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ABSTRACT

This work is a  study of beam dynamics in the CEBAF superconducting cavities 
under the influence of the fields generated by externally applied RF and beam particles.

A full 3-D modeling of the CEBAF 5-cell superconducting cavity is carried out. 
Details of the modeling with MAFIA are discussed. Multipole fields due to the asym
metric couplers are studied by means of 3-D Fourier transforms. The cavity steering 
and focusing of the multipole fields are studied. Experimental measurements of these 
effects are performed to validate the modeling. Evaluation of the cavity misalignment 
is discussed. The emittance degradation effects in the CEBAF superconducting linacs 
and an FEL driver linac due to the head-tail effects of the cavity steering and the x -  y 
coupling effects of the multipole fields are studied.

The beam-cavity interactions for cases of va,vt 7  ̂ c are studied. The Lindman 
boundary condition is implemented to accommodate simulation of infinite long beam 
pipes of the beam line. A fourth-order finite-difference algorithm is derived in cylindrical 
coordinates to reduce the frequency dependent truncation errors, which were discovered 
in the process of calculating wake fields of very short bunches, of the second-order Yee 
algorithm. The effects of the slippage between the source particle and the test particle 
are considered in the wake function calculations. Radial scaling relations are obtained 
for calculating the wake functions on the axis from the integrated value a t the beam 
pipe radius. The scaling found not only depends on the beam energy but also depends 
on the bunch length of the beam and the opening of the cavity. The conditions for the 
validity of the ultrarelativistic treatm ent of the wakefield are discussed.

The emittance growth and the energy spread due to the combined effects of the 
cavity multipole fields and the Wakefields in a 40 MeV IR  FEL driver linac are studied.



BEAM DYNAMICS IN THE CEBAF SUPERCONDUCTING CAVITIES



Chapter 1

Introduction

Since the first charged particle accelerator was built in 1932 for nuclear reaction 

studies, research and development in accelerator physics have blossomed significantly 

in the past several decades. Today, particle accelerators are found in a wide variety 

of applications such as nuclear and high energy particle physics research, synchrotron 

radiation sources for a wide variety of applications of ultraviolet and x-ray beams in 

material science, medical therapy, heavy ion fusion, oil and natural gas exploration, and 

food treatm ent. Electron accelerators are also used to drive free electron lasers (FELs), 

which provide high power and wavelength tunable light which can meet the needs of 

basic research and industrial applications.

The heart of each high energy accelerator is the RF accelerating section which is 

generally composed of a  number of accelerating modules each of which is a chain of 

coupled RF resonant cavities. An accelerating cavity is energized by two power sources. 

One is the RF generator which supplies power to the cavity in order to make up for 

the power dissipated in the walls and absorbed by the accelerating beam. Breaking 

of the cylindrical symmetry of the cavity, for example, by power couplers can gener

ate deflecting fields a t the fundamental RF frequency. The other power source is the 

bunched particle beam itself which deposits energy into the cavity in a wide band of 

frequencies. The interactions between the beam bunches, the fundamental deflecting 

fields, and the higher-order modes generated by the beam may result in serious side 

effects which are the prime factors tha t limit the beam current. Even if well under the 

threshold current, the beam quality and the machine performance are still limited by

2
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these beam-cavity interactions. The theoretical and experimental study of the beam 

dynamics in the superconducting linacs is the subject of this dissertation.

This work is performed at the Continuous Electron Beam Accelerator Facility (CE

BAF) being built in Newport News, Virginia. The CEBAF superconducting recirculat

ing accelerator will provide electron beams a t energies from 0.5 GeV to 4 GeV to nuclear 

physics experiments in three experimental halls. The CEBAF accelerator compromises 

a  45 MeV superconducting injector linac, two 400 MeV superconducting linacs, recircu

lation beam lines, and a beam extraction system. The electron beam can be recirculated 

five times to yield a  beam energy of 4 GeV for three nuclear physics end-stations a t av

erage current up to  200 j ik .  In addition to  the average current, good transverse and 

longitudinal beam quality is necessary for effective nuclear physics experimentation. 

The design goals are a  full energy spread of 10-4  and a  normalized rms emittance of 

0.1 cm*mrad. Recently, it has been proposed to use a superconducting linac to drive 

an IR FEL. One such FEL driver consists of a 10 MeV superconducting injector and a 

30 MeV superconducting linac. The beam final energy is 40 MeV. The normalized rms 

em ittance is 1 cm-mrad. Energy spread (tte/ E ) is 2 x 10-3  at 40 MeV. The reference 

design will also be addressed in this dissertation.

1.1 The CEBAF superconducting cavity

<5? MVyVTVATl
1 o

U
HOM coupler FP coupler

Figure 1-1: The CEBAF 5-cell cavity.
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The superconducting cavities used in the CEBAF linacs were initially designed at 

Cornell. A cavity consists of five elliptical cells and a  pair of couplers-one for fundamen

tal power (FP) coupling and one for higher-order-mode (HOM) coupling, Fig. 1-1. The 

cavity operates with the jt mode, which has a  frequency of 1497 MHz. The advantage of 

using a  superconducting cavity over a normal temperature cavity is the low operation 

cost and high field gradient (for CW operation). The unloaded Q, defined as

where U is the stored energy in the cavity and Pw is the power lost in the Joule heating 

the cavity wall, of a superconducting cavity (order of 109) is much higher than tha t of 

a normal copper temperature cavity (order of 104). At the same accelerating gradient, 

for example 5 M V/m  for the CEBAF cavity, the dissipated power in a superconducting 

cavity is less than  5 Watts. Considering the power being absorbed at 2-4 K and the 

efficiency of the refrigerator a t such a low tem perature, the to tal power needed for 

the wall loss is several kilowatts, which is still hundred of times lower than the power 

dissipated in an equivalent copper structure. The theoretical limitation on the maximum 

accelerating gradient for niobium material is about 50 M V/m at 2 K [1]. Higher than 

10 M V/m has been obtained experimentally a t CEBAF. The nominal gradient of the 

CEBAF cavities is 5 MV/m. It could be upgraded to  higher gradients. Because of the 

efficiency of the cavities (maximization of shunt impedance is not as crucial as with room 

temperature cavities) and the requirement of coupling through the beam pipe to avoid 

sites for multipactoring and breakdown, a typical RF cavity has a large aperture. The 

large opening reduces the coupling impedance of the higher-order modes; for transverse 

modes this coupling can be an order of magnitude below tha t would be expected for 

an optimized room temperature cavity. The shape of the cells of the CEBAF cavity 

are elliptical. Two-dimension codes LALA [2] and SUPERFISH [3, 4] were used for 

cavity-shape optimization and mode analyses.
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The 2-D codes only take into account the five cylindrical symmetric cells in the 

calculation. As a whole, the cavity must have a  power coupler to couple the RF power 

from the generator into the cavity. The asymmetric coupler generates multipole fields 

in th a t region. The field of the steering mode steers the beam off axis. This may cause 

several problems. Firstly, it causes head-tail effects due to the finite length of the bunch 

and the time variation of the field. Secondly, the off axis particles interact with the 

cavity and generate HOM fields. This not only creates unwanted Joule heating but 

also may build up a  high field which leads to  beam quality degradation or even beam 

breakup. To avoid such circumstances, the external Qs of dangerous HOMs have to  be 

reduced to low values. This is done by adding the HOM coupler to  damp the cavity 

HOMs. The HOM coupler waveguide propagate only waves with frequencies higher than 

the fundamental mode. Strong coupler-cell coupling is obtained by using a  particular 

geometry structure and connecting the coupler directly to the end cell of the cavity. 

Although this can efficiently reduce the wakefield effects, it will generate other side 

effects like steering and cross-plane coupling. It is these effects of coupler fields tha t we 

want to study.

1.2 The effects of the multipole fields of the cavity

The dominant multipole fields of the cavity are the dipole, quadrupole, and skew 

quadrupole fields. They are localized at the coupler regions. The dipole steering results 

in a movement of the bunch centroid, and most importantly a differential movement of 

the head of the bunch relative to the tail of the bunch, the so called head-tail effect. The 

beam centroid movement can be corrected by use of orbit correctors. The differential 

movement between the head and the tail will, however, result in an (projected) emittance 

growth. The emittance of the beam is defined as the area of the phase space in the (a:, 

s ')  plane divided by it. At each longitudinal location of the bunch, a phase space (x(z), 

x '(z ))  can be found. Usually the projection of these phase spaces onto the z  — zq plane
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center

Figure 1-2: Projected em ittance of the head-tail effect due to the cavity steering.

occupy the same area, where zq is the center of the bunch. If differential kicks are 

applied to different part of the beam, the resulted projected phase space would look 

like Fig. 1-2. The area of the phase space is increased. The head-tail effects linearly 

depend on the bunch length. I t can be reduced by carefully arranging the orientation 

of the couplers of the cavities in the cryomodule. The cancellation, however relies on 

the gradient distribution in the cryomodules.

The x — y coupling smears the x  and y emittances. The force of the coupling has 

the form of

y x 0  + x y 0  ( 1 - 2 )

The particles with horizontal offsets will be deflected vertically and vice versa. The 

coupled em ittance shows a pattern  similar to Fig. 1-2. Unlike the head-tail effects, the 

x — y coupling occurs within the same longitudinal plane.

Other effects of the cavity multipole fields include normal quadrupole focusing and 

azimuthal focusing. These effects do not degrade the beam quality. They only modify 

the /? functions of the beam line, which can be adjusted by changing the focusing of the 

external elements.

To quantitatively study the multipole field effects, full 3-D modeling of the cavity is
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needed. The 3-D code MAFIA [7] is used for this purpose. Unlike the 2-D simulations, 

the requirement for the number of mesh points for a  3-D simulation is large. As the 

memory of the computer limits the maximum number of mesh points tha t can be used, 

the cavity shape will not be accurately fitted by the 3-D meshes. In such a case, the 

modeling should be made to  represent the cavity as closely as possible. The discrepancy 

of the calculated cavity from the  real cavity will lead to a frequency shift, which needs 

to be tuned back to the frequency of 1497 MHz. The local field errors caused by the 

unsmoothened cavity boundary will not strongly perturb the field distribution near the 

axis. The whole cavity model includes the 5-cells as well as the FP  coupler and the 

HOM couplers. The different couplings between the cell to the FP  coupler and the cell 

to the HOM coupler imbalance the fields if the  two end cells are identical. A flat field 

distribution in the 5-cells is needed and this is accomplished by slightly adjusting the 

size of the two end cells. Since the code cannot model the open condition for the FP 

waveguide, appropriate boundary condition should be applied so th a t a finite domain 

can be defined for the problem. The length of the FP waveguide is found by finding 

the short position of the fundamental mode in the waveguide. Finally, the coupling 

strength of the FP to the end cell is found to simulate the experimental condition where 

the power flow in the FP coupler is 500 W atts, the  gradient is 5 M V /m , and the beam 

current is low with negligible beam  loading.

The 3-D fields calculated by use of MAFIA are Fourier decomposed in a 3-D cylindri

cal coordinate system. Then, th e  multipole fields and their impact on beam dynamics 

are analyzed. Experimental measurements were performed to validate the numerical 

modeling. The results agree with the numerical simulations. Full 3-D modelling of 

the CEBAF superconducting cavity is included in the beam dynamics studies in the 

CEBAF injector, linacs, and FEL driver linac. Head-tail and skew-coupling emittance 

growth under nominal operation conditions and mismatched conditions are studied.



The experimental results on the emittance growth and cavity focusing in the linacs are 

explainable by the numerical simulations. Methods of reducing the a? — y coupling are 

suggested.

1.3 Wakefield effects on beam dynamics

The beam-cavity interaction th a t generates wakefields which in tu rn  act back on the 

beam is a prime concern in accelerator designs. In the design of CW  linear accelerators 

using the latest generation of superconducting RF cavities, cost optimization and cer

tain operational requirements favor configurations where the beam passes several times 

through the same accelerating structure. It has long been recognized tha t recirculating 

a beam through a  linac cavity can lead to a transverse instability in which transverse 

displacements on successive recirculations can excite modes th a t further deflect the ini

tial beam. The recirculated beam and cavities form a  feedback loop tha t can be driven 

unstable at sufficiently high currents, and this effect is worsened by the higher Q ’s as

sociated with modes of a superconducting RF structure. This multipass beam breakup 

has limited the current of early superconducting linacs such as the Stanford recyclotron 

[8] to  currents of a  few tens of microamperes. However with the improvements obtained 

in HOM damping through the HOM couplers, the threshold current is significantly in

creased. The analyses of the multipass beam breakups have been well documented in 

the early work of theoretical and experimental studies [9,10, 11].

In addition to  the multipass and coupled-bunch phenomena, there is a large class 

of single-bunch, single-pass effects which limit the peak current (more precisely, bunch 

charge and length) handling capabilities in storage rings and linacs. In a  single pass 

through a  RF structure, there is insufficient time for the bunch to experience the long

term ringing associated with the high Qs characteristics of superconducting cavities. 

Thus, these current limits are not particularly sensitive to success or failure of damping 

the HOM Qs. In the situation of high beam current (but lower than  the threshold
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current), like in an FEL driver, the single-bunch, single-pass effects may worsen the 

machine performance.

In this dissertation, we will not address the issue of beam breakup due to wakefield 

effects. We will instead investigate the beam optics under the influences of both the 

wakefield effects and the cavity multipole-field effects in the cases of beam current that 

is lower than the threshold current but high enough to generate unwanted beam quality 

degradation. We will take a 40 MeV IR FEL driver linac as an example.

In the FEL application, the bunches do not fill up all of the RF cycles of the funda

mental mode. The interbunch spacing is large. For a 25 MHz repetition frequency and 

a 1497 MHz RF frequency, the interbunch spacing is 12 meters. The higher frequency 

modes are strongly damped within the interbunch spacing and produce wakefields that 

act effectively only within the bunches. The effects of single bunch wakefields that 

concern us are the energy spread tha t is induced by the variation of the longitudi

nal wakefield across the bunch and transverse emittance degradation effects due to the 

dipole steering modes of the wakefields. The energy spread generated by the longitudi

nal wakefields may be reduced by adjusting the RF phase of the acceleration field. By 

doing so, the skew-coupling and head-tail effects of the cavity multipole fields will also 

be changed since they are functions of the RF phase. The correlation of these two kinds 

of effects is an issue th a t needs to be understood.

The evaluation of the wakefield effects relies on the correct calculation of the wake

fields. Usually, wakefields are calculated under the assumption that the particles are 

ultrarelativistic, which is the case for high energy electrons. In some applications, this 

assumption may be questionable. The 40 MeV IR FEL linac, for example, has a in

jection energy of 10 MeV. At this energy the velocity of the electron is 0.9987c. Other 

scenarios include beams with different velocities. In an earlier proposed CEBAF IR 

FEL, the nuclear physics beam and the FEL beam are accelerated simultaneously in
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the 45 MeV injector of the CEBAF accelerator. The injection energy for the physics 

beam is 5 MeV while for the FEL beam is 10 MeV. The /? (w/c) values for these beams 

are 0.9948 and 0.9987 respectively. For such cases both the ultrarelativistic assumption 

and the slippage between the beams should be considered.

To evaluate the wakefield effects in a 40 MeV IR FEL driver linac, the wakefields 

for the cases of /3 < 1 needs to be calculated. Since the ultrarelativistic assumption and 

the causulity condition can not be used in such a case, analytical analysis of the high 

frequency wakefields is difficult. A numerical method is used to solve the Maxwell’s equa

tions in the time domain. Here, wakefield calculations are based on the code TBCI [12], 

which is the widely used numerical code for wakefield calculations. In order to use 

TBCI, several modifications have to be made. In the case of v < c, TBCI does not 

have the capacity of handling open boundary conditions for the open beam pipes. We 

implemented the Lindman boundary conditions to  TBCI. The Lindman boundary con

dition optimizes the reflection coefficients of waves with different incident angles (or 

phase velocities). The reflection coefficients for incident angles from 1° to 89° are less 

than 1%. Implementing the Lindman boundary condition not only enables the code to 

deal with v < c with proper open boundaries, it also provides a better open bound

ary approximation for the cases of v = c than the one-dimension boundary condition, 

which assumes all phase velocities the speed of light, used in TBCI. For the cases of 

vt ^  va, the slippage between the source and the test particles is included in the wake 

function integration. The integral for the wake function can only be carried out at 

the beam pipe radius since the problem is solved in a finite domain. A radial scaling 

algorithm for the wake function is needed in order to calculate the wake functions in

side the beam pipe. We found that the scaling of the wake functions at different radial 

position can be obtained in terms of the weight function. The wake function at any 

ra'dial position r  is a weighted average of the wake function calculated a t the pipe radius.
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The smearing effect due to the low 7 of the beam is studied. Conditions for applying 

the ultrarelativistic limit in the wake function calculation are discussed. Even though 

TBCI has been successful in calculating wakefields of many structures, problems are 

encountered in calculating the wakefields of the CEBAF cavity with very short bunch 

lengths. The wake functions calculated for az — 0.5 mm bunch in the CEBAF five-cell 

cavity are obviously unphysical. It is found th a t the errors tha t cause the  unphysical 

results are related to  the truncation errors of the finite-difference algorithm that are 

frequency dependent. To reduce the truncation errors, a  fourth-order accuracy finite- 

difference algorithm for solving the Maxwell’s equations in the time domain is derived. 

The algorithm is implemented in a  modified TBCI.

The modified TBCI is used for the wakefield calculations in this dissertation. Wake

fields of cases of vs ^  vt ^  c and v3 = vt ^  c are studied. If the slippage between 

particles is finite, the wake function seen by the test particle also slips in the frame of 

the source particle. In evaluating short range wakefield effects, the slippage is a impor

tan t factor tha t needs to be included. The smearing effect is im portant a t low energies 

and for short bunches. The quantity tha t measures the smearing effect is R  ~  

where a is the pipe radius. Large R  value corresponds to  weak smearing. We found that 

smearing effects for R  > 1.5 are, in general, small enough to  be neglected. For example 

the CEBAF cavity has a =  1.74 cm, the R  value for <r*=3 mm and E  =  10 MeV is 3.37, 

and the smearing effect is small; for az =  0.5 mm and E  ~  10 MeV, 12=0.65, and the 

smearing effect is strong.

The combined effects of the wakefields and the cavity multipole fields are studied 

in a 40 MeV IR  FEL linac. The energy spread and the emittance growth due to the 

head-tail effects of the steering fields and the x -  y coupling of the cavity fields are 

evaluated. The energy spread compensation through the RF phasing and emittance 

behavior at off crest phase is studied.



Chapter 2

Numerical Simulation of the CEBAF 5-Cell Cavity

The CEBAF 5-cell superconducting cavity has five cylindrical symmetric cells and 

two end-couplers as shown in Fig. 2-3. One of the two couplers is the fundamental- 

power(FP) coupler which couples the RF power to the cavity. The other one is the 

higher-order-mode (HOM) coupler which is designed to couple the higher-order-mode 

fields, generated by the beam, to a RF power dump[14]. FP and HOM couplers do not 

have cylindrical symmetry. These asymmetric structures generate asymmetric fields in 

their adjacent regions, and the transverse fields on the axis are no longer zero. The 

particles will be deflected by these fields when passing through the cavity. A detail 

study of the field distributions in the CEBAF 5-cell cavity is presented in this chapter.

6P o
U

HOM coupler FP coupler

Figure 2-3: The CEBAF 5-cell cavity and the HOM and FP  couplers.

The field of the CEBAF five-cell cavity is calculated by use of the 3-D code MAFIA 

[7]. To solve the Maxwell’s equations, MAFIA uses 3-D cuboid meshes to discretize 

the problem. The boundary of the cavity is replaced by a number of discrete mesh 

points. The accuracy of reproducing the real boundary of the cavity is limited by the 

mesh size. Small mesh size is good for both fitting the curvature of the cavity and 

reducing the numerical error in the calculation. But the use of small meshes requires 

a  large number of mesh points, which is limited by the computer memory. The cavity

12
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is not a isolated structure. It is connected with other cavities or structures by beam 

pipes and RF waveguides. A finite computational domain should be established to 

include only the cavity and part of the beam pipes and the waveguides, and appropriate 

boundary conditions should be applied to each side of the domain to simulate the 

unbounded structure. The version of MAFIA used in our calculations, however, can 

only deal with two kinds of boundary conditions; closed boundary (or the E  boundary), 

Et =  0 on the boundary, and open boundary condition (or the H  boundary), Ht = 0 

on the boundary. The fields th a t of interest are those of the fundamental mode. The 

frequency of this mode is 1497 MHz. The beam pipes and the HOM couplers have 

higher cutoff frequencies than 1497 MHz. The fundamental mode exponentially damps 

in these structures. These structures can be terminated a t a  position where the fields 

of the fundamental mode is negligible, so tha t E  boundary condition can be applied.

The cutoff frequency of the 3.5 cm beam pipe is uic — 3281 MHz which has a wave 

number fc3.s =  68.71. The cutoff frequency of the 1.74 cm beam pipe is 6599 MHz 

which has a wave number k i . 7 4  = 138.22. The fundamental mode has a wave number 

ko =  31.35. On the HOM side, the 3.5 cm radius beam pipe, 13.932 cm long, is attached 

by the I .74 cm radius beam pipe. The beam pipe is terminated a t 12.5 cm from the end 

of the left cell. The fields of the fundamental mode are damped to x0-125 =

4.8 x 10“ 4, which is small so tha t E  boundary can be used. On the FP side, the 3.5 cm 

beam pipe is 3.37 cm long, and at the end of this pipe, the 1.74 cm beam pipe is attached. 

The beam pipe is term inated 12.5 cm away from the end cell, and the fundamental mode 

damps to e- * 0,0337-\ A -1-742-*o*a<M68 =  2.3 x 10-4 , which is also small enough 

to place the E  boundary condition. In a cavity-pair, the space between the two adjacent 

end-cells of the cavities is 25 cm. Since the fields at the center of this beam pipe are 

small, there is essentially no interference between the two cavities for the fundamental 

mode. The modeling has the effective field region extended to 12.5 cm on each side of
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the cavity. The to tal length of the cavity is 75 cm. The actual computational region 

is chosen to be a  little bit larger than 75 cm since the E  and the H  fields are not all 

defined a t the mesh points.

The transverse dimension of the cavity is determined by the length of the couplers. 

The HOM coupler has a dimension of 7.899 cmx3.81 cm. The cutoff frequency of 

the coupler is 1898 MHz, which has a  wave number of knoM  — 39.75. If we term i

nate the HOM coupler at a  length of 15.5 cm, the fundamental mode would dam p to 

e ~ V kHof.t~kox0-u s  = 2.26 X 10-2 . If the E  boundary condition is applied at this point, 

an error with this strength will be reflected back to  the pipe region. Since the error 

also damps in the coupler, when it reaches the pipe region, the strength is reduced to 

the order of 5 X 10-4 , which is small and can be ignored. So, even if the HOM coupler 

can not damp the fields to  a very small number a t the term ination, the error due to 

the enforced E  boundary condition is considerably smaller. This is desirable so th a t a 

small com putational region can be used. The length of the HOM coupler is chosen to  

be 15.5 cm.

The PP  coupler is a 13.44 cm x2.5 cm rectangular structure. At one end, it is 

connected by a  7.899 cm x2.5 cm adapter. The adapter has a  length of 9.65 cm and is 

term inated by metal material. The position where the adapter is connected is called 

stub position. This position determines the coupling between the cavity and the coupler. 

The other end of the FP  coupler is connected to  the power supply system (recirculator 

and klystron) through a  waveguide. The fundamental wave propagates in the coupler 

in the form of a Tio mode. The fields do not damp in the FP coupler. Since the cavity 

has very high Q,  the position of the term ination of the coupler is not important as long 

as we only study the fields in the cavity region. It is im portant when the fields in the 

coupler-pipe region are of interest, which is the case of this work. So the length of the 

FP coupler should be chosen carefully. The idea is to  find the position of the standing
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wave minimum. At tha t position, the E  held has minimum value, ideally zero, and the 

E  boundary condition can be applied. Since the wavelength of the fundamental mode 

is 20 cm in free space and 30 cm in the propagation direction of the FP coupler, the 

length of the termination is roughly estimated to be in the range of 20-30 cm. The 

termination of the FP coupler will be discussed in a  later section.

The cross section of the cells is approximately elliptical. The three center cells are 

identical, with a m ajor axis of 9.4 cm and a minor axis of 5 cm. The two end cells are 

slightly smaller than those center cells in order to have flat field distribution.

W ith the computational domain determined as above, the whole region is discretized 

in 3-D Cartesian coordinates with an average mesh size of 4 mm. The number of mesh 

points is about 1.3 million. Even with this mesh size, the elliptical shape cavity and 

cylindrical beam pipes cannot be perfectly fitted. This causes the volume of the cavity 

be slightly changed, which results in a  frequency shift. The flat field distribution in the 

five cells can no longer be held due to the change of coupling between the cells. The 

coupling between the cavity and the coupler will also be changed. Since the field strength 

in the coupler region is directly related to the coupling strength and the gradient of the 

cavity, it is im portant to obtain the right coupling in order to study coupler steering 

effects.

The frequency shift and the flat field distribution can be tuned to the designed values 

by carefully maneuvering the shape of the cells. The right FP coupling strength can be 

obtained by adjusting the stub position. In the next sections, we will study how the 

boundary perturbations can be used for these adjustments.
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2.1 The theory of resonant cavities

We wish to solve the Maxwell’s equations within a volume bounded by certain sur

faces.

«  9B  
V x E +  8T  =  0 ( 2 - 3 )

V x H - f  =  J ( 2 - 4 )

V D  =  p ( 2 - 5 )

V • B =  0 (2 - 6 )

The solution will be in terms of a  summation over certain modes, which possess orthog

onality properties. To do that, we would like to find the orthogonal functions which 

satisfy certain boundary conditions. The electric and magnetic fields can be expanded 

in terms of these functions. The theoretical studies of resonant cavities presented in 

this chapter follow the treatm ent of Slater [15].

2.1.1 Orthogonal functions

Consider an arbitrarily shaped cavity with one opening as shown in Fig. 2-4. The

Figure 2-4: Cavity with one opening.

surface is divided into two parts labeled S  and S'. We will impose the short-circuited 

boundary condition on S , which requires tha t the tangential component of E  and the 

normal component of H  be zero, and the open-circuited boundary condition on S',  

which requires tha t the normal component of E  and tangential component of H  be zero. 

The spanning orthogonal functions can be found by solving the source free Maxwell’s 

equations under these boundary conditions.



In general, there are two kinds of vector fields, the solenoidal, with zero divergence, 

and the irrotational, with zero curl. Let Ea and H a be the orthogonal functions of the 

solenoidal fields and F 0 be the orthogonal function of the irrotational fields. We will 

use E 0 to expand the solenoidal part of E , F 0 to  expand the irrotational part of E  and 

use H 0 to  expand H . E a, H Q and F a satisfy the following boundary conditions

n x E 0 =  0 on 5, n • E a =  0 on S'  ( 2 - 7 )

n x H j  =  0 on S' , n  • H a =  0 on S  ( 2 - 8 )

n X F a =  0 on S  and S'

i>a — 0 on S  and S'  (2-9)

where k a is the wave number, Vij)a = kaFa. Assume E Q and H 0 satisfy the following 

relation

kaE 0 =  V X H a, fcaH a =  V X Ea (2 -  10)

H a is the magnetic field scaled by \ZfTJl. E a, H 0 and ipa satisfy the wave equation

V 2E 0 +  A2E o =  o (2-11)

V 2H a +  A2H 0 =  0 (2-12)

V ^ a  +  A '^a =  0 (2-13)

The E as, H as and F as are normalized and readily shown to be orthogonal.

2.1.2 Maxwell’s equations in a cavity

To solve the Maxwell’s equations in a hollow cavity, the fields are expanded in terms 

of the orthogonal functions described in Sec. (2 ,1.1).
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H  =
a

p =
a

(2-14)

Substituting (2-14) into Eq. (2-3) - (2-6) we have the following equations for the expan

sion coeficients

B  is a solenoidal vector, so V ■ B  =  0 is automatically satisfied.

Among these equations, Eqs. (2-15) and (2-16) determine the solenoidal part of the 

fields. This is the part of the fields which shows the properties of wave propagation. 

We can combine Eqs. (2-15) and (2-16) to get separate equations for the  coefficients 

/ E * E ad u a n d  / H - H adv

(2-20)

f  E  • E adv and /  H  ■ H adv are functions of time. They satisfy the differential equation 

of a forced harmonic oscillation. The driving forces are the current in th e  cavity and 

the current on the cavity wall.
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2.2 Frequency adjustment by means of boundary perturbation

Discretization of the cavity with finite mesh size in the MAFIA simulations will 

inevitably shift the frequency of the cavity away from the design value. Initial calculation 

of the  CEBAF cavity shows tha t the resonant frequency of the fundamental mode 

is 1487.15 MHz which is 10 MHz lower than the designed value of 1497 MHz. It is 

preferable to adjust the resonant frequency to be as close as possible to  1497 MHz, as 

this allows beam dynamics codes to use one frequency for the capture, the buncher, and 

the cavities. In this section we will use the formulae developed in Sec. 2.1 to  study the 

tuning of the frequency in MAFIA simulation. Let us estimate the frequency change 

when the boundary of the cavity is perturbed by pushing a small part of the wall in 

or out. Let the cavity wall be superconducting and J  =  0 inside the cavity. Let the 

wall be pushed into the cavity volume by a small amount. In the region between the 

original wall and the perturbed one, E  and H  will be zero. This is equivalent to having 

a  surface current causing the discontinuity in the tangential component of H . A surface 

integral term -  / ( n  x H) • E ada needs to be added to  the right hand side of Eqs. (2-19) 

and (2 -20 ); that is

-  J ( n  X H ) • E Qda' =  -  ^ ( n  x H„) • E ada ' J  TL • H ae

=  ~  j  n -  (E a x H a)daf J  H  • H ac

=  -  J {  H fl • (V  x E B) - E a . ( V x  H  tt) )d v 'J  H  • H a

=  - k a J  H  • H 0du j  {H i  -  E 2a)dvf (2-21)

where a‘ and v' are the small surface and the corresponding volume of perturbation.

Combine (2-21) with (2-20) we have

-  +  k2a =  - k l  J  {H i  -  El)dv> (2 -  22)

xdv 

idv

iadv

or

w2 =  u! ( l  +  J { H i  -  E l)d v ^  (2 -  23)
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This formula indicates tha t the frequency of the cavity will increase if the wall is pushed 

in a t where the magnetic field is strong or is pulled out a t where the electric field is 

strong. The initial calculation shows that for the fundamental mode the electric field 

is strong in the pipe region of the cavity whereas the magnetic field is strong at the 

top of the cells. It is preferred to adjust the top part of the cells inward to  increase 

the frequency, since the perturbation then is far from the beam axis and the fields in 

the axis region are not perturbed. Several calculations have been made for different 

cell radii. The final result has a  frequency of 1495.37 MHz which is fairly close to the 

designed value 1497 MHz. To obtain this frequency, the radii of the cells are reduced 

by about 1.8 mm.

2.3 Field distribution in multi-cell cavities

The initial calculation shows tha t the amplitude of the fields in the five cells of the 

cavity is not the same. This deviation is due to  errors in the coupling of the end cells. 

In actual operation, the cavities have a  field flatness of ±2.5% in the five cells.

In multi-cell cavities, the cells are coupled to  each other. The coupling strengths 

between the cells determine the field distribution. The inner cells of the cavity are 

coupled to  both the adjacent cells on each side whereas the end cells of the cavity 

are each coupled to  one cell on one side and a coupler on the other side. For high Q 

cavities, like the CEBAF cavity, the coupler-cell coupling is much smaller than the cell

cell coupling. Let us examine the relation between the fields strength and the coupling

1   n-1 n n+1    N

Figure 2-5: Multi-cell cavity.
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strength in multi-cell cavities [16] as shown in Fig. 2-5. Consider cell n, which is coupled 

with cells (n-1) and (n-f 1). We arrange the cells so tha t the (n -l)th  cell couples to  the 

nth cell through its S'  boundary and the (n + l) th  cell couples to the nth cell through 

its S  boundary. Let X n represent the coefficient /  E  • E adv of cell n. Apply equation 

(2-19) to the nth cell

n +  * a ^ „  “  x H n+1) -E ^ A n+ida

-  ka Js (n x E " - 1) • (2-24)

Recalling th a t X n has an eJ’w< dependence, the coupled equations, in general, have the 

form
C'ti?

X rt(w2 -  u;2) +  (A n—i +  X n+1) ~  0 (2 — 25)

where C is the coupling strength and is a function of w. The end cells, e.g. n = 0 , only 

couple to one of the inner cells. The coupling equation is then

X Q{U2  -  o& ) +  — Xx  =  0 (2 -  26)

where w is the overall frequency of the cavity, Wq and woi are the intrinsic frequencies 

of the inner cells and the end cells respectively. If wq = w0i ,  the coupling for the inner 

cells is about twice as large as th a t of the end cells. The coupling of the end cells can

be compensated by adjusting the intrinsic frequency tuoj. Assuming tha t the couplings

are the same, the solutions of Eqs. (2-25) and (2-26) are as follows,

= coS( ^ ) e < '“ . ‘ (2-27)

“ « =  1 + C cos(t , / jV) (2 ' 28)

where q =0,1,2,...N, with N the total number of cells. For q =N , the field distribution 

in the cavity has x mode pattern . The CEBAF cavity has N =4 and operates in the 

x mode. The coupling between the cells of a CEBAF cavity is an E  coupling. The 

coupling strength is positive; w9 > uq for x mode.
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In the x mode, X n =  - An + i. Eq. (2-25) then becomes

X n(uj2  — Wq) +  Cu>2 X n+1 =  0 (2 — 29)

Comparing with (2-26), we see if the end-cell coupling is to be the same as the inner-cell 

coupling, one has

woi =  0.5 X (w9 +  u?o) (2 — 30)

The intrinsic frequency of the end cell must be higher tha t the intrinsic frequency of 

the inner cells in order to  have the same coupling. The field flatness adjustment thus 

becomes possible by tuning the frequency of individual cells.

The method used in Sec. 2.2 for tuning the overall frequency of the cavity can be 

applied to the  end cells. The tuning process is now more subtle. Since the coupling 

between the end cell and the HOM coupler is not the same as the coupling between the 

end cell and the FP coupler, the two end cells must have slightly different sizes. We 

would like to  make a slight change of the boundary cells to adjust the volume without 

changing their material properties (vacuum to metal, for example) by slightly changing 

the radius of the cavity or the position of the mesh lines. The result often comes out ju st 

the opposite; in discretizing the cavity, the mesh on the curved boundary of the cavity 

may be cut off to become vacuum or be kept as metal depending on what percentage 

of the cell is within the boundary of the cavity. Slightly changing the mesh lines may 

turn  some of the vacuum mesh into metal or vice versa, leading to excessive volume 

increment or reduction. Care must be taken and many tries were needed for the tuning. 

Our final result has a ±2.5% field deviation in the five cells which is about the value 

achievable in accelerator operation.

2.4 The short position of the fundamental power waveguide

As stated earlier, the fundamental mode propagates in the fundamental power 

waveguide. The termination of the guide is not arbitrary, and we need to  find the



position where E  field is minimum so tha t the waveguide can be term inated by a metal 

boundary. The position of minimal E  field is called the short position. To find this 

position, we will s tart with the input impedance of the cavity, then couple the cavity 

impedance to  a term inated waveguide impedance. We will find the frequency change of 

the system as a  function of the termination position of the waveguide, from which the 

short position will be determined.

2.4.1 The input impedance of the cavity

Consider a cavity attached to a waveguide. S'  is the plane where the open circuit 

boundary is applied to get the normal modes E a and H a. The S'  plane is chosen far 

enough up the waveguide from the cavity so tha t only propagating modes exist. On 

S'  we will add a  perturbation H . We will calculate the E  field distribution under this 

perturbation in the cavity and the waveguide. We will take the ratio of the E  and the 

H  fields on S'  to get the input impedance of the cavity.

E a and the perturbation H  on the S'  plane can be expanded in terms of the waveg

uide mode E tn and H (n

E a =  ^ 2  van^tn (2 — 31)
n

H  =  ( 2 - 3 2 )
n

where van and in are coefficients; van is independent of time while in varies as eJU't , the 

time dependence of H , Z ln is the characteristic impedance of the waveguide which is 

defined as Z inHtn =  k x E in; k here is the propagating vector pointing into the cavity. 

The unit vector of S'  points outward. We have n  x H  =  £ n lnEt„. The second integral 

in (2-19) can be evaluated as
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=  (2-33)
n

For a superconducting hollow cavity, Eq. (2-19) yields

ifiOJ )  ) in^an
/ e - E  ad v =  -5L 5T =  (2 — 34)

J  -ev (u 2 -0J2a) ^  -  o U  ^
W  w J

The transverse E  field on S'  is

E( = E  ( /  ' E flrfo) E,

-  E E E|n

( w
p  v a n V g  m / e i J a

f j  ( 0 L - » s )  ,
V 3  U a w )  f  )

=  £ K E (n (2-35)

For the nth mode

(E t )n =  K E tn 

(H t)„ =  fn^lnH jn

The impedance for the nth mode Z n is

_  k  X (E t)n _  Vn
(H t)„ "  in

  1 ' van‘va m / ^ 0‘

‘ 1 : 5

— T- £*m ^nm  (2-36)
in m

where Znm can be interpreted as the coupling impedance between mode n and mode m, 

imZnm as the voltage contributed from mode m to  mode n. The total voltage of mode n 

takes the summation over all of the waveguide modes. Eq. (2-36) gives the impedance 

looking into the cavity. The impedance looking out of the cavity is the negative of Z n 

since k now is pointing outward, which leads to n  x H  = -  ]£n *nE*.

Assume tha t only the dominant mode propagates in the waveguide and define 

1/ Qext,ai = vl i / cuaZoi, where Zqi is the characteristic impedance of the guide for
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its dominant mode at the resonant frequency w„. The impedance has only the Z n  

term , which is

(2 -  37)

Qext,ai is a measure of coupling of the ath  mode to the output through the dominant

mode of the guide. If uai is large, the coupling is strong, and Qext,ai is small.

2.4.2 The short position of the coupler

Let us now connect a terminated waveguide to the open surface S'  of the cavity. 

The length of the guide is d. The impedance looking into the guide is

This gives a  relation between d and w (or A3). The curves determined by Eq. (2-40) are

summation over a in Eq. (2-40) is small, d ss nXg/ 2 , this gives the part of the curves 

close to the dashed lines. As the frequency goes through a resonant frequency, the 

dominant term in the summation, Qext,a/(u/ua - w a/u>), goes to infinity and changes 

sign; d increases by A3/2 , and the curve crosses from one of the straight lines {nXgf2)  to 

the next ((n +  l)A3/ 2). A resonance occurs at approximately d = (n + l /2)Xg/2.  In the 

case of the cavity on resonance, the electric field at the short position forms a standing 

wave minimum. The field in the waveguide is, in general, much smaller than the field

Zguidt — jZ q i t a n 27rd/Aa (2 -  38)

where Xg is the guide wavelength. This impedance must be the negative of Z n  of (2-37)

d  i/Qcxt,al (2 -  39)

or

( 2 - 4 0 )

illustrated in Fig. 2-6. Far from the resonant frequency, the term associated with the
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Figure 2-6: Frequency of the cavity vs. the short position d

in the cavity; a change of the short position has the least effect on the frequency. This 

corresponds to the vertical part of the curve. As the short moves farther away from 

the resonant position, the cavity is driven off resonance, and the field in the guide is 

comparably large. A change of the short position dramatically changes the frequency, 

which is shown as the straight part of the curves tha t coincide with d — nXg/2.  In such 

case, the cavity is detuned.

2.4.3 The tuning curve of the CEBAF cavity

The tuning curves of the CEBAF cavity are obtained by running MAFIA at different 

coupler lengths. Five low frequency modes are shown in Fig. 2-7. The center curve 

corresponds to a resonant frequency of about 1497 MHz, which is the operating mode 

of the CEBAF cavity. The distance in the figure is measured from the axis of the 

cavity. The cavity is detuned for this mode if the short is placed a t a  distance of about 

14 cm. The T E \ q waveguide wavelength for 1497 MHz is 29.93 cm. Based on the above 

analysis, the short position for the cavity on resonance is at d =  21.5 cm.
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Figure 2-7: Tuning curve of the CEBAF cavity.

2.5 Numerical tuning of the coupling strength of the FP coupler

The coupling between the cavity and the waveguide determines the power flow as

cavity steering studies. The finite mesh used in the simulation changes the coupling 

between the end cell and the FP coupler. To match the experimental condition of 

5 M V/m gradient and 500 W att input power (low beam current), the coupling must be 

adjusted. The tuning of the coupling strength can be accomplished by adjusting the 

stub position of the FP coupler.

The coupling is characterized by the external Qext, which is defined as the ratio of 

the energy stored in the cavity and the power flow in the coupler. For our purpose, 

Qext is not needed to be calculated, instead, we only need to know the ratio of the 

amplitude of the field in the waveguide and the field in the cavity. The FP waveguide 

is a rectangular structure. The dimension of the guide is (a=13.44cm x 6=2.502cm). 

The cutoff frequency is =  jrc/a =  27T x 1.12 X 109. Assuming tha t the traveling wave 

in the waveguide is T E \ q mode. From [17], the power flow in the waveguide is

well as the field strength in the coupler region. The coupling strength is im portant in

( 2 - 4 1 )

where for T E  mode ij> =  Hz — H q cos(jra:/a)e,A:i*~Jwt. Integrate over the waveguide
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surface A  we have

p  =  abHjcfi \  L  _  / ^ \ ay /2
4 \ u x J  ^ \ u )  J

(2 -  42)

The relations

( 2 - 4 3 )

lead to

where Z q =  376.8 is the impedance of the vacuum and k =  u f c  is the wave number.

where Eo is in M V/m. For P  =  500 W att, Eto — 1.8292 x 10 2 M V/m. MAFIA output 

gives the amplitude of the standing wave Estand• Thus E ttand =  2 £ to =  3.6584 x 10” 2

The stub position of the FP coupler determines this ratio. The numerical result of 

this ratio versus stub position is shown in Fig. 2-8a. The stub position is measured 

from the axis. Shown in Fig. 2-86 is the maximum of the E x component on the axis 

in the coupler region. The coupling strength has a minimum at about 11.5 cm. The 

coupling gets stronger if we move the stub both ways away from this point. There are 

two positions which have the right coupling. From the point view of cavity steering, 

it is preferable to place the stub farther away from the axis, as seen from Fig. 2-86.

The power flow in terms of the amplitude of the electric field of the traveling wave is

(2 -  44)

Evaluate P  for the parameters given above we have

P  =  1.4943 X 106E,2o ( 2 - 4 5 )

M V/m. In the cavity, to achieve a average gradient of 5 M V/m, the maximum amplitude 

in the center of the cells is Ec =  1.99 MV/m. The ratio of these two field is

= 1.838 x 10"2 (2 -  46)
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Figure 2-8: The coupling of the FP  coupler vs. the stub position.

There is, however, another im portant factor need to be considered. The cavity has a 

few modes that have frequencies lower than the fundamental mode frequency as shown 

in Fig. 2-7 (only two are shown). These modes can be coupled out only through the FP 

coupler since the HOM coupler has higher cutoff frequency. Higher coupling strength is 

required for these modes. This can be obtained by placing the stub closer to  the axis, 

as indicated in the figure. It is estimated th a t strong lower modes would cause greater 

damage to the beam than the cavity steering. It is therefore preferable to choose the 

stub position to be 10.96 cm. This choice more efficiently extracts the lower modes out 

of the cavity, even though the cavity steering is stronger.

2.6 Field distribution in the cavity

As the parameters of the cavity and the coupler are determined in the  previous 

sections, the field of the cavity is evaluated. MAFIA solves the eigenvalue problem

(V2 +  ifc2)E  =  0 ( 2 - 4 7 )

It first finds the eigenvalues {&,•} (the frequencies), and then finds the eigenvector E. 

The frequency of the fundamental mode obtained from MAFIA for the CEBAF cavity
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is 1495.38 MHz. The accuracy of the numerical calculation is as the follows

Frequency 1.0 x 10-5

(V • D = 0) 1.2 x lO -8

(V x V x E = E) 1.3 x 10~5

(V >B = 0) 4.5 x lO "13

Since there are inodes tha t are close to each other, there is contamination among the 

eigenvectors. The contamination factor for our calculation is 2 X 10-3 . This factor 

determines the contamination of the actual vector under the worst assumption. The 

contamination is reasonably small. The overall accuracy of the simulation is good.

2.6.1 Multipole-field distributions, 3-D field expansion

Since the structure of the couplers is so irregular, we expect tha t the fields have 

multipole components. The multipole fields can be studied by 3-D field expansion. In 

a resonant cavity, the E and B fields satisfy the wave equation

where Vj_ is the transverse Laplace operator.

T M  m odes:

For T M  modes, the full E and B fields can be determined by E z(r,d,z) ,  which 

satisfies

where k =  w/c is the wave number. Assuming the fields have an e±J *̂2 dependence, 

Eq. (2-48) becomes

(2 -  50)
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Let L  =  75 cm be the to tal length of the cavity; z = 0 be the center of the cavity.

E z{r, 6 , ± L j 2 ) =  0 be the boundary condition. The general solution of (2-50) is

E z = I m(Vnr) (cos(Cn • « )(A jm sin(m0) +  B ^ m cos(m0))

+  sin(Cn * z)(C%m sin(m 0 ) +  D ^ m cos(m0))) (2-51)

where (n =  (2n — 1 )n /L ,  Vn — Cn ~  (2^/A )2 > 0, I m{T}nr) are the modified Bessel

functions of the first kind. For rfc < 0 , rjn = i / |  j]'* } and Im(Vnr ) is replace by Jm(r]„r),

the Bessel function of the first kind. The E i  and H i  are determined by the transverse 

derivatives of E z(r , $, z)

E x =  ± j - ^ V LEz{r, 6 , z )  (2-52)
Vn

cB x =  ^ z 0 x E i  (2-53)

W ith the ±  signs correspond to e ^ ' 2, we have

(±j)cos(C„z) =  - s in  ((„*) (2-54)

(±j)sin(Cn-2) =  cos(Cn2) (2-55)

and the B field is tt/2  phase ahead of the E  field

e-(jwt+*/2) _  - j e - i " 1 (2  -  56)

The 3-D expansion of other field components are obtained. The following is a  summary 

of the fields for the T M  modes.

E z =

Er =

Im(ynr) («>s(C„ • z ) ( A ^ m srn(md) +  B ^ m cos(m0))

+  sin(Cn • 3){C%m sin (mfl) + cos(m0))) (2-57)

(sin^ n ' z ^ An,m sin(m^) +  B%m cos(m0))
In
-  cos(C„ • z ) ( C ^ m sin(mO) + D ^ m cos(mfl))) (2-58)
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Eg =  K n  ImiVnr) . z ) ( A ^ m cos(m$) -  B ^ m sin(mO))

-  cos(Cn • z)(Cn,m cos(m0 ) -  D%>m sin(m0))) (2-59)

c ' B r =  - ^ ^ ^ ^ ( c o s ( C „ - s ) ( ^ m c o s ( m 0 ) - 5 ® m s i n ( m ^ ) )

+  sin«„ • z ) {C ^m cos (me) -  D%>m sin(m0))) (2-60)

C‘Bb ~  ~ 2  ~Jnii r n r  ̂ (c°s(Cn • z )(A^m sin(mg) +  B%m cos(mfl))C7?n or

+  sin(C„ ■ z)(C®m sin(m0 ) +  cos(m0))) (2-61)

T E  m odes:

For T E  modes, H z satisfies the same equation as the Ez field in the T M  modes. 

The 3-D expansion of the H  field is calculated the same way as the E  field in the T M  

modes. The transverse E  field in the T E  modes can be calculated from B x:

Ex = - ( ± ) z 0 x (cBx) ( 2 - 6 2 )

A summary of the 3-D expansion of the fields of the T E  mode is listed as follows.

c • B z = Im(r}nr) (cos(Cn * z ) ( A s i n ( m f l )  +  B%m cos(m0))

+  sin(Cn • z)(C £m sin(mfl) +  D * m cos(mff))) (2-63)

c Br _  & dIm{r}nT) § z ) (A * m sin(mff) +  cos(m0))
Vn

- c o s « ’B * « )(C jmsin(mff) +  Z»Jm cos( (2-64)

c - B e = ~ ^n — (sin(Cn • z)(A *m cos (mO) -  B ^ m sin (m l))
tn

-  cos(C„ • z)(C ^m cos (mff)  -  D * m sin (m0 ))) (2-65)

E r = - _g_mJ™(T7r*T’) (cos(C„ • z ) ( A ^ m cos(mfl) -  B&m sin(mfl)) 
c^n

+  sin(Cn • * ) (C jm cos(mfl) -  2?Jm sin(mff))) (2-66 )

E ° = cr?  ̂ (cos^ n ' Bin(mfi) +  cos(mfl))

+  sin(Cn • z ) ( C ^ m sin(mff) + D * m cos(mfl))) (2-67)

^
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It is found th a t the fundamental mode is a  mixed mode. It has both T M  and T E  

components instead of only the T M  component, which is the case of without couplers. 

The m is the index of the angular distribution. The m =  0 terms are cylindrically sym

metric, the m — 1 terms have dipole symmetry, and the m  = 2  terms have quadrupole 

symmetry. The n  is the index of the Fourier transform in the z  direction, which de

termines the multipole distributions along the z  axis. Individual multipole fields are 

obtained by summing over index n for fixed m.

The sampling points of the fields for the Fourier transform are defined on the r = 

0.5 cm cylinder. The number of points is 291 in the z  direction and 80 in the angular 

direction. The to tal number of terms for the z  transform is 34, and the to ta l number 

of terms for the angular transform is 5.

2.6.2 Fields of mode m =0

The m=0 mode is the acceleration mode. It has only the Ez , E r and Bg components. 

The distribution of fields a t r  = 0.5 cm are shown in Fig. 2-9 The field is normalized 

to 1 MeV energy gain. The E z field has essentially the same strength in all of the five 

cells, as can be seen from the figure; the flatness of the E z fields in the five cells is about 

±2.5%.

2.6.3 Dipole fields, m = l

The dipole fields are the  fields of the m = l mode. As shown in Fig. 2-10, the dipole 

fields are localized in the HOM and the FP coupler regions. Both the transverse and the 

longitudinal components of the fields have dipole moments. For the transverse fields, 

the non-zero components in the HOM coupler region are Ex, E y, B x and B y. These 

fields give both x  and y deflections to  the charged particles. In the FP  coupler region, 

there are only non-zero E x and B y fields. E y and B x vanish because the coupler is
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Figure 2-9: Fields of mode m=0.

symmetric about the y =  0 plane. The Ex and B y fields give only x  deflections, and 

c - B x  is larger than 2?j.. The steering effect in the x  direction is therefore to be stronger 

than that in the y direction. The dipole strength of B z is small. The dipole strength 

of E z is comparable to the dipole strength of E r . The effect of this dipole E z field is to 

generate energy spread as the particles are accelerated a t different azimuthal positions. 

Comparing the strength and the extent of the field region with the m=0 mode, this 

effect is small and can be ignored.
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Figure 2-10: Fields of mode m = l.
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Figure 2-11: Fields of mode m = 2 .

2.6.4 Quadrupole fields, m—2

The quadrupole fields are related to the m=2 mode. Fig. 2-11 shows the quadrupole 

strength of the E  and B fields a t (r  =  0.5 cm,9 =  0). The quadrupole effects are 

mainly contributed from the JBj, fields. The strength of c • Bg in the figure represents 

the strength of the normal quadrupole and c • B T represents the skew quadrupole. The 

source of the normal quadrupole is located mainly in the FP coupler region while the 

source of the skew quadrupole is located purely in the HOM coupler region. This is 

anticipated since the FP coupler has one dimension symmetry, while the HOM coupler 

has none.

2.6.5 Fields of higher-order modes, m > 2

The fields of higher-order modes, m > 2 , are small. Shown in Fig. 2-12 are the 

sextupole fields (m=3). These fields are much smaller then the dipole and quadrupole 

fields. The fields of m=4 or higher are also small. They can be ignored. In the cavity 

steering studies in the following chapters, we will only keep the terms up to  m = 2 .
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Chapter 3

The effects of the Multipole Fields on Beam Dynamics

In the previous chapter, we studied the multipole field distributions of standing 

waves in the cavity. The actual fields vary as As a charged particle traverses the

cavity, its trajectory will be pushed and bent by these fields as result of acceleration and 

steering. The strength of these effects depends on both the initial RF phase of the fields 

when the particle enters and the velocity of the particle. If the velocity of the particle v 

is less than the phase velocity of the RF field, which is the speed of light (c) in our case, 

there will be a phase slippage while the particle is traversing the cavity. The acceleration 

will be different due to this slippage, and the phase of maximum acceleration for particles 

with different energies will be different. The steering will be affected by the slippage 

the same way. Moreover, the transverse force is the combination of eEr and evBg. For 

m  = 0 modes, Er and cBg have the same amplitude throughout the cavity. For v =  c, 

the transverse force from the E  and the B  terms totally cancel. For v ^  c, the remnant 

of the cancellation is finite, and the force is radial and cylindrically symmetric and is 

sensitive to v. This force produces the so-called azimuthal focusing. For the multipoles 

(m = l,2 ), the fields are well localized. The amplitudes of Es. and cB±  differ by a large 

amount. There are transverse forces either for v =  c or v ^  c and the forces are not 

as sensitive to the phase slippage and the velocity of the particle as the m =0 mode. In 

this chapter, we present a  quantitative study of the effects of the multipole fields on the 

beam dynamics.

37
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3.1 Transverse momentum change due to the multipole fields

The transverse force experienced by a  particle traversing an RF field is

f = = Ej. +  (v X B)j. (3 -  68 )

Usually in accelerator beams, i>x < <  v and vz & v. For cases where H z is small, as in

the CEBAF cavity for example, Eq. (3-68) reduces to

f  -  E x  -f tiz0 x  B x (3 -  69)

Consider only the part which is related to  For TM modes

El  = (3-70)
K  ~

H x  =  z0(tf~c2n)ZoX VlEz ( 3 ' 7 1 )

and for TE mode

H i = p r r ^ - L *  (3*72)

E i = (3-73)
K ~  Sn

We have the transverse force

jZ ok  z0 x Vxff, + r r ^ z o  x V LHZ
*2 - c r  

■

+  72 3  r 2  ((nMv ~  Zok)zo  X V x-ga (3-74)
“  Sn

The momentum change for mode m due to this force is

Ap™j- = (3-75)

We can evaluate the momentum change by substituting the Ez and H z given in the

previous chapter, Eqs. (2-50, 2-63). For the purpose of a  general analysis of the steering



39

effect in this section, we will, instead, use a more general expression of the longitudinal 

field. We will extend the expansion period to infinity {L —► oo). The spectrum of £n 

then becomes continuous (£*)• The summation over n is replaced by an integral. The 

6  dependence of the expansion is unchanged. Considering tha t the time dependence 

of the fields is and assuming that the energy of the particle is high (/? fa 1),

integrating Eq. (3-75) over t and £* from —oo to +oo leads to

A P mX =  - - V x E z(r, 0 , m)  (3 -  76)
u)

Only the TM  mode contributes to the transverse kick. The general form of Ez for mode 

m  with wave number is

OO CO
E z(r, 6 , z, Q  = AmJm(T]rr) cos(m0)ejCf* +  £  B mJm(r)rr ) sin(m0)e?(** (3 -  77)

J7i=0 m =0

where ^  +  Cl =  k 2  =  ^Ti ( ^ r )  is the Bessel function.

We have

APX =  “  w ^  "  £\(£ + m)V  ( I " )  (Am cos(mO) +  B m sin(m0) ) ro

^  l ( i  +  mjl  ( 2") »’2<+m- 1(Am sin(mfl) -  B m cos(m0))0o(3-78)

To first order in r

A p i  =  ^ -^ Y ^ (a :x o  +  yyo) +  ^ “ X o + ^ y i y 0

+ ~ r ^ ( a:xo -  yy ° ^ + + xy° ) j  t3-79)

Now it is clear tha t the m = 0 (Ao) term is cylindrically symmetric which causes 

azimuthal focusing, the m =  1 (Ai and B\)  terms are the dipole moments which result 

in steering in the 2: and y  planes, and the m  =  2 (A 2  and B 2) terms are the quadrupole 

and the skew quadrupole moments which produce both focusing and x  — y coupling. The
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normal quadrupole Is related to cos(20) and the skew quadrupole is related to sin(20) 

in the E z expansion.
2

Since i) 2  — k 2  — Q2  =  — goes to zero as 7  goes to  infinity, from a first glance at 

Eq. (3-79) one would conclude tha t the transverse momentum change closely depends 

on the energy of the particle. This is not the case for high energy particles. In the case 

of small tjt , Jm (T]rr ) is proportional to 77™. From the multipole studies in the previous 

chapter, the field has finite value for each of the modes m = 0 ,1 ,2 . This suggests that

7]™Am and 77™ Bm is independent of 7 . So the dipole and quadrupole terms in A P j.

become finite constants for large 7  while the azimuthal focusing varies as
7

The above results were obtained under the assumption th a t the trajectory of the 

particle is a  straight line, which is equivalent to a  thin lens approximation. This is true 

for the dipole and the quadrupoles terms since the fields of these modes are well localized 

in the coupler regions. For the m =  0 mode, there is a thick lens effect and a  more 

accurate description of the cavity focusing can be obtained by taking into account the 

variation of the particle trajectory[20, 21], For TM and m  = 0 mode, Eqs. (2-57)-(2-61) 

to first order in r are

Ez(r, z , t )  = E z(z) cos(u?t +  <fo) (3-80)

E r(r, z , t )  = co sfrt + f r )  (3-81)

TLJ
B e ( r , z , t ) =  - —^ E z(z )sin(u t  +<f>0) (3-82)

2c

where the sinusoidal time relation is included and fo  is the phase offset of the particle 

relative to the phase of maximum acceleration. All of the fields are in terms of the 

longitudinal field E z(z). The radial momentum change due to these fields is

A P T( z )  =  e J  ^  cos(wf +  4>q )  + ~ ^ B z ( z )  sin(wf + &>)) —

(3 -  83)

Let Gz(z ) =  eEz{z) /mc2, and integrate the first term  on the right hand side by parts.
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We have at position z

r(z)70*)&(*) = 7(-o°)/3r(-oo) -  7 ^ r ^ G z(z)cos(u>t(z) + fa}

+ / o o  ^ 7 ) Gz^  cos(wf(*') +  ^ ° ) dz>

-  L  ^ I ' w u T ) 0 ^ s iJ H *0  + (3' 84)

Since r'(z) ~  , at high energies, we have

rw=rw+w^i(2 - c) ■ r  5̂ Si(7)G’(v) c°s(w<(2,)+*>)i2' <s ■s5>
where Gz(z) = 0 for z < a is assumed. Substituting r(z) into Eq. (3-84), to the second 

order of 7 we have for the final momentum of the particle after traversing the cavity

7 (oo)A(oo) = y ( —oo)ffr( - c o )  ( l  +  y  +  / °2^ , / °3)

- r (a) ( iU  + — ~ + JU )  (3-86)

where

/01 =  ~ J  Gz(z()cos(ut(z')  -f 0o)dz'

/02 =  ^Gz(z')cos(u)t(z') + f a } J  Gz(z")cos(wt(z")-{-fa^dz'^dz'

Io3 =  -■ J  (z' -  a)Gl(z') cos2 (wt(z') + 0o)dz'

/11 =  ^ J  G2z(z') cos2 (ut{z') +

/12 =  ^  ^Gt(z, )cos(ut(z,) + f a )  J  Gl(z") cos2 (ut(z") + f a }  dz’*̂  dz1

I\z  = £ J  cos2 (wt(z') + 0O) j  Gz(z,/) cos(ut(z") + fa ) dz'

i i 4 =  G ziz^ s in iu t i z ^  + fa'jdz’

Terms Iqi, 0̂2 and /03 are the higher-order terms of the adiabatic damping. Terms h i ,

h i ,  h z  and h i  are related to the azimuthal focusing. For high energy particles, the
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dominate term for the azimuthal focusing is In -  It is positive for all phase offsets. Thus 

the field is focusing for all phases, and the focusing is proportional to  1 . Rewrite I n  in 

the following form

-  ^cos(20o) J E 2 (z)cos2 (uz{c)dz  -f- sin2(^o) j  E 2 (z )dzJ  , (3 -  87)

which shows tha t the amplitude of the focusing is modulated by the  phase offset (fa)  

with a  double frequency. If the energy is low, the second order terms becomes im portant. 

Those terms are not always positive, and defocusing may exist for some RF phases.

3.2 Particle tracking

Numerical integrations were performed to study the  beam dynamics in the super

conducting cavities. To evaluate the RF fields in the cavity for the particle tracking, the 

original MAFIA output can be used to calculate the 3-D fields by means of interpolation. 

Alternatively, the Fourier expansions developed in chapter 2 can be used. Since the 3-D 

interpolation involves fewer mathematical manipulations than the Fourier expansions, 

execution will be faster for the first choice.

In the modeling, only the fields close to the axis are included to  save computer 

memory. The mesh in this region is uniform in both the x  and y planes. The mesh size 

is 4 mm. The fields of the mesh points with indices -5 to 4 in the x  and the y directions 

and 1 to  197 in the z  direction are included. This mesh covers a physical region of -2.0 

to 1.6 cm in the x  and y axes and -37.5 to 37.5 in the z  axis. Since the fields are not 

all defined on the mesh points (Fig. 3-13), the actual region covered by the modeling in 

the x  and the y direction is -1.6 to 1.6 cm.

3.2.1 Subroutine for evaluating the fields

Subroutine CAVFLD is w ritten for the field evaluations. It contains five 10 X10 X197 

arrays to  store the five 3-D field components, namely E x, E y, E s, B x and B y, of the
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Figure 3-13: The fields defined at mesh point (I,J,K).

MAFIA output. Bz is small. The transverse velocity v± is small, and vj_ x  B z is 

negligible.

The IMSL subroutine Q3DVL is used for the 3-D interpolations. The interpolation 

function used in Q3DVL is a 3-D quadratic function, and a 3 x  3 x 3 grid lattice is used 

for the interpolation.

There more than 300 identical cavities in the CEBAF accelerator. These cavities 

have different orientations in terms of the direction and the location of their FP power 

couplers. Two parameters, the polarity and the position of the FP coupler, are defined 

in the code to  specify the orientations of the cavities. The polarity of a cavity is defined 

as positive if direction of the FP coupler is oriented such tha t the power is fed 

into the cavity from the positive x  direction and it is if the power is fed in from 

the negative a; direction. The position of the FP coupler is called downstream if the 

FP coupler is at the downstream end of the cavity and it is called upstream if the FP 

coupler is at the upstream end of the cavity. The MAFIA modeling is for the cavity 

with positive polarity and downstream FP coupler. The fields of other cavities can be 

obtained in terms of coordinate transforms.

In a cavity-pair, the first cavity has a downstream FP  coupler and the second cavity 

has a upstream coupler (the FP couplers are in the middle of the two cavities). The 

two cavities have the same polarities. The cavity-pair has a  rotational symmetry about
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the x  axis (180°).

A cryomodule contains four cavity-pairs. The first and the fourth cavity-pairs have 

the same polarities (negative) and the two cavity-pairs in the middle have positive 

polarities. The cavity-pairs with different polarities have rotational symmetry about 

the z  axis (180°).

The fields transform as vectors under rotations. In the code, the field point (a;, y , z ) 

in the lab coordinate is transformed into the local coordinate system used in MAFIA. 

The fields are calculated in the MAFIA coordinate and then are transformed back to 

the lab system for particle tracking simulations.

3.2.2 Codes for beam dynamics

Two codes are used to study the beam dynamics in the cavity. CAVFOURIER is 

written for studying the effects of a  single cavity. It performs Fourier transforms to 

decompose the transverse momentum change into multipoles. PARMELA is modified 

to include the CEBAF cavity subroutines. It is used to study the effects of multi-cavities 

in a beam line. CBFCAV3DIMP is the beam dynamics routine for both CAVFOURIER 

and PARMELA. It numerically integrates the Lorentz force

F  = e (E(x, y, z) sin(wt(^) +  <j>o) + v  x B (a , y, z) cos(wt(.z) +  <£o)) (3 -  88)

f z = 37.5 J ,
A P  =  I F — ( 3 - 8 9 )

J z = 37.5 V z

/ z /
-r-rrdz' is the time elapsed 

■37.5 » ( * )

in the cavity. The momentum of the particle is accumulated. At the end of the cavity, 

the longitudinal momentum change determines the acceleration of the cavity and the 

transverse momentum change determines the steering.

C A V F O U R IE R

The purpose of this code is to  get the coeficients of Eq. (3-79). From these co

efficients, the dipole strength and the focal length of the azimuthal focusing and the
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quadrupoles can be obtained. Rewrite Eq. (3-79) in the component form

A Px =  ax + bxx  +  cxy (3-90)

A Py = ay + byy  +  cyx  (3-91)

In this expression, the focusing coefficient is ^ (bx +  by) and the quadrupole coefficient 

is ^(bx — fty). The skew quadrupole coefficients are cx and cy and they m ust be equal.

The x  and y in Eqs. (3-90,3-91) are defined as the coordinate a t the entrance of the

cavity.

A number of particles are initiated uniformly on a  circle of radius a a t z  =  -37.5 . 

The initial transverse momenta of the particles are zero. The m om enta changes calcu

lated a t the end of the cavity A Px and A Py are only functions of the azim uthal angle 

6 . The coefficients are obtained by the following integrals

“* = y k f J o  A P x d e  a y ~  2ibr J  A p ydd

= o7f /  AP*cos(0)d0 by ~ a w f  A P^sin (9)d9
J O  J O

°x ~ ^ L  sin̂ ^  Cy = cwJQ ^py cos& d9

M odified  P A R M E L A

PARMELA[18] is a  versatile multi-particle code in which a  beam, represented by 

a  collection of particles, may be transformed through a  linac an d /o r transport system 

specified by the user. It was originally developed by Don Swenson[l9] at MURA in 1963. 

It has been modified by various users to deal with their special elements. PARMELA 

was modified to  include subroutines dealing with special CEBAF elements such as CE- 

BAF capture section and CEBAF buncher. Later on, 3-D CEBAF cavity subroutines 

CBFCAV3DIMP and CAVFLD were added to  the CEBAF version PARMELA by the 

author. The new version PARMELA is capable of simulating the entire CEBAF beam
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line. PARMELA works as a  ray-tracing program. For simpler elements, it uses the 

transport m atrix to map the coordinates of the particles. For complicated elements like 

CEBAF cavities, numerical integration is used. PARMELA can perform space charge 

simulations, emittance and betatron function calculations, etc.

3.3 Beam dynamics in the CEBAF cavity

Before investigating the beam dynamics in the cavity, we need to  address one prob

lem tha t was left unanswered in chapter 2. In section 2.6 we mentioned th a t there are 

mutual contaminations among the adjacent modes. If there is no contamination, the 

eigenvalue (or the frequency) and the eigenvectors (or the fields) satisfy the Maxwell’s 

equations with optimally small deviation. The contamination among the modes induces 

inconsistency among the fields and the frequency. The frequency and the fields will no 

longer match well to Maxwell’s equations. Even though the error caused by the con

tamination is expected to be small since the contamination index (2  x 10-3 ) is small, 

the effect of the inconsistency may cause some problems in beam dynamics simulations. 

Since the fields are contaminated, in principle, one can correct the fields to  minimize 

the error induced to the Maxwell’s equations, but it is impractical. On the other hand, 

one can also modify the frequency to match the fields so that the Maxwell’s equations 

can be satisfied with minimum error.

A good place to look a t this effect of the mismatched frequency is the azimuthal 

focusing. At high energies, the azimuthal focusing goes to zero. To first order of r, the B  

field is proportional to the E  field and the frequency. If the frequency is inconsistent with 

the fields, the balance between the forces from the E  and the B  fields will be destroyed. 

The azimuthal focusing for very high energy particles will have finite strength instead 

of zero as predicted from the analytical analysis. The results of the azimuthal focusing 

with the contaminated fields and frequency is shown in Fig. 3-14, the solid line is for
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Figure 3-14: Azimuthal focusing for E = 1 and 10 GeV with original frequency and fields 
from MAFIA.

energy 10 GeV and the dashed line is for 1 GeV. There is no ~  relation between this two 

curves. However, the small difference between the curves suggests tha t the azimuthal 

focusing at these energies is small. Thus the finite focusing for 10 GeV is mainly due to 

the frequency error.

To first order of r, the fields tha t satisfy the Maxwell’s equations have the form of 

Eqs. (3-80)-(3-82). We have a t high energies

A PT • c = j  c p s ^ f  + S )+  T- ~ - E 2(z , u i) sinfwif +  6 )J ^

=  -  (3-92)
7

If a different frequency oj is used and the amplitudes of the fields are kept the same, we 

have

APr -c = j  cosM  +  6) + 7̂ - E z( s )u i) s m (u t  +  6) j  ^

=  £ ,  ( ~ r ~ l{ f ^ c o K u t + S ) + +*>)  j

+ f  —1 a~  sin(o>t 4- S)dz
J—oo 2tC

=  _ + u l r Eg sm( 6 ) (3-93)
^ aC

where Eg is the maximum energy gain in one cavity. It is shown that the error induced in
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the momentum linearly depends on the difference of the frequency. The sine dependence 

on the RF phase offset is also shown.

The maximum energy gain in Fig. 3-14 is 2,5 MeV. The amplitude of the A P  devi

ation is 0.46 X IQ-3  M eV/c/cm.

cA P
A F  =  =  1.756 MHz (3 -  94)

JT bg

The optimal frequency for the CEBAF cavity is, 1495.38+1.756, 1497.1 MHz. With 

application of this frequency to code CAVFOURIER, the result for the azimuthal fo

cusing for 10 GeV is shown by the dotted line in Fig. 3-14. The focusing strength is 

zero through out 360° of RF phase,

3.3.1 The effects of the cylindrical symmetric fields (m =0)

Acceleration

The m =0 mode is the acceleration mode. The energy change of the particle for a 

given momentum change A P  is

A E  — 7 ?noc2(
1 + 2F0A f  + A Pi!_  (3 _ 95)

(7 m0c)

where Pq is the initial momentum. The energy gain of the low energy particle depends 

on its initial energy, and relativity is certainly a factor. Another factor is due to the 

velocity of the particle being slower then the phase velocity of the RF wave, which is 

the speed of light. The particle is not accelerated a t a fixed RF phase. For example, 

a particle initially accelerated on crest will be shifted off crest while going through the 

cavity and be less accelerated. For high energy particles, the energy gain A E  =  A Pc  

is independent of initial energy. Fig. 3-15 shows the energy gain of the particles with 

different initial energies as functions of the initial phase of the cavity. The gradient 

of the cavity is 5 MV/m. The effective length of the cavity is 0.5 m. The maximum 

acceleration for a high energy particle is 2.5 MeV. The maximum acceleration for low
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Figure 3-15: Energy gain vs, initial EF phase for different initial energies. Gradi- 
ent=5 M V/m. From the left to  the right: E 0  =0.5 ,1 .0 , 1.5, 5.0 and 103 MeV.

energy particles is smaller due to the phase slippage. For initial energy of 0.5 MeV, the 

energy gain is 2.17 MeV. The maximum acceleration RF phase, crest phase, is different 

for different initial energies. For example, the crest phase for 100 MeV is 136.3°, 10 MeV 

is 135.6°, 5 MeV is 133.8° and 0.5 MeV is 64.5°. The acceleration curve is symmetric if 

the initial energy is high and asymmetric if the initial energy is low. A 5 MeV electron 

is already quite relativistic, and the acceleration curve is almost the same as tha t of the 

103 MeV electrons.

Azimuthal focusing

The strength of the azimuthal focusing in terms of the transverse momentum change 

for initial energies of 1000, 100, 40, 20, 10 MeV are shown in Fig. 3-16a and those for 

5 MeV 2.5 MeV and 0.5 MeV are shown in Fig. 3-166. Positive strength corresponds 

to defocusing and negative strength corresponds to focusing. The diamond markers 

indicate the phases of the maximum acceleration. The gradient of the cavity for these 

simulations is 5.0 M V/m. At high energies, 100, 40, 20 MeV, the curves clearly show 

the y  dependence and the double frequency modulation. At 10 MeV and 5 MeV, the 

curves begin to show asymmetric focusing about the crest phase. Higher-order terms 

of Eq. (3-86) become im portant at low energies. At energies higher than 5 MeV, it is
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Figure 3-16: The strength of azimuthal focusing vs. the initial RF phase for different 
initial energies. Gradient=5 M V/m.

Table 3-1: The focal length of azimuthal focusing.

Initial energy (MeV) f (m)
0.5 -4.46
2.5 -4.50
5 -10.71
10 -31.17
100 -2213.82

focusing at all phases. At low energies, 3 MeV, 2.5 MeV and 0.5 MeV, there are phases 

tha t have defocusing forces. Knowing the output energy of the particle E 0lit in MeV, 

one can get the focal length

« “ >-i555SS=5Sr ( 3 ' 9 6 )

Table 3-1 shows the focal lengths on the crest phase for electrons with different initial 

energies. The azimuthal focusing is independent of the polarity (rtar) and the position 

(upstream FPC or downstream FPC) of the couplers.

3.3.2 Cavity steering, the effects of the m = l fields

The m = l mode is the mode of cavity steering. The effect of this mode is to steer the 

beam off the designed beam centroid. The CAVFOURIER results of the x  component
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of the steering for energies of 1 GeV, 100 MeV, 40 MeV, 20 MeV and 10 MeV are shown 

in Fig. 3-17a and for energies of 5 MeV, 3 MeV, 2.5 MeV and 0.5 MeV are shown in 

Fig. 3-176. The results for the y  component are shown in Figs. 3-18(a,6). In these 

simulations, the FP coupler is downstream, the power is fed in from the negative x  

direction, and the gradient is 5.0 M V/m. The phase relation of the dipole strength 

depends on the polarity and the position of the FP coupler. If the polarity of a cavity 

is changed from negative to positive, the corresponding curve of the dipole strength 

can be obtained by multiplying “-1” to  the curve. If the position of the FP coupler is 

changed from downstream to upstream, the dipole curve can be obtained by reflecting 

the curve about the crest phase and multiplying the curve by “-1” (since there is 180° 

phase difference in the fields).

As shown in Figs. 3-17a and 3-18a, at high energies, the dipole strength is indepen

dent of energy. At low energies (Figs. 3-176 and 3-186), the dipole strengths become 

energy dependent. The amplitude of the dipole steering in the x  plane is about five 

times larger than in the y plane. The phase relation of the dipoles are determined by 

the EF phases of the couplers. The maximum x  steering is about 60° ahead of crest 

phase and the maximum y steering is about 130° ahead of the crest.

We can make an equivalence between the strength of cavity steering with the strength 

of a dipole magnet. For a given momentum change A P,  the equivalent dipole strength 

of the cavity steering is calculated as

j m  T « la -n )  =  ^ H ^  ( S - W )

Table 3-2 lists the strengths of the dipole steering in term of the equivalent strength of 

dipole magnets at some selected energies.
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Figure 3-17: The strength of cavity steering in the x plane vs. the initial RF phase for 
different initial energies. Gradient=5 MV/m.
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Figure 3-18: The strength of cavity steering in the y plane vs. the initial RF phase for 
different initial energies. Gradient=5 MV/m.

3.3.3 Quadrupoles, the effects of the m=2 fields

The m =2 mode has normal and skew quadrupole components. The effect of the 

normal quadrupole is to focus. The effect of the skew quadrupole is to rotate the 

beam, which causes x  ~  y coupling. The CAVFOURIER results for the strengths of 

the normal and the skew quadrupoles are shown in Figs. 3-19 and 3-20 respectively. 

The maximum strength of the normal quadrupole is about five times smaller then the 

maximum strength of the dipole. The strength of the skew is about half of the strength 

of the normal quadrupole. For the normal quadrupole, a positive strength means de- 

focusing in the x  plane. The phase dependence of the skew quadrupole is the same as
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Table 3-2: Equivalent strength of dipole magnet.

Initial energy 
(MeV)

a; plane, /  B dl  
(Tesla*m)

y plane, f  B d l  
(Tesla>m)

0.5 1.17x10“* 4.67x10“ '
2.5 2.27x10“ * -5.50x10“*
5 2.40x10“* -5.50x10“*
10 2.46x10“ * -5.34x10“*
1000 2.46x10“* -4.90X10“*

Table 3-3: Equivalent strength of quadrupole magnet.

Initial energy 
(MeV)

normal quad, d ( f  B d l )  jdr  
(Tesla-m)/cm

skew quad, d ( / B dt)(dr  
(Tesla-m)/cm

0.5 1.17X10“* -1.00x10“'
2.5 3.00x10“* -4.27x10“*
5 3.57xl0“b -4.24x10“*
10 3.94xl0“b -4.04x10“*
1000 4.17X10“* -3.67X10“*

that of the y dipole. They both are solely due to the fields of the HOM coupler. The 

phase dependence of the normal quadrupole is close to  tha t of the x  dipole, but the 

whole curve is shifted to the left by about 10°. The normal quadrupole is affected by 

both HOM and FP couplers, and the contribution from the FP coupler is dominant.

Similarly, we can make an equivalence between the strength of the quadrupole mo

ment to the gradient of a quadrupole magnet. For a given momentum change A P, the 

equivalent quadrupole gradient is

d( j  BM )
— (Tesla • m /cm ) =
dr

vJ -  " W . i -  „  _  A P(G eV /c/cm ) (3 -  98)
0.2998

We show in Table 3-3 the strengths of the quadrupole fields in terms of the equivalent 

strengths of quadrupole magnets a t different energies

The phase relation of the quadrupole strength depends only on the position of the 

FP coupler. The curves shown in Figs. 3-19 and 3-20 are for the case with a downstream
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Figure 3-19: The strength of normal quadrupole vs. the initial RF phase for different 
initial energies. Gradient=5 M V/m.
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initial energies. Gradient=5 M V/m.

F P  coupler. If the FP coupler is a t the upstream of the cavity, the curve for the normal 

quadrupole can be obtained by reflecting the curve in Fig. 3-19 about the crest phase 

and multiplying the curve by “-1” , while the curve for the skew quadrupole can be 

obtained by simply reflecting the curve in Fig. 3-20 about the crest phase.



Chapter 4

Experimental Measurement of the Cavity Steering Effects

The multipole fields of a  cavity act on the beam in different ways. The dipole field 

gives the beam, as a  whole, a transverse momentum offset. As the beam propagates 

down the beam line, it will drift off the reference orbit. The magnitude of the steering 

is a  function of the EF phase. It can be measured by measuring the change of the 

beam position a t some distance down stream from the cavity as the RF phase of the 

cavity is changed. The focusing fields of the cavity change the betatron functions of the 

beam line and cause x-y coupling. They do not steer the beam as long as the beam 

is on axis. If the beam has an offset from the cavity axis, the focusing force will bend 

the beam toward or away from the axis depending on whether the force is focusing or 

defocusing. The strength of the focusing can be determined by measuring the change 

of the relative position of two initially parallel beams as the cavity is turned on and 

off. Experiments were performed on the CEBAF accelerator to  measure the multipole 

effects of the cavities. Comparison between numerical simulation and the experimental 

results are presented. Misalignments of cavities are also a source of cavity steering. This 

steering has different phase relation than the multipoles. It can be extracted from the 

experimental data  by use of the phase relations. Thus, cavity misalignment can also be 

studied by measuring cavity steering. The evaluation of misalignments is presented in 

the later part of this chapter.

55
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4.1 Experimental measurement of dipole steering

Cavity steering was measured on the CEBAF 45 MeV injector. A sketch of the in

jector is shown in Fig. 4-21. The injector starts with a 100 keV gun, followed by chopper 

and buncher sections. The beam is accelerated up to 0.5 MeV by a  capture section. A 

1/4-cryomodule, which contains two superconducting cavities, accelerates the beam to 

5 MeV. The beam is transported to  two cryomodules through a beam line consisting of 

several quadrupoles. Each of the cryomodules comprises eight superconducting cavities, 

or four identical cavity pairs with different fundamental power coupler orientations. The 

nominal gradient of all cavities is 5 MV/m; the total energy of a particle coming out 

of the second cryomodule is 45 MeV. There are quadrupoles at the entrance and the 

exit of each cryomodules; the beam proceeds downstream to the north  linac through 

a  quadrupole telescope and an injection chicane. At the location of each quad, there 

are a pair of small dipoles, called correctors, which are oriented in the x  and in the y 

directions respectively, a viewscreen and/or a BPM. The correctors are used to  steer 

the orbit of the beam centroid. The viewscreens and/or BPMs are used to monitor 

the beam. The quadrupoles in the injector section (below 45 MeV) of the accelerator 

were not used since the cavity focusing is strong enough to control beam size. They 

are generally used for beam centering only. The center of the quadrupoles define the 

center of the beam line. One set of upstream correctors is used for beam centering; if 

the beam is in the center of the quadrupole, changing the quadrupole excitation does 

not change the beam position downstream. If the beam is not centered, the upstream 

correctors must be adjusted until the beam is centered. There are three kinds of beam 

monitors th a t can be used to measure the beam position: viewscreens, harps and elec

tronic Beam Position Monitors (BPM). The “Instam atic” program uses viewscreens to 

measure beam position. This software uses a video camera to take a picture of the beam 

spot on the screen. Digitized data  are analyzed and the beam position is found. The
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accuracy of Instaraatic is about a  half millimeter [23]. The harp is a  device made up 

of two or three thin wires. The profile of the beam is measured by pulling the harp 

traversing the beam. The signal is fitted by a gaussian curve, and the beam position is 

then obtained. The diameter of the wires is about 50 fi, and the accuracy of the harp is 

about the diameter of the wires. The harp is good to measure relative positions, but it 

was not calibrated for absolute position measurement at the time of these experiments 

were carried out. The BPMs were not functional a t the time these experiments were 

performed. Instam atic and harps were therefore used. The energy of the beam and the 

gradient of the cavity were measured by use of a  45 MeV spectrometer.

GUN UNIT CRYOMODULEI CRYOMODULE 2 BEAM MONITOR

E n ~ Z l ^  [cp c f a i x p H ^  \ -----------

Figure 4-21: The CEBAF 45 MeV injector.

Cavity steering kicks the beam off the reference orbit; the strength of the kick is a 

function of the RF phase. The beam positions downstream from the cavity are measured 

in these experiments. Given the distance between the kicker and the beam position 

monitor, the position deviations can be converted to the steering angles. Comparisons 

then can be made with numerical calculations.

4.1.1 System setup

The seventh cavity in the second cryomodule was used for the cavity steering study. 

The beam used in the experiment was pulsed and low current. The beam size was 

required to be small, and any 60 Hz noise should be suppressed. To measure dipole 

steering, it is im portant to place the beam on the beam axis. Otherwise the effects of 

higher-order multipoles will come in. To minimize the noise generated prior to the cavity 

being measured, a  moderate energy is preferred. The cavities in the two cryomodules
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run a t low gradient of about 1.5 M V/m  except for steering cavity, which runs a t a 

maximum gradient of about 5 M V/m. The initial energy of the beam at the entrance 

of the steering cavity is about 20 MeV.

The energy of the beam is measured by the 45 MeV spectrometer. The crest phase 

of the cavities are found by finding the maximum energy of the beam while adjusting 

the RF phase. The gradient of the steering cavity is measured by measuring the energy 

difference between the energies with the cavity on crest and 180° off crest. The effective 

length of the cavity is 0.5 m, and thus the gradient equals to the energy difference. 

Since the cavity steering varies with the RF phase, in order to have an accurate en

ergy measurement, the beam should be centered at all times a t the exit of the second 

cryomodule by use of the upstream correctors while the phase of the cavity is changed. 

The spectrometer is turned off after the energy and gradient measurements. Cavities 

are phased on crest. Beam is steered straight to the center of the beam monitor, which 

is about 17 m downstream from the cavity, where the beam position is measured. The 

RF phase of the steering cavity is then changed and the beam position is measured using 

the beam monitors. During these measurements, all of the parameters on the beam line 

except the R F phase of the steering cavity are kept fixed.

4.1.2 Experimental results on cavity steering

Two sets of data were taken. The RF phase 6  of the steering cavity was scanned 

from -90° to 90° relative to the crest phase with a step size of 10°. The first set of data 

was measured by Instamatic. Fig. 4-22a shows the beam position as a function of the 

RF phase. The initial beam energy for this measurement is 18.42 MeV. The gradient 

of the steering cavity is 5.26 M V/m. Each data point was measured three times. The 

deviation between these measurements is about ±0.2 mm. Shown in the figures are the 

averaged displacement relative to the beam position of the crest phase. The uncertainty 

of the position measurement is about 0.5 mm. The uncertainty of RF phase is about
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2°, which, in terms of position uncertainty, is 0.36 mm in the x  plane and 0.05 mm in 

the y plane. The total uncertainty on the position measurement is 0.6 mm and 0.5 mm 

in the x and y  planes respectively.

The second set of data  was measured by harp, which is shown in Fig. 4-226. The 

initial energy for this measurement is 17.28 MeV. The gradient is 5.26 M V/m. The harp 

has a  accuracy of about 42 (i in position measurement for a point-like beam. If the beam 

is finite and the distribution is not a  standard gaussian distribution, the mean center of 

the beam found by the gaussian fitting may deviate from the weighted center of the beam 

(the beam centroid in our definition). This deviation depends on the distribution of the 

particles and is in this case smaller than 0.5 mm since the beam is close to a gaussian 

distribution. The RF phase deviation is the same as in the previous experiment. The 

uncertainty in position measurement is comparable to  that using Instamatic.

It is worth pointing out tha t the phase offset convention on the CEBAF accelerator 

is different from the numerical simulation. On the machine, the phase relation is cos(<p- 

<f>o); it is cos(<£ -f- 0 O) in the numerical code.

The measurement error estimated above does not include the error due to  the in

stability of the machine. We have observed, during the experiment, the instability of 

the beam, which can be seen in Fig. 4-226. This error could not be quantified. These 

experiments were carried out on the old injector, and the new injector is expected to 

have better performance.

4.1.3 Error corrections

There are errors caused by the cavity misalignment, the correctors, and the earth ’s 

magnetic field. The earth’s field can be compensated by the corrector fields. The rem

nant fields of the correctors steer the beam with strength which is inversely proportional 

to the momentum of the particle. As the phase of the cavity is changed, the momentum 

of the particle is also changed. The steering of the residual field is symmetric about
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the crest phase. There are two types of cavity misalignments that contribute to cavity 

steering, with different phase dependences. The tilt misalignment of the cavity projects 

a fraction of the axial E z component of the cavity to the transverse plane. The steering 

from this transverse field has the same RF phase dependence as the acceleration, which 

is symmetric about the crest phase. The axial-offset misalignment causes the beam to 

be steered by forces of the azimuthal focusing and quadrupole fields. The azimuthal 

focusing is approximately symmetric about the crest phase a t energies around 20 MeV. 

The phase dependence of the quadrupole steering is close to  the dipole steering.

The symmetric parts of the error can be eliminated by symmetrizing the measured 

data about the crest phase. Notice tha t the maximum coupler hicks are about 58° off 

the crest in the x  plane and 48° in the y plane. The coupler steering has the form 

of approximately cos(6 +  4>o), where is the phase offset. Symmetrizing cancels the 

symmetric part and leaves the net contribution from the couplers.

The asymmetric errors due to axial-offsets in the cavity misalignment can not be 

eliminated by doing the symmetrizing. We can, however, estimate their magnitudes. 

The maximum misalignment of the cavity is of the order of 1 mm. According to Figs. 3- 

17, 3-18, 3-19 and 3-20, the maximum error induced by the 1 mm misalignment is about 

4 x 10-4  MeV/c. This error induces relative errors to the dipole steering measurement 

in the x and the y planes of about ± 2% and ± 10% respectively.

The symmetrized results of Fig. 4-22 are converted into transverse momentum by 

the following formula

A P ( 6 ) = (E 0  +  0.5(?o cos(6)) ^  (4 -  99)
h

where D  is the x  or y displacement and L  is the distance from the cavity to the beam- 

position detector. 1=18.42 for Fig. 4-22a (viewscreen) and £=17.28 for Fig. 4-226 

(harp). The results after the error correction are shown in Fig. 4-23. The uncertainty 

in momentum in these figures is 0.7 X 10-3  MeV. Also shown for comparison in the
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figures are the PARMELA results. The experimental results agree with the numerical 

modelling.

4.2 Experimental measurement of focusing effects

4.2.1 System setup

The focusing effects, which include the azimuthal focusing, normal quad, and the 

skew quad, were measured on the north linac of the CEBAF accelerator [25]. Two 

cavities were used in this experiment. W ith all of the cavities off in the linac, a 42 MeV 

beam was centered along the beam line. Two beam orbit correctors upstream of the 

linac were used to  create a pair of parallel orbits separated by 10 mm in the x plane. The 

cavities were turned on with different RF phase settings and the beam spots measured 

at the  beam monitor 34 meters downstream. The beam position was measured by a 

Beam Position Monitor. Since the dipole steering is insensitive to the beam position, 

the relative changes of these beams at the beam monitor exhibit the effects of the cavity 

focusing. A schematic drawing of the system is shown in Fig. 4-24.

As the cavities are connected head-to-head in a cavity pair, the focusing effects 

add or cancel depending on the phase relation of the cavities. At an energy of about 

40 MeV, the azimuthal force is focusing at all phases. The normal quadrupoles cancel if 

the cavities are both  in maximum acceleration or deceleration mode, and they add if the 

two have opposite phases (maximum acceleration and deceleration). The total normal 

quad is positive for the second case if the first cavity is accelerating and is negative if 

the first cavity is decelerating (a positive normal quad defocuses in the x  plane). The 

skew quadrupoles add if the cavities are both in maximum acceleration or deceleration 

mode, and cancel if the cavities have opposite phases. By measuring the cavity focusing 

at different cavity settings, the individual component can be singled out by use of the 

phase relations.
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Table 4-4: Experimental data  of cavity focusing.

Cavities off Cavities on
A xq (mm) Aj/o (mm) A x  (ram) A y  (mm)

Accel-Accel 10.5 0.0 8.95 -1.24
Decel-Accel 10.29 0.0 6.67 0.14
Accel-Decel 10.29 0.0 7.97 0.24

The energy of the beam out of the injector was measured by the 45 MeV spectrome

ter. The gradients of the two cavities were obtained from the control system read-backs. 

The phases of the cavities were set by the autophasing scheme. The uncertainty of the 

gradient calibration is about 5% and about 10~20 degrees in the crest phase.

4.2.2 Experimental results on cavity focusing

The cavities were powered to 5 MV/m. The control system read-backs of the gra

dients are GSET=5 M V/m and GMES=4.969 M V/m  and 5.007 M V/m  respectively 

for the two cavities. GSET is the set value and GMES is the measured value. The 

initial beam energy is 42 MeV. The cavities were arranged in Acceleration-Acceleration, 

Deceleration-Acceleration, and Acceleration-Deceleration modes. D ata taken for each 

of these three settings are shown in Table 4-4. In the Accel-Accel mode, the nor

mal quadrupoles cancel. The change in A x  is solely due to the azimuthal focusing. 

The change in A y  is due to the skew quad coupling. Converted into the transverse 

momentum, we have for the azimuthal focusing a t 45 MeV for one cavity F=1.07 x 

10-3  M eV/c/cm  and the skew quadrupole S = -0 .86x l0~3 M eV/c/cm .

In the Decel-Accel mode, the normal quadrupoles add and are focusing in the x  

plane. The change in A x  is a combined result of the azimuthal focusing and the normal 

quad focusing. The total transverse kick is A P  =  2.2 x 10"3 M eV/c/cm . The azimuthal 

focusing is in this case approximately the same as in the previous one. The strength of 

the normal quad for one cavity is Q=1.17 X 10“ 3 M eV/c/cm . The skew quadrupoles
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Table 4-5: Results of the numerical simulation and the experimental measurements of 
the cavity focusing a t 42 MeV.

Numerical simulation 
(1CT3 M eV/c/cm)

Experimental measurement 
(10- 3  M eV/c/cm)

Azimuthal focusing -1.08 -1.07
Normal quadrupole 1.25 1.17
Skew quadrupole -1.15 -0.86

cancel in this setting as expected.

In the Accel-Decel mode, the normal quadrupoles add and are defocusing in the 

x  plane. The azimuthal force is focusing. At about 42 MeV, the amplitudes of the 

azimuthal focusing and the normal quad are comparable but with different signs. The 

cancellation between them should hold Ax at the beam monitor position approximately 

the same as before the cavities were turned on. The d a ta  in Table 4-4 do not show 

this. Compared with the Accel-Accel case, the norm quad is shown focusing. This 

is contrary to  the result of Decel-Accel and is contrary to  the numerical simulation. 

Even though the multipoles are functions of phase, a 10 degree phase offset from the 

crest phase would not change the sign of the normal quad. In the Accel-Decel mode, 

cancelling exists between the azimuthal focusing and the normal quad. Ax measured 

at the beam monitor should not be smaller than  in the Accel-Accel case. The cause 

of this inconsistency is not known. Further investigations are planned. Despite the 

inconsistency in the normal quad focusing in this set of data, the data for the skew 

components show cancellation as expected.

The cavity azimuthal focusing and quadrupole (normal and skew) strengths were 

calculated from the experimental d a ta  given in Table 4-4. Since the data for the Accel- 

Decel mode are questionable, this set was not used in the calculation. Table 4-5 shows 

the results of numerical simulation of the focusing effects of the cavity at initial energy 

of 42 MeV and the experimental results. The experimental results for the azimuthal
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focusing and the normal quad agree with the numerical simulation to  within 7%. The 

skew quad agrees to within 25%.

The uncertainty of the position measurement is approximately 0.15 mm. This cor

responds to a  transverse momentum of 0.18 X 10“ 3 M eV/c/cm. The ±10° RF phase 

uncertainty induces errors to the multipoles are A F  =  ± 2 .5%, A Q = ± 34%, and 

A S  =  ±19%. The uncertainties of the measurements are 6 F  = 17%, SQ =  38%, and 

SS  = 25%. The discrepancy between the experimental results and the numerical simula

tion is within the accuracy of the measurement. Admittedly, one set of the experimental 

data appears spurious. Unfortunately, the experimental run was limited by programatic 

constraints so no further experimental da ta  available.

4.3 Cavity Misalignment Evaluations

The misalignments of the cavity can be measured by measuring the cavity steering 

versus the RF phase. The impact of either tilt or offset misalignments on the beam is the 

same, th a t is, to steer the beam off axis. The offset-misalignment steers the beam via 

the cavity focusing and it is small as long as the offset is small. The tilt-misalignment 

projects the axial acceleration field onto the transverse plane. The steering from this 

transverse field is significant when the tilt angle reaches the order of milli-radians. 

The steering is proportional to the tilt angle and is a function of the RF phase. We 

will evaluate, in the following sections, the tilt misalignment of the cavities from the 

d a ta  presented in section 4.1.2. We will refer hereafter to the tilt-misalignment as the 

misalignment.

The steering angle of the misalignment along has the following form

O.5oGocos{0) „
m  -  f t  + oiG olcM  ( 4 ' 1 0 0 )

where E q is the initial energy, Go is the gradient, <f> is the RF phase (0 =  0 corre

sponds to  maximum acceleration, or on crest), and a  is the misalignment of the cavity.
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£(0) is symmetric about the crest phase. Knowing f(0 )  a t the crest phase, the cavity 

misalignment is then obtained as

Things become more complicated in the CEBAF 5-cell cavity where the coupler 

fields also steer the beam. In this case, the measured data are the combined effects of 

cavity misalignment and coupler steering. If both had the same RF phase dependence, 

one would not be able to isolate the effect of the misalignment. However, numerical sim

ulation and experimental measurement demonstrate tha t the coupler steering is about

58° off crest. This phase difference enables us to separate the misalignment steering

from the coupler steering.

Coupler-steering is well localized. The angle of coupler steering is, a t moderately 

high energy, approximately

_  - P q c o s ( 0  ±  0 p )  , _

^  E q + O.5(?ocos(0) ( 10 ̂

where 0 q is the phase offset of the coupler steering, and D q is the dipole strength of the 

steering. Let 0 (0 ) be the experimental result of the cavity steering. The contribution 

from the misalignment is

^ ) - w ) - ^ c°;(w )  ( 4 - 1 0 3 )

Eq. (4-103) shows the ideal case for finding £. In reality, the numerical simulation 

has a  small discrepancy from the experimental result, and Eq. (4-103) does not give a 

purely symmetric £(0). Careful adjustment is needed to find the symmetric part of f . 

Based on experience with the numeric modelling of the cavity, the discrepancy is likely 

be the result of errors in the boundary condition applied to the FP coupler. MAFIA 

calculations show tha t the strength of the coupler fields is sensitive to the boundary 

condition applied to the open side of the coupler, while the phase dependence of the
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coupler fields is not as sensitive. In Fig. 4-25 are shown the two curves of the dipole 

strengths with different coupler lengths, or short positions. The maximum strength 

defers by an amount of 30% due to the different coupling strengths for different shorts. 

The phases are within a 2° deviation. The phase relation is well defined because of the 

dimension of the coupler in the z  direction is small. The numerical simulation has good 

accuracy on the RF phase dependence of the steering, even if the boundary condition is 

not appropriately imposed on the open end of coupler. Since the numerical result agrees 

with experiment to  better than 30%, the phase deviation of the numerical simulation 

should be much smaller than 2°. The discrepancy between the numerical and the 

experimental results is mainly due to the boundary condition error. The error induced 

by the boundary error mainly affects the amplitude of the steering. This justifies scaling 

the numerical values in Eq. (4-103) to  make the difference £(<£) a  symmetric function of 

<f>.

4.3.1 Misalignment of the seventh cavity in the second cryomodule of the injector

The misalignment of the seventh cavity in the second cryomodule of the injector is 

evaluated from the experimental d a ta  shown in Fig. 4-22. Since the d a ta  presented in 

the figures are the positions of the beam relative to the position of the crest phase, the 

calculated f  (<j>) will have a vertical offset, but this offset does not affect the misalignment 

calculation. Since there is no steering due to  the cavity misalignment at RF phases 

±90° away from the crest phase, the offset can be determined and the £(<f>) curve can be 

corrected. The symmetric £(<f>) functions are obtained by scaling the numerical da ta  in 

Eq. (4-103) by a factor of 1.123 for Fig. 4-22a and 1.047 for Fig, 4-226. The results are 

shown in Fig. 4-26. The curves are fitted with cosine curves, shown in dashed lines. The 

misalignment angles calculated for the two measurements are 1.65 mrad and 1.93 mrad 

respectively.
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4.3.2 Errors in the misalignment evaluation

There are several uncertainties in the experimental measurements which may cause 

errors in the evaluation of the misalignment.

Instam atic measurement of the beam position has an error of about 0.5 mm. This 

contributes to  a  misalignment error of about 0.2 mrad.

The phasing of the cavity by use of the 45 MeV spectrometer has an uncertainty of

about ± 2°. Let A(j> be the phase error in the experimental measurement. The actual

cavity steering Co(^) and the experimental result of the steering Ci(<£) have the following 

form

/• f ±\ . D 0 cos(<}> + <j>o) f t
CoW) -  f t  +  0 .5G b « « fr) (4-104>

. D 0 cos{(f> + <f>o + A<f>) fA
C lW  "  f t  +  O .S G o eo sfr+ A fl (' ]

The scaling method used to find the symmetric £ in the previous section requires

 ̂■ Co(—90°) = Ci(-90°)

■s • Co(90°) =  Ci{90°)

The scaling factor can be obtained as

s m (^ )

The error in the  misalignment calculation is directly related to the difference £o(0) — s • 

£i(<f>) and it is

r f A \  e r (*\  -  £>q cos(<ft) sin(A<ft) .
° { E q +  0.5Gocos(<£)) sin(<̂ o)

which has the same form as the steering angle of the misalignment. The equivalent 

misalignment due to this error is

‘4 - 108>
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At the gradient of 5 M V /m , the maximum dipole strength Do is 0.0139 M eV/c. For 

A<j> = 2°, A a  is about 0.22 mrad.

The beam offset in the cavity cannot be determined within to 1 mm. If the particle 

is not on the axis of the cavity, the effects of the fields of the higher-order components 

of the cavity are included in the experimental da ta  The transverse momentum

impulse to the beam from the deflection in the x  plane can be written as

A P(4>) = D{4>) +  F(<fi)x + Q{4)x  +  S(<f>)y (4 -  109)

where D , F , Q , and S  are coefficients of the dipole, azimuthal focusing, quadrupole, 

and the skew quadrupole components, and they are independent of energy if the energy 

is high enough save for F , which varies as -jr. The maximum of D, D max, is about 

an order of magnitude larger then the maximum values of the remaining coefficients. 

To be exact, if x  and y are in centimeters, D max is about 5 times larger than Qmax> 8 

times larger than Smax and, for E  =  2 0 M eV ,  8.5 times larger than  the maximum and 

minimum difference of F  as shown in Figs. 3-16, 3-17, 3-19, and 3-20 in chapter 3. If 

the beam is off axis, the quadrupole fields act the same way as the dipole fields. The 

only difference is th a t the steering in the quadrupole is proportional to  the offset. If 

the RF phase dependence is the same as the dipole, the offset of the beam will only 

cause error in the magnitude of the dipole steering and it will not introduce any error 

to  the calculation of the misalignment. As the numerical simulation indicates tha t 

there is a  —11° phase shift, the mechanism discussed above introduces error to  the 

evaluated misalignment. Even though the phase shift is large, the error is small since 

the steering effect is smaller for the quadrupoles. The maximum quadrupole kick is 

2.8 X 10"3® MeV/c. From Eq. (4-108), A a  =  0.25® mrad. For x  =  0.1 cm, the error is 

0.03 mrad.

The azimuthal focusing F (0 ) is approximately symmetric about the crest phase at 

20 MeV; Fmaj. occurs a t the crest phase and Fmin occurs a t ±90° off crest. Its phase
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relation is similar to the misalignment steering. The difference of Fmax and i^min induces 

an error which, a t 20 MeV, is Fmax-Fm in  =  1-35 x 10~3a: MeV/c. The error is therefore
P — p  .

in general ma(f =  0.54® mrad. For x  =  0.1 cm, the error is 0.05 mrad.

The normal quadrupole and the azimuthal focusing terms are correlated. For the 

case of a downstream FP coupler and power fed from the negative x direction, the 

misalignment contributions of these two terms add. The to tal effect of the normal 

quadrupole and the azimuthal focusing for x =  0.1 cm is 0.08 mrad.

The skew quadrupole steering is due to the y displacement of the beam. The phase 

dependence of is very different from To estimate the maximum effect of the

skew quadrupole, we assume that this contribution is symmetric about the crest phase 

with a  maximum Smax of 1.7 x 10“ 3y M eV/c. The induced misalignment error is about 

0.7y mrad. For y =  0.1 cm, the error is 0.07 mrad.

The total uncertainty on the misalignment calculation is about ±0.32 mrad.

The correctors used to center the beam are not well calibrated. The strengths of the 

correctors were not well known at the time of this measurement. Non-zero correctors 

cause problems in the evaluation of the misalignment. The kicks from these correctors 

depend on the momentum of the particles and are symmetric about the crest phase. 

They are not separable from misalignment effects. The misalignment estimated in 

section 4.3.1 must include the effects of errors in the correctors.

As a  rough estimate of the corrector contribution to  the misalignment, we noticed 

tha t the beam was initially offset a t the location of the viewscreen by about -5.5 mm 

in the x  axis when on crest. This offset was set to prevent the beam from moving off 

the view screen while the RF phase is scanned. Noting tha t the coupler steering makes 

about a 7 mm offset a t a distance of about 17 meters a t crest phase, the corrector is 

estimated to have a strength of 12 mm, in terms of beam offset. The energy of the beam 

drops by 10% as the phase is changed from the crest to  zero acceleration. The deviation
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of the corrector steering is equivalent to a  cavity misalignment of 0.5 mrad, and it is 

the same sign as the misalignment obtained in section 4.3.1. The misalignment given 

in section 4.3.1 may therefore have been over estimated by about one half milli-radian.

4.3.3 Conclusions

Numerical simulation of cavity steering and focusing agree with the experimental 

results. This confirms tha t numerical modelling of the CEBAF 5-cell cavity is a valid 

representation of the actual cavity. The misalignment of the cavity estimated is within 

the assembly specification of the cavities in the cryomodule -  a couple of milli-radians 

(1.65 ±  0.32 -  0.5 mrad) for the cryomodules built for the injector prior to  upgrade.

The above studies are based on a  limited am ount of experimental da ta  available on 

cavity steering and focusing. Further experiments have been planned to measure the 

cavity steering and misalignment of selected cavities in the CEBAF north linac. The 

correctors will be calibrated and higher-resolution beam monitors will be used for the 

position measurements; this will improve the accuracy of the calculated misalignments.
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Figure 4-24: The reference orbits for the cavity-focusing measurements.
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Figure 4-26: Beam displacement due to  the steering effect of the cavity misalignment. 
Solid lines: experimental data; Dashed lines: Cosine curve fitting, a) (exp4-30) Calcu
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Chapter 5

Beam Dynamics in the CEBAF Linacs

In chapter 3 we studied particle beam dynamics in a single cavity. In this chapter, we 

will study beam dynamics of a  bunch of particles in the CEBAF linacs, which consist of a 

train of superconducting cavities and optical elements such as quadrupoles and dipoles, 

The bunch is finite in both the transverse and the longitudinal directions. Individual 

particles experience different RF fields since the fields are functions of position and the 

RF phase. To study the collective motion of the particles we observe their dynamics 

in phase space and study their “trajectories” in term of 0  functions. Each particle at 

any point along the beam line is represented by a  point in the six-dimensional phase 

space with coordinates (a;, px , y, py, i,  S). Liouville’s theorem states tha t under the 

influence of conservative forces, the density of the particles stays constant in this phase 

space. Often our interests are the phase sub-spaces of the transverse planes. The six

dimensional phase space is projected into two-dimension phase sub-spaces-namely (x, 

Px)i (y> Py)' The emittance of the beam is defined as the area of the phase sub-space 

divided by ir. The emittances defined in the ( i ,  px) and (y, py) planes are called 

normalized emittances (en). As a convention, in calculating the normalized emittance, 

is used instead of the momentum (0  here is v/c). An alternative definition of the 

emittance is in the (a:, x ') and (y, y‘) planes. The emittances defined in these planes are 

called geometric or unnormalized emittances (euri). Since x ' =  pxjp z and y' =  pyjp x, 

the unnormalized emittance damps as 1/ 7 . In this chapter, we will use the normalized 

emittance unless otherwise specified. The 0  functions (not to be confused with v /c ) 

are the properties of the beam lines. In the storage rings, they are uniquely defined.

75
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In transport lines, the (3 functions are defined by both the lattice and the initial beam 

conditions. The motion of the particles in a  bunch are confined within an envelope 

defined by

The emittances and the (3 functions may be perturbed by multipole fields of the  cav

ities. In “uncoupled” cases, the emittances in the (a:, px) and (y, py) planes are constant 

through out the beam line. In the case of having “cross-plane coupling” , the emittances 

are no long conserved. There are two kinds of coupling in the CEBAF cavities. Dipole 

steering, which couples the longitudinal to the transverse due to the finite longitudinal 

spread of the beam, creates a head-tail effect. The particles a t different longitudinal 

positions experience different transverse steering, and the projected emittance increases. 

Head-tail emittance degradation is proportional to the bunch length. The skew compo

nent of the cavity fields, on the other hand, generates x -  y coupling. Particles offset on 

one axis are steered by the skew fields in the direction of the other axis, which increases 

the projected emittance. It is clear that the skew coupling emittance growth depends 

on the transverse dimension of the beam. The normal cavity quadrupole field and the 

cavity azimuthal focusing provide extra focusing to the beam, and do not degrade the 

emittance. These effects can be compensated by adjusting the strength of the lattice 

elements.

The emittance is a  very im portant param eter of the beam. The emittance specifi

cation for the CEBAF accelerator is 0.1 cm*mrad rms a t 4.045 GeV. Since cross-plane 

coupling and cavity focusing exist, we wish to know the em ittance growth due to  the 

couplings as well as the impact of the cavity focusing on the lattice functions in the 

CEBAF linacs. The numerical simulations in this chapter are performed by use of the 

modified version of PARMELA.
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5.1 Head-tail effects

During normal operation, the phase offset of the dipole steering from the crest phase 

generates differential kicks within the bunch with the strength of 2.14X10-4 M eV/c/degree 

in the  x  plane and 3 X 10“ 5 M eV/c/degree in the y plane. The differential movement 

of the head relative to  the tail of the bunch results in an effective emittance growth.

In a  cavity-pair, the dipole steering to the center of the bunch cancels in the x 

direction and adds in the y direction while the head-tail effect adds in the x  direction 

and cancels in the y direction. This is illustrated in Fig. 5-27. Expressing the transfer
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Figure 5-27: Differential steering of a bunched beam in cavities with different FP coupler 
locations, a) Downstream FP coupler; b) Upstream FP coupler. Gradient=5 MV/m.

function of the cavity in terms of a  m atrix [27], we have in the (x, pX) I) space

/ l  a 0 \

M  = - j  1 a (5 -  110)

where

V o o 1 /

cL „ fE 0  + A E  + cpz(L) 
Bo + c p M

/I
and a  =  2f1 4 x l0 "4 x ^  M eV/c/degree in th e#  plane and 3 x l0 ~ s M eV/c/degree
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in the y  plane. For a cavity-pair

M \ t2  — M i • M 2  —

f  1 “  J?- a \ +  02 02“ ! \

- k ~ k  “ 1 + “ 2 

0 0 1 /  
The emittance growth due to the head-tail effect is approximately

Ac =  ^ (^ (< * 1  +  a 2 )2 +  CTx'(ai +  a2)2(a i +  c*2)2)

(5 -1 1 1 )

(5 -1 1 2 )

where 07 is the rms bunch length.

In a  cryomodule, the cavity-pairs with different FP coupler polarities have opposite 

head-tail differential steering, and they tend to cancel. Under the thin lens approxima

tion (for example a t high energies), the transfer matrix of one cryomodule is

/ I  0 0 \

M  =

where, under nominal operation,

-  E  1 E  <*;

0 0 1 /

(5 -  113)

y ]  a i — <*1 +  a 2 — «3 -  0:4 — t*5 -  « 6  +  017 +  «8

2.14 x 10“ 4 (C ?i +  G 2 — (?3 — C74 — G5 — G q -f- G7  +  C?8) (5-114)

in the x  plane and

Y l  Qi = a i  -  a 2 -  a 3 +  -  «s +  o;6 +  07  -  «8

Q y m -5
=  -  :  ( G i  - G 2 - G 3  +  G 4 - G s  + G 6 +  G 7 -  Gs )  (5-115)

5

in the y plane. The head-tail effect at high energies depends only on the uniformness of 

the gradient of the cavities. If the weighted average, Eqs. (5-114) and (5-115), is small, 

the head-tail effect may be negligible. If the cavities in the cryomodule are not powered 

uniformly, the head-tail related emittance growth may occur. Should this happen, it 

is suggested to  adjust the gradients of the cavities to reduce the quantities in Eqs. (5- 

114) and (5-115). At low energies, the cavities should be treated as thick lenses, and the 

cavity focusing reduces the cancellation of the head-tail effects between the cavity-pairs.
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5.2 Skew coupling

The skew fields of the cavity couple the x  motion of the particle to the y motion

During norm al operation, the skew component does not depend on the polarity of 

the FP couplers. The skew strength has the same sign all the way through the whole 

linac. However, they do not always add. The collective effect of the skew coupling in 

multiple cavities not only depends on the /3 functions, but also on the betatron phase 

advance of the lattice, which is defined as

where p is the momentum of the particle in M eV/c and /  is in meters, is in general large 

in the CEBAF linacs. For example at 45 MeV, the focal length is about 400 meters.

and vise versa. A particle with offset of y in the y  direction in the  skew fields with skew 

strength of S  will get a momentum gain of Apx = S  • y or A x ' = in the x  direction. 

The unnormalized rms em ittance, defined as

fun =  V <  *2 > <  x>2 >  ~  <  > 2 (5 -1 1 6 )

becomes

(5-117)

The x — y coupling effect on the emittance is sensitive to the betatron functions in the 

cavity.

(5 - 1 1 8 )

The focal length of the skew, which is approximately

f ikew  — 9 P (5 -  119)

Observing an individual particle which under goes betatron oscillations along the beam
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line, the trajectory without skew perturbation is

^ ^ '  y j ( c ° s ( V 0  +  aosm(V0 ) V3/5>sin(i&)

cos(^ ) _  l j a a o  s-m ^  ^ ( c o s ^ )  -  a  sin(^)) ,

u

J
\ u /

\Uq

(5 -  120)

If the wavelength of the betatron oscillation is smaller than the focal length of the skew 

fields, the skew kick on one axis due to the offset on the other axis changes sign when 

the phase advance exceeds 90°, and the accumulated skew effect begins to  cancel. This 

is expected in the first pass of the north linac where the phase advance is strong, which 

is 60° per cryomodule or 120° per FODO period. In the higher energy passes, the phase 

advances are small. The skew effects generally add up.

To higher order, head-tail effect also couples to the x  and y  planes. This coupling 

is small. The 3-D cavity modeling in PARMELA takes account of all these effects.

5.3 Beam optics in the injector

The injector starts with a 100 keV DC electron gun. The chopper, buncher and 

the capture sections segment the beam into bunches and accelerate it to 500 keV. The 

bunches are in the order of 1° RF phase long. The cryounit, which consists of two 

superconducting cavities, accelerates the beam  up to 5 MeV. Through a transport line 

about 13 meters in length, the beam enters two full cryomodules, each of which consists 

of 8 superconducting cavities. The beam is accelerated to 45 MeV. It is then transported 

through a quadrupole telescope and an injection chicane to  the entrance of the north 

linac, about 64 meters downstream.

The cryounit consists of two cavities, each of which has its own power supply system 

for operational flexibility. They are connected to each other on their FP coupler side 

with a 9.393 cm niobium adapter. The distance between the  nearest end-cells of the 

cavities is 25 cm, which is one and a  quarter of wave lengths. The two fundamental 

couplers have the same orientation. This configuration cancels the x dipole steering
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when the cavities are in maximum acceleration, but enhances the head-tail effect. The 

head-tail effect is strong in the unit since there is no local sources to  provide local 

cancellation of the head-tail effect generated by the cavity-pair.

The cryomodule consists of four cavity-pairs or cryounits. The separation between 

the cavity-pairs is 1.911 meters from center to center. The two end cavity-pairs have 

the same polarity; both have power fed in from the negative x  direction. The power to 

the two middle cavity-pairs is fed in from the positive x  direction. This feed geometry 

is arranged so as to reduce the emittance degradation from the head-tail effect [26].

Our simulation starts from the entrance of the cryounit, which is the first supercon

ducting unit in the beam line. The beam energy at this point is 500 keV. The design 

beam parameters are

ft. =  24.385 m a* =  -7.659 

A, =  31.391m  a y = -12.152

The electron gun produces a normalized rms emittance of 0.018 cm- mrad which is more 

than five times smaller than the specification a t the end of the linac. The full, 4trz , bunch 

length is 1.6°. The R F phase of the first superconducting cavity of the cryounit is set 

back by 7.5° from the crest phase of 84.023°, to adjust the transverse focusing, so that 

the beam requires no downstream quadrupole matching. This feature has been observed 

in the experiments [11]. This backphasing also provides some bunching power to the 

beam. At the entrance of the cryomodule, the bunch length was shrunk to  0.9°.

The /? functions and the normalized emittances in the injector are shown in Fig. 5-28.

It is shown that the emittances in both planes grow by more than 70% in the cryounit. 

In the cryounit, the head-tail effects of the two cavities add. The fact tha t th e  geometric 

emittance is large a t 2.5 MeV reduces the effect of head-tail emittance growth. At the 

location of the two FP couplers, p — 2.5 MeV/c, 0X = 43.7 meters, ax =  —7.48, the 4a
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uncoupled geometric emittance is £4 =  0.0144 cm-mrad. The maximum x ' in the phase 

space is

x' — < /-4^  = 0.43 m rad (5 -  121)
V Px

For a 1.5° bunch, the to ta l 6 x' due to the head-tail effect at p =  2.5 MeV is

A / 1.25 x 10-4 (?i +  2.14 x 10- 4G!2Aar = 1.5 x ------------------- — ----------------------   0 .20mrad (5 -  122)

which produces about 24% of emittance growth.

Since the beam in the cryounit is large, 1 cm full width, the skew effect is ex

pected to  be strong. The skew strength in the first cavity at 7.5° backphasing is about 

0.0005 MeV/c/cm and it is -0.0015 M eV/c/cm  in the second cavity. The average p

functions are /?r =43 m  and py=58 m in the cryounit. The output energy is 5 MeV.

From Eq. (5-117), the emittance growth due to the skew coupling is approximately 41%.

The p  functions are small in the cryomodules which results in weak skew coupling 

and large phase advance. These two factors reduce the accumulated skew coupling. The 

head-tail effects also undergo cancellation amoung the cavity-pairs in the modules. The 

em ittance growth in the  two cryomodules is small, about 13% in both planes.

If the  design injection betatron envelope function values are not provided a t the 

entrance of the cryounit, the /? functions in the injector will be changed. The skew- 

coupling emittance growth, which is sensitive to the ft functions will change as well. 

Since the azimuthal focusing of the cavity depends linearly on, and is sensitive to, 

the R F phase in the vicinity of crest a t 500 keV (Fig. 3-16), some of the mismatch 

may be corrected by adjusting the RF phase of the first cavity in the cryounit. Since 

the azimuthal focusing focuses in both planes, the correctable mismatch must also be 

symmetric. Asymmetric mismatches can be corrected by employing the  quadrupoles 

downstream from the cryounit, which are normally turned off due to the strong focusing 

of the cavity. Here we examine the cases with symmetrically mismatched beams and 

the corrections of the emittance growth by changing the RF phase of the  cavity.



The first two examples are of mismatches of initial as, assuming the initial ps are 

matched. It is shown tha t for an initially less divergent beam with aXfl — —3.8, a^o =  

- 6 .1, the emittances grow in the two cryomodules by a factor of 3.5, (Fig. 5-296(i)). 

The P functions in the first cryomodule are large, (Fig. 5-29a(i)). Skew coupling is 

strong in the first cryomodule. To reduce the P functions in the first cryomodule, more 

backphasing is needed. Fig. 5-29a(ii) and 5-29b(ii) show the corrected results by phasing 

the cavity a t 73.023°, which is backphased 11° from the crest phase of 84.023°. The 

P functions and the emittances are improved. Figs. 5-30a(i) and 5-306(i) show the P 

functions and the emittances for another case of mismatched beam with a x,o =  —11 , 

a yfl =  —17. The emittance growth in the two cryomodules in this case is small, however, 

the Py function is large at the exit of the second cryomodule. By adjusting the RF phase 

of the cavity to 78.523°, 5.5° backphased, the Py function is reduced. The P functions 

and the emittances with the new RF phase are shown in Figs. 5-30a(ii) and 5-30i>(u).

For a  beam initially mismatched with smaller p  functions, pXtq = 12.385 m, PViq =  

16.391, the emittances grow in the two cryomodules by a factor of 2, Fig 5-316(i). The 

cavity focusing is shown not large enough in this case, which results in large p  functions 

in the cryomodules. Fig. 5-31a(i). The RF phase of the cavity can be adjusted to get 

more focusing. At an RF phase of 80.023°, which is backphased 4° from the crest phase 

of 84.023°, the P functions and the normalized emittances are obtained as shown in 

Figs. 5-31a(ii) and 5-3l£t(it). The P functions are smaller in the cryomodules and the 

emittance growth is reduced.

For a  beam initially mismatched with larger Ps, px>o =  36.385 m, pVto = 45.391, the 

focusing in the cryounit is strong. The waist forms too early and the beam enters the 

cryomodule with a strong divergence. The /? functions in the cryomodule drop down 

more slowly than in the nominal case. The emittance growth is strong, as shown in 

Figs. 5-32a(i) and 5-326(i). The emittances grow in the two cryomodules by a factor of
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2.4. Reducing the focusing of the cavity by phasing it a t 74.523°,which is backphased 

9.5° from the crest phase of 84.023°, the new /3 functions and the emittances are shown 

in Figs. 5-32a(n) and 5-326(n). The emittance growth in the two cryomodules is reduced 

to  nearly zero.

Experiments [28] have shown th a t the geometric emittance at 45 MeV is five times 

smaller than tha t at 5 MeV instead of nine times smaller as would be expected from the 

adiabatic damping, which indicates a  100% emittance increment in the  two cryomodules. 

This is explainable by the mismatched condition of the beam or by the inappropriate 

phasing of the first cavity in the cryounit.

To correct the emittance growth due to the asymmetric mismatch of the beam, 

quadrupoles may be needed to provide proper (3 functions in the cryomodules. We will 

not address this circumstance here.

5.4 Beam optics in the north linac

The linac system at CEBAF consists of two linac segments, each capable of sup

plying a nominal energy gain of 400 MeV, in which up to five beams are accelerated 

simultaneously. Each linac segment consists of 20 cryomodules. Each cryomodule can 

supply an acceleration of 20 MeV. Between the cryomodules are room tem perature re

gions 1.3 m in length, each of which contains a set of orbit correcting elements, beam 

monitors, and a  quadrupole. The quadrupoles form a FODO focusing lattice. A FODO 

period consists of two cryomodule sections. The phase advance in a  period is 120° for 

the first pass. The 445 MeV beam from the first pass of the north linac segment is 

bent 180° by the east arc and injected to the south linac where the beam gets another 

400 MeV energy increment. The beam is again transported to the north linac through 

the west arc. The beam is accelerated through five turns in this race-track accelerator. 

The final energy of the beam is 4.045 GeV. The north and the south linacs are basically 

the same. In this section, we will study the beam optics of the five passes in the north
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linac only.

The linac segments contain only full cryomodules, which provide certain cancellation 

for the head-tail effects. The bunch length in the linac is also small, less than 1°, or 

0.5 mm. The head-tail effects are therefore expected to be small. The accumulated 

effect of skew coupling depends on the /3 functions and the phase advance along the

beam line. Since the quadrupoles have fixed strength, the /? functions and the phase

advances are different for each pass because the energy of the beam is increased for 

each successive pass. Different cross-plane couplings are therefore expected in different 

passes.

First pass

The injection energy for the first pass is 45 MeV. The initial beam param eters are

f3x =  41.277 m a x =  0

Py =  2.977 m Oy =  0

The quadrupole strength to form the FODO lattice with 60° phase advance for each 

cryomodule is K q =  1.20913 with K q defined as

/f ,  =  ^  =  0 . 2 9 9 8 « M  (5 — 123,
9 Bpo PlGeV/c] '

The gradient of the quadrupoles is then

~  =  333.556/iT5P G /cm  (5 - 1 2 4 )
or

where P  is the momentum of the particle in GeV/c. The first quadrupole in the linac 

is focusing in the x  plane.

W ithout the effect of the acceleration, the quadrupoles with strengths given by

Eq. (5-124) form a FODO lattice. The presence of acceleration changes the situation.

The acceleration damps the transverse divergence of the particles by the factor of the
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ratio  of Ein and E0Uf  The quadrupole steering is also damped by the same amount. 

The effective quadrupole strength in the FODO lattice thus becomes

K e f  feet =  (5 -1 2 5 )
■C'ouf

This damping is strong in the low energy accelerating sections. Use of uniform strength 

quadrupoles in the accelerating structure will, in general, not yield the designed FODO 

lattice.

There are exceptions if  the accelerating fields are RF fields. The azimuthal focusing 

of the  RF fields may compensate the damped focusing of the quadrupoles. In the first 

cryomodule of the north linac, the energy increases from 45 MeV to  65 MeV. The 

effective strength of the first quadrupole is 45/65=0.69 times of the physical value, 

which is 30% lower than th e  required. At 45 MeV, the cavity azimuthal focusing has a 

equivalent of quadrupole strength of 4.17X10"2 G-m/cm for one cavity. The integrated 

focal strength of a  cryomodule is 0.334 G-m/cm. The strength of the first quadrupole 

in term s of field gradient a t 45 MeV is 18.15 G/cm. The integrated strength of half 

the length (7.5 cm) of the quadrupole is 1.36 G-m/cm. The cavity focusing in the first 

cryomodule is 25% of the strength of the first quadrupole. This is nearly the amount 

of focusing needed to compensate the damping. The quadrupole fields of the cavity 

also contribute certain focusing. Given the compensation of the damped quadrupole 

strength by the focusing provided by the  cryomodule, the FODO lattice for the CEBAF 

linac actually works almost nominally without any modifications. The ft functions of the 

first pass with the uniform K q FODO lattice in the north linac is shown in Fig. 5-33a. 

The normalized emittance in the linac is shown in Fig. 5-336. There is no significant 

emittance growth. This is because of the cancellation resulting from the large betatron 

phase advance. In the first pass, the  phase advance is 120° per period, which is quite 

high (Fig. 5-34). From Eq. (5-120), as the phase increases by 90°, some of the particles 

will move from one side of the axis to  the  other side. The skew effects on these particles



87

begin to cancel.

To demonstrate the damping effect of the acceleration, we calculated the /% functions 

with the cavity focusing turned off, dotted line in Fig. 5-35. The 0  function becomes 

large. By increasing the strength of the first quadrupole strength by 30%, the 0  function 

is recovered to  the designed FODO lattice function, solid line in Fig. 5-35.

The skew effect does not pose any problem for the first pass beam as long as it is 

matched to the linac. If the beam is not matched, the 0  functions will become larger in 

some portions of the beam line, which will increase the skew coupling and reduce the 

cancellation. We present here several cases of mismatches to show their impact on the 

emittance growth.

For an initially diverging beam with a Xio = a^o =  — 1, the emittance shown in 

Fig. 5-36 increases by about 40%. The peaks in the 0  functions generate stronger x  — y 

coupling. The residual cancellation contributes to the emittance growth. A similar 

situation is found for an initially converging beam. Fig. 5-37 shows the results of an 

initially converging beam with a^o  =  a Vlo =  +1. The emittance growth for this case is 

about 39%.

Figs. 5-38 and 5-39 show the cases of mismatched 0  functions. The 0  functions and 

the emittance growths in these two cases show relatively less sensitivity to the initial 

values of 0Xio and /J^q compared to the cases of mismatched as. It appears im portant 

to form waists in both the x  and y planes a t the center of the first quadrupole to reduce 

the x  — y coupling in the first pass north linac.

Higher passes

The beam is accelerated five times in both the north and the south linacs. The 

initial energies of the higher passes at the entrance of the north linac are 845 MeV, 

1645 MeV, 2445 MeV and 3245 MeV respectively. The beam envelope initial conditions 

for these beams are 0X =  0 y =  80 m, a x =  ay =  0 for 845 MeV and 0X = Py = 100 m,
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a x = a y = 0 for all other energies.

The FODO lattice was designed for the first pass beam to have 120° phase advance 

per period. As the energy gets higher and higher, the quadrupole focusing and the cavity 

focusing get smaller and smaller. The 0  functions for theses passes will not resemble 

tha t of the first pass. The betatron oscillation is not as strong and the phase advance 

will be small. The skew coupling will add.

The 0  functions and the normalized emittances of these four passes are shown in 

Figs. 5-40-5-43. The emittances in  these four passes grow in the range of 25-38%. For 

the 845 MeV beam, the emittance rolls up and reaches a maximum at about 110 m and 

then falls down to  a  minimum at 160 m and then up again. For the 1645 MeV beam, 

the em ittance has a  maximum at 160 m. For the 2445 MeV and 3245 MeV beams, 

there is no cancellation of the skew couplings. These effects are due to  the variation in 

phase advances, Fig. 5-44, amoung the four passes. The phase advance for the 845 MeV 

beam through the full linac is over 200°. When the phase becomes more than  90°, skew 

cancellation begins. When the phase advance is over 180°, the addition again overtakes 

the cancellation. For the 1645 MeV pass, skew coupling has a turning point at the 90° 

phase advance. For higher energy passes, the phase advances are less than  90°. The 

em ittance grows without cancellation.

The em ittance growth for mismatched beams was also studied. For the higher energy 

passes, the results are similar. We present here the results for the 845 MeV beam, which 

are shown in Fig. 5-45. For an initially diverging beam, the x  -  y coupling is stronger 

than in the nominal case. The emittances grow by a  factor of 2.28 for a x,o =  o — ~1- 

For an initially converging beam, the em ittance growth is small. W ith a r ,o =  <*y,o — +1> 

the emittance growth is nearly zero.

Em ittance growth due to  the 0  function mismatch is smaller in comparison to  the 

a  mismatched cases. The emittances with ±50% mismatched 0  functions grow only
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about 38% as shown in Fig. 5-45.

Remarks

In ideal cases, beam envelopes are matched to the linac lattice. The emittance 

growth in the north linac for the first pass is then nearly zero, and is 25-38% for the 

higher energy passes. The total emittance growth in the whole machine depends on 

the phase advance in the arcs and the Iinacs, A rough estimation gives a  factor of two 

emittance degredation. Since the initial emittance of the beam is several times smaller 

than the specified final emittance, the diluted emittance remains within tolerances.

If the beams are mismatched, the emittance in each pass depends on the mismatch 

conditions. It is shown in the simulation that the emittances are more sensitive to a  

mismatches than (3 mismatches. In the first pass, an a  mismatch on either side of the 

waist results in emittance growth. It is im portant for the beam to  form a  waist at 

the center of the first quadrupole. In the higher energy passes, the emittance growth 

is larger for divergent beams and it is smaller for convergent beams. As far as the 

emittance growth is concerned, convergent beams are preferable to divergent beams.

Should skew coupling becomes a  problem in meeting the final emittance specification, 

there are various corrections. Inserting skew quadrupoles in the beam line is certainly 

a cure. Appropriately changing the beam matching is also a  way of reducing coupling 

in the higher passes of the linac.

5.5 Beam dynamics in the IR FEL linac

The IR FEL driver linac [29] consists of one full cryomodule, led and followed by 

quadrupole doublets. The quadrupoles are not activated. The transverse motion of 

the beam is controlled solely by the cavity focusing. The quadrupoles are included to 

provide additional operational flexibility. The injection energy is 10 MeV. The gradient 

of the cavities in the cryomodule is 7.75 M V/m. The linac provides a 30 MeV energy
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gain. The 40 MeV beam is transported through a 180° recirculation arc to the beam 

matching section which produces waists in the center of the wiggler with /3x>y = 0.74 m 

and a XtV =  0 .

The injection conditions to  the linac are as the following

Px,y =  5 m 

—- 0

The following beam parameters are used in the simulation [30]

az =  0.5 m m  or at = 1.6 ps

=  3 X 10“2 

€norm = Iff cm • mrad

The (3 functions and the emittances in the FEL linac are shown in Fig. 5-46. The 

emittance growth in the linac is about 60%. The emittance growth is mostly due to  the 

skew coupling. The head-tail effects are small.

Beam dynamics for mismatched cases have been studied. For the cases of mismatches 

in /3 functions (Figs. 5-47 and 5-48), one can still get small (3 functions in the wiggler 

region. The emittance growth shows a  small increment for smaller initial /3s and a 

slight decrement for larger initial /3s. For cases of mismatches in as (Figs. 5-49 and 

5-50), the perturbation on (3 functions is more noticeable. Emittance growth for the 

initially diverging beam is huge. Emittance growth for the initially converging beam is

slightly larger than the nominal case. The most unfavorable mismatch condition is a

divergent beam.

To reduce the 60% emittance growth in the linac, a skew quadrupole can be used 

to cancel the skew effects of the cavities. To have effective cancellation, the skew 

quadrupole should be placed a t the entrance of the linac, where the beam energy is
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low and the /? functions are large. The skew strength for a single cavity is

Scavity -  -4 .0 4 — ^  (5 -  126)

The skews add up in the eight cavities. The total skew strength of the linac is

Sunac = - 3 2 . 3 2 ^ ^  (5 -  127)cm

Since the {3x>y functions in front of the linac are larger than the average functions in 

the linac, the skew quadrupole strength needed to correct the cavity skew effects will be 

slightly smaller than Sunac. For a 15 cm long quadrupole, numerical simulation shows 

tha t a strength of 1.857 G/cm  is required. In Fig. 5-51 are shown the corrected results. 

The emittance growth is reduced to less than 10%.
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Figure 5-28: Betatron functions in the injector. (JX i 0  = 24.385 m, a T,o =  -7.659, 
Pyfi -  31.391 m, a^o =  -12.152, eXio =  6^0=180 nm.
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Figure 5-29: Betatron functions with mismatched as, aXio =  -3 .8 , a y,o — —6.1. (i) 
mismatched; (ii) after correction by adjusting the RF phase of the first cavity in the 
cryounit to 73.023°.
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Figure 5-30: Betatron function with mismatched as, ax,o = —5.1, t*y,o — —8.1. (i) 
mismatched; (ii) after correction by adjusting the RF phase of the first cavity in the 
cryounit to 74.523°.
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Figure 5-31: Betatron function with mismatched /?s, pXto =  12.385, fiyp =  16.391. (i) 
mismatched; (ii) after correction by adjusting the RF phase of the first cavity in the 
cryounit to 80.023°.
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Figure 5-32: Betatron functions with mismatched /?s, /3Xio =  36.385, /3y>o — 45.391. (i) 
mismatched; (ii) after correction by adjusting the RF phase of the first cavity in the 
cryounit to 74.523°.
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Figure 5-33: Betatron functions in the first pass of the north linac. /3a!|o=41.277 m; 
/?„,o=2.977 m. =  a yfi =0.0.
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Figure 5-35: The 0X functions in the first pass of the north linac. f}Xi0=41.277 m; 
(3Vlo=2.977 m. ar,o =  a Vio =0,0. Dotted line: no cavity focusing, original quad strength; 
Solid line: no cavity focusing, the strength of the first quad increased by 30%.
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Figure 5-36: Betatron functions in the first pass of the north linac with mismatched as . 
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5-37: B etatron functions in the first pass of the north linac with mismatched as. 
a^o =-j-l. The emittance grows by 39%.
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Figure 5-38: Betatron functions in the first pass of the north linac with mismatched /3s. 
0x,o =  80 m, PyiQ =  4 m.
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Figure 5-39: Betatron functions in the first pass of the north linac with mismatched (3s. 
fixfl =  30 m, (3yto =  2 m.
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Figure 5-40: Betatron functions in the second pass of the north linac with pXto =  /?y,o = 
80 m, a x,o =  a y,o =0. The emittance grows by 25%.
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Figure 5-41: Betatron functions in the third pass of the north linac with pxp  =  fiy,o =  
100 m, a x,o =  a yfi =0. The em ittance grows by 30%.
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Figure 5-42: B etatron functions in the fourth pass of the north linac with /^ o  =  j3Vio =  
100 m, a*,o =  aj/.o =0. The emittances grow by 38%.
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Figure 5-43: Betatron functions in the fifth pass of the north linac with (3Xio =  /3yio = 
100 m, a r |o =  Oy.o =0. The em ittance grows by 33%.
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Figure 5-45: The normalized emittances of the second pass in the north linac with 
initially mismatched as and {3s. a) Mismatched as, a Xio =  a Vto =  —1; b) Mismatched 
as , a X)o =  aj,(o =  +1. The x  — y coupling is strong for diverging beam, c) Mismatched 
/3s, /?X(o =  {3y,o = 120 m; d) Mismatched {3s, {3Si0 =  {3y>o =  40 m. The x -  y coupling is 
less dependent on /? mismatches.
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Figure 5-47: Betatron functions for mismatched j3 functions. f3qiXiV =  6 m; oo.r.y — 0; 
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Figure 5-48: Betatron functions for mismatched /3 functions. Po,x,y =  4 m; ao,x,y =  0; 
Bunch length az = 0.5 mm.
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Figure 5-49: Betatron functions for mismatched a s . Po,x,y = 5 m; ao,*,y = +1; Bunch 
length c z = 0.5 mm.
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Figure 5-51: PARMELA simulation of the FEL linac. Skew quadrupole is used to 
correct the skew effects of the cavities. T he emittance growth is reduced to 10%. Initial 
parameters: /?o,*,y = 5 m; ao,x,y — 0; Bunch length az =  0.5 mm.



Chapter 6 

Wakefield calculations for vt ,v 3  <  c

When a bunch of charged particles traverses a  discontinuity in an accelerator, elec

tromagnetic fields are excited. These fields are called Wakefields, and are functions of 

space and time. The wakefields in tu rn  interact with the particles and may cause insta

bility, energy spread, emittance growth, etc. The wakefields can be considered a  linear 

response of the system to an external excitation produced by the beam current. In 

general, the response can be expressed in terms of Green’s functions. However, in most 

cases it is sufficient to  consider the average effect of the accelerator structure: an energy 

loss and a  transverse change in the momentum th a t a  particle experiences when passing 

through the structure. Wake functions describe such average effects in an accelerator 

structure. They are functions of both  the charge distribution in the bunch and the 

param eters of the beam environment.

Two kinds of wake functions are often mentioned in the literature, the longitudinal 

and the transverse. The longitudinal wake function wt is defined as the energy loss A Ei 

of a test particle of charge e, th a t follows, at a distance s, a  source particle of unit 

charge q = 1.

A E\ =  eqwi(s) (6  — 128)

1 f+oo
W/(s ’r ) =  ™ /  dzv  ' E (r >z ' 0  !*={*+*)/» ( 6 “  129)Q V  J — c o

The transverse wake function is defined as the integrated transverse kick caused by the 

transverse component of the radiated field.

1 /"+00
w L(s, r) =  -  /  ^ ( E  +  v x B ^  ( z , r , i )  \t=(z+a)/v (6  -  130)

9 J —OO
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The Fourier transform of the wake function is called the impedance. The impedances 

corresponding to  Eq. (6-129) and (6-130) are

Zi(u>, r) = -  f  dswi(s,  r)eja,s/u
V oo

=  -  f +CC d z E ^ ( z ,  r)e~juz/v (6-131)
?  J—00

Zj_(u, r) = — -  f  dsw±(st r )e iW3t v 
V J —oo

=  A  f +°° dz (E u +  v x  B w)j. e~j ^ v (6-132)
Q oo

The wake functions and the impedances are the same quantities expressed in different 

domains. The wake function is the Wakefield effect expressed in the time domain and

the impedance is the wakefield effect expressed in the frequence domain. Either of them

can be used to study beam-cavity interactions.

In the high frequency regime, which corresponds to short distance wake functions 

in the time domain, the impedance can be analytically calculated [31, 32, 33]. In 

analytical approaches, the problems addressed assume tha t both the velocities of the 

source particle v„ and the test particle Vt equal the velocity of light. By matching the 

fields at the beam pipe radius [31], an integral equation is obtained for the longitudinal 

electric component of the fields a t the beam pipe radius. The kernel for the equation is 

approximated a t high frequency. Under the causality condition, the integral equation 

becomes the Volterra equation of the first kind, which has the form

f  K ( x  — y ) f ( y )dy  = g(x)  ( 6 - 1 3 3 )
Jo

This can be solved analytically for some cases, and the solution for the coupling impedance 

can be found.

There are cases where the velocities of the source and test particles are not the speed 

of light. For the CEBAF FEL linac, the injection energy is 10 MeV, 0  =  x>/c=0.9987. 

Similarly, the injection energy to  the first cryomodule of the CEBAF nuclear physics
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injector is 5 MeV, /? =  v/c=0.9948. In these cases the field propagates significantly 

faster than  the charge, and the causality condition cannot be applied. The integral 

equation obtained from the field matching has the form of the Fredholm equation of the 

first kind

I  K ( x , v ) f ( v ) d y  = g(x)  (6 -1 3 4 )
Ja

This kind of equation is ill conditioned. The solution is, in general, not unique.

To study the high frequency behavior of the impedance, efforts have been made to 

find a particular cavity th a t has simple kernels such th a t the  integral equation can be 

solved analytically. So far, no answer had been found. P art of the reason is that the 

spectrum of the resonant frequency of a  cavity has only a  lower limit. No simple kernel 

can be found without making some approximation in evaluating the kernel.

In this chapter we will explore the properties of the Wakefields for (t?a, vt ) < c. The 

Maxwell’s equations are discretized and solved in the time domain. There are codes that 

are written for this purpose, such as TB C I [12] and ABCI [34], which are being widely 

used. These codes deal properly with the  cases of va = v t = c. An infinitely long beam 

pipe is simulated by applying a simple open boundary condition, which assumes that 

the phase velocity of the outgoing waves is c. TBCI has the option of va =  vt < c, but 

no open beam pipe is allowed in such a  case. To address the problems of va ^  Vt ^  c, 

severed issues need to be dealt with. At first, a  proper open boundary condition should 

be used for v  < c. The phase velocities of the propagating modes in the beam pipe are 

in general neither c nor the velocity of the  particle. Even for one frequency, different 

modes have different longitudinal wave numbers. To accommodate the requirement 

of propagating the wakes of different phase velocities, we will apply the Lindman [40] 

boundary condition to the open beam pipe. The reflection coefficients a t the open 

boundary can be reduced to  less than 1% over a wide range of frequencies and incident 

angles. Secondly, the slippage between the  source particle and the test particle should



110

be included for the cases with va ^  vt. Thirdly, since the integration for calculating the

wake function can only be carried out at the beam pipe radius, the radial dependence

using the ultrarelativistic approximations. In the process of calculating the wakefields 

with very short bunches, we found th a t the Yee algorithm used in TBCI and ABCI is 

no longer appropriate. Unphysical results were obtained with the conventional choice of

is frequency dependent. A fourth-order FD-TD algorithm was developed to  reduce the 

truncation error, and the program TBCI was modified for evaluating the wakefields of 

va ^  Vt and of very short bunches.

6.1 Lindman boundary condition

Consider the two-dimensional wave equation in the (x, y) plane

with forward-difference A defined as Aj;A(x) =  A (x  +  A®) -  A(®), Z?x, D y the mesh 

spacing and r  the time step. This difference equation has plane wave solutions of the 

form

If this plane wave impinges on a fixed boundary a t i  =  xq, the additional function

must be found in order to  calculate the wake functions at other radial positions. We 

will discuss the general scaling of the wake function for va, vt < c and the conditions for

m esh/(bunch rms) ratio  of 1/5. We found that the truncation error of the Yee algorithm

(6 -  135)

The finite-difference form of Eq. (6-135) is

(6 -  136)

—  A p j i k x t D x + h y m D y - w i r )  
t,m ~ (6 -  137)

at point (£, m , i), where u>, kx and ky satisfy the dispersion relation

required to satisfy the boundary condition must have the same frequency u? and same
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wave number ky along the boundary. Only waves with kx = —kx can be used to satisfy 

the boundary condition.

We want to construct a boundary condition tha t is a linear operation and is satisfied 

by all outgoing waves with values of w, kx , and ky consistent with the dispersion relation, 

such tha t the outgoing waves are absorbed. Consider the boundary condition

T c t
AtE xAJim +  —  G A xVtA \ m — 0 (6 -  139)

Ux

where S  is forward sum defined as T,xA lt  m =  +  Consider to be a

solution of the wave equation which consists of a  left-going wave with amplitude L and 

a  right-going wave with amplitude R

A ^ m =  +  RejkxeDl) eA k»™Du - ^ T) (6 _  140)

Eq. (6-139) becomes

L e - j k x ( t+ i /2 ) D x _  f e j k A t + m D :  ( 6 _  1 4 1 j
IG + Go

D  tan (^o ;r)
where Go =  -3^ ---------  . In the limit of t , Dx , D y —* 0, Go =  w/cAx. For a initially

right-going wave, with the choice of I  =  + 1  and G =  Go, the reflected left-going wave is 

zero, which is the case of the open boundary on the right-hand side beam pipe. Likewise 

with I  — — 1 and G =  Go, the reflected right-going wave of the left-going incident wave 

is zero, which is the case of the open boundary on the left-hand side.

From Eq. (6-138) and under the limit of r ,  Dx , D y —► 0

(  c 2 A-2 \ ~ 1 / 2
Go =  u / c k x = 11 -  —/  I (6 -  142)

An approximation for Go in the time domain (which is stable in time) is

(6 -  143)
r- , , ^  an(cr/A,)2(Ag/A?)

1 -  Pn(CT/ D y)2 ( A y/ A t )



where a n and {3n are to be determined. Substituting Eq. (6-143) into Eq. (6-139), we 

have the following expression for the boundary condition

A t Z ,A l m + I % - A x£,Ai,m =  - I % -  (6-144)
U x  U x  n = l

( ^ " ^ “ S f ) ' 1* ” 2 =  “ " 5 f A*E‘4 m  (e' 145)

If h%n m =  0, the boundary conditions reduce to  one-dimension boundary conditions, 

which are

4 +1,rn =  4 ,rn  right -  going wave (6-146)

Aj+ml =  Ai+hm left -  going wave (6-147)

The h%n ms are the correction functions to the one-dimensional boundary condition 

and are functions of the fields on the boundary at the previous time step. These quan

tities should be evaluated first. The difference equation (6-144) can then be solved to 

calculate the boundary values of the waves. The solutions for the difference equations 

(6-144) and (6-145) are as the follows:

1) Left-hand side boundary. (£: the boundary mesh, £ + 1: the inner boundary mesh).

1 - / - V

+ ( 1  -  -  4 m )  -  £  K V , 12)  (6-148)
x  n = l

where /  =  - 1.

2) Right-hand side boundary. (£ + 1 : the boundary mesh, £: the inner boundary mesh).
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where I  — +1. The H n|TJl, defined as hn>m/2 D x, has the same form for both left and 

right boundary conditions

- K t /2+

+ ^ ( 4 h ,,» +  4 » , „  -  4 „  -  4 :™ ))

The optimized a„s and (3ns up to  N  = 3 are

a  = (0.3264, 0.1272, 0.0309)

P ~  (0.7375, 0.98384, 0.9996472)

The reflection coefficients with these a„s and /?„s are less than 0.01 for a wide range of 

incident angles, which correspond to different wave numbers in the y direction, from 0° 

to  89°.

Comparisons are made between the Lindman boundary condition and the one- 

dimension boundary condition used in the original TBCI. The fields are assumed prop

agating in a beam pipe of radius a =  0.035 m. The plane wave has the following form

A(r, z)  =  {krr)ej (h’* ' 2*M  (6 -1 5 1 )

We have two test cases. The first case a) is for /  = 20 GHz, kra is the 4th zero of 

J u  mesh size=0.1 mm, 3 time steps for one space mesh. The field is initiated on the 

inner boundary mesh and propagates outward. Fig. 6-52a presents the fields on the 

boundary after propagating 350 time steps. The second case b) is for /  =  50 GHz; kra 

is the 11th zero of and Fig. 6-526 shows the result after propagating 220 time steps. 

The Lindman boundary condition has much better accuracy than the one-dimensional 

boundary condition. The accuracy of the one-dimensional boundary is a function of 

the phase velocity and is time dependent. The Lindman condition has over all good 

accuracy.



6.2 Radial dependence of the wake function

Even though the particle-cavity interaction only happens within the cavity region, 

the fields generated with frequencies higher than the cutoff frequency will propagate in 

the beam pipe. The integral for calculating the wake function should be carried out 

from —oo to + 00 , which is not practical in numerical simulations. Since the fields satisfy 

the Maxwell’ equations, the integral at different radial positions are related, and we can 

integrate the fields at the beam pipe radius where the fields are non-zero only within the 

open gap of the cavity. The integral thus only needs to  be carried out in the gap region. 

The wake functions at other radii can be found by finding their radial dependence. The 

derivations of the functional dependence of the wake functions presented here assumes 

tha t the trajectories of the particles be straight lines.

The longitudinal component of the radiated E  field satisfies the wave equation

(V i  -  (Cl -  fc2) )£ ,( r ,  <f>, z , t )  = 0 (6  — 152)

The general expression of E z{r, z , t) in the cylindrical coordinate system is

E z(r,<j>,z,i) = £  /  du>d<:t A(Cz,oj)Gm( k r r ) e - ^ t+̂ ze ^  ( 6 -1 5 3 )
m ——co 00

where

OJ
k =  -  c

k ,  =  J \ Q - k * \
f Im(kTr), if C| -  k 2  > 0

Gm(krr) =  I
{ Jm(krr ), if Cl - k 2  < 0

I m and Jm are the modified Bessel function and the Bessel function of the first kind, 

respectively. The longitudinal wake function of the m th mode at (r, s — vt -  z)  is

/ +CO 4 ,
dtdudtzA{( i ,u)Gm(krr )e - jut'hCxZe3 rn,t‘\i={z+ay v

■CO
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with
I,u;~2 w

k '  = \ l 7 - 7 ^ c  <6 ~ 155>

At the pipe radius r = a

/ «|<QO i* t ̂
d u A ( —,w )/m(A;ra)e_ J ( 6 -  156) 

■00 v

Fourier transforming Eq. (6-156), we have

UJ 1 y*+oo
A ( - , u ) e ^  =  )-  /  u,f( a , ^ ' ) ^ a' ^  (6 -1 5 7 )

v (2 n) v lm(kra) J-co

Substituting Eq. (6-157) into Eq. (6-154) we have the wake function a t radius r

«»J,m (r, &  a ) =  jj—  M w i,m(a, <j>, s') j _ ^  (6 "  158)

It is clear now tha t the wake function at radius r  is a weighted average of the wake 

function on the pipe radius. The weight function has finite width. In order to calculate 

the wake function a t radius r  up to a distance s, the wake integrated a t the pipe radius 

should be some distance farther than s. The profile of the weight function which is 

defined as

W i ltn{ l t a t rt 8 -3? )  =  /  |™ (kg ) e-j^(a--a,)ffa>
2TtvJ-oo I m ( k r d - )

T

=  _ L  /  ———2 -e  J9 dq (6-159)
2?re J-oo I m{q)

determines the effective region for the averaging. It is independent of the bunch length 

and is a  function of r / a  and 0 / 7  only. The weight function for mode m =  0 for 

fit = 0.9948, and a =  1.74 cm is shown in Fig. 6-53a, and the widths a t half amplitude 

as functions of r / a  and a f 7  are shown in Fig. 6-536. The weight function has Gaussian- 

like profile. The area under the curve is unity. The halfwidth for a given r / a  is linear in 

a / 7 . At the ultrarelativistic limit, a / 7  —*• 0 , the weight function becomes 5{s — s'), and 

the wake function for mode m  — 0 is independent of radial position of the test particle.
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From the Panofsky-Wenzel [41] theorem, the transverse wake function is related to 

the longitudinal one as follows

I V
4>1 3)   V±wi(r,  4>,s)= -  /  v±w /(r ,  <f>, z ')dzf {6 -  160)

u; J -o o

We have

f+ 0 0m f s r + c o
h ,m (r,0 , 3) = -------/  dz d s ' w i ^ a . ^ s ^ W i ^ . a . r . z ' -  s') (6-161)

T J —00 J —co
m  f)  y + c o

,m(r, <p, S) =  —j —  /  dz'  /  ds'witTn(a , 0 , s')W i,m(7 , «, *' -  a') (6-162)r  J —00 J —co

with

™ r+00 f I m(q ) qj. I m+i(q ) \
W'2,m(7 , ^ r , z ' - s ' ) =  ~ ~  dq I +    a e~J'

2waj-oo  I I m(q) ma I m{q) J

At the ultrarelativistic limit, the Bessel functions in the weight functions are reduced

to

■ U * r) / r \ m
u f r  = ( z )  ( 6 - 1 6 4 )

and the wake functions are

+00

wi(r,^j,s) = "22 r mu/,m(a,s)cos(m 0) (6-165)
m=*-oo

+00 fS
W r( ‘ ‘ ___

m = —oo ■'—00

+°° rs/  \ V "Ti m 1 /WJ

+00 . s

r(rt 4 >t s) =  ~  mrTn~1 I  uiim(a,z ' )dzf cos(m4 >) (6-166)
m=-oo

+ ° °  ys
u^(r,0 ,s) =  2 Z mrm 1 /  (6-167)

7-00

where uilJn(a ,s ) is the amplitude of the longitudinal wake function integrated a t the 

beam pipe radius and ujtm(a ,s )  =  w/>m( a ,^ ,s ) / a m cos(m^). At the ultrarelativistic 

limit, the longitudinal wake function is independent of r  for m  — 0 and scales as rm for 

other modes whereas the transverse wake functions scale as r m~1.

6.3 Numerical algorithm for solving Maxwell’s equations in the time-domain

Numerical method uses typically finite-difference algorithm to solve the Maxwell’s 

equations in the time-domain (FT-TD). In principle, it can deal with any complicated
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structure. The limitations of using this method are the computer memory and the CPU 

time. There are numerous computer codes tha t calculate wakefields. TBCI and ABCI 

are two codes tha t are widely used. The linear finite-difference algorithm is used in these 

codes. The linear algorithm, often referred as the Yee algorithm, was first proposed 

by Kane S. Yee in 1966 in 3-D Cartesian coordinates. It is the standard field solver of 

Maxwell’s equations in the time-domain and has been widely used in numerical modeling 

of electromagnetic wave (microwave) interactions with arbitrary structures and beam- 

cavity interactions. The algorithm is reduced to  2^  dimensions in TBCI and ABCI 

to deal with the problems in the cylindrically symmetric structures by projecting the 

fields to the r-z  plane. The Yee algorithm discretizes both space and time into meshes. 

The continuous Maxwell’s equations are replaced by finite-difference equations. The 

field distributions are represented by the field values assigned to the mesh points. The 

derivatives in the Maxwell’s equations are replaced by the centered differences. Linear 

interpolation of the fields is used, and the algorithm has second order accuracy. The 

algorithm can usually give very good results by choosing appropriate mesh size and 

time step size. In the application of modeling microwave structures, good accuracy 

can be obtained by having the mesh size one tenth of Amin [39]. In the application 

of wakefields calculations, good accuracy can be obtained by having the mesh size one 

fifth of cr, where cr is the rms bunch length of the driving particles, assuming a  gaussian 

distribution. There are, however, instability problems due to the finite time-stepping in 

the iterative calculation of the fields. The stability of the time-stepping can be ensured 

by having the size of the time step satisfying the inequality

/  1 1 1 \ - x/2 

c A t ~  ( a ^  +  A ?  +  A ? )

Problems arise when the fields have high frequency components. These were encoun

tered in the wakefields evaluations of the CEBAF 5-cell cavities. The CEBAF beam has
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a very short bunch length. The spectrum of the current carried by the bunch contains 

very high frequency components. The wake functions calculated by use of TBCI and 

ABCI have unphysical oscillations even if the mesh size is one fifth of the rms bunch 

length.

It is found in this chapter tha t these unphysical oscillations are due to the accuracy 

of the Yee algorithm and are frequency-dependent. Even though the accuracy problem 

can be overcome by reducing the mesh size, the number of mesh points will increase 

so dramatically that it is not practical for large structures since the number of mesh 

points would be too large to be handled even by modern computers. In this chapter, we 

developed a fourth-order finite-difference formalism in a  cylindrical coordinate system. 

These formulae have accuracy to the fourth order.

Before entering into the discussion of developing the fourth-order finite-difference 

formulae, let us first go through the Yee algorithm in a cylindrical coordinate system, 

and then discuss the problems encountered in calculating wake functions by using TBCI.

6.3.1 Yee algorithm in 2 |-D  cylindrical coordinate system

The Yee FD-TD algorithm was developed in 1966 in a  3-D Cartesian coordinate 

system for solving scattering problems of microwaves by obstacles. In this section, we 

present the FD-TD formulae in a cylindrical coordinate system used in TBCI. These 

formulae are intended to calculate the fields excited by a  driving current flowing parallel 

to the axis of the microwave structure, e.g. cavities. The formulae are equally good 

for wave propagation in cylindrically symmetric structures by replacing the driving 

current by driving boundary conditions. The fields are decomposed into multipoles 

in the cylindrical coordinate. For each (multipole) mode, the <f> dependence of the 

fields is known (cos(m0) or sin(m ^)). Thus the fields are treated analytically in the <j> 

coordinate. In the r — z  plane, the computation domain is discretized into meshes and 

the E  and H  fields are discretized and assigned to the meshes. The equations governing
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the relation of these fields are the Maxwell’s equations

dE
dt =  —V x H  -  — 

Co fo
(6-168)

d n
dt

=  V x E  
^0

(6-169)

V - E _  P_ (6-170)

V H = 0 (6-171)

Assuming the bunch of the charged particles has a line distribution As(^), where s is 

the distance from the center of the bunch, with velocity of (3c moving in the z  direction 

and off axis by a, the current density carried by the bunch can be expressed as

J  (r, fa z ,  t ) =  ^  J 2  i  cos(m W r -  ®)z0 (6  -  172)

where <$oo =  1 and 8 om =  0 for m /  0. The electromagnetic fields excited by the m th 

component of the current have the following sinusoidal azimuthal dependence

~  £}jim) ( r , z t t)cos(mfa  

E<f,(r,fa z , t )  =  E ^ n\ r , z , t ) s i n ( m 4 >)

E z( r , f a z , t )  =  E ^ ( r ,  z, t) cos(m^)

Hr(r , f a z , t )  =  ifj!m)(r ,z ,t)s in (m 0 ) (6-173)

H<t>(r,faz,t) =  / r jm)( r , ^ 0 cos(m^)

Hz( r , f a z , t )  =  H(m\r,z,t)sin(m<f>)

E^m\ r , z , t ) ,  E^m\ r , z , t ), E^m\ r , z , t ) ,  l r fm\ r , z , t ) ,  f f^mi(r ,z , t ) ,  and H im\ r , z , t )  are 

the magnitudes of the mth mode and are defined in the 2 -dimensional r -  z  plane and 

are separable from any other modes since the sinusoidal functions are orthogonal. The 

problem is then reduced to 2-dimensional and can be evaluated mode by mode. From 

now on the superscript m  will be omitted and we will refer these 2-dimensional quantities 

as the fields. The full fields are obtained by multiplying the sinusoidal functions cos(^) 

or sin(<£) to the 2-D fields.
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The fields are discretized in the r —z  plane. The components of the fields are replaced 

by their nodal values assigned to  the finite number of grid points as shown in Fig. 6-54, 

with J  the total number of mesh points in the z  direction. The arrangement of the E  and 

H  fields in Fig. 6-54 provides a  natural geometry which fulfills the centered-difference 

analog to the space derivatives of the curl equations of the Maxwell’s equations (6-168- 

6-171). The fields are also discretized in time t. The centered-difference analog to the 

time derivatives are obtained by evaluating the H  fields a  half time step ahead of the 

evaluation of the E  fields. The centered-difference scheme has accuracy to  the second 

order. This is dem onstrated in the following. The E  fields a t time (n ±  l/2 )A f are 

expressed by the fields a t rcAt by use of the Taylor expansion

* * « / .  =  ^  +  ^ ( f )  +  i ^ ( f ) 2 +  0 (A i3) ( M „ )

-  ^ m * r w i r y + 0 ^  <S-17S>

Thus,
^.n+l/2 _  cjM-l/2 Q£n

-  At -  ■ - T T *  + o t * , > < « - ! « >

and the truncation error is of the second order.

Let the H  fields be evaluated at times nA f and the E  fields a t times (n +  l / 2 )Af,

n =1, 2, 3.... The solutions of the Maxwell’s equations are

H n+1 =  H " -  — V x E n+1/ 2 (6-177)
H o

E "+3/ 2 =  E n+1/2 +  — V x H rt+1 -  —  J n+1 (6-178)
eo fo

Take the E#  component a t node k  as an example.

pn+3/2 _  „ * + . / , ,  Ai f an?*1 _
** ** eo (  dz dr J  I*1”" 1”*

=  +  +  * 5 “ -  (6-179)

1 A  yLet Z0  =  =  ■pjp M  = denotes the number of time steps for particles to
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proceed through one space step,

K f n  = ( h S - j  -  * 3 '  +  < t l -  K & )  (s -  iso )

Similarly, the equations for other components of the E  and H  fields can be obtained. 

The following is a  summary of the difference equations

K t 1

li H ?,k~

= n , k  -

= K k  -

p n + 3 /2
L T,k =

p n + 1 /2
E r,k

p n + 3 /2
E 4>,k =

Pn+1/2

p n + 3 /2
E z,k =

^ n + 1 / 2
z,k

^  { K T  -  •E JS '.2 -  (6-181)

( E ™ ' 2 -  -  E % ' » )  (6-182)

B n '  =  - f f . V - ^ ^ K t l /2 - ( < - l ) ^ t ,/2 + ^ 5 ‘/2) (6-183)

+  W  ~  +  2^ l " ”r )  (6‘184)

= e ; X /2  +  ( h # I j  -  -  - » S i i )  (6-185)

+  w  ( § ^ * ‘ -  -  J T I * # 1)  <6-186>

The current has only the z  component. From Eq. (6-168), the source term needs to be 

added to Eq. (6-186) on the right hand side at the radial position of the bunch. The 

current density should be the averaged density in the mesh within which the field is 

defined.

a) Source on axis

If the current is on the axis, the current density is the total current divided by the 

area ?r(-4p)2. The source term for Eq. (6-186) is

-  — j =  J T kA n (6 “  187)co €0 M i t A R

b) Source off axis

If the current if off axis, the current density is

=  ( 6 _ 188) 
Afl/2 A £ 2( i - l ) ( l - M o m )
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The source term for Eq. (6-186) is

(6 -  189)
£o

where A R = A z.

€oMir{i -  l)AiZ(l + £0m)

In the applications of wakefield calculations, the fields are initially set to zero, E 1/ 2 =

0, H ° =  0 , J °  =  0. The to tal electromagnetic fields can be calculated iteratively 

over these difference equations through the leapfrog process set forth by the centered- 

difference in the time axis.

6.3.2 Wakefield calculations with TBCI and ABCI

TBCI and ABCI are two computer codes being widely used in the accelerator com

munity to calculate wakefields of various accelerator components as the charged particle 

traverses them- The Yee algorithm is employed in both codes to  calculate the wakefields 

excited by the current. Usually, we are interested in the accumulated effects, called wake 

functions, that the fields act on a charge trailing the source particle by a  distance s. 

The longitudinal and transverse wake functions are defined as

where q is the charge of the source particles and r  is the offset of the test particle. 

TBCI and ABCI give results as wake functions. These two codes can usually give good 

results. In this section, we will discuss some problems of the Yee algorithm in wakefield 

calculations. First, we’ll present the problem we have had in calculating the wakefields

(6-191)

(6-190)

of the CEBAF 5-cell cavity. Then, the behavior of the wakefields as functions of bunch 

and mesh parameters are studied for a simple pillbox cavity.

6.3.2.1 Problems in calculating wakefields of the CEBAF 5-cell cavity

The cross section of CEBAF 5-cell cavity is as shown in Fig. 6-55. The higher-order
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mode coupler and the fundamental-power coupler can not be included since the bunch 

length of CEBAF beam is so small that the number of meshes used to discretize the 3-D 

structure would be so large th a t the problem cannot be handled even by large computers. 

The omission of these couplers retains the cylindrical symmetry of the structure so tha t 

TBCI can be used. The 5-cells of the cavity are close to elliptical with m ajor axis about

9.4 cm and minor axis of about 5 cm (total width 10 cm). The two ends of the cavity 

are connected to 3.5 cm beam pipes. The 3.5 cm beam pipes are connected to 1.74 cm 

beam pipes and the 1.74 cm beam pipes are term inated at certain position where open 

boundary conditions are placed to  simulate infinite long beam pipe conditions.

The mesh size should be much smaller than the rms bunch length a  so that the 

mesh would have good frequency resolution. The ratio of the rms bunch length and 

the mesh size is suggested in [36] to be at least of the order of five. The code can only 

handle uniform meshes, same mesh size in both r  and z.  In our calculation, the rms 

bunch length is 0.5 mm. The mesh size is 0.1 mm. The number of total mesh points is 

about 7.5 million. The number of time steps in one spatial mesh step is M T  =  3, which 

is required by the numerical stability. The beam is on the axis. The wake is integrated 

a t the beam pipe radius [36]. Fig. 6-56 shows the longitudinal wake function of mode 

m  = 0. The dashed line is the charge distribution. The wake function obtained has 

strong oscillations. These oscillations are unphysical since the strength is stronger than  

the wake function in the bunch region. The same result is obtained with M  =  4, which 

confirms tha t the problem is not due to the instability of the tim e stepping.

6.3.2.2 Wakefields for different bunch and cavity parameters

The wake function calculation of the CEBAF 5-cell cavity for short bunch beams 

have unphysical results. However, there are no such problems for longer bunches, for 

example millimeter or centimeter bunches. This suggests that the  error is related to  

the bunch length or, in other words, the frequency of the fields. To have a better
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understanding of the problem, we studied the wakefields of a  simple pillbox cavity. The 

pillbox cavity is shown in Fig. 6-57. We performed four test runs. The first two runs 

confirmed that the problem was due to the truncation error of the algorithm. The third 

run was to study the dependence of the errors on the bunch length for fixed cavity 

structure and c/m esh  ratio. The fourth run was to study the scaling of the errors with 

the frequency.

1. Wakefields for a — 0.5 mm and cr/mesh =5

The cavity dimensions in this run are as follows: ra =  2 cm, r& =  6 cm, rc =  3 cm, 

L  =  14 cm and d =  1 cm. The bunch length a  =  0.5 mm. The mesh size is one fifth 

of cr. The number of time steps for one mesh step M T  is 3. The result is shown in 

Fig. 6-58. Similar to the wake functions of the CEBAF cavity, oscillations are observed.

2. Wakefields for a  =  0.5 mm and cr/mesh =7.5

To verify that the oscillation in Fig. 6-58 is errors, the ratio  cr/mesh is changed to 

7.5 in this run. Other parameters stay the same. The result is shown in Fig. 6-59. The 

magnitude of oscillation in this run is reduced. Notice that for fixed structure and beam 

parameters, the error diminishes as the ratio cr/mesh increases while the frequency of 

the oscillation stays the same. This excludes the possibility th a t the error is contributed 

by a  resonance between the grid frequency inherent in the finite-difference algorithm and 

the frequency excited by the bunch. The oscillation is cause by a numerical truncation 

error. One might expect tha t the truncation error is totally controlled by the small 

quantity A z /X .  The next example shows tha t the truncation error depends on both the 

A z /X  and the frequency.

3. Wakefields for cr — 2.5 mm and cr/mesh=5

In this run, the cavity structure is the same as in the previous two runs. The bunch
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length is cr =  2.5 mm, and (?/mesh=5. The result is shown in Fig. 6-60. The wake 

function for a  2.5 mm bunch does not show any oscillation. The truncation error is 

small in this case.

For a  gaussian bunch
1

A(s) =  — e 2̂  (6  -  192)
V 2 k c

and the frequency spectrum has a gaussian profile

1 2  2
P(u)  =  —7=e~  2^ - ( 6  _  1 9 3 )

V2;r

The gaussian bunch excites wakefields with different strength for different frequencies. 

There is a rolloff frequency u r , for example the frequency which has a  magnitude of 1  % 

in the spectrum, beyond which the excitation of the fields is negligible. The frequency 

u r  is proportional to 1/a.  If a / A z  is the same, say 5, for different bunch lengths (trs), 

frequencies with the same u / u r  for different ers will have the same Az/X  ratio. The 

truncation errors for these frequencies in these runs should be the same. But this is not 

the case as seen in the previous two examples. W hat makes the difference is th a t the 

frequency content in the wakefields in these runs are different. The frequency profile of 

a gaussian bunch tells us th a t a  shorter bunch has more higher frequency components. 

The shorter the bunch, the higher the frequency contained in the spectrum. T hat the 

truncation error for the 0.5 mm bunch is larger than th a t for the 2.5 mm bunch suggests 

tha t the truncation error depends on frequency.

4. Scale everything in run 1 by 5

To check the frequency dependence of the truncation error, we scale the param eters 

in the first run by five. Now the cavity is five times bigger. The bunch is five times 

longer, a  =  2.5 mm. The ratio  <r/mesh remains 5. The result is shown in Fig. 6-61. 

The wake function of this run has the same structure as the one shown in Fig. 6-58 

except the scaling factor of five, the same factor as the cavity is scaled. This shows th a t



the frequency dependence of th e  wake functions is linear. As we scale the cavity, the 

frequency of each mode is also scaled by the  same factor. From mode analysis [37, 38], 

the wake function for resonant frequency uiT is

depend only on the structure. The strength of the wake function for a given mode is 

proportional to its frequency. The same scaling factor is observed for the  numerical 

error. The conclusion is that the numerical error has a  linear frequency dependence.

6.3.3 Fourth-order FD-TD algorithm

We have seen th a t the truncation error imposes seriously problems in the  calculation 

of wake functions of short bunches. In principle, the problem can be solved by use of 

fine meshes. But it is often impractical due to limitations in computer power. In this 

section, we will, extending J. Fang’s work [42], derive a  fourth-order FD-TD algorithm 

in the cylindrical symmetric coordinate system. The same Yee lattice is used to define 

the fields. Fourth-order accuracy is accomplished by including up to the third order 

derivatives of the fields in the Taylor expansion.

6.3.3.1 Fourth-order FD-TD algorithm in a  cylindrical coordinate system 

Expanding the E  and the H  fields to th ird  order in time, we have

(6 -  194)

where R a and Q are the shunt impedance and the quality factor, respectively, and they

m n+l/ 2 A j3 03H n+l/2

0E n+1 At3 £?3E n+1
+ 0 (A t5) (6-196)

+  0 (A t5) (6-195)

Replacing the time derivatives in Eqs. (6-195,6-196) by the curl operators defined by 

the Maxwell’s equations, we have
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r ^ ( v  x jn + 1 /2 )+ 0 (A *5) (6'197)

E n+3/2 _  Jjn+1/2 +  f f l y  x  jjn+1 +  £ iL £ _ V  X V 2H 'l+1
€ q  24 to

_  A / j n + 1  +  ^ f c 2V x V x  J"+l -  +  0 ( A i 5) (6-198)
fo 24e0 \  d v )

The first order derivatives involved in the curl operators are evaluated to  the fourth-

order finite-difference as

d - f f z  f c + i / 2  ^  _  A ^ ^ z M i / 2 0 ( A g 4 )  ( 6 - 1 9 9 )

A 2 24 dz

By using the above equations, the FD-TD formula to the fourth-order accuracy are 

obtained as the follows:

r r n + l  _  r rn  ^ 0  f  p n + 1 /2  _  p n + 1 / 2  m  p n + l / 2 * \  
r ,k ~  a r,k ^ k + l  f  _  j  J

A z 3 Ya ( ,  1 \  0 3£ ' ‘+' /2
 f l — L _ V _
24 M p \  {M(5YJ dz

, A ^ Y p  ( m d f  d E n+ W \  m3 +1/2 m d 2 E ^ 2

24 (M 0 ) 3 \ r 2 d r \ r d r  J  r 3 z,h r d z 2

i r n + l  _  f i n  ^ 0  ( p n + 1 /2  p n + 1 /2  . p n + I / 2  p n + l / 2 ’\
~  M fj  [E z,k “  h z M J  +  E r,k+ 1 “  r,k )

A z 3  Yq / '0 3F£ + 1/ 2 /  1 \  03£ rn+1/ 2\
24 M p  dr 3  V ( M p ) 2)  d z 3 /

A z3F0 } l  d 2  f  d E ? +lt 2\  _  m2 d E ? + 1 ! 2  

24(MP)3 \ r d z d r \ r dr  )  r 2 dz

d f i d  f  d E Z + ' t W  , 2 d f E ^ 2\  d 3 E ? +1/2\  n n i ,
- ^ { r r A T~ ^ ) )  + m  a ? { - ~ ^ ~ ) - ^ a ? - )  (6-201)

H -*  =  +

I ^ 0  1 d 3 /  p « + l / 2 \

24 Af / 3 r 0 r 3 v  * )

Az*Y 0  ( l  d 2  (  a -g ;+1/2\  m 2  d
24(MP)3 \J* d r 2  \  dr  )  r d r \  r )

. i  a  /  / < 1/2n m  d  (  d n p w \
r dr  \  d z 2  )  r 2  dr  \  dr  )
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dz

K ? ' 2  =  K t ' / 2  +  j j p  ( H u - i  ~  H i t '  +  t r h 11" ? )

A z 3  Zq f  1 \  d 3 H % + 1

\  (MP)2)
+■

24 M p  I (MP)2 } dz 3
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k T  = < t i/2+ ^  + h%1 -

Az3 Z0 ( d 3 H ? + 1  (  1 \ a sJT^+1\
24 M P  y dr3 I  (AfjU)V ^ 3 J  
A ^Zp ( \ d 2 (  dH?+1\  _  m2 g g rn+1 d3ff?+1

"^24(M /?)3 y r  dzdr V c?r /  r2 dz drdz2

rifi+3/2   j^n+1/2 , ^0 /"2i — 1 jj-n+i 2l — 3 nm+1 ^  rrn+l^
^,fc  -  *-*,* +  j i ^  1 ,27^2 ^  _  2 i ^ 2  ^ ,k~J ~  T ^~ l r,k )

24 A f /? r0 r3 v * /
A z 3 Zq ( l  d 2 (  d S f r l ,  m 2  d  , H n+l 

24(Mp)3 \ r  dr 2  V dr )  r d r \  r )

1 d (  d 2 H$+K  m d  (  dH?+1\  
r dr  v* d z 2  '  r 2  dr  \  dr  )

(6-205)

The current term, Eq. (6-187) or Eq. (6-189), needs to be added to  Eq. (6-215). The 

extra source terms for the higher-order corrections are

a) For the E  field

A t3
24<r0

(Vv X V x  J"+> -  ^ 1 1 ) = A ^ z - f r O  (At M n+I)
\  d t2 )  24(MPa)2 \  Co dr )

m A z l (z -  Pet) ( A t  +1\
24r (M p a )2 U  )  *°
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A z 2  ( A  i l d , d J n+\ \  , r n n n , 
' 24 ( Mp) 2 \ € Q r d r ( r dr  JJ  Z° ( ^

I m 2A *2 ^ j n + A  
24r2(Mf3)2 \  €o )  °

A z 2

2 4 { M a f

b) For the H  field

A t 3 c2  d  / „  menAz 2

S ' - - ) zo

^T7 xn+iM  _  ™ oA z 0c(z -  flat) (  A t  Tfl+1/2\  ..
24 0t 1 i ----------24r(MM2 W  J 0

e o A ^ c (2 -  /3ci) (  A t a y ”* ' / 2'!

 24(Mttoj2 ^  /  ( ’

where a  is the rms bunch length. ^  J  has the form of Eq. (6-187) or Eq. (6-189). The
Q T

partial derivatives are defined half mesh off the radial position a. Since the average 

quantities are used in the difference equations, the partial derivatives have the following 

forms

d J  J  - ra + A R /2
■^rlr=a±Afl/2 =  with J ~  J  J 6 (a -  r ) d r / A R  (6 -  208)

The second order derivative f  is defined at r =  a, and is

1 d (  d J \  n J  nnn.
r d r \ r d r ) ~  A  R 2  ( }

The higher-order derivatives in the fourth-order FD-TD equations should be eval

uated at positions where the fields on the left hand side of the equations are defined. 

Replacing these derivatives by the finite-differences of the nodal field values, we have

r r n + l    r r n  ^ 0  / p n - f l / 2  ^ n + 1 /2  JW
H r ,fe -  H r,k ~  y E 4,,k ~  E * ,k+ 1 “  J Z \ E ^  J

1 ^ 0  / 1 1 \ / c in + 1 /2  0 p in + 1 /2  , 0 riW +1/2 raf*,H / 2 \

”  24 W p  I (M/3 ) 2  J ( ^< k + 2  ~  +  ~ >

+ 24W W I _  1X £r'S / j ! "  ^
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24 (M/J) «

(6-215)

6.3.3.2 Frequency dependence of the higher-order terras

We anticipated in section 6.3.2 th a t the truncation error of the first order Yee al

gorithm is frequency dependent. This can be investigated by studying the higher-order 

terms derived in the previous section. For a  given mode, assuming that the fields have 

e-jwt tjme dependence, the higher-order terms in Eqs. (6-197)-(6-198) have the following 

form

Except for the phase difference, the third order derivatives respect to z  can be written 

as k%(jE, H)  and the first order derivative respect to r is approximately kr(B,  H) .  These

the magnitude of the contributions from the terms related. The situation here now 

is different, the coefficients of ( A z / X ) 2  linearly increase with the frequency. If the

(6-217)

(6-216)

higher-order terms are, therefore, proportional to u ( k A z ) 2, or, w ( ^ p )2 ( A z  and A r  

are assumed equal). ( Az / X ) 2  is in general small and is usually used as a  measure of
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frequency is very high, these terms may not be “small” any more.

In  the first order Yee algorithm, these terms are the lowest order truncation errors 

and they are frequency dependent. Consider the case of the wakefields driven by a 

gaussian bunch, the profile of the frequency spectrum of such a  bunch is also gaussian. 

Frequencies th a t have lower magnitudes in the spectrum excite wakefields with lower 

amplitudes. The wakefields excited by the frequencies higher than a  certain frequency 

will be negligibly small. Assume this cutoff frequency is the frequency with a  magnitude 

of 1% in the spectrum . The corresponding wave length of this frequency is A =  2c.  Let 

the mesh size be one fifth of <7, tha t is A z / X  =  0.1. This is the typical number suggested 

in [39] for numerical simulations of microwave propagation and in [36] for wakefield 

calculations. This number has been accepted as a  general rule in the discretization 

of the Maxwell’s equations so tha t the mesh would have enough frequency resolution. 

This rule works fine in the calculation of the wakefields of long bunches where the cutoff 

frequency of the excitation of the wakefields is low. Good accuracy can be obtained with 

the choice of A z  =  a /5 .  In the  calculation of wakefields of short bunches, the fields 

contain higher frequency components. The quantity w( ^ ) 2 may no longer be small 

even if  A z  =  a /5  or A z / X  =  0.1 is retained since it depends linearly on the frequency. 

The rule of A z  =  a /5  is no longer valid. This is what we have seen in the examples 

studied in section 6.3.2.2. Using a  smaller mash size can improve the accuracy, but 

reducing the mesh size will increase the number of mesh points manyfold (for example 

4-fold in the 2-D problem and 8-fold in the 3-D problems if the mesh size is halved). 

Computer memory becomes a  problem.

T he fourth-order FD-TD algorithm derived in this chapter can reduce the truncation 

error to  the fourth order

(6  -  218)

Even though it is also linearly proportional to the frequency, the ex tra powers of A z / X
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would greatly reduce the magnitude of the error. If the highest frequency of the excita

tion is not very high, the terms of the fourth order and higher of A zjX  are small.

6.3.3.3 Wakefields calculated by fourth-order FD-TD algorithm

The fourth-order FD-TD algorithm is implemented in TBCI. The results of the wake 

functions of a pillbox cavity and the CEBAF 5-cell cavity of a 0.5 mm bunch are shown 

in Fig. 6-62 and Fig. 6-63 by the solid lines. The dashed lines are the results of the 

second-order FD-TD algorithm. The same mesh size is used, which is a ( A z ~ 5. No 

oscillations are present in the calculations with the fourth-order FD-TD algorithm, and 

the errors are suppressed.

Higher-order truncation errors linearly depend on the frequency. They also ac

cumulate with time. The longer the cavity the larger the accumulated error. The 

fourth-order FD-TD algorithm reduced these errors, and the accuracy is good for calcu

lating the wakefields of sub-millimeter bunches. If the bunch is very short, the accuracy 

of the fourth-order algorithm presented in this chapter may not be good enough with 

a ( A z  =  5. A sixth-order algorithm or smaller mesh size should be used to obtain a 

good result. The fourth-order FD-TD algorithm typically takes more than six times 

the CPU time than the second-order Yee algorithm. In exchange, there is no extra 

computer memory required.

%

6.4 Wake functions for vs,vt ^  c

When the velocities of the source and the test particles are different, slippage occurs 

while the particles traversing the cavity. This effect should be included in the calculation 

of the wake functions which are the accumulated effects of the wakefields. In calculating 

the wake functions, we integrate the wakefields in the frame of the test particle. In the 

case of vt =  vs, the mesh points for the wake function integration coincide with the 

mesh points used for the field calculations. The integral is performed by simply adding
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the fields a t the mesh points at each time step. When Vt ^  v3, where slippage exists 

between the particles, linear interpolation is used to  evaluate the wakefields defined at 

the meshes in the frame of the test particle. The argument s in the wake function is 

defined as the initial position of the test particle relative to the source particle.

The wake functions for cases of u„ vt ^  c are evaluated by use of the modified TBCI 

for the CEBAF 5-cell cavity. The rms bunch length is az=3 mm. The mesh size is one 

fifth of <7j . The wake functions are calculated a t r = 0. We want to  look at the wake 

functions for two different scenarios. The first scenario is vt =  v3 < c, which is the case 

of low energies. The second scenario is vt ^  v3 < c, which is the case where multiple 

beams are accelerated in the same RF bucket.

Fig. 6-64 shows the wake functions for the cases of vt = vs. The values (3 =  0.9948 

and f3 =  0.9987 correspond to beam energies of 5 MeV and 10 MeV respectively. The 

wake functions integrated at the pipe radius which is 1.74 cm are quite close to  the 

wake function for (3 =  1. The wake functions on the axis calculated by applying the 

average weighting have a little difference from the j3 =  1 case. For these bunch length 

and energies, the effect of v < c is small.

For the cases of vs ^  u*, as shown in Fig. 6-65, not only are amplitudes of the wake 

functions different, the slippage between the source and the test particles also results in 

displacement in the wake distribution. The value (3 =  0.99 corresponds to an electron 

energy of 3.6 MeV. W hat happens when vt =  0.99c < va =  c is tha t the source particle 

and the wakefields propagate faster than the test particle. The test particle initially 

placed ahead of the source particles is caught by the fields generated by the source 

particle. So the wake function is displaced to the head side of the source bunch. For 

vt = c > v3, the test particle behind the source particle catches up with the source 

particle and a maximal wake force is accumulated. The wake function displaces to  the 

tail side of the source bunch. For /? = 0.999 which corresponds to E  = 11.5 MeV, the
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wake functions are close to that for (3 =  1 .

6.5 The smearing effects for v < c

The width of the short range wake function is roughly proportional to the bunch 

length, while the width of the weight function depends only on the energy and the 

cavity structure. Thus the smearing effect is bunch length dependent. If the width of 

the weight function is much smaller than the bunch length, the smearing effect will be 

small, and vice versa. Fig. 6-64 shows an example of long bunches, where the smearing 

effect is negligible. Fig. 6-66a shows the radial dependence of the wake functions of a 

pillbox cavity (3 cm x 4 cm, pipe rad ius= l cm) for a short bunch with bunch length of 

0.5 mm (rms) and @3 = f3t = 0.9948. The sharp peak of the wake function on the pipe 

radius is flattened by the weight function a t r < a. The wake functions also show the 

slippage effects between the charge and the fields, which results in none zero wakefields 

ahead of the bunch. Numerical verification of this effect is obtained by integrating the 

wake at r  = 0.75 cm for a long distance. Fig. 6-666 shows the results with integration 

limits of 6 cm and 25 cm. The later one gives a closer result to the wake function 

calculated by use of the weight function. For (3 < 1, the slippage between the particle 

and the fields results in finite wake in front of the bunch.

The effective range of the weight function for r  =  0, wake function on axis, is 

proportional to the ratio of The short range wake function has a peak which has a 

width tha t is proportional to the bunch length of the beam. The smearing effect of the 

short range wake function for a given energy then depends not only on the energy (7 ) 

of the beam, but also on the bunch length. The ratio

R  -  —  (6 -  219)
a

is a measure of the smearing effect. Large R  implies weak smearing. The relative 

difference of the peaks of the short range wake functions calculated at the pipe radius
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and on the axis of a pillbox cavity as a function of R  is shown in Fig. 6-67. For R  =  1.5, 

the relative difference is less than 10%.

The R  value of Eq.(6-219) can be used to determine whether the beam can be treated 

as ultrarelativistic in the wakefield calculation. The difference of the wake functions as 

a function of R  may be slightly different for different structures and bunch length. It is 

shown from the numerical simulations tha t the difference of the peak less than 10% can 

in general be obtained for R  > 1.5. For cases with R  > 1.5, the beam can be assumed 

ultrarelativistic. For R  < 1.5, smearing effect is significant, wake functions at r < a 

should be calculated by use of the weighted average.

The radius of the beam pipe of the CEBAF cavity is a = 1.74 cm. For az= 3 mm, 

the beam can be treated as being ultrarelativistic for 7  > 8.7 or E  > 4.5 MeV. While 

for Oz =  0.5 mm, the beam can be treated as being ultrarelativistic for 7  > 52 or 

E  > 26.5 MeV.

To conclude, the algorithm developed in this chapter can be used to  calculate wake

fields of beams with j3 < 1 as long as the trajectory of the beam is approximately a 

straight line. The effects of slippage between the beams and between the beam and the 

fields are im portant in the cases of low energies and short bunches. The R  value defined 

in Eq. (6-219) is a measure of the smearing effect on the wakefields of non-relativistic 

beam. The particle can only be assumed ultrarelativitic for cases with large R.
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Figure 6-54: The E  and H  fields defined in the r -  z  plane.

Figure 6-55: The cross section of CEBAF 5-cell cavity.
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Figure 6-56: Wake function of the CEBAF 5-cell cavity. Bunch length a  =  0.5 mm. 
m=0
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Figure 6-57: Pillbox cavity.
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Figure 6-58: Wake function of a  pillbox cavity for a  =  0.5 mm, ct/A z =  5
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Figure 6-59: Wake function of a  pillbox cavity for cr =  0.5 mm, cr/A z = 7.5
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Figure 6-61: Wake function of a pillbox cavity 5 times as large as in the first run for 
a — 2.5 mm, a /A z  = 5
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Figure 6-62: Wake function of a  pillbox cavity calculated by the fourth-order FD-TD 
algorithm. Shown in dashed line is the second-order FD-TD result for comparison.
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Figure 6-63: Wake function of the CEBAF 5-cell cavity calculated by the fourth-order 
FD-TD algorithm. Shown in dashed line is the second-order FD-TD result for compar
ison.
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Chapter 7

The Effects of Wakefields and Cavity Multipole fields on a  40 MeV IR  FEL Linac

When a beam passes the cavity, it is not only accelerated by the RF field of the fun

dam ental mode, but also radiates energy as the form of electromagnetic fields, known 

as wakefields, with frequencies tha t occupy the entire cavity eigenmode spectrum. For 

a  high Q cavity, these fields will ring in the cavity for a long time. These fields then act 

back on the la ter beam bunches, and perturb their motion. Under unfavorable condi

tions, the perturbation on the beam further enhances the wakefields. The beam cavity 

interaction then leads to a  possible collective instability. There two prime concerns 

about the beam cavity interactions in th e  CEBAF linacs. The recirculating structure of 

the CEBAF accelerator provides a potential mechanism for transverse multipass beam 

breakup. If the beam experience a momentum kick from the cavity fields, the recircu

lating beam will return to the cavity w ith a transverse displacement. On traversing the 

cavity second time, additional wakefields are exited. Steady state  is maintained if the 

losses on the cavity walls and in the HOM coupler compensate the bunch excitation. 

At a high enough current level, there will be instability. Theoretical and experimental 

studies [43, 11] have shown th a t the threshold current for the multipass beam breakup 

in the CEBAF accelerator is well above the designed current. W ith the HOM damping 

mechanism employed in the cavity, the long-term wakefields are effectively minimized. 

The long-term wakefields are not likely to  be a  limiting factor to  the beam  current a t 

CEBAF. As opposed to the long-term wakefield effects, another concern associated with 

the wakefields is the short-term  or high-frequency wakefield interactions with the beam. 

W ithin the bunch region, the integrated form of the  wakefield, called wake function,
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has a peak value and has strong variation within the bunch. For the longitudinal part 

of the wakefields, the forces tha t act upon the particles a t different positions of the 

bunch are different and generate energy spread. The transverse part of the wakefields 

on the other hand may cause emittance degradation. The HOM damping mechanism 

are not effective in minimizing the short-term wakefield effects. There are methods 

of compensating the short-term wakefield effects by accelerating the beam at an RF 

phase other than on the crest. For a bunch much shorter than the wave length of the 

RF field, this compensation can only eliminate the linear part of the wakefields. The 

strength of the wakefield is proportional to  the beam current. The stiff requirement on 

the energy spread and the emittance of the beams for a possible IR FEL driver a t CE

BAF, see Sec. 5.5 for more details on the accelerator, requires a deeper understanding 

of short-term wakefield effects which are the topic of this chapter. The beam dynamics 

simulations in this chapter include both the effects of the multipole fields of the cavity 

and the effects of the wakefields.

7.1 Momentum change due to the wakefields

The energy of the beam in the linac varies from 10 MeV to 40 MeV. The R  value 

defined in Eq. (6-219) for E  =  10 MeV, a  =  0.5 mm is 0.56. The smearing effect for 

this energy is strong, and the wake function a t r  =  0 should be calculated by use of the 

weight function. The smearing effect becomes small for energies higher than 25 MeV. 

The energies in the first four cavities of the FEL linac are lower than 25 MeV, so the 

wake functions in these cavities should be treated separately. The energy of the beam 

in the rest of the cavities in the linac is higher than 25 MeV, and the wake functions in 

these cavities are approximately the same and can be treated under the ultrarelativistic 

assumption.

To calculate the wakefields of a beam with bunch length of 0.5 mm in the CEBAF 

cavity, 7.6 million mesh points are needed. Since the whole mesh domain is needed in
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solving the Maxwell’s equations for (3 < 1, the CPU time required for the wakefield 

calculations would be so long th a t it becomes impractical. The wake functions in the 

first four cavities have to be approximated by the wake functions of (3 =  1, Since the 

smearing flattens the peak of the wake function, this approximation will enable us to 

estimate the upper limit of the wakefield effects in these cavities.

For j5 ~  1, a  moving window which covers the region within which the wake functions 

are calculated in the bunch frame is established. Since we only need to calculate the 

short-range wake function, the effective number of mesh points used in the iterations is 

much smaller than the total number, and the CPU time requirement is reduced.

For /? =  1, the wake functions have the form of Eqs. (6-165), (6-166), and (6-167). 

The net momentum change for a  particle with charge £ traversing the cavity is

e  °°  /  t 3
A P (r,4>,s) — -  y ;  f - m r " 1" 1 /  Um(s')ds' cos(7n<£)er

v m=0

■fmr™"1 I  U m^ds'sin(m4>)eA
J — 00

-f i,Tnttm(s) c°s(m 0)ez^ (7-220)

This equation describes the momentum change due to the existing fields in the cavity. 

The fields are generated by the source particle located a t ( n ,  <j>lt z =  ct). They are 

proportional to the multipole strength of the source particle which is, for mode m, 

Irn — qr™. In general, the momentum change of the test particle located at (r2, <f>2 , 

z  = ct — s) due to the fields generated by the source particle located a t ( rx, z =  ct) 

is

00 /

AP(ri,r2,^1,^2,5) = — 53 (ri*r^t“1PFr,m(s)cos(m(^2 -  ^i))er

- r J ‘rgl'_1WV,m(«)sin(m(02 -  & ))e* 

+rJV™W£,im(s )cos(m(</>2 -  0 i))ez ) (7-221)
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The longitudinal and transverse wake functions Wi,tTn(s) and Wx.m are defined as

( ?-222)Im J-oO q r ? T ™  c o s ( m ( < p 2 -

W Ttm = - m  r  WL,m(s')ds' (7-223)
J —00

which are independent of jq and r 2. The TBCI output for the wake function is the 

integrated z  component of the electric field

/ +00
E z<rn{T2, 4>2i Z =  d -  s )dz

■00

The auxiliary program TBCIIMPEDANCE or WAKEPRJNT prints out and

W T ,m .

7.2 Wake functions in the CEBAF 5-cell cavity

The CEBAF 5-cell cavity is as shown in Fig. 6-55. The rms bunch length az of the 

FEL beam is about 1.6 ps, or 0.5 mm. The full bunch length used in TBCI is ±5az . 

The mesh size to discretize the Maxwell’s equations is 0.1 mm. The total number of 

mesh points for the 5-cell cavity is 7523295.
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Figure 7-68: Longitudinal wake function of mode m=0 in the CEBAF 5-cell cavity for 
a bunch with bunch length az =  0.5 mm.



149

7.3 Simulations of the wakefield effects in PARMELA

A separate element, called WAKE, is added to PARMELA to accommodate the 

calculation of the wakefield effects in the beam dynamics. The WAKE card is placed 

next to the cavity card in the input file. The argument for the input includes, IWAKE, 

QO, SIGMA, NSIGMA, IELL. The IWAKE is a switch to turn the wake on (IWAKE=1) 

or off (IWAKE=0). The QO is the total charge of the bunch in pC. The SIGMA is the 

rms bunch length. The NSIGMA is the number of SlGMAs used in TBCI. The IELL

is the number of elements prior to  WAKE where the relative positions of the particles

are evaluated.

In TBCI calculations, the particle distribution in the bunch is a 8 function in the 

transverse plane. The actual beam size is finite. To calculate the wake generated by 

such a beam, we assume tha t all of the charges are located in the center of the beam in 

the transverse plane.
N

xc = £ > n/JV (7-224)
n=l

N

Vc =  fN  (7-225)
n = l

When the wake forces are applied in the PARMELA simulations, finite beam size is

assumed. The relative positions of the particles are evaluated at the entrance of the

cavity, tha t is IELL=-1. The position of the particle is recorded by means of the RF

phase. Those particles with smaller RF phases arrive earlier and are in the head of the

bunch. Particles with larger RF phases correspond to the tail of the bunch. For the

CEBAF cavity with frequency of 1497 MHz, the relative position to the head of the

bunch in centimeters in the longitudinal direction is

on 026
s =  S IG M A  * N S IG M A  -  —- ^ —(^o -  4>) (7 -2 2 6 )

00U

where 4>q is the RF phase at the center of the bunch. Linear interpolation is used to 

evaluate the wake functions off the mesh points.
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7.4 The energy spread in the RF linac

There are two sources of energy spread in the RF linac. The sinusoidal RF field 

of the cavity produces a  variation of acceleration within the finite bunch. The energy 

spread is a  cosine-like function of RF phase. The variation of the longitudinal wakefields 

across the bunch also produces energy spread. Unlike the RF field, the wakefield effects 

depend linearly on the beam current and are independent of RF phase. The phase 

relations of these two kinds of energy spread make it possible to minimize the combined 

energy spread by properly phasing the RF phase of the cavity.

Let <f>o be the RF phase of the acceleration, A<f> be the phase offset of a  particle, and 

Go be the gradient of the cavity. The energy spread from the RF field for the particle 

for one cavity is

A E r f (<Poi Go) =  O.5Go(cos(0o +  A<f>) -  cos(^o)) (7 -  227)

where A (f> < 0 corresponds to the head of the bunch. The energy spread due to the

wakefields, A E Wake> only depends on A <f>, which is

A E wake(A<f,) = W(<{>0 + A<£) -  (7 -  228)

The wakefields of the CEBAF cavity for the bunch length of 0.5 mm are given in Figs. 7- 

68 and 7-69. The to tal energy spread due to the RF field and the wakefield is

AE(<f>o, A <j>) =  AEnF(<f>Qt A 0, Go) +  A E wake(A<f>) (7 -  229)

Assuming tha t the bunch has a Gaussian distribution, the rms energy spread of the

bunch is

1 /*+oo ^
» .% /+ « * .(W  = - s = ~  /  A * M ) ) V  ds (7 -  230)

V  J —oo

where az is the rms bunch length, A 0(s) =  A =  20 cm for CEBAF cavity, and 

(Tz = 0.5 mm.



151

The energy spread, creir/ +u)afce(0o)) is now a function of the acceleration phase <j>o 

only. Optimal 4>opt exists for a  minimum energy spread. Fig. 7-70 shows the rms energy 

spread of the beam with different charges as functions of the RF phase of the cavity, 

where the gradient of the cavity is C?o=7.5 M V/m and the bunch length is <r2= 0.5 mm. 

For very low charge, the energy spread is caused solely due to the RF field. As the total 

charge of the bunch increases, the wakefield effects become significant. At certain RF 

phase, cancellation exists between the energy spread from the RF field and tha t from 

the wakefields. The total energy spread at this RF phase has a minimal value. When 

the to tal charge of the bunch becomes laige, the wakefield effects become dominant. 

The total energy spread increases with the bunch charge. For the IR FEL, the total 

charge is Q =200 pC. The energy spread has a minimum of 4.4 X10-4 MeV at fa  = -1 ° , 

which is smaller than minimum energy spread from the RF field. The energy spread 

A E r f {̂ >o =  -1 ° , A<f>,Go — 7.5), AEtijake{A<f>) and A E(tj>0 =  -1 ° ,  A0) along the bunch 

for this case are shown in Fig. 7-71.

The energy spread analyzed above is related to the RF field of the cavity and the 

longitudinal wakefield of the cylindrical symmetric mode (m =0). If the bunch is off 

axis, the longitudinal wakefield of the dipole mode (m = l)  will also cause energy spread. 

However, since the dipole wakefield is proportional to rs * r (, the contribution of the 

dipole mode is of higher order.

The energy spread of the beam includes the initial energy spread of the beam and 

the energy spread from the RF field and the wakefields. They are not correlated. The 

total energy spread of the beam is then

a E  =  \ J a E $  +  a RF+wake ( 7  “  2 3 1 )

To study this m atter more carefully, numerical simulations using PARMELA were per

formed. The initial energy spread (<t e ,o) at 10 MeV is 3 x 10-2 MeV. The PARMELA 

simulation of the energy spread of the FEL linac a t the exit of the linac as a function of
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the acceleration phase is shown in Fig. 7-72. It is shown tha t in order to  get a  relative 

energy spread less than 2 x 10“ 3 at 40 MeV, the RF phase offset of the cavity should 

be within the range of (-10°, 7.5°).

7.5 The emittance in the FEL linac

The multipole RF fields of the cavity and the wakefields generated by the beam are 

the two sources of emittance degradation in the linac. The emittance degradation due 

to the RF fields is studied in Sec. 5.5. In this section, we will include the effect of the 

wakefields. The dominant mode of the wakefields tha t causes the emittance growth is 

the dipole mode, which is similar to the head-tail effects of the cavity multipole fields. 

The dipole mode of the wakefields can only be excited when the beam has an offset 

from the axis of the cavity. To reduce the wakefield head-tail effect, beam centering is 

im portant. However, the beam offset may result from some undetermined factors like 

the cavity misalignment and the cavity steering of the coupler fields. The misalignment 

of the cavity is within 1 mm. The beam offset from the cavity steering on the other hand 

is unavoidable since there are no orbit correctors inside the cryomodule. The upper limit 

of the emittance growth is estimated by assuming tha t the cavity is misaligned with a 

maximum possible misalignment.

The steering of the dipole mode of the wakefields has the following form

A P i ( r 0, r, <£0, a) =  £2 (r0Wr,i(*) cos(<£ -  0o))er -  r0Wir,i(a) sin(^ -  ^o))e*)

(7 -  232)

where (ro, o) is the transverse position of the center of the bunch and (r , <f>) is the 

transverse position of a  particle in the bunch. The strength of the transverse wake 

function linearly increase along the bunch. The result is th a t the tail gets kicked more, 

and the projected emittance is then increased.

Assuming th a t the beam has a  initial offset of 1 mm, the PARMELA simulations
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show (Fig. 7-73) tha t the emittance has little dependence on the RF phase. The emit

tance degradation is mainly due to the cavity multipole fields. The contribution from 

the wakefields is negligible. The total emittance growth in the linac is about 60%.

The wakefield effects are proportional to the total charge of the bunch. Simulations 

indicate tha t there is no significant emittance growth for a total charge of 200 pC. The 

weak wakefield effects on the emittance growth can be attributed to  the large opening 

of the cavity which results in low transverse wakefields. The large initial emittance is 

also a factor th a t makes the emittance growth less noticeable.

The PARMELA simulations on the energy spread and the em ittance degradation 

conclude tha t the wakefield effects in the 40 IR FEL linac will not become a limiting 

factor on the beam qualities. The 2 x l0 -3 relative energy spread is easily achievable 

within a wide range of RF phase (-10° to 7.5°). The emittance growth is dominated 

by the x — y coupling of the cavity multipole fields, which can be corrected by use of a 

compensation skew quadrupole placed in front of the linac (see section 5.5).
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Figure 7-69: Wake functions of mode m = l in the CEBAF 5-cell cavity for a  bunch with 
bunch length of az — 0.5 mm.
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G radient=7.5 M V/m, rms bunch length az = 0.5 mm, charge=200 pC.
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Chapter 8

Conclusions

The dynamics of beams under the influence of multipole fields of the cavity and 

wakefields generated by the beam have been studied.

Full three-dimensional modeling of the cavity, which includes the 5-cells and the FP 

the HOM couplers, was established. The 3-D code MAFIA was used for this purpose. 

Several steps have been taken to make the modeling better represent the real cavity: 

a) the resonant frequency was tuned back to 1497 MHz by adjusting the radii of the 

five cells; b) a  flat field distribution in the 5-cells is obtained by slightly adjusting 

the size of the two end cells; c) the short position of the fundamental mode in the 

waveguide is determined from the tuning curve of the cavity so th a t a  proper boundary 

condition on the FP coupler can be applied; d) the coupling strength of the F P  to 

the end cell is obtained to match the forward power flow in the F P  waveguide. The 

3-D fields calculated by use of MAFIA are Fourier decomposed in a 3-D cylindrical 

coordinate system. The multipole fields and their impact on beam  dynamics were 

analyzed. Experimental measurements were performed to measure the multipole fields 

of the cavity, and the results agree with the numerical simulations. The misalignment of 

a  cavity was estimated from experimental results of the cavity steering, and the resulting 

misalignment of the cavity found to  be within specification.

A full 3-D modelling of the CEBAF superconducting cavity was included in the 

particle tracking program PARMELA. Numerical studies of the beam  dynamics were 

carried out in the CEBAF injector, linacs, and a  possible FEL driver. The head-tail 

and the x — y coupling effects in the cryounit of the injector were found to be strong.
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A 70% emittance growth was predicted in the cryounit. The emittance growth in the 

cryomodules of the injector depends strongly on the betatron matching conditions of 

the beam. It was found tha t large emittance growth can result if the (3 functions in the 

cryomodules are large. Em ittance growth in the injector can be suppressed by changing 

the focusing of the cryounit by adjusting the RF phase of the first cavity. Head-tail 

effects in the CEBAF north linac are small due to the short bunch length and the 

cancellation between the cavity-pairs in the cryomodules. Cancellation of the head-tail 

effects relies on the gradient distribution in the cryomodules. Emittance growth due to 

the x  -  y coupling is negligible for the first pass if the beam is well matched into the 

linac. In the higher passes, emittance growth under matched conditions are of order 

of 35%. Em ittance growth for unmatched cases is more sensitive to the initial as than 

the initial /3s. It is im portant to  match the beam with waists for the first pass. In 

the higher passes, the most unfavorable mismatch conditions are those with negative 

as, i.e. initially diverging beams. Under nominal conditions, the final emittance of the 

CEBAF accelerator will remain within specification. Em ittance growth in a 40 MeV IR 

FEL linac is about 60%, which is mainly due to x — y coupling.

The behavior of the wake functions for ua, vt ^  c was investigated. This issue is 

im portant in multipass FEL linacs and the low energy IR FEL linac. Wakefield calcu

lations were based on code TBCI with several modifications. W ith the implementation 

of the Lindman boundary condition, the code is capable of dealing with both v =  c 

and v < c with proper open boundary conditions. In addition, the truncation errors 

of the second-order VEE algorithm were found to be frequency dependent and were 

important in the calculation of wakefields of short bunches. A fourth order accuracy 

finite-difference algorithm was derived and was implemented in the modified TBCI to 

reduce the truncation errors. For the cases of vt ^  v3, the slippage between the source 

and the test particles was included in the wake function integration. A radial scaling
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algorithm for the wake function was obtained in order to  calculate the wake functions 

inside the beam pipe. We found tha t the wake function at a  radial position r  is a 

weighted average of the wake function calculated a t the pipe radius. It was found tha t 

the quantity that measures the smearing effect on the wake functions not only depends 

on the energy of the beam but also on the bunch length and the opening of the beam 

pipe. The quantity tha t measures the smearing effect is R  = where a is the pipe 

radius. We found tha t the smearing effects for R  > 1.5 are, in general, small enough to 

be neglected. In such cases, the ultrarelativitic assumption for the beam can be used.

PARMELA simulations on the energy spread and the emittance degradation indi

cated that the wakeheld effects in a proposed 40 IR  FEL linac will not be a  limiting 

factor on beam quality. The 2 x l0 -3 relative energy spread is easily achievable within a 

wide range of RF phase (-10° to 7,5°), Emittance growth is dominated by x — y coupling 

driven by cavity multipole fields, which can be corrected by use of one skew quadrupole 

placed in front of the linac.
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