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ABSTRACT

Due to sampling processes volumetric data is inherently discrete and most often
knowledge of the underlying continuous model is not available. Surface rendering tech-
niques attempt to reconstruct the continuous model, using isosurfaces. from the discrete
data. Therefore, it natural to ask how accurate the reconstructed isosurfaces are with re-
spect to the underlying continuous model. A reconstructed isosurface may look impressive
when rendered (“photorealism™), but how well does it reflect reality (“physical realism™)?

The users of volume visualization packages must be aware of the short-comings of the
algorithms used to produce the images so that they may properly interpret, and interact
with, what they see. However, very little work has been done to quantify the accuracy of
volumetric data reconstructions. Most analysis to date has been qualitative. Qualitative
analysis uses simple visual inspection to determine whether characteristics. known to exist
in the real world object, are present in the rendered image. Our research suggests metrics
and methods for quantifying the “physical realism” of reconstructed isosurfaces.

Physical realism is a many faceted notion. In fact, a different metric could be defined
for each physical property one wishes to consider. We have defined four metrics — Global
Surface Area Preservation (GSAP), Volume Preservation (VP), Point Distance Preservation
(PDP), and Isovalue Preservation (IVP). We present experimental results for each of these
metrics and discuss their validity with respect to those results.

We also present the Reconstruction Quantification (sub)System (RQS). RQS provides
a flexible framework for measuring physical realism. This system can be embedded in exist-
ing visualization systems with little modification of the system itself. Two types of analysis
can be performed; reconstruction analysis and algorithm analysis. Reconstruction analysis
allows users to determine the accuracy of individual surface reconstructions. Algorithm
analysis. on the other hand, allows developers of visualization systems to determine the
efficacy of the visualization system based on several reconstructions.

xiii
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Chapter 1

Introduction

1.1 Software/Visualization Verification and Validation

An increasing trend is the use of scientific visualization in fault intolerant domains. For
example, visualization systems are now used for surgical planning, analyzing the flow field
around aircraft, and the research of biological entities. These applications require accurate
depictions of the observed phenomena. If a visualization system does not yield accurate
depictions of the phenomena, the results could be disastrous. Therefore, there is a growing
need for the verification and validation of visualization software. End users of visualization
systems must understand the software’s strengths and weaknesses so that they may properly
interpret and interact with what they see.

Several questions arise when visualizations are produced. Is the visualization valid?
Does it show what truly exists in the data? The visualization process should do more
than just produce a pretty picture. In scientific applications, the visualization must provide
insight. In providing this insight, the software user must be able to distinguish between the

characteristics of the data and the artifacts produced by the visualization process.

—_———— - - = e e e - N - — g
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CHAPTER 1. INTRODUCTION 3

Is the visualization software correct or verifiable? In other words. does the software
do what it is suppose to do. or what the software designer claims it does? To this end.
methods are needed to measure how much results vary between software systems. and
which results are more nearly correct. There is no reason to believe that any results are
correct without software verification and validation. Typical accuracies should be known.
and made available. in an easily interpreted way, to users of the system. Moreover. users
should be given the means to perform their own verification and validation analysis.

Verifying and validating visualization software poses an interesting challenge. Visu-
alization systems usually begin with incomplete information about a function. and through
their processes, attempt to recreate that which has been lost. Reconstruction is a diffi-
cult process, and_prone to error. Methods are needed for quantifying the error. and these

methods must become part of the verification and validation process.

1.2 Related Work

Methods for validating the reproductions of scientific phenomena are beginning to emerge.
In this section, we present some of the work that has emerged in this area, and in the next

section, we discuss the new contributions of our work as presented in this dissertation.

1.2.1 Magnusson, et al., 1988

One of the earliest studies of realism in the visualization processes was performed by Mag-
nusson, et al. [53]. Magnusson studied the artifacts produced by shaded surface display
techniques in volume visualization. Shaded surface display techniques attempt to model
how light is reflected from the surfaces in a scene. The intensity of light reflected at a

surface location can be simulated using Phong’s formula (see [19]).

—_—— - - c— - - g o e e s g s,
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CHAPTER 1. INTRODUCTION 1

Magnusson did not consider ambient light and specular reflectivity because the au-
thors felt the characteristics they wished to study were present when only diffuse reflection
was used. The authors also used a point light source located infinitely far away and a viewer
located infinitely far away. Finally, the diffuse reflectivity coefficient was assumed constant
across the entire surface. With these assumptions., Phong’s equation only depends on the
precision of the surface normals.

Volumetric data is inherently discrete and most often the only attribute known about
an object is the value of the object’s defining function at discrete locations. Therefore.
methods are required for approximating the ideal surface normals from the functions values
given at several discrete locations. Magnusson considered two normal generation schemes.

The first scheme approximates the normals using the gradient vector
0z 0z
Vz=|—,7,1 .
-= (5 By ) (1)
where the function z is given by depth values in the zbuffer. The partial derivatives in

Equation 1.1 were estimated using two dimensional Sobel operators. The second approach

approximates the normals using the gradient vector

dg 9y 39)
vg= (2229 9 1.2
g (Bz dy’ 0z (12)
The partial derivatives were approximated using three dimensional Sobel operators applied
to the greyscale values of the original volumetric data.
Normals approximated using the above methods are dependent on the segmentation
process used to define the object of interest because different segmentations will yield dif-

ferent depth buffers. Magnusson considered three segmentation techniques — grey value

R g m e —m Sy
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CHAPTER 1. INTRODUCTION 3

-

thresholding, the magnitude of the gradient (first derivative) transition. and Laplacian
zero-crossings (second derivatives). For better accuracy within the segmentation, they also
investigated two localization schemes. The first was grid point accuracy (or nearest neigh-
bor). The second used linear interpolation between the nearest neighbors.

Considering all combinations of the above techniques yields at least twelve possible
combinations !. Using mostly qualitative judgments, Magnusson compared the resulting
images with respect to artifacts appearing in the final image. Their quantitative analysis
used graphs of the intensity distribution to explain the false ring structures that appeared
in various images.

The most significant aspect of this research was its design. By comparing different
combinations of the above schemes, the authors could analyze how one stage of the vi-
sualization process was affected by prior stage(s). The analysis not only considered how
artifacts appeared in the rendered images, but also considered the cost/rendering quality

tradeoff.

1.2.2 Pommert, et al, 1989

Pommert, et al. [69] had an objective similar to Magnusson in their research. Their objective
was “to assess the quality of different surface rendering algorithms using both quantitative
and qualitative measures of image quality.” Similar to Magnusson, Pommert defined image
quality as being dependent on various components — accuracy of object segmentation.
accuracy of the computed surface normals, and quality of the shading. Accuracy of the
object segmentation was not regarded as pertinent to their research because it was not

directly related to computer graphics. Phong’s equation was used to control shading quality.

!More actually exist because of available parameters for the various schemes.

- —_— = - e e oo . B - —~ -
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CHAPTER 1. INTRODUCTION 6

Like Magnusson. Pommert made several simplifying assumptions so that image quality was
only dependent on the accuracy of the computed surface normals.

Pommert considered four normal approximation methods in this research: zbuffer
gradient. gray level gradient, adaptive grey level gradient. and marching cubes. Zbuffer
gradient shading approximates normals from the depth values given in the zbuffer using
the gradient vector shown in Equation 1.1. Pommert approximated the partial derivatives
using a weighted sum of the forward and backward differences.

Gray level gradient shading uses central differences of the six nearest neighboring gray
level values in the volumetric data to approximate the partial derivatives in Equation 1.2.
For objects with thin surfaces (e.g., a hollow ball), the gray level gradient may yield poor
results. Adaptive gray level shading attempts to correct this problem by varying the size
of the neighborhood.

The first three normal approximation approaches render volumetric data directly.
Marching cubes (see Section 3.1) differs from these approaches by combining traditional
surface representations, via triangles, with normals at the grid points approximated by gi'ay
level gradients. Linear interpolation is used to compute normals at the triangle vertices from
the grid point normals.

To measure the accuracy of the above normal approximation techniques, Pommert
determined the angle between the computed surface normals and the ideal surface normals
in the range from 0 to 90 degrees. To visualize this metric, Pommert rendered the objects
as a pseudo-colored image with each pixel colored according to the above angle(s) at the
location(s) of the object which projected into that pixel. Their analysis also included
qualitative judgments based on whether known characteristics of the data appeared in the

rendered image.

— = - s e g e e oo s s,
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CHAPTER 1. INTRODUCTION T

The authors acknowledged the fact that all aspects of image quality were not covered.
However. the ma jor drawback of their research is that they neglected to consider how various
stages affected others. Various normal generation algorithms may perform better/worse
under different segmentation and shading techniques, but using their research methods this

cannot be determined.

1.2.3 Marschner and Lobb, 1994

Marschner and Lobb [54] presented a unique approach to analyzing the reconstruction of
volumetric data. Since surface reconstruction is a filter, it can be performed and analyzed in
the frequency domain. Marschner and Lobb used three dimensional extensions of traditional
image processing reconstruction filters (see Table 1.1), and analyzed the results with respect

to some traditional image processing errors.
Table 1.1: Reconstruction Filters

e trilinear interpolation ¢ windowed sinc
e two parameter (B, C) cubic e rotated cosine bell
e truncated Gaussian ¢ windowed 3-sinc

e cosine bell

Mitchell and Netravali [60] identified three common errors due to imperfect recon-
struction; postaliasing, smoothing, and ringing (overshoot). Postaliasing occurs when the
reconstruction filter is non-zero beyond the Nyquist frequency; even when the signal is suf-
ficiently band-limited, the filter will incorrectly reconstruct parts of the aliased spectrum

as part of the baseband spectrum. Smoothing occurs when high frequencies in a signal

- —— e - B T . g e —— e el
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K

Reconstruction

Original Signal N

- - 4

Figure 1.1: Ringing

are suppressed by low pass filtering. Finally, ringing occurs when high frequencies are
abruptly truncated by a low pass filter. This results in oscillations in the neighborhood of
a discontinuity as shown in Figure 1.1.

Marschner and Lobb developed a metric for each of the errors described above. They
defined their smoothing metric to measure the difference between the filter in question
and the ideal low pass filter with the same amount of energy within the Nyquist region.
Similarly, the postaliasing metric was defined to measure the amount of energy outside of
the Nyquist region. Finally, the overshoot metric measured how much overshoot occurs
when the reconstruction filter is applied to the unit step function.

Marschner and Lobb pointed out that choosing an appropriate reconstruction filter
requires considering the nature of the scene, how it was sampled, cost of using the filter, and
what rendering algorithm will be used to display the reconstruction. Some filters are better
at reducing certain errors at the cost of increasing others. For this reason, the authors chose
to develop a metric for each error of interest. This allows a filter to be described by its
abilities to reduce/increase particular errors. Thus, depending on the characteristics of the

signal the most appropriate filter can be selected.

- -_—— - - e . —— e - - e g
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CHAPTER I. INTRODUCTION 9

1.2.4 Patel, et al., 1996

Visualization systems are being used increasingly in the simulation of surgical processes.
These simulations are used for planning surgeries and as a tool for medical students to
practice surgical methods non-evasively. Patel, et al. [68] report that the processes involved
in these simulations must be validated with respect to their accuracy and measurability.
The authors evaluated cranialfacial surgical simulation methods with the goal ~to define
and test a methodology for comparing surgical simulations to postoperative outccmes.”

The authors noted several possible sources of error in the simulation process: scanning.
image reconstruction. image manipulation, and landmark identification and measurement.
Since CT scanners have been validated, this source was not evaluated. To quantify the
error in the other sources, the authors devised several tests based on objects with known
(or easily computed) properties (e.g., cubes) and phantoms 2. Among these were tests for
the accuracy of linear measurements and landmark position measurements, a surface match
rotation test, and a mass properties test.

In addition to the individual processes, the authors considered the surgical process as
a whole. Phantom objects were scanned and rendered using a CT scanner and commericial
software packages. The resulting computer models and phantom objects were manipulated
using the same surgical procedures. The postoperative phantoms were rescanned and ren-
dered, and compared to the postoperative computer models. Finally, comparisons were
made with respect to predefined landmark positions, mass properties (e.g., volume and

centers of mass), boolean differences, and depth-coded topographic maps.

2A phantom is a physical object designed to test some characteristic of a CT measurement system.
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CHAPTER 1. INTRODUCTION 10

1.3 Research Contribution — Beauchat, 1996

Unfortunately, the methods presented by Magnusson and Pommert use qualitative analysis
by asking the question, “do characteristics known to exist in the real phenomena exist in
the reproduction?” This approach to verification and validation is inexact. and depends on
the judgment and/or expertise of the viewer. Qualitative techniques are based primarily on
the notion of “photorealism.” Photorealism is concerned with creating computer generated
pictures which are indistinguishable from photographs.

The efforts of Magnusson and Pommert concentrated on the precision of the com-
puted surface normals and their effect on the quality of the final image. It is important that
characteristics of the data (e.g., sutures) appear in the final image because these character-
istics attract the user’s attention to particular areas of interesting phenomena. However.
there is a deeper issue that these efforts do not consider — the underlying representations.
When a user manipulates the reconstructed object via cross-sections, for example. that user
interacts with the underlying representation. If errors exist in the representation, then the

| visualizations which result from the manipulations may produce incorrect or unexpectéd
results regardless of the quality of the surface normals.

Verification and validation techniques must move away from photorealism, and move
towards the notion of “physical realism.” Physical realism is more concerned with how well
the underlying structures that are used to represent the phenomena reflect the phenomena’s
physical properties. This dissertation offers quantitative methods for analyzing the physical
realism of a given reconstruction and the ability of visualization systems to preserve physical

realism.

[ —— - R - —=
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CHAPTER 1. INTRODUCTION 11

Similar to Pommert’s metric for measuring the error between computed and ideal sur-
face normals, in this dissertation, we formalize metrics based on physical properties. We also
present methods for performing physical realism analysis. Like the design of Magnusson.
our methods allow developers of visualization systems and users of those systems to deter-
mine the degree of physical realism, and investigate how various stages of the visualization
process depend on prior stages and affect those which follow.

We take the view of Marschner and Lobb that having a single reconstruction metric
may not be satisfactory because a single metric may miss interests of the user and charac-
teristics of the data. For example, a doctor analyzing the reconstruction of a tumor might
be interested in the ability of a reconstruction algorithm to preserve the surface area and/or
volume of the tumor. A single value representing the overall preservation of physical realism
may not reflect this ability because it could be tainted in some fashion by the algorithm's

ability to preserve some other physical characteristic.

1.4 Thesis Overview

In Chapter 2, we present the background which lays the framework for the rest of this thesis.
Volumetric data is described along with the grid structures on which it can be redefined,
and the possible interpretations of the entities produced by the new definition. This chapter
also describes a simplified end-to-end pipeline of the processes in the typical visualization
system.

Chapter 3 describes four popular surface reconstruction algorithms. These algorithms
are the marching cubes technique presented by Lorensen and Cline [51], a surface tracking
algorithm presented by Shu and Krueger [77], a contour triangulation method presented by

Ganapathy and Dennehy {22], and a contour method utilizing a modified spline lofting tech-

- - - . me—
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CHAPTER I. INTRODUCTION 12

nique as presented by Sunguroff and Greenberg [80]. Each of these algorithms is analyzed
with the validation techniques defined in this thesis.

Chapter 4 formalizes the notion of metrics based on physical properties. and defines
new metrics for verifying and validating isosurface reconstructions and visualization sys-
tems. This chapter concludes with a discussion about how to ensure that the metrics are
implemented correctly.

Chapter 5 defines a new framework in which the metrics presented in Chapter 4 should
be applied. This framework defines two types of analysis, and describes a new (sub)system
that can be directly and easily inserted into most visualization software. This gives the
software the ability to produce verification and validation results.

In Chapter 6 we present the results obtained by applying the metrics of Chapter 4 to
surface reconstructions produced by the techniques described in Chapter 3. We discuss each
result presented with respect to what it tells us about the validity of the reconstruction.
and what a collection of results tell us about the validity of the visualization system.

Finally, Chapter 7 concludes with a summary of the results, and some ideas for future
work. This future work includes other possible metrics for investigation, and the creation
of new reconstruction techniques which attempt to minimize the error with respect to a

particular metric (or metrics).
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Chapter 2

Background

2.1 Volumetric Data

Volumetric data typically consists of scalar or vector values specified throughout a contin-
uous multi-dimensional space! according to some function (F : 2 — R). This function.
representing nature, may be as simple and regular as the analytical equation of a sphere.
or it may be as complex as the density of tissue within a human head.

We can define a new function F : G — R by sampling F on a superfine grid §. F
represents an approximation to F to the best possible precision of the equipment being used
to acquire the measurement. The domain of F is no longer continuous and the range is
no longer infinitely precise. However, with ever-changing technologies and proper software

design, we assume that the measurement can be taken at any predetermined precision.

!We will only be concerned with scalar data specified throughout a three dimensional space in this
research.

13
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CHAPTER 2. BACKGROUND 14
2.2 Visualization System

Volume visualization is concerned with the representation. manipulation, and rendering of
volumetric data [41]. Figure 2.1 shows a simplified model of the typical end-to-end surface
visualization system. This model takes as input the function F defined throughout a three
dimensional space. Unfortunately. in most cases, the computer is incapable of handling the
complexity of . Therefore, before F can be used by the visualization system it must be

sampled. The first step of the visualization system samples ¥ on a grid. A new function. F.

Interaction Loop
1
—
v Procusesy ’ H
Function | Sampia cbame Dwa Surtacn tongs User !
E——— Vetume Dua {ntersction |

Figure 2.1: A Simplified End-to-end Visualization System

is defined by this sampling process. The precision of F is restricted by the storage capacities
of the computer and visualization system.

The next stage is to process the sampled data, usually by-quantization. Quantization
reduces the amount of memory and disk space required to store the data by mapping the
floating point values of F to a small subset of integers. If maxz and ming are the maximum
and minimum values of F, then a value v in the range of F' can be uniformly quantized to

the values 0, 1...., NV using

v — min
maxg — ming

Other processing may include noise filtering and segmentation. Regardless of the processing,
we still use the symbol F to represent the function after this stage.

Rendering volumetric data represents an interesting challenge because most of the
graphics methods and hardware today are oriented toward surface representations. In the

third stage, the system “converts” user specified parts of the volumetric data to a traditional
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surface representation. Recall that the volumetric data is only defined on a discrete set of
points. Therefore. this third stage must use interpolation to obtain unknown values at other
locations within the domain of F. This conversion process is known as reconstruction. Some
of the popular reconstruction techniques can be found in [80. 51, 11. 77. 39]. Four of these
techniques will be described in Chapter 3 of this dissertation.

Once the (iso)surface has been reconstructed it can be rendered in the fourth stage.
This stage encompasses many separate processes, and each process influences the output
by providing a number of controlling parameters. For example, a view transform must be
defined to map the surface from its world coordinate space to an image coordinate space.
The parameters of the viewing transform may include linear transformations (e.g.. scaling
and rotation), the view point, type of projection, and the viewport. The output from this
stage is an image that can be viewed by the user.

As a fifth stage, the visualization system often provides some mechanisms for user
interaction. This stage takes as input the rendered image from the prior stage, and provides
mechanisms for manipulating that image. The mechanism often comes in the form of.a
‘graphical user interface (GUI) that allows the user to alter the parameters of stage four.
For example, after the user views this image, s/he may want to rotate the object. If the
visualization system allows this operation, it would give the user some means to change the
appropriate view transform parameters in stage four. The visualization system may also
provide more complex means of user interactions. For example, the visualization system
might be used for surgical planning. In this case, the system would provide the user with a

means of taking cross-sections through the reconstruction to view interior structures.
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2.2.1 Grid Structures

As stated above, the second stage of the visualization system reduces the amount of data
by sampling 7 on a grid. Grids are generated by choosing a discrete subset of points in
the domain (G) of F. Grids can be classified by the regularity of their appearance (or
alternatively by the regularity of the processes used to generate them). Grid generation
processes often partition space into small volume units called voxels, and typically there is
a one-to-one correspondence between voxels? and grid points.

In this section, we describe four classifications of grids (see [90][79]). and where ap-
propriate their associated voxels. Because the research in this dissertation is concerned with

three dimensional data, we describe the grids below with this in mind.

Regular This is the simplest grid. The nodes are generated as the intersections of three

orthogonal sets of planes given by;

zr = né
y = né
z = né;

where n = +0, £1,... and é is some small, real-valued number fixed throughout the

grid generation process.

Voxels are cubes with sides of length 4.

#Voxels are analogous to pixels in two dimensions.

e S ——————— - Ta - e e e e Tt T e | =
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Rectilinear Rectilinear grids generalize regular grids by allowing each set of planes to be

defined by a different 6. The planes are given by;

z = né,
y = nby
z = né;;

where n = +0,%1,... and 4z, 6y, 6. are some small, real-valued numbers fixed

throughout the grid generation process.
Voxels, in this case, are rectangular parallepipeds with sides of length é..6,. and 4..
This grid occurs most often in data defined as a series of two dimensional slices, where

the § between data slices is lesser than that on each slice.

Structured Structured grids, also known as curvilinear grids, occur when the voxels are
allowed to become warped. Structured grids are usually generated by the intersection

of three families of doubly parameterized surfaces given by

T = zp(s,t)
y = un(st)
z = zg(s,t);

where n = +£0, +1,... and (s,t) comes from some fixed subset of R2.

Structured grid voxels usually resemble warped parallelpipeds, and the association of

voxels with grid points must be made with respect to the generating surfaces.
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These grids are typically used in computational fluid dynamics (CFD) where the grid

is wrapped around some object.

Unstructured This is the most general grid, and occurs when grid points may be specified
individually. Topology is not necessarily implied in the point specification. Though

this grid is also known as random. the point specification is never really random.
It may not be easy to associate voxels with the grid points in unstructured grids.

Unstructured grids are becoming more common in CFD because they allow a more
dense specification of points in areas where interesting behavior occurs. and a less

dense specification in areas of low interest.

The data sets used in this research have been sampled on either a regular grid or a rectilineat

grid. Appendix A of this thesis describes the data sets used in this research.

2.2.2 Volumetric Data Interpretations

Given a grid specified on the domain of F, the values of F are defined at each point of the
grid by sampling F in some way. When point sampling is used, the value of F at a grid
point is precisely the value of F at that grid point. The values of F can also be obtained
through some averaging of the values of F near the grid point in question. This process is
known as area sampling.

Regardless of the sampling method used, it is often desired and usually necessary to
use the values of F' to assign values to all points in the domain of F. Several approaches
are common. One approach assigns each point in a voxel the same value as the grid point
associated with it. In others, adjacent grid points define a volume called a computational

cell; values are assigned to all points within the computational cell by some weighted average
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of values at the vertices. It is common practice to use the term vozel to refer to both

interpretations.

2.3 Volumetric Rendering Techniques

Since the representation of volumetric data differs from that of traditional computer graphics
representations (e.g., lines and polygons), new approaches must be used to visualize the data
on today’s hardware. Currently, there are two complementary approaches; volume rendering
and surface rendering.

Volume rendering uses methods which directly display voxels. Some methods. [84. 20.
9, 7, 32, 14, treat each voxel as a set of six orthogonal faces, and project each voxel onto
the viewplane in a back-to-front order relative to the viewpoint. These methods typically
rely on “good” normal generation methods to reduce the stair step effects inherent in the
resulting surfaces. Other techniques 73, 17, 47] use ray-tracing combined with averaging
and integration methods to obtain opacities and intensities which are used to determine the
color for pixels in the view plane.

Surface rendering approaches, (80, 51, 11, 76, 91, 77, 59], reconstruct isosurfaces which
exist in the volumetric data according to a user specified threshold or contours defined on
each data slice. The reconstructed isosurfaces are stored in one of the more traditional
computer graphics representations. The converted data can be rendered and displayed using
traditional graphics algorithms, and can take advantage of available graphics hardware.
The research in this dissertation is only concerned with surface rendering techniques, and

Chapter 3 describes those techniques which this author investigated.
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2.4 Error

There are many sources of error in a visualization system. In fact. each stage in Figure 2.1
introduces some form of error. The first stage computes samples of the underlying function
at discrete locations in the domain of the function. This process introduces error by passing
a new function, whose range is a discrete subset of the original function. onto the next stage
of the visualization pipeline. This form of error is known as sampling error.

In the second stage, the sampled data from stage one is processed in any of a number
of ways (e.g., uniform quantization and low pass filtering). This stage alters some. or all.
of the data values. For example, if quantization is applied, the dynamic range of values
is rounded and truncated as presented in Section 2.2. This processing increases the error
present in the data.

The reconstruction process introduces error when the isosurface is incorrectly interpo-
lated. This source of error may appear in a number of ways. The reconstruction algorithm
may miss important features of the isosurface such as a sutures or crevasses. It also can
introduce features that do not exist in the data. For example, contour reconstruction algo-
rithms often produce holes in solid objects. An example of this behavior will be illustrated
in Chapter 6.

The next stage involves rendering the isosurface. Rendering requires the computation
of surface normals. There are a number of ways these normals can be computed, and each
contains some form of error. This topic was studied by 2 number of authors, as presented
in Chapter L. The rendering process involves changing a continuous three dimensional
surface representation into a discrete two dimensional image. One source of error from this

process manifests itself as aliasing artifacts. One particular instance of aliasing is known as
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stairstepping, and is seen as jagged edges in the image. These sources of error have been
well studied in the field of image processing. Other sources of error in the rendering process

may include the incorrect display of hidden surfaces. improper shading, etc.

— ————— - — - e e e [ — ———
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Chapter 3

Surface Reconstruction Techniques

This chapter will describe a collection of surface reconstruction techniques which fall under
the surface rendering class of algorithms. We use these techniques for our results and
discussion in Chapter 6. These methods were chosen because they represent some of the

main approaches to the problem of surface rendering from volumetric data.

3.1 Marching Cubes

Lorenson and Cline {51] present a divide and conquer approach to surface reconstruction
which consists primarily of two steps. First, the topology of the surface within a given voxel
is first determined by classifying it as one of a small, finite number of possible configurations.
Each configuration is uniquely defined by the edges intersected by the surface. Once the
configuration is known, an approximation to the actual surface is generated as a triangular
mesh using linear interpolation of the values at the vertices adjacent to the intersected

edges.

22
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CHAPTER 3. SURFACE RECONSTRUCTION TECHNIQUES 23

3.1.1 Configuration Table

The classification of surface topologies inside a voxel can be implemented as a lookup table
where each entry in the table contains the edges which are intersected by the surface. A
voxel is defined by eight vertices, and there are two possibilities for each of the eight vertices:
inside and outside the isosurface. Therefore, there are 28 = 256 possible configurations for

an isosurface intersecting a voxel. However, if complementary configurations are considered

Figure 3.1: 15 Possible Voxel Configurations

equivalent, only four or less vertices have to be considered. This reduces the number of
configurations to 128. Using linear operations, such as rotations, the number of distinct
cell configurations can be further reduced to fifteen. These configurations are shown in
Figure 3.1. In this figure, a black dot indicates that the vertex is inside the isosurface.
Each entry in the table is indexed by a bitcode. If the vertices of a voxel are numbered
as shown in Figure 3.2, then a bitcode can be assigned to a voxel by assigning a one to
the bit corresponding to each vertex that is inside the isosurface and a 0 to each outside
vertex. For each bitcode, the table contains the edges intersected for the corresponding

configuration. The edges are numbered as shown in Figure 3.2.
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Figure 3.2: Vertex and Edge Numbering
3.1.2 Algorithm

Marching Cubes processes the data voxel by voxel, and determines where the isosurface
intersects each voxel by classifying the vertices that define the computational cell as being
inside or outside a user specified threshold (7). If the value at a vertex is less than or equal
to the threshold, it is classified as inside the isosurface. The isosurface will intersect an edge
of the cell when the classification of two adjacent vertices differ. That is, when one vertex is
inside (<= 7) and one vertex is outside (> 7) the threshold. This classification determines
the topology of the isosurface intersecting the voxel.

Once the topology for a given voxel is known, the intersection of the isosurface
F(z.y,z) = T with an edge can be approximated using linear interpolation on the val-
ues of F at adjacent vertices. The interpolated point P on edge e defined by voxel vertices

V. and V, is expressed by

P=(l-t)V, +tV, (3.1)
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where

- T-F(Va)
~ F(Vs) = F(V,)

3.2 Surface Tracking

A solid in volumetric data sets can be identified as a connected set of voxels. and the surface
of that solid as a connected set of boundary faces. Boundary faces exist between two voxels
having differing values. Surface tracking algorithms construct the surface by traversing the
voxels face by face beginning with a "seed” which is known to be a part of the surface.
Each adjacent face is considered using tracking functions. If it is a boundary face on the
desired surface, then it is included in the surface. The algorithm developed by Shu and
Krueger [77] is rather complex. Therefore, only their terminology and the basic idea of the

algorithm will be described here.

3.2.1 Background

Surface tracking algorithms require some method of determining the boundary faces. Thus.
a segmentation process, typically, must be performed. The segmentation process should
produce a binary scene where each voxel which is a part of the solid is assigned a 1 (called
1-voxels), and all other voxels are assigned 0’s (called 0-voxels).

As shown in Figure 3.3, a boundary face, in this scene, w1ll exist between two adjacent
voxels if one is a 1-voxel and the other is a 0-voxel. Each voxel can have six boundary faces.
Figure 3.4 shows these faces and their names; X, X, Y, Y, Z, and Z. The name assigned
to a face reflects the direction of its outward-pointing normal. X is the name of the face at

which the outward-pointing normal points in the direction of increasing z. X is the name
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Figure 3.3: A Boundary Face Figure 3.4: Face Configurations

of the face at which the outward-pointing normal points in the direction of decreasing r.
Y.Y. Z.and Z are defined similarly.

Each voxel also has six tracking directions, é,, fora = X, X,Y,Y.Z.Z. The tracking
direction is given by placing the thumb of the right hand in the direction of the normal for
a boundary face. The direction that the fingers curl gives the tracking direction. Figure 3.5

shows the tracking direction dy. A tracking function T, is associated with each tracking

Y

|

el

z

Figure 3.5: 6y Tracking Direction

direction. T, takes a boundary face as input and returns the boundary face adjacent to
it in direction 6,. The process of tracking all faces in a particular direction is known as

clearing the track.
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3.2.2 Algorithm

The surface tracking algorithm uses three data structures. BF is the set of boundary faces
comprising the surface. Faces are only added to this set when they are not already present.
Therefore. BF must be optimized for the is_.member operator. Qy is a queue containing
boundary faces to which the Ty tracking function will be applied. Likewise. Q2 is a queue
of boundary faces to which the Tz tracking function will be applied.

With this background, Shu and Krueger’s surface tracking algorithm can be described
simply as follows. The volumetric data is first conceptually divided into one voxel wide
slices parallel to the x,z-plane. The Ty tracking function is used to find all X. X, Z. and
Z boundary faces in each slice, and the Tz tracking function is used to find all Y and ¥
boundary faces in each slice. Note that these two tracking functions are sufficient to find
all boundary faces on the surface of the solid.

As stated earlier, the tracking process begins with a boundary face which is known to
belong to the resulting surface. This face is called the seed face,- fseed- For simplicity, assume
fseed belongs one of the X ,X,Z, or Z class of faces. Qy is initialized to contain fseeq, and
the other two structures are initially empty. If Qy is not empty, the next boundary face in
this queue is removed, and Ty is used to clear the track. If Qy is empty, Qz is used. The
algorithm continues to clear tracks until Qy and @z are empty. Clearing the tracks is a

complex process and, for the sake of brevity will not be described here.

3.3 Contour Triangulation

The general triangulation approach can be stated as follows. Given a set of points scattered

throughout some three dimensional space, how can we best model the surface defined by
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Figure 3.6: Planar contours

these points using standard computer graphics primitives? The simplest approach would be
to model the surface using triangular surface patches. Approaches to this general problem
are rather difficult [18]. A simpler problem arises when the set of points are distributed on
several parallel planar contours as shown in Figure 3.6. Ganapathy, et al. [22] presented
a heuristic approach as a solution to this problem. Their approach takes advantage of the
coherence between adjacent contours. Adjacent contours typically have similar shapes, and
are made up of relatively the same number of segments. Before the algorithm is described.

a few definitions must be presented (refer to Figure 3.6).

3.3.1 Definitions

definition 3.1 A contour segment is a linear approzimation of the curve connecting two
adjacent points on a contour.

definition 3.2 A span is a segment connecting two points on adjacent contours.

T PP e eeew g mial
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definition 3.3 An elementary tile is the triangular facet defined by a contour segment
and two spans connecting the end points of the segment with a common point on an adjacent
contour.

Given these definitions, it has been shown [21] that an “acceptable” surface must
satisfy two constraints. First, a contour segment must appear in only one elementary tile
between two adjacent contours. Second, if a span occurs as the left (right) span of an
elementary tile, then it will appear as the right (left) span of exactly one other elementary
tile in the set of tiles defining the surface.

A contour can be “redefined” in such a way that its perimeter is normalized. In these
new contours, a weight ¢; is defined for each elementary tile containing a contour segment
from the lower contour. ¢; is equal to the length of the ith contour segment divided by the
length of the entire contour. Thus, ¢; represents the normalized length of the ith contour
segment. A weight ¢; is similarly defined for each elementary tile containing a contour

segment from the upper contour.

3.3.2 Algorithm

Elementary tiles are added to the surface in such a way that the absolute difference between
the sum of the upper weights ¢; and the sum of the lower weights ¢; is minimized at all
times. Define @, to be the normalized distance traveled thus far along the lower contour.
and similarly define ®, for the upper contour. Given that we are at point L; in the lower
contour, and at point U; in the upper contour, as shown in Figure 3.6, L;L;4,U; and
L;U;Uj4, are the only tiles which can be considered for addition into the set of elementary

tiles defining the surface reconstruction. L;L:y,1U; is chosen if

[®1, + & — 65| < |y, + &; — &l (3.2)

- - - PR - - -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. SURFACE RECONSTRUCTION TECHNIQUES 30

Otherwise. L;U;U;4; is chosen. In the first case. i is incremented by one and ®,, is incre-
mented by @;. The algorithm proceeds. In the second case. j is incremented by one and

®,, is incremented by o; before the algorithm proceeds.

3.4 Contour Lofting

The contour method developed by Sunguroff and Greenberg [80] uses a modified lofting
technique to interpolate the sectional curves with splines. The contour on each data slice is
first fitted by uniform B-splines, and then the surface is interpolated between curves using
Cardinal splines. For the discussion which follows we assume the reader is familiar with

some spline theory terminology.

3.4.1 Formalization - B-Splines

The first step in the contour lofting algorithm is to fit a B-spline to each set of contour
points. To simplify the algorithm, the points defining a contour are assumed to be uniformly

distributed with respect to arc length.

definition 3.4 Given a closed set V = {V;: i =0,1,...,m} of points defining a closed
polygon, we can generate points on an approrimating curve for the ith segment of the polygon
using the following matriz equation:

P(U) = [U3 U? U 1){By-sptine)[Vie1 Vi Viga Viga)T (3.3)
-1 3 =31
1 3 -6 3 0

[Bb—splme] = 6 -3 0 30 (34)
1 4 1 0

Curves defined by this equations are known as periodic uniform B-splines, and the set
V is known as a control polygon.
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In definition 3.4. U = (u - u;)/(u;41 — u;) is the normalized parametric coordinate. u is
the curve parameter, and u; represents the value of this parameter at the i** control point.
Because the set of points is closed the following end conditions are imposed V_; = ¥/,.
V1 = Vo, and Vipo = 1.

Using Equation 3.3, we can obtain any point on the contour given an appropriate
value for the parameter U. Unfortunately, the set of points V" defining the control polygon
are unknown. From the contour generation process, we obtained a small subset of the points
P;(U). Therefore, an inversion process can be used to obtain V'. Given that there are m + 1
points in the control polygon, we require m + 1 independent conditions. These conditions
will uniquely define a system of linear equations which, when solved, will yield the m + 1
points defining the control polygon.

The necessary conditions can be obtained from m + 1 points on the contour and
Equation 3.3. The simplest way to obtain the conditions is by stipulating P;(0) for the

m + 1 contour segments. From Equation 3.3 these points are given by

Fi(0) = (1/6)(Vic1 + 4V; + Viy) (3.3)

Because the coefficients for each point are constant we can conveniently write the system

of linear equations as:

- - - [ - - w . e ——y
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[ 4 1 11 Ve 7 [ Po(0) ]
1 1 1 |3 P (0)
1 .
: = (3.6)
1 4 1) :
[ 1 1 111Vl [ Pal(0)

Solving this system of equations gives us the appropriate control polygon whose correspond-
ing B-spline curve will interpolate the m + 1 contour points.

In order to make the B-spline solution tractable (in a reasonable amount of time).
the number of points on each sectional curve are reduced/raised to some given number A.
and these points are assumed to be uniformly distributed along the curve. Wu. et al. [94]

state that K is typically chosen to be between 20 and 40. Note K = m + 1.

3.4.2 Formalization - Cardinal Splines

Given the contours approximated by the B-splines, the next step is to loft between those
curves with a set of Cardinal splines. Cardinal splines are chosen for this step because they
have the characteristic that they interpolate the points of the controlling polygon. With
this characteristic, we are guaranteed the resulting curve will pass through each contour.
Cardinal splines represent a family of curves. We chose a particular class of Cardinal spline
curves called Catmull-Rom splines for the lofting process.

Let P’(u) be the parametric representation of the B-spline for the j** contour, where

j=0,2,...n.
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definition 3.5 Given a set of points {Pi(u) : j =0,1....n} defining the control polygon.
a Catmull-Rom spline interpolating the jt* segment is defined by

Q;(v) = [V® V2 V 1)[Baatmuti—rom)[PP ™" (u) P(u) PI* () PI+2(u)}T (3.7)
-1 3 -3
. 1 2 -5 4 -
chatmull—romI = 5 -1 0 1 0 (3.8)
0 2 0 0

Again we normalize the curve parameter v, V = (v—v;)/(vj41 - v;). Using P~{u) = P%(u)
and P™"*%(u) = P**!(u) = P™(u) as the end conditions provides a “bending free” curve at

the end points.

3.4.3 Algorithm

A given data set contains n + 1 planar slices of data. For each slice, the first step is to
generate the contour which defines the cross section of the object on the given plane. From
the above discussion, it is assumed that each contour is described by m+1 points distributed
uniformly with respect to arc length. Therefore the second step is to either raise or reduce
the number of points defining the contour to the predetermined number A’, and to ensure
they are uniformly distributed. Next, the inversion technique described above is applied to
fit a B-spline to this new contour. Once B-splines have been fitted to all contours, they are
interpolated between contours using Catmull-Rom splines.

The original algorithm from [94] allowed user interaction at several stages of the
surface generation process. For example, after a B-spline was fitted to the contour, the
user could remove/add points to the control polygon to force the B-spline to better fit
the contour. We desired each reconstruction method to be free from user intervention.

Therefore, we removed those steps from our implementation.

—_—— - - . . . - - . - -
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A surface patch I ;. in this approach, is defined parametrically in the usual way by

2 2
Liuw) = Y &) Y Tm(u)Piym,in (3.9)
n=-1 m=-1
with
-1 3 -3 1
_ lrs o 2 -5 4 -
d(v) = 2[0 v vl] 1 0 1 0 {3.10)
0 2 0
and
-1 3 =31
_ Llra 2 3 -6 3 0
T(u) = 6[u u? u 1] 3 0 30 (3.11)
1 4 10

P; ; is the geometry matrix for the i*%, j** surface patch.
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Chapter 4

Metrics for Quantitative Analysis

4.1 Background

The idea of “physical realism” is a many faceted notion, and thus measures of “physical
realism” can be many. There can be a metric for each physical or topological property we
may wish to consider. Metrics motivated from these physical and topological properties can
be global or local. Global metrics measure the difference between properties of an object as
a whole, for example, its surface area, or its volume. Local metrics measure the difference
between properties of an object at points, for example, the displacement between a point
on a reconstructed isosurface and the corresponding point on the ideal isosurface, or the
discrepancy between the actual value of a function at a point on a reconstructed isosurface
and the value intended.

The distinction can be clarified further by considering how each class of metrics is
computed. For a local metric, the error is measured at points on the surface, and integration

averages these error values across the whole surface. In this context, local metrics often

35
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require the evaluation of a surface integral having the following form

lal(u,v) « al(u,v)
ou dv

/ H(u,v)[ du dv (4.1)
veVJuel

where H(u,v) represents the function that measures the error at points on the surface. In
this equation, X represents the cross product operator, || - || represents magnitude. and
evaluation of this surface integral yields the average value of H(u,v) across I.

For a global metric, a property is computed for infinitesimal pieces of the surface and
integration adds these values together. The metric is defined as the error between two such

integrations. For example, surface area of a surface S can be measured using

aS(u,v) 0S(u,v)
/ueV/;eUl du X ov

If I is the ideal surface and J is a reconstruction of I, the surface area properties would be

du dv.

measured using

_ 0I(u,v) 8I(u,v)
Arear = /ueV/u:eUI l 5u X 59 du dv
and
Area; = / / 1 , 9J(m,n) X 9J(m,n) dm dn,
neNJ/meM om on

and a metric could be defined using the following relative error

Arear — Areay
Areay )
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4.2 Metric Definitions

In this thesis we define four metrics. The first two are global metrics. and the other two
are local metrics. We call these metrics global surface area preservation (gsap). volume
preservation (vp), point distance preservation (pdp), and isovalue preservation (ivp). In
the definitions that follow, we use Z to represent the real surface, and I to represent the

surface reconstruction of 7.

4.2.1 GSAP

This metric measures the difference between the surface areas of Z and [. This is a global
metric. Given the surface area of Z (Area;g.q;) and the surface area of I (Area.,, ). we define

two measures of interest;
Area.s; — Areaideq

8SaPsigned = Area,,-d . (42)
ea

and

|Areaest — Area;deq| :
sa = 4.3
8 pdb.’ A re a-"deal ( )

The first measure gives a signed error. It tells how far the estimated surface area is
from the ideal surface area, and it also tells in which direction the general error occurs. That
is, for example, if gsap,;yn.q > 0 then we have a fair idea that the “size” of the isosurface
reconstruction, in general, exceeds that of the actual isosurface. gsap,,, simply gives the
magnitude of the error with no indication of direction.

We have defined these metrics as a relative error with respect to the ideal surface
area. The relative error allows us to consider several such measures for determining the
overall ability of a reconstruction technique to preserve surface area. Without a relative

measure this would only be possible when the surfaces are described by the same units.

- - - . . - - -
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As a global metric. gsap has some drawbacks. It is not sensitive to local deviations
between the reconstruction and the surface. Analysis based on gsap merely states whether
the surface area of the reconstruction exceeds the surface area of the real surface. Further-
more. even if analysis states the surface areas are equal, this does not necessarily imply the
reconstruction is perfect. Consider the simple case of the surface area of a golf ball (e.g.. 2
sphere with divots). It is easy to construct another surface with the same surface area as
the golf ball by replacing the divots with bumps having the same dimensions as the divots.

Another drawback of gsap is that it is not easily applied to general surface repre-
sentations such as the spline surfaces of Section 3.4. The surface area of a parametrically
defined surface I(u,v) is given by Equation 4.1 with H(u,v) = 1. Evaluation of this sur-
face integral typically requires numerical integration, and these methods contain their own
sources of error. An additional measure must be provided which quantifies this additional
error.

Finally, gsap is not realistically applicable to data sets, such as flow fields. where
physical surfaces do not exist. The gsap metric, however, is simple to understand, illustrates
a global metric, demonstrates the application of global metrics to analyze “physical realism”
in isosurface reconstructions, and may be an important metric in some medical applications

(e.g.. analysis of tumors).

4.2.2 VP

A logical extension of gsap is volume preservation (vp). Volume preservation is another
global metric which measures the difference between the volumes enclosed by two surfaces.
We define two volume metrics analogous to the metrics defined for gsap. Given the volume

enclosed by the reconstructed surface ( Volume,,; ) and the volume enclosed by the surface

—_ - - . - . - e . .
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being reconstructed ( Volume;geqa:) the two metrics are defined by

Volumegst - VOlumexdenl

VD = '
Psigned Volume;geqi o

and

|Volumec.q: - Volume,-dw,

VPabs = Volume;g.q; (+3)

As with gsap, the first metric gives a signed error, and the second gives the magnitude of
the error. Again, we define these metrics as relative measures.

Since vp is also a global metric, it suffers from many of the same drawbacks as
gsap. In addition to those, volume is more difficult to calculate for surface reconstructions.
The computation of volume for polygonal mesh representations requires finding volumes of

pyramids, and for general surface representations, triple integrals are required.

4.2.3 PDP

Provided that we are reconstructing the surface of an actual object (e.g., that of a sphere),
we can measure the error between a reconstruction and an actual surface by computing the
distance from each point on the reconstruction I to a “corresponding” point on the surface

of 7. We define pdp using the surface integral given above (Equation 4.1)

H(u,v)”aIg:v) ML s (4.6)

pdp(I(u,0)) = [ =

veV JuelU

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. METRICS FOR QUANTITATIVE ANALYSIS 10

where
H(u,v) = dist([;(u,v), [(u.v), [(u.v))

and dist(-) is a function which yields the distance between an arbitrary point and the
“corresponding™ point on the surface Z. Implicit in H(u,v) is 2 mapping of points on the
reconstructed surface to points on the real surface. A perfect reconstruction arises when
the distance from every point on the reconstructed surface to the “corresponding” point
on the real surface is equal to zero, and the mapping between “corresponding™ points is
one-to-one.

The greatest difficulty in computing pdp is finding the proper point mapping. For
surfaces defined by symmetric convex analytic functions, such as those described in Ap-
pendix A.l, finding this mapping is often a matter of finding a line segment from the point
on the reconstructed surface to a point on the real surface which yields a normal to the
real surface. When surfaces are not defined by this class of functions, this mapping may be

_ difficult, or impossible, to find. In these cases, we turn to the metric defined in the next

section.

4.2.4 IVP

The pdp metric is one of the best measures of physical realism. However, in many cases
surfaces do not actually exist, or we do not have the means to find the necessary point
mapping. In these instances, pdp is not applicable. A solution to this problem is isovalue

preservation (ivp).
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I(u.v)is assumed to approximate the isosurface of constant value given by F(z.y.z) =
7. Based on this assumption. F([(u,v). [,(u.v).I(u.v)) should equal r for all u and ¢
in the domain of /. In practice, however, [(u,v) is never a perfect reconstruction. and so
F(I(u.v). [(u.v), [(u,v)) is only approximately equal to r. ivp provides a measure of

this error. Using Equation 4.1, we define ivp as an error measure relative to the threshold

T.
. _ dI(u,v) 3I(u,v) ) -
wpm,e(r-l(u-v))-/uev uGUH(u-v)ﬂ 50 X 50 du dv; (4.7)
where
2
H(u,v) = (}-(It(”'”)'[y(u;”)vlz(“vv))‘7') T #0.0

The ivp metric rectifies many of the drawbacks present in the other metrics defined
above. For example, it does not require a specific class of surface representations, and point
mappings are not needed. Finally, it can be computed for reconstructions of any surfaces.
The ideal surfaces are not required. The ivp metric measures an algorithm’s ability to
reconstruct a particular subset of a function (the isosurface given by 7). Performing this
analysis for all possible 7’s describes an algorithms ability to reconstruct the function F
itself.

Unfortunately ivp is not the “cure all” for quantitative analysis. A drawback is that
ivp is not well behaved for functions whose values do not vary continuously throughout
F’s domain. CT data provides an example of this problem. In a CT scan of a2 human
head there is a often a discontinuous change in the values between surfaces of significantly

different densities (e.g., between skull and soft tissue). When points on the reconstruction
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lie in such regions of discontinuity, the value of F(z,y,z)— r may be large even when the

actual distance of that point from the ideal location on the real (iso)surface is small.

4.3 Metric Computation

Global metrics are typically straightforward to compute. For example, the output of the
reconstruction techniques in Section tefsec:march- 3.3 is a surface described by several
polygonal facets: triangles in the case of 3.1 and 3.3, and rectangles in 3.2. If .V is the
number of triangles or rectangles describing the surface, then the surface area is given by
¥, Area;; where Area; is the area of the i*» facet. The area of each three and four sided
facet is easily computed. Most global metrics can be computed in this fashion.

The computation of local metrics defined in terms of Equation 4.1 is not as straight-
forward. Most often a closed form solution will not exist, and the metric will have to be
approximated using numerical approximation techniques. The technique used for the results

in Chapter 6 is Monte Carlo integration. The Monte Carlo method computes the expected

value of H(u,v) across the surface by computing

0I(u,v) 03I(u,v)
H(u,v)” 5 X 50

at points on I(u,v).

Proper selection of the points is critical. Improper selection can bias the result towards
a particular part of the surface. Computation of the metric across a “good” part of the
surface can yield a false sense of security. Likewise, computation of the metric across a
“bad” part of the surface would yield the same lack of security. A proper selection of points

should work towards preventing this bias from occurring. One way to reduce this bias is
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to approximate the metric using an ensemble average. To further reduce bias. the set of
points should be randomly selected.

Another pitfall inherent in the Monte Carlo method, and all approximation tech-
niques. is uncertainty. Uncertainty is always implied by the term “approximation.” Two
desirable characteristics of the Monte Carlo method are that the amount of uncertainty
present in the approximation can be bounded, and to some extent it can be controlled.
The interested reader can read Appendix fefapp:monte for a brief description of the Monte

Carlo method for numerical approximation of integrals.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Reconstruction Quantification

(sub)System

5.1 RQS

A direct and inevitable outcome of implementing the metrics from Chapter 4 was the def-
inition of the Reconstruction Quantification (sub)System (RQS). RQS provides a flexible
framework for measuring physical realism. This system can be embedded in existing visu-
alization systems with little modification of the system itself, and the addition of RQS to
current visualization systems can yield valuable insight into the phenomena described by
the renderings of surface reconstructions produced by them.

Figure 5.1 shows RQS as part of the end-to-end visualization system shown in Sec-
tion 2.2. As shown in this figure, quantification analysis can be conceptually viewed as a
three step process; property computation, metric computation, and analysis. In most cases,
it would be efficient to combine the property computations with the metric computations.

In the following sections, we describe the process(es) performed at each step in the RQS

44
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Figure 5.1: The Reconstruction Quantification System

system, and at the end of this chapter, we discuss our particular implementation of the

system shown in Figure 5.1.

5.1.1 Property Computations

In the first step, we compute the property (or properties) measured by the metric(s) in step
two. Step one requires three or more inputs. The first two inputs are the function which
describes the ideal reconstruction (Z) and the function which describes the reconstructed

isosurface (I). For example, if the isosurface of a sphere was reconstructed, the function

describing the ideal surface would be

Fz,3,2) = (z—a)l+(y—-02+(z~c)?-r2

where r is the radius of the sphere. Assuming, the surface was reconstructed using the
Marching Cubes algorithm, the function describing the reconstructed isosurface would be
polygonal mesh consisting of several triangular patches.

For each metric we are considering, step one also requires the corresponding property

functions as input. For global properties (e.g., surface area ), the property function will
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take a single input. This input is a function describing the entity for which the property is
being measured (Z or I). If the metric of interest is gsap, then the property function for

the ideal reconstruction would be

gsap(I) = drr?

The property function, in pseudocode, for the marching cubes reconstruction of 7 is

define function gsap( [ )

begin
area = 0.0
foreach triangle : do
Py = I,(0)
Py = L(1)
P, = I}(2)
area = area + 0.5*|(P, — Py) x (P2 — Py)|
end
end

I;(j) for j = 0, 1,2 represents the j** vertex of the i** triangle.

For local metrics, however, the computation of the property requires two inputs. 'i‘he
first is, again, either Z or I. The second is a vector of sampling locations. These locations
represents the points on Z (or ) where the property will be measured. For example, if .V
samples are going to be used to approximate the integral in Equation 4.7, then the second
input would be a vector of ¥ randomly generated points (e.g., (u,v)). As stated in the
previous chapter, care should be taken during the point generation process so the final
result(s) will not be biased.

For each global metric being computed, the output of step one will be two scalar
values. These values are the result of measuring the property for 7 and I. For each local
metric, the output will be two vectors that represent the measurements of the property at

the generated sampling locations.
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5.1.2 Metric Computations

Given the property computations from step one, we compute the metric(s) in step two.
As stated earlier, coupling the metric computations with the property computations is
usually more efficient for local metrics. For example, if coupling is not used, and if the ivp
metric is to be approximated using /V samples. step one must allocate memory to store .V

computations of the property given by

T

Hiwv) = (f(ft(u.-.v;),ly(u,-.vi),fz(u‘-,v‘-n-r)’

for: =1....V. Step one would also have to store the ¥V values of u and v used above. Step

two would then calculate the following average

| X
;VZ Hi(ui, v:)

i=1

“6[(11,-, ;) « o0I(u;, v;)
du av

These two steps can obviously be combined to allow the metric computation to be a one
pass process, and will require less computer memory. Note that coupling is not an issﬁe
with most global metrics.

Besides computing the metrics, we also organize the results in an informative manner
for analysis. Thus, the output from this stage can take many forms. For most global metrics
the output from this step will be a single scalar value. For example, gsap might be equal
to the difference between two surface areas, or it might express the relative error in the
reconstruction. Due to the global nature of this metric, it may be hard to conceive other

forms for output.

- o o =

- - - D . -
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Local metrics have a greater range of possibilities: a single scalar value such as that
from Equation 4.1, a vector of values, a pseudocolored image, etc. For example, using ivp.
we might consider two obvious options. First, we can give a numerical measure such as
the relative error given in Section 4.1 by Equation 4.7. This single measure describes the
overall “goodness” of the reconstruction. However, suppose we want to know if there are
particular areas of the surface where the reconstruction is poor. We can then portray ivp
graphically using an error image such as that used by Pommert, et al [69][81]. Whatever
the form. the output should describe the information from step two in a meaningful and

easily interpreted way.

5.1.3 Analysis

In this final step, physical realism analysis is performed based on the metric(s) computed
in step two. We have defined two forms of analysis as indicated in Figure 5.1 by Step 3a
and Step 3b. These are called reconstruction analysis and algorithm analysis.
Reconstruction Analysis

Reconstruction analysis allows the user/system-designer to make judgments about
the quality of individual reconstructions because it is based on single reconstructions. Very
often, the results from Step 2 would be used with the actual isosurface rendering to better
interpret what is seen. For example, suppose we are viewing the reconstruction of a spherical
object, and we notice an abnormal “bump” in an area which is otherwise smooth. To
determine if this bump is an artifact produced by the reconstruction we could turn our
attention to an error image for the pdp metric. If this image, shows a relative constant
value across the area where the bump was seen, then there is a good chance the bump is

not an artifact.
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Algorithm Analysis

Algorithm analysis is performed using the reconstruction loop shown in Figure 5.1.
As indicated by the loop and the dashed box around steps 1-3a, algorithm analysis requires
performing Step 1 and Step 2 (and maybe Step 3a) on some predete;mined number of
different reconstructions. For each reconstruction the function F. the grid G (and hence
the function F), how the volumetric data is processed, and/or the (iso)surface threshold r
can be altered. By altering the above variables and performing RQS analysis. the optimal
system for the visualization task may be obtained.

When properly performed, algorithm analysis can be used to describe the overall
"physical realism” tolerance of the visualization system. For instance, we might be inter-
ested in an algorithm’s behavior when a minimal amount of data is available. To investigate
this phenomena, we could systematically vary the density of the grid G, and analyze the
trend which arises. As the grid becomes less dense we would expect the algorithm to per-
form worse. but what might be more important is how quickly the algorithm’s performance

degrades. An example of this analysis will be shown in Chapter 6.

5.2 An Implementation

In this section, we describe our implementation of the visualization system described in this
thesis. Though not intended for professional use, this software provided a strong, flexible
arena for evaluating the metrics and the methods defined in this thesis. We designed our
system to be easily modified, enhanced, and embellished with other reconstruction methods,
metrics, and rendering platforms through the use of dynamically loadable, independent

program modules called dynamic storage objects (DSOs).
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Modular programming and DSOs are relatively new concepts for software creation.
Typically. libraries are created from modular (independent), reusable blocks of code. and
visualizations are performed by choosing and linking only those modules required for the
task at hand. These ideas allow programmers to create easily extendible and dvnamically

changeable environments.

5.2.1 Tcl/Tk Language

We chose to implement our system using the Tcl scripting language. The Tcl environment
provides an application independent command interpreter, a small set of base data types. a
group of built in commands and control structures for manipulating those data types. and a
set of C routines for adding new structures and commands to the existing interpreter. Tcl's
interpretive shell is similar to other shell languages (e.g., csh) in that it contains variables.
control structures, and substitution mechanisms. Tcl, however, provides a more structured
and easily extendible environment.

The interpretive nature of Tcl allows a user to enter commands and immediately
see the results. If the intended results are not achieved the user can modify the commands
immediately without the need to recompile the program. Once the desired set of commands
have been obtained, they can be placed in a file. This file can be executed through the shell
using a single command, thus, relieving the user from having to remember and retype the
entire set of commands.

Tcl is also the basis of a X11 toolkit, called Tk. Tk adds a set of widgets to the Tcl
interpreter. Buttons, labels, and text entry areas are just a few of the widgets present in
Tk. In the Tk environment, the interpretive nature of Tcl, allows users and developers to

quickly design and redesign graphical user interfaces for their applications. Tk contains a

—_- - - - . - . - - . - —
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set of similar C routines to easily incorporate additional widgets containing functionality
not already present in the base set of widgets. For our research, we added an OpenGL

drawing area widget to Tk with a minimum of difficulty.

5.2.2 RQS Extensions

Implementing the visualization system in Tcl/Tk required several extensions to the base
language. We have grouped our extensions into five classes; data types, module loading,. re-
construction, metric, and rendering. The data type class contains data structures for surface
reconstruction and visualization. The module loading extension provides the mechanisms
for dynamically loading the desired pieces of the system into memory. The reconstruction
extension contains DSOs for the reconstruction algorithms (e.g., Marching Cubes). Like-
wise, the metric extension contains a single DSO containing the commands for the RQS
subsystem. Finally, the rendering module contains Tk commands for rendering reconstruc-

tions and displaying images.

Data Structures
Since the only true data structures for Tcl are scalar values, strings, and lists, the language
required several new entities for volumetric data storage, isosurface storage, and for per-
forming isosurface reconstruction and visualization efficiently. We group these entities into
two broad classes; data types and objects. The two classes differ in how they are defined
and implemented.

Datatypes are created from the existing Tcl structures (e.g., lists), and merely define
new interpretations for those structures. For example, the RGB color datatype is defined

as a Tcl list containing three entries corresponding to the red, green, and blue components
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of the color. Additionally, the entries are constrained to be integer values in the range
0...255.

Objects. on the other hand, are more complicated, and are implemented in C or C++.
The object hierarchy includes three subclasses; functions, volumes. and surfaces. Many of
these objects have corresponding Tcl commands and/or have Tcl commands which operate
on them. These entities were added directly to the base system because they were required
by the other modules. See Section C.1 of Appendix C, for a complete description of the

new data structures and objects.

Module Loading
The module loading extension was made part of the base shell. This extension provides two

commands for loading and unloading DSQOs

load_module < DSO-filename > < init-function >

unload_module < module-name >

As indicated by its name, the first command loads a DSO into memory. It has two argu-
ments. The first is the name of the file containing the DSO. This file must exist in one of the
paths given by the LD_.LIBRARY_PATH environment variable. The second argument is the
name of the function within the DSO that initializes the Tcl/Tk commands. load_module
returns a unique string identifying the module. This string should be used as the argument
to the unload_-module command to remove the DSO from memory when it is no longer

going to be utilized.

Reconstruction Modules
In our RQS package, there exists a separate module for each reconstruction algorithm

implemented. This allows the user to only load those algorithms needed for the current
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visualization task. We have implemented each of the algorithms described in Chapter 3 as

Tcl commands. These commands have the following general form:
command volumeQbject [options]

Each command takes as its input a2 volume object and a number of options. Many of the
options are the same for each command. For example, each reconstruction command ac-
cepts -low low_threshold and -high high_threshold to specify the threshold range defining the
isosurface. Each command may also take a small number of options unique to that com-
mand. The output of the reconstruction commands is a string representing the handle to
the newly created surface object. See Section C.3 of Appendix C for a complete description

of the Tcl commands in the reconstruction modules.

Metric Module

The metric module contains implementations of the RQS metrics. In our implemen-

tation, each metric command has the following general form
command functionObject surfaceObject [options]

The first argument is a function describing the ideal surface/function reconstruction. This
argument can be one of the Tcl analytical function objects described in C.2.1 of Appendix C,
or a Tcl volume object (see Section C.2.2 of the same Appendix). The second argument is
a surface object returned by one of the reconstruction commands described above. Finally,
a metric command may take some number of metric specific options which modify the
command’s behavior, and alter its output.

Like the other modules, this module is only loaded when RQS analysis is going to be

performed. Implementing the metrics as a separate module accomplishes our idea that the

e S - - - . . e ey SRR e . S s e e
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RQS system should be easily embeddable into any visualization system. Our Tcl imple-

mentation of the metrics in Chapter 4 are described in Section C.4 in Appendix C.

Rendering Modules

Rendering modules are used to generate graphic images and provide user interac-
tion with those images. Thus, a complete rendering module implements the Render
and User Interaction stages in Figure 5.1. We created one such module based on the
portable graphics language, OpenGL. The OpenGL rendering module defines a new Tk
widget called glRaster. This widget is very similar to Tk’s canvas widget. However. it
only accepts OpenGL rendering commands. Qur module is not a complete implementation
of OpenGL for Tk. The glRaster widget supports most of the OpenGL framebuffer modes
(e.g., double buffering, rgba, color index, overlays, underlays, and depth buffer), and several
of the OpenGL library commands are supported. We gave our Tcl implementation of the
OpenGL commands the same names to ease the transition to the RQS environment. We
provide a complete description of the g/Raster widget, and an example of some of the Tcl

implementations for the OpenGL library functions in Appendix C.

5.2.3 RQS Example

In this final section, we provide and discuss a simple example using Tcl and our extensions.
This example performs RQS analysis on a reconstruction of a sphere. In the example below.
rgs_tcl> is the command interpreter’s shell prompt where commands are typed. Commands
typed by the user are given in boldface, and responses returned by the shell are italicized.

rgs-tcl> load_module march.so InstallMarch
module0

rgs-tcl> load_module rqs.so InstallRQS
module ]
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These first two lines load and initialize the necessary modules: the Marching Cubes algo-
rithm module and the metrics module. The result for each of these commands is a string.
These strings represent a2 handle which can be used later as input to unload_module to
remove the module from memory.

rgs-tcl> fsphere -radius 1.0 -point { 0.0 0.0 0.0 } \

-world { -1.5 -1.5-1.5 } { 1.5 1.5 1.5 }

sph0
Next, we create the object'’s function. In this example, we have created a function which
represents a sphere having its center located at (0.0,0.0,0.0) and having radius 1.0. The
domain of this object has been constrained to the range —1.5 < z,y, z £ 1.5. This function

is used in the next command to create the volumetric data.

rgs-tcl> volume byte 64 64 64 -function sphO
vol0

The first argument represents the type of data to store in the volume. The next three
arguments for the volume command are the number voxels along the z-axis, the number of
voxels along the y-axis, and the number of voxels along the z-axis, respectively. The volume
created above contains 64 x 64 x 64 voxels.

rgs-tcl> march vol0 -low 0 -high 212
surf0

The volumetric data object is used as input to the Marching Cubes command. In this
example, the isosurface corresponding to the threshold range 0 < v < 212 was reconstructed.
This range corresponds to the surface of the sphere object created in line three of this
example. The output of the march command is a surface object. This object, with the
sphere function object, can now be used to perform RQS analysis.

rgs-tcl> gsap sphO surf0 -relative
gsap 1.591412e-01
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In this example, we find the relative surface area error using the gsap metric. The final
argument to the gsap command computes gsap relative to the sphere object using Equa-
tion 4.2. The result states that this is the output from the gsap metric. and shows that

the reconstruction’s surface area exceeds the surface area of the sphere by 0.159.
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Results

6.1 Introduction

This chapter presents results based on the metrics defined in Chapter 4. We have divided
this chapter into two sections based on the class of volumetric data being reconstructed.
These classes can be described as follows. The volumetric data from the first class is
defined directly by the analytical functions described in Section A.1 of Appendix A. When
computing metrics, the analytical function becomes the reference function. For example,
when computing a sample value of ivp, we compare the isosurface value () with the value
of the analytical function at some location in the domain of the function.

The second class is based on resampled data. As in the first class, volumetric data
is generated on a rectangular grid according to some function. The reconstruction process,
however, is not applied to this data. It is applied to a volumetric data set generated by
sampling the original volumetric data on a less dense rectangular grid. The original volume
is used as the reference function when computing metrics. When computing a sample

value of ivp, for example, the isosurface value r at a point P is compared to the value

37
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of the original volume at P. Note, when P does not occur at a vertex of a voxel. linear

interpolation would be used to find the value of the volume at P.

6.1.1 Data Generation

The data generation process for each class can be described by the following simple pseu-

docode.
volumeWidth = number of samples along X axis
volumeHeight = number of samples along Y axis
volumeDepth = number of samples along Z axis
worldMinX = minimum world X coordinate
worldMinY = minimum world Y coordinate
worldMinZ = minimum world Z coordinate
worldMaxX = maximum world X coordinate
worldMaxY = maximum world Y coordinate
worldMaxZ = maximum world Z coordinate
voxelWidth = (worldMaxX - worldMinX) / (volumeWidth - 1)
voxelHeight = (worldMaxY - worldMinY) / (volumeHeight - 1)
voxelDepth = (worldMaxZ - worldMinZ) / (volumeDepth - 1)

foreach point (i, j, k) on the grid G do

z ~— worldMinX + i * voxelWidth
y +— worldMaxY - j * voxelHeight
z — worldMaxZ - k£ * voxelDepth

volume(, j, k) — function(z, y, z)

end

Note that the data generation process for each class only differs in the function being used.
Thus for each point on the lattice, we first map a point on the grid into the domain of the
function (e.g., world (z, y, z) coordinates), and then compute the value of the function at

that world coordinate.

- - - . e ee - - [} - - =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. RESULTS 39

6.1.2  Analytical Data Functions

Volumetric data for the first class is defined by point sampling analytical functions on a
rectangular grid. Therefore. function is replaced by one of the analytical functions described
in Section A.l of Appendix A. For example, if

function(z,y,z) = (z—a)’+(y—06)%+(z-c)®-r?

the volume represents data which describes spherical isosurfaces.

6.1.3 Resampled Data Functions

The last class involves resampling a volumetric dataset. Several methods exist for resam-
pling volumetric data. Since our volumetric data is defined on rectangular grids. we chose
trilinear interpolation of the values found at adjacent grid points. As shown in Figure 6.1.

this can be accomplished by linear interpolation along each coordinate axis. We first linearly

A B

Figure 6.1: Trilinear Interpolation

interpolate along the Z axis to obtain values at I, K, L, and N using an equation having the

— - - e e . ey =
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following form

Z(a) - Z(b)

V(a) =V(b) + Z(e) = Z(0)

[Vie) - V(b)]

where V'(p) is a function which returns the value at point p. and Z(p) is a function which
returns the Z world coordinate of point p. Similar functions exist using X(p) and Y(p). To
calculate a value at I, we would set a@,b. and ¢ equal to I, A, and E respectively. Next we
interpolate between I and K along the X axis to obtain a value at J, and between N and L
to obtain a value at M. Finally, we interpolate linearly along the Y axis between J and M

to obtain a value at O.

6.2 Analytical Data

As stated earlier, this section presents results based on a class of data sets where the
inderlying function is known, and becomes the reference function when computing metrics.
We chose to present results for two analytical functions; the ones for which the isosurfaces
are spheres and hyperboloids. These functions are describe in Appendix A.l of this the.sis.
The domain of these functions are unbounded; we focused on the range (-1.5, -1.5, ~1.3) <
(z.y,z) £(1.3,1.5,1.5) during the sampling stage. To reduce the possible sources of error.
no processing was performed in the second stage of the visualization pipeline.

The reconstruction process extracted isosurfaces given by the threshold r = 0.0.
For the spherical data set, this threshold corresponds to a sphere with radius r, and for
the hyperboloid data set, it represents a right circular cone having radius r at height A.
Given the reconstructions, we analyze physical realism with respect to three of the metrics

presented in Chapter 4; gsap, pdp, and ivp.

— - - . - - P— . —=
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The density of the sampling grid was varied for the first three sets of results. Vary-
ing the density of the sampling grid varies the amount information about the underlying
function which is available to the reconstruction process. Analysis of the resulting trends
indicates an algorithm's ability to reconstruct isosurfaces with limited knowledge about the
underlying function. Each plot is drawn with the average value drawn as a horizontal lin

with the appropriate symbol at the end points.

6.2.1 GSAP,,

Figure 6.2 and Figure 6.3 represent the gsap,,, metric applied to reconstructions ! of a

sphere and a cone. The first characteristic that is apparent from these figures is that, in
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Figure 6.2: GSAPy, on Sphere Data Figure 6.3: GSAP,;, on Cone Data

general, as the density of the grid increases the algorithms perform better with respect to

gsap,;,. In fact, we would expect this characteristic to persist no matter what property is

'Recall from Section 4.2.1 that gsap is not appropriately applied to spline surfaces. Therefore, we will
not present any results for the spline lofting surface reconstruction algorithm in this section.
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Figure 6.4: Contour Triangulations of the Sphere

being analyzed. As the sampling grid becomes more dense, F' becomes as better approxima-
tion of F. Since, reconstruction algorithms are essentially interpolation schemes, the better
approximation to the underlying function provides the algorithms with more knowledge
about that function, and, intuitively, a better reconstruction should be obtained.

We see, however, that the value of gsap,;, oscillates up and down for the contour tri-
angulation algorithm. This illustrates the fact that intuition is not always correct. A denser
sampling grid does not imply necessarily a better reconstruction of a particular instance
(a particular value of ) of a function. Figure 6.4 illustrates how this unusual phenomena
can occur. This figure shows reconstructions of the sphere for grids 62x62x62, 65x65x65,
68x68x68, and 71x71x71 (left to right, top to bottom). Each of these reconstructions are

missing the “north and south poles” of the sphere. Recall, the contour triangulation algo-
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rithm first generates contours slice by slice. and then interpolates between the contours it
finds using triangular facets. The first and last contours occur on the slices immediately
after and immediately before the voxel containing the poles. That is. the poles of the sphere
do not occur on a data slice. Because inter-slice interpolation is not used. the poles are
not discovered by the contour algorithms, and the open-ended reconstructions occur. The
contour algorithms, as implemented, rely heavily on a proper sampling of the underlying
function.

How does this effect gsap for these algorithms? We will consider the problem in two
dimensions. The analogous metric in two dimensions would measure the relative difference
between the circumferences. Figure 6.5 shows a circle being sampled with two different grid

densities, and the associated reconstructions. Like the spheres shown in Figure 6.3. we see

- - - -

- -

%7 ' 10x10

Figure 6.5: Circle Sampling

that the reconstructions are missing the top and bottom of the circle (e.g., the part of the
circle shown as a dashed line). Assuming the two arcs composing the reconstruction are
perfectly reconstructed, we see that the circumference of the reconstruction will be less than

the circumference of the original circle by the sum of the lengths of the two dashed line
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arcs. As we alter the sampling density, the size of these arcs will fluctuate. and therefore

so will the amount of error with respect to the circumference.

6.2.2 PDP

In this section, we present pdp applied to the same two data sets used in the previous
section. Again, we see that as the sampling grid becomes more dense, the algorithms perform

better with respect to the metric being investigated. We also see that the following order

Q0001 v T r -r Y T Q0o0t ——— T T - Y

ey +— Varchr Qom.
Coos Mgy + Comus Ty -
\\ Cooue (SoineLoing) =— Cons iSolne LoAng «—
\\\
“
1713 ‘\‘L
e ]
0 22 [ ]
2 eoshy __nf oS ; ]
% 4 ,l» -'\'\"‘& 2
i [ Tila T * £
Tyls L e S
7 b
13 ] e
® 0
Figure 6.6: PDP on Sphere Data Figure 6.7: PDP on Cone Data

(with respect to decreasing performance) is maintained in both figures; marching cubes.
contour triangulation, spline lofted contour, and surface tracking. The reason behind this
ordering can be understood by considering the topology of the underlying representations.
A reconstruction resulting from the surface tracking algorithm consists of rectangular faces
which belong to voxels that the desired isosurface is believed to intersect. These faces can
only have six configurations; one parallel to each positive and negative coordinate plane.

In comparison, the facets for a reconstruction resulting from the marching cubes algorithm

- —_—— - - B o - N -
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Figure 6.8: IVP on Sphere Data with Grid Figure 6.9: IVP on Cone Data with Grid
Varied Varied

can have 256 configurations. This added flexibility allows the marching cubes algorithm to
construct a more accurate representation. The contour algorithms’ performance is hindered
by the fact that the reconstruction is initially defined by the planar contours on each data

slice. Subvoxel accuracy is not considered.

6.2.3 IVP,... — Grid Variance

Recall from Section 4.2.4, that pdp realistically is not applicable when reference surfaces do
not exist, or when the point distance function is unobtainable. The ivp metric is intended
to provide a solution to that problem. As shown in Figure 6.8 and Figure 6.9 the results are
very similar to those shown in Figure 6.6 and Figure 6.7. When considering analytical data
sets, the ivp metric is essentially pdp cast to a new domain. The metric pdp measures the
differences in the distances between corresponding points on two surfaces. The ivp metric,

on the other hand, measures the differences in the distances between isovalues. The domain

— e e . - e — e e -
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of pdp is surfaces defined by a set of three dimensional points, and the domain of ivp is
surfaces defined by an isovalue.

We see in Figure 6.6 and Figure 6.9, that the contour triangulation algorithm performs
better than the spline lofted contour algorithm. This may seem counter-intuitive because
in most cases spline surfaces are believed to better interpolate data than planar facets.

Recall from Section 3.4, that the number of points defining a contour is first reduce to some
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Figure 6.10: IVP on Sphere Data Figure 6.11: IVP on Cone Data

predetermined number K before being fitted with a B-spline curve. As shown in Figure 6.10
and Figure 6.11, if we also reduce the number of points in the contour for the triangulation

algorithm it now performs worse than the spline method.

6.2.4 IVP,, — Threshold (r) Variance

The previous sections presented results which gave insight into the performance of the
reconstruction algorithms as the density of the sampling grid was varied. Another trend

which might be of interest is the performance of the algorithms when the isovalue used
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for the threshold r is varied. Analysis of the resulting trends will provide insight into

& — a00m )
Marchng Cuoes
.;ulm -
3 Coreas (Tranquussom 3
15 13 Rl “\ Coms iSoineLoANg &
i Y !
e p . \\\\‘—“ !
s
- L@ o:
[]
1 wap 3 !
S L Foo £
2 2 emi H O
2 2 .‘
§ eaf § |
“ o @b
l‘-k\r &V(W,‘ . =
v’lu 3
wot L]
B
et} el a. 4
tenR . e s e ton2 i _— N N
b ] [11 1 15 2 5 L] s ! 15 2 28
Threstond M esnad ()

Figure 6.12: IVP on Sphere Data with r
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Figure 6.13: IVP on Hyperboloid Data
with 7 Varied

an algorithm’s ability to reconstruct the underlying function. For regular analytical data
sets, such as those described in Section A.l1 of Appendix A, this also yields insight into
an algorithm’s ability to reconstruct objects of varying sizes. These results are shown in
Figure 6.12 and Figure 6.13.

In general, as the size of the objects increase, the reconstruction algorithms perform
better. Small objects are hard to represent discretely. They require a denser sampling grid
to represent their properties. For example, consider a 64 x 64 x 64 sampling of a 3.0 x3.0x 3.0
world. In the worst case, a sphere with radius approximately 0.04 units centered inside a
voxel can be missed completely by the sampling. The same sphere centered on a grid point
would be reconstructed incorrectly as a tetrahedron.

For smaller objects, we see that the spline lofted contour algorithm performed better

" than the triangulated contour algorithm. With smaller objects, limiting the number of

PR—— - - - - - - S ~ar
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contour points is less detrimental to the performance of the spline lofted contour algorithm.
This helps validate our previous statement in Section 6.2.3 about why the triangulated
contour algorithm performed better than the spline lofted contour algorithm.
Unfortunately. what the figures above do not show is that the surface tracking algo-
rithm only reconstructs one sheet of the hyperboloid of two sheets as shown in Figure 6.14.

This example helps illustrate the fact, that one metric might not be able to yield insight into

Figure 6.14: Surface Tracking Reconstruction of a Hyperboloid of Two Sheets

all problems of a reconstruction algorithm. Sometimes multiple metrics are required. The
gsap metric, for example, would have shown that the surface tracking algorithm produced
a reconstruction of the hyperboloid of two sheets whose surface area was always approxi-
mately half that of the ideal reconstruction. Note that this flaw could have be discovered
also by having knowledge of the underlying data and viewing a reconstruction as shown in

Figure 6.14.
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6.3 Resampled Data

Section 6.2 presented results for data sets where the underlying functions were analytical.
For these functions, all of their properties are known. From this, a question naturally arises.
What if the underlying function is not known? If the underlying function is not kno'wn.
then most of its properties will also be unknown. Since the metrics defined in Chapter 4
are based on physical properties, how can we analyze performance? This section attempts

to help answer that question.

6.3.1 Resampled Analytical Data

The first set of results, shown in Figure 6.15 and Figure 6.16, were generated by varying
the resampling density of a 128 x 128 x 128 (1283) grid. The ivp metric was computed
using the values in the original 1283 volume. That is, F(z,y, z) in Equation 4.7 is given

by the original volume. The actual threshold value for each point on the surface of the
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Figure 6.17: I[VP on Volume Sphere Data Figure 6.18: [VP on Volume Hyperboloid
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reconstruction was computed using trilinear interpolation. If we compare these results with
those shown in Figure 6.8 and Figure 6.9, we see that they are nearly identical.

In the next set of results, an initial 2563 volume was generated from the analyvtical
functions for the sphere and hyperboloid. These volumes were resampled on a 1283 grid.
Reconstructions were performed on the 1282 with the threshold r being varied. The ivp
metrics was computed by comparing the reconstructions with the original 2563 volume. The
results are shown in Figure 6.17 and Figure 6.18. Again, we see that the results are nearly

identical to the corresponding analytic results shown in Figure 6.12 and Figure 6.13.

6.3.2 Resampled CFD Data

Up to this point, all of our results were generated from data originating from analytical
functions. These data sets are well behaved. For example, they are symmetric through

each coordinate plane, and they don’t contain any irregularities such as bumps or holes.
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Figure 6.19: IVP on Ellipsoid CFD Data Figure 6.20: IVP on Ship CFD Data with
with Grid Varied Grid Varied

The next sets of resampled data results were generated using two data sets generated from
the field of Computational Fluid Dynamics (see Appendix A.2). These data sets do not
share the niceness of the analytic data sets. For example, an isocurve on a single slice of the
analytical datasets is convex (e.g., a circle). This may not be the case in the CFD datasets.
The CFD datasets may also contain holes or tunnels. For reasons such as these, the CE;D
datasets present a greater challenge to reconstruction algorithms. This is apparent in the
results shown in Figure 6.19 and Figure 6.20.

The first characteristic that becomes apparent is that a majority of the plots oscillate
more dramatically than those for analytical or resampled data. These oscillations are due to
naive resampling of the original data sets. The grids were systematically changed without
concern for retaining characteristics (e.g., bumps or holes) present in the data. When the
necessary characteristics were present in the resampled data, the algorithms performed

better, and vice versa.
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Two other characteristics are evident in Figure 6.19 and Figure 6.20 when we compare
them to results obtained from the analytical data sets. First, the contour lofting algorithm
performs better than the contour triangulation algorithm. In the previous results. the
contour triangulation algorithm out performed the contour lofting algorithm. The second
characteristic is that for the first time, the surface tracking algorithm out performed both
contour algorithms. Figure 6.21 will help illustrate why these characteristics can occur in
irregular data sets such as the CFD data sets.

Figure 6.21 shows four reconstructions of an isosurface in the CFD ellipsoid data set.
The upper left reconstruction was obtained using the marching cubes algorithm. The lower
left was obtained using the surface tracking algorithm. The upper and lower right recon-
structions were obtained using the contour lofting algorithm and the contour triangulation
algorithm, respectively.

The CFD data sets have been quantized to the range 0...255, and are stored in byte
format. The analytical data sets, however, were computed and stored as floating point
values. This quantization process makes the function's values discrete and the difference.of
the values between neighboring voxels larger. As seen in Figure 6.21, the contour triangu-
lation algorithm is strongly affected by this characteristic, and produces a reconstruction
with strong aliasing artifacts. An example of these artifacts is the circular pattern on the
large front isosurface of the reconstruction in the lower left figure. Since the contour lofting
algorithm uses splines as its underlying representation, it has the ability to more smoothly
interpolate the isosurface, and better performance with respect. to the ivp metric.

Surface Tracking performs better than the contour methods because they are unable
to capture the concavity of the isosurface appropriately. In order to capture effectively a

concave isosurface, a reconstruction algorithm must be able to detect multiple isocurves on
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Table 6.1: Statistics for IVP on CFD Data with + Varied

Marching | Surface Contour Contour

Cubes Tracking | Triangulation | Lofting

Ellipsoid | Mean | 4.6632¢~° | 1.1042¢3 | 1.0904e~3 | 2.0731le~3
StdDev | 1.2462¢% | 1.8176e~3 | 2.6346e3 | 6.1192¢~3

Ship Mean | 1.3093e7® | 2.0457¢~% | 1.5782¢~ | 1.8293¢~°
StdDev | 1.9784e6 | 2.7020e5 | 4.0878¢=3 | 5.7724¢73

a single slice of data. The contour algorithms we implemented are incapable of performing
this task. This fact is illustrated in Figure 6.21 by the large flat bottomed isosurface in the
right two figures. As seen in the left figures, both the marching cubes algorithm and the
surface tracking algorithm were able to capture the concavity of the isosurface appropriately.
and therefore perform better than the contour methods with respect to the ivp metric. .

Our final experiment compared the reconstruction algorithms’ ability to reconstruct
isosurfaces within the CFD data sets with various values of 7. Unlike the situation with
analytical data sets, the reconstruction for one value of r is most likely unrelated to for
another. For this reason, we only present the average error and standard deviation with
respect to the ivp metric for each reconstruction algorithm.

As shown in Table 6.1, on average the ordering (e.g., in order of decreasing perfor-
mance; marching cubes, contour triangulation, contour lofting, surface tracking) that we
saw in previous figures is generally preserved. An exception to this is seen in Table 6.1

where the contour lofting algorithm performs worse than the surface tracking algorithm for
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(o]

the ellipsoid data set. Recall that the contour lofting algorithm's performance can decline
for large isosurfaces due to the contour point reduction step. This characteristic. along with
the contour algorithms’ inability to reconstruction concave isosurfaces, accounts for this
discrepancy.

As shown in Table 6.1, the following order is maintained with respect to the standard
deviation; marching cubes, surface tracking, contour triangulation, contour lofting. Though
the contour algorithms, on average, performeci better than the surface tracking algorithm.
their standard deviations were worse. The standard deviation yields an indication of the
stability of each reconstruction algorithm, and though the contour algorithms performed
better on average, their averages are worse predictors of their performance. Given a partic-
ular reconstruction, a user can predict better the amount of error that may be present for

the surface tracking algorithm than for the contour algorithms.

—— - - R . N ————— =
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Chapter 7

Conclusion/Future Work

7.1 Review

This thesis presented metrics for analyzing the error in reconstructions of physical phenom-
ena. Recall that physical phenomena are described by a number of physical properties.
and metrics can be defined for each of these properties. Chapter 4 of this thesis presented
four possible metrics of interest; surface area preservation (gsap), volume preservation'vp,
point distance preservation (pdp), and isovalue preservation (ivp), and Chapter 6 presented
results based on three of these metrics.

These metrics illustrated some important attributes of reconstruction algorithms. Our
results showed that the more information about the underlying function an algorithm had
available to it, the better it was able to perform. This information can be provided in a
number of ways. For example, one can simply provide a denser sampling of the underlying
function. However, as we saw in Section 6.2.1, this is not necessarily a solution. One must
also ensure a “good” sampling of the underlying function. Characteristics of the function

must be accurately captured in the sampled volumetric data.
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We also saw that algorithms (e.g., marching cubes) which utilize subvoxel accuracy
require less knowledge of the underlying function. Algorithms (e.g.. the contour algorithms)
which did not consider subvoxel accuracy were unable to reconstruct features. such as the
poles of the sphere, which occur between data slices.

This thesis also presented a framework for performing reconstruction error analysis.
The methods of this framework manifest themselves in the RQS visualization (sub)system
presented in Chapter 5, and its implementation as described in Appendix C. Each stage
(sampling, processing, and reconstruction) in the visualization pipeline introduces error into
the resulting reconstruction and the final rendering. The RQS (sub)system offers. to the
developers and users of visualization systems, a structured arena for analyzing how these
errors compound, cancel, and otherwise interact with each other. The analysis presented in
this thesis only considered the error introduced by the reconstruction process. The other

sources of error and how they interact provides a large source of topics for future research.

7.2 Guidelines

The analysis presented in this thesis provides a few guidelines to consider when designing a
visualization system. First reconstruction algorithms can rely on an appropriate sampling
of the underlying function. Care must be taken to guarantee that characteristics present
in the underlying function are represented by the volumetric data. An example was seen
in Section 6.2.1, where the triangulation contour algorithm was unable to reconstruct the
poles of the sphere because they occurred between data slices. Fortunately, the sampling
process is one part of the visualization pipeline over which we have a great deal of contral.

A second problem was illustrated in Section 6.2.4. A single metric will most likely

not show all problems of a reconstruction algorithm. For instance, the surface tracking
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algorithm only reconstructed one sheet of the hyperboloid of two sheets. The ivp metric
failed to catch this. However had surface area been considered, gsap would have shown
the surface area of the reconstruction to be approximately half of the ideal surface's surface
area.

The primary purpose of reconstructing volumetric data is to display, interact with.
and interpret the phenomena contained there in. The display of these isosurfaces may show
other hidden problems which applied metrics had not discovered. Visualizing an instance
of the surface tracking reconstruction of the hyperboloid of two sheets showed immediately
that only one sheet was being reconstructed. A user cannot view and blindly interpret the

reconstructions presented to them. Some knowledge of the underlying functions is required.

7.3 Topics for Further Study

Physical realism is a many faceted notion, and it would be very short sighted to believe
the four metrics defined in this thesis were all that were needed. More work can be done
on defining and verifying other metrics. One can consider, for example, the notion of local
curvature {15]. In the medical domain, one might also consider mass as the global property
of interest. Metrics for properties, like mass, would require the use of the “generalized voxel
model” [32]. This model allows other attributes (e.g., mass, membership to an organ, etc.)
to be stored in a voxel.

As stated above, another topic for future research involves studying other sources of
error (e.g., quantization) and how errors passed between stages are compounded or canceled.
It is important to understand each source of error, and how it contributes to the final
rendered image. These studies will yield a better understanding of the artifacts present in

the rendered images, and allow the user to interact more properly with them.
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Given a better understanding of the sources of error. new reconstruction algorithms
can be developed which strive to reduce the amount error by minimizing one or more of
the metrics defined to measure the error. Some work has been done by McAllister. et al.
(53, 56. 57] which considered shape preserving spline interpolation of two dimensional data.

Finally, this thesis did not consider how well quantitative results correspond to quali-
tative judgments. In other words, future research can consider the question, “does physical

realism imply photorealism?”
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Appendix A

Volumetric Data Sets

A.1 Analytical Functions

In this section, we describe the analytical functions which we used to generate our test data.
For each of the functions, the surface of the object is given by the threshold value r = 0.0.
Object : Sphere

Description : A sphere centered at (a,b,c) with radius r.

Density Function
Fz,y,2)=(z—a)l +(y =0+ (z—c)? - 12
Surface Area

4rr

80
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Distance Function

As shown in Figure A.l, the distance any given point P is from the surface

P:x.y, 2)

Figure A.1: Derivation of the Sphere Distance Function

of a sphere can be calculated as the difference between the distance from P to

the sphere’s center and the sphere’s radius r.

D=|\z-a+ (bRt (=R -7

We take the absolute value of the difference because P might be “inside” the

surface of the sphere yielding a negative distance.

Object: Right Circular Cylinder

Description : A cylinder with center at (a,b,0) having radius r.

Density Function

Fz,y,2)=(z —a)? +(y - b)* - 12

—_— - - - P . a—y- - c e e ——
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Surface Area

2rrh

Distance Function

As shown in Figure A.2, finding the distance between a point P and the

: a.b.c) ® /

Figure A.2: Derivation of the Cylinder Distance Equation

isosurface of a cylinder can be simplified to finding distance between a 2D circle
and the point (z,y). The circle is defined by intersecting the plane Z = z with
the cylinder. The center of this circle will be at (a,b), and it will have radius r.
Similar to the case of a sphere, the distance D is given by the difference between

the distance from (z,y) to (a,b) and the circle’s radius, r.

D=~\/:c—a.)2+(y—b)2—r

Again, the absolute value is used to constrain D to positive distances.
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Object : Hyperboloid
Description : This data represents hyperboloids.
Density Function

ey’

F(z.y.2) = (2~ a)? + (y - b)° — ( -

The hyperboloids can be classified into three categories based on the value of

( r < 0.0 Hyperboloid of two sheets
4 T = 0.0 Right circular cone

7> 0.0 Hyperboloid of one sheet

\

The special case cone whose apex is at (a, b, ¢) will have radius r at ¢ + A and ¢ ~ A.

Surface Area of Cone
2rrVr? + h?

Distance Function for Cone

The distance function for the analytical cone is more difficult than the pre-
vious two cases. We need to find the point on the surface of the cone closest to
P to define the distance function. However, this is a difficult problem to solve
using the current 3D configuration.

As shown in Figure A.3a, the center axis (Z = c) of the cone, and the point
P defines a plane, and we can define a new (two dimensional) coordinate system

in this plane centered at (a,b,c) having the line Z = ¢ as the ordinate axis and
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z
L. [ Ly
D,
........... . z-)
D.
S
h
Z-C
PR R L.
(-r. -h) (r. -h)
Y
a b

Figure A.3: Derivation of the Cone Distance Equation

the projection of P onto the plane Z = ¢ as the abscissa.
Using this plane and coordinate system, we can redefine the 3D problem as

a much simpler 2D problem. The trace of the cone in this plane consists of the

two lines:

Li:ry—hz=0

Ly:ry+hz=0

Projecting P onto the plane Z = ¢, we see that it is at a distance of z — ¢

from the S-axis, and a distance of \/(z — a)? + (y — b)? from (a, b, ¢) (the center

of the new coordinate system). Figure A.3b shows the new 2D configuration:

where d = \/(z - a)? + (y - b)2.
The derivation of the cone distance function is now reduced to the simpler

problem of finding the distance between a point (zg, o) and a line (Az+By+C =
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0): which is given by

_ |Azo + By + C|

D
VA? + B2

Since, however, the cone becomes two lines in the two dimensional problem. we
must find the distance to each line. Taking the minimum of the two distances

yields the desired distance function.

min{Dy, D} = min { A0 2LC 20l Jhd 4 Atz - c)l}

A.2 CFD Data

Section A.l defined three analytic data sets. These data sets were used for initial testing
of the metrics defined in this thesis. They truly represent fabricated data, and don't arise
very often in the domain of scientific visualization. To illustrate the abilities and validity of
our metrics in more realistic situations, we turned to data sets generated by Computational
* Fluid Dynamics (CFD).

Unfortunately, CFD data sets are most often generated on irregular grids. The re-
construction algorithms described in Chapter 3 require data defined on rectilinear grids.
Therefore, it was necessary to resample these datasets. For simplicity, we used first degree

Taylor polynomials for resampling.

definition A.1 The value of a function f(-) at a point z close to a point ¢ can be approz-
imated by the following n** degree polynomial

f(z)= Pa(z) = fle)+ fl(c)(z-c)+ f—l;(!i)(z —c) 4+ in(!c—)-(z -c) (A.1)

- = - i ——— e e I - e R g iy
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provided the first n derivatives ezist and are continuous on some interval close to ¢ and
z is located in that interval. P,(z) is called a Taylor polynomial of degree n. Vote.
Equation A.1 can be generalized to any dimension.

CFD datasets are most often generated by sampling some function F at a discrete
subset of points located in the domain of F. Users and developers of visualization systems
typically do not have access to F, but often require knowledge of F at points other than those
defined at the given grid points. Given a function F(z,y, z) defined on some arbitrary three

dimensional grid with a known connectivity (e.g. an irregular grid), we can approximate

F(z + r.y+ s,z +t) with the first degree Taylor polynomial P, given by

oF oF F
P(z+ry+s,z4+t)=F(z,y,2)+ rb—z—(z, v, z)+ sa—y(z, v, 2)+ t?—:(z. v.z) (A2)
where
OF _9F9i OFdj  OFO
0z ~ 0idz 0j 0z Ok oz
oF Fli+1,j,k} - Fli - 1,3,k
. 2 (A.3)
OF _ Fli,j+ 1,k] = F[i,j - 1,k]
3 x 3 (A1)
OF _ Fli,j,k+ 1] = Fli,j,k - 1] ,
i 2 (A-3)
and
- - -1 - -
8z 3z 3z g 3 9
8t 95 09k 8z Jdy 9z
ay 3y @ = 8j 8j 8j
91 95 Ok z By Oz
9z 3z 3z 3k Bk Ok
L 9t 93 9k ) | dr Jdy 9z )

— . — = = PSR - - L ag e e R R vy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A. VOLUMETRIC DATA SETS

v 4
-1

dF [0y and GF/0z can be defined similarly.

Using Equation A.2 we can approximate the value of F at any point in its domain.
Given 2 point (a.b.c), we first find the grid point (z.y, z) closest to (a.b.c) and compute
r=a-z.s=b-y and t = ¢~ z. Assuming (z,y, z) is located at grid point [i. . k].
we compute the necessary partial derivatives using Equations A.3-A.5. and using similar

equations for 8z/3d%, dy/di, etc. Finally, we approximate F(a,b,c) using Equation A.2.

A.3 Volumetric Data File Format

Various volumetric data files (e.g. CFD data sets ) were generated previous to reconstruction
and stored in a local file format. This file format is entitled the Volumetric Data File (VDF)
format. It was designed to be a simple format for the task at hand. Several other volumetric
data formats exist (e.g. HDF'), but these are far too general and complex for our needs.
This section describes the VDF format.

A volumetric data set stored in the VDF format consists of two entities; a 128 pyte
header and the pixel/voxel data values. Both entities are written in binary form. As shown
in Figure A.4, the first component of the header is the so-called “magic cookie.” For the file
to be recognized as a VDF file the magic field must be the four byte hexadecimal number
OzFEEDBEEF. Following the magic number, is an 80 character string. The string field
can store any text, but typically stores some description of the data, creator of the data,
when it was created, etc.

All data sets stored in the VDF format are assumed to have been generated on a
rectilinear grid. The next three fields; dimX, dimY, and dimZ, give the dimensions of
the data. dimX stores the number of pixels/voxels along the.x-a.xis, and dimY stores the

number of pixel/voxels along. If the data was generate as some number of planar slices (e.g.
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as CT and MRI data sets are), then dimZ stores the number of slices. Otherwise. it stores
the number of voxels along the z-axis.

The next six fields define the world extents of the rectilinear grid. The point defined
by (minX. minY. minZ) is the back bottom left corner of the bounding box. and (maxX.
maxY . maxZ) is the front top right corner. This defines a right handed coordinate system.
The final two fields are extra padding. Currently. their use is undefined. and free to be used
for whatever purpose necessary.

Directly following the header entity are the data values. They are stored with the X
coordinate increasing fastest, followed by the Y coordinate. The Z coordinate increases the
slowest. Each data value is assumed to only take one byte of storage space. Thus. the legal

range of values is 0...255. Data compression techniques are not applied prior to storage.

- ——— e —— ¢ e s = . B e s ————— - b
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Magic Number (int)
OxFEEDBEEF

Description
(80 bytes)

X Dimension
(int)

Y Dimension
(int)

Z Dimension
(int)

Minimum World st:n.xct VDFHea..der {
X Coordinate int magic;
char string(80];
(float) . . g(80]
int dimX;
Minimum World int dinY;
Y Coordinate int dimZ;
(float) float minX;
float minY;

Minimum World
Z Coordinate

(float)

float minZ;
float maxX;
float maxy;
Maximum World float maxZ;
X Coordinate int extral;
(float) int extra2;
}s

Maximum World
Y Coordinate

(float)

Maximum World
Z Coordinate

(float)

Undefined
(int)

Undefined
(int)

Figure A.4: VDF Format File Header

—_————rm— = - e e e . S e ey — emm -
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Appendix B

Definite Integral Approximation

The surface integrals given in this paper cannot be evaluated easily using analytical meth-
ods. Therefore, an approximate solution must be obtained using numerical methods. This
appendix discusses one such numerical method called Monte Carlo integration. Before this

method is described, we first provide some background material [65].

B.1 Background

A continuous random variable can take on a continuum of real values. The behavior of the
random variable can be fully described by the distribution of the values it can take on as
defined by a probability density function (pdf). Given a random variable X, the pdf f(z)is

given by the probability that X will take on some range of values. That is,

/bf(a:)dz=Pr{a$X$b}

90
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The pdf has two defining characteristics. If z is a possible value of X then f(z) > 0. and
/ fz)dz =1
T€EX

where X is the domain of f.
Example: Uniform(a,b)

A random variable that is uniformly distributed between a and b has a pdf given by

1
b-a

flz) =

As illustrated in Figure B.1. The area under the curve is given by a rectangle with width

A

f(x)

a b

Figure B.1: The Uniform(a,b) pdf

b~ a and height 1/(b — a). This area is equal to [°1/(b - a) dz.

The average (or ezpected) value of a continuous random variable is given by

p=E[X]= /:exzf(z)dz

- - " - ~— - e B
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The expected value has the property that the expected value of a sum of random variables is
equal to the sum of the expected values of the random variables (E[X 4+ Y] = E[X]+ E[Y]).
Since the sum of two random variables is itself a random variable this idea generalizes. The
function of a random variable is also a random variable, and we can write its expected value

as

Elo(=)l= [, o(e)f(x)da

where g(z) is a function of the random variable X. The standard deviation ¢ of a random

variable is given by

o= \/Lsx(z - E[z])%f(z) dz,

and measures the overall deviation from the mean.

Example: Uniform(a,b)

The expected value of a Uniform(a, b) random variable is

bz
#o= [,b—adz

1 22
= b—al\ 2
a

Likewise, the the standard deviation can be shown to be

_ a+b, 1 _ _b-a
a—\//:(z 5 )b_adz_ =G

B . P s e g e
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B.2 Monte Carlo Integration

With this background we will show how Monte Carlo integration can be used to estimate
definite integrals. In the case of the surface integrals given in Section 4.1, we would want

to estimate an integral of the form

d rb
I=/ / h(x, v) du dv
c a

Let U and V be independent random variables with possible values u and v whose values
are uniformly distributed for ¢ < 4 < b and ¢ < v < d respectively, and define a new

random variable X = h(U, V). The expected value of X is

d prb
E[X]= / / h(u, v) f(w)g(v) du dv

where f(u) and g(v) are the probability density functions for the random variables U and
V. Since U and V are uniformly distributed random variables f(u) = 1/(b — a) and

g(v)=1/(d -c) and

d b
ElX] = (TTl(d-‘c—) [ [ by du o,

From this it follows that, I = (b — a)(d — ¢) E[X].
I can be estimated by generating multiple realizations of X and computing the sample
mean. That is, first generate N samples of U and V; uy,uy,..., Un,v1,02,..., Un. Using

these samples, compute N samples of X using

z; = h(u;, %) . i=1,2,...,N.
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The sample mean for this realization of X is given by

1 ¥
= I—V-ZZ{:"E[X],

=1

The rationalization behind this equation can be seen by generalizing the Law of Large

Numbers. That is,
. 1 &
Pr{Nh_Igo ng; = E[X]} =1

Finally the estimate I is given by

N
[~T=(b=a)d-c)i = Q-l‘%(rd—_-c—)z:h(u;,v;).

i=l1

B.3 Interval Estimation

As just shown, the Monte Carlo method can be used as a technique for estimating the
value of definite integrals. Since the result is only an estimate, it would be nice to know to
what extent we can trust it. We can use sample means, standard deviations, and interval
estimation to do so.

Consider the following scenario. Take some random number generator and generate

M samples each of size N. For each sample i generate the sample mean m; and sample

standard deviation s;. For each sample, define

m; — [

si/VN - l;

i =

1=1,2,...

where u is the theoretical (but unknown) mean of the distribution.
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An extension of the Central Limit Theorem tells us the histogram of the “t data” will

have the following properties

e the mean is approximately 0

e the standard deviation is approximately \/(V — 1)/(N - 3)
o the density is approximately the shape of the Student(N — 1) pdf

Thus. given a random sample z;,23,...,zy with mean m and standard deviation s, it will

be approximately true that

m—p

s/\/N_——l

t =

is a random sample from the Student(V — 1) distribution.
I T is a Student(.V —1) random variable, then there exists some value t* > 0 such that

Pr{-t"<T <t} =1~ a for some 0 < @ < 1. Since ¢ is a sample from this distribution

= m— U
Pr{ ~t"< ——==<t">)=1-
r{ “s/[VN-1" } «

By performing some simple algebraic techniques we arrive at

t*s t"s
P{m— <u< }=1_
SRV, s bR/ *

If we choose a = 0.05, then we are 95% confident that the theoretical mean lies somewhere
between
t*s t*s

- d -5
moJN=1 ¢ Mty

t” is commonly called the critical value, and is given by the inverse distribution function
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(idf) of the Student(n-1) distribution. That is, given

t* = Student idf(N - 1,1 - a/2)

B.4 Implementation Issues

In this final section, we present some implementation issues with respect to Monte Carlo

integration and interval analysis.

Computation of the expected value and standard deviation

Computing the sample standard deviation using the expression

=1

1 N
S:\j—ﬁz:(zi-m)z

requires a two pass algorithm. The first pass computes the sample mean, and the second
pass computes the sample standard deviation. An equivalent expression for the sample
standard deviation which allows it and the sample mean to be computed in one pass is

given by

-G

i=1
The following C code computes the sample mean and standard deviation

/* readvalue() returns the next data value */

sum = 0;

sumsqr = 0;

for (1 =20; 1 < n; i++) {
x = readvalue();
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sum += Xx;
sumsqr += (x * x);
}
mean = sum / n;
stddev = sqrt(sumsqr / n) - (mean * mean);

This code, when actually implemented, may have problems due to accumulated round

off error. For a solution to this, we direct the reader to Welford’s algorithm !.

Critical values in interval estimation
In practice, when Monte Carlo integration is used V is always large. It is also common
practice to choose @ = 0.05. When N is large the difference between N and N — 1 is
insignificant, and
Student_idf(N — 1,0.975) ~ 2
With this in mind, given the sample mean m and standard deviation s, we are 95% confident

that the actual mean p lies somewhere between

VN vN

m a—
For the integral approximation discussion above, we equivalently define

e=(b—a)(d—- c)%

and we are 95% confident that the actual value of the integral lies between [ — € and [ + ¢.

1 Welford’s algorithm can be found in Technometrics, Volume 4, Number 3, August 1962.
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RQS Extension to Tcl/Tk

C.1 Data Structures

Data Structure:
point - A world coordinate location

Description:

A point is defined as a standard Tecl list containing two to four floating point
numbers. If only two numbers are given, the point will be considered to represent
a two dimensional location. If three or four numbers are given, it is interpreted
to be a three dimensional point (e.g. {z y z [w]}) in homogeneous space. If w
is not given, it defaults to 1.0.

Data Structure:
RGB color - A RGB color triple

Description:

A RGB color is defined as a standard Tcl list containing three eight bit numbers
(e.g. {r g b}). The expected range is 0...255. If any value is not within this
range, the value will be clamped. For example, if r < 0 then r = 0.

Data Structure:
RGBA color - A RGB color triple with alpha component

Description:

A RGBA color is defined as a standard Tl list containing three or four floating
point numbers (e.g. {r g b [a]}). Each number is expected to lie within 0 <
7,9,b,a < 1.0. Any values outside this range will be clamped. If a is not given,
it defaults to 1.0.

98
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Data Structure:
colormap - Stores a set of RGB triplets

Synopsis:
colormap filename

Description:

A colormap has been defined as a Tdl list with the following format and
interpretation:

{n {redo green, blueg}{red; green, blue;}...{red,_; green,_, blue,_; }}

The list begins with the number of entries in the colormap (»), and is followed
by n sublists. These sublists contain three eight bit values representing the red.
green, and blue components of the color,respectively.

A colormap is the one new data structure that has a Tcl command. This
command allows attempts to read filename as a n x 1 PPM image file. Thus
each pixel in this “image” is described by three values. If it successfully reads
the file, it returns its contents as a colormap.

Note: a colormap can be created manually by creating a Tcl list with the
above format.

99
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C.2 Objects

Basically every entity in the RQS system is called an object. For example, below are the
definitions of various entities from functions, to surfaces, to volumes. Each of these entities
all belong to the generic class object. To reduce the number of new Tcl commands, some

commands were created which operate on any of the objects defined below.

Tcl Command:
objDelete - Delete an object from RQS

Synopsis:
objDelete objectName |...]
Description:

objDelete removes the specified objects from RQS space. These objects will
no longer be accessible. If they were once Tcl commands themselves (e.g. that
returned from creating a sphere function), then those commands will also no
longer exist.

Tecl Command:
objName - Returns the object’s name (type)

Synopsis:
objName objectName

Description:

Returns the given object’s name. This will actually be a string representing the
type of object. For example, “sphere,” “volume,” and “mesh.”

Tcl Command:
objIsFunction - Decides if the object is a function

Synopsis:
objIsFunction objectName

Description:

objIsFunction is 2 decision command. It will return 1 if the given object is a
function, and 0 otherwise. See Section C.2.1 for the available function objects.
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Tcl Command:
objIsVolume - Decides if the object is a volume

Synopsis:
objIsVolume objectName

Description:

objIsVolume is a decision command. It will return 1 if the given object is
a volume, and 0 otherwise. See Section C.2.2 for a description of the volume
object.

Tcl Command:
objIsSurface - Decides if the object is a surface

Synopsis:
objIsSurface objectName

Description:

objIsSurface is a decision command. It will return 1 if the given object is a
surface, and 0 otherwise. See Section C.2.3 for the available surface objects.

- — - - - - --- . g -
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C.2.1 Functions

Tcl Command: .
fsphere - Create a spherical function object

Synopsis:
fsphere [options]

Description:

The fsphere command is used to define a function object that represents a
sphere. The sphere function is defined with respect to an actual spherical object
(e.g. its radius and center are specified). However, the function defines a data
value for every point in the function’s domain.

Options:
-radius value

Specify the radius of the sphere function. value can be any legal floating
point number. Legal examples include 0.1, .1, 5, etc. Defaults to 1.0.

-point point

Specify the reference point for the sphere function. In this case the reference
point represents the center of the sphere. Defaults to {0.0 0.0 0.0}

-world point point

Specify the domain of the sphere function. The two arguments to the -
world option represent the minimum and maximum world coordinates, re-
spectively. Defaults to {~1.0 — 1.0 — 1.0} and { 1.01.01.0}, respectively.

Widget Command:

The fsphere command returns a string of the form sph#; where '#’ is a
number which makes the created object unique with respect to other created
sphere function objects. This string represents a new Tecl command with its own
options. These commands with the options take the following syntax:

objectName option [arg arg ...]

Widget Options:
name

Returns the object’s name. In this case, it should return “sphere.”
radius

Returns the sphere function’s radius.
point

Returns the sphere function’s reference point (center).
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world

Returns the sphere function’s domain. That is, it returns its minimum and
maximum coordinate values.

min
Returns the function’s minimum value. In this case, the minimum value
occurs at the reference point.

max

Returns the function’s maximum value. In the case of the sphere function,
the maximum value occurs at the point in its domain which is furthest from
the reference point.

range
Return’s the minimum and maximum value in a single call.

area

Returns the surface area of the object represented by the function (e.g. the
sphere defined by the radius and center given when the object was created).

value point
Returns the value of the function object at the given point.
distance point

Returns the distance from the given point to the point on the surface of the
function which is “deemed™ closest.

configure [options]

The configure command can be used to redefine an already created object.
options are the same as those that can be specified when the object was
created. If no arguments are given the configure command will return a
list of the functions defining characteristics in the following form:

{ { option value } ...}
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Tecl Command:
fcylinder - Create a cylindrical function object

Synopsis:
fcylinder [options]

Description:

The feylinder command is used to define a function object that represents
a cylinder. The cylinder function is defined with respect to an actual cylindrical
object (e.g. its radius and center are specified). However, the function defines
a data value for every point in the function’s domain.

Options:
-radius value

Specify the radius of the cylinder function. value can be any legal floating
point number. Legal examples include 0.1, .1, 3, etc. Defaults to 1.0.

-point point

Specify the reference point for the cylinder function. In this case the refer-
ence point represents the center of the cylinder. Defaults to {0.0 0.0 0.0}.
Note that the z value is ignored because there isn’t any notion of cylinder
height.

-world potnt point

Specify the domain of the cylinder function. The two arguments to the
-world option represent the minimum and maximum world coordinates,
respectively. Defaults to {-1.0 ~ 1.0 — 1.0} and { 1.01.01.0}, respectively.

Widget Command:

The fcylinder command returns a string of the form cyl#; where '#° is a
number which makes the created object unique with respect to other created
cylinder function objects. This string represents a new Tcl command with its
own options. These commands with the options take the following syntax:

objectName option (arg arg ...]

Widget Options:
name

Returns the object’s name. In this case, it should.iféi:um “cylinder.”
radius
Returns the cyvlinder function’s radius.

point
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Returns the cylinder function’s reference point (center).

world

Returns the cylinder function’s domain. That is, it returns its minimum and
maximum coordinate values.

min
Returns the function’s minimum value. In this case, the minimum value

occurs at any value along the axis defined by the z and y coordinates of the
reference point that runs parallel to the z axis.

max

Returns the function’s maximum value. In the case of the cylinder function,
the maximum value occurs at the point in its domain which is furthest from
the axis defined by the z and y coordinates of the reference point that runs
parallel to the =z axis.

range
Return’s the minimum and maximum value in a single call.

area

Returns the surface area of the object represented by the function (e.g. the
cylinder defined by the radius and center given when the object was created).

value point
Returns the value of the function object at the given point.
distance point

Returns the distance from the given point to the point on the surface of the
function which is “deemed” closest.

configure [options]

The configure command can be used to redefine an already created ob ject.
options are the same as those that can be specified when the object was
created. If no arguments are given the configure command will return a
list of the functions defining characteristics in the following form:

{ { option value } ...}
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Tcl Command:
fhyperboloid - Create a hyperboloid function object

Synopsis:
fhyperboloid [options]

Description:

The fhyperboloid command is used to define a function object that rep-
resents a hyperboloid. The hyperboloid function is defined with respect to an
actual hyperboloid object (e.g. its radius, center, and height are specified).
However, the function defines a data value for every point in the function’s
domain.

Options:
-radius value

Specify the radius of the hyperboloid function. value can be any legal floating
point number. Legal examples include 0.1, .1, 3, etc. Defaults to 1.0.

-point point

Specify the reference point for the hyperboloid function. In this case the
reference point represents the center of the hyperboloid. Defaults to {0.0 0.0
0.0}

-height value

Specify the “height” of the hyperboloid function. The hyperboloid function
that is actually created will have its specified radius at its reference point
theight. value can be any legal floating point number. Legal examples
include 0.1, .1, 3, etc. Defaults to 1.0.

-world point point

Specify the domain of the hyperboloid function. The two arguments to the
-world option represent the minimum and maximum world coordinates,
respectively. Defaults to {—1.0 - 1.0 — 1.0} and { 1.01.01.0}, respectively.

Widget Command:

The thyperboloid command returns a string of the form Ayp#; where "#’ is
a number which makes the created object unique with respect to other created
hyperboloid function objects. This string represents a new Tcl command with
its own options. These commands with the options take the following syntax:
objectName option [arg arg ...]

Widget Options:
name

Returns the object’s name. In this case, it should return “hyperboloid.”
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radius

Returns the hyperboloid function’s radius.
point

Returns the hyperboloid function’s reference point (center).
height

Returns the hyperboloid function’s height.

world

Returns the hyperboloid function’s domain. That is, it returns its minimum
and maximum coordinate values.

min

Returns the function’s minimum value.

Returns the function’s maximum value.
range
Return’s the minimum and maximum value in a single call.

area

Returns the surface area of the special case cone represented by the function
(e.g. the cone defined by the radius, height, and center given when the object
was created).

value point
Returns the value of the function object at the given point.
distance point

Returns the distance from the given point to the point on the surface of the
function which is “deemed” closest.

configure [options]

The configure command can be used to redefine an already created object.
options are the same as those that can be specified when the object was
created. If no arguments are given the configure command will return a
list of the functions defining characteristics in the following form:

{ { option value } ...}
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C.2.2 Volumes

Tecl Command:
volume - Create a volumetric data set

Synopsis:
volume type width height depth [options]

Description:

The volume command is used to create a volumetric data storage structure. A
volume is a three dimension array of values, and is defined by a rectilinear grid.
The grid is defined by specifying the type of data to be stored in the volume,
and the number of voxels along the x, y, and z axis. Currently two types of data
are supported “byte” and “float.” Byte data values are unsigned integers in the
range 0...255. Float values are floating point numbers whose range depends on
the particular architecture RQS has been compiled for.

The options below also allow the user to read in previously defined volumetric
data from raw and VDF files.

Options:
-bad value

Specify the “bad” (or background) value. Whenever, a request is made for
a non-existent voxel’s value, this value is returned.

-world point point

The volumetric data set is defined  on a rectilinear grid. This option allows
the user to specify the world coordinates for the corners of the grid. The two
arguments represent the minimum and maximum coordinates, respectively.

-raw filename

Read in a volumetric data set from a raw formatted file. In this case, the
file is assumed to contain width x height X depth data values.

-vdf filename

Read in a volumetric data set from a VDF formatted file. The current dimen-
sions of the volume are ignored. If necessary, the volume will be reallocated
based on the dimensions given in the file. See Section A.3 for a complete
description of the VDF format.

-function function-name

After allocating the volume, it will generate a data set based on the previ-
ously defined RQS function function-name.

Widget Command:
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The volume command returns a string of the form vol#; where '#’ is a
number which makes the created object unique with respect to other created
volume objects. This string represents a new Tcl command with its own options.
These commands with the options take the following syntax:

objectName option [arg arg ...)

Widget Options:
name

Returns the object’s name. In this case, it should return “volume.”
width

Returns the number of voxels along the X-axis.
height

Returns the number of voxels along the Y-axis.
depth

Returns the number of voxels along the Z-axis.

voxelWidth
Returns the number of width of a voxel. This value will be equal to

worldmez, — worldmin,
width — 1

voxelHeight
Returns the number of height of a voxel. This value will be equal to

height — 1

voxelDepth
Returns the number of depth of a voxel. This value will be equal to

worldmer, — worldmin,
depth —1

bad [value]

If value is specified, this option sets and returns the default value returned
when an voxel value request is out of bounds. If value is not specified then
the its current value is returned.

world [point point]

If the two points are given, this command sets the domain of the volume
object, and returns it. If they are not given the current domain of the object
is returned.
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clear
Sets every voxel in the volume object to be equal to the “bad” value.
value point

Returns the value of the volume at the given point. If-point does not occur
at a voxel corner, trilinear interpolation is used to determine the value.

Returns the minimum value occuring in the volume.
max
Returns the maximum value occuring in the volume.
range
Returns the minimum and maximum values occuring in the volume.

create width height depth

(Re)create the volume object with the given dimensions. If the volume object
was previously created, that object will be destroyed before the new object
is created.

destroy

Destroy the volume object. This merely releases the memory consumed by
the object. It can later be recreated using the above create command.
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C.2.3 Surfaces

Tcl Command:
stype - Obtain surface type

Synopsis:
stype surfaceName

Description:

stype is a general surface command which returns the type of surface for
the given a surface name. This command will return a string depicting the type
of surface. If surfaceName is not a surface, stype will return the string

surfaceName is not a surface

If surfaceName is a surface, stype will return either “mesh,” “spline, “ or “sur-
face.”

Tecl Command:
slow - Get/Set low -hreshold value used to define isosurface

Synopsis:
slow surfaceName options]

Description:

If surfaceName was defined via a reconstruction algorithm (e.g. Marching
Cubes), it will have a field holding the low value of the threshold range. slow
allows the user to obtain this value. slow takes an optional floating point number
as the second argument. If this argument is given, the low threshold field will
be set to the given ~alue.

Tcl Command:
snigh - Ger/Set high threshoid value used to define isosurface

Synopsis:
shigh surfaceName {optionsi

Description:

If surfaceName was defined via a reconstruction algorithm (e.g. Marching
Cubes), it will have a field holding the high value of the threshold range. shigh
ailows the user to obtain this value. shigh takes an optional floating point
number as the second argument. If this argument is given, the high threshold
field will be set to :he given value.
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Tcl Command:
sthreshold - Get isosurface threshold range

Synopsis:
sthreshold surfaceName

Description:

sthreshold allows the user to obtain both ends of the threshold range defin-
ing a reconstructed isosurface. It returns a list of the form

{ low high }
where the two fields are the low threshold and the high threshold respectively.

Mesh Commands

Tcl Command:
mstats - Gather statistics about a polygonal mesh surface

Synopsis:
mstats meshName

Description:

The mstats command returns statistics about the polygonal mesh. It re-
turns a list with sublists having the following format

{ { vertices numVertices } { polygons numPolygons }
{ extents { minX minY minZ } { maxX max¥ maxZ } } }

Each sublist contains two fields; a string describing the statistic and its corre-
sponding value. Three statistics are provided currently. The first two are the
number of vertices and the number of polygons in the mesh. The last statistic
represents the world extents ( or bounding box ) of the surface.
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Spline Commands

Tcl Command:
spline - Operate on a spline

Synopsis:
spline splineName command

Description:

spline provides the interface to commands which operate on spline surfaces.
Currently, the command provided is npatches. This command returns the num-
ber of control patches defining the spline surface.

Tcl Command:
splmesh - Generate a polygonal mesh for spline surface

Synopsis:
splmesh splineName patch# [options]

Description:

splmesh approximates a spline surface patch with a polygonal mesh. The
options described below allow the user to control the precision with which the
polygonal mesh is generated. It will return the name of the new mesh surface.

Options:
~-ucurves talue

-ucurves specifies the number of steps along the parametric u axis. This
option controls the number of “horizontal” patches defining the resulting
mesh.

-veurves ralue

-veurves specifies the number of steps along the parametric v axis. This
option controls the number of “vertical” patches in the resulting mesh.
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Tcl Command:
splcontrol - Generate a mesh for a spline control patch

Synopsis:
splcontrol splineName patch#

Description:

splcontrol creates a polygonal mesh surface object of the requested control
polygon patch. splcontrol returns the name of the new polygonal mesh surface.
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C.3 Reconstruction Algorithms

Tcl Command:
march - Performs the Marching Cubes algorithm

Synopsis:
march volumeName [options]

Description:

The march command performs the Marching Cubes algorithm as described
in Chapter 3 on the previously created volume object given by volumeName. By
default, the isosurface corresponding to the range 0 < r < 255 is reconstructed.
This range can be altered using the options described below. This command
creates a new mesh surface object, and returns its name.

Options:
-low value

Specifies the ow value of the range for r.
-high value
Specifies the high value of the range for 7.

-status

Adds verbose output showing the changing states of the Marching Cubes
algorithm.
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Tcl Command:
track - Performs the surface tracking algorithm

Synopsis:
track volumeName [options]

Description:

The track command performs Shu and Krueger’s surface tracking algorithm
as described in Chapter 3. Again, volumeName is the name of a previously
created volume object. By default, the isosurface corresponding to the range
0 £ 7 £ 255 is reconstructed. The range can be altered using the options
described below. This command creates a new mesh surface object, and returns
its name.

Options:
-low value

Specifies the low value of the range for 7.
-high value
Specifies the high value of the range for 7.

-normals

This option tells the surface tracking algorithm to generate surface normals
for the vertices of each surface patch. The normals are generated using the
grey level gradients from the volume object.

—— X . . . P
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Tcl Command:
tricon - Performs the contour triangulation algorithm

Synopsis:
tricon volumeName [options]

Description:

The tricon command performs the contour triangulation algorithm as de-
scribed in Chapter 3. Again, volumeName is the name of a previously cre-
ated volume object. By default, the isosurface corresponding to the range
0 < 1 £ 255 is reconstructed. The range can be altered using the options
described below. This command creates a new mesh surface object, and returns
its name.

Options:
-low value

Specifies the low value of the range for r.
-high value
Specifies the high value of the range for 7.

-npts value

value states the number of points used to describe the contours on each data
slice. If value is set equal to zero, the number of points in the contours are
not altered. This is the default. If value> 0, then each contour is altered to
consist value points uniformly distributed along the original contour.

-status

Adds verbose output showing the changing states of the contour triangula-
tion algorithm.
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Tcl Command:
splcon - Performs the contour spline lofting algorithm

Synopsis:
splcon volumeName [options]

Description:

The splcon command performs the contour spline lofting algorithm as de-
scribed in Chapter 3. Again, volumeName is the name of a previously cre-
ated volume object. By default, the isosurface corresponding to the range
0 < 7 £ 255 is reconstructed. The range can be altered using the options de-
scribed below. This command creates a new spline surface object, and returns
its name.

Options:
-low value

Specifies the low value of the range for .
-high value
Specifies the high value of the range for 7.

-npts value

value states the number of points used to describe the contours on each data
slice. If value is set equal to zero, the number of points in the contours are
not altered. If value> 0, then each contour is altered to consist value points
uniformly distributed along the original contour. By default, value is equal
to twenty-five.

-status

Adds verbose output showing the changing states of the contour triangula-
tion algorithm.
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Tcl Command:
rawcon - Generates the contours on each data slice

Synopsis:
rawcon tolumeName {options]

Description:

The rawcon command generates a mesh object consisting of the contours
present on each data slice. Again, volumeName is the name of a previously
created volume object. By default, the isosurface corresponding to the range
0 < 7 £ 255 is reconstructed. The range can be altered using the options
described below. This command does not create a surface. That is, the contours
are not connected n any manner.

Options:

-low value
Specifies the ‘ow value of the range for .

-high wvaiue
Specifies the aigh value of the range for r.

-npts value
value states the number of points used to describe the contours on each data
slice. If value is set equal to zero, the number of points in the contours are
not altered. This is the default. If value> 0, then each contour is altered to
consist ralue points uniformly distributed along the original contour.

-status

Adds verbose output showing the changing states of the contour generation
algorithm.

PSPURE - [ .- . U g
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C.4 Metrics

Tcl Command:
GSAP - Compute global surface preservation

Synopsis:
gsap functionName surfaceName [options]

Description:

The gsap command computes the global surface area metric defined in Chap-
ter 4. The result of this command is a string of the form

{ gsap value }

where value is the value of gsap for the given function (functionName) and
surface reconstruction (surfaceName).

Options:
-relative

States that gsap should be computed relative to the ideal surface area (see
Equation 4.3 and Equation 4.2).
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Tcl Command:
PDP - Compute point distance preservation

Synopsis:
pdp functionName surfaceName [options]

Description:

The pdp command computes the point distance preservation metric defined
in Chapter 4. The result of this command is a string of the form

{ pdp { nsamples seed } { value error } }

where
nsamples - number of samples used to approximate Equation 4.6.

seed - seed presented to the random number generator
value - result of pdp

error - error interval for 95% confidence. Thus, the user can be 95% confident
that the actual value of the integral is in the range value % error.

Options:
-nsamples value

value specifies the number of samples used to approximate the integral given
in Equation 4.6. By default, this is equal to 125, 000.

-seed value

value specifies the initial seed for the random number generator.

Tcl Command:
PDP Image - Compute point distance preservation

Synopsis:
pdpImage functionName surfaceName

Description:

The pdpImage command computes the point distance preservation metric
defined in Chapter 4, and returns an eight-bit error image.
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Tcl Command:
IVP - Compute isovalue preservation

Synopsis:
ivp functionName surfaceName [options]

Description:

The ivp command computes the isovalue preservation metric defined in
Chapter 4. The result of this command is a string of the form

{ ivp { nsamples seed } { low high } { value error } }

where

nsamples - number of samples used to approximate Equation 4.7.

seed - seed presented to the random number generator

low, high - the threshold range on which value is based

value - result of ivp

error - error interval for 95% confidence. Thus, the user can be 95% confident
that the actual value of the integral is in the range value % error.

Options:
-nsamples value

value specifies the number of samples used to approximate the integral given
in Equation 4.7. By default, this is-equal to 125, 000.

-seed value
value specifies the initial seed for the random number generator.

-low value

This option alters the value of the low end of the threshold range. This
option defaults to the low value used during the reconstruction phase.

-high value

This option alters the value of the high end of the threshold range. This
option defaults to the high value used during the reconstruction phase.
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Tel Command:
IVP Image - Compute isovalue preservation

Synopsis:
ivpImage functionName surfaceName [options]

Description:

The ivpImage command computes the isovalue preservation metric defined
in Chapter 4., and returns the result as an eight-bit error image.

Options:
-low value
This option alters the value of the low end of the threshold range. This
option defaults o the low value used during the reconstruction phase.
-high value

This option alters the value of the high end of the threshold range. This
option defaults -o the high value used during the reconstruction phase.

e ——
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C.5 Rendering

The rendering module consists of two parts. The first is a new Tk widget capable of receiving
OpenGL rendering commands. The second are the commands which operate on those
widgets. The Tk widget does not encompass all abilities supported by the OpenGL graphics
programming library, and not all OpenGL functions have been implemented. Below is a
description of the Tk OpenGL raster widget, and descriptions of the Tcl implementations

of various OpenGL functions.

C.5.1 OpenGL Raster Widget

Tcl Command:
giRaster - Tk OpenGL widget

Synopsis:
glRaster pathName [options]

Description:

glRaster is an implementation of a raster widget that supports OpenGL
rendering. This widget supports the rgba and eight bit color models, depth
buffer, doublebuffering, a single overlay, and a single underlay. It, however, is
not a complete implementation of an OpenGL rendering window.

Options:
-height value

This option sets the height (in pixels) of the OpenGL raster window.
-width value
This option sets the width (in pixels) of the OpenGL raster window.

-cursor cursorName

This option allows the cursor to be changed for the window. cursorName is
any legal X11 cursor name. See the Tk options manpage for more informa-
tion on setting the cursor option.

-rgbmode, -rgb value

This is a boolean option. If value is true (e.g. 1), the shell will attempt to
create a widget capable of 24 bit color rendering. This option will cause the
widget creation to fail if the 24 bit color model is not supported by the host
machine. If this option is false, a eight bit rendering window will be created.

. s e s e e e . - i iy e J— - S
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-doublebuffer, -db value

These are boolean options which state that the shell should (or should not)
attempt to create a widget which supports double buffering. If the host ma-
chine does not support double buffering, this option will cause the command
to fail.

-buffersize, -bs value

This option specifies the size of the buffer for eight bit rendering widgets.
It controls the number of entries available in the widget’s colormap. If the
host machine does not support a buffersize of value, the widget creation will
fail.

-zbuffersize, -zbs value

This option specifies that a widget which supports a depth buffer should be
created, and the size of the depth buffer should provide at least value bits of
precision. If the host machine does not support a zbuffer size of value, the
widget creation will fail.

-redbits, -rb value
-greenbits, -gb value
-bluebits, -bb value
-alphabits, -ab cvalue

This collection of options specify the number of bits for the red, green, blue,
and alpha channels of a 24 bit color widget. If the host machine does not
support a 24 bit buffer defined by the given value’s, the widget creation will
fail. ’ '

Widget Command:

The glRaster command returns the p_a.tfma.me of the OpenGL raster widget
created. This string represents a new Tcl command with its own options. These
commands with the options take the following syntax:

pathName option ;arg arg ...]

Widget Options:
current
This option returns the id of the active buffer (e.g. overlay). The return

value will be 0. 1, or 2. These values represent the normal buffer, overlay, and

underlay, respectively. The active buffer receives any rendering commands
(see below).

mapped

mapped returns a boolean value which states whether the widget’s window
has been mapped to the screen. Rendering should not be performed until
the widget has been mapped. ' '
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configure

The configure command can be used to redefine an already created object.
options are the same as those that can be specified when the object was
created. If no arguments are given the configure command will return a
list of the functions defining characteristics in the following form:

{ { option value } ...}

Note: If the widget has already been “mapped”, its buffer characteristics
(e.g. doublebuffer, redbits, etc.) cannot be changed.

Buffer Command(s):

If the widget command has the following format

pathName bufferName option [arg arg ...]

then option should be one of the special buffer commands. In this form, buffer-
Name can be normal, overlay, or underlay.

Buffer Options:

exists
This option returns a boolean value indicating whether the given buffer exists
(has been created).

current
current returns a boolean value indicating whether the given buffer is the
active buffer. '

active
Assuming the given buffer had been created, active will make the buffer the
active buffer (e.g. the one receiving the graphics commands).

create [options)

create will attempt to create the given buffer with the specified options.
options can be any of the options available when creating the glRaster widget
except -width and -height. Attempting to create a buffer which already
exists is an error.

configure
The configure command can be used to redefine an already created object.
options are the same as those that can be specified when the object was
created. If no arguments are given the configure command will return a
list of the functions defining characteristics in the following form:

{ { option value } ...}

Note: If the widget has already been “mapped”, its buffer characteristics
(e.g. doublebuffer, redbits, etc.) cannot be changed.
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C.5.2 OpenGL Rendering Commands

The supported OpenGL functions are described in this section. To make the transition
of the Tcl implementations, the Tcl commands have been given the same names as the
OpenGL functions.

Tecl Command:
glAddColor

Synopsis:
glAddColor indez red green blue

Description:

glAddColor attempts to insert the color defined by the red, green, and blue
triple into the indez’h location of the colormap. Note that this command is only
valid when the active buffer is using the eight-bit (colormap) color model.

Tecl Command:
glAddColors

Synopsis:
glAddColors colormap

Description:

glAddColors attempts o insert the colors given by colormap into the col-
ormap of the active buffer. colormap is the colormap data structure defined
earlier in this appendix. Note that this command is only valid when the active
buffer is using the =ight-bit i colormap) color model.

e - - [ . g -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX C. RQS EXTENSION TO TCL/TK 128

Tecl Command:

glBegin/glEnd

Synopsis:
glBegin primitive
glEnd

Description:

This is the Tcl implementation of the OpenGL glBegin() function. Its only
parameter is the name of the OpenGL primitive. primitive can take one of the

following values:
points lines
line_strip line_loop
triangles trianglestrip

triangle fan quads
quad_strip  polygon

glBegin...glEnd is used to delimit a group of like primitives.

Tcl Command:
glCallList

Synopsis:
glCallList listNumber

Description:

glCallList executes the display list given by listVumber. The display list
given by list Number should have been previously defined using glNewList...glEndList.
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Tecl Command:
glClearColor

Synopsis:
glClearColor [options]

Description:

glClearColor clears the current color buffer to the last set color buffer
background color.

Options:
-color colorSpec

This option sets the clear (background) color before actually clearing the
current color buffer. If the current buffer uses the RGBA colormodel, then
colorSpec should be a RGBA list as defined at the beginning of this appendix.
Likewise, if the current buffer uses the colormap model, then colorSpec should
be an integral index into the buffer’s colormap.

Tcl Command:
glClearDepth

Synopsis:
glClearDepth [value]

Description:

glClearDepth clears the current depth buffer to the last set depth buffer
background color. If value is given, then the background color is first set to
value before it is cleared.

Tel Command:
glClipPlane

Synopsis: :
glClipPlane clipPlane plane

Description:

glClipPlane defines/sets the clip plane specified by clipPlane whose value
has the form clip_plane#. where # = 0.1,2, 3,4, or 5. plane is a list containing
four items; A, B. C, D. These items specify the equation of a plane; Az + By +
Cz+ D = 0. Note, that the dip plane still must be enabled (see giEnable).

——TT T T
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Tecl Command:
glColor

Synopsis:
glColor value

Description:

glColor sets the current drawing color for the active buffer. If the active
buffer uses the RGBA color model, then value should be a RGBA color list. If
it uses the colormap color model, then value should be an integral index into
the active buffer’s colormap.

Tel Command:
glColorMaterial

Synopsis:
glColorMaterial face mode

Description:

glColorMaterial causes a material color to track the current color. face
specifies whether the front, back, or front.and_back face material should track
the color. mode specifies which material property should track the color. mode’s

value can be either ambient, diffuse, ambieni_and_diffuse, specular, shininess, or
emission.

Tcl Command:
glCullFace

Synopsis:
glCullFace mode

Description:

glCullFace specifies which facets should be culled when facet culling is
enabled. mode can be either front, back, or front.and_back.
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Tcl Command:
glDeleteLists

Synopsis:
glDeleteLists start range

Description:

giDeleteLists deletes a contiguous group of display lists starting with the
display list specified by the integral id start. range specifies the number of
display lists to delete. If range is zero, nothing happens.

Tecl Command:
giDepthFunc

Synopsis:
glDepthFunc function

Description:

glDepthFunc specifies the depth comparison function used for depth buffer
comparisons. The legal values for function are

never less
equal  lequal
greater notequal
gequal always

The default value is less.
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Tecl Command:

glDisable/glEnable

Synopsis:
giDisable/glEnable cap

Description:

132

glDisable/glEnable disables/enables the given capability. cap can be one
of the following several values;

alpha._test

clip-plane0
clip_plane3
color_material

dither

lightl

light4

light7

line_stipple
mapl.index
mapl_texture_coord 2
mapl._vertex.3
map2_index
map2_texture_coord 2
map2_vertex.3
point_smooth
scissor_test
texture_2d
texture_gen.s

auto_normal
clip-planel
clip_plane4

cull face

fog

light2

light5

lighting

logic_op

mapl.normal
mapl._texture.coord.3
mapl_vertex_d4
map2.normal
map2_texture_coord_3
map2_vertex.4
polygon_smooth
stencil test
texture_gen.q
texture.gen.t

blend

clip_plane2
clip_plane5

depth_test

light0

light3

light6

line_smooth
mapl_color.4
mapl_texture_coord-1
map]l._texture_coord 4
map2_color4
map2_texture_coord-1
map2_texture_coord 4
normalize
polygon_stipple
texture_1d
texture_gen.r
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Tcl Command:
giFinish

Synopsis:
glFinish

Description:

glFinish causes the rendering pipeline to block until all previously executed
OpenGL commands have completed.

Tecl Command:

giFlush

Synopsis:

glFlush

Description:

glFlush forces the execution of all previously executed OpenGL commands
to complete in finite time.

Tcl Command:
glFrontFace

Synopsis:
glFrontFace mode

Description:

glFrontFace defines the vertex orientation of front facing polygons. mode
can be either cw or ccw. The first stands for “clockwise” and the second
“counter-clockwise.”
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Tel Command:
giFrustum

Synopsis:
glFrustum left right bottom top near far

Description:

glFrustum multiplies the current matrix by a perspective projection matrix.
left, right specify the coordinates of the left and right clipping planes. Likewise,
bottom, top specify the coordinates of the bottom and top horizontal clipping
planes. Finally, near, far specify the distances to the near and far clipping
planes.

Tcl Command:
glGetInteger

Synopsis:
glGetlInteger parameter

Description:

glGetlnteger is a partial implementation of the OpenGL g{GetInteger()
function. Currently, the only accepted values for parameter are red_bits, green_bits,
blue_bits, alpha_bits, and depth_bits. This function returns the current value of
the requested parameter.

Tcl Command:

glisList

Synopsis:
glIsList listID

Description:

glIsList returns a boolean value indicating whether listID is a defined (via
glNewList) display list.
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Tcl Command:
glLight

Synopsis:
glLight light parameter value

Description:

glLight is used to define the characteristics of a light source. The light
parameter has the form “lighti” where i = 0...7. parameter defines the charac-
teristic which will be set equal to value. Legal values for parameter are

ambient spot.exponent
specular spot.cutoff

diffuse constant_attenuation
position quadratic_attenuation

spot.direction linear_attenuation

The format of value depends on parameter. The first three parameters expect
an RGBA coior list. the next iwo expect a 3d or homogeneous coordinate, and
the list five expect a doating point value.

Tcl Command:

glLightModel

Synopsis:
glLightModel parameter value

Description:

glLightModel specifies light model characteristics. Legal values for parame-
ter are light_.model_.ambient, light_model_local_viewer, and light_model_two_side.
light_model_ambient axpects value to be a RGBA color list. The other two pa-
rameters expect value to be a string (either “true” or “false”).

Tecl Command:
giLineWidth

Synopsis:
glLineWidth value
Description:

glLineWidth specifies the width of rasterized lines. The default value is
1.0.
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Tcl Command:
glLoadIdentity

Synopsis:
glLoadIdentity

Description:

glLoadldentity replaces the current matrix with the identity matrix.

Tcl Command:
glloadMatrix

Synopsis:
glLoadMatrix matriz

Description:

glLoadMatrix replaces the current matrix with matriz; matriz is a list
containing sixteen elements specified in column-major order. That is, the list

{ao ay ...a15}

is interpreted as the following matrix

g G4 Gag a1 2
a; as ag a3
Qo Q¢ 010 0.14
as a7 ap 1 a15

Tel Command:
glMaterial

Synopsis:
glMaterial face parameter value

Description:

glMaterial specifies material characteristics for the facets of polygonal mod-
els. face specifies which side of the facets are affected by the material charac-
teristics. The legal values for this option are front, back, and froni.and_back.
parameter specifies the characteristic which will be set equal to value. Legal val-
ues for parameter are ambient, diffuse, ambient_and_diffuse, specular, emission,
shininess, or color_indezes. The first five parameter values expect value to be
a RGBA color list. shininess expects a floating point value, and color_indezes
expects value to be a list of indexes into the current colormap.
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Tecl Command:
giMatrixMode

Synopsis:
giMatrixMode mode

Description:

glMatrixMode specifies the current matrix (e.g. that which will receive
subsequent matrix operations). Three values for mode are accepted; modelview,
projection, and tezture.

Tcl Command:
glMult Marrix

Synopsis:
glMultMatrix marriz

Description:

glMultMatrix multiplies the current matrix by matriz. That is, if the
current matrix is A and matriz is B, then the current matrix is replaced by AB.

matriz is a list containing sixteen elements specified in column-major order.
That is. the list

{ Qg ay ... 015 }
is interpreted as the following matrix

g Q4 as 0.12
a1 a5 ag a3
Gy Qg (110 a14
a3 ar ay 1 a15
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Tel Command:
glNewList/glEndList

Synopsis:
giNewList listID mode
glEndList

Description:

glNewList. .. glEndList creates or replaces a display list. glNewList de-
fines a display list with calling id listID. All OpenGL commands which occur
after giNewList and before glEndList become part of the display list, and
can be executed at anytime by calling glCallList with the proper list/D. mode
states whether the display list should just be compiled (compile) or compiled
and executed (compile_and_ezecute).

Tecl Command:
glOrtho

Synopsis:
glOrtho left right bottom top near far

Description:

glOrtho muitiplies the current matrix by a orthographic projection matrix.
left, right specify the coordinates of the left and right clipping planes. Likewise,
bottom, top specify the coordinates of the bottom and top horizontal clipping
planes. Finally, near, far specify the distances to the near and far clipping
planes.

Tecl Command:
glPixelStore

Synopsis:
glPixelStore parameter value

Description:

glPixelStore sets the pixel storage modes. Legal values for parameter are

unpack_swap.bytes pack_swap_bytes unpack_Isb_first
pack.lsb first unpack.rowlength pack_row.length
unpack_skip_rows  pack-skip_rows unpack_skip_pixels
pack_skip_pixels unpack.alignment pack.alignment
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*swap.bytes and *Isb_first expect wvalue to be either “true” or “false.” All re-
maining parameters expect an integral value.

Tcl Command:
glPixelZoom

Synopsis:
glPixelZoom zfactor yfactor

Description:

glPixelZoom sets the pixel zoom factors for the giDrawPixels and glCopy-
Pixels operations.

Tcl Command:
glPointSize

Synopsis:
glPointSize value

Description:

glPointSize sets the diameter of rasterized points. The default value is 1.0.

Tcl Command:
glPolygonMode

Synopsis:
glPolygonMode face mode

Description:

glPolygonMode specifies how polygons are rendered. face specifies which
side of a poiygon (as defined by glFrontFace) is affected by this glPolygon-
Mode operation. face can be either front, back, or front.and_back. mode
specifies how then given facets will be rendered. Legal values are point, line,
and fill.
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Tel Command:
glPushMatrix/glPopMatrix

Synopsis:
glPushMatrix
glPopMatrix

Description:

These commands operate on the current matrix stack. giPushMatrix cre-
ates a copy of the current matrix, and places it on top of the current matrix
stack. glPopMatrix removes the top matrix from the current matrix stack.

Tecl Command:

glRasterPos

Synopsis:
glRasterPos z y [+] [v]

Description:

glRasterPos sets the current raster position to the coordinate given by
(z,y,2,w) where z and w are optional. z defaults to 0.0 and w defaults to 1.0.

Tel Command:

glRect

Synopsis:
glRect z y width height

Description:

glRect draws a rectangle whose lower left hand vertex is located at (z,y)
and whose dimensions are widthXheight.

—_— - - S e e s . - . . — =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX C. RQS EXTENSION TO TCL/TK 141

Tecl Command:

giRotate

Synopsis:
glRotate [options]

Description:

glRotate multiplies the current matrix by the rotation matrix specified
through options. By default, a rotation of 0 degrees about the z axis is per-
formed.

Options:
-angle value

Set the rotation angle to value

-x value
-y value
-z value

These three options define the axis of rotation. By default, the axis of
rotation (and the values default to) is (0.0, 0.0, 1.0)

Tcl Command:
giScale

Synopsis:
glScale [options]

Description:

glScale multiplies the current matrix by the scaling matrix specified through
options. By default. a scale of 1 is performed through each axis. That is, by
default no scaling will occur.

Options:
-x value
-y value
-z value

These three options define the amount of scaling in each axis.

_—— - - [ . v . - . -
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Tcl Command:
glShadeModel

Synopsis:
glShadeModel mode

Description:

glShadeModel allows the user to select flat or smooth shading.

Tcl Command:
glSwap

Synopsis:
glSwap

Description:

glSwap is th Tcl command to execute the glXSwapBuffers() function. It
will swap the back and front buffers when double buffering is being used.

Tecl Command:
glTranslate

Synopsis:
glTranslate [options]

Description:

glTranslate multiplies the current matrix by the translation matrix specified
through options. By default, a translation of 0 is performed along each axis.
That is, by default no translation will accur.

Options:
-X value
-y value
-z value

These three options define the amount of translation along each axis.
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Tecl Command:
glVertex

Synopsis:
glVertex position

Description:

glVertex defines a vertex to be rendered. position is a coordinate list as
defined in C.1.

Tcl Command:
glViewport

Synopsis:
glViewport [z y width height]

Description:

glViewport sets the viewport. If z, y, width, and height are given then
the viewport’s lower left corner will be located at (z,y) and have dimensions
widthX height. The viewport defaults to the entire window (widget).
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C.5.3 GLU Rendering Commands

Tecl Command:
gluCylinder

Synopsis:
gluCylinder [options]

Description:

gluCylinder draws a cylinder object. The characteristics of the cyiin-
der are specified via the options described below. The cylinder is oriented
along the z axis with its base at z = 0 and its top at z = height. This Tcl
command actually combines the following GLU functions; gluNewQuadric(),
gluCylinder(), gluQuadricOrientation(), gluQuadricNormals(), and
gluQuadricDrawStyle(). This command returns an id for the new quadric.
This id is used with other commands which manipulate quadrics.

Options:
-baseRadius value

Specify the length of the radius at the cylinder’s base. By default, value is
set equal to 1.0.

-topRadius value

Specify the length of the radius at the cylinder’s top. By default, value is
set equal to 1.0.

-slices value

Specify the number of subdivisions around the z axis. By default, this char-
acteristic is equal to 5.

-stacks value

Specify the number of subdivisions along the z axis. By default, this char-
acteristic is equal to 5.

-normals string

Specify what type of normals should be generated. string can be none, flat,
or smooth. By default, it equals none.

-orientation string

This option specifies the orientation of generated normals. If stringis outside,
then the normals will point away from the z axis. If string is inside, they
will point toward the z axis. By default, the orientation is outside.

-drawstyle string

-drawstyle specifies how the cylinder should be drawn. Legal values for string
are fill, line, silhouette, or point.
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Tcl Command:
gluDeleteQuadric

Synopsis:
gluDeleteQuadric quadricID

Description:

gluDeleteQuadric deletes the quadric defined by quadricID. Once quadri-
cID is destroyed, it cannot be referenced again.

Tcl Command:
gluDisk

Synopsis:
gluDisk [options]

Description:

gluDisk draws a disk object. The characteristics of the disk are specified via
the options described below. This Tcl command actually combines the following
GLU functions; gluNewQuadric(), gluDisk(), gluQuadricOrientation(),
gluQuadricNormals(), and gluQuadricDrawStyle(). This command re-
turns an id for the new quadric. This id is used with other commands which
manipulate quadrics.

Options:
-outerRadius value

Specify the length of the outer radius By default, value is set equal to 1.0.

-innerRadius value

Specify the length of the inner radius. By default, value is set equal to 0.0.
If the inner radius is not equal to 0.0, then a hole will be generated.

-slices value

Specify the number of subdivisions around the z axis. By default, this char-
acteristic is equal to 3.

-loops value

Speciiy the number of concentric rings about the disk’s center. By default,
this characteristic is equal to 5.

-normals string

Specify what type of normals should be generated. string can be none, flat,
or smooth. By default, it equals none.
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-orientation string

This option specifies the orientation of generated normals. If string is outside,
then the normals will point away from the z axis. If string is inside, they
will point toward the z axis. By default, the orientation is outside.

-drawstyle string

-drawstyle specifies how the disk should be drawn. Legal values for string
are fill, line, silhouette, or point.

Tcl Command:
gluLookAt

Synopsis:
gluLookAt [options]

Description:

gluLookAt defines a viewing transformation based on an eye point, a ref-

erence point, and an up vector. These are specified via the options, and are
described below.

Options:
-eye point

Specifies the location of the viewer. By default, this is set to {0.0,0.0,0.5}.
-lookat point

Specifies the reference point at which the viewer is looking. By default, this
is set to {0.0,0.0,0.0}.

-up point

Specifies what direction is up. By default, this is set to {0.0,1.0,0.0}.
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Tel Command:
gluNewQuadric

Synopsis:
gluNewQuadric

Description:

gluNewQuadric creates a new quadric object, and returns its id. This id
should be used with the other commands that operate on quadric objects.

Tecl Command:
gluSphere

Synopsis:
gluSphere [options]

Description:

gluSphere draws a sphere object. The characteristics of the sphere are spec-
ified via the options described below. The sphere is centered at the origin. This
Tcl command actually combines the following GLU functions; gluNewQuadrie(),
gluSphere(), gluQuadricOrientation(), gluQuadricNormals(), and gluQuadric-
DrawStyle(). This command returns an id for the new quadric. This id is used
with other commands which manipulate quadrics.
Options:
-radius value
Specify the length of the radius of the sphere. By default, value is set equal
to 1.0.
-slices value
Sets the number of subdivisions around the z axis. By default, this is set to
20.
-stacks value
Sets the number of subdivisions along the z axis. By default, this is set to
20.
-normals string
Specify what type of normals should be generated. string can be none, fiat,
or smooth. By default, it equals none.
-orientation string

This option specifies the orientation of generated normals. If stringis outside,

then the normals will point away from the z axis. If string is inside, they

will point toward the z axis. By default, the orientation is outside.
-drawstyle string

-drawstyle specifies how the sphere'should be drawn. Legal values for string
are fill. line, silhouette, or point.

et e P e i e - - -
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C.5.4 RQS Rendering Commands

This section describes some new Tcl commands that use OpenGL functions to render various
RQS objects. These objects include images, polygonal meshes, contours, error images (e.g.

via ivpImage), and individual slices of volumetric data.

Tcl Command:
glContour

Synopsis:
glContour volumeName [options]

Description:

glContour renders contours present in the volumetric data set define by
volumeName. options control what contours are rendered and how they are
rendered.

Options:
-help

Print out available options

-low value

This option sets the low threshold value for segmenting the volumetric data
set. By default, low is equal to 0.0.

-high value

This option sets the high threshold value for segmenting the volumetric data
set. By default, high is equal to 255.0.

-slice value
Specify which slice a contour should be generated on. By default, the first
slice is selected.

-npts value

Specify the number of points defining a generated contour. If value is a pos-
itive value, the contour will be redefined having value uniformly distributed
(with respect to arc length) points. By default, npts is equal to —1.

-display mode

Specify how a generated contour should be rendered. mode is one of the
following strings; polygon, spline, or control. If mode is polygon then the
contour is displayed as polygon. If mode is spline, the contour will be fitted
first by a uniform B-spline, and then rendered. Finally, if mode is control,
the control polygon of the uniform B-spline is rendered. By default, mode is
polygon.
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Tecl Command:

gllmage

Synopsis:
gllmage command fileName [options]

Description:

gllmage provides an interface to saving and retrieving images. If command
is get, a subimage is retrieved from the active rendering window and written
to fileName in a PBM format. If the rendering window uses the RGBA color
model, the image will be written using the raw PPM format. If the window uses
the colormap color model, the image will be written using the raw PGM format.
The retrieved subimage can be defined via options.

If command is put, the image stored in fileName is retrieved and rendered in
the active rendering window at the current raster position (see gilRasterPos).
The image type must match the widget’s color model. For example, if the image
is stored in the PPM format. the active rendering widget must use the RGBA
color model.

Get Options:
-x value

Specify the X coordinate of the lower left hand corner of the subimage to be
retrieved. By default, this option is equal to 0.0.

-y value

Specify the Y coordinate of the lower left hand corner of the subimage to be
retrieved. By default, this option is equal to 0.0.

~-width value

Specify the width of the subimage to be retrieved. By default, this option is
equal to the width of the active rendering widget.

-height value

Specify the height of the subimage to be retrieved. By default, this option
is equal to the height of the active rendering widget.
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Tecl Command:

giMesh

Synopsis:
glMesh meshName

Description:

glMesh will render the polygonal mesh surface given by meshName. Typ-
ically, meshName will be the surface name returned by one of the available
surface reconstruction algorithms (e.g. march).

Tecl Command:
glMeshErrorImage

Synopsis:
glMeshErrorImage meshName min Val mazVal

Description:

giMeshErrorImage renders the specified RQS mesh surface (meshName)
in the given mode as an error image. From this, it is assumed the mesh data
is a pointer to an index into the current colormap. Thus, the current rendering
widget must be in color index mode. The mesh data is usually set by making
a prior call to either ivpImage or pdpImage. minVal and mazVal give the
minimum and maximum values of the vertex data. These are used to scale the
vertex data.

Tecl Command:
gl VolumeSlice

Synopsis:
glVolumeSlice volumeName slice [options]

Description:

giVolumeSlice gives allows slices of volumetric data to be rendered as im-
ages in a active glRaster widget. The volumetric data is specified through
volumeName, and the slice to render is slice. The options described below allow
segmentation to be performed on data slice before it is rendered.

Options:
-low value
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Specify the low end of the segmentation range. By default, the low threshold
value is greater than the high threshold value. When this relationship holds,
no segmentation is performed.

-high value

Specify the high end of the segmentation range. By default, the high thresh-
old value is less than the low threshold value. When this relationship holds,
no segmentation is performed.
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