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Abstract 

The design of a digital image restoration filter must address four concerns: the 

completeness of the underlying imaging system model, the validity of the restora­

tion metric used to derive the filter, the computational efficiency of the algo­

rithm for computing the filter values and the ability to apply the filter in the 

spatial domain. Consistent with these four concerns, this dissertation presents 

a constrained least-squares ( CLS) restoration filter for digital image restoration. 

The CLS restoration filter is based on a comprehensive, continuous-input/ discrete­

processing/continuous-output (c/d/c) imaging system model that accounts for ac­

quisition blur, spatial sampling, additive noise and imperfect image reconstruction. 

The c/d/c model-based CLS restoration filter can be applied rigorously and is eas­

ier to compute than the corresponding c/d/c model-based Wiener restoration filter. 

The CLS restoration filter can be efficiently implemented in the spatial domain as 

a small convolution kernel. Simulated restorations are used to illustrate the CLS 

filter's performance for a range of imaging conditions. Restoration studies based, in 

part, on an actual Forward Looking Infrared (FLIR) imaging system, show that the 

CLS restoration filter can be used for effective range reduction. The CLS restora­

tion filter is also successfully tested on blurred and noisy radiometric images of 

the earth's outgoing radiation field from a satellite-borne scanning radiometer used 

by the National Aeronautics and Space Administration (NASA) for atmospheric 

research. 

Xlll 



CONSTRAINED LEAST-SQUARES DIGITAL IMAGE 

RESTORATION 



INTRODUCTION 

1.1 Digital Image Restoration - Historical Review 

Digital image pmcessing is the art and science of manipulating digital images. The 

wide range of digital image processing applications include scientific, military and 

commercial imaging, forensic medicine, and remote sensing. Digital image restora­

tion, the focus of this dissertation, addresses one of the central problems in digital 

image processing - the design and implementation of algorithms for removing im­

age degradations. 

Digital image formation introduces inevitable degradations that adversely affect 

the quality of a digital image. 1 Degradations are introduced by the imaging system 

(optical blur, electronic noise, spatial sampling) and, perhaps, by external sources 

(camera motion, object motion). In an authoritative but now dated textbook on 

the subject, Andrews and Hunt [1] provide a succinct formulation of the general im­

age restoration problem- given a degraded digitized representation (image) of a 

scene, compute an estimate of the original scene based on a p1·io1·i knowledge about 

the processes that caused the degradations. Despite significant advances in digi­

tal imaging technology, for some important applications digital image restoration 

remains a problem of significant interest [2]-[5]. 

Although digital image restoration and computers are now intimately connected, 

1 In this dissertation image quality is used in a subjective sense to denote the degree to which 

a reconstructed image is an accurate representation of an original scene. 

2 
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the history of image restoration pre-dates the digital computer era. Before the 

widespread availability of digital computers and digital imaging systems, analog 

image restoration received serious attention with the pioneering work of Mertz et 

al. [6] and later work by Elias et al. [7] and Linfoot [8]. This research quantified the 

major sources of image degradation in then contemporary analog imaging systems 

such as television and film cameras. The practitioners of analog image processing 

noted, however, that the inherent mathematical complexity of the image restoration 

problem far exceeded their ability to use optical (analog) methods to compensate 

for imperfect imaging instruments. Thus, analog image restoration sensitized the 

scientific community to the possibility of image restoration, but failed to provide a 

satisfactory solution to the image restoration problem. 

The advent of digital imaging systems and digital computers provided a great 

opportunity for digital image restoration practitioners. Most digital imaging sys­

tems provide a natural numeric representation for images as two-dimensional arrays. 

This array representation is amenable to the sophisticated numerical computations 

required to solve the image restoration problem; digital computers provide the abil­

ity to perform these computations in a reasonable amount of time. Early research 

conducted at NASA's Jet Propulsion Laboratories illustrated the success of digital 

restoration techniques by showing that significant improvements in image quality 

could be achieved with computing resources that were modest by today's stan­

dards [9]. Since then, the field has grown tremendously; its maturity can be judged 
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by the number of journals and image processing texts that devote substantial at­

tention to digital image restoration. 

Image restoration practitioners model the imaging process, then attempt to 

recover the scene by constructing a restoration filter to "undo" (invert) the processes 

that degraded the image. 2 Given this model-based goal of attempting to recover the 

original scene, a digital image restoration study has to address four related issues: 

• the input-output model of the imaging system; 

• the performance measure (metric) to be optimized by the restoration filter; 

• the algorithm used to compute the restoration filter; 

• the computational complexity of the restoration filter implementation. 

1.1.1 Imaging System Model 

Three types of linear imaging system models are common in the image restoration 

literature. Historically, the first of these is a continuous-input/continuous-output 

(cjc) system model commonly used by the analog image processing community 

to analyze the performance of conventional film camera systems [8]. This type 

of model allows for system noise and multiple cascaded filtering steps; the filters 

account for all the system components that contribute to the low-pass filtering 

2Image restoration differs from image enhancement in that the latter uses ad-hoc techniques, 

not based on an imaging system model. Examples of image enhancement include contrast stretch­

ing and histogram-based image modification. 
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effects of image formation. In a c/c model the mathematical representation of the 

image at any filtering step is a function defined for a two-dimensional continuum of 

spatial locations. For this reason, a c/c model is not applicable to the analysis of 

sampled imaging systems and the design of digital image restoration filters. 

The second type of linear model is a discrete-input/ discrete-output ( d/ d) system 

model. This system model is a discrete approximation to a c/c system model; 

the image at any filtering step is a two-dimensional array. A d/d model is the 

most commonly used imaging system model in the image restoration literature 

today [5]; it is not directly applicable to the analysis of sampled imaging systems, 

however. That is, as demonstrated in chapter 2, ad/ d model ignores two potentially 

important sources of image degradation in sampled imaging systems - spatial 

sampling and image reconstruction. 

A comprehensive end-to-end performance analysis of a sampled imaging system 

must be based on a model that accounts for the continuous-to-discrete sampling 

process and the discrete-to-continuous reconstruction process. These processes pro­

duce pixel-scale sampling artifacts in digital images and subtle differences in the 

visual quality of these images when reconstructed by different display devices (such 

as a CRT or film) [10][11]. Models that are either entirely discrete (d/d models) or 

entirely continuous ( c/ c models) cannot properly account for sampling and recon­

struction. Instead, a model that uses both continuous and discrete representations as 

appropriate is required. A linear continuous-input/discrete-processing/continuous-
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output ( c/ d/ c) model satisfies this requirement [12]. A c/ d/ c model is more complex 

than either a cjc or a d/d model. As demonstrated in several recent papers, how­

ever, this complexity is not so great as to prohibit the design of digital restoration 

filters [13][14]. The constrained least-squares restoration technique described in this 

dissertation is based on a c/d/c imaging system model. 

1.1.2 Restoration Metric 

The second image restoration issue is the choice of a quantitative performance mea­

sure (restoration metric) that the restoration filter attempts to optimize. Restora­

tion metrics have been investigated since the early days of film cameras and tele­

vision by, for example, Linfoot [15], Mertz et al. [16] and Budrikis [17]. If an 

imaging system produces visual output (this is the usual case), the restoration met­

ric should correlate well with the human visual system. In this application, however, 

the extremely subjective nature of human image interpretation coupled with a still 

incomplete model of the human visual system makes the design of accurate restora­

tion metrics a challenging problem that remains an active research area [18]-[24]. 

With a few exceptions, most restoration metrics fall into one of the following 

categories: subjective or ad-hoc metrics [25]; maximum entropy metrics [26]-[29]; 

Bayesian metrics [30]-[32] and mean-square difference metrics [33]-[43].3 Most of 

the common restoration techniques use the mean-square difference (MSD) met~·ic 

3 This list of references is not exhaustive; these references should be considered seminal work in 

each of the categories indicated. 
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to measure the degree to which one image matches another [44]. For example, the 

Wiener restoration filter attempts to minimize the end-to-end MSD between the 

ideal input scene and the restored output image. 

The MSD metric originated in the scientific data processing literature, then 

received recognition as an image fidelity metric in the work of Linfoot [15]. Some 

critics of this metric have correctly pointed out that it does not always correlate well 

with human (subjective) judgement. Since it lends itself to linear system analysis 

using Fourier methods, however, it has been widely used. Moreover, as suggested 

in a recent article [45] and clearly demonstrated in this dissertation, much of this 

criticism of the MSD is misplaced in the sense that unsatisfactory restoration may 

be the result of using a d/d system model when a c/d/c system model should have 

been used instead. 

1.1.3 Filter Synthesis 

The third image restoration issue is the algorithm for synthesizing (computing) 

the restoration filter. Generally, the greater the mathematical sophistication of the 

restoration filter, the greater the computational demands of the associated algorithm 

for computing the filter values. For that class of applications where the imaging 

system is fixed and the restoration filter can be designed independent of the scene 

(e.g., the inverse filter), the restoration filter values need to be computed once only; 

if so, algorithm efficiency is not an important issue. 

Most practical digital restoration applications are not so simple, however. The 
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properties of the imaging system change over time, either by necessity (e.g., because 

different camera settings are used) or inadvertently (e.g., because of operating condi­

tion changes in electronic components). Moreover, the use of sophisticated restora­

tion filters that are optimized to a particular scene necessitates the (re)computation 

of the restoration filter values if the scene changes. Computationally efficient filter 

synthesis is thus an important issue, especially if timing constraints are placed on 

the entire filter synthesize-and-implement cycle, as is usually the case in real-time 

restoration applications (e.g., digital video and television). 

One practical advantage of the constrained least-squares ( CLS) restoration filter 

presented in this dissertation is the relative simplicity of the filter synthesis algo­

rithm. Unlike the algorithm for computing the c/d/c model-based Wiener filter 

values, it is not necessary to estimate the (unknown) energy spectrum of the scene 

and the noise. Instead, the c/d/c model-based CLS restoration filter values can be 

computed directly from a knowledge of the imaging system. 

1.1.4 Filter Implementation 

The last image restoration issue is efficient filter implementation. Although pro­

cessor and memory access speeds continue to improve, the restoration of a typical 

512 x 512 (or larger) digital image in near real-time remains a challenge. For im­

age restoration to be practical in real-time applications, efficient implementation 

considerations must be an integral part of the restoration filter design process. 

Traditional linear restoration filters such as the Wiener filter and the CLS filter 
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are designed in the frequency domain, thereby suggesting the frequency domain as 

the natural domain for implementing the restoration :filter as well. A frequency 

domain implementation is problematic, however, because a substantial amount of 

computer memory is required to compute and store the restoration :filter coefficients 

and the discrete Fourier transform (DFT) of the digital and restored images. More­

over, even if fast Fourier transform (FFT) algorithms are us~d to compute forward 

and inverse DFTs, a frequency domain implementation requires significant process­

ing power. In contrast, digital restoration implemented as a convolution in the 

spatial domain using small restoration :filter kernels requires less memory and mod­

est processing power [47]. Additionally, the spatial domain approach is amenable 

to direct hardware implementation. 

The efficient spatial domain implementation of digital restoration :filters has been 

addressed in the context of a d/d system model [48]-[53]. Recently, Reichenbach 

et al. demonstrated a similar technique for designing a c/d/c model-based Wiener 

restoration :filter kernel, subject to explicit spatial constraints [47]. Using this tech­

nique, implementation efficiency is achieved by restricting the size of the restoration 

:filter to a small convolution kernel. This dissertation applies Reichenbach et al. 's 

small-kernel technique to the c/d/c model-based CLS restoration :filter. Doing so 

makes it possible to use the CLS restoration :filter in future high-performance digital 

imaging systems that may use "in-line" digital processing. 
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1.2 Problem Definition and Research Contribution 

As discussed in section 1.1.1, most contemporary digital image restoration filters 

are conditioned on a d/d system model. Since a d/d model does not account for 

sampling and reconstruction, the applicability of these restoration filters to digital 

image data is questionable. In recent years, a c/d/c model-based Wiener restoration 

filter has been derived that is directly applicable to sampled image data [13][14]. 

Although this filter is based on a proper underlying system model, it cannot be 

applied rigorously. That is, although a c/d/c model-based Wiener filter is optimal 

in an end-to-end expected MSD sense, this optimality is conditioned on a knowledge 

of the energy spectra of the unknown stochastic scene and additive random noise as 

well as on stati~tical assumptions that the noise is signal-independent and the scene's 

sidebands are uncorrelated [12]. In practice, the energy spectra of the scene and 

noise are never known and the validity of the statistical assumptions are impossible 

to verify. Consequently, every practical Wiener filter application is necessarily sub­

optimal (and maybe inaccurate); a c/d/c model-based Wiener restoration filter is 

an important theoretical tool, but one whose direct practical usefulness is limited. 

This dissertation provides a viable alternative to the c/d/c model-based Wiener 

restoration filter. The specific dissertation contributions are summarized by the 

following four points. 

• Simulation is used to illustrate that if imaging systems employ sampling and 

reconstruction, then image restoration should be conditioned on a c/d/c imag-
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ing system model. 

• A c/d/c model-based CLS restoration filter derivation is presented that does 

not rely on the statistical assumptions required by the c/d/c model-based 

Wiener filter. The computation of the restoration filter values is correspond­

ingly easier in the sense that no a priori knowledge about the energy spectra 

of the stochastic scene and the additive random noise is required. 

• To facilitate hardware implementation in real-time applications, a method for 

constraining the c/d/c model-based CLS restoration filter to a small convolu­

tion kernel is provided. Use of this method allows the restoration filter to be 

efficiently implemented in the spatial domain as a small-kernel convolution. 

• Two different image restoration applications are presented to demonstrate 

that the c/d/c model-based CLS restoration filter is practical and effective. In 

one application, a thermal imaging system is simulated to demonstrate that 

the c/d/c model-based CLS restoration filter can significantly improve the 

quality of thermal images. In the other application, the c/d/c model-based 

CLS restoration filter is used to restore radiometric data from a simulated 

satellite-borne scanning radiometer. 
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1.3 Dissertation Outline 

As outlined in this introductory chapter, a practical digital image restoration filter 

is developed in this dissertation that is based on a comprehensive c/d/c imaging 

system model and a MSD restoration metric. The algorithm for computing the 

restoration filter values is efficient and the restoration filter can be implemented in 

the spatial-domain as a small-kernel convolution. 

Chapter 2 describes a d/d system model and three different d/d model-based 

restoration filters - the inverse filter, the Wiener filter and the CLS filter. The 

applicability of a d/d system model to sampled imaging systems is examined via 

simulation. In this way, it is demonstrated that d/ d model-based restoration filters 

can enhance the unwanted effects of sampling and image reconstruction. The dis­

cussion in this chapter is used to motivate the need to use a more comprehensive 

c/d/c system model and associated restoration filter. 

Chapter 3 describes a c/ d/ c system model. Factors that limit the ability of 

c/d/c model-based restoration filters to sharpen digital images are discussed. In 

particular, the limiting effect of sampling and reconstruction is examined via simu­

lation. It is shown that degradations caused by sampling and reconstruction limit 

image restoration, much in the same manner as additive noise. 

Chapter 4, describes a c/ d/ c model-based Wiener restoration filter. A derivation 

of the filter is presented with special emphasis on the statistical assumptions re­

quired. Using simulation, it is shown that reasonable implementations of this c/d/c 
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model-based Wiener filter are sub-optimal and that restoration accuracy varies with 

the type of parametric model used to characterize the scene's energy spectrum. 

Chapter 5 presents a c/d/c model-based CLS restoration filter as an alternative 

to the corresponding Wiener filter. The derivation of the filter is presented in detail 

along with a discussion of frequency domain implementation issues. Simulated 

restorations are provided to demonstrate the effectiveness of the c/d/c model-based 

CLS restoration filter. 

Chapter 6 presents a technique for generating a small c/d/c model-based CLS 

restoration filter kernel. This technique allows the CLS restoration filter to be 

applied in the spatial domain as a small-kernel convolution. Simulated restorations 

using small CLS restoration kernels are presented to demonstrate the effectiveness 

of this technique. 

Chapter 7 presents a simulation-based study of the c/d/c model-based CLS filter 

based, in part, on infrared images acquired by a Forward Looking Infrared (FLIR) 

image acquisition system. Practical advantages of the CLS filter over the Wiener 

filter are emphasized. 

Chapter 8 presents an application of the c/d/c model-based CLS restoration 

filter in the context of a satellite-borne scanning radiometer. This application 

demonstrates that the c/ d/ c model-based CLS filter can be adapted to certain 

types of shift-variant imaging systems and applied in non-traditional image restora­

tion applications where there is little or no a priori knowledge about the spectral 
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characteristics of the input scene. 

Chapter 9 concludes with a summary of results and ideas for future research. 

In particular, possible ways of using a c/d/c model-based CLS restoration filter as 

an adaptive restoration filter to account for stochastic imaging systems and non­

homogeneous scenes are outlined. 



CHAPTER II 

TRADITIONAL FREQUENCY-DOMAIN IMAGE RESTORATION 

An incomplete discrete-input/discrete-output (d/d) imaging system model is com­

monly used for image restoration studies. Simulated restorations are presented in 

this chapter for three different d/d model-based restoration filters - the inverse 

filter, the Wiener filter and the constrained least-squares (CLS) filter. It is demon­

strated that when image acquisition blur is the only significant source of image 

degradation, all three d/d model-based restoration filters can successfully sharpen 

blurred digital images, even when the blurring is excessive. If a small amount of 

additive random noise is also a source of image degradation, however, then only the 

more sophisticated Wiener and CLS filters can produce satisfactory restorations. 

Moreover, if sampling and reconstruction are part of the imaging process, but are 

not included in the system model, all d/d model-based inverse restoration filters fail 

to restore satisfactorily, even when additive random noise is absent. In this way, it 

is demonstrated that a d/d model is not a correct sampled imaging system model. 

2.1 A D/D Imaging System Model 

A d/d imaging system model is illustrated in figure (2.1). As evident from its 

name, a d/d model takes a discrete view of the world - all model components 

15 
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Figure 2.1: A discrete/discrete (d/d) imaging system model 

are represented as (discrete) two-dimensional arrays. This array representation 

facilitates the implementation of image restoration algorithms and helps explain 

the unrestricted use (and mis-use) of a d/d model in image restoration studies. 

The input scene in figure (2.1) is an array s corresponding to a degradation-

free scene. The scene is assumed to be periodic with period N1 x N2 • Although 

the periodicity assumption is artificial with the potential for introducing artifacts, 

the artifacts are generally negligible except at the natural boundaries of the scene. 

Moreover, the periodicity assumption facilitates the use of Fourier analysis and is 

no more artificial than other common techniques (e.g., windowing or padding) for 

dealing with finite N1 x N2 images. 

Image acquisition is modeled as a convolution of the input scene with an aperi-

odic array h that represents the point spread function (PSF) of the image acquisition 

system. That is, g = s ® h where 

00 

E h[n~, n~] s[nt - n~, n2- n~]. (2.1) 
n~ =-oo n~=-oo 

The array g is a blurred image of the scene. Consistent with the assumed periodicity 
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of the input scene, g is also periodic with period N1 x N2 • 

Equation (2.1) can be written equivalently in the frequency domain, using the 

(discrete) convolution theorem, as 

(2.2) 

where v1 , v2 are integer-valued frequency indices and the arrays g, 8 are the discrete 

Fourier transform (DFT) arrays corresponding tog, s respectively. That is, 

and g[vb v2] is defined analogously. The optical transfer function (OTF) of the 

image acquisition system is the array h defined by the z-transform of the PSF array 

evaluated at the normalized spatial frequencies [v1/N1 , v2/N2 ]. That is, the OTF 

array IS 

00 

L h[nb n2] exp( -i21rn1vd N1) exp( -i21rn2v2/N2). (2.4) 
nt==-oo n2=-oo 

The digital image p is a noisy version of the blurred scene, expressed in the 

spatial domain as 

(2.5) 

where e[nb n 2] is an additive random noise array. Additive random noise represents 

measurement uncertainty due to stochastic variations in the electronic components 

of the image acquisition system and analog-to-digital conversion. To make the array 

p periodic, the additive random noise array is assumed to be periodic with period 
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N1 X N2. The periodicity of p allows its DFT array to be expressed as 

(2.6) 

where e is the DFT array corresponding to e. 

Linear, shift-invariant image restoration is modeled as a convolution of p with a 

restoration filter array f to produce the output image r = p@ f. The restoration 

filter array is assumed to be periodic with period N1 X N2. The assumed periodicity 

of f allows its frequency response to be represented by its DFT array, facilitating 

the use of frequency domain techniques to design the filter. The output image array 

is periodic with period N1 x N 2 ; the corresponding DFT array is 

where j is the restoration filter DFT array. 

Equation (2.7) provides a complete end-to-end characterization of the d/d model 

in the frequency domain. That is, given the transform arrays h, e and }, equa-

tion (2.7) uniquely defines the output image DFT array in terms of the input scene 

DFT array. All of the arrays s, 1~, e, j and r are complex-valued and periodic with 

period N 1 x N2 • The inverse DFT array 

N1-lN2-l 

L L r[vl, v2] exp(i27rntvt/Nt) exp(i27f'n2v2/N2)· (2.8) 
111=0 112=0 

defines the output image in the spatial domain. 
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2.2 D /D Model-Based Simulation 

Model-based simulation is commonly used to analyze different restoration tech­

niques for a variety of system operating conditions (blur and random noise). A 

d/d model-based simulation can be implemented in the spatial domain or in the 

frequency domain. The two approaches are mathematically equivalent and, except 

for the effects of finite-precision arithmetic, yield identical results. A frequency do­

main implementation is generally preferred, however, clue to the insight it provides 

into the restoration process and the computational efficiency gained by replacing 

convolutions in the spatial domain (e.g., equation (2.1)), with (complex-valued) 

multiplications in the frequency domain (e.g., equation (2.2)). 

An example of an input scenes is shown in figure (2.3[a]). This 512 x 512 aerial 

image is a good choice for a test scene because it has high contrast and contains 

both high-frequency pixel-scale features and low-frequency region-scale features; 

with such an input scene it is possible to test the ability of a restoration filter to 

sharpen blurred scene features without producing excessive noise enhancement. 

To simulate image acquisition using equation (2.2), it is necessary to select a 

model for the OTF. A variety of OTF models have been used in cl/cl model-based 

restoration studies to simulate different types of image acquisition characteristics; 

these range from simplistic low-pass filter models with little theoretical justification 

to more realistic models that attempt to capture the effects of optical blurring, 

detector blurring, jitter and relative motion between the scene and the image ac-
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quisition system. Parametric models are commonly used to account for varying 

degrees of image acquisition blur. One such parametric model is the (separable) 

discrete, Gaussian OTF 

(2.9) 

where v~ = lvtl mod N1 and v~ = jv2l mod N2. Consistent with equation (2.4), the 

'mod' makes the h array periodic with period N 1 x N2 • The OTF parameters cr1 , 

cr2 control the two-dimensional frequency response of the image acquisition system; 

small values produce excessive blurring and vice versa. The units of cr1 , cr2 are cycles 

per "scene pixel" (scene!). Typical values of CTt, cr2 range from 0.04 (severe blur) 

to 0.25 (moderate blur). Figure (2.2) illustrates four 1-D Gaussian OTFs for OTF 

parameter values of 0.25, 0.10 and 0.04; the cr = oo case represents a perfect image 

acquisition system. 1 

Additive random noise e is usually assumed to be scene-independent and zero-

mean. This assumption simplifies the design of d/d model-based restoration filters 

and is justified, in part, by some d/d model-based studies indicating that there 

is very little modeling accuracy to be gained by using a scene-dependent additive 

random noise model [54]. The effect of zero-mean additive random noise is quantified 

by a Signal-to-Noise Ratio (SNR) parameter that characterizes the level of noise 

1 Although the Gaussian OTF in equation (2.9) is discrete, in figure (2.2) it is plotted as a 

continuous function of the normalized frequency 11/ N. 

·-------·--------- ----· 
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relative to the input scene. The definition of SNR used in this dissertation is 

SNR = O"s 

O"e 
(2.10) 

where O"s and O"e are the standard deviations (contrasts) of the scene and nmse 

respectively [55]. By definition, SNR is a dimensionless quantity. Large values of 

SNR (greater than 1000) denote a relatively noise-free image; small values (less than 

10) denote an extremely noisy image. 

For a digital imaging system, one unavoidable source of additive random noise 

is quantization. Relative to figure (2.1), quantization is additive noise produced by 

analog-to-digital conversion (by rounding); that is, g has a floating-point represen-

tation and p has a limited-precision (unsigned) integer representation. Quantization 

results in some clipping for values of g (if any) beyond the range of representable 

integer values as well as round-off error for the values within this range. As demon-

strated in the following section, quantization noise can pose serious problems for a 

d/d model-based restoration filter. 2 

For the d/d model, restoration is implemented in the frequency domain using 

equation (2. 7) with the restoration filter of choice. The restored image is then ob-

tained using equation (2.8). Examples of d/d model-based restoration are presented 

2If appropriate, random noise from other sources can be simulated by adding random integer 

values (positive or negative) drawn from a discrete distribution, for example, the Poisson. If 

random noise had been added in this manner, u; would be the sum of the variances of the 

quantization noise and the random noise. 

----------- ---------------------··- ·--- -··-----------·-··-··· ------·-··-·-- ·--- --- --
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in section 2.3. 3 

Figure (2.3) is a four-panel composite of individual images. Figure (2.3[a]) IS 

the 512 X 512 aerial scene s. The other three images in figure (2.3) correspond 

to the image p = s ® h + e produced by a simulated d/d model with the OTF h 

illustrated in the corresponding panel in figure (2.2). For example, the image in fig-

ure (2.3[b]) corresponds to the OTF illustrated in figure (2.2[b]). The additive term 

e is quantization noise. This four-panel format is used for all the remaining figures 

in this chapter. Consistent with the OTF frequency characteristics in figure (2.2), 

the images in figure (2.3) become increasingly more blurred as the OTF parameter 

is decreased. 4 

2.3 D /D Model-Based Restoration 

The goal of image restoration is to make the restored image match the input scene. 

This section describes three d/d model-based image restoration filters that are de-

signed in the frequency domain to achieve this purpose; they are the inveTse filter, 

the WieneT filter and the CLS filter [1]. While these restoration filters are not the 

3 1f it is necessary to normalize the restored image to the range of values that can be displayed 

by an analog output device such as a video monitor, this normalization must be done carefully. 

Ad-hoc normalization methods can create artifacts that may be erroneously attributed to the 

restoration process. 
4 Figure (2.3[a]) can be interpreted as the output image corresponding to a perfect image ac-

quisition system with u = oo. 
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Figure 2.3: Aerial scene and three simulated d/ d model images. 
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only d/d model-based rest9ration filters available, they have been widely used in 

the past and continue to be popular in image restoration applications today. As 

discussed in chapters 3, 4 and 5 (in the context of a c/d/c model), the derivation 

of all three restoration filters uses the MSD as the restoration metric. The inverse 

filter derivation minimizes the MSD between the scene and the restored image with 

the additive random noise ignored. The Wiener filter derivation minimizes the ex-

pected MSD between the scene and the restored image in the presence of additive 

random noise. The minimum MSD is used in the derivation of the CLS filter to 

select the "best" restored image from an infinity of possibilities. 

2.3.1 Inverse Restoration Filter 

The inverse restoration filter is defined as 

(2.11) 

otherwise. 

The design of this filter is based upon the observation that in the absence of additive 

random noise, the original scene can be recovered by "inverting" the effects of image 

acquisition. That is, if the inverse filter is used then, from equation (2. 7), at those 

frequencies where ll[Vt, v2] i= 0 the restored image DFT array is 

p[vt, v2] 
ll[vi, v2] 

then the restored image is identical to the scene. 

(2.12) 
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Figure (2.4) is a four-panel composite illustration of inverse filter restorations. 

All three restorations are performed with no additive noise. That is, in each case 

the blurred scene, figure (2.3), is not quantized prior to restoration with the inverse 

filter. 5 The restored images are virtually indistinguishable from the original scene. 

Consistent with theory, this simulation illustrates that even if the blurring is exces-

sive, as in figure (2.3[d]), the inverse restoration filter can remove essentially all the 

blurring caused by image acquisition pmvided additive random noise is non-existent. 

The use of the inverse filter is limited in practice because digital images are 

not noise-free and at high frequencies the product .S[vt, v2]lL[tlt, v2] may be small 

relative to e[v1 , v2]. If so, then as illustrated in equation (2.12), the random noise 

will he greatly boosted relative to the original scene and the restored image may 

be unacceptable because scene features will be masked by unwanted, enhanced 

random noise. To illustrate this, figure (2.5) is presented. This figure is the same 

as figure (2.4) except that the inverse filter is applied after 12-bit quantization. To 

simulate 12-bit quantization, the contrast of the S-hit aerial images was increased 

by multiplying each pixel value by 16. The real-valued array g = s ® h was then 

rounded to an integer-valued array with values in the range 0 · · · 212 -1. This real-to-

integer conversion produces quantization noise e corresponding to an SNR = 2400 

for each of the images p = s ® h + e in figure (2.3).6 

5 Relative to figure (2.1), this means that g = p. 
6 After multiplication by 16, the contrast of the scene is u8 = 689.2 and that of quantization 

noise is Ue = 0.288. 
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Figure 2.4: Inverse filter restorations with no additive random noise. 
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As is evident in figure (2.5), even if the SNR is high random noise enhancement 

can be a severe problem for the inverse filter. The restorations in figures (2.5[c]) and 

(2.5[d]) are virtually unrecognizable. 7 In comparison, the image in figure (2.5[b]) is 

a better restoration than the other two, but evidence of enhanced random noise is 

still quite apparent. 

The inevitable enhancement of additive random noise by the inverse restoration 

filter is well-documented in the literature [2]. The d/d model-based Wiener and 

CLS restoration filters, discussed next, alleviate this problem_ to some extent by 

balancing restoration sharpening against random noise enhancement. 

2.3.2 Wiener Restoration Filter 

The d/d model-based Wiener filter balances image sharpening against random noise 

enhancement by minimizing the expected value of the end-to-end MSD between the 

input scene and the output image. The d/d model-based Wiener filter's frequency 

response is given by 

(2.13) 

7Due to high random noise enhancement, the images in figure (2.5(c]) and figure (2.5(d]) had to 

be normalized for display purposes. In each case, the histogram of the real-valued restored image 

was clipped at the low and high ends to discard 5 percent of the values. The remaining values 

were then linearly scaled to the range 0 · · ·212 - 1. The patterns in figure (2.5(d]) are caused by 

gray level consolidation that takes place when the real-valued restored image is converted to a 8-bit 

image for display. 
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Figure 2.5: Inverse filter restorations with quantization noise. 
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,. ,. " 2 
where h* is the complex-conjugate of h. The terms <I>e[Vt, v2] = E[le[v1, v2JIJ and 

<i>s[vt, v2] = E[ls[v1 , v2]l2] are the ensemble-averaged energy of the random noise and 

the stochastic scene respectively.8 The non-negative ratio <i>e[Vt, v2]/<i>s[v1 , v2] is a 

frequency-dependent reciprocal energy-based SNR. If it were possible to estimate 

this ratio with perfect accuracy, the resultant restoration filter would be optimal 

in the sense of minimizing the expected end-to-end MSD with respect to any other 

(linear) restoration filter. 

The ratio <i>e[v1 , v2]/<i>s[Vt, v2] allows the Wiener filter to moderate its high-boost 

response in the presence of additive random noise. If this non-negative ratio is not 

0 at [v1, v2], then by inspection the Wiener filter response is smaller than the inverse 

filter response - at this frequency the Wiener filter does not sharpen as much as 

the inverse filter. Consequently, random noise enhancement by the Wiener filter 

is less pronounced relative to the inverse filter. Depending on the magnitude of 

the ratio, the Wiener filter may not sharpen significantly (or at all) since doing 

so would result in unacceptable levels of enhanced random noise. Indeed, in the 

all high frequencies, instead of sharpening the Wiener restoration filter will further 

blur the digital image to suppress random noise. 

Examples of d/d model-based Wiener restorations of the blurred and quantized 

8Equation (2.13) is valid when ci>. [v1, v2] i= 0. Otherwise, by convention, J[vl, v2] = 0. That 

is, if the scene does not have any energy at a particular frequency, the Wiener filter does not need 

to restore at that frequency. 
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aerial images are presented in figure (2.6). To generate the Wiener filter response 

for each of the three blurred images, the actual values of js[v1, v2W and je[v1, v2W 

are used in place of their respective energy spectra.9 Doing so avoids the issue of 

how to estimate the ratio <i>e[vt, v2]/<i>s[v1, v2]; this issue is discussed in chapter 4. 

The restored images in figure (2.6) are sharper than the corresponding unrestored 

images in figure (2.3) and, although some random noise enhancement is visible in the 

uniform areas, the level of enhanced random noise is dramatically reduced relative 

to the inverse filter restorations in figure (2.5). 

With no quantization noise the Wiener filter reduces to the inverse filter. The 

Wiener restorations in this case are indistinguishable from the corresponding inverse 

filter restorations in figure (2.4). 

2.3.3 CLS Restoration Filter 

The CLS restoration filter attempts to achieve a compromise between image sharp-

ening and random noise enhancement by maximizing the smoothness of the restored 

image subject to a constraint on how well (in a MSD sense) the restored image agrees 

with the digital image. The d/d model-based CLS restoration filter's frequency re-

sponse is given by 

(2.14) 

9The array le[v1 , v2JI 2 
is generated by directly computing the quantization noise from the real-

valued and integer-valued representations of the blurred image. 
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Figure 2.6: Wiener filter restorations with quantization noise. 
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where c[v1, v1] is a user-specified high-pass filter array, periodic with period N1 x N2, 

and o: is a non-negative parameter. In the regularization literature, c (or c) is called 

the stabilizing functional [56] and o: is known as the smoothing parameter [2]. A 

common choice for the stabilizing functional is the high-pass filter array 

(2.15) 

The radial frequency is w = J(v'dNI) 2 + (v'2/N2)2 where v'1 = lv1i mod N1 and 

v'2 = jv2l mod N2 make the c array periodic with period N1 x N2. Although 

other choices of c have been advocated (see [57]-[59]), because the high-pass filter 

in equation (2.15) has worked well in a variety of applications, it is used in the 

simulations to follow. The smoothing parameter o: is determined directly from the 

digital image and a knowledge of the statistics of the noise [43]. 

At low frequencies where random noise is usually insignificant compared to the 

scene, o:jc[vb v2W is small relative to jh[v1, v2]/2; this allows the CLS restoration 

filter to boost low frequencies. At high frequencies where random noise is generally 

most significant, o:jc[vb v2W is largest relative to jh[v1, v2]/2; this prevents the CLS 

restoration filter from boosting high frequencies, thereby reducing random noise 

enhancement. In the special case where there is no additive random noise, o: = 0 

and the CLS restoration filter reduces to the inverse filter; the restored images in 

figure (2.4) are the result. 

Examples of d/d model-based CLS restorations of the blurred and quantized 

aerial images are presented in figure (2.7). The value of o: for the a1 = a 2 = 0.04 
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case is 9. 765 X 10-4
• For the other two cases, e7t = O"z = 0.1 and a1 = a 2 = 0.25, the 

a values are 2.440 X 10-4 and 1.400 X 10-4, respectively. This pattern is consistent 

with the intuitive need to diminish the degree of regularization with decreasing OTF 

blur; 1-D profiles of the CLS restoration filter's frequency response are illustrated 

in figure (2.8). 10 The moderation of the high-boost response of the CLS restoration 

filter to avoid additive noise enhancement is clearly seen in this figure. At low 

frequencies, the CLS filter's frequency response is virtually identical to that of the 

i~verse filter. With increasing frequency, however, random noise energy becomes 

significant and the CLS restoration filter's response drops relative to that of the 

inverse filter. 

In the presence of random (quantization) noise, the CLS restorations in fig­

ure (2. 7) are clearly superior to the restorations in figure (2.5) obtained by using 

the inverse filter; this illustrates the effectiveness of the CLS restoration approach. 

Consistent with the results of previous d/d model-based comparisons of the CLS 

and Wiener restoration filters (e.g., [61 ]), the CLS restorations are seen to be similar 

in quality to those obtained by the Wiener filter. 

By inspection, the d/d model-based CLS restoration filter reduces to the d/d 

model-based Wiener filter if and only if aic[vt, vz]l 2 
= <i>e[vt, vz]/<i>s[vt, vz]. If so, 

the CLS restoration filter produces the best-possible restoration in an expected 

MSD sense. This result is of theoretical interest only; in practice, the CLS filter is 

10To illustrate all three frequency responses meaningfully on a common vertical scale, the fre­

quency responses in figure (2.8) are expressed in decibels. 
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Figure 2. 7: CLS filter restorations with quantization noise. 
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never identical to the Wiener filter because the ratio <i>e[vb v2]/<i>s[v1, v2] cannot be 

estimated perfectly. 

The simulated restorations using the inverse filter, the Wiener filter and the 

CLS filter serve as good illustrations of an established perception among those 

practitioners of image restoration who base their work on a d/d system model. 

This perception is that additive random noise contributed by quantization ~nd/or 

other sources effectively limits the extent to which optical blurring can be removed 

by the use of a digital restoration filter. As illustrated in figure (2.4), if random 

noise is negligible, d/d model-based restoration filters can successfully remove even 

a large degree of image acquisition blur. In such (ideal) cases, the restoration filter 

of choice is essentially the inverse filter. When random noise is not negligible, 

however, the image sharpening effect of the restoration filter has to be balanced 

against random noise enhancement. As illustrated in figure (2.8), the prescription 

in such cases is to modify the inverse filter so that the restoration filter's high-boost 

action is inhibited at (high) frequencies where random noise is significant. The 

Wiener restoration filter and the CLS restoration filter are good examples of such 

a prescription. 

2.4 D /D Model Limitations 

As discussed in chapter 1, a digital imaging system uses a continuous-to-discrete 

sampling process and a discrete-to-continuous reconstruction process. Both of these 
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processes are ignored by a d/ d model. In this section, simulation is used to inves­

tigate the consequences of ignoring these two processes. Theoretical insight into 

these simulation results is presented in chapter 3. 

Figure (2.9) illustrates the image degradation produced if the three 512 x 512 

blurred, unrestored images in figure (2.3) are sampled onto a 128 x 128 grid, then 

enlarged (reconstructed) to 512 x 512 by pixel replication. 11 When compared to 

the corresponding three images in figure (2.3), the images in figure (2.9) exhibit 

a phenomenon commonly known as "blockiness"; the blockiness is most apparent 

in figure (2.9[b]). The important point is that the three corresponding processed 

images in figures (2.9) and (2.3) are pairwise very similar but not identical because 

sampling and reconstruction produces image degradation. 

To illustrate the consequences of ignoring sampling and reconstruction, the three 

processed images in figure (2.9) were filtered using the same elf cl model-based inverse 

filters as those used to generate the corresponding restorations in figure (2.4). The 

(false) justification for using the inverse filter in this case is that the images in 

figure (2.9) are not quantized and so there is no additive random noise. In the 

absence of random noise, the inverse filter is identical to the cl/ cl model-based Wiener 

and CLS restoration filters and therefore should produce the "best" restorations 

of the aerial scene. The results are illustrated in figure (2.10). When the three 

processed images in figure (2.10) are compared with the near-perfect restorations 

11 Figures (2.3[a]) and (2.9[a]) are the same. 
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Figure 2.9: Blurred, sampled and pixel-replicated images. 
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in figure (2.4), it is clear that in this case the d/d model-based inverse filter fails to 

restore accurately, even though additive random noise is absent. 

The artifacts in the figure (2.10) processed images are caused by the combined 

effect of sampling and reconstruction. In this case the reconstruction process, pixel 

replication, is naive. To demonstrate that the artifacts visible in figures (2.9) and 

(2.10) are not due to this naive reconstruction technique alone, figure (2.11) is pre­

sented. To produce this figure the 128 x 128 to 512 x 512 reconstruction was imple­

mented via sine function interpolation instead of pixel replication. 12 The sine func­

tion was used for reconstruction because it is widely (but sometimes erroneously) 

accepted as the "ideal" reconstruction filter. That is, if a band-limited function is 

sampled sufficiently then the function can be reconstructed exactly by sine function 

interpolation [60]. 

As in the case of reconstruction by pixel-replication, see figure (2.9), the sine­

reconstructed images in figure (2.11) exhibit sampling and reconstruction artifacts; 

the artifacts are less severe, however. Figure (2.12) illustrates the inverse filter 

restorations of the three processed images in figure (2.11 ). The restored images in 

figure (2.12) are a significant improvement over the corresponding restored images 

in figure (2.10). This improvement is attributed to the increased sophistication 

of sine reconstruction relative to reconstruction by pixel-replication. Compared 

to figure (2.4), however, the artifacts in the restored images in figure (2.12) are 

12 A mathematical definition of the sine function and its frequency response are presented in 

chapter 3. 
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Figure 2.10: Inverse filter restoration of pixel-replicated images. 
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Figure 2.11: Blurred, sampled and sine-interpolated images. 
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Figure 2.12: Inverse filter restoration of sine-interpolated images. 
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nevertheless significant, particularly in figure (2.12[b]). This demonstrates that 

sampling and reconstruction cause a potentially significant image degradation that 

can only be partially suppresse·d by using a sophisticated reconstruction technique. 

Sampling and reconstruction degrade a digital image in ways fundamentally dif­

ferent from both image acquisition blur and additive random noise. As illustrated 

in figures (2.10) and (2.12), if sampling and reconstruction are ignored, as they 

are in a d/ d model, restoration filters may enhance the artifacts created by these 

processes. The enhancement of these artifacts, independent of the additive random 

noise enhancement problem illustrated in figure (2.5), can render d/d model-based 

restorations unacceptable. This is contrary to the perception among those practi­

tioners who use a d/d model exclusively as a basis for digital image restoration. 

The results presented in section 2.4 demonstrate the need for a more comprehen­

sive c/ d/ c system model as the basis for digital restoration filter design. Chapter 3 

provides such a model. Subsequent chapters present two cjdjc model-based restora­

tion filters and their applications. 



CHAPTER III 

SAMPLED IMAGING SYSTEMS AND DIGITAL IMAGE 

RESTORATION 

A continuous-input/discrete-processing/continuous-output ( cj dj c) imaging sys­

tem model is presented in this chapter. Unlike a· d/d model that ignores sampling 

and reconstruction, a c/d/c model describes the end-to-end digital imaging process 

more comprehensively, using both 'continuous and discrete model components as 

appropriate. By doing so, a c/d/c model provides an explanation for the failure of 

d/d model-based restoration filters to restore accurately in the presence of sampling 

and reconstruction. That is, in this chapter simulations based on the c/d/c model 

illustrate that sampling and reconstruction are a potential source of additive, scene­

dependent noise. This noise interacts with the restoration process in a fundamental 

way that limits the extent to which a sampled image can be restored by digital 

filtering. 

3.1 A C/D/C Imaging System Model 

A cjdjc imaging system model is illustrated in figure (3.1). The input s is the 

projection of a continuous scene onto the image acquisition system. The input 

scene is blurred by the image acquisition PSF h, then sampled and quantized to 

45 
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Figure 3.1: A continuous/discrete/continuous ( c/d/c) imaging system model 

produce a digital image p. The additive random noise e is a result of quantization 

and other sources. A digital restoration filter f is applied to the digital image to 

produce a processed digital image q. The processed digital image is filtered by the 

reconstruction PSF d to yield a continuous output imager. 

3.1.1 Coordinate System 

It is necessary to choose a common spatial coordinate system with respect to which 

all the c/d/c model components can be referenced. By doing so, a corresponding 

frequency coordinate system is chosen as well. Given the need for a common co-

ordinate system, a decision must be made about whether to use coordinates fixed 

!JM .. 1'1'YTG1S"S ¥ e 
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relative to the scene, or fixed relative to the image acquisition system.1 Although 

the choice is dictated by tradition and application-specific considerations, to facili-

tate frequency domain analysis it is desirable that the chosen coordinate system be 

one in which sampling is uniform in both (orthogonal) directions. Such a coordinate 

system is illustrated in figure (3.2). 

The (x1 , x2 ) coordinate system in figure (3.2) is natural for digital imaging sys-

terns that use a 2-D staring-array of photo-detectors; (xb x2 ) represents a location 

on the array. Without loss of generality, distances in this coordinate system can 

be normalized to the inter-detector (inter-pixel) distances with the detector (pixel) 

centers at the integer grid points [n1, n2], as indicated. Because of this convention, 

frequencies (w1,w2 ) are measured in cycles/pixel. The sampling frequency in both 

directions is 1.0 cycles/pixel; the Nyquist frequency is 0.5 cycles/pixel. 

3.1.2 Image Formation 

The continuous input scene s is not a scene as described by a 3-D scene-based 

coordinate system, but its 2-D optical projection onto the (xt, x2 ) coordinate system. 

The projection is assumed to be perfect, free of any non-linear geometric distortion. 2 

Only the portion of the projected scene that is within the field-of-view (FOV) of 

1 A related decision must be made about whether to measure distances in angular or linear 

coordinates; except for chapter 8, linear coordinates are used throughout the dissertation. 

2The projection need not be completely free of all image degradations; certain degradations 

such as atmospheric blurring can be accounted for in the system OTF. 
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Figure 3.2: A cjdjc model coordinate system 
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the imaging system is of interest. Relative to the normalized (xt, x 2 ) coordinate 

system in figure (3.2), the FOV is the region tessellated by the N 1 x N 2 pixel grid. 

Except perhaps at the natural edges of the scene defined by the FOV, there is no 

significant error caused by assuming that the input scene is periodic with period 

N 1 x N2 • The periodicity of the input scene allows it to be represented as a Fourier 

series 

s(x1, xz) = L L S[vt, vz] exp(i21l"XtVt/ Nt) exp(i27rxzvz/ Nz) (3.1) 
\v1\$T1 \v2\:$T2 

where v1 , v2 are integer-valued frequency indices. The corresponding Fourier series 

coefficients are 

(3.2) 

The scene is assumed to be band-limited- only (2r1 + 1 )(2r2 + 1) Fourier coefficients 

are assumed to be non-zero. Although real scenes are not truly band-limited, using 

equation (3.1) does not necessarily adversely affect the accuracy of a c/d/c model. 

By choosing the scene's cut-off frequencies rtf N 1 , rz/ N2 to be much greater than 

the Nyquist frequency, one can model sub-pixel-scale detail in the scene; see section 

3.2 for more discussion of this point. 

Image acquisition is modeled as a convolution of the periodic input scene with an 

aperiodic function h. This PSF quantifies all the low-pass filtering effects of image 

acquisition prior to sampling. The pre-sampled image g = s ® h is the function 
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defined by convolution as 

Due to the periodicity of s, the pre-sampled image is also periodic with period 

N1 x N2 • The corresponding Fourier series coefficients are defined by the convolution 

theorem as 

(3.4) 

where the continuous Fourier transform of h is the OTF 

(3.5) 

Although real imaging systems may not be truly linear or shift-invariant, equa-

tion (3.3) is widely used to model image acquisition systems. The primary reason 

for this is that, within limits, linearity and shift-invariance are usually true to a 

good approximation. Moreover, as observed by Park et al. [62], " ... without these 

assumptions, a mathematical analysis [of a c/ d/ c model] is virtually impossible". 

Chapter 8 presents an application where the shift-invariance assumption is false and 

describes one possible method for using a c/d/c model in this case. 

3.1.3 Image Sampling and Additive Random Noise 

Consistent with the coordinate system in figure (3.2), the pre-sampled image func-

tion g is sampled and quantized to yield the digital image array p. That is, 

(3.6) 
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where e denotes additive random noise associated with the image acquisition sys-

tern (e.g., shot noise, circuit noise and quantization).3 The additive noise array is 

assumed to be periodic with period N 1 x N2 • Consistent with the periodicity of g 

and e, the digital image pis periodic with period N 1 x N 2 • The corresponding DFT 

array is defined by the sampling theorem as 

where e[vt, v2] is the DFT array associated with e. Equation (3. 7) is similar to 

the corresponding d/d model equation, equation (2.6), except for the important 

additional term 

a[vl,v2] = LL S[r/1- k1N1,v2- k2N2]H(vdN1- k1,v2/N2- k2)· (3.8) 
[kl ,k2]#[0,0] 

This term quantifies the energy in g = s ® h outside the sampling passband 

(3.9) 

that folds (pre-aliases) into frequencies within the sampling passband. If G[v1 , v2] 

is zero for all (vtfN1, v2jN2) outside the sampling passband then a[vt, v2] = 0 for all 

(vtfN1, v2/N2) within the sampling passband. In this case, there is no pre-aliasing. 

In most imaging applications, however, g is not sufficiently sampled. That is, natu-

ral scenes typically contain significant sub-pixel-scale detail (energy at frequencies 
' 

3 For notational clarity, continuous model components are expressed using a conventional func-

tion notation, e.g., s(x1 , x2), while discrete model components are expressed using an array nota-

tion, e.g., p[nt, n2]. 
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outside the sampling passband) that are not rejected by the OTF. Therefore, some 

pre-aliasing is inevitable [10]. 

3.1.4 Digital Processing 

Digital processing (restoration filtering) is accomplished by convolving p with a 

restoration filter f. The restoration filter array is assumed to be periodic with period 

N1 x N2 ; this periodicity facilitates the frequency-domain design of the restoration 

filter. The filtered image array q = p® f defined by 

(3.10) 

is periodic with period N1 X N2. The corresponding DFT array is 

(3.11) 

where }[v1, v2] is the restoration filter DFT array. 

3.1.5 Image Reconstruction 

The final step of a c/d/c model accounts for the discrete-to-continuous transforma-

tion required to convert the filtered image array to a continuous (analog) format. 

The most common instance of a reconstruction process is a display device (e.g., CRT 

monitor, photographic film) that converts the digital data into continuous form for 

viewing. Reconstruction for the purpose of display is not, however, the only image 

reconstruction application. Digital imaging applications involving non-visual data 

(e.g., remote sensing) generally reconstruct the digital image prior to resampling for 
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the purpose of enlargement or registration. Any resampling operation can be mod-

eled as a discrete-to-continuous reconstruction (interpolation) process followed by a 

(re)sampling process. Therefore, reconstruction is implicit in image enlargement or 

image registration. Reconstruction, either for the purpose of display or resampling, 

has the potential for significantly degrading the quality of a digital image [10]. 

Image reconstruction is modeled as a convolution of the filtered image array q 

with an aperiodic reconstruction PSF d. The reconstructed image function r = q@ d 

is periodic with period N1 X N2; from equations (3. 7) and (3.11) its Fourier series 

coefficients are 

(3.12) 

where the function 

(3.13) 

is the Fourier transform of the reconstruction PSF. In this dissertation D(w1 ,w2 ) 

is called the reconstruction transfer function (RTF); the RTF characterizes both 

display PSFs and reconstruction PSFs. 

Recall that equation (2. 7) characterizes a d/ d imaging system model in the 

frequency domain. Similarly, equation (3.12) provides a complete c/d/c model end-

to-end frequency domain characterization. Equation (3.12) is more comprehensive 

than equation (2. 7) because of the presence of the additive aliased term &h, v2] and 

the multiplicative RTF D( v1 / N1, v2/ N2). In this way, equation .(3.12) demonstrates 
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that image acquisition blur and random noise are not the only sources of degradation 

in a digital imaging system. 

The periodic reconstructed image can be synthesized from its Fourier senes 

coefficients as 

00 00 

r(x1, x2) = 2.:::: 2.:::: R[vt, v2] exp(i27rXtvt/Nt) exp(i21rx2v2/N2). (3.14) 
Vt=-oo v2=-oo 

In general, although the input scene is band-limited, the reconstructed image may 

not be band-limited- hence the infinite summation in equation (3.14). 4 The energy 

in the reconstructed image outside the sampling passband is spurious; this spurious 

energy has been called post-aliasing [74]. 

3.2 C/D/C Model-Based Simulation 

Simulation is an important computational tool for analyzing the performance of 

c/d/c model-based restoration filters. In this section, a frequency domain method-

ology for c/d/c model-based simulation is presented. This simulation methodology 

is used in this and subsequent chapters to investigate c/d/c model-based restora-

tion filters. The discrete parts of a c/d/c model-based simulation, digital filtering 

and additive random noise generation, are similar to the corresponding parts of 

a d/d model-based simulation as discussed in section 2.2. The representation of 

the scene and the simulation of image acquisition are fundamentally differer;tt, how-

4Because most RTFs are effectively band-limited, for the purpose of simulation the infinite 

summation can be replaced, with negligible error, by an appropriate finite summation. 
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ever, as is the simulation of image reconstruction. Therefore, in this section scene 

representation, image acquisition and image reconstruction are discussed in some 

detail. 

3.2.1 Scene Representation 

In a c/d/c model-based simulation the scene can be represented in the frequency 

domain by defining the (2rl + 1 )(2r2 + 1) Fourier series coefficients S[vt, v2]. Because 

primary consideration is given to modeling their frequency characteristics rather 

than their (spatial domain) appearance, scenes modeled in this manner are called 

Fourier scenes [64]. One such Fourier scene model, proposed by Modestino et al. 

[63], is used in chapter 4. Other Fourier scene models have been proposed for a 

variety of imaging applications [66]-[72]. 

Although they provide an excellent mechanism for generating contmlled input 

scenes, Fourier scenes generally do not resemble real scenes. Consequently, the 

results of a c/d/c model-based simulation based on input Fourier scenes may not 

be visually convincing. As an alternative, high-resolution digital images of actual 

scenes, such as the aerial image used in chapter 2, can be used to simulate band­

limited, continuous scenes and thereby provide the visual realism lacking in Fourier 

scenes. When a digital image is used as the input to a c/d/c model-based sim­

ulation, its corresponding DFT array can be used to construct the Fourier series 

coefficients such that the corresponding continuous scene interpolates the digital im­

age exactly. The algorithm and associated mathematics for doing this are presented 
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in Appendix A. This algorithm is used for all the c/d/c model-based simulations in 

this dissertation. 

3.2.2 Image Acquisition 

The image acquisition PSF / OTF quantifies all deterministic (linear, shift-invariant) 

effects prior to sampling. For a staring-array digital imaging system, the compo­

nents that contribute to the composite image acquisition OTF are the optics of 

the imaging system, the signal-conditioning detector circuits (or read-out circuits), 

jitter (if any), and the detectors themselves. Scanning systems contribute an ad­

ditional component to the PSF corresponding to the scanning mechanism. As an 

alternative, digital techniques are now available for directly measuring the compos­

ite OTF of actual systems to well beyond the Nyquist frequency, thereby reducing 

the need for accurate OTF component modeling [73]. 

In the simulations presented later in this chapter, the parametric OTF model 

suggested by Johnson [75] is used. This model is 

ii(w1,w2) = exp (- ( )wr + wVcr r) (3.15) 

where cr is the OTF scale parameter and (3 is the OTF shape parameter. If (3 = 2, 

the OTF is a 2-D circularly symmetric separable Gaussian; in this case, the OTF is 

the continuous, aperiodic version of the periodic, discrete Gaussian OTF model used 

in chapter 2. Johnson's model can be used to approximate the composite OTFs for 

a wide range of image acquisition devices when component modeling proves to be 
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difficult. 

Figure (3.3) illustrates the OTF in equation (3.15) for (3 = 2.0 and three different 

values of CT.
5 The OTF for the CT = 0.75 cycles/pixel case, figure (3.3[b]), corresponds 

to an image acquisition system that produces little blurring but significant pre­

aliasing. The OTFs for the CT = 0.50 and CT = 0.25 cases, figures (3.3[c]) and 

(3.3[d]), produce progressively more blurring, but less pre-aliasing. The dotted 

response in figure (3.3) represents an "ideal" low-pass filter that corresponds to the 

pre-sample filtering required to produce sufficient sampling with no blurring within 

the sampling passband. 

3.2.3 Image Sampling 

The pre-sampled image g = s ® h is sampled on a (rectangular) N1 x N2 grid. The 

real-valued result is quantized to yield the digital image p. Quantization produces 

random noise, the extent of which is quantified by the SNR parameter defined 

in chapter 2. If appropriate, additive random noise contributed by the electronic 

components of the image acquisition system can be simulated by adding random 

values to the quantized image to lower the SNR relative to its value associated with 

quantization noise only. 

5Figure (3.3[a]) corresponds to u = oo which represents an image acquisition system that 

produces no blurring. 
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Figure 3.3: Image acquisition OTFs. 
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3.2.4 Digital Processing 

Digital processing in a c/d/c model-based simulation is identical to that in a d/d 

model-based simulation. The N1 X N2 DFT array elements p[v1, v2] are multiplied 

by the N1 x N2 filter response array elements }[vl, v2] on a frequency-by-frequency 

basis to generate the N1 X N2 DFT array elements q[vt, v2]. 

3.2.5 Image Reconstruction 

The processed digital image is reconstructed to a continuous image; the RTF char­

acterizes this reconstruction. RTF models for display devices describe the low-pass 

filtering effects of display reconstruction. Schade's RTF model uses the sum of 

two Gaussians; one for the nucleus of the display spot and one for a flare about 

the nucleus clue to the finite thickness of the phosphor and optical reflections of 

the faceplate surfaces in the cathode-ray tube [11]. Schade's two-component RTF 

model is 

(3.16) 

where D1 = 0.8, D2 = 0.2, a1 = 0.5 cycles/pixel and a2 = 0.1 cycles/pixel. 

Figure (3.4[a]) illustrates a 1-D RTF corresponding to this model. This model 

causes significant blurring and allows some post-aliasing. The RTF has negligible 

response beyond 1.0 cycles/pixel; this effective ba.ncl-limit at twice the Nyquist 

frequency makes the summations in equation (3.14) finite. 

Interpolative reconstruction is achieved by using reconstruction PSFs which sat-
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Figure 3.4: Image reconstruction RTFs: [a] Sum of two Gaussians, [b] PCC. 

isfy the condition, 
00 00 

E E d(x1- n1,x2- n2) = 1 (3.17) 
n1:::-oo n2=-oo 

for all (x 1 , x2 ). This important property of interpolative reconstruction PSFs en-

ables a uniformly gray scene to be reconstructed perfectly from a uniformly gray 

digital image; physical display devices are generally unable to do so [11]. There 

are a variety of interpolative image reconstruction PSFs [76]. One popular choice, 

the Parametric Cubic Convolution (PCC) reconstruction PSF, is a finite-support 

approximation to the sine reconstruction function [77]. The corresponding default 

PCC RTF (with a= -0.5) is 

(3.18) 
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where for w =/= 0 

(3.19) 

By convention, Dp(O) = 1.0; a 1-D version of this RTF is illustrated in figure (3.4[b]). 

The PCC RTF causes some blurring and allows some post-aliasing. Like 

Schade's model, equation (3.16), the PCC response is effectively band-limited at 

twice the Nyquist frequency. In comparison to Schade's display RTF model, how­

ever, for a given digital image the PCC interpolator produces less blurring in the 

sampling passband but more post-aliasing. The clotted line in figure (3.16) repre­

sents the low-pass response of the sine interpolator that was used in chapter 2. 

3.2.6 C/D/C Model Simulation Examples 

Figure (3.5) is a four-panel composite that uses the format introduced in chapter 

2. That is, the three reconstructed images correspond to the finite-parameter-value 

OTFs presented in figure (3.3). As in chapter 2, figure (3.5[a]) is the input scene. 

To produce figure (3.5) the three pre-sampled blurred images g = s ®hare sam­

pled on a N1 X N2 = 128 X 128 grid. Gaussian-distributed "white" noise (with a 

standard deviation of 0.86) is added to the sampled images; this results in an SNR 

of 50.6 The digital images pare reconstructed (without restoration) using the PCC 

6Truly Gaussian random noise is not integer-valued and therefore cannot be added to the 

sampled images in the spatial domain- doing so would make p real-valued. Therefore, to achieve 

the exact SNR of 50, the random noise is added in the frequency domain by adding the appropriate 

e top. 
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RTF and displayed as 512 X 512 images. Consistent with the OTF frequency charac­

teristics in figure (3.3), the reconstructed images in figure (3.5) become increasingly 

more blurred as the OTF scale parameter a is decreased. The reconstructed images 

in figure (3.5) also exhibit artifacts. The artifacts are most visible in figure 3.5[b]), 

which is the least blurred. Consistent with the results in section (2.4) and as 

demonstrated in the next section, the artifacts are caused by insufficient sampling 

and imperfect reconstruction. 

figure (3.6) is identical to figure (3.5) with the exception that the digital images 

are reconstructed (without any restoration) using Schade's RTF model. Consistent 

with figure (3.4), each of the three reconstructed images is more blurred than their 

corresponding PCC reconstructions; a distinct (albeit faint) checker-board pattern 

is also visible in all the reconstructed images. This checker-board pattern is present 

because Schade's display PSF model does not obey equation (3.17). 

3.3 C/D/C Model-Based Digital Image Restoration 

With the help of simulation, it was demonstrated in chapter 2 that if image acqui­

sition blur is the only source of image degradation then digital restoration filtering 

can successfully remove essentially all of this degradation. If, however, the blurred 

digital image is also sampled and reconstructed, then the same digital restoration 

(inverse) filter no longer works satisfactorily. This illustrates that sampling and 

reconstruction introduces a significant image degradation that interferes with the 
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Figure 3.5: PCC reconstruction of the blurred and sampled aerial scene (no restora­

tion). 
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Figure 3.6: Display reconstruction of the blurred and sampled aerial scene (no 

restoration). 
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restoration process in a fundamental way. This section provides an explanation for 

the simulation results in chapter 2.7 This explanation is based on a c/d/c model-

based argument that pre-aliasing and post-aliasing (generally referred to as aliasing) 

together contribute scene-dependent aliased noise.8 This scene-dependent aliased 

noise is enhanced by a high-boost restoration filter; the result is the kind of artifacts 

present in figures (2.10) and (2.12). 

A theoretical justification for the characterization of aliasing as scene-dependent 

additive noise is based on the observation that the Fourier series coefficients of the 

reconstructed image, equation (3.12), can be written as 

(3.20) 

The three terms on the right-hand-side of equation (3.20) are defined as follows. 

The cascaded (or filtered) term is 

(3.21) 

This term corresponds to the end-to-end c/d/c system output with an accounting 

for the low-pass filtering effects of image acquisition, the high-boost filtering effects 

of image restoration and the low-pass filtering effects of image reconstruction. This 

term is analogous to the output of a c/c model. 

7This section is based on material that appears in two recent SI'IE articles, (62] and (78]. 
8 There is a subtle difference in the model used for the simulation results presented in section 

2.4 of chapter 2 and the c/d/c model in this chapter. In chapter 2, the underlying c/d/c model 

switched the order of the digital processing and image reconstruction modules. 
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The (scene-independent) random noise term is 

(3.22) 

This term corresponds to the random effect of system noise, modulated by the high­

boost filtering effect of image restoration and the low-pass filtering effect of image 

reconstruction. This term explains the random noise enhancement by a restoration 

filter, as demonstrated in figure (2.5). If the SNR is very high this term is effectively 

non-existent. 

The scene-dependent aliased noise term is 

(3.23) 

This term corresponds to the frequency folding effect of sampling, modulated by 

the high-boost filtering effect of image restoration and the low-pass filtering effects 

of image reconstruction. This term quantifies the extent to which pixel-scale (and 

larger) artifacts are created by pre-aliasing as well as the extent to which sub-pixel­

scale artifacts are created by post-aliasing. As evident in figures (2.9) and (2.11), 

these artifacts are generally present even if the digital image is free of additive 

random noise. From equation (3.23) it is clear that restoration can enhance aliasing 

artifacts, as demonstrated in figures (2.10) and (2.12). 

The spatial domain equivalent of equation (3.20) is 

(3.24) 
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where 

00 

L Ra[vl, v2] exp(i21rv1xl/N1) exp(i21rv2x2/N2) (3.25) 
Vt=-oo v2=-oo 

is the aliased noise component image and rc, re are defined analogously.9 From 

equation (3.24) it is clear that that the aliased noise component image is an additive 

source of error (noise), much like random noise. 

In support of the characterization of the aliased component image as scene-

dependent additive noise, the aerial scene can be processed to generate the three 

component images. Figure (3. 7) is a composite illustration of a reconstructed im-

age along with the three component images. No digital restoration processing is 

employed- relative to figure (3.1) this means that p = q. Figure (3.7[a]) is the 

reconstructed imager produced by an OTF scale parameter of 0. 75 and PCC recon-

struction. The random noise SNR is 50. Figure (3. 7[b]) is the cascaded component 

rc, and figures (3.7[c]) and (3.7[d]) are the random and aliased noise components re 

and ra, respectively. The reconstructed image and the cascaded component image 

are displayed "as is", with no contrast-stretching. The noise component image and 

the aliased component image, however, have had their mean values shifted from 

zero to mid-gray and then have been independently contrast-stretched. 

Consistent with the mathematical characterizations of the component images, 

when no restoration is performed the cascaded component, figure (3. 7[b]), is a low-

9 As DISCUSSEd in subsection 3.2.5, in practice the infinite summations in equation (3.25) and 

the analogous equations for rc and re can be reduced to finite summations. 
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pass filtered version of the original scene, figure (3.5[a]). The random noise campo-

nent, figure (3.7[c]), does not contain any meaningful (scene-related) spatial struc-

ture. Like the random noise component, the aliased component, figure (3.7[d]), is a 

noise image, but with a significant difference - the features present in the aliased 

component image correlate perfectly with the visual artifacts in the reconstructed 

image, figure (3.7[a]), providing a qualitative justification for the scene-dependent 

(additive) noise characterization of aliasing. 

Figure (3.8) illustrates the effect of restoration on each component of the recon-

structed image. Restoration is applied by using an ad-hoc (periodic) restoration 

filter whose frequency response in the sampling passband is given by 

][vt, 112] = A H*(vl/Nt, v2/N:)D"'(v1/N1, v2/~2) . 
IH(vl/Nt, v2/N2)D(vt/N1, v2/N2)I + E2 

(3.26) 

Periodicity is imposed by replicating this response beyond the sampling passband. 

The filter response is empirically modified by the parameter E to avoid unbounded 

response. This naive restoration filter accounts for image acquisition blurring and 

image reconstruction blurring but ignores aliasing and random noise; more compre-

hensive c/ d/ c model-based restoration filters are presented in chapters 4 and 5. In 

equation (3.26) fi is the OTF defined in equation (3.15) with {3 = 2.0 and O" = 1.0 

and .b is the PCC RTF defined in equation (3.19); the value of E is 0.01. Figure (3.8) 

illustrates the resulting reconstructed and component images. Except for the use of 

this filter, the processing (including contrast-stretching for the purposes of display) 

is identical to the processing used to generate the images in figure (3. 7). 
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Figure 3.7: Reconstructed aerial and component images (no restoration). 
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Figure 3.8: High-pass filtered aerial and component images. 
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The restoration filter defined in equation (3.26) attempts to compensate for the 

blurring produced by image acquisition and PCC reconstruction. The compensa­

tion is independent of a[r11, v2] and e[v1, v2]. Therefore, if the energy of either the 

aliased noise component or the random noise component (or both) is large at some 

frequencies, significant artifact enhancement will occur, as illustrated in figure (3.8). 

When the images in figure (3.8) are compared with the corresponding images in fig­

ure (3.7), the enhancement of both the random and aliased noise components is 

evident. Although the restored image in figure (3.8[a]) (which is physically realiz­

able) and the cascaded component image in figure (3.8[b]) (which is not physically 

realizable) are considerably sharper, the net effect of using the inverse restoration 

filter is to corrupt the restored image with amplified aliasing artifacts. 

As demonstrated in this section, (pre- and post-) aliasing due to sampling and 

reconstruction can be an important source of degradation in digital (sampled) imag­

ing systems. For digital image restoration to be effective, a c/ d/ c system model must 

be used to account for sampling and reconstruction and the restoration technique 

must balance its high-boost action against the potential for enhancing both ran­

dom and aliased noise. The c/d/c model-based Wiener and CLS restoration filters 

presented in chapters 4 and 5 are examples of such restoration techniques. 



CHAPTER IV 

C/D/C MODEL-BASED WIENER IMAGE RESTORATION 

This chapter describes a c/d/c model-based Wiener restoration filter. The filter 

is derived by minimizing the expected end-to-end MSD between the reconstructed 

image and the ideal scene; in this sense the Wiener filter is optimal. Simulations 

presented in this chapter illustrate, however, that the c/d/c model-based Wiener 

has limited practical utility. That is, although it is optimal, the Wiener filter cannot 

be applied rigorously in a practical restoration application. 

4.1 Wiener Filter Derivation 

Relative to the c/d/c system model in figure (3.1), the end-to-end MSD is 

( 4.1) 

From Parseval's equation, the spatial domain expression for the end-to-end MSD 

can be written in the frequency domain as 

00 00 

lis- rll 2 = E E IS[vt, v2]- R[vt, v2W· (4.2) 
vt=-oo v2=-oo 

By using equations (3.7), (3.12) and (4.2), the end-to-end MSD can be expressed as 

00 00 

lls-rll2 = E E IS[vt,v2]-z3[vt,v2]}[vt,v2]b(vt/Nt,v2/N2W· (4.3) 
v1=-oo v2=-oo 

72 
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The c/d/c model-based Wiener filter is derived by assuming that the input scene is 

stochastic and then minimizing the expected end-to-end MSD. That is, the Wiener 

filter minimizes the restoration metric 

(4.4) 

Because the c/d/c model-based Wiener filter minimizes the end-to-end MSD in an 

average sense, it will not, in general, minimize the end-to-end MSD for a particular 

scene. This is an important theoretical point that also has practical ramifications 

that are discussed in section 4.2. 

For each frequency index pair [v1 , v2], J2 is quadratic in the (complex-valued) 

unknown restoration filter coefficient }[vt, 112]. That is, J2 can be expressed as 

00 00 

J 2 L L (<f>s[vt,v2]-B[vt,v2]}*[vt,v2] 
Vt=-oo v2=-oo 

with the coefficients 

E[S[vt, v2]fi*[vt. v2]D*(vdN1, v2/N2)] 

A[vt. v2] = <i>p[Vt, v2]ID(vi/N1, 112/N2W (4.6) 

where <i>p[v1, v2] = E[lfi[vt, v2]l2] denotes the expected energy of the digital image 

A A 2 
and ci> 5 [v1, v2] = E[IS[vt, v2JIJ is the expected energy of the scene. 

Since the restoration filter is periodic with period N1 x N2, only a finite number 

of restoration filter transfer values can be specified. For that reason, it is desirable 
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to reduce equation ( 4.5) to a sum over a N1 x N2 frequency period. This objective 

can be achieved by using the following lemma.1 

Lemma 4.1.1 Let f[v1, v2] be a complex-valued aperiodic sequence and .6.[v1, v2] be' 

a complex-valued periodic sequence with period N1 X N2. If 

00 00 

(r[vl, v2J) = L L r[vl- klNl, v2- k2N2] 
k1=-oo k2=-oo 

is absolutely convergent for all [v1, v2] then : 

(i) the sequence defined by (r[vll v2J) is periodic with period N 1 x N2; 

{ii) 

(iii) 

00 00 

L L A[v1, v2]f[v1, v2] 
N1-l N2-l 

L L .6.[v1, v2J(f'[vt, v2]); 
v1=-oo v2=-oo VJ =0 V2=0 

(iv) 

1 A 1-D equivalent of part (iii) of this lemma appears without proof in [13]. 
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Proof: 

(i) The periodicity of the sequence defined by (r[v1, v2J) is established as follows: 

00 00 
(f'[v1 + Nt, vz + Nzl) = L L f'[v1- k1N1 + N1, vz- kzNz + Nz] 

00 00 
L L f[v1- N1(k1- 1), Vz- Nz(kz- 1)] 

00 00 
= L L f'[v1- k~N1, Vz- k~Nz] 

k; =-oo k~=-oo 

The proof of ( ii) follows from the observation that the ( · ) operator and the complex 

conjugation operator are both linear. Therefore, their relative order can be inter-

changed without affecting the result. 

The proof of (iii) is based on the following counting argument: 

00 00 
L L A[v1, vz]f[v1, vz] 

oo oo (N1-1N2-l ) 
k]~OO k2~00 v~O v~O A[v1- k1N1, Vz- kzNz]f[v1- k1N1, Vz- kzNz] 

N1-1 N2-1 oo oo 
= L L L L A[v1,v2]f[v1- k1N1,v2- kzNz] 

VJ=O v2=0 k1=-oo k2=-oo 
N1-l N2-1 oo oo 

= L L A[v1, llz] L L f[v1- k1N1, Vz- kzNz] 

N1-1 N2-1 
= L L A[v1, vz](r[v1, vzJ). 

VJ=O v2=0 

The proof of ( iv) can be established as follows: 

... ······-··--·---·-··--·----------------------
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00 00 

I: I: A[v1- k1N1, v2- k2N2]f[v1- k1N1, v2- k2N2] 

00 00 

= A[vt, v2] I: I: f[v1- k1N1, v2- k2N2] 
k1 =-oo k2=-oo 

= A[vt, v2J(f'[vt, v2]). 

Q.E.D 

Using lemma 4.1.1, equation ( 4.4) reduces to 

N1-l N2-l 

J 2 = I: I: ((<i>s[Vt,v2J)- (B[vt,v2J)J*[vl,v2] 
v1=0 v2=0 

(4.8) 

For each [vt, 112], the minimum expected MSD is determined by choosing J[v1 , v2] 

to minimize P; this minimization can be accomplished by completing the square 

as 
N1-lN2-l 

P=J!in+ I: I: (A.[vt,v2J)IJ[vt,v2]-Jw[vt,v2]1
2 

(4.9) 
VJ=O v2=0 

where the (periodic) c/d/c model-based Wiener filter is 2 

(4.10) 

2If the denominator in equation ( 4.10) is zero then, by convention, fw [v1, v2] = 0. 

·------- ·--···-- --- -·---·----·--- -------
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and 
N1-l N2-l 

J!in = L L (<i>s[Vt,V2]-I}w[Vt,v2W(A[vl,v2])) (4.11) 
v1=0 v2=0 

is the residual error, independent of}. Each term in the summation in equation ( 4.9) 

is non-negative; this is used to prove the following theorem which establishes that 

the c/d/c model-based Wiener filter defined in equation (4.10) is the optimal linear 

restoration filter. 

Theorem 4.1.2 If (A.[vt, v2J) =/= 0 for all [v1, v2] then J2 achieves its minimum 

value of J~n if and only if ][vt, v2] = ]w[vt, v2] for all [vt, v2] whe1·e Jw[IJ\, v2] is 

defined by equation (4.10}. 

To evaluate the numerator and the denominator in equation (4.10), it is nee-

essary to make statistical assumptions about the scene and the random noise [14]. 

One statistical assumption is that the scene's sidebands are uncorrelated so that 

A A { <i>s[Vt, v2] [kt, k2] = [0, 0] 
E[S[vt, v2]S'*[v1 + k1N1, v2 + k2N2J] = 

0 otherwise. 

(4.12) 

For a band-limited scene, most of these terms are naturally zero; the number of 

possibly non-zero terms, if any, is determined by the scene's cut-off frequency and 

the sampling frequency. In general, only the lktl :::; rt/N1, lk2l :::; r2/N2 sideband 

terms are potentially non-zero. The uncorrelated sideband assumption forces all of 

these terms to be zero. The other statistical assumption is that the additive random 
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noise is zero-mean and scene-independent so that 

( 4.13) 

As a consequence of these two statistical assumptions, equation ( 4.8) can be 

simplified to 

( B[vt, v2]) = ( <i> s [vt, v2]H*( Vt / Nt, v2/ N2 )D* ( vd Nt, v2/ N2)) 

( A[v1, v2J) = ( <f>.[vt, v2JIH(vd Nt, v2/ N2W + <I>a[Vt, 112] + <f>e[Vt, 1121) 

<f>a[VI,V2] = EE <f>s[Vt- ktNt,V2- k2N2]IH(vi/N1- kt,112/N2- k2)l2 (4.15) 
[kt ,k2]#[0,0] 

is the expected energy of the aliased noise. The resulting form of the c/d/c model-

based Wiener filter is summarized by the following corollary to theorem 4.1.2. 

Corollary 4.1.3 If the two statistical assumptions stated in equations (4.12) and 

( 4.13) are true, then the c/ d/ c model-based Wiener jilte1· is 

This simplified Wiener filter reduces to the d/d model-based Wiener restoration 

filter (equation (2.13)) if the following c/ d/ c model conditions are satisfied: 
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• ~a[vr, v2] = 0 within the sampling passband; 

• D(w1,w2) = 1 within the sampling passband; 

• D(w1,w2) = 0 outside the sampling passband; 

When these three conditions are satisfied, the folded terms in the numerator and 

the denominator in corollary 4.1.3 are zero in the sampling passband. That is, for 

(vl/N1, v2/N2) in the sampling passband the numerator and the denominator are 

( B[v1, v2J) = ~s[vr, v2]H*(vl/N1, v2/N2) 

(.A[vl, v2J) = ~s[vr, 112]JH(vl/N1, v2/N2W + ~e[vl, v2]. (4.16) 

If both coefficients are divided by ~s[r;r, v2] (assuming that this term is non-zero for 

all frequency index pairs [v1, v2]), the result is the d/ d model-based Wiener filter 

response defined in equation (2.13). 

The "~a[v1 , v2] = 0 within the sampling passband" condition is a mathematical 

description of sufficient sampling. The pre-sampled image g = s ® h is sufficiently 

sampled only if the scene s does not have any energy beyond the sampling pass-

band or the PSF h rejects all frequencies outside the sampling passband. The 

"D(w1,w2) = 1 within the sampling passband" and the "D(w1 ,w2) = 0 outside the 

sampling passband" conditions jointly require that the reconstruction PSF must be 

the sine reconstruction PSF 

( 4.17) 
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As discussed in chapters 2 and 3, the assumptions about sufficient sampling and 

sine reconstruction are unrealistic because in practice aliasing and non-ideal recon­

struction are inevitable. Therefore, in practice the c/d/c model-based Wiener filter 

does not reduce to the d/d model-based Wiener filter. 

4.2 Wiener Restoration Problems 

Although the c/d/c model-based Wiener filter is, in theory, the MSD optimal linear 

restoration filter, there are several conceptual and computational problems associ­

ated with any implementation of this filter. In particular, the computational prob­

lem makes it difficult to apply the Wiener filter rigorously in practical restoration 

applications. 

4.2.1 Conceptual Problems 

To apply the simplified Wiener filter rigorously, <i>s[vl, v2] has to be known for every 

lv1l ::; T1, lv2l ::; r2. Also <i>e[vl, v2] has to be known at each frequency in the sampling 

passband. Because they are ensemble-averaged statistics, in a practical restoration 

application these energy spectra are never known; they have to be estimated from 

the noisy, sampled digital image. If IS[vt, v2] 1
2 and ie[vl, v2W are known, as they are 

in a simulation environment, then it is natural to use them as estimates of <i>s[v1 , v2] 

and <i>e[v1, v2]. Doing so is analogous to using one sample data point to estimate 

an unknown population statistic; the result is not the c/d/c model-based Wiener 
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restoration filter defined in corollary 4.1:3. 

In addition, the two statistical assumptions used to derive the simplified Wiener 

filter also create conceptual problems. The scene-independent, zero-mean random 

noise assumption, equation (4.13), is a common assumption for many d/d model­

based restoration filters including the d/d model-based Wiener filter presented in 

chapter 2. For some applications, this assumption may be valid. For example, if 

quantization is the only source of random noise in the system, then it is correctly 

modeled as scene-independent, zero-mean noise. For most digital imaging systems, 

however, quantization is not the only source of random noise. The electronic com­

ponents of the image acquisition system also contribute random noise (for example, 

shot-noise and dark-current noise) that may dominate quantization noise. Unlike 

quantization noise, this "electronic" noise may not be scene-independent or zero-

mean [79]. If so, then the Wiener filter indicated in corollary ( 4.1.3) is not optimal. 

Like the statistical assumption about the random noise, the assumption about 

uncorrelated scene sidebands, equation ( 4.12), is another example of the use of some 

statistical license. Some after-the-fact theoretical justification for this assumption 

can be provided only for limited interpretations of an "ensemble" of scenes. For 

example, if the scene ensemble is defined to be the (infinite) collection of randomly 

sub-pixel shifted versions of a particular scene, then the uncorrelated sidebands 

assumption can be shown to be true [80]. For a general ensemble, however, there is 

no assurance that the uncorrelated sidebands assumption is necessarily valid. 
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4.2.2 Computational Problems 

To compute the simplified Wiener filter values using corollary 4.1.3 it is necessary to 

know <i>s[Vt, v2] and <i>e[Vt, v2]. As discussed in subsection 4.2.1, however, these two 

statistics are unknown and it is virtually impossible to estimate them. Estimation of 

the corresponding sample statistics IS[vt, v2W and le[vt, v2] 1
2 is possible. In general, 

Spectral estimation has been a much researched problem in the context of a 

d/ d model [81 ]-[88]. For a d/ d model, assuming that the additive random noise is 

zero-mean and independent of the scene, the energy spectrum of the scene is related 

to the energy spectrum of the digital image as 

(4.18) 

For a given digital image it is lz3[vl, v2JI 2 not <i>P[vt, v2], that is known. Therefore, 

for the purpose of spectral estimation, equation (4.18) is replaced by 

( 4.19) 

Although this equation can be solved for I.S[vt,v2]12 provided lz3[v1,v2W, 

perfect accuracy in practice, and so the solution for I.S[v1, v2]12 derived from equa-

tion (4.19) will always have an associated error. In general, this error will be small 
' 

at low frequencies but significant at the higher frequencies where le[v1 , v2] 12 may be 

------------------------
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than ~s[vi, v2] then the Wiener filter will not sharpen adequately at that frequency. 

If, instead, the estimated js[v1, v2W is greater than ~s[vb v2] then the Wiener filter 

will sharpen more than necessary at that frequency, perhaps boosting random noise 

in the process. 

Spectral estimation in the context of a c/d/c model is an even greater challenge 

due to the presence of both random noise and aliased noise. The c/d/c model 

analog to equation ( 4.19) is 

( 4.20) 

Unlike equation ( 4.19), because of the presence of the unknown aliased noise term 

ja[v1, v2W equation ( 4.20) cannot be solved for jS[v1, v2W even if je[v1, v2W is known. 

Because of these problems, as demonstrated in section 4.3, for a c/d/c model the 

use of parametric models for the scene's energy spectrum to synthesize theWiener 

filter is more acceptable than the direct estimation approach. 

4.3 Simulated Wiener Restorations 

As in chapters 2 and 3, in this section a simulation is used to illustrate model­

based Wiener restoration filtering. The simulation compares the c/d/c model­

based Wiener restoration obtained by using ISh, v2W to estimate ~s[v1 , v2] with 

a more practical Wiener restoration in which a parametric model is used to esti-
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mate <i>s[vll v2].
3 The Wiener restoration filter obtained by using IS[vt, v2W instead 

of <i>s[v1 , v2] provides a reference for visual comparison. This simulation illustrates 

that the mathematical rigor associated with the c/d/c model-based Wiener filter 

derivation is lost when ad-hoc techniques are used to compute the filter transfer 

function values. Moreover, accurate restoration using such an ad-hoc technique 

requires significant computational effort. 

The 512 X 512 aerial image, :figure (4.1[a]), is blurred with the Gaussian OTF de-

fined by equation (3.15) with (J = 0.25 cycles/pixel. As illustrated in figure (3.3[dl), 

this OTF produces significant image acquisition blurring; the corresponding digital 

image is therefore, a good candidate for restoration. The result is sampled on a 

128 x 128 pixel grid. Uniformly distributed random noise with SNR = 32 is added 

to the sampled image. Figure (4.1[b]) is the PCC reconstruction of this sampled 

image, without restoration. Figure (4.1[c]) and (4.1[cl]) are the two Wiener restored 

images, again using PCC reconstruction. To generate figure ('!.1[c]), the Wiener 

generate :figure ( 4.1 [ell), the Wiener filter is computed by using a parametric energy 

spectrum model proposed by Modestino et al. [63] 

. bp 
<I>s[IJI, v2] = p2 + 47r2( (vi/ N1)2 + (v2/ N2)2)3/2 ( 4.21) 

The model parameter p corresponds to the mean spatial detail of the scene (in 

3In this simulation the actual energy in the random noise is used in each case to isolate the 

scene spectral estimation problem. 
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pixel dimensions) and controls the extent to which the scene has energy at high 

frequencies - the smaller the value of f.l, the greater the presence of high contrast, 

pixel-scale features in the scene. 

To use equation ( 4.21) a best value of f.l was computed as follows. First, two 

boundary values, f.l = 0.5 pixels and f.l = 7.0 pixels were chosen arbitrarily. These 

boundary values correspond to two different scene energy spectra; 0.5 corresponds 

to the case where the model over-estimates the true scene energy spectrum and 

7.0 corresponds to the case where the model under-estimates the true scene energy 

spectrum. Begining with fl = 0.5 and ending with f.l = 7.0, 14 restored (and 

reconstructed) images were produced at fl intervals of 0.5. To avoid having to 

choose the best restoration solely by the subjective process of visual inspection, each 

reconstructed image was "fed-back" into the image acquisition system to generate 

a (noise-free) digital image p'. That is, each reconstructed imager was blurred by 

the same Gaussian OTF used to generate p; r@ h was then sampled on a 128 x 128 

grid to create each p'. The reconstructed image for which 

( 4.22) 

was the smallest was selected as the best realizable Wiener restoration. For this 

simulation, f.l = 1.5 yielded the lowest value of liP- p'll 2
; the corresponding restored 

image,' reconstructed using PCC, is illustrated in figure (4.1[d]). Figures (4.1[c]) and 

(4.1[d]) are virtually indistinguishable demonstrating that this feed-back technique 

produces accurate restorations, albeit with a great deal of computational effort. 
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Figure 4.1: Simulated c/d/c model-based Wiener restorations. 
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Had this computational effort not been expended (for example, if a value of f--l had 

been chosen arbitrarily), the quality of the restored image may not have been as 

good. Figure ( 4.2) illustrates the variation of liP-p'll 2 versus f--l for the 14 candidate 

restorations. The dotted line in figure ( 4.2) is the value of llp-p'll 2 for the unrestored 

image. 

The simulation presented in this section illustrates that although the c/d/c 

model-based Wiener filter is derived with considerable mathematical rigor, its im-

plementation generally relies on ad-hoc techniques to refine the ~s[v1 , v2] estimate; 

this process can require significant computation. Compared to the Wiener filter, 

the CLS restoration filter described in chapter 5 generates near-optimal restorations 

rigorously. 

--------------------------------------------------------------------~-------



CHAPTER V 

C/D/C MODEL-BASED CLS IMAGE RESTORATION 

Although restoration filters based on a d/d system model do not account for 

image sampling and reconstruction, the traditional CLS filter is based on such a 

model [43]. This is a problem because, as demonstrated in chapter 2, failure to 

account for sampling and reconstruction can produce unsatisfactory restorations. 

In this chapter, the traditional d/d model-based CLS restoration filter is extended 

to account for sampling and reconstruction by using a c/d/c system modeP In 

comparison to the derivation of the c/d/c model-based Wiener restoration filter, 

the derivation of the c/d/c model-based CLS restoration filter is intuitively more 

acceptable because statistical assumptions about the unknown scene and the ran­

dom noise noise are not required. For this reason, unlike the c/d/c model-based 

Wiener filter, the c/d/c model-based CLS restoration filter can be applied rigor­

ously. Simulated restorations are presented to demonstrate the effectiveness of the 

c/d/c model-based CLS restoration filter for a range of imaging conditions. 

1 A 1-D c/d/c model-based CLS filter derivation was presented in a recent article [89]. This 

chapter extends that derivation to 2-D. 

88 
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5.1 CLS Filter Derivation 

Constrained least-squares (CLS) image restoration is a linear image restoration 

technique in which the smoothness of the restored image is maximized subject to 

a constraint on the fidelity of the restored image. In this context smoothness is a 

subjective attribute of image quality that is used to describe the extent to which 

an image lacks high-frequency pixel-scale detail. Controlling image smoothness in 

restoration applications is important because, as illustrated in chapters 2 and 3, 

high-frequency features may be spurious, enhanced noise. 

Relative to the c/ d/ c model in figure (3.1), the objective of CLS restoration is to 

design the restoration filter f so that the restored image r is indistinguishable from 

the original scene s in the sense that if both r and s were input to this model then, 

except for additive random noise, they would produce statistically indistinguishable 

digital images. In general, infinitely many choices of the restoration filter can satisfy 

this objective. For this reason, the CLS filter derivation regularizes the restoration 

process by imposing a smoothness constraint on the restored image, thereby making 

the restoration filter well-defined. The CLS restoration metric thus consists of a 

smoothness term 

(5.1) 

and a fidelity term 

-
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The smoothness term 8 2 is stated in terms of a user specified (continuous, aperi­

odic) high-pass filter convolution kernel c. If the restoration filter is chosen to make 

the smoothness term small, restored images are rejected that would otherwise pos­

sess a great deal of potentially spurious energy at high frequencies. As illustrated in 

chapter 3, this rejection is desirable because spurious high frequency energy tends 

to manifest itself as patterned noise in the restored image. 

The fidelity term F 2 is the MSD between the (known) digital image p and the 

hypothetical digit!'ll image p' that would be generated if the input scene were r. 

From lemma 4.1.1 and the c/d/c model equations in chapter 3 the DFT array 

corresponding to p' is 

(..k[vt, v2]H(v1/ N1, v2/N2)) 

= (fi[vt, v2]}[tlt, v2]D(vt/N1, v2/N2)H(t;t/Nt, v2/N2)) 

p[vt, v2]}[v1, v2J(H(vt/N1, v2/N2)D(vd N1, v2/N2) ). (5.3) 

If the restoration filter is chosen to make the fidelity term small, restored images 

are rejected which would otherwise result in images p' which differ significantly 

from p. The same fidelity metric was used, albeit in an ad-hoc fashion, to generate 

figure (4.1[d]). 

Relative to the c/d/c model in figure 3.1 the CLS restoration metric is 

(5.4) 

where a is a positive, user specified real-valued parameter that weights the smooth-
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ness term relative to the fidelity term. The c/d/c model-based CLS restoration 

filter is derived by choosing f to minimize J2. Because the CLS restoration metric 

is not defined in an ensemble averaged sense, the c/d/c model-based CLS filter can 

be designed for a particular digital image p. 

Using Parseval's equation, the expression for J2 can be written equivalently in 

the frequency domain as 

00 00 

J 2 = a L L IC(vt/Nl, v2/N2)R[v1, v2W 
111=-oo 112=-oo 

N1-l N2-l 
+ L L lfi[I1l,v2]- p'[v1,v2W· (5.5) 

111=0 112=0 

In equation (5.5), C denotes the continuous Fourier transform of the high-pass filter 

convolution kernel c and is defined analogously to i{ in equation (3.5). 

The smoothness term can be written in terms of the unknown restoration filter 

coefficients }[v1 , v2]. Doing so yields 

00 00 

S2 = L L IC(vt/Nl, v2/N2)D(vt/Nl, v2/N2)12i}[v!, v2]12lfi[vl, v2]12. (5.6) 
Vt=-oo v2=-oo 

The summations in equation (5.6) can be reduced to a finite sum over N1 x N2 

frequencies by using lemma 4.1.1. That is, equation (5.6) can be re-written as 

N1-l N2-2 
S2 = L L (IC(vt/Nl, v2/N2)D(vt/Nl, v2/N2W)Iih, v2Wifi[vl, v2W· (5.7) 

111=0 112=0 

Substituting equation (5.3) in the fidelity term yields 

N1-l N2-l 
F 2 = L L lfi[vb v2WI1- }[vl, v2J(H(vt/N1, v2/N2)D(vt/N1, v2/N2))1

2
. (5.8) 

111=0 112=0 
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Using equations (5.7) and (5.8), equation (5.5) can be expressed as a quadratic 

polynomial in }[vt, v2] of the form 

where 

N-l N2-l 

J 2 = E E (1-B[IIt,v2]}*[vt,v2] 
111=0 112=0 

(ii*(vt/NI, v2/N2)D*(vtjNt, v2/ N2)) 

a(ib(vtfNt, v2/N2)C(vt!Nt, v2/N2W) 

+ i(ir(vt/Nt, v2/N2)D(vt/Nt, v2/N2) )12
. (5.10) 

As in the case of the c/d/c model-based Wiener filter, the minimization of J2 is 

accomplished by completing the square as 

(5.11) 

where the (periodic) c/d/c model-based CLS restoration filter is 

(5.12) 

and 

(5.13) 

is the residual error independent of }. 2 Each term in the summation in equa-

tion (5.11) is non-negative; this is used to prove the following theorem which estab-

lishes that the CLS filter in equation (5.12) minimizes J2. 
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}c[Vt, v2] is defined by equation (5.12). 

The d/d model-based CLS restoration filter 

(5.14) 

and the cjdjc model-based CLS restoration filter 

I(H(vt/Nt, v2/N2)D(vt/N1, v2/N2)) 12 + a(IC(v1/N1, v2/ N2)D(vt/N1, v2/N2)I2) 

(5.15) 

are not identical. One notable difference is in the presence of the folding operator 

( · ) that is applied to the (aperiodic) Fourier transforms in the numerator and the 

denominator in equation (5.15); there is no frequency-folding in equation (5.14). 

For a particular choice of a and C, the cjdjc model-based CLS filter reduces to 

the d/d model-based CLS filter if and only if the reconstruction function is the sine 

function in the spatial domain. Exact sine reconstruction is impossible; in practice, 

neither physical RTFs nor interpolative RTFs have the ideal low-pass response of 

the sine filter. Therefore, the d/d model-based CLS filter does not have the same 

frequency response as the c/d/c model-based CLS filter. For digital imaging systems 

the cjdjc model-based CLS filter should be used instead of the d/d model-based 

CLS filter. 
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Recall that the derivation of the c/d/c model-based Wiener filter in chapter 4 

assumed that the input scene is stochastic and required two statistical assumptions 

about the scene and the additive random noise. In particular, that derivation re­

quired that the scene's sidebands be uncorrelated and that the random noise be 

scene-independent. The derivation of the CLS restoration filter does not place any 

such restrictions on either the scene model or the noise model. From a theoretical 

standpoint, this makes the c/d/c model-based CLS restoration filter more general 

than the c/d/c model-based Wiener filter. From a practical standpoint, this allows 

the c/d/c model-based CLS filter to be used in a broader class of image restora­

tion applications than the c/d/c model-based Wiener filter including, for example, 

restoration applications where additive random noise is scene-dependent. 

5.2 CLS Filter Computation 

The CLS restoration filter response is defined in terms of the image acquisition PSF 

h, the display reconstruction PSF d, and two user-specified items - the weighting 

parameter a and the high-pass filter c. Of these, h and dare assumed to be known a 

priori; the only "unknowns" in equation (5.15) are a and C. This section discusses 

methods for specifying these two items. 

In the context of c/d/c model-based CLS restoration, c and a are used to min­

imize the enhancement of both random noise and aliased noise. Random noise and 

aliased noise are generally negligible at low frequencies. Therefore, at low frequen-
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cies it is generally safe to allow the CLS restoration filter to invert the blurring 

caused by image acquisition and image reconstruction. At high frequencies both 

random noise and aliased noise may not be negligible. If so, the CLS restoration 

filter must moderate its high-boost action at high frequencies to avoid the type of 

artifacts illustrated in figure (3.8[a]). To achieve such a restoration filter response 

6 must be a high-pass filter. 

There is no universally accepted choice for c (or C) - several high-pass fil-

ters have been advocated for d/d model-based CLS restoration filters [57].3 Two 

common choices for 6 are 

(5.16) 

and 

(5.17) 

In equation (5.17) the integer parameter k is called the order of c; the larger the 

order, the greater is the high-boost action of this high-pass filter. If desired the 

order can be implemented as an interactive procedure, allowing the user to select a 

value that results in the (visually) best restored image. 

Given a choice of c, values for the smoothing parameter a can be computed in 

several different ways [58]. The Chi-Square Choice technique has been successfully 

3 Indeed, as demonstrated by simulation later in this chapter, one attractive feature of the CLS 

restoration technique is the relative insensitivity of the restored image to the choice of c (or C), 

provided a: is computed by the method described in this section. 
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used in the context of d/d model-based CLS restorations, provided the standard 

deviation of the random noise can be accurately estimated [43]. Using this tech-

nique, a value of a is computed by forcing the expected fidelity term F 2 to be equal 

to the variance of the random noise. That is, the equation 

(5.18) 

is solved for the unknown a with 

N1-l N2-l 

F 2(a) = a 2 I: I: liJ[vb v2W 
v1=D v2=D 

2 

I (IJ(vd N1, v2/N2)D(vd N1, v2/N2))1
2 
+ a(IC(vi/NI, v2/N2)D(v /N1, v2/N2)12) 

(5.19) 

Because F 2 is a monotone increasing function of a with 

(5.20) 

where 

(5.21) 

Equation (5.18) can be solved numerically for a. That is, by starting with a = 0 

and incrementing by a fixed value (e.g., 1.0), two values of a, say a 1 and a 2 , can 

be found such that 

(5.22) 

At this point, bi-section can be applied to find a value of a for which the relative 

error IF2 ( a)- a~ I/ a~ is arbitrarily small. The number of iterations required for the 

-~- ~- -~-~--~~----------------------------
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bi-section algorithm to converge is dependent on F, the choice of a 1 , a 2 , and the 

desired accuracy. The typical number of iterations ranges from 10 to 50 for relative 

errors on the order of 10-6 • 

An accurate (numerical) solution for a reflects a balance between too much high­

frequency noise and too little sharpening in the reconstructed image. That is, for 

a given c, if the value of a is too small, the CLS restoration filter will amplify high 

frequencies more than desired, possibly amplifying both random and aliased noise 

as well. In contrast, if the value of a is too large the CLS restoration filter will 

over-correct for noise by making the values of the filter response at higher spatial 

frequencies lower than actually required, thereby decreasing the high-boost effect 

of the restoration filter. 

In some applications, such as "smart" digital cameras that employ relatively 

simple in-line digital filtering techniques, it is not possible to recompute the CLS 

restoration filter values for different scenes. If so, then the CLS restoration filter 

has to be designed for an ensemble of scenes. This is accomplished by replacing 

lz3[v1, v2W with by ~p[111, v2] in equation (5.19) to yield a value of a that is optimum 

with respect to an ensemble of scenes. Using <i>p[v1, v2] in place of IP.[vb v2W requires 

that ensemble statistics of the digital image <i>p[v1, 112] be estimated prior to solving 

equation (5.18). Estimating <i>P[v1, v2] is, in theory, easier than estimating <i>s[vll 112] 

because there is no need to account for image acquisition blur and noise. That is, if 

a set of representative digital images are available, then <i>p[v1, v2] can be estimated 
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as the average of their energy spectra. 

In the ideal case where there is no random noise (i.e. ere = 0) the optimum value 

of a is 0. If so, the c/d/c model-based CLS restoration filter reduces to 

(5.23) 

This dissertation takes equation (5.23) as the definition of the c/d/c model-based 

inverse filter. 4 To do so is intuitive because equation (5.23) is the limiting case of 

the c/d/c model-based CLS restoration filter as the SNR approaches oo, just as the 

d/d model-based inverse filter, equation (2.11), is the SNR ---+ oo limiting case of 

the d/d model-based CLS restoration filter. 

5.3 Simulated CLS Restorations 

To demonstrate the effectiveness of the c/d/c model-based CLS restoration filter, 

simulated c/d/c model-based CLS restorations are presented in this section. These 

simulations demonstrate that the c/d/c model-based CLS filter can restore effec-

tively across a range of image acquisition blur, random noise and aliased noise. The 

simulations also demonstrate that CLS restorations are relatively insensitive to the 

choice of the high-pass filter 6 when a is computed using the technique described 

in the previous section. 

In the first simulation, the results of which are illustrated in figure (5.1), the 

4There is no existing definition of the c/d/c model-based inverse restoration filter in the 

literature. 
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processing used to generate the three images in figure (3.5) is repeated with the 

cjdjc model-based CLS restoration filter. The format of figure (5.1) is identical 

to that of figure (3.5); the top-left image is the original scene and the remaining 

three are restored images using PCC reconstruction. To generate the CLS filter in 

each case, the high-pass filter defined in equation (5.17) is used with k = 2. The 

Chi-Square Choice method is used to compute a. 

The SNR for this simulation is 50 (o-e = 0.8615); this SNR value denotes a sig-

nificant amount of random noise. Pairwise comparison of the images in figures (3.5) 

and (5.1) makes the image quality improvement due to the use of the CLS filter 

obvious; each of the restored images in figure (5.1) is sharper than the correspond-

ing unrestored image in figure (3.5). Some random and aliased noise enhancement 

is visible in all three restored images; unlike the inverse filter restorations in chap-

ter 2, however, this noise enhancement is not severe enough to mask image detail. 

The values of a for the a-= 0.75, a-= 0.5 and a-= 0.25 cases are 1.1525 x 10-5
, 

7.6293 x 10-6 and 1.1583 x 10-7 respectively. 

To test the CLS restoration filter under very low SNR conditions, the previous 

simulation was repeated with a SNR of 10 (o-e = 4.3075). lnspite of the 5-fold de-

crease in the SNR, the effects of random noise were not apparent in the reconstructed 

images; they are virtually identical to the corresponding images in figure (3.5) and 

therefore not shown. The CLS restorations for the SNR = 10 case are illustrated 
' 

in figure (5.2[b}-[d]); they are not identical to the restorations illustrated in fig-
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Figure 5.1: C/d/c model-based CLS restorations with SNR = 50. 

·-·~ --·-·-----------------------
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ure (5.1). In particular, each of the restorations for the SNR = 50 case is sharper 

than the corresponding restoration for the SNR = 10 case. This observation is 

consistent with the expectation that the c/d/c model-based CLS filter moderates 

its high-boost response in accordance with the amount of additive random noise 

present in the image. 

Figure (5.3) illustrates 1-D profiles of the CLS filter's frequency response for the 

two different SNRs. 5 The solid and dashed curves correspond to the SNR = 50 

and the SNR = 10 case, respectively. In each of t4e three OTF cases, the two 

CLS filter responses are virtually identical at low frequencies; at high frequencies, 

however, the restoration filter response for the SNR = 10 case is smaller than that 

for the SNR = 50 case. This moderation is explained by the larger a values for the 

SNR = 10 case compared to the SNR = 50 case; for the u = 0. 75, u = 0.5 and 

u = 0.25 cases the corresponding a values for the SNR = 10 case are 6.1035 x 10-5 , 

1.2207 x 10-4 and 2.4414 x 10-4 respectively. 

To demonstrate that the c/d/c model-based CLS filter modifies its high-boost 

response in response to aliased noise in the same manner as it does for random noise, 

another simulation is presented. In this simulation, the aerial scene is blurred with 

the Gaussian OTF defined in equation (3.15), then sampled onto different-sized 

pixel grids. PCC reconstruction is used to generate the reconstructed output im­

ages. Figure (5.4) is a 4-panel composite illustrating the unrestored output images. 

5 As in figure (2.8), the restoration filter's discrete frequency response is expressed in db and is 

plotted as a continuous curve. 
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Figure 5.2: C/d/c model-based CLS restorations with SNR = 10. 



c 5r -

103 

b 5 

~ o I _ 
~ ----------------

C1l -5 ·-
ell 

8.-10 ·-
ell 

~ 
~-15 ·-
0 ·:g 
Ci-20·-
~ 
~-25·-

-30 ·-

- SNR=50 

--- SNR=lO 

-.3 5 L__ _ ___J__ __ L__ _ ___j__ __ L__ _ _J 

0.0 0.2 0.4 

v!N (cycles/pixel) 

ld 5 ·-

,.-... 
:@ 
'-" 

0 I ----------- I~ -----
~ -5 ·­
§ 
~-10·-

~ 
.§-15 ·-

~ 
B-20 

~ -25 ·-

-.30 ·-

-------

SNR=50 

SNR=lO 

-35L----'---~--~----~---' 

0.0 0.2 0.4 
v/N (cycles/pixel) 

C1l -5 ·-
ell 
~ 

&-10 ·-ell 

~ 
~ -15 ·­.Sl 
~ 
Ci -20 ·­t; 
C1l 

~ -25 ·-

-30 ·-

--

---

' ' 

SNR=50 

SNR=lO 

' ' ' \ 

- .3 5 L__ _ __!_ _ ___l __ ...J...._ _ __J__ 

0.0 0.2 0.4 
v/N (cycles/pixel) 

Figure 5.3: C/d/c model-based CLS filter responses for different SNRs. 

. ..__ 

-



104 

Figure (5.4[a]) is the original 512 X 512 aerial scene; figures (5.4[b]-[d]) are the un-

restored outputs obtained by using a 256 x 256, a 128 x 128 and a 64 x 64 pixel grid 

respectively. In figure (5.4[b]) the OTF scale parameter is u = 0.25 (cycles/pixel); 

in figures (5.4[c]) and (5.4[d]) the parameter value is 0.5 and 1.0 respectively. Note 

that these values of u generate identical pre-sampled images g = s@ h. Random 

noise with O"e = 0.0236 is added to each of the three sampled images; this results in 

an SNR of 2000 in each case.6 Consistent with the characterization of aliasing as 

scene-dependent noise, the unrestored output images exhibit artifacts; the artifact-

ing become more severe as the sampling density is decreased. This artifacting can 

be quantified by defining the aliased noise variance as 

N1-1 N2-1 

u~ = 2:: 2:: iah, v2W (5.24) 
!IJ=1 112=1 

Using this definition, figure (5.4[b]), which exhibits the least amount of artifacting, 

corresponds to the lowest u; = 0.0208 while figure (5.4[d]), which exhibits the 

greatest amount of artifacting, corresponds to the highest u; = 0.1121. 

Figure (5.5) illustrates the c/d/c model-based CLS restorations of the corre-

sponding images in figure (5.4). To generate the CLS restoration filter the high-

pass filter defined in equation (5.18) is used with k = 2. The Chi-Square Choice 

method is used to compute a. For the case where the level of aliased noise is the 

6 A very high SNR is purposely chosen to minimize the effects of random noise since the objective 

of this simulation is to demonstrate the ability of the c/d/c model-based CLS restoration filter to 

account for aliased noise. 
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Figure 5.4: PCC reconstruction of aerial scene with different sampling grids. 
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lowest, figure (5.5[b]), the CLS restoration is much sharper that the corresponding 

unrestored image, figure (5.4[b]), and virtually indistinguishable from the original. 

In this case, the CLS filter removes virtually all the blurring caused by the OTF 

and the RTF. As the level of aliased noise increases, however, to avoid enhancing 

aliased noise the CLS filter does not sharpen as much. This is most easily seen in 

figure (5.6) that illustrates the different CLS filter responses for the three different 

sampling grids. 

In all the simulated CLS restorations presented so far, equation (5.17) with k = 2 

has been used for the high-pass filter C to synthesize the CLS filter. In the next 

simulation three different user-defined high-pass filters are used to restore the same 

digital image of the aerial scene with the c/d/c model-based CLS restoration filter. 

Figure (5. 7) is a 4-panel composite illustrating the scene and the three restored 

images. The three CLS restoration filters are synthesized by using equation (5.17) 

for C(w1,w2 ) with k = 2,4 and 6. Figure (5.7[a]) is the original aerial scene and the 

remaining three restored images ([b],[c] and [d]) are CLS restorations with k = 2,4 

and 6. Figure (5.8[a]) illustrates the high-pass filter responses for the three values 

of k. In all three cases a Gaussian OTF with O" = 0.5 is used, the SNR is 50, and 

PCC reconstruction is used. As evident from figures ( 5. 7[b ]-[ d]), the three restored 

images are visually similar although a different high-pass filter is used in each case 

to synthesize the CLS filter. The a values corresponding to the k = 2, 4 and 6 

are 7.6293 x 10-6 , 3.7252 x 10-9 and 9.0943 x 10-13
, respectively. The virtually 
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Figure 5.5: C/d/c model-based CLS restorations with different sampling grids. 



108 

b :,o - /'\ ,..-.._ 

~ 20 - // '-' 

a.l 
en 
1::: 
0 10-0.. en 
a.l 
~ ~~ 

1::: 0 --------0 

'! 
.9 
~-10-
~ 

-20 -

-30-
0.0 0.2 0.4 

v/N (cycles/pixel) 

c 30- d 30 -

,..-.._ ,..-.._ 

~ 20- :§ 20 
'-' '-' 

a.l a.l 
en en 

§ 10 1::: I 0-0 
0.. 

--·-~',"' 
0.. 

en en 

~ ~ 
1::: 0 1::: 0 -------0 0 

...._____ __ ' 
•;::J ·~ c;S ..... ..... 

~-10-
0 
~ -10 -

a.l 
~ ~ 

-20- -20 -

-30- -.30 -
0.0 0.2 0.4 0.0 0.2 0.4 

v/N (cycles/pixel) v/N (cycles/pixel) 

Figure 5.6: C/d/c model-based CLS filter responses with different sampling grids. 



109 

Figure 5.7: C/d/c model-based CLS restorations corresponding to different user­

supplied high-pass filters. 
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Figure 5.8: C/d/c model-based CLS filter responses with different user-supplied 

high-pass filters. 

identical restorations are explained by these a values that decrease in magnitude 

as k increases. That is, as the high-pass response of the filter 6 is increased, a 

becomes smaller to compensate. Figure (5.8[b]) illustrates the three CLS filter 

responses corresponding to k = 2, 4 and 6. This simulation demonstrates how the 

Chi-Square Choice method adjusts a correctly in an attempt to maintain the fidelity 

of the restored image when different user-supplied high-pass filters are used. 

The simulations presented in this section demonstrate that the c/d/c model-

based CLS restoration filter is effective across a range of imaging conditions. The 

c/d/c model-based CLS filter is able to de-blur image acquisition blur and image 

reconstruction blur effectively when random and aliased noise are negligible. When 

random noise and/or aliased noise are not negligible the CLS filter correctly mod-
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erates its high-boost response to minimize noise enhancement. Moreover, the CLS 

filter has a built-in "self-correcting" mechanism that makes it relatively insensitive 

(within limits) to user-input. Chapter 6 presents a technique that allows the c/d/c 

model-based restoration filter to be implemented as a small-kernel convolution in 

the spatial domain. Chapter 7 presents c/d/c model-based CLS restorations of 

thermal images using the small-kernel CLS restoration filter. 



CHAPTER VI 

SPATIAL DOMAIN CLS RESTORATION 

Because the cjdjc model-based CLS restoration filter is derived in the frequency 

domain, it is natural to implement this filter in the frequency domain as well. Al­

though the frequency domain provides valuable insight into the filter design process, 

for some applications it is not the correct dom1tin for implementation. Recent re­

search by Reichenbach et al. [47] has demonstrated that the cjdjc model-based 

Wiener filter can be implemented as a small-kernel convolution in the spatial do­

main. This chapter builds on their research to show that the cjdjc model-based 

CLS restoration filter presented in chapter 5 can be implemented effectively and 

efficiently in a similar fashion. 

6.1 Spatial Domain Restoration 

As demonstrated in chapter 5, the cjdjc model-based CLS restoration filter is de­

signed in the frequency domain thereby suggesting the frequency domain as a natu­

ral domain for the implementation of the filter. A frequency domain implementation 

of the CLS restoration filter, equation (5.16), using equation (3.11) requires that the 

N 1 x N2 DFT array p be computed. Furthermore, the restored image q must be 

recovered from its N1 x N2 DFT array q by computing an inverse discrete Fourier 

112 
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transform. Even if FFTs are used to compute the forward and inverse DFT arrays, 

a frequency domain implementation of the CLS restoration filter requires significant 

processing power and computer memory to store the complex-valued DFT coeffi-

cients. For those applications that are subject to stringent timing constraints and 

cannot afford expensive hardware, a frequency domain implementation of the c/d/c 

model-based CLS filter is of limited practical utility. 

As an alternative to a frequency domain implementation, the cjdjc model-based 

CLS restoration filter can be implemented in the spatial domain by convolution. 

That is, the restored image q = p@ f can be computed as 

(6.1) 

If the unconstrained N 1 x N2 kernel array f is not "small", then equation (6.1) 

requires Nf N? (real) multiplications and as many additions. 

If the periodic CLS restoration kernel is small- that is, if it has only a few non-

zero values per period- the number of multiplications and additions can be reduced 

significantly. Convolving a N1 X N2 digital image with a small [(1 x [(2 CLS 

restoration kernel requires J(1N1K2N2 multiplications and additions; if K1 ~ N1 

and K 2 ~ N2 then this complexity reduction is significant. If, for example, a small 

5 x 5 CLS restoration kernel is used, a spatial domain implementation is much 

more efficient than a frequency domain implementation. Moreover, a spatial domain 

implementation that uses a small CLS restoration kernel is also amenable to direct 

hardware implementation. 
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The small-kernel approach is based on the observation that, in general, each 

restored image pixel value is principally determined by the values of pixels in a 

relatively small neighborhood of the corresponding image pixel; the greater the dis­

tance of an image pixel from the pixel being restored, the smaller its contribution 

to the restored value. Thus, it is reasonable to expect that if only the most sig­

nificant values of the restoration filter are used in the convolution (by setting the 

insignificant restoration kernel values to zero), the quality of the restored image 

should not be significantly affected. If the adverse effects of using a small-kernel are 

indeed negligible, then using a small-kernel is the most efficient way to implement 

the c/d/c model-based CLS restoration filter. 

One method of generating a small periodic restoration kernel is to truncate the 

unconstrained kernels by using a periodic window function centered at [0, 0]. If 

this window function is a periodic 2-D rectangle function then the restoration filter 

values are left unchanged within the window and set to zero outside (modulo the 

period). Because the sharp cut-off of such a window introduces undesirable ringing 

in the restoration filter's transfer function }[vb v2], alternative windowing functions 

have been used [48]-[50]. Other related techniques have also been advocated in the 

literature [51][52]. 

All these windowing techniques are ad hoc in the sense that the restoration 

filter is designed, in the frequency domain, under the assumption that it will not 

be modified. There is no coordination between the restoration filter design process 
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and the filter implementation process. A more rigorous technique is required which 

will account for the processing constraints in the design of the restoration kernel to 

avoid the problem of designing one filter and applying a different one. In section 6.2, 

such a rigorous technique is presented in the context of the c/d/c model-based CLS 

filter. This technique was originally proposed by Reichenbach et al. [4 7] in the 

context of the c/d/c model-based Wiener filter. 

6.2 Small CLS Restoration Kernels 

A small c/d/c model-based CLS restoration kernel is defined by specifying a non-

empty spatial constraint set e of pixels for which the restoration kernel element can 

be non-zero. All elements that are not in this set are set to zero. Therefore, in the 

spatial domain the (periodic) CLS restoration kernel is constrained by the property 

(6.2) 

In practice, one virtually always chooses the constraint set e to produce an origin-

centered (2t1 + 1) x (2t2 + 1) CLS restoration kernel with typical values of t1, t 2 in 

the range 1, 2, 3.1 The resultant small-kernel CLS restoration kernel is applied as 

The spatial constraint set e is application-dependent and represents a trade-off 

between restoration accuracy (since the constrained kernel does not have the same 

1The technique presented in this section does not require that the spatial constraint set have 

this special structure; the technique is valid for any constraint set. 
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frequency response as the unconstrained kernel) and computational complexity. To 

minimize the effect of the spatial constraint on the quality of the restored image, 

() should include all the significant elements of the unconstrained CLS restoration 

kernel f. As the cardinality of the constraint set j(Jj is increased, however, so does 

the amount of computation required to implement the restoration filter. There is 

some evidence suggesting that for most cases restoration kernels larger than 7 x 7 

do not significantly improve the quality of the restored image [47]. 

The DFT coefficients of the spatially constrained CLS restoration filter are de-

fined as 

(6.4) 

where Wt' w2 are the complex-valued Nt X Nt, N2 X N2 Fourier matrices defined 

as 

(6.5) 

To compute the non-zero c/d/c model-based CLS restoration kernel elements, 

equation (5.9) is re-written in terms of the constrained kernel. Doing so yields 



J
2 

= :~: E: (ifi[vt, v2W 

- B[v1, v2] (N IN L L J:[nt, n2]Wt[nt, v1]W;[n2, v2J) 
. 1 2 [n1 ,n2]EII 

-B*[vt,v2J(N
1
N LL fs[n1,n2]Wl[nl,vl]W2[n2,v2l) 

1 2 [n1 ,n2]EII 
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+ A[vb v2JIN ~ L L fs[nl, n2JW1[n1, v1JW2[n2, v2]1
2

) 
1 2 [n1 ,n2]EO 

where 

B[v1, v2] = IP[vl, v2W(if*(vt/N1, v2/N2)D*(vt/N1, v2/N2)) 

A[vt, v2] = lfi[vl, v2W( a(ib(vt/Nl, v2/N2)C(vdN1, v2/N2)1
2
) 

(6.6) 

+ 1\ii(vtfNl, v2/N2)D(vt/N1, v2/N2) )n. (6.7) 

Equation (6.6) can be written as 

N1-lN2-l 
J 2 = E E ifi[vl, v2W 

1 N1-l N2-l , 
- N N LL J;[n1,n2] L L B[vl,v2]"Wt[n1,v1]W;[n2,v2] 

1 2 [n1,n2]EII 111=0 112=0 
1 N1-l N2-l , 

- N N LL !s[n1,n2J L L B*[vl,v2]Wt[nl,v1]W2[n2,v2] 
1 2 [n1,n2]EII 111=0 112=0 

+ N2
1
N2 LL LL J;[n1,n2]f;[n~,n~J 

1 2 [n1 ,n2]EII [n~ ,n~]EO 
N1-l N2-l 
L L A[vt, v2]W1[n1- n~, v1]W2[n2- n~, v2] 

111=0 n2=0 

which simplifies to 
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N1-l N2-l 1 
E E I.P[v1,v2W- N N EE J;[n1,n2]b[nbn2] 

VJ=O v2=0 1 2 [n1,n2]EO 

- N ~ EE fs[n1,n2]b*[n1,n2] 
1 2 [n1 ,n2]EO 

+ N2
1
N 2 EE EE J;[nbn2]J;[n~,n~]a[nl- n~,n2- n~] 

1 2 [n1 ,n2]Eii [n\ ,n~]E£1 

(6.8) 

where a, bare the N1 X N2 inverse DFT arrays corresponding to A, B defined in 

equation (6.7). 

Minimizing J2 with respect to the elements of the constrained restoration kernel 

yields [47] 

(6.9) 

Equation (6.9) is a linear system of equations with 101 unknowns (the non-zero 

values of the CLS restoration kernel) and 101 equations. Solving this system of 

linear equations yields the spatially constrained CLS kernel. That is, this equation 

can be written in matrix form as 

Aofs = bo (6.10) 

where Ao is the 101 X 101 submatrix formed by including only those rows and 

columns of the N1 x N2 array a that appear in the constraint set. Both fs and b0 

are 101 x 1 vectors; the elements of fs are the (unknown) small CLS kernel elements 

in lexicographic order and bo contains the elements of the array b that are in the 

constraint set 0, in the same lexicographic order. 
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In theory, the system of linear equations defined in equation (6.9) will al­

ways have unique solutions for the IBI constrained CLS kernel elements as long 

as A[v1, v2] =J. 0 for all [v1, v2].2 Assuming that a unique solution _for equation (6.9) 

exists, if JBI = N1N2 then the N1 x N2 CLS restoration kernel obtained by solving 

equation (6.10) is identical to the N1 x N2 array obtained by computing the in­

verse DFT of Jc defined in theorem 5.1.1. That is, if no constraints are imposed on 

the CLS restoration kernel support, then a spatial domain implementation and a 

frequency domain implementation of the c/d/c model-based CLS restoration filter 

yield identical results. This limiting property is of little practical interest but can 

serve as a consistency check for an implementation of the small-kernel generation 

technique. 

6.3 Simulated Small-Kernel CLS Restorations 

In this section simulation is used to demonstrate that the small-kernel CLS restora­

tion filter produces restorations that are virtually indistinguishable from those pro­

duced by the spatially unconstrained CLS filter. In figure ( 6.1) the spatially uncon­

strained CLS restoration in figure (5.1[c]) is compared to restorations obtained by 

using a 7 x 7, a 5 x 5 and a 3 x 3 small CLS restoration kernel. Figure (6.1[a]) 

is the spatially unconstrained restoration (identical to figure 5.1[c]); figures (6.1[b]-

2 A mathematical justification for this statement in presented in the context of the c/ d/ c model­

based Wiener filter in [47]. The justification in the context of the c/d/c model-based CLS restora­

tion is the same and, therefore, not repeated here. 

·-···· -----------------------------
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[d]), correspond to the 7 x 7, 5 x 5 and 3 x 3 small-kernel CLS restorations 

respectively. The three small restoration kernels are:3 

-0.0015 

+0.0053 

-0.0012 

-0.0010 

-0.0012 

+0.0053 

-0.0015 

+0.0158 -0.4068 +0.0158 

-0.4068 +2.5642 -0.4068 

+0.0158 -0.4068 +0.0158 

-0.0092 +0.0158 +0.0785 +0.0158 -0.0092 

+0.0158 -0.0679 -0.3307 -0.0679 +0.0158 

+0.0785 -0.3307 +1.9464 -0.3307 +0.0785 

+0.0158 -0.0679 -0.3307 -0.0679 +0.0158 

-0.0092 +0.0158 +0.0785 +0.0158 -0.0092 

+0.0053 -0.0012 -0.0010 -0.0012 +0.0053 

-0.0136 +0.0232 +0.0893 +0.0232 -0.0136 

+0.0232 -0.0012 -0.3567 -0.0012 +0.0232 

+0.0893 -0.3567 +2.0958 -0.3567 +0.0893 

+0.0232 -0.0012 -0.3567 -0.0012 +0.0232 

-0.0136 +0.0232 +0.0893 +0.0232 -0.0136 

+0.0053 -0.0012 -0.0010 -0.0012 +0.0053 

The 7 x 7 center of the unconstrained kernel is 

-0.0015 

+0.0053 

-0.0012 

-0.0010 

-0.0012 

+0.0053 

-0.0015 

3The common multiplicative constant N1N2/w where w is the sum of the kernel elements is 

not shown. 
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-0.0016 +0.0055 -0.0013 -0.0012 -0.0013 +0.0055 -0.0016 

+0.0055 -0.0140 +0.0246 +0.0911 +0.0246 -0.0140 +0.0055 

-0.0013 +0.0246 -0.0019 -0.3712 -0.0019 +0.0246 -0.0013 

-0.0012 +0.0911 -0.3712 +2.9158 -0.3712 +0.0911 -0.0012 

-0.0013 +0.0246 -0.0019 -0.3712 -0.0019 +0.0246 -0.0013 

+0.0055 -0.0140 +0.0246 +0.0911 +0.0246 -0.0140 +0.0055 

-0.0016 +0.0055 -0.0013 -0.0012 -0.0013 +0.0055 -0.0016 

The small CLS restoration kernel values are different from the corresponding un-

constrained kernel values. In general, the difference between the small kernel values 

and the unconstrained values diminishes as the kernel size is increased. 

By comparing the small-kernel restorations with the spatially unconstrained 

restoration in figure (6.1) it becomes clear that using small CLS restoration kernels 

does not significantly change the appearance of the restored image. The MSD 

between the unconstrained CLS kernel restoration and each of the small CLS kernel 

restorations is 1.00, 3.38 and 5.43 for the 7 x 7, the 5 x 5 and the 3 x 3 kernel 

respectively. The MSD are small compared to the contrast of the original scene 

and explain why no significant differences can be seen in the images presented in 

figure ( 6.1). Consistent with intuition and the restoration filter kernels presented, 

the MSD decreases as the kernel size is increased. 

Three difference images presented are presented in figure (6.2). These zero-mean 

difference images have had their mean value shifted to 128.0 and have been iden-
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Figure 6.1: Spatially unconstrained and three small-kernel CLS restorations. 
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Figure 6.2: Difference images for spatially unconstrained and small-kernel CLS 

restorations. 
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tically contrast-stretched. These images demonstrate that the differences between 

the unconstrained CLS restoration and the small-kernel CLS restorations are not 

random. The differences in these images are mainly near the edges and other areas 

of fine spatial detail because constraining the size of the restoration filter affects 

the filter's ability to boost high frequencies. As demonstrated by the images in 

figure (6.1), however, the differences are small and for a 7 x 7 CLS restoration 

filter kernel, figure (6.2[b]), essentially negligible. 

This simulation demonstrates that implementation efficiency gained from using 

a small-kernel CLS restoration filter does not necessarily come at the expense of 

restoration quality. This observation is consistent with that made by Reichenbach 

et al. [47] who concluded that using a small restoration Wiener restoration kernel as 

opposed to the unconstrained optimal filter does not adversely affect the accuracy 

of the Wiener restoration technique. 

The ability to apply the c/d/c model-based CLS restoration filter as a small 

convolution kernel allows it to be used in image restoration applications that are 

subject to stringent timing constraints but cannot use expensive hardware to apply 

the restoration filter in the frequency domain. Additionally, as demonstrated in 

chapter 8, the small CLS restoration kernel can also be applied adaptively because 

convolution with a small kernel is a local operation. 



CHAPTER VII 

CLS RESTORATION OF FORWARD-LOOKING INFRARED 

IMAGERY 

This chapter presents an application of the c/d/c model-based CLS restoration 

filter described in chapter 5 for improving the performance of FLIR-based imaging 

systems. In FLIR (forward-looking infrared) systems, performance usually refers to 

target acquisition, including detection, classification, recognition, and identification 

either by a human observer or an automatic target recognizer (ATR). Although per­

formance measures for ATRs are not very well-defined, the distance (range) at which 

a human observer or ATR can reliably identify a target is generally accepted as a 

reliable measure of ATR performance. Digital image restoration has the potential 

to significantly improve the effective range (and hence performance) in FLIR-based 

imaging systems by improving the quality of the digital image presented to the 

observer or the ATR. In this chapter, it is demonstrated that a small-kernel c/d/c 

model-based CLS restoration filter can be used to improve the effective range in 

FLIR imagery. 
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7.1 CLS Restoration of FLIR Imagery 

Because of timing constraints, most present day ATRs do not actually produce 

a reconstructed image from the digital image. Without reconstruction, however, 

MSD-based metrics cannot be used to quantify the end-to-end performance of the 

imaging system. Due to the lack of appropriate ATR performance metrics, recon-

struction is used in this chapter to generate an output image; doing so allows input-

output comparison in a MSD sense that in turn allows effective range reduction to 

be quantified. In this way this chapter demonstrates that a c/d/c model-based CLS 

restoration can be used to achieve effective range reduction. That is, the study uses 

digital images of a target acquired at different ranges and attempts to produce an 

estimate of the original closest range image. 

The imaging system is a staring-array based FLIR system; the focal plane array 

(FPA) consists of 256 x 320 photo-detectors spaced .6. = 31p;m apart in both the 

horizontal and vertical directions. The OTF if is modeled as the the cascaded 

frequency response of the optics iio and the detector ifd responses as1 

(7.1) 

The optical system OTF is 

A - { [cos-l(:a)- :avl- (:ar] exp( -o.s(:J
2

) 
Ho(w)-

0 

w ~ w0 

(7.2) 

w > w0 

1 Although it is potentially significant, the atmospheric OTF component is ignored. 
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where w 2 = w~ + w~ is the radial frequency variable. The normalized cut-off fre-

quency w0 is given by 

A~ 
wo = )..F (7.3) 

where F is the focal length, A is the aperture diameter and ).. is the mean wavelength. 

For this system, F = lOOmm, A = 43mm and ).. = 5.5p,m. From these values, 

w0 = 2.45 cycles/pixel. The Gaussian OTF component, with a scale parameter wb, 

accounts for optical defocus. For this system Wb = 0.281 cycles/pixel. This Wb value 

was estimated by using the PSF estimation method described in [73]. 

The detector response in the spatial domain is modeled as a simple square pulse 

to account for (ideal) spatial integration. That is, 

(7.4) 

where sine( x) = sin( 1rx) / ( 1rx) and P is the size of the detector relative to the inter-

sample distance (samples-per-dwell parameter). For the system described P = 1. 

The SNR for this system is estimated to be 22.5. 

Figure (7.1) illustrates an actual image sequence acquired by this FLIR-based 

imaging system.2 The target, an automobile, was imaged at lOOm interval ranges 

2The images were acquired at the U.S. Army's Electro-Optics and Night-Vision Laboratories in 

Fort Belvoir, Virginia for the purpose of testing the actual performance of the c/d/c model-based 

Wiener filter as a function of range. During image acquisition, every effort was made to keep all 

variables other than range, fixed. The results of the Wiener filter-based ,study are available in 

[92]. This simulation duplicates the processing described in that report except for the use of a 

small-kernel CLS restoration filter in place of a small-kernel Wiener filter. 
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from lOOm to 800m. As expected, with increasing range the target becomes more 

difficult to detect because spatial resolution decreases with range. The lOOm image 

is the reference image; the longer range images are processed and then compared to 

this image. 

For the purpose of digital processing, the entire image at each range was not 

selected; instead, a sub-image containing the target (automobile) was used. To 

facilitate the use of a FFT routine, the dimensions of all the sub-images are powers 

to 2; the 200m and 300m sub-images are 128 X 128, the 400m through 700m sub­

images are 64 X 64 and the 800m sub-images is 32 x 32. Figure (7.2) illustrates the 

sub-images. Except for the lOOm (reference) image, the others have been enlarged 

by using PCC reconstruction. No restoration filtering has been performed. Because 

of inevitable changes in the horizontal and vertical positions of the camera relative to 

the initial (lOOm) image, the translation and scale are adjusted after reconstruction 

to achieve the highest correlation between the result image and the reference image. 

Due to slight changes in the camera's alignment, there is a bright (sun glint) spot in 

the 400m, 500m and 600m images; this spot is not present in the reference (lOOm) 

image. The presence of this spot is unfortunate; its effect on the range-reduction 

ability of the CLS restoration filter is discussed later. 

Figure (7.3) is analogous to figure (7.2) except for the use of a 5 X 5 CLS restora­

tion filter prior to reconstruction.3 All other processing, including the final trans-

3 The reference (lOOm) image is not filtered. 
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Figure 7.1: Unprocessed actual images at distances of lOOm to 800m at lOOm 

intervals. 
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Figure 7.2: lOOm reference image and PCC reconstructions of 200m to 800m images. 
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Figure 7.3: lOOm reference image and CLS restorations of 200m to 800m images. 
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lation and scaling, is identical to that used to generate the images in figure (7.2). 

To generate the small-kernel CLS filter for each image, the high-pass filter defined 

in equation (5.17) is used with k = 2. The parameter a is computed by using the 

Chi-Square Choice method. 

By comparing figures (7.3) and (7.2), it is clear the filtered images are sharper 

than the corresponding unfiltered ones. The restored images are similar in quality 

to the ones obtained by a small-kernel (5 x 5) Wiener restoration filter [92]. The 

sharpening is more effective for the smaller ranges and degrades with increasing 

range; at the larger ranges aliasing noise is significant and the cjdjc model-based 

CLS restoration filter does not sharpen much to avoid aliased noise enhancement. 

Relative to the lOOm image the bright glare spot in the 400m, 500m and 600m 

images is an unwanted scene feature that influences the restoration filter via the 

computation of a. Because of this, the quality of the 400m, 500m and 600m restored 

images is degraded. 

The results presented m this chapter demonstrate that a small-kernel CLS 

restoration filter can be used to restore FLIR images efficiently and effectively. The 

restorations produced by the CLS filter are similar in quality to those produced by 

the Wiener filter [92]. Unlike the Wiener filter, however, the CLS filter coefficients 

can be computed much more easily and efficiently; this makes the CLS filter a better 

choice for FLIR range-reduction applications. 



CHAPTER VIII 

CLS RESTORATION OF RADIATION MEASUREMENTS FROM A 

SATELLITE-BORNE SCANNING RADIOMETER 

This chapter presents a remote-sensing application of the c/d/c model-based 

CLS restoration technique presented in chapter 5.1 The imaging instrument in this 

application is the satellite-borne scanning radiometer used by NASA for the Earth 

Radiation Budget Experiment (ERBE). The ERBE instrument measures outgoing 

radiation from the Earth and its atmosphere; therefore the radiometer does not 

produce visual images in a traditional sense of the term. The scanning action of 

the radiometer combined with the forward motion of the satellite does, however, 

produce a 2-D array of radiance measurements that can be conceptualized as a 

digital image of the earth's radiation field. This conceptualization facilitates the 

application of digital image processing techniques, including restoration. 

When ERBE measurements are reconstructed by interpolation, the reconstructed 

field is not an accurate estimate of the original radiation field; small-scale features 

present in the original field are degraded by blurring, random noise and sampling 

artifacts. This chapter demonstrates the use of a CLS restoration technique for 

filtering the discrete measurements to undo, to the extent possible, these degrada-

1The material presented in this chapter will appear as a journal article in [93]. 
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tions. CLS restoration is more difficult in this application, however, because the 

ERBE geometry makes the image acquisition process shift-variant. Therefore, the 

cjdjc model presented in chapter 3 and the associated CLS filter have to be used 

in a special way to account for shift-variance. 

8.1 ERBE System Model 

The end-to-end process of making measurements of the earth's radiation field and 

interpolating (reconstructing) the measurements to obtain an estimate of this field 

can be described by a c/d/c model that is similar, in most respects, to the one 

presented in chapter 3. The one significant difference between that model and the 

ERBE system model is in the image acquisition module - in the ERBE model 

the imaging geometry makes the image acquisition process shift-variant. That 

is, as explained in the following discussion, it is impossible to find an underlying 

coordinate system for the ERBE system model in which the instrument's PSF does 

not change with viewing location. 

8.1.1 ERBE Coordinate System 

Two choices for the ERBE coordinate system are illustrated in figure (8.1). In 

the scene-based geocentric coordinate system the point A on the earth's surface is 

described by a pair of angles (ta,/c) that describe the point's position relative to 

the center of the earth. As an alternative, the point A can also be unambiguously 



135 

specified in an instrument-based coordinate system by a pair of angles ( Da, De) that 

describe the point's position relative to the current satellite position. 

In a traditional c/d/c model-based application such as the one described in 

chapter 7, the scene-based coordinate system and the instrument-based coordinate 

system are assumed to be linearly related; this makes choosing one of them as the 

underlying coordinate system for the c/d/c model largely a matter of convenience 

and convention. Unlike traditional c/d/c model-based imaging applications, how­

ever, the scene-based (Ia, "Ye) coordinate system and the instrument-based ( Da, De) 

coordinate system are not linearly related [96]. Consequently, uniform sampling in 

one coordinate system does not imply uniform sampling in the other. In particular, 

in the cross-track (scan) direction samples are uniformly spaced in the instrument­

based coordinate system; in the along-track (flight) direction the samples are uni­

formly spaced in the geocentric coordinate system. Therefore, uniform sampling 

can be achieved in the ERBE c/d/c model if the underlying coordinate system is 

one in which along-track distances are measured in geocentric angular dimensions 

'/'e and cross-track distances are measured in instrument-based angular dimensions 

De. 

8.1.2 ERBE Image Acquisition 

To express ERBE image acquisition in the ('/'a, De) coordinate system it is necessary 

to express both the instrument PSF and the scene radiation field in this coordinate 

system. The ( Da, De) coordinate system is generally the natural choice for expressing 
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Figure 8.1: Imaging geometry and coordinate systems. 
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the instrument's PSF; therefore, the PSF must be converted to the (Ia, De) coordi-

nate system using the transformation2 

(8.1) 

where S(De) is the slant-range (SB in figure (8.1)). Since the transformed coordinate 

/a is a function of both the cross-track coordinate De and the along-track coordinate 

Da, equation (8.1) illustrates the shift-variant nature of ERBE image acquisition. 

In particular, it can be shown that the same Da transforms into larger Ia 's if De 

is increased; the instruments footprint grows in the along-track direction as the 

optical axis moves away from nadir. Therefore, although the (/a, De) coordinate 

system results in uniform sampling, image acquisition is shift-variant. 

8.1.3 Shift-variant Image Restoration 

Due to the shift-variant image acquisition process, the pre-sampled field g must be 

expressed as an integral equation with a position-dependent PSF as 

(8.2) 

over the entire field of view (swath). Because equation (8.2) is not a convolution, 

the c/d/c model for the ERBE instrument cannot be developed in the frequency 

domain in the manner presented in chapter 3. Consequently, the CLS restoration 

2 Equation (8.1) is an approximation in the sense that P and B are assumed to be joined by a 

line instead or an arc. This approximation is particularly accurate for a small field of view and 

greatly simplifies the relationship between 'Ya, Oa and De. 
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technique that uses this frequency domain description as the basis of its derivation, 

is not directly applicable. 

In this chapter, a "sectioning" approach is adopted to overcome the shift-variant 

PSF problem; the radiation field is partitioned into vertical strips (sub-sections) and 

the PSF is assumed to be shift-variant within each section [94][95]. In this way shift­

invariant restoration methods such as the CLS restoration technique ca~ be used 

in the individual sections. Artifacts caused by artificially sectioning the radiation 

field are controlled by using overlapping sections. A necessary consequence of the 

partitioning approach, however, is the need to generate a CLS restoration filter for 

each section. Sectioning details are provided in section 8.2. 

8.2 Simulation Results 

This section uses simulated ERBE data to demonstrate the effectiveness of the CLS 

restoration-based reconstruction approach. Measurements are produced by simulat­

ing the measurement process on synthetic (artificial) input radiance fields. The use 

of simulated data provides a controlled environment for testing the CLS restora­

tion filter. Artificial radiance fields provide a mechanism for explicitly designing 

the frequency content of the input, thereby making it possible to test the ability 

of the CLS restoration filter to restore frequencies of particular interest. The use 

of a known input scene also allows improved determination (and quantification) 

of restoration accuracy; this is a particularly important fact for ERBE and other 



Figure 8.2: Simulated cosine radiance field. 
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radiometric instruments since there is no "ground-truth" that can be relied upon 

to judge the restoration q,ccuracy. 

The simulated input field, l, used in the CLS restoration study described in 

this section is presented in figure (8.2). The field represents a circularly symmetric 

cosine in the geocentric coordinate system defined as 

l(p) = Ao + A1 cos(w p) (8.3) 

where w denotes the cosine frequency and p = J-·y~ + ~~ is the radial distance from 

the origin. The simulated field in figure 8.2 uses w = 0.01 cycles/km. The constants 

A0 = 127.5 and A1 = 127.5 are chosen to make l positive and have a dynamic range 

of 256, for ease of display on a 256-level display device. 

The input radiance field to the cjdjc model s is obtained by mapping l from 

the (Ia, /c) coordinate system to the required (/a, De) coordinate system using the 
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transformation 

D t -1 [ Slll/e ] 
e = an (1-cos!e)+H/R. (8.4) 

In equation (8.4) H is the satellite altitude (measured from sea-level) and R is 

the radius of the earth; for ERBE H / R = 0.0926. The effect of the coordinate 

transformation in equation (8.4) is to distort l in the cross-track direction. The 

distortion has the effect of changing the pure cosine into a cosine function with a 

position-dependent frequency argument in the cross-track direction; the greater the 

distance from the origin, the higher the frequency. 

Equation (8.4) also demonstrates why a c/d/c model-based Wiener filter would 

not be very practical in the ERBE context. Even if the energy spectrum of the field 

could be accurately characterized in the {/a, /e} coordinate system, perhaps from 

physical information about the field itself, there is no easy way to express that in 

the (/a, De) coordinate system because of the non-linear transformation. The CLS 

restoration filter does not have this problem because it does not require such an 

estimate. 

The BRBE scanning radiometer's PSF is illustrated in figure (8.3) [97]. The 

coordinate system used to describe the PSF is the ( Da, De) system depicted in fig-

ure (8.1). To project the PSF in figure (8.3) onto the (/a, De) coordinate system, 

the coordinate transformation defined in equation (8.1) is used. 

The simulated flight path of the satellite falls along the Ia axis and takes the 

satellite directly over the center of the cosine. Scanning proceeds from left to right; 
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Figure 8.3: ERBE scanning radiometer PSF. 



142 

no measurements are made on the right-to-left (flyback) scan. Each sample of 

the resultant digital image is obtained using a numerical quadrature routine to 

integrate the PSF-weighted radiance within the IFOV. The scanning angle is to 

60 deg on either side of nadir. The digital image is corrupted by additive, uniformly 

distributed ("white") noise quantified by an SNR of 20. 

The noisy, sampled field in figure (8.5a) is then reconstructed to a continuous 

field at the top-of-atmosphere (TOA) using the PCC reconstruction filter. 3 The 

reconstructed field is shown in figure (8.6a). The loss of resolution can be seen 

clearly in figure (8.6a). Consistent with the growth of the footprint in the along-

track direction with scan angle (figure (8.4)), the resolution loss increases with 

increasing scan angle. 

The measured field in figure (8.5a) is sectioned into 20.4 degree "vertical" sec-

tions spaced 6.06 degrees apart in the cross-track direction. This corresponds to 

sections 10 pixels wide with an overlap of 3 pixels and yields 19 sections over the 

entire swath. The extreme left and right sections have fewer than 10 pixels since the 

limiting scan-angle for measurements is 60 deg. The amount of overlap is dictated 

by the effective support of the PSF [94].4 The section size represents a compromise 

between the number of pixels required to minimize the border-effects of circular 

3 The TOA is an meterological reference surface, 30 km above sea-level, which is used for 

locating the measurements. 
4 In this application the effective support (width) of the PSF is the minimum pixel distance 

from the origin at which the PSF drt;)ps to 0.1 of its value at the origin. 
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convolution (during restoration) and the rate of increase in the size of the PSF 

along the lia coordinate axis. The lower limit on the size of a section is bounded by 

the effective support of the PSF- the section size must be equal (and preferably 

larger) than the PSF. The upper bound on section size is determined primarily by 

how much the PSF's effective support changes over a given section. 

The increase in the effective support of the PSF in the along-track direction 

with increasing scan-angle (lie) is illustrated in figure (8.4). As can be seen in this 

figure, the effective width of the PSF in the along-track direction increases from 

approximately 2 pixels at nadir to about 4 pixels at the limb. Each section is 

restored using an "average" PSF determined by computing the average of the PSFs 

at either extreme of the section. An alternative approach involves interpolating the 

restoration filter kernel between the extreme points to account for (small) variations 

in the PSF within each section. This approach is computationally more expensive 

and the increase in restoration accuracy is not large enough to warrant the additional 

computational burden. In the simulations, to generate the CLS restoration kernel 

for each section, the circularly symmetric high-pass filter kernel 

C(w) = 2.0- 2.0 cos(w) (8.5) 

is used; w represents the radial frequency in the (/a, lie) coordinate system. The value 

of a is determined by using the Chi-Square Choice method described in chapter 5. 

The restored field in the (/a, lie) coordinate system and the corresponding TOA 

reconstruction are shown in figure (8.5b) and (8.6b) respectively. The mapping from 
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Figure 8.4: Footprint growth in the along-track direction with scan angle. 

the (/a, lie) coordinate system to the TOA coordinate system is obtained by inverting 

equation (8.4). The restoration shown were obtained by using 7 x 7 restoration 

kernels over each of the 19 sections. Consistent. with the high-pass filtering effects 

of the CLS restoration filter, the restored image is sharper than the unrestored 

image. The figures clearly show that the "rings" of the cosine that were blurred 

beyond recognition in the un-restored image (and its TOA reconstruction) have 

been partially recovered. This restoration comes at the expense of some noise 

amplification which is evident in the restorations. 

The two horizontal artifacts (situated symmetrically about the center of the 

image) are a result of simulated line "drop-outs", missing data due to instrument 

and/or transmission equipment malfupction, an important practical consideration. 

In the simulations, these missing scans are set to 0; the discontinuity introduced by 
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Figure 8.5: Restored versus unrestored digital image. 
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Figure 8.6: Restored versus unrestored TOA reconstructions. 



147 

this artifact is enhanced by the restoration filter that mistakes it for a high-frequency 

feature in the measured image. In practice, the exact locations of the missing 

data are known from ancilliary data and interpolation can be used to minimize t,he 

discontinuity effect. 

This chapter demonstrates that a small-kernel c/d/c model-based CLS restora­

tion filter can be used effectively and efficiently to improve the spatial resolution 

of remotely-sensed radiometric data. Improving data quality by using restoration 

processing has the potential to improve scientific analysis based on such data. 



CHAPTER IX 

CONCLUSIONS 

9.1 Conclusions 

The design of a digital image restoration filter must address the following restora­

tion concerns: an accurate underlying imaging system model, a practical restoration 

metric, a computationally efficient filter synthesis algorithm, and an efficient filter 

implementation in the spatial domain as a small-kernel convolution. This disserta­

tion presents convincing evidence as to why these four issues are important. 

Simulation can be used to demonstrate that the widely-used d/d model is not 

the correct system model for digital imaging systems because the d/d model ignores 

sampling and reconstruction. If image acquisition blurring is the only source of im­

age degradation, d/ d model-based restoration filters can restore perfectly. These 

filters are also relatively effective in balancing restoration sharpening against ran­

dom noise enhancement. When sampling and reconstruction are present, however, 

the same d/d model-based restoration filters fail to restore satisfactorily; the re­

stored images exhibit sampling and reconstruction artifacts that are enhanced by 

the restoration filters. 

A c/d/c system model is a superior alternative to the d/d system model. In 
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addition to image acquisition and additive random noise, this model explicitly ac­

counts for sampling and reconstruction. By doing so, a c/d/c model provides an 

additive, scene-dependent noise-like characterization of sampling artifacts. For the 

purpose of digital restoration filter design this scene-dependent ( aliased) noise has 

to be treated in the same manner as additive random noise. 

Although optimal in a MSD sense, the c/d/c model-based Wiener filter has 

several practical problems. The use of the end-to-end MSD metric in the Wiener 

filter derivation results in an expression for the Wiener filter's response that cannot 

be evaluated without making statistical assumptions about the unknown stochastic 

scene and the random noise. Acceptable Wiener restorations may be computation­

ally demanding, making the c/d/c model-based Wiener filter unsuitable in many 

time-constrained applications. Moreover, the c/d/c model-based Wiener filter can­

not be implemented rigorously because the energy spectra of the stochastic scene 

and the additive random noise are never known a priori. 

The c/d/c model-based CLS restoration filter is a viable alternative to the c/d/c 

model-based Wiener filter with several practical advantages. The derivation of the 

CLS filter does not require any statistical assumptions about the unknown scene and 

the random noise. Therefore, the CLS filter is applicable to a broader class of image 

restoration applications than is the Wiener filter. The CLS filter can also be applied 

rigorously; all the terms in the filter's response are known (or can be measured) and 

therefore, no ad-hoc estimation procedure is required. The c/d/c model-based CLS 
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restoration filter can also be implemented effectively and efficiently as a small-kernel 

convolution in the spatial domain, facilitating its use in real-time image restoration 

applications. 

9.2 Future Research 

9.2.1 Optimal regularization 

The issue of a scene-dependent stabilizing functional 6 needs to be investigated. 

There is some limited d/d model-based evidence that scene-dependent stabilizing 

functionals can improve restoration quality; this needs to be investigated in the 

context of a c/d/c model. In a recent article, Reeves et al. [58] proposed a tech­

nique that computes both a and 6 directly from the digital image; they claim that 

the resulting restorations are superior to those obtained by the traditional method 

described in chapter 2. The extension of their technique to a c/ d/ c model should 

be investigated. 

9.2.2 Adaptive CLS Restoration 

The Wiener and CLS restoration filters presented in this dissertation are global in 

the sense that a single restoration filter is used to restore the entire image. Since 

images are not spatially homogeneous, global restoration filters cannot be expected 

to perform as well as adaptive restoration filters that take local image character­

istics into account. Adaptive image restoration is not a new area of research; all 
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known adaptive restoration techniques, however, are based on a d/d system model. 

The use of the c/d/c model-based CLS restoration filter as an adaptive restora­

tion filter needs to be investigated. One possible approach would be to adapt a 

by using a simple parametric model for p, then estimating the model parameters 

directly from the digital image. Another approach would be to use different de­

grees of regularization by using different stabilizing functionals depending upon the 

local smoothness. These and other approaches should be evaluated for restoration 

accuracy and computational efficiency. 

9.2.3 Color (Multi-spectral) CLS Restoration 

The applicability of the cj dj c model-based CLS filter to color (multi-spectral) image 

restoration should be investigated. 



Appendix A 

When a digital image is used as input to a c/d/c model-based simulation, the Fourier 

series coefficients of the band-limited scene have to be constructed from the DFT 

coefficients of the digital image. If this construction is done correctly then the band-

limited scene interpolates the digital image exactly. That is, if this synthesized scene 

is sampled on the same pixel grid as the digital image then the resulting sampled 

image and the digital image are identical. This appendix describes the mathematics 

associated with such a construction technique. In practice, the number of rows and 

columns in the digital image are even numbers; that is the only case considered in 

this appendix. 

Theorem: A Given a digital image m periodic with period P1 x P2 and a band-

limited, periodic scene 

s(x1, x2) = I.:: I.:: S[vl? v2] exp(i21rv1xd P1) exp(i21rv2x2/ P2) 
lvll::;rl !v2j::;r2 

with period P1 x P2, if P1 and P2 are both even integers and 

then s interpolates m exactly provided 

mh,v2] 
2 

m[vl, 72] 
2 

m[71, 72] 
4 
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where 

P1-1 P2-1 
m[v1, v2] = 2:: 2:: m[n1, n2] exp( -i21rn1vd P1) exp( -i21rn2v2/ P2) 

n1=D n2=D 

is the DFT array associated with m. 

Proof: 

The MSD between m and the digital image obtained by sampling s on the P1 x P2 

pixel-grid is 

Using Parseval's equation and the sampling theorem the MSD can be expressed in 

the frequency domain as 

P1-1 P2-1 
MSD = 2:: 2:: j(s[vb v2J)- mh, v2]j

2
. 

v1=0 v2=0 

Both (s[v1 , v2J) and m[v1 , v2] are periodic with period Pt x P2; the MSD can be 

written over a different range of P1 X P2 frequencies as 

MSD = 
Pl/2-1 P2/2-1 A 2 
2:: 2:: j( S[v1, v2J)- m[v1, v2Jj . 

V}=-P! /2 V2=-P2/2 

The MSD can be simplified to 

2:: 2:: i(srv1, v2J)- m[vt. v2Ji
2 
+ 2:: i(sr-71, v2J)- m[-71, v2JI

2 

lvii<ri lv2l<r2 lv2l<r2 

+ 2:: j(s[v1, -72J)- m[v1, -72]1
2 + j(s[-71, -72J)- m[-71, -72Jj

2
. 

lvli<TI 

Because S[v1,v2] = 0 for lv1l > 71 and lv2l > 72, (S[vt,v2J) = S[vt,v2] for hi< 71 

and lv21 < 72. Therefore, by choosing S[vt, v2] = m[vt, v2] for lv11 < 71 and lv21 < 72 
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the MSD reduces to 

A A 2 L lm[-rt, v2]- S[-rt, v2]- Sh, v2JI + 
\v2\<r2 

A A 2 L lm[vt, -r2] + S[vt, -r2]- S[v1, r2]l -
\vii<ri 

A A A A 2 
lm[-rt, -r2]- S[-rt, -r2] + S[-rt, r2]- Sh, -r2]- Sh, r2JI . 

For s to interpolate m exactly the remaining Fourier series coefficients in this 

MSD expression must be chosen to make the MSD equal 0. By inspection, this is 

accomplished by choosing the coefficients as 

m[rl, v2] 
2 

m[vl, r2] 
2 

mh,r2] 
4 

This completes the proof of this theorem. 

Note that if m is real-valued then 

Moreover, mh, r2] is real-valued. By choosing S in the manner just described, 

That is, s is also real-valued. 
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Most DFT implementations, including virtually all FFT implementations, com­

pute the m[vl' v2] array for 0 ::; V! ::; pl -1' 0 ::; v2 ::; p2 -1. The theorem presented 

in this appendix requires DFT coefficients with negative frequency indices. Because 

the DFT array is periodic, these negative-index coefficients can be computed from 

the positive-index DFT coefficients by using the P1 x P2 periodicity equation 
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