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ABSTR A C T

T h is  d isse r ta t ion  presents  resu lts  from th ree  areas of app licab le  m a t r ix  analysis: 
s t ru c tu re d  eigenvectors, in te r lac ing , a n d  m atr ix  com pletion  problem s. A l th o u g h  these  
are d is t inc t  topics, th e  s t r u c tu re d  eigenvector results  provide connections .

It is a  s tra igh tfo rw ard  m a t r ix  ca lcu la tion  th a t  if A is an  e igenvalue  o f  A. .r an 
associa ted  s t ru c tu re d  e igenvec to r  and  a  the  set of positions in which x  has  nonzero 
entries, then  A is also an  eigenvalue of the  su b m atr ix  of .4 t h a t  lies in th e  rows and  
co lum ns indexed by a.  We p resen t  a  converse to th is  s ta te m e n t  an d  a p p ly  th e  results  
to in ter lac ing  and  to  m a tr ix  com ple tion  problems. Several corollaries a re  o b ta in ed  
th a t  lead to  results  concern ing  th e  case of equality  in the  in te r lac ing  inequalit ies  
for H erm it ian  m atr ices, an d  to  the  prob lem  of th e  rela tionsh ip  a m o n g  eigenvalue 
m ultip lic ities  in various subm atrices .

Classical in ter lac ing  for an  H e rm it ia n  m atr ix  .4 m ay  be viewed as desc r ib ing  how 
m any  eigenvalues of A  m ust  b e  c a p tu re d  by intervals d e te rm in e d  by e igenvalues  of a 
principal su b m a tr ix  of A.  W e generalize  the  classical in ter lac ing  th e o re m s  by using 
s ingular values of off-diagonal blocks of A  to  c onstruc t  e x ten d ed  in tervals  t h a t  c a p tu re  
a larger num ber  of eigenvalues. T h e  union  of pairs of intervals is also d iscussed , and  
app lications  are  m entioned .

T h e  m atr ix  com pletion  resu l ts  t h a t  we present include th e  positive  sem idefin ite  
cycle com pletion  prob lem  for m atr ices  w ith  d a ta  from th e  com plex n u m b e rs ,  d is tance  
m atr ix  cycle com ple tab ili ty  cond it ions , the  P -m a t r ix  com ple tion  p ro b le m , an d  the  
to ta lly  nonnegative  com ple tion  problem . We show th a t  the  positive sem idefin ite  cycle 
com pletion  prob lem  for m atr ice s  w ith  complex d a ta  is a  special case of a  la rger  real 
positive sem idefin ite  com ple tion  problem . In add ition , we ch a rac te r ize  th o se  g raphs  
for which th e  cycle cond it ions  on all m in im al cycles im ply  th a t  a  p a r t i a l  d is tance  
m atr ix  has a d is tance  m a tr ix  com ple tion . We also prove th a t  every  c o m b in a to r ia l ly  
sym m etr ic  part ia l  P - m a t r ix  has  a  P - m a t r ix  com pletion and  we c h a ra c te r iz e  th e  class 
of g raphs  for which every p a r t ia l  to ta lly  nonnegative m a tr ix  has a  to ta l ly  n onnega tive  
com pletion. T h e  s t ru c tu re d  e igenvec to r  results are  used to give a  new p roo f  of the  
the  m ax im u m  m in im um  eigenvalue com pletion  p roblem  for p a rt ia l  H e rm i t ia n  m atr ices  
w ith  a chordal graph .

viii
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Chapter 1

Introduction

T his  d isse r ta t io n  p resen ts  results  from th ree  areas of m a t r ix  theory: s t ru c tu re d  

eigenvectors  (c h a p te r  2), in terlac ing  (chapter 3), and  m a tr ix  com ple tions  (ch ap te r  4). 

A l though  these  a re  d is t in c t  topics in m atr ix  theory, th e  s t r u c tu r e d  eigenvector results  

of c h a p te r  2 p rovide  connections. We will begin by p rov id ing  som e no ta t ion  and  

background  m ate r ia l  followed by brief  in troduc tions  to  th e  ch ap te rs .  More deta iled  

background  an d  in tro d u c tio n s  are provided w ith in  each of t h e  chap te rs .

1.1 N otation and M atrix Theoretic Background

T h e  set of all m-by-rc m atrices  with en tries  from a  field F  will be deno ted  by 

M m , n { F ) ,  a n d  if m  = n.  M Utn( F )  will be ab b re v ia te d  to  M n ( F ) .  If F  =  C, the  

com plex  num bers ,  we will o ften  sho rten  this no ta t ion  to  M m,n . For A  €  M m,n ( F )  the  

n o ta t io n  A  =  (a ,j)  will ind ica te  th a t  the  entries  of A  a re  a , j  6  F, i = 1,2. 

j  =  1 ,2 -----, n.

For A  6  A/m,n ( F ) . a  C  {1, 2 , . . . .  m}, and  8  C  { 1 , 2 , . . . ,  n} .  th e  su b m a tr ix  of 

A  lying in th e  rows indexed  by a  and the  colum ns indexed  by 3  will be deno ted

o
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3

A [a; ,3]. S imilarly. A {a ; t3 )  is th e  m a tr ix  tha t  results  from th e  de le t ion  of the  rows 

indexed by a  an d  the  co lum ns  indexed  by 3. If A  €  M n ( F ) a n d  a  =  3 ,  th en  the  

principal s u b m a tr ix  A [a; a] is ab b re v ia te d  to A  [a] an d  th e  c o m p le m e n ta ry  principal 

su b m atr ix  is A  ( a ) . In th e  s a m e  fashion, for a vector x  €  F n , x  [a] deno tes  th e  entries 

of x  in the  positions indexed  by a  and  x ( q )  denotes th e  c o m p le m e n ta ry  vector. YVe

will often d en o te  th e  sets  { 1 .2  m} and  {1,2, . . . . n }  by M  a n d  N ,  respectively.

For q ,  3  Q N  th e  set d ifference a  — 3  denotes the  set of all e lem en ts  in a  th a t  are  

not in 3. T h e  set N  — a  will also be denoted by ctc an d  N  — ,3 by 3 C. Note th a t  

this m eans th a t  A  (o : 3)  =  A  [o c: 3 C\ . T h e  notation a  +  {n} will ind ic a te  th e  set th a t  

results from a d d ing  n to  every  e lem ent of a.  For exam ple , if a  =  { 1 .3 .4 }  and  n =  4. 

then  q  +  {n} =  {5. 7.8} . T h e  ca rd ina l i ty  of a set a  will be  d e n o te d  by | a |  .

1.1.1 Eigenvectors and Eigenvalues

For an  n -by-n  m a tr ix  ,4 w i th  en tr ies  from a field F, th e  nonzero  vec to r  x  is a  right 

eigenvector  of .4 associa ted  w i th  A if A x  = Xx  for some scalar A. S im ilarly , y  ^  0 is a 

left e igenvector  if y '  A  =  X y m. T h e  scalar A is an eigenvalue of  .4 a n d  <r (.4) will deno te  

the  set of all eigenvalues of .4. some of which may lie only in an  ex tens ion  field of 

F.  T h e  subspace  of F n sp a n n e d  by th e  set of all e igenvectors  of A  a ssocia ted  with 

A is called th e  eigenspace o f  .4 associated with A. T h e  d im ension  of th e  eigenspace 

of A  associa ted  w ith  A is th e  geometric  multiplicity  of A as an  eigenvalue o f  A and  is 

deno ted  th ro u g h o u t  by g . \ ( A ) .  T h e  principal o f  biorthogonal ity  (see, e.g. theorem

1.4.7 [H J1]) says th a t  if A, 6  cr(A) w ith  A ^  p,  th e n  any  left e igenvector of A 

corresponding  to  p  is o r th o g o n a l  to  any  right e igenvector of A co rre spond ing  to A.
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1.1.2 Classical Interlacing Inequalities

An im p o r ta n t  result concerning the  eigenvalues of H e rm i t ia n  m atr ices  is the  

in terlac ing  eigenvalues theorem  for bo rdered  m atr ices  (see, e.g. th eo re m  4.3.S [ H J 1].) 

Let A  E M n be  H erm it ian  and  o  C  N  be such th a t  | a |  =  n  — 1 a n d  let the  o rdered  

eigenvalues of .4 be Ai <  A2 <  • • • <  An and  those  of A  [a] be  p i  < p 2 <  • • • <  p n- \ -  

T hen

A l  <  H i  <  A 2 <  • • • <  A „ _ i  <  f l n - l  5 ;  A n .

T h a t  is. th e  eigenvalues of an H erm itian  m atr ix  an d  any of its (n  — l)-by-(rc — 1) 

p rinc ipal subm atrices  ‘‘in terlace. '’ A n o th e r  way th a t  classical in ter lac ing  m ay  be 

viewed is t h a t  each in terval [A,, A ,+ i] . i =  1 , 2 , . . . ,  n —1 conta ins  a t  least one eigenvalue 

from every (n — l ) -b y -(n  — 1) p r inc ipal s u b m a tr ix  of .4. In add it ion , 

for j  7̂  i th e  in terval [Aj, AJ+i] cap tu res  /zs in which s  ^  t. However, we m ay  also say

th a t  every interval , i  =  1 ,2 ......... n — 2 conta ins  a  d ifferen t eigenvalue of .4

( th e  o th e r  two eigenvalues are in ( — 0 0 , / ^ ]  and  [/*„_!, 0 0 )). As in te r lac ing  is app lied  

to  successively sm aller  principal su bm atrices  we find th a t ,  if Ai <  A2 <  ■ • • <  An_p 

are  th e  eigenvalues of a  principal (n  — p)-by-{n  — p) su b m a tr ix  o f  .4, then  the  in terval 

A,-, A j , 0 <  i < j  < n — p contains a t  least j  — i — p  +  1 e igenvalues of .4.

1.1.3 The Singular Value D ecom position

A nothe r  im p o r ta n t  result is the  s ingular  value decom position  of a m a tr ix  (see. 

e.g. theo rem  7.3.5 [HJ1]). For m  > n,  if th e  m atr ix  A  €  M m_n t h e n  A  m ay  be w r i t ten  

in th e  form A  =  V S  IT’* in which V  €  M m , W  E M n a re  u n i ta ry ,  and

diag  (crj, cr21 • • • - Gn)v _

0
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{diag ( d i , d 2, - . .  , d n ) d en o te s  th e  diagonal m a tr ix  w ith  th e  d, on  the  diagonal). T h e  

values <7, are  th e  singular  values of A  and  are  th e  nonnega tive  square  roots  of the  

eigenvalues of A A ’ . U sually  th e  singular values are  o rdered  in a  nonincreasing fashion, 

i.e. <7i >  er2 >  • • • >  a n >  0. Note th a t  when it is convenient we will th in k  of A  as 

having singular values > cr2 > ■ ■ ■ > crn > crn+1 =  • • • =  crm =  0. T he  co lum ns of V  

are  un it  eigenvectors of A  A ’ an d  are  called th e  left s ingular  vectors  of ,4. Similarly, the  

colum ns of W  are  un it  e igenvectors  of A ' A  and  are called  th e  right s ingular  vectors

d i a g ( a x, 0 2 , . . . , ( J rn) 0of .4. T h e  case in which n > m  is analogous for S  =

T h e  m atr ix  A  A '  is H erm it ia n  and since th e  singular values are th e  nonnegative  

square  roots of the  e igenvalues of .4.4’ it follows th a t  th e re  is also an  in te r lac ing  

theo rem  for th e  singu lar  values of a m atrix . Let A  £  iV/m,n be given and  let .4 be the  

m atr ix  ob ta ined  by de le t ing  one  colum n from A.  For m  > n  let a x >  a 2 >  • • • >  crn >  0 

be the  singular values o f  .4 an d  cr\ >  <t2 >  • • • >  <3-n_i >  0 th e  singular values of .4. 

Then

>  d -! >  CT2 >  (72 >  • • • >  S’n—l >  a n >  0 .

T here  are  analogous s ingu la r  value in terlacing results for m  < n and  if a  row of .4 is 

deleted  instead  of a  co lum n.

O ften  tim es the re  a re  close analogues to eigenvalue resu lts  for the  s ingular values. 

T his  is due  to the  fact t h a t  for the  m atr ix  A  £  M m,„ th e  m a tr ix

0 .4

A '  0
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is H e rm it ia n  and  has eigenvalues th a t  are  plus an d  m inus the  singular values of .4 

(w ith  possibly som e e x t r a  zeros). This  is a  fact d a t in g  back to  W ie land t  [Wi] a n d  is 

used  in b o th  c h a p te rs  2 and  3 of this d isse r ta t io n  to  generalize the  m ain  resu lts  of 

these  chap ters .

1.1.4 Jacobi’s Identity

If /I  €  M n {F)  is nonsingular, th en  th e  m inors  of ^4-1  are  re la ted  to  those  of .4 

by  J a c o b i ’s identity . J a c o b i ’s identity  s ta te s  (see, e.g. section 0.8.4 [ H J 1]) t h a t  for 

a .  [3 C  N , bo th  n o n em pty , in which |a |  =  |/3|

d e t  A ' 1 [a;fl] =  ( _ i ) '< “ >+»<0) d-e- ( i . i )
1 J v ' de t  A

in  which s { a )  =  j -  Observe th a t  if a  a n d  f3 have card inali ty  1. i.e. a  =  {/}, 

(3 = { j } ,  1 <  i . j  <  n , th e n  ( 1. 1) becomes

d e t A [(3 -  { j } ; a -  {i}}
ij ’ d e t / I

in which a ~ l deno tes  th e  i , j  en try  of A ~ l . T h is  expression is the  ad jo in t  fo rm ula  

for th e  inverse of a  m a tr ix .  Thus. J a co b i’s id e n t i ty  is a generalization  of th e  a d jo in t  

form ula.
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1.1.5 The Schur Complement

For 0 ^  a  C  ;V and  .4 £  M n. if A [a] is nonsingular, th e n  th e  Schur  complement  

o f  A  [a] in A  is the  m a tr ix

A  [ a c] — A [a1-': a] (A [a ] ) -1 A [a; a c] .

Let A be part i t ioned  as

A =
A l l  A i 2 

A 2 1  A 2 2

in which A n  is nonsingular. T h e n

/  0 

A2l A Hl /

A n  A 12 

A 2 1  A 2 2

/  - A n l A u

r 
-----
O

•

O 1 1 0 1
in which S  is th e  Schur com plem en t  of A n  in A. It is easy  to  see t h a t  A is then  

nonsingu lar  if and  only if S  is nonsingular and  det A =  de t  A n  d e t  S.  M oreover, A is 

positive (sem i)defin ite  if a n d  only  if 5  is positive (sem i)defin ite . For m ore in form ation  

on  Schur com plem ents  see [C].

1.2 Graph Theoretic Background

M any of the  g raph  th eo re t ic  definitions and  no ta tion  used  in th is  d isse r ta t ion  are  

ad o p ted  from [G]. An undirected graph is a pa ir  G =  ( K  E )  in which V  is a  finite 

se t  called the  vertex set  a n d  th e  set, E.  called th e  edge set , con ta ins  uno rdered  pairs 

of e lem ents  from V  called  th e  edges of G.  For v t, vj £  V  th e  edges {vi.Uj} 6  E  will 

o f ten  be abb rev ia ted  to ViVj. If th e  graph is a d irec ted  g ra p h  th e  edge set contains
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ordered pairs. In th is  d isse r ta t ion  all of the g raphs  will be u n d irec ted .  So, graph will 

m ean an u nd irec ted  g ra p h  w ithou t  loops or m ultip le  edges. If G  =  ( K  E )  is a g raph  

and  V{Vj 6  E  th e n  u,- a n d  vj are  said  to be adjacent.  A g raph  is sa id  to  be complete  

if every vertex  is a d jacen t  to every o th e r  vertex. T h e  com ple te  g rap h  on n vertices is 

denoted  K n.

If G =  {V. E )  a n d  H  =  ( W . F )  are graphs for which W  C  V  and  F  C  E.  

then  H  is a  subgraph of  G.  If W  C  V  then th e  subg raph  G\v  =  (W ,  E \y )  in which 

E w  — {V{Vj €  E  : Vi, Vj G IF} is called the subgraph o f  G  induced by W.  An induced 

subgraph  is called a  clique if it is a  com plete g raph . A clique th a t  is not properly 

con ta ined  in any  o th e r  clique is called maximal.  T h e  g rap h  H  =  (V, F)  is called a 

supergraph  of G  =  (V. E )  if F  D E .

A path  in a  g rap h  G  =  (V. E )  is a  sequence of vertices ( iq , u2, . . . ,  iq.) such th a t  

UiUi+i 6  E .  T h e  g rap h  is sa id  to be connected if th e re  is a  p a th  from  every vertex to 

every o th e r  vertex . If a  g rap h  is not connected, th en  each m ax im a l  connected  induced 

subgraph  is called a  c omponent  of th e  graph.

A p a th  th a t  begins a n d  ends w ith  the  same vertex , i.e. (iq , u-2, . . . .  iq, iq), k  > 3. 

is called a  cycle and  a  simple cycle is a cycle for which th e  vertices iq, i>2, . . . ,  iq 

are d is t inc t .  In th is  d isse r ta t io n  th e  te rm  cycle will m ean  a  s im ple  cycle. T he  cycle 

(iq, • ■ • - vki ) is ca lled  a  k-cycle an d  is denoted by C k ■ A chord  of a  cycle Cjt, k  >  4. 

in a  g raph  G  is an  edge of G  be tw een  two nonconsecutive vertices  of Ck.  A chordless  

cycle is a  s im ple  cycle t h a t  has no chords. A m in im a l  cycle in a  g ra p h  G  is an  induced 

subgraph  of G  t h a t  is a  chordless cycle. A connected g raph  w ith  no cycles is called a 

tree. A k-wheel  is a  ( k  — l)-cycle  w ith  one additional vertex  t h a t  is ad jacen t  to every 

vertex  of th e  cycle a n d  is deno ted  by W k .
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Figure 1.1: W heel. Wk

If a  g raph  con ta ins  no chordless cycles of length 4 or m ore, th e n  th e  g raph  is said 

to be chordal. For exam ple,

G

Figure 1.2: E xam ple  o f  a  non-chordal (G'i) an d  a chorda l  g ra p h  (6 2 ).

T h e  g raph  G\  is no t chorda l  since ( 1 . 2 , 3 . 4 , 1) is a  cycle of leng th  4 th a t  does not 

con ta in  a  chord. However, th is  sam e cycle in the  g raph  6 2  con ta ins  th e  chord {2,4} 

and  all o ther  cycles of leng th  4 or m ore also conta in  a  chord. C h o rd a l  g raphs  have 

received considerable  a t te n t io n  largely due  to  the ir  im p o r ta n c e  in th e  s tu d y  of perfect 

e lim ina tion  schem es for G auss ian  e lim ina tion  [G]. T h is  class of g raphs  is also very 

im p o r ta n t  in th e  s tu d y  of m a t r ix  com pletion problem s as will be  d iscussed in th e  next 

section.

G raphs  a re  o f ten  used to  rep resen t the  ze ro /nonzero  s t ru c tu re  of a  m a tr ix .  For an 

n -by -n  H erm it ian  (or sy m m etr ic )  m a tr ix  A, th e  g raph  (7 (A )  =  ( N . E ) is th e  g raph
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on n vertices for which { i . j }  is an  edge  of G '(A) exactly  w hen a XJ ^  0 for i ^  j  (loops 

are  o m it te d  by convention, so w h e th e r  or not an is zero is ir re levan t.)  For exam ple, 

th e  m atr ix

1 2 - 3  0

has the  associa ted  g raph

A  =
2 - 1  4 0

- 3  4 0 2

0 0 2 3

F igu re  1.3: G  (A)

A new g rap h  may be c o n s tru c te d  from a  given g raph  G  by using one  of several 

opera tions  on th e  edges a n d /o r  vertices of G.  An edge subdivis ion  of a  g ra p h  G  on n 

vertices is a  g raph  G'  on n -f 1 vert ices  th a t  results from  replacing  an  edge  of G with 

two edges and  a  vertex betw een:

• --------------------•   ►  • --------------- o --------------- •

F igure  1.4: Edge subdivision.

A vertex part i t ion  of G  (n  vertices) is a graph  G' {n +  1 vertices) in which a vertex  

(of degree a t  least 1 ) in G  is rep laced  by two ad jacen t vertices t h a t  p a r t i t io n  the  

neighbors of th e  original vertex: e.g.
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Figure  1.5: Vertex partition .

We say th a t  a  g raph  G 2 is homeomorphic  to  a  g raph  G\  if G 2  m ay  be  o b ta in ed  

from G 1 via a  finite sequence  of (a t  least one) edge subdivisions. T h e  g ra p h  G'2 is 

built f ro m  G\  if Cr'2 m ay be o b ta in e d  from G\  via a finite sequence  of (a t  least one) 

vertex  pa rt i t ions . N ote  t h a t  edge  subdiv is ion  is a special case of ve rtex  part i t ion ing , 

so th a t  hom eom orph ism  is a  special case of “built f rom .'1 T h ese  op e ra t io n s  will be 

used in chap te r  4 in th e  d is tan ce  m a tr ix  com pletion problem .

1.3 Partial M atrices

A partial matr ix  is one in which som e entries are  specified over a field F, while 

the  rem ainder  of th e  en tr ies  a re  unspecified and  free to  be chosen from  F. It will be 

assum ed  th ro u g h o u t  th is  d isse r ta t io n  th a t  the  diagonal en tr ies  a re  specified. In m any 

cases this is a  n a tu ra l  a ssum p tion . A combinatorially s y m m e t r ic  part ial  m a t r i x  A is 

one in which aji is specified w henever a q  is specified. For exam ple ,

1 0 2 •?

1 - 1 1 ■?

_ 2 3 0 5

? •? 1 - 4
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in which ’? ’ indicates a n  unspecified  position, is a  com b ina to r ia l ly  sym m etr ic  p a r ­

tia l  m a tr ix .  A partial  s y m m e t r i c  (Hermi t ian)  matr ix  is a  com b ina to r ia l ly  sym m etr ic  

part ia l  m a tr ix  in which if a,y is specified, then  a Jt- =  a ,j  (a,-,- =  a , j ) .  T h e  specified 

positions of an  rc-by-n com bina to r ia l ly  sym m etric  p a rt ia l  m a tr ix  .4 m ay  be  described 

by an und irec ted  g rap h  G ( A )  on n vertices in which th e re  is an  edge betw een vertex  

i and  ve rtex  j  exactly  w hen a ,j  is specified. Loops are  o m it te d  by convention.

A complet ion  of a  pa r t ia l  m a tr ix  is a choice of values for th e  unspecified entries 

resu lting  in a  conventional m a tr ix .  A matrix  completion problem  asks when a  given 

part ia l  m a tr ix  has a com ple tion  w ith  some desired property .

1.4 Overview

Bv s t ru c tu re d  e igenvectors  we m ean  eigenvectors t h a t  have 0 ’s in (a t  least) ce rta in  

specified positions. If th e  n -b y -n  m a tr ix  A  has a s t ru c tu re d  e igenvec to r  associated

x
with A of th e  form

0

, x  €  F k. 0 < k < n, then  by p a r t i t io n e d  m a tr ix  m ult ip l i ­

cation. A is also an  eigenvalue of .4 [a] in which a  =  {1 ,2 , w ith  associated

eigenvector x.  N ote  t h a t  eigenvalues are  invariant under  p e rm u ta t io n  sim ilarity , so, 

there  is no loss of genera li ty  in assum ing  a  =  {1.2, . . . , & } .  In c h a p te r  2 we seek a 

converse: if A is an e igenvalue o f b o th  A  [a] and  of .4, is th e re  a  s t r u c tu re d  eigenvector

of A  associa ted  w ith  A of the  form

0

,.r 6  F k, 0 <  k < n? As will be  shown, the

n um ber  of linearly in d ep en d en t  left eigenvectors of this special form  plus the  n um ber  

of linearly  independen t  righ t e igenvectors  w ith  the  given s t r u c tu re  is a t  least gx + g 2 — k  

in which g x and  g2 are  th e  geom etric  m ultiplicities of A as an  e igenvalue of .4 and
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A  [ a ] , respectively. This  result has rem a rk a b ly  m any im plications as will b e  seen in 

chap te rs  3 an d  4.

T he  s t ru c tu re d  eigenvector results  of c h a p te r  2 are used in c h a p te r  3 to  c h a ra c te r iz e  

w hat we call in terlacing d iagram s th a t  d esc r ib e  the  rela tionships of th e  geom etric  

m ultip lic ities  of a given eigenvalue a m ong  various subm atrices. In c h a p te r  3 we also 

use s ingu lar  values to  ex te n d  classical interlacing in te rvals .  If 

A i ( P )  <  A2 ( P )  <  ••• <  An_ p (B )  a re  t h e  eigenvalues of th e  (n  — p ) - b y - ( n  — p) 

su b m a tr ix .  B .  of the  m atr ix

B  C
.4 =

C “ D

th en  th e  s ingular  values of the  off d iagonal block, C.  are used to e x te n d  th e  classical 

in terlac ing  intervals [A,- ( B ) , Xj {B)\ .  0 <  i <  j  <  n — p and  possibly c a p tu r e  m ore 

th a n  th e  j  — i — p  +  1 eigenvalues of A  t h a t  classical in terlacing insures. T h e  m ain

result o f  c h a p te r  3 says th a t  the  in terval ^  — yJS2 +  t +  ^ 8 2 +  in w hich  crk is 

the  k th largest singular value of C.  t =  an([ ^ =  c a p tu r e s  at

least j  — i — k  + 2 eigenvalues of A. If B  is (n  — L)-by-(n — 1). and  k  =  2. t h e n  <r2 =  0 

and  the  in terval becomes a classical in te r lac ing  interval. In this case, for j  =  i +  I 

th e  results  of c h ap te r  3 say th a t  the  in te rva l  contains at least (i +  1) — i — 2 +  2 =  1 

eigenvalue of .4. T hus , classical in te r lac ing  is a  special case of th e  m a in  resu l t  of 

ch ap te r  3.

In c h a p te r  4 we present results  concern ing  a  variety  of m a tr ix  com ple tion  p rob lem s. 

A m ong these  are the  positive definite  cycle com ple tion  problem  for m a tr ic e s  w i th  d a ta  

from th e  com plex num bers, d is tance  m a t r ix  cycle com ple tab ili ty  c o n d it io n s ,  the  

P -m a t r ix  com ple tion  problem, an d  th e  to ta l ly  nonnegative com ple tion  p ro b le m . We 

show th a t  th e  positive  definite cycle co m p le tio n  problem  for m atr ice s  w i th  com plex  

d a ta  is a  special case of a  larger real pos it ive  defin ite  completion prob lem . In a d d it io n
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we character ize  those graphs for which th e  cycle conditions on all m in im a l  cycles 

im ply  th a t  a part ia l  d istance  m atr ix  has a d is tan ce  m atr ix  com pletion. W e also prove 

t h a t  every com binatoria lly  sym m etr ic  p a r t ia l  P -m a t r ix  has a P - m a t r ix  com ple tion  

a n d  we character ize  th e  class of g raphs  for which every pa rt ia l  to ta l ly  nonnegative  

m atr ix ,  th e  g raph  of whose specified en tr ies  is in th e  class, has a  to ta l ly  nonnegative  

com pletion . T h e  s tru c tu re d  eigenvector resu lts  of chap ter  2 are  used to  solve the  

m ax im u m  m in im um  eigenvalue com ple tion  p rob lem  for pa rt ia l  H erm it ian  m atr ices  

w ith  a chordal g raph  in a  new way.
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Chapter 2

Structured Eigenvectors

It is a  s tra igh tfo rw ard  p a r t i t io n ed  m a tr ix  ca lcu la tion  th a t  if A is a n  eigenvalue 

of A, x  a n  assoc ia ted  eigenvector, and  a  th e  set of positions in which x  has en tr ies  

no t equal to  zero, th e n  A is also an eigenvalue of A [a]. Converses to  th is  s ta te m e n t  

a re  known in ce r ta in  special s itua tions .  For exam ple, it has been know n for some 

t im e  (an d  can be deduced  from theo rem  5 [Dl]; see also [ J K l ] ) th a t  if A €  M n ((D) is 

H erm it ian ,  | a |  =  n — I, an d  A £  R  is an  eigenvalue of b o th  A an d  A [a], i.e. a  case of 

equa li ty  in th e  in ter lac ing  inequalities, then  th e re  is an  e igenvec to r  

x  =  ( j j ,  £ 2, . . . ,  x n ) of A associa ted  w ith  A such th a t  if i (fc a  th e n  r ,  =  0. For 

a  general m a tr ix  A £  M n ( F )  and  A an eigenvalue of A w ith  geom etric  m u lt ip l ic i ty  

fc, the  ran k  of A — X I  is n — k.  T h e n  for |a |  >  n — k  th e  rank  of A [a] — X I  is at 

most n — k  a n d  A is an  eigenvalue of A [a]. Moreover, it is im plic it  in t h e  p roof of 

theo rem  1.4.9 in [HJl] th a t  th e re  is an  e igenvector of A associa ted  w ith  A all o f  whose 

com ponen ts  indexed  by a c a re  zero. It is o u r  purpose here  to  give a  converse  to  the  

opening  s ta te m e n t  t h a t  is. in some sense, th e  most general possible in te rm s  of the  

d a ta  we use. A varie ty  of s ta te m e n ts ,  including those ju s t  m en tioned , m ay  th e n  be 

easily recognized as special cases.

15
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T hese  resu lts , as well as some special cases, will be valid over a  genera l  field F.  

For A G cr(A), deno te  th e  geom etric  m ultip lic ity  of A in ,4 by <7. \ (A ). T h e  m ost 

o p t im is t ic  converse to  th e  open ing  s ta tem en t  would be th a t  if A is an  e igenvalue  of 

b o th  A  and  ,4 [a], th e n  th e re  is an  eigenvector x  (of A  a ssocia ted  w ith  A) in which all 

com ponen ts  of t  ( a )  are  zero. However, this is not always th e  case. C onsider

,4 =

0 0

0 1

1 0

0 0

1 0

0 0

0 1

1 0

an d  th e  set a  =  {1,2}. T h is  m a tr ix  has zero as an  eigenvalue, as does A  [a], b u t  any 

e igenvector of A  a ssoc ia ted  w ith  zero is of the  form ^ a o o — a ^ • T h e  converse 

canno t,  therefore , be as genera l  as one m ight hope.

Before s ta t in g  a  converse, several definitions a re  needed. T h e  m ain  resu l t  will 

be s ta te d  in te rm s  of th e  dim ensions of special subspaces, of th e  left a n d  right 

eigenspaces of a  general m a t r ix  ,4 G M n{F)  associa ted  w ith  A G F,  in which the  

vectors  have s u p p o r t  am o n g  the  com ponents  indexed by a .  T hese  special subspaces  

(of th e  e igenspaces) a re  defined as follows:

L E ^ A )  =  { y  €  F n ■. y T A  =  \ y T , y {&) =  o}

R E *  (A) =  { x £  F n : A x  =  A.r. x  ( a )  =  0} .

Similarly, let L N ( A )  and  R N ( A )  deno te  the  left a n d  right nullspaces of A  a n d  define 

th e  special subspaces (of th e  nullspaces) L N a ( A)  =  L E °  [A)  a n d  R N a { A ) =  R E °  [A) .
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It is clear th a t  th e  d im ens ions  of all these spaces a re  p e rm u ta t io n  sim ilarity  invarian t .

and, by assum ing t h a t  a  =  { 1 .2 ,  n  — k} .  th is  fact will be exp lo ited  rep e a te d ly

th roughou t  this c h a p te r  w ithou t  fu rther  m ention . If x  is any  eigenvector of A as­

sociated w ith  A .  th en  x  is an  eigenvector of A  — X I  a ssocia ted  with th e  e igenvalue 

zero. For th is  reason, resu l ts  concerning the  specia l nullspaces underlie  observations  

concerning the  special eigenspaces.

2.1 Main R esult

For con tras t  to  th e  m ain  result, we note  som e p re lim inary  facts t h a t  ind ica te  

c ircum stances  u n d e r  w hich  b o th  the left an d  r igh t special subspaces are  nonem pty . 

T he  rank deficiency  o f  an  n-by-n  m atr ix  A  is n  — r a n k ( A )  =  <70 ( A ) .  general 

m atrices, when the  ran k  deficiency of a principal su b m a tr ix  is sufficiently large, th e n  

the d imensions of th e  left a n d  right nullspaces are  positive  (see discussion preced ing  

lem m a 4.8.) Suppose t h a t  th e  subm atrix  A [a] is such th a t  its rank deficiency is 

g rea te r  th a n  th e  n u m b e r  of rows or columns de le ted  from A to o b ta in  A [a]. T h a t  is. 

for |a |  =  n — k , g0 (A [a]) >  k.  In this case, th e  rank  of A [a] is n — k  — gQ (A [a]) 

and th e  rank  of A can  b e  a t  most 2k  more t h a n  th e  rank  of A [a]. B u t,  th en ,  th e  

rank deficiency of A is a t  least g0 (A [a]) — k. Since this n u m b er  is positive. A is rank  

deficient and  th e  left a n d  righ t nullspaces of A a re  b o th  nonem pty . T he  lem m a  below 

s ta tes  th a t ,  in fact, th e  left an d  right special  nullspaces of A are  both  nonem pty .

Lemma 2.1 Let  A  G iV /n ( F )  and let a C  N  be such that  |a| =  n — k.

(0  I f  go(A[a])  > k, then  d im  { L N a ( A ) ) , d im  ( R N a {A))  > g0 (A [a]) — k.

(ii) Let  0 <  go <  min{&. |a |}  be given. Then  there is a matrix  B  such that  

go{B  [a]) =  go and  d i m ( L N a( B ) )  = d \ m ( R N a ( B ) )  =  0.
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IS

Proof. It will be  assum ed , w ithou t loss of generality , th a t  a  =  { 1 .2  n — k}.

T h e n  .4 has p a r t i t io n e d  form

4  =
•4n A\2 

421 422

( 2 . 1 )

in which / I n  =  4  [a]. In th is  case, if x  E R N a ( 4 ) .  it is of th e  form x  = in which

x 6 F n k an d  no te  t h a t  R N a ( 4 )  =  R N . Similarly , any  vector y  G ( 4 )

is of th e  form y T = f  o

4 n  

4 2j

in which y €  F n~k an d  L N a ( 4 )  =  L N 4 11 4 12

Assum e <70 (A u ) >  k . as in p a r t  (i) of the  lem ma. By e le m en ta ry  linear a lgebra

d im  ( R N a ( 4 ) )  =  d im

/ \ "

4 n 4 n
R N =  n — k  — r a n k

\ 421 / / I 21

( 2.2

Since 421 *s k -b y - (n  — k)  th e  rank  of /I21 is less th a n  or equa l to  min { k . n  — k}.  

Therefore.

r a n k
4 n

421

<  rank  ( A n ) r a n k  ( A 2 1 )

=  n — k — go ( A n )  +  r a n k  (4 2i )

<  n — k — g o  ( A n )  +  k  

=  n — <7o ( 4 n ) .
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But then  s u b s t i tu t in g  th is  in (2.2) gives

d im

/ \
-An

R N 11eA
l

V -A21 /

— go ( ^ 11) ~  k.

So, d im (/?jV a ( 4 ) )  >  g0 ( A n )  — k. T h e  proof th a t

d i m ( L N a (A ))  =  d im  L N ^Aii 'A i2 >  go ( ^ l i )  — k

is analogous an d  p a r t  (i) of th e  lem m a is verified. 

For p a r t  (ii) consider  th e  m atr ix

B  =
B  i i  B\2 

#21 #22

0 0 : i go 0

0  I n - k - a 0 : 0  0

ho 0

0 0 : 0 # 22

(2.3)

in which B n  is (n — k ) - b y - ( n  — k)  and  <70 ( # 11) =  go- For th is  m a tr ix .  0 <  g0 < k. 

b u t  there  are  no nonzero  vectors  in e ither  L N Q (B ) or R N 0 ( # ) ,  an d  p a r t  (ii) of the  

lem m a is also proved. □

R eplacem ent of A  w ith  A  — X I  in lem m a 2.1 gives th e  following.
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T h e o r e m  2 .1  Let  A  €  M n( F )  and let a  C  N  be such that  |o |  =  n  — Ic.

(i) //*^.\( A [o;]) >  k.  then dim(Z,.E*( A)), d im (i? i?* (A ))  >  g\{ A  [a]) — k.

(ii) Let  0 <  ga <  min{&, |a |}  be given. Then there is a matr ix  B  such that  

g \ (B  [ a ] ) =  ga and d \ m { L E ^ { B ) )  =  d im ( R E * { B ) )  =  0.

S ta te m e n t  (i) in th eo re m  2.1 is best possible w hen left an d  right eigenspaces are  

considered  separa te ly . By considering the  left and  right eigenspaces s im ultaneously , 

one  arrives a t  a genera l  converse to th e  opening  s ta te m e n t .  T h is  m ain  resu lt  will first 

be  s ta te d  in te rm s of th e  special nullspaces.

L e m m a  2 .2  Let  .4 €  M n ( F )  and let a  C N  be such that  | a |  =  n — k.

(i) d im (£ :V 0(.4)) +  d \ m [ R N a (A))  > g 0(A)  + ^ 0(/1[q])  -  k.

(ii) Let g  and ga such that  0 <  g < n. 0 <  gQ <  | a | ,  and  \g — 5ra | <  k  be given.  

Then, i f  g +  ga — k  > 0  there is a matr ix  B  such that  go(B)  =  g , go{B  [a]) =  gQ 

and

d \ m ( L N a ( B ) )  + d \ m ( R N a ( B ) )  = g0( B )  +  g0( B  [a]) -  k.

I f  g+gc ,  — k  <  0. then there is a matrix  B ,  with the given parameters,  such that

d im  { L N q( B ) )  =  dim(/?iVQ( 5 ) )  =  0.

Proof: Let A  G AIn { F )  and  part i t ion  A  as in (2.1). Also, let

i r =  r a n k
A n

A 21

— r a n k  ( A n ) (2.4)

ic = r a n k A n  A 12 — r a n k  ( A n )
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T h e n

d im

/ ' \ ~

A n A n
R N =  n — k  — r a n k

\ A 21 / A 21

=  n — k  — ( r a n k  ( A n )  + i T) 

go ( A n )  — ir-

21

Similarly, d im  ( L N  \ X2

these  two spaces is then

=  <70 (A n )  — ic. T he  s u m  of th e  d im ensions of

/
A n

\
( r 1

dim R N +  d im  1 L N A n A 12

\ A21 /
\

=  2^0 M i l )  ~  i r  ~  h -  (2.5)

Choose 6  A/n-fc ( f )  nonsingular m atr ices  such th a t

5  0 

0 [

A n  A 12 

A21 A 2 2

T  0 

0 /

0 0 

0 I

A i A 2

n

>2

'22

=  .4'
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in which th e  u p p e r  left zero block of ,4' is go (An)-by-<7o M u )  •
Yi

*2

=  5 .4 12, and

A i A ' =  A 2i T.  A second equivalence will zero o u t  A’2 a n d  V2 :

1
0 0 :

1
O 0

1

0 y\

0 i  ; 0 0 1 y 2

0
 , 

1 —A 2 : I

; 
^

1 X-2 a 22

0 0 

0 /

0 0

0 0 

0 /

0

- v 2

Vi

0

A \  0 : A 22

=  A.

N eithe r  of these  equivalences has d is tu rbed  th e  ran k  of A.  

So,

A n

A2i

. or A n  A 12

r a n k
A n

A 2i

=  r a n k

0 0

0 I

A'i 0

=  r a n k  ( A n ) +  r a n k (  A'i ’
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and

r 1 0 0 V'i
r a n k A n A 12 =  r a n k

0 / 0

=  r a n k  ( A n )  +  r a n k  (V i)

T hen ,

r a n k  (AA) =  r a n k
A n

A21

— r a n k  (A n ]

and

r a n k  ( V)) =  r a n k A n  A 12 — r a n k  ( A n )

Since r a n k
0 V'i

A 1 A22

>  r a n k  ( V’i ) +  ra n k  (AA ) we have

/  * \  °  Ylr a n k  ( A )  =  r a n k  LA) =  r a n k  [ A n ) + r a n k

A 1 A22

>  r a n k  (A n ) +  r a n k ( Y \ ) +  r a n k  (AA )

=  r a n k
A n r

-f- r a n k A n  A 12
A21 L

( 2 . 6 )

— r a n k  ( A n )  •

This  was previously  show n in a  m ore general se tt in g  in [Wo] in a n o th e r  way, bu t we 

have included  a  p roof  here  for completeness.

Using th e  defin ition  of ir a n d  A in (2.4) we have

n -  g o ( A )  =  r a n k  {A)  > ir +  A- +  ra n k  ( A n )  =  A +  A +  n  — k — go (A u ) •
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R earrang ing  th is  in eq u a l i ty  vve have k — go (.4) +  go (> lu )  >  +  ic a n d  s u b s t i tu t in g

this in (2.5) yields

/
<4n

\
( r

d im R N +  d im  L N '4 u  -4i2

\ .4-21 /
\

>

-90 ( ^ u )  +  (<7o (^4) ~  go (-411) — k) 

— 9o (/4) +  go (^4 ii) — k.

and p a r t  (i) of lem m a  2.2 is proved.

T h e re  a re  two cases to  consider in proving pa rt  (ii) of  lem m a 2.2. To begin, 

consider th e  case in w hich  g  +  ga — k <  0. Note th a t  for th is  to  be th e  case. gQ m ust 

be less th a n  or equal to  k.  For the  m atr ix  B  in (2.3). if ga =  go, th en  go{B \ \ )  =  gQ and  

the  su b m a tr ix  B 2 2  is {k  — <7a )-bv-(k — ga ). This s u b m a tr ix  can be chosen so th a t  B  

has rank  deficiency, g , f rom  0 to  k — gQ. Thus. B  has th e  a p p ro p r ia te  pa ram ete rs ,  and. 

as m en tioned  in th e  p roof  of lem m a 2.1. B  has d i m ( L N a { B ) )  =  d i m { R N Q ( B ) )  =  0.

For th e  case in w hich g  +  ga — k  >  0. consider

0 0 i Y

0 In-k-ga ■ 0
B  =

A' 0 0

T he  su b m atr ices  Y  a n d  A’ can  independently  be chosen to  have rank  from zero to 

m in { ^ Q,Ar}, inclusive, w hich gives B  a  rank deficiency, g , from |<7a — k\ to  gQ +  k.
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inclusive. Now. n o te  th a t  there  is e q u a l i ty  in (2.6) and . therefore ,

d im  [ L N a [B) )  +  d i m  ( R N a {B) )  =  g o {B )  +  g o { B u ) -  k,

which com pletes th e  proof of the  lem m a. □

O ur  m ain  resu lt,  th e  p roof of which follows from lem m a 2.2 by t ra n s la t io n ,  is then:

T h e o r e m  2 .2  Let  A  £  M n{F)  and let a  C  N  be such that  | a |  =  n — k.

(i) d im (Z ,£^( ,4 ))  +  d i m { R E ^ { A ) )  >  gx (A)  +  <7.x(A[a]) -  k.

(ii) Let  g and  ga such that  0 <  g < n,  0 <  ga <  | a | ,  and  |g — ga | <  k be given.  

Then,  i f  g  +  ga — k  > 0 there is a matr ix  B  such that g .\[B)  =  g, g . \ (B  [a]) =  ga 

and

d im (LE 'a (B ) )  +  d im ( R E ^ { B ) )  = g \ { B )  + 0 . \ ( 5 [ a ] )  -  k.

I f  g + ga ~  k  <  0. then there is a matr ix  B ,  with the given parameters ,  such that

d im  ( L E ^ { B ) )  =  d im  { R E * { B ) )  =  0.

In each of lem m as 2.1 an d  2.2 a n d  theo rem s 2.1 and  2.2, s ta te m e n t  (ii) ind ica tes  

th a t  s ta te m e n t  (i) is in some sense th e  bes t  possible. T h e  res tr ic tions  reg a rd in g  a  only 

avoid logical im possibilities  and . o therw ise , the  s itua tions  not covered by  s ta te m e n t

(i) are covered in s ta te m e n t  (ii).

At th is  point we m ake two genera l  observations th a t  a re  d irec t  consequences  of 

theo rem  2.2.

(1) If A £  M n ( F )  and  | a |  =  n — 1. th e n  A £  <r{A) fl a ( A  [a]) if and  o n ly  if th e re  is 

e i th e r  a  left o r  a  right e igenvector of A  (associated w ith  A) whose a c com ponen t  

is zero.
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(2) If .4 G M n ( F ) .  A 6  cr(A) and  a  C  .V with |a |  =  n — k  a re  such  th a t  

d im  i^LE^ (A ))  =  d im  i^RE^  (A ) ) ,  th e n  each of

d im  ( L E xa (A )) .d im  ( R E *  (A ))  >
9 \  {A)  + g \  (A [a]) -  k

In this event,  if g \  (A) +  g \  (A [a]) >  k,  th en  bo th  d im  ( L E £ (A)) an d  

d im  ( R E *  (A ))  are positive.

Note th a t  s ta te m e n t  (1) does not follow from  theorem  2.1 and  is in som e sense t igh t  

as. under  the  given hypothesis, a  general m a tr ix  m ay not have b o th  a  left special 

eigenvector and  a  right special e igenvector. For exam ple.

A =

1 - 1  0

- 1  1 0

0 - 1  1

does not have th e  p roper ty  assum ed  in (2) for 0 E < t ( A ) ,  and  </o(A) =  l ,  

go (A [{1.2}]) =  I. Thus, as every  right null vector of A is a m ult ip le  of ^ 1 1 1 ^ '  

A has no special right e igenvector assoc ia ted  with 0. while it, of course, has a  left such 

eigenvector, e.g. ^ i } q because of (1). Similarly, for m any  values of g \ { A )  

and  <7.\ (A [a]), th e  conclusion of (2) does n o t  follow from theo rem  2.1.

2.2 Structured Eigenvector Applications

YVe m ay now give several specific corollaries to  theorem  2.2. F irs t ,  no te  t h a t  if 

A G M n is norm al, then , as U A U '  =  D.  for some U un i ta ry  and  D  d iagonal, any  left 

eigenspace of A is th e  conjugate  t ran spose  of a right eigenspace. T hus ,  th e  hypo thes is
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of (2) above  is satisfied for each A and  a .  F rom  this observation  vve can  conclude the  

following.

C o r o l l a r y  2 .1  Let A  G M n be a normal  matrix .  For a  C  N  with | a |  =  n — k

\ \ <7 \ (-4.) +  g \ ( 4 . |a l )  — k
d \ m ( L E ^ ( A ) ) . d i m ( R E xJ A ) )  >  1  .

Of course  H erm it ian  m atr ices  are  norm al so th e  following is a  special case of corollary  

2.1.

C o r o l l a r y  2 .2  Let  4  G M n be Hermit ian.  For a  C  N  with |q |  =  n  — k

\ \ <7 \ (.4) +  o \(  A lo l)  — k
d im ( i£ 0'(4)),dim(fl£^(.4)) > 1  .

In th e  open ing  parag raph  we m en tioned  th a t  if A  is H erm it ian .  

A G <r(.4) fl cr (.4 [a]), and  |a |  =  n — 1. then  th e re  is an  e igenvector x  (of A  a ssoc ia ted  

w ith  A) in which x ( a )  = 0 .  B ut then  g\  ( 4 )  . g \  (A  [or]) >  1 which resu lts  in a  positive  

r ig h t-h an d  side in corollary 2.2. In this case, b o th  th e  left and  th e  right special 

eigenspaces are  nonem pty , which proves th e  following corollary.

C o r o l l a r y  2 .3  Let  .4 G M n be Hermit ian, let a  C  N  be such that  |o |  =  n — 1. and  

let A G t  be an eigenvalue o f  A .  Then, there is an eigenvector  x  o f  A  associated with 

A such that  x ( a )  =  0 i f  and only i f  A G <r(/t[a]).

T hus ,  th e  general schem e adop ted  here provides an  algebraic  proof to  the  s ta te m e n t  

in th e  open ing  parag raph .
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2.2.1 A pplication to Singular Values

As n o ted  in the  in troduc tion , th e re  is also a n  in terlacing p roper ty  for s ingular  

values t h a t  follows from classical in te r lac ing  of eigenvalues of H erm it ian  m atr ices . 

T herefore , it is n a tu ra l  to ask if the re  a re  resu lts  for s ingular vectors th a t  a re  s im ilar  

to  th e  above  theorem s. Let A be an  m -b y -n  m a tr ix  and  let <j\ > u 2 >  • • • >  erf., 

k  < m i n  { m . n }  be the  set of d is t inc t  nonzero  singular values of A .  Let nr, (.4). 

j  =  1 ,2, . . . . £  deno te  the  m ultip lic i ty  of crj as a  singular value of A.  Note  th a t  

m.j(A)  =  ga 2 ( A “A) =  ga2 (AA*). T h e n  let A =  V ^ I W '  be the  s ingu lar  value de­

com position  of A. If crj has m ultip lic i ty  m j ( A )  th en  there  are  right s ingu lar  vectors. 

Wj'i, ujj'2 ,  an d  left singular vectors , uyi, vj,2.  such th a t

' ’ *
A WjA Wj,2 ■ wj.mj = CTj VJ,l Vh 2 ' Vj<m j

T h e  right s ingu lar  vector space of A a ssoc ia ted  w ith  cr, is

span  [ rc j . i , wh2, . . . ,  w^ m j} =  R S a> ( A)

a n d  th e  left s ingular  vector space of A a ssoc ia ted  w ith  crj is

span  { i’j.1, u/,2, -----=  L 5 <Tj(A).

Let a  C  N  a n d  define the  special s ingu lar  vec to r  subspaces

LSZ> (A) =  {v  €  L S 9> ( A) : v ( a )  =  0 }  

RS°> (A) =  {w  6 RS°> ( A )  : w  ( a )  =  0}
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Also, let M  =  { 1 , 2 , . . . .  m} an d ,  as usual. N  =  { 1 , 2 . . . . ,  n} .  T h en

T h e o r e m  2 .3  Let  A  €  M m,n( C ), then f o r  a  C  M , 3  C  N  with |a |  =  m  — kr 

\(3\ =  n -  k e.

d i m ( R S ° k( A ) ) ® d \ m ( L S " k( A ) )  >
m k{A)  +  m k{A[a\  3]) -  kr -  kc

Proof: A ssum e m  > n (if no t ,  reverse the rolls of m  and  n in th e  d iscussion 

th a t  follows) and  let cri > a 2 > • • • >  crk be th e  d is t inc t  nonzero  s in g u la r  val-

0 A
ues of A. Let B  =

A '  0

. T h e n  B  is H erm itian  w ith  un ique  eigenvalues

—o-!, —<72, . . . ,  — . —<Tfc, <7k, <j jt_i , <j Note th a t  when m u ltip lic i tie s  are  con­

sidered, B  has (m  +  n) — 2r a n k ( A )  eigenvalues th a t  are  0. and  m  — n  o f  th ese  zero 

eigenvalues do not correspond to  s ingu lar  values of A.  Delete kr +  kc rows a n d  co lum ns 

of B  in such a  way as to  de le te  th e  kT rows M  — a  and  the  kc co lum ns N  — ,3 from  .4. 

Also de le te  th e  corresponding  k r co lum ns and  kc rows from A".  T h e  resu l t in g  m a tr ix

is:

B  =  B  [q] =
0 ,4 [a; 3 ]

/I [a; 3 ] m 0

in which a  =  a  U {3  +  {«}) a n d  B  is (m  +  n — kr — kc)-by-{m  +  n — k r — k c). Coro l­

lary 2.2 gives

d i m { L E l k {B) )  , d : \ m { R E a6k {B) )  >
gCk ( B )  +  gak ( b ) -  kr -  k c

(2.7)
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T h e  eigenvectors of B  a re  of the  form
w

in which w is a  r igh t s ingu lar  vector of

A associated  w ith  a k a n d  v is a left s ingular vector of .4 assoc ia ted  w ith  <7*. This  

m eans th a t  th e  d im ension  of the  eigenspace associated  w ith  crk in which w  ( a )  =  0 

a n d  v (i3) = 0  is a t  least

9ok {B)  +  9<rk ( # )  — kT — kc m.k(A) +  m.k(A[a; d]) — kr — kc

since g„k ( B ) =  n ik (A )  a n d  gak =  m *(A [a;,d]) . T hus ,

d i m ( / ? 5 ^ ( / l ) )  w  dim(Z,5^fc(A)) >
m k{A) +  m fc(i4 [a ;  0\)  -  k T -  k c

□

Note th a t  if m o (A )  deno tes  the  m ultip lic ity  of 0 as a  s ingu la r  value of / l ,  th en  

gQ ( B )  =  2m 0 (A) + m  — n an d  gQ ( b 'j =  2m 0 (A [a; d]) +  |( " i  — kr ) — (n — A;c )|, which 

w hen su b s t i tu te d  in (2.7) yields

d i m ( L N a ( B ) )  , d i m { R N 6 ( B ) )  >

mo (A) +  m 0 ( A [a; ,d]) +  m  — n — k r if m  — k T > n — k c 

mo  (A) +  m 0 (A [a; 3]) — kc if m  — k r < n — k c

2.3 A Perturbation Result

Corollary 2.3 charac te r izes  the  case in which A is H erm it ian .  |o |  =  n — 1, and  

the re  is equa li ty  in th e  in te r lac ing  inequalities. We next consider a p p ro x im a te  versions 

of the  two equ ivalen t s ta te m e n ts  in corollary 2.3, i.e. th e  case in which th e re  is an
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eigenvalue of /I [a] t h a t  is “near  by” an eigenvalue o f  A. or th e re  is an eigenvector, 

x, of  A assoc ia ted  w ith  A th a t  has a com ponent th a t  is “sm all” relative to  th e  o th e r  

com ponen ts  of x.  Let A j  d eno te  the  j tk colum n of th e  m a tr ix  A  and  note th a t  ||•  ||2 

is th e  usual Euc lidean  norm .

T h e o r e m  2 .4  Let  A  E M n be Hermit ian,  let a  C  N  be such that  | a |  =  n — 1 with 

a c =  j . Then f o r  A E <x( A) and  x  an associated eigenvector such that x { j )  ^  0

(i) T h e re  is a /f E cr (A  [a]) such th a t

|A -  ,,| <
\ Z l k l t  - 1 * /

(ii) If A (fc. a  (A [a]), th e n

x ll2 y | | (  A[a] -  A / ^ A f c ^ a ^ l l j  +  1

Note t h a t  | |x | |2 — | j j | 2 =  0 if and  only if x ( j )  =  0.

Proof: Let x  E <Cn be  such th a t  Ax =  Ax. To prove (i) let A j  (j ) be th e  vector 

formed by dele ting  th e  j th en try  of Aj and  no te  t h a t  A ( 0 ; { j } )  ( A ( { j } ; 0 ) )  is the 

n -by-(n  — 1) ( (n — l ) -b y -n )  m atr ix  in which th e  j th co lum n  (row) of A has been 

deleted . By m atr ix  v ec to r  m ultip lica tion , deleting th e  j th co lum n of A results  in

A { 1 b , { j } ) x { j )  = A x - x j A j .  (2.S)

F u r th e r  de le tion  of t h e  j th row yields

A  ( j )  x  [ j )  =  A ( { j } ; 0) x -  Xj A j (j ) =  Ax (j ) -  x j A j (j ) .
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T h e n

I k H i ) - r ( i )  -  A.r ( i ) ||2 =  |x7| | |T j  ( j ) | | 2 .

By [P, th eo rem  4-5-1], for any  scalar A and  any nonzero  vec to r  x , th e re  is an eigenvalue 

7  of an  rc-by-ri m a t r ix  B  satisfying

7 -  A| <
| | f i x  -  Ax ||2

Flla

T hen , for th e  sc a la r  A th e re  is a fi £  a  [ A ( j ) )  for which

I/* ~  Al <
-  Xx  0 ’)ll2

\\x U ) h
2 

3.71

X | | 2 — \ X j \

which proves (i).

To prove (ii), no te  t h a t  since ,4x =  Ax, we have

.4 [a] x [cv] +  A  [a; q c] xj  =  Ax [a]

(no te  th a t  x ( j ) =  x [a], A  ( j )  =  A [ a ] . and  xj  =  x ( a ) )  o r

— (.4 [a] — XI)  x  [a] =  A  [a; a c] Xj.

If A ^  <x [A  [ a ] ) , th e n  A  [a] — XI  is invertible and

x [a] =  — (.4 [a] — A /)- 1 ,4 [a; a e] x j .  (2.9)
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B y tak ing  th e  leng th  of b o th  sides in (2.9) we see th a t

F l b - F i l  = \ x j \ (A [a] -  A /) -1 A [a; a c] ( 2 . 10 )

T h e  vector (A [a] — A / ) -1 A [a: a c] is zero if an d  only if A  [a; a c] is zero, bu t th en  

A G or (A [a ] ) ,  a  c o n trad ic t ion . So, (A [a] — A /) -1 A [ a ; a c] ^  0. R earrang ing  (2.10) 

resu lts  in
UN 1

+  1(A [a] — A I )  1 A [a: a c

which proves p a r t  (ii) of  th e  theo rem . □

W e no te  th a t  theo rem  2.4 says th a t  corollary 2.3 is valid in t h e  following app rox im ate  

sense: if x j  is ‘‘sm all” th e n  (i) indicates the re  is an  e igenvalue fi G o" (A(J ) )  th a t  is 

“n e a r” some eigenvalue A G o’ (A): also, if th e re  is a  fi €  cr ( A  (j )) th a t  is “near" some 

eigenvalue A G cr ( A ) ,  a n d  | |A [ Q ;a c]|| >  (n — 1) \n — A|, th e n  th e re  is an  e igenvector 

o f  A associated  w ith  A for which x j  is also “sm all” .

We will i l lu s tra te  th is  theo rem  by an exam ple:

A =

- 5  - 2 9  :

- 2 9  - 9 5  : 0

5 0 i - 3 6

w hich has A =  —103.56 as an  eigenvalue w ith  associated e igenvec to r  x  =

/  \  
- . 2 8

- . 9 6

.02
T h e  calculations in (i) ind ica te  th a t  the re  is a  /.i G <r ( A [{1,2}]) such th a t
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|/i — A| <  .78. T h e  su b m a tr ix  .4 [{1.2}] has an  e igenvalue  {i =  —103.54 which satisfies 

this inequality . Similarly, since | | j | | 2 =  1, s ta te m e n t  (ii) indicates th a t  |x3 | =  .02 

which is th e  case.
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Chapter 3

Interlacing

3.1 Breadth and D epth of Interlacing

Let A €  iV/n (C) be H erm itian . Since any  principal su b m a tr ix  of a n  H erm itian  

m a t r ix  is H erm itian . corollary 2.3 m ay be  app lied  a t  each “level” of in te r lac ing . After 

a  few basic observations, careful sequen tia l  app lication  of corollary 2.3 will lead to 

th e  results  below, but first several defin itions a re  needed. Suppose  A is an  eigenvalue 

of A, th en  A  is said to have interlacing equality at  A o f  breadth k  if t h e r e  are  exactly

k  d is t inc t  index  sets 0 1 , 0 2 , ___ o*.- Q N  in which |a , |  =  n  — 1 and  A €  <r (A[a , ] ) .

i — 1 , 2 , . . . ,  k.  If g\  (.4) >  2. then  th e  b re a d th  of in terlacing  equa li ty  a t  A is n (see 

discussion following corollary 3.3.) As will be  seen in the  proof of co ro llary  3.1 if ,4 is 

such  th a t  g \ { A )  =  1. then , because of coro llary  2.3 the  b re a d th  of in te r lac ing  equality  

a t  A is ju s t  th e  num ber  of zero com ponen ts  in th e  essentially  un ique  e igenvec to r .  The 

m a t r ix  .4 is said to have interlacing equality at A o f  depth k  if A £  a  ( A  [$■]) for some

index  sets (30,/31 C  N  such th a t  j3j+ 1 C  f i j . j  =  0, 1 k — 1. \f3j\ -  n — j .

j  =  0 , 1, . . . ,  and k  is a m ax im um . If in add it ion , g \  ( A  [dj+i]) >  g \  (A [d j] ) .

35
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j  =  0 .1  k  — 1. th en  A is said to have interlacing equality at  A o f  restricted

depth k. Here, k  is th e  n u m b e r  of principal subm atrices  in th e  nes ted  sequence for 

which th e  geom etric  m u lt ip l ic i ty  of A is nondecreasing, so th a t  th e  d e p th  of in terlacing  

equality  m ay  be g rea te r  th a n  th e  res tric ted  d e p th .  T h e  following corollaries re la te  

these concepts .

C o r o l l a r y  3 .1  Let  .4 G M n be Hermit ian  and be such that  g \ ( A )  =  1. I f  A  has  

interlacing equality at  A o f  breadth k, then .4 has interlacing equali ty at  A o f  depth at 

least k.

Proof.  If A  has in te r lac ing  equa li ty  a t A of b rea d th  k,  t h e n  th e re  are k  d is t inc t  

principal su b m atr ices  A [ct;] such  th a t  A G <7 (A [a,]) an d  |q , |  =  n  — 1. In th is  case. 

g \  (4. [a,-]) >  1 and . by assu m p tio n ,  g \  (,4) =  1. T hus ,  by coro llary  2.3 . for each a , 

there  is an  e igenvector y,- of .4 associated  with A. such th a t  y,(a;,) =  0. However, since 

gx (A) =  1. th e  (r igh t)  e igenspace  of A associated w ith  A is on e  dim ensional,  so th a t  

each of th e  y,'s  m ay be  taken  to be the  sam e, x .  It follows th a t  

x  (a-! n a 2 n • • • n a^.) = 0. By th e  pa rt i t ioned  ca lcu la tion  m e n t io n e d  in the  opening

parag raph  of c h a p te r  2 /io =  N .  and  $  =  Qi fl a 2 fl • • • D a , ,  i — 1 ,2  k , exh ib it

th a t  A has in te r lac ing  eq u a li ty  a t  A of dep th  a t  least k. □

Corollary  3.1 is s ta te d  in th e  H erm itian  case for pa ra l le l ism  to  the  corollaries 

th a t  follow. However, th e  concep ts  of b read th  an d  d e p th  of in te r lac ing  may also be 

though t  of s im ply  as co incidence of eigenvalues. In th is  c o n te x t ,  th e  a rgum en ts  in 

the  proof of corollary  3.1 are  equa lly  valid for norm al m atr ices  (using  corollary 2.1 in 

place of corollary  2.3 w ith  an  obvious generalization of th e  defin itions  of b rea d th  and  

d ep th  of in ter lac ing). So, corollary  3.1 may be generalized by rep lac ing  “H erm it ian ” 

in the  hypothesis  w ith  “n o r m a l / ’ O n th e  o ther  hand , th e  co inc idence  of eigenvalues
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ind ica ted  by corollary  3.1 is no t  valid for general m atr ices , as  e x h ib i te d  by the  exam ple

1 1 1

1 1 1

0 1 1

in which 0 is an  eigenvalue o f  b re a d th  2. while its d e p th  is on ly  1.

T he  converse to  corollary  3.1 does not hold: a  c o u n te rex a m p le  is given by the  

m atr ix

0 0 1 1  

0 0 1 1  

1 I I 1 

1 1 1 0

which has in ter lac ing  equa li ty  a t  0 of dep th  3 (/I ( { 4} ) .  /I ( { 3 , 4 } ) .  ,4 ( {2 , 3 , 4}) ) ,  bu t 

in ter lac ing  equa li ty  a t  0 of b r e a d th  only 2 (A ({3}) ,  .4 ({4})) .  However, th e  geometric  

m ultip lic ities of 0 in the  p r inc ipa l  subm atrices  th a t  yield in te r lac in g  equa li ty  a t 0 of 

d e p th  3 are

<7o(A({4})) =  1 

9o (A ({3,4}))  =  2 

go (A  ({2, 3,4}))  =  1.

In fact, the  res tr ic ted  d e p th  o f  interlacing equali ty  a t  0 is on ly  2 a n d  th is  is exactly  

th e  b rea d th  of in ter lac ing  e q u a li ty  a t  0. As ind ica ted  in t h e  following corollary, the  

b read th  of in ter lac ing  eq u a li ty  a t  A m ust be a t  least t h a t  o f  th e  res t r ic ted  dep th .
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Corollary 3.2 Le t  A E  \ I n be Hermi t ian and suppose  A E cr(.4). I f  A  has interlacing  

equality at  A o f  restr ic ted depth k.  then A has interlacing equality at A o f  breadth at  

least k.

Proof: If g \  (A ) >  1. the  b read th  a t A is n  (see d iscussion later, if necessary) 

a n d  th e  conclusion is au tom atica l ly  valid. T h u s ,  we suppose  g \ { A )  =  1. If A has 

in terlac ing  e q u a li ty  a t  A of res tr ic ted  d ep th  k.  t h e n  th e re  is some nested  sequence  of

k +  1 p rinc ipal s u b m a tr ic e s  A [$],  such th a t  \ 8 i \  =  n — i, A E cr (A [/?,-]), / =  0 , 1  k.

an d  g \  (A [# + i] )  >  _gr.\ (A [/?,•]). i =  0 .1  k  — 1. A ssum e, w ithou t loss of generality .

t h a t  th e  rows a n d  co lum ns of A [$] are  num b ered  1 to n — i. Note th a t  n — i is th e  

index of th e  row a n d  co lum n deleted  from A [/?,•] to  o b ta in  A[,^1+1]. By corollary 2.2

d i m ( l £ ^ 1 ( /4 [ A ] ) ) ,d im ( f l£ ^ | (/ l ^ ] ) )  >  ~ i

>  -  j

since g,\ (A [/?,•]) <  g.\ (A [/ t̂+i]). Both dim ensions m ust be integral: so, th e  d im ensions 

of the  special e igenspaces  m ust bo th  be a t  least g.\ (A [/?;]). T h e n ,  every (left an d  right) 

e igenvector of A [/?,-] associa ted  wi th A is in the  specia l (left and  right) e igenspace and . 

thus ,  c om ponen t  n — i of each of these vectors is 0.

Let x  be an  e igenvec to r  (essentially unique) o f  A assoc ia ted  with A. Since

9 \ { A )  =  5 . \ (A[#o])  =  1 an d  g.\ (A [/?i]) >  1,

by corollary 2.3 x  {/Si) =  0. By the  preceding p a ra g ra p h ,  if i =  1 then  every eigenvec­

to r  of A[fdi] a sso c ia ted  w ith  A, including x[/?i], has  a zero  in the  n  — 1 com ponen t. 

T hus ,  x  {fii C\ (32) =  x  [82) =  0.
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C ontinu ing  in th is  m an n e r ,  for each i =  0 , 1 , . . . ,  k  — 1. x  [/?,•] is a n  e igenvector of 

A  [/?,-] associa ted  w ith  A w ith  a  zero in the n — i com ponen t  so t h a t

x {i3i n b2 n . . .  n ,d1+i ) = x {/3i+l) =  o.

T hen . x(/3k)  =  0 an d  for each j  £  3k , ■!'({./}) is an e igenvector  of A  ( { j} )  associated  

with A. T hus ,  ctj =  N  — {n  +  1 — j  }. j  =  1 , 2 , . . . ,  k.  ex h ib i ts  t h a t  ,4 has in terlac ing  

equa li ty  a t  A of b re a d th  a t  least k. □

N ote th a t  th e  b re a d th  of in terlacing equality  can be  s t r ic t ly  g rea te r  th an  the  

res tr ic ted  d e p th  of in te r lac ing  equality . For exam ple, the  m a t r ix

0 0 1

0 0 0

1 0 0

has in te r lac ing  e q u a li ty  a t  0 of restric ted  dep th  1, bu t  th e  b re a d th  of in terlacing  

equa li ty  a t  0 is 2.

If th e  m a tr ix  .4 is such th a t  g . \ ( .4 [a |)  <  I for every  index  set a  C  N .  and .4 

has in te r lac ing  eq u a li ty  a t  A of d e p th  k, then /I also has in te r lac in g  e q ua li ty  a t A of 

res tr ic ted  d e p th  k. In th is  case, by corollary 3.2, ,4 has in te r lac in g  e qua li ty  a t A of 

b rea d th  a t least k.  C om bin ing  corollaries 3.1 and  3.2 th e n  y ields  the  following.

C o r o l l a r y  3 .3  Let  A E A/n be Hermit ian and. suppose f o r  every  index set  a  C A

that  <7.\(A[q]) <  1 with g \ { A )  =  1. Then.  ,4 has interlacing equali ty at  A o f  breadth k

i f  and only i f  A  has interlacing equality at A o f  depth k.

Let .4 £  M n be H erm it ian .  Due to classical in te r lac ing , w hen 5r,\ ( A ) >  1. 

A £  c t (A[q] )  for any  a  C  N  such th a t  |o | =  n — 1. In a d d i t io n ,  w hen g \ { A )  > 1 for
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each  such a  th e re  is an  eigenvector. z .  o f  .4 associated with A such th a t  z ( a )  =  0. T h is  

m ay  be seen in an  e lem en ta ry  way by n o t in g  th a t ,  given any two linearly  in d e p e n d e n t  

eigenvectors x , y  in th e  eigenspace. th e r e  is a  linear com bination  w ith  a  ze ro  in any  

specified position. Such an .4 has in te r lac ing  equality  a t  A of b re a d th  n ,  b u t  m ay 

have dep th  a t  A as l it tle  as 1. For e x a m p le ,  the  m atrix

1 1 1

1 1 1

1 1 1

has interlacing equa li ty  a t  0 of b r e a d th  3. while the  dep th  a t  0 is only  1. T h us ,  th e  

a ssum ption  in corollaries 3.1 and  3.3 t h a t  g \ { A )  =  1 is necessary.

3.2 Interlacing Diagrams

Corollaries 3.1-3.3 ind ica te  res tr ic t ions  on the values of <jr.\ (-<4 [a ] ) f ° r various 

a ’s. This  led us to look a t  the  c h a rac te r iza tio n  of the  rela tionships b e tw e en  different 

"levels'’ of interlacing. T hese  re la t ionsh ip  are  described via w ha t we call in te r lac ing  

d iagram s. For exam ple, if

.4 =

0 0 1 

0 0 0 

1 0 0

th e n  A  has in terlacing  d iag ram
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LEVELS

( 1.2 } { 1.3 } ( 2.3 }

( I ) (2) ( 3 }

Figure  3.1: In terlacing d iag ram  exam ple.

in which th e  en try  in th e  cell in level 0 is th e  geom etric  m ultip lic i ty  of 0 as an  

eigenvalue of A  and  th e  e n try  in each of th e  o th e r  cells is the  geom etric  m ultip lic i ty  

of 0 as an  eigenvalue of th e  principal s u b m a tr ix  of A  ly ing in th e  rows and  co lum ns 

ind ica ted  by the  index  set below each cell. T h e  genera l  p rob lem  is, for an  n-by-n  

m a t r ix  A  and  fixed A G 0 -( / l) .  which n-level diagrams  of th e  form

LEVELS

.(A)'

1,2.... n-1} { l,2,...,n-2,n} {1,3 n} {2,3,...,n

F igure  3.2: G eneral in te r lac ing  d iag ram

in which th e  geom etric  m u ltip lic i ty  of A as an  e igenvalue of the  principal su b m a tr ix  

found in th e  index se t  a ssoc ia ted  with th a t  cell a p p ears  in each cell, can occur?

An obvious c ond it ion  for such d iagram s is

(1) Dim ension: <7.\(/l[a]) < |a | .
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So. th e  en tr ies  in th e  cells of level k  can be a t  m ost n — k.  We will be  looking p r im a r ­

ily a t H erm it ian  m atr ices .  For H erm itian  m atr ices ,  classical interlacing res tr ic t ions  

require  th a t  th e  geom etric  m ultip lic ity  in a  p redecessor  or successor cell m ay  differ 

by a t  m ost  one  from  th a t  in a given cell. T h is  gives r ise to  a  second condition.

(2) Interlacing: Let A  €  M n be  H erm it ian  a n d  a  C  jV. T h e n  for j  E a .  

|0 . \ ( 4 [ a ] )  ~ 9 \  [a -  { j }])I <  1-

For th e  rem a in d e r  of th is  discussion we will a s su m e  th a t  A =  0. T he  genera l case  

in which A ^  0 follows easily by transla tion . For H e rm it ia n  m atrices, the  two obvious 

necessary conditions  given above are not sufficient. T h a t  is. there  a re  d iag ram s th a t  

satisfy (1) an d  (2) for which there  is no H erm it ian  m a t r ix  w ith  th a t  d iag ram . For 

exam ple, th e  d iag ram

LEVELS

{ 1.2 } { 1.3 } { 2 .3 }

{ 3 }

F igu re  3.3: Diagram  ruled ou t by b io rthogonali ty

satisfies cond it ions  (1) and  (2) but there  is no 3-by-3 H erm itian  m atr ix  w ith  th e  

in terlac ing  d iag ram  given in figure 3.3. For A =  0 level 2 indicates th a t  th e  d iagonal 

entries  of a  m a tr ix  w i th  th e  d iagram  in figure 3.3 a re  nonzero. Level 1 an d  level 2 of 

the  d iag ram , to g e th e r  w ith  the  fact th a t  we are  considering  only H erm itian  m atr ices .
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indicates t h a t  any  m atr ix  w ith  th e  d iag ra m  in figure 3.3 m ust be o f  th e  form

.4 =

a2 ab ac 

ab b2 be 

ac be c2

in which a . b . c  ^  0. B ut g0 ( / i )  =  2 a n d  th e  d iagram  requires th is  value to  be 1. 

Therefore, th e re  is no H erm it ian  m a t r ix  w ith  th e  d iagram  in figure 3.3.

T he  s t ru c tu re d  eigenvector resu lts  of ch a p te r  2 and th e  principal of b io rthogona li ty  

lead to  th e  following corollary which holds for general d iagonalizable  m atr ices .

C o r o l l a r y  3 .4  I f  A  is a diagonalizable matr ix  and g \  (.4) =  1. then g . \ { A { i ) )  =  0 

f o r  some  I < i < n.

Proof. Let A  be diagonalizable , g \ ( A )  =  1. and assum e th a t  </ . \ (A(i))  >  1 for

all i =  1 . 2___ , n .  Also, let x . y  be  r igh t an d  left e igenvectors, respectively , of .4

associated  w ith  A. T hen , by th e o re m  2.2 a t  least one of x  and  y  m u s t  have a 0 in th e

i ih com ponen t for i =  1 .2  n so t h a t  y ' x  =  0. By the  principal of b io rthogona li ty

y  m ust  be o r thogonal to every  r igh t eigenvector of .4 associa ted  wi th y  6  c r ( A) .  

y  ^  A. Since ,4 is d iagonalizable, th is  m eans th a t  y is o rthogonal to  n — 1 vectors. 

B u t y is also orthogonal to x .  a n d  is, therefore , o r thogonal to  a  set of n  l inearly  

independen t  vectors. T hen , y m ust  be th e  zero vector which is a  c o n tra d ic t io n  since 

y  is an  eigenvector. Therefore, th e re  m ust  be some i for which g \  ( A ( i ) )  =  0. □

T h e  d iag ram  in figure 3.3 does no t satisfy corollary 3.4 and , therefore , th e re  is no 

3-by-3 H erm it ian  m a tr ix  with  th is  d iag ram . Corollary 3.4 gives a  th ird  cond it ion  on  

the  in terlac ing  diagram s.

(3) Biorthogonality: For d iagonalizab le  matrices, every d iag ra m  with  a 1 in th e  

cell a t  level 0 m ust have a t  least one  0 in level 1 (corollary 3.4.)
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N ote  th a t  any  p a t te rn  th a t  is not allowed in an in ter lac ing  d iag ram  of size k  is not 

allowed as a  s u b p a t te rn  of a  d iag ra m  of size n . n  > k.  So. condition  (3) ind ica tes  th a t  

if a  cell in level k  of a  d iag ram  con ta ins  a  1. then  the re  m ust be a t  least one  0 among 

th a t  cell’s successor cells.

Condit ions  ( l ) - (3)  a re  still no t sufficient. T he  d iag ram

LEVELS

1.2 1.3 2,3

{ 3 }

Figure  3.4: D iag ram  ru led  o u t  by b read th  and  d e p th  corollaries

satisfies conditions  ( l ) - (3) ,  b u t .  du e  to  levels 1 and 2, any  H erm it ian  m a t r ix  wi th this 

d iag ram  is o f  th e  form

a2 ab ac

ab b2 0

ac 0 c2

in which a, 6, c ^  0. B u t  this m a tr ix  is nonsingular and  th e  cell in level 0 of figure 3.4 

requires t h a t  any  m a tr ix  with  th is  d iag ram  is singular.

T h e  d iag ram  in figure 3.4 can n o t  occur because it violates the  b re a d th  an d  dep th  

corollaries of section 3.1. By th e  p roof  of corollary 3.1 th e  1 in level 0 and  th e  two 

l ’s in level 1 ind ica te  t h a t  th e  first cell in level 2 (corresponding  to th e  1s t  diagonal 

e n try )  m ust be a 1 and  canno t  be 0. T h e  b read th  and  d e p th  of in te r lac ing  corollaries 

(corollaries 3.1-3.3) give a  fourth  cond it ion  on the  in terlac ing  d iag ram s for H erm itian  

m atr ices.
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(4) B r e a d t h  a n d  D e p t h  o f  I n t e r l a c i n g :  corollaries  3.1-3.3.

T h e  following co ro l la ry  indicates a p a t te rn  t h a t  canno t  occur as a  s u b p a t te rn  of 

any larger d iag ram .

LEVELS

a-fi} a-{j}

a - f t i l

F ig u re  3.5: Forbidden in te r lac ing  sub-d iag ram

Corollary 3.5 For n-by-n Hermit ian matrices  in which n >  3, the pat tern in f igure  

3.5 cannot  occur as a subpa t t em  in any interlacing diagram.

Proof: A ssum e th e  p a t te rn  in figure 3.5 can be achieved  for the  e igenvalue A of a 

m atr ix ,  .4, a n d  t h a t  level k  corresponds to  .4 [a] , | a |  =  n — k.  It can  be assum ed  by

p e rm u ta t io n  s im ila r i ty  th a t  a  =  { 1 ,2 ,  n  — k } .  T h e n ,  in the  ( k  +  l ) st level, th e

cell con ta in ing  a  1 co rresponds  to .4 [a — {?}] an d  th e  cell con ta in ing  a  0 corresponds 

to  4  [or — { J } ] . for i . j  €  a . i  ^  j .  Let x  be an, e ssen tia l ly  unique, e igenvector of .4 [a] 

associated  w ith  A. T h e n ,  by theorem  2.2 x  [{i}] =  0 and . because th e re  is a  1 in th e  

cell in level k  -1- 2, x  [{z, J1}] is also 0. But then , by p a r t i t io n e d  m atr ix  m ultip l ica t ion . 

x ( { j } )  m u st  be a n  e igenvector of 4  [a — {j}] a ssoc ia ted  w ith  A, co n trad ic t in g  th e  

fact th a t  the  d ia g ra m  ind ica tes  th a t  g\  ( 4  [a — { j }]) =  0. □

Thus, corollary  3.5 a d d s  one more condition to  th e  list t h a t  governs th e  allowable 

in terlacing  d iag ram s  of H erm itian  m atrices:

(5) Forbidden sub-diagram: corollary 3.5
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For 3-level d iag ra m s  in which A is a real sy m m e tr ic  m a tr ix  and  g. \{A)  =  L 

these conditions  are  enough  to  characterize  th e  d iag ram s th a t  can  occur (proof is by 

exhaustion ; th e re  are  216 cases) with one excep tion . In o th e r  words, for each 3-level 

d iagram  th a t  satisfies cond it ions  ( l)-(5)  there  is an  H e rm it ia n  m a tr ix  for which th a t  

d iagram  represen ts  th e  geom etric  m ultiplicities of A as an  eigenvalue of each of its 

principal subm atr ices ,  w ith  th e  one exception  in d ica ted  below. T h e  d iag ram

LEVELS 

0

HI {2} {31

F igure  3.6: 3-level interlacing d iag ram  th a t  is no t ru led  out

is not covered by th e  cond it ions  given above an d  can n o t  occur  for A  6  A/3  (R). but 

can occur for A 6  M 3 ((D). For .4 £  M 3 (1R.) th e  d iag ra m  in figure 3.6 corresponds to 

a m atr ix  of the  form

0 a b

A = a 0

b e  0

T h e  d e te rm in a n t  of th is  m a tr ix  is 2abc which is 0 if and  only  if a, 6, or c is 0. If this 

is the  case, th en  level 1 of th e  d iagram  is v iolated. However, if A £  M 3 ( € ) ,  th en
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.4 =

0 a  8

a  0 7

3  7 0

and  det (.4) =  q /^7  +  ctfi7  which is zero if al3~/ =  —a/ihj.

3.3 E xtended Interlacing Intervals

In th e  in t ro d u c t io n  to  this d isserta t ion  it was m en tioned  th a t  th e  classical in­

terlac ing  inequa lit ie s  m ay  be viewed as saying t h a t  if Ai <  A2 <  • • • <  A„_i a re  the  

eigenvalues of a. p r in c ip a l  subm atrix  A 6  A/ n- 1 of th e  H erm it ian  m atr ix  A. then  each

interval A,-, A,+ i , i  =  1 .2  n — 2 contains an  e igenvalue  of the  full m a tr ix  a n d  if

A,-, A,+ i c a p tu re s  As , th e n  Aj, AJ+l . i ^  j ,  c a p tu re s  A( in which s ^  t. In fact, if 

Ai <  A2 <  • • • <  An - p  are  th e  eigenvalues of a  p r inc ipal  (n  — p)-bv-(n — p) su b m a tr ix  

of A, th e n  the  in te rva l  A,, A j , 0 < f < j < n  — p  con ta ins  a t least j  — i — p  4- 1 

eigenvalues of A. However, this count m ay be non-posit ive , m eaning th a t  th e re  m ay 

be no eigenvalues of A in th e  interval. T h e  m ain  resu l t  of th is  section uses th e  s ingu­

lar values of a  n o n -p r inc ipa l  subm atrix  of A to  e x te n d  such intervals so as to  c a p tu re  

m ore eigenvalues of A in th e  interval. Because of th e  re la tionsh ip  between pos it iv ity  

of s ingular  values a n d  rank , our result provides conven ien t insights in th e  even t th a t  

the  m a tr ix  s t r u c tu r e  lim its  the  rank of ce rta in  off-diagonal blocks.
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3.3.1 M ain Result

An im m e d ia te  consequence of th e  C o u ran t-F isch e r  theorem  for s ingu lar  values 

(see. e.g. th e o re m  7.3.10 [H J1]) is the  following observation  ab o u t  genera l m a tr ic e s .

L e m m a  3 .1  The mat r ix  .4 6  M m,n has k  s ingular  values less than or  equal to 6 > 0 

i f  and. only  i f  there exists a k -d imens iona l  subspace.  5  C  C" such that  | |A r | | 0 <  6 f o r  

all x  E S ,  | |x | |2 =  1.

If A is H e rm it ia n .  then  th e  singu lar  values of A  a re  the  abso lu te  values o f  the  

eigenvalues o f  .4. so t h a t  lem m a 3.1 is also a  s ta te m e n t  ab o u t  eigenvalues. T ra n s la t io n  

th e n  yields th e  following fact for H erm it ian  m atr ices .

L e m m a  3 .2  Let  A  E Ain be Hermit ian ,  and  let i €  R . Given S > 0, there exis ts  a 

k -d im e ns iona l  subspace, S  C (Dn . such that  | |(A  — t l ) x ||2 <  8 f o r  all x  6  S , ||-r||2 =  1 

i f  and  only i f  A  has k  eigenvalues in the interval  [f — 6. / + £ ] .

Proof: By lem m a  3.1, there  are  k  s ingu la r  values of A  — t l  less t h a n  or e q u a l  to  

8 if an d  only  if th e re  is a  /.--dimensional space. S ,  for which ||(A — f / ) . r | |2 <  8 for all 

x  €  5 ,  ||.r | |2 =  1. Since A  — t l  is H erm it ian  (A  is H erm it ian  an d  t is real) its  s in g u la r  

values are  th e  values |At — Z|, in which Ai <  A2 <  • • • <  A„ are  th e  eigenvalues o f  A.

B u t  th en  |A; — t\ < 8. for i =  j . j  +  1 j  +  k — 1, and  some j ,  1 <  j  < n — k  +  1.

T h is  m eans t — 8 <  A; <  t +  8 for these  values of i and  th a t  the re  a re  k  e igenvalues 

of A in th e  in terval  [t — 8, t  +  5]. □

If A is H e rm it ia n ,  th e  eigenvalues of A are  d e n o te d  by Ai (A) <  A2 (A) <  • • • An ( A) 

a n d  those  of A [a] by A" <  A2 <  • • • Aj*Q|. T h e  th eo re m  below uses th e  s ingu la r  values 

>  er2 >  • • • trj^i of A [a1-'; a ]  to e x ten d  th e  intervals  of the  type  discussed in th e  

open ing  p a ra g ra p h  of section 3.3. In th e  even t t h a t  <r£ is 0, e i th e r  because  | a |  is 

sufficiently larger  th a n  | a c| or because A [ac: a ]  has sufficiently low rank , o u r  e x te n d e d
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in terval reverts  to a conven tional interval betw een two, no t necessarily  consecutive , 

eigenvalues. N ote  th a t ,  since .4 is H erm itian , th e  nonzero s ingu lar  values of 4  [ a c: a ]  

are  th e  same as those of 4. [or; a c].

P e rm u ta t io n  sim ilarity  does not change the  eigenvalues of 4 ;  th ere fo re ,  for th e  

theorem s th a t  follow, it will be assum ed, w ithout loss of genera li ty ,  th a t  

or =  { 1 .2 .____|q |}. Also, let

\ 0  I \C t \C t __  \  Or

t =  7- -— - ,  8 =  ~~ ~ — for fixed i <  j  <  |q |  

a n d  define the  interval

I  (i , j , k , a )  =

N ote  th a t  [t — 8, t +  6] is an  in terval used in classical in terlac ing , d iscussed  above, 

and , thus, this interval m ust c a p tu re  a t  least j  — i — | a c| +  1 e igenvalues o f  4 .  T h e  

m ain  result is:

T h e o r e m  3 .1  Let  4  €  M n be Hermit ian  and. let a  C M; then . f o r  each k .  4  has at 

least j  — i — k +  2 eigenvalues in the interval  I  ( i . j .  k . a ) .

Proof. Let x f .  x “+1, . . .  x°j be an o r th o n o rm a l set of eigenvectors of 4  [a] corre­

sponding  to A“ <  Af+1 <  • • • <  A“ . respectively. Also, let «;£, w%+l, . . .  be  a  set 

of (orthonorm al)  right s ingular vectors of 4 [ a c;a ]  co rre sp o n d in g  to  

— a t +1 — ' ' '  — Define th e  subspace  S  C (D'0  ̂ as

S  = span  ( x f . x?+1, span ( w ak , w ak+l, . . .  u ^ , )  .
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T h e n  d i m ( S )  > { j  — i +  1) +  ( |a |  — k + 1) — |a |  =  j  — i — k  +  2. N ote  th a t  

y  G S\  | |y | |2 =  1 can be w r i t te n  e ithe r  as a linear co m b in a tio n  of th e  x a 's or  th e  wa 's. 

T h a t  is, if y  E 5 .  ||?/||2 =  1. then

y =  £  =  £  7 , < -  £  m 2 =  £  h , l ! =  i.
p=i q = k p=t q = k

A s tra igh tfo rw ard  ca lcu la tion  using the  second rep re sen ta tio n  given above for 

y  G S ,  | |y | |2 =  1 yields th a t  || A  [a c: a] y\\2 < a%. A p p en d  zeros to  y  to  o b ta in  vectors

y
of the  form c =

0

in <C“ . y  e  S. ||--||2 =  ||t/||2 =  1. T h e n

: .4 -( /)_ - ||2 = ||(.4 [q] — i/)i(||2 + ||.4 [aL*;or] y\\\

£ A > ( Ap - ' ) ^P=l
j

+  | |A [Q c;a ]  y\\i

< E l  & + « )  < +  « )
p=i

=  P  + i o t )

T h e  vectors c =

0

* y €  S .  | |t/ | |2 =  1 together  w ith  the  zero vector form  a  subspace .

5  C  C" th a t  has d im ension  a t  least j  — i — k  +  2, an d  for which

for any :  G 5 ,  | | ; | | 2 =  1. T h u s ,  by lem m a 3.2, th e re  a re  a t  least j — i —k + 2  eigenvalues 

of A  in the  in terval I  ( i , j , k ,  a ) .  □
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Note t h a t  for | a |  =  n  — 1, .4 [qc: a] is a  row vec to r  and  erf =  0. Classical in te r lac ing  

is th en  th e  specia l  case of theo rem  3.1 in w hich  j  =  i +  1, | a |  =  n — 1. a n d  k  =  2. 

A n o th e r  resu l t  th a t  has been s tud ied  before, b u t  can  be seen as a  specia l case of 

th eo rem  3.1 will be  discussed in th e  nex t section.

It is im m e d ia te  from theorem  3.1, since \ J62 +  (erf)2 <  8 +  erf, 1 <  k <  | a | .  t h a t  

th e re  a re  a t  least j  — i — k +  2 eigenvalues of A  in th e  interval Af — erf , Af +  erf . 

T h is  w eaker s ta te m e n t  can be proven using a n  app lica tion  of classical p e r tu rb a t io n  

theo ry  an d  in ter lac ing . There  are two cases, | a c | >  |a |  an d  | a c| <  |a | .  For | a c| >  ja | 

let .4 [a; cC] =  V '50 IT ’ be the  singular value decom position  of A  [a; a c] in w hich

v _ diag  ( e r f . . . . .  crfa |) 0 

T h e n ,  th e  following sim ilarity  can be perform ed:

V* 0
A

V  0 V ' A [ a ) V V—'a

0 w 0 w VT
—*0 W mA [ a c} W

From  th e  resu l t ,  dele ting  the  k  — 1 co lum ns t h a t  con ta in  erf, erf, . . . ,  erf_t (in S a ) an d  

th e  co rrespond ing  rows yields

A  =
V mA  [a] V —'a V ' A [ a ]  V 0

+
0

=  B  +  C
VT A [a‘] _ 0 .4 [ a c] _ i

o<n
i

in which

v _
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T h e  eigenvalues of B  are  the  eigenvalues of A [a] to g e th e r  w ith  those  of A [ a c]. As 

a  result, th e re  a re  indices r and  s such th a t  Af =  Ar ( B )  and  Af =  AS { B )  and  th en  

Af — erf, Af +  erf =  [Ar (B ) — erf, \ s ( B )  +  erf]. N ote  t h a t  s — r > j  — i since the  

eigenvalues of A [a] m ay not be grouped  together  as eigenvalues of B:  th e re  m ay  

be eigenvalues of A [ a c] between th e  eigenvalues Ar ( 5 )  an d  AS ( B ) .  T h e  m a tr ix  A  

is a  p e r tu rb a t io n  of B  in which th e  p e r tu rb a t io n  m a tr ix  C  has eigenvalues ±<rf. 

q =  & , . . . ,  |q | .  Classical p e r tu rb a t io n  theory  th en  gives

Ar ( B )  -  <rf <  \ r [a ) <  As (A) <  AS ( B )  +  <rf

which can  be proved, for exam ple, by using VVeyl’s inequalit ies  (see. e.g. theo rem  

4.3.1 [H Jl] .)  Since A  is a  principal su b m atr ix  of a m a tr ix  s im ilar to  A.  by 

classical in terlac ing  the re  are  a t  least s — r  — k  +  2 eigenvalues of A

in th e  interval Ar ( a )  , X3 ( a )  . T h e n  the re  are a t  least as m any  eigenvalues

of A in the  larger interval [Ar ( 5 )  — <rf, As ( 5 )  +  erf]. B u t .  since

Af — erf, Af +  erf =  [Ar ( B ) — erf, As [B )  +  o'f] and s — r  > j  — i there  a re  ce rta in ly  

a t  least j  — i — k  +  2 eigenvalues of A in the  interval Af — erf , Af +  erf (in fact th e re  

are a t least s — r  — k  +  2.)

For the  case in which |a |  >  | a c |, if 1 <  k < | a c| th e  proof is analogous. If

(c > | a c| th en  erf =  0 and  the  result  follows from classical in terlacing. T h is  result 

is im m ed ia te  from theo rem  3.1. however, we know of no d irec t way to achieve the  

stronger s ta te m e n t  of theo rem  3.1 from the  usual s ta te m e n t  of interlacing.
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3.3.2 Rank Deficient Off-Diagonal Blocks

An irreducib le  H erm itian  t r id iagona l  m a tr ix  is of th e  form

ai bi

k a 2 b2

T  = b2 a3

0

bn—l

in which bt ^  0 for t =  1 , 2 .  n — 1. It is a well known fact (see, e.g. th eo re m  1

[HP]) th a t  for a  =  {1,2. . . . , p } ,  the  op en  interval ( A f . A f + 1 ) ,  in which A f  a n d  A f + I

are eigenvalues of T  [a], contains an  e igenvalue  of T .  T h e  closed in terval version of 

this fact can  be seen as a  special case of theo rem  3.1. Because of th e  low ran k  of 

the  off d iagonal blocks ( X ^ a ^ a ]  con ta ins  only  one nonzero en try )  cr.f =  0 a n d ,  then , 

for k  =  2 a n d  j  =  i +  1, by theo rem  3.1 the re  is a t  least ( i +  1) — i — 2 +  2 =  1

eigenvalue of T  in th e  interval A f . A f + 1  . (An auxiliary  a rg u m e n t  shows t h a t  th e

closed in terval is ac tua lly  open.) T h is  fact can be generalized to  any  m a tr ix .  .4. in 

which th e  off d iagonal block A  [a1"': a] has  low rank. If r a n k  ( A  [a c; a ])  =  k,  th e n  <r£+1 

is zero, a n d  by th eo rem  3.1. or careful app lica tion  of classical in te r lac ing  as in the  

discussion above, th e  interval A f . A f +fc con ta ins  a t least (i +  k)  — i — {k +  1) +  2 =  1 

eigenvalue of A .  T h u s ,  we have the  following corollary to  th eo rem  3.1, which was also 

no ted  in [H].

C o r o l l a r y  3 .6  Let  A  G M n be Hermi t ia n  and  let a  C  ;V. I f  r a n k  ( A  [ac; a])  =  k, 

then there is at least one eigenvalue o f  A  in the interval  Af,Af+fc .
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As seen by th e  Weyl inequality  a rg u m e n t  in section 3.3.1. if r a n k  (.4 [ a c: a ])  =  k,  th e n  

de le tion  of th e  last k  rows a n d  co lum ns of .4 results in th e  d irec t  sum

V ' A [ a ] V  0 

0 4  [qc]

(since C  is th e  0 m atr ix ) .  C oro lla ry  3.6 th en  follows from  usual in terlac ing .

Recall t h a t  th e  te rm rank  of a  m a tr ix  is the  m in im um  n u m b e r  of lines (rows or 

co lum ns) of th e  m a tr ix  th a t  cover all of i ts nonzero entries. It is a  s im ple  an d  classical 

fact [Ry] t h a t  the  te rm  rank  is an  u p p e r  bound  for the  ac tu a l  rank . (I t  is t ig h t  in 

th e  sense th a t  there  a re  m atr ices ,  w ith  th e  sam e zero p a t te rn ,  whose ran k  is th e  te r m  

rank .)  T h e  te rm  rank  of 4  [ a c; a ]  is d e te rm in ed  by the  g raph  of 4 .  For an  n-by-n  

H e rm it ia n  m a tr ix  4 ,  th e  te rm  ran k  is s im ply  the  fewest vertices in G { A )  to  w hich all 

edges be tw een  the  subgraphs induced  by a  an d  o f  a re  incident. For exam p le ,  if th ese  

two p a r ts  ( G ( 4 [ a ] )  and  G  ( 4  [ a c])) of G ( 4 )  are connected  by ju s t  one  edge (as in 

th e  t r id iagona l  case), then  th e  te r m  rank  of 4  [aL';o;] is 1. T h e  te rm  ran k  will also be 

1 if all edges connecting  G [ A  [a]) to  G { A  [ac]) are incident w ith  ju s t  one  ve r tex  (in 

G  ( 4 [ q cJ) or G ' ( 4 [ q ] ) ,  respective ly);  see figure 3.7. Based upon  th is  d iscussion, we 

m ake  several com bina to ria l ly  based  observations.

C o r o l l a r y  3 .7  Suppose that A  £  M n is Hermit ian,  a  C  N  and that  the te rm  rank  o f  

4  [qc; a] is k .  T h e n , there is at least one eigenvalue o f  A  in the interval  A f .  .

T h e  special case k =  1 of coro llary  3.7 yields a  large class of genera liza tions  of th e  

t r id iagona l  fact m en tioned  a t  th e  beg inn ing  of this section. In p a r t icu la r ,  if G { A )  is 

a  t ree  T , th e re  will be m any  choices of a  t h a t  generalize th e  “h a lf” of a  p a th  t h a t  

gives th e  t r id iagonal case. M ore generally, if G ( 4 )  is a  tree  T , identify  any  v e r te x  v 

of  T  (degree i> =  p > 2) as the  root and  consider th e  b ranches
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G(A[ a])

G(A[ a c ])

Figure 3.7: T e rm  rank: G (A)

of T  e m an a tin g  from  v. T hen , choose any  p ro p e r  

p a r t i t io n  {* i , i 2, U { j i , j 2 , - - - , j r }  =  { 1 , 2 , . . . . p }  and  let a  be th e  vertices of 

£?,,. B{2, . . . .  B iq toge the r  w ith  v. so t h a t  a c is the  vertices of B j x, jBJ2, . . . .  B j r . T h e n ,  

the  te rm  rank  of , 4 [ a c;a ]  is 1 and  th e  in terval [Af.A“+1 will con ta in  an  eigenvalue 

of ,4. If .4 €  M n( R )  is a  com bina to r ia l ly  sym m etr ic  m atr ix  such th a t  G ( .4 )  is a  

tree  T .  th e n  there  exists a  diagonal m a t r ix  D  for which B  = D ~ l A D  is sy m m e tr ic  

and  G ( B )  = T .  Therefore, the  above discussion also applies to these  non-H erm it ia n  

m atrices.

3.3.3 A Union of Two Intervals

T h e  discussion su rround ing  th eo re m  3.1 considers only intervals form ed by e igen­

values of th e  s u b m a tr ix  .4 [a]. Of course , theo rem  3.1 equally  applies to  in tervals  

d e te rm in ed  by eigenvalues of A  [ ac]. T h is  leads na tu ra lly  to the  question: w h a t  a b o u t  

the  union  of two such intervals? If th ese  two intervals are d isjoint, th e ir  un ion  will 

conta in  th e  sum  of th e  e s t im a ted  n u m b e r  of eigenvalues of A  in each in terval. If th e  

intervals are  not disjo int, however, th e re  m ay  be coincidence of eigenvalues an d  th e
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union m ay not con ta in  th e  su m  of the  es tim ated  num ber  of e igenvalues of A  in each

interval. An exam ple  following th e  nex t theorem  shows th a t  indeed , th e  union  of the

two intervals from th e o re m  3.1 m ay no t cap tu re  the  expec ted  s u m  of th e  n u m b er  of 

eigenvalues of A  t h a t  th e  two intervals  cap tu re  separately. However, if each  interval 

is m ade slightly  larger, th e n ,  regardless of whether or not th e  in tervals  a re  disjoint, 

the ir  union con ta ins  th e  des ired  su m  of th e  es tim ated  num ber  of e igenvalues of .4. T he  

two intervals A? — crk, A? +  crk an d  [̂ Af2c — ok, A°c +  a k (in which a k =  cr£ =  a k c) 

cons truc ted  using eigenvalues from  A  [a] and A  [ ac], respectively, a re  genera lly  larger 

th a n  th e  theo rem  3.1 in tervals. T h e  VVevl inequality  a rgum en t shows th a t  th e re  are  at 

least j i  — ii — k + 2  eigenvalues of A  in th e  first interval and  j 2 — «2 — k + 2  e igenvalues of 

A  in th e  second. A lth o u g h  th e  VVeyl inequality  a rgum en t does no t easily en u m e ra te  

th e  num ber  of eigenvalues of A  in th e  union when the  two in tervals  a re  n o t  disjoint, 

th e  techniques used in th e  proof of theo rem  3.1 m ay be used to show th a t  th e  union 

of these two intervals con ta in s  a t  least j i +  j 2 — (<i +  *’2) — - k  +  4 eigenvalues of .4 

w hether  or no t the  in tervals  are  disjoint.

T h e o r e m  3 .2  Let  ,4 £  M n be Hermi t ian  and let a  C  N :  then

[Af, -  Aj, + U K  +  <T*

contains  at least _/[ +  J 2 — ( >1  +  1 2 ) — +  4 eigenvalues o f  A  in which crk is the k tk

singular  value o f  both ,4 [ a c; a] and  .4 [a; a c].

Af," -  o-fc, A^c +  a k a re  disjointProof: If th e  intervals  Aft — erk, A“ +  a k and 

th e  conclusion is obviously  t ru e  by theo rem  3.1 and  th e  above c om m en ts .  

Suppose Aft -  cr/t, A“ +  crk PI Af2c -  crfc, A“c +  a k ±  0. T h e n

A? -  <Tk. +  <Tk U  A“ C -  o-fc. \ j ‘ +  <7k =  [Amin ~  Amax +  (Tfc
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in which Amjn =  m in  {A? , A?c }, and  Amax =  m ax  | A ^ , }. As in th e  p roof of theo rem

3.1. define

5 , =  span  ( x “  . x ?  + l . . . . .  x?  )  f l  span  ( < ,  < + l , . . . .  wfa{)

a n d

5 2 =  span  ( x f2\ x f 2c+ l  x £ )  fl span  ( w f ,  ivf+ l  l o f , )

in which x£ are  e igenvectors  of .4 [a] ( A [ a c]) assoc ia ted  w ith  A“ (A£c) a n d  ir“

( ar e right s ingu lar  vecto rs  of / l [ a c;a ]  ( . 4 [ a ; a c]). R ecall  th a t ,  for sim plic ity  of

no ta tion , we have assum ed  a  =  { 1 .2 .......... |a |} .  After e m b e d d in g  S i  and  S 2 in C"

by append ing  zeros in th e  a p p ro p r ia te  spots, we have (5 i  ®  0) fl (0 0  S 2 ) =  0. Let 

S  =  S i  S) S 2 ■ T h e n ,  d im (S 'i )  >  j i  — ii — k +  2, d i m ( 5 2) >  j 2 — <2 — k + 2 as before, 

a n d  d im  ( 5 ) >  (j i  +  j 2) — (i’i +  i2) — 2k  +  4. Let c 6  5 ,  | |x | |2 =  1. T h e n

$\U\

S 2 IJ2

ui 6 S i . </2 e S2, ||(/i||2 — ||i/21|2 — i- l/^i|2 + I/̂ 212 — 1

an d

ji

y 1 =

2 /2  =

Eh?
p = i .

J 1 |o |

E i ? <  =  E « -
P=* 1 q=k

J2 l<*c |

E «  =  E « -
p = 12 q=k
M  ,  J2 ,  l» Ci

E k l  =  E  h?‘ l = E k ‘
<j=fc p = i2 g=fc

=  1 .
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Define t =  Amin±V»s. an<i  $ =  i a s z ; W .  T hen

||( A [a] -  t l )  y  1H2 =  Y .  |Ap
p=» 1

2 2
l a'p x aP <  |Amax -  t \2 =  62

and

l |A [ a c:Q]yi||5  =  £ > ,
< 7 = fc

a c 2 „ Or

N W R < ^ 2-

Similarly,

||( A [o'"'] -  t l ) y 2H2 <  |Amax -  f |2 =  62 a n d  || A [q; a c] y 2\\22 < a 2k| 2  /  _ 2

T hen

+  ||(A [ac] — t l )  {,3-2y 2) +  A  [ a c; q] {/3\yi)\\l 

5: (|/?t| ||(A [a] -  t l ) y i \ \ 2 +  \j32\ | |A  [a; a"] t/2||2)2 

+  ( |A |  ||( A [ac] -  t l )  y21|2 +  |A |  ||A [a c; a] ^ | | 2)2 

5 :  ( | /^ l  I IA m ax — +  |/^21 & k ) 2 +  ( |/^21 | A m a x — ^| +  | d l |  &  k ) 2

=  IA m ax  — f|2 +  4 \fi\ | \ j 3 2 \ | A m a x  —  f| (Tfc +  a l

5 :  IA max — < |2 +  2  | A max — ^| a k +  O '2,

— ( | A max — +  CTfc ) 2 .

T hus, | | (A — i / )  - 1|2 <  $ +  for any z  E S .  | |* | |2 =  1. By lem m a 3.2. th e re  a re  a t  

least ( j i  +  j 2) — (*i +  i2) — 2k  +  4 eigenvalues of A in the  in te rval

[t -  (8 +  o’*) J  +  (8 +  o*)] =  [Amin -  <Tk- ^ m a x  +  a-*] • □
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A n exam ple  will i l lu s tra te  t h a t  th e  two interval s ta te m e n t  in th e o re m  3.2 canno t 

be  as t igh t  as th e  unions of th e  two sm alle r  intervals in theo rem  3.1. T h e  eigenvalues 

of

1 1 1

J  = L 1 1

1 1 1

a re  0, 0. and 3. By th eo rem  3.1. th e  interval / (1.1,1,{1}) = 1 — \ /2 ,1 + \/2j 
c a p tu re s  a t  least one eigenvalue of J ,  whereas /  (1,2,1, {2,3}) = 1 — \ /3 ,1 + \/3j 
c a p tu re s  a t  least two eigenvalues of J .  However, th e  union of th e  th eo re m  3.1 intervals.

/ ( 1 . 1.1.  { 1 } )  U 7 ( 1 , 2 . 1 ,  { 2 , 3 } )  =  [ l  -  v / 3 , 1 +  n/3 ]  ,

c a p tu re s  only th e  two 0 eigenvalues of J . T he  in terval given in th e o re m  3.2 is

1 -  \ / 2 . 1 +  V2\ U [0 -  V2.2 +  y/2 \ =  [o  -  \ / 2 , 2 +  s/?\

w hich  does ca p tu re  all th re e  eigenvalues of J . T hus ,  a  larger in terval ,  such as in 

th e o re m  3.2. is necessary to c a p tu re  th e  j i +  J 2 ~  (*i +  *2) — +  4 =  3 eigenvalues

of J .  T h is  shows th a t  theo rem  3.2 canno t  be im proved  to th e  union  of th e  sm aller 

in te rvals  in theo rem  3.1.
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3.3.4 Applications to Singular Values and 

Lehm ann’s Intervals

A p p l i c a t i o n  t o  S i n g u l a r  V a lu e s

O nce  aga in  th e  similarities betw een classical eigenvalue in terlacing a n d  s in g u la r  

value in te r lac in g  ind ica te  th a t  there  m ay  be a  th e o re m  analogous to  th eo re m  3.1 for 

singular values. For A €  A/m.„. define

S I  { a .d } )  =  [<7,(A[a:,d]) -  r/fc. oy (.4 [a; A]) + Tjk]

in which rjk is th e  k th largest s ingular value of

0 A  [or; [3C 

A* [/3C; a] 0

T h e n  th e  s ingu la r  value result is:

C o r o l l a r y  3 .8  Let  A  6  A/m.„ and let a  C C  N. Then  A has at least j  — i — k +  2 

singular  values in the interval S I  (A, k,  {a , /d } ) .

Proof: A ssum e m  > n (if not, in te rchange  th e  rolls of rows and  co lum ns in th e  

following discussion). Let C  be the  H e rm it ia n  m a tr ix

C  =
0 A 

A* 0
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an d  let d  =  a  U (3  +  { m } ) . T h en

C [d ]  =
0 A [a; 3] 

A m [3\ a ]  0

T h e  eigenvalues of C  are  plus an d  m inus th e  singular values of A, a n d  those of 

C  [d] are plus an d  m inus th e  singu lar  values of .4 [a; 3\  (bo th  w ith , possibly, some

e x t r a  0 s ingular values). T hus .  crs (A [a: /?]) =  A“_s+1 in which t =  | a |  +  | /d |, and

s =  1 ,2  m i n  { |q |  . |,d|}. T h en

/  (C , t — i +  1. t — j  +  1, k,  d )  =  S I  (A ,  i , j ,  k , {a , 3 } )

a n d  by theo rem  3.1 there  are a t  least j — i — k +  '2 e igenvalues of C  in

I  (C . t — i -f l . t  — j  +  1. k.  q )  and , since crs (T )  =  Am+n_s+i ( C ) , s  =  1, 2 -------   n.  there

are , then , a t  least j  — i — k +  2 s ingu lar  values of A in 5 /  (A, i , j ,  k , { a ,  3 }) .  □

L e h m a n n ’s I n t e r v a l s

T h e  techniques used in th e  proof of th eo re m  3.1 can be used to  give an  e lem en ta ry  

p roof of the  sufficiency of the  o p t im al  inclusion intervals a t t r ib u te d  to  L e h m an n  [L].

T h e o r e m  3 .3  Let  A  £  M n be Hermit ian ,  a  C  /V, |o | =  k. and let x  6  R and

0 <  j  < k  be given. Then, an interval  o f  the f o r m  [x — 8, x  +  8

A [q1 -  x l
eigenvalues o f  A  is given by 8 =  a k - j + i { B )  with B  =

A [q c; q ]

that  contains  j

Proof: A ssum e, w ithou t  loss of generality , th a t  x =  0 ( th e  genera l  case 

follows by t ran s la t ion ) .  Let th e  eigenvalues of A be o rd e re d  so th a t
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A? >  A2 — ' ' '  — A„ an<  ̂ ^  w i' w 2  Wk be th e  r igh t s ingu la r  vectors of B

corresponding  to  <7i ( S ) . cr2 (Z?),  a k [B) .  respectively . T hen . define

y
S  =  span  . . . .  u>fc} an d  c =

0

G C n. y  6  S .  | |t/ | |2 =  1 so th a t  .4~ =  B y .

By C 'ourant-F ischer m in -m ax  conditions for eigenvalues (e.g. th e o re m  4.2.11 [H J1]) 

and  singu lar  values (e.g. theo rem  7.3.10 [H J1]) we have:

A^ -+1 =  m in  m ax  { zmA mA=) < m a x  ( y mB mB y )  <  (Tk- J+i ( B )
J c b m ( V V ) = = 7  z€vv  w P iy£S

T he  m idd le  inequa li ty  follows since 5  has dimension j  so t h a t  S  0n- k is a cand ida te  

for W .  T herefore , th e re  a re  a t  least j  eigenvalues o f  A  in th e  interval

[-<Tk-j+i {B) .ak-j+i  ( # ) ] •  D

Note t h a t  th e  n u m b e r  8 does not depend  on A  [ac] and  th e  in te rva l  m ay  be de te rm ined  

w hether  or no t A  [ a c] is known. Lehm ann has fu rthe r  show n t h a t  th is  value of 8 is 

the  sm alles t one for w hich j  eigenvalues are cap tu red , in d e p e n d e n t  of .4 [ac]. Th is  is 

equivalent to

(
.4 [a] — x l .4 [a: a c]

\ /
A  [a] — x l \

sup crn_J+[
C=C*

\ .4 [a1-': a] C  -  x l
— crk - j+1

V A  [ a c; a] /

It follows from th e o re m  2.2 in [GRSYV] th a t  when th e  co n d it io n  of Herm icity  is 

d ropped  for th e  m a t r ix  C  then

/
A  [a] — x l .4 [a: a c]

\ /

i

0^ i H l--~
1

1

\

SUp — <?k-j+1
C

\ A [ac: a] C  - x l V 1

ITo

» )
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Chapter 4

M atrix Com pletions

Recall th a t  a  m a tr ix  completion problem asks w hen  a  given p a rt ia l  m a t r ix  has 

a com ple tion  w ith  som e desired property. T he  p ro p er t ie s  we are  in te res ted  in a re  

inher i ted  by p r inc ipa l  subm atrices , i.e. any p rincipal su b m a tr ix  of a m a tr ix  w ith  th e  

given p roper ty  also has th e  property. If we are in te re s ted  in p roper ty  4>. th e n  .4 is 

said to  be a  partial  "property  4>” matrix  if every specified principal s u b m a t r ix  of .4 

has p roper ty  <£. For exam ple ,  a  partial  positive defin ite  m a tr ix  is a  p a rt ia l  H erm it ia n  

m a tr ix  in which every  fully specified principal s u b m a t r ix  is positive definite.

If p roper ty  is inher i ted ,  then any part ia l  m a t r ix  t h a t  has a com ple tion  w ith  

p ro p er ty  $  m ust b e  a  p a rt ia l  $  m atr ix . For a  n u m b e r  of in te resting  p roper tie s  

(e.g. positive sem idefin ite  and  distance m atrices) it has  been shown th a t  th is  obvious 

necessary cond it ion  on  th e  specified principal su b m a tr ic e s  is also sufficient exac t ly  

when th e  g raph  of th e  specified entries is chordal. If th e  g rap h  is not chorda l ,  m ore  

inform ation  needs to  be known about the  specified d a ta .  For a survey  on  m a tr ix  

com pletion  p rob lem s see [J].

63
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4.1 Positive Semidefinite Completions

An im p o r ta n t  class of com pletion problem s th a t  has received co n s id e rab le  a t ­

ten t ion  is the  pos it ive  semidefinite com pletion  problem . Since positive  sem idefin ite  

m atr ices  satisfy t h e  inheri tance  property , it is necessary t h a t  every  fully  specified 

p rinc ipal  s u b m a t r ix  of the  m a tr ix  in ques tion  is positive sem idefin ite . It was shown 

in [GJSW ] th a t  th is  condition  is sufficient to  ensure  a  positive sem idefin ite  com ple­

t ion  of a p a r t ia l  pos it ive  semidefinite m a tr ix  A  exactly  when G { A )  is cho rda l .  This  

chordal result  is a genera liza tion  of the  earlie r  result by [DG] for b an d ed  m atr ice s .

If th e  g raph  of t h e  specified entries of a  p a r t ia l  positive sem idefin ite  m a t r ix  is not 

chordal m ore  needs to  be known abou t  the  d a ta .  A non-chordal g ra p h  con ta in s  a 

chordless cycle of len g th  4 or more. Necessary and  sufficient cond it ions  t h a t  ensure  

a  positive  sem idefin ite  com pletion for th e  n-cycle, n > 4. were given in [B JT ],  and 

[F] is a  precursor  f rom  a different point of view. For an  n-cycle these  m a y  be  taken  

to  be [ j ]  cond it ions  t ranscenden ta l  in the  d a ta  for an  n-cycle to  a d m i t  a  positive 

sem idefin ite  com ple tion . We will call these th e  cycle condit ions.  A fte r  a  diagonal 

congruence  t ra n s fo rm a t io n  of the  d a ta ,  a  pa rt ia l  positive  sem idefin ite  m a t r ix  .4 in 

which G '( / l )  is an  n-cycle  is of th e  form

1 cos 0,-, ? cos 0ln

cos 0,-, 1 ' • • ?
A  =

? ’ •. '• • cos 0,Ml — I

cos 0lfl ? cos 0in_I 1

in which k > 0\ >  d2 > ■. .  >  0n >  0 and  i x, i2, . • •, in is th e  p e rm u ta t io n  o f  1 .2  n

in which these 0 ’s o c c u r  around  the  cycle. N ote  th a t  such a t ra n s fo rm a t io n  does not
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change th e  existence of a posit ive  sem idefin ite  com pletion. A ccording to  co ro l la ry  1 

in [BJT] th e  conditions th a t  e n su re  a  positive semidefinite  com pletion  of .4 a re .

£ * < ( * - 1 ) * +  E  *•-
i = l  t=Jfc+l

for every 1 <  k < n, k  odd. In [BJL] those  graphs for which these cycle co n d it io n s  to ­

ge the r  w ith  pa rt ia l  positive defin iteness are  sufficient to ensure  a  positive  sem idefin ite  

com pletion  are  characterized.

It is in te res ting  to  note  t h a t  th e  cycle conditions are independen t  of t h e  o rd e r  of 

th e  9i s a round  the  cycle. Th is  c a n  be seen w ithout knowing the  [BJT] re su l t  a n d  is 

also t ru e  for th e  case in which th e  d a ta  is from the  com plex num bers. For th e  cycle

F igure  4.1: Cycle

we will ad o p t  th e  convention th a t  in th e  partial  m a tr ix  .4 with th is  g ra p h ,  a I7 =  r/, 

and  dji =  d{ for i <  j .
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T h eorem  4.1 Let

1 d\ dn

d\  1 d2 ?

.4 = d2 1

? d n —l

d n d n - 1 1

positive semidefini te  completion i f  and  only i f

1 da{ i) d a (n)

d,r(i da( 2) I

A  = dC{2) 1

?
d a ( n — 1)

d a (n d a ( n - l ) 1

(4.1)

has a positive semidef inite completion f o r  any  permuta t ion  a  o f  the indices

i = 1,2, n.

Proof.  It suffices to  show th a t  the  d a ta  on two consecutive  edges in the  cycle 

can be in te rchanged  and  the  com ple tab ili ty  of the  correspond ing  transfo rm ed  m atr ix  

is equ ivalen t to  th a t  of the  original m atr ix .  T h e n ,  the  genera l  case in which any 

p e rm u ta t io n  of the  d a ta  results  in a  corresponding  m a tr ix  w ith  a positive  sem idefin ite  

com pletion  is ob ta ined  from a  finite sequence of consecutive  in terchanges. Assum e 

th a t  th e  m a tr ix  A  as in (4.1) has a  positive sem idefin ite  com pletion . T h e n  G ( A )  is 

given by th e  g raph  in figure 4.1. Let G'  be a  t r iangu la tion  (ad d  edges un til  th e  g raph  

becomes chordal and  no cliques of size 4 or more a re  c rea ted )  of G ( A ) in which {1.3} 

is an  edge of G ' . For exam ple,
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Figure 4.2: T riangu la tion .

It is a  necessary  condition th a t  A  be p a r t ia l  positive  sem idefin ite .  So. there  ex is ts  a 

p a r t ia l  positive  semidefinite m a tr ix  A'  such th a t  G(A/) =  G ',  A \ n =  .4i„, A'nl =  .4„i.

4 - i+1 =  and  A{1+1 =  Ai,,+i for i =  1 . 2 ,  n  — 1. A ssu m e  th e  value given to

the  edge {1.3} is z.  T he  tr iangu la ted  g rap h  G'  is chordal so t h a t  by [GJSW] A '  has 

a  positive  sem idefin ite  completion.

1 d\ z

T h e  p rinc ipa l  su b m atr ix  A '  [1,2.3] is fully specified a n d  has  d a ta  J  \ d2

z  d2 1

P e rm u tin g  th e  first two rows and  colum ns of A!  [1.2,3] resu lts  in the  m atr ix

B  =

1 d\ z

d\  1 d%

c c/2 1

which is positive  semidefinite  since p e rm u ta t io n  s im ila r i ty  p reserves  positive semi-
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definiteness. B u t then

B 1 =

1 d2 z

d2 1 d\

z d\  1

is also positive semidefinite. So. replacing A!  [1.2. 3] by B T results in a  new m a tr ix  

A th a t  is part ia l  positive semidefinite and  for which G'(A) is chordal and  G (A ) is the  

s am e  g rap h  as G'  excep t th a t  di and  d2 a re  in te rchanged . Since .4 is chorda l ,  by 

[G JSW ], A  has a positive  semidefinite com ple tion . Let A be the s u b m a tr ix  of A for 

which G  ( / i )  is given by:

n-1

Figure 4.3: G’(A ').

If A does not have a  positive semidefinite com ple tion , then  A cannot have a  positive  

sem idefin ite  com pletion. But A is chordal an d ,  thus, has a positive sem idefin ite  

com ple tion . It follows th a t  A has a  positive  sem idefin ite  completion. Since this 

a rg u m e n t  is sym m etr ic ,  this completes the  proof. □

N ote  t h a t  the  proof of theo rem  4.1 is equa lly  valid for d a ta  from th e  real o r  the  

com plex  num bers  and . therefore, in any  list of  cycle conditions for m atr ices  w ith  d a ta  

from  th e  com plex num bers , the  order of th e  d a t a  a round  th e  cycle m ust be irre levant.

In [BJT] and  in [F] only real com ple tions  of real pa rt ia l  positive sem idefin ite  

m atr ices  th e  g raph  of whose specified en tr ies  is a  cycle are  considered. In th is  case.
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for each m ax im al c lique th a t  a  given unspecified e n try  com ple tes  th e re  is an  interval 

of allowed values for a  positive  semidefinite com pletion. T h is  in terval becomes a 

disc in the  com plex  case. In each case we must look a t  in te rsec tions  of the  sets of 

allowed values for each  m ax im a l  clique th a t  the  en try  com pletes . In th e  real case the 

in tersection of intervals  is still an  interval. As a result, th e  real case  is rela tively  easy. 

However, th e  in te rsec tion  of two discs is no longer a  disc and , therefore , th e  complex 

case is much m ore difficult.

Let A  = B  +  i C  be  a  pa r t ia l  positive semidefinite m a tr ix  in which B .  C  are real 

and  6 '( .4 )  =  G ( B )  =  G ( C )  is an  n-cycle. Then

1 b i ?  b n 0 Cl ■7 Cn

b i 1 •? “ Cl 0 ?

•? 1 b n - 1

+  i
•? 0 Cn — i

b n
•?

b n — 1 1 cn ? C n  — 1 0

If ,4 is positive sem idefin ite . so is A T =  A.  Then -1-2~ -  = B  is also pos itive  semidefi­

nite. T hus , th e  cycle cond it ions  of [BJT] give necessary cond it ions  on th e  d a ta  in B.  

Let

1

— i
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th en

R e ( D ~ l A D )  =

1 Ci

-ci  1

1- Cn—i

C-n ? _ Cn— 1 1

Therefore, th e  cond it ions  in [BJT] also provide necessary co n d it io n s  on the  d a ta  in C.  

T h is  is a  s ta r t  in d e te rm in in g  a list of  conditions on the  d a ta  t h a t  ensu res  a com pletion 

in th e  com plex  cycle case. However, exactly  w hat the  com plex  cycle conditions are 

rem ains  an  open  ques tion . T h e  following theo rem  does no t by itse lf  give such a  list, 

bu t  it does ind ica te  t h a t  th e  com plex  positive sem idefin ite  com p le tion  problem  is a 

special case of a  larger real com pletion  problem.

T h e o r e m  4 .2  Let  G  be an y  graph and A  =  B  +  i C , in which B , C  are real, be a 

partial  posit ive semidef in i te  m a tr ix  with graph G . Then, A  has  a posi t ive  semidef ini te  

completion i f  and  only i f

B  C
M  =

- C  B

has a positive semidef in i te  real completion.

Proof: A ssum e th a t  .4 has a  positive semidefinite com p le tion  A  =  B  + i C  in which 

B  an d  C  a re  real m a tr ice s .  T hen

M  =
B  C  

- C  B

is a com ple tion  of M .  N o te  t h a t  since ,4 is H erm itian . C  is such  th a t  C T =  — C  and  M
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is a  real s y m m e tr ic  m atr ix .  If x  is an  e igenvec to r  of A  associated w ith  A, th en

IX

is an e igenvec to r  of M  associated w ith  A. T h a t  is, any eigenvalue o f  A  is a lso  an

eigenvalue of M .  Also.

—ix

is an e igenvec to r  of M  associated w ith  A. S ince  A is

real, A =  A, a n d  for x  ^  0 the  vectors
X

and
X

i x — i x

are  linearly  in d e p e n d e n t .

T herefore , th e  eigenvalues of M  are  the  e igenvalues of A (w ith  m ultip lic ities  d o u b le d )  

and  a re  nonnega tive .  Thus, M  is a  positive  sem idefin ite  com pletion o f  M .

Now assum e  M  has a  real positive sem idefin ite  completion

My =
B y  C  

C T  B 2

Note t h a t  a l th o u g h  th e  diagonal blocks a re  equa l  in th e  partial m atr ix ,  th e  co m p le t io n  

m ay not have  B y  —  B 2 . Similarly, it m ay  not b e  th e  case th a t  C T  =  —  C  as re q u i re d  in 

order  to  recover a  com pletion  of .4 from M y .  T h e  following s im ilarity  leads to  a n o th e r  

positive  sem idefin ite  com pletion. M 2, of M  :

0 i l  

■il  0

B x C  

C T  B 2

0 i l  

- i l  0

i C T  i B 2 

— i B \  — i C

B 2 - C t  

- C  B y

0 i l  

- i l  0

=  M i

Note  th a t  th e  specified entries of B y  and  B 2 are  identical, as are those  o f  C  an d
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—C  =  C T. so, this is indeed a  second com ple tion  of M .  T h e n

-  (A/i +  A/2) —
i  ( b ,  +  b 2) i  ( c  -  c T)

- ' 2 { C - C t ) i { B ,  + B 2)

= M

which is ye t  ano the r  com ple tion  of A/. Note t h a t  A/ has th e  desired  fo rm  since the 

d iagonal blocks are identical an d  th e  off d iagonal blocks are  th e  n eg a t iv e  of one 

an o th e r .  Since A/t and  A/2 a re  positive  semidefinite , M  is also posit ive  semidefinite . 

T h e n ,  th e  m a tr ix  .4 =  4 ( +  5 2) +  5 ( C  — C r ) is a  positive sem idefin ite  com pletion  

of ,4. □

4.2 The Euclidean D istance Completion Problem: 

Cycle Completability

A n n-by-n  m atr ix  D  =  (d tJ) is called  a (Euclidean) distance m a tr ix  if. for some

k.  th e re  ex is t  points p i , p 2 .  pn £  such th a t  d{j =  ||pt- — Pj\\2 , i , j  =  1 .2 ____  n,

in which | |* | |2 is the  E uclidean  vecto r  norm  on A partial  dis tance m a tr ix  is a 

pa r t ia l  sy m m etr ic  m atr ix  in which every  specified principal s u b m a tr ix  is a  (Euclidean) 

d is tan ce  m atr ix .  Generally, it is a ssum ed  th a t  all diagonal en tr ies  a re  specified and 

in th e  case of d istance m atr ices  the  d iagonal en tr ies  are all 0 .

Here o u r  interest lies in th e  genera l question  of de te rm in ing , for each  g rap h  G. 

cond it ions  on the specified d a ta  in a  p a r t ia l  d istance  m atr ix  w ith  g rap h  G  t h a t  ensure  

th e  ex is tence  of a  d is tance  m a tr ix  com pletion . Th is  in terest is m o t iv a te d  in p a r t  by 

th e  “m olecu la r  conform ation p rob lem ” , (see [HC] and  [dLH]) in w hich  som e m ea­

sured  in te ra tom ic  distances  m ust  be fit to  a  d is tance  m a tr ix  of an  e n t i r e  molecule.
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T h e  d is tance  com ple tion  p roblem  enjoys th e  p ro p e r ty  of " inheritance” , so. in o rd e r  

th a t  a  pa rt ia l  sy m m e tr ic  m a tr ix  .4 have a  d is ta n c e  m a tr ix  completion, any  p r inc ipal  

su b m a tr ix  of .4 m ust have  a  d istance  m a tr ix  com ple tion . Thus, it is necessary  th a t  

.4 be a  pa rt ia l  d is ta n c e  m atr ix .

Recently, it has been  shown th a t ,  as in th e  pos it ive  semidefinite  case, th is  obvious 

necessary cond it ion  is sufficient exactly  w hen th e  g rap h  G  of the  specified en tr ies  of 

,4 is chordal [BJ]. O the rw ise ,  more need be know n a b o u t  th e  da ta . T h e re  is a very 

s trong  rela tionsh ip  be tw een  the  d istance  m atr ices  and  th e  positive (sem i-)defin ite  

m atr ices  [B]. U nfo r tuna te ly ,  these links do not s im ply  ex te n d  to the  two com ple tion  

problem s [JT ] , b u t .  none the less , it is reasonable  to  expec t  s trong analogies be tw een  

com pletion  results .

Here, th e  focus is u p o n  nonchordal g raphs  G  and , in part icu la r,  upon th e  role of 

com ple tab i li ty  cond it ions  for a  single full cycle. In th e  case of the d is tance  com ple tion  

problem , th e  cond it ions  for a  sim ple cycle of d a t a  a re  m uch  sim pler th a n  in th e  positive  

sem idefin ite  case, b o th  to  s ta te  and to  u n d e rs ta n d .  T h e  purpose  here is to  answ er th e  

question , parallel to  t h e  one resolved in [BJL] for th e  positive (sem i-)defin ite  case, 

"for which g raphs  a re  th e  cycle conditions sufficient for a partia l  d is tance  m a tr ix  to  

have a  d is tance  m a t r ix  com ple tion?’' Im p o r ta n t ly ,  th e  class of graphs is the  sam e as 

in the  positive (sem i-)defin ite  case, bu t .  also im p o r ta n t ly ,  th e re  are no tab le  differences 

in the  deta ils  ( though  no t  th e  overall s t ru c tu re )  of th e  proof.

As in [BJL], cons iderab le  graph  theore tic  s t ru c tu re  is necessary to ca rry  ou t  th is  

proof and  th e  sam e n o ta t io n  and  definitions as in [BJL] will generally be a d o p te d .  

N o n s tan d ard  concep ts  a n d  no ta tion  will be defined as th ey  arise.

In th e  case of a  p a r t ia l  d istance  m atr ix ,  suppose  d i2?^23- • • • ■> >  0 is a

A:-cycle of specified d a ta .  T h e n ,  there  is a  single s im ple  condition th a t  is necessary
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an d  sufficient for a  d istance  m a t r ix  completion:

2 m ax  {di2: d23, . . . .  d k - i .k - d ^ i} <  d \ 2  +  d23 +  • • • +  d^-i ,k  +  dki •

We refer to  this inequality  as th e  polygonal inequality. Its necessity  follows from 

re p e a te d  app lication  of the  t r iang le  inequality, while its sufficiency m ay  be  seen in­

ductive ly . in it ia ted  w ith  the  case of a  triangle, in a  varie ty  of ways. For exam ple ,  

two a re  m entioned  here. (1) By a d ju s tm e n t  of the  angle betw een th e  larges t  d is tan ce  

an d  one  ad jacent to  it. th e  fc d is tances  d 12, d23, . . . ,  dfc-ijt, d/ti m ay be rep laced  by 

k  — 1 distances: a  "new" d is tance  lying between the  largest plus or m inus a n  ad jacen t  

d is tance ,  and  the  k  — 2 o ther  unused  distances. T he  angle m ay  be chosen so t h a t  the  

new set of d istances satisfies th e  polygonal inequality  a nd , thus ,  is ach ievab le  by the  

in d u c t io n  hypothesis. (2) If k  =  3, the  cycle is a triang le  an d  in th is  case  th e  cycle 

c ond it ion  (i.e. polygonal inequality )  is necessary an d  sufficient for th e  specified  d a ta  

to  be a d istance  m atr ix .  Therefore , it m ay be assum ed  th a t  the re  are  a t  least four 

d is tances .  Replace the  ad jacent pa ir  which has the  sm allest sum  by the ir  su m . If this 

is no t th en  the largest d istance, th e  polygonal inequality  still holds and  th e  induc tion  

hypo thes is  applies, realizing all k  d is tances  with th e  two “sm all” d is tan ces  lying on 

a  line. O therw ise , if the  sum  of th e  two is then  th e  largest d is tance , t h e  polygonal 

inequa li ty  still holds, as there  a re  a t  least four d istances  orig inally  and  th e  sm alles t 

a d ja c e n t  sum  was chosen. T h e  induc tion  hypothesis again applies, rea liz ing  th e  two 

“sm a ll” d istances on a  line. It shou ld  be noted  th a t  th e  cycle of d istances  m a y  always 

be realized in a plane, i.e. 1R2, a n d  th a t ,  as in the  positive  (sem i-)defin ite  case, the  

o rd e r  of th e  d a ta  a round  the  cycle is irrelevant.
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4.2.1 Statem ent o f Main Result

In o rder  to  desc r ibe  our  m ain  result of th is  section, severa l definitions are needed. 

We say th a t  a  p a r t ia l  d istance  m atr ix  A  is distance cycle completable  if every p r in ­

cipal su b m a tr ix  of .4. corresponding to a  m inim al cycle in th e  g rap h  of the  specified 

entries  of A. has a  d is ta n c e  m atr ix  com pletion, i.e. th e  d a t a  for th e  cycle satisfies the  

polygonal inequality . We also informally say th a t  th e  d a t a  sa tisfy  th e  “cycle cond i­

tions .” Recall th a t  a n  edge subdivision  of a g raph  G  on n  vertices is a  g raph  G '  on 

n +  1 vertices t h a t  resu lts  from replacing an edge of G  w i th  two edges and a  vertex  

betw een, an d  a  vertex  partition  of G  (n vertices) is a  g rap h  G '  ( n - f  1 vertices) in which 

a  vertex  (of degree a t  least 1 ) in G  is replaced by two a d ja c e n t  vertices th a t  p a r t i t io n  

the  neighbors of th e  original vertex. Also recall, t h a t  a  g ra p h  G i  is hom eom orphic  

to a  g rap h  G x if G<i m ay  be ob tained  from G \  via a  f inite  sequence  of (at least one) 

edge subdiv isions, a n d  the  g raph  G 2 is built f ro m  G\  if G 2 m ay  be ob ta ined  from G x 

via a  finite sequence  of (at least one) vertex  part i t ions .  N o te  t h a t  edge subdivision 

is a special case of ve rtex  partition ing , so th a t  h o m eo m o rp h ism  is a  special case of 

“built  f rom .” T h e  special g raph  on five vertices th a t  is a  single edge subdivision of 

l l 'i  ( =  A 4 ) is d e n o te d  as W 4:

Figure 4.4: \ \ \

O u r  m ain  resu lt  m ay  now be s ta ted .
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T h e o r e m  4 .3  For an undirected graph G. the fo llow ing  fo u r  s ta tem en ts  are equiva­

lent:

(0) every distance cycle completable. partia l distance m atr ix  /I, the graph o f  whose 

specified entries  is G. has a distance m a tr ix  completion:

(1) no induced subgraph o f  G  is Wit, k  >  5, or can be built f r o m  Wk. k  > 4;

(2) every induced subgraph o f  G  that conta ins  a hom eom orphic  image o f  K .j also 

contains an actual copy o f  /v4; and

(3) G has chordal supergraph, in which all edges o f  any  J -clique are already edges 

o f  G.

[f G  satisfies cond it ion  (3) of theorem  4.3. we say th a t  G  has a  3-clique chordal  

supergraph. A g raph  G  th a t  satisfies condition  (0), th e  m o tivating  notion, is refe rred  to  

as distance cycle completable. (T he  o th e r  th re e  conditions  of theo rem  4.3 are  p u re ly  

s t ru c tu ra l  g raph  theo re tic  conditions .)  So. acco rd ing  to theo rem  4.3. th e  d is ta n c e  

cycle com ple tab le  g raphs a re  exactly  those w ith  3-clique chordal supe rg raphs .  O f 

course, chordal g raphs  and  m in im al cycles ( th e  m ost nonchordal g raphs)  b o th  qua lify  

as  d is tance  cycle com ple tab le .  b u t  m any  o th e r  g raphs  do also.

T h e  proof of the  theo rem  follows the  logic (0)=>(1)=»(2)=>(3)=>(0). T h e  pu re ly  

g ra p h  theore tic  im plica tions  (1) =>(2) and  (2)=»(3) have a lready  been d e m o n s t ra te d  

in [BJL], which addresses the  cycle com p le tab le  g raphs  for the  positive defin ite  c o m ­

pletion  problem . Even though  these  tu rn  o u t  to  be th e  sam e graphs, we know  of 

no im m edia te  way to  deduce  th e  d istance  com ple tion  result from th e  result of [BJL]. 

So, section 4.2.2 is devo ted  to  verifying the  im p lica tions  (0)=>(1) and  (3)=>(0) in the  

d is tance  case. Some purely  g raph  theore tic  technology for the  la t te r  im p lica tio n  is 

also adop ted  from [BJL].
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T hough  condit ion  (0) only requ ires  the  d istance cycle cond it ions  on m in im al cy­

cles, we shall freely use th em  for a rb i t r a ry  cycles. T h is  is ju s t i f ied  by th e  following 

observation.

L e m m a  4 .1  Let A  be an n-by-n partia l  distance matrix, the graph o f  whose specified 

entries  is G . The data in A  sa tis fies  that polygonal inequality f o r  every cycle in G i f  

and  only i f  A  is distance cycle completable.

Proof. Necessity is clear, as “d is ta n c e  cycle com ple tab le” fo rm ally  requires less of 

th e  d a ta  (i.e. t h a t  th e  polygonal inequality  is satisfied by ju s t  t h e  m in im al  cycles.) 

F irs t  we consider th e  case in which a  non-m inim al cycle has a  s ing le  chord:

F igure  4.5: Non-minimal cycle

T h e  non-m inim al cycle is then  the  un ion  of two m inim al cycles, less th e  c om m on  edge. 

Suppose  the  leng th  of the  com m on  edge is d  and the  rem ain ing  leng ths  in the  two

m in im al cycles are  d x, d 2, . . .  . d p a n d  dp+i . d p+2 , ___ dp+q. B ecause  of th e  polygonal

inequality  for the  two m inim al cycles, we have:

d  <  d\ + d2 -{-••• + dp

2d; <  d  -f d\ +  <̂ 2 +  • • • +  dp i = 1 , 2 , . . . ,  p

d  <  dp+i -f- dp+2 +  • • • +  dp+q
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and

2d j  <  d  +  d p + i  +  d p+ 2 +  • ■ • +  d p + q j  — p +  1, p +  2 , . . . ,  p q.

A ddition  of th e  second a n d  th i rd  inequalities yields

2d, <  d\  -t- d2 +  • • • +  dp+q i — 1 . 2 , . . . .  p.

an d  add ition  of th e  first a n d  fourth  yields

2d0 < d l + d 2 -\-------dp+q j  =  p +  1. p  +  2 ...........p  +  q.

Taken toge the r  th is  is th e  polygonal inequality  for th e  non-m in im al cycle. W h en  a  

non-m inim al cycle has m ore  th a n  one chord, a  rep ea ted  app lica t ion  of th is  a rg u m en t  

leads to  the  desired  result  for such a  non-m inim al cycle. □

We close th is  section by no ting  th a t ,  based upon recen t work [JM], a n o th e r  g rap h  

theore tic  descrip tion  m ay  be added  to the  list in our  th eo rem , we say th a t  a  g raph  

G  is a clique su m  of two g rap h s  G\  and  G2 if each of G \  and  G 2 contain  a copy of A p 

for some p an d  iden tif ica tion  of these two copies of K p resu lts  in the  single g rap h  G.

e.g.

F igure 4.6: Clique sum

It is shown in [JM] th a t

(4) G  is a  sequentia l c lique  sum  of chordal and  series-paralle l g raphs (see [JM]).
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is equ iva len t to  the  o th e r  g raph  theo re tic  cond it ions  in the  theorem . T h is  is useful, 

as it shows th a t  d is tance  cycle com ple tab le  g rap h s  m ay  be efficiently recognized.

4.2.2 Proofs o f Necessary Im plications

T h e  I m p l i c a t i o n  (0) => (1)

T h e  proof th a t  (0)=»(1) is by con traposit ive .  It is shown th a t  if a  g rap h  G  con ta ins  

a  forb idden  subg raph  (an induced  W f . k  >  5, or an  induced subg raph  th a t  is bu ilt  

from a  141, k  >  4), th en  there  is a  d is tance  cycle  com pletable, pa rt ia l  d is tan ce  m a tr ix  

.4. th e  g raph  of whose specified en tr ies  is G , t h a t  has no distance m a tr ix  com ple tion . 

T h e  proof is constructive. F irs t ,  d a ta  of th e  desired  type  is exh ib ited  for th e  basic 

forb idden  subgraphs  IT'.,, IT'?, 146, • • • and  th e n  it is shown th a t  if such d a ta  ex is ts  for 

G , it also exists for a  vertex  p a r t i t io n  of G. T h e  proof is then com ple ted  by showing 

how to e m b ed  such d a ta  for a  forb idden  su b g ra p h  in a  d istance cycle com ple tab le .  

pa rt ia l  d is tance  m a tr ix  the  g raph  of whose specified entries is o therw ise  a rb i tra ry .  

Because of th e  inher i tance  property , the  resu l t ing  d a ta  m atr ix  can have no d is ta n c e  

com ple tion  an d  thus  provides t h a t  d a ta  necessary  for the  proof.

T h e  strategy  for th e  proof of this im p lica tion  is generally the  sam e  as it was in 

the  positive  sem idefin ite  case [BJL], b u t  t h e  details  are noticeably  (an d  p robab ly  

necessarily) different.

L e m m a  4 .2  None o f  the k-ivheels IFt. k  >  5. is a distance cycle completable graph.

Proof: For k > 5. let A  be the  k-by -k  real p a r t ia l  sym m etric  m a tr ix  given in figure 

4.7 below.
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0 1 1 . . .  1

1 0  2 ? . . . ?  1

1 2 ' . ' . ?  ?
A= . >7 • • • ' .  :

: ? ?

?  ’ ■.  2 

1 ? •••  2 0

F igure  4.7: Bad d a ta  for a  6-wheel

T h e  g rap h  of th e  specified en tr ies  of .4 is Wk an d  the  specified en tries  satisfy t h e  cycle 

conditions, as each  e n try  is a  1 or 2. so th a t  no e n try  is larger th a n  th e  s u m  even 

of only two of th e  o thers . T h e re  a re  6 — 1 m axim al cliques in Wk all of c a rd in a l i ty  

three : {1 ,2 .3 }  , {1.3, 4} , . . . ,  {1. k  — 1. 6}, an d  { 1 ,2 ,6 } .  T h e  principal s u b m a t r ix  

correspond ing  to  each of these  cliques is e i the r

0 1 1 0 1 1

1 0 2 or 1 0 1

1 2 0 1 1 0

T he  form er is realizable on a  line, th e  la t te r  as an  equ ila te ra l  triangle , so th a t  b o th  are  

d is tance  m atr ices . Thus. A is a  d is tance  cycle com pletab le , part ia l  d is tan ce  m a tr ix .

Suppose  th e  d a ta  in A  were  to  a d m it  a  d is tance  com pletion. In view of th e  

d istances  a m ong  the  vertices 1, 2, an d  3, the  vertex  1 would be the  m id p o in t  of a  line 

segm ent jo in ing  vertices 2 a n d  3. Similarly, 1 is the  m idpo in t  of a line se g m e n t  (of 

the  sam e  leng th  as the  segm ent jo in ing  2 and  3) jo in ing  3 an d  4. It follows t h a t  2 and  

4 m ust  coincide. T he  sam e reason ing  shows th a t  3 and  5 m ust coincide, 4 a n d  6 (an d
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2), 5 and  7 (and  3), and  so on. T hus, vertex  k  m ust  coincide w ith  vertex 2 or vertex  

3 and , then , canno t have d is tance  1 (as specified) from  ve rtex  2. This  con trad ic t ion  

shows th a t  .4 has no d is tance  com pletion  an d  com pletes  th e  proof. □

T h e  g raph  W 4 is d istance  cycle com ple tab le  as it is th e  com ple te  graph  I \ 4. How­

ever. we now show th a t  any g raph  built from Wk, k  > 4 is no t d istance  cycle com ­

pletab le . T h e  g rap h  W 4 is built  from H-'T To see t h a t  W 4 is not d istance  cycle 

com ple tab le , consider the  following data :

Figure  4.8: Bad d a ta  for a  W 4

T h e  specified d is tances  again tr iv ia lly  satisfy th e  cycle cond it ions , b u t  vertices {4 .1 .5}  

lie on a  line with  vertex  1 a t  the  center. Similarly  { 4 ,1 .3 }  lie on a  line with vertex  1 a t 

th e  center. This  m eans th a t  vertex  5 is coincident w ith  v e rtex  3. which is impossible: 

ve rtex  2 cannot be bo th  d istance  one and  d is tance  two from  th e  sam e point. T hus. 

W 4 is not d is tance  cycle com pletab le . T he  p receding  discussion yields:

L e m m a  4 .3  The graph W 4 is not distance cycle completable.

If a  g raph  can be built  from IF.), then  it can  be bu ilt  from  W 4. This  observation , 

to g e th e r  with th e  preceding and  following lem m a suffice to  prove th a t  no g raph  built 

from  W k ,k  > 4, is d is tance  cycle com pletab le.

L e m m a  4 .4  I f  G  is a graph that is not distance cycle completable and G' is obtained  

f r o m  G  either by subdividing an edge or by par tit ion ing  a vertex, then G' is also not 

distance cycle completable.
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Proof. If G'  is an  edge subdivision of G, th e n  G'  is also a vertex  p a r t i t io n  of G. 

in which one of th e  neighbor sets has c a rd ina l i ty  one. Thus, only th e  case in which 

G' is a  ve rtex  p a r t i t io n  of G  need be considered. W ith o u t  loss of generality , tak e  th e  

p a r t i t io n ed  ve rtex  to  be n and suppose th a t  l , 2 , . . . , j  a re  the vertices ad ja c e n t  to  n 

an d  j  +  1. j  +  2  k  a re  the  vertices ad jacen t to  n  +  1 in G ' . 1 <  j  < k.

j+2

i+1

j+2.xi+l,

i+1

F igure  4.9: Bad d a ta  for ve rtex  pa rt i t ion ing

Let .4 =  (a , j) ,  t h e  g raph  of whose specified en tr ies  is G. be any  n -by-n  p a r t ia l  dis­

tance  m a tr ix  t h a t  satisfies the cycle conditions, b u t  is no t d istance  cycle com p le tab le .  

Define th e  (n  +  l ) -b y - (n  +  1) partia l  sy m m etr ic  m a tr ix  A '  =  ( a Q  as follows:

< n
/=  a ni  = ? i = j  + 1 , 2 + 2 , .

a ; . n + l =  ® 71+1,7 =? < =  1, 2........

G i . n + 1 =  Q7l+l , i — Q-i.n I —2  +  1 , 2

^71,71+1 =  a 7i+l ,n
/

_  a 7l +  l , 7 l +l  _ 0

. . .  n

. , k

and

a-j =  ciij o t h e r w i s e .

T h e  g rap h  of A '  is G ‘ w ith  a distance of zero on th e  edge {n , n +  1}.

Any m in im al  cycles in G' are e ithe r  present in G  or a re  cycles of G  w ith  th e  new 

edge { n , n  + 1 }  in se r ted .  Since the  edge { n . n  +  1} has a  d istance  of zero, th e  cycle
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conditions hold in A'.  T h e  m atr ix  A '  is also a  p a r t ia l  d is tance  m atr ix ,  as th e  edge 

{rc.n +  1} is. by  cons truc tion , a m axim al clique of G '. a n d  all o th e r  cliques in G'  

correspond to a  u n ique  clique in G.

A ssum e th a t  th e re  is a  d istance com pletion  A '  of A'.  T h e  vertices n an d  n +  1 

m ust coincide sp a t ia l ly  an d  th e  triangle  inequa lity  on th e  entries in A '  requires th a t

ank — an+ l . f c

a 'n.j + l =  a n + l . j + l

n+1 , 1

a n + l . j

-  a

=  a

n i

/

nj'

As a  result, if A '  has a  d is tance  completion, th e n  A  m ust  have a  d istance  com pletion . 

This  con trad ic t ion  com ple tes  the proof. □

It follows from  le m m a  4.4 th a t  if G  is no t d is ta n c e  cycle com pletab le , th e n  any  

g raph  G' bu ilt  f rom  G  is also not d istance  cycle com p le tab le .  To com ple te  th e  proof 

of the  im p lica tion  (0)=>( 1), d a ta  for these fo rb idden  subg raphs  m ust be em bedded  

in d a ta  for larger g rap h s  in such a way th a t  th e  necessary  conditions still hold. T h e  

larger g raphs  a re  th e n  seen not to be d is tance  cycle com ple tab le . because, if they  

were, the  sm alle r  ones would be by inheritance.

Proo f o f  the implication (0)=>(1)

Suppose t h a t  G' is a  connected  g raph  on n  vertices t h a t  contains, as an  induced  

subgraph , a  g rap h  G  t h a t  is one of th e  forbidden su bg raphs .  If G' were not connected  

we would need on ly  consider  the  connected c o m p o n e n t  con ta in ing  G. For convenience.

assum e th a t  th e  vertices of G  are 1,2____ k. We assum e, w ithout loss of generality .

th a t  k  <  n , so t h a t  th e  rem ain ing  vertices of G'  a re  k  +  1, k  +  2 , . . . .  n. As in the  

proofs of lem m as 4.1. 4.2. and  4.3, assign d is tances  to  th e  edges of G. We need to
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dem ons tra te  d a ta  for th e  rem ain ing  edges of G' t h a t  does no t v io la te  th e  necessary 

conditions.

Suppose t h a t  th e  s u b g ra p h  of G'  induced  by vertices k  4-1, k  +  2 , . . . ,  n  has p ( >  I ) 

connected com ponen ts .  (Since G' is connected, each of these  c o m p o n e n ts  has an edge 

between one of its vertices  a n d  a  vertex  of G.)  W ith in  each of these  co m p o n en ts  assign 

the  d istance  0 to  each edge. For each com ponent, this has th e  effect of assigning all 

vertices of th a t  co m p o n en t  th e  sam e spa tia l  location. (N o te  t h a t  a n  edge of length 0 

does not affect sa tis fac tion  of th e  cycle conditions.) We a ssum e  th e n  th a t  k + p = n 

and  t rea t  each co m p o n en t  as a  single vertex, implicitly  conso lida ting  edges as needed.

We assign d is tances  to  th e  edges connecting  vertices k  +  l . k  +  2 ,  k  +  p with the

vertices of G  as follows. Since G  is Wk or built from H 4, G  has a  n a tu ra l  “center" 

vertex or c lu s te r  of vertices resu lting  from parti t ions  of th e  c en te r .  In the  la t te r  

case, all specified d is tances  am ong  vertices in the  cen tra l  c lu s te r  a re  0; th e  c luster is 

connected, a nd , so. all vertices in th e  c luster  must occupy th e  sa m e  sp a t ia l  location. 

We thus identify  all vertices  in th e  cen tra l  cluster and . in b o th  cases, refer to llthe" 

center vertex , which, we suppose, is vertex  1.

Consider now a ve rtex  k  +  i. k  =  1. 2 , . . .  , p. If k + i is a d ja c e n t  to  1 (case one), 

we assign th a t  edge th e  d is ta n c e  0. All o th e r  edges connec t ing  vert ices  in G  to k  +  i 

a re  then assigned d is tances  by ca lcu la ting  the  shortes t  p a th  in G  from  th a t  vertex 

(i.e. k  +  i) to  ve rtex  1. T h is  insures t h a t  the  polygonal in eq u a li ty  holds for any cycle 

containing k  +  i. Any clique in G' t h a t  includes vertex  k  +  i has  c a rd in a l i ty  a t most 

four. If the  c a rd ina l i ty  is less th a n  four, there  is no th ing  fu r th e r  to  check. If it is four, 

then  the  clique m ust inc lude  vertex  1, as well as two vertices  j  a n d  j  +  1 adjacent 

in the  cycle of G. For th e  vertices j  and  i  +  1, th e  d istances  assigned  to  the  edges 

{ j ,  k +  /} and  { j  +  l , k  +  «} m ust be d\j  and  d i j+ i ,  th e  d is tances  from  1 to  j  and to
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7 +  1. respective ly  The d a ta  specified by our prescrip tion  for these  four poin ts  is then

0 0 d\j

0 0 d\j di.j+i

d-ij d\j 0 dj,j+1

i.j+i d \ .i+i dj,j+i 0

which is the  d is ta n c e  m a tr ix  of th e  triangle of G:

i.j+i

i+i
j.j+i

F igure  4.10: D a ta  for a  t r iang le

w ith  vertex  1 rep ea ted .

If fc +  i is not ad ja c e n t  to  vertex  1 (case 2), choose an  a r b i t r a ry  one  of its neighbors 

in G  a n d  assign t h a t  edge th e  d istance  0. Again, assign d is ta n c es  to  all o th e r  edges 

connec t ing  vert ices  of G  to  k  +  i via shortest p a th  ca lcu la t ions .  This ensures  the  

polygonal inequalit ies  for an y  cycle containing k  +  i. In th is  case, no clique co n ta in ­

ing k  +  i can be o f  ca rd in a l i ty  m ore  than  three. Because of th e  t r iang le /po lygona l  

inequalit ies , th e  d a t a  associa ted  with such cliques are  d is ta n c e  m atrices.

By assigning edge  d istances  th roughou t G' we now have  a  pa r t ia l  sy m m e tr ic  m a ­

t r ix  A, th e  g rap h  of whose specified entries is G '. Because we have checked th e  d a ta  

a ssoc ia ted  w ith  cliques of G ' , A  is a  partial d is tance  m a tr ix .  F u r the rm ore ,  th e  polyg­

onal inequalit ies  a ssoc ia ted  w ith  the  cycles of G'  are  satisfied , so th a t  A  is d is tance  

cycle com ple tab le .  (N o te  th a t ,  if there  is a  m inim al cycle in G '  con ta in ing  m ore  th an  

one  of th e  k +  i. it m ay also be identified with a  cycle of G  by o u r  prescrip tion .)  If A
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had  a d is tance  m a tr ix  com ple tion  .4, th e n  .4 [{1, 2 ..........k}] would be  a  d is tance  m a tr ix

com pletion  of A  [ { 1 . 2 . . . . ,  £}], a  con trad ic tion  th a t  com pletes th e  proof. □

The Implication (3)=>(0)

To prove (3)=>(0), vve m u s t  show th a t  if G  is a g raph  th a t  has  a  3-clique chordal 

superg raph , then  every d is ta n c e  cycle com pletab le. pa rt ia l  d is ta n c e  m a tr ix ,  whose 

g raph  is G. has a d is tance  com ple tion . As in th e  positive defin ite  case, m uch  of th e  

proof is com bina to r ia l  in n a tu re .  T h e  logic of th e  proof is. as in [BJL], to  sequen tia l ly  

add  edges e i ,  e2, . . . .  em to  a  g iven g rap h  G  to  ob ta in  a  3-clique chordal sup e rg rap h  

H. Upon a dd it ion  of th e  edge e*. all new m inim al cycles are  considered . For any two 

of these  m in im al cycles, a  c om m on  d is tance  can be chosen for e* so as to  m ake each 

cycle com ple tab le . T h e n ,  an a p p lic a t io n  of H elly’s theo rem  (see. e.g. [Ro]) produces 

a  com m on d is tance  for all new cycles.

Because two m in im al cycles m ay in te r tw ine  in a  variety  of ways, difficulties arise 

in considering a  general pa ir  o f  m in im al  cycles con ta in ing  a  g iven  edge, ek- In [BJL] 

there  are  a  n u m b er  of g raph  th eo re t ic  lemmas dealing w ith  these  difficulties for g raphs  

w ith  3-clique chordal supe rg raphs .  T hese  lem mas cu lm ina te  in lem m a 9.6 in [BJL], 

which is s ta te d  below as lem m a  4.5.

Before th is  lem m a can be s ta te d ,  ano the r  definition is needed . G iven a  g raph  G', 

an  edge {a, b} of G  an d  a  cycle G. we say th a t  G ' is ob ta ined  f rom  G  by replacing the 

edge {a, b} with the cycle C  if. a f te r  tw o of the  vertices of C  a re  identified w ith  a and  

b the  g raph  G '  is (G  — { a . b}) U C. P ictorially,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87
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Figure 4.11: Replacing  edge a, 6 w ith  the  cycle C

A necklace is e i the r  a  g raph  th a t  is a  cycle plus one add it iona l  chord  or a g raph

ob ta ined  from a cycle G t =  [c<j. c i , . . . .  ct.co] by specifying a su b se t  of the  edges

{c0, c i } . {ct, c2}  {cfc_i.Cfc} an d  replacing each edge in the  su b se t  w ith  a  cycle.

N ote  th a t  th e  edge {cjt.co} is excluded . T he  base of a  necklace t h a t  is a  cycle plus

an add it iona l  chord is the  chord: o therw ise , it is the  edge {cjt,co}. Recall th a t  if

G  =  (K  E )  a n d  W  C  V. th en  G w  deno tes  the  subgraph  of G  induced  by th e  vertex  

set W.

L e m m a  4 .5  Let G  =  (.'V. E )  be a graph that has a 3-clique chordal supergraph H . let 

e =  { a .6} be an edge o f  H  that is not in G  and let G' =  (N .  £ U { e } ) .  Let C  =  (G. E ') 

and D -- ( K  E " ) be d istinct m in im a l  cycles in G' with com m on  edge e, and  express  

C  and D as the union o f  paths

C  =  [as , a 0] U [a0, a i ]  U [ a ! , a 2] U • • • U [as_ ! , a s ]

D =  [bs. 6o] U [bo. 6i] U  [b\. bf[ U • • • U [6s_ i ,  bs]

in which do =  =  a, a s =  bs =  6. U  fl V  = {a0, a j , . . . .  a s } =  {bo, 6 j  6„} and s is

a positive integer. Then G'UuV is a necklace with base {a, b}.

One m ore  lem m a is requ ired  for th e  proof of (3)=^(0). A co rre spond ing  s ta te m e n t  

for the  positive  definite case, lem m a 9.7. is found in [BJL]. Since th e  non-graph  

theore tic  p a r ts  of the  proof in [BJL] require  only a  chordal theorem  a n d  assum ed 

cycle conditions , th e  proof in th e  d is tan ce  case is similar.
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L e m m a  4 .6  Let G  = ( N . E ) be a graph that has a 3-clique chordal supergraph  

H  =  (N .  F ) ,  and  let A  be a distance cycle completable, partial distance m a tr ix  whose 

graph is G. Let e — {r, 5 } be an edge in F  that is not in E  and let G 1 =  ( N ,  E  U {e}). 

For a n y  real num ber x, let ,4r  be the matrix  obtained by specifying the r . s  and  s . r  

entries o f  A  to be x. Then, i f  C  =  (CL E ')  and  D  =  ( V. E ")  are d is t inc t  m in im a l  

cycles in G' with com m on edge e, there exists a nonnegative number x such  that both 

<4r [G] and  Ar [F] have distance completions.

Proof: By lem m a 4.5. G'VuV is a  necklace w ith  base { r . s } .  Since G in jv  is G[ru r

with th e  edge { r ,s }  de le ted , it is th e  union of g raphs  G', =  (IF,-, is}) . i =  1 .2  k.

in which each G', is e i the r  / \ 2 or a  m inim al cycle of G. If G, is a m inim al cycle , let G, 

be the  com ple te  g raph  on IF, and  if G, is I \ 2, let G,- =  G,. Let 5  be the  u n io n  of the

G',-. i =  1 , 2 ,  k. T h e n  S  is a  chordal supergraph  of GVuv as any cycle in 5  is a  cycle

in one of th e  G',. Now if G, is a m in im al cycle. A  [IF,-] has a  d is tance  co m p le tio n  B  [IF,] 

by assum ption . Let B  [U U F ] be the  m atr ix  o b ta in e d  from A  [U U F] by  rep lacing  

each A  [IF,] for which G, is a  m in im al cycle by B  [ IF ,] . T h e n  the  g raph  o f  B  [U U V'] 

is 5  and  for each  m axim al clique IF  of S', B  [IF] is a  d is tance  m atr ix .  T h e  g raph  

5  is chordal, so, by th e  chordal theo rem  [BJ], B [ U  U F ] has a  d is tance  com ple tion  

M  \U U F], which is also a  d is tance  com pletion of A  [U U F]. Let x  be th e  r, s  e n try  of 

l\I [U U F]. T h e n  A x [G] a n d  A x [F] have the  d is tance  com pletion  M  [G] a n d  M  [ F ] . 

respectively, which com pletes  th e  proof. □

YVe m ay  now com plete  th e  proof of the  im plication  (3)=>(0). Let e i,  e2, . . . .  em be 

the  edges in a  3-clique chordal supergraph  H  t h a t  a re  not in G .  a n d  let

G,- =  ( ; V , £ U  {e1, e 2, . . . , e , } ) , i  =  0 , 1 ,  m .  T h e n  Go =  G and  G m =  H.  We

assum e, w i thou t  loss of generality , th a t  G is connected . Let ,4 be a d is ta n c e  cycle 

com ple tab le  pa r t ia l  d is tance  m atr ix ,  whose g raph  is G. We wish to ex h ib i t  a  d is tance  

m atr ix  com ple tion  of .4.
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C onsider first G \.  W ri te  e t =  { r . s }  and  for any real x .  let ,4r  be th e  m atr ix  

o b ta in e d  by specifying th e  r. s  a n d  s, r  en tr ies  of A  to  be x .  T h e re  a re  two possibilities 

regard ing  the  m in im al cycles in G \.

(i) The edge e\ is con ta ined  in exac t ly  one m inimal cycle C  =  (IT, F )  of G i. Since 

the  induced  subg raph  (G'i )lv- is a  cycle. G w  is a  p a th ,  and  th u s  a  chordal graph. 

By th e  chordal th e o re m  [BJ], .4 [IT] has a d istance  m a tr ix  com ple tion . Let x  be 

the  r. s  e n try  of th is  com ple tion . T h e n  A x [IT] has th e  sam e  com ple tion . E ither  

the  edge {r. s} or W  ( if  |IT | =  3) is the  only m ax im al  c lique  of G t t h a t  is not 

a  m ax im al  clique of G . so A x is a  part ia l  d istance  m a tr ix .  S ince C  is the  only 

m inim al cycle in G i t h a t  is not a  m inimal cycle in G , .4X is also d is tance  cycle 

com pletab le .

(ii) T he  edge is co n ta in ed  in two or m ore m in im al  cycles of G \.  Let 

Ci = ( IF,. Fi) . i  =  1 . 2 , . . . ,  p be th e  m inim al cycles in G'i c o n ta in in g  th e  edge ei.

For i =  1 .2  p , let / ,  =  {.r 6  R + : A T [IF,] has a  d is ta n c e  m a t r ix  completion}

If |IT,| =  3, we in te rp re t  th is  to  m ean  A x [IT,] is a  d is ta n c e  m a tr ix .  By lem m a

4.6. / ,  n  Ij 7̂  0 for all d is t in c t  i , j  6  {1 , 2  p} . T herefo re ,  by Helly 's  theorem

on this line, flf= I /i ^  0. Let x  €  D f _ i T h e n  .4r  [W,] has a  d is tance  m atr ix

com pletion  for i =  1 ,2  p. By hypothesis, e\ belongs to no 4-clique in G'i.

Thus, the  only m ax im a l  cliques in G\  th a t  are  not in G  a re  those IT, wi th 

|JT;| =  3, or only {r. s} if |VT,| >  4 for all i =  1 , 2 , . . .  ,p .  It follows th a t  ,4r  is a 

part ia l  d is tance  m a t r ix  and  d is tance  cycle com ple tab le .

If Hi =  1, we are  done. O therw ise ,  G\  has a  3-clique chordal su p e rg ra p h  H  and / l x 

is a  d istance  cycle com p le tab le ,  p a rt ia l  d istance  m atr ix ,  th e  g rap h  of whose specified 

en tr ie s  is G \ .  Therefore, r e p e a t in g  the  above process for e2, e 3 , . . . , e m we o b ta in  a  

p a r t ia l  d is tance  m atr ix  B  wi t h  chordal g raph  H. By th e  chorda l  theo rem  [BJ]. B
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has a  d is tan ce  m a t r ix  com pletion M ,  which is also a  d is ta n c e  com pletion of A .  T h is  

com ple tes  th e  proof o f  th e  im plication (3)=>(0), w hich  com pletes the  proof of th e  

theo rem .

4.3 The Combinatorially Sym m etric P-m atrix  

Com pletion Problem

Positive  defin ite  m atr ices  are H erm itian  m atr ices  for which all principal m inors  

a re  positive. If we re lax  th e  sym m etry  required  by H erm icity , we get the  P -m a tr ic e s .  

An rc-by-n real m a t r ix  is called a P -m a tr ix  (P 0-m a tr ix )  if all its principal m inors  a re  

positive  (nonnega tive )  (see. e.g. [BP] or [HJ2]). T h is  class of m atrices  generalizes 

m any  o th e r  im p o r ta n t  classes of m atrices (such as M -m atr ices  and  to ta lly  positive  

m atr ices) ,  has useful s t ru c tu re  (such as inverse closure , inher i tance  by principal  su b ­

m atr ices . a n d  wedge ty p e  eigenvalue res tric tions),  a n d  arises in applications (such  as 

th e  linear c o m p le m e n ta r i ty  problem, and  issues of local invertib ili ty  of functions) .

Here, we consider th e  P -m atr ix  completion problem  u n d e r  the  assum ptions  th a t  

th e  pa r t ia l  m a tr ix  is square ,  all diagonal en tries  are specified, and  the  d a ta  is com bi­

natorially  s y m m e tr ic  ( th e  j . i  en try  is specified if and  o n ly  if the  t’J  en try  is specified). 

F u r the r ,  s ince th e  p ro p e r ty  of being a  P -m a tr ix  is in h e r i te d  by principal su b m a tr ic es ,  

it is necessary  th a t  t h e  part ia l  m atr ix  be a  partial P -m a tr ix , i.e. every fully specified 

p rincipal s u b m a t r ix  m u s t  itself be a P -m atrix . O f all th e se  assum ptions, the  only  one  

th a t  is t ru ly  res t r ic t iv e  is com binatoria l sy m m e try  a n d  th e  general case, in which th is  

a s su m p tio n  is re laxed , is com m ented  upon later.

In each of the  com ple tion  problems: positive defin ite , iV/-matrix, inverse M -m atr ix .  

and  to ta l ly  positive, th e re  a re  significant com bina to r ia l  res tr ic tions  (in add it ion  to  th e
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necessity of inher i tance)  on pa r t ia l  m atr ices, even when c o m b in a to r ia l ly  sy m m etry  is 

assum ed, in o rder  to  ensure  a  desired completion. For ex am p le ,  as m en tioned  be­

fore, th e  cond it ion  on pa rt ia l  positive  definite  matrices necessary  to  en su re  a positive 

definite  com pletion  (w ithou t  fu r the r  knowledge of the  d a ta )  is t h a t  th e  und irec ted  

g rap h  of the  sy m m e tr ic  d a ta  be chordal [GJSVV]. P -m a tr ic e s  a re  a  genera liza tion  of 

real positive sem idefin ite  m atr ices  in which the m atr ix  is no longer requ ired  to  be 

sym m etr ic . Interestingly , it is shown here th a t ,  in the  case of P -m a t r ix  completions, 

th e re  are no com bina to r ia l  res tr ic tions  necessary to ensu re  a  P - m a t r ix  com pletion 

o th e r  th a n  the  com bina to r ia l  sy m m e try  assum ption . Every  c o m b in a to r ia l ly  sy m m et­

ric pa rt ia l  P -m a tr ix  has a  P -m a tr ix  completion. However, w hen  th e  com binato ria l  

s y m m e try  a ssum ption  is re laxed , the  conclusion no longer holds, a n d  th e  question  of 

which d irec ted  g raphs  for th e  specified entries  ensure th a t  a  p a r t ia l  P -m a tr ix  has a 

P -m a tr ix  com pletion  is. in genera l,  open. All 3-by-3 pa rt ia l  P -m a tr ic e s  have  P -m atr ix  

com pletions, b u t  we exh ib it  a 4-by-4 part ia l  P -m atrix  w ith  ju s t  one  unspecified en try  

an d  no P -m a tr ix  com pletion .

Let A  be an  n-bv-n  pa rt ia l  P -m a tr ix  w ith  one pair of sy m m e tr ic a l ly  p laced  unspec­

ified entries. By p e rm u ta t io n  s im ilarity  it can  be assum ed w ith o u t  loss of generality  

th a t  the  unspecified en tr ies  a re  <zi„ and  an \. Then, A is of th e  form:

a n T
°12

•?

^21 A  22 a  23

T
a 32 (133
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in which ,422 is (n  — 2)-by -(n  — 2) and a i 2, a 2ii fl23i 032 £  R "  • Define

A { x .y )  =

#11 Cl|2 %

®21 ^ 2 2  «23

y 3̂2 0 3 3

and deno te  ,4 (0 ,0 )  by ,4o- Also define C  e  { a  C  ;V : 1, n g  q } and  let 

/1Q =  A ( x . y )  [a]. N o te  th a t  since l . n  (E a  for all a  €  C , x  a n d  y  are unspecified 

entries in every  Aa , a  €  C.

L e m m a  4 .7  E very  partia l P -m atr ix  with one pair o f  s y m m e tr ic a l ly  placed unspecified 

entries has a P -m a tr ix  completion.

Proof. Let A  be  a n  n-by-n  partial  P -m a tr ix  with e x a c t ly  one p a ir  of sym m etrica lly  

placed unspecified en tr ies .  To find a P -m atr ix  com ple tion  of A  we m ust find x, y  such 

th a t  de t  A a > 0 for all a  €  C  (the  rem ain ing  p rinc ipal  m inors  of A  a re  positive by 

hypothesis). For each  a  (E C ,  a  =  {*4 =  1, f2, . . . ,  J|a | =  rcj define

hn =

cn —

d.\ —

=  de t A ( x . y )  [ | i 2, is, 

d e t  A0 [{ «2, 3̂, 

d e t  A0 [|j'i> iz, 

de t  A0 [ a ] .

• • 1 ^ | a | — 1 }  ]

|o|} — L^J

l ot | — I  }  1 ^ 2 >  ^ 3 >  • • •

By using Sy lveste r 's  id e n t i ty  (see, e.g. section 0.8.6 [ H J 1]) we see th a t

d e t  A a =  - a Qx y  +  ( - l ) |Q| l bax  +  ( - l ) ,a| l cQy +  da .
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Since A ( x . y )  is a part ia l  P -m a tr ix .  a Q >  0 for all a  6  C .  T h e n  x ,  y  can  be chosen 

so th a t  x y  <  0 and  —aQx y  >  ( —l)la l60x  -f ( —l)l“ lcQ(/ — dQ. In o rd e r  to  have x y  <  0. 

choose y  =  —x.  T h e  line y =  — x  in tersects  th e  hyperbo la  det ,4^ =  0 a t  th e  points

com pletion of .4 we m ust find a  pair  x .  y th a t  works for all Q g C .  T h e  m a tr ix  .4(x. y)

sym m etr ic  p a rt ia l  P -m atr ix .  T he  lem m a proves the  case in which th e r e  is one pair  of

every pa rt ia l  P -m a t r ix  with k — 1 pairs of sym m etrica lly  p laced unspecif ied  entries  and

principal su b m a tr ix  th a t  th is  pa ir  com pletes ( there  are  no o th e r  unspecified  entries

x  so th a t  |x | >  m a x { |x 0 | : i . j  €  a . a  m axim al}  com pletes  each  o f  these  m axim al 

principal subm atrices .  T hen , we are  left w ith  a  partia l  P - m a t r ix  w ith  k  — 1 pairs of 

sym m etrica lly  placed unspecified entries  which can be c o m ple ted  to  a  P - m a t r ix  by 

th e  induction  hypothesis . N o te  th a t  the  o rder  of com ple tion  is im m a te r ia l  (as long 

as com binatoria l sy m m e try  is m ain ta ined ).  T h is  proves o u r  m ain  resu lt .

Define

m  ( a )  =  m ax < x,

Then  det >  0 for each x  such th a t  |x | >  m (a ) .  In order  to  find a  P -m a tr ix

is a P -m a tr ix  for all x .  y  such th a t  |x | >  m ax  m ( a )  a n d  y  =  — x .  □
c*€C

This lem m a can be used sequen tia l ly  to  find a com ple tion  of a n y  com bina to ria l ly

□

sym m etrica lly  placed unspecified entries. Assum e the re  is a  P - m a t r i x  com pletion  of

let .4 be a  p a rt ia l  P -m a t r ix  w ith  k  pairs of sym m etr ica l ly  p laced unspecified  entries. 

Choose one  sym m etr ica l ly  p laced pair  i . j  of unspecified en tr ies  o f  ,4. Each m axim al

in such a  m ax im al su b m a tr ix )  is a  part ia l  P -m a t r ix  by in h e r i ta n c e  and . by lem m a

4.7, can be com ple ted  to a P -m a t r ix .  For each m axim al p r inc ipa l  su b m a tr ix  .4 [a] 

let x Q be th e  value of th e  unspecified en try  as given by lem m a 4.7. T h e n  choosing
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T h e o r e m  4 .4  Every  com binatoria lly  sym m e tr ic  partial P -m a tr ix  has a P -m atr ix  

completion.

As m entioned  above, w hen  the  com bina to ria l  sym m etry  a s su m p t io n  is relaxed, 

th e  conclusion of th e  th eo re m  no longer holds. The question of w hich d i re c te d  graphs 

for the  specified en tr ies  ensures  th a t  a  pa r t ia l  P -m atrix  has a  P -m a t r ix  com ple tion  is. 

in general, open. However, we do know the  following.

P r o p o s i t i o n  4 .1  E very  3-by-3 partial P -m atr ix  has a P -m atr ix  com ple tion .

Proof. T h e  com bina to r ia l ly  sym m etr ic  case is covered by th e  le m m a  above. T he  

only case th a t  rem ains  to  be considered is the  case in which .4 is a  3-by-3 partial  

P -m a tr ix  w ith  one  unspecified entry. N ote  th a t  if there  are  m ore  unspecif ied  entries, 

values m ay be assigned to  en tr ies  m ak ing  sure  the  2-by-2 p rinc ipal  m inors  a re  pos­

itive. until e i th e r  one pa ir  o f sym m etr ica l ly  placed unspecified en tr ie s ,  or only  one 

unspecified e n try  rem ains.

By p e rm u ta t io n  sim ilarity , it can be assum ed w ithout loss of gen e ra l i ty  th a t  the  

unspecified e n try  is in the  3.1 position. It can also be assum ed , by posit ive  left 

d iagonal m u ltip lica tion  and  diagonal s im ilarity  (which bo th  p reserve  P -m a tr ic es ) .  

th a t  there  are  ones on th e  m a in  d iagonal and  on the  super  d iagonal.  T h e n  .4 is of 

th e  form

I 1 c

.4 = a I 1

y b 1

in which a . b . c <  1 since .4 is a pa r t ia l  P -m a tr ix .  In o rder  to  co m p le te  .4 to a 

P -m a t r ix  y  m ust  be chosen so th a t  th e  1.3 m inor is positive (w hich  yields yc  < 1) 

a n d  det , 4 = 1 +  abc — a — b +  y(  1 — c) is positive.
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T h e re  a re  several cases to  consider. If c <  0. choose y > 0 an d  large enough  to 

m ake de t  .4 positive. Similarly, if c >  1. choose y  < 0 and  large in ab so lu te  value. If 

c =  1. then  de t  A =  1 +  ab — a — 6 =  (1 — a ) ( l  — 6) which is positive  since a .b  <  1. 

So, y  =  0 will give a  P -m a tr ix  com pletion  of .4. All th a t  rem ains  is 0 <  c <  1. In this 

case, if a. b >  0 or if ab <  0 choose y  =  ab. This gives yc  =  abc <  I (since a .b . c  < 1) 

and

de t  A =  1 +  abc — a — 6 +  ab{\ — c) 

=  I — a — b + ab 

=  ( I - a ) { \ - b )  >  0.

For a .b  < 0 the  te rm  1 +  abc — a — b in the  d e te rm in a n t  of .4 is positive. So, y  =  0 

will result  in a P - m a t r ix  com pletion  of 4 .  Thus, every 3-by-3 p a r t ia l  P - m a t r ix  has a 

P -m a t r ix  com pletion . □

P r o p o s i t i o n  4 .2  For every n > 4, there is a partial P -m a tr ix  with exactly one un­

specified en try  f o r  which there is no P -m atr ix  completion.

Proof: T h e  m a tr ix

.4 =

1 - l l l

2 l -- i  l

0 l 1 2

y - 1 0  -- i  l

is a  pa rt ia l  P - m a t r ix  w ith  no P - m a t r ix  com pletion. It is easy  to  check th a t  all 

2-by-2 and  3-by-3 p rinc ipal  m inors t h a t  do not include both  rows 1 an d  4 are  positive. 

However, th e  two 3-by-3 d e te rm in a n ts  th a t  involve y  canno t s im u ltaneously  be m ade 

positive. In o rder  for th e  d e te rm in a n t  of A  [{1 .2 .4}] to be posit ive  it m u st  be  the
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case t h a t  y  <  — £ while a  positive  d e te rm in an t  for A  [{1 ,3 .4}]  requires  th a t  y  >  —3. 

T h u s ,  th e re  is no P -m a tr ix  com ple tion  of .4. This d a ta  can be e m b e d d e d  as a  p rinc ipal 

su b m a tr ix ,  by p u t t in g  l ' s  on th e  d iagonal and  0 ’s in the  o th e r  specified positions, to 

p roduce  a  part ia l  P -m a t r ix  w ith  one  unspecified en try  an d  no P - m a t r ix  com pletion  

for any  n >  4. □

O th e r  com pletion problem s, in te rm ed ia te  betw een th e  pos it ive  defin ite  com pletion  

p ro b lem  and  th e  com bina to r ia l ly  sym m etric  P -m a tr ix  com ple tion  prob lem  are  open  

a n d  m ay  be of in te res t .  For exam ple, when does a  sign sym m etr ic ,  p a rt ia l  

P - m a t r ix  have a  sign sy m m e tr ic  P -m a t r ix  com pletion  a n d  w h a t  m ay  be said a b o u t  

th e  infim um  of th e  Frobenius norm s of com pletions of co m b in a to r ia l ly  sy m m etr ic  

pa r t ia l  P -m atr ices .

4.4 The Totally Positive Com pletion Problem

An rc-by-rc m a tr ix  is sa id  to  be totally positive  (nonnega tive )  if every m inor 

(p rinc ipa l  and  non-principal)  is positive (nonnegative). In p a r t icu la r ,  this m eans 

t h a t  every  en try  of a  to ta l ly  positive  (nonnegative) m a tr ix  is positive  (nonnegative) .  

F u r th e r  discussion of to ta l ly  positive  m atrices m ay be found in [K] or [A]. This  class 

o f  m atr ices  arises in m any  app lica t ions  including a p p ro x im a t io n  theory, geom etric  

design, a n d  wavelets. It is in te res t ing  to note th a t  acco rd ing  to  [GM] one can tes t  

w h e th e r  or not a m a tr ix  is s tr ic t ly  to ta l ly  positive in po lynom ial t im e. This  uses th e  

fac t t h a t  only the  d e te rm in a n ts  of subm atrices  consis ting  of consecutive  rows and  

co lum ns need to be checked [K].

Here we consider th e  question : for which g raphs  G  does every part ia l  to ta l ly  

n onnega tive  m atr ix ,  the  g rap h  of whose specified en tr ies  is G,  have  a  to ta lly  nonneg­

a tiv e  com pletion . Total no n n e g a tiv i ty  is inherited  by sub m atr ices .  Therefore, it is a
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necessary cond it ion  th a t  every fully specified s u b m a t r ix  be to ta lly  nonnegative.

Total n o n n e g a tiv i ty  is not, however, p reserved  by p e rm u ta t io n  similarity. T h is  

can easily be seen by  no ting  th a t  the  1.1 e n try  of a  m a tr ix  en ters  positively in every  

m inor in which it occurs. Therefore, to ta l  p o s it iv ity  is preserved when this e n t ry  is 

a rb i t ra r i ly  increased . However, if th e  first and  second  rows and  colum ns a re  in te r ­

changed. th is  e n try  is th en  in the  2.2 position a n d  en te rs  negatively in som e m inors: 

m aking it larger m a y  then  make some of these  m inors  negative.

Because to ta l  p os it iv ity  is not preserved by p e rm u ta t io n  sim ilarity  we will re s t r ic t  

our a t te n t io n  to  labeled graphs. Labeled g raphs  a re  those  in which th e  n u m b er in g  

of th e  vertices  is fixed. iNote th a t  two part ia l  to ta l ly  positive  matrices th e  g rap h s  of 

whose specified e n tr ie s  are  isomorphic m ay  not b o th  have to ta lly  positive com ple tions . 

So, the  labeling  o f  t h e  graphs is im p o r tan t .

As m en t io n e d  in th e  in troduction  a  clique is a n  induced  subgraph  th a t  is a  com ­

plete g raph . A block clique graph is a  chordal g ra p h  in w’hich every pair  of m ax im a l  

cliques. C i , C j ,  C,  ^  C : intersect in a t  m ost one  vertex . T h a t  is | C , - n C j |  <  1. A 

m onotonically  labeled block clique graph is a  labe led  block clique graph  in which for 

every pa ir  of in te rsec ting  cliques such th a t  C .T lC ; =  -u, th e  labeling in th e  two cliques 

is such t h a t  {u : v  €  C, — u} < u and  { w  : w £  C j  — u} >  u. Then , a m ono ton ica lly  

labeled block c lique  g raph  is of the  form

F ig u re  4.12: M onotonically  labeled  block clique graph
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and a  m a tr ix ,  th e  g rap h  of whose specified entries is a m ono ton ica l ly  labeled block 

clique g rap h  is of th e  form

r r
' “I ~

Figure  4.13: P a r t ia l  m a t r ix  with a  m onotonically  labeled b lock  clique graph

In th e  rem ain ing  discussion all g raphs  will be a ssum ed  to  b e  connected. This  

a ssum ption  m ay  be m ad e  w ithou t  loss of generality  since to ta l ly  positive  m atr ices  are  

closed u n d e r  d irec t  sum s. To prove th is  we will use th e  classical fact of Frobenius- 

Konig (see [Ry] or [S] an d  its references) th a t  if an  n -by-n  m a t r ix  conta ins  a zero 

block of size p-by-q  in which p + q > n +  1, then  th e  m a tr ix  is s ingu la r  [Ry]. A lthough 

we use only  th is  zero  b lock result  we prove the  m ore  general th e  result below. Note 

th a t  th is  result  is a  consequence  of theo rem  2.2 in [CJRVV] which m ay  also be viewed 

as a  genera liza tion  of th e  classical Frobenius-Konig result.

L e m m a  4 .8  Suppose that  .4 6  M n (F )  has a p-by-q subm a tr ix  o f  rank r .  Then  .4 is 

singular whenever p + q > n  +  r + l .

Proof. W ith o u t  loss of generality , independen tly  p e rm u te  th e  rows an d  columns 

of A so t h a t  th e  p-by-q  s u b m a tr ix  of rank  r is in th e  lower left co rner  of / l.  T h a t  is

.4 =
A n  A 12 

A21 A22
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in which A 2 1 is p -by -<7 and  r a n k ( A 21) =  r. Using row a n d  co lum n opera tions  ,42i can 

be reduced  so t h a t  .4 becomes

A =

B\ B 2 : .4

0 C  

0 0

21

D 2

in which C  is r -b y - r  a n d  nonsingular. T hen  A  is s ingu la r  if e i the r

dep en d en t  co lum ns  or 0 0 D2

B x

0

0

has linearlv

has l inearly  d e p e n d e n t  rows. Since B \  is

( n - p ) - b y - { q  -  r ) .

B  i 

0 

0

is guaran teed  to  have linearly  dependen t  co lum ns if

q — r > n — p. Similarly, since D 2 is (p — r ) -by-{n  — q), D 2 has l inearly d e p e n d en t  

rows if p — r >  n — q. R earrang ing  both  of these  inequa lit ie s  we see th a t  .4 is s ingular  

if p +  q >  n +  r ,  t h a t  is. if p +  q > n +  r +  1. S ince .4 is s ingular  if and  on ly  if .4 is 

singular, th is  c o m p le te s  the  proof. □

Note t h a t  i f p  +  <7 < n  +  r +  l ,  i t i s  easy to c o n s tru c t  m atr ices  with a  p-by-q  block 

of rank  r t h a t  a re  nonsingular.  So. this lem m a is bes t  possible. Lem m a 4.8 m ay  be 

used to  prove t h a t  th e  d irec t  sum  of to ta lly  posit ive  m atr ice s  is to ta lly  positive.
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L e m m a  4 .9  The m atrices  .4 £  A/n (R.) and B  €  M m (R.) are to tally  nonnegative i f  

and only i f

A  0
C  =

0 B

is to ta lly  nonnegative.

Proof. If C  is a  to ta l ly  nonnegative  m atr ix , th en  it is obvious th a t  .4 and  B  are  

to ta l ly  nonnegative  since to ta l  nonnegativ ity  is inher i ted  by subm atrices .  To prove 

the  forward im plica tion , assum e th a t  .4 and B  are to ta l ly  nonnegative  an d  we will 

show th a t  C  is also to ta l ly  nonnegative. Let Qi.,di C N  a n d  ct2 l j32 C M  and  define 

d 2 =  a 2 +  {n}, ,d2 =  $2 +  {n} • If c*i =  d t =  0 or a 2 =  32 =  0. th e n  C  Qi U d 2: 3X U 32 

is a  su b m a tr ix  of B  or of .4. respectively, and  therefore, s ince .4 and  B  are  to ta lly  

nonnegative, has nonnegative  d e te rm in an t.  On the  o th e r  hand , if ci2 =  ,^i =  0 ° r  

=  32 =  0, th e n  C  Qi U a 2\ U S2 is a zero m atr ix ,  a n d  th u s  has d e te rm in a n t  0. 

If exac t ly  one  of a \ , a 2.3 \ .  or 32 is the  em pty  set, th en  C  a j  U d 2; ,di U 32 has a t 

least one zero row or co lum n and . therefore, has d e te rm in a n t  0.

So, assum e a \ ,  Q2, 3 h  $ 2  i 1 0- In this case, if | q i |  =  |/?j|. th en ,  since 

|Q l | +  |q 2| = \3i\ +  |d2 |, it m ust be  the  case t h a t  | a 2 | =  |,d2|. T hen .

C Qi U d 2; 3i  U ^ 2] is a  block diagonal m atr ix  in which th e  d iagonal blocks are  sub ­

m atr ices  of A an d  B  an d ,  thus.

de t  (C  [au U d 2; 3 X U ,d2])  =  de t  (A [«i; di]) de t  { B  [a2; 32\) >  0.

T h e  last case to check is th a t  in which a i , a 2, /3i . d 2 7^ 0 and | a t | ^  |di|  

(and  10:21 7̂  \3i\-) A ssum e | a t |  <  |di|  ( the case in which | o i |  >  |di|  follows by 

s y m m e try ) .  N ote  t h a t  C  a  1 U 0 2 ; di U ^ 2] contains two blocks of zeros; one of size 

|cvi |-by-1/£?21 and  one of size |o 2|-by - |d i |  • T he  sum  of th e  d im ensions  of th e  zero block
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in th e  lower left co rner  is | a 2| 4- |/3i| • Since |a i  | +  1 <  \ fi\ | . th e  su m  of th e  d im ensions 

satisfies th e  in eq u a li ty  | a 2| +  |/3i| >  jo21 +  |c*i| +  1 a nd , therefore, by lem m a  4.8. 

C  ct\ U a 2; U /)2] is singular. Thus, de t  ( C  [au U q 2: /4i U ,d2 ) >  0 for all 

S  N .  a 2 , r ?2 C  M  a n d  C  is to ta lly  nonnegative. □

B y the  a d jo in t  form ula  for the  inverse of a  m a tr ix  we see th a t  the  inverse of a 

to ta l ly  positive  m a t r ix  has a  checkerboard sign p a t te rn .  T h a t  is. th e  sign p a t t e rn  of 

th e  inverse is

+  -  +  - ■ • •

-  +  -  +  • • ■

+  -  +  - • • ■

-  +  -  +  • • ■

T herefore , th e  inverse of a  to ta lly  positive m a tr ix  c anno t  be to ta l ly  positive. However, 

as po in ted  o u t  in [M, th eo rem  2.2], the  inverse of a  to ta l ly  positive  m atr ix  is s im ila r  to  

a  to ta l ly  positive  m a tr ix  v ia  a  s ignature  similarity. T h e  proof of this result is included  

here  for com pleteness.

L e m m a  4 .1 0  Let D  =

1

- 1

n + l
( - 1)

A  E M n (R ) is to ta lly  nonnegative i f  and only i f  D A ~ l D ~ l is totally nonnegative.

. Then a nonsingular m a tr ix

Proof: Let .4 be a  to ta l ly  nonnegative nonsingu lar  m atr ix .  Since D  is d iagonal.
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p a r t i t io n e d  m a tr ix  m u lt ip l ica t ion  shows th a t

(.D A ~ 1 D ~ l ) [a: f3\ = D [a] A ~ l [a; $} D ~ l [/*].

By J a c o b i ’s iden ti ty  for a . / l  C  N  such th a t  |a |  =  \fi\

d e t ( . 4 - ' [ a : f l )  =  (-!)•<->-<•.<« d e t ^ t [^ :)° ‘]) 

in which s ( a )  =  j -  T h e n ,  

d e t  [a: d]) =  de t  [D  [a]) de t  ( / I -1 [a; /i]) de t  (D  [/J])

=  ^ _ ^ s ( a ) + l “ l ^  1 Q  ] )  ^  _  j j s ( / 3 ) + | j3 |

det ( A.)

=  ( ^ 2 ( s(o ) + j (/3)+|o |) d e t ( , 4 [ / j  , Q ]) (4

det (.4)

T h e  last e q ua li ty  holds s ince |a |  =  |,d|. If .4 is to ta lly  nonnegative, th en  de t  A  [{3°: q c] 

is nonnega tive  and , since /I is also nonsingular, de t  ( /I)  is positive. Therefore , 

de t  ( { D A ~ l D ~ l ) [a; ,d]) is nonnega tive  for all q .  /J C  ;V.

Now assum e th a t  D A ~ l D ~ l is to ta l ly  nonnegative  and  invertible. T h e n ,  by th e  

above discussion. D  ( D A ~ l D ~ l )-1  D ~ l =  .4 is to ta lly  nonnegative  which proves th e  

lem m a. □

We say a  pa r t ia l  to ta l ly  nonnegative  m a tr ix  is regular if every m ax im a l  specified 

p rincipal  su b m a tr ix  is nonsingu lar  a n d  for every pair of m axim al specified p rinc ipal  

su b m atr ices  A  [ a ] . A  [ j 3 \  such th a t  a  PI 3  ^  0, then  .4 [a fl d] is also nonsingu lar.  T h e
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m ain  result  of th is  section is then :

T h e o r e m  4 .5  Let G  be a labeled graph on n vertices. E very  regular partial totally  

nonnegative m atrix , the labeled graph o f  whose specified en tr ies  is G has a totally  

nonnegative completion i f  and  only i f  G  is a monotonically  labeled block clique graph.

T h e  forward im plica tion  of th eo re m  4.5 will be proven by con traposit ive . T h is  will 

be done by first " ruling ou t"  non-chordal graphs. T h a t  is. it will be shown th a t  

there  exists pa r t ia l  to ta lly  nonnegative  m atrices th e  g rap h  of whose specified en tr ies  

is not chordal for which there  is no to ta lly  positive com pletion . A fter  ru ling ou t non- 

chordal g raphs , those  chordal g raphs  th a t  are not block clique g raphs  will be ruled 

ou t.  Finally, it will be shown th a t  a block clique g raph  th a t  is not m onotonica lly  

labeled is also ru led  out. T h e  reverse im plication will be  proven by showing th a t  

every regular p a rt ia l  to ta lly  nonnega tive  m atr ix  the  g raph  of whose specified en tr ies  

is a  m onotonica lly  labeled block clique g raph  has a  to ta l ly  nonnegative  com pletion . 

T h is  will be  done by exh ib iting  such a  completion.

L e m m a  4 .1 1  Let G  be a graph on n vertices. I f  every partia l to ta lly  nonnegative m a ­

trix  A . the graph o f  whose specified en tries  is G, has a totally  nonnegative completion, 

then G is a monotonically  labeled block clique graph.

Proof. As m en tioned  above, the  proof is by con traposit ive . We begin by ruling 

o u t  non-chordal graphs. Let G  be a  g raph  on n  vertices t h a t  is no t chordal. T hen  

G  contains a  s im ple  cycle of leng th  4 or more as an  induced  su bg raph . T h e  g rap h  of
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the  specified en tr ies  of the  k -b y -k  m a tr ix

C  =

1 0 ? ?  2

2 1 0

••• 0

0 ? ? 2 1

is a  s im ple  cycle an d  C  is p a r t ia l  to ta l ly  nonnegative. In o rder  for th e  {2,3} . {3 , k}  

m inor to  be nonnegative, the  2 . k  e n try  of C  m ust be 0 . regardless of th e  3, k  entry. 

However, if th e  2 . k  en try  is 0. th en  th e  {1,2} , {l.fc} m inor is —4. T h u s ,  C  has no 

com pletion  to  a  to ta l ly  nonnegative  m atr ix .  All th a t  rem ains in o rder  to  ru le  ou t non- 

chordal g rap h s  is to  em bed  th is  d a ta  in a  larger m atr ix  in such a  way t h a t  th e  m atr ix  

is a  pa r t ia l  to ta l ly  nonnegative  m a tr ix  an d  use the  fact th a t  to ta l  n o n n e g a tiv i ty  is 

inheri ted  by subm atrices .  Th is  is done  by specifying l ’s on th e  d iagonals  a n d  0 ’s for 

any o th e r  specified entries. T h e  resu lting  m atr ix  is to ta lly  no n n eg a tiv e  by lem m a 

4.9 since any  fully specified principal su b m a tr ix  is a  direct sum  of an  id en t i ty  and  a 

principal s u b m a tr ix  of C  (any  o th e r  fully specified subm atr ix  is a  s u b m a t r ix  of one of 

these p rinc ipal  subm atrices) .  However, because C  does not have a  to ta l ly  nonnegative  

com pletion , by inher i tance  the  larger m a tr ix  also does not have a  to ta l ly  nonnegative  

com pletion.

Next we look a t  chordal g raphs  th a t  are  not block clique graphs. Let G  be  a graph  

on n  vertices t h a t  is not a  block clique graph . T hen  there  a re  two cliques C i and 

C 2 t h a t  a re  induced  subgraphs of G  a n d  for which \C\ fl C 2I >  2 . T h e  s im ples t  such
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g rap h  is one  in which G  = C\ U Ci.  |C i |  =  \Ci\ =  3. and  |C[ D C2I =  2. T h e  g rap h  of

1 1 .4 ?

.4 1 1 .4
.4 =

.2 .8 1 1

? .2 .4 1

is G  an d  A  has no to ta lly  nonnegative  com ple tion . Define

1 1 .4 x

.4 1 1 .4

.2 .8 1 1

y  .2 .4 1

It is easy  to  check th a t  all fully specified m inors  of A ( x . y )  a re  positive. However.

A ( x . y )  =

de t  ( A  ( x . y ) )  =  —.00 16 — .0 0 8x — . 328y — . 2 yx . (4-3)

For x  an d  y  nonnegative. (4.3) is always nega tive  and , thus, the re  is no to ta l ly  non­

nega tive  com pletion  of A ( x , y ) .

For th e  g raphs t h a t  a re  not block clique g rap h s  th e re  is a l i t t le  m ore work th a n  

in th e  non-chordal case in o rder  to em bed  th is  d a ta  in a larger m atr ix .  If G  is not a 

block clique g raph , then  the re  exist cliques C\  a n d  C 2 th a t  are  induced  sub g rap h s  of 

G  a n d  for which |C i |  =  IC2I, and  |Ci H C 2| =  |C i |  — 1 (note  th a t  Ci  and  C 2 m ay not 

be m ax im a l  cliques). Let B ( x . y )  be a  pa r t ia l  m a tr ix  with g raph  G  and  let  B ( x . y )  

be th e  su b m a tr ix  of B ( x . y )  such th a t  th e  g ra p h  of B  ( x . y )  is C 1 U (?2. T h e n ,  assign
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d a ta  to  B  { x . y )  by beg inn ing  w ith  A  {x. y)  an d  rep e a t in g  row and  co lum n 2 as m any  

tim es as necessary  to  com p le te  the  clique c rea ted  by C\  D C2. T h a t  is

B  { x . y )  ----

1 1 

.4 1

.4 1

.2 .8

y -2

1 .4 x

1 1 .4

1 1 .4

.8 1 1

.2 .4 1

Since any  m ino r  of th is  m a tr ix  is e ither 0 or is a  m in o r  of A { x , y ) .  B { x . y )  is a 

part ia l  to ta l ly  n onnega tive  m atr ix .  For th e  rem ainder  of th e  specified en tries  of 

B  { x . y )  specify l ' s  on  th e  d iagonal and O’s for th e  off d iagona l  en tr ies  as in the  non- 

chordal case. T h e  resu l t in g  m a tr ix  is partial  to ta l ly  n onnega tive ,  b u t  has A  { x . y )  as 

a  principal s u b m a t r ix  and . by inheritance, has no to ta lly  n o n n eg a tiv e  completion.

Finally, if G  is a  block clique graph th a t  is no t m ono ton ica l ly  labeled, then  any 

part ia l  to ta l ly  n onnega tive  m a tr ix  the graph  of whose specified en tr ies  is G  will have 

a  s u b m a tr ix  of the  form

*  *  *

*  *

*  : *
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in which iX' ind ica te s  a  specified position. T he  m a t r ix

.V/ ( x . y )  =

2 1 2

1 2 x

1 y  2

in which x . y  a re  free to  be chosen has this form an d  is pa rt ia l  to ta lly  positive. T he  

{1,2} , {3,4} m in o r  of M  ( x . y )  requires th a t  x  >  4 an d  the  { 3 .4 } ,  {1.2} m inor re­

quires th a t  y  >  2. T h en ,  x y  > S. b u t  the  {3.4} , {3.4} m inor requires th a t  x y  <  4. 

T herefore , M  ( x . y )  has no to ta lly  nonnegative  com ple tion . As usual, this d a ta  can 

be e m b e d d e d  in a larger m atr ix  by specifying l ' s  on th e  d iagonal an d  0 ’s in th e  o th e r  

specified posit ions. T h e  resulting  m atr ix  will be  a  pa r t ia l  to ta l ly  nonnegative  m atr ix ,  

th e  g raph  of w hose  specified entries is block clique g rap h  th a t  is not linearly  labeled, 

th a t  has no to ta l ly  nonnegative  com pletion. □

T h e  reverse  im plica tion  of theo rem  4.5 will be  proven by induction . We will 

show th a t  every  regu lar  part ia l  to ta lly  nonnegative  m a tr ix ,  .4. such th a t  6 ' ( .4 )  is 

a  m ono ton ica lly  labeled  block clique g raph  w ith  exac t ly  two m axim al cliques has a 

to ta l ly  no n n eg a tiv e  com pletion and  th a t  com ple tion  is nonsingular. A ssum e th e  sam e 

is t ru e  for m o no ton ica l ly  labeled block clique g rap h s  w ith  k  — 1 m axim al cliques a n d  let 

.4 be a  regu lar  p a r t ia l  to ta lly  nonnegative m a tr ix  such th a t  Cr(.4) is a  m onoton ica lly  

labeled block c lique  g raph  with k  m axim al cliques. T h e n ,  the  principal su b m a tr ix  

,4c ,uc2 d e te rm in e d  by th e  two m axim al cliques C\  an d  C 2  is a regular pa rt ia l  to ta l ly  

nonnegative  m a t r ix  such th a t  G  ( / lc iu c 2) is a m ono ton ica lly  labeled block clique g raph  

c on ta in ing  th e  two cliques, C\  and  CY By the  induc tion  hypothesis , A c ,u c 2 has a 

to ta l ly  posit ive  com ple tion . Let .4 be the  m a tr ix  th a t  results  when th e  su b m a tr ix  

'4 c iu c2 ° f  *4 is com p le ted .  Then , A is a regular pa r t ia l  to ta l ly  positive m a tr ix  such
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th a t  G  ( .4) is a  m ono ton ica l ly  labeled block clique g raph  w ith  k  — 1 m ax im a l  cliques. 

By th e  induction  hypo thes is .  A has a to ta lly  nonnegative  com ple tion . B u t  th e n  .4 

also has a to ta l ly  no n n eg a tiv e  com pletion.

From  this discussion vve see th a t  the  only case th a t  needs to  be considered  is the 

one in which .4 is an  n -b y -n  m a t r ix  for which G ( A )  is a  m ono ton ica lly  labe led  block 

clique g raph  with  two m a x im a l  cliques. T hen  .4 is of the  form

.4 =

A n  «12 ?

T T
a 2l a '-2 a 23

? 032 A‘‘133

(4.4)

in which 012,021 G JR.P, 023.032  G R.T and  p + q =  n — 1. T h e  following is a  special 

case of the  chordal result found  in [J L ] .

Lemma 4.12 Let

A n  « 1 2  ^ 1 2 ^ 2 3

T Ta 2\ O22 0 23

fl3202i 032 A33

(4.5)

in which 012,021 G BLP. 023.^32 €  K.9. and p+ q  = n — 1. 

are nonsingular, and  022 7̂  0. Then

A n  a 12

a 21 a22

and
a 22 a 23

0 32 A33

A n O i 2

-1

0
0 0

-1
0 0 0

A " 1 =

fc-i M
1 0 2 2 +

0
0 2 2

T
a 23 0 -1

a 22 0

0 0 a 32 A 3 3 0 0 0
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Note t h a t  th e  m a tr ix  in (4.5) is the com ple tion  of (4.4) t h a t  gives 0’s in the  unspec ­

ified en tr ies  of the  inverse. This  0's in th e  inverse com ple tion  is shown in [BJLu]. 

Interestingly, th e  sam e  com pletion  works for to ta l  nonnegativ ity .

Th is  resu lt  is used in the  proof of the  following lem m a.

L e m m a  4 .1 3  Let G  be a monotonically  labeled block clique graph. I f  A  is a regular 

partial totally  nonnegative m atr ix  in which G [ A )  =  G,  then A  has a nonsingular  

totally nonnegative completion.

Proof. Let A  be  an n -by-n  partial to ta l ly  nonnegative  m a tr ix  the  g raph  of whose 

specified en tr ies  is a  m onotonica lly  labeled block clique g raph . T he  only case th a t  

needs to  be considered  is th e  case in which there  a re  two cliques since th e  o thers  

follow by induc tion  (see discussion above). T hen  4  is of th e  form given in (4.4). 

Since positive  left d iagonal m ultip lica tion  preserves to ta l  positiv ity  and  a 2 2 > 0. it 

can be assum ed  w ith o u t  loss of generality  th a t  a22 =  1- T h en ,  it will be  shown th a t  

the  com ple tion  given by

.4  =

4 n a i 2 a 12a 23

T
a 21 1 T(123

a 32a 21 «32 4 3 3

(4.6)

is to ta lly  nonnegative. T h e  proof will show th a t  D A  l D  1 is to ta lly  nonnega tive  for

- 1
D =

( - 1)
n + I
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T h e n ,  by lem m a 4.10. A is to ta l ly  nonnegative. By th eo rem  4.12

A ~ l =

r _ - - 1 1 - - -

A n  a 12
0

0 0
-1

0 0 0

1 1

+
0

1 <*23 0 1 0

0 0 ^32 A33 0 0 0

Define

in which

T  =  D A ~ l D ~ l =
B 0 0 0

+

0 0 0 c

0 0 0 

0 1 0 

0 0 0

B  =

C =

D n =

B n 612
= D P

A n a 12

_ bn b22 T  
_ «21 1

c n

1

= D q
1 T

a 23

C21 C 22 ^32 A33

D [ { 1. 9 P + l } ] . and  D q =

- i

- t

«}]

Since
A n  a 12

‘ 21

and
I a .[3

0.32 A,33

are  to ta lly  nonnegative, B  and  C  a re  also to ta lly

nonnegative  by lem m a 4.10. Using the  adjoint form ula  for th e  inverse of A  1 we see 

th a t

1 =
de t ( f l „ )  de t  (C 22) 

det (A -1 )
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T h e n ,  since B \ \  a n d  C 2 2  are principal su b m atr ices  of to ta l ly  positive m atr ice s ,  

de t ( ^ - l ) >  0 .

Now it m ust  be  show n th a t  all m inors of T  of size re —1 a n d  sm aller  are  nonnega tive .  

T h a t  is, d e t  (T  (7 ; 6 )) >  0 for all 7 . S C  yV. I7 j =  |<5|. Let q  =  { 1 . 2 , . . . .  p} and  

3  =  {re — q +  1, n — q +  2 , . . . ,  re}. T h en ,  the  size of T  (7 ; <$) is |a |  +  |/2| +  1 — |71 (or 

|a |  +  \3\ +  1 — |<5|). M any  of the  minors will be zero. T h is  will be shown by finding 

a  b lock of zeros large  enough to ensure  th a t  T  (7  ;<$) is s ingular by lem m a 4.8. For 

this to be the  case, th e  sum  of the  d im ensions of th e  zero block m ust be  a t least 

|a |  +  \3\ — h i  +  2. T h e re  are  two blocks of zeros in T  (7 ; 6 ) to  consider. T hese  b locks 

have d im ensions

( |a |  -  |q fl 7 I) —b y —(101 -  |,dn<5|) (4.7)

and

i\3\ -  \3 n  7 I) —b y — ( |q |  -  | a n £ | ) .  (4.S)

T h e re  a re  severa l cases to consider in o rder  to show t h a t  de t  ( T  (7 ; 6 )) >  0 for all 

7 . 6 C  yV. If p  +  1 £  7 . 8. then  T  (7 ; <5) is a d irect su m  of su bm atr ices  of B  a n d  C  a n d

|7| -  1 = |a n 7| + \3 n 7| = |a n 8\ + |d n s\ = \S\ -  1.  (4.9)

Since B  a n d  C  a re  to ta l ly  positive, if th e  su b m atr ices  in th e  d irect sum  a re  square ,  

det ( T  ( 7 ; £)) is posit ive . If the  subm atrices  of B  and  C  a re  not square , th e n ,  if 

| a  fl 6 | >  | a  fl 7 I . t h e  sum  of the  dim ensions in (4.7) is:

|of| + \3\ -  |a n 7 | -  \3 n <5| > |ar| + |d| — (la n<5| -  1) -  |/ifl(5|
= |Q| + |d|-(|an<5| + |dn<5|) + i

=  |o |  +  | / J | - | 6 | + 2. (4.10)
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By lem m a  4.8, this ensures th a t  T  (7 : 8) is singular. T he  case in w hich  

|a  fl <5| >  | a  fl 7 1 uses (4.8) and  is analogous.

T h e re  a re  several possibilities for 1 ^  7 , £. If | a  fl 7 I =  |q  fl 6 |, th e n  T  (7 ; 8) has 

th e  sam e  form  as T  and. therefore, has positive  d e te rm in a n t  by the  sam e  a rg u m e n t  as 

t h a t  for d e t  (T ). T he  d e te rm inan t  of T  (7 ;^ )  is also positive  if | | a  fl <5| — |a  D 7 (| =  1. 

because  in th is  case T(~p,8) is block t r ia n g u la r  w ith  subm atrices  of B  a n d  C  on  th e  

d iagonal. For the  case in which | |o  fl 6 | — |a  fl 7 11 >  2 no te  th a t ,  since p  +  1 ^  7 . 8,

|7 | =  |or n  7 | +  \ ,8n~/\ =  | a n ^ |  +  |/3n<5| =  | ^ | . (4.11)

T h e n ,  a rg u m e n ts  sim ilar to  those in (4.10) (using  (4.7) if |a  fl 6 | — | a f ) 7 | >  2 a n d  

(4.8) if |or fl 7 I — | a  fl > 2 )  show th a t  T  (7 ; 8) is singular.

It rem a ins  to  show th a t  th e  minors are  nonnega tive  for the  case in w hich p +  1 is in 

exac t ly  one  of 7  o r  8. Assume p +  1 6 7 , k ( £ 8  ( th e  o th e r  case follows by s y m m e try ) .  

In th is  case,

|q  n  7 I +  | / J n  7 I =  h i  -  1 (4.12)

and

| a f U |  +  | / ? n $ |  =  1*1. (4.13)

If |or fl 7 I =  |q  fl 6 | or |q  fl 7 | +  1 =  | a n £ | ,  th e n  T ( ^ ; 8 )  is block t r ia n g u la r  w ith  

su b m a tr ic e s  of B  and  C  on the  d iagonal and  de t  (T  (7 ; 6 )) >  0. If |a  fl 7 I =  |a  D 6 | +  1 

th en  using  (4.8) and  (4.12) we see by lem m a 4.S t h a t  T  (7 ; 6 ) is singular. S im ilarly , 

if | | a f l 6 | — |o: n  7 [| >  2, T{~f \ 8)  conta ins  a  zero  block th a t  is sufficiently large, by

lem m a  4.8, to  ensure  th a t  T  (7 ; 8) is singular. T h u s ,  de t  (T  (7 ; 5)) >  0 for all 7 , 8  C  N

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



113

a n d  D A ~ l D ~ l is to ta lly  nonnegative. T hen , by lem m a 4.10. .4 is to ta l ly  nonnegative  

and  the  lem m a is proved. □

Together, lem m a 4.11 and  lem m a 4.13 prove theorem  4.5.

4.5 The M aximum Minimum Eigenvalue 

Completion Problem

T he  m ax im um  m in im u m  eigenvalue problem  asks: for a  p a r t ia l  H e rm it ia n  m atr ix  

.4. what is th e  largest value t h a t  th e  m in im um  eigenvalue over all com ple tions  of .4 

can a tta in?  By classical in terlacing , th e  m in im um  eigenvalue of a n  H erm it ia n  m atr ix  

canno t exceed the  m in im u m  of the  eigenvalues of any p rincipal s u b m a tr ix .  Therefore, 

in th e  m ax im um  m in im u m  eigenvalue com pletion problem , th e  bes t  t h a t  can be hoped 

for is the  m in im um  of th e  m in im u m  eigenvalues of the  specified p r inc ipa l  subm atrices . 

In [GJSVV] it was shown th a t  every  p a rt ia l  positive sem idefin ite  m a tr ix ,  th e  graph  of 

whose specified en tr ies  is chordal has a  positive sem idefin ite  com p le tion . This  work 

was preceded by [DG] which considered  th e  case of b anded  m atr ices .  Since each 

fully specified principal su b m a tr ix  of a  part ia l  positive sem idefin ite  m a t r ix  is positive 

semidefinite. by t ra n s la t io n  th e  [GJSVV] result is equivalen t to  say ing  th a t ,  in the  

chordal case, th e  m ax im u m  m in im u m  eigenvalue over all com p le tions  is th e  m in im um  

of th e  m in im um  eigenvalues of the  fully specified principal su b m a tr ic es .

T h e  key observation  in the  proof in [GJSVV] is the  case in w hich  th e re  is only 

one pair of sym m etr ica l ly  placed unspecified entries ( th e  one  variab le  case). This 

one variable case was done before, a n d  da tes  back a t  least to  [DG] in which banded 

p a t te rn s  were t rea ted .  Here we give an  entirely  different proof of t h e  one  variable  case. 

T h is  new proof uses th e  s tru c tu re d  eigenvector results  of c h a p te r  2 and , therefore.
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for the  one variable  case ou r  a p p ro ach  gives inform ation a b o u t  th e  s t ru c tu re  of the  

eigenvectors of the  m ax im um  m in im u m  eigenvalue com pletion  th a t  is no t present 

in [GJSVV]. T h is  e igenvector in fo rm ation  is however present in th e o re m  2.3 of [D2], 

However, we prove bo th  th e  com ple tion  result of [GJSVV] an d  th e  e igenvec to r  result of 

[D2] sim ultaneously  and  our a p p ro a c h  allows us to w rite  down th e  m a x im u m  m in im um  

eigenvalue com pletion  d e te rm in e d  by these  s tru c tu red  eigenvectors . In th e  following 

theo rem  let C ( .4 )  deno te  th e  set of all completions of the  p a r t ia l  m a t r ix  .4.

T h e o r e m  4 .6  Let A €  M n be a partia l Hermitian m atr ix  in which only x  =  a ,j  (and  

x  =  aj i) is unspecified. Also, let Ai =  .4 ( i ) .  A 2 -  A  ( j )  and  Ai =  m in  {p  : p  £  cr (.41)} . 

A2  =  min {p  : p  6  < 7  (,42)} . Let  A =  m in  {Ax, A2} , then

m ax < m in  {p : p £  a  ( B) } > = X.
[ s e c ( . 4 > J

Moreover, there is a m a x im u m  m in im u m  eigenvalue completion A  o f  .4 such that  

A =  m in { ^  : p  £  <7 (.4.)} and there exists an associated eigenvector z such that i f  

A =  Alf c[f] =  0 and i f  X = A2. r[y] =  0.

Proof: It suffices to show th a t  there  is a com pletion  .4 of .4 in which 

A =  min {Ax, A2} is th e  m in im u m  eigenvalue of .4. Assum e, w i th o u t  loss of generality  

th a t  the  l ,n  position  is unspecified. T h en

a n a 2l X

a 2 i to to d23

X a .23 033
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"
a n fl21 •422 a '23

and  .42 =

a 2i .422 a 23 a 33

in which A 2 2  6  A/ „ _ 2 is H erm it ian .  T h e n  .4i =

T h e re  a re  two cases to consider: Ax ^  A2 an d  Ai =  A2. To begin, a s su m e  At <  A2 

so th a t  A =  At ( th e  case in w hich A2 <  At follows by sy m m e try ) .  By co ro llary  2.2 

A is an  eigenvalue of a com ple tion  A  of .4 if an d  only if th e re  is a n  e igenvec to r  of .4

y
associa ted  w ith  A of the  form

associa ted  w ith  A. In order for 

following equa li ty  m ust hold:

0

y

0

in which y  £  <Dn is in th e  e igenspace  of Ai

to  be an  eigenvector of .4 a ssoc ia ted  w i th  A. th e

y

0

A iy

x y  [1] +  a 23y ( 1 )

=  A
y

0

If y  [1] 7̂  0. then

.v = - q?3 y  ( 1)
s [ i ]

gives th e  desired com pletion . If y  [1] =  0, then

(4.14)

■4iy =
a n  a 21 

a 21 A22

« 2 l l / ( l )

A22y ( 1 )

0

y(  i)

r
O

1

II

yd) _
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so th a t  A.2 2 IJ (1) =  Ai/(1) and  A is a n  eigenvalue of A22- B u t  th is  is a  con trad ic tion  

since, by interlacing, every eigenvalue  of A 2 2 m ust  be g rea te r  t h a n  o r  equal to  A2. 

Therefore, y  [1] canno t be 0.

Now, assum e A =  Aj =  A2, b u t  g \  (A j)  ^  g \  (A 2). A fter  a  s im ila r i ty  tran s fo rm at io n  

of A th a t  diagonalizes A 22 th is  case  can be reduced to  th e  case  d iscussed above. 

Assum e w ithou t  loss of genera li ty  th a t  <7. \ (A 2) <  <?.\(Ai) an d  le t  g  =  g \ ( A 2). By 

interlacing, ^ ( ^ 22) =  9  and  g,\ (A j)  =  g +  1. Also assum e t h a t  A =  0. We m ay 

do  this w ithou t loss of genera li ty  s ince the  general case follows easily  by  tran s la t ion . 

T hen , the  m ax im u m  m in im um  eigenvalue completion A of A is such  t h a t  A is positive 

semidefinite. Let U  be the  u n i ta ry  m a tr ix  th a t  diagonalizes A22- T h e n .

U'  A 2 2 U  =

0 D

in which D  =  diag  (Aff+i ,  An_ 2) a n d  A, >  0, i =  g +  1 n — 2 a re  th e  nonzero

eigenvalues of A 22- T hen

r 1 r 1 «11 a21 .r
I 0 I 0

0
U' A u a 2i

D
0-23

0 / 0 /
X ^23 «33

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



117

a n  0 ••• 0 a^i x  

0 0 0

021 D a.23

= B.  (4.15)

x  0 • • • 0 d ; 3 033

T h e  last e qua li ty  holds because if a  positive sem idefin ite  m a tr ix  has a zero on the  

d iagonal,  th e n  th e  entire  row and  colum n c on ta in ing  th a t  diagonal en try  m ust be 0 

[H J1 , pg. 400]. T h e  m atr ix  B  in (4.15) is th e  d irec t  s u m  of a  0 m atr ix  and

B  =

Q,\i ^21 £

O21 D  a 23

X  0 2 3  a 33

(4.16)

T herefore , if we find a  com pletion of B  t h a t  is pos it ive  semidefinite, we will have a 

com p le tion  of B  t h a t  is also positive semidefinite . T h e n ,  since sim ilarity  preserves 

eigenvalues, we have also found a  com pletion of A  t h a t  is positive sem idefin ite  as

desired . Let B i =
On 021

021 D

and B 2 =
D  a 23

a 23 a 33

. Since g \  (A t ) =  g \  (A 2) +  1.

B \  is positive  semidefinite  and  B 2 is positive defin ite . T h u s ,  B  is a p a r t ia l  positive 

defin ite  m a tr ix  in which th e  sm allest eigenvalue of B \  is less th a n  the sm alles t e igen­

value of B 2 s o  t h a t  we are in th e  case discussed ea rl ie r .  For y  an  e igenvector of B 1 

assoc ia ted  w ith  A by the ca lcu la tion  as in (4.14) we see th a t  x  =  ' I f lf 1'  § ives the

desired  com ple tion .
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We nex t look a t  the  case in which A =  Ai =  A-2 and  g . \ ( A i )  =  <7. \ ( A 2). Let

g  =  g \ ( A \ )  an d  a  =  { 2 ,  n — 1}. By interlacing, <7.\(-d22) is g  or  g  — 1. F irst

consider th e  case in which g\  { A 2 2 ) =  9 — 1- In this case, by co ro l la ry  2.2

d \m(L EUA l )) .d \m(RE'UAl )) > g.\ Mi) +  g \  M 22) — 1

= 9 -  1-

T hus ,  there  a re  a t  least g — 1 l inearly  independen t e igenvectors  of Ai of th e  form 

0
, u,- 6  (D71 . By p a r t i t io n ed  m a tr ix  m ultip lica tion  each u,, i =  1 ,2 .........g — 1. is

an  eigenvector of A 2 2  associated  w ith  A. B u t,  since g \  ( A J  =  g,  th is  m eans  t h a t  there

is ano the r  e igenvecto r  y  of /lx assoc ia ted  w ith  A for which <
0

ui

0

Ug-l
is a l inearly in d ep en d en t  set. In add it ion , it m ust be the  case t h a t  r/ [1] 0 since

if j/ [1] =  0. th e n  r/ (1) is a n o th e r  e igenvector of A22 which is a  co n trad ic t io n  since 

g \  [ A 2 2 ) — g  — 1 an d  we a lready  have th e  g  — 1 l inearly in d e p e n d e n t  vectors u, of 

A22 associated  w ith  A. T he  e igenvector y  can be used as in (4.14) to  find a value

y
for x  th a t  gives a  com pletion A of A w ith  A as an eigenvalue a n d ,  then .

0

is an

eigenvector of A associa ted  w ith  A. N ote  th a t  the  m a tr ix  A 2 is a n  (n  — l ) -b y -(n  — 1) 

m a tr ix  th a t  we will consider to  have en tr ies  indexed from 2 to  n.  To see t h a t  A is the  

m in im um  eigenvalue of A note  t h a t  by corollary 2.2

d im  i^LE^  (A2)) . d i m  ( R E * (A 2)) >
9 \  ( -d2) +  g \  (A 22 ) — 1

= g  ~  1.
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T hen , for each u,-, i =  1. 2 .  g  — 1. the vector is an  e igenvector of .42

associated w ith  A. Recall t h a t  th e  vectors i =  1. 2 , . . .  , g  — 1. are  eigenvectors

of .4i associa ted  w ith  A. B u t  th e n  for each i — 1 .2  g — 1. is an  eigenvector

of .4 associa ted  w ith  A. T h e n  th e re  are  a t  least g linearly  in d e p e n d e n t  eigenvectors of 

.4 associa ted  w ith  A so th a t  g\  ( / i )  >  g  and for 7  =  {2, 3 , . . . ,  n }  corollary  2.2 gives

d im  ( L E *  . d im  ( R E *  (<4)) >
g \  (^) +  g \  (^ 2 ) ~  1

>  g- «-

Since th e  d im ension  of th e  special eigenspaces m ust be  in teger, th is  m eans there  

are  a t least g l inearly  in d ep en d en t  eigenvectors of A  a ssoc ia ted  w ith  A with a  0 in

0

the  first position. We a lready  know th e  g — 1 vectors u i

0

are  eigenvectors of .4

associated  w ith  A. So, the re  m ust  be a t  least one vector of th e  form in which

6  (Dn and  r n_ 1 ^  0 (o therw ise  we would con trad ic t  th e  fact t h a t  g \  (.422) =  g — 1.)
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► is a  set of g  +  1 l inearly  in d ep en d en t

eigenvectors of A  a s so c ia ted  with A and , therefore , by in terlacing, A is th e  m in im u m  

eigenvalue of A.

All t h a t  rem a ins  is th e  case in which g = g \ ( A i )  =  g \ { A 2) and  <7. \ (A 22) =  9- 

O nce  again , a ssu m e  t h a t  A =  0 and  perform  th e  s im ila r i ty  of .4 as in (4.15). T h e n .

0

, w 6  (D3 is an  e igenvec to r  of B  a ssocia ted  w ith  A =  0every vec to r  of t h e  fo rm w

0

and, therefore . A =  0 is an  eigenvalue of .4 for all values of x.  We m ust find x  so 

th a t  A =  0 is th e  m in im u m  eigenvalue of .4. S ince g\  (A i)  =  g\  ( A 2) =  g\  ( A 22) th e  

m a tr ix  B  as defined in (4.16) has bo th  B\  and  B 2 positive  definite. In o rder  for .4 

to be positive  sem idefin ite  we m ust find x  so t h a t  B  is positive definite . T h e  Schur 

com plem en t of D  in B  is

a n  x  

i  «33

a , ,12

‘23

D - i
a  12 a 23

a n  — h^2D  ‘ d n  *i’ — a l2D  ^o23 

x  — a23D ~ l a.i2  U33 ~  a23D ~ l a23

(4.17)

T h e  diagonal en tr ies  a n  — a \ 2D ~ xa X2 and  033 — a23D ~ l a. 2 3  a re  the  Schur com plem en ts  

of D  in B i  and  B 2, respectively. Since B\  an d  B 2 a re  b o th  positive definite , these  

d iagonal en tr ies  a re  positive . Then , choosing .r =  a \2D ~ l a 2 2  gives a  com ple tion  of 

B  t h a t  is positive  defin ite  and , therefore, the  resu l t ing  com pletion  of A  is positive
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sem idefin ite  w i th  A =  0 as the  m in im um  eigenvalue. T h is  completes th e  proof. □ 

N ote  th a t  th e  com ple tion  in the  last case of th is  proof is the  com ple tion  g iven  in 

[GJSVV] an d  [DG]. However, by this proof we know a  l it tle  bit m ore since in th is  

last case we know  th a t  th e  com pleted  m a tr ix  has an  eigenvector assoc ia ted  w ith  th e

0

in which y  is an  eigenvector of A 2 2  a ssoc ia tedm in im u m  e igenvalue  A of th e  form

0

w ith  A.

As shown in [GJSVV], the  general chordal p ro b lem  m ay be solved by sequen tia l  

app lica t ion  of th e  one  variable problem . So. th e o re m  4.6 m ay be app lied  sequen tia l ly  

to solve th e  ch o rd a l  m ax im u m  m in im um  eigenvalue problem . As m en tioned  above, 

th e  app roach  to  th e  proof of the  theo rem  th a t  we use provides in fo rm ation  a b o u t  

th e  e igenvectors  a ssoc ia ted  with the  m ax im u m  m in im u m  eigenvalue t h a t  th e  [GJSVV] 

app roach  does no t provide. In add it ion , the  m a x im u m  m in im um  eigenvalue c o m p le ­

t ion  as given in t h e  above proof is easy to write  down. It is shown in th eo re m  1.2 of 

[D2] t h a t ,  in th e  chorda l  case, there  exists  an e igenvec to r  of the  m ax im u m  m in im u m  

eigenvalue c om ple tion  w ith  support  con ta ined  in th e  en tr ies  th a t  co rrespond  to  th e  

m ax im al  specified p r inc ipal  subm atr ix  with  th e  sm alles t  m in im um  eigenvalue o f  all 

th e  m ax im a l  specified principal subm atrices .
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