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ABSTRACT

Due to sampling processes volumetric data is inherently discrete and most often 
knowledge of the underlying continuous model is not available. Surface rendering tech
niques attem pt to reconstruct the continuous model, using isosurfaces, from the discrete 
data. Therefore, it natural to ask how accurate the reconstructed isosurfaces are with re
spect to the underlying continuous model. A reconstructed isosurface may look impressive 
when rendered ( “photorealism”), but how well does it reflect reality (“physical realism")?

The users of volume visualization packages must be aware of the short-comings of the 
algorithms used to produce the images so that they may properly interpret, and interact 
with, what they see. However, very little work has been done to quantify the accuracy of 
volumetric da ta  reconstructions. Most analysis to date has been qualitative. Qualitative 
analysis uses simple visual inspection to determine whether characteristics, known to exist 
in the real world object, are present in the rendered image. Our research suggests metrics 
and methods for quantifying the “physical realism” of reconstructed isosurfaces.

Physical realism is a many faceted notion. In fact, a  different metric could be defined 
for each physical property one wishes to consider. We have defined four metrics — Global 
Surface Area Preservation (GSAP), Volume Preservation (VP), Point Distance Preservation 
(PD P), and Isovalue Preservation (IVP). We present experimental results for each of these 
metrics and discuss their validity with respect to those results.

We also present the Reconstruction Quantification (sub)System (RQS). RQS provides 
a flexible framework for measuring physical realism. This system can be embedded in exist
ing visualization systems with little modification of the system itself. Two types of analysis 
can be performed; reconstruction analysis and algorithm analysis. Reconstruction analysis 
allows users to determine the accuracy of individual surface reconstructions. Algorithm 
analysis, on the other hand, allows developers of visualization systems to determine the 
efficacy of the visualization system based on several reconstructions.

xiii
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Chapter 1

Introduction

1.1 Software/Visualization Verification and Validation

An increasing trend is the use of scientific visualization in fault intolerant domains. For 

example, visualization systems are now used for surgical planning, analyzing the flow field 

around aircraft, and the research of biological entities. These applications require accurate 

depictions of the observed phenomena. If a visualization system does not yield accurate 

depictions of the phenomena, the results could be disastrous. Therefore, there is a growing 

need for the verification and validation of visualization software. End users of visualization 

systems must understand the software’s strengths and weaknesses so that they may properly 

interpret and interact with what they see.

Several questions arise when visualizations are produced. Is the visualization valid? 

Does it show what truly exists in the data? The visualization process should do more 

than just produce a pretty picture. In scientific applications, the visualization must provide 

insight. In providing this insight, the software user must be able to distinguish between the 

characteristics of the da ta  and the artifacts produced by the visualization process.

2
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CHAPTER I. INTRODUCTION  3

Is the visualization software correct or verifiable? In other words, does the software 

do what it is suppose to do. or what the software designer claims it does? To this end. 

methods are needed to measure how much results vary between software systems, and 

which results are more nearly correct. There is no reason to believe that any results are 

correct without software verification and validation. Typical accuracies should be known, 

and made available, in an easily interpreted way, to users of the system. Moreover, users 

should be given the means to perform their own verification and validation analysis.

Verifying and validating visualization software poses an interesting challenge. Visu

alization systems usually begin with incomplete information about a function, and through 

their processes, attem pt to recreate that which has been lost. Reconstruction is a diffi

cult process, and prone to error. Methods are needed for quantifying the error, and these 

methods must become part of the verification and validation process.

1.2 Related Work

Methods for validating the reproductions of scientific phenomena are beginning to emerge. 

In this section, we present some of the work tha t has emerged in this area, and in the next 

section, we discuss the new contributions of our work as presented in this dissertation.

1.2.1 M agnusson, et al., 1988

One of the earliest studies of realism in the visualization processes was performed by Mag

nusson, et al. [53]. Magnusson studied the artifacts produced by shaded surface display 

techniques in volume visualization. Shaded surface display techniques attem pt to model 

how light is reflected from the surfaces in a scene. The intensity of light reflected at a 

surface location can be simulated using Phong’s formula (see [19]).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER I. INTRODUCTION 4

Magnusson did not consider ambient light and specular reflectivity because the au

thors felt the characteristics they wished to study were present when only diffuse reflection 

was used. The authors also used a  point light source located infinitely far away and a viewer 

located infinitely far away. Finally, the diffuse reflectivity coefficient was assumed constant 

across the entire surface. W ith these assumptions, Phong?s equation only depends on the 

precision of the surface normals.

Volumetric data is inherently discrete and most often the only attribute known about 

an object is the value of the object’s defining function at discrete locations. Therefore, 

methods are required for approximating the ideal surface normals from the functions values 

given at several discrete locations. Magnusson considered two normal generation schemes. 

The first scheme approximates the normals using the gradient vector

Equation 1.1 were estimated using two dimensional Sobel operators. The second approach 

approximates the normals using the gradient vector

The partial derivatives were approximated using three dimensional Sobel operators applied 

to the greyscale values of the original volumetric data.

Normals approximated using the above methods are dependent on the segmentation 

process used to define the object of interest because different segmentations will yield dif-

( 1 - 1 )

where the function z is given by depth values in the zbuffer. The partial derivatives in

( 1 .2 )

ferent depth buffers. Magnusson considered three segmentation techniques — grey value

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION  5

thresholding, the magnitude of the gradient (first derivative) transition, and Laplacian 

zero-crossings (second derivatives). For better accuracy within the segmentation, they also 

investigated two localization schemes. The first was grid point accuracy (or nearest neigh

bor). The second used linear interpolation between the nearest neighbors.

Considering all combinations of the above techniques yields at least twelve possible 

combinations l . Using mostly qualitative judgments, Magnusson compared the resulting 

images with respect to artifacts appearing in the final image. Their quantitative analysis 

used graphs of the intensity distribution to explain the false ring structures tha t appeared 

in various images.

The most significant aspect of this research was its design. By comparing different 

combinations of the above schemes, the authors could analyze how one stage of the vi

sualization process was affected by prior stage(s). The analysis not only considered how 

artifacts appeared in the rendered images, but also considered the cost/rendering quality 

tradeoff.

1.2.2 Pom m ert, e t al, 1989

Pommert, et al. [69] had an objective similar to Magnusson in their research. Their objective 

was “to assess the quality of different surface rendering algorithms using both quantitative 

and qualitative measures of image quality.” Similar to Magnusson, Pommert defined image 

quality as being dependent on various components — accuracy of object segmentation, 

accuracy of the computed surface normals, and quality of the shading. Accuracy of the 

object segmentation was not regarded as pertinent to their research because it was not 

directly related to computer graphics. Phong’s equation was used to control shading quality.

1 More actually exist because of available parameters for the various schemes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION  6

Like Magnusson. Pommert made several simplifying assumptions so that image quality was 

only dependent on the accuracy of the computed surface normals.

Pommert considered four normal approximation methods in this research: zbuffer 

gradient, gray level gradient, adaptive grey level gradient, and marching cubes. Zbuffer 

gradient shading approximates normals from the depth values given in the zbufFer using 

the gradient vector shown in Equation 1.1. Pommert approximated the partial derivatives 

using a weighted sum of the forward and backward differences.

Gray level gradient shading uses central differences of the six nearest neighboring gray 

level values in the volumetric data to approximate the partial derivatives in Equation 1.2. 

For objects with th in  surfaces (e.g., a hollow ball), the gray level gradient may yield poor 

results. Adaptive gray level shading attem pts to correct this problem by varying the size 

of the neighborhood.

The first three normal approximation approaches render volumetric data directly. 

Marching cubes (see Section 3.1) differs from these approaches by combining traditional 

surface representations, via triangles, with normals at the grid points approximated by gray 

level gradients. Lineaj interpolation is used to compute normals at the triangle vertices from 

the grid point normals.

To measure the accuracy of the above normal approximation techniques, Pommert 

determined the angle between the computed surface normals and the ideal surface normals 

in the range from 0 to  90 degrees. To visualize this metric, Pommert rendered the objects 

as a pseudo-colored image with each pixel colored according to the above angle(s) at the 

location(s) of the object which projected into tha t pixel. Their analysis also included 

qualitative judgments based on whether known characteristics of the da ta  appeared in the 

rendered image.
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CHAPTER  I . INTRODUCTION  7

The authors acknowledged the fact that all aspects of image quality were not covered. 

However, the m ajor drawback of their research is that they neglected to consider how various 

stages affected others. Various normal generation algorithms may perform better/worse 

under different segmentation and shading techniques, but using their research methods this 

cannot be determined.

1.2.3 M arschner and Lobb, 1994

Marschner and Lobb [54] presented a unique approach to analyzing the reconstruction of 

volumetric data. Since surface reconstruction is a filter, it can be performed and analyzed in 

the frequency domain. Marschner and Lobb used three dimensional extensions of traditional 

image processing reconstruction filters (see Table 1.1), and analyzed the results with respect 

to some traditional image processing errors.

Table 1.1: Reconstruction Filters

• trilinear interpolation • windowed sine

• two parameter (B ,C ) cubic • rotated cosine bell

• truncated Gaussian • windowed 3-sinc

• cosine bell

Mitchell and N'etravali [60] identified three common errors due to imperfect recon

struction; postaliasing, smoothing, and ringing (overshoot). Postaliasing occurs when the 

reconstruction filter is non-zero beyond the Nyquist frequency; even when the signal is suf

ficiently band-limited, the filter will incorrectly reconstruct parts of the aliased spectrum 

as part of the baseband spectrum. Smoothing occurs when high frequencies in a signal
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Reconstruction

Original Signal

Figure 1.1: Ringing

axe suppressed by low pass filtering. Finally, ringing occurs when high frequencies are 

abruptly truncated by a  low pass filter. This results in oscillations in the neighborhood of 

a discontinuity as shown in Figure 1.1.

Marschner and Lobb developed a metric for each of the errors described above. They 

defined their smoothing metric to measure the difference between the filter in question 

and the ideal low pass filter with the same amount of energy within the Nyquist region. 

Similarly, the postaliasing metric was defined to measure the amount of energy outside of 

the Nyquist region. Finally, the overshoot metric measured how much overshoot occurs 

when the reconstruction filter is applied to  the unit step function.

Marschner and Lobb pointed out th a t choosing an appropriate reconstruction filter 

requires considering the nature of the scene, how it was sampled, cost of using the filter, and 

what rendering algorithm will be used to display the reconstruction. Some filters are better 

at reducing certain errors a t the cost of increasing others. For this reason, the authors chose 

to develop a metric for each error of interest. This allows a  filter to be described by its 

abilities to  reduce/increase particular errors. Thus, depending on the characteristics of the 

signal the most appropriate filter can be selected.
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CHAPTER I. INTRODUCTION  9

1.2.4 P atel, et al., 1996

Visualization systems are being used increasingly in the simulation of surgical processes. 

These simulations are used for planning surgeries and as a tool for medical students to 

practice surgical methods non-evasively. Patel, et al. [68] report that the processes involved 

in these simulations must be validated with respect to their accuracy and measurability. 

The authors evaluated cranialfacial surgical simulation methods with the goal "to define 

and test a methodology for comparing surgical simulations to postoperative outcomes."

The authors noted several possible sources of error in the simulation process: scanning, 

image reconstruction, image manipulation, and landmark identification and measurement. 

Since CT scanners have been validated, this source was not evaluated. To quantify the 

error in the other sources, the authors devised several tests based on objects with known 

(or easily computed) properties (e.g., cubes) and phantoms 2. Among these were tests for 

the accuracy of linear measurements and landmark position measurements, a  surface match 

rotation test, and a mass properties test.

In addition to the individual processes, the authors considered the surgical process as 

a whole. Phantom objects were scanned and rendered using a CT scanner and commericial 

software packages. The resulting computer models and phantom objects were manipulated 

using the same surgical procedures. The postoperative phantoms were rescanned and ren

dered, and compared to the postoperative computer models. Finally, comparisons were 

made with respect to predefined landmark positions, mass properties (e.g., volume and 

centers of mass), boolean differences, and depth-coded topographic maps.

2 A phantom  is a physical object designed to test some characteristic of a CT measurement system.
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1.3 Research Contribution — Beauchat, 1996

Unfortunately, the methods presented by Magnusson and Pommert use qualitative analysis 

by asking the question, “do characteristics known to exist in the real phenomena exist in 

the reproduction?” This approach to verification and validation is inexact, and depends on 

the judgment and/or expertise of the viewer. Qualitative techniques are based primarily on 

the notion of “photorealism.” Photorealism is concerned with creating computer generated 

pictures which are indistinguishable from photographs.

The efforts of Magnusson and Pommert concentrated on the precision of the com

puted surface normals and their effect on the quality of the final image. It is im portant that 

characteristics of the data  (e.g., sutures) appear in the final image because these character

istics a ttract the user’s attention to particular areas of interesting phenomena. However, 

there is a deeper issue that these efforts do not consider — the underlying representations. 

When a user manipulates the reconstructed object via cross-sections, for example, that user 

interacts with the underlying representation. If errors exist in the representation, then the 

visualizations which result from the manipulations may produce incorrect or unexpected 

results regardless of the quality of the surface normals.

Verification and validation techniques must move away from photorealism, and move 

towards the notion of “physical realism.” Physical realism is more concerned with how well 

the underlying structures tha t are used to represent the phenomena reflect the phenomena’s 

physical properties. This dissertation offers quantitative methods for analyzing the physical 

realism of a  given reconstruction and the ability of visualization systems to preserve physical 

realism.
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Similar to Pommert’s metric for measuring the error between computed and ideal sur

face normals, in this dissertation, we formalize metrics based on physical properties. We also 

present methods for performing physical realism analysis. Like the design of Magnusson. 

our methods allow developers of visualization systems and users of those systems to deter

mine the degree of physical realism, and investigate how various stages of the visualization 

process depend on prior stages and affect those which follow.

We take the view of Marschner and Lobb tha t having a  single reconstruction metric 

may not be satisfactory because a  single metric may miss interests of the user and charac

teristics of the data. For example, a  doctor analyzing the reconstruction of a tumor might 

be interested in the ability of a reconstruction algorithm to preserve the surface area and/or 

volume of the tumor. A single value representing the overall preservation of physical realism 

may not reflect this ability because it could be tainted in some fashion by the algorithm's 

ability to preserve some other physical characteristic.

1.4 Thesis Overview

In Chapter 2, we present the background which lays the framework for the rest of this thesis. 

Volumetric data is described along with the grid structures on which it can be redefined, 

and the possible interpretations of the entities produced by the new definition. This chapter 

also describes a  simplified end-to-end pipeline of the processes in the typical visualization 

system.

Chapter 3 describes four popular surface reconstruction algorithms. These algorithms 

are the marching cubes technique presented by Lorensen and Cline [51], a surface tracking 

algorithm presented by Shu and Krueger [77], a contour triangulation method presented by 

Ganapathy and Dennehy [22], and a  contour method utilizing a modified spline lofting tech
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nique as presented by Sunguroff and Greenberg [80]. Each of these algorithms is analyzed 

with the validation techniques defined in this thesis.

Chapter 4 formalizes the notion of metrics based on physical properties, and defines 

new metrics for verifying and validating isosurface reconstructions and visualization sys

tems. This chapter concludes with a discussion about how to ensure that the metrics are 

implemented correctly.

Chapter 5 defines a new framework in which the metrics presented in Chapter 4 should 

be applied. This framework defines two types of analysis, and describes a new (sub)system 

that can be directly and easily inserted into most visualization software. This gives the 

software the ability to produce verification and validation results.

In Chapter 6 we present the results obtained by applying the metrics of Chapter 4 to 

surface reconstructions produced by the techniques described in Chapter 3. We discuss each 

result presented with respect to what it tells us about the validity of the reconstruction, 

and what a collection of results tell us about the validity of the visualization system.

Finally, Chapter 7 concludes with a summary of the results, and some ideas for future 

work. This future work includes other possible metrics for investigation, and the creation 

of new reconstruction techniques which attem pt to minimize the error with respect to a 

particular metric (or metrics).
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Chapter 2

Background

2.1 Volumetric Data

Volumetric data typically consists of scalar or vector values specified throughout a contin

uous multi-dimensional space1 according to some function (P  : Ji3 — U). This function, 

representing nature, may be as simple and regular as the analytical equation of a sphere, 

or it may be as complex as the density of tissue within a human head.

We can define a new function T  : Q — 3? by sampling P  on a superfine grid Q. T  

represents an approximation to  P  to the best possible precision of the equipment being used 

to acquire the measurement. The domain of T  is no longer continuous and the range is 

no longer infinitely precise. However, with ever-changing technologies and proper software 

design, we assume that the measurement can be taken at any predetermined precision.

'VVe will only be concerned with scalar data specified throughout a three dimensional space in this 
research.

13
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2.2 Visualization System

Volume visualization is concerned with the representation, manipulation, and rendering of 

volumetric data [41]. Figure 2.1 shows a  simplified model of the typical end-to-end surface 

visualization system. This model takes as input the function T  defined throughout a three 

dimensional space. Unfortunately, in most cases, the computer is incapable of handling the 

complexity of T . Therefore, before T  can be used by the visualization system it must be 

sampled. The first step of the visualization system samples F  on a grid. A new function. F.

Figure 2.1: A Simplified End-to-end Visualization System

is defined by this sampling process. The precision of F  is restricted by the storage capacities 

of the computer and visualization system.

The next stage is to process the sampled data, usually by quantization. Quantization 

reduces the amount of memory and disk space required to store the data  by mapping the 

floating point values of F  to a  small subset of integers. If maxp and m inf axe the maximum 

and minimum values of F, then a value v in the range of F  can be uniformly quantized to 

the values 0 ,1 , . . . ,  N  using

, v -  minF „v =  -------------- ;— iV
.m axf -  minf

Other processing may include noise filtering and segmentation. Regardless of the processing, 

we still use the symbol F  to represent the function after this stage.

Rendering volumetric data represents an interesting challenge because most of the 

graphics methods and hardware today are oriented toward surface representations. In the 

third stage, the system “converts” user specified parts of the volumetric data  to a traditional
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surface representation. Recall that the volumetric data  is only defined on a discrete set of 

points. Therefore, this third stage must use interpolation to obtain unknown values at other 

locations within the domain of T .  This conversion process is known as reconstruction. Some 

of the popular reconstruction techniques can be found in [80. 51, 11. 77. 59]. Four of these 

techniques will be described in Chapter 3 of this dissertation.

Once the (iso)surface has been reconstructed it can be rendered in the fourth stage. 

This stage encompasses many separate processes, and each process influences the output 

by providing a number of controlling parameters. For example, a view transform must be 

defined to map the surface from its world coordinate space to an image coordinate space. 

The parameters of the viewing transform may include linear transformations (e.g., scaling 

and rotation), the view point, type of projection, and the viewport. The output from this 

stage is an image that can be viewed by the user.

As a fifth stage, the visualization system often provides some mechanisms for user 

interaction. This stage takes as input the rendered image from the prior stage, and provides 

mechanisms for manipulating tha t image. The mechanism often comes in the form of a 

graphical user interface (GUI) tha t allows the user to alter the parameters of stage four. 

For example, after the user views this image, s/he may want to rotate the object. If the 

visualization system allows this operation, it would give the user some means to change the 

appropriate view transform parameters in stage four. The visualization system may also 

provide more complex means of user interactions. For example, the visualization system 

might be used for surgical planning. In this case, the system would provide the user with a 

means of taking cross-sections through the reconstruction to  view interior structures.
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2.2.1 Grid Structures

As stated above, the second stage of the visualization system reduces the amount of data 

by sampling J o n a  grid. Grids are generated by choosing a discrete subset of points in 

the domain (£?) of !F. Grids can be classified by the regularity of their appearance (or 

alternatively by the regularity of the processes used to generate them). Grid generation 

processes often partition space into small volume units called voxels, and typically there is 

a one-to-one correspondence between voxels2 and grid points.

In this section, we describe four classifications of grids (see [90][79]), and where ap

propriate their associated voxels. Because the research in this dissertation is concerned with 

three dimensional data, we describe the grids below with this in mind.

R eg u la r This is the simplest grid. The nodes are generated as the intersections of three 

orthogonal sets of planes given by;

x = nS 

y =  nS 

z =  n6\

where n =  ±0, ± 1 , . . .  and 6 is some small, real-valued number fixed throughout the 

grid generation process.

Voxels are cubes with sides of length 6.

2 Voxels are analogous to pixels in two dimensions.
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R ec tilin ea r Rectilinear grids generalize regular grids by allowing each set of planes to be 

defined by a different 6. The planes are given by;

x  =  n6x

y =  n8y

z — n8z;

where n =  ± 0 ,± 1 , . . .  and 6X, 6y , 6, are some small, real-valued numbers fixed 

throughout the grid generation process.

Voxels, in this case, are rectangular parallepipeds with sides of length <5r , 8y. and 8Z.

This grid occurs most often in data defined as a series of two dimensional slices, where 

the S between data  slices is lesser than that on each slice.

Structured Structured grids, also known as curvilinear grids, occur when the voxels are 

allowed to become warped. Structured grids are usually generated by the intersection 

of three families of doubly parameterized surfaces given by

x  =  i„ (s ,  t)

y  =  yn(s ,  t)

z  =  z„(s,t);

where n = ±0, ± 1 , . . .  and (s, t) comes from some fixed subset of 3?2.

Structured grid voxels usually resemble warped parallelpipeds, and the association of 

voxels with grid points must be made with respect to the generating surfaces.
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These grids are typically used in computational fluid dynamics (CFD) where the grid 

is wrapped around some object.

U n s tru c tu re d  This is the most general grid, and occurs when grid points may be specified 

individually. Topology is not necessarily implied in the point specification. Though 

this grid is also known as random. the point specification is never really random.

It may not be easy to associate voxels with the grid points in unstructured grids.

Unstructured grids are becoming more common in CFD because they allow a more 

dense specification of points in areas where interesting behavior occurs, and a less 

dense specification in areas of low interest.

The data  sets used in this research have been sampled on either a regular grid or a rectilinear 

grid. Appendix A of this thesis describes the data sets used in this research.

2.2.2 V olum etric D ata Interpretations

Given a grid specified on the domain of F ,  the values of F  are defined at each point of the 

grid by sampling T  in some way. When point sampling is used, the value of F  at a grid 

point is precisely the value of F  at that grid point. The values of F  can also be obtained 

through some averaging of the values of T  near the grid point in question. This process is 

known as area sampling.

Regardless of the sampling method used, it is often desired and usually necessary to 

use the values of F  to assign values to all points in the domain of T . Several approaches 

are common. One approach assigns each point in a voxel the same value as the grid point 

associated with it. In others, adjacent grid points define a  volume called a  computational 

cell; values are assigned to all points within the computational cell by some weighted average
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of values at the vertices. It is common practice to use the term voxel to refer to both 

interpretations.

2.3 Volumetric Rendering Techniques

Since the representation of volumetric data differs from tha t of traditional computer graphics 

representations (e.g., lines and polygons), new approaches must be used to visualize the data 

on today’s hardware. Currently, there are two complementary approaches; volume rendering 

and surface rendering.

Volume rendering uses methods which directly display voxels. Some methods. [84. 20. 

9, 7, 32, 14], treat each voxel as a set of six orthogonal faces, and project each voxel onto 

the viewplane in a  back-to-front order relative to the viewpoint. These methods typically 

rely on "good*1 normal generation methods to  reduce the stair step effects inherent in the 

resulting surfaces. Other techniques [73, 17, 47] use ray-tracing combined with averaging 

and integration methods to obtain opacities and intensities which are used to determine the 

color for pixels in the view plane.

Surface rendering approaches, [80, 51,11, 76, 91, 77, 59], reconstruct isosurfaces which 

exist in the volumetric data according to a user specified threshold or contours defined on 

each data slice. The reconstructed isosurfaces are stored in one of the more traditional 

computer graphics representations. The converted da ta  can be rendered and displayed using 

traditional graphics algorithms, and can take advantage of available graphics hardware. 

The research in this dissertation is only concerned with surface rendering techniques, and 

Chapter 3 describes those techniques which this author investigated.
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2.4 Error

•20

There are many sources of error in a visualization system. In fact, each stage in Figure 2.1 

introduces some form of error. The first stage computes samples of the underlying function 

at discrete locations in the domain of the function. This process introduces error by passing 

a  new function, whose range is a discrete subset of the original function, onto the next stage 

of the visualization pipeline. This form of error is known as sampling error.

In the second stage, the sampled data from stage one is processed in any of a number 

of ways (e.g., uniform quantization and low pass filtering). This stage alters some, or all. 

of the data values. For example, if quantization is applied, the dynamic range of values 

is rounded and truncated as presented in Section 2.2. This processing increases the error 

present in the data.

The reconstruction process introduces error when the isosurface is incorrectly interpo

lated. This source of error may appear in a number of ways. The reconstruction algorithm 

may miss important features of the isosurface such as a sutures or crevasses. It also can 

introduce features tha t do not exist in the data. For example, contour reconstruction algo

rithms often produce holes in solid objects. An example of this behavior will be illustrated 

in Chapter 6.

The next stage involves rendering the isosurface. Rendering requires the computation 

of surface normals. There are a  number of ways these normals can be computed, and each 

contains some form of error. This topic was studied by a  number of authors, as presented 

in Chapter 1. The rendering process involves changing a  continuous three dimensional 

surface representation into a discrete two dimensional image. One source of error from this 

process manifests itself as aliasing artifacts. One particular instance of aliasing is known as
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stairstepping, and is seen as jagged edges in the image. These sources of error have been 

well studied in the field of image processing. Other sources of error in the rendering process 

may include the incorrect display of hidden surfaces, improper shading, etc.
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Chapter 3

Surface R econstruction Techniques

This chapter will describe a  collection of surface reconstruction techniques which fail under 

the surface rendering class of algorithms. We use these techniques for our results and 

discussion in Chapter 6. These methods were chosen because they represent some of the 

main approaches to the problem of surface rendering from volumetric data.

3.1 Marching Cubes

Lorenson and Cline [51] present a  divide and conquer approach to surface reconstruction 

which consists primarily of two steps. F irst, the topology of the surface within a given voxel 

is first determined by classifying it as one of a small, finite number of possible configurations. 

Each configuration is uniquely defined by the edges intersected by the surface. Once the 

configuration is known, an approximation to the actual surface is generated as a triangular 

mesh using linear interpolation of the values at the vertices adjacent to the intersected 

edges.

22
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3.1.1 Configuration Table

The classification of surface topologies inside a voxel can be implemented as a lookup table 

where each entry in the table contains the edges which are intersected by the surface. A 

voxel is defined by eight vertices, and there are two possibilities for each of the eight vertices: 

inside and outside the isosurface. Therefore, there are 28 =  256 possible configurations for 

an isosurface intersecting a voxel. However, if complementary configurations are considered

Figure 3.1: 15 Possible Voxel Configurations

equivalent, only four or less vertices have to be considered. This reduces the number of 

configurations to 128. Using linear operations, such as rotations, the number of distinct 

cell configurations can be further reduced to fifteen. These configurations are shown in 

Figure 3.1. In this figure, a  black dot indicates that the vertex is inside the isosurface.

Each entry in the table is indexed by a bitcode. If the vertices of a voxel are numbered 

as shown in Figure 3.2, then a bitcode can be assigned to a voxel by assigning a one to 

the bit corresponding to each vertex tha t is inside the isosurface and a 0 to each outside 

vertex. For each bitcode, the table contains the edges intersected for the corresponding 

configuration. The edges are numbered as shown in Figure 3.2.
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Figure 3.2: Vertex and Edge Numbering

3 .1 .2  A lg o r i th m

Marching Cubes processes the da ta  voxel by voxel, and determines where the isosurface 

intersects each voxel by classifying the vertices that define the computational cell as being 

inside or outside a user specified threshold (r) . If the value at a vertex is less than or equal 

to the threshold, it is classified as inside the isosurface. The isosurface will intersect an edge 

of the cell when the classification of two adjacent vertices differ. That is, when one vertex is 

inside (< =  r )  and one vertex is outside (>  r )  the threshold. This classification determines 

the topology of the isosurface intersecting the voxel.

Once the topology for a  given voxel is known, the intersection of the isosurface 

T { x .y , z )  = r  with an edge can be approximated using linear interpolation on the val

ues of T  a t adjacent vertices. The interpolated point P  on edge e defined by voxel vertices 

V a and Vft is expressed by

P  =  ( l  - t ) V a + tV b (3.1)
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where

. _  r  -  F (V g)
F ( V * ) - F ( V a )

3.2 Surface Tracking

A solid in volumetric data sets can be identified as a  connected set of voxels, and the surface 

of tha t solid as a connected set of boundary faces. Boundary faces exist between two voxels 

having differing values. Surface tracking algorithms construct the surface by traversing the 

voxels face by face beginning with a "seed” which is known to be a part of the surface. 

Each adjacent face is considered using tracking functions. If it is a boundary face on the 

desired surface, then it is included in the surface. The algorithm developed by Shu and 

Krueger [77] is rather complex. Therefore, only their terminology and the basic idea of the 

algorithm will be described here.

3.2.1 Background

Surface tracking algorithms require some method of determining the boundary faces. Thus, 

a segmentation process, typically, must be performed. The segmentation process should 

produce a  binary scene where each voxel which is a  part of the solid is assigned a 1 (called 

1-voxels), and all other voxels are assigned 0’s (called 0-voxels).

As shown in Figure 3.3, a  boundary face, in this scene, will exist between two adjacent 

voxels if one is a 1-voxel and the other is a 0-voxel. Each voxel can have six boundary faces. 

Figure 3.4 shows these faces and their names; X , X ,  F ,  F ,  Z,  and Z. The name assigned 

to a face reflects the direction of its outward-pointing normal. X  is the name of the face at 

which the outward-pointing normal points in the direction of increasing i .  X  is the name
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Boundary Face

1-Voxel

0-Voxel

Figure 3.3: A Boundary Face Figure 3.4: Face Configurations

of the face at which the outward-pointing normal points in the direction of decreasing x. 

Y , Y , Z. and Z  are defined similarly.

Each voxel also hats six tracking directions, 6a, for a = X , X ,  Y, Y .  Z. Z. The tracking 

direction is given by placing the thumb of the right hand in the direction of the normal for 

a boundary face. The direction that the fingers curl gives the tracking direction. Figure 3.5 

shows the tracking direction 6y. A tracking function Ta is associated with each tracking

Figure 3.5: Sy Tracking Direction

direction. Ta takes a  boundary face as input and returns the boundary face adjacent to 

it in direction 6a. The process of tracking all faces in a particular direction is known as 

clearing the track.
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3.2.2 A lgorithm

The surface tracking algorithm uses three da ta  structures. BF  is the set of boundary faces 

comprising the surface. Faces are only added to this set when they are not already present. 

Therefore. BF  must be optimized for the is.mem.ber operator. Q y  is a queue containing 

boundary faces to which the Ty  tracking function will be applied. Likewise. Q z  is a queue 

of boundary faces to which the Tz  tracking function will be applied.

With this background, Shu and Krueger’s surface tracking algorithm can be described 

simply as follows. The volumetric data is first conceptually divided into one voxel wide 

slices parallel to  the x,z-plane. The Ty  tracking function is used to find all A'. X ,  Z. and 

Z boundary faces in each slice, and the T z  tracking function is used to find all Y  and Y  

boundary faces in each slice. Note that these two tracking functions are sufficient to find 

all boundary faces on the surface of the solid.

As stated  earlier, the tracking process begins with a boundary face which is known to 

belong to the resulting surface. This face is called the seed face, f seed- For simplicity, assume 

f seed belongs one of the X , X ,  Z, or Z class of faces. Qy  is initialized to contain / jeed, and 

the other two structures are initially empty. If Q y  is not empty, the next boundary face in 

this queue is removed, and Ty  is used to clear the track. If Qy  is empty, Qz  is used. The 

algorithm continues to clear tracks until Qy  and Q z  are empty. Clearing the tracks is a 

complex process and, for the sake of brevity will not be described here.

3.3 Contour Triangulation

The general triangulation approach can be stated as follows. Given a  set of points scattered 

throughout some three dimensional space, how can we best model the surface defined by
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Contour Segment

n-l

m-I

Elementary Tile
Span i+l

Figure 3.6: Planar contours

these points using standard computer graphics primitives? The simplest approach would be 

to model the surface using triangular surface patches. Approaches to this general problem 

are rather difficult [18]. A simpler problem arises when the set of points are distributed on 

several parallel planar contours as shown in Figure 3.6. Ganapathy, et al. [2*2] presented 

a heuristic approach as a solution to this problem. Their approach takes advantage of the 

coherence between adjacent contours. Adjacent contours typically have similar shapes, and 

are made up of relatively the same number of segments. Before the algorithm is described, 

a few definitions must be presented (refer to Figure 3.6).

3.3.1 Definitions

definition 3.1 A contour segment is a linear approxim ation o f  the curve connecting two 
adjacent p o in ts  on a contour.

definition 3.2 A  span is a segm ent connecting two poin ts on adjacent contours.
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definition 3.3 An elementary tile is the triangular facet defined by a contour segment 
and two spans connecting the en d  points o f  the segm ent with a common point on an adjacent 
contour.

Given these definitions, it has been shown [21] tha t an “acceptable” surface must 

satisfy two constraints. First, a contour segment must appear in only one elementary tile 

between two adjacent contours. Second, if a span occurs as the left (right) span of an 

elementary tile, then it will appear as the right (left) span of exactly one other elementary 

tile in the set of tiles defining the surface.

A contour can be “redefined” in such a way that its perimeter is normalized. In these 

new contours, a  weight <t>i is defined for each elementary tile containing a contour segment 

from the lower contour. 4>i is equal to the length of the i1*1 contour segment divided by the 

length of the entire contour. Thus, 4>i represents the normalized length of the it *1 contour 

segment. A weight 4>j is similarly defined for each elementary tile containing a contour 

segment from the upper contour.

3.3.2 Algorithm

Elementary tiles are added to the surface in such a  way tha t the absolute difference between 

the sum of the upper weights 4>j and the sum of the lower weights <j>i is minimized at all 

times. Define to be the normalized distance traveled thus far along the lower contour, 

and similarly define for the upper contour. Given tha t we are at point in the lower 

contour, and a t point Uj in the upper contour, as shown in Figure 3.6, L{Li+iUj and 

LiUjUj+i are the only tiles which can be considered for addition into the set of elementary 

tiles defining the surface reconstruction. LiLi+iUj is chosen if

I$j, +  <t>i -  4>j\ < \*u, +  4>j -  4>i\ (3.2)
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Otherwise. LiUjUj+i is chosen. In the first case, i is incremented by one and $ft is incre

mented by Oi. The algorithm proceeds. In the second case, j  is incremented by one and 

is incremented by before the algorithm proceeds.

3.4 Contour Lofting

The contour method developed by Sunguroff and Greenberg [80] uses a modified lofting 

technique to interpolate the sectional curves with splines. The contour on each data slice is 

first fitted by uniform B-splines, and then the surface is interpolated between curves using 

Cardinal splines. For the discussion which follows we assume the reader is familiar with 

some spline theory terminology.

3.4.1 Formalization - B-Splines

The first step in the contour lofting algorithm is to fit a B-spline to each set of contour 

points. To simplify the algorithm, the points defining a  contour are assumed to be uniformly 

distributed with respect to arc length.

definition 3.4 Given a closed set V =  {Vi : i =  0 ,1, . . . ,  m} of points defining a closed 
polygon, we can generate points on an approximating curve for the itk segment of the polygon 
using the following matrix equation:

Pi{U) =  [Cf3 U2 U Vi Vi+l Vi+2]T (3.3)

[•^6—spline] — g

- 1  3 - 3  1
3 - 6  3 0

- 3  0 3 0
1 4  1 0

(3.4)

Curves defined by this equations are known as periodic uniform B-splines, and the set 
V is known as a control polygon.
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In defin ition  3.4. U = (u -  u ,)/(u t+1 — ut ) is the normalized parametric coordinate, u is 

the curve parameter, and u,- represents the value of this parameter at the ith control point. 

Because the set of points is closed the following end conditions are imposed V'_i =  Vm. 

^m-t-i =  and Vm+2 — V\.

Using Equation 3.3, we can obtain any point on the contour given an appropriate 

value for the param eter U. Unfortunately, the set of points V  defining the control polygon 

are unknown. From the contour generation process, we obtained a  small subset of the points 

Pi(U). Therefore, an inversion process can be used to obtain V. Given that there are m  -f 1 

points in the control polygon, we require m +  1 independent conditions. These conditions 

will uniquely define a system of linear equations which, when solved, will yield the m + 1 

points defining the control polygon.

The necessary conditions can be obtained from m  +  1 points on the contour and 

Equation 3.3. The simplest way to obtain the conditions is by stipulating P;(0) for the 

m  +  1 contour segments. From Equation 3.3 these points are given by

/>(0) =  ( l /6 ) (K _ i +  4K- +  Vi+l) (3.5)

Because the coefficients for each point are constant we can conveniently write the system 

of linear equations as:
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4
1

1
4

1
1

4
1

1
4

' Vo ■ ' Po(0) ■
I'l Fi(0)

I :

. Vm . . Pm(0) .

(3.6)

Solving this system of equations gives us the appropriate control polygon whose correspond

ing B-spline curve will interpolate the m  +  1 contour points.

In order to make the B-spline solution tractable (in a reasonable amount of time), 

the number of points on each sectional curve are reduced/raised to some given number A', 

and these points are assumed to be uniformly distributed along the curve. Wu. et al. [94] 

state th a t K  is typically chosen to be between 20 and 40. Note K  = m +  1.

3.4.2 Formalization - Cardinal Splines

Given the contours approximated by the B-splines, the next step is to loft between those 

curves w ith a set of Cardinal splines. Cardinal splines are chosen for this step because they 

have the characteristic that they interpolate the points of the controlling polygon. With 

this characteristic, we are guaranteed the resulting curve will pass through each contour. 

Cardinal splines represent a family of curves. We chose a particular class of Cardinal spline 

curves called Catmull-Rom splines for the lofting process.

Let P j (u) be the parametric representation of the B-spline for the j th contour, where 

j  = 0 ,2 , . . .  n.
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d e fin itio n  3.5 Given a s e t  o f  points {PJ(u) : j  = 0, defining the control polygon,
a C a tm u ll-R o m  sp line  interpolating the j th segm ent is defined by

Q fiv)  =  [Vr3 V 2 V  l p „ tmil«-rom][i, i" l (t«) P3(u) P J+l(u) P J+2(U)]T (3.7)

'  - 1  3 - 3  1 ■

- i  1  \  " i <3JS>
_ 0 2 0 0

Again we normalize the curve parameter v, V  = {v — vj)/(vj+i -  vj). Using P ~ l{ u ) = P°( u) 

and P n+2(u) = Pn+l(u) =  P n(u) as the end conditions provides a “bending free” curve at 

the end points.

3.4.3 Algorithm

A given data set contains n + 1 planar slices of data. For each slice, the first step is to 

generate the contour which defines the cross section of the object on the given plane. From 

the above discussion, it is assumed tha t each contour is described by m-pl points distributed

uniformly with respect to  arc length. Therefore the second step is to either raise or reduce

the number of points defining the contour to the predetermined number A', and to ensure 

they are uniformly distributed. Next, the inversion technique described above is applied to 

fit a  B-spline to this new contour. Once B-splines have been fitted to all contours, they are 

interpolated between contours using Catmull-Rom splines.

The original algorithm from [94] allowed user interaction at several stages of the 

surface generation process. For example, after a B-spline was fitted to the contour, the 

user could remove/add points to the control polygon to force the B-spline to better fit 

the contour. We desired each reconstruction method to be free from user intervention. 

Therefore, we removed those steps from our implementation.

1
l& catm uU —rom l  —  ^
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A surface patch T't J . in this approach, is defined parametrically in the usual way by

2 2

I ' J u , u )  =  £  $ n(u) £  * m(u)Pi+m.J+ri (3.9)

with

and

$(u ) =  \  [u3 v2 v 1

¥ (u ) =  ^ [u3 u2 u l]

- 1 3 -3 1
2 —5 4 - 1

-1 0 1 0
0 2 0 0

'  -1 3 - 3 1
3 - 6 3 0

-3 0 3 0
1 4 1 0

Pij is the geometry m atrix for the ith, j th surface patch

(3.10)

(3-11)
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Chapter 4

M etrics for Q uantitative Analysis

4.1 Background

The idea of “physical realism” is a many faceted notion, and thus measures of "physical 

realism” can be many. There can be a metric for each physical or topological property we 

may wish to consider. Metrics motivated from these physical and topological properties can 

be global or local. Global metrics measure the difference between properties of an object as 

a whole, for example, its surface area, or its volume. Local metrics measure the difference 

between properties of an object at points, for example, the displacement between a point 

on a  reconstructed isosurface and the corresponding point on the ideal isosurface, or the 

discrepancy between the actual value of a  function a t a  point on a reconstructed isosurface 

and the value intended.

The distinction can be clarified further by considering how each class of metrics is 

computed. For a local metric, the error is measured a t points on the surface, and integration 

averages these error values across the whole surface. In this context, local metrics often

35
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require the evaluation of a surface integral having the following form

36

[  [  H (u , v)
J v e v J u e u

d l (u ,v )  d l (u .c )  
X

du dv
du dv ( 4 . 1]

where H{u,v)  represents the function that measures the error at points on the surface. In 

this equation, x represents the cross product operator, || • || represents magnitude, and 

evaluation of this surface integral yields the average value of H(u, v) across I.

For a global metric, a property is computed for infinitesimal pieces of the surface and 

integration adds these values together. The metric is defined as the error between two such 

integrations. For example, surface area of a surface S  can be measured using

L e v J u e u
| d<S(u, v) d S (u ,v )  

du X dv
du dv.

If /  is the ideal surface and J  is a  reconstruction of I ,  the surface area properties would be 

measured using

Areai — I I
J v £ V  J t i Z U

d l(u ,  v) _ d l (u ,v )
du dv

du dv

and

Areaj
6 N irr€  W  J m  6  A f dm dn

dm dn,

and a metric could be defined using the following relative error

Areai — Areaj 
A rea j
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4.2 Metric Definitions

In this thesis we define four metrics. The first two are global metrics, and the other two 

are local metrics. VVe call these metrics global surface area preservation (gsap), volume 

preservation (v p ), point distance preservation (p d p ), and isovalue preservation (ivp). In 

the definitions that follow, we use I  to represent the real surface, and I  to represent the 

surface reconstruction of I .

4.2.1 G SA P

This metric measures the difference between the surface areas of 1  and I.  This is a global 

metric. Given the surface area of I  (Area,-^,,/) and the surface area of I  (Area.Jt), we define 

two measures of interest;

A rea„t -  Area.ideai 
g s a Pa«'jnerf -  A rea,-*./ ( 4 -“ )

and

  _ |AreaeSt -  A re^eoil , .
g sap - ‘- =     (4'3)

The first measure gives a signed error. It tells how far the estimated surface area is 

from the ideal surface area, and it also tells in which direction the general error occurs. That 

is, for example, if g sap 3tjne(f >  0 then we have a  fair idea that the “size” of the isosurface

reconstruction, in general, exceeds that of the actual isosurface. g sapa&3 simply gives the

magnitude of the error with no indication of direction.

We have defined these metrics as a relative error with respect to the ideal surface 

area. The relative error allows us to consider several such measures for determining the 

overall ability of a reconstruction technique to preserve surface area. Without a relative 

measure this would only be possible when the surfaces axe described by the same units.
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As a global metric, g sap  has some drawbacks. It is not sensitive to local deviations 

between the reconstruction and the surface. Analysis based on g sap  merely states whether 

the surface area of the reconstruction exceeds the surface area of the real surface. Further

more. even if analysis states the surface areas are equal, this does not necessarily imply the 

reconstruction is perfect. Consider the simple case of the surface area of a golf ball (e.g.. a 

sphere with divots). It is easy to construct another surface with the same surface area as 

the golf ball by replacing the divots with bumps having the same dimensions as the divots.

Another drawback of gsap  is that it is not easily applied to general surface repre

sentations such as the spline surfaces of Section 3.4. The surface area of a parametrically 

defined surface I(u , v ) is given by Equation 4.1 with H{u , v) =  I. Evaluation of this sur

face integral typically requires numerical integration, and these methods contain their own 

sources of error. An additional measure must be provided which quantifies this additional 

error.

Finally, g sap  is not realistically applicable to data sets, such as flow fields, where 

physical surfaces do not exist. The gsap  metric, however, is simple to understand, illustrates 

a global metric, demonstrates the application of global metrics to analyze “physical realism'’ 

in isosurface reconstructions, and may be an important metric in some medical applications 

(e.g., analysis of tumors).

4.2.2 V P

A logical extension of g sap  is volume preservation (vp). Volume preservation is another 

global metric which measures the difference between the volumes enclosed by two surfaces. 

We define two volume metrics analogous to  the metrics defined for gsap . Given the volume 

enclosed by the reconstructed surface ( Volume,.,t ) and the volume enclosed by the surface
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being reconstructed ( Volumei,feai ) the two metrics are defined by

Volumeeaf -  Volume,deal , .
Pn3ned ~  V o lu m e s, (4-4)

and

|Volumeea* -  Volume,-deal \
Vp-‘> =     (4-31

As with gsap , the first metric gives a signed error, and the second gives the magnitude of 

the error. Again, we define these metrics as relative measures.

Since v p  is also a  global metric, it suffers from many of the same drawbacks as 

gsap. In addition to those, volume is more difficult to calculate for surface reconstructions. 

The computation of volume for polygonal mesh representations requires finding volumes of 

pyramids, and for general surface representations, triple integrals are required.

4.2.3 PD P

Provided that we axe reconstructing the surface of an actual object (e.g., that of a  sphere), 

we can measure the error between a reconstruction and an actual surface by computing the 

distance from each point on the reconstruction I  to a “corresponding” point on the surface 

of T . We define p d p  using the surface integral given above (Equation 4.1)

p d p ( / ( u ,u ) ) =  f  f  H (u ,v )  
Jvev Jueu

d l(u ,v )  d l(u ,v )  
X

du dv
du dv (4.6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 4. METRICS FOR QUANTITATIVE ANALYSIS 40

where

H{u, v) = dist(Ix{u, v), Iy(u. v), I x{u. v))

and dist(-) is a function which yields the distance between an arbitrary point and the 

“‘corresponding” point on the surface 1.  Implicit in f f ( u .v )  is a mapping of points on the 

reconstructed surface to points on the real surface. A perfect reconstruction arises when 

the distance from every point on the reconstructed surface to the “corresponding” point 

on the real surface is equal to  zero, and the mapping between “corresponding" points is 

one-to-one.

The greatest difficulty in computing pdp is finding the proper point mapping. For 

surfaces defined by symmetric convex analytic functions, such as those described in Ap

pendix A .l, finding this mapping is often a  m atter of finding a line segment from the point 

on the reconstructed surface to a point on the real surface which yields a normal to the 

real surface. When surfaces are not defined by this class of functions, this mapping may be 

difficult, or impossible, to find. In these cases, we tu rn  to the metric defined in the next 

section.

4.2 .4  IV P

The pdp metric is one of the best measures of physical realism. However, in many cases 

surfaces do not actually exist, or we do not have the means to  find the necessary point 

mapping. In these instances, pdp is not applicable. A solution to this problem is isovalue 

preservation (ivp).
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f(u . i?) is assumed to approximate the isosurface of constant value given by ^F[x. y. z) = 

r. Based on this assumption, ,F (/X(tz, u), Iy(u. v ) . I z(u. u)) should equal r  for all u and v 

in the domain of I. In practice, however, I(u ,v )  is never a perfect reconstruction, and so 

f l l x i u .  u ) .Iy(U' v)) is only approximately equal to r .  ivp  provides a measure of

this error. Using Equation 4.1, we define ivp as an error measure relative to the threshold

T.

ivpm5e( r . f ( u ,u ) ) =  f  f  f f (u .v )
J v  £ V  J u £  U

where

r j t 0 .0

The ivp metric rectifies many of the drawbacks present in the other metrics defined 

above. For example, it does not require a specific class of surface representations, and point 

mappings are not needed. Finally, it can be computed for reconstructions of any surfaces. 

The ideal surfaces are not required. The ivp metric measures an algorithm s ability to 

reconstruct a particular subset of a  function (the isosurface given by r ) .  Performing this 

analysis for all possible r ’s describes an algorithms ability to reconstruct the function T  

itself.

Unfortunately ivp is not the “cure all” for quantitative analysis. A drawback is that 

ivp  is not well behaved for functions whose values do not vary continuously throughout 

r s  domain. CT data provides an example of this problem. In a  CT scan of a human 

head there is a often a discontinuous change in the values between surfaces of significantly 

different densities (e.g., between skull and soft tissue). When points on the reconstruction

d /(u , v) a l{ u ,v )  
Xdu dv du dv; (4.7)
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lie in such regions of discontinuity, the value of F ( x , y , z )  -  r  may be large even when the 

actual distance of that point from the ideal location on the real (iso)surface is small.

4.3 Metric Computation

Global metrics are typically straightforward to compute. For example, the output of the 

reconstruction techniques in Section refsec:march- 3.3 is a  surface described by several 

polygonal facets: triangles in the case of 3.1 and 3.3, and rectangles in 3.2. If .V is the 

number of triangles or rectangles describing the surface, then the surface area is given by 

YliLi Area,; where Area, is the area of the ith facet. The area of each three and four sided 

facet is easily computed. Most global metrics can be computed in this fashion.

The computation of local metrics defined in terms of Equation 4.1 is not as straight

forward. Most often a closed form solution will not exist, and the metric will have to be 

approximated using numerical approximation techniques. The technique used for the results 

in Chapter 6 is Monte Carlo integration. The Monte Carlo method computes the expected 

value of H(u,v)  across the surface by computing

d l ( u , u) d / ( u f v)
du dv

at points on J(u, v).

Proper selection of the points is critical. Improper selection can bias the result towards 

a particular part of the surface. Computation of the metric across a “good” part of the 

surface can yield a false sense of security. Likewise, computation of the metric across a 

“bad” part of the surface would yield the same lack of security. A proper selection of points 

should work towards preventing this bias from occurring. One way to reduce this bias is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



■ CHAPTER 4. METRICS FOR Q U ANTITATIVE ANALYSIS  43

to approximate the metric using an ensemble average. To further reduce bias, the set of 

points should be randomly selected.

Another pitfall inherent in the Monte Carlo method, and all approximation tech

niques. is uncertainty. Uncertainty is always implied by the term “approximation." Two 

desirable characteristics of the Monte Carlo method are that the amount of uncertainty 

present in the approximation can be bounded, and to some extent it can be controlled. 

The interested reader can read Appendix refapprmonte for a brief description of the Monte 

Carlo method for numerical approximation of integrals.
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Chapter 5

R econstruction Quantification  

(sub) System

5.1 RQS

A direct and inevitable outcome of implementing the metrics from Chapter 4 was the def

inition of the Reconstruction Quantification (sub)System (RQS). R Q S provides a flexible 

framework for measuring physical realism. This system can be embedded in existing visu

alization systems with little modification of the system itself, and the addition of R Q S to 

current visualization systems can yield valuable insight into the phenomena described by 

the renderings of surface reconstructions produced by them.

Figure 5.1 shows R Q S as part of the end-to-end visualization system shown in Sec

tion 2.2. As shown in this figure, quantification analysis can be conceptually viewed as a 

three step process; property com putation, m etric computation, and analysis. In most cases, 

it would be efficient to combine the property computations with the metric computations. 

In the following sections, we describe the process(es) performed at each step in the R Q S

44
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b M i n d f a a  I m p  (

j 5 I
j  A l p f l t k a  I I AtmtyPt j

Figure 5.1: The Reconstruction Quantification System

system, and at the end of this chapter, we discuss our particular implementation of the 

system shown in Figure 5.1.

5.1.1 Property Computations

In the first step, we compute the property (or properties) measured by the metric(s) in step 

two. Step one requires three or more inputs. The first two inputs are the function which 

describes the ideal reconstruction ( I )  and the function which describes the reconstructed 

isosurface (I).  For example, if the isosurface of a  sphere was reconstructed, the function 

describing the ideal surface would be

f ( x , y , z )  =  ( x - a ) 2 + ( y - b ) 2 + ( z - c ) 2 -  r 2,

where r is the radius of the sphere. Assuming, the surface was reconstructed using the 

Marching Cubes algorithm, the function describing the reconstructed isosurface would be 

polygonal mesh consisting of several triangular patches.

For each metric we are considering, step one also requires the corresponding property 

functions as input. For global properties (e.g., surface area ), the property function will
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take a single input. This input is a function describing the entity for which the property is 

being measured (1  or / ) .  If the metric of interest is gsap. then the property function for 

the ideal reconstruction would be

gsap(I) =  4x r2

The property function, in pseudocode, for the marching cubes reconstruction of I  is

define function gsap( /  ) 
begin

area = 0.0
foreach triangle i do 

Po = /,(0)
Pi = I i ( l )
P2 = /,•( 2)
area =  area +  0.5 * |(P i -  Po) x (P2 -  Fo)| 

en d
end

Ii(j)  for j  =  0 ,1 ,2  represents the j th vertex of the ith triangle.

For local metrics, however, the computation of the property requires two inputs. The 

first is, again, either I  or I.  The second is a vector of sampling locations. These locations 

represents the points on T  (or I)  where the property will be measured. For example, if N  

samples are going to  be used to approximate the integral in Equation 4.7, then the second 

input would be a vector of N  randomly generated points (e.g., (u, v)). As stated in the 

previous chapter, care should be taken during the point generation process so the final 

result(s) will not be biased.

For each global metric being computed, the output of step one will be two scalar 

values. These values are the result of measuring the property for I  and I .  For each local 

metric, the output will be two vectors th a t represent the measurements of the property at 

the generated sampling locations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. RECONSTRUCTION QUANTIFICATION (SU B)SYSTEM 47

5 .1 .2  M e tr ic  C o m p u ta t io n s

Given the property computations from step one, we compute the metric(s) in step two. 

As stated earlier, coupling the metric computations with the property computations is 

usually more efficient for local metrics. For example, if coupling is not used, and if the ivp 

metric is to be approximated using N  samples, step one must allocate memory to store .V 

computations of the property given by

These two steps can obviously be combined to allow the metric computation to be a one 

pass process, and will require less computer memory. Note that coupling is not an issue 

with most global metrics.

Besides computing the metrics, we also organize the results in an informative manner 

for analysis. Thus, the output from this stage can take many forms. For most global metrics 

the output from this step will be a single scalar value. For example, g sap  might be equal 

to the difference between two surface areas, or it might express the relative error in the 

reconstruction. Due to the global nature of this metric, it may be hard to conceive other 

forms for output.
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Local metrics have a greater range of possibilities: a single scalar value such as that 

from Equation 4.1, a vector of values, a  pseudocolored image, etc. For example, using ivp. 

we might consider two obvious options. First, we can give a numerical measure such as 

the relative error given in Section 4.1 by Equation 4.7. This single measure describes the 

overall “goodness” of the reconstruction. However, suppose we want to know if there are 

particular areas of the surface where the reconstruction is poor. We can then portray ivp 

graphically using an error image such as tha t used by Pommert, et al [69] [81]. Whatever 

the form, the output should describe the information from step two in a meaningful and 

easily interpreted way.

5.1.3 Analysis

In this final step, physical realism analysis is performed based on the metric(s) computed 

in step two. We have defined two forms of analysis as indicated in Figure 5.1 by Step 3a 

and Step 3b. These are called reconstruction analysis and algorithm analysis. 

Reconstruction Analysis

Reconstruction analysis allows the user/system-designer to make judgments about 

the quality of individual reconstructions because it is based on single reconstructions. Very 

often, the results from Step 2 would be used with the actual isosurface rendering to better 

interpret what is seen. For example, suppose we tire viewing the reconstruction of a spherical 

object, and we notice an abnormal “bump” in an area which is otherwise smooth. To 

determine if this bump is an artifact produced by the reconstruction we could turn our 

attention to an error image for the p d p  metric. If this image, shows a relative constant 

value across the area where the bump was seen, then there is a  good chance the bump is 

not an artifact.
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Algorithm Analysis

Algorithm analysis is performed using the reconstruction loop shown in Figure 5.1. 

As indicated by the loop and the dashed box around steps l-3a, algorithm analysis requires 

performing Step 1 and Step 2 (and maybe Step 3a) on some predetermined number of 

different reconstructions. For each reconstruction the function F .  the grid G  (and hence 

the function F ), how the volumetric data  is processed, and/or the (iso)surface threshold r  

can be altered. By altering the above variables and performing RQS analysis, the optimal 

system for the visualization task may be obtained.

When properly performed, algorithm analysis can be used to describe the overall 

"physical realism” tolerance of the visualization system. For instance, we might be inter

ested in an algorithm’s behavior when a minimal amount of data is available. To investigate 

this phenomena, we could systematically vary the density of the grid G, and analyze the 

trend which arises. As the grid becomes less dense we would expect the algorithm to per

form worse, but what might be more im portant is how quickly the algorithm's performance 

degrades. An example of this analysis will be shown in Chapter 6.

5.2 An Implementation

In this section, we describe our implementation of the visualization system described in this 

thesis. Though not intended for professional use, this software provided a strong, flexible 

arena for evaluating the metrics and the methods defined in this thesis. We designed our 

system to be easily modified, enhanced, and embellished with other reconstruction methods, 

metrics, and rendering platforms through the use of dynamically loadable, independent 

program modules called dynamic storage objects (DSOs).
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Modular programming and DSOs are relatively new concepts for software creation. 

Typically, libraries are created from modular (independent), reusable blocks of code, and 

visualizations are performed by choosing and linking only those modules required for the 

task a t hand. These ideas allow programmers to create easily extendible and dynamically 

changeable environments.

5.2.1 T cl/T k Language

VVe chose to implement our system using the Tel scripting language. The Tel environment 

provides an application independent command interpreter, a small set of base data types, a 

group of built in commands and control structures for manipulating those data types, and a 

set of C routines for adding new structures and commands to the existing interpreter. Tel's 

interpretive shell is similar to other shell languages (e.g., csh) in that it contains variables, 

control structures, and substitution mechanisms. Tel, however, provides a more structured 

and easily extendible environment.

The interpretive nature of Tel allows a user to enter commands and immediately 

see the results. If the intended results are not achieved the user can modify the commands 

immediately without the need to recompile the program. Once the desired set of commands 

have been obtained, they can be placed in a  file. This file can be executed through the shell 

using a  single command, thus, relieving the user from having to remember and retype the 

entire set of commands.

Tel is also the basis of a X l l  toolkit, called Tk. Tk adds a set of widgets to the Tel 

interpreter. Buttons, labels, and text entry areas are just a few of the widgets present in 

Tk. In the Tk environment, the interpretive nature of Tel, allows users and developers to 

quickly design and redesign graphical user interfaces for their applications. Tk contains a
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set of similar C routines to easily incorporate additional widgets containing functionality 

not already present in the base set of widgets. For our research, we added an OpenGL 

drawing area widget to Tk with a minimum of difficulty.

5.2.2 RQS Extensions

Implementing the visualization system in T cl/T k required several extensions to the base 

language. We have grouped our extensions into five classes; data types, module loading, re

construction, metric, and rendering. The data type class contains data structures for surface 

reconstruction and visualization. The module loading extension provides the mechanisms 

for dynamically loading the desired pieces of the system into memory. The reconstruction 

extension contains DSOs for the reconstruction algorithms (e.g., Marching Cubes). Like

wise, the metric extension contains a single DSO containing the commands for the RQ S 

subsystem. Finally, the rendering module contains Tk commands for rendering reconstruc

tions and displaying images.

Data Structures

Since the only true data structures for Tel are scalar values, strings, and lists, the language 

required several new entities for volumetric data  storage, isosurface storage, and for per

forming isosurface reconstruction and visualization efficiently. We group these entities into 

two broad classes; data types and objects. The two classes differ in how they are defined 

and implemented.

Datatypes are created from the existing Tel structures (e.g., lists), and merely define 

new interpretations for those structures. For example, the RGB color datatype is defined 

as a Tel list containing three entries corresponding to the red, green, and blue components
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of the color. Additionally, the entries are constrained to be integer values in the range 

0 . .  .*255.

Objects, on the other hand, are more complicated, and are implemented in C or C++. 

The object hierarchy includes three subclasses; functions, volumes, and surfaces. Many of 

these objects have corresponding Tel commands and/or have Tel commands which operate 

on them. These entities were added directly to the base system because they were required 

by the other modules. See Section C .l of Appendix C, for a complete description of the 

new data structures and objects.

M odule Loading

The module loading extension was made part of the base shell. This extension provides two 

commands for loading and unloading DSOs

load  .m o d u le  < DSO-filename >  <  init-function > 

u n lo ad -m o d u le  < module-name >

As indicated by its name, the first command loads a DSO into memory. It has two argu

ments. The first is the name of the file containing the DSO. This file must exist in one of the 

paths given by the LD -LIBR ARY.PATH environment variable. The second argument is the 

name of the function within the DSO that initializes the Tcl/Tk commands. load_m odule 

returns a  unique string identifying the module. This string should be used as the argument 

to the u n lo ad -m o d u le  command to remove the DSO from memory when it is no longer 

going to be utilized.

Reconstruction Modules

In our RQS package, there exists a separate module for each reconstruction algorithm 

implemented. This allows the user to only load those algorithms needed for the current
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visualization task. We have implemented each of the algorithms described in Chapter 3 as 

Tel commands. These commands have the following general form:

command volumeObject [options]

Each command takes as its input a volume object and a number of options. Many of the 

options are the same for each command. For example, each reconstruction command ac

cepts -low low-threshold and -high high-threshold to specify the threshold range defining the 

isosurface. Each command may also take a small number of options unique to that com

mand. The output of the reconstruction commands is a string representing the handle to 

the newly created surface object. See Section C.3 of Appendix C for a complete description 

of the Tel commands in the reconstruction modules.

Metric Module

The metric module contains implementations of the RQS metrics. In our implemen

tation, each metric command has the following general form

command functionObject surfaceObject [options]

The first argument is a function describing the ideal surface/function reconstruction. This 

argument can be one of the Tel analytical function objects described in C.2.1 of Appendix C, 

or a  T d  volume object (see Section C.2.2 of the same Appendix). The second argument is 

a surface object returned by one of the reconstruction commands described above. Finally, 

a metric command may take some number of metric specific options which modify the 

command’s behavior, and alter its output.

Like the other modules, this module is only loaded when RQS analysis is going to be 

performed. Implementing the metrics as a  separate module accomplishes our idea th a t the
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RQS system should be easily embeddable into any visualization system. Our T d  imple

mentation of the metrics in Chapter 4 are described in Section C.4 in Appendix C.

Rendering Modules

Rendering modules are used to generate graphic images and provide user interac

tion with those images. Thus, a complete rendering module implements the R en d er 

and U se r In te ra c tio n  stages in Figure 5.1. We created one such module based on the 

portable graphics language, OpenGL. The OpenGL rendering module defines a new Tk 

widget called glRaster. This widget is very similar to  T k’s canvas widget. However, it 

only accepts OpenGL rendering commands. Our module is not a complete implementation 

of OpenGL for Tk. The glRaster widget supports most of the OpenGL framebuffer modes 

(e.g., double buffering, rgba, color index, overlays, underlays, and depth buffer), and several 

of the OpenGL library commands are supported. We gave our Tel implementation of the 

OpenGL commands the same names to ease the transition to the RQS environment. We 

provide a complete description of the glRaster widget, and an example of some of the Tel 

implementations for the OpenGL library functions in Appendix C.

5.2.3 RQS Example

In this final section, we provide and discuss a simple example using Tel and our extensions. 

This example performs RQS analysis on a  reconstruction of a sphere. In the example below. 

rqs.tcl> is the command interpreter’s shell prompt where commands are typed. Commands 

typed by the user are given in boldface, and responses returned by the shell are italicized.

rqs_td> load-module march.so InstallMarch
moduleO
rqs_td> load .module rqs.so InstallRQS
module 1
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These first two lines load and initialize the necessary modules: the Marching Cubes algo

rithm  module and the metrics module. The result for each of these commands is a string. 

These strings represent a handle which can be used later as input to u n lo ad -m o d u le  to 

remove the module from memory.

rqs.tcl> fsphere  -rad iu s  1.0 -p o in t { 0.0 0 .0  0 .0 } \
-w orld  { -1.5 -1.5 -1.5 } { 1.5 1.5 1.5 >

sphO

Next, we create the object’s function. In this example, we have created a  function which 

represents a  sphere having its center located at (0.0,0.0,0.0) and having radius 1.0. The 

domain of this object has been constrained to the range —1.5 < x, y, z < 1.5. This function 

is used in the next command to create the volumetric data.

rqs_tcl> vo lum e b y te  64 64 64 -function  sphO
volO

The first argument represents the type of data to store in the volume. The next three 

arguments for the volume command are the number voxels along the x-axis, the number of 

voxels along the y-axis, and the number of voxels along the z-axis, respectively. The volume 

created above contains 64 x 64 x 64 voxels.

rqs_tcl> m arch  volO -low  0 -h ig h  212
surfO

The volumetric data object is used as input to the Marching Cubes command. In this 

example, the isosurface corresponding to the threshold range 0 < r  < 212 was reconstructed. 

This range corresponds to the surface of the sphere object created in line three of this 

example. The output of the m a rc h  command is a surface object. This object, with the 

sphere function object, can now be used to perform RQS analysis.

rqs_tcl> g sap  sphO surfO - re la tiv e
gsap 1.591412e-01

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. RECONSTRUCTION QUANTIFICATION (S U B S Y S T E M  56

In this example, we find the relative surface area error using the gsap metric. The final 

argument to the gsap command computes gsap  relative to the sphere object using Equa

tion 4/2. The result states that this is the output from the g sap  metric, and shows that 

the reconstruction’s surface area exceeds the surface area of the sphere by 0.159.
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Chapter 6

R esults

6.1 Introduction

This chapter presents results based on the metrics defined in Chapter 4. We have divided 

this chapter into two sections based on the class of volumetric data being reconstructed. 

These classes can be described as follows. The volumetric data from the first class is 

defined directly by the analytical functions described in Section A .l of Appendix A. When 

computing metrics, the analytical function becomes the reference function. For example, 

when computing a sample value of ivp , we compare the isosurface value ( r )  with the value 

of the analytical function a t some location in the domain of the function.

The second class is based on resampled data. As in the first class, volumetric data 

is generated on a rectangular grid according to some function. The reconstruction process, 

however, is not applied to this data. It is applied to  a  volumetric data set generated by 

sampling the original volumetric da ta  on a less dense rectangular grid. The original volume 

is used as the reference function when computing metrics. When computing a sample 

value of ivp , for example, the isosurface value r  at a  point P  is compared to the value

57
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of the original volume at P. Note, when P  does not occur at a vertex of a voxel, linear 

interpolation would be used to find the value of the volume at P.

6.1.1 Data Generation

The data generation process for each class can be described by the following simple pseu

docode.

volumeWidth = number of samples along X axis
volumeHeight = number of samples along Y axis
volumeDepth number of samples along Z axis

worldMinX = minimum world X coordinate
worldMinY = minimum world Y coordinate
worldMinZ minimum world Z coordinate

worldMaxX = maximum world X coordinate
worldMaxY = maximum world Y coordinate
worldMaxZ maximum world Z coordinate

voxel W idth (worldMaxX - worldMinX) /  (volumeWidth - 1)
voxelHeight = (worldMaxY - worldMinY) /  (volumeHeight - L)
voxelDepth — (worldMaxZ - worldMinZ) /  (volumeDepth - 1)

fo reach  point (i , j ,  k) on the grid G do

x  <—  worldMinX +  i * voxelWidtn 
y  <—  worldMaxY - j  * voxelHeight
z  «—  worldMaxZ - k  * voxelDepth
volume( i , j , k )  <—  fu n c tio n (x ,y ,z)

end

Note that the data generation process for each class only differs in the function  being used. 

Thus for each point on the lattice, we first map a point on the grid into the domain of the

function (e.g., world (x , y , z ) coordinates), and then compute the value of the function at

tha t world coordinate.
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6.1.2 Analytical Data Functions

Volumetric data for the first class is defined by point sampling analytical functions on a 

rectangular grid. Therefore, function  is replaced by one of the analytical functions described 

in Section A.l of Appendix A. For example, if

funct ion{x,y,z)  = ( i  — a)2 +  {y -  b)2 +  (z -  c)2 -  r2

the volume represents data  which describes spherical isosurfaces.

6.1.3 Resampled Data Functions

The last class involves resampling a volumetric dataset. Several methods exist for resam

pling volumetric data. Since our volumetric data is defined on rectangular grids, we chose 

trilinear interpolation of the values found a t adjacent grid points. As shown in Figure 6.1. 

this can be accomplished by linear interpolation along each coordinate axis. VVe first linearly

Figure 6.1: Trilinear Interpolation

interpolate along the Z axis to obtain values at I, K, L, and N using an equation having the
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following form

V („, = V'(6, +  f ^ m i V M - v m

where V(p)  is a function which returns the value at point p, and Z(p)  is a function which 

returns the Z world coordinate of point p. Similar functions exist using X( p)  and Y(p).  To 

calculate a value a t I, we would set a, b, and c equal to I, A, and E respectively. Next we

interpolate between I and K along the X axis to obtain a value at J, and between N and L

to obtain a value a t M. Finally, we interpolate linearly along the Y axis between J and M

to obtain a value a t 0 .

6.2 Analytical Data

As stated earlier, this section presents results based on a class of data sets where the 

mderlying function is known, and becomes the reference function when computing metrics. 

We chose to present results for two analytical functions; the ones for which the isosurfaces 

are spheres and hyperboloids. These functions are describe in Appendix A .l of this thesis. 

The domain of these functions are unbounded; we focused on the range ( — 1.5, —1.5, -1 .5) < 

( r .  y , z) < (1.5,1.5,1.5) during the sampling stage. To reduce the possible sources of error, 

no processing was performed in the second stage of the visualization pipeline.

The reconstruction process extracted isosurfaces given by the threshold r  = 0.0. 

For the spherical d a ta  set, this threshold corresponds to a sphere with radius r, and for 

the hyperboloid d a ta  set, it represents a right circular cone having radius r  at height h. 

Given the reconstructions, we analyze physical realism with respect to  three of the metrics 

presented in Chapter 4; g sap , p d p , and ivp .
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The density of the sampling grid was varied for the first three sets of results. Vary

ing the density of the sampling grid varies the amount information about the underlying 

function which is available to the reconstruction process. Analysis of the resulting trends 

indicates an algorithm’s ability to reconstruct isosurfaces with limited knowledge about the 

underlying function. Each plot is drawn with the average value drawn as a horizontal line 

with the appropriate symbol a t the end points.

6.2.1 G SAPa6j

Figure 6.2 and Figure 6.3 represent the gsapa6j metric applied to reconstructions 1 of a 

sphere and a  cone. The first characteristic that is apparent from these figures is that, in

m W
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Figure 6.2: GSAPa6, on Sphere D ata Figure 6.3: GSAPa6a on Cone Data

general, as the density of the grid increases the algorithms perform better with respect to 

gsapa4i. In fact, we would expect this characteristic to persist no m atter what property is

‘Recall from Section 4.2.1 that gsap is not appropriately applied to spline surfaces. Therefore, we will 
not present any results for the spline lofting surface reconstruction algorithm in this section.
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Figure 6.4: Contour Triangulations of the Sphere

being analyzed. As the sampling grid becomes more dense, F  becomes as better approxima

tion of T .  Since, reconstruction algorithms are essentially interpolation schemes, the better 

approximation to the underlying function provides the algorithms with more knowledge 

about that function, and, intuitively, a better reconstruction should be obtained.

We see, however, tha t the value of gsapa4,  oscillates up and down for the contour tri- 

angulation algorithm. This illustrates the fact tha t intuition is not always correct. A denser 

sampling grid does not imply necessarily a better reconstruction of a particular instance 

(a particular value of t ) of a  function. Figure 6.4 illustrates how this unusual phenomena 

can occur. This figure shows reconstructions of the sphere for grids 62x62x62, 65x65x65, 

68x68x68, and 71x71x71 (left to right, top to bottom ). Each of these reconstructions are 

missing the “north and south poles” of the sphere. Recall, the contour triangulation algo
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rithm first generates contours slice by slice, and then interpolates between the contours it 

finds using triangular facets. The first and last contours occur on the slices immediately 

after and immediately before the voxel containing the poles. That is, the poles of the sphere 

do not occur on a  data slice. Because inter-slice interpolation is not used, the poles are 

not discovered by the contour algorithms, and the open-ended reconstructions occur. The 

contour algorithms, as implemented, rely heavily on a  proper sampling of the underlying 

function.

How does this effect gsap for these algorithms? We will consider the problem in two 

dimensions. The analogous metric in two dimensions would measure the relative difference 

between the circumferences. Figure 6.5 shows a  circle being sampled with two different grid 

densities, and the associated reconstructions. Like the spheres shown in Figure 6.5, we see

_____________________________  •  ------ 7x7

Reconstructions

7x7 10x10

Figure 6.5: Circle Sampling

tha t the reconstructions are missing the top and bottom of the circle (e.g., the part of the 

circle shown as a dashed line). Assuming the two arcs composing the reconstruction are 

perfectly reconstructed, we see that the circumference of the reconstruction will be less than 

the circumference of the original circle by the sum of the lengths of the two dashed line
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arcs. As we alter the sampling density, the size of these axes will fluctuate, and therefore 

so will the amount of error with respect to the circumference.

6.2.2 PDP

In this section, we present p d p  applied to  the same two da ta  sets used in the previous 

section. Again, we see that as the sampling grid becomes more dense, the algorithms perform 

better with respect to the metric being investigated. We also see that the following order
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Figure 6.6: PD P on Sphere D ata Figure 6.7: PDP on Cone Data

(with respect to decreasing performance) is maintained in both figures; marching cubes, 

contour triangulation, spline lofted contour, and surface tracking. The reason behind this 

ordering can be understood by considering the topology of the underlying representations. 

A reconstruction resulting from the surface tracking algorithm consists of rectangular faces 

which belong to voxels tha t the desired isosurface is believed to  intersect. These faces can 

only have six configurations; one parallel to  each positive and negative coordinate plane. 

In comparison, the facets for a  reconstruction resulting from the marching cubes algorithm
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Figure 6.8: rV’P on Sphere Data with Grid Figure 6.9: IVP on Cone Data with Grid 
Varied Varied

can have 256 configurations. This added flexibility allows the marching cubes algorithm to 

construct a more accurate representation. The contour algorithms’ performance is hindered 

by the fact that the reconstruction is initially defined by the planar contours on each data 

slice. Subvoxel accuracy is not considered.

6.2.3 IVPmje -  Grid Variance

Recall from Section 4.2.4, tha t p d p  realistically is not applicable when reference surfaces do 

not exist, or when the point distance function is unobtainable. The ivp  metric is intended 

to provide a solution to that problem. As shown in Figure 6.8 and Figure 6.9 the results are 

very similar to those shown in Figure 6.6 and Figure 6.7. When considering analytical data 

sets, the ivp metric is essentially p d p  cast to a new domain. The metric p d p  measures the 

differences in the distances between corresponding points on two surfaces. The iv p  metric, 

on the other hand, measures the differences in the distances between isovalues. The domain
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of p d p  is surfaces defined by a set of three dimensional points, and the domain of ivp  is 

surfaces defined by an isovalue.

We see in Figure 6.6 and Figure 6.9, that the contour triangulation algorithm performs 

better than the spline lofted contour algorithm. This may seem counter-intuitive because 

in most cases spline surfaces are believed to better interpolate data than planar facets. 

Recall from Section 3.4, tha t the number of points defining a contour is first reduce to some
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Figure 6.10: IVP on Sphere Data Figure 6.11: IVP on Cone Data

predetermined number K  before being fitted with a  B-spline curve. As shown in Figure 6.10 

and Figure 6.11, if we also reduce the number of points in the contour for the triangulation 

algorithm it now performs worse than the spline method.

6.2.4 IV Pmje -  Threshold (r) Variance

The previous sections presented results which gave insight into the performance of the 

reconstruction algorithms as the density of the sampling grid was varied. Another trend 

which might be of interest is the performance of the algorithms when the isovalue used
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for the threshold r  is varied. Analysis of the resulting trends will provide insight into
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Figure 6.12: IVP on Sphere Data with r  Figure 6.13: IVP on Hyperboloid D ata 
Varied with r  Varied

an algorithm's ability to reconstruct the underlying function. For regular analytical data 

sets, such as those described in Section A .l of Appendix A, this also yields insight into 

an algorithm’s ability to reconstruct objects of varying sizes. These results are shown in 

Figure 6.12 and Figure 6.13.

In general, as the size of the objects increase, the reconstruction algorithms perform 

better. Small objects are hard to  represent discretely. They require a denser sampling grid 

to represent their properties. For example, consider a  64x64x64 sampling of a 3.0 x 3.0 x 3.0 

world. In the worst case, a  sphere with radius approximately 0.04 units centered inside a 

voxel can be missed completely by the sampling. The same sphere centered on a grid point 

would be reconstructed incorrectly as a  tetrahedron.

For smaller objects, we see tha t the spline lofted contour algorithm performed better 

than the triangulated contour algorithm. W ith smaller objects, limiting the number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. RESULTS 68

contour points is less detrimental to the performance of the spline lofted contour algorithm. 

This helps validate our previous statement in Section 6.2.3 about why the triangulated 

contour algorithm performed better than the spline lofted contour algorithm.

Unfortunately, what the figures above do not show is that the surface tracking algo

rithm only reconstructs one sheet of the hyperboloid of two sheets as shown in Figure 6.14. 

This example helps illustrate the fact, that one metric might not be able to yield insight into

Figure 6.14: Surface Tracking Reconstruction of a Hyperboloid of Two Sheets

all problems of a reconstruction algorithm. Sometimes multiple metrics are required. The 

gsap  metric, for example, would have shown tha t the surface tracking algorithm produced 

a reconstruction of the hyperboloid of two sheets whose surface area was always approxi

mately half tha t of the ideal reconstruction. Note that this flaw could have be discovered 

also by having knowledge of the underlying data  and viewing a reconstruction as shown in 

Figure 6.14.
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Figure 6.15: IVP on Volume Sphere D ata Figure 6.16: IVP on Volume Cone D ata 
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6.3 Resampled Data

Section 6.2 presented results for d a ta  sets where the underlying functions were analytical. 

For these functions, all of their properties are known. From this, a question naturally arises. 

W hat if the underlying function is not known? If the underlying function is not known, 

then most of its properties will also be unknown. Since the metrics defined in Chapter 4 

are based on physical properties, how can we analyze performance? This section attem pts 

to help answer that question.

6.3.1 Resampled Analytical Data

The first set of results, shown in Figure 6.15 and Figure 6.16, were generated by varying 

the resampling density of a 128 x 128 X 128 (1283) grid. The ivp metric was computed 

using the values in the original 1283 volume. T hat is, T{ x ,  y, z) in Equation 4.7 is given 

by the original volume. The actual threshold value for each point on the surface of the
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Figure 6.17: IVP on Volume Sphere Data Figure 6.18: IVP on Volume Hyperboloid
( r  Varied) Data ( r  Varied)

reconstruction was computed using trilinear interpolation. If we compare these results with 

those shown in Figure 6.8 and Figure 6.9, we see that they are nearly identical.

In the next set of results, an initial 2563 volume was generated from the analytical 

functions for the sphere and hyperboloid. These volumes were resampled on a 1283 grid. 

Reconstructions were performed on the 1283 with the threshold r  being varied. The ivp 

metrics was computed by comparing the reconstructions with the original 2563 volume. The 

results are shown in Figure 6.17 and Figure 6.18. Again, we see that the results are nearly 

identical to the corresponding analytic results shown in Figure 6.12 and Figure 6.13.

6.3.2 Resampled CFD Data

Up to this point, all of our results were generated from data  originating from analytical 

functions. These da ta  sets are well behaved. For example, they are symmetric through 

each coordinate plane, and they don’t contain any irregularities such as bumps or holes.
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The next sets of resampled data  results were generated using two data sets generated from 

the field of Computational Fluid Dynamics (see Appendix A.2). These data sets do not 

share the niceness of the analytic data  sets. For example, an isocurve on a single slice of the 

analytical datasets is convex (e.g., a  circle). This may not be the case in the CFD datasets. 

The CFD datasets may also contain holes or tunnels. For reasons such as these, the CFD 

datasets present a  greater challenge to reconstruction algorithms. This is apparent in the 

results shown in Figure 6.19 and Figure 6.20.

The first characteristic tha t becomes apparent is that a majority of the plots oscillate 

more dramatically than those for analytical or resampled data. These oscillations are due to 

naive resampling of the original data sets. The grids were systematically changed without 

concern for retaining characteristics (e.g., bumps or holes) present in the data. When the 

necessary characteristics were present in the resampled data, the algorithms performed 

better, and vice versa.
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Two other characteristics are evident in Figure 6.19 and Figure 6.20 when we compare 

them to results obtained from the analytical data sets. First, the contour lofting algorithm 

performs better than the contour triangulation algorithm. In the previous results, the 

contour triangulation algorithm out performed the contour lofting algorithm. The second 

characteristic is that for the first time, the surface tracking algorithm out performed both 

contour algorithms. Figure 6.21 will help illustrate why these characteristics can occur in 

irregular data sets such as the CFD data sets.

Figure 6.21 shows four reconstructions of am isosurface in the CFD ellipsoid data set. 

The upper left reconstruction was obtained using the marching cubes algorithm. The lower 

left was obtained using the surface tracking algorithm. The upper amd lower right recon

structions were obtained using the contour lofting algorithm and the contour triangulation 

algorithm, respectively.

The CFD data sets have been quantized to the range 0 . . .  255, and are stored in byte 

format. The analytical da ta  sets, however, were computed and stored as floating point 

values. This quantization process makes the function’s values discrete and the difference.of 

the values between neighboring voxels larger. As seen in Figure 6.21, the contour triangu

lation algorithm is strongly affected by this characteristic, and produces a reconstruction 

with strong aliasing artifacts. An example of these artifacts is the circular pattern on the 

large front isosurface of the reconstruction in the lower left figure. Since the contour lofting 

algorithm uses splines as its underlying representation, it has the ability to more smoothly 

interpolate the isosurface, and better performance with respect to the ivp  metric.

Surface Tracking performs better than the contour methods because they are unable 

to capture the concavity of the isosurface appropriately. In order to capture effectively a 

concave isosurface, a  reconstruction algorithm must be able to detect multiple isocurves on
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■
Figure 6.21: Reconstructions of Ellipsoid CFD D ata
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Table 6.1: Statistics for IVP on CFD D ata with r  Varied

Marching
Cubes

Surface
Tracking

Contour 
Tri angulation

Contour
Lofting

Ellipsoid Mean 4.6632e-s 1.1042e-3 1.0904e~3 2.073l e ' 3

StdDev 1.2462e-4 1.8176e-3 2.6346e-3 6.1192e-3

Ship Mean 1.3093e-6 2.0457e~s 1.5782e~3 1.8293e"3

StdDev 1.9784e'6 2.7020e-s 4.0878e-3 5.7724e-3

a single slice of data. The contour algorithms we implemented are incapable of performing 

this task. This fact is illustrated in Figure 6.21 by the large flat bottomed isosurface in the 

right two figures. As seen in the left figures, both the marching cubes algorithm and the 

surface tracking algorithm were able to capture the concavity of the isosurface appropriately, 

and therefore perform better than the contour methods with respect to the ivp  metric.

Our final experiment compared the reconstruction algorithm s’ ability to reconstruct 

isosurfaces within the CFD data sets with various values of r .  Unlike the situation with 

analytical data sets, the reconstruction for one value of r  is most likely unrelated to for 

another. For this reason, we only present the average error and standard deviation with 

respect to the iv p  metric for each reconstruction algorithm.

As shown in Table 6.1, on average the ordering (e.g., in order of decreasing perfor

mance; marching cubes, contour triangulation, contour lofting, surface tracking) that we 

saw in previous figures is generally preserved. An exception to  this is seen in Table 6.1 

where the contour lofting algorithm performs worse than the surface tracking algorithm for
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the ellipsoid data  set. Recall that the contour lofting algorithm's performance can decline 

for large isosurfaces due to the contour point reduction step. This characteristic, along with 

the contour algorithms’ inability to reconstruction concave isosurfaces, accounts for this 

discrepancy.

As shown in Table 6.1, the following order is maintained with respect to the standard 

deviation; marching cubes, surface tracking, contour triangulation, contour lofting. Though 

the contour algorithms, on average, performed better than the surface tracking algorithm, 

their standard deviations were worse. The standard deviation yields an indication of the 

stability of each reconstruction algorithm, and though the contour algorithms performed 

better on average, their averages are worse predictors of their performance. Given a partic

ular reconstruction, a user can predict better the amount of error tha t may be present for 

the surface tracking algorithm than for the contour algorithms.
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Chapter 7

C onclusion/Future Work

7.1 Review

This thesis presented metrics for analyzing the error in reconstructions of physical phenom

ena. Recall that physical phenomena axe described by a number of physical properties, 

and metrics can be defined for each of these properties. Chapter 4 of this thesis presented 

four possible metrics of interest; surface area preservation (gsap), volume preservation vp, 

point distance preservation (pdp), and isovalue preservation (ivp), and Chapter 6 presented 

results based on three of these metrics.

These metrics illustrated some im portant attributes of reconstruction algorithms. Our 

results showed tha t the more information about the underlying function an algorithm had 

available to it, the better it was able to perform. This information can be provided in a 

number of ways. For example, one can simply provide a denser sampling of the underlying 

function. However, as we saw in Section 6.2.1, this is not necessarily a  solution. One must 

also ensure a “good” sampling of the underlying function. Characteristics of the function 

must be accurately captured in the sampled volumetric data.

76
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We also saw that algorithms (e.g., marching cubes) which utilize subvoxel accuracy 

require less knowledge of the underlying function. Algorithms (e.g.. the contour algorithms) 

which did not consider subvoxel accuracy were unable to reconstruct features, such as the 

poles of the sphere, which occur between data slices.

This thesis also presented a framework for performing reconstruction error analysis. 

The methods of this framework manifest themselves in the RQS visualization (sub)system 

presented in Chapter 5, and its implementation as described in Appendix C. Each stage 

(sampling, processing, and reconstruction) in the visualization pipeline introduces error into 

the resulting reconstruction and the final rendering. The RQS (sub)system offers, to the 

developers and users of visualization systems, a structured arena for analyzing how these 

errors compound, cancel, and otherwise interact with each other. The analysis presented in 

this thesis only considered the error introduced by the reconstruction process. The other 

sources of error and how they interact provides a large source of topics for future research.

7.2 Guidelines

The analysis presented in this thesis provides a few guidelines to consider when designing a 

visualization system. First reconstruction algorithms can rely on an appropriate sampling 

of the underlying function. Care must be taken to guarantee th a t characteristics present 

in the underlying function are represented by the volumetric data . An example was seen 

in Section 6.2.1, where the triangulation contour algorithm was unable to reconstruct the 

poles of the sphere because they occurred between data slices. Fortunately, the sampling 

process is one part of the visualization pipeline over which we have a  great deal of control.

A second problem was illustrated in Section 6.2.4. A single metric will most likely 

not show ail problems of a reconstruction algorithm. For instance, the surface tracking
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algorithm only reconstructed one sheet of the hyperboloid of two sheets. The ivp metric 

failed to catch this. However had surface area been considered, gsap  would have shown 

the surface area of the reconstruction to be approximately half of the ideal surface's surface 

area.

The primary purpose of reconstructing volumetric data is to display, interact with, 

and interpret the phenomena contained there in. The display of these isosurfaces may show 

other hidden problems which applied metrics had not discovered. Visualizing an instance 

of the surface tracking reconstruction of the hyperboloid of two sheets showed immediately 

tha t only one sheet was being reconstructed. A user cannot view and blindly interpret the 

reconstructions presented to them. Some knowledge of the underlying functions is required.

7.3 Topics for Further Study

Physical realism is a many faceted notion, and it would be very short sighted to believe 

the four metrics defined in this thesis were all that were needed. More work can be done 

on defining and verifying other metrics. One can consider, for example, the notion of local 

curvature [15]. In the medical domain, one might also consider mass as the global property 

of interest. Metrics for properties, like mass, would require the use of the “generalized voxel 

model” [32]. This model allows other attributes (e.g., mass, membership to an organ, etc.) 

to be stored in a  voxel.

As stated above, another topic for future research involves studying other sources of 

error (e.g., quantization) and how errors passed between stages are compounded or canceled. 

It is im portant to  understand each source of error, and how it contributes to the final 

rendered image. These studies will yield a  better understanding of the artifacts present in 

the rendered images, and allow the user to interact more properly with them.
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Given a better understanding of the sources of error, new reconstruction algorithms 

can be developed which strive to reduce the amount error by minimizing one or more of 

the metrics defined to measure the error. Some work has been done by McAllister, et al. 

[55, 56. 57] which considered shape preserving spline interpolation of two dimensional data.

Finally, this thesis did not consider how well quantitative results correspond to quali

tative judgments. In other words, future research can consider the question, “does physical 

realism imply photorealism?”
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Volum etric D ata Sets

A .l Analytical Functions

In this section, we describe the analytical functions which we used to generate our test data. 

For each of the functions, the surface of the object is given by the threshold value r  =  0.0. 

O bject : S phere

Description : A sphere centered at (a, b,c) w ith radius r.

Density Function

F {x, y, z) =  ( i  -  a)2 +  (y -  6)2 -t- (z -  c)2 -  r 2 

Surface Area

4;rr2

80
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D is ta n c e  F u n c tio n

As shown in Figure A .l, the distance any given point P  is from the surface

of a sphere can be calculated as the difference between the distance from P to 

the sphere’s center and the sphere’s radius r.

We take the absolute value of the difference because P  might be “inside” the 

surface of the sphere yielding a negative distance.

O b j e c t :  R ig h t  C irc u la r  C y lin d e r

D e sc rip tio n  : A cylinder with center a t (a, 6,0) having radius r.

D e n s ity  F u n c tio n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P :(x. y ,  z )

Figure A .l: Derivation of the Sphere Distance Function

D =  yf{x -  a)2 + (y  -  6 ) 2  +  ( z  -  c ) 2  -  r

F {x , y , z) = (z -  a f  +  (y -  b)2 -  r 2
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Surface Area

2irrh

Distance Function

As shown in Figure A.2, finding the distance between a point P  and the

isosurface of a  cylinder can be simplified to finding distance between a  2D circle 

and the point (x, y). The circle is defined by intersecting the plane Z  =  z with 

the cylinder. The center of this circle will be at (a, 6), and it will have radius r. 

Similar to the case of a  sphere, the distance D  is given by the difference between 

the distance from (x,y) to (a, b) and the circle’s radius, r.

Again, the absolute value is used to constrain D to positive distances.

Figure A.2: Derivation of the Cylinder Distance Equation

D = -  a)2 +  (y -  6)2 -  r
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O b j e c t  : H y p e rb o lo id

D esc rip tio n  : This data represents hyperboloids.

Density Function

F (x ,y ,z )  = ( x - a ) 2 + ( y - b ) 2 -  (j - ~  ~ C)j

The hyperboloids can be classified into three categories based on the value of r

r  < 0.0 Hyperboloid of two sheets 

i r  = 0.0 Right circular cone 

r  >  0.0 Hyperboloid of one sheet

The special case cone whose apex is at (a, 6, c) will have radius r  at c +  h and c 

Surface Area of Cone

2 x r \ /  r 2 +  h2

Distance Function for Cone

The distance function for the analytical cone is more difficult than the pre

vious two cases. We need to find the point on the surface of the cone closest to 

P  to define the distance function. However, this is a difficult problem to solve 

using the current 3D configuration.

As shown in Figure A.3a, the center axis (Z  = c) of the cone, and the point 

P  defines a plane, and we can define a  new (two dimensional) coordinate system 

in this plane centered at (a ,6 ,c) having the line Z  =  c as the ordinate axis and
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«L

D ,
(a. b. c)

(x. y. c>

<-f. -h>

a b

Figure A.3: Derivation of the Cone Distance Equation

the projection of P  onto the plane Z  = c as the abscissa.

Using this plane and coordinate system, we can redefine the 3D problem as 

a much simpler 2D problem. The trace of the cone in this plane consists of the 

two lines:

Li : ry  — hx = 0 

L2 : r y  +  hx = 0

Projecting P  onto the plane Z =  c, we see tha t it is at a  distance of 2 — c 

from the 5-axis, and a distance of \J{x -  a)2 + (y -  b)2 from (a, b, c) (the center 

of the new coordinate system). Figure A.3b shows the new 2D configuration; 

where d =  y/{x -  a)2 + {y — b)2.

The derivation of the cone distance function is now reduced to the simpler 

problem of finding the distance between a point ( x q ,  y o )  and a  line (A z+ B y+ C  =
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0); which is given by

n  _  |Axp +  By:o -f C\
V A 2 + B 2

Since, however, the cone becomes two lines in the two dimensional problem, we 

must find the distance to  each line. Taking the minimum of the two distances 

yields the desired distance function.

A.2 CFD Data

Section A.l defined three analytic data  sets. These data sets were used for initial testing 

of the metrics defined in this thesis. They truly represent fabricated data, and don't arise 

very often in the domain of scientific visualization. To illustrate the abilities and validity of 

our metrics in more realistic situations, we turned to data sets generated by Computational 

Fluid Dynamics (CFD).

Unfortunately, CFD d a ta  sets are most often generated on irregular grids. The re

construction algorithms described in Chapter 3 require data defined on rectilinear grids. 

Therefore, it was necessary to resample these datasets. For simplicity, we used first degree 

Taylor polynomials for resampling.

d efin ition  A .l  The value o f a function  /(• )  at a point x close to a point c can be approx
imated by the following n th degree polynomial

f {x)  *  Pn{x) =  / ( C) +  M * - c ) + ^ ( i - c ) J +  - + ^ ( i - c r  (A.l)
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provided the first n derivatives exist and are continuous on some interval close to c and 
x is located in that interval. Pn(x) is called a T ay lo r  po lynom ial o f  d eg ree  n. Note. 
Equation A .l  can be generalized to any dimension.

CFD datasets are most often generated by sampling some function F  at a discrete 

subset of points located in the domain of T .  Users and developers of visualization systems 

typically do not have access to F ,  but often require knowledge of F  at points other than those 

defined at the given grid points. Given a function F (x , y, z) defined on some arbitrary three 

dimensional grid with a known connectivity (e.g. an irregular grid), we can approximate 

F (x  +  r .y  +  s ,z  -f t) with the first degree Taylor polynomial P\ given by

d F  dF  d F
Pi(x + r ,y  + s ,z  + t) = F( x , y , z )  + r — ( x , y , z )  + s — ( x , y , z )  + t — ( x . y . z )  (A.2)

where

dF_ _  d£d i_  dF_d£ dF_dk 
dx di dx d j dx  dk  dx

d F  _  F[i + l , j , k ] -  F [ i ~ l , j , k )  
di  ~  2
d F  ̂  F [ i , j + l , k ]  -  F[i , j  -  l,Ar]
d j  ~  2
d F  F[t, j ,  k + 1] -  F [i, j ,  k  -  1] 
di  ~  2

and

d r
d i

d x
d i

dx
dk

- 1
d i
d x

d i
d y

di
d z

dx I f U =
i d y £

d z
di

d z
$3

d z
dk

d k
d x

d k
dy

dk
dz
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d F / d y  and d F f d z  can be defined similarly.

Using Equation A.2 we can approximate the value of TF at any point in its domain. 

Given a point (a.b.c), we first find the grid point (x .y .z )  closest to (a,6.c)  and compute 

r =  a -  x. s =  b -  y, and t =  c -  z. Assuming ( x , y , z )  is located at grid point [i.j. fc]. 

we compute the necessary partial derivatives using Equations A.3-A.5. and using similar 

equations for d x /d i, dy/d i, etc. Finally, we approximate F(a,b,c)  using Equation A.2.

A.3 Volumetric Data Pile Format

Various volumetric data files (e.g. CFD datasets ) were generated previous to reconstruction 

and stored in a local file format. This file format is entitled the Volumetric D ata  File (VDF) 

format. It was designed to be a simple format for the task  at hand. Several other volumetric 

data  formats exist (e.g. HDF), but these are far too general and complex for our needs. 

This section describes the VDF format.

A volumetric data set stored in the VDF form at consists of two entities; a 128 byte 

header and the pixel/voxel data values. Both entities are written in binary form. As shown 

in Figure A.4, the first component of the header is the so-called “magic cookie.” For the file 

to be recognized as a VDF file the m agic field must be the four byte hexadecimal number 

OxFEEDBEEF. Following the magic number, is an 80 character string. The s tr in g  field 

can store any text, but typically stores some description of the data, creator of the data, 

when it was created, etc.

All data sets stored in the VDF format are assumed to have been generated on a 

rectilinear grid. The next three fields; d im X , d im Y , and d im Z , give the dimensions of 

the data. d im X  stores the number of pixels/voxels along the x-axis, and d im Y  stores the 

number of pixel/voxels along. If the data was generate as some number of planar slices (e.g.
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as CT and MRI datasets are), then d im Z  stores the number of slices. Otherwise, it stores 

the number of voxels along the z-axis.

The next six fields define the world extents of the rectilinear grid. The point defined 

by (m inX . m inY . m inZ) is the back bottom  left corner of the bounding box. and (m axX . 

m axY , m axZ) is the front top right corner. This defines a right handed coordinate system. 

The final two fields are extra padding. Currently, their use is undefined, and free to be used 

for whatever purpose necessary.

Directly following the header entity are the data values. They are stored with the X 

coordinate increasing fastest, followed by the Y coordinate. The Z coordinate increases the 

slowest. Each data value is assumed to only take one byte of storage space. Thus, the legal 

range of values is 0 ..  .255. D ata compression techniques are not applied prior to storage.
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Magic Number (int) 
OxFEEDBEEF

Description
(80 bytes)

X Dimension
(int)

Y Dimension
(int)

Z Dimension
(int)

Minimum World 
X Coordinate

(float)

Minimum World
Y Coordinate

(float)

Minimum World 
Z Coordinate

(float)

Maximum World 
X Coordinate

(float)

Maximum World
Y Coordinate

(float)

Maximum World 
Z Coordinate

(float)

Undefined
(int)

Undefined
(int)

struct VDFHeader { 
int magic; 
char string[80]; 
int dimX; 
int dimY; 
int dimZ ; 
float minX; 
float minY; 
float minZ; 
float maxX; 
float maxY; 
float maxZ; 
int extral;
int extra2;

};

Figure A.4; VDF Format File Header
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Appendix B

Definite Integral Approxim ation

The surface integrals given in this paper cannot be evaluated easily using analytical meth

ods. Therefore, an approxim ate solution must be obtained using numerical methods. This 

appendix discusses one such numerical method called Monte Carlo integration. Before this 

method is described, we first provide some background material [65].

B . 1 B ackground

A continuous random variable can take on a continuum of real values. The behavior of the 

random variable can be fully described by the distribution of the values it can take on as 

defined by a  probability density function (pdf). Given a random variable X ,  the pdf f [x )  is 

given by the probability tha t X  will take on some range of values. T hat is,

90
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The pdf has two defining characteristics. If x is a possible value of X  then / (x )  > 0. and

f  f { x ) d x  = l

where X  is the domain of / .

Example: Uniform(a,b)

A random variable that is uniformly distributed between a and 6 has a pdf given by

As illustrated in Figure B .l. The area under the curve is given by a rectangle with width

f(x)

   ► x

a  b

Figure B.l: The Uniform(a,b) pdf

b -  a and height 1/(6 — a). This area is equal to  1/(6 — a) dx.

The average (or expected) value of a continuous random variable is given by

p  = E [X ] =  /  x f ( x ) d x  
Jxex
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The expected value has the property th a t the expected value of a sum of random variables is 

equal to the sum of the expected values of the random variables (£ [X -f F] =  E[X]  4- E[Y]). 

Since the sum of two random variables is itself a  random variable this idea generalizes. The 

function of a random variable is also a  random variable, and we can write its expected value

as

£[?(*)] =  /  * (* )/(x )  dxJ x e xi x e x

where g(x)  is a function of the random variable X . The standard deviation <j  of a random 

variable is given by

<T = \ (x ~  E[x])2f ( x )  dx,
l x & X

and measures the overall deviation from the mean.

Example: Uniform(a,b)

The expected value of a Uniform(o, 6) random variable is

f b x  
»  = L — a

dxh _ /•

6'
1 I X

b — a \ 2 a/
1 (  b2 — a2'

6 - a y  2 
a + b

Likewise, the the standard deviation can be shown to be
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B.2 Monte Carlo Integration

W ith this background we will show how Monte Carlo integration can be used to estim ate 

definite integrals. In the case of the surface integrals given in Section 4.1, we would want 

to  estimate an integral of the form

I  = f  f  h(u, v ) du dv 
Jc Ja

Let U and V  be independent random variables with possible values u and v whose values 

are uniformly distributed for a < u < b and c < v < d respectively, and define a new 

random variable X  = h(U, V ). The expected value of X  is

E [X ] =  J  J  h(u , v) f {u)g(v)  du dv

where f (u )  and g(v)  are the probability density functions for the random variables U and 

V .  Since U and V  are uniformly distributed random variables f ( u )  =  1/(6 -  a) and 

g(v)  =  1 f{d — c) and

ElX]  =  (6 — a)(d — c) t  / /  A(“ ' ">du dv■

From this it follows that, /  =  (6 -  a){d — c)E[X].

I  can be estimated by generating multiple realizations of X  and computing the sample 

mean. That is, first generate N  samples o f U and V; u i ,u 2, . . . ,  un , vi, u2, . . . ,  vn. Using 

these samples, compute N  samples of X  using

Xi =  /»(«,-, Vi) i  =  1,2, . . . ,  iV.
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The sample mean for this realization of X  is given by

The rationalization behind this equation can be seen by generalizing the Law of Large 

Numbers. T hat is,

? x l p xL T F H x i = E [X ] \  = 1

Finally the estim ate /  is given by

I  as I  = (b -  a)(d -  c)x = —— ^ ^  £  h.(ui, v{).
»  ,=1

B.3 Interval Estimation

As just shown, the Monte Carlo method can be used as a technique for estimating the 

value of definite integrals. Since the result is only an estimate, it would be nice to know to 

what extent we can tru st it. We can use sample means, standard deviations, and interval 

estimation to do so.

Consider the following scenario. Take some random number generator and generate 

M  samples each of size N .  For each sample i generate the sample mean mt- and sample 

standard deviation st-. For each sample, define

where /i is the theoretical (but unknown) mean of the distribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPEN D IX B. DEFINITE IN TE G R A L APPROXIM ATION 95

An extension, of the Central Limit Theorem tells os the histogram of the “t  da ta” will 

have the following properties

• the mean is approximately 0

• the standard deviation is approximately \ / (N  — 1 )/(lV — 3)

• the density is approximately the shape of the Student (A'- — 1) pdf

Thus, given a random sample Xi, X2, . .  •, x,y with mean m  and standard  deviation s. it will 

be approximately true that

is a  random sample from the Student(iV — 1) distribution.

If T  is a S tuden t(iV -l) random variable, then there exists some value tm > 0 such that

IT we choose a  =  0.05, then we are 95% confident tha t the theoretical mean lies somewhere 

between

1 s / y / N ^ T
m  — n

P r{ —tm < T  < £“} — 1 — a  for some 0 < a < 1. Since £ is a sample from this distribution

By performing some simple algebraic techniques we arrive at

tms J , tms
m  .-= ■; ana m  i — .=■■y/N ^l y/lT^T

11 * »

£* is commonly called the critical value, and is given by the inverse distribution function
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(idf) of the Student (n-1) distribution. T hat is, given a

t * =  Student Jdf(IV — 1,1 — a /2 )

B.4 Implementation Issues

In this final section, we present some implementation issues with respect to Monte Carlo 

integration and interval analysis.

Computation of the expected value and standard deviation

Computing the sample standard deviation using the expression

S  =
N L i

requires a  two pass algorithm. The first pass computes the sample mean, and the second 

pass computes the sample standard deviation. An equivalent expression for the sample 

standard deviation which allows it and the sample mean to be computed in one pass is 

given by

S  = m 2

The following C code computes the sample mean and standard deviation

i*  read v a lu eO  re tu rn s  th e  n ex t d a ta  v a lu e  * /

sum = 0;
sumsqr -  0;

f o r  ( i  = 0; i  < n ; i++) {
x = read v a lu eO  ;
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sum += x; 
sumsqr += (x * x ) ;

}

mean = sum /  n;
stddev = sqrx(sumsqr /  n) -  (mean * mean);

This code, when actually implemented, may have problems due to accumulated round 

off error. For a solution to this, we direct the reader to Welford’s algorithm 1.

Critical values in interval estimation

In practice, when Monte Carlo integration is used N  is always large. It is also common 

practice to  choose a = 0.05. When N  is large the difference between N  and N  — 1 is 

insignificant, and

W ith this in mind, given the sample mean m  and standard deviation s, we are 95% confident 

tha t the actual mean p  lies somewhere between

Student_idf(lV — 1 ,0.975) ~  2

2s 2s
m

For the integral approximation discussion above, we equivalently define

c = ( b - a ) ( d - c ) - j L

and we are 95% confident that the actual value of the integral lies between I  — e and /  4- e.

1Welford’s algorithm can be found in Technometrics, Volume 4, Number 3, August 1962.
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RQS Extension to  T c l/T k

C .l Data Structures
D a ta  S tru c tu re :

point - A world coordinate location

D e sc rip tio n :

A p o in t is defined as a standard Tel list containing two to four floating point 
numbers. If only two numbers are given, the point will be considered to represent 
a  two dimensional location. If three or four numbers are given, it is interpreted 
to  be a three dimensional point (e.g. {x y z  [to]}) in homogeneous space. If w 
is not given, it defaults to 1.0.

D a ta  S tru c tu re :
RGB color - A RGB color triple

D e sc r ip tio n :

A R G B  co lo r is defined as a standard Tel list containing three eight bit numbers 
(e.g. {r g b }). The expected range is 0 . .  .255. If any value is not within this 
range, the value will be clamped. For example, if r  < 0 then r  =  0.

D a ta  S tru c tu re :
RGBA color - A RGB color triple with alpha component

D e sc r ip tio n :

A R G B A  co lo r is defined as a standard Tel list containing three or four floating 
point numbers (e.g. {r g b [a]}). Each number is expected to lie within 0 < 
r, g , b , a <  1.0. Any values outside this range will be clamped. If o is not given, 
it defaults to  1.0.

98
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D a ta  S tru c tu re :
colormap - Stores a set of RGB triplets

S ynopsis:
co lo rm ap  filename

Description:

A colormap has been defined as a  Tel list with the following form at and 
interpretation:

{n {redo greeno blue0}{redx g ie e ^  b lue i} ..  .{red„_i g r e e n ^  bluen_!}}

The list begins with the number of entries in the colormap (n), and is followed 
by n  sublists. These sublists contain three eight bit values representing the red. 
green, and blue components of the color,respectively.

A colormap is the one new data  structure tha t has a Tel command. This 
command allows attem pts to read filename as a n x 1 PPM  image file. Thus 
each pixel in this “image” is described by three values. If it successfully reads 
the file, it returns its contents as a colormap.

Note: a colormap can be created manually by creating a Tel list w ith the 
above format.
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C.2 Objects

Basically every entity in the RQS system is called an object. For example, below are the 

definitions of various entities from functions, to surfaces, to volumes. Each of these entities 

all belong to  the generic class object. To reduce the number of new Tel commands, some 

commands were created which operate on any of the objects defined below.

T e l C om m an d :
objDelete - Delete an object from RQS

S ynopsis:
o b jD e le te  objectName [ ... ]

D esc rip tio n :

o b jD e le te  removes the specified objects from RQS space. These objects will 
no longer be accessible. If they were once Tel com m a n d s  themselves (e.g. tha t 
returned from creating a sphere function), then those commands will also no 
longer exist.

T e l C om m and :
objName - Returns the object’s name (type)

Synopsis:
o b jN am e  objectName

D escrip tio n :

Returns the given object’s name. This will actually be a  string representing the 
type of object. For example, “sphere,” “volume,” and “mesh.”

T e l C om m and :
objlsFunction - Decides if the object is a  function

Synopsis:
ob jlsF u n c tio n  objectName

D esc rip tio n :

o b jlsF u n c tio n  is a decision command. It will return  I if the given object is a 
function, and 0 otherwise. See Section C.2.1 for the available function objects.
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T e l C o m m an d :
objlsVolume - Decides if the object is a volume

S ynopsis:
o b j ls  V olum e objectName

D esc rip tio n :

o b j ls  V o lum e is a  decision command. It will return  1 if the given object is 
a  volume, and 0 otherwise. See Section C.2.2 for a  description of the volume 
object.

T e l C o m m an d :
objlsSurface - Decides if the object is a surface

S ynopsis:
o b jlsS u rfa c e  objectName

D esc rip tio n :

o b jlsS u rfa c e  is a decision com m and . It will re turn  1 if the given object is a 
surface, and 0 otherwise. See Section C.2.3 for the  available surface objects.
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C.2.1 Functions

T e l C o m m an d :
fsphere - Create a  spherical function object

S ynopsis:
fsp h e re  [options]

D e sc rip tio n :

The fsp h e re  command is used to define a  function object tha t represents a 
sphere. The sphere function is defined with respect to  an actual spherical object 
(e.g. its radius and center are specified). However, the function defines a data 
value for every point in the function’s domain.

O p tio n s :
-ra d iu s  value

Specify the radius of the sphere function, value can be any legal floating 
point number. Legal examples include 0.1, .1, 5, etc. Defaults to 1.0.

-p o in t point

Specify the reference point for the sphere function. In this case the reference 
point represents the center of the sphere. Defaults to {0.0 0.0 0.0}

-w orld  point point

Specify the domain of the sphere function. The two arguments to the - 
w o rld  option represent the minimum and maximum world coordinates, re
spectively. Defaults to { -1 .0  -  1.0 -  1.0} and { 1.01.01.0}, respectively.

W id g e t C o m m an d :

The fsp h e re  command returns a  string of the form sph#; where ’# ’ is a 
number which makes the created object unique with respect to other created 
sphere function objects. This string represents a new Tel command with its own 
options. These commands with the options take the following syntax:

objectName option [arg arg ...]

W id g e t O p tio n s : 
n am e

Returns the object’s name. In this case, it should return “sphere.” 

rad iu s

Returns the sphere function’s radius.

p o in t

Returns the sphere function’s reference point (center).
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world
Returns the sphere function’s domain. That is, it returns its minimum and 
maximum coordinate values.

m in

Returns the function’s minimum value. In this case, the m inim um  value 
occurs a t the reference point.

m ax

Returns the function’s maximum value. In the case of the sphere function, 
the maximum value occurs at the point in its domain which is furthest from 
the reference point.

ran g e

Return’s the minimum and maximum value in a single call.

a re a

Returns the surface area of the object represented by the function (e.g. the 
sphere defined by the radius and center given when the object was created).

value  point

Returns the value of the function object at the given point. 

d is ta n c e  point

Returns the distance from the given point to the point on the surface of the 
function which is “deemed” closest.

configu re  [options]

The configu re  command can be used to redefine an already created object. 
options are the same as those that can be specified when the object was 
created. If no arguments are given the configure command will return a 
list of the functions defining characteristics in the following form:

{ { option value } . . . }
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T e l C om m and :
fcylinder - Create a cylindrical function object

Synopsis:
fcy linder [options]

D escrip tio n :

The fc y lin d e r  command is used to define a  function object that represents 
a cylinder. The cylinder function is defined with respect to an actual cylindrical 
object (e.g. its radius and center are specified). However, the function defines 
a data value for every point in the function’s domain.

O p tions:
•rad iu s  value

Specify the  radius of the cylinder function, value can be any legal floating 
point number. Legal examples include 0.1, .1, 5, etc. Defaults to 1.0.

-po in t point

Specify the reference point for the cylinder function. In this case the refer
ence point represents the center of the cylinder. Defaults to (0.0 0.0 0.0}. 
Note th a t the z value is ignored because there isn’t  any notion of cylinder 
height.

-w orld  point point

Specify the  domain of the cylinder function. The two arguments to the 
-w orld  option represent the minimum and maximum world coordinates, 
respectively. Defaults to {-1 .0  — 1.0 -  1.0} and { 1.01.01.0}, respectively.

W id g e t C o m m an d :

The fc y lin d e r command returns a  string of the form cyl# ; where ’# ’ is a 
number which makes the created object unique with respect to  other created 
cylinder function objects. This string represents a  new Tel command with its 
own options. These commands with the options take the following syntax:

objectName option [arg arg ...]

W id g e t O p tions: 
nam e

Returns the  object’s name. In this case, it  should return “cylinder.” 

rad ius

Returns the cylinder function’s radius.

po in t
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Returns the cylinder function’s reference point (center), 

w orld
Returns the cylinder function’s domain. T hat is, it returns its minimum and 
maximum coordinate values.

m in

Returns the function’s minimum value. In this case, the m inim um  value 
occurs a t any value along the axis defined by the x  and y coordinates of the 
reference point th a t runs parallel to  the z  axis.

m ax

Returns the function’s maximum value. In the case of the cylinder function, 
the maximum value occurs at the point in its domain which is furthest from 
the axis defined by the x  and y  coordinates of the reference point th a t runs 
parallel to  the 2 axis.

ran g e

Return’s the minimum and maximum value in a  single call.

a re a

Returns the surface area of the object represented by the function (e.g. the 
cylinder defined by the radius and center given when the object was created).

value point

Returns the value of the function object at the given point. 

d is tan ce  point

Returns the distance from the given point to the point on the surface of the 
function which is “deemed” closest.

configure [options]

The co n fig u re  command can be used to redefine an already created object. 
options are the same as those th a t can be specified when the object was 
created. If no arguments are given the configu re  com m an d will re turn  a 
list of the functions defining characteristics in the following form:

{ { option value } . . . }
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T e l C om m an d :
fhyperboloid - Create a hyperboloid function object

S ynopsis :
{hyperbolo id  [options]

D e sc rip tio n :

The {hyperboloid  command is used to define a function object tha t rep
resents a hyperboloid. The hyperboloid function is defined with respect to an 
actual hyperboloid object (e.g. its radius, center, and height are specified). 
However, the function defines a data  value for every point in the function’s 
domain.

O p tio n s :
-rad iu s  value

Specify the radius of the hyperboloid function, value can be any legal floating 
point number. Legal examples include 0.1, .1, 5, etc. Defaults to 1.0.

-p o in t point

Specify the reference point for the hyperboloid function. In this case the 
reference point represents the center of the hyperboloid. Defaults to {0.0 0.0 
0.0}

-h e ig h t value

Specify the “height” of the hyperboloid function. The hyperboloid function 
tha t is actually created will have its specified radius a t its reference point 
±height. value can be any legal floating point number. Legal examples 
include 0.1, .1, 5, etc. Defaults to 1.0.

-w orld  point point

Specify the domain of the hyperboloid function. The two arguments to the 
-w orld  option represent the minimum and maximum world coordinates, 
respectively. Defaults to  { -1 .0  -  1.0 -  1.0} and { 1.01.01.0}, respectively.

W id g e t C om m and:

The {hyperboloid  command returns a  string of the form hyp#; where ’# ’ is 
a  number which makes the created object unique with respect to o ther created 
hyperboloid function objects. This string represents a new Tel command with 
its own options. These commands with the options take the following syntax:

objectName option [arg arg ...]

W id g e t O p tions: 
n am e

Returns the object’s name. In this case, it should return “hyperboloid.”
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ra d iu s

Returns the hyperboloid function’s radius, 

p o in t

Returns the hyperboloid function’s reference point (center), 

h e ig h t

Returns the hyperboloid function’s height, 

w orld
Returns the hyperboloid function’s domain. T hat is, it returns its minimum 
and maximum coordinate values.

m in

Returns the function’s minimum value.

m a x

Returns the function’s maximum value, 

ran g e

Return’s the minimum and maximum value in a single call.

a re a

Returns the surface area of the special case cone represented by the function 
(e.g. the cone defined by the radius, height, and center given when the object 
was created).

va lu e  point

Returns the value of the function object at the given point. 

d is ta n c e  point

Returns the distance from the given point to the point on the surface of the 
function which is “deemed” closest.

configure [options]

The configure command can be used to redefine an already created object. 
options are the same as those that can be specified when the object was 
created. If no arguments are given the configure command will return a 
list of the functions defining characteristics in the following form:

{ { option value } . . . }
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C.2.2 Volumes

T el C om m and :
volume - Create a  volumetric data set

S ynopsis:
v o lu m e type width height depth [options]

Description:

The vo lum e command is used to create a  volumetric data storage structure. A 
volume is a three dimension array of values, and is defined by a rectilinear grid. 
The grid is defined by specifying the type of data  to be stored in the volume, 
and the number of voxels along the x, y, and z axis. Currently two types of data 
are supported “byte” and “float.” Byte data  values are unsigned integers in the 
range 0 . .  .255. Float values are floating point numbers whose range depends on 
the particular architecture RQS has been compiled for.

The options below also allow the user to read in previously defined volumetric 
data  from raw and VDF files.

O p tio n s:
-b a d  value

Specify the “bad” (or background) value. Whenever, a request is made for 
a non-existent voxel’s value, this value is returned.

-w orld  point point

The volumetric data  set is defined on a  rectilinear grid. This option allows 
the user to specify the world coordinates for the comers of the grid. The two 
arguments represent the minimum and maximum coordinates, respectively.

-raw  filename

Read in a  volumetric data set from a  raw formatted file. In this case, the 
file is assumed to contain width x  height x  depth da ta  values.

-v d f  filename

Read in a volumetric data set from a  VDF formatted file. The current dimen
sions of the volume are ignored. If necessary, the volume will be reallocated 
based on the dimensions given in the file. See Section A.3 for a  complete 
description of the VDF format.

-fu n c tio n  function-name

After allocating the volume, it will generate a data set based on the previ
ously defined RQS function function-name.

W id g e t C om m and:
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The v o lu m e  command returns a  string of the form vol#; where is a 
number which makes the created object unique with respect to other created 
volume objects. This string represents a new Tel command with its own options. 
These commands with the options take the following syntax:

objectName option [arg arg ...]

W id g e t O p tions: 
nam e

Returns the object’s name. In this case, it should return “volume.” 

w id th

Returns the number of voxels along the X-axis, 

height

Returns the number of voxels along the Y-axis, 

d e p th

Returns the number of voxels along the Z-axis. 

v o x e lW id th
Returns the number of width of a voxel. This value will be equal to

worldmaxx w orldmjnx 
width  — 1

voxelH eigh t

Returns the number of height of a voxel. This value will be equal to

tOOrldmaXy -  W O T ldm iny 

height — 1

v oxelD ep th

Returns the number of depth of a voxel. This value will be equal to

W O rldm axg  -  ■WOTldm in t

depth — 1

b ad  [value]
•

If value is specified, this option sets and returns the default value returned 
when an voxel value request is out of bounds. If value is not specified then 
the its current value is returned.

w orld  [point poin£[

If the two points are given, this command sets the domain of the volume 
object, and returns it. If they are not given the current domain of the object 
is returned.
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clear

Sets every voxel in the volume object to be equal to the “bad” value, 

value point

Returns the value of the volume at the given point. If point does not occur 
a t a  voxel corner, trilinear interpolation is used to  determine the value.

min

Returns the minimum value occuring in the volume.

max

Returns the maximum value occuring in the volume, 

range

Returns the minimum and maximum values occuring in the volume, 

c rea te  width height depth

(Re)create the volume object w ith the given dimensions. If the volume object 
was previously created, tha t object will be destroyed before the new object 
is created.

destroy

Destroy the volume object. This merely releases the memory consumed by 
the object. It can later be recreated using the above c re a te  command.
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C .2 .3  S u rfa c e s

T e l C o m m an d :
stvpe - Obtain surface type

S ynopsis:
s ty p e  surfaceName

D e sc rip tio n :

s ty p e  is a general surface command which returns the type of surface for 
the given a surface name. This command will return a string depicting the type 
of surface. If surfaceName is not a  surface, s ty p e  will return the string

surfaceName is not a surface

If surfaceName is a surface, s ty p e  will return either “mesh,” “spline, “ or “sur
face.”

T e l C om m and :
slow - Get/Set low threshold value used to define isosurface

Synopsis:
slow  surfaceName [options]

D esc rip tio n :

If surfaceName was defined via a  reconstruction algorithm (e.g. Marching 
Cubes), it will have a field holding the low value of the threshold range, slow 
allows the user to  obtain this value, slow  takes an optional floating point number 
as the second argument. If this argument is given, the low threshold field will 
be set to the given value.

T e l C om m and :
s'nigh - Get/Set high threshold value used to  define isosurface

Synopsis:
sh igh  surfaceName [options)

D e sc rip tio n :

If surfaceName was defined via a  reconstruction algorithm (e.g. Marching 
Cubes), it will have a field holding the high value of the threshold range, sh ig h  
allows the user to obtain this value, sh ig h  takes an optional floating point 
number as the second argument. If this argument is given, the high threshold 
field will be set to the given value.
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T e l C om m and :
sthreshold - Get isosurface threshold range

S ynopsis:
s th re sh o ld  surfaceName

D escrip tio n :

s th re sh o ld  allows the user to obtain both ends of the threshold range defin
ing a reconstructed isosurface. It returns a list of the form

{ low high }

where the two fields are the low threshold and the high threshold respectively.

M esh  C om m ands

T e l C om m and :
m s ta ts  - Gather statistics about a  polygonal mesh surface

Synopsis:
m s ta ts  meshName

D escrip tio n :

The m sta ts  command returns statistics about the polygonal mesh. It re
turns a  list with sublists having the following format

{ { vertices numVertices } { polygons numPolygons }
{ extents { minX minY minZ } { maxX maxY maxZ } } }

Each sublist contains two fields; a string describing the statistic and its corre
sponding value. Three statistics are provided currently. The first two are the 
number of vertices and the number of polygons in the mesh. The last statistic 
represents the world extents ( or bounding box ) of the surface.
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S p lin e  C om m ands

Tel Command:
sp line  - Operate on a spline

Synopsis:
sp line splineName command

D escrip tio n :

sp lin e  provides the interface to  commands which operate on spline surfaces. 
Currently, the command provided is npatches. This command returns the num
ber of control patches defining the spline surface.

T e l C om m and :
sp lm esh  - Generate a polygonal mesh for spline surface

S ynopsis:
sp lm esh  splineName p a tch #  [options]

D escrip tio n :

sp lm esh  approximates a  spline surface patch with a  polygonal mesh. The 
options described below allow the user to control the precision with which the 
polygonal mesh is generated. It will return the name of the new mesh surface.

Options:
-ucurves value

-u cu rv es  specifies the number of steps along the param etric u axis. This 
option controls the number o f “horizontal” patches defining the resulting 
mesh.

-vcurves value

-vcurves specifies the number of steps along the parametric v axis. This 
option controls the number of “vertical” patches in the resulting mesh.
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Tel Command:
sp lco n tro l - Generate a  mesh, for a  spline control patch

S ynopsis:
sp lco n tro l splineName p a tch #

D escrip tio n :

sp lco n tro l creates a  polygonal mesh surface object of the requested control 
polygon patch, sp lco n tro l returns the name of the new polygonal mesh surface.
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C.3 Reconstruction Algorithms
T el C om m an d :

march. - Performs the M a rching Cubes algorithm

Synopsis:
m arch. volumeName [options]

D escrip tio n :

The m arch  command performs the Marching Cubes algorithm as described 
in Chapter 3 on the previously created volume object given by volumeName. By 
default, the isosurface corresponding to the range 0 <  r  < 255 is reconstructed. 
This range can be altered using the options described below. This command 
creates a new mesh surface object, and returns its name.

O ptions:
-low  value

Specifies the low value of the range for r .

-h ig h  value

Specifies the high value of the range for r .

- s ta tu s

Adds verbose ou tpu t showing the changing states of the Marching Cubes 
algorithm.
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T e l C o m m an d :
track - Performs the surface tracking algorithm

S ynopsis:
t r a c k  volumeName [options]

D e sc rip tio n :

The tra c k  command performs Shu and Krueger’s surface tracking algorithm 
an described in Chapter 3- Again, volumeName is the name of a  previously 
created volume object. By default, the isosurface corresponding to the range 
0 <  r  < 255 is reconstructed. The range can be altered using the options 
described below. This command creates a new mesh surface object, and returns 
its name.

O p tio n s :
-low  value

Specifies the low value of the range for r .

-h ig h  value

Specifies the high value of the range for r .

-n o rm als

This option tells the surface tracking algorithm to generate surface normals 
for the vertices of each surface patch. The normals are generated using the 
grey level gradients from the volume object.
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T el C om m an d :
tricon - Performs the contour triangulation algorithm

S ynopsis:
tr ic o n  volumeName [options]

D escrip tio n :

The tr ic o n  command performs the contour triangulation algorithm  as de
scribed in Chapter 3. Again, volumeName is the name of a  previously cre
ated volume object. By default, the isosurface corresponding to the range 
0 < t  < 255 is reconstructed. The range can be altered using the options 
described below. This com m and creates a  new mesh surface object, and returns 
its name.

O p tio n s:
-low  value

Specifies the low value of the range for r.

-h ig h  value

Specifies the high value of the range for r .

-n p ts  value

value states the number of points used to  describe the contours on each data 
slice. If value is set equal to zero, the number of points in the contours axe 
not altered. This is the default. If value> 0, then each contour is altered to 
consist value points uniformly distributed along the original contour.

-s ta tu s

Adds verbose output showing the changing states of the contour triangula
tion algorithm.
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Tel Command:
splcon - Performs the contour spline lofting algorithm

Synopsis:
sp lcon  volumeName [options]

D escrip tio n :

The sp lco n  command performs the contour spline lofting algorithm as de
scribed in Chapter 3. Again, volumeName is the name of a previously cre
ated volume object. By default, the isosurface corresponding to the range 
0 < t  < 255 is reconstructed. The range can be altered using the options de
scribed below. This command creates a  new spline surface object, and returns 
its name.

O ptions:
-low  value

Specifies the low value of the range for r .

-h ig h  value

Specifies the high value of the range for r .

-n p ts  value

value states the number of points used to describe the contours on each data  
slice. If value is set equal to zero, the number of points in the contours are 
not altered, ft value> 0, then each contour is altered to consist value points 
uniformly distributed along the original contour. By default, value is equal 
to twenty-five.

-s ta tu s

Adds verbose output showing the changing states of the contour triangula
tion algorithm.
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Tel Command:
rawcon - Generates the contours on each data  slice

S ynopsis:
raw co n  volumeName [options]

D esc rip tio n :

T he raw con  command generates a mesh object consisting of the contours 
present on each data slice. Again, volumeName is the name of a  previously 
created volume object. By default, the isosurface corresponding to the range 
0 <  r  <  255 is reconstructed. The range can be altered using the options 
described below. This command does not create a surface. T hat is, the contours 
are not connected in any manner.

O ptions:
-low  value

Specifies the low value of the range for r.

-h ig h  value

Specifies the high value of the range for r.

-n p ts  value

value states the number of points used to describe the contours on each data 
slice. If value is set equal to  zero, the number of points in the contours are 
not altered. This is the default. If value> 0, then each contour is altered to 
consist value points uniformly distributed along the original contour.

- s ta tu s

Adds verbose output showing the changing states of the contour generation 
algorithm.
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C.4 Metrics
Tel Command:

GSAP - Compute global surface preservation

S ynopsis:
gsap  functionName surfaceName [options]

D escrip tio n :

The gsap  command computes the global surface area metric defined in Chap
ter 4. The result of this command is a string of the form

{ gsap value }

where value is the value of g sap  for the given function (functionName) and 
surface reconstruction (surfaceName).

O p tions:
-re la tiv e

States th a t g sap  should be computed relative to the ideal surface area (see 
Equation 4.3 and Equation 4.2).
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Tel Command:
PDP - Compute point distance preservation

S ynopsis:
p d p  functionName surfaceName [options]

D e sc r ip tio n :

The p d p  command computes the  point distance preservation metric defined 
in Chapter 4. The result of this command is a  string of the form

{ pdp { nsamples seed } { value error } }

where

nsam p les  - number of samples used to approximate Equation 4.6. 

seed  - seed presented to the random number generator 
v a lu e  - result of p d p

e r ro r  - error interval for 95% confidence. Thus, the user can be 95% confident 
th a t the actual value of the integral is in the range value ±  error.

Options:
-n sam ples  value

value specifies the number of samples used to approximate the integral given 
in Equation 4.6. By default, this is equal to 125,000.

-seed  value

value specifies the initial seed for the random number generator.

Tel Command:
PDP Image - Compute point distance preservation

Synopsis:
p d p lm a g e  functionName surfaceName

D e sc r ip tio n :

The p d p lm ag e  command computes the point distance preservation metric 
defined in Chapter 4, and returns an eight-bit error image.
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Tel Command:
IVP - Compute isovalue preservation

Synopsis:
ivp functionName surfaceName [options]

Description:

The ivp command computes the isovalue preservation metric defined in 
Chapter 4. The result of this command is a string o f the form

{ ivp { nsamples seed } { low high } { value error } }

where

nsamples - number of samples used to approximate Equation 4.7. 

seed - seed presented to the random number generator 

low, high - the threshold range on which value is based 

value - result of ivp
error - error interval for 95% confidence. Thus, the user can be 95% confident 

that the actual value of the integral is in the range value ±  error.

Options:
-n sam p les  value

value specifies the number of samples used to approximate the integral given 
in Equation 4.7. By default, this is equal to 125,000.

-seed value

value specifies the initial seed for the random number generator.

-low  value

This option alters the value of the low end of the threshold range. This 
option defaults to  the low value used during the reconstruction phase.

-high value

This option alters the value of the high end of the threshold range. This 
option defaults to  the high value used during the reconstruction phase.
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T e l C om m and :
IVP Image - Compute isovalue preservation.

Synopsis:
iv p lm ag e  functionName surfaceName [options]

D escrip tion :

The iv p lm a g e  command computes the isovalue preservation metric defined 
in Chapter 4. and returns the result as an eight-bit error image.

O ptions:
-low value

This option alters the  value of the low end of the threshold range. This 
option defaults *o the low value used during the reconstruction phase.

-high value

This option alters th e  value of the high end of the threshold range. This 
option defaults :o the high value used during the reconstruction phase.
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C.5 Rendering

The rendering module consists of two parts. The first is a new T k widget capable of receiving 

OpenGL rendering commands. The second are the commands which operate on those 

widgets. The Tk widget does not encompass all abilities supported by the OpenGL graphics 

programming library, and not all OpenGL functions have been implemented. Below is a 

description of the Tk OpenGL raster widget, and descriptions of the Tel implementations 

of various OpenGL functions.

C .5 .1  O p e n G L  R a s t e r  W id g e t

T e l C o m m an d :
glRaster - Tk OpenGL widget

S ynopsis:
g lR a s te r  pathName [options]

D esc rip tio n :

g lR a s te r  is an implementation of a raster widget tha t supports OpenGL 
rendering. This widget supports the rgba and eight bit color models, depth 
buffer, doublebuffering, a  single overlay, and a single underlay. It, however, is 
not a complete implementation of an OpenGL rendering window.

O p tio n s :
-h e ig h t value

This option sets the height (in pixels) of the OpenGL raster window.

-w id th  value

This option sets the width (in pixels) of the OpenGL raster window.

-c u rso r  cursorName

This option allows the cursor to be changed for the window. cursorName is 
any legal X l l  cursor name. See the Tk options manpage for more informa
tion on setting the cursor option.

-rg b m o d e , -rg b  value

This is a boolean option. If value is true (e.g. 1), the shell will attem pt to 
create a  widget capable of 24 bit color rendering. This option will cause the 
widget creation to fail if the 24 bit color model is not supported by the host 
machine. If this option is false, a eight bit rendering window will be created.
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-d o u b leb u ffe r, -db  value

These are boolean options which state tha t the shell should (or should not) 
a ttem pt to  create a  widget which supports double buffering. If the host ma
chine does not support double buffering, this option will cause the command 
to  fail.

-buffersize , -b s  value

This option specifies the size of the buffer for eight bit rendering widgets. 
I t controls the number of entries available in the widget’s colormap. If the 
host machine does not support a buffersize of value, the widget creation will 
fail.

-zbuffersize , -zbs value

This option specifies that a  widget which supports a depth buffer should be 
created, and the size of the depth buffer should provide at least value bits of 
precision. If the host machine does not support a zbuffer size of value, the 
widget creation will fail.

- re d b its , - rb  valve 
-g reen b its , -g b  value 
-b lu eb its , -b b  value 
-a lp h a b its , -a b  value

This collection of options specify the number of bits for the red, green, blue, 
and alpha channels of a 24 bit color widget. If the host machine does not 
support a  24 bit buffer defined by the given value's, the widget creation will 
fail.

W id g e t C o m m an d :

The g lR a s te r  command returns the pathname of the OpenGL raster widget 
created. This string represents a  new Tel command with its own options. These 
commands w ith the options take the following syntax:

pathName option [arg arg ...]

W id g e t O p tio n s : 
c u rre n t

This option returns the id of the active buffer (e.g. overlay). The return 
value will be 0.1, or 2. These values represent the normal buffer, overlay, and 
underlay, respectively. The active buffer receives any rendering commands 
(see below).

m ap p ed

m a p p e d  returns a  boolean value which states whether the widget’s window 
has been mapped to  the screen. Rendering should not be performed until 
th e  widget has been mapped.
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configure

The configure command can be used to redefine an already created object. 
options are the same as those th a t can be specified when the object was 
created. If no arguments axe given the con figu re  command will return a 
list of the functions defining characteristics in the following form:

{ { option value } . . . }

Note: If the widget has already been “mapped” , its buffer characteristics 
(e.g. doublebuffer, redbits, etc.) cannot be changed.

B u ffe r C o m m an d (s):

If the widget command has the following format

pathName bufferName option [arg arg ...]

then option should be one of the special buffer commands. In this form, buffer
Name can be normal, overlay, or underlay.

B u ffe r O p tio n s : 
ex is ts

This option returns a  boolean value indicating whether the given buffer exists 
(has been created).

c u r re n t
c u r re n t returns a boolean value indicating whether the given buffer is the 
active buffer, 

a c tiv e
Assuming the given buffer had been created, a c tiv e  will make the buffer the 
active buffer (e.g. the one receiving the graphics commands).

c re a te  [options]

create will attem pt to create the given buffer with the specified options. 
options can be any of the options available when creating the glRaster widget 
except -w id th  and -h e ig h t. A ttempting to create a buffer which already 
exists is an error, 

configu re

The configure command can be used to redefine an already created object. 
options are the same as those tha t can be specified when the object was 
created. If no arguments are given the co n figu re  command will return a 
list of the functions defining characteristics in the following form:

{ { option value } . . . }

Note: If the widget has already been “mapped” , its buffer characteristics 
(e.g. doublebuffer, redbits, etc.) cannot be changed.
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C .5 .2  O p e n G L  R e n d e r in g  C o m m a n d s

The supported OpenGL functions are described in this section. To make the transition

of the Tel implementations, the Tel commands have been given the same names as the

OpenGL functions.

T e l C om m and: 
gLAddColor

Synopsis:
g lA ddC olor index red green blue

D escrip tio n :

g lA ddC o lo r attem pts to insert the color defined by the red, green, and blue 
triple into the in d tzh  location of the colormap. Note that this command is only 
valid when the active buffer is using the eight-bit (colormap) color model.

T e l C om m and:
giAddColors

Synopsis:
g iA ddC olo rs colormap

D escrip tio n :

g iA ddC o lo rs  attem pts to insert the colors given by colormap into the coi- 
ormap of the active buffer, colormap is the colormap data structure defined 
earlier in this appendix. Note th a t this command is only valid when the active 
buffer is using the eight-bit < colormap) color model.
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T el C o m m an d :
glBegin/glEnd

S ynopsis:
g lB eg in  primitive 
g lE n d

D esc rip tio n :

This is the T d  implementation, of the OpenGL glBegin() function. Its only 
param eter is the name of the OpenGL primitive, primitive can take one of the 
following values:

points lines
line-strip lineJoop
triangles triangle-strip
triangleJan quads
quad_strip polygon

g lB e g in .. .  g lE n d  is used to delimit a group of like primitives.

T el C o m m an d :
glCallList

Synopsis:
g lC a llL is t listNumber

D escrip tio n :

g lC a llL is t executes the display list given by listNumber. The display list 
given by listNumber should have been previously defined using g lN e w L is t... g lE n d L ist.
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T el C o m m a n d :
glCleaxColor

Synopsis:
g lC le a rC o lo r  [options]

D esc rip tio n :

g lC le a rC o lo r  dears the current color buffer to the last set color buffer 
background color.

O p tions:
-co lo r colorSpec

This option sets the dear (background) color before actually dearing the 
current color buffer. If the current buffer uses the RGBA colormodel, then 
colorSpec should be a RGBA list as defined at the beginning of this appendix. 
Likewise, if the current buffer uses the colormap model, then colorSpec should 
be an integral index into the buffer’s colormap.

T el C o m m a n d :
glClearDepth

Synopsis:
g lC learD ep th . [ualue]

D esc rip tio n :

g lC le a rD e p th  dears the current depth buffer to the last set depth buffer 
background color. If value is given, then the background color is first set to 
value before it is deared.

Tel C o m m an d :
glClip Plane

Synopsis:
g lC lip P la n e  clip Plane plane

D esc rip tio n :

g lC lip P la n e  defines/sets the clip plane spedfied by clipPlane whose value 
has the form clipjplane# ,  where #  =  0 ,1 ,2 ,3 ,4 , or 5. plane is a  list containing 
four items; .4., B . C, D. These items specify the equation of a  plane; A x  +  B y  +  
C z + D  = 0 .  Note, that the clip plane still must be enabled (see g lE nab le).
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T el C o m m an d :
glColor

Synopsis:
g lC o lo r value

D escrip tio n :

g lC o lo r sets the current drawing color for the active buffer. If the active 
buffer uses the RGBA color model, then value should be a RGBA color list. If 
it uses the colormap color model, then value should be an integral index into 
the active buffer’s colormap.

T el C o m m an d :
glColorMaterial

Synopsis:
g lC o lo rM a te r ia l face mode

D escrip tio n :

g lC o lo rM a te r ia l causes a  material color to track the current color, face 
specifies whether the front, back, or front-and-back face material should track 
the color, mode specifies which material property should track the color, mode's 
value can be either ambient, diffuse, ambient-and-diffuse, specular, shininess, or 
emission.

T el C o m m an d :
glCullFace

Synopsis:
g lC u llF ace  mode

D escrip tio n :

g lC u llF ace  specifies which facets should be culled when facet culling is 
enabled, mode can be either front, back, or front-andLback.
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T el C o m m an d ;
gLDeleteLists

Synopsis:
g lD e le teL is ts  start range

D escrip tio n :

g lD e le teL is ts  deletes a contiguous group of display lists starting with the 
display list specified by the integral id start, range specifies the number of 
display lists to delete. If range is zero, nothing happens.

T el C o m m an d :
glDepthFunc

Synopsis:
g lD e p th F u n c  function

D escrip tion :

g lD e p th F u n c  specifies the depth comparison function used for depth buffer 
comparisons. The legal values for function  are

never less 
equal lequal 
greater notequal 
gequal always

The default value is less.
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Tel Command:
glDisable/glEnable

Synopsis:
g lD isa b le /g lE n a b le  cap

Description:

g lD isa b le /g lE n a b le  disables/enables the given capability, cap can be one
of the following several values;

alpha-test auto_normal blend
clip_pianeO clip_planel clip_plane2
clip_plane3 clip_plane4 clip_plane5
color_material cull_face depth_test
dither fog lightO
light 1 light2 light3
light4 light5 light6
light7 lighting line-smooth
line-stipple logicjap mapl-color_4
m a p lin d ex mapl_normal map l_texture_coord-l
map 1 _texture_coord_2 map 1 _texture_coord-3 map 1 _texture_coord_4
mapl_vertex_3 mapl_vertex_4 map2_color_4
map2_index map2_normal map2_texture_coord_l
map2_texture_coord_2 map2_texture_coord_3 map2_texture_coord_4
map 2 _vertex-3 map2_vertex_4 normalize
point-smooth polygon-smooth polygonjstipple
scissor_test stencil_test textureJ. d
texture_2d texture.gen_q texture_gen_r
texture_gen_s texture_gen_t
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Tel C o m m a n d :
glFinish

Synopsis:
g lF in ish

D esc rip tio n :

g lF in ish  causes the rendering pipeline to block until all previously executed 
OpenGL commands have completed.

Tel C o m m a n d :
glFlush

Synopsis:
g lF lu sh

D escrip tio n :

g lF lu sh  forces the execution of all previously executed OpenGL commands 
to  complete in finite time.

T el C o m m a n d : 
gIFrontFace

Synopsis:
g IF ro n tF ace  mode

D escrip tio n :

g IF ron tF ace  defines the vertex orientation of front facing polygons, mode 
can be either cw or ccw. The first stands for “clockwise” and the second 
“counter-clockwise.’’
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T el C o m m an d :
glFrustum

S ynopsis:
g lF ru s tu m  left right bottom top near far

D escrip tio n :

g lF ru s tu m  multiplies the current m atrix by a  perspective projection matrix. 
left, right specify the coordinates of the left and right clipping planes. Likewise, 
bottom, top specify the coordinates of the bottom and top horizontal clipping 
planes. Finally, near, far  specify the distances to the near and far clipping 
planes.

T el C o m m an d :
glGetlnteger

Synopsis:
g lG e tln te g e r  parameter

D escrip tio n :

g lG e tln te g e r  is a partial implementation of the OpenGL glGetlnteger() 
function. Currently, the only accepted values for parameter are redJbits, greenJbits, 
blue-bits, alpha-bits, and depth-bits. This function returns the current value of 
the requested parameter.

T el C o m m an d :
gllsList

Synopsis:
g llsL is t listID

D escrip tio n :

g llsL is t returns a boolean value indicating whether listID  is a defined (via 
g lN ew L ist) display list.
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T e l C om m and :
glLight

S ynopsis:
g lL igh t light parameter value

D esc rip tio n :

g lL ight is used to define the characteristics of a light source. The light 
parameter has the form “light f  where i =  0 . .  .7. parameter defines the charac
teristic which will be set equal to value. Legal values for parameter are

ambient spotjexponent
specular spot_cutoff
diffuse constant_attenuation
position quadratic_attenuation
spot-direction linear-attenuation

The format of value depends on parameter. The first three parameters expect 
an RGBA coior list, the next two expect a  3d or homogeneous coordinate, and 
the list five expect a floating point value.

T e l C o m m an d :
glLightModel

Synopsis:
g lL igh tM odel parameter value

D esc rip tio n :

g lL igh tM odel specifies light model characteristics. Legal values for parame
ter are light-modeLambient, light.modelJocaLviewer, and Ught-modeLtwoside. 
light-model-ambient expects value to  be a RGBA color list. The other two pa
rameters expect value to  be a string (either “true” or “false”).

T e l C o m m an d : 
glLineWidth

Synopsis:
g lL in eW id th  value

D esc rip tio n :

g lL in eW id th  specifies the width of rasterized lines. The default value is 
1.0.
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T e l C om m and:
giloadldentity

S ynopsis:
g i lo a d ld e n t i ty

D escrip tio n :

g lL o ad ld en tity  replaces the current m atrix  with the identity m atrix.

T e l C om m and :
glLoadMatrix

Synopsis:
g lL o ad M atrix  matrix

D escrip tio n :

g lL o ad M atrix  replaces the current m atrix with matrix:, matrix is a list 
containing sixteen elements specified in column-major order. T hat is, the list

{ ao Hi . . . flx5 }

is interpreted as the following m atrix

ao a4 08 ax 2
ax as ag 0x3
a2 ae axO ax4
03 07 axl ax5

T e l C o m m and : 
glMaterial

Synopsis:
g lM a te ria l face parameter value

D escrip tio n :

g lM ate ria l specifies m aterial characteristics for the facets of polygonal mod
els. face specifies which side of the facets are affected by the material charac
teristics. The legal values for this option are front, back, and front-ancLback. 
parameter specifies the characteristic which will be set equal to value. Legal val
ues for parameter are ambient, diffuse, ambient^ancLdiffuse, specular, emission, 
shininess, or colorJndexes. The first five param eter values expect value to  be 
a RGBA color list, shininess expects a  floating point value, and colorJndexes 
expects value to be a  list of indexes into the current colormap.
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Tel Command:
glMatrixMode

Synopsis:
g lM atrix M o d e  mode

Description:

g lM a trix M o d e  specifies the current m atrix (e.g. th a t which will receive 
subsequent m atrix operations). Three values for mode are accepted; modelmew, 
projection, and texture.

Tel Command:
glMultMatrix

Synopsis:
g lM u ltM a tr ix  matrix

D escrip tio n :

g lM u ltM a tr ix  multiplies the current m atrix by matrix. T hat is, if the 
current matrix is A  and matrix is B ,  then the current m atrix is replaced by A B . 
matrix is a list containing sixteen elements specified in column-major order. 
That is. the list

{ ao fli — ax 5 } 

is interpreted as the following m atrix

ao 04 ag ax2 
ax a$ ag ax3 
ai ag axO at4 
03 ar ax l ax5
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T el C om m and:
glNewList /  glEndList

Synopsis:
g lN ew L ist lis tffi mode 
g lE ndL ist

D escrip tio n :

g lN ew L is t.. .  g lE n d L is t creates or replaces a  display list. g lN ew L ist de
fines a display list w ith calling id listlD. All OpenGL commands which occur 
after g lN ew L ist and before g lE ndL ist become part of the display list, and 
can be executed at anytime by calling g lC a llL is t with the proper listlD. mode 
states whether the display list should just be compiled (compile) or compiled 
and executed (compilejand-execute).

T el C om m and: 
glOrtho

Synopsis:
g lO rth o  left right bottom top near far

D escrip tion :

g lO rth o  multiplies the current m atrix by a orthographic projection matrix. 
left, right specify the  coordinates of the left and right clipping planes. Likewise, 
bottom, top specify the coordinates of the bottom  and top horizontal clipping 
planes. Finally, near, fa r  specify the distances to the near and far clipping 
planes.

T el C om m and:
glPixelStore

Synopsis:
g lP ix e lS to re  parameter value

D escrip tion :

g lP ix e lS to re  sets the pixel storage modes. Legal values for parameter are

unpack-swap_bytes pack_swap_bytes unpacklsb-first
packlsb-first unpack_row le n g th  pack_rowlength
unpack _skip_rows pack_skip_rows unpack _skip_pixels
packjskip-pixels unpack-alignment pack_alignment
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*swap.bytes and *lsb-first expect value to be either “true” or “false.” All re
maining parameters expect an integral value.

T e l C om m and : 
glPixelZoom

S ynopsis:
g lP ixe lZ oom  xfactor yfactor

D escrip tio n :

g lP ixe lZ oom  sets the pixel zoom factors for the g lD raw P ix e ls  and g lC opy- 
P ixels operations.

T el C om m and :
glPointSize

Synopsis:
g lP o in tS ize  value

D escrip tio n :

g lP o in tS ize sets the diameter o f rasterized points. The default value is 1.0.

T el C om m and :
glPolygonMode

S ynopsis:
g lP o lygonM ode face mode

D escrip tio n :

g lPo lygonM ode specifies how polygons are rendered, face specifies which 
side of a  polygon (as defined by g lF ro n tF ace ) is affected by this g lP o ly g o n 
M ode operation, face can be either front, back, or fronLand-back. mode 
specifies how then given facets will be rendered. Legal values are point, line, 
and fill.
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T el C om m and :
glPushM atrix/glPopM atrix

Synopsis:
g lP u sh M a tr ix
g lP o p M a tr ix

D escrip tio n :

These commands operate on the current m atrix stack. g lP u s h M a tr ix  cre
ates a  copy of the current matrix, and places it on top of the current matrix 
stack. g lP o p M a tr ix  removes the top m atrix  from the current m atrix  stack.

T el C om m and : 
glRasterPos

S ynopsis:
g lR a s te rP o s  x y  [2] [to]

D escrip tio n :

g lR a s te rP o s  sets the current raster position to the coordinate given by 
(a:, y, z , w) where z  and w are optional, z  defaults to 0.0 and w defaults to 1.0.

T e l C om m an d :
glRect

S ynopsis:
g lR ec t x y width height

D escrip tio n :

g lR ec t draws a  rectangle whose lower left hand vertex is located at (x, y) 
and whose dimensions are widthXheigkt.
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T el C o m m an d : 
glRotate

S ynopsis:
g lR o ta te  [options]

D e sc rip tio n :

g lR o ta te  multiplies the current matrix by the rotation m atrix specified 
through options. By default, a  rotation of 0 degrees about the z axis is per
formed.

O p tio n s :
-an g le  value

Set the rotation angle to value

-x  value 
-y  value 
-z value

These three options define the axis of rotation. By default, the axis of 
rotation (and the values default to) is (0.0,0.0,1.0)

T e l C o m m an d :
glScale

Synopsis:
g lS ca le  [options]

D e sc r ip tio n :

g lS ca le  multiplies the current m atrix  by the scaling m atrix  specified through 
options. By default, a scale of 1 is performed through each axis. That is, by 
default no scaling will occur.

O p tions:
-x  value 
-y  value 
-z value

These three options define the  amount of scaling in each axis.
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T e l C o m m an d :
gIShadeModel

S yno p sis :
g IS hadeM odel mode

D e sc rip tio n :

g IS hadeM odel allows the user to select fla t or smooth shading.

T e l C o m m an d :
glSwap

S ynopsis:
glSw ap

D e sc rip tio n :

glSw ap is th  Tel command to execute the glX Sw apB ufifersQ  function. It 
will swap the back and front buffers when double buffering is being used.

T e l C o m m an d :
glTranslate

S ynopsis:
g lT ra n s la te  [options]

D e sc rip tio n :

g lT ran sla te  multiplies the current matrix by the translation m atrix specified 
through options. By default, a  translation of 0 is performed along each axis. 
T hat is, by default no translation will occur.

O p tio n s :
-x  value 
-y  value 
-z value

These three options define the amount of translation along each axis.
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T el C o m m an d :
glVertex

Synopsis:
g lV erte x  position

D escrip tio n :

g lV ertex  defines a vertex to be rendered, position is a  coordinate list as 
defined in C .l.

T el C o m m an d :
glViewport

Synopsis:
g lV iew p o rt [x y width height]

D escrip tio n :

g lV ie w p o rt sets the viewport. If x, y, width, and height are given then 
the viewport’s lower left comer will be located a t (x, y) and have dimensions 
widtKXheight. The viewport defaults to the entire window (widget).
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C.5.3 GLU Rendering Commands

Tel Command:
gluCylinder

Synopsis:
g lu C y lin d e r [options]

D escrip tio n :

g lu C y lin d e r draws a cylinder object. The characteristics of the cylin
der are specified via the options described below. The cylinder is oriented 
along the z axis with its base at z  =  0 and its top a t z  = height. This Tel 
command actually combines the following GLU functions; g lu N ew Q u ad ric (), 
g lu C y lin d e rQ , g lu Q u ad ric O rien ta tio n Q , g lu Q u a d ric N o rm a lsQ , and 
g lu Q u ad ric D raw S ty le () . This command returns an id for the new quadric. 
This id is used with other com m ands which manipulate quadrics.

O p tions:
-b aseR ad iu s  value

Specify the length of the radius at the cylinder’s base. By default, value is 
set equal to  1.0.

-to p R a d iu s  value

Specify the length of the radius at the cylinder’s top. By default, value is 
set equal to  1.0.

-slices value

Specify the number of subdivisions around the z axis. By default, this char
acteristic is equal to  5.

-s tacks value

Specify the number of subdivisions along the z axis. By default, this char
acteristic is equal to  5.

-n o rm als  string

Specify what type of normals should be generated, string can be none, flat, 
or smooth. By default, it equals none.

-o r ie n ta tio n  string

This option specifies the orientation of generated normals. If string is outside, 
then the normals will point away from the z axis. If string is inside, they 
will point toward the z axis. By default, the orientation is outside.

-d raw sty le  string

-drawstyle specifies how the cylinder should be drawn. Legal values for string 
are fill, line, silhouette, or point.
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Tel C om m an d :
gluDeleteQuadric

Synopsis:
g lu D e le te Q u a d ric  quadricID

D escrip tion :

g lu D e le te Q u a d ric  deletes the quadric defined by quadricID. Once quadri
cID is destroyed, it cannot be referenced again.

Tel C o m m an d :
gluDisk

Synopsis:
g luD isk  [options]

D escrip tion :

g lu D isk  draws a disk object. The characteristics of the disk are specified via 
the options described below. This Tel command actually combines the following 
GLU functions; g lu N ew Q u ad ric () , g lu D isk (), g lu Q u a d ric O rie n ta tio n () , 
g lu Q u a d ric N o rm a lsQ , and g lu Q u ad ricD raw S ty leQ . This command re
turns an id for th e  new quadric. This id is used with other commands which 
manipulate quadrics.

O ptions:
-o u te rR a d iu s  value

Specify th e  length of the outer radius By default, value is set equal to 1.0.

-in n e rR a d iu s  value

Specify the  length of the inner radius. By default, value is set equal to 0.0. 
If the inner radius is not equal to  0.0, then a hole will be generated.

-slices value

Specify th e  number of subdivisions around the z axis. By default, this char
acteristic is equal to  5.

-loops value

Specify th e  number of concentric rings about the disk’s center. By default, 
this characteristic is equal to 5.

-normals string

Specify w hat type o f normals should be generated, string can be none, flat, 
or smooth. By default, it equals none.
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-o r ie n ta tio n  string

This option specifies the orientation of generated normals. If string is outside, 
then the normals will point away from the z axis. If string is inside, they 
will point toward the z axis. By default, the orientation is outside.

-d ra w sty le  string

-drawstyle specifies how the disk should be drawn. Legal values for string 
are fill, line, silhouette, or point.

T e l C o m m an d :
gluLookAt

S ynopsis:
g luL ookA t [options]

D esc rip tio n :

g luL ookA t defines a viewing transformation based on an eye point, a ref
erence point, and an up vector. These axe specified via the options, and are 
described below.

O p tio n s :
-eye point

Specifies the location of the viewer. By default, this is set to {0.0,0.0,0.5}. 

-lookat point

Specifies the reference point a t  which the viewer is looking. By default, this 
is set to {0.0,0.0,0.0}.

-u p  point

Specifies what direction is up. By default, this is set to {0.0,1.0,0.0}.
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T el C om m and : 
gluNewQuadric

Synopsis:
g lu N ew Q u ad ric

D escrip tio n :

g luN ew Q u ad ric  creates a  new quadric object, and returns its id. This id 
should be used with the other commands tha t operate on quadric objects.

T e l C om m an d :
gluSphere

Synopsis:
g lu S p h ere  [options]

D escrip tion :

g luS phere  draws a  sphere object. The characteristics of the sphere are spec
ified via the options described below. The sphere is centered at the origin. This 
Tel command actually combines the following GLU functions; g lu N ew Q u ad ric () , 
g lu S p h ere () , g lu Q u a d ric O rie n ta tio n () , g lu Q u a d ric N o rm a ls () , and g luQ uadric- 
D raw S ty le (). This command returns an id for the new quadric. This id is used 
with other commands which manipulate quadrics.

O p tio n s:
-rad iu s  value

Specify the length of the radius of the sphere. By default, value is set equal 
to 1.0.

-slices value
Sets the number of subdivisions around the z axis. By default, this is set to 
20.

-stacks value
Sets the number of subdivisions along the z axis. By default, this is set to 
20.

-n o rm als  string
Specify what type of normals should be generated, string can be none, flat, 
or smooth. By default, it equals none.

-o r ie n ta tio n  string
This option specifies the orientation of generated normals. If string is outside, 
then the normals will point away from the z axis. If string is inside, they 
will point toward the z axis. By default, the orientation is outside.

-d raw sty le  3tring
-drawstyle specifies how the sphere should be drawn. Legal values for string 
are f i l l  line, silhouette, or point.
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C.5.4 RQS Rendering Commands

This section describes some new Tel commands th a t use OpenGL functions to  render various 

RQS objects. These objects include images, polygonal meshes, contours, error images (e.g. 

via ivplmage), and individual slices of volumetric data.

T el C om m and:
glContour

Synopsis:
g lC o n to u r volumeName [options]

D escrip tio n :

g lC o n to u r renders contours present in the volumetric d a ta  set define by 
volumeName. options control what contours are rendered and how they are 
rendered.

O p tions:
-help

Print out available options 

-low  value
This option sets the low threshold value for segmenting the volumetric data 
set. By default, low is equal to  0.0.

-h ig h  value

This option sets the high threshold value for segmenting the volumetric data 
set. By default, high is equal to 255.0.

-slice value
Specify which slice a  contour should be generated on. By default, the first 
slice is selected.

-n p ts  value

Specify the number of points defining a generated contour. If value is a pos
itive value, the contour will be redefined having value uniformly distributed 
(with respect to arc length) points. By default, npts is equal to  —1.

-d isp lay  mode

Specify how a  generated contour should be rendered, mode is one of the 
following strings; polygon, spline, or control. If mode is polygon then the 
contour is displayed as polygon. If mode is spline, the contour will be fitted 
first by a uniform B-spline, and then rendered. Finally, if  mode is control, 
the control polygon of the uniform B-spline is rendered. By default, mode is 
polygon.
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T el C o m m an d :
gUmage

Synopsis:
g llm a g e  command fileName [options]

D escrip tio n :

g llm ag e  provides an interface to  saving and retrieving images. If command 
is get, a  subimage is retrieved from the active rendering window and written 
to  fileName in a  PBM format. If the rendering window uses the RGBA color 
model, the image will be written using the raw PPM  format. If the window uses 
the colormap color model, the image will be written using the raw PGM format. 
The retrieved subimage can be defined via options.

If command is put, the image stored in fileName is retrieved and rendered in 
the active rendering window at the current raster position (see g lR a ste rP o s). 
The image type must match the widget’s color model. For example, if the image 
is stored in the PPM  format, the active rendering widget must use the RGBA 
color model.

G e t O p tio n s :
-x  value

Specify the X coordinate of the lower left hand comer of the subimage to be 
retrieved. By default, this option is equal to 0.0.

-y  value

Specify the Y coordinate of the lower left hand comer of the subimage to be 
retrieved. By default, this option is equal to 0.0.

-w id th  value

Specify the width of the subimage to be retrieved. By default, this option is 
equal to the width of the active rendering widget.

-h e ig h t value

Specify the height of the subimage to be retrieved. By default, this option 
is equal to  the height of the active rendering widget.
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T e l C om m and :
glMesh

Synopsis:
g lM esh  meshName

D escrip tio n :

g lM esh  will render the polygonal mesh surface given by meshName. Typ
ically, meshName will be the surface name returned by one of the available 
surface reconstruction algorithms (e.g. m arch).

T e l C om m and :
glMeshErrorlmage

Synopsis:
g lM e sh E rro rlm a g e  meshName minVal maxVal 

D escrip tio n :

g lM e sh E rro r lm a g e  renders the specified RQS mesh surface ( meshName) 
in the given mode as an  error image. From this, it is assumed the mesh data 
is a pointer to an index into the current colormap. Thus, the current rendering 
widget must be in color index mode. The mesh data is usually set by making 
a  prior call to either iv p lm a g e  or p d p lm ag e . minVal and maxVal give the 
minimum and maximum values of the vertex data. These axe used to scale the 
vertex data.

T e l C om m and : 
glVolumeSlice

Synopsis:
g lV olum eSlice volumeName slice [options]

D escrip tio n :

g lV olum eSlice gives allows slices of volumetric data to  be rendered as im
ages in a  active g lR a s te r  widget. The volumetric data is specified through 
volumeName, and the slice to render is slice. The options described below allow 
segmentation to be performed on data  slice before it is rendered.

O p tio n s:
-low  value
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Specify the low end of the segmentation range. By default, the low threshold 
value is greater than  the high threshold value. When this relationship holds, 
no segmentation is performed.

-h ig h  value

Specify the high end of the segmentation range. By default, the high thresh
old value is less than  the low threshold value. When this relationship holds, 
no segmentation is performed.
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