))

static int imaxarg 1 ,imaxarg2;
#define IMAX(a,b) (imaxarg l=(a),imaxarg2=(b),(imaxarg 1) > (imaxarg2) ?\

(imaxarg 1): (imaxarg2))

static int iminargl,iminarg2;
#define IMIN(a,b) (iminarg 1 =(a),iminarg2=(b),(iminarg 1) < (iminarg2) ?\

(im inargl): (iminarg2))

#defme SIGN(a,b) ((b) >= 0.0 ? fabs(a): -fabs(a))

#if defined(STDC) || defined(ANSI) || defined(NRANSI) /* ANSI */

void nrerror(char error_text[J);
double *vector(long nl, long nh);
int *ivector(long nl, long nh);
unsigned char *cvector(long nl, long nh);
unsigned long *lvector(long nl, long nh);
double *dvector(long nl, long nh);
double **matrix(long nrl, long nrh, long ncl, long nch);
double **dmatrix(long nrl, long nrh, long ncl, long nch);
int **imatrix(long nrl, long nrh, long ncl, long nch);
double **submatrix(doubIe **a, long oldrl, long oldrh, long oldcl, long oldch,

long newrl, long newel);
double **convert_matrix(double *a, long nrl, long nrh, long ncl, long nch);
double ***f3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh);
void free_vector(double *v, long nl, long nh);
void free_ivector(int *v, long nl, long nh);
void free_cvector(unsigned char *v, long nl, long nh);
void free_lvector(unsigned long *v, long nl, long nh);
void free_dvector(double *v, long nl, long nh);
void free_matrix(double **m, long nrl, long nrh, long ncl, long nch);
void free_dmatrix(double **m, long nrl, long nrh, long ncl, long nch);
void free_imatrix(int **m, long nrl, long nrh, long ncl, long nch);
void free_submatrix(double **b, long nrl, long nrh, long ncl, long nch);
void firee_convert_matrix(double **b, long nrl, long nrh, long ncl, long nch);
void free_Dtensor(doubIe ***t, long nrl, long nrh, long ncl, long nch,

long ndl, long ndh);

#else /* ANSI */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130
/* traditional - K&R */

void nrerrorO;
double *vectorO;
double **matrix();
double **submatrixO;
double **convert_matrix();
double ***OtensorO;
double *dvectorO;
double **dmatrix();
int *ivectorO;
int **imatrix();
unsigned char *cvector0;
unsigned long *lvector();
void free_vectorO;
void free_dvector();
void free_ivectorO;
void free_cvectorO;
void free_lvector();
void free_matrixO;
void free_submatrix();
void firee_convert_matrixO;
void free_dmatrixO;
void free_imatrix();
void free_DtensorO;

#endif /* ANSI */

#endif /* _NR_UTILS_H_ */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131
/* nrutil.c */

/*

This file describes all the memory allocation routines used in various routines
for FTF implementation.

This functions were obtained from the book:
Numerical Recipes in C

by: W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery.
Cambridge University Press, 1983
*/

#if defined(STDC) || defined(ANSI) || defined(NRANSI) /* ANSI */

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#define NR_END 1
#define FREE_ARG char*

void nrerror(char error_text[J)
/* Numerical Recipes standard error handler */
{
fprintf(stderr,"run-time error.. An");
fr>rintf(stderr," %s\n" ,error_text);
fprintf(stderr,"...now exiting to system...\n");
exit(l);

}

double *vector(long nl, long nh)
/* allocate a double vector with subscript range v[nl..nh] */
{
double *v;

v=(double *)malloc((size_t) ((nh-nl+l+NR_END)*sizeof(double)));
if (!v) nrerror("allocation failure in vectorO");
return v-nl+NR_END;

}

int *ivector(long nl, long nh)
/* allocate an int vector with subscript range v[nl..nh] */
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132
int *v;

v=(int *)malloc((size_t) ((nh-nl+l+NR_END)*sizeof(int)));
if (!v) nrerror("allocation failure in ivectorO");
return v-nl+NR_END;

}

unsigned char *cvector(long nl, long nh)
/* allocate an unsigned char vector with subscript range v[nl..nh] */
{
unsigned char *v;

v=(unsigned char *)malloc((size_t) ((nh-nl+l+NR_END)*sizeof(unsigned
char)));
if (!v) nrerror("allocation failure in cvectorO");
return v-nl+NR_END;

}

unsigned long *lvector(long nl, long nh)
/* allocate an unsigned long vector with subscript range v[nl..nh] */
{
unsigned long *v;

v=(unsigned long *)malloc((size_t) ((nh-nl+l+NR_END)*sizeof(long)));
if (! v) nrerror("allocation failure in IvectorO");
return v-nl+NR_END;

}

double *dvector(long nl, long nh)
/* allocate a double vector with subscript range v[nl..nh] */
{
double *v;

v=(double *)malloc((size_t) ((nh-nl+l+NR_END)*sizeof(double)));
if (!v) nrerror("allocation failure in dvectorO");
return v-nl+NR_END;

}

double **matrix(long nrl, long nrh, long ncl, long nch)
/* allocate a double matrix with subscript range m[nrl..nrh][ncl..nch] */
{
long i, nrow=nrh-nrl+l,ncol=nch-ncl+l;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133
double **m;

/* allocate pointers to rows */
m=(double **) maIloc((size_t)((nrow+NR_END)*sizeof(double*)));
if (!m) nrerror("allocation failure 1 in matrixO");
m += NR_END;
m — nrl;

/* allocate rows and set pointers to them */
m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
if (!m[nrl]) nrerror("allocation failure 2 in matrixO");
m[nrl] += NR_END;
m[nrl] — ncl;

for(i=nrl+l ;i<=nrh;i++) m[i]=m[i-l]+ncol;

/* return pointer to array of pointers to rows */
return m;

}

double **dmatrix(long nrl, long nrh, long ncl, long nch)
/* allocate a double matrix with subscript range m[nrl..nrh][ncl..nch] */
{
long i, nrow=nrh-nrl+l,ncol=nch-ncl+l;
double **m;

/* allocate pointers to rows */
m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
if (!m) nrerror("allocation failure 1 in matrixO");
m += NRJEND;
m — nrl;

/* allocate rows and set pointers to them */
m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
if (!m[nrl]) nrerror("allocation failure 2 in matrixO");
m[nrl] += NR_END;
m[nrl] — ncl;

for(i=nrl+l ;i<=nrh;i++) m[i]=m[i-l]+ncol;

/* return pointer to array of pointers to rows */
return m;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134
}

int **imatrix(long nrl, long nrh, long ncl, long nch)
/* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
{
long i, nrow=nrh-nrl+l,ncol=nch-ncl+l;
int **m;

/* allocate pointers to rows */
m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
if (!m) nrerror("allocation failure 1 in matrixO");
m += NRJEND;
m -= nrl;

/* allocate rows and set pointers to them */
m[nrl]=(int *) malloc((size_t)((nrow*ncol+NRJEND)*sizeof(int)));
if (!m[nrl]) nrerror("allocation failure 2 in matrixO");
m[nrl] += NR_END;
m[nrl] -= ncl;

for(i=nrl+l ;i<=nrh;i++) m[i]=m[i-1]+ncol;

/* return pointer to array o f pointers to rows *1
return m;

}

double **submatrix(double **a, long oldrl, long oldrh, long oldcl, long oldch,
long newrl, long newel)

/* point a submatrix [newrl..][newcl..] to a[oldrl..oldrh][oldcl..oldch] */
{
long i j,nrow=oldrh-oIdrl+l ,ncol=oldcl-newcl;
double **m;

/* allocate array of pointers to rows */
m=(double **) malloc((size_t) ((nrow+NR_END)*sizeof(double*)));
if (!m) nrerror("allocation failure in submatrixO");
m += NR_END;
m -= newrl;

/* set pointers to rows */
for(i=oldrlj=newrl;i<=oldrh;i-H-j-H-) m[j]=a[i]+ncol;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

/* return pointer to array of pointers to rows */
return m;

}

double **convert_matrix(double *a, long nrl, long nrh, long ncl, long nch)
/* allocate a double matrix m[nrl..nrh][ncl..nch] that points to the matrix
declared in the standard C manner as a[nrow][ncol], where nrow=nrh-nrl+l
and ncol=nch-ncl+l. The routine should be called with the address
&a[0][0] as the first argument. */
{
long i j ,nrow=nrh-nrl+1 ,ncol=nch-ncl+1;
double **m;

/* allocate pointers to rows */
m=(double **) malloc((size_t) ((nrow+NR_END)*sizeof(double*)));
if (!m) nrerror("allocation failure in convert_matrix()");
m += NR_END;
m -= nrl;

/* set pointers to rows */
m[nrl]=a-ncl;
for(i=l j=nrl+l ;i<nrow;i++j-H-) m[j]=m[j-l]+ncol;
/* return pointer to array of pointers to rows */
return m;

}

double ***f3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
/* allocate a double 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] */
{
long i j ,nro w=nrh-nrl+1 ,ncol=nch-ncl+1 ,ndep=ndh-ndl+1;
double ***t;

/* allocate pointers to pointers to rows */
t=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double**)));
if (!t) nrerror("allocation failure 1 in f3tensor()");
t += NR_END;
t -= nrl;

/* allocate pointers to rows and set pointers to them */
t[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double*)));
if (!t[nrl]) nrerror("allocation failure 2 in fBtensorQ");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136
t[nrl] += NR_END;
t[nrl] -= ncl;

/* allocate rows and set pointers to them */
t[nrl][ncl]=(double *)

malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(double)));
if (!t[nrl][ncl]) nrerror("allocation failure 3 in f3tensor()");
t [nrl] [ncl] += NR_END;
t[nrl][ncl] -= ndl;

for(j=ncl+l y <=nchy-H-) t[nrl] [j]=t[nrl] [j-1]+ndep;
for(i=nrl+l ;i<=nrh;i++) {
t[i]=t[i-l]+ncol;
t[i] [ncl]=t[i-1] [ncl]+ncol*ndep;
for(j=nci+1 y<=nchy++) t[i] [j]=t[i][j-l]+ndep;

}

/* return pointer to array o f pointers to rows */
return t;

}

void free_vector(double *v, long nl, long nh)
/* free a double vector allocated with vectorO */
{
free((FREE_ARG) (v+nl-NR_END));

}

void free_ivector(int *v, long nl, long nh)
/* free an int vector allocated with ivectorO */
{
free((FREE_ARG) (v+nl-NR_END));

}

void free_cvector(unsigned char *v, long nl, long nh)
/* free an unsigned char vector allocated with cvectorO */
{
free((FREE_ARG) (v+nl-NR_END));

}

void free_lvector(unsigned long *v, long nl, long nh)
/* free an unsigned long vector allocated with IvectorO */
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13 7
free((FREE_ARG) (v+nl-NR_END));

}

void free_dvector(double *v, long nl, long nh)
/* free a double vector allocated with dvectorO */
{
free((FREE_ARG) (v+nl-NR_END));

}

void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
/* free a double matrix allocated by matrixO */
{
free((FREE_ARG) (m[nrl]+ncl-NR_END));
free((FREE_ARG) (m+nrl-NR_END));

}

void free_dmatrix(double **m, long nrl, long nrh, long ncl, long nch)
/* free a double matrix allocated by dmatrixO */
{
free((FREE_ARG) (m[nrl]+ncl-NR_END));
free((FREE_ARG) (m+nrl-NR_END));

}

void free_imatrix(int **m, long nrl, long nrh, long ncl, long nch)
/* free an int matrix allocated by imatrixO */
{
free((FREE_ARG) (m[nrl]+ncl-NR_END));
free((FREE_ARG) (m+nrl-NR_END));

}

void free_submatrix(double **b, long nrl, long nrh, long ncl, long nch)
/* free a submatrix allocated by submatrixO */
{
free((FREE_ARG) (b+nrl-NR_END));

}

void free_convert_matrix(double **b, long nrl, long nrh, long ncl, long nch)
/* free a matrix allocated by convert_matrixO *!
{
free((FR£E_ARG) (b+nrl-NR_END));

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138
void free_f3tensor(double ***t, long nrl, long nrh, long ncl, long nch,
long ndl, long ndh)

/* free a double £3tensor allocated by OtensorO */
{
free((FREE_ARG)(t[nrl][ncl]+ndl-NR_END));
free((FREE__ARG) (t[nrI]+ncl-NR_END));
free((FREE_ARG) (t+nrl-NR_END));

}

#else /* ANSI */
/* traditional - K&R */

#include <stdio.h>
#define NR_END 1
#defme FREE_ARG char*

void nrerror(errortext)
char error_text[];
/* Numerical Recipes standard error handler */
{
void exitO;

fprintf(stderr,"run-time error...\n");
fprintf(stderr, "%s\n" ,error_text);
fprintf(stderr,"...now exiting to system.. An");
exit(l);

}

double *vector(nl,nh)
long nh,nl;
/* allocate a double vector with subscript range v[nl..nh] */
{
double *v;

v=(double *)malloc((unsigned int) ((nh-nl+l+NR_END)*sizeof(double)));
if (!v) nrerror("allocation failure in vectorO");
return v-nl+NR_END;

}

int *ivector(nl,nh)
long nh,nl;
/* allocate an int vector with subscript range v[nl..nh] */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139
{
int *v;

v=(int *)malloc((unsigned int) ((nh-nl+1 +NR_END) * sizeof(int)));
if (!v) nrerror("aIlocation failure in ivectorO");
return v-nl+NR_END;

}

unsigned char *cvector(nl,nh)
long nh,nl;
/* allocate an unsigned char vector with subscript range v[nl..nh] */
{
unsigned char *v;

v=(unsigned char *)malloc((unsigned int)
((nh-nl+1 +NR_END) *sizeof(unsigned char)));
if (!v) nrerror("allocation failure in cvectorO");
return v-nl+NRJEND;

}

unsigned long *lvector(nl,nh)
long nh,nl;
/* allocate an unsigned long vector with subscript range v[nl..nh] */
{
unsigned long *v;

v=(unsigned long *)malloc((unsigned int) ((nh-nl+l+NR_END)*sizeof(long)));
if (!v) nrerror("allocation failure in IvectorO");
return v-nl+NR_END;

}

double *dvector(nl,nh)
long nh,nl;
/* allocate a double vector with subscript range v[nl..nh] */
{
double *v;

v=(double *)malloc((unsigned int) ((nh-nl+l+NR_END)*sizeof(double)));
if (! v) nrerror("allocation failure in dvectorO");
return v-nl+NR_END;

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140
double * *matrix(nrl,nrh,ncl,nch)
long nch,ncl,nrh^irl;
/* allocate a double matrix with subscript range m[nrl..nrh][ncl..nch] */
{
long i, nrow=nrh-nrl+l,ncol=nch-ncl+l;
double **m;

/* allocate pointers to rows */
m=(double **) malloc((unsigned int)((nrow+NR_END)*sizeof(double*)));
if (!m) nrerror("allocation failure 1 in matrixO");
m += NR_END;
m -= nrl;

/* allocate rows and set pointers to them */
m[nrl]=(double *)

malloc((unsignedint)((nrow*ncol+NR_END)*sizeof(double)));
if (!m[nrl]) nrerror("allocation failure 2 in matrixO");
m[nrl] += NR_END;
m[nrl] — ncl;

for(i=nrl+1 ;i<=nrh;i++) m[i]=m[i-1]+ncol;

/* return pointer to array of pointers to rows */
return m;

}

double **dmatrix(nrl,nrh,ncl,nch)
long nch,ncl,nrh,nrl;
/* allocate a double matrix with subscript range m[nrl..nrh][ncl..nch] */
{
long i, nrow=nrh-nrI+l,ncol=nch-ncl+l;
double **m;

/* allocate pointers to rows *!
m=(double **) malloc((unsigned int)((nrow+NR_END)*sizeof(double*)));
if (!m) nrerror("allocation failure 1 in matrixO");
m += NR_END;
m -= nrl;

I* allocate rows and set pointers to them */
m[nrl]=(double *)

malloc((unsigned int)((nrow*ncol+NR_END)*sizeof(double)));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141
i f (!m[nrl]) nrerror("allocation failure 2 in matrixO");
m[nrl] += NREND;
m[nrl] — ncl;

for(i=nrl+1 ;i<=nrh;i-H-) m[i]=m[i-1]+ncol;

/* return pointer to array o f pointers to rows */
return m;

}

int **imatrix(nrl,nrh,ncl,nch)
long nch,ncl,nrh,nrl;
/* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
{
long i, nrow=nrh-nrl+l,ncol=nch-ncl+l;
int **m;

/* allocate pointers to rows */
m=(int **) malloc((unsigned int)((nrow+NR_END)*sizeof(int*)));
if (!m) nrerror("allocation failure 1 in matrixO");
m += NR_END;
m — nrl;

/* allocate rows and set pointers to them */
m[nrl]=(int *) malloc((unsigned int)((nrow*ncol+NR_END)*sizeof(int)));
if (!m[nrl]) nrerror("allocation failure 2 in matrixO");
m[nrl] += NREND;
m[nrl] -= ncl;

for(i=nrl+l;i<=nrh;i-H-) m[i]=m[i-l]+ncol;

/* return pointer to array of pointers to rows */
return m;

}

double * * submatrix(a,oldrl,oldrh,oldcl,oldch,newrl,newel)
double **a;
long newel,newrl,oldch,oldcl,oldrh,oldrl;
/* point a submatrix [newrl..][newel..] to a[oldrl..oldrh][oldcl..oldch] */
{
long i j,nrow=oldrh-oldrl+l ,ncol=o!dcl-newcl;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142
double **m;

/* allocate array of pointers to rows */
m=(double **) malloc((unsigned int) ((nrow+NR_END)*sizeof(double*)));
if (!m) nrerror("allocation failure in submatrixO");
m += NR_END;
m — newrl;

/* set pointers to rows */
for(i=oldrlj=newrl;i<=oldrh;i++j++) m[j]=a[i]+ncol;

/* return pointer to array of pointers to rows */
return m;

}

double **convert_matrix(a,nrl,nrh,ncl,nch)
double *a;
long nch,ncl,nrh,nrl;
/* allocate a double matrix m[nrl„nrh][ncl..nch] that points to the matrix
declared in the standard C manner as a[nrow][ncol], where nrow=nrh-nrl+l
and ncol=nch-ncl+l. The routine should be called with the address
&a[0][0] as the first argument. */
{
long ij,nrow=nrh-nrl+l,ncol=nch-ncl+l;
double **m;

/* allocate pointers to rows */
m=(double **) malloc((unsigned int) ((nrow+NR_END)*sizeof(double*)));
if (!m) nrerror("allocation failure in convert matrixO");
m += NR_END;
m — nrl;

/* set pointers to rows */
m[nrl]=a-ncl;
for(i=l j=nrl+l;i<nrow;i-H-j++) m[j]=m[j-l]+ncol;
/* return pointer to array of pointers to rows */
return m;

}

double * * * f3 tensor(nrl,nrh,ncl,nch,ndl,ndh)
long nch,ncl,ndh,ndl,nrh,nrl;
/* allocate a double 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
long i j ,nro w=nrh-nrl+1 ,ncol=nch-ncl+1 ,ndep=ndh-ndl+1;
double ***t;

/* allocate pointers to pointers to rows */
t=(double ***) malloc((unsigned int)((nrow+NR_END)*sizeof(double**)))
if (!t) nrerror("allocation failure 1 in OtensorO");
t += NR_END;
t — nrl;

/* allocate pointers to rows and set pointers to them */
t[nrl]=(double **)malloc((unsigned int)
((nrow*ncol+NR_END)* sizeof(double*)));

if (!t[nrl]) nrerror("allocation failure 2 in OtensorO");
tfnrl] += NR_END;
t[nrl] -= ncl;

/* allocate rows and set pointers to them */
t[nrl][ncl]=(double *)

malloc((unsigned int)((nrow*ncol*ndep+NR_END)*sizeof(double)));
if (!t[nrl][ncl]) nrerror("allocation failure 3 in OtensorO");
t[nrl][ncl] += NR_END;
t[nrl][ncl] — ndl;

for(j=ncl+l y<=nchy-H-) t[nrl][j]=t[nrl][j-l]+ndep;
for(i=nrl+l;i<=nrh;i++) {
t[i]=t[i-l]+ncol;
t[i] [ncl]=t[i-1] [ncl]+ncol*ndep;
for(j=ncl+l^<=nchj++) t[i][j]=t[i][j-l]+ndep;

}

/* return pointer to array of pointers to rows */
return t;

}

void free_vector(v,nl,nh)
double *v;
long nh,nl;
/* free a double vector allocated with vectorO */
{
free((FREE_ARG) (v+nl-NR_END));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144
}

void free_ivector(v,nl,nh)
int *v;
long nh,nl;
/* free an int vector allocated with ivectorO */
{
free((FREE_ARG) (v+nl-NR_END));

}

void free_cvector(v,nl,nh)
long nh,nl;
unsigned char *v;
/* free an unsigned char vector allocated with cvectorO */
{
free((FREE_ARG) (v+nl-NR_END));

}

void free_lvector(v,nl,nh)
long nh,nl;
unsigned long *v;
/* free an unsigned long vector allocated with IvectorO */
{
free((FREE_ARG) (v+nl-NR_END));

}

void free_dvector(v,nl,nh)
double *v;
long nh,nl;
/* free a double vector allocated with dvectorO */
{
free((FREE_ARG) (v+nl-NR_END));

}

void free_matrix(m,nrl,nrh,ncl,nch)
double **m;
long nch,ncl,nrh,nrl;
/* free a double matrix allocated by matrixO */
{
free((FREE_ARG) (m[nrl]+ncl-NR_END));
free((FREE_ARG) (m+nrl-NR_END));

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

void free_dmatrix(m,nrl,nrh,ncl,nch)
double **m;
long nch,ncl,nrh,nrl;
/* free a double matrix allocated by dmatrixO */
{
free((FREE_ARG) (m[nrl]+ncI-NR_END));
free((FREE_ARG) (m+nrl-NR_END));

}

void free_imatrix(m,nrl,nrh,ncl,nch)
int **m;
long nch,ncl,nrh,nrl;
/* free an int matrix allocated by imatrixO */
{
free((FREE_ARG) (m[nrl]+ncl-NR_END));
free((FREE_ARG) (m+nrl-NR_END));

}

void free_submatrix(b,nrl,nrh,ncl,nch)
double **b;
long nch,ncl,nrh,nrl;
/* free a submatrix allocated by submatrixO */
{
free((FREE_ARG) (b+nrl-NR_END));

}

void free_convert_matrix(b,nrl,nrh,ncl,nch)
double **b;
long nch,ncl,nrh,nrl;
/* free a matrix allocated by convert_matrix() */
{
free((FREE_ARG) (b+nrl-NR_END));

}

void free_f3tensor(t,nrl,nrh,nd,nch,ndl,ndh)
double ***t;
long nch,ncl,ndh,ndl,nrh,nrl;
/* free a double f3tensor allocated by OtensorO */
{
free((FREE_ARG) (t[nrl] [ncl]+ndl-NR_END));
free((FREE_ARG) (t[nrl]+ncl-NR_END));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146
free((FREE_ARG) (t+nrl-NR_END));

}

#endif /* ANSI */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTES

1. Sorenson, H.W., Least-squares estimation: from Gauss to Kalman. IEEE
Spectrum, vol. 7, pp. 63-68, July 1970

2. Weiner, N, Extrapolation, Interpolation and Smoothing of Stationary Time
Series, with Engineering Applications. New York Technical Press and Wiley,
1949

3. Kailath, T., A view of three decades of linear filtering theory. IEEE
Transactions of Information Theory, vol IT-20, pp. 146-181,1974

4. Van Trees, H.L., Detection. Estimation, and Modulation Theory. Part I. IEEE
Transactions of Information Theory, vol. IT-14, pp. 612-613,1968

5. Van Trees, H.L., Detection. Estimation, and Modulation Theory. Part II. IEEE
Transactions of Information Theory, vol. IT-18, pp. 450-451,1972

6. Stiffler, J. J., Theory of Synchronous Communication. IEEE Transactions of
Information Theory (book rev.), vol. IT-18, pp. 218-219,1972

7. Lindsey, W.C., Synchronization Systems in Communication and Control.
Englewood Cliffs, NJ, Prentice-Hall, 1972

8. Kalman, R. E., A New Approach to Linear Filtering and Prediction Problems.
Journal of Basic Engineering, vol. 82 D, pp. 34-45,1960

9. Kalman, R. E., On the General Theory of Control Systems. Proceedings of
First International Congress, IF AC, Moscow, USSR, pp. 481-492,1960

10. Kalman, R. E. and Bucy, R. S., New results in linear filtering and prediction
theory. Transactions of ASME Journal of Basic Engineering, vol. 83, pp. 95-
108, 1961

11. Gilbert, E.G., Controllability and observability in multivariable control
systems.” SIAM Journal on Control, vol. 1, no.2, pp. 128-151,1963

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148
12. Kalman, R. E., Mathematical description of linear dynamical systems” SIAM

Journal on Control, vol. 1, no.2,152-192,1963

13. Sorenson, H. W., Kalman Filter: Theory and Application. IEEE, Inc., New
York, 1985

14. Schlee, F.H., Divergence in Kalman Filter. AIAA Journal, vol 5, pp.l 114-
1120,1976

15. Fitzgerald, Divergence of Kalman Filter. IEEE Transactions on Automatic
Controls, Dec. 1991

16. Sangsuk-Iam, Bullock, T.E., Analysis of continuous time Kalman filter under
incorrect noise covariances. Automatica, vol. 24, No.5, pp. 659-669,1988

17. Sangsuk-Iam, Bullock, T. E., Behavior of the discrete time Kalman filter under
incorrect noise covariances. Proceedings 26th IEEE Conference on Decision
and Control, Los Angles, CA

18. Lee, T.T., A direct approach to identify the noise covariances for Kalman
filtering. IEEE Transactions on Automatic Control, AC-25, pp. 841-842,1980

19. Belanger, P. R., Estimation of noise covariances matrices for a linear time
varying stochastic system. Automatica, 10, pp. 267-275

20. Sangsuk-Iam, Bullock, T. E., Direct estimation of noise covariances.
Proceedings, of ACC Conference., pp. 1289-1294, Atlanta, GA 1988

21. Carew, B., Belanger, P. R., Identification of optimal filter steadv-state gain for
systems with unknown noise covariances. IEEE Transactions on Automatic
Control, AC-18, No.6, pp. 582-587,1973

22. Tajima, K., Estimation of steady state Kalman filter gain. IEEE Transactions
on Automatic Control, AC-23, pp. 944-945,1978

23. Goodwin, G.C., Sin, K. S., Adaptive filtering, prediction, and control.
Prentice-Hall, Englewood Cliffs, NJ 07632,1984

24. Haykin, S., Adaptive filter theory. Prentice-Hall, Englewood Cliffs, NJ, 07632,
1986

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149
25. Mehra, R.K., Approach to adaptive filtering. IEEE Transactions on Automatic

Control, Ac-17, pp. 693-698,1972

26. Mehra, R.K., On the identification of variances and adaptive K alm an filtering
IEEE Transactions on Automatic Control, AC-15, pp. 175-184,1970

27. Astrom, K. J., Why use adaptive technique for steering large tankers?
International Journal of Control, vol. 32, pp. 689-708,1979

28. van Amerongen, J., A model reference adaptive auto-pilot for ships -practical
results. Proceedings of. 8th IF AC World Congress, Kyoto, Japan 1981

29. Landau, I. D., Adaptive control - The model reference approach. Dekker, New
York, 1979

30. Gupta, P. C., Yamada, K., Adaptive short-time forecasting of hourly load
using weather information. IEEE Transactions on Power Apparatus and
Systems, vol. PAS-91, pp. 2085-2095

31. Lucky, R., Automatic equalization for digital communication.” Bell Systems
and Technology Journal, vol. 44, pp. 547-588,1965

32. Goddard, D., Channel equalization using a Kalman filter for fast data
transmission. IBM Journal of Research and Development, vol. 18, pp. 267-
273, 1974

33. Juang, J.-N., Pappa, R. S., An Eigensvstem Realization Algorithm (ERA! for
modal parameter identification and model reduction. Journal o f Guidance,
Control, and Dynamics, vol. 9, no. 3, pp. 294-303, 186

34. Juang, J.-N., Mathematical correlation of modal parameter identification
methods via system realization theory. International Journal of Analytical and
Experimental Modal Analysis, vol. 2, no. 1, pp. 1-18,1987

35. Powers, T., Doolittle, L., Ursic, R., and Wagner, J., Design. Commissioning
and Operational Results of Wide Dynamic Range BPM Switched Electrode
Electronics. Proceedings of Beam Instrumentation Workshop, Advanced
Photon Source, IL, May 96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150
36. Hofler, A.S. et al, Performance of CEBAF Arc Beam Position Monitors.

Proceedings of the Particle Accelerator Conference, pp. 2298-2300,
Washington DC, 1993

37. Kuo, B. C., Digital Control Systems. 2nd Edition, HBJ College Publisher,
Orlando, FL, 1992

38. Chowdhary, M, Krafft, G.A., Shoaee, H., and Watson, ID, W.A., A Fast
Feedback System for CEBAF. Proceedings of 1995 International Conference
on Accelerator and Large Experimental Physics Control Systems, pp-Th4B-e,
Chicago, IL, 1995

39. VxWorks Programmer’s Guide 5.1. Wind River Systems, 101 Atlantic
Avenue, Alameda, CA, 94501,1993

40. Simrock, S.N., The RF Control System for CEBAF. Proceedings of 1990 US
Particle Accelerator Conference, San Francisco, 1990

41. Legg, R., Chowdhary, M., Kam, J., Merz, W., Fast feedback corrector system.
TJNAF Tech Note 96-005, Newport News, VA, 1996

42. Shinners, S.M., Control System Design. John Wiley & Sons, NY, 1964

43. Goulab, G.H. and Van Voan, C.F., Matrix Computations. The Johns Hopkins
University Press, Baltimore, Maryland, 1983

44. Juang, J-N, Applied System Identification. PTR Prentice Hall, Englewoods
Cliff, New Jersey, 1994

45. Ljung, L. and Soderstrom, T., Theory and Practice of Recursive Identification.
The MIT Press, Cambridge, Massachusetts, 1987

46. Cioffi, J.M. and Kailath, T., Fast Recursive-Least Squares Transversal Filter
for Adaptive Filtering. IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. ASSP-32, pp. 304-337

47. Lee, D.T, and Morf, M., Recursive Least-Sauares Ladder Estimation
Algorithm. IEEE Transactions on Circuits and System, vol. CAS-28, pp. 467-
481

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151
48. Watson, ID, W.A., The CEBAF Control System. Proceedings of 1995 US

Particle Accelerator Conference, Dallas, TX, pp. 2167-2171, 1995

49. Delesio, L.R. et al, The EPICS Architecture. Proceedings of 1991 International
Conference on Accelerator and Large Experimental Physics Control Systems,
pp. 278, 1991

50. Operators and Maintenance Manual for GP10-S Analog Computer. Comdyna,
Inc., 305 Devonshire Road, Barrington, Illinois,60010,1996

51. User Manual for IP-16 ADC. Greensprings Computers, 1204 O’Brien Drive,
Menlo Park, California, 94025,1994

52. User Manual for VMESC5. SYSTRAN Corporation, 4126 Linden Avenue,
Dayton, Ohio, 45432,1995

53. User Manual for DVME-628. Datel, Inc., 11 Cabot Boulevard, Mansfield,
Massachusetts, 02048,1995

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

1. B. Friedland, Control System Design: An Introduction to State-Space
Methods, McGraw-Hill Book Company, New York, 1986

2. J-N Juang, Applied System Identification. PTR Prentice Hall, Englewood
Cliffs, New Jersey, 1994

3. B. C. Kuo, Digital Control Systems. 2nd Edition, Harcourt Brace Jovanovich,
Publishers, Orlando, Florida, 1992

4. L. Ljung and T. Soderstrom, Theory and Practice of Recursive Identification,
The MIT Press, Cambridge, Massachusetts, 1987

5. J. Van De Veget, Feedback Control Systems. 2nd Edition, Prentice Hall,
Englewood Cliffs, New Jersey, 1990

6. A. Papoulis, Probability. Random Variables, and Stochastic Process. John
Wiley & Soncs, New York ,1965

7. W.H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical
Recipes in C. Cambridge University Press, 1988

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Mahesh Chowdhary

Bom in India on May 26, 1966. Obtained a Bachelor of Engineering

(Mechanical) degree from Regional Engineering College, Surat, India in August

1988. Obtained a Master of Science in Mechanical Engineering degree from Old

Dominion University, Norfolk, Virginia, USA in December 1990. Successfully

defended the dissertation for a Ph. D. in Applied Science in December 1996.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	On-line system identification for control system applications in particle accelerators
	Recommended Citation

	tmp.1539750766.pdf.ZZJ6W

