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ABSTRACT

Particle accelerators require a number of feedback systems in order to stabilize 

a variety of parameters. The Continuous Electron Beam Accelerator at Thomas 

Jefferson National Accelerator Facility presents a unique set o f control and 

identification problems. This accelerator produces a continuous electron beam 

with energies between 0.5 and 4.0 GeV to be delivered to the experimental halls. 

In order to meet stringent beam quality requirements specified by the experimental 

halls, the position and the energy of the electron beam needs to stabilized at 

various locations in the accelerator.

r

A number of noise measurement tests were conducted at various locations in 

the accelerator to obtain accurate information about the amplitude and the 

frequency of disturbances on the beam orbit and energy. Results of these 

measurements indicate that the line power harmonics were the primary source of 

disturbance on the beam orbit and energy.

A prototype fast feedback system was implemented in the injector and the 

East Arc regions of the accelerator to stabilize the beam position and energy at 

these locations. The scheme of implementation of these systems and 

measurements of their performance are presented here.

These feedback systems have to operate under conditions of varying noise 

characteristics and changing dynamics of the systems. For the feedback systems to
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always perform optimally, the knowledge of time varying noise characteristics and 

changing system dynamics needs to be incorporated into the feedback strategy. 

The approach presented in this work is to perform on-line system identification 

using a formulation of Fast Transversal Filter (FTF) in order to extract the time 

varying information from input/output data of the feedback system.

A simulation test stand was developed using an analog computer to represent 

a continuous time system whose noise characteristics and dynamics could be 

changed in a controlled manner. An on-line system identification algorithm was 

implemented on a microprocessor similar to the ones used in the accelerator 

control system. Experience with the hardware-in-loop simulation for various cases 

of changing system dynamics and noise characteristics and the performance results 

of the on-line system identification algorithm operating under these conditions are 

presented in this dissertation.

Mahesh Chowdhary 
Applied Science Department 

Adviser: Dr. Dennis M. Manos 
CSX Professor of Applied Science and Physics

x
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CHAPTER I

INTRODUCTION

1.1 Background

The age of modem control theory was ushered in with the launching of first 

Sputnik in 1957. During the last several decades, developments in control 

theories have continued and applications of these theories in various aerospace, 

military and civilian industries have increased tremendously. Availability of 

powerful and inexpensive digital computers has been a crucial reason for this 

success. Digital computers have been used not only to implement control 

algorithms, but also to develop, validate and test control theory applications. The 

necessity of controlling large and complex physical plants, such as a major 

petroleum refinery, or a jumbo airliner, is another important reason for 

proliferation of control theories in various industries.

The core problem of controlling a physical plant is to determine appropriate 

control forces which can assume that the physical plant behaves in the desired 

fashion. For linear systems, the “state-feedback” strategy is the most common 

technique used in calculating the control forces. State information of a dynamic 

system is a set of physical quantities, the specification of which, in the absence

2
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3
of external disturbances, completely determines the time evolution of the 

system. However, in general, the state information cannot be measured directly 

using available sensors. Hence, a technique for extracting state information from 

measured data is essential to a feedback control strategy.

Since the performance of a feedback system is dependent on the accuracy of 

reconstructed state, effective reconstruction of state from the measured data is 

very important. There are various factors involved in reconstructing state 

information from input/output data o f a physical system. The measured data is 

almost always contaminated by noise from imperfect sensors. The number of 

sensors is usually less than the number of states of interest, so measured data at a 

given time alone is not sufficient to determine the state, and previous data has to 

be used. Since systems are usually affected by unpredictable, time-varying 

noises, uncertainty is introduced between the previous data and the current state. 

This problem is further complicated when the dynamics of the system also varies 

with time.

1.2 Literature Survey

From earliest times people have been concerned with estimating unknown 

quantities from observed data and making prediction. The least squares method 

has been an important milestone in the development of estimation theory. This 

well known method was apparently used by Gauss in 1795 in his studies of 

astronomy, though it was first published by Legendre in 1805. Since then, there
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4
have been vast amounts of literature on various aspects of least squares method. 

A survey of such work on least square estimation for random variables has been 

presented by Sorenson [1].

First studies in applying least square estimation to stochastic process were 

done by Kolmogrov, Krein, and Weiner [2]-[3]. Kolmogrov applied the mean 

square theory to the prediction problem for discrete-time stationary process. A 

process is called stationary if all its statistical parameters are invariant to a 

translation in time. Kolmogrov and Krein’s work did not focus on optimality of 

the predictor. Weiner [2] formulated the continuous-time linear prediction 

problem and derived an expression for optimal predictor. Various practical 

applications such as anti-aircraft fire control mechanism benefited from this 

work. Weiner developed the first explicit solutions of least square estimates of 

stochastic process [2]. Weiner’s work was further extended by Van Trees [4]- 

[5], Stiffler [6], and Lindsey [7] into fields such as modulation theory.

Kalman changed the conventional least squares problem by developing a 

model [8] (commonly known as state space model) for a signal process. He 

described the signal process y(t) with a system of equation described as

y (0  = G r(0
x(t) = Ax(t) +Bu(f) ^

In 1960 Kalman published his renowned method for sequential state 

estimation of discrete systems, known as the Kalman filter [9], using a state
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5
space formulation. Two years later he published another version [10] of the 

Kalman filter for continuous time systems. Significant contribution in system 

realization theory in terms of concepts of controllability and observability of 

system were presented by Gilbert [11] and Kalman [12] in the same time period. 

Since then a large number of papers were published showing the importance of 

the Kalman filter, and at the same time revealing its unsatisfactory features.

A well known limitation in applying the conventional Kalman filter is its 

requirement of a priori knowledge about the system state space model and the 

covariances of process and measurement noises. This data in most cases is either 

partially known or completely unknown. Another drawback of the conventional 

Kalman filter is its inability to adjust itself to trace a changing environment or 

correct for the error caused by incorrect a priori information. After reaching 

steady state the filter “sleeps”, which means no matter how large the estimation 

error gets, the filter remains unaffected. This phenomenon is called filter 

divergence [13]-[16].

If the system state space model is known, but the noise covariances are 

unknown, then one must estimate noise statistics, or conduct a systematic 

analysis to provide noise covariances or filter gain in order to use the Kalman 

filter [17]-[21], Adaptive filtering techniques [23]-[26] need to be used in order 

to improve upon the a priori assumptions made for the filter design. Adaptive 

Kalman filtering [25]-[26] uses the Kalman filter structure, but modifies the
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6
scheme for computing the filter gain. The filter monitors the estimation error and 

improve its performance accordingly. Most existing adaptive Kalman filters and 

methods of estimating noise covariances or filter gain are complicated and are 

not suitable for on-line implementation. Furthermore, adaptive Kalman filtering 

methods are derived under the assumption that the system state space model is 

accurately known and that it does not change with time. The problem of adaptive 

Kalman filtering for unknown systems is more complicated. Goodwin [23] 

introduced a method of estimation for uncertain systems where the state vector is 

augmented by undetermined system parameters. Using this scheme the system 

parameters and states can be estimated at the same time. However, a nonlinear 

state estimation technique such as an extended Kalman filter has to be used for 

such systems because the system model becomes nonlinear due to state 

augmentation. To solve a nonlinear estimation problem, the system is usually 

linearized at each estimated state. The linearization is computationally 

inefficient for large order system and convergence of the estimate is not 

guaranteed.

To solve the problem of state estimation under unknown model and noise 

covariances, a system model needs to be identified before state estimation can be 

done. There are various cases where direct mathematical model generation is not 

possible. In some cases the knowledge of a system’s mechanism is not 

completely known. In other cases the properties exhibited by the system may
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7
change with time in an unpredictable manner. Further more, modeling process 

can be very time consuming and can lead to models that are unnecessarily 

complex. In many of the above mentioned cases the signals produced by the 

system can be measured and used for computation of mathematical models. This 

approach of system identification has been applied to solve many practical 

problems.

Astrom [27] and van Amerongen [28] have studied the problem of a ship- 

steering regulator. A ship’s heading angle and position is controlled by its rudder 

angle. For a large ship, the position control is a fairly difficult problem because 

ship’s response to a change in rudder angle is very slow and is affected by 

random components such as wave motion and wind. Most ships have a regulator 

that measures relevant variables and determines the rudder angle. The design of 

the regulator is based on the steering dynamics o f the ship, which depend on a 

number of factors such as the shape and the size of ship, loading and trim, and 

water depth. Some of these factors vary during the journey; the disturbances 

from wind and waves may also change rapidly. Therefore, the regulator has to be 

constantly retuned to match the current dynamics of the system. This work in 

presented in references [27] and [28]. Many control problems in airplanes and 

missiles exhibit similar features where dynamic properties depend on speed, 

loading etc. and change with time. Machinery in paper-making plants is affected 

by many randomly changing factors. Researchers such as Landau [29] have
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8
presented work in this area.

Short term prediction of power demand from an electricity generation 

system is a similar problem that requires good design of an adaptive predictor. 

There is a substantial random component in the power demand which depends 

on the time of the day and the day of the week, month or year. For efficient 

production of electricity a good prediction of demand a few hours ahead of time 

is very useful. Research in the area of power demand predictors is presented by 

Gupta and Yamada [30].

Channel equalization in communication networks is another problem where 

recursive techniques are very useful. Each channel in a communication network 

can be seen as a linear filter with a certain impulse response characteristic that 

differs from the ideal delta function response, distort the transmitted signal. The 

signal must be restored at the receiver using an equalizer, which is a filter whose 

impulse response resembles the inverse of that of the channel. However, in a 

communications network the channel between transmitter and receiver can be 

quite arbitrary and therefore it is desirable that the equalizer adapt itself to the 

actual properties of the chosen channel. Work done in this area has been 

published by Lucky [31] and Goddard [32].

Active control of aerospace structures is another complex problem. Large 

aerospace structures can accurately be represented by large mathematical models 

with dimensions in the order of hundreds. Besides, most aerospace structures
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possess significant uncertainties and nonlinearities which make identification of 

mathematical model very difficult. A modal parameter identification algorithm 

for flexible structures known as Eigensystem Realization Algorithm (ERA) was 

developed by Juang [33] in 1984. A frequency-domain ERA and a recursive 

ERA were also developed by Juang [34].

1.3 Problem Statement

The Continuous Electron Beam Accelerator (CEBAF) at Jefferson Lab 

presents a unique set of control and identification problems. The accelerator 

produces a continuous electron beam, with energies between 0.5 and 4.0 GeV, to 

be delivered to three experimental halls. The beam quality requirements specified 

by the experimental halls are very stringent, (see table A.1 in Appendix A). In 

order to meet these requirements the position and energy of the electron beam 

needs to be stabilized at various locations in the accelerator against various 

disturbances. Feedback systems that regulate the position and energy of the beam 

at several locations in the accelerator have to operate under time-varying noise 

characteristics and changing dynamics of the system. A much clearer picture of the 

problem will be developed in Chapter 2 of this dissertation where details of the 

feedback system and noise measurement analysis and results are presented.

For the feedback systems to always perform optimally the knowledge of time- 

varying noise characteristics and changing system dynamics need to incorporated
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into the feedback strategy. One approach to solve this problem is to perform on­

line system identification and extract the time-varying information from the 

input/output data of the feedback system. The theory, analysis, simulation, and 

implementation of this approach are presented in this dissertation.

1.4 Dissertation Outline

Chapter 2 presents with a description of the Continuous Electron Beam 

Accelerator. The relevant subsystems needed for beam orbit and energy 

stabilization are described in that chapter. Various noise measurements that were 

performed and various systems that were used to perform these measurements are 

described. The feedback algorithm and the performance measurements obtained 

with the feedback systems are described in that chapter.

Chapter 3 describes the theory and implementation of an on-line system 

identification algorithm. The mathematical formulation of the Fast Transversal 

Filter (FTF) is described there. Details about the implementation of FTF using 

VxWorks as the real-time operating system on a MVME167 VMEbus CPU is also 

described. The catchup technique, which is used to further improve the 

performance o f the FTF implementation, is described.

Chapter 4 contains details about the simulation test stand that was used to test 

the implementation of FTF using an analog computer for hardware-in-the-loop
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simulation. Description of an analog computer used to simulate a continuous-time 

plant whose dynamics and noise characteristics can be varied in a controlled 

manner is presented in that chapter. Results from performance measurements of 

the implementation of the FTF algorithm for on-line system identification of a 

continuous system simulated using the simulation test-stand are also described.

Chapter 5 presents a review and a summary of various results obtained and 

described in previous chapters. Conclusions from this study are also presented. 

Future directions of research from the present work are also presented.
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CHAPTER II

FAST FEEDBACK SYSTEMS FOR CEBAF

2.1 Overview

The Continuous Electron Beam Accelerator (CEBAF) a provides 

continuous beam of electrons at any energy between 0.5 and 4.0 GeV. The 

CEBAF accelerator, Fig. 1, consists of 45 MeV injector, two side-by-side 

superconducting linacs, and 9 arcs that recirculate the beam through the linacs 

up to 5 times for 4 GeV total energy.

EL.OL

45-MeV Injector EL>.OL 
(21(4 Qjomodules) I /

OL,BL

Injector

OL

End
Stationi

Fig. 1 Schematic Diagram of CEBAF

12
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13
The key component of the superconducting linac is the superconducting 

accelerating cavity which allows for continuous acceleration of beam without 

excessive power loss in the cavity walls. Beams of different energies are 

separated at the first spreader and are transported through isochronous arcs to the 

recombiner at the entrance to the second linac. At the exit of the second linac, 

the beams of different energies are separated again to be sent to either one of the 

experimental halls or through the recirculation arcs.

The stability and quality of electron beam to be delivered to the 

Experimental Halls are important for experimenters. Few noise measurement 

exercises were conducted in order to determine the variation in orbit and energy 

of the beam at various locations in the accelerator.

2.2 Noise Measurements

A number of tests were conducted to obtain accurate information about the 

amplitude and frequency of disturbances on beam position and energy when the 

accelerator was operating in CW mode. These tests used Switched Electrode 

Electronics (SEE) Beam Position Monitors (BPM) [35] low level data 

acquisition software which can acquire beam position data at 119 kHz into 32k 

buffers / per antenna/ per BPM. A detailed description of the SEE BPM 

hardware and electronics is presented in section 2.5.1.2. When appropriately 

triggered, a routine in the SEE BPM low level data acquisition software acquires 

beam position data at 119kHz rate and stores it in on-board memory. Once the
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required amount of data (32k buffer / per antenna/ per BPM) is collected, it is 

transferred to an ASCII file on a Unix host. The first series of tests were done 

using 5 SEE BPMs in the first pass line of the East Arc.

11 ii n n n u n i yin Hi in  n n i H i u iin  n !! ini 11 n i : m ii

HHHbUHi/HHiiRHiHKH; HHdHHEU : HRiEbiHHHEHUHEiRRiRi

i

!!! I ! I !-!!! ib ??! i! Ill ! !̂ 11 n ! M la!? 0

mn

r  n H: E! H:: H H E: n 1 ERR H H! EH Hi! HR IH R 101:1 MI i H n H t

iii j imiiHimmnmHHiimnnnnHm

fjHHRHHHHRiHEHHHHHMHHHRHHR EH H H H H H R! m m

10 n n i U H n H n H E  Hi ; ; i  i  * RR! i !  = H i  I i  i  ? i : i  M : i  i H E  ; : i  I > nnniHRiRRp

10 10‘ 10“ 10’
Fequency in Hz.

Fig. 2 Power Spectrum for X position observed at IPM1S10 

The beam position data was later separated into beam orbit (position and 

angle in X and Y plane) and beam energy variations at a point in the vicinity of 

these five BPMs using a design model of this region of the accelerator. Fig. 2 

shows a power spectrum of beam position variation in X direction in frequency 

domain. As seen from Fig. 2, the largest disturbance component in X position 

variation is centered at 60 Hz and the second peak is seen at 180 Hz.
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000

samples

Fig. 3 Time Domain data for X-position observed at IPM1S10 

Fig. 3 shows that the 60 Hz component of disturbance corresponds to a beam 

motion of approximately 0.6 mm in X plane. Time domain data and power 

spectrum for the beam energy variation are shown in Fig.(s) 4 and 5.
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10 102
Fequency in Hz.

10

Fig. 4 Power Spectrum for beam energy variation observed at 
IPM1S10

The largest component of disturbance on beam energy again is centered at 

60 Hz and the second largest component is located at 180 Hz. From Fig. 5 it can 

be seen that peak to peak energy variation is approximately 1.2 x lO'4 .
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x 10'-4 .8

-5 .2

-5 .4
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co -5.8

-6

- 6.2
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- 6.8
1000 2000 3000 4000 5000 6000 7000 8000 9000

samples

Fig. 5 Time domain data for beam energy variation observed at 
IPM1S10

Because the largest component of disturbance is observed at 180 Hz, 

another system known as 500 Hz system, was developed to simultaneously 

measure and quantify the noise on beam orbit and energy at different locations 

in the accelerator. This system samples the beam position at 500 Hz rate from 

various 4 channel electronics BPMs [36] at various location in the accelerator
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simultaneously and stores the data in an ASCII file for later analysis. The 

analysis of the 500 Hz system data produced results similar to those from the 

SEE BPM system. The disturbance components associated with line power, at 

60 Hz and 180 Hz, were observed in the data on beam orbit and energy. The 

power spectra and time domain data for one data set are shown Fig.(s) 6 and 7.
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Fig. 6 Power Spectra for states X, X’, Y, and Y’ observed at 
IPM2A01
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Fig. 7 Power spectrum for AE/E variation at IPM2A01 

2.2.1 Variations in Noise Statistics

The noise components observed on the beam orbit and energy have exhibited 

variations in both amplitudes and frequencies for different sets of data. The 

variation in noise characteristics observed using five SEE BPMs in the first pass 

line of East Arc is shown in Table 1. The states X, X’, Y, Y \ AE/E displayed in 

Table 1 correspond to location IPM1S10 in the East Arc region. The fast 

acquisition data was collected using five SEE BPMs in the first pass line of East
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Arc at a time interval of approximately 2 minutes. This data indicates that there is 

more than 20% variation in the amplitude of the states.

Table 1 BPM parameter variation observed at IPM1S10

Data Set X (mm) X’ (mrad) Y (mm) Y’ (mrad) AE/E

2 0.714 0.0914 0.2811 0.0916 3.51 x 10"

3 0.5616 0.0801 0.4421 0.1451 1.818 x 10"

4 0.5791 0.0772 0.1691 0.054 1.838 x 10"

5 0.5913 0.0774 0.2309 0.0683 2.026 x 10"

6 0.5857 0.0771 0.2113 0.0661 1.845 x 10"

Table 2 shows the noise statistics collected using the 4-channel electronics 

BPMs in various regions of the accelerator as indicated in the table. The amplitude 

variation in beam orbit (X, Y), beam trajectory (X’, Y’) and energy (AE/E) are 

shown for various regions in the accelerator. This data was collect over a period of 

several days as indicated by time and date for each entry in the table
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Table 2 Beam parameter variations observed using 500 Hz system

Location X

(mm)

X’

(mrad)

Y

(mm)

Y’

(mrad)

AE/E Date

INJ0L10 1.9861 0.2659 0.9356 0.2119 1.1762x1 O'3 4/1/96 15:15

INJ0L10 1.98 0.2532 0.SI 16 0.1956 1.018x10'* 4/18/96 14:27

INJ0L10 2.134 0.3005 0.9025 0.2123 1.385x10-* 5/15/96 13:40

EA1A01 0.6055 0.0425 0.2378 0.0926 0.2041x10’* 3/29/96 16:31

EA1A01 0.4492 0.0321 0.1985 0.0907 0.2979x10"3 4/1/96 15:15

EA1A01 0.3817 0.0266 0.2131 0.07 0.2703x10'* 4/18/96 14:27

EA1A01 0.492 0.0474 0.2602 0.0675 0.3192x10’* 5/15/96 13:40

WA2A01 0.4444 0.016 0.2713 0.0784 0.2021x10'* 3/29/96 16:31

WA2A01 0.4348 0.0185 0.2876 0.0344 0.1586x10-* 4/1/96 15:15
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The power spectrum for X-position at location EPM3C07 is shown in Fig. 8. 

This power spectrum shows two distinct peaks around 60 Hz frequency. Upon 

further analysis, the cause for two peaks was found to be variation in the phase of 

60 Hz noise component at approximately 1 Hz rate. Fig. 9 shows the phase 

variation of 60 Hz noise component observed in data acquired from 4-channel 

BPMs in the Hall C line.
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Fig. 8 Power spectrum for X-position at location IPM3C07

This phenomena of phase variation of 60 Hz component in the Hall C line is 

still under investigation. The data acquisition scheme of the 500 Hz system is
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being investigated to eliminate timing problems as a possible source of this phase 

variation.

30

20

a -20
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-50
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Fig. 9 Phase variation of 60 Hz noise component observed at location 
IPM3C07 in Hall C line

2.3 Fast Feedback Systems

The beam properties requirements specified by the three experimental halls 

are very stringent. The nominal value of beam emittance (momentum spread) is 

specified at 20p < crx, cry < 50 p. in terms of r.m.s. spot size. The phase space area 

occupied by the beam is called as emittance. For a source of particles with width
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w, from each point of which particles are produced within an angle 0, the phase 

space area (or the emittance) at the source will be wO. The nominal value of 

average beam energy ranges between 0.5 to 4.0 GeV with the energy variation in 

the range 3 x 10"* to 1 x 10'3. The relative energy spread specification for cte/E 

ranges between 5 x 10'5 to 5 x 10"4 with a stability requirement of 25% of the 

nominal value. Table A.l in Appendix A describes the beam properties 

requirements specified by the experimental halls in detail. The results obtained 

from the noise measurement studies described in previous sections indicate that 

the beam orbit and energy variations are large when compared to the beam quality 

requirements specified by the experimental halls. Beam instabilities of the 

observed magnitude are not convenient for propagation through septa in the 

accelerator which have clearances of a few millimeters. Therefore feedback 

systems are needed to stabilize the beam orbit and energy.

2.4 Algorithms

The objective of using fast energy and orbit locks is to lock the beam energy 

and beam orbit at desired locations in the accelerator. Thus, the quantities of 

interest at the desired lock location are position, angle of trajectory of the beam in 

X and Y directions, and the energy variation. The variations in these quantities 

needs to be estimated from BPM measurements in the presence of sensor noise. 

Corrective action needs to be taken using actuators such as corrector magnets or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25
RF vernier cavities, in the presence of process noise. A suitable solution is to 

model the system in state space formalism of digital control theory [37] and to 

design of an optimal state estimator and an optimal controller. The description of 

the system in state space formalism is given by

x(k +1) = Ax(k) + Bu(k) + w(k) (1)

y(k) = Cx{k) + Du{k) + v(k) (2)

x(k) is the state vector containing the attributes of the system that are

dynamically significant. The state vector is x = [Xo,X 0,Yo,Y0,AE/E]. A is the 

system dynamic matrix which takes system states from time instant k to k+\, B is 

the control input matrix which takes the control inputs to the state vector, u(k) is 

the vector of control inputs to the system, w(k) is the process noise vector, y(k) is 

the vector of measurements, C is the measurement matrix which takes the states to 

measurements, and v(k) is the measurement noise vector.

A Kalman filter is used to estimate the states from the BPM measurements. 

The measurement update from sample instant k  is obtained using

x(k) = x(k) + L(y(k) -  Cx(k) -  Du(k)) (3)

and the time update that takes the state vector from sample instant k  to k+J is 

obtained using

x (k +1) = Ax(k) + Bu(k) (4)
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Here x(k) is the estimated state vector and 5c (k +1) is the predicted state 

vector for sample k+ 1 obtained from the estimated state at sample k. The 

controller equations that are used for the feedback loop can be obtained by 

combining the two equations above, described as

5c(k +1) = A5c(k) + Bu(k) + AL(y(k) -  C5c(k) -  Du(k)) (5)

u(k) = -Kx(k)  (6)

L is the state estimator gain matrix and K  is the controller gain matrix. Eq. (5) 

is used to propagate the state vector to sample k+1. The first term in Eq. (5) uses 

the system dynamic matrix A and the state vector at time k to calculate the new 

state. The second term uses the control input matrix B and incorporates the effect 

of actuator settings on the state. The third term is the correction term between 

estimated and actual states obtained from the measurements. Eq. (6) is used to 

calculate the actuator setting based on the current state estimate using negative 

state feedback through an optimal gain matrix K.

Matrices A, B, C, D, K  and L that are used to compute control input u(k) can 

be calculated from the analytically obtained model of the relevant subsystem of the 

accelerator and from an estimate of process and measurement noises. These 

matrices can also be extracted from input/output data from the feedback loop by 

applying system identification techniques which will be discussed in detail in next 

chapter.
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2.5 Fast Energy Feedback System

The fast energy feedback system [38] is designed to stabilize the energy of the 

beam at a particular location in the accelerator against beam variations caused by 

effects such as phase and gradient fluctuations in the superconducting RF cavities 

of the accelerating system upstream. The beam energy variations for a particular 

lock location is determined from position measurements obtained from 5 BPMs in 

the vicinity of lock location. This set of 5 BPMs has at least one BPM in the 

dispersive region of the accelerator such that the position variation measured at 

this BPM can be related to energy variation at the lock location. A minimum set of 

3 BPMs is needed to estimate 5 quantities describing the state of the beam at the 

lock location, namely [X,,, X’0, Y0, Y0\  AE/E], from 6 position measurements (3 

X and 3 Y positions). A set of 5 BPMs is used to maintain redundency in case of 

failure of BPMs.

The energy correction signal computed by the feedback algorithm is applied 

using the vernier input available on the analog RF control module hardware. A 

differential signal applied to the vernier input changes the setpoint of individual 

analog feedback loop of the RF control system that regulates the amplitude and 

phase of the RF field in the cavity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

2.5.1 Beam Position Monitors (BPMs)

As mentioned in the previous sections there are two kinds of Beam position 

monitors currently being used in the accelerator. The mechanical hardware for 

both of these systems is essentially the same but the electronic hardware that 

processes the analog signal to produce the beam position is different. The 

mechanical hardware for a BPM consists of four thin-wire quarter wave pickup 

antennas which are symmetrically placed at the comers of a square in a plane 

perpendicular to the beam axis and centered on the beam axis. The pickup 

antennas are parallel to the direction of beam motion. Considering there are no 

errors in the system, and that the X+ and X- as well as Y+ and Y- signals are 

proportional to the amplitude of beam generated signal on the on each wire, then 

the beam position can be calculated using the expression

, , X  + - X -  Y + - Y -
x = k i r ^ r - w A Y = k T ^ 7 :  (7)

The sensitivity of each BPM, k, is measured and its nominal value lies within 

1% of 18.5 mm.

The different electronics and the scheme of computation for Switched 

Electrode Electronics (SEE) and 4-channel electronics BPMs is described now.
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2.5.1.1 4-channel Electronics BPMs

The electronics portion of this type of BPM is composed of a heterodyne 

preamplifier located in the accelerator tunnel and the synchronous amplitude 

detector located upstairs in the service buildings. The fundamental frequency of 

the beam is picked up by the four antennas and this signal is transmitted to the 

front end preamplifier known as B0005 electronics. The preamplifier amplifies 

these signals and then they are downconverted from 1.5 GHz to 1 MHz in the 

B005 electronics chassis. The downconverted signals are sent upstairs to B0007 

electronics, resident in a CAMAC crate, and which consists of programmable gain 

amplifier, synchronous detector, and 12 bit ADC. The gain of the programmable 

gain amplifier is adjustable over a 30 dB range to be set according to the expected 

value of the beam current in the accelerator.

Eq. (7), which describes the calculation of beam position, cannot be directly 

applied for the 4-channel electronics BPMs because of the errors in the system 

which violate the assumptions for the calculation. There are two kinds of errors in 

the system. First, the amplitude gain in different channels, namely X+, X-, Y+, Y-, 

might be different. Second, there are offsets that exist for each of the four 

channels. Therefore the computation has to be modified as

v- , ( X  + *) ~ a*(.X - - Xoff-)
{X + -Xoff+) + ccx(X --Xoir-) K '
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and similarly for Y position. The offsets and a*, cty are measured by the 

automatic calibration circuit. This computation of beam position still needs to be 

rotated by 45° to extract the beam position in physical coordinates used by 

accelerator physicists.

2.5.1.2 Switched Electrode Electronics (SEE) BPMs

There are several advantages that SEE BPMs provide over 4-channel 

electronics. The 4 channel system does not have sufficient dynamic range to 

operate outside the beam current range of 10A to 100 A. The 4-channel electronics 

have different drifting gains for X+, X- pair and Y+ and Y- pair of antennas. The 

4-channel system does not have capability to detect multiple passes of beam 

through the same beam line in the linacs. The SEE BPMs were designed to 

overcome these difficulties.

SEE BPM electronics, for each channel, consists of a BPM detector, RF 

module located in the tunnel, IF module, timing module, data acquisition board 

resident in a VME crate. The timing module is used to synchronize the BPM 

system with the accelerator timing. The RF module accepts four inputs (X+, X-, 

Y+, Y-). The RF module switches between the plus and minus channels, amplifies 

the signal by 23 dB and downconverts the RF signal to 45 MHz before 

transmitting the signal to the IF module. The IF module amplifies the signal sent 

by the RF module and downconverts it to baseband signal such that it is ready to
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be digitized by high speed commercial (VMIC 3115) 12 bit, data acquisition 

module. The beam position data is acquired at 248 kHz rate by the VMIC 3115 

data acquisition module and is processed by the Motorola MV167 single board 

VME computer running a data processing routine in real-time, using VxWorks 

operating system [39]. This routine also regulates the digital gain for the linear 

operation of the video detectors in the IF module. The highest rate of processed 

beam position updates from the data acquisition and processing routine is currently 

limited to 60 Hz.

2.6 RF Control System

The RF control system [40] has to regulate the phase and gradient of the RF 

accelerating field in the cavities to a high degree of accuracy in order to achieve 

the stringent beam quality requirements. Microphonic noises in the form of 

mechanical vibrations modulate the resonance frequency of the cavity, and cause 

the phase of the accelerating field to fluctuate by as much as 20° and the gradient 

to fluctuate up to 5%. These fluctuations have to be suppressed by the RF control 

system by a factor of 100 for phase variations and by a factor of 1000 for gradient 

variations. The CEBAF design of the accelerating system uses a separate control 

system for individual cavity. The RF control system uses a heterodyne scheme to 

convert the cavity frequency of 1497 MHz to 70 MHz.
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The major components of the RF control system include a high power 

amplifier (HPA), the power transmission system, the cryostat with 

superconducting cavity, and the low level RF control module. The HPA houses 8 

klystrons, a common cathode power supply, and separate power supplies for the 

filaments and modulating anodes. Each klystron can deliver up 5 kW of CW RF 

power to an individual cavity. The RF power from klystron is provided to the 

cavity through a transmission system which consists of a waveguide (WR-650) 

with a circulator and directional couplers on the klystron side, and a higher-order­

mode filter on the cavity side.

The RF control module can be further classified into five components based 

on functionality : RF convertor board, IF board, Analog Board, I/O board, and 

CPU board. The RF convertor board transforms the 1497 MHz cavity field probe 

signal to 70 MHz IF signal. The IF board contains a phase detector and controller 

for gradient and phase. The Analog Board provides gain stages for gradient and 

phase control. The I/O board provides 32 digital inputs, 32 digital outputs, 20 

analog outputs, and 40 multiplexed analog inputs. The CPU board provides local 

intelligence and communicates with the hardware via the I/O board and the control 

computer. The CPU board has Intel 80186 microprocessor which runs embedded 

software for data acquisition, signal calibration, and interlock functions.
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2.7 Fast Orbit Feedback System

A fast orbit feedback system is designed to stabilize the orbit of the beam at 

a particular location in the accelerator against beam variations caused by various 

effects. The beam orbit variations for a particular lock location is determined 

from position measurements obtained from 5 BPMs in the vicinity of lock 

location.

The correction signal computed by the feedback algorithm is applied using the 

VME DAC that sends this signal to a modified trim (power supply). The trim card 

maintains a desired level of current flowing to the fast air core magnets in order to 

produce appropriate correction field against beam orbit variations.

2.7.1 Air Core Correctors

The air core corrector magnets [41] were designed to be able to suppress the 

line power harmonics disturbances at location in the East Arc. Based on noise 

measurement data presented in section 2.2, an estimate is made of the necessary 

field to provide the angular kick to be applied to these air core correctors without 

exceeding a ±5 mm offset from the reference beam orbit. The determined angular 

kick requirement can be translated into integrated field of approximately 750 

Gauss-cm for a beam energy of 445 MeV. The existing iron core magnets in the 

accelerator cannot be used to suppress line power harmonics disturbances. A test 

performed [41] on an iron core magnet indicated that when a 60 Hz, Software­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34
generated signal was sent to the magnet, the field produced was highly distorted. 

This resulted in a decision to construct air core correctors that had a sufficient 

frequency response and field strength to correct for fast disturbances.

The six inch long fast air core correctors are designed to be mountable on a 

three inch beam pipe. The integrated field produced by these magnets is 970 

Gauss-cm at 5 Amp current. Modified CEBAF trim cards are used for power 

supply to the fast air core correctors. The existing trim cards, initially tuned for 

slow response iron core correctors, were modified by changing a few resistive and 

inductive elements on the board in order to provide faster response. These cards 

accept a ±3 Volt signal, through the backplane connector to control the ±10 Amp 

output current going to correctors.

2.8 Performance of Feedback Systems

The fast energy and orbit feedback systems [38] described in section 2.5 and 

2.7 have been successfully tested on the accelerator. The fast energy feedback 

system has been used to stabilize the beam energy in the injector for over a week 

without any problem. The fast orbit and energy feedback system in the East Arc 

have also been run for several days without interruptions.

The performance of feedback control system is generally expressed in terms 

of criteria such as stability, accuracy, transient response, residual noise, RMS error
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criterion [42] etc. The exact specifications are usually dictated by the required 

system performance for individual system.

The transient response characteristics of fast energy feedback system in the 

injector can be observed in Fig. 10. This figure shows a screen capture image of 

the graphical user interface for the injector fast energy feedback system. The data 

for states X, X’, and AE/E acquired at 60 Hz rate is shown. The feedback loop was 

running in “compute only” mode up to sample instant 95. In this mode of 

operation the states and the feedback correction signal are computed but the 

correction is not applied to the system. It can been seen in Fig. 10 that while in 

“compute only” mode there was a DC error of approximately 0.005 in AE/E. This 

DC error was corrected within 4 samples (66.67 msec.) after the correction signal 

was applied. Fast energy and orbit feedback systems in the East Arc display 

similar transient response behavior.
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Fig. 10 Screen Capture image of GUI for Fast Energy Feedback 
System
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RMS error criterion for the Injector fast energy feedback system was studied. 

This was accomplished by adding a disturbance on beam energy and running  the 

feedback system to suppress the disturbance. Simultaneously the BPM position 

data was collected for analysis. The disturbance that was added to beam energy 

can be written as Asxn(2ircot) + d { t ) . In this expression d(t) is a uniformly 

distributed random noise component with an amplitude which was 6% of the 

amplitude of the deterministic component. Fig. 11 shows the state AE/E for a 

disturbance frequency, co, of 6 Hz. Feedback correction was applied between 

samples 570 and 1300 approximately. The RMS error before correction 3.1 x 10'3 

and it was reduced to 3.237 x KT* after application of feedback correction signal.

Fig 12 shows the power spectra of AE/E signal before and after application of 

correction signal. It can been seen from this figure that the deterministic noise 

component (6 Hz) has been reduced by over two orders of magnitude. The noise 

floor in the power spectrum for corrected signal is also lower than the uncorrected 

signal.
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Fig. 11 AE/E with and without feedback correction (sample rate 
60 Hz) .When feedback correction is applied, the peak to peak 
variation in AE/E is reduced from ±4 x 10'3 to less than ±1 x 10'3
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Fig. 12 Power spectra of AE/E before and after correction signal 
was applied. The power in disturbance component at 6 Hz is 
reduced by over two orders of magnitude by application of 
feedback correction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER HI

APPLICATION OF ON-LINE SYSTEM IDENTIFICATION

3.1 Background Theory

The selection of mathematical formulation is an important decision in 

developing recursive system identification algorithms. The state space formalism,

briefly described in section 2.4, is widely used and most convenient form for

expressing the mathematical model for control systems engineering applications.

x{k +1) = Ax(k) + Bu(k) (9)

y(k)  = Cx(k) + Du{k) (10)

Eq. (9) and (10) represent a discrete time state space model of a dynamic 

system. This form is useful for implementation of control algorithm on a digital 

computer because the input/output data for the physical system is discretized.

Starting with zero initial conditions ( x(0) = 0 ) and solving for the outputs 

y(k) in terms of previous inputs produces the following

x(0)=0,

40
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* 0 ) - / M O )

jc(1) = Bu( 0)

y(l) = CBu(Q) + Du(\)

x(2) = ABu(0) + Bu(l)

y(2) = CABu(0) + CBu( 1) + Du( 2)

and generalized summation series can be written for the expression of states 

and measurements at sample instant k  as

xik) = J ? A ‘- 'Bu(k- i )  (11)
/=!

k
yik)  = Y*CA‘- 'Bu(k- i )  + Du{k) (12)

»=i

In the expression of x(k) and y(k) above if a unit pulse is applied as input at 

time instant k= 0 such that «/(0) = 1 for r=l, 2, ...,r and uj(k) = 0 for k=\, 2, ... 

then the results can be assembled in a matrix form as

e0 = D,ex = c b ,g2 = c a b , b3 = CA2B,....ek = c a ' - ' b

These matrices are known as system Markov parameters. Markov parameters 

are unique for a given system. The system matrices A, B, C, and D are contained in 

the system Markov parameters, therefore they can be used for system
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identification. The system outputs at various instants k  = 0, 1,2, can be written in 

terms of Markov parameters and inputs as

The state vector of system which relates to physical quantities is generally not 

accessible for direct measurement If the system is observable then it is possible to 

use an observer (or state estimator) to estimate the state variables from 

input/output data. In some circumstances state variable estimates are preferable to 

their directly measured values because the error introduced by the sensors may be 

larger than the error in estimating these variables.

The equation for a state observer can be written as

where x(k) is the estimated state vector and y(k)  is the estimated output. 

The above equations can be rewritten as

k
(13)

x(k +1) = Ax(k) + Bu(k) -  L[y(k) -  Cx(k) -  Du(k)] (14)

y(k)  = Cx(k) + Du(k) (15)

x(k + 1) = (A + LC)x(k) + (B + LD)u(k) -  Ly(k)

y(k) = Cx(k) + Du(k)+v(k)
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_  _  u(k)

Now defining A = A  + LC, B = [ B  + LD - L\ and y/(k)=[  ] the
y{k)

above equation can be rewritten as

x(k  +1) = Ax{k) + B y/{k) (16)

y(k)  = Cx(k) + Du(k) (17)

The pulse response characteristics of this observer system can be obtained 

using the same scheme as described above to obtain the system Markov 

parameters. Starting with zero initial conditions and solving for the estimated

output, generalized summation series can be written for the expression of

estimated states and estimated measurements at instant k  as

k k
*(k) = £  (A + LQ'~l (B + LD)u(k -  i) -  £  (A + ZC)'_I Ly(k -  i) (18)

;=1 /=l

k
K k ) = X C(A + LCT1 (5 + LD)u(k -  i) + Du(k)

'=i * (19)
- £ C 0 4  + LC)'-' L y i k - i ) ^

<=i i=i

If a unit pulse is applied as input at instant k= 0 such that k/(0) = 1 for /=1, 2, 

...,r and «/(&) = 0 for k= 1, 2, ... and then the results can be assembled in a matrix 

form as

0O = D , ^  = C[B + LD - L ] , Q = C ( A  + LC)[B + LD -  L],...
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% = C ( A  + LQ*-'[B + LD - L ]  = [C(A + LC)k~' (B + LD) -  C(A + LC)*_I L]

These matrices written sequentially are called as observer Markov parameters. 

They contain the system matrices A, B, C, D and estimator gain matrix L.

The equation for estimated output can be rewritten as

k k
K *) + Z C(A + ic y - ' Ly{k -  0  = Z  C(A + LQ " '  (B + LD)u(k -  i) + Du(fc)

< = i 1=1

For system with an appropriate design of observer the difference between the 

estimated output and measured will approach zero after p (k > p) samples. 

Therefore the above equation for estimated output can be written as

y(k) + £  O^y ik  - 1) = X  d™ u(k -  /) + Du(k) (20)
/=! /=!

where 0™ = C(A + LC)'~' and ^ (2) = C(A + LC)"'(B + LD).

This equation is known as ARX model of order p. ARX model is used in 

developing recursive system identification techniques such as Fast Transversal 

Filter which is described later in this chapter.

3.2 Classical Least Squares Approach for System Identification

Consider the ARX model as described in Eq. (20) and rewrite it as
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y(k)  = 0 V,p( k - 1)

where y/p(k - 1) contains the input/output data and 0 contains the observer 

Markov parameters written as

¥ Pik - \ ) = [u {k )  y ( k - 1) u ( k - 1) ... y ( k - p )  u ( k - p ) ] T 

0 =[D - 0 ™  0™ ... - 0 pl2) 0p(,)]

Collecting all y(k) for instants 0 through present above equation can be 

written in a matrix form as

Y{k) = f f ¥ ' { k - 1) (21)

0) «(1) u(2) u(p) u(k)
V(o) V(\) ... i y (p - l )  ... y s { k - 1)

where 4^ (& — !) = <K0) ... y / ( p -  2) ... y / ( k -  2)

K 0) y/ (k-p)_

Y(k) = [y(0) j/(l) y(2) ... y(p) ... y(k)]

^ p{k -1 ) is input/output data matrix with dimensions

[(m + r)p + r~\x. (k + 1) where m is the number of outputs, r is the number of 

inputs and p  is the order of ARX model. Y(k) contains the measurement data.
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The observer Markov parameters, 0 , can be obtained by applying a least 

squares solution to Eq (21) as

K  = Y ( k W Tp (* -  1)PF, (k - 1) (* -1)]-' (22)

The least squares solution can be obtained once sufficient number of data 

points, k>( ( r  + m)p + r) for input/output data have been collected. The least 

squares solution for observer Markov parameters described using Eq. (22) has two 

drawbacks. First, the observer Markov parameters can only be obtained once all 

the data for k  time instants has been collected. Second, it requires inverting a large 

covariance matrix [ ^ ( ^  -  l)*Fj (k - 1) ] every time new data becomes available.

Matrix inversion is a computationally intensive task and cannot be used in a 

solution for on-line implementation.

3.3 Recursive Technique

Recursive techniques can be applied in order to overcome the difficulties of 

least squares solution described in the previous section.

Eq. (22) can be written for time instant k+1 as

4, (* +1) = Y(k + 1)»f; (* )[¥ , ( * ) ¥ ;  (*)]-* (23)

such that Y{k +1) = [Y(k) y(k +1)] and *Fp (k)  = [¥ p (k - 1) y/p (k )].
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Now define the inverse of the input/output data covariance matrix as

PP(k) = ['¥p(k)'¥Tp (k)Yl

Further expanding the terms on the right hand side in this definition

' V l ( k - l )
W , { k - D  ¥pm i  p¥ r {k) ]

i-i

= ¥ , ( * - 1 ) ^ ; (k - 1) + iffp(k-)wTp (*)]"' (24)

= [P;l( k - l )  + it,p( k ) r t ( k ) ) -1 (25)

Eq. (25) can be simplified by application of matrix inversion lemma 

(Sherman-Morrison formula) [43] as

V D( k ) w TA k ) P A k - \ )  
Pp(k) = P ( k - l ) [ I -  Vp )Wp p :] (26)

{\ + yrTp (k)Pp(k- \ )yrp{ky  

The Eq. (26) has been now been transformed in form useful for recursively 

updating the inverse of covariance matrix, Pp (k ) ,  without having to perform a 

large matrix inversion.

Define G (k) =
yrTA k ) P A k - \ )

\ + V Tp { k ) P ( k - \ ) y , ( k )
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Notice that the denominator in above equation is a scalar. Utilizing the 

recursive formulation for Pp(k)anA. Eq. (23) an expression for updating the 

observer Markov parameters can be written as

£p(k + l) = Y(k + l)'i'Tp (k)Pp(k)

= [Y{k)^Tp (k - 1) + y(k  + \)¥ Tp 0k)\Pp (k - 1)[7 -  Wp(k)Gp(At)]

Now applying the expression Op (k) = Y(k)KYp (k - 1 )Pp (k - 1) to above 

equation

5P (k  +1) = [4  ( i ) -  i  (*)G ,(*) + y(k + \ ) v Tt (k) P„ (k  -1 )

simplifying the third and fourth terms in the above expression

&P(k + 1) = (k) + [y(k +1 ) -S p (k)¥p (k)]Gp (k)  (27)

The above equation presents an expression for obtaining the observer Markov 

parameters recursively. This expression can be simplified by defining the 

following

* *  + l) = ^ (* )p ,(* )  (28)

e(k +1) = y(k + 1) -  y(k + 1) (29)
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Finally, the recursive updating of the observer Markov parameters can be 

written as

t p (k + 1) = Sp (k) + e(k +1 )Gp (k ) (30)

Formulas presented in Eqs. (26), (28) ,(29) and (30) constitute the Recursive 

Least Squares (RLS) algorithm [44]-[45].

In the above definitions y(k  +1) is the predicted output at next time instant 

and e(k+1) is the difference between estimated output and measured output at time 

instant k+1. Gp(k) can be considered as the gain vector which determines how the 

output estimation error affects the update of observer Markov parameters

9p(k +1). The estimated output computed by y(k + 1) = 9p(k)y/p(k) can be

called as a priori estimate since the Y (k) uses measurement at time instant k and 

not £+l..The expressions for a priori and a posteriori output estimates and errors 

can be written as

y~ (k +1) = 6p (k)y/p (k) - a priori output estimate

y + (k + 1) = 9p (k +1 )\f/p (k) - a posteriori output estimate 

e~ (k +1) = y(k + l ) - y ~ ( k  + 1) - a  priori estimation error
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e+(k +1) = y{k  +1) -  y + {k +1) - a  posteriori estimation error

Based on these definitions the equation for parameter update can be written as

(k +1) = 9p (k) + e~(k + 1 )Gp (k) (31)

Substituting the expression for a posteriori output estimate into a posteriori 

estimation

e \ k  +1) = y{k  +1) -  t p{k +1 )iyp(k)

which upon simplification results in

e*(k + l) = ______ e ' ( t  + 1)______

This equation shows a recursive procedure of updating the a posteriori 

estimation error using the a priori estimation error.

As indicated earlier Y(k) contains the various output measurements such that 

Y(k) = [XO) ^(1) y{2) ... y(p)  ... y(k)]. The output estimation error 

corresponding to difference between y(k) and y(k)  has an analog known as 

equation error which is the difference between Y(k) and predicted values as 

described by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E p (* +1) = Y{k +1) -  9p (Ar + iyF , (Ar)

51

Utilizing the definitions of a priori and a posteriori estimation errors, Y(k) 

and p{k) the above equation can be rewritten as

E p{k +1) = [Ep{k) - e-p{k + Y)Gp{k +1 )¥ ,(*  +1) «;(* +1)]

Now defining equation estimation square as

E p(k+l)=Ep(k + l )Erp (k + l)

This equation can be simplified in terms of output estimation errors as

E p(k+\)=Ep (At) + e; (k + l)[e;  (k  + l)]r

The above equation shows how the equation estimation error squares can be 

recursively obtained from a priori and a posteriori errors.

3.4 Fast Transversal Filter (FTF)

The recursive least square algorithm described in the previous section can 

very well be implemented to perform on-line system identification, but, the 

number of mathematical operations that need to performed for this algorithm place 

a constraint for a system with a large system order p and large number of inputs 

and outputs. The number of mathematical operations for recursive least squares
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algorithm are proportional to [(r + m)1 p 1], therefore increase quadratically with 

the increase in system order p.

Computationally efficient versions of RLS known as Fast Transversal Filter 

(FTF) and Least Squares Lattice (LSL) filter were first presented by Cioffi and 

Kailath [46] and Lee and Morf [47]. Other formulations of FTF have been 

presented in references [44] and [45]. The implementation of on-line system 

identification algorithm developed and presented in this work is based on the 

formulation of FTF presented in reference [44].

Fast Transversal Filter (FTF) reduces the number of mathematical operations 

by utilizing the shifting property of input/output data that becomes available 

serially. The number of mathematical operations for FTF are proportional to [(r + 

m)-*]. The system order does not have any effect on the number of mathematical 

operations for FTF.

The functionality of FTF can be broken up into three parts: 1) Initialization of 

variables, 2) Forward time estimation, 3) Backward time estimation. Forward time 

estimation and backward time estimation share a common data matrix and update 

each other recursively. The computational steps of FTF are described in this 

section. Variables with -> correspond to the forward time estimation and those 

with <— correspond to backward time estimation.
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Initialization:

The initialization begins when sufficient amount of input/output data has been 

collected such that k> (r + m) p + r. The vector y/p{k — 1) and input/output data

matrix 4^ ( k -  2) are formed as shown below in steps 1 and 2

1) y/Tp ( k - \ )  = [y/T(k) i//T( k - 1) y/T( k - 2) ... y/T( k - p ) \

2) *¥ ( k - 2 )  =

u{ 0) u( 1) u(2)
K0) ^(1) 

HO)

<P)
H p -  i) 
H p - Z)

HO)

u ( k - 1) 
y/ (k-  2)

H k ' l )  

H k - P ~  1)

3) T /, a - l )  = ['Pp(^:-2) ^ ( 4 - 1 ) ]

Matrix vPp+1 (k) can be partitioned in two different ways for use in forward

prediction and backward prediction calculations. Matrices Yu(k-1) and Fu(-1) 

relevant to forward prediction calculation are obtained as shown in steps 4 and 5 

below

4) Y , ( k - 1) =
m(1) h( 2) m(3) ... u(j> + \) w(ifc)

MO) Ml) M2) ••• M/0 ••• M * - i )
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5) Ya(r  D =
'u(O)'

0

Yj/k-l-p) used in backward prediction calculation is obtained as

6) Yu( k - l - p )  =
0 0 0 ••• «(0) ••• u ( k - l - p )
0 0 0 ••• _y(0) ••• y ( k - l - p )

Initialization of Forward Time Estimation parameters is performed as follows:

7) P ( k - 2 )  = [ ' ¥ ( k - 2 ) ' ¥ T( k - 2 ) r '

y/TA k - \ ) P ( k - 2 )
8) Gp W - i  + y T , k _ l ) p ( k _ 2)  ( A r _ D

9) 0 ( k - l )  = Yu( k - \ ) ^ ( k - 2 ) P ( k - 2 )

10)
E(k  -1 )  = Yu ( -1 )7 / (-1) + [Yu ( k - 1) -  §,(k - l y v j ( k  -  2)]

x[7u( * - l ) - d p( * - l ) 4 / ( f c - 2 ) ] r

11) y ( k - \ )  = \ - G ( k - \ ) i f / ( k - \ )

Initialization of Backward-Time Estimation parameters is performed as

12) P J k -1 )  = P J k - 2 ) [ / - V J k - » G J k -1)]
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The recursion procedure begins with forward-time prediction with formation 

of vectors if/p(k -1 )  and Yu(k) using last measured output y(k) and input «(&+!).

u(k) 
y(k  - 1)
u(k - 1)

y ( k - p )
u ( k - p )

2) ¥u(k) =
u(k +1) 

y{k)

3) e:{k) = Yu{ k ) - d ( k - \ ) i y ( k - \ )

4) e;{k) = y ( k - \ ) e - A k )

5) 0 J k )  = 0 ( k - l )  + eUk)Gp( k - l )

6) E p(k) = E p( k - l )  + e;(k)[e;(k)]r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

7) Gp+l(k) = [e;(k)T! ; '( * )  G ,( * - i ) - * ;c * ) r § ; '(* )! ,(* )

8) W = r,(* ■-i ) - e ; v c ) TE-pl(k)e;(k)

The gain vector (shown in step 7) that is used by each of the forward and 

backward time estimations is partitioned G , (k) = [G(r̂  (k) G(£ x (&)] where

The backward-time update recursion steps are as follows:

u(k +1) 
y(k)
u(k -  2)

y ( k - p  +1) 
u(k -  p  +1)

2) r . ( k - P) =
y{k -  p)
u ( k - p )

3) e~(k) = Yu( k - p ) ~ O A k -  \)y/ (k)

4) e U k )  = y A k - l ) e U k )

r m  a%(k)+a%et(k-\) 
5) ° ' W  = i-oJ?,(t)*;(t)
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Y . ( k - 1)

75 r , ( * ) = i - G ^ , (*)«;(*)

8) ep (k) = / p(k)e;(k)

9) E / * )  = E , ( * - l )  + ? ;(* )[e ;(* )]r

After performing the above the computational steps the forward time 

recursion again begins for time index k

3.5 Implementation of FTF

The development of FTF as on-line system identification routine was planned 

and conducted with the goal of implementing it for control system applications 

(e.g. fast orbit and energy feedback systems) in the CEBAF control system. The 

accelerator has a distributed real-time control system [48], known as EPICS [49], 

which is implemented on more than 50 VMEbus CPUs (Motorola 68040 uP ) 

located in service buildings around the racetrack shaped accelerator. These CPUs 

are connected via Ethernet. Each CPU runs a multitasking real-time operating 

system known as VxWorks [39]. Most of the development work for VxWorks 

target system is done on multi-user UNIX host system which provides tools such 

as text editors, make, source-code control etc.
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Since the response time and data rate through the top level control system, ie. 

EPICS, is limited due to network constraints and indeterminacy of Unix, FTF 

routines have been implemented as VxWorks tasks, which can be triggered and 

monitored by routines of top level control system.

FTF routines are programmed in C and compiled with a C cross-compiler for 

combination of UNIX as host system and Motorola 68040 on MVME167 

VMEbus single board computer running VxWorks as the target system. FTF 

routines also utilize some of the VxWorks libraries in order to use various 

VxWorks functions, such as circular (ring) buffers. Various modules of the FTF 

routines do not need to be linked with VxWorks system libraries or even with each 

other. The object modules are loaded directly onto the VxWorks system which 

using the symbol table contained in object modules dynamically resolves external 

symbol references. The C code for various routines of FTF is shown in Appendix 

B.

3.6 Catchup Technique

As described earlier, the functionality of FTF can be broken up into three 

parts : initialization, forward time estimation and backward time estimation. Once 

sufficient number of data points, (k >(r + m)p + r), become available, the 

initialization routine can be executed.
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The initialization routine consumes the largest amount of time on the 

microprocessor. For a two input/two output system with model order of 5 the 

initialization routine consumed 19.661 msecs. Each iteration of forward-time 

recursion takes 3.795 msecs.

While the initialization is taking place, new input/output data keeps coming 

in. Before the forward time recursion can begin, a certain number of data points 

will be lost if recursion begins at the latest data point. In most cases this would not 

be a matter of concern. However, since the backward time recursion routines are 

sensitive to a loss of data between the initialization and the actual beginning of the 

recursive procedure, the performance of the FTF could be improved if a catchup 

technique were implemented. Such a facility can prevent the discontinuity between 

the initialization data and the set where recursion begins.

The VxWorks operating system [39] provides a facility of circular buffers (or 

ring buffers) which has been used to implement the catchup technique. In this 

scheme all the incoming input/output data goes into circular buffers. The 

initialization routine begins when sufficient number of data points have been 

accumulated in the circular buffer. While the initialization is taking place the new 

data keeps filling the circular buffer. Once the initialization process is complete the 

forward-time recursion begins by reading the data point in the circular buffer 

where the initialization routine left off. If the processor time consumption for
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forward and backward time recursion is smaller than the sample rate then catchup 

can be completed within a finite number of time steps. The catchup technique will 

mostly be useful for the systems with a high levels of noise.

3.7 Performance of FTF routine

A two input, two output system was simulated in MATLAB to study the 

performance of FTF routine. The system matrices for the system that was 

simulated are as follows

'0 1 ' 1  O ' ■  1  1 0 ' ' 1  O '

, 5  = , c  = ,D =
1  - 0 . 5 0  1 0 . !  5

9 0 1_

The simulated input/output data for this system for various test cases was 

recorded in text files and was used to test the performance of system identification 

routine.

The first test case involved identification with noise free data for inputs and 

outputs. In second case identification was performed with noisy data, where 10% 

(zero mean, uniformly distributed, random) noise was added to the input and 

output data.

The error between estimated output and measured output of the system can be 

used as a criterion to determine how well does the system algorithm perform. 

Fig. 13 shows a comparison between output 1 and estimation error (residual) for
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the noise free case. The estimation error is very small. Peak to peak variation is 

estimation error approximately 10'5. Fig.14 shows a plot of estimation error 

(residual) for output 1. For ±1V amplitude outputl signal, the RMS value of 

estimation error was 1.248 x 10"6.

Fig. 15 shows a comparison between output 1 and estimation error for the 

case where 10% random noise was added to input/output data. For ± IV amplitude 

output 1 signal, the RMS of estimation error for the 10% noise added to 

input/output data is 0.0392
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Fig. 13 Comparison between Output 1 and the difference between 
the estimated and actual output for the noise free case. Peak to 
peak variation in estimation error is 10'5
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Fig. 14 Estimation error for Output 1 for noise free case. Peak to 
peak variation in estimation error is 10'5.The RMS value of 
estimation error is 1.2486 x I O'6
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Fig. 15 Comparison between output 1 and estimation error for the 
case where 10% random noise was added to input/output data.
Peak to peak variation in estimation error for output 1 is 0.1901.
RMS of estimation error is 0.0392.

Next chapter describes a hardware-in-loop simulation that was performed 

using an analog computer and a teststand VMEbus CPU to test the functionality of 

on-line system identification algorithm under conditions of varying plant 

dynamics and process and measurement noise.
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CHAPTER IV

ANALOG COMPUTER SIMULATIONS

4.1 Description of Analog Computer

An analog computer solves a real world problem by rendering the abstract 

mathematical system into electrical operations whose functions in reality are 

governed by the same equations as mathematical system. Two problems or 

systems are said to be analogous if certain or all of their respective measurable 

quantities obey the same mathematical laws. Analog computers benefit from using 

active electrical circuits as analogous system because they have no moving parts, 

they have a high speed of operation, yield good accuracy, and have a high degree 

of versatility. Active electrical networks consisting of resistors, capacitors, and op- 

amps connected together are capable of simulating any linear system. The forward 

voltage transfer characteristics of these networks are analogous to the basic linear 

mathematical operations encountered in the system’s mathematical model. By 

using diode function generators and special circuits which have nonlinear voltage 

transfer characteristics, it is also possible to simulate some nonlinear systems on 

analog computers.

65
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The input and output voltages of the analog computer are analogous to the 

corresponding mathematical variables of the problem. In some cases because of 

limitations of the analog computer or its associated input/output hardware, it 

becomes necessary to change the scale of the analog computer variables. It is 

important to realize that an analog computer solution is simply a voltage 

waveform whose time dependence is the same as that of the desired mathematical 

solution of the system equations the computer represents.

The procedure for simulating a system on an analog computer starts by 

determining the mathematical model describing the physical system of interest. An 

analog block diagram of the system is constructed to relate the sequence of 

mathematical operations and to aid in scaling the analog computer variables, if 

necessary. Using the analog block diagram, the electrical components are 

assembled together on the analog computer.

A typical simulation of a physical system involves a mathematical model of a 

system consisting a set of one or more differential equations and initial conditions 

on the variables. If the system is linear, the differential equations are linear. The 

operations required for a linear system are summation, sign inversion, 

multiplication by a constant, integration and differentiation. Each of these 

operations can be performed by different elements of the analog computer that
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need to be assembled together in order to represent a complete differential 

equation.

4.2 Simulation Setup

A simulation test-stand was assembled to test the performance of an on-line 

system identification algorithm. A continuous-time plant whose dynamics and 

noise characteristics could be varied was simulated on an analog computer.

A Comadyna GP-10S [50] analog computer was used in this simulation test- 

stand. This analog computer has eight patch-panel operational amplifiers (op- 

amps). Each of these amplifiers have a provision of up to four integrating 

capacitors (two slow, two high speed). Amplifiers 1-6 have individual boards that 

connect 50K and 5K patch-panel input resistors. Amplifiers 1-4 have individual 

attenuators to adjust integrator initial conditions. There are eight potentiometers 

(5K variable resistance) available to be used as attenuators with any of the 

amplifiers. Besides these components, the analog computer has discrete modular 

elements such as multipliers, invertors etc.

The on-line system identification algorithms runs on a Motorola 68040 

microprocessor mounted on MVME167 board resident in a VME crate. The 

input/output data from the plant, simulated by the analog computer is sampled 

using a 16 bit-16 channel Analog to Digital Convertor (ADC). The ADC used for
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this simulation test stand is a Greenspring computers Industry Pack® IP-16 ADC

[51].

The IP-16ADC provides 16 single-ended input lines or eight differential input 

lines. The IP-16ADC provides 16 resolution. Software programmable gains of 1 or 

0.5 and software programmable modes, unipolar or bipolar, enable the IP-16ADC 

to input ranges of 0 to 5 V, ±5 V, 0 to 10V , and ±10 V. The bipolar mode with a 

input range of ±10 V was used for the simulation test stand. The conversion time 

for IP-16ADC is 8 pseconds, which provides a usable throughput of 100000 

conversions per second. The IP-16ADC can work in either single conversion or 

continuous conversion mode. In continuous mode the first conversion is initiated 

by writing to a unique address in I/O memory space. The subsequent conversions 

take place automatically after the previous conversion has been completed. In 

single conversion mode each conversion is started by writing to a unique I/O 

memory space. Data is ready to read after the Ready bit (SDL bit) has been set. 

The single conversion mode was selected for the test stand. A device driver was 

written in C programming language for this ADC. The source code for this device 

driver can be seen in Appendix B. The device driver performs all the operations 

needed to read the ADC data and make it available to the system identification 

algorithm running on the microprocessor.
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The EP-16ADC IndustryPack is installed on a VME6U slave board VMESC5

[52] that can support five IndustryPacks. This board is manufactured by Systran 

Corporation.

The control signal generated by the algorithm running on the microprocessor 

is sent to the analog computer through a VME Digital to Analog Convertor 

(DAC). The DAC card, DVME-628 [53], manufactured by Datel Corporation is 

used for this test stand. It provides eight channels of digital-to-analog conversion 

with 12 bit resolution. Each channel has its own D/A convertor which settles to an 

overall accuracy of ±0.05% of full scale within 6 jiseconds. The DAC card can 

deliver the analog output signal between the ranges of 0 to 5V, 0 to 10 V, ±2.5 V, 

±5.0 V, and ±10 V. A device driver was written for this card which can perform all 

operations needed to generate an analog correction signal from the digital output 

generated by the microprocessor.

Two Tektronix 2400 digital oscilloscopes were used to observe the various 

input/output data generated during the course of simulation on the test stand. A 

Hewlett-Packard 3132A model function generator was used to generate the 

various disturbances and reference signals. A two input/two output system was 

configured on the analog computer to be simulated as the plant. A circuit diagram 

for the simulated system is shown in Fig. 16.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

4.3 Simulation Cases

A two input/two output system was configured on the analog computer to be 

simulated as the plant.

d12
1C

R11

R12

Y1

d22
IC

C21R21
A A

12

Ri2
d21 R 22

Y2

C22

Fig. 16 Schematic diagram of the system simulated using an 
analog computer
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The circuit diagram of the simulated system shown in figure 15 represents a 

two state system that is decoupled. The input points for this system are denoted as 

II and 12 and the output measurements are available at 01 and 02. The initial 

conditions can be applied at points denoted by IC. R l l ,  R12, R21, and R22 

represent the attenuators that can be varied to change the plant dynamics by 

changing the RC time constant and integrating action for each of the states. 

Various noise sources can be applied at points dl 1, dl2, d21, and d22 to affect the 

process and measurement noise characteristics of the system.

4.3.1 Variation in dynamics of the plant

The first simulated case involved observing the performance of the system 

identification algorithm under conditions of time-varying dynamics. This was 

accomplished by varying attenuators R11 and R12 for state 1 and R21 and R22 for 

state 2 during the course of simulation while the system identification algorithm 

was running.

Fig. 17 shows a comparison between the actual output and the estimated 

output generated from the identified system for state 1. The estimated output of the 

system is computed from identified observer Markov parameters using

y(k + 1) = &p(k)y/p(k) . Fig. 17 shows the same comparison for output 2.
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samples

Fig. 17 Comparison between actual and identified output 1. The 
dynamics of simulated plant was changed at 4 instances by 
varying attenuators R11, and R12.First change was introduced at 
sample 90, 2nd at sample 155, 3rd at sample 300 and 4th at sample 
395.
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actual ; 
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CM
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samples
400 450 500

Fig. 18 Comparison between actual and identified output 2. The 
dynamics of simulated plant affecting state 2 was changed at 6 
instances by varying attenuators R21 and R22. First change was 
introduced at sample 25, 2nd at sample 75, 3rd at sample 145, 4th at 
sampler 200, 5th at sample 260 and 6th at sample 310
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Fig. 19 shows a plot of error between identified and actual output for state 1. 

This plot shows that estimation error is large at the moment that system dynamics 

is changed, however the error rapidly drops to a nominal value within 2-3 cycles. 

The dynamics of the system was changed using attentuators R12, R22. The effect 

of this change is apparent at sample instant 90 in this plot.

1.5

0.5

I??-0.5

-1.5
100 150 200 250 300 350 400 450

samples
500

Fig. 19 Estimation error between actual and identified output 
1. Spikes at samples 90, 155, 300 and 395 correspond to 
instances when the dynamics of system affecting state 1 was 
changed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75
Fig. 20 shows disturbance suppression achieved by applying the correction 

signal generated by the system identification algorithm. This figure shows that 

disturbance is suppressed to within 4% most of the time. However it rises to 8% 

momentarily when the dynamics is changed.

0.04

I

£ - 0.02

© _n.04

°  -0.06

-0.08
50 100 150 200 250 300 350 400 450

samples

Fig. 20 Disturbance suppression achieved by application of 
feedback correction using input 1 for the case where system 
dynamics was changed. Spike observed at sample 90 corresponds 
to the first instance where system dynamics was changed.
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4.3.2 Variation in noise characteristics

The first test involved adding 5% random noise to input d ll and dl2 and 

varying the input signal during the course of simulation. The system dynamics was 

not changed. Fig. 21 shows a comparison between actual and identified output 1.

1.5

 ider trf ed
-  - acttal

0.5

-0.5

-1.5
50 100 150 200 250 300

samples
350 400 450 500

Fig. 21 Comparison between identified and actual output 1 for the 
case where 5% random noise was added to measurement and 
control input data and at points dl 1 and dl2.
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The estimation error for output 1 shown in Fig. 22 indicates that the nominal 

value of estimation error is larger compared to the noise-free case where system 

dynamics was changed as shown in Fig. 19.

t i i i---------- 1----------r

-0 .2  h

_ Q  3 1__________ i__________ i__________ i___________ i__________ i__________ i__________ i___________ i__________ i___________I

‘ 0 50 100 150 200 250 300 350 400 450 500
samples

Fig. 22 Estimation error between actual and identified output 1 
for the case where 5% random noise was added to points d l l  and 
dl2.
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Fig. 23 shows that, with application of feedback correction signal generated 

for the identified system, the disturbance is suppressed to within 8-10% for this 

case.

0.1
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1-0.04 00
1
“ -0.06 Q

-0.08

“° '10 50 100 150 200 250 300 350 400 450
samples

Fig. 23 Disturbance suppression achieved after application of 
feedback correction using input 1 for the case where 5% random 
noise was added at points d ll  and dl2.

In the second simulation case, the process noise characteristics were varied by 

changing the amplitude and frequency of the disturbance source applied to point
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d ll  and dl2 shown in circuit diagram in Fig. 16. A comparison of the actual 

output with the estimated output 1 is shown in Fig. 24.

1.5

identif ed 
actual

0.5
>

3
Q.3o

-0.5

200 250 300 350 400 450 500100 150
samples

Fig. 24 Comparison between actual and identified output 1 for the 
case where amplitude and frequency of noise signal applied at 
d ll and dl2 was changed.
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Fig. 25 shows the estimation error between actual and identified output. The 

estimation error becomes large momentarily when the amplitude and frequency of 

the disturbance is increased.

- 0.1 -  

-0.15 - 

- 0.2 -
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samples

Fig. 25 Estimation error between actual and identified output 1 for the 
case where amplitude and frequency of noise was changed. Error 
becomes large at sample 110 when amplitude and frequency of noise are 
increased.
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Fig. 26 shows that by applying a feedback correction signal generated by 

system identification algorithm, the disturbance is suppressed to within 6% most 

of the time. However the residual error rises to 8% momentarily when the noise 

characteristics are changed.
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Fig. 26 Disturbance suppression achieved by application of 
feedback correction using input 1 for the case where amplitude 
and frequency of noise are changed. Suppression reduces at 
sample 110 when amplitude and frequency of are increased.
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4.3.3 Variation in noise characteristics and dynamics

In this simulation both the noise characteristics and the system dynamics were 

changed while the performance of the system identification algorithm was 

observed. The system dynamics were varied by changing the attenuator R12 and 

adding capacitor C12 in the feedback circuit Fig. 27 shows a comparison between 

the actual and the identified output.

0.8

0.6

0.4

0.2

- 0.2

-0.4

: r  identif ed
   actual

- 0.6

- 0.8
100 150 200 250 300 350 400 450 500
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Fig. 27 Comparison between actual and identified output 1 for the 
case where dynamics of the system and noise characteristics were 
changed simultaneously.
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. Noise characteristics were changed by changing the frequency and amplitude 

of disturbance applied at points dl 1 and dl2. Fig. 27 shows the estimation error 

between identified and actual output 1. Estimation error becomes large when the 

system dynamics and noise characteristics are changed. The error drops to nominal 

value within 3 cycles. The estimation error observed for this case is the larger than 

the cases where either the dynamics or noise were changed separately.

0.31 i 1----------1---------- 1----------1----------1--------- 1----------1---------- 1----------

0 .2 -

- 0.2 -

_ 0  3 1----------1----------1----------1----------1---------- 1----------1----------1----------1----------1----------
' 0  50 100 150 200 250 300 350 400 450 500

samples

Fig. 28 Estimation error between actual and identified output 1 
where system dynamics and noise characteristics were varied 
simultaneously. Spike at sample 110 corresponds to the instance 
where dynamics of system was changed.
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Fig. 29 show the disturbance suppression achieved by application of feedback 

correction in this case. It can be observed from Fig.(s) 27 and 29 that the 

disturbance suppression is smaller when the output measurement signal amplitude 

is decreased.
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Fig. 29 Disturbance suppression achieved by application of 
feedback correction using input 1 for the case where system 
dynamics and noise characteristics were varied simultaneously.
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4.4 Model Order Selection

Model order for a system may not be known accurately a priori. A higher 

model order often results in a better fit between identified and actual system 

model. However, for some system identification algorithms a higher model order 

would result in a disproportionately large computational load. FTF has an 

advantage in this regard for on-line implementation.

Increasing the model order beyond a certain point will not result in any more 

improvement in model fit. There are various criteria that can be applied to 

determine the model order which would result in the best model fit. The one 

applied in this work is described as

tr[Ejr(^)Ep(A:)] = fr[(T(*) -  9p^ p(k -  1))(T(A:) -  9p^ p{k -  l))r ]

which is the trace of the equation error squared. This is also known the as 

“loss function”. The experimental data collected from the analog computer test 

stand indicates that the model order greater than 5 will not result in any added 

improvement in the model fit. Fig. 30 shows a graph of loss function plotted 

against model order p.
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Fig. 30 Loss function vs. Model order
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CHAPTER V

SUMMARY OF RESULTS AND CONCLUSIONS

In this chapter a review of various results presented in previous chapters and 

conclusion drawn from this study are presented. Possible extensions of this 

research are also presented.

5.1 Summary and Conclusions

Results of various noise measurements conducted on the accelerator were 

presented in Chapter 2. These results indicate that line power harmonics are the 

primary sources of disturbance on beam orbit and energy. The strongest 

disturbance component corresponds to 60 Hz frequency and the largest frequency 

component observed is at 180 Hz. The amplitude of the 60 Hz component for 

beam position variation can be as large as 1.98 mm in the X plane, observed at 

BPM locations in the injector. The largest amplitude of the beam energy variation 

tsE/E was observed in the injector. Its amplitude was 1.38 x 10°. These 

disturbance components vary with time. Table 1 displays variations in amplitude 

of the 60 Hz component at various locations in the accelerator. Table 2 shows the

87
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variation in these disturbance components observed from data collected using SEE 

BPM low level data acquisition software.

The performance data of the prototype fast feedback system that has been 

implemented in the injector and East Arc region of the accelerator was described 

in chapter 2. The transient response characteristics of fast orbit and energy lock 

systems, sampling at 60 Hz rate, indicate that these systems can correct a DC error 

within 4 samples (66.67 msec.). The disturbance suppression observed for fast 

energy lock indicates that the RMS error can be reduced by a factor of 10 by 

application of feedback control. The power spectra for the AE/E observed before 

and after application of a correction signal indicates that the power of deterministic 

disturbance signal (6 Hz) was reduced by over two orders of magnitude by 

application of the correction signal.

The theory and implementation of an on-line system identification algorithm, 

Fast Transversal Filter, was described in chapter 3. Computation efficiency of FTF 

makes it attractive for on-line implementation. Timing studies performed on the 

algorithm indicate that model order p  does not affect the CPU computational load 

of FTF for a given number of inputs and outputs. Fig. 31 shows a plot between 

CPU time and model order. Increasing the number of inputs and outputs does 

affect the time required for one FTF iteration, which is approximately proportional 

to (r + m) 3, where r is the number of inputs and m is the number of outputs. A
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catchup technique has been implemented to further improve the performance of 

the FTF algorithm for on-line implementation.
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Fig. 31 CPU time/FTF iteration vs. Model order 

Performance of the implementation of the FTF algorithm for on-line system 

identification was verified on a simulation test-stand whose detailed description 

was presented in chapter 4. An analog computer was used to simulate a 

continuous-time plant. The FTF algorithm was executed on the test-stand 

microprocessor, which is similar to CEBAF control system microprocessors. 

Various test cases that were studied included on-line identification under
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conditions of varying plant dynamics, disturbance signal, and noise characteristics. 

Results from a simulation where the plant dynamics and the noise characteristics 

both vary with time indicate that the disturbance can be suppressed to within 8% 

nominally. Observations of processor time consumption indicate that one iteration 

of FTF for a two input/two output system with model order of 5 consumes 3.795 

milliseconds.

The FTF algorithm implementation described in this dissertation, with added 

exception handling and minor modifications can be used to monitor and improve 

the performance of the fast orbit and energy feedback systems currently installed 

in the CEB AF control system.

5.2 Future Work

The processor time consumption per iteration of FTF for a system with large 

number of inputs and outputs can further be reduced by applying a recursive 

scheme for obtaining the matrix inverse of Ep described in step 7 of forward time 

estimation computation procedure.

On-line FTF implementation as described in this work could further be 

enhanced to perform the task of on-line system diagnostics and fault prediction. 

Since the observer Markov parameters have in them embedded all the system
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matrices relevant to a feedback loop they can provide a wealth of information 

about the state of various actuators and sensors.

FTF algorithm could be implemented on a specialized microprocessor, with 

access to ADCs and DACs that interface with the dynamic system, to solve a 

general class of control problems. By applying a known excitation to available 

inputs of the plant and monitoring the outputs, FTF can construct the information 

about the system model and start generating control action for a desired 

performance objective thereafter. It can also tune itself to varying conditions of 

plant dynamics and noise characteristics by constantly observing the input/output 

data from the system. The processor power will be the limiting factor for the 

sample rate, and the number of inputs and outputs that could be considered for 

such a solution.
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APPENDIX A

Table A .l: Beam Requirements - general characteristics

Parameter Nominal Value and Range Stability d (for 
hours)

Beam Emittance: rms spot 
size for achromatic beam 
tune (1 a) (> 1 Hz)

Hall Ab,c: 20 um < a T < 50 pm 
20 pm < a y < 50 pm 

Hall B: 20 um < c„  < 70 um 
20 pm < c y < 70 pm 

Hall Cc: 50 um < aT < 100 pm 
50 pm < oy <  100 pm

25% of value

Beam Emittance: angular 
divergence (1 a) (> 1 Hz)3

ctx., oy. <  100 pr 25% of value

Beam position (  <  1 Hz)3 0 pm (relative to monitor axis) rms deviation is 
less than 25% of 
the beam spot’s 
rms radius

Beam direction (< 1Hz)3 0 pr (relative to monitor axis) rms deviation is 
less than 25% of 
the beam angular 
divergence rms 
!4 cone angle

Energy Spectrum (1 cr) (>  1 
Hz)3

Hall A: cte/E  <  5 E-5 
Hall B: a E/E < 4.0 E-4 
Hall C: ctf /E  < 2.5 E-4

25% of value

Energy (average) (< 1 Hz)3 0.5 - 4 GeV Hall A: < 3 E-4 
Hall B: < 1 E-3 
Hall C: < IE-3 
(also < 3E-3 
over days for all)

Background (Beam Halo) < IE-6 of Total Current at 5a 
(with diagnostic to be 
provided by the experiment)

any value within 
nominal range

Current (dc average) (< 1 
Hz)3-'
(Note: any single hall is

Hall A: 40 nA - 180 pA 
Hall B: 1 nA -10 pA 
Hall C: 40 nA - 180 pA

within 10% of 
value requested 
by experimenter
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restricted to < 120 pA 
unless it has exclusive use 
of the beam, and total 
current delivered to all 3 
halls must be less < 180 
pA)
Polarization (current range 
to be determined by 
agreement between Physics 
and Accelerator Divisions)

>35% (from bulk Gas, with 
expected currents of order 100 
pA)
> 75% (from strained 
cathodes, with currents of 
order 30 pA expected)

< 10% of value

Effective Duty Factor > 90% (lower values may be 
negotiated with the 
Accelerator Division)

any value within 
nominal range ( 
90%-100%)

Proper Impingement on 
Beam Dump (raster)

rastered beam spot size >100 
pm stability of position < 1 
cm (not including rastering)

a Note: We include in the definitions of beam emittance and energy and energy 

spectrum all components of the beam emittance at frequencies above 1 Hz; 

components at frequencies below 1 Hz are considered part of the beam position 

and direction ( for transverse phase space) and as part of energy average (for 

longitudinal phase space)

bNote: Hall A also requires an achromatic tune in which the beam spot is 2 mm < 

c x < 3mm and 20 pm < ny < 50 pm

c Note: Hall A and C also require a dispersive tune which results in larger spot 

sizes on the target depending on the energy spread in the beam
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d Note: The limits identified in all stability specifications are to be considered as 

“windows” on the measured values o f the quantities

e Note: The high frequency (> 1 Hz) fluctuations in the beam current are specified 

through the effective duty factor
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APPENDIX B

SOURCE CODE FOR THE ON-LINE SYSTEM 

IDENTIFICATION ROUTINES

/*  DAQftf.c V

/ *  */

/*  */
/* Module : DAQftf.c */
/* Function: */
/* This program collects the input/output data by reading the ADC. Input/ */
/* output data is filled in separate ring buffers which are accessed by the */
/* Initialization and FTF forward prediction routines for implementation */
/* of catchup technique */
/*  */
/* Rel Date Author Comments */
/* 0 8 Aug96 Mahesh Chowdhary Initial Release */
/ *  */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mgLib.h>
#include <taskLib.h>

#define BUFFERSIZE 1000

/* Id for Ring Buffers to store Input/Output data */

RINGJLD mgUl, mgU2, mgYl, mgY2;

/* variables for the IP ADC */

95
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/* Control and Status register */
unsigned short *cnsr = (unsigned short *)0xff£K)000;

/* Data register */
unsigned short *dreg = (unsigned short *)0xffff0004;

/* Trigger ADC Conversion Register */ 
unsigned short *trig = (unsigned short *)0xffff000c;

unsigned short data, ccnsr;

int points=0; 
int FTFDone=l;

DAQftf()
{

FILE *fpinput, *fpoutput; 
void resetADC(); 
void setChanl(); 
void setChan2(); 
void setChan3(); 
void setChan4(); 
void readADC();

int i, status;
double tmp, Ul[5000], U2[5000], Yl[5000], Y2[5000];

/* create ring buffers to store input/output data */

mgUl = mgCreate(BUFFERSIZE*sizeof(double)); 
mgU2 = mgCreate(BUFFERSIZE*sizeof(double)); 
mgYl = rngCreate(BUFFERSIZE*sizeof(double)); 
mgY2 = mgCreate(BUFFERSIZE*sizeof(double));

/* Open files to store input/output data for later analysis */

if((fpinput = fopen(" input", "w" ))= 0)
{
printf("cannot open the input file \n"); 
exit(l);
}
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if((fpoutput = fopen("output","w"))==0)

{
printf("caimot open the output file \n"); 
exit(l);
}

/* perform the software reset of ADC */ 
resetADC();

while(! FTFDone)
{
setChanl(); 
readADC();
trap = (data - 32768)*(10.0/65536);
Ul[points]=tmp;
status = mgBufPut(rngUl, (char *)&tmp, 8);

setChan2(); 
readADC();
tmp = (data - 32768)*(10.0/65536);
U2[points] = tmp;
status = mgBufPut(mgU2, (char *)&tmp, 8);

setChan3(); 
readADC();
tmp = (data - 32768)*(10.0/65536);
Y1 [points] = tmp;
status = mgBufPut(mgYl, (char *)&tmp, 8);

setChan4(); 
readADC();
tmp = (data - 32768)*(10.0/65536);
Y2[points] = tmp;
status = mgBufPut(mgY2, (char *)&tmp, 8); 

points-H-;
if(points > 5000) points = 0; /* don't need > 5000 points for analysis */
}

taskPrioritySet(taskNameToId("DAQftf'), 185); 

for(i=0;i<points;i++)
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{
fprintf(fpinput,"%g %g \n", Ul[i], U2[i]); 
f^rintf(fjpoutput,"%g %g \n", Yl[i], Y2[i]);
}

fclose(fpinput);
fcIose(fpoutput);
}

/* function to perform a software reset of ADC */ 
void resetADC()
{
*cnsr = 0x2168; 
ccnsr = 0; 
ccnsr = *cnsr;
while((ccnsr & 0x2000) =  0)

{
ccnsr = *cnsr;
printf("Reset the ADC, cnsr = %x \n", ccnsr);
}

/* select ADC channel 1 to be read */ 
void setChanl()
{
/* write to bits 3, 5, and 6 of Control& stat reg for +/- 10 V for chan 1 */ 
*cnsr = 0x2168; 
ccnsr = 0; 
ccnsr = *cnsr;
}

/* select ADC channel 2 to be read */ 
void setChan2()
{
/* write to bits 4, 5, and 6 of ControI& stat reg for +/- 10 V for chan 2 */ 
*cnsr = 0x2170; 
ccnsr = 0; 
ccnsr = *cnsr;
}

/* select ADC channel 3 to be read */ 
void setChan3()
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{
*cnsr = 0x2169; 
ccnsr = 0; 
ccnsr = *cnsr;
}

/* select ADC channel 4 to be read */ 
void setChan4()
{
*cnsr = 0x2171; 
ccnsr = 0; 
ccnsr = *cnsr;
}

/* perform an ADC read on the selected channel */ 
void readADC()
{
/* trigger the adc to convert data */

*trig = Oxffif;

/* delay for 16 msec */ 
taskDelay(l);

/* read the sdl register */ 
ccnsr = *cnsr; 
data = *dreg;

}
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/* runftf.c */

/*  —  */
/* */
/* Module : runftf.c */
/* Function: Reads the input/output data from ring buffers in order */
/* implement catchup technique. First, initialization */
/* routine (ftflnit) is called after k > (r+m)p+r data */
/* points have been collected, ftf routine is called */
/* thereafter for each new measurement. */
/* The vector and matrix memory allocations and matrix inversion */
/* routines us?d here are from the book: */
/* Numerical Recipes in C by Press, W.H., W.H., Teukolsky, S.A.,*/
/* Vetterling, W.T., and Flannery, B.P, Cambridge University */
/* Press, 1983 */
/* */
/* Rel Date Author Comments */
/* 0 8 Aug96 Mahesh Chowdhary Initial Release */
/* --------------------------------------------------------------------------------------------- */

#include <stdio.h>
#include <stdlib.h>
#include "nrutil.h"
#include <string.h>
#include <mgLib.h>
#include <taskLib.h>

/* global variables declared in DAQftf.o */

extern int FTFDone; 
extern int points;

/* ring buffers for input/out data (declared in DAQftf.o) */

extern RING_ID mgUl, mgU2, mgYl, mgY2;

runftfO
{

FILE *fp;
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int i=0j,n=500,init_pts, status;
int m=2,r=2,p=5,SizeX,mm;
float **utemp,**ytemp,*u,*y,*ukl,**Up,**Yp;
float **ulnit,**ylnit;
double uInp[2],yMeas[2];
double * *ThetaF, * * ThetaB, * * EsqF, * * EsqB, *error;
double *Gammak,*Gpk;
double *GpA,*GpR,GmP[l],*Yh;

SizeX=(r+m)*p+r;
mm=r+m;
init_pts=2*((r+m)*p+r);

/* memory allocation for vector */

u=vector(0,r-l);
y=vector(0,m-l);
Yh=dvector(0,mm-1); 
error=dvector(0,mm-1);
Gpk=dvector(0,SizeX-1);
GpA=dvector(0,mm-1);
GpR=dvector(0,SizeX-1);
Gammak=dvector(0,1);

/* memory allocation for matrices */ 
utemp=matrix(0,r-1,0,n); 
ytemp=matrix(0,m-1,0,n-1);
Up=matrix(0,r-1,0,p-1);
Yp=matrix(0,m-1,0,p-1); 
ulnit=matrix(0,r-1,0,init_pts-1); 
ylnit=matrix(0,m-1,0,init_pts-1); 
ukl =vector(0,r-1);
Up=matrix(0,r-1,0,p-1);
Yp=matrix(0,m-1,0,p-1);
ThetaF=dmatrix(0,mm-1,0, SizeX-1); 
ThetaB=dmatrix(0,mm-l ,0,SizeX-l); 
EsqF=dmatrix(0,mm-1,0,mm-1); 
EsqB=dmatrix(0,mm-1,0,mm-1);

if((fp = fopen("results","w"))==0) 
{
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printf("cannot open the results file \n"); 
exit(l);
}

/* read in the data */

/* Check for sufficient number of data points for FTF initialization */ 
/* k > ((r+m)*p+r */

if(points < init_pts)
{
printf("ERROR: not sufficient number of DATA points for initialization \n");
printf("FTF Initialization could not begin \n");
exit(l);
}
for(j=0y<=n-1 y++)

{
status = mgBufGet(mgUl, (char *)&utemp[0][i], 8); 
status = mgBufGet(mgU2, (char *)&utemp[l][i], 8); 
status = mgBufGet(mgYl, (char *)&ytemp[0][i], 8); 
status = mgBufGet(mgY2, (char *)&ytemp[l][i], 8);
}

/* prepare input/output data matrices for FTF initialization */

for(i=0;i<=r-1 ;i++)utemp[i] [n]=0;

for(i=0;i<=init_pts-1 ;i++)
{
for(j=0y <=r-1 y++)

{
ulnit[j][i]=utemp[j][i];
}

for(j=0y <=m-1 y++)
{
ylnit[j][i]=ytemp[j][i];
}

}
/* prepare matrices for ftf iteration */
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for(i=0;i<=p-1 :i++)

{
for(j=0y <=r-1 y++)

{
Up[j] [i]=ulnit[j] [(init_pts-1 -p+i)];

}
}

for(j=0y<=r-l y++)
{
u|j]=utemp[j][init_pts-1 ];
}

for(i=0;i<=p-1 ;i++)
{
for(j=0y<=m-l y++)
{

Yp [j ] [i]=ylnit[j] [(init_pts-1 -p+i)];
}

}

/* the FTF initialization routine */

ftflnit(r,m,p,(init_pts-1 ),SizeX,uInit,yInit,ThetaF,ThetaB,EsqF,EsqB,Gammak, 
Gpk);

/* FTF forward and backward time iterations until FTFDone */

while(! FTFDone)
{

/* read the data from ring buffers */

/* The i/o data comes from the ring buffers starting at the last time 
index used by ftflnit initialization routine.There is no loss of 
data, estimated Yh and Theta's computed by the ftf will lag in time 
in the beginning but catchup will take only a few iterations */

if(mgIsEmpty(mgU 1))
{
whilefmglsEmpty (mgU 1))
{

mv 167Delay(300);
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}

}
status = mgBufGet(mgUl, (char *)&ulnp[0], 8);

if(ragIsEmpty(mgU2))
{
while(mgIsEmpty(mgU2))
{

mvl67Delay(300);
>

}
status = mgBufGet(mgU2, (char *)&ulnp[l], 8);

if(mgIsEmpty(mg Y1))
{
while(mgIsEmpty(rng Y1))
{

mvl67Delay(300);
}

}
status = mgBufGet(mgYl, (char *)&yMeas[0], 8);

if(ragIsEmpty(mgY2))
{
while(mgIsEmpty(mgY2))
{

mvl67Delay(300);
}

}
status = mgBufGet(mgY2, (char *)&yMeas[l], 8);

/* fill in the new i/o data */

for(j=0y<=r-1 y++)
{
ukl[j]=ulnp[j];
}
for(j=0y<=m-ly-H-)

{
y[j]=yMeas[j];
}
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/* call ftf routine */

ftf(r,m,p,SizeX,ukl,u,y,Up,Yp,ThetaF,ThetaB,EsqF,error,EsqB,Gammak,GpR, 
GpA,Gpk,GmP,Yh);

fprintf(fp,"%g %g %g %g %g %g\n", Yh[2], Yh[3], error[2],
error[3],Yh[0],Yh[l]);
/* prepare i/o matrices for next iteration */

for(i=0;i<=(p-2);i-H-)
{
for(j=0ij<=r-l y++)

{
UPD][i]=UpD][i+l];

}
}

for(j=0 y <=r-1 y ++)
{
U[j]=ukl[j];

}

for(i=0;i<=(p-2);i++)
{
for(j=0y <=m-1 y++)

{
Yp[j][i]=YpD][i+l];

}
}

fclose(fp);

/* free the memory allocation for vectors */

free_vector(y,0,m-l); 
free_vector(u,0,r-1); 
free_vector(uk 1,0,r-1); 
free_dvector(error,0,mm-1); 
free_dvector(GpR,0,SizeX-1); 
free_dvector(GpA,0,mm-1); 
free_dvector(Gpk,0,SizeX-1);
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firee_dvector(Gammak,0,1);

/* free the memory allocation for matrices */ 
free_matrix(utemp,0,r-l ,0,n); 
free_matrix(ytemp,0,m-1,0,n-1); 
free_matrix(Up,0,r-1,0,p-1); 
free_matrix(Yp,0,m-1,0,p-1); 
free_matrix(nlnit,0,r-1,0,init_pts-1); 
free_matrix(ylnit,0,m-1,0,init_pts-1); 
free_dmatrix(ThetaF,0,mm-1,0,SizeX-1); 
free_dmatrix(ThetaB,0,mm-l ,0,SizeX-l); 
free_dmatrix(EsqF,0,mm-1,0,mm-1); 
free_dmatrix(EsqB,0,mm-1,0,mm-1);
}
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/* ftflnit.c */

/* ----------------------------------------------------------------------------------------------*/
I* * /
/* Module : ftflnit.c */
/* Function : Performs initialization for FTF forward and backward time */
/* recursion routines. Reads the input/out data and computes */
/* forward and backward time OMPs, gain vector at k-l, gamma at */
/* k-l and the inverse of covariance matrix Pp at k-l, k-2 */
/* The vector and matrix memory allocations and matrix inversion */
/* routines used here are from the book: */
/* Numerical Recipes in C by Press, W.H., W.H., Teukolsky, S.A.,*/
/* Vetterling, W.T., and Flannery, B.P, Cambridge University */
/* Press, 1983 */
/* */
/* Rel Date Author Comments */
/* 0 8 Aug96 Mahesh Chowdhary Initial Release */
/*  */

#include <stdio.h>
#include <stdlib.h>
#include "nrutil.h"

#define N 100

float **unt, **ynt;
double *xip,**Xipl,**Xip2,**yn2,*ynl,**Yukl,**templ,**temp2, 

*numGp,denGp,temp,**Ppk,**temp3,**tPp;

void ftflnit(int r,int m,int p,int n,int SizeX,float **uInit,float **ylnit,
double **ThetaF, double **ThetaB,double **EsqF,double **EsqB, 
double *Gammak,double *Gpk)

/*
Variables:

r - number of inputs 
m - number o f outputs 
p - model order
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n - number of data points used for initialization
SizeX - (r+m)*p + r
ulnit - input data matrix
ylnit - measurement data matrix
ThetaF - Forward time OMPs estimated
ThetaB - Backward time OMPs estimated
EsqF - Forward time Equation estimation-error squares
EsqB - Backward time Equation estimation-error squares
Gammak - conversion factor
Gpk - gain vector that weighs the update for estimation

*/

{
int i, j, 1, mm, k, il, ill_cond[l]; 
denGp= 1 ;mm=r+m;

/* Memory allocation for vectors */

yn 1 =dvector(0,mm-1); 
xip=dvector(0,SizeX-1); 
numGp=dvector(0,SizeX-1);

/* Memory allocation for vectors */

unt=matrix(0,r,0,n+l +p); 
ynt=matrix(0,m,0,n+1 +p);
Xip 1 =dmatrix(0, SizeX-1,0,N);
Xip2=dmatrix(0,SizeX-1,0,N); 
yn2=dmatrix(0,mm-1,0,N);
Yukl =dmatrix(0,mm-1,0,N); 
tPp=dmatrix(l,SizeX, 1,SizeX);
Ppk=dmatrix(0, SizeX-1,0,SizeX-1); 
temp 1 =dmatrix(0,N,0, SizeX-1); 
temp2=dmatrix(0,mm-1,0,N); 
temp3=dmatrix(0,SizeX-1,0,SizeX-1);

for(j=0y <=r-1 y++)
{
ynl[j]=ulnit[j][0];
}
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for(i=0;i<=n;i-H-)
{
il=i+p;

for(j=0 J<=m-1 y++)
{
yntD'][i+p]=yInitG][i];
}

for(j=0y<=r-l y++)
{
unt[j][i+p]=uInitG][i];
}

}

il=0;

/* prepre I/O data matrix Xip and regressor xip */

for(k=p;k<=n+p;k++) ,
{
for(i=0;i<=r-l ;i++)
{
xip[i]=unt[i][k];

}
for(j=0y<=p-I y++)
{
for(i=0;i<=m-1 ;i++)

{
xip [(mm*j )+r+i]=ynt[i] [k-1 -j ];

}
for (i=0; i<=r-1 ;i++)

{
xip[(mm*j )+mm+i]=unt[i] [k-l-j];

}
}

for(i=0;i<=SizeX-1 ;i++)
{
Xip 1 [i] [i 1 ]=xip[i];
Xip2 [i] [i 1 ]=xip [i];
}

il= il+ l;
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}

for(i=0;i<=SizeX-1 ;i++)
{

Xipl[i][n]=xip[i];
}

for(i=0;i<=n-l ;i++)
{
for(j=0y<=m-l y++)
{
yn2[r+j][i]=ylnit[j][i];

}
for(j=0y<=r-l J++)
{
yn2D][i]=uInit[j][i+l];

}
}

for(i=0;i<:=n-p-1 ;i++)
{
for(j=0y <=m-1 y++)

{
YuklD][i+l+p]=yInit[j][i3;
}

for(j=0y<=r-l y++)
{
Y uk 1 [m+j] [i+1 +p]=ulnit[j] [i];
}

}

temp=0;

/* Prepare covariance matrix Pp */

for(i=0;i<=SizeX-l ;i++)
{
for(j=Oy<=SizeX-l y++)
{
for(l=0;l<=n-1 ;1++)

{
temp=temp+Xip2 [i] [I] *Xip2 [j ] [1];

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I l l
Ppk[i][j]=temp;
tPp[i+l][j+l]=Ppk[i][j];
temp=0;

}

/* compute the inverse of covariance matrix */
/* The matrix inversion routine used here based on svdcmp 

routine from the book: Numerical Recipes in C by 
Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P, 
Cambridge University Press, 1983 */

matInv(tPp,SizeX,SizeX,ill_cond);

if(ill_cond[0]=0)
{
printf("ERROR: ill conditioned matrix \n"); 
exit(l);
}

for(i=l ;i<=SizeX;i++)
{
for(j=l y<=SizeXy++)
{
Ppk[i-1 ] D-1 ]=tPp [i] D];

}
}

for(j=Oy<=SizeX-l ij++)
{
for(i=0;i<=SizeX-1 ;i++)
{
numGp[j]=xip[i]*Ppk[i][j]+numGp[j];

}
denGp=denGp+xip [j ] * numGp [j ];

}

/* compute the gain vector Gp used to weigh the estimation update */

for(i=0;i<=SizeX-1 ;i++)
{
Gpk[i]=numGp[i]/denGp;
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}

/* compute the conversion factor gamma k */

Gammak[0]=l; 
for(i=0;i<=SizeX-l ;i++)
{
Gammak[0]=Gammak[0]-Gpk[i]*xip[i];

}

temp=0;
for(i=0;i<=n-l ;i-H-)
{
for(j=Oy<=SizeX-l y++)
{
for(l=0;l<=SizeX-l ;1++)

{
temp=temp+Xip2 [1] [i]*Ppk[l][j];

}
tempi [i][j]=temp; 
temp=0;

}
}

temp=0;

/* compute the forward time OMPs, ThetaF */

for(i=0;i<=mm-1 ;i++)
{
for(j=0y <=SizeX-1 y++)
{
for(l=0;l<=n-l;!++)

{
temp=temp+yn2[i][l]*templ [I][j];

}
ThetaF[i][j]=temp;
temp=0;

}
}

temp=0;
for(i=0;i<=mm-l ;i++)
{
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for(j=Oy<=n-l y++)
{
for(l=0;l<=S izeX-1 ;1++)

{
temp=temp+ThetaF [i] [1] * Xip2 [1] [j ];

}
temp2[i][j] = yn2[i]0] - temp; 
temp=0;

}
}

temp=0;

/* compute the Equation forward-time Error Squares */

for(i=0;i<=mm-1 ;i++)
{
for(j=0y<=mm-1 y++)
{
for(l=0;l<=n-l ;1++)

{
temp=temp+temp2[j][l]*temp2[i][l];

}
EsqF [i] [j]=temp+ynl [j]*ynl [i]; 
temp=0;

}
}

for(j=Oy<=SizeX-1 y++)
{
for(i=0;i<=SizeX-1 ;i-H-)
{
temp3[j][i]=-1.0*xip[j]*Gpk[i];

}
}

for(i=0;i<=SizeX-l ;i++)
{
temp3 [i] [i]=1 +temp3 [i] [i];

}

/* Pp for backward time iteration */ 

temp=0;
for(i=0;i<=SizeX-l ;i++)
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{
for(j=Oy <=SizeX-1 y++)
{
for(l=0;l<=SizeX-1 ;l++)

{
temp=temp+tPp[i+l][l+l ]*temp3 [l][j];

}
Ppk[i][j]=temp;
temp=0;

}
}

temp=0;
for(i=0;i<=n;i++)
{
for(j =0 y <=SizeX-1 y ++)
{
for(l=0;l<=SizeX-1 ;!++)

{
temp=temp+Xipl [l][i]*Ppk[l][j];

}
temp 1 [i] [j]=temp; 
temp=0;

}
}

temp=0;

/* compute the Backward time OMPs ThetaB*/

for(i=0;i<=mm-l ;i++)
{
for(j=0y<=SizeX-l y++)
{
for(l=0; l<=n;l-H-)

{
temp=temp+Yuk 1 [i] [1] *temp 1 [1] [j ];

}
ThetaB [i] [j]=temp; 
temp=0;

}
}

temp=0;
for(i=0;i<=mm-1 ;i++)
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{
for(j=Oy<=ny++)
{
for(l=0;l<=SizeX-l ;1++)

{
temp==temp+ThetaB [i] [1] *Xip 1 [1] [j ];

}
temp2[i][j]=Yukl [i][j]-temp; 
temp=0;

}
}

temp=0;

/* compute the backward time Equation error squares */

for(i=0;i<=mm-l ;i++)
{
for(j=0y <=mm-1 y++)
{
for(l=0;l<=n;l++)

{
temp=temp+temp2[j] [1] *temp2[i] [1];

}
EsqB[i][j]=temp;
temp=0;

}
}

/* free the memory allocation for vectors */

free_dVector(xip,0,SizeX-1); 
free_dvector(numGp,0,SizeX-1); 
free_dvector(ynl ,0,mm-1);

/* free the memory allocation for matrices */

free_matrix(unt,0,r,0,n+1 +p); 
free_matrix(ynt,0,m,0,n+1 +p); 
free_dmatrix(Xip 1,0,SizeX-1,0,N); 
free_dmatrix(Xip2,0,SizeX-1,0,N); 
free_dmatrix(yn2,0,mm-1,0,N); 
free_dmatrix( Yuk 1,0,mm-1,0,N);
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free_dmatrix(tPp, 1 ,SizeX, 1 ,SizeX); 
free_dmatrix(Ppk,0,SizeX-1,0,SizeX-1); 
free_dmatrix(temp 1,0,N,0,SizeX-1); 
free_dmatrix(temp2,0,mm-1,0,N); 
free_dmatrix(temp3,0,SizeX-1,0,SizeX-1);
}

/* ftf.c */

/* ----------------------------------------------------------------------------------------------*/
/* */
I* Module : ftf.c */
/* Function : Performs one recursion of FTF forward time estimation and */ 
/* calls the backward time recursion rotuine. Updates the */
/* Observer Markov Parameters (OMPs), Equation error squares, */
/* gain Gp, and conversion factor gamma k. This routine is based */
/* on formulation of Fast Transversal Filter presented in the book: */
/* Applied System Identification by Jer-Nan Juang, PTR Prentice */
/* Hall, 1994 */
/* The vector and matrix memory allocations and matrix inversion */
/* routines used here are from the book: *1
/* Numerical Recipes in C by Press, W.H., W.H., Teukolsky, S.A.,*/
/* Vetterling, W.T., and Flannery, B.P, Cambridge University */
/* Press, 1983 */
/* */
/* Rel Date Author Comments */
/* 0 8 Aug96 Mahesh Chowdhary Initial Release *1
/*  */

#include<stdio.h>
#include<stdlib.h>
#include "nrutil.h"

void ftf(int r, int m, int p, int SizeX, float *ukl,float *u,float *y, float **Up, 
float ** Yp, double **ThetaF, double **ThetaB, double **EsqF, 
double * error,double **EsqB,double *Gammak, double *GpR, 
double *GpA,double *Gpk,double GmPQ,double *Yh)

/*
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Variables:

r - number of inputs
m - number of outputs
P - model order
SizeX - (r+m)*p + r
u - input time at k
y - output time at k
ukl - input time at k+1
Up - input time at k-1
Yp - output time at k-1
ThetaF - Forward time OMPs estimated
ThetaB - Backward time OMPs estimated
EsqF - Forward time Equation estimation error squares
EsqB - Backward time Equation estimation error squares
error - difference between estimated and measure output
Gammak - conversion factor
GpR - first <1 x SizeX> elements of the augmented gain vector
GpA - remaining elements of the augmented gain vector
GmP - update of conversion factor
Gpk - gain vector
Yh - estimated output at time k

*/

{
int ij,k,l,mm,ill_cond[l];
double *Yf, *xip, *epriF, *epstF, *GainP, *Gtal, *Gtrl; 
double **EsqInvF; 
double temp; 
ill_cond[0]=0;

mm=r+m;

/* Memory allocation for vectors */

Yf==dvector(0,mm-1); 
xip=dvector(0,SizeX-1); 
epriF=dvector(0,mm-1); 
epstF=dvector(0,mm-1);
GainP=dvector(0,SizeX-1 +mm);
Gta 1 =dvector(0,mm-1);
Gtr 1 =dvector(0,SizeX-1);
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/* Memory allocation for matrices */

EsqInvF=dmatrix( 1 ,mm, 1 ,mm);

/* prepare the i/o data matrices */

for(i=0;i<=m-1 ;i++)
{
Yf[r+i]=y[i];
}

for(i=0;i<=r-1 ;i++)
{
xip[i]=u[i];
Yf[i]=ukl[i];
}

/* form the input/output data matrices for forward time recuresion */

for(j=0y<=p-1 y++)
{
for(i=0;i<=m-1 ;i++)

{
xip [(mm*j )+r+i]=Yp [i] [p-1 -j ];
}

}

for(j=0J<=p-l y++)
{
for(i=0;i<=r-1 ;i++)

{
xip[(mm*j)+mm+i]=Up[i][p-1-j];
}

}
temp=0;

/* Compute the estimated output, the a priori forward-time estimation error 
and the a posteriori forward-time estimation error */

for(i=0;i<=mm-l ;i++)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

{
for(l=0; l<=SizeX-1 ;1++)

{
temp=temp+ThetaF [i] [1] *xip [1];
Yh[i]=temp;
}

error[i]=epriF[i]=Yf[i]-temp;
temp=0;
epstF[i]=Gammak[0]*epriF[i];
Gtal[i]=0;
}

/* compute the forward time Equation error squares matrix */

for(i=0;i<=mm-1 ;i++)
{
forO*=0 J<=mm-1 y++)

{
EsqF[i][)]=EsqF[i]0]+epstF[i]*epriF[j];
}

}

/* Prepare EsqF for inversion */

for(i=l ;i<=mm;i++)
{
for(j=l a*'<smmy++)
{
EsqInvF[i][j]=EsqF[i][j];
}

}

/* Use the matrixc inversion routine from Numerical Recipes in C */

matInv(EsqInvF,mm,mm,ill_cond);

if(ill_cond[0]=0)
{
printf("ERROR: ill conditioned matrix \n"); 
exit(l);
}
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/* compute the forward time OMPs *1

for(i=0;i<=mm-l ;i++)
{
for(j=0y<=SizeX-l y++)

{
ThetaF [i] [j ]=ThetaF [i J [j ]+epriF [i] * Gpk[j ];

}
}

/* compute the updated gain matrix */

GmP [0]=Gammak[0];

for(i=0;i<=mm-l ;i++)
{
for(j=0y <=mm-1 j++)

{
Gtal [i]=epstF[j]*EsqInvF[j+l][i+l]+Gtal [i]; 
}

GainP[i]=Gtal[i];
GmP[0]=GmP[0]-Gtal [i]*epstF[i];
}

temp=0;

/* partition of the gain matrix */

for(i=0;i<=SizeX-1 ;i++)
{
for(j=0 J<=mm-1 y++)
{
temp=temp+Gtal [j]*ThetaF[j][i];
}

Gtrl [i]=Gpk[i]-temp;
GainP[mm+i]=Gtrl [i];
GpR[i]=GainP[i];
temp=0;
}

for(i=0;i<=mm-1 ;i++)
{
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/* call the backward time FTF recursion */

ftfB(r,m,p,SizeX,ukl,u,y,Up,Yp,ThetaB,GpA,GpR,Gpk,Gammak,GmP,EsqB);

/* free memory from vectors */

free_dvector(Yf,0,mm-1); 
ffee_dvector(xip,0,SizeX-1); 
free_dvector(epriF,0,mm-l); 
free_dvector(epstF,0,mm-1); 
free_dvector(GainP,0,SizeX-1 +mm); 
free_dvector(Gtal ,0,mm-l); 
free_dvector(Gtr 1,0,SizeX-1);

/* free memory from matrices */ 
free_dmatrix(EsqInvF, 1 ,mm, 1 ,mm);
}

/ *  f t f f l . c  */

/ *  */
/* Module : ftfB.c */
f* Function : Performs one recursion of FTF backward time estimation */
/* Updates the backward time OMPs, Equation error sqares, gain */
/* Gp, and the conversion factor gamma k. This routine is based on */
/* formulation of Fast Transversal Filter presented in the book: */
/* Applied System Identification by Jer-Nan Juang, PTR Prentice */
/* Hall, 1994 */
/* The vector and matrix memory allocations routines used here */
/* are from the book: */
/* Numerical Recipes in C by Press, W.H., W.H., Teukolsky, S.A., */
/* Vetterling, W.T., and Flannery, B.P, Cambridge University */
/* Press, 1983 */
/* */
/* Rel Date Author Comments */
/* 0 8 Aug96 Mahesh Chowdhary Initial Release */
/*  */
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#include <stdio.h>
#include <stdlib.h>
#include "nrutil.h"

void ftfB(int r, int m, int p, int SizeX, float *ukl,float *u,float *y, float **Up, 
float **Yp,double **ThetaB, double *GpA, double *GpR, 

double *GpK,double *Gammak,double GmpQ,double **EsqB)

/*
Variables:
r - number of inputs
m - number of outputs
p - model order
SizeX - (r+m)*p + r
u - input time at k
y - output time at k
ukl - input time at k+1
Up - input time at k-1
Yp - output time at k-1
ThetaB - Backward time OMPs estimated
EsqB - Backward time Equation estimation error squares
error - difference between estimated and measured output
Gammak - conversion factor
GpR - first <1 x SizeX> elements of the augmented gain vector
GpA - remaining elements of the augmented gain vector
GmP - update of conversion factor
Gpk - gain vector

*/

{
int i j,l,mm;
double *Yb, *xip,*epriB,*epstB; 
double tempi, temp2; 
mm=r+m;

/* Memory allocation for temporary vectors and matrices */

Yb=dvector(0,mm-1); 
xip=dvector(0,SizeX-1); 
epriB=dvector(0,mm-1);
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epstB=dvector(0,rmn-1);

/* prepare i/o data matrices */

for(i=0;i<=m;i-H-)
{
Yb[i]=Yp[i][0];

}

for(i=0;i<=r;i-H-)
{
xip[i]=ukl[i];
Yb[m+i]=Up [i] [0];

}

for(j=0y<=my++)
{
for(i=0;i<=p-2;i++)
{
YpQ][i]=Yp[j][i+l];
}

YPD][p-i]=yD];
}

for(j=0y‘<=ry-H-)
{
for(i=0;i<=p-2;i++)
{
Up[j][i]—Up[j][i+1];
}

UpD][p-l]=u[j];
}

/* form the input/output data matrix for backward time recursion */

for(j=0y<=p-l y++)
{
for(i=0;i<=m;i++)
{
xip[(mm*j)+r-l+i]=Yp[i][p-l-j];

}
}
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for(j =0 y <=p-1J ++)
{
for(i=0;i<=r;i-H-)
{
xip[(mm*j)+mm+i]=Up[i] [p-l-j];
}

}
temp 1=0;

/* compute the backward time a priori and a posteriori estimation errors */ 

temp2=l;

for(i=0;i<=mm-1 ;i++)
{
for(l=0;l<=SizeX-1 ;1++)

{
temp 1 =temp 1+ThetaB [i] [I] * xip [1];
}

epriB [i]=Yb[i]-temp 1; 
temp2=temp2-GpA[i] *epriB [i]; 
temp 1=0;
}

temp 1=0;

/* compute the updated gain matrix */

for(i=0;i<=SizeX-1 ;i-H-)
{
for(j=0y<=mm-1J++)
{
temp l=temp l+GpA[j]*ThetaB[j] [i];
}

GpK[i]=(GpR[i]+temp 1 )/temp2; 
temp 1=0;
}

/* compute the backward time OMPs ThetaB */

for(i=0;i<=mm-1 ;i++)
{
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for(j=Oy <=SizeX-1 y++)
{
ThetaB[i]Q]=ThetaB[i][j]+epriB[i]*GpK[j];

}
}

Gammak[0]=Gmp[0]/temp2;

/* compute the backward time Equation error equares */

for(i=0;i<=mm-l ;i++)
{
epstB [i]=Gammak[0] *epriB [i]; 
for(j=0y<=mm-l y++)
{
EsqB [i] 0 ]=EsqB [i] [j]+epstB [i] *epriB [j];

}
}

free_dvector(Yb,0,mm-1); 
free_dvector(xip,0, SizeX-1); 
free_dvector(epriB,0,mm-1); 
free_dvector(epstB,0,mm-l); 
}
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/ *  * /
/* Module: mvl67Clk.c */
/* Function: Provides a variable length delay for mvl67 */
I* code. Uses the auxiliary clock to delay the */
/* required time period, and then returns the */
/* function mvl 67DelayO- The delay can be set */
/* between 1 second and 200 usee. */
/*  */
/* Rel Date Authors Comments. */
/* 0 8 Sep 94 D.Barker, M.Chowdhary First Release. */
/ *  * /

/* include files */
#include <vxWorks.h> 
#include <semLib.h>

SEM_ID mvl67DelaySem;

void mvl67DelayInit(); 
void mvl67DelayO; 
void mvl67DelayISR();

/ * --------------------------------------------------------------------------------------------------------------------- */
/*  * /

!* External Procedure: mvl67DelayInit() */
/* Function: Initialises the delay system by creating the */
/* semaphore needed for delay pending. Connects */
/* the mv 167 Aux Clk to the mv 167DelayISR. */
/ * ----------------------------------------------------------------------------------------------------------------------------- * /

void mvl67DelayInit()
{

mvl67DelaySem = semBCreate(0,SEM_EMPTY);
sys AuxClkConnect(mv 167DeIayISR);

}

/ * ----------------------------------------------------------------------------------------------------------------------------- */

/* External Procedure: mvl67DelayO */
/* Function: Delays for set period of time. Time period in */
/* the range 333333 to 200 micro seconds are */
/* allowed. */
/*  * /

/ * --------------------------------------------------------------------------------------------------------------------- * /
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void mvl67Delay (delay) 
long delay;
{
int result; 
long rate;

if(delay>333333 || delay<200)
{
printf("mvl67Delay: Delay out of bounds.\n!l);

/* exitO; */
}

rate=l 000000/delay; 
sysAuxClkRateSet (rate); 
sysAuxClkEnableO;
/* pend this task on taking the semaphore */
result = semTake(mvl67DelaySem,WAIT_FOREVER);
sysAuxClkDisableO;

/ * ----------------------------------------------------------------------------------------------------------------------* /

/*  * /
/* Internal Procedure: mvl67DelayISR() */
/*  */
/* Function: Interrupt Service Routine for aux clock */
/* interrupts. Gives the mvl67DelaySem semaphore. */
/*  * /
/ * ----------------------------------------------------------------------------------------------------------------------* /

void mvl67DelayISR0
{

semGive(mvl 67DelaySem);
}
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/* nrutil.h */

/*

This header file declares the data types of the memory allocation routines used 
in the programs.

This header file was obtained from the book:
Numerical Recipes in C 

by, W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery 
Cambridge University Press, 1983 
*/
#ifndef_NR_UTILS_H_
#define _NR_UTILS_H_

static double sqrarg;
#define SQR(a) ((sqrarg=(a)) =  0.0 ? 0.0 : sqrarg*sqrarg) 

static double dsqrarg;
#define DSQR(a) ((dsqrarg=(a)) =  0.0 ? 0.0 : dsqrarg*dsqrarg) 

static double dmaxarg 1 ,dmaxarg2;
#define DMAX(a,b) (dmaxarg l=(a),dmaxarg2=(b),(dmaxarg 1) > (dmaxarg2) ?\ 

(dmaxarg 1): (dmaxarg2))

static double dminargl,dminarg2;
#define DMIN(a,b) (dminarg 1 =(a),dminarg2=(b),(dminarg 1) < (dminarg2) ?\ 

(dminarg 1): (dminarg2))

static double maxarg 1 ,maxarg2;
#define FMAX(a,b) (maxarg 1 =(a),maxarg2=(b),(maxarg 1) > (maxarg2) ?\ 

(maxarg 1) : (maxarg2))

static double minargl,minarg2;
#define FMIN(a,b) (minarg 1 =(a),minarg2=(b),(minarg 1) < (minarg2) ?\

(m inargl): (minarg2))

static long lmaxarg 1 ,lmaxarg2;
#define LMAX(a,b) (lmaxarg l=(a),lmaxarg2=(b),(lmaxarg 1) > (lmaxarg2) ?\ 

(lmaxarg 1): (lmaxarg2))

static long lminargl,lminarg2;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



129

#define LMIN(a,b) (lminarg 1 ̂ a),hninarg2=(b),(lminarg 1) < (lminarg2) ?\ 
(lm inargl): (lminarg2))

static int imaxarg 1 ,imaxarg2;
#define IMAX(a,b) (imaxarg l=(a),imaxarg2=(b),(imaxarg 1) > (imaxarg2) ?\ 

(imaxarg 1): (imaxarg2))

static int iminargl,iminarg2;
#define IMIN(a,b) (iminarg 1 =(a),iminarg2=(b),(iminarg 1) < (iminarg2) ?\ 

(im inargl): (iminarg2))

#defme SIGN(a,b) ((b) >= 0.0 ? fabs(a): -fabs(a))

#if defined( STDC ) || defined(ANSI) || defined(NRANSI) /* ANSI */

void nrerror(char error_text[J);
double *vector(long nl, long nh);
int *ivector(long nl, long nh);
unsigned char *cvector(long nl, long nh);
unsigned long *lvector(long nl, long nh);
double *dvector(long nl, long nh);
double **matrix(long nrl, long nrh, long ncl, long nch);
double **dmatrix(long nrl, long nrh, long ncl, long nch);
int **imatrix(long nrl, long nrh, long ncl, long nch);
double **submatrix(doubIe **a, long oldrl, long oldrh, long oldcl, long oldch, 

long newrl, long newel); 
double **convert_matrix(double *a, long nrl, long nrh, long ncl, long nch); 
double ***f3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh); 
void free_vector(double *v, long nl, long nh); 
void free_ivector(int *v, long nl, long nh); 
void free_cvector(unsigned char *v, long nl, long nh); 
void free_lvector(unsigned long *v, long nl, long nh); 
void free_dvector(double *v, long nl, long nh); 
void free_matrix(double **m, long nrl, long nrh, long ncl, long nch); 
void free_dmatrix(double **m, long nrl, long nrh, long ncl, long nch); 
void free_imatrix(int **m, long nrl, long nrh, long ncl, long nch); 
void free_submatrix(double **b, long nrl, long nrh, long ncl, long nch); 
void firee_convert_matrix(double **b, long nrl, long nrh, long ncl, long nch); 
void free_Dtensor(doubIe ***t, long nrl, long nrh, long ncl, long nch, 

long ndl, long ndh);

#else /* ANSI */
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/* traditional - K&R */

void nrerrorO; 
double *vectorO; 
double **matrix(); 
double **submatrixO; 
double **convert_matrix(); 
double ***OtensorO; 
double *dvectorO; 
double **dmatrix(); 
int *ivectorO; 
int **imatrix(); 
unsigned char *cvector0; 
unsigned long *lvector(); 
void free_vectorO; 
void free_dvector(); 
void free_ivectorO; 
void free_cvectorO; 
void free_lvector(); 
void free_matrixO; 
void free_submatrix(); 
void firee_convert_matrixO; 
void free_dmatrixO; 
void free_imatrix(); 
void free_DtensorO;

#endif /* ANSI */

#endif /* _NR_UTILS_H_ */
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/* nrutil.c */

/*

This file describes all the memory allocation routines used in various routines 
for FTF implementation.

This functions were obtained from the book:
Numerical Recipes in C

by: W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery.
Cambridge University Press, 1983 
*/

#if defined( STDC ) || defined(ANSI) || defined(NRANSI) /* ANSI */

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#define NR_END 1 
#define FREE_ARG char*

void nrerror(char error_text[J)
/* Numerical Recipes standard error handler */
{
fprintf(stderr,"run-time error.. An"); 
fr>rintf(stderr," %s\n" ,error_text); 
fprintf(stderr,"...now exiting to system...\n"); 
exit(l);

}

double *vector(long nl, long nh)
/* allocate a double vector with subscript range v[nl..nh] */
{
double *v;

v=(double *)malloc((size_t) ((nh-nl+l+NR_END)*sizeof(double))); 
if (!v) nrerror("allocation failure in vectorO"); 
return v-nl+NR_END;

}

int *ivector(long nl, long nh)
/* allocate an int vector with subscript range v[nl..nh] */
{
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int *v;

v=(int *)malloc((size_t) ((nh-nl+l+NR_END)*sizeof(int))); 
if (!v) nrerror("allocation failure in ivectorO"); 
return v-nl+NR_END;

}

unsigned char *cvector(long nl, long nh)
/* allocate an unsigned char vector with subscript range v[nl..nh] */
{
unsigned char *v;

v=(unsigned char *)malloc((size_t) ((nh-nl+l+NR_END)*sizeof(unsigned 
char)));
if (!v) nrerror("allocation failure in cvectorO"); 
return v-nl+NR_END;

}

unsigned long *lvector(long nl, long nh)
/* allocate an unsigned long vector with subscript range v[nl..nh] */
{
unsigned long *v;

v=(unsigned long *)malloc((size_t) ((nh-nl+l+NR_END)*sizeof(long))); 
if (! v) nrerror("allocation failure in IvectorO"); 
return v-nl+NR_END;

}

double *dvector(long nl, long nh)
/* allocate a double vector with subscript range v[nl..nh] */
{
double *v;

v=(double *)malloc((size_t) ((nh-nl+l+NR_END)*sizeof(double))); 
if (!v) nrerror("allocation failure in dvectorO"); 
return v-nl+NR_END;

}

double **matrix(long nrl, long nrh, long ncl, long nch)
/* allocate a double matrix with subscript range m[nrl..nrh][ncl..nch] */
{
long i, nrow=nrh-nrl+l,ncol=nch-ncl+l;
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double **m;

/* allocate pointers to rows */
m=(double **) maIloc((size_t)((nrow+NR_END)*sizeof(double*))); 
if (!m) nrerror("allocation failure 1 in matrixO"); 
m += NR_END; 
m — nrl;

/* allocate rows and set pointers to them */
m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); 
if (!m[nrl]) nrerror("allocation failure 2 in matrixO"); 
m[nrl] += NR_END; 
m[nrl] — ncl;

for(i=nrl+l ;i<=nrh;i++) m[i]=m[i-l]+ncol;

/* return pointer to array of pointers to rows */ 
return m;

}

double **dmatrix(long nrl, long nrh, long ncl, long nch)
/* allocate a double matrix with subscript range m[nrl..nrh][ncl..nch] */
{
long i, nrow=nrh-nrl+l,ncol=nch-ncl+l; 
double **m;

/* allocate pointers to rows */
m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*))); 
if (!m) nrerror("allocation failure 1 in matrixO"); 
m += NRJEND; 
m — nrl;

/* allocate rows and set pointers to them */
m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); 
if (!m[nrl]) nrerror("allocation failure 2 in matrixO"); 
m[nrl] += NR_END; 
m[nrl] — ncl;

for(i=nrl+l ;i<=nrh;i++) m[i]=m[i-l]+ncol;

/* return pointer to array of pointers to rows */ 
return m;
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}

int **imatrix(long nrl, long nrh, long ncl, long nch)
/* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
{
long i, nrow=nrh-nrl+l,ncol=nch-ncl+l; 
int **m;

/* allocate pointers to rows */
m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
if (!m) nrerror("allocation failure 1 in matrixO"); 
m += NRJEND; 
m -= nrl;

/* allocate rows and set pointers to them */
m[nrl]=(int *) malloc((size_t)((nrow*ncol+NRJEND)*sizeof(int)));
if (!m[nrl]) nrerror("allocation failure 2 in matrixO");
m[nrl] += NR_END;
m[nrl] -= ncl;

for(i=nrl+l ;i<=nrh;i++) m[i]=m[i-1 ]+ncol;

/* return pointer to array o f pointers to rows *1 
return m;

}

double **submatrix(double **a, long oldrl, long oldrh, long oldcl, long oldch, 
long newrl, long newel)

/* point a submatrix [newrl..][newcl..] to a[oldrl..oldrh][oldcl..oldch] */
{
long i j,nrow=oldrh-oIdrl+l ,ncol=oldcl-newcl; 
double **m;

/* allocate array of pointers to rows */
m=(double **) malloc((size_t) ((nrow+NR_END)*sizeof(double*))); 
if (!m) nrerror("allocation failure in submatrixO"); 
m += NR_END; 
m -= newrl;

/* set pointers to rows */
for(i=oldrlj=newrl;i<=oldrh;i-H-j-H-) m[j]=a[i]+ncol;
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/* return pointer to array of pointers to rows */ 
return m;

}

double **convert_matrix(double *a, long nrl, long nrh, long ncl, long nch)
/* allocate a double matrix m[nrl..nrh][ncl..nch] that points to the matrix 
declared in the standard C manner as a[nrow][ncol], where nrow=nrh-nrl+l 
and ncol=nch-ncl+l. The routine should be called with the address 
&a[0][0] as the first argument. */
{
long i j  ,nrow=nrh-nrl+1 ,ncol=nch-ncl+1; 
double **m;

/* allocate pointers to rows */
m=(double **) malloc((size_t) ((nrow+NR_END)*sizeof(double*))); 
if (!m) nrerror("allocation failure in convert_matrix()"); 
m += NR_END; 
m -= nrl;

/* set pointers to rows */ 
m[nrl]=a-ncl;
for(i=l j=nrl+l ;i<nrow;i++j-H-) m[j]=m[j-l]+ncol;
/* return pointer to array of pointers to rows */ 
return m;

}

double ***f3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh) 
/* allocate a double 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] */
{
long i j  ,nro w=nrh-nrl+1 ,ncol=nch-ncl+1 ,ndep=ndh-ndl+1; 
double ***t;

/* allocate pointers to pointers to rows */
t=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double**))); 
if (!t) nrerror("allocation failure 1 in f3tensor()"); 
t += NR_END; 
t -= nrl;

/* allocate pointers to rows and set pointers to them */
t[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double*)));
if (!t[nrl]) nrerror("allocation failure 2 in fBtensorQ");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



136
t[nrl] += NR_END; 
t[nrl] -= ncl;

/* allocate rows and set pointers to them */
t[nrl][ncl]=(double *)

malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(double))); 
if (!t[nrl][ncl]) nrerror("allocation failure 3 in f3tensor()"); 
t [nrl] [ncl] += NR_END; 
t[nrl][ncl] -= ndl;

for(j=ncl+l y <=nchy-H-) t[nrl] [j]=t[nrl] [j-1 ]+ndep; 
for(i=nrl+l ;i<=nrh;i++) { 
t[i]=t[i-l]+ncol; 
t[i] [ncl]=t[i-1 ] [ncl]+ncol*ndep; 
for(j=nci+1 y<=nchy++) t[i] [j]=t[i][j-l ]+ndep;

}

/* return pointer to array o f pointers to rows */ 
return t;

}

void free_vector(double *v, long nl, long nh)
/* free a double vector allocated with vectorO */
{
free((FREE_ARG) (v+nl-NR_END));

}

void free_ivector(int *v, long nl, long nh)
/* free an int vector allocated with ivectorO */
{
free((FREE_ARG) (v+nl-NR_END));

}

void free_cvector(unsigned char *v, long nl, long nh)
/* free an unsigned char vector allocated with cvectorO */
{
free((FREE_ARG) (v+nl-NR_END));

}

void free_lvector(unsigned long *v, long nl, long nh)
/* free an unsigned long vector allocated with IvectorO */
{
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free((FREE_ARG) (v+nl-NR_END));

}

void free_dvector(double *v, long nl, long nh)
/* free a  double vector allocated with dvectorO */
{
free((FREE_ARG) (v+nl-NR_END));

}

void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
/* free a  double matrix allocated by matrixO */
{
free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
free((FREE_ARG) (m+nrl-NR_END));

}

void free_dmatrix(double **m, long nrl, long nrh, long ncl, long nch)
/* free a double matrix allocated by dmatrixO */
{
free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
free((FREE_ARG) (m+nrl-NR_END));

}

void free_imatrix(int **m, long nrl, long nrh, long ncl, long nch)
/* free an int matrix allocated by imatrixO */
{
free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
free((FREE_ARG) (m+nrl-NR_END));

}

void free_submatrix(double **b, long nrl, long nrh, long ncl, long nch)
/* free a submatrix allocated by submatrixO */
{
free((FREE_ARG) (b+nrl-NR_END));

}

void free_convert_matrix(double **b, long nrl, long nrh, long ncl, long nch)
/* free a matrix allocated by convert_matrixO *!
{
free((FR£E_ARG) (b+nrl-NR_END));

}
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void free_f3tensor(double ***t, long nrl, long nrh, long ncl, long nch, 
long ndl, long ndh)

/* free a double £3tensor allocated by OtensorO */
{
free((FREE_ARG)(t[nrl][ncl]+ndl-NR_END)); 
free((FREE__ARG) (t[nrI]+ncl-NR_END)); 
free((FREE_ARG) (t+nrl-NR_END));

}

#else /* ANSI */
/* traditional - K&R */

#include <stdio.h>
#define NR_END 1 
#defme FREE_ARG char*

void nrerror(errortext) 
char error_text[];
/* Numerical Recipes standard error handler */
{
void exitO;

fprintf(stderr,"run-time error...\n"); 
fprintf(stderr, "%s\n" ,error_text); 
fprintf(stderr,"...now exiting to system.. An"); 
exit(l);

}

double *vector(nl,nh) 
long nh,nl;
/* allocate a double vector with subscript range v[nl..nh] */
{
double *v;

v=(double *)malloc((unsigned int) ((nh-nl+l+NR_END)*sizeof(double))); 
if (!v) nrerror("allocation failure in vectorO"); 
return v-nl+NR_END;

}

int *ivector(nl,nh) 
long nh,nl;
/* allocate an int vector with subscript range v[nl..nh] */
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{
int *v;

v=(int *)malloc((unsigned int) ((nh-nl+1 +NR_END) * sizeof(int))); 
if (!v) nrerror("aIlocation failure in ivectorO"); 
return v-nl+NR_END;

}

unsigned char *cvector(nl,nh) 
long nh,nl;
/* allocate an unsigned char vector with subscript range v[nl..nh] */
{
unsigned char *v;

v=(unsigned char *)malloc((unsigned int)
((nh-nl+1 +NR_END) *sizeof(unsigned char))); 
if (!v) nrerror("allocation failure in cvectorO"); 
return v-nl+NRJEND;

}

unsigned long *lvector(nl,nh) 
long nh,nl;
/* allocate an unsigned long vector with subscript range v[nl..nh] */
{
unsigned long *v;

v=(unsigned long *)malloc((unsigned int) ((nh-nl+l+NR_END)*sizeof(long))); 
if (!v) nrerror("allocation failure in IvectorO"); 
return v-nl+NR_END;

}

double *dvector(nl,nh) 
long nh,nl;
/* allocate a double vector with subscript range v[nl..nh] */
{
double *v;

v=(double *)malloc((unsigned int) ((nh-nl+l+NR_END)*sizeof(double))); 
if (! v) nrerror("allocation failure in dvectorO"); 
return v-nl+NR_END;

}
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double * *matrix(nrl,nrh,ncl,nch) 
long nch,ncl,nrh^irl;
/* allocate a double matrix with subscript range m[nrl..nrh][ncl..nch] */
{
long i, nrow=nrh-nrl+l,ncol=nch-ncl+l; 
double **m;

/* allocate pointers to rows */
m=(double **) malloc((unsigned int)((nrow+NR_END)*sizeof(double*))); 
if (!m) nrerror("allocation failure 1 in matrixO"); 
m += NR_END; 
m -= nrl;

/* allocate rows and set pointers to them */ 
m[nrl]=(double *)

malloc((unsignedint)((nrow*ncol+NR_END)*sizeof(double))); 
if (!m[nrl]) nrerror("allocation failure 2 in matrixO"); 
m[nrl] += NR_END; 
m[nrl] — ncl;

for(i=nrl+1 ;i<=nrh;i++) m[i]=m[i-1 ]+ncol;

/* return pointer to array of pointers to rows */ 
return m;

}

double **dmatrix(nrl,nrh,ncl,nch) 
long nch,ncl,nrh,nrl;
/* allocate a double matrix with subscript range m[nrl..nrh][ncl..nch] */
{
long i, nrow=nrh-nrI+l,ncol=nch-ncl+l; 
double **m;

/* allocate pointers to rows *!
m=(double **) malloc((unsigned int)((nrow+NR_END)*sizeof(double*))); 
if (!m) nrerror("allocation failure 1 in matrixO"); 
m += NR_END; 
m -= nrl;

I* allocate rows and set pointers to them */ 
m[nrl]=(double *)

malloc((unsigned int)((nrow*ncol+NR_END)*sizeof(double)));
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i f  (!m[nrl]) nrerror("allocation failure 2 in matrixO"); 
m[nrl] += NREND; 
m[nrl] — ncl;

for(i=nrl+1 ;i<=nrh;i-H-) m[i]=m[i-1 ]+ncol;

/* return pointer to array o f pointers to rows */ 
return m;

}

int **imatrix(nrl,nrh,ncl,nch) 
long nch,ncl,nrh,nrl;
/* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
{
long i, nrow=nrh-nrl+l,ncol=nch-ncl+l; 
int **m;

/* allocate pointers to rows */
m=(int **) malloc((unsigned int)((nrow+NR_END)*sizeof(int*))); 
if  (!m) nrerror("allocation failure 1 in matrixO"); 
m += NR_END; 
m — nrl;

/* allocate rows and set pointers to them */
m[nrl]=(int *) malloc((unsigned int)((nrow*ncol+NR_END)*sizeof(int))); 
if  (!m[nrl]) nrerror("allocation failure 2 in matrixO"); 
m[nrl] += NREND; 
m[nrl] -= ncl;

for(i=nrl+l;i<=nrh;i-H-) m[i]=m[i-l]+ncol;

/* return pointer to array of pointers to rows */ 
return m;

}

double * * submatrix(a,oldrl,oldrh,oldcl,oldch,newrl,newel) 
double **a;
long newel,newrl,oldch,oldcl,oldrh,oldrl;
/* point a submatrix [newrl..][newel..] to a[oldrl..oldrh][oldcl..oldch] */
{
long i j,nrow=oldrh-oldrl+l ,ncol=o!dcl-newcl;
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double **m;

/* allocate array of pointers to rows */
m=(double **) malloc((unsigned int) ((nrow+NR_END)*sizeof(double*))); 
if  (!m) nrerror("allocation failure in submatrixO"); 
m += NR_END; 
m — newrl;

/* set pointers to rows */
for(i=oldrlj=newrl;i<=oldrh;i++j++) m[j]=a[i]+ncol;

/* return pointer to array of pointers to rows */ 
return m;

}

double **convert_matrix(a,nrl,nrh,ncl,nch)
double *a;
long nch,ncl,nrh,nrl;
/* allocate a double matrix m[nrl„nrh][ncl..nch] that points to the matrix 
declared in the standard C manner as a[nrow][ncol], where nrow=nrh-nrl+l 
and ncol=nch-ncl+l. The routine should be called with the address 
&a[0][0] as the first argument. */
{
long ij,nrow=nrh-nrl+l,ncol=nch-ncl+l; 
double **m;

/* allocate pointers to rows */
m=(double **) malloc((unsigned int) ((nrow+NR_END)*sizeof(double*))); 
if  (!m) nrerror("allocation failure in convert matrixO"); 
m += NR_END; 
m — nrl;

/* set pointers to rows */ 
m[nrl]=a-ncl;
for(i=l j=nrl+l;i<nrow;i-H-j++) m[j]=m[j-l]+ncol;
/* return pointer to array of pointers to rows */ 
return m;

}

double * * * f3 tensor(nrl,nrh,ncl,nch,ndl,ndh) 
long nch,ncl,ndh,ndl,nrh,nrl;
/* allocate a double 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] */
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long i j  ,nro w=nrh-nrl+1 ,ncol=nch-ncl+1 ,ndep=ndh-ndl+1; 
double ***t;

/* allocate pointers to pointers to rows */
t=(double ***) malloc((unsigned int)((nrow+NR_END)*sizeof(double**))) 
if (!t) nrerror("allocation failure 1 in OtensorO"); 
t += NR_END; 
t — nrl;

/* allocate pointers to rows and set pointers to them */ 
t[nrl]=(double **)malloc((unsigned int)
((nrow*ncol+NR_END)* sizeof(double*)));

if (!t[nrl]) nrerror("allocation failure 2 in OtensorO"); 
tfnrl] += NR_END; 
t[nrl] -= ncl;

/* allocate rows and set pointers to them */ 
t[nrl][ncl]=(double *)

malloc((unsigned int)((nrow*ncol*ndep+NR_END)*sizeof(double))); 
if (!t[nrl][ncl]) nrerror("allocation failure 3 in OtensorO"); 
t[nrl][ncl] += NR_END; 
t[nrl][ncl] — ndl;

for(j=ncl+l y<=nchy-H-) t[nrl][j]=t[nrl][j-l]+ndep; 
for(i=nrl+l;i<=nrh;i++) { 
t[i]=t[i-l]+ncol; 
t[i] [ncl]=t[i-1 ] [ncl]+ncol*ndep; 
for(j=ncl+l^<=nchj++) t[i][j]=t[i][j-l]+ndep;

}

/* return pointer to array of pointers to rows */ 
return t;

}

void free_vector(v,nl,nh) 
double *v; 
long nh,nl;
/* free a double vector allocated with vectorO */
{
free((FREE_ARG) (v+nl-NR_END));
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}

void free_ivector(v,nl,nh) 
int *v; 
long nh,nl;
/* free an int vector allocated with ivectorO */
{
free((FREE_ARG) (v+nl-NR_END));

}

void free_cvector(v,nl,nh) 
long nh,nl; 
unsigned char *v;
/* free an unsigned char vector allocated with cvectorO */ 
{
free((FREE_ARG) (v+nl-NR_END));

}

void free_lvector(v,nl,nh) 
long nh,nl; 
unsigned long *v;
/* free an unsigned long vector allocated with IvectorO */ 
{
free((FREE_ARG) (v+nl-NR_END));

}

void free_dvector(v,nl,nh) 
double *v; 
long nh,nl;
/* free a double vector allocated with dvectorO */
{
free((FREE_ARG) (v+nl-NR_END));

}

void free_matrix(m,nrl,nrh,ncl,nch)
double **m;
long nch,ncl,nrh,nrl;
/* free a double matrix allocated by matrixO */
{
free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
free((FREE_ARG) (m+nrl-NR_END));

}
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void free_dmatrix(m,nrl,nrh,ncl,nch)
double **m;
long nch,ncl,nrh,nrl;
/* free a double matrix allocated by dmatrixO */
{
free((FREE_ARG) (m[nrl]+ncI-NR_END)); 
free((FREE_ARG) (m+nrl-NR_END));

}

void free_imatrix(m,nrl,nrh,ncl,nch) 
int **m;
long nch,ncl,nrh,nrl;
/* free an int matrix allocated by imatrixO */
{
free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
free((FREE_ARG) (m+nrl-NR_END));

}

void free_submatrix(b,nrl,nrh,ncl,nch)
double **b;
long nch,ncl,nrh,nrl;
/* free a submatrix allocated by submatrixO */
{
free((FREE_ARG) (b+nrl-NR_END));

}

void free_convert_matrix(b,nrl,nrh,ncl,nch)
double **b;
long nch,ncl,nrh,nrl;
/* free a matrix allocated by convert_matrix() */
{
free((FREE_ARG) (b+nrl-NR_END));

}

void free_f3tensor(t,nrl,nrh,nd,nch,ndl,ndh) 
double ***t;
long nch,ncl,ndh,ndl,nrh,nrl;
/* free a double f3tensor allocated by OtensorO */ 
{
free((FREE_ARG) (t[nrl] [ncl]+ndl-NR_END)); 
free((FREE_ARG) (t[nrl]+ncl-NR_END));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



146
free((FREE_ARG) (t+nrl-NR_END));

}

#endif /* ANSI */
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