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ABSTRACT

This dissertation presents results from three areas of applicable matrix analysis:
structured eigenvectors, interlacing, and matrix completion problems. Although these
are distinct topics, the structured eigenvector results provide connections.

[t is a straightforward matrix calculation that if A is an eigenvalue of A. & an
associated structured eigenvector and a the set of positions in which = has nonzero
entries, then A is also an eigenvaluc 5f the submatrix of A that lies in the rows and
columns indexed by a. We present a converse to this statement and apply the results
to interlacing and to matrix completion problems. Several corollaries are obtained
that lead to results concerning the case of equality in the interlacing inequalities
for Hermitian matrices. and to the problem of the relationship among eigenvalue
multiplicities in various submatrices.

Classical interlacing for an Hermitian matrix A may be viewed as describing how
many eigenvalues of A must be captured by intervals determined by eigenvalues of a
principal submatrix of A. We generalize the classical interlacing theorems by using
singular values of off-diagonal blocks of A to construct extended intervals that capture
a larger number of eigenvalues. The union of pairs of intervals is also discussed. and
applications are mentioned.

The matrix completion results that we present include the positive semidefinite
cycle completion problem for matrices with data from the complex numbers, distance
matrix cycle completability conditions, the P-matrix completion problem, and the
totally nonnegative completion problem. We show that the positive semidefinite cycle
completion problem for matrices with complex data is a special case of a larger real
positive semidefinite completion problem. In addition, we characterize those graphs
for which the cycle conditions on all minimal cycles imply that a partial distance
matrix has a distance matrix completion. We also prove that every combinatorially
symmetric partial P-matrix has a P-matrix completion and we characterize the class
of graphs for which every partial totally nonnegative matrix has a totally nonnegative
completion. The structured eigenvector results are used to give a new proof of the
the maximum minimum eigenvalue completion problem for partial Hermitian matrices
with a chordal graph.

viii
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Chapter 1

Introduction

This dissertation presents results from three areas of matrix theory: structured
eigenvectors (chapter 2), interlacing (chapter 3), and matrix completions (chapter 1).
Although these are distinct topics in matrix theory. the structured eigenvector results
of chapter 2 provide connections. We will begin by providing some notation and
background material followed by brief introductions to the chapters. More detailed

background and introductions are provided within each of the chapters.

1.1 Notation and Matrix Theoretic Background

The set of all m-by-n matrices with entries from a field F' will be denoted by
My (F), and if m = n. M, ,(F) will be abbreviated to M, (F). If FF = C, the

complex numbers. we will often shorten this notation to M, ,. For A € M, , (F) the

For A € M,.(F).a C {1,2,....m}, and 8 C {1,2,...,n}, the submatrix of

A lying in the rows indexed by a and the columns indexed by 3 will be denoted

| )
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Ala; 8]. Similarly. 4 (a; 3) is the matrix that results from the deletion of the rows
indexed by a and the columns indexed by 3. If A € M, (F) and a = 3, then the
principal submatrix A [a; o] is abbreviated to A [a] and the complementary principal
submatrix is A («) . In the same fashion, for a vector z € F™, r [a] denotes the entries
of z in the positions indexed by a and z («) denotes the complementary vector. We
will often denote the sets {1.2..... m} and {1.2,.... n} by M and N, respectively.
For a.3 C N the set difference a — J denotes the set of all elements in « that are
not in 3. The set N — a will also be denoted by a° and N — 3 by 3°. Note that
this means that A (a:3) = A [a: 3] . The notation a + {n} will indicate the set that
results from adding n to every element of a. For example. if a = {1.3.4} and n = 4.

then a + {n} = {5.7.8}. The cardinality of a set a will be denoted by |c] .

1.1.1 Eigenvectors and Eigenvalues

For an n-by-n matrix A with entries from a field F, the nonzero vector r is a right
eigenvector of A associated with \ if Az = Az for some scalar A. Similarly, y #0 is a
left eigenvector if y~A = Ay~. The scalar A is an eigenvalue of A and o (A) will denote
the set of all eigenvalues of A. some of which may lie only in an extension field of
F. The subspace of F™ spanned by the set of all eigenvectors of A associated with
A is called the eigenspace of A associated with A. The dimension of the eigenspace
of A associated with )\ is the geometric multiplicity of A as an eigenvalue of A and is
denoted throughout by g\ (A). The principal of biorthogonality (see, e.g. theorem
1.4.7 [HJ1]) says that if \,u € o(A) with A # p. then any left eigenvector of A4

corresponding to u is orthogonal to any right eigenvector of A corresponding to A.
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1.1.2 Classical Interlacing Inequalities

An important result concerning the eigenvalues of Hermitian matrices is the
interlacing eigenvalues theorem for bordered matrices (see, e.g. theorem 4.3.8 [HJ1].)
Let A € M, be Hermitian and o C NV be such that |a| = n — 1 and let the ordered
eigenvalues of 4 be Ay < Ay <--- < A, and those of Ala] be py < p2 <+ < ppey.

Then

M S <A< S hs Sina LA

That is. the eigenvalues of an Hermitian matrix and any of its (n — 1)-by-(n — 1)
principal submatrices “interlace.” Another way that classical interlacing may be
viewed is that each interval [A;, Aiy1],7 = 1,2,...,n—1 contains at least one eigenvalue
pe, | £t < n—1 fromevery (n — 1)-by-(n — 1) principal submatrix of A. In addition,
for j # ¢ the interval [Aj, Aj+1] captures p, in which s # t. However. we may also say
that every interval [p;, pig1].¢ = 1.2....,n — 2 contains a different eigenvalue of A
(the other two eigenvalues are in (~oo, i;] and [gn—1,00)). As interlacing is applied
to successively smaller principal submatrices we find that, if M<h<- & ;\n_p
are the eigenvalues of a principal (n — p)-by-(n — p) submatrix of A, then the interval

S\g,:\- ,0< i< j<n-—pcontains at least j — { — p+ | eigenvalues of A.
3 P g

1.1.3 The Singular Value Decomposition

Anotaer important result is the singular value decomposition of a matrix (see.
e.g. theorem 7.3.5 [HJ1]). For m > n, if the matrix A € M,, , then A may be written

in the form A = VEW™ in which V € M,,, W € M, are unitary, and

diag (o1,02,....04)

1
]

0
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(diag (d;.d,,...,d,) denotes the diagonal matrix with the d; on the diagonal). The
values o; are the singular values of A and are the nonnegative square roots of the
eigenvalues of AA*. Usually the singular values are ordered in a nonincreasing fashion.
le. oy > 09 2 --- 2 0, 2 0. Note that when it is convenient we will think of 4 as
having singular values o0y > 02 > --- > 0, 2 0441 =+ = 0 = 0. The columns of V
are unit eigenvectors of AA™ and are called the left singular vectors of A. Similarly. the
columns of W are unit eigenvectors of A*A and are called the right singular vectors
of A. The case in which n 2 m is analogous for ¥ = | djag(0y,04,...,0m) 0

The matrix AA™ is Hermitian and since the singular values are the nonnegative
square roots of the eigenvalues of AA* it follows that there is also an interlacing
theorem for the singular values of a matrix. Let A € M, » be given and let A be the
matrix obtained by deleting one column from A. Form > nletoy > 0,2 --- 20, 20
be the singular values of 4 and 6; > 65 > --+ > 6,1 > 0 the singular values of A

Then

012012022622+ 20p-120,20.

There are analogous singular value interlacing results for m < n and if a row of A is
deleted instead of a column.
Often times there are close analogues to eigenvalue results for the singular values.

This is due to the fact that for the matrix A € M, , the matrix
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is Hermitian and has eigenvalues that are plus and minus the singular values of A
(with possibly some extra zeros). This is a fact dating back to Wielandt [Wi] and is
used in both chapters 2 and 3 of this dissertation to generalize the main results of

these chapters.

1.1.4 Jacobi’s Identity

If A € M, (F) is nonsingular. then the minors of A~! are related to those of A
by Jacobi’s identity. Jacobi’s identity states (see, e.g. section 0.8.4 [HJ1]) that for

a.3 C N, both nonempty. in which |a| = ||

sta)+a(8) det A [8% o]

det A7 [a: 8] = (=1) det A

in which s(a) = ¥;cqaJ. Observe that if o and @ have cardinality 1. i.e. a = {i}.

B=1{j},1<ij<n,then (1.1) becomes

iv; det A[B—{j}:a - {i}]
det A

a' = (-1)

¥

in which a,-'jl denotes the i, entry of A~!. This expression is the adjoint formula
for the inverse of a matrix. Thus. Jacobi's identity is a generalization of the adjoint

formula.
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1.1.5 The Schur Complement

For § # a C NV and A € M,. if A[e] is nonsingular. then the Schur complement

of Ala] in A is the matrix

Alef] = A a] (Ala]) ™ A[a:a].

Let A be partitioned as

A A
A=
A2 Az
in which A,, is nonsingular. Then
! 0 A[l AIZ ! —Al—lliilz :111 0
—‘421.‘11-11 I A'ZI Agz 0 { 0 S

in which S is the Schur complement of A;; in A. It is easy to see that A is then
nonsingular if and only if S is nonsingular and det A = det A, det S. Moreover, A is
positive (semi)definite if and only if S is positive (semi)definite. For more information

on Schur complements see [C].

1.2 Graph Theoretic Background

Many of the graph theoretic definitions and notation used in this dissertation are
adopted from [G]. An undirected graph is a pair G = (V, E) in which V" is a finite
set called the vertezr set and the set, E. called the edge set, contains unordered pairs
of elements from V called the edges of G. For v;,v; € V the edges {v;v;} € E will

often be abbreviated to v;v;. If the graph is a directed graph the edge set contains
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[o27]

ordered pairs. In this dissertation all of the graphs will be undirected. So. graph will
mean an undirected graph without loops or multiple edges. If G = (V| E) is a graph
and v;v; € E then v; and v; are said to be adjacent. A graph is said to be complete
if every vertex is adjacent to every other vertex. The complete graph on n vertices is
denoted A,.

If G = (V.E) and H = (W.F) are graphs for which W C V and F C E.
then H is a subgraph of G. If W C V' then the subgraph Gy = (W, E\y) in which
Ew = {vivj € E :vi,v; € W} is called the subgraph of G induced by W. An induced
subgraph is called a clique if it is a complete graph. A clique that is not properly
contained in any other clique is called marimal. The graph H = (V. F) is called a
supergraphof G = (V. E)if FF D E.

A path in a graph G = (V. E) is a sequence of vertices (vy,vz,..., ) such that
viviy, € E. The graph is said to be connected if there is a path from every vertex to
every other vertex. [f a graph is not connected. then each maximal connected induced

subgraph is called a component of the graph.

are distinct. [n this dissertation the term cycle will mean a simple cycle. The cycle
(v1, 2, ...V, v1) is called a k-cycle and is denoted by Ci. A chord of a cycle Ci. k > 4.
in a graph G is an edge of (¢ between two nonconsecutive vertices of Cx. A chordless
cycle is a simple cycle that has no chords. A minimal cycle in a graph G is an induced
subgraph of G that is a chordless cycle. A connected graph with no cycles is called a
tree. A k-wheel is a (k — 1)-cycle with one additional vertex that is adjacent to every

vertex of the cycle and is denoted by Wi.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1.1: Wheel. W}

If a graph contains no chordless cycles of length 4 or more, then the graph is said

to be chordal. For example,

<] </

G, G,

Figure 1.2: Example of a non-chordal (G}) and a chordal graph (G2).

The graph G, is not chordal since (1.2,3.4,1) is a cycle of length 4 that does not
contain a chord. However, this same cycle in the graph G contains the chord {2.1}
and all other cycles of length 4 or more also contain a chord. Chordal graphs have
received considerable attention largely due to their importance in the study of perfect
elimination schemes for Gaussian elimination [G]. This class of graphs is also very
important in the study of matrix completion problems as will be discussed in the next
section.

Graphs are often used to represent the zero/nonzero structure of a matrix. For an

n-by-n Hermitian (or symmetric) matrix A. the graph G(A) = (N, E) is the graph
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10

on n vertices for which {i.j} is an edge of G (A4) exactly when a;; # 0 for i # j (loops

are omitted by convention, so whether or not a;; is zero is irrelevant.) For example.

the matrix .
( 1 2 -3 0
2 -1 1 0
A=
-3 4 02
0 0 2 3J

has the associated graph

Figure 1.3: G(A)

A new graph may be constructed from a given graph G by using one of several
operations on the edges and/or vertices of G. An edge subdivision of a graph GG on n
vertices is a graph G’ on n + 1 vertices that results from replacing an edge of G with

two edges and a vertex between:

o———0 — ~O— @

Figure 1.4: Edge subdivision.

A verter partition of G (n vertices) is a graph G' (n + | vertices) in which a vertex
(of degree at least 1) in G is replaced by two adjacent vertices that partition the

neighbors of the original vertex: e.g.
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e

Figure 1.5: Vertex partition.

We say that a graph G, is homeomorphic to a graph G, if G; may be obtained
from G, via a finite sequence of (at least one) edge subdivisions. The graph G, is
built from G, if G, may be obtained from G, via a finite sequence of (at least one)
vertex partitions. Note that edge subdivision is a special case of vertex partitioning.

y

so that homeomorphism is a special case of “built from.” These operations will be

used in chapter 4 in the distance matrix completion problem.

1.3 Partial Matrices

A partial matriz is one in which some entries are specified over a field F. while
the remainder of the entries are unspecified and free to be chosen from F. It will be
assumed throughout this dissertation that the diagonal entries are specified. In many
cases this is a natural assumption. A combinatorially symmetric partial matrir A is

one in which aj; is specified whenever a;; is specified. For example,

1 02 7

1 -1 1 7
A=

-2 30 5

207 1 4
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in which 7’ indicates an unspecified position, is a combinatorially symmetric par-
tial matrix. A partial symmetric (Hermitian) matriz is a combinatorially symmetric
partial matrix in which if a;; is specified, then a;; = ai; (aj; = @i;). The specified
positions of an n-by-n combinatorially symmetric partial matrix A may be described
by an undirected graph G (A) on n vertices in which there is an edge between vertex
{ and vertex j exactly when a;; is specified. Loops are omitted by convention.

A completion of a partial matrix is a choice of values for the unspecified entries
resulting in a conventional matrix. A matriz completion problem asks when a given

partial matrix has a completion with some desired property.

1.4 Overview

By structured eigenvectors we mean eigenvectors that have 0's in (at least) certain

specified positions. If the n-by-n matrix A has a structured eigenvector associated

I
with A of the form ,r € F¥. 0 < k < n, then by partitioned matrix multipli-
0
cation. A is also an eigenvalue of A[a] in which a = {1,2,....k}, with associated

eigenvector z. Note that eigenvalues are invariant under permutation similarity, so.
there is no loss of generality in assuming a = {1.2,...,k}. In chapter 2 we seek a
converse: if A is an eigenvalue of both A [a] and of A. is there a structured eigenvector

I
of A associated with A of the form ,r € FF, 0 < k < n? As will be shown. the

0

number of linearly independent left eigenvectors of this special form plus the number
of linearly independent right eigenvectors with the given structure is at least g, +g,— &

in which ¢; and g, are the geometric multiplicities of A as an eigenvalue of 4 and
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Ala], respectively. This result has remarkably many implications as will be seen in
chapters 3 and 4.

The structured eigenvector results of chapter 2 are used in chapter 3 to characterize
what we call interlacing diagrams that describe the relationships of the geometric
multiplicities of a given eigenvalue among various submatrices. In chapter 3 we also
use singular values to extend classical interlacing intervals. If
A (B) < XA (B) £ --- £ A, (B) are the eigenvalues of the (n — p)-by-(n — p)
submatrix. B. of the matrix

B C
A=

c D

then the singular values of the off diagonal block, C. are used to extend the classical
interlacing intervals [A; (B),\;(B)]. 0 < ¢ £ j < n — p and possibly capture more
than the j — i — p + | eigenvalues of A that classical interlacing insures. The main
result of chapter 3 says that the interval [t — /82 + okt + /8% + of| in which oy is
the k*" largest singular value of C. t = '—\M. and 6 = ﬁL(m—;'\—'El, captures at
least j — i ~ & + 2 eigenvalues of A. If Bis (n — )-by-(n — 1), and £ = 2, then 0, =0
and the interval becomes a classical interlacing interval. In this case, for j = ¢ + 1
the results of chapter 3 say that the interval contains at least (¢ +1) —: -2 +2 =1
eigenvalue of A. Thus, classical interlacing is a special case of the main result of
chapter 3.

In chapter 4 we present results concerning a variety of matrix completion problems.
Among these are the positive definite cycle completion problem for matrices with data
from the complex numbers, distance matrix cycle completability conditions, the
P-matrix completion problem, and the totally nonnegative completion problem. We
show that the positive definite cycle completion problem for matrices with complex

data is a special case of a larger real positive definite completion problem. In addition
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we characterize those graphs for which the cycle conditions on all minimal cycles
imply that a partial distance matrix has a distance matrix completion. We also prove
that every combinatorially symmetric partial P-matrix has a P-matrix completion
and we characterize the class of graphs for which every partial totally nonnegative
matrix, the graph of whose specified entries is in the class, has a totally nonnegative
completion. The structured eigenvector results of chapter 2 are used to solve the
maximum minimum eigenvalue completion problem for partial Hermitian matrices

with a chordal graph in a new way.
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Chapter 2

Structured Eigenvectors

It is a straightforward partitioned matrix calculation that if A is an eigenvalue
of A, r an associated eigenvector. and a the set of positions in which r has entries
not equal to zero, then X is also an eigenvalue of A{a]. Converses to this statement
are known in certain special situations. For example, it has been known for some
time (and can be deduced from theorem 5 [D1]; see also [JK1]) that if A € M, (C) is
Hermitian, |a| = n — 1, and A € R is an eigenvalue of both A and A[q], i.e. a case of
equality in the interlacing inequalities, then there 1is an eigenvector
r = (Il.lfg,....xn)T of 4 associated with A such that if i ¢ « then r; = 0. For
a general matrix A € M, (F) and A an eigenvalue of A with geometric multiplicity
k, the rank of A — Al is n — k. Then for |a| > n — k the rank of A[a] — Al is at
most n — &k and ) is an eigenvalue of A[a]. Moreover, it is implicit in the proof of
theorem 1.4.9 in [HJ1] that there is an eigenvector of A associated with A all of whose
components indexed by a° are zero. It is our purpose here to give a converse to the
opening statement that is. in some sense. the most general possible in terms of the
data we use. A variety of statements. including those just mentioned, may then be

easily recognized as special cases.
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These results, as well as some special cases, will be valid over a general field F'.
For A € o(A), denote the geometric multiplicity of A in A by g\ (A). The most
optimistic converse to the opening statement would be that if A is an eigenvalue of
both A and A[q], then there is an eigenvector r (of A associated with A) in which all

components of r (a) are zero. However. this is not always the case. Consider

and the set a = {1,2}. This matrix has zero as an eigenvalue, as doe; Ala], but any
eigenvector of A associated with zero is of the form < a 00 —a ) . The converse
cannot, therefore, be as general as one might hope.

Before stating a converse. several definitions are needed. The main result will
be stated in terms of the dimensions of special subspaces, of the left and right
eigenspaces of a general matrix 4 € M, (F) associated with A € F. in which the
vectors have support among the components indexed by a. These special subspaces

(of the eigenspaces) are defined as follows:

LEY(A) = {yeF :yTa=X" y(a) =0}

oy
2

=
I

{re F": Ar = Az.z(a) =0}.

Similarly, let LN(A) and RN(A) denote the left and right nullspaces of A and define
the special subspaces (of the nullspaces) LN,(A) = LE2 (A) and RN,(A) = RE? (A).
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It is clear that the dimensions of all these spaces are permutation similarity invariant.
and, by assuming that a = {1.2,.... n — k}. this fact will be exploited repeatedly
throughout this chapter without further mention. If z is any eigenvector of A as-
sociated with A, then r is an eigenvector of A — Al associated with the eigenvalue
zero. For this reason, results concerning the special nullspaces underlie observations

concerning the special eigenspaces.

2.1 Main Result

For contrast to the main result. we note some preliminary facts that indicate
circumstances under which both the left and right special subspaces are nonempty.
The rank deficiency of an n-by-n matrix A is n — rank(A) = go(A). For general
matrices, when the rank deficiency of a principal submatrix is sufficiently large. then
the dimensions of the left and right nullspaces are positive (see discussion preceding
lemma 4.8.) Suppose that the submatrix A[e] is such that its rank deficiency is
greater than the number of rows or columns deleted from A to obtain A [a]. That is.
for |a|] = n — k. go(A[a]) > k. In this case, the rank of Ala] is n — &k — go (A [a])
and the rank of A can be at most 2k more than the rank of A[a]. But, then, the
rank deficiency of A is at least go (A [a]) — k. Since this number is positive, A is rank
deficient and the left and right nullspaces of A are both nonempty. The lemma below

states that, in fact, the left and right special nullspaces of A are both nonempty.
Lemma 2.1 Let A € M,(F) and let « C N be such that |a| = n — k.

(i) If go(A[a]) > k, then dim(LN4(A)),dim(RNL(A)) > go (A[a]) — k.

(i1) Let 0 < go < min{k.|a|} be given. Then there is a matriz B such that

do(B[a]) = go and dim (LN,(B)) = dim (RN,(B)) = 0.
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Then A has partitioned form

Au Ap
4 = (2.1)
"121 f122
I
in which Ay = A[a]. Inthis case. if £ € RN, (A). it is of the form » = in which
0
All - .
I € F** and note that RNV, (A) = RN . Similarly, any vector y € L.V, (A)
Az

is of the form y7 = [ gt 0 } in which § € F"=* and LNV, (A) = LN [ Au A }

Assume gq (A1) > k. as in part (i) of the lemma. By elementary linear algebra

A An
dim (RN, (A)) =dim | RN =n—k—rank . (2.2)

4‘121 1‘121

Since Agy is k-by-(n — k) the rank of A, is less than or equal to min {k.n — A}.

Therefore,

IN

rank rank (Aqy) + rank (Az)

Az
= n—k—go(An)+rank(Aqy)

< n—k—-go(An)+#k

= n-go(Au)-
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But then substituting this in (2.2) gives

An
dim | RN > n—k—(n—-go(An))

Ay
= Jo (Au) — k.

So, dim (RN, (A)) > go (A1) — k. The proof that
dim (LN, (A)) = dim (LN [ Ay Ap ]) > go(An) =k

is analogous and part (i) of the lemma is verified.

For part (ii) consider the matrix

0 0 I, 0
0 ln—kego 0 0
Bll BI2
B = - (2.3)
B2l BZ’Z
I 0 « 0
0 0 P 0 By

in which By, is (n — k)-by-(n — k) and ¢o (B1;) = go. For this matrix. 0 < go < 4.
but there are no nonzero vectors in either LNV, (B) or RN, (B), and part (ii) of the
lemma is also proved. O

Replacement of A with A — Al in lemma 2.1 gives the following.
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Theorem 2.1 Let A € M,(F') and let « C .V be such that |a| =n ~ k.

(i) [fgu(Ale]) > k. then dim(LE}(A)),dim(RE}(A)) 2 gr(A[a]) — k.

(i1) Let 0 < go < min{k,|a|} be given. Then there is a matriz B such that

gx(Ble]) = ga and dim(LE}(B)) = dim(REZ(B)) = 0.

Statement (i) in theorem 2.1 is best possible when left and right eigenspaces are
considered separately. By considering the left and right eigenspaces simultaneously.
one arrives at a general converse to the opening statement. This main result will first

be stated in terms of the special nullspaces.
Lemma 2.2 Let A € M,(F) and let o« C N be such that |a| =n — k.
(1) dim(LN,(A)) + dim(RNL(A)) > go(A) + go(Ala]) — k.

(ii) Let g and g, such that 0 < g < n. 0 < go < |a|, and |g — go| < k be given.
Then. if g+ go — k > 0 there is a matriz B such that go(B) = g, go( B [a]) = ga
and

dim(LNo(B)) + dim(RNa(B)) = go( B) + go( B[a]) — k.

If g+ go — k < 0. then there is a matriz B, with the given parameters, such that

dim(LN,(B)) = dim(RN.(B)) = 0.

Proof. Let A € M, (F) and partition A as in (2.1). Also, let

i = rank — rank (Aq,) (2.4)

ic = rank Ay A —rank(Ay).
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Then

i | An An
dim | BN = n—kLk-—rank

“121 A21
= n—Fk- (ran/c(A“) + L,-)

= go(An) -1t

Similarly, dim (LN [ A A ]) = go(A11) — ¢, The sum of the dimensions of

these two spaces is then

An
dim | RN + dim (LN [ Ay Ap D = 20 (A11) = iy — ic. (2.5)

Aoy

Choose S,T € M,_i (F') nonsingular matrices such that

— 0 0 Y
5 0 An A T 0 0 I : Y _
0 I Ao Ao 0 [/ ) o
i X1 X, 422
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in which the upper left zero block of A’ is go (A11)-bv-go (A11) -

Y

Y,

[ X X, } = Ay T. A second equivalence will zero out X, and Y5 :

0 0 0
0 I 0
0 -Xj [

So,

rank
Ag

= rank

)¢}

Y2

.‘{22

~Y;

)£

= rank (A1) + rank (X))

(S
(R

= 5‘412, and

i
.:Ll
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and
0 0 : Y[
rank [ Ay A ] = rank = rank (A1) + rank (Y7).
07 : 0
Then.
An
rank (X,) = rank —rank (Aq)
An
and
rank (Y1) = rank [ A Ap ] —rank (An).
0 Y
Since rank > rank (Y1) + rank (X;) we have
X1 Az
. 0 %
rank (A) = rank (4) = rank (Ay;) + rank (2.6)
.\"1 ‘*'122
> rank (An) + rank (Y)) + rank (X;)
/11[
= rank + rank [ A Apg ] ~ rank (Ayn) .
Az

This was previously shown in a more general setting in [Wo| in another way, but we
have included a proof here for completeness.

Using the definition of ¢, and i. in (2.4) we have

n—go(Ad)=rank(A) > i, +i.+rank(Ay) =t +ic+n—k—go(An).
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Rearranging this inequality we have k& — go (A4) + go (A11) = ¢- + . and substituting

this in (2.3) yields

Ap
dim | RV + dim (LN[AU Ay D >

290 (Au) + (go (A) _90(‘411) - I‘)

= go(A) + go (A1) — k.

and part (i) of lemma 2.2 is proved.

There are two cases to consider in proving part (ii) of lemma 2.2. To begin,
consider the case in which g + g, — k£ < 0. Note that for this to be the case. g, must
be less than or equal to k. For the matrix B in (2.3). if g5 = go, then go(B11) = g and
the submatrix Ba is (k — ga)-by-(k — go). This submatrix can be chosen so that B
has rank deficiency. ¢, from 0 to A —g,. Thus. B has the appropriate parameters. and.
as mentioned in the proof of lemma 2.1. B has dim (LN, (B)) = dim (RN, (B)) =0.

For the case in which g + g, — & > 0. consider

The submatrices Y and X can independently be chosen to have rank from zero to

min {g4, k}, inclusive. which gives B a rank deficiency, g, from |g. ~ k| to g, + k.
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inclusive. Now. note that there is equality in (2.6) and. therefore,

dim (LN, (B)) + dim (BN, (B)) = go (B) + go (B11) — k.

which completes the proof of the lemma. O

Our main result. the proof of which follows from lemma 2.2 by translation. is then:
Theorem 2.2 Let A€ M, (F) and let « T N be such that |a] =n — k.
(i) dim(LES(A)) +dim(RE}(A)) 2 ga(A) + gr(A[a]) - k.

(i1) Let g and g, such that 0 < g < n, 0 < g, < |a|, and |g — go| < k be given.
Then. if g+ go —k > 0 there is a matric B such that g\(B) = g. gr(B[a]) = ga
and

dim(LEy(B)) + dim(RE}(B)) = gA(B) + g\(B [e]) ~ k.

If g+ ga—k < 0. then there is a matriz B, with the given parameters. such that

dim(LE)(B)) = dim(RE}(B)) = 0.

In each of lemmas 2.1 and 2.2 and theorems 2.1 and 2.2, statement (ii) indicates
that statement (i) is in some sense the best possible. The restrictions regarding « only
avoid logical impossibilities and. otherwise. the situations not covered by statement
(1) are covered in statement (ii).

At this point we make two general observations that are direct consequences of

theorem 2.2.

(1) fA€e M, (F) and |a|] = n—1.then A € a(A)N o (A[a]) if and only if there is
either a left or a right eigenvector of A (associated with A\) whose a® component

is zero.
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2)f A e M,(F). A\ € 0(A) and ¢ C N with |a| = n — k are such that
dim (LE2 (A)) = dim (RE2 (A)). then each of

[ad

(A)+ g (Afa]) -k
.) *

<

dim (LE) (A)) .dim (RE} (4)) 2 &

In this event, if gy (4) + gx (A[a]) > k. then both dim (LE} (4)) and
dim (REQ\ (4)) are positive,

Note that statement (1) does not follow from theorem 2.1 and is in some sense tight
as. under the given hypothesis, a general matrix may not have both a left special

eigenvector and a right special eigenvector. For example,

1 -1 0
A=]1-1 10
0 —1 1

L J

does not have the property assumed in (2) for 0 € o(A), and go(4)= %
go (A[{1.2}]) = 1. Thus. as every right null vector of A4 is a multiple of ( [ 1 ! ) .
A has no special right eigenvector associated with 0. while it, of course, has a left such
eigenvector, e.g. ( 110 ), because of (1). Similarly, for many values of g\ ()

and gy (A [a]), the conclusion of (2) does not follow from theorem 2.1.

2.2 Structured Eigenvector Applications

We may now give several specific corollaries to theorem 2.2. First. note that if
A € M, is normal. then. as UAU™ = D, for some U unitary and D diagonal, any left

eigenspace of A is the conjugate transpose of a right eigenspace. Thus. the hypothesis
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of (2) above is satisfied for each A and a. From this observation we can conclude the

following.

Corollary 2.1 Let A € M, be a normal matriz. For a C N with la| =n—*%

dim(LE(A)). dim(RE)(A)) > 2 +9§)(A[a]) —k

Of course Hermitian matrices are normal so the following is a special case of corollary

2.1.

Corollary 2.2 Let A € M, be Hermitian. For o C N with |a|=n —k

g(A) + gr(Ala]) — &
5 -

<

dim(LE,(A)), dim(RE}(A)) >

[n the opening paragraph we mentioned that if A is Hermitian.
A €o(A)Nao(A[a]). and |a] = n— 1. then there is an eigenvector z (of A associated
with A) in which z(a) = 0. But then g\ (A).g:\ (A [a]) = 1 which results in a positive
right-hand side in corollary 2.2. In this case. both the left and the right special

eigenspaces are nonempty. which proves the following corollary.

Corollary 2.3 Let A € M, be Hermitian, let « C N be such that |a| = n — 1. and
let A € R be an eigenvalue of A. Then. there is an eigenvector r of A associated with

A such that x(a) =0 if and only if A € a(Ala]).

Thus, the general scheme adopted here provides an algebraic proof to the statement

in the opening paragraph.
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2.2.1 Application to Singular Values

As noted in the introduction, there is also an interlacing property for singular
values that follows from classical interlacing of eigenvalues of Hermitian matrices.
Therefore, it is natural to ask if there are results for singular vectors that are similar
to the above theorems. Let A be an m-by-n matrix and let oy > o2 > --- > 0oy
k < min{m.n} be the set of distinct nonzero singular values of A. Let m;(A).
J = 1.2,....k denote the multiplicity of o; as a singular value of A. Note that
m;(A) = 9o (A*A) = 902 (AA™). Then let A = VIW*= be the singular value de-
composition of A. If ¢; has multiplicity m;(A) then there are right singular vectors.

Wj1, Wj2s - -+« Wjm,. and left singular vectors. vj1,vj2..... vj,m, such that
A [ wip Wiz o Wim, ] =0; [ Uil Viz2 tt Ujm,
The right singular vector space of A associated with o; is
span {lUjJ,'LUj'Q, ... ,‘Ll)j‘m]} = RS (A)
and the left singular vector space of A associated with o; is
span {uj'l, Vj2ges s vj,mj} = LS91(A).
Let a C N and define the special singular vector subspaces

LSS (A) = {ve LS (A):v(a)=0}

RS (A) = {we RS (A):w(a)=0}

a
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Also, let M = {1,2.....m} and, as usual. .V = {1,2,...,n}. Then

Theorem 2.3 Let A € Mpna(C), then for « C M,3 C N with la| = m — k..
IIBI =n- ka
d i ' ; - 'Icr - kc
dim(RS7(A)) & dim(L§7*(A)) > T4+ mk(A.[a,,B]) '

- )

4

Proof: Assume m > n (if not, reverse the rolls of m and n in the discussion

that follows) and let ¢y > o2 > --- > o4 be the distinct nonzero singular val-
0 A _ _ )

ues of A. Let B = . Then B is Hermitian with unique eigenvalues
A0

=01y ~09yuvsy—Ck1.—0k,Oks Tk=1,....01. Note that when multiplicities are con-

sidered, B has (m + n) — 2rank(A) eigenvalues that are 0. and m — n of these zero
eigenvalues do not correspond to singular values of A. Delete k. + k. rows and columns
of B in such a way as to delete the k. rows M — «a and the k. columns N — 3 from A.
Also delete the corresponding £, columns and k. rows from A*. The resulting matrix
is:

) 0 Ales 5]

B=Bla] =

Ale: 8] 0

in which & = aU (8 + {r}) and Bis (m + n — k, — k.)-by-(m + n — k, — k.). Corol-

lary 2.2 gives

Gor (B) + go,, (B) = ke — ke
: .

O]
-1
~

dim (LES* (B)),dim (REZ (B)) >
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w
The eigenvectors of B are of the form in which w is a right singular vector of

v

A associated with o and v is a left singular vector of A associated with or. This
means that the dimension of the eigenspace associated with o in which w(a) =0

and v(3) =0 is at least

9oi (B) + o, (B) -k — ke _ mi(A) + my( Al 8]) — kr — k.

2 2

since gq, (B) = mi(A4) and go, ([3) = my(A[a: 8]). Thus,

(A) + m(Afe; B]) — kr — ke
s') M

o

dim(RS%*(A)) & dim(LST(A)) > =

.|

Note that if mo(A) denotes the multiplicity of 0 as a singular value of A, then
go(B) =2mg(A)+m —n and go (B) =2mq (A [a: 3]) + [(m — k) — (n — k)|, which

when substituted in (2.7) yields

dim (LNs (B)) . dim (RN; (B)) >
mo(A) + mo(Ala:3))+m—-n—-k. {m—4k >n—k

mo (A) + mo (Ala; 3]) — k. ifm—~k <n-k

2.3 A Perturbation Result

Corollary 2.3 characterizes the case in which A is Hermitian, |a| = n — I, and
there is equality in the interlacing inequalities. We next consider approximate versions

of the two equivalent statements in corollary 2.3, i.e. the case in which there is an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

eigenvalue of A[a] that is “near by” an eigenvalue of A. or there is an eigenvector.
r, of A associated with A that has a component that is “small” relative to the other
components of r. Let A; denote the j** column of the matrix A and note that ||e]|,

is the usual Euclidean norm.

Theorem 2.4 Let A € M, be Hermitian, let a« C N be such that |a| = n — 1 with

a° = j. Then for A € o(A) and r an associated eigenvector such that x(j) # 0

(i) There is a i € o (A[a]) such that

2 2
i1 V1A IE = lassl
AN —pl <

Iz, — Iz
(i) If A ¢ o (4[a]). then

Izl 1

l=ll, ™ \/ll(Afa] = A)=" Al o] + 1

Note that ||z||, — |z;]* = 0 if and only if z(j) = 0.

Proof. Let x € C™ be such that Az = Azr. To prove (i) let 4; () be the vector
formed by deleting the j** entry of A; and note that A (@: {j}) (A({j}:0)) is the
n-by-(n — 1) ((n = 1)-by-n) matrix in which the j** column (row) of A has been

deleted. By matrix vector multiplication. deleting the j** column of A results in

A0.{j})x(y) = Az — 1;A;.

—_
[
o

=

Further deletion of the jt* row yields

Az () =A{7}:0)z = 1;A;() = Ae (§) — £;4; ().
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Then
HAG) ()= Az (7)), = =1 1A U)Il, -

By [P. theorem 4-5-1]. for any scalar A and any nonzero vector z, there is an eigenvalue

v of an n-by-n matrix B satisfying

|Bx — Az]|, .

[y = Al <
(EAIP

Then, for the scalar A thereis a u € o (A(J)) for which

1A Gz () = Az ()l

e = Al < -
Iz ()l
. 2 2
_ bl ol _ VAl — e
2 2 2 2
e} = ] 13— Ia,]

which proves (1).

To prove (ii), note that since Ar = Az, we have

Alodzfo] + Afaa]2; = Az [of

(note that = (j) = r[a), A(j) = Ala]. and z; = 2 (a)) or

—(Afa] = M)z [a] = Ala; ] z;.

If\¢o(Aa]), then A[a] — Al is invertible and

o] = —(Aa] = M) Afe; o) z;. (2.9)
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By taking the length of both sides in (2.9) we see that

213 ~ la;1* = [z, | (A[a] =AD" Ao o] (2.10)

2
.

The vector (A [a] — M)™" Afa: ] is zero if and only if A[a;af] is zero. but then

A € o(A[a]), a contradiction. So, (A[a] — AI)™" Afe;a] # 0. Rearranging (2.10)

results in
E 1
Il ”(A[a] - M) Alas o] z-i- 1
which proves part (ii) of the theorem. O

We note that theorem 2.4 says that corollary 2.3 is valid in the following approximate
sense: if r; is “small” then (i) indicates there is an eigenvalue u € o (A (j)) that is
“near” some eigenvalue A € o (A): also, if there is a u € 0 (A (7)) that is “near” some
eigenvalue A € o (A), and [|A[a:e]|| > (n — 1) |u — A, then there is an eigenvector
of A associated with A for which z; is also “small”.

We will illustrate this theorem by an example:

-5 =29 5
-29 =95 0
A=
5] 0 : -36
—-.28
which has A = —103.56 as an eigenvalue with associated eigenvector r = | _ gg
.02

The calculations in (i) indicate that there is a u € o(A[{1,2}]) such that
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|p — Al £.78. The submatrix 4 [{1.2}] has an eigenvalue u = —103.54 which satisfies
this inequality. Similarly, since ||z||, = 1, statement (ii) indicates that |z3| = .02

which is the case.
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Chapter 3

Interlacing

3.1 Breadth and Depth of Interlacing

Let A € M,(C) be Hermitian. Since any principal submatrix of an Hermitian
matrix is Hermitian, corollary 2.3 may be applied at each “level” of interlacing. After
a few basic observations. careful sequential application of corollary 2.3 will lead to
the results below. but first several definitions are needed. Suppose A is an eigenvalue
of A, then A is said to have interlacing equality at A of breadth k if there are exactly
k distinct index sets aj,qy.....ar €V in which |o;]=n~1 and A € 0 (A[a)]).
t =1,2....,k. If gx(A) > 2. then the breadth of interlacing equality at A is n (see
discussion following corollary 3.3.) As will be seen in the proof of corollary 3.1 if A is
such that g\ (A) = 1. then. because of corollary 2.3 the breadth of interlacing equality
at A is just the number of zero components in the essentially unique eigenvector. The
matrix A is said to have interlacing equality at X of depth k if A € o (A[3;]) for some
index sets Bg, 31.....3 C N such that 3,41 C 3;.) =0, L..... k—1.]18l =n—j.

j=0,1,....,k and k is a maximum. If in addition, gx(A[Bj+1]) = gr(A[3;]).

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

J =0.1..... k — 1. then A is said to have interlacing equality at \ of restricted
depth k. Here, k is the number of principal submatrices in the nested sequence for
which the geometric multiplicity of ) is nondecreasing, so that the depth of interlacing
equality may be greater than the restricted depth. The following corollaries relate

these concepts.

Corollary 3.1 Let A € M, be Hermitian and be such that g\(A) = 1. If A has
interlacing equality at \ of breadth k. then A has interlacing equality at A of depth at

least k.

Proof. If A has interlacing equality at A of breadth £, then there are k distinct
principal submatrices A[a;] such that A € o (A[e;]) and |a;] = n — 1. In this case.
gr (A[ei]) = | and. by assumption, g\ (A) = 1. Thus, by corollary 2.3 . for each «;
there is an eigenvector y; of A associated with A. such that y;(a;) = 0. However, since
gy (A) = 1. the (right) eigenspace of A associated with A is one dimensional. so that
each of the y;'s may be taken to be the same. z. It follows that
r(a;NazN---Nag) = 0. By the partitioned calculation mentioned in the opening
paragraph of chapter 2 Jop = V. and gi = a1 Ny N---Na;, . = 1,2..... k., exhibit
that A has interlacing equality at A of depth at least k. a

Corollary 3.1 is stated in the Hermitian case for parallelism to the corollaries
that follow. However. the concepts of breadth and depth of interlacing may also be
thought of simply as coincidence of eigenvalues. In this context, the arguments in
the proof of corollary 3.1 are equally valid for normal matrices (using corollary 2.1 in
place of corollary 2.3 with an obvious generalization of the definitions of breadth and
depth of interlacing). So. corollary 3.1 may be generalized by replacing “Hermitian”

in the hypothesis with “normal.” On the other hand. the coincidence of eigenvalues
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indicated by corollary 3.1 is not valid for general matrices. as exhibited by the example

1 11
1 11
011

in which 0 is an eigenvalue of breadth 2. while its depth is only 1.

The converse to corollary 3.1 does not hold; a counterexample is given by the

matrix 3 i
0011
0 011
1 111
L 110 |

which has interlacing equality at 0 of depth 3 (A ({4}). A ({3,4}). A({2,3.4})). but
interlacing equality at 0 of breadth only 2 (A ({3}), A ({4})). However, the geometric
multiplicities of 0 in the principal submatrices that yield interlacing equality at 0 of

depth 3 are

I
—

go (A ({4}))
go (A({3.4})) =

g (A({2,3.4})) = L

[S™)

In fact, the restricted depth of interlacing equality at 0 is only 2 and this is exactly
the breadth of interlacing equality at 0. As indicated in the following corollary. the

breadth of interlacing equality at A must be at least that of the restricted depth.
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Corollary 3.2 Let A € M, be Hermitian and suppose A € o(A). If A has interlacing
equality at A of restricted depth k. then A has interlacing equality at A of breadth at

least k.

Proof: If g\ (A) > 1, the breadth at \ is n (see discussion later. if necessary)
and the conclusion is automatically valid. Thus. we suppose g\ (4) = 1. If A has
interlacing equality at A of restricted depth k. then there is some nested sequence of
k+ 1 principal submatrices A [3;], such that |di| = n—i. A€ g (A[3i]),: =0.1..... k.
and g\ (A[Bit1]) 2 gr (A[B]). e =0.1..... k — 1. Assume. without loss of generality.
that the rows and columns of A [3;] are numbered 1 to n — i. Note that n —: is the

index of the row and column deleted from A [J;i] to obtain A [3;4+]. By corollary 2.2

o (A[B]) +9: (A[Bin]) - 1
2

-

dim (LE}, (A[8])) .dim (RE},_ (A[3])

v

o) —

> g (A[B]) - ;

since g\ (A [8i]) < ga (A [Bi+1]). Both dimensions must be integral: so, the dimensions
of the special eigenspaces must both be at least g\ (A [8i]). Then. every (left and right)
eigenvector of A [3;] associated with A is in the special (left and right) eigenspace and.
thus, component n — ¢ of each of these vectors is 0.

Let = be an eigenvector (essentially unique) of A associated with A. Since
g2 (A) = ga (A[6o])) = 1 and gy (A[A]) = 1,
by corollary 2.3 z (1) = 0. By the preceding paragraph, if i = 1 then every eigenvec-

tor of A[B,] associated with A, including =[], has a zero in the n — | component.

Thus, z (81N B2) = x(82) =0.
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Continuing in this manner. for each : = 0,1....,k — 1, z [3] is an eigenvector of

A [B;] associated with A with a zero in the n — i component so that

L(ANB3,N...084m)=z(8iq1) =0.

Then. £ (3¢) = 0 and for each j ¢ 3k, z({j}) is an eigenvector of A({j}) associated
with A. Thus, o; = N — {n+1~j}.j = 1.2,... k. exhibits that A has interlacing
equality at A of breadth at least k. i

Note that the breadth of interlacing equality can be strictly greater than the

restricted depth of interlacing equality. For example, the matrix

0 01

0 00

1 00

has interlacing equality at 0 of restricted depth 1, but the breadth of interlacing
equality at 0 is 2.

If the matrix A is such that g\ (A[e]) < | for every index set o C V. and 4
has interlacing equality at A of depth k, then A also has interlacing equality at A of
restricted depth k. In this case. by corollary 3.2, A has interlacing equality at A of

breadth at least £. Combining corollaries 3.1 and 3.2 then yields the following.

Corollary 3.3 Let A € M, be Hermitian and suppose for every inder set a C .V
that g\(Ala]) < 1 with g\(A) = 1. Then. A has interlacing equality at A of breadth k

if and only if A has interlacing equality at A of depth k.

Let A€ M, be Hermitian. Due to classical interlacing, when g\(A)> 1.

A € o(A[a]) for any a C NV such that [a| = n — L. In addition. when gx(A) > 1 for
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each such a there is an eigenvector. =, of A associated with A such that = (a) = 0. This
may be seen in an elementary way by noting that, given any two linearly independent
eigenvectors z,y in the eigenspace, there is a linear combination with a zero in any
specified position. Such an A has interlacing equality at A of breadth n. but may

have depth at A as little as I. For example, the matrix

1 11
I 11
111

has interlacing equality at 0 of breadth 3. while the depth at 0 is only 1. Thus. the

assumption in corollaries 3.1 and 3.3 that g\(A) =1 is necessary.

3.2 Interlacing Diagrams

Corollaries 3.1-3.3 indicate restrictions on the values of g\ (A[a]) for various
a’s. This led us to look at the characterization of the relationships between different

“levels” of interlacing. These relationship are described via what we call interlacing

diagrams. For example, if

then A has interlacing diagram
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LEVELS
(1) 0
© (2 !
{12} (L3} (23}
2
{1} {2} {3}

Figure 3.1: Interlacing diagram example.

in which the entry in the cell in level 0 is the geometric multiplicity of 0 as an
eigenvalue of A and the entry in each of the other cells is the geometric multiplicity
of 0 as an eigenvalue of the principal submatrix of A lying in the rows and columns
indicated by the index set below each cell. The general problem is, for an n-by-n

matrix A and fixed A € o (A). which n-level diagrams of the form
LEVELS

{L,2,..n-1} {1,2,...,n-2,n} o (2,3,

S g b\>

Figure 3.2: General interlacing diagram

in which the geometric multiplicity of \ as an eigenvalue of the principal submatrix
found in the index set associated with that cell appears in each cell, can occur?

An obvious condition for such diagrams is

(1) Dimension: g\ (A[a]) < |q].
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So, the entries in the cells of level & can be at most n — k. We will be looking primar-
ily at Hermitian matrices. For Hermitian matrices, classical interlacing restrictions
require that the geometric multiplicity in a predecessor or successor cell may differ

by at most one from that in a given cell. This gives rise to a second condition.

(2) Interlacing: Let A € M, be Hermitian and ¢« € N. Then for j € c.

lgr (Ale]) —gr (Ala = I < L

For the remainder of this discussion we will assume that A = 0. The general case
in which A # 0 follows easily by translation. For Hermitian matrices, the two obvious
necessary conditions given above are not sufficient. That is. there are diagrams that
satisfy (1) and (2) for which there is no Hermitian matrix with that diagram. For

example. the diagram

LEVELS
(1) 0
W O, O !
(1.2} {13} {23}
© © © 2

Figure 3.3: Diagram ruled out by biorthogonality

satisfies conditions (1) and (2) but there is no 3-by-3 Hermitian matrix with the
interlacing diagram given in figure 3.3. For A = 0 level 2 indicates that the diagonal
entries of a matrix with the diagram in figure 3.3 are nonzero. Level 1 and level 2 of

the diagram, together with the fact that we are considering only Hermitian matrices.
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indicates that any matrix with the diagram in figure 3.3 must be of the form

a* ab ac
A=1ab B be

ac bc ¢

L -

in which a.b.c # 0. But go(A) = 2 and the diagram requires this value to be 1.
Therefore, there is no Hermitian matrix with the diagram in figure 3.3.
The structured eigenvector results of chapter 2 and the principal of biorthogonality

lead to the following corollary which holds for general diagonalizable matrices.

Corollary 3.4 If A is a diagonalizable matriz and g\ (A) = 1, then g\ (A(:)) =0

for some 1 <1< n.

Proof. Let A be diagonalizable, g\ (A) = 1. and assume that g\ (A (¢)) > 1 for
all i = 1.2....,n. Also, let r.y be right and left eigenvectors, respectively. of A
associated with A. Then. by theorem 2.2 at least one of r and y must have a 0 in the
i*" component for i = 1.2..... n so that y*z = 0. By the principal of biorthogonality
y must be orthogonal to every right eigenvector of A associated with p € o (A).
it # A, Since A is diagonalizable. this means that y is orthogonal to n — 1 vectors.
But y is also orthogonal to r. and is. therefore, orthogonal to a set of n linearly
independent vectors. Then, y must be the zero vector which is a contradiction since
y is an eigenvector. Therefore, there must be some : for which g\ (A(:)) = 0. O
The diagram in figure 3.3 does not satisfy corollary 3.4 and, therefore, there is no

3-by-3 Hermitian matrix with this diagram. Corollary 3.4 gives a third condition on

the interlacing diagrams.

(3) Biorthogonality: For diagonalizable matrices, every diagram with a 1 in the

cell at level 0 must have at least one 0 in level 1 (corollary 3.4.)
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Note that any pattern that is not allowed in an interlacing diagram of size k is not
allowed as a subpattern of a diagram of size n.n > k. So. condition (3) indicates that
if a cell in level k of a diagram contains a 1. then there must be at least one 0 among
that cell’s successor cells.

Conditions (1)-(3) are still not sufficient. The diagram

LEVELS

0

@)
O—
©

.....
[
—
—_—
—
w
—_—
[ 8]
w

GA‘

>

}

©)

(5]

pa—
—
.
w
-~

—
35

}

Figure 3.4: Diagram ruled out by breadth and depth corollaries

satisfies conditions (1)-(3), but. due to levels 1 and 2, any Hermitian matrix with this

diagram is of the form

a* ab ac
A=1|a 8 0
ac 0 ¢?

in which a. b,c # 0. But this matrix is nonsingular and the cell in level 0 of figure 3.4
requires that any matrix with this diagram is singular.

The diagram in figure 3.4 cannot occur because it violates the breadth and depth
corollaries of section 3.1. By the proof of corollary 3.1 the I in level 0 and the two
I’s in level 1 indicate that the first cell in level 2 (corresponding to the st diagonal
entry) must be a | and cannot be 0. The breadth and depth of interlacing corollaries
(corollaries 3.1-3.3) give a fourth condition on the interlacing diagrams for Hermitian

matrices.
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(4) Breadth and Depth of Interlacing: corollaries 3.1-3.3.

The following corollary indicates a pattern that cannot occur as a subpattern of

any larger diagram.

LEVELS

@
& D

o-(if a-fj}
\CD/ k+2
a-{i,j}

Figure 3.5: Forbidden interlacing sub-diagram

Corollary 3.5 For n-by-n Hermitian matrices in which n > 3, the pattern in figure

3.5 cannot occur as a subpattern in any interlacing diagram.

Proof: Assume the pattern in figure 3.5 can be achieved for the eigenvalue A of a
matrix, A, and that level & corresponds to A[a],|a] = n — k. It can be assumed by
permutation similarity that @ = {1,2,....n — k}. Then, in the (k 4+ 1)* level, the
cell containing a 1 corresponds to A [a — {i}] and the cell containing a 0 corresponds
to Ala = {j}].for i.j € a.i # j. Let z be an, essentially unique, eigenvector of 4 [a]
associated with A. Then, by theorem 2.2 z [{i}] = 0 and. because there is a | in the
cell in level k& + 2, z [{7,/}] is also 0. But then, by partitioned matrix multiplication.
r({j}) must be an eigenvector of A[a — {j}] associated with A, contradicting the
fact that the diagram indicates that gy (A [@ — {7}]) = 0. a
Thus, corollary 3.5 adds one more condition to the list that governs the allowable

interlacing diagrams of Hermitian matrices:

(5) Forbidden sub-diagram: corollary 3.5
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For 3-level diagrams in which A is a real symmetric matrix and gy (A) = 1.
these conditions are enough to characterize the diagrams that can occur (proof is by
exhaustion; there are 216 cases) with one exception. In other words, for each 3-level
diagram that satisfies conditions (1)-(3) there is an Hermitian matrix for which that
diagram represents the geometric multiplicities of A as an eigenvalue of each of its

principal submatrices. with the one exception indicated below. The diagram

LEVELS
(1) 0
© © @ 1
(12} {13} (2.3}
2
{1} {2} {3}

Figure 3.6: 3-level interlacing diagram that is not ruled out

is not covered by the conditions given above and cannot occur for A € M3 (R), but
can occur for A € M;(C). For A € M5(R) the diagram in figure 3.6 corresponds to

a matrix of the form

0 a b
A=14 0 ¢
b ¢ 0

L i

The determinant of this matrix is 2abe which is 0 if and only if @, b, or c is 0. If this

is the case. then level 1 of the diagram is violated. However. if A € M3 (C). then
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0 a 8
42&07
3 3 0

and det (A) = af~v + @34 which is zero if ady = —as7.

3.3 Extended Interlacing Intervals

In the introduction to this dissertation it was mentioned that the classical in-
terlacing inequalities may be viewed as saying that if M < Ao < <L An_y are the
eigenvalues of a principal submatrix A € M,_; of the Hermitian matrix A. then each
interval [/\, ;\i+1] a=1.2..... n — 2 contains an eigenvalue of the full matrix and if
[A;,j\,q,l] captures A,, then P\j,}\jﬂ]. ! # J. captures A, in which s # . In fact. if
M<h<-< 5\,1_,, are the eigenvalues of a principal (n — p)-by-(n — p) submatrix
of A, then the interval [:\,-, \J} ,0< i< j<n-—pcontains at least j — it —p + 1
eigenvalues of A. However, this count may be non-positive. meaning that there may
be no eigenvalues of A in the interval. The main result of this section uses the singu-
lar values of a non-principal submatrix of A4 to extend such intervals so as to capture
more eigenvalues of A in the interval. Because of the relationship between positivity
of singular values and rank, our result provides convenient insights in the event that

the matrix structure limits the rank of certain off-diagonal blocks.
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3.3.1 Main Result

An immediate consequence of the Courant-Fischer theorem for singular values

(see. e.g. theorem 7.3.10 [HJ1]) is the following observation about general matrices.

Lemma 3.1 The matrizc A € My, has k singular values less than or equal to 6 > 0
if and only if there exists a k-dimensional subspace, S C C" such that ||Az||, < & for

allz € S, ||z, = 1.

[f A is Hermitian, then the singular values of A are the absolute values of the
eigenvalues of A. so that lemma 3.1 is also a statement about eigenvalues. Translation

then yields the following fact for Hermitian matrices.

Lemma 3.2 Let A € M, be Hermitian, and let t € R. Given é > 0, there exists a
k-dimensional subspace. S C C", such that ||(A —t)z||, <6 forallz € S, ||z], =1

if and only if A has k eigenvalues in the interval [t — 6.t + §].

Proof- By lemma 3.1, there are k singular values of A — ¢t less than or equal to
¢ if and only if there is a k-dimensional space, S, for which ||(A — tI)z||, < é for all
r € S,||x|l, = L. Since A —t[ is Hermitian (A is Hermitian and ¢ is real) its singular
values are the values [\; —¢t|, in which A} < Ay < --- < A, are the eigenvalues of A.
But then [A\; —¢t| < 8. fori=j.j+ 1..... J+hk—1,andsome j. 1 < j<n—-k+1
This means t — § < A; < t 4 ¢ for these values of ¢ and that there are & eigenvalues
of A in the interval [t — 4.t + §]. O

If A is Hermitian. the eigenvalues of A are denoted by Ay (A) < A (A) < --- Aq (A)
and those of A[a] by Af < A§ <---Af,. The theorem below uses the singular values
of > 05 > -0 of Ala%a] to extend the intervals of the type discussed in the
opening paragraph of section 3.3. In the event that o is 0, either because |a] is

sufficiently larger than |a°| or because A [a°; o] has sufficiently low rank, our extended
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interval reverts to a conventional interval between two, not necessarily consecutive.
eigenvalues. Note that, since A is Hermitian, the nonzero singular values of A [a°: q]
are the same as those of A [a;af).

Permutation similarity does not change the eigenvalues of A; therefore. for the
theorems that follow, it will be assumed, without loss of generality. that
a={l.2..... la|}. Also. let
N A ) N _/\?. for fixed { < j < |

2 : 2

< o~

t =

and define the interval

[(i.j,k,a)z[t— 82+ (o)t + 62+(a,‘:)2J-

Note that [t — 6.t + 8] is an interval used in classical interlacing, discussed above.

and, thus. this interval must capture at least j — ¢ — |a°| + 1 eigenvalues of A. The

main result is:

Theorem 3.1 Let A € M, be Hermitian and let « C N: then. for each k. A has at

least j — i — k + 2 eigenvalues in the interval I (i.j.k.a).

Proof: Let r¢.xf,,....r¥ be an orthonormal set of eigenvectors of A[a] corre-
sponding to Af < A8, < --- < Af. respectively. Also, let wf, wiy,,. .. wp, be a set
of (orthonormal) right singular vectors of A[a‘ a] corresponding to

OF 20841 2" 2 Oy Define the subspace S C Clol as

_ a _a a . a o a
S = span (J:i.x,-H,...zj) N span (wk.tvk+l,...w|a|) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

Then dim(S)>(—-t+1)+(lal=k+1)—|a|=j—i—k+2. Note that
y € S.|lyll, = 1 can be written either as a linear combination of the s or the w*'s.

That is. if y € S.||y|l, = L. then

||

j j o]
EDIEEDIRATNDS 181> = 3 Jal® = 1.

p=t 9=k =t q=k

A straightforward calculation using the second representation given above for

y €S, |lyll, =1 yields that ||A[a:a]y|, < of. Append zeros to y to obtain vectors

L
of the form = = inC". ye S|z, =yll, =1. Then

0
l(A=eD=l; = l(Alel =Dyl + [ 4le%: ol yll;
: 2
J v
= X3 (% -t +l4lealyl;
p=t 2
d 2 Yo : ay2 a 2 ay2
< Y IBLPPE -t + (02’ < [As -] + (o)
p=t
= &+ (o0) .
y .
The vectors = = .y € S.|lyll, = 1 together with the zero vector form a subspace,
0

S C €" that has dimension at least j — i — & + 2, and for which

(A —tI)z]l, < /82 + (op)?

for any = € S, lIzll, = 1. Thus, by lemma 3.2, there are at least j —:—k+2 eigenvalues

of A in the interval I (i.J, k. a). ]
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Note that for || = n — 1, A [a“:a] is a row vector and o5 = 0. Classical interlacing
is then the special case of theorem 3.1 in which j =i+ 1,|a| = n ~ 1. and k = 2.
Another result that has been studied before, but can be seen as a special case of
theorem 3.1 will be discussed in the next section.

[t is immediate from theorem 3.1, since /62 + (O'i.')2 <é+op, 1 £k <]al that
there are at least j — i — k + 2 eigenvalues of A in the interval [)\? — o, AT + ag].
This weaker statement can be proven using an application of classical perturbation
theory and interlacing. There are two cases, |a°| > |a] and |a¢| < |a|. For |a¢| > jqf

let Ala; ] = VE, W™ be the singular value decomposition of A [a;af] in which

Then, the following similarity can be performed:

V= 0 Voo VAla]V Yo
A =
0 W 0 W ©r WA ol W
From the result, deleting the k£ — 1 columns that contain oy, 0%,...,07_; (in ¥,) and

the corresponding rows yields

. V=A[a]V S, V'A[e]V 0 0 =, B
A= = + =FRF+C
©T Alaf) 0 Ala?] ST
in which
io: = [ dl(lg (O'k ..... 0'|0|) 0 ]
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The eigenvalues of B are the eigenvalues of A [a] together with those of A[a]. As
a result, there are indices r and s such that AY = A. (B) and A} = A,(B) and then
[\ — 02,02 +0¢| = [\ (B) = 0%, A, (B) + 0f]. Note that s —r > j — i since the
eigenvalues of A[a] may not be grouped together as eigenvalues of B: there may
be eigenvalues of A [a] between the eigenvalues A, (B) and A, (B). The matrix A

is a perturbation of B in which the perturbation matrix C' has eigenvalues +o7.

q=k....,|a|. Classical perturbation theory then gives

N
Ky
&
|
Q
-0
A
S
3
N
SO0
SN’
IN
e
[
N
S %Y

.,)SAS(B)M;;'

which can be proved, for example. by using Weyl’s inequalities (see. e.g. theorem
4.3.1 [HJ1].) Since A is a principal submatrix of a matrix similar to A. by
classical interlacing there are at least s—r —k+2 eigenvalues of A
in the interval [)\r (A) s As (A)] Then there are at least as many eigenvalues
of A in thelarger interval [A\ (B)-o07,A(B)+0f]. But. since
[)\;’ ~ o AT + ak".‘] = [\ (B) — a8, )s(B) + o] and s —r > j — 1 there are certainly
at least j — ¢ — k4 2 eigenvalues of A in the interval [)\? —oRAT + cr;f] (in fact there
are at least s —r — k +2.)

For the case in which |a] > |af], if 1 < k < |a| the proof is analogous. If
k > |a°| then of = 0 and the result follows from classical interlacing. This result
is immediate from theorem 3.1. however, we know of no direct way to achieve the

stronger statement of theorem 3.1 from the usual statement of interlacing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3.2 Rank Deficient Off-Diagonal Blocks

An irreducible Hermitian tridiagonal matrix is of the form

-al b
b az b2 0
r= b, a3
0 . T by
booi  an
L ]
in which b, # 0 for t = 1,2,....n — 1. It is a well known fact (see, e.g. theorem 1

[HP)) that for @ = {1,2....,p}, the open interval (,\?,)\?H), in which A7 and A{,
are eigenvalues of T [a], contains an eigenvalue of T. The closed interval version of
this fact can be seen as a special case of theorem 3.1. Because of the low rank of
the off diagonal blocks (T [a: a] contains only one nonzero entry) of = 0 and. then.
for k = 2 and j = { + 1, by theorem 3.1 there is at least (: + 1) ~: -2 +2 =1
eigenvalue of T in the interval [/\;?.,\?H]. (An auxiliary argument shows that the
closed interval is actually open.) This fact can be generalized to any matrix. A. in
which the off diagonal block A [a°: ] has low rank. If rank (A [a®: a]) = k. then 0%,
is zero, and by theorem 3.1. or careful application of classical interlacing as in the
discussion above, the interval [,\;?‘. /\;?‘+k] contains at least (1 + &) —:—(b+1)+2=1
eigenvalue of A. Thus, we have the following corollary to theorem 3.1, which was also

noted in [H].

Corollary 3.6 Let A € M, be Hermitian and let « C N. If rank(A[a%;a]) = k.

then there is at least one eigenvalue of A in the interval [/\f’ /\‘f‘+k].
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As seen by the Weyl inequality argument in section 3.3.1. if rank (A [a%; a]) = k. then

deletion of the last & rows and columns of A results in the direct sum

V<Al V0

0 Afa?]

(since C' is the 0 matrix). Corollary 3.6 then follows from usual interlacing.

Recall that the term rank of a matrix is the minimum number of lines (rows or
columns) of the matrix that cover all of its nonzero entries. It is a simple and classical
fact [Ry] that the term rank is an upper bound for the actual rank. (It is tight in
the sense that there are matrices. with the same zero pattern. whose rank is the term
rank.) The term rank of A[a‘;q] is determined by the graph of A. For an n-by-n
Hermitian matrix A, the term rank is simply the fewest vertices in G (A) to which all
edges between the subgraphs induced by @ and a° are incident. For example. if these
two parts (G (A[a]) and G(A[ef])) of G(A) are connected by just one edge (as in
the tridiagonal case). then the term rank of A[a%; ] is I. The term rank will also be
1 if all edges connecting G (A [e]) to G (A [af]) are incident with just one vertex (in
G (Afaf]) or G(A[a]), respectively); see figure 3.7. Based upon this discussion. we

make several combinatorially based observations.

Corollary 3.7 Suppose that A € M, is Hermitian, a« C N and that the term rank of

Ala®ia] is k. Then. there is at least one eigenvalue of A in the interval [/\?.,\?+k].

The special case k& = | of corollary 3.7 yields a large class of generalizations of the
tridiagonal fact mentioned at the beginning of this section. [n particular, if G (A) is
a tree T, there will be many choices of a that generalize the “half” of a path that
gives the tridiagonal case. More generally, if G(A4) is a tree T, identify any vertex v

of T (degree v=p>2) as the root and consider the branches

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(W]}
(S]]

G(A[a®))

Figure 3.7: Term rank: G(A)

By,By,...,B, of T emanating from v. Then, choose any proper
partition {i1,22,....4} U {j1,J2,---.J-} = {1,2,....p} and let a be the vertices of
B;,. B,
the term rank of A[a%a] is | and the interval {)\?./\?H] will contain an eigenvalue
of A. If A € M,(R) is 2 combinatorially symmetric matrix such that G(A) is a
tree T, then there exists a diagonal matrix D for which B = D"'AD is symmetric
and G(B) = T. Therefore, the above discussion also applies to these non-Hermitian

matrices.

3.3.3 A Union of Two Intervals

The discussion surrounding theorem 3.1 considers only intervals formed by eigen-
values of the submatrix A[a]. Of course, theorem 3.1 equally applies to intervals
determined by eigenvalues of A [a°]. This leads naturally to the question: what about
the union of two such intervals? If these two intervals are disjoint, their union will
contain the sum of the estimated number of eigenvalues of A in each interval. If the

intervals are not disjoint, however. there may be coincidence of eigenvalues and the
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union may not contain the sum of the estimated number of eigenvalues of A in each
interval. An example following the next theorem shows that indeed, the union of the
two intervals from theorem 3.1 may not capture the expected sum of the number of
eigenvalues of A that the two intervals capture separately. However. if each interval
is made slightly larger, then. regardless of whether or not the intervals are disjoint.
their union contains the desired sum of the estimated number of eigenvalues of A. The
two intervals [)‘?1 — ok, AT + O’k] and [/\;?;C - O, /\j-'; + ak] (in which o = of = of")
constructed using eigenvalues from A [a] and A [a°], respectively, are generally larger
than the theorem 3.1 intervals. The Weyl inequality argument shows that there are at
least j; —i; —k+2 eigenvalues of A in the first interval and j, — i, — £+ 2 eigenvalues of
A in the second. Although the Weyl inequality argument does not easily enumerate
the number of eigenvalues of A in the union when the two intervals are not disjoint.
the techniques used in the proof of theorem 3.1 may be used to show that the union
of these two intervals contains at least j, + j, — (i) + {2) — 2k + 4 eigenvalues of A

whether or not the intervals are disjoint.

Theorem 3.2 Let A € M, be Hermitian and let o C N: then

[/\‘-:' = Tk /\;3-': + O'k]

1

— O, ’\71 + O'k] U [A;}

2

contains at least ji + j, — (i1 + i3) — 2k + 4 eigenvalues of A in which o is the k**

singular value of both A[af;a] and Aa:af).

Proof. If the intervals [)\5’1 — ok AS + crk] and [/\?: - ak,)\‘}f + ok| are disjoint.

H

the conclusion is obviously true by theorem 3.1 and the above comments.

Suppose [/\t"l -0 AL+ crk] N [)\f’; — O, /\;»’; + ak] # 0. Then

[’\?1 — Ok, ,\; + O‘k] U [,\?: — O, /\;;E + O’k] = {Amin = Oks Amax + O‘k]
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in which A\, = min {)‘?1 . ,\,?‘; }, and Agmax = max {/\j’l . /\‘J?‘:}. As in the proof of theorem

3.1, define
S a a fe JON- | a a
51 = span ($i1~1"i‘+1s- .. .le) N span (wk, WEpgse--s wlal)
and
oo . at L af ac . a® |, af ac
59 = span (J:i2 N ST zj2) N span (wk s Whpyeeo s w[acl)

in which r§ (.rf,‘c) are eigenvectors of A [a] (A [a°]) associated 'vith A3 (/\gc)and ws

(w;’c) are right singular vectors of A [a“;a] (A [a;f]). Recall that, for simplicity of
notation. we have assumed a = {1.2..... |a|}. After embedding Sy and S; in C"

by appending zeros in the appropriate spots, we have (S} £0)N (0% S2) = 0. Let

S =535, Then, dim(5;) > ji — i1 — k + 2, dim(S2) > j2 — iz — k + 2 as before.
and dim (S) >y +Jj2) = (i1 +12) =2k +4. Let z € S, |z]|l, = 1. Then
S o o 2 2
z= 1 € S1.y2 € Sas il = llyall, = L |Bi]" + (82" = 1
Bay2
and
n ||
no= Y e =Y e,
p=1 q=k
J2 c [+ |a.:I c [
ya = e = Mg
p=1t2 q=k
a 2 e 2 2 o2 [a€ 2
Ll = Dl =X T =X =t
p=iy q=k p=iz q=k
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Define t = lmm%\ﬂ“—’i and § = M;—\mm Then

A lel = 00l = 35 33 o b o] < Phes — 18 = 8

p=1)

T

and
) fac| ol el 2 ,
lAlealull = 3 of [us| s, < ot
Similarly,
(A @] = t1) y2ll; S [Amax — ¢I* = 8% and [|A o507 ys; < oF.
Then

A=tz = {[(Ale] = tI) (Bun) + Ale: o] (Baya) ||

+1(Aaf] = tI) (B2ya) + Al a] (Byn)3

< (18 1(A L] = e yully + 182 | A fe: @] yall,)*
+ (132 (A ] = D) yall, + Bil | A [ a] mal,)?
< (18] max = t] + B2l 7)* + (182] [Amax — ¢ + |31] o%)®

= I/\max - tlz + 4 |%31| |/32| I/\max - t| O + ‘72
< Amax = * + 2 [Amax — t| ok + 07

= (l’\max - tl + Uk)2 .
Thus, [[(A —t)z]|, < 6 + ok for any = € S.||z||, = 1. By lemma 3.2, there are at

least  (j1 4+ Jj2) — (¢1 +i2) —2k+4  eigenvalues of A in the interval

[t—(6+ak)~t+(6+ak)]:[/\nﬁn—ak~/\n\ax+ak]- O
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An example will illustrate that the two interval statement in theorem 3.2 cannot

be as tight as the unions of the two smaller intervals in theorem 3.1. The eigenvalues

of ) )
111

J=1111

111

are 0, 0. and 3. By theorem 3.1. the interval I(1.1,1,{1}) = [l - V2.1+ ﬁ]
captures at least one eigenvalue of .J, whereas [(1.2,1,{2,3}) = [1 - V3.1+ ﬁ]

captures at least two eigenvalues of J. However, the union of the theorem 3.1 intervals.
[(LLL{I)UI(L2L{23)}) = [1- V3, 1+ V3],
captures only the two 0 eigenvalues of J. The interval given in theorem 3.2 is
[L-v2Z1+ VR Uu0-Vv22+ V3] = [0-v2.2+ V23
which does capture all three eigenvalues of J. Thus, a larger interval, such as in
theorem 3.2. is necessary to capture the j; + jo — (¢1 + i2) — 2k + 4 = 3 eigenvalues

of J. This shows that theorem 3.2 cannot be improved to the union of the smaller

intervals in theorem 3.1.
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3.3.4 Applications to Singular Values and
Lehmann’s Intervals

Application to Singular Values

Once again the similarities between classical eigenvalue interlacing and singular
value interlacing indicate that there may be a theorem analogous to theorem 3.1 for

singular values. For A € M,, . define

SI(A j kA{a.8}) = [0: (A]a; 8]) — nk.oj (A]a: 3]) + ]

in which 7y is the kth largest singular value of

0 Ala; 59
A" 3% q] 0
Then the singular value result is:

Corollary 3.8 Let A € M, , and let « T M,3 C N. Then A has at least j—1 — k+2

singular values in the interval SI1(A,1.J, k. {a,3}).

Proof: Assume m > n (if not. interchange the rolls of rows and columns in the

following discussion). Let C' be the Hermitian matrix
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and let d = a U (3 + {m}). Then

0 Ale; 5]
A™[3: ] 0

The eigenvalues of C are plus and minus the singular values of A. and those of
C [&] are plus and minus the singular values of A [a; 3] (both with, possibly. some
extra 0 singular values). Thus. o, (A[a:3]) = AL,,, in which ¢t = |a| + |3]. and

s=1,2..... min {|a|.|3|}. Then

[(Cit—i+1.t—j+ 1 ka)=SI(A,ij k {aB))

and by theorem 3.1 there are at least j—i—k+2 eigenvalues of C in
I(C.t—i+1.t—j+1.k.a)and, since 05 (A) = Agn-s+1 (C),s=1,2,...,n. there

are, then, at least j — i — k + 2 singular values of A in SI(A,i,J,k, {a. 5}). a

Lehmann’s Intervals

The techniques used in the proof of theorem 3.1 can be used to give an elementary

proof of the sufficiency of the optimal inclusion intervals attributed to Lehmann [L].

Theorem 3.3 Let A € M, be Hermitian, o« C N, |a| = k. and let + € R and
0 < j < k be given. Then, an interval of the form [z — 6,z + 8] that contains j

Ale] -zl
eigenvalues of A is given by 6 = oi_j4(B) with B =
Alat; a]

Proof: Assume, without loss of generality, that r =0 (the general case

follows by translation). Let the eigenvalues of A be ordered so that
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M>AM>..-> )2 and let wiw,..... wr be the right singular vectors of B

n

corresponding to o0y (B).02(B),....0k(B). respectively.  Then. define

Y
S = span {vy—j41.... . w} and = = €C". y€S. |lyll, =1 so that 4z = By.
0

By Courant-Fischer min-max conditions for eigenvalues (e.g. theorem 4.2.11 [HJ1])

and singular values (e.g. theorem 7.3.10 [HJ1]) we have:

N e =, min max(s"A"Az) < max(y'B"BY) < ooy (B).
The middle inequality follows since S has dimension j so that S 0,_, is a candidate
for W. Therefore. there are at least j eigenvalues of A in the interval
[=0k—jt1 (B) . ok-js1 (B)]. 0
Note that the number § does not depend on A [a¢] and the interval may be determined
whether or not A[a°] is known. Lehmann has further shown that this value of ¢ is

the smallest one for which j eigenvalues are captured. independent of A [a¢]. This is

equivalent to

Ala] =zl Ala:af] Ala] - I
SUP On—j+1 = Ok—j+1

o= Alefia) C -l Alef;a]

It follows from theorem 2.2 in [GRSW] that when the condition of Hermicity is

dropped for the matrix C then

Ale] =zl Ala:a’] Ala] ~ 1l
SUP n-jt = Ok—j+1

Alefia] C—uxl Ala;al
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Chapter 4

Matrix Completions

Recall that a matriz completion problem asks when a given partial matrix has
a completion with some desired property. The properties we are interested in are
inherited by principal submatrices, i.e. any principal submatrix of a matrix with the
given property also has the property. If we are interested in property ®. then A is
said to be a partial “property ® " matriz if every specified principal submatrix of A
has property ®. For example. a partial positive definite matrix is a partial Hermitian
matrix in which every fully specified principal submatrix is positive definite.

If property @ is inherited. then any partial matrix that has a completion with
property & must be a partial & matrix. For a number of interesting properties
(e.g. positive semidefinite and distance matrices) it has been shown that this obvious
necessary condition on the specified principal submatrices is also sufficient exactly
when the graph of the specified entries is chordal. If the graph is not chordal. more
information needs to be known about the specified data. For a survey on matrix

completion problems see [J].

63
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4.1 Positive Semidefinite Completions

An important class of completion problems that has received considerable at-
tention is the positive semidefinite completion problem. Since positive semidefinite
matrices satisfy the inheritance property, it is necessary that every fully specified
principal submatrix of the matrix in question is positive semidefinite. It was shown
in [GJSW] that this condition is sufficient to ensure a positive semidefinite coraple-
tion of a partial positive semidefinite matrix A exactly when GG (A) is chordal. This
chordal result is a generalization of the earlier result by [DG] for banded matrices.

If the graph of the specified entries of a partial positive semidefinite matrix is not
chordal more needs to be known about the data. A non-chordal graph contains a
chordless cycle of length 4 or more. Necessary and sufficient conditions that ensure
a positive semidefinite completion for the n-cycle, n > 4. were given in [BJT], and
[F] is a precursor from a different point of view. For an n-cycle these may be taken
to be [}] conditions transcendental in the data for an n-cycle to admit a positive
semidefinite completion. We will call these the cycle conditions. After a diagonal

congruence transformation of the data, a partial positive semidefinite matrix A in

which G (A) is an n-cycle is of the form

1 cos 8;, ? cos b;,,
cos §;, 1 ?
A=
? cosd; _,
cos 0, ? cosb;, _, 1
in whichm > 6, >6,>...>286,>0and i;,¢7,...,1, is the permutation of 1.2,....n

in which these 8’s occur around the cycle. Note that such a transformation does not
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change the existence of a positive semidefinite completion. According to corollary 1
in [BJT] the conditions that ensure a positive semidefinite completion of A are,

k

Y b <(k-1)7+ Zn: 0;
i=1 i=k+1
for every 1 <k < n, kodd. In [BJL] those graphs for which these cycle conditions to-
gether with partial positive definiteness are sufficient to ensure a positive semidefinite
completion are characterized.
It is interesting to note that the cycle conditions are independent of the order of
the ;s around the cycle. This can be seen without knowing the [BJT] result and is

also true for the case in which the data is from the complex numbers. For the cycle

Figure 4.1: Cycle

we will adopt the convention that in the partial matrix A with this graph. a;; = d;

and aj; = d; fori < j.
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Theorem 4.1 Let i

h 1 dy d,
d 1 dy ?
4= dy 1 (4.1)
? dnt
d, dooy 1

Then A has a positive semidefinite completion if and only if

L doqy do(n)

da(l) 1 d,(z) ?

deizy 1

)
i

? dg(n-1)

do(n) dy(n-1) L

has a positive semidefinite completion for any permutation o of the indices

t=1,2.....n.

Proof: It suffices to show that the data on two consecutive edges in the cycle
can be interchanged and the completability of the corresponding transformed matrix
is equivalent to that of the original matrix. Then, the general case in which any
permutation of the data results in a corresponding matrix with a positive semidefinite
completion is obtained from a finite sequence of consecutive interchanges. Assume
that the matrix A as in (4.1) has a positive semidefinite completion. Then G(A) is
given by the graph in figure 4.1. Let G’ be a triangulation (add edges until the graph
becomes chordal and no cliques of size 4 or more are created) of G(A) in which {1.3}

is an edge of G'. For example,
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Figure 4.2: Triangulation.

It is a necessary condition that A be partial positive semidefinite. So, there exists a

partial positive semidefinite matrix A’ such that G(A’) = G', A}, = A, AL = Anr.

Al = Avigr,and Al = Aiiqq for i = 1.2,....n — 1. Assume the value given to

the edge {1.3} is z. The triangulated graph G’ is chordal so that by [GJSW] A’ has

a positive semidefinite completion.

The principal submatrix A’[1,2.3] is fully specified and has data | 4, | 4,

ty

Q,
[¥)

—

1 d, =
B=14, 1 4,
< d2 1

which is positive semidefinite since permutation similarity preserves positive semi-
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definiteness. But then

1 dz <
BT=14, 1 4
s d 1

is also positive semidefinite. So. replacing A’[1.2.3] by BT results in a new matrix
A that is partial positive semidefinite and for which G(A) is chordal and G(r’i) is the
same graph as G’ except that d; and d, are interchanged. Since A is chordal. by
[GJSW], A has a positive semidefinite completion. Let A be the submatrix of A for

which G (A) is given by:

Figure 4.3: G(A’).

If A does not have a positive semidefinite completion. then A cannot have a positive
semidefinite completion. But A is chordal and, thus, has a positive semidefinite
completion. It follows that A has a positive semidefinite completion. Since this
argument is symmetric. this completes the proof. O
Note that the proof of theorem 4.1 is equally valid for data from the real or the
complex numbers and. therefore. in any list of cycle conditions for matrices with data
from the complex numbers, the order of the data around the cycle must be irrelevant.

In [BJT] and in [F] only real completions of real partial positive semidefinite

matrices the graph of whose specified entries is a cycle are considered. In this case.
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for each maximal clique that a given unspecified entry completes there is an interval
of allowed values for a positive semidefinite completion. This interval becomes a
disc in the complex case. In each case we must look at intersections of the sets of
allowed values for each maximal clique that the entry completes. In the real case the
intersection of intervals is still an interval. As a result. the real case is relatively easy.
However, the intersection of two discs is no longer a disc and. therefore. the complex
case is much more difficult.

Let A = B+ iC be a partial positive semidefinite matrix in which B.( are real

and G(A) = G(B) = G(C) is an n-cycle. Then

L b6 7 b, ( 0 a ? Cn
by 1 . ? - 0 ?
4= +!
? L bn—l ? 0 Cn-1
by 7 by 1 ] —cn 7 —chr O
If A is positive semidefinite, so is AT = A. Then ii;—r = B is also positive semidefi-

nite. Thus, the cycle conditions of [BJT] give necessary conditions on the data in B.

Let
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then i _
I ¢ ? Cn
- 1 ?
Re (D'AD) =
? l Cn-1
-, 7 —cpoi 1

Therefore, the conditions in [BJT] also provide necessary conditions on the data in C.
This is a start in determining a list of conditions on the data that ensures a completion
in the complex cycle case. However. exactly what the complex cycle conditions are
remains an open question. The following theorem does not by itself give such a list.
but it does indicate that the complex positive semidefinite completion problem is a

special case of a larger real completion problem.

Theorem 4.2 Let G be any graph and A = B + iC, in which B,C are real, be a
partial positive semidefinite matrir with graph G. Then, A has a posttive semidefinite
completion if and only if

B C
M =

-C B

has a positive semidefinite real completion.

Proof: Assume that A has a positive semidefinite completion A = B+iC in which

B and C are real matrices. Then

oy
O\

M =

|
oY
e

is a completion of M. Note that since A is Hermitian. C is such that CT = —C and M
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. r
is a real symmetric matrix. [f r is an eigenvector of A associated with A, then

r
is an eigenvector of M associated with A. That is. any eigenvalue of A is also an

- I -~ -
eigenvalue of M. Also. is an eigenvector of M associated with A. Since A is
-z
- I I
real. A = A, and for = # 0 the vectors and are linearly independent.
i -

Therefore, the eigenvalues of M are the eigenvalues of A (with multiplicities doubled)
and are nonnegative. Thus, M is a positive semidefinite completion of M.

Now assume M has a real positive semidefinite completion

. B, C
;"[1 =
CT B,
Note that although the diagonal blocks are equal in the partial matrix, the completion
may not have B, = 32. Similarly, it may not be the case that CT = —C as required in

order to recover a completion of A from M. The following similarity leads to another

positive semidefinite completion. My, of M :

- - r - -~
0 il B, C 0 il iICT B, 0 il
—iI 0 cT B, —il 0 ~iB, —-iC —il 0
B, -CT )
= = M,.
-C B

Note that the specified entries of B, and B, are identical, as are those of ' and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-1
o

—C = CT, so. this is indeed a second completion of M. Then

1 e_cT
- (AYI + .fﬁg) = 2 (Bl * BZ) : (C ¢ ) =M

—

¢

which is vet another completion of M. Note that M has the desired form since the
diagonal blocks are identical and the off diagonal blocks are the negative of one
another. Since M, and M, are positive semidefinite, M is also positive semidefinite.
Then, the matrix A = % (Bl + Bg) +§ (é - CT) is a positive semidefinite completion

of A. m]

4.2 The Euclidean Distance Completion Problem:

Cycle Completability

An n-by-n matrix D = (d;;) is called a (Euclidean) distance matrir if. for some
k. there exist points p;,pa,....p. € R¥ such that dij = ||pi — pjlly- 8. = 1.2, n,
in which ||e]|, is the Euclidean vector norm on R*. A partial distance matrir is a
partial symmetric matrix in which every specified principal submatrix is a (Euclidean)
distance matrix. Generally, it is assumed that all diagonal entries are specified and
in the case of distance matrices the diagonal entries are all 0.

Here our interest lies in the general question of determining, for each graph G.
conditions on the specified data in a partial distance matrix with graph G that ensure
the existence of a distance matrix completion. This interest is motivated in part by

the “molecular conformation problem”. (see {HC] and [dLH]) in which some mea-

sured interatomic distances must be fit to a distance matrix of an entire molecule.
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The distance completion problem enjoys the property of “inheritance™. so. in order
that a partial symmetric matrix A have a distance matrix completion, any principal
submatrix of 4 must have a distance matrix completion. Thus, it is necessary that
A be a partial distance matrix.

Recently. it has been shown that. as in the positive semidefinite case. this obvious
necessary condition is sufficient exactly when the graph G of the specified entries of
A is chordal [BJ]. Otherwise. more need be known about the data. There is a very
strong relationship between the distance matrices and the positive (semi-)definite
matrices [B]. Unfortunately. these links do not simply extend to the two completion
problems [JT], but. nonetheless. it is reasonable to expect strong analogies between
completion results.

Here. the focus is upon nonchordal graphs G and, in particular, upon the role of
completability conditions for a single full cycle. In the case of the distance completion
problem. the conditions for a simple cycle of data are much simpler than in the positive
semidefinite case. both to state and to understand. The purpose here is to answer the
question, parallel to the one resolved in [BJL] for the positive (semi-)definite case.
“for which graphs are the cycle conditions sufficient for a partial distance matrix to
have a distance matrix completion?” Importantly, the class of graphs is the same as
in the positive (semi-)definite case, but. also importantly, there are notable differences
in the details (though not the overall structure) of the proof.

As in [BJL], considerable graph theoretic structure is necessary to carry out this
proof and the same notation and definitions as in [BJL] will generally be adopted.
Nonstandard concepts and notation will be defined as they arise.

In the case of a partial distance matrix. suppose dy2.da3....,dk—1 k. de; > 0 is a

k-cycle of specified data. Then. there is a single simple condition that is necessary
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and sufficient for a distance matrix completion:

2max {diz2.dss, ... . di_y k. din} Sdip +daa+ - + deoik + dra-

We refer to this inequality as the polygonal inequality. Its necessity follows from
repeated application of the triangle inequality, while its sufficiency may be seen in-
ductively. initiated with the case of a triangle, in a variety of ways. For example.
two are mentioned here. (1) By adjustment of the angle between the largest distance
and one adjacent to it. the & distances dy3,da3,...,dk—1.k,dr; may be replaced by
k—1 distances: a “new” distance lying between the largest plus or minus an adjacent
distance, and the &£ — 2 other unused distances. The angle may be chosen so that the
new set of distances satisfies the polygonal inequality and, thus, is achievable by the
induction hypothesis. (2) If £ = 3, the cycle is a triangle and in this case the cycle
condition (i.e. polvgonal inequality) is necessary and sufficient for the specified data
to be a distance matrix. Therefore, it may be assumed that there are at least four
distances. Replace the adjacent pair which has the smallest sum by their sum. If this
is not then the largest distance, the polygonal inequality still holds and the induction
hypothesis applies. realizing all & distances with the two “small” distances lying on
a line. Otherwise. if the sum of the two is then the largest distance, the polygonal
inequality still holds, as there are at least four distances originally and the smallest
adjacent sum was chosen. The induction hypothesis again applies. realizing the two
“small” distances on a line. [t should be noted that the cycle of distances may always
be realized in a plane, i.e. R?, and that, as in the positive (semi-)definite case, the

order of the data around the cycle is irrelevant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



~1
Ut

4.2.1 Statement of Main Result

In order to describe our main result of this section, several definitions are needed.
We say that a partial distance matrix A is distance cycle completable if every prin-
cipal submatrix of A. corresponding to a minimal cycle in the graph of the specified
entries of A, has a distance matrix completion. i.e. the data for the cycle satisfies the
polygonal inequality. We also informally say that the data satisfy the “cycle condi-
tions.” Recall that an edge subdivision of a graph G on n vertices is a graph G’ on
n + 1 vertices that results from replacing an edge of GG with two edges and a vertex
between. and a vertex partition of G (n vertices) is a graph G’ (n+1 vertices) in which
a vertex (of degree at least 1) in i is replaced by two adjacent vertices that partition
the neighbors of the original vertex. Also recall. that a graph G; is homeomorphic
to a graph G, if G, may be obtained from G via a finite sequence of (at least one)
edge subdivisions. and the graph G, is built from Gy if G, may be obtained from G,
via a finite sequence of (at least one) vertex partitions. Note that edge subdivision
is a special case of vertex partitioning, so that homeomorphism is a special case of
“built from.” The special graph on five vertices that is a single edge subdivision of

Wi (= K,) is denoted as Wi

Figure 4.4: W4

Our main result may now be stated.
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Theorem 4.3 For an undirected graph G. the following four statements are equiva-

lent:

(0) every distance cycle completable, partial distance matriz A. the graph of whose

specified entries is (. has a distance matriz completion;
(1) no induced subgraph of G is Wi, k2> 5, or can be built from Wi, k> 4;

(2) every induced subgraph of G that contains a homeomorphic image of Ky also

contains an actual copy of Ky; and

(3) G has chordal supergraph. in which all edges of any 4-clique are already edges
of G.

[f G satisfies condition (3) of theorem 4.3. we say that G has a 3-clique chordal
supergraph. A graph G that satisfies condition (0), the motivating notion, is referred to
as distance cycle completable. (The other three conditions of theorem 1.3 are purely
structural graph theoretic conditions.) So. according to theorem 4.3. the distance
cycle completable graphs are exactly those with 3-clique chordal supergraphs. Of
course, chordal graphs and minimal cycles (the most nonchordal graphs) both qualify
as distance cycle completable. but many other graphs do also.

The proof of the theorem follows the logic (0)=(1)=(2)=(3)=(0). The purely
graph theoretic implications (1)=>(2) and (2)=>(3) have already been demonstrated
in [BJL], which addresses the cycle completable graphs for the positive definite com-
pletion problem. Even though these turn out to be the same graphs, we know of
no immediate way to deduce the distance completion result from the result of [BJL].
So, section 4.2.2 is devoted to verifying the implications (0)=>(1) and (3)=(0) in the
distance case. Some purely graph theoretic technology for the latter implication is

also adopted from [BJL].
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Though condition (0) only requires the distance cycle conditions on minimal cy-
cles, we shall freely use them for arbitrary cycles. This is justified by the following

observation.

Lemma 4.1 Let A be an n-by-n partial distance matriz. the graph of whose specified
entries is G. The data in A satisfies that polygonal inequality for every cycle in G if

and only if A is distance cycle completable.

Proof. Necessity is clear, as “distance cycle completable™ formally requires less of
the data (i.e. that the polygonal inequality is satisfied by just the minimal cycles.)

First we consider the case in which a non-minimal cycle has a single chord:

Figure 4.5: Non-minimal cycle

The non-minimal cycle is then the union of two minimal cycles. less the common edge.
Suppose the length of the common edge is d and the remaining lengths in the two
minimal cycles are d,.d,.....d, and dpt1.dpsa, .. .. dp+q. Because of the polygonal

inequality for the two minimal cycles. we have:

d < di+tdy+-+dp
2(1,’ S d+d1+d2++dp l=1.2,.p
d < dp+l +dp+2 +"’+dp+q
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and

2 S d+dpp1 + dppa + -+ dpyg J=p+Llp+2....p+q

Addition of the second and third inequalities yields

2d53d1+d2+"'+dp+q i=]~~,21' p
and addition of the first and fourth yields
2d; <dy+dy + - dpyg =p+lp+2....p+q

Taken together this is the polygonal inequality for the non-minimal cycle. When a
non-minimal cycle has more than one chord, a repeated application of this argument
leads to the desired result for such a non-minimal cycle. a

We close this section by noting that, based upon recent work [JM], another graph
theoretic description may be added to the list in our theorem. we say that a graph
G is a clique sum of two graphs (i1 and G, if each of G} and (; contain a copy of A,

for some p and identification of these two copies of A, results in the single graph .

e.g.

@) O
Figure 4.6: Clique sum

[t is shown in [JM] that

(4) G is a sequential clique sum of chordal and series-parallel graphs (see [JM]).
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is equivalent to the other graph theoretic conditions in the theorem. This is useful.

as it shows that distance cycle completable graphs may be efficiently recognized.

4.2.2 Proofs of Necessary Implications

The Implication (0) = (1)

The proof that (0)=-(1) is by contrapositive. [t is shown that if a graph G contains
a forbidden subgraph (an induced Wi,k > 5, or an induced subgraph that is built
from a W, k > 1), then there is a distance cycle completable, partial distance matrix
A. the graph of whose specified entries is GG, that has no distance matrix completion.
The proof is constructive. First. data of the desired type is exhibited for the basic
forbidden subgraphs W,. Ws, Ws. ... and then it is shown that if such data exists for
G, it also exists for a vertex partition of G. The proof is then completed by showing
how to embed such data for a forbidden subgraph in a distance cycle completable.
partial distance matrix the graph of whose specified entries is otherwise arbitrary.
Because of the inheritance property. the resulting data matrix can have no distance
completion and thus provides that data necessary for the proof.

The strategy for the proof of this implication is generally the same as it was in
the positive semidefinite case [BJL], but the defails are noticeably (and probably

necessarily) different.
Lemma 4.2 None of the k-wheels Wy, k > 5. is a distance cycle completable graph.

Proof: For k > 5. let A be the k-by-k real partial symmetric matrix given in figure

4.7 below.
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A= 7.

7 9

? 2
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Figure 4.7: Bad data for a k-wheel

The graph of the specified entries of A is W} and the specified entries satisfy the cycle
conditions. as each entry is a 1 or 2. so that no entry is larger than the sum even
of only two of the others. There are & — 1 maximal cliques in W}, all of cardinality
three: {1,2.3},{1.3,4},....{1.k = 1.k}, and {1,2,%k}. The principal submatrix

corresponding to each of these cliques is either

The former is realizable on a line, the latter as an equilateral triangle, so that both are
distance matrices. Thus, A is a distance cycle completable, partial distance matrix.
Suppose the data in A were to admit a distance completion. In view of the
distances among the vertices 1, 2, and 3, the vertex I would be the midpoint of a line
segment joining vertices 2 and 3. Similarly, 1 is the midpoint of a line segment (of
the same length as the segment joining 2 and 3) joining 3 and 4. It follows that 2 and

4 must coincide. The same reasoning shows that 3 and 5 must coincide. 4 and 6 (and
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2), 5 and 7 (and 3), and so on. Thus. vertex & must coincide with vertex 2 or vertex
3 and, then. cannot have distance 1 (as specified) from vertex 2. This contradiction
shows that A has no distance completion and completes the proof. O

The graph Wy is distance cycle completable as it is the complete graph A’y. How-
ever, we now show that any graph built from W;. & > 4 is not distance cycle com-
pletable. The graph W, is built from W,. To see that W, is not distance cycle

completable, consider the following data:

Figure 4.8: Bad data for a W4

The specified distances again trivially satisfy the cycle conditions. but vertices {{.1.5}
lie on a line with vertex 1 at the center. Similarly {4. 1.3} lie on a line with vertex | at
the center. This means that vertex 5 is coincident with vertex 3. which is impossible:
vertex 2 cannot be both distance one and distance two from the same point. Thus.

W, is not distance cycle completable. The preceding discussion yields:
Lemma 4.3 The graph W, is not distance cycle completable.

If a graph can be built from W}, then it can be built from W,. This observation.
together with the preceding and following lemma suffice to prove that no graph built

from Wy, k > {4, is distance cycle completable.

Lemma 4.4 [fG is a graph that is not distance cycle completable and G' is obtained
from G either by subdividing an edge or by partitioning a verter, then G’ is also not

distance cycle completable.
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Proof. If G’ is an edge subdivision of G, then G’ is also a vertex partition of G.
in which one of the neighbor sets has cardinality one. Thus. only the case in which
G' is a vertex partition of G need be considered. Without loss of generality, take the
partitioned vertex to be n and suppose that 1.2,...,) are the vertices adjacent to n

and j+ 1.5 +2..... k are the vertices adjacent ton + 1 in G'.1 < j < k.

Figure 4.9: Bad data for vertex partitioning

Let A = (a;;), the graph of whose specified entries is G, be any n-by-n partial dis-

tance matrix that satisfies the cycle conditions. but is not distance cycle completable.

Define the (n 4+ 1)-by-(n + 1) partial symmetric matrix A’ = (af-j) as follows:

/ _ ' .. E P .
ai.n - an,i—' l_J+]~vJ+2*~'l"
/ _ ! — o ¢ y s
AQinpr = an+1,i =1 = ]...2 ..... J.k-{-l,....n
, — I — . . — . 0 ¥ .
ai.n+l - an+1.i =ain t=) + I’J + 2., 'IL
’ — ’ ! _
Ann+1 = Unpin = Quprpgr = 0
and
a'. = a; therwise
ij = a,J (¢} .

The graph of A’ is G’ with a distance of zero on the edge {n.n + 1}.
Any minimal cycles in G’ are either present in G or are cycles of G with the new

edge {n,n + 1} inserted. Since the edge {n,n + 1} has a distance of zero, the cycle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

conditions hold in A’. The matrix A’ is also a partial distance matrix. as the edge
{n.n + 1} is. by construction. a maximal clique of G’. and all other cliques in G’
correspond to a unique clique in G.

Assume that there is a distance completion A’ of A’. The vertices n and n + |

must coincide spatially and the triangle inequality on the entries in A’ requires that

A = an+l.k
éiu+1 = “;+u+1
‘_’;4—1.1 = a,
Aryry, = @

As a result, if A’ has a distance completion, then A must have a distance completion.
This contradiction completes the proof. a

[t follows from lemma 4.4 that if GG is not distance cycle completable, then any
graph G’ built from G is also not distance cycle completable. To complete the proof
of the implication (0)=(1), data for these forbidden subgraphs must be embedded
in data for larger graphs in such a way that the necessary conditions still hold. The
larger graphs are then seen not to be distance cycle completable. because, if they
were, the smaller ones would be by inheritance.

Proof of the implication (0)= (1)

Suppose that G’ is a connected graph on n vertices that contains. as an induced
subgraph. a graph G that is one of the forbidden subgraphs. If G’ were not connected
we would need only consider the connected component containing GG. For convenience.
assume that the vertices of &G are 1,2...., k. We assume, without loss of generality.
that & < n. so that the remaining vertices of G’ are & + 1.A + 2.....n. As in the

proofs of lemmas 4.1. 4.2, and 4.3, assign distances to the edges of G. We need to
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demonstrate data for the remaining edges of G’ that does not violate the necessary
conditions.

Suppose that the subgraph of G’ induced by vertices k+1.k+2,...,n hasp(> 1)
connected components. (Since G’ is connected. each of these components has an edge
between one of its vertices and a vertex of (G.) Within each of these components assign
the distance 0 to each edge. For each component. this has the effect of assigning all
vertices of that component the same spatial location. (Note that an edge of length 0
does not affect satisfaction of the cycle conditions.) We assume then that £ +p =n
and treat each component as a single vertex. implicitly consolidating edges as needed.
We assign distances to the edges connecting vertices b+ 1.k + 2..... k 4+ p with the
vertices of G as follows. Since (¢ is Wi or built from Wy, G has a natural “center”
vertex or cluster of vertices resulting from partitions of the center. In the latter
case. all specified distances among vertices in the central cluster are 0; the cluster is
connected, and, so. all vertices in the cluster must occupy the same spatial location.
We thus identify all vertices in the central cluster and. in both cases. refer to “the”
center vertex. which. we suppose, is vertex 1.

Consider now a vertex k + t.k = 1.2,...,p. If £ + ¢ is adjacent to | (case one).
we assign that edge the distance 0. All other edges connecting vertices in G to k + ¢
are then assigned distances by calculating the shortest path in G from that vertex
(i.e. k+t) to vertex 1. This insures that the polygonal inequality holds for any cycle
containing k + i. Any clique in G’ that includes vertex k + ¢ has cardinality at most
four. If the cardinality is less than four, there is nothing further to check. If it is four.
then the clique must include vertex 1, as well as two vertices ; and j + 1 adjacent
in the cycle of G. For the vertices j and j + 1, the distances assigned to the edges

{j,k+ i} and {j + L.k + ¢} must be d;; and d, j4,. the distances from 1 to j and to
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J + 1. respectively The data specified by our prescription for these four points is then

0 0 dlj dl.j+l
0 0 dlj dl.j+l

d]_]' dl_] 0 dj,j+l

dl.j+l dl.j-H dj,j+1 0

L -

which is the distance matrix of the triangle of G:

dj.j+l

Figure 4.10: Data for a triangle

with vertex 1 repeated.

If b+ is not adjacent to vertex 1 (case 2), choose an arbitrary one of its neighbors
in G and assign that edge the distance 0. Again. assign distances to all other edges
connecting vertices of G to k + i via shortest path calculations. This ensures the
polygonal inequalities for any cycle containing & + . In this case. no clique contain-
ing k + ¢ can be of cardinality more than three. Because of the triangle/polygonal
inequalities, the data associated with such cliques are distance matrices.

By assigning edge distances throughout G’ we now have a partial symmetric ma-
trix A, the graph of whose specified entries is . Because we have checked the data
associated with cliques of G, A is a partial distance matrix. Furthermore. the polyg-
onal inequalities associated with the cycles of G’ are satisfied, so that A is distance
cycle completable. (Note that. if there is a minimal cycle in G’ containing more than

one of the £ +¢. it may also be identified with a cycle of G by our prescription.) If A
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had a distance matrix completion A, then A[{1.2..... k}] would be a distance matrix

completion of A[{1.2,...,k}], a contradiction that completes the proof. O

The Implication (3)=(0)

To prove (3)=>(0), we must show that if GG is a graph that has a 3-clique chordal
supergraph. then every distance cycle completable. partial distance matrix. whose
graph is GG, has a distance completion. As in the positive definite case, much of the
proof is combinatorial in nature. The logic of the proof is. as in [BJL], to sequentially
add edges €;.€;,....€, to a given graph G to obtain a 3-clique chordal supergraph
H. Upon addition of the edge ei. all new minimal cycles are considered. For any two
of these minimal cycles. a common distance can be chosen for €, so as to make each
cycle completable. Then, an application of Helly’s theorem (see. e.g. [Ro]) produces
a common distance for all new cycles.

Because two minimal cycles may intertwine in a variety of ways. difficulties arise
in considering a general pair of minimal cycles containing a given edge, ex. In [BJL]
there are a number of graph theoretic lemmas dealing with these difficulties for graphs
with 3-clique chordal supergraphs. These lemmas culminate in lemma 9.6 in [BJL].
which is stated below as lemma 4.5.

Before this lemma can be stated., another definition is needed. Given a graph G,
an edge {a,b} of G and a cycle C. we say that G’ is obtained from G by replacing the

edge {a,b} with the cycle C if. after two of the vertices of C' are identified with a and

b the graph G is (G — {a.b}) U C. Pictorially,
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Figure 4.11: Replacing edge a,b with the cycle C

A necklace is either a graph that is a cycle plus one additional chord or a graph
obtained from a cycle Ci = [co.C1s- ... Crco] by specifying a subset of the edges
{ca,a1} . {c1.c2} ... {ck-1.cr} and replacing each edge in the subset with a cycle.
Note that the edge {ci.co} is excluded. The base of a necklace that is a cycle plus
an additional chord is the chord: otherwise, it is the edge {ci,co}. Recall that if
G = (V.E) and W C V. then G denotes the subgraph of G induced by the vertex

set W

Lemma 4.5 Let G = (N.E) be a graph that has a 3-clique chordal supergraph H. let
e = {a.b} be an edge of H that is not in GG and let G' = (N.EU{e}). Let C = (U. E")
and D = (V, E") be distinct minimal cycles in G' with common edge e, and erpress

C and D as the union of paths

C = [as,ao]U[aO,al]U[al,ag]U--~U[as-1,as]

D = [bs.bo]U [bo.by] U [by.bs]U---U [bs_1, b

in which ag =bs=a. a;, =b, = b, UNV = {ag,a;1.....a5} = {bo. br..... by} and s is

a positive integer. Then Gy is a necklace with base {a,b}.

One more lemma is required for the proof of (3)=(0). A corresponding statement
for the positive definite case. lemma 9.7. is found in [BJL]. Since the non-graph
theoretic parts of the proof in [BJL] require only a chordal theorem and assumed

cycle conditions, the proof in the distance case is similar.
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Lemma 4.6 Let G = (N.E) be a graph that has a 3-clique chordal supergraph
H = (N.F), and let A be a distance cycle completable, partial distance matriz whose
graph is G. Let e = {r,s} be an edge in F that is not in E and let G' = (N, EU {e}).
For any real number z. let A, be the matriz obtained by specifying the r.s and s.r
entries of A to be . Then. if C = (U,E'") and D = (V. E") are distinct minimal
cycles in G' with common edge e, there erists a nonnegative number r such that both

AL[U] and A.[V] have distance completions.

Proof: By lemma 4.5. G, is a necklace with base {r,s}. Since Guuv is Gyy
with the edge {r,s} deleted. it is the union of graphs G; = (Wi, Ej). 1= 1.2,.... k.
in which each G; is either A’; or a minimal cycle of . If G; is a minimal cycle, let C;'i
be the complete graph on W; and if G, is kA3, let G’; = ;. Let S be the union of the
Gii=1,2,.... k. Then S is a chordal supergraph of Gy as any cyclein S is a cycle
in one of the G;. Now if G; is a minimal cycle. A [W;] has a distance completion B [I¥]
by assumption. Let B[/ U V] be the matrix obtained from A[U/ U V] by replacing
each A[W;] for which G; is a minimal cycle by B [W;]. Then the graph of B [U U V]
is § and for each maximal clique W of S. B[W] is a distance matrix. The graph
S is chordal, so, by the chordal theorem [BJ], B[U/ U V] has a distance completion
M [U U V], which is also a distance completion of A [U/ U V]. Let z be the r, s entry of
M [U U V]. Then A, [U] and A, [V] have the distance completion M [U] and M [V].
respectively, which completes the proof. a

We may now complete the proof of the implication (3)=>(0). Let €;,e2,.... e, be
the edges in a 3-clique chordal supergraph H that are not in (. and let
G; = (N,EU{ej,ez,....¢}),t = 0,1,....m. Then Gy = G and G,, = H. We
assume, without loss of generality, that G is connected. Let A be a distance cycle
completable partial distance matrix, whose graph is GG. We wish to exhibit a distance

matrix completion of A.
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Consider first G;. Write ¢; = {r.s} and for any real z. let A, be the matrix
obtained by specifying the r, s and s, r entries of A to be z. There are two possibilities

regarding the minimal cycles in G;.

(i) The edge e; is contained in exactly one minimal cycle C' = (W, F') of G;. Since
the induced subgraph (G1),y is a cycle. Gw is a path, and thus a chordal graph.
By the chordal theorem [BJ], A [W] has a distance matrix completion. Let r be
the r.s entry of this completion. Then A, [W] has the same completion. Either
the edge {r.s} or W (if |W| = 3) is the only maximal clique of G that is not
a maximal clique of G. so A, is a partial distance matrix. Since C is the only
minimal cycle in G that is not a minimal cycle in &, A; is also distance cycle

completable.

(ii) The edge e, is contained in two or more minimal cycles of G;. Let
Ci= (W F;).i=1.2,...,pbe the minimal cycles in G, containing the edge ;.
Fori = 1.2,....p.let [; = {x € Ry : A, [W;] has a distance matrix completion}.
If |W;] = 3, we interpret this to mean A, [W;] is a distance matrix. By lemma
4.6, I;NI; # 0 for all distinct ¢, € {1,2..... p} . Therefore, by Helly's theorem
on this line, N_,I; # 0. Let r € NP_,[;. Then A,[W;| has a distance matrix
completion for ¢ = 1,2..... p. By hypothesis, e; belongs to no 4-clique in G;.
Thus, the only maximal cliques in G; that are not in G are those W; with
[Wi| = 3, or only {r.s} if |W;| >4 foralli=1,2,...,p. [t follows that A, is a

partial distance matrix and distance cycle completable.

If m = 1, we are done. Otherwise, G| has a 3-clique chordal supergraph H and A,
is a distance cycle completable, partial distance matrix, the graph of whose specified
entries is (G,. Therefore, repeating the above process for e;.€e3....,€em we obtain a

partial distance matrix B with chordal graph H. By the chordal theorem [BJ]. B
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has a distance matrix completion M, which is also a distance completion of A. This
completes the proof of the implication (3)=>(0), which completes the proof of the

theorem.

4.3 The Combinatorially Symmetric P-matrix

Completion Problem

Positive definite matrices are Hermitian matrices for which all principal minors
are positive. If we relax the symmetry required by Hermicity, we get the P-matrices.
An n-by-n real matrix is called a P-matrix (F-matrix) if all its principal minors are
positive (nonnegative) (see. e.g. [BP] or [HJ2]). This class of matrices generalizes
many other important classes of matrices (such as M-matrices and totally positive
matrices), has useful structure (such as inverse closure, inheritance by principal sub-
matrices, and wedge type eigenvalue restrictions), and arises in applications (such as
the linear complementarity problem. and issues of local invertibility of functions).

Here, we consider the P-matricr completion problem under the assumptions that
the partial matrix is square. all diagonal entries are specified. and the data is combz-
natorially symmetric (the j.ientry is specified if and only if the /,j entry is specified).
Further, since the property of being a P-matrix is inherited by principal submatrices.
it is necessary that the partial matrix be a partial P-matriz, i.e. every fully specified
principal submatrix must itself be a P-matrix. Of all these assumptions, the only one
that is truly restrictive is combinatorial symmetry and the general case. in which this
assumption is relaxed. is commented upon later.

In each of the completion problems: positive definite, M-matrix, inverse M-matrix.

and totally positive, there are significant combinatorial restrictions (in addition to the
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necessity of inheritance) on partial matrices. even when combinatorially symmetry is
assumed. in order to ensure a desired completion. For example. as mentioned be-
fore, the condition on partial positive definite matrices necessary to ensure a positive
definite completion (without further knowledge of the data) is that the undirected
graph of the symmetric data be chordal [GJSW]. P-matrices are a generalization of
real positive semidefinite matrices in which the matrix is no longer required to be
symmetric. Interestingly. it is shown here that, in the case of P-matrix completions.
there are no combinatorial restrictions necessary to ensure a P-matrix completion
other than the combinatorial symmetry assumption. Every combinatorially symmet-
ric partial P-matrix has a P-matrix completion. However, when the combinatorial
symmetry assumption is relaxed, the conclusion no longer holds, and the question of
which directed graphs for the specified entries ensure that a partial P-matrix has a
P-matrix completion is. in general. open. All 3-by-3 partial P-matrices have P-matrix
completions, but we exhibit a {-by-4 partial P-matrix with just one unspecified entry
and no P-matrix completion.

Let A be an n-by-n partial P-matrix with one pair of symmetrically placed unspec-
ified entries. By permutation similarity it can be assumed without loss of generality

that the unspecified entries are a;, and a,;. Then, A is of the form:

T
ain a7
A= ay Ay ax
T
? a3 as3
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in which Ay, is (n — 2)-by-(n — 2) and a13. a1, a3, @32 € R*2. Define
T

ay ayg T

A(‘lf‘y)'E azy Agg asq3

T
Yy a3z dz3

L .

and denote A(0,0) by Ag. Also define C={aC N:l,n€a} and let
Aa = A(z,y)[a]. Note that since l.n € a for all @« € C, r and y are unspecified

entries in every A,. a € C.

Lemma 4.7 Every partial P-matriz with one pair of symmetrically placed unspecified

entries has a P-matriz completion.

Proof: Let A be an n-by-n partial P-matrix with exactly one pair of symmetrically
placed unspecified entries. To find a P-matrix completion of A we must find z. y such
that det A, > 0 for all @ € C (the remaining principal minors of A are positive by

hypothesis). For each a € C. a = {il = Lo, ity = n} define

Ay = detA(J:.y)[{ig,ig....,ilal_l}]

bo = det Ao [{inia,. .. it} i {itsiz s ijapt }]
da = det Ao [Q] .
By using Sylvester’s identity (see, e.g. section 0.8.6 [HJ1]) we see that

det Ay = —agzy + (=D)1bz + (=) ey + da.
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Since A(r.y) is a partial P-matrix. a, > 0 for all @ € C. Then z. y can be chosen
so that ry < 0 and —a,ry > (=1)°lb,z + (—=1)®lc,y — d,. In order to have ry < 0.

choose y = —r. The line y = —r intersects the hyperbola det A, = 0 at the points

o (b~ o) /(B — o)’ — daads
¢ 2a, ’

Define

+
x

el

z o

}.

Then det A, > 0 for each z such that |z|] > m(a). In order to find a P-matrix

m(a) = max{

completion of A we must find a pair .y that works for all @« € C'. The matrix A(z.y)
is a P-matrix for all r. y such that |z| > max m(a) and y = —z. a

This lemma can be used sequentially to find a completion of any combinatorially
symmetric partial P-matrix. The lemma proves the case in which there is one pair of
symmetrically placed unspecified entries. Assume there is a P-matrix completion of
every partial P-matrix with £ —1 pairs of symmetrically placed unspecified entries and
let A be a partial P-matrix with & pairs of symmetrically placed unspecified entries.
Choose one symmetrically placed pair ., of unspecified entries of A. Each maximal
principal submatrix that this pair completes (there are no other unspecified entries
in such a maximal submatrix) is a partial P-matrix by inheritance and. by lemma
4.7, can be completed to a P-matrix. For each maximal principal submatrix A [a]
let z, be the value of the unspecified entry as given by lemma 4.7. Then choosing
r so that |z > max {|z4]:{.J € a.a maximal} completes each of these maximal
principal submatrices. Then, we are left with a partial P-matrix with A — 1 pairs of
symmetrically placed unspecified entries which can be completed to a P-matrix by
the induction hypothesis. Note that the order of completion is immaterial (as long

as combinatorial symmetry is maintained). This proves our main result.
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Theorem 4.4 Every combinatorially symmetric partial P-matriz has a P-matrir

completion.

As mentioned above. when the combinatorial symmetry assumption is relaxed.
the conclusion of the theorem no longer holds. The question of which directed graphs
for the specified entries ensures that a partial P-matrix has a P-matrix completion is.

in general, open. However. we do know the following.
Proposition 4.1 Fvery 3-by-3 partial P-matriz has a P-matriz completion.

Proof: The combinatorially symmetric case is covered by the lemma above. The
only case that remains to be considered is the case in which A is a 3-by-3 partial
P-matrix with one unspecified entry. Note that if there are more unspecified entries.
values may be assigned to entries making sure the 2-by-2 principal minors are pos-
itive, until either one pair of symmetrically placed unspecified entries. or only one
unspecified entry remains.

By permutation similarity, it can be assumed without loss of generality that the
unspecified entry is in the 3.1 position. It can also be assumed. by positive left
diagonal multiplication and diagonal similarity (which both preserve P-matrices).

that there are ones on the main diagonal and on the super diagonal. Then A is of

the form i i
Il 1 ¢
A=14q4 11
y b1

in which a.b.c <1 since 4 is a partial P-matrix. In order to complete A to a
P-matrix y must be chosen so that the 1.3 minor is positive (which yields yec < 1)

and det A = 1 + abc — a — b+ y(1 — c) is positive.
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There are several cases to consider. If ¢ < 0. choose y > 0 and large enough to
make det A positive. Similarly. if ¢ > 1. choose y < 0 and large in absolute value. If
c=1,thendetd =14+ab—a—-b=(l—~a)(l —b) which is positive since a.b < 1.
So, y = 0 will give a P-matrix completion of A. All that remains is 0 < ¢ < 1. In this
case, if a.b > 0 or if ab < 0 choose y = ab. This gives yc = abc < | (since a.b.c < 1)

and

detA = | +abc—a—b+ab(l -c)
= l—a—b+ab

= (L—a)(l=b)>0.

For a.b < 0 the term | + abc — @ — b in the determinant of A is positive. So, y =0
will result in a P-matrix completion of A. Thus. every 3-by-3 partial P-matrix has a

P-matrix completion. a

Proposition 4.2 For every n > 1, there is a partial P-matrix with exactly one un-

specified entry for which there is no P-matrir completion.

Proof: The matrix

I -1 11

2 1 -1 1
A=

0 1 12

y —10 -1 1

is a partial P-matrix with no P-matrix completion. It is easy to check that all
2-by-2 and 3-by-3 principal minors that do not include both rows | and 4 are positive.
However, the two 3-by-3 determinants that involve y cannot simultaneously be made

positive. [n order for the determinant of A[{l.2.4}] to be positive it must be the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

case that y < —% while a positive determinant for A [{1.3.4}] requires that y > —3.
Thus. there is no P-matrix completion of 4. This data can be embedded as a principal
submatrix, by putting 1's on the diagonal and 0’s in the other specified positions. to
produce a partial P-matrix with one unspecified entry and no P-matrix completion
for any n > 4. a

Other completion problems. intermediate between the positive definite completion
problem and the combinatorially symmetric P-matrix completion problem are open
and may be of interest. For example, when does a sign symmetric. partial
P-matrix have a sign symmetric P-matrix completion and what may be said about
the infimum of the Frobenius norms of completions of combinatorially symmetric

partial P-matrices.

4.4 The Totally Positive Completion Problem

An n-by-n matrix is said to be totally positive (nonnegative) if every minor
(principal and non-principal) is positive (nonnegative). In particular. this means
that every entry of a totally positive (nonnegative) matrix is positive (nonnegative).
Further discussion of totally positive matrices may be found in [K] or [A]. This class
of matrices arises in many applications including approximation theory. geometric
design. and wavelets. [t is interesting to note that according to [GM] one can test
whether or not a matrix is strictly totally positive in polynomial time. This uses the
fact that only the determinants of submatrices consisting of consecutive rows and
columns need to be checked [K].

Here we consider the question: for which graphs G does every partial totally
nonnegative matrix. the graph of whose specified entries is GG. have a totally nonneg-

ative completion. Total nonnegativity is inherited by submatrices. Therefore. it is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

necessary condition that every fully specified submatrix be totally nonnegative.

Total nonnegativity is not. however, preserved by permutation similarity. This
can easily be seen by noting that the 1.1 entry of a matrix enters positively in every
minor in which it occurs. Therefore. total positivity is preserved when this entry is
arbitrarily increased. However. if the first and second rows and columns are inter-
changed, this entry is then in the 2.2 position and enters negatively in some minors:
making it larger may then make some of these minors negative.

Because total positivity is not preserved by permutation similarity we will restrict
our attention to labeled graphs. Labeled graphs are those in which the numbering
of the vertices is fixed. Note that two partial totally positive matrices the graphs of
whose specified entries are isomorphic may not both have totally positive completions.
So, the labeling of the graphs is important.

As mentioned in the introduction a clique is an induced subgraph that is a com-
plete graph. A block clique graph is a chordal graph in which every pair of maximal
cliques. C;,C;. C; # C, intersect in at most one vertex. That is |[C;NC;| < 1. A
monotonically labeled block clique graph is a labeled block clique graph in which for
every pair of intersecting cliques such that C;NC; = u, the labeling in the two cliques
is such that {v:v € (i —u} <uand {w:w € Cj —u} > u. Then, a monotonically

labeled block clique graph is of the form

C, c
C, 3

Figure 4.12: Monotonically labeled block clique graph
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and a matrix, the graph of whose specified entries is a monotonically labeled block

clique graph is of the form

Figure 4.13: Partial matrix with a monotonically labeled block clique graph

In the remaining discussion all graphs will be assumed to be connected. This
assumption may be made without loss of generality since totally positive matrices are
closed under direct sums. To prove this we will use the classical fact of Frobenius-
Konig (see [Ry] or [S] and its references) that if an n-by-n matrix contains a zero
block of size p-by-q in which p+¢ > n+ 1, then the matrix is singular [Ry]. Although
we use only this zero block result we prove the more general the result below. Note
that this result is a consequence of theorem 2.2 in [CJRW] which may also be viewed

as a generalization of the classical Frobenius-Kénig result.

Lemma 4.8 Suppose that A € M, (F) has a p-by-q submatriz of rank r. Then A is

singular whenever p+q>n+r+ 1.

Proof: Without loss of generality, independently permute the rows and columns

of A so that the p-by-q submatrix of rank r is in the lower left corner of A. That is

Au A
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in which A,; is p-by-q and rank (A,,) = r. Using row and column operations A,; can

be reduced so that A becomes

Bi B: i Ay
0 C D,
B,
in which C' is r-by-r and nonsingular. Then A is singular if either 0 has linearly
0

dependent columns or [0 0 Dg] has linearly dependent rows. Since B is

B

(n—p)by-(¢g—r). | o is guaranteed to have linearly dependent columns if

0

g—r>n-—p. Simi-larly,-since D, is (p — r)-by-(n — q), D, has linearly dependent
rows if p—r > n —q. Rearranging both of these inequalities we see that A is singular
ifp+qg>n+r, thatis.if p+¢ > n+r+ L. Since A is singular if and only if A is
singular, this completes the proof. O
Note that if p+ ¢ < n+r + L. it is easy to construct matrices with a p-by-¢q block
of rank r that are nonsingular. So, this lemma is best possible. Lemma 4.8 may be

used to prove that the direct sum of totally positive matrices is totally positive.
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Lemma 4.9 The matrices A € M, (R) and B € M,, (R) are totally nonnegative if

and only if

is totally nonnegative.

Proof. If C is a totally nonnegative matrix. then it is obvious that A and B are
totally nonnegative since total nonnegativity is inherited by submatrices. To prove
the forward implication, assume that 4 and B are totally nonnegative and we will
show that C is also totally nonnegative. Let a;.d; € N and az,32 C M and define
Gz = az+{n}. 3 = Ga4{n} . lfay =3 =0ora; =3, =0.then C [al U Gt 1 U 3o
is a submatrix of B or of A. respectively, and therefore, since 4 and B are totally
nonnegative, has nonnegative determinant. On the other hand, if a; = 3; = 0 or
a, = 3y =0, then C [Oq Uag 5 U 32 is a zero matrix, and thus has determinant 0.
If exactly one of ay.as.3;. or 3; is the empty set, then C [al Uag U ,32] has at
least one zero row or column and. therefore, has determinant 0.

So. assume a,aq,F1.P2 #0. In this case. if |ay| =5, then. since
lay] + |az| = [B1] + 182, it must be the case that |az|=|ds]. Then.
C [a; U as; gy U 52] is a block diagonal matrix in which the diagonal blocks are sub-

matrices of A and B and, thus.

det (C [a1 U da; 81 U o)) = det (Alan; 31]) det (B [aa; B2]) 2 0.
The last case to check is that in which aj,a:,01.02#0 and |ai| # [di]
(and |az] # |B2].) Assume |a;| < |4]| (the case in which |a;] > |3,] follows by

symmetry). Note that C [al Uag; /i U Bg] contains two blocks of zeros; one of size

lay|-by-|3;| and one of size |az|-by-|31]. The sum of the dimensions of the zero block
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in the lower left corner is |a,| + |51] - Since o] +1 < |5, . the sum of the dimensions
satisfies the inequality |aa| + |51] 2 laz2| + |ai| + | and, therefore. by lemma 1.8,
C [al Uag; 51U /32] is singular. Thus, det (C [011 Udaqg: 5 U Hg]) >0 for all
a1, 51 €N, az,3; € M and C is totally nonnegative. O

By the adjoint formula for the inverse of a matrix we see that the inverse of a
totally positive matrix has a checkerboard sign pattern. That is. the sign pattern of

the inverse is

Therefore, the inverse of a totally positive matrix cannot be totally positive. However.
as pointed out in [M, theorem 2.2], the inverse of a totally positive matrix is similar to
a totally positive matrix via a signature similarity. The proof of this result is included

here for completeness.

Lemma 4.10 Let D = . Then a nonsingular matrir

(__I)n-H
A € M, (R) is totally nonnegative if and only if DA~ D™ is totally nonnegative.

Proof. Let A be a totally nonnegative nonsingular matrix. Since D is diagonal.
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partitioned matrix multiplication shows that
(DA™'D™") [e: 8] = D]o] A~ [0z 3] D" [3].

By Jacobi’s identity for a. 3 C .V such that [a| = ||

sta)+s(8) det (A8 af])
det (A)

det (A’l [a: ,3]) =(-1)
in which s(a) = 3 ¢, J. Then,

det ((DA™'D™") [a:3]) = det(D[a])det (A~ [as d]) det (D [3])
stay+s(3) det (A [8% o) (= 1)@
det (A)

2(s(a)+s(8)+lal) det (A [F%a])
det (A)

— (_1)5(0)‘”0[ (_1)

= (-1) (4.2)
The last equality holds since |a| = |3]. If A is totally nonnegative, then det A [3°: o]
is nonnegative and, since A is also nonsingular, det(A) is positive. Therefore.
det ((DA™'D7')[a: 3]) is nonnegative for all a. 3 C N.

Now assume that DA~!D~! is totally nonnegative and invertible. Then. by the
above discussion. D (DA"D“).l D~! = A is totally nonnegative which proves the
lemma. )

We say a partial totally nonnegative matrix is regular if every maximal specified
principal submatrix is nonsingular and for every pair of maximal specified principal

submatrices A [a] . A [3] such that « N 3 # @, then A[a N J] is also nonsingular. The
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main result of this section is then:

Theorem 4.5 Let G be a labeled graph on n vertices. Every regular partial totally
nonnegative matriz. the labeled graph of whose specified entries is G has a totally

nonnegative completion if and only if G is a monotonically labeled block clique graph.

The forward implication of theorem 4.5 will be proven by contrapositive. This will
be done by first “ruling out™ non-chordal graphs. That is, it will be shown that
there exists partial totally nonnegative matrices the graph of whose specified entries
is not chordal for which there is no totally positive completion. After ruling out non-
chordal graphs, those chordal graphs that are not block clique graphs will be ruled
out. Finally. it will be shown that a block clique graph that is not monotonically
labeled is also ruled out. The reverse implication will be proven by showing that
every regular partial totally nonnegative matrix the graph of whose specified entries
is a monotonically labeled block clique graph has a totally nonnegative completion.

This will be done by exhibiting such a completion.

Lemma 4.11 Let G be a graph on n vertices. [f every partial totally nonnegative ma-
triz A, the graph of whose specified entries is G, has a totally nonnegative completion.

then G is a monotonically labeled block clique graph.

Proof. As mentioned above. the proof is by contrapositive. We begin by ruling
out non-chordal graphs. Let G be a graph on n vertices that is not chordal. Then

G contains a simple cycle of length 4 or more as an induced subgraph. The graph of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

the specified entries of the k-by-k matrix

2 1 0 ?
C = ? 9 H ?
? -0

is a simple cycle and C is partial totally nonnegative. In order for the {2.3}.{3.k}
minor to be nonnegative, the 2.k entry of C must be 0. regardless of the 3.4 entry.
However. if the 2.k entry is 0. then the {1,2}.{l.4} minor is —4. Thus. C has no
completion to a totally nonnegative matrix. All that remains in order to rule out non-
chordal graphs is to embed this data in a larger matrix in such a way that the matrix
is a partial totally nonnegative matrix and use the fact that total nonnegativity is
inherited by submatrices. This is done by specifying 1’s on the diagonals and 0’s for
any other specified entries. The resulting matrix is totally nonnegative by lemma
4.9 since any fully specified principal submatrix is a direct sum of an identity and a
principal submatrix of C' (any other fully specified submatrix is a submatrix of one of
these principal submatrices). However, because C does not have a totally nonnegative
completion, by inheritance the larger matrix also does not have a totally nonnegative
completion.

Next we look at chordal graphs that are not block clique graphs. Let G be a graph
on n vertices that is not a block clique graph. Then there are two cliques C'; and

C, that are induced subgraphs of G and for which |C; N C,| > 2. The simplest such
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graph is one in which G = C, U (s, |Cy| = |C2| = 3. and |C; N C;| = 2. The graph of

1 1 4 7

+ 1 1 4
A=

2 838 1 1

72 41

is G and A has no totally nonnegative completion. Define

1 1 4 =

4 1 1 4
Alz.y) =

2 8 1 1

y 2 41 ]

[t is easy to check that all fully specified minors of A (xz.y) are positive. However,
det (A(z.y)) = —.0016 —.008x — .328y — . 2yr. (4.3)

For r and y nonnegative, (4.3) is always negative and, thus. there is no totally non-
negative completion of A (z.y).

For the graphs that are not block clique graphs there is a little more work than
in the non-chordal case in order to embed this data in a larger matrix. If G is not a
block clique graph, then there exist cliques C; and C; that are induced subgraphs of
G and for which |C| = |Cy|, and |C, N C,| = |Cy| — 1 (note that C; and C; may not
be maximal cliques). Let B(z.y) be a partial matrix with graph & and let B(z.y)

be the submatrix of B (.y) such that the graph of B (z,y) is Cy U Cy. Then. assign
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data to B (z. y) by beginning with A(z.y) and repeating row and column 2 as many

times as necessary to complete the clique created by "y N C,. That is

- I 1 I 4 = -
4 1 1 1 4
B(.r.y) =
4 1 I 1 4
2 .8 S 11
y .2 2 0401

A

Since any minor of this matrix is either 0 or is a minor of A(x,y). B(z.y) is a
partial totally nonnegative matrix. For the remainder of the specified entries of
B (r.y) specify 1's on the diagonal and 0’s for the off diagonal entries as in the non-
chordal case. The resulting matrix is partial totally nonnegative, but has A (r.y) as
a principal submatrix and. by inheritance, has no totally nonnegative completion.
Finally, if GG is a block clique graph that is not monotonically labeled. then any
partial totally nonnegative matrix the graph of whose specified entries is G will have

a submatrix of the form

x % *
* x 7
* 7 x
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in which **" indicates a specified position. The matrix

2 1 2
Mzy)=|1 2 2
1 y 2

- J

in which z.y are free to be chosen has this form and is partial totally positive. The
{1,2},{3.4} minor of M (z.y) requires that + > 4 and the {3,4},{l.2} minor re-
quires that y > 2. Then. ry > 8. but the {3.4}, {3.4} minor requires that ry < 4.
Therefore, M (z,y) has no totally nonnegative completion. As usual. this data can
be embedded in a larger matrix by specifying 1's on the diagonal and 0’s in the other
specified positions. The resulting matrix will be a partial totally nonnegative matrix.
the graph of whose specified entries is block clique graph that is not linearly labeled.
that has no totally nonnegative completion. O

The reverse implication of theorem 4.5 will be proven by induction. We will
show that every regular partial totally nonnegative matrix, A. such that G'(A) is
a monotonically labeled block clique graph with exactly two maximal cliques has a
totally nonnegative completion and that completion is nonsingular. Assume the same
is true for monotonically labeled block clique graphs with £—1 maximal cliques and let
A be a regular partial totally nonnegative matrix such that G (A) is a monotonically
labeled block clique graph with & maximal cliques. Then, the principal submatrix
Ac,uc, determined by the two maximal cliques C'y and C; is a regular partial totally
nonnegative matrix such that G ( Ae,uc, ) is a monotonically labeled block clique graph
containing the two cliques, C; and C,. By the induction hypothesis, Ac,uc, has a
totally positive completion. Let A be the matrix that results when the submatrix

Ac,uc, of A is completed. Then, Ais a regular partial totally positive matrix such
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that G (»1) is a monotonically labeled block clique graph with £ — 1 maximal cliques.

By the induction hypothesis. A has a totally nonnegative completion. But then A

also has a totally nonnegative completion.

From this discussion we see that the only case that needs to be considered is the

one in which A is an n-by-n matrix for which GG (A) is a monotonically labeled block

clique graph with two maximal cliques. Then A is of the form

An

T
aay

?

ai2 7
asz ag‘:‘
az Asz

(4.4)

in which ayz,a3, € R?, ay3.a3, € R%. and p+ ¢ = n — 1. The following is a special

case of the chordal result found in [JL].

Lemma 4.12 Let

fl[ 1

a9

T
3209

T
a2 a12a23

az2

T
a3

in which ajp, a1 € RP. as3. a3z € RY. and p+q=n-1,

are nonsingular, and azy # 0. Then

A ap
-1
y = T
A as a22
0

az2

(X7

Qa3

ASS

All

ay

a2

and

azz

T
22 Qa3
az; Ass
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Note that the matrix in ({.3) is the completion of (4.4) that gives 0’s in the unspec-
ified entries of the inverse. This 0's in the inverse completion is shown in [BJLul].
Interestingly, the same completion works for total nonnegativity.

This result is used in the proof of the following lemma.

Lemma 4.13 Let G be a monotonically labeled block clique graph. If A is a regular
partial totally nonnegative matriz in which G(A) = G, then A has a nonsingular

totally nonnegative completion.

Proof. Let A be an n-by-n partial totally nonnegative matrix the graph of whose
specified entries is a monotonically labeled block clique graph. The only case that
needs to be considered is the case in which there are two cliques since the others
follow by induction (see discussion above). Then A is of the form given in (4.4).
Since positive left diagonal multiplication preserves total positivity and as; > 0. it
can be assumed without loss of generality that ay; = 1. Then, it will be shown that

the completion given by

T
Ay a2 Qapads;

aly (4.6)

o
i
~
—

T ;
A3209) a32 Ass |

is totally nonnegative. The proof will show that DA~!D~! is totally nonnegative for

(_1)n+l
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Then. by lemma +.10. A is totally nonnegative. By theorem 4.12

[ R 1 T |
A ap 0 0 0 00
. 0 -1
-1
AT =114 1 + 1 {010
0
0 0 asp A33 i 0 00
Define )
( 0 00
i B 0 0 0
T=DA'D'= + -10 10
0 0 0 C
0 00
in which
- ] - 1 -1
By b2 Aun an
B = =D, D,
szl ba2 agl 1
- 1 - L -1
T T
c= || op ™| Do
] ¢ Cao | i azy; Ass ]
D, = D[{L.2,.... p+1}l.and Dy=D[{n-qn—q+1..... n}l.
Au ay2 l a.2T3
Since and are totally nonnegative, B and C are also totally
al, 1 azz Ass

nonnegative by lemma 4.10. Using the adjoint formula for the inverse of A1 we see

that
| = det (B“) det (C22)

det (A")
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Then, since B;; and ('3 are principal submatrices of totally positive matrices.

det (fi_l) > 0.

Now it must be shown that all minors of T' of size n—1 and smaller are nonnegative.
That is. det (T (y:6)) > 0 for all v.6 € N.|y| = |é|. Let a« = {1.2,....p} and
d={n—-q+1,n—q+2,....n}. Then, the size of T (v;8) is [a] + |3|+ 1 — |¥] (or

la| + |8] + 1 — |6]). Many of the minors will be zero. This will be shown by finding
a block of zeros large enough to ensure that T (v;8) is singular by lemma 4.8. For
this to be the case. the sum of the dimensions of the zero block must be at least
la| + |3] = || + 2. There are two blocks of zeros in T (7; 6) to consider. These blocks

have dimensions

(lel = leny]) ~by—(|8] = 3N 8]) (4.7)

and

(18l =18N~]) =by—(laf = [N d]). (4.8)
There are several cases to consider in order to show that det (T (v:6)) > 0 for all
v 6 C N. Ifp+1€~.6.then T (4;9) is a direct sum of submatrices of B and C' and

[l =1=la0y[+[8N3]=lané|+ 8N4 =[é] - L. (4.9)

Since B and C are totally positive, if the submatrices in the direct sum are square.
det (T (v;6)) is positive. If the submatrices of B and C are not square, then. if

la N8| > |aN+|. the sum of the dimensions in (4.7) is:

ol + 18]~ lanyl = 1808 = le|l+[8| = (lané| - 1)~ |3N4|
= laf+ 8= (lané[+[8N6}) +1

= la|+|8] —|6] + 2. (4.10)
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By lemma 4.8, this ensures that 7T (v:6) is singular. The case in which
la N 6] > |aN | uses (4.8) and is analogous.

There are several possibilities for p+1 ¢ v,6. If [a N v| = |a N §|, then T (~; é) has
the same form as T and. therefore, has positive determinant by the same argument as
that for det (T"). The determinant of T («; ) is also positive if [[a N §] — |a N || = L.
because in this case T (7:6) is block triangular with submatrices of B and C on the

diagonal. For the case in which |[|a N8| — [@ N ¥|| > 2 note that, since p + 1 € ~. 6,

vl =lanyl+]8Nv=lané[+]3N6] = 4. (4.11)

Then, arguments similar to those in (4.10) (using (4.7) if [@aNé| -~ |JaNy| > 2 and
(4.8) if e N4} — |aNé| > 2) show that T (v;6) is singular.

[t remains to show that the minors are nonnegative for the case in which p+1 isin
exactly one of v or . Assume p+ 1 € v,k ¢ 6 (the other case follows by symmetry).
In this case,

lanAf 418071 = -1 (4.12)

and

lané|+13N 8| = |6]. (4.13)

Ifleny] = [ané|orlany|+1 = |[ané|, then T (v;8) is block triangular with
submatrices of B and C on the diagonal and det (T (v;6)) > 0. If [aNy| =|aNd|+1
then using (4.8) and (4.12) we see by lemma 4.8 that T (v;6) is singular. Similarly,
if |l[@ané| —|an~|| > 2, T(7;8) contains a zero block that is sufficiently large, by

lemma 4.8, to ensure that T (v;8) is singular. Thus, det (7 (v;6)) >0 forally.0 T N
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and DA~'D~! is totally nonnegative. Then. by lemma 4.10, A is totally nonnegative
and the lemma is proved. a

Together, lemma 4.11 and lemma 4.13 prove theorem 4.5.

4.5 The Maximum Minimum Eigenvalue

Completion Problem

The maximum minimum eigenvalue problem asks: for a partial Hermitian matrix
A. what is the largest value that the minimum eigenvalue over all completions of 4
can attain? By classical interlacing, the minimum eigenvalue of an Hermitian matrix
cannot exceed the minimum of the eigenvalues of any principal submatrix. Therefore.
in the maximum minimum eigenvalue completion problem, the best that can be hoped
for is the minimum of the minimum eigenvalues of the specified principal submatrices.
In [GJSW] it was shown that every partial positive semidefinite matrix. the graph of
whose specified entries is chordal has a positive semidefinite completion. This work
was preceded by [DG] which considered the case of banded matrices. Since each
fully specified principal submatrix of a partial positive semidefinite matrix is positive
semidefinite. by translation the [GJSW] result is equivalent to saying that. in the
chordal case, the maximum minimum eigenvalue over all completions is the minimum
of the minimum eigenvalues of the fully specified principal submatrices.

The key observation in the proof in [GJSW] is the case in which there is only
one pair of symmetrically placed unspecified entries (the one variable case). This
one variable case was done before. and dates back at least to [DG] in which banded
patterns were treated. Here we give an entirely different proof of the one variable case.

This new proof uses the structured eigenvector results of chapter 2 and, therefore.
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for the one variable case our approach gives information about the structure of the
eigenvectors of the maximum minimum eigenvalue completion that is not present
in [GJSW]. This eigenvector information is however present in theorem 2.3 of [D2].
However, we prove both the completion result of [GJSW] and the eigenvector result of
[D2] simultaneously and our approach allows us to write down the maximum minimum
eigenvalue completion determined by these structured eigenvectors. In the following

theorem let C'(4) denote the set of all completions of the partial matrix A.

Theorem 4.6 Let A € M, be a partial Hermitian matriz in which only r = a;; (and
T = aj;) is unspecified. Also. let Ay = A(1). Ay =A()) and Ay =min{p:p € o (A1)},

Ao =min{p:pu €c(Ay)}. Let A = min{A, A2}, then

max{Brené&) {pu:pe O’(B)}} =\

Moreover, there is a marimum minimum eigenvalue completion A of A such that
A = min {u tu € o'(»i)} and there erists an associated eigenvector = such that if
A=A z[f]=0and if A =Xy, z[j] =0.

Proof It suffices to show that there is a completion A of A in which

A = min {A, Az} is the minimum eigenvalue of 4. Assume, without loss of generality

that the 1,n position is unspecified. Then

ap, aq I
A=\ ay Ay ag
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in which Ag; € M, _, is Hermitian. Then A; = and A4; =

az A az; as3
There are two cases to consider: A; # A, and Ay = X;. To begin. assume A} < A,

so that A = A; (the case in which A\, < A; follows by symmetry). By corollary 2.2

X is an eigenvalue of a completion A of 4 if and only if there is an eigenvector of A

y
associated with A of the form in which y € C*' is in the eigenspace of A,

Y
associated with A. In order for to be an eigenvector of A associated with A. the

0
following equality must hold:
y Ay y
A = =A
0 £y 1] + azy (1) 0

If y[1] #0. then
_ —akg (1)

10 (4.14)

gives the desired completion. If y[1] = 0, then

az A y (1)

azy (1) 0

i Ay (1) y (1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116

so that Asy (1) = Ay (1) and A is an eigenvalue of A;;. But this is a contradiction
since, by interlacing, every eigenvalue of A;; must be greater than or equal to A,.
Therefore, y [1] cannot be 0.

Now, assume A = A; = Ay, but g) (A1) # gx (A2). After a similarity transformation
of A that diagonalizes A,; this case can be reduced to the case discussed above.
Assume without loss of generality that g\ (Az) < g\ (A1) and let g = g\ (A2). By
interlacing, g\ (A22) = g and g\ (A;) = g + 1. Also assume that A = 0. We may
do this without loss of generality since the general case follows easily by translation.
Then. the maximum minimum eigenvalue completion A of A is such that A is positive

semidefinite. Let [/ be the unitary matrix that diagonalizes Aj;. Then.

- .
0 0
U™ AU =
0
0 D
in which D = ditag (Aj41,.... An—2) and \; >0, i =g+ 1..... n — 2 are the nonzero
eigenvalues of A;;. Then
r T [ h an (.151 r
0 0
ia A U ag a3
D
I I
- ) 7 @, ass
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anp 0 0 a3
0 0 0
= =B. (4.15)
0 0 0
az D ax
z 0 .- 0 a33 as3

The last equality holds because if a positive semidefinite matrix has a zero on the
diagonal, then the entire row and column containing that diagonal entry must be 0

[HJ1, pg. 400]. The matrix B in (4.13) is the direct sum of a 0 matrix and

ayy Qo I

m)
1]

o1 D g3 |- (4.16)

&1

Q
N
[&]

ass

Therefore, if we find a completion of B that is positive semidefinite, we will have a
completion of B that is also positive semidefinite. Then. since similarity preserves
eigenvalues, we have also found a completion of A that is positive semidefinite as
. R ar; fl;l . D &23 .
desired. Let B; = and B; = . Since gi (A1) = ga (A2) + L.
&21 D &;3 azs
B is positive semidefinite and B, is positive definite. Thus, Bisa partial positive
definite matrix in which the smallest eigenvalue of By is less than the smallest eigen-
value of B, so that we are in the case discussed earlier. For y an eigenvector of B,

Y )
associated with A by the calculation as in (4.14) we see that x = —fﬁ’%l—) gives the

desired completion.
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We next look at the case in which A = A} = Ay and g\ (A;) = g\ (A2). Let
g =gr(4;) and a = {2,....n—1}. By interlacing, g\ (Az2) is g or g — 1. First

consider the case in which g\ (A22) = g — 1. In this case. by corollary 2.2

g (A1) + 91 (A) =11
2

dim (LE} (A1) .dim (RE} (A1) >

= ¢g-1.

Thus, there are at least g — | linearly independent eigenvectors of A; of the form
0
Uj

an eigenvector of A,; associated with A. But, since gy (A;) = g, this means that there

0 0
is another eigenvector y of 4, associated with A for which ¢y.| | .....

Uy Ug—

is a linearly independent set. In addition. it must be the case that y[1] # 0 since
if y[1] = 0. then y (1) is another eigenvector of Ay, which is a contradiction since
gr(Az2) = g — | and we already have the g — 1 linearly independent vectors u; of

Aay associated with \. The eigenvector y can be used as in (4.14) to find a value

for z that gives a completion A of A with A as an eigenvalue and, then. is an
0

eigenvector of 4 associated with A. Note that the matrix A, is an (n — 1)-by-(n — 1)
matrix that we will consider to have entries indexed from 2 to n. To see that A is the

minimum eigenvalue of A note that by corollary 2.2

gr(A2) + g3 (Ag2) — 1

dim (LE) (42)) .dim (RE} (A3)) >
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U
Then. for each u;. ¢ = 1.2..... g — 1. the vector is an eigenvector of A,
0
0
associated with A. Recall that the vectors .i=1.2,....9— 1. are eigenvectors
U
0
of A; associated with A. But then foreach: =1.2..... g—1.| y, | is an eigenvector
0

of A associated with A. Then there are at least g linearly independent eigenvectors of

A associated with A so that gy (»1) > g and for vy = {2,3,...,n} corollary 2.2 gives

dim (L3 () i (852 (1)) > 2 + () !

2 g-

~Nojor—

Since the dimension of the special eigenspaces must be integer, this means there

are at least ¢ linearly independent eigenvectors of A associated with \ with a 0 in

0

the first position. We already know the g — | vectors | ,, | are eigenvectors of A

0

associated with A. So, there must be at least one vector of the form in which

~

2 € C* ! and z,-; # 0 (otherwise we would contradict the fact that gy (Az) =g—1.)
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0 F 0
y 0
Then < Aoy e gy | - > is a set of g + 1 linearly independent
0 z
\ O 0 bV

eigenvectors of ;{ associated with A and, therefore. by interlacing, A is the minimum
eigenvalue of A.

All that remains is the case in which ¢ = g\ (A1) = g\ (A2) and g\ (A22) = ¢.
Once again, assume that A = 0 and perform the similarity of A as in (4.15). Then.

0

every vector of the form | ,, |, w € €9 is an eigenvector of B associated with A =0

0

and, therefore. A = 0 is an e;genvalue of A for all values of r. We must find r so

that A = 0 is the minimum eigenvalue of A. Since g\ (A1) = gx (A2) = ga (A22) the
matrix B as defined in (4.16) has both B, and B, positive definite. In order for A
to be positive semidefinite we must find r so that B is positive definite. The Schur

complement of D in B is

~w -1 R} Ax —14
a“—alzD aig 1—012D @23

- . —1a A —1-

The diagonal entries a;; —aj,D~'a;, and asz — @5, D' a23 are the Schur complements
of D in Bl and Bg, respectively. Since Bl and Bz are both positive definite. these
diagonal entries are positive. Then, choosing r = @j,D '@z gives a completion of

B that is positive definite and. therefore, the resulting completion of A is positive
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semidefinite with A = 0 as the minimum eigenvalue. This completes the proof. i
Note that the completion in the last case of this proof is the completion given in
[GJSW] and [DG]. However. by this proof we know a little bit more since in this
last case we know that the complel:ed matrix has an eigenvector associated with the

0

minimum eigenvalue A of the form | , |.in which y is an eigenvector of A3, associated

with A.

As shown in [GJSW], the general chordal problem may be solved by sequential
application of the one variable problem. So, theorem 4.6 may be applied sequentially
to solve the chordal maximum minimum eigenvalue problem. As mentioned above.
the approach to the proof of the theorem that we use provides information about
the eigenvectors associated with the maximum minimum eigenvalue that the [GJSW]
approach does not provide. In addition. the maximum minimum eigenvalue comple-
tion as given in the above proof is easy to write down. It is shown in theorem 1.2 of
[D2] that, in the chordal case. there exists an eigenvector of the maximum minimum
eigenvalue completion with support contained in the entries that correspond to the
maximal specified principal submatrix with the smallest minimum eigenvalue of all

the maximal specified principal submatrices.
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