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ABSTRACT

Frequency Domain Experiments (FDEs) were first used in discrete-event sim­
ulation to perform system parameter sensitivity analysis for factor screening in 
stochastic system simulations. FDEs are based on the intuitive assertion that if one 
or more system parameters axe oscillated at fixed frequencies throughout a simula­
tion run, then oscillations at the same frequencies will be induced in the system’s 
response. Spectral (Fourier) analysis of these induced oscillations is then used to 
characterize and analyze the system. Since their introduction 12 years ago, signifi­
cant work has been done to extend the applicability of FDEs to regression analysis, 
simulation optimization and gradient estimation. Two fundamental theoretical and 
data analysis FDE problems remain, however. Both problems are addressed in this 
dissertation.

To perform a FDE Fourier analysis, a sampled data sequence of response ob­
servations is used; i.e., the selected system response is sampled using a suitable 
oscillation (sampling) index. The choice of an appropriate oscillation index is an 
open problem in the literature known as the FDE indexing problem. This dis­
sertation presents a solution to the FDE indexing problem. Specifically, a FDE 
Fourier data analysis algorithm is developed which uses the simulation clock as the 
oscillation index. This algorithm is based on the well-established theory of count­
ing (Poisson) processes. The algorithm is implemented and tested on a variety of 
systems including several networks of nonstationary M /G /l  queues.

To justify the use of Fourier methods, a basic FDE model assumption is that 
if a particular system response statistic is sensitive to a system parameter, then 
sinusoidal variation of that system parameter at a fixed frequency will induce simi­
lar sinusoidal variations in the response statistic, at the same frequency. There is, 
however, a lack of theoretical support for this model assumption. This dissertation 
provides some of that theoretical support; i.e., the FDE Fourier data analysis al­
gorithm developed in this dissertation is used to analyze the frequency response of 
a M /M /l  queuing system. An equation is derived which accurately characterizes 
the extent to which the departure process from a M /M /l  queuing system can be 
modeled as an amplitude-modulated, phase-shifted version of the oscillated arrival 
process.

xv



FOURIER ANALYSIS OF FREQUENCY DOM AIN  

DISCRETE-EVENT SIMULATION EXPERIM ENTS



INTRODUCTION

1.1 M otivation and Outline

A frequency domain experiment (FDE) is a discrete-event simulation experiment in 

which selected system parameters axe oscillated sinusoidally to induce oscillations 

in one or more system response statistics of interest. The FDE output is a response 

sequence of observations corresponding to a system response statistic of interest, 

e.g., the waiting time in a system queue. The response sequence is used to esti­

mate the response power spectral density (psd). Spectral analysis of the estimated 

response psd is then used to determine the sensitivity of the system response to 

variations in the selected system parameters. FDEs are based on the assumption 

that if a particular system response statistic is sensitive to a system parameter, 

then sinusoidal variation of that system parameter at a fixed frequency will induce 

similar sinusoidal variations in the response statistic, at the same frequency.

FDE’s were introduced to discrete event simulation in 1981 by Schruben, et al. 

[40]. The objective was to perform input parameter sensitivity analysis for factor 

screening in complex discrete-event simulations. Since then, significant work has 

been done to develop FDE techniques. This work includes criteria for oscillation 

amplitude selection [11], driving frequency selection [10]; methods for generating 

and analyzing the response sequence [43], methods of flattening the noise spectrum 

[1] and methods for using the global simulation clock time as the FDE oscillation

2
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index [26]. In addition, significant work has been done to extend the applicability 

of FDEs to regression analysis [37], [44], to simulation optimization [27], [39] and 

gradient estimation [12].

Although FDE techniques have been used successfully for some applications, 

two fundamental theoretical and data analysis FDE problems remain. As noted 

by Sargent et al. [38], these remaining problems “are the major road-blocks in the 

widespread use of the intuitively simple, yet powerful simulation tool.” These two 

problems are highlighted in sections 1.1.1 and 1.1.2 respectively. Both problems are 

addressed in this dissertation.

1.1.1 FDE Indexing

To perform the FDE spectral analysis correctly, it is necessary to select a suitable

oscillation index with respect to which all oscillations can be referenced. Until

recently, the proper choice of the oscillation index has been an open problem in the

FDE literature—the so-called “FDE indexing problem”, see Sargent [38] and Buss

[1]. The FDE indexing problem, presented in detail in chap ter 2, can be briefly

described as follows. In a FDE, all frequencies are measured relative to a common

independent variable—an oscillation parameter.1 The usual advice in [1], [10], [11],

[27], [36]-[43] is to choose a discrete oscillation parameter, e.g., the job number

1In this dissertation, the common, independent variable with respect to  which all FDE oscil­

lations are referenced is called the oscillation parameter. The difference between the oscillation 

parameter and oscillation index is discussed in chapter 2.
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in a single-server queue. For simple systems, choosing some discrete oscillation 

parameter yields satisfactory results. In more complex systems, however, e.g., an 

open network of queues, jobs do not necessarily leave the system in the order of 

arrival. Therefore, choosing a discrete oscillation parameter may require reordering 

of the response sequence before analysis. Other more complex systems, e.g., a 

closed network of queues, can be envisioned for which a natural discrete oscillation 

parameter may not exist. To solve this FDE indexing problem, what is required is 

an oscillation parameter that results in a sampled data sequence that is amenable to 

(discrete) Fourier analysis and can be generalized beyond a particular application.

Since the notion of time underlies all discrete-event simulations, an oscillation 

parameter based on the global simulation clock time is a natural choice for the FDE 

oscillation parameter. In chap ter 3 a correct way to use the global simulation 

clock time as the FDE oscillation parameter is developed. The development of this 

method is based on the established theory of counting processes. This new method, 

called the FDE Histogram method, can be used for FDE data analysis when the 

selected system response statistic is a rate. Most commonly used system response 

statistics are not rates, however, but are instead statistics like the expected wait in 

the system, the expected number in the system or the system utilization. In these 

cases, the extended FDE Histogram method, based on the FDE Histogram method 

and developed in ch ap te r 4, should be used. The two methods are implemented 

and tested on several systems in chapters 3 and 4, respectively. The results show
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that the FDE Histogram method and the extended FDE Histogram method are, in 

fact, correct solutions of the FDE indexing problem.

1.1.2 FD E System  M odel A ssum ption

To justify the use of Fourier methods, a basic FDE model assumption is that if a par­

ticular system response statistic is sensitive to a system parameter, then sinusoidal 

variation of that system parameter at a fixed frequency will induce similar sinu­

soidal variations in the response statistic, at the same frequency. This FDE system 

model assumption has been verified numerically by several FDE practitioners and 

queuing theory researchers interested in the analysis of queues with time-varying 

input processes. Unfortunately, the “verification” has been based, almost entirely, 

on empirical, application-specific experimental simulation studies. There is a seri­

ous lack of theoretical support for the FDE model assumption. The next part of 

this dissertation provides some of that theoretical support. That is, in chap ter 

5 of this dissertation a simulation-clock based solution to the indexing problem is 

used to analyze the frequency response of a M /M /l  queuing system. An equation 

is derived which accurately characterizes the extent to which the departure process 

from a M /M /l  queuing system can be modeled as an amplitude-modulated, phase- 

shifted version of the oscillated arrival rate. In chap ter 6 , the FDE frequency 

response analysis is shown to be true for several networks of such queues.



CHAPTER II

TRADITIONAL FREQUENCY DOM AIN EXPERIM ENTS

2.1 Traditional FD E M ethods— Overview

Frequency domain simulation experiments were introduced by Schruben et al. [40] 

in 1981. A FDE is a discrete event simulation experiment in which selected system 

parameters are oscillated sinusoidally to induce oscillations in one or more system 

response statistics of interest. System parameters of interest Xi,X2 , . . .  (e.g., the 

service rates for selected servers in a network of queues) are varied as

Xj ( t )  =  X j(0) -(- ctj sin(27ru;jf) j  = 1 ,2 ,... (2.1)

where x_,(0) is the nominal value of the j th system parameter, aj is its amplitude of

oscillation and Uj  is its frequency of oscillation, expressed in cycles per unit t .  All

frequencies Wi,W2, . . .  are measured relative to t, referred to in the traditional FDE

literature [1], [10]—[12], [27]—[36], [40]-[44] as the oscillation index.1 Although the

notation suggests that t  is time, as illustrated in examples 2.1, 2.2, 2.3 and 2.4 (to

follow), in the traditional FDE literature a d isc re te  simulation parameter is used as

the oscillation index.
1The word “traditional” is used with some reservation. FDEs are a fairly recent development

and thus are not in the same category chronologically as some more traditional simulation issues

like event-list management and random variate generation.

6



The FDE output is a response sequence of observations J/i, J/2) • • •»!/n correspond­

ing to a system response statistic of interest, e.g., the waiting time in the system. 

The response sequence is used to estimate the response power spectral density (psd) 

y(u>). Spectral analysis of the (estimated) response psd is used to determine the 

sensitivity of the system response to variations in X\,X2 , . . . .  Ideally, the response 

psd will have statistically significant “spikes” at wj, u?2, . . .  and be essentially zero 

at all other frequencies.

Schruben et al. [40] used the Blackman-Tukey approach to estimate the response 

psd as2
m

y(u ) = 53 ^k°k cos(2trwfc) 0.0 < iti < 0.5. (2.2)
k = —m

In equation 2.2 the auto-covariance is

n —k

( i A i ) 5 3 ( y « ‘ -  y)(yi+k - v )  *  =  o , 1, 2, . . . ,  m
t=iCfc (2.3)

c_* k < 0

where y denotes the average of y1,y2, . . .  ,yn and m  denotes the support of the 

window sequence A*. Different windows have been proposed including the Boxcar 

window, the Hanning window, the Hamming window, the Cosine Bell window and 

the Barlett window [8]. As in [40], the Cosine Bell window sequence

Ak =  ^(1 +  cos(7rfc/m)), |&| < m (2.4)

2If Xic is an even sequence, i.e., \ t  =  A_/t (this is the usual case), then equation 2.2 can be
m

written as y(w) =  AoCo +  2^A *C i cos(2;rwil:).
*=i
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is used with the Blackman-Tukey psd estimator in this dissertation. The (estimated) 

response psd is computed at a discrete set of frequencies in the range 0.0 < < 0.5.

Frequencies outside this range are redundant because y(u>) is real-valued, even and 

periodic with a (fundamental) period of 1.0.

The notion of “estimation error”, or noise, in the psd estimate is important. The 

estimator defined by equation 2.2 is not exact in the sense that the estimated psd 

differs from the true (unknown) psd; the associated estimation error has both a de­

terministic and a stochastic component. The deterministic component, also known 

as estimation bias, is caused by the use of a finite-support window. A finite-support 

window is necessary because the amount of available data (n in equation 2.3) is 

finite. The stochastic component of the estimation error is due to the fact that 

the psd is estimated from a single (finite) realization of a stochastic process. Since 

the psd of a stochastic process is defined as an average of psd estimates over an 

ensemble of realizations, any estimate based on a single realization will differ (in a 

random manner) from the true psd.

The estimation error, or noise, in the psd estimate can be reduced by increas­

ing the amount of data or averaging the individual psd estimates over additional 

replications. Equivalently, a single realization with a large amount of data can be 

sub-divided into blocks, with each block representing a different realization of the 

stochastic process and block averaging can be used to reduce noise [8].

The choice of m in equation 2.2 involves an empirical compromise between noise
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and the magnitude of the spikes in y(u) at the frequencies Wj,W2, ■ • • Increasing 

the value of m increases the total energy in the psd because of an increase in the 

number of points used to compute the psd estimate. This increased energy results 

in a proportional increase in the magnitude of the spikes; however, the magnitude 

of the noise may increase as well. While there is no “right” choice for m and n, 

the general philosophy is to collect as much data as possible—make n large. Then 

m  can be made correspondingly large to increase the magnitude of the spikes. An 

empirical rule of thumb suggested in [26] is m =  2^/(0.9)n.

The most common type of traditional FDE requires two simulation “runs”, a 

control run and a signal run. The control run is a conventional discrete-event 

simulation run in which all system parameters are held constant at their nominal 

values and the control spectrum yc(w) of the response sequence is calculated using 

equation 2.2. In the signal run, system parameters are oscillated sinusoidally during 

the run and the signal spectrum ys(u>) of the corresponding response sequence is 

calculated using equation 2.2. The spectral ratio

R{u) =  y4(w)/yc(w) 0.0 < w <  0.5 (2.5)

is examined for the presence of spikes at u\,oj2 , . . .  A large spike in the spectral ratio 

at frequency u>j indicates that the selected response statistic is sensitive to variations 

in X j .  If a statistically significant spike is not present at u>j, it is concluded that the 

response statistic is not sensitive to variations in X j .  Schruben et al. [40] introduced 

the use of the spectral ratio, instead of the individual control and signal spectra, to
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perform spectral analysis, claiming that the spectral ratio suppresses the noise in 

the individual spectra.

Som et al. [43] introduced a method of generating the response sequence by 

replication, instead of using the two-run process. The ith value of the response se­

quence is the ensemble average of the ith value of the response statistic for multiple 

independently-seeded replications. A discrete Fourier transform (DFT) of this en­

semble averaged response sequence is computed; the square of the magnitude of the 

(complex-valued) result is the required psd estimate. No control run is required. 

Consistent with theory, Som et al. demonstrated that the estimated spectrum be­

comes less noisy as the number of replications is increased.

Several algorithms for computing the DFT exist in the literature. The Fast 

Fourier Transform (FFT), a well-known computationally efficient algorithm for com­

puting the DFT, was introduced in the late 1960’s [5]. With the use of the FFT, the 

DFT approach to estimating the psd became so computationally efficient that, in 

general, it replaced the Blackman-Tukey approach for most practical applications 

[8]. For the examples in section 2.4 and for the FDE histogram methods developed 

in chapters 3 and 4, the DFT approach is used for estimating the psd.

2.2 Traditional FD E M ethods— Exam ples

Several examples illustrating typical (simple) applications of traditional FDE meth­

ods are presented in this section. In chapter 3, the same examples will be used to
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highlight the FDE indexing problem (discussed in section 2.4) and motivate the 

development of the FDE histogram methods in chapters 3 and 4.

Unless otherwise stated, all traditional FDEs presented in this section and in 

section 3.1 generate 50000 response observations. The first 5000 observations are 

(arbitrarily) ignored to reduce the effect of initial transients. The spectral ratio of 

the resulting response sequence is calculated using equation 2.2 with n =  45000 

and m =  424 (values of n and m  originally proposed in [26]).

E xam ple 2.1 As in [26], a FDE for a M /M /1  queue is performed. Customers 

arrive according to a Poisson process with arrival rate A =  0.5 and join a FIFO 

queue before a single server. The service time of the <th customer is sampled from 

an exponential distribution with service rate

fi(t) =  1.0 +  0.4sin(27ru;i<) < =  1 ,2 ,3 ,... (2.6)

As indicated, the customer index is selected as the oscillation index. The frequency 

of oscillation is fixed at ui\ =  0.03 cycles per customer. The waiting time of cus­

tomers in the system is the response statistic of interest.

The spectral ratio (figure 2.1a) exhibits a distinct spike at u>i suggesting that 

(as expected) the waiting time in a M /M / 1  queue is sensitive to variations of the 

service rate. As explained in section 2.1, and as demonstrated by using the same 

n =  45000 but a larger m =  1000 (figure 2.1b), the magnitude of the spike can be 

increased by increasing the value of m. Increasing the value of m  does, however, 

increase the required computational effort, often with only a marginal improvement
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Figure 2.1: Spectral ratio for a M/M/1 queue using traditional FDE methods, 

wj =  0.03.

in one’s ability to distinguish the spike from noise. A visual inspection of figure 

2.1 indicates that in this case, n =  45000 and m =  424 is sufficient to produce a 

distinct spike at wj, as desired.

Exam ple 2.2 As an extension of example 2.1 and as in [44], a traditional FDE 

for a feedback M /M /l  queuing system (figure 2.2) is performed. In this case, after 

receiving service a customer rejoins the end of the queue with probability p = 0.25 or 

leaves the system with probability 1 — p = 0.75. As in example 2.1, the service time 

of the fth customer entering the system is sampled from an exponential distribution 

with service rate p(t) = 1.0 + 0.4sin(27rwit). Note that, if fed back, the t th customer 

has the same expected service time but a different actual service time each time it
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Feedback Queuing System

Queue
Entering
customers

Departing
customersServer
(1-P)

Feedback Customers

Figure 2.2: Feedback queuing system, 

receives service. The total waiting time of the customers (including feedback) is the 

response statistic of interest.

A FDE complication with respect to example 2.1 is that the response sequence 

needs to be ordered by the index of arriving customers. That is, since customers do 

not necessarily leave the system in the order in which they arrive, either the response 

sequence has to be sorted before performing the spectral analysis or data gathering 

during the simulation has to be structured to ensure that the t th value in the response 

sequence represents the total waiting time of the tth customer entering the system. 

To illustrate, the spectral ratio in figure 2.3a indicates that without sorting the spike 

at u>i is “smeared”; however, the spectral ratio of the sorted response sequence in 

figure 2.3b has a much more distinct spike at u> = u>i. In either case, however, the 

spike at ui suggests that (as expected) the total waiting time in a feedback queue
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Figure 2.3a: Spectral Ratio for a Feedback 
queue with no response sequence sorting

8.

0.02

0.02

0.04 0.06 0.08 0.10

Figure 2.3b: Spectral Ratio for a Feedback 
queue with response sequence sorting

0.04 0.06 0.08 0.10

Figure 2.3: Spectral ratio for a M /M /1  feedback queue using traditional FDE 

methods, u\ =  0.03 and p =  0.25. 

is sensitive to variations of the service rate.

E xam ple 2.3 As an extension of examples 2.1 and 2.2, the feedback queue FDE 

is repeated with a sinusoidally varying service rate and a sinusoidally varying 

probability of feedback. As before, the service time of the i th customer entering 

the system is sampled from an exponential distribution and the service rate is 

p(t) =  1.0 +  0.4sin(27ru>i<). After the t th entering customer receives service (for the 

first time or after feedback) its probability of feedback is given by

p(t) = 0.25 +  0.15 sin(27rw2t) t =  1 ,2 ,3 ,... (2.7)

That is, the tth customer has the same probability of feedback each time it leaves 

the server (if more than once). Both the service rate and feedback probability have
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Figure 2.4: Spectral ratio for a M /M /1  feedback queue using traditional FDE 

methods, Wi =  0.03, u 2 =  0.05.

the same index of oscillation. The total waiting time of the customers (including 

feedback) is the response statistic of interest.

A traditional FDE is performed with = 0.03 and u>2 =  0.05. Figure 2.4 

represents the spectral ratio of the (sorted) response sequence. The spectral ratio 

has distinct spikes at both wi and iv2 indicating that (as expected) the total waiting 

time is sensitive to variations of both the service rate and the feedback probability. 

There is, however, a significant amount of noise and the possibility of a false spike 

at very low frequency.

Exam ple 2.4 As in [26], a FDE for a simple manufacturing assembly station (figure 

2.5) is performed. In the assembly, one job of type 1 is combined with two jobs 

of type 2, to form a type 3 job. For each type 3 job, the difference between its
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Type 1 Jobs

Type 3 JobsAssembly Operation

Type 2 Jobs

Figure 2.5: Simple manufacturing assembly station.

departure time and the arrival time of the latest component job (either the type 1 

job or the second of the two type 2 jobs) is selected as the response. The arrival 

rate of the type 1 jobs is varied sinusoidally between 0.93 and 0.73 with frequency 

u>i =  0.01, the arrival rate of the type 2 jobs is varied sinusoidally between 1.1 

and 0.9 with frequency u>2 = 0.03 and the service rate of the type 3 jobs is varied 

sinusoidally between 1.0 and 0.8 with frequency 0J3  =  0.04.

A naive approach to choosing the oscillation index is to choose an individual 

discrete oscillation index t = 1 ,2 ,3 ,... for each job type. If this is done, then instead 

of a spike at uj =  w2 (as desired), the spectral ratio exhibits a spike at 2 u>2 (see figure 

2.6a). The reason the spike appears at 2uj2 is because, on average, the oscillation 

index for a type 2 job increases twice as fast as the oscillation index for a type 1 

or a type 3 job. This frequency doubling is a potential source of confusion caused 

by the fact that all oscillation frequencies are not based on a common oscillation 

index.

As in [26], to avoid the 2 u>2 confusion, the invoice number i =  1 ,2 ,3 ,... for type 

3 jobs is used as the common oscillation index. The service time of the 1th type 3
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job is sampled from an exponential distribution with service rate

/i(t) =  0.9 +  0.1 sin(27ru;3t). (2.8)

Since there is one assembly and one type 1 job associated with each type 3 job (a 

one-to-one correspondence), the t th interarrival time of type 1 jobs is drawn from 

an exponential distribution with rate

Ai (t) =  0.83 +  0.1 sin(27rwit). (2.9)

and the oscillation index for the type 1 jobs is also t = 1 ,2 ,3 ,... Since there are 

two jobs of type 2 for each type 3 job, the oscillation index for the type 2 jobs is 

t  = 1,1,2,2,3,3, —  That is, the (21 — l) th and the (2<)th interarrival times of type

2 jobs is drawn from an exponential distribution with rate

\ 2{t) =  1.0 -I- 0.1 sin(27ru>2f). (2-10)

This indexing scheme avoids the 2 u 2 confusion. Spikes in the spectral ratio at wi, 

u 2 and UI3  are expected.

Although the spectral ratio of the response sequence (figure 2.6b) is noisy and 

has some false spikes, smeared spikes are evident at u 2 and 0J3  indicating that A2 

and fi have a significant effect, on the response but Ai does not. The FDE results 

suggest that the type 2 jobs are the bottleneck and, indeed, that is the case. That 

is, the (nominal) arrival rate (0.5) of the latest type 2 component job for each type

3 job is smaller than the (nominal) arrival rate (0.83) for the type 1 job. Thus, a 

type 2 job is usually the latest arriving component part and so type 2 jobs have
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Figure 2.6: Spectral Ratio for an assembly operation using traditional FDE meth­

ods, u>\ =  0.01, u>2 =  0.03 and 013 =  0.04.

more effect than type 1 jobs on the response. The service rate also has a significant 

effect on the response because a significant portion of each response observation is 

the time in service.

2.3 Traditional FDE M ethods— Problem s

The examples in section 2.2 demonstrate that traditional FDEs can be used with 

some success to perform parameter sensitivity analysis for simple systems. As 

pointed out by Buss [1] and Sargent et al. [38] however and as indicated by exam­

ples 2.1-2.4, there are several problems associated with FDE methods, two of which 

are addressed in this dissertation.
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1. FDE Indexing.

As illustrated by examples 2.1-2.4, traditional FDEs use a discrete oscillation 

index. There are no unambiguous guidelines about how to choose this index, 

however. Example 2.4 demonstrates that naively choosing an individual dis­

crete oscillation index for each job type can result in a spike in the spectral 

ratio at the wrong frequency. Examples 2.2 and 2.3 demonstrate that even 

if an “obvious” discrete oscillation index is used, sorting of the response se­

quence may be required, thereby complicating the FDE analysis. The absence 

of unambiguous guidelines about the choice of an appropriate FDE oscillation 

index is called the FDE indexing problem. This problem is discussed in more 

detail in section 2.4 and a solution is presented in chapters 3 and 4. Related 

problems are noise, the smearing of spikes and false spikes in the response 

spectrum, as is evident in figures 2.3a and 2.6.

2. FDE Model Assumption.

In each of examples 2.1-2.4, it is assumed that if the oscillation index is 

properly chosen then sinusoidal variations of selected system parameters at 

fixed frequencies will induce sinusoidal variations in the response statistic at 

the same frequencies. This assumption for M /M /I  queues has been verified 

numerically by several queuing theory researchers [3], [16], [17], [20], [21], [30], 

[32], [33], [35], [45], [48]. No theoretical support exists for this assumption 

however.
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This dissertation addresses both these problems. A solution to the FDE indexing 

problem is provided in chapters 3 and 4. A partial solution to the FDE model 

assumption problem is presented in chapters 5 and 6.

2.4 FD E Indexing Problem

Morrice et al. [26] recognized the FDE indexing problem and suggested that a 

solution should be based on measuring frequencies with respect to the simulation 

clock time. Morrice et al. were right in their suggestion—unfortunately their imple­

mentation of an indexing scheme based on the simulation clock time was incorrect. 

Consequently they concluded, incorrectly, that the simulation clock time is not a 

good basis for a solution to the FDE indexing problem. This dissertation uses Mor­

rice et al.’s original suggestion, but develops a correct way to use the simulation 

clock time to solve the FDE indexing problem.

As background for the solution to the FDE indexing problem developed in chap­

ters 3 and 4, it is necessary to distinguish three important entities—the oscillation 

parameter, the oscillation index and the sampling index. The continuous, simulation 

clock time, t , which serves as the common reference for all oscillations, is the oscil­

lation parameter. The discrete values of the oscillation parameter t i , <2, t3, . . .  that 

are associated with the (sampled) response sequence y,- =  y(f.) for i = 1 ,2 ,3 ,..., 

is the oscillation index and i = 1 ,2 ,3 ,... is the sampling index. In the traditional 

FDE literature, the term “oscillation index” is casually used to denote the (discrete)
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oscillation parameter, the oscillation index and the sampling index. If a continu­

ous oscillation parameter like the simulation clock time is used, however, then the 

response statistic has to be sampled at discrete times. In this case the oscillation 

parameter, the oscillation index and the sampling index are no longer the same.

To solve the FDE indexing problem, what is required is an oscillation index 

that results in a (sampled) response sequence that is amenable to (discrete) Fourier 

analysis. In particular, the FDE oscillation index should be selected so that the 

response psd has distinct spikes at the frequencies of input oscillations with minimal 

noise at all other frequencies. Two oscillation index requirements are evident.

1. The FDE oscillation index should be monotonically increasing; i.e., <,• < /,+j 

for i = 1 ,2 ,3 ,... If this condition is violated, the response sequence needs to 

be sorted, (as in example 2.2 and 2.3), prior to computing its psd.

2. The FDE oscillation index should be equally spaced; i.e., <t+i — U = 8  for 

i =  1 ,2 ,3 ,... and some constant 8  > 0. If this requirement is satisfied, then 

requirement 1 is automatically satisfied.

The following examples are used to illustrate why requirements 1 and 2 are critical. 

Example 2.5, which is analogous to examples 2.2 and 2.3, is used to demonstrate 

the need to sort the response sequence. Example 2.6 provides a graphic illustration 

of the smearing caused by the stochastic sampling of a deterministic function and 

example 2.7 demonstrates the uniform sampling of a stochastic function. These 

three examples are used to motivate the solution to the FDE indexing problem
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presented in chapters 3 and 4.

Exam ple 2.5 A deterministic function x{t) =  sin(27ru>it) is sampled at times t, =  i 

for i =  1 ,2 ,3 ,4 ,. . . , n  with n =  1024 and wj =  0.0625 cycles per unit time. For 

this example, 0 < t < oo is the oscillation parameter. The oscillation index and 

the sampling index are the same because t; =  t. The uniformly sampled response 

sequence defined by yf- =  *(<,•) for i =  1 ,2 ,. . . , n  is shown in figure 2.7a.3 The 

DFT of the response sequence is calculated and as in [43] the magnitude of the 

(complex) DFT is used to perform the spectral analysis.4 Figure 2.7b indicates that 

(as expected) the magnitude spectrum has a spike at the frequency of oscillation. 

Even for small n (n =  1024 is small compared to the 45000 samples required for 

the Blackman-Tukey approach), the magnitude spectrum is virtually noise free and 

the spike at u>i is clearly discernible with no smearing.

To simulate shuffling similar to that which occurs in a feedback queue, the 

response sequence is shuffled based on a shuffling probability p. That is, for each 

index i = 1 ,2 , . . . ,  n, the number of places A/,- that the ith data point is moved, is 

drawn from a Geometric distribution with parameter p. If A/,- =  0, the ith data 

point is not moved. If Af,- > 0, then Mi — 1 data points to the right of i are each

moved one place to the left and the tth data point is moved to the (i+Af,)th position.

3Although the response sequence is discrete, for the purpose of generating visually meaningful 

plots, the discrete response sequence for this example and examples 2.6, 2.7 and 3.3 have been 

interpolated to a smooth curve. Also, only a  portion of the response sequence is shown.

4The square of the magnitude of the complex DFT is a psd estimate.
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The shuffling algorithm is presented, in pseudocode, at the end of this chapter.

Figures 2.7c and 2.7d represent the shuffled response sequence and the magni­

tude of the corresponding (complex) DFT for p = 0.3, respectively; figures 2.7e 

and 2.7f represent the shuffled response sequence and corresponding magnitude for 

p =  0.6 while figures 2.7g and 2.7h represent the shuffled response sequence and 

corresponding magnitude for p =  0.9. As p is increased the response sequence be­

comes more shuffled, increasing the noise and reducing the magnitude of the spike 

in the corresponding spectrum. The shuffling of the response sequence is similar to 

that produced by the feedback in examples 2.2 and 2.3). In both of these exam­

ples the response sequence had to be sorted before the psd could be computed to 

avoid smearing of the response spectrum. Example 2.5 emphasizes the need to sort 

the response sequence when performing a traditional FDE for the feedback queue, 

thereby increasing the computational complexity of the FDE data analysis.

The need for uniform sampling is demonstrated by example 2.6, which was 

presented in [24]. The example is based upon sampling a deterministic function at 

equal, slightly random and random time increments.

Exam ple 2.6 The deterministic function x(t) =  sin(27ra;1t) is sampled at times 

defined by U =  f,_i +  e<, for z =  1 ,2 ,... ,n  with n =  1024, t0  = 0 and =  0.0625. 

As in example 2.5, 0 <  t < oo is the oscillation parameter; <t- is the oscillation index 

and i is the sampling index. Three cases are considered:

1. x(t) is sampled at equal time increments, i.e., e,- =  1 for all i;
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Figure 2.7: Response sequence and spectrum obtained by uniformly sampling a sine 

wave and then shuffling the resulting sequence with probability p, u \ =  0.0625.



25

2. x(t) is sampled at slightly random, time increments, i.e., £i, £2, ■ • •, t n is an inde­

pendent, identically distributed (iid) sequence of random variables uniformly 

distributed between 0.0 and 2.0;

3. x(t) is sampled at random time increments, i.e., ei, £2, . . . ,  en is an iid sequence 

of random variables exponentially distributed with mean 1.

In each case the DFT of the sampled data is calculated. The magnitude of the 

(complex-valued) result is the spectral estimate. Figures 2.8a, 2.8c and 2.8e repre­

sent the response sequence for cases 1, 2 and 3 respectively (only a portion of the 

response sequence is shown); figures 2.8b, 2.8d and 2.8f represent the corresponding 

spectrum. From these figures it is observed that the spike at u;j becomes more 

smeared as the randomness of the inter-sampling times increases.

Example 2.6 illustrates why equally-spaced samples are needed, even when the 

sampled function is deterministic. If the sampled function is stochastic the added 

randomness inherent in the samples increases the noise in the spectrum. Example 

2.7 is used to demonstrate this.

Example 2.7 The stochastic function x(<) =  sin(27rw1<) +  F(t), where F(t) is 

drawn from a Gaussian distribution with mean 0.0 and variance <r2 =  2.5, is sampled 

at times <,• =  i for i =  1 ,2 ,3 ,... ,n  with n =  1024 and ui =  0.0625. The DFT of 

the sampled data is calculated and the magnitude of the (complex-valued) result 

is the resulting spectral estimate. Figure 2.9a indicates that, unlike the response
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Response Sequence and corresponding spectrum for "equal" 
sample intervals; 1024 samples
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Figure 2.8: Response sequence and spectrum obtained by sampling a sine wave at 

equal, slightly random and random sample intervals, wi =  0.0625.
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2.9a: Response Sequence
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Figure 2.9: Response sequence and corresponding spectrum obtained by uniformly 

sampling a stochastic function at equal intervals; u>i = 0.0625, n =  1024 samples.

sequence obtained when the deterministic function sin(27rwit) is uniformly sampled 

(figure 2.8a), the response sequence of the stochastic function is noisy. The noise in 

the spectrum in this case is caused by the additive, uncorrelated Gaussian (white) 

noise.

The examples presented in this chapter show some typical FDE applications and 

demonstrate the traditional FDE approach. On one hand these examples provide 

an intuitive feel for the appeal of FDEs. But at the same time they also serve as 

examples of problems with traditional FDE methods. The rest of this dissertation 

deals with an examination of these problems and a search for their solutions.
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Pseudo-code

type data_record = record
value: double; 
index: longint; 

end;
var

data : array [l..n] of data.record; 
hold : data_record; 

begin
for i :® 1 to n do { initialize response sequence } 
begin

data[i].index := i; 
data[i].value := x(i); 

end
i := 1; 
k := 1;
while (i < n) do { shuffle response sequence } 
begin

M_i : = Geometric(p); { drawn from a Geometric distribution >
if (M_i > 0)
begin

hold.value : = data[k].value; 
hold.index : = data[k].index; 
for j: = k to (k+M_i-l) do 
begin

data[j].value:® data[j+l].value; 
data[j].index:® data[j+l].index; 

end
data[k+M_i].value := hold.value; 
data[k+M_i].index := hold.index; 

end
i := i+1;
while (data[k].index <> i) { determine position of next data point } 

k := k+1;
end

end



CHAPTER III

SIMULATION CLOCK TIME AS THE FDE OSCILLATION

PARAMETER

3.1 Sim ulation Clock T im e

As discussed in chapter 2, in a discrete-event FDE the (global) simulation clock 

time is a natural continuous variable with respect to which all dynamic variables 

are referenced and, for that reason, is an obvious choice for the FDE oscillation 

parameter. Morrice et al. [26] were the first to suggest that a solution to the FDE 

indexing problem should be baaed on measuring frequencies with respect to the 

simulation clock time. To investigate their suggestion, they performed two FDEs 

with the simulation clock time as the oscillation parameter. As demonstrated in 

this chapter their choice of the oscillation index was ambiguous, however, and they 

concluded incorrectly that the simulation clock time is not a good basis for a solution 

to the FDE indexing problem.

For reference, as in [26], a FDE for a M /M /1  queue and a simple manufacturing 

operation is performed using Morrice et al.’s approach. Example 3.3 is then used 

to demonstrate some reasons for the unsatisfactory results in examples 3.1, 3.2 and 

in [26].

29
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Exam ple 3.1 The FDE for a M /M /1  queue (example 2.1) is repeated with the 

simulation clock time used as the oscillation parameter. That is, the service time of 

a customer entering service at time t is sampled from an exponential distribution 

with service rate

fi(t) =  1.0 4- 0.4 sin(27ru>it) (3.1)

and u>i =  0.03. The waiting time in the system of the i th customer, arriving at 

time t{, is selected as the response statistic of interest, j/,-. There is ambiguity in the 

definition of the oscillation index in this example. If an oscillation index were to be 

identified, it would be the arrival time U, somewhat consistent with the oscillation 

index definition in chapter 2. Unfortunately, the concept of an oscillation index was 

absent in [26] and hence the oscillation index is not used in any meaningful way for 

data analysis in this example; instead, only the sampling index * =  1 ,2 ,... is used.

The spectral ratio of the response sequence j/i, y2, . . . ,  yn is calculated using the 

Blackman-Tukey approach for psd estimation, as discussed in section 2.1. Figure 3.1 

depicts the result. Unlike the results in example 2.1 (see figure 2.1), in figure 3.1 the 

spike at is smeared. Although the spike at u>i is consistent with expectations, the 

smearing is undesirable. An even more undesirable feature, however, is the spurious 

smeared spikes at u  =  0.06 and u> =  0.085.

Exam ple 3.2 The FDE for a simple manufacturing assembly station (example 

2.4) is repeated using the simulation clock time t as the oscillation parameter. The
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Figure 3.1: Spectral ratio for a M/M/1 queue using the simulation clock time 

incorrectly, u>i =  0.03. 

arrival rate of a type 1 job is

Ai (t) =  0.83 +  0.1 sin(2iru;i<) (3.2)

with ui = 0.01. The arrival rate of a type 2 job is

A2 (<) = 1.0 +  0.1 sin(27ru>2<) (3.3)

with a>2 =  0.03. The arrivals occur as a non-stationary Poisson process and the 

thinning method is used to simulate each arrival processes [18]. The service time 

of a type 3 job entering service at time t is drawn from an exponential distribution 

with service rate

H(t) =  0.9 +  0.1 sin(27ru>3<) (3.4)

and u>3 =  0.04. The difference between the departure time of the zth type 3 job and

the arrival time of its latest component job (either the type 1 job or the second
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Figure 3.2: Spectral ratio for an assembly operation using the simulation clock time 

incorrectly, to\ =  0.01, to2 =  0.03 u 3 =  0.04.

of the two type 2 jobs) is selected as the tth response statistic of interest. As in 

example 3.1 the definition of the oscillation index is also ambiguous in this example; 

only the sampling index is used.

Although the spectral ratio obtained in example 2.4 (see figure 2.6) was noisy, 

spikes were at least discernible at to2 and 0)3. As illustrated in figure 3.2, however, 

when the simulation clock time is used (incorrectly), the psd does not exhibit dis­

tinct spikes at to2 or 0)3. Instead the spectral ratio has spurious smeared spikes at 

to = 0.0525 and to = 0.0725. The FDE for the assembly operation performed by 

Morrice et al. [26] yielded similar unsatisfactory results.

Based on unsatisfactory results like those in figures 3.1 and 3.2, Morrice et al. 

[26] concluded that the simulation clock time is not a suitable oscillation parameter
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for FDEs. The following example, partially demonstrates why the attempt in [26] 

failed and what must be done to ensure that the simulation clock can be successfully 

used as the oscillation parameter.

Exam ple 3.3 Consider a system whose input is x(t) =  sin(27ru;i). The system 

output response is a sequence y2, y2, . . . ,  yn defined by

f t i+ W i
yi = I sva(2iruit)dt i = 1 ,2 ,. . . ,  n (3.5)

Ju

with (Ox =  0.0625 and n =  1024. The DFT of the response sequence is calculated 

and the magnitude of the (complex-valued) result is used to perform the spec­

tral analysis. This system model is an integration process defined by the times 

ti, t 2 , . . . , t n and integration widths W\, w2, . . . ,  wn. For this example, consistent 

with the definitions in chapter 2, t is the oscillation parameter, t, is the oscillation 

index and i is the sampling index. Four cases are considered:

1. t{ = i for i = 1 ,2 ,. . . ,  n and u>{ =  0.5 for t =  1 ,2 ,. . . ,  n.

Figure 3.3a shows the response sequence and 3.3b the corresponding spectrum. 

The spectrum exhibits a distinct spike at u)\. The magnitude of the spike is 

diminished, however, compared to the magnitude of the spike in example 2.5 

(figure 2.7b). The decrease in the magnitude of the spectrum at u>i is caused 

by the integration operation in equation 3.5, which is equivalent to a low-pass 

filtering operation.

2. ti = i for i =  1,2, . ..  ,n and W\, w2, . . .  ,w n is an iid sequence of exponential
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random variables with mean 0.5.

Figure 3.3c shows the response sequence and 3.3d the corresponding spectrum. 

Similar to the previous case, the resulting spectrum exhibits a distinct spike 

at ui. However the randomness in w i,w 2 , . . . ,w n creates some distortion in 

the response sequence and corresponding noise in the spectrum.

3. t{ = U_i -f e, for i =  1,2,. . . , n  where ej, C2, . . . , c n is an iid sequence of 

random variables exponentially distributed with mean 1 and tu,- =  0.5 for 

* =  1,2, . . .  ,n.

Figure 3.3e shows the response sequence and 3.3f the corresponding spectrum. 

The response sequence is badly distorted and the spectrum exhibits a badly 

smeared spike at u\. If figures 3.3d and 3.3f are compared, it is seen that 

although the randomness in w\, w2, . . .  ,w n creates noise in the spectrum, 

the spectrum still has a distinct spike at wi; randomness in t\, t 2 , . . . , t n, 

however, creates noise in the spectrum and results in a badly smeared spike 

in the spectrum.

4. U =  t,_i +  e, for i = 1 ,2 , . . . ,  n where cj e2, . . . ,  e„ is an iid sequence of random 

variables exponentially distributed with mean 1 and u>i, w2t. . . ,  wn is an iid 

sequence of random variables exponentially distributed with mean 0.5.

Figure 3.3g shows the response sequence and figure 3.3h is the corresponding 

spectrum. As in case 3, the response sequence is badly distorted and the 

spectrum has a badly smeared spike about u i. In this case, however, the
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noise in the spectrum and smearing of the spike is even worse than that in 

case 3.

Figure 3.3 indicates that randomness in the integration start times is

more critical than randomness in the integration widths xi, x2, . . . ,  xn. Randomness 

in the integration width increases the noise in the spectrum, but the spike in the 

spectrum at u>i is still distinct. On the other hand randomness in the integration 

start times results in a smeared spectrum with no distinct spike at u>i.

The response sequences in examples 3.1 and 3.2 are analogous to the sequence 

obtained in case 4 of example 3.3, where both U and W{ are stochastic. The stochas­

tic integration start time U is analogous to the arrival time of the ith customer for 

the M /M / 1  queue or the arrival time of the latest component job of the iih type 

3 job for the simple manufacturing assembly operation. The stochastic integration 

width W{ is analogous to the total wait in the system for the zth customer for the 

M /M / I  queue or the difference between the departure time of the zth type 3 job and 

the arrival time of its latest component job in the simple manufacturing assembly 

operation.

Example 3.3 demonstrates that when using the simulation clock time as the

oscillation parameter, naively sampling at stochastic processing times results in a

smeared and noisy response spectrum.1 Instead, when the simulation clock time

1Example 3.3 does not explain the spurious spectral spikes seen in examples 3.1 and 3.2. The 

cause of the spurious spikes is not yet known.
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Figure 3.3: Response sequence and spectra for the experiments in example 3.3.
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is used as the oscillation parameter, care should be taken to generate an equally 

spaced response sequence. Because Morrice et al. [26] used the stochastic sampling 

approach when using the simulation clock time, they were unable to get satisfactory 

results.

3.2 FDE Histogram  (Integration) M ethod

In this section a correct way to use the simulation clock time as the FDE oscillation 

parameter is developed. This development is based on the established theory of 

counting processes.

Let {N(t), t >  0} be a nonstationary counting process with rate A(t). That is, 

N (t) represents the number of events that occur in [0, <]. Let m(t) — E[N(t)} be 

the expectation function for the counting process. If m(i) is differentiable for all t 

then
r t+ S

m(t + 8 ) -  m(t) =  J  A(y)dy (3.6)

provided dm(t)/dt is bounded on [t,t +  5] and is continuous for all but finitely many

points in [t,t -f (5] [18]. If 8  is small then from equation 3.6 it follows that

w  m(t  +  6) — m(t) =  J M )
8 8

where n(i, 8 ) = m(t + 6) — m(t) is the expected number of events in the interval 

[2, t  +  5].

Equation 3.7 can be used to estimate any rate function, e.g., an arrival rate, 

service rate or departure rate, by counting the associated number of events. The
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FDE Histogram method is a data analysis method that uses equation 3.7 to estimate 

the value of a rate function in intervals (i6, (i +  1)£] for * =  0, 1, 2, . . . ,  n — 1 and 

thereby defines an equally-spaced response sequence. This method can be used for 

FDE data analysis when the selected system response statistic is a rate function. In 

traditional FDEs the expected wait in the system, the utilization or the expected 

number in the system is usually the selected response statistic of interest. The 

extended FDE Histogram method, developed in chapter 4 and based on the FDE 

Histogram method, should be used in this case.

An outline of the FDE Histogram method is presented next, followed by a 

pseudo-code implementation.

1. Setup: Select the simulation stopping time T, the number of histogram bins 

n and the histogram bin width 6. The parameters T, n and 6 should be 

selected so that T  = 7j +  nS, where 7\ is a warm-up time and nS is the time 

over which data is collected. Initialize the histogram. Select the number of 

replications S.

2. Simulation: Select a rate function as the response statistic of interest. For 

each replication, vary the selected system parameters *j, x2, . . .  sinusoidally 

with frequency u?i, w2, . . .  and build a histogram of the number of events 

corresponding to the response rate of interest.

3. Postprocess: After S  replications, estimate the response rate for each bin 

by dividing the number of events in each bin by SS; the result defines the
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response sequence. Then calculate the DFT of the response sequence and

compute the magnitude of the complex DFT to perform the spectral analysis. 

Pseudo-code

for i:» 0 to n-1 do { Setup } 
sum[i] : = 0.0; 

for q:= 1 to S do { Perform S replications } 
begin

t := 0.0;
while (t <= T) do { Simulate and build the histogram } 
begin

t := Time of next event e;
Process next event e;
if (e = event of interest) then
begin

i := t div (bin width); 
sum[i] := sum[i] + 1 

end 
end 

end;
for i:=0 to n-1 do { Determine the response sequence } 

rate[i] := sum[i]/(S*(bin width));
DFT(rate[0..n-1]) { Calculate the DFT of the response sequence }
PSD(rate[0..n-1]) { Compute the magnitude of the complex DFT }

To implement the FDE Histogram method effectively, the parameters S, T, n, 8, 

T\ and the oscillation frequencies cji, w2, ■ • • need to be selected properly. Although 

exact mathematical justification for particular choices of these parameters is dif­

ficult, some guidelines can be provided. The following discussion provides these 

guidelines.

• (Choose n) The integer n should be a power of two so that a standard FFT 

algorithm can be used for calculating the DFT of the response sequence.

• (Choose u>i, u>2 , . . .)  The frequencies u> j, w2, . . .  should be selected so that
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ujj = Cj/n  < 0.5 for all j ,  where Cj is an integer constant. If u>j ^  Cj/n,  

something other than integer multiples of the oscillation period is sampled, 

thereby causing smearing and noise in the spectrum. The constraint ujj < 0.5 

ensures that under-sampling, which can result in spurious spikes (aliasing) in 

the spectrum due to frequency folding, is avoided.

•  (Choose 8) The choice of 6 is important but somewhat arbitrary. Some general 

guidelines can be provided however. Let w0 =  max{wi,u2, ...} . Assuming all 

system parameters xi, x2, ■ ■ ■ are rates and are measured in the same units, let 

J min =  min{ii(0), 22(0) ,...} . If 8 >  l/xmin and S  is large then on average the 

histogram bins corresponding to each of i i ,  ®2, . . .  are not empty. If 6 < 1/2lj0 

then aliasing is avoided. (This is a restatement of Shannon’s sampling theorem 

[42].) Hence the ideal solution is the choice of bin size such that

l/xmin <  8 < l/2u0.

These requirements for selecting 8 also implicitly define constraints for the 

selection of the nominal values of the system parameters and the oscillation 

frequencies. Other constraints for FDE oscillation frequency selection are 

presented in [10].

•  (Choose 7\ ) As mentioned earlier, 7\ is a warm-up time. For the examples 

presented in section 3.3, the results indicate that warm-up is not necessary, 

hence Ti = 0 is used.
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• (Choose S ) Consistent with the discussion in section 2.1, to reduce noise in the 

response spectrum, S  replications are performed and the ensemble average of 

the histogram counts is used as the response sequence. A compromise between 

the desired noise sensitivity and the number of replications is needed. For the 

examples presented later in this section and in section 3.3, S  =  100 is sufficient 

to produce a distinct spike in the response spectrum at u>i.

For completeness, it should be mentioned that, an alternate approach for build­

ing the response sequence histograms is to introduce a new sampling event into the 

simulation. The sampling event is invoked at times 8,28,38... An event counter 

is maintained for the event of interest and the event counter is sampled to deter­

mine the number of events of interest that occurred in the interval ((* — 1)<5, i<5] for 

i =  1,2 , . . .  ,n. The number of events in each interval, tallied over S  replications, is 

determined and the ensemble average is divided by 8 to yield the desired response 

rate sequence. Because this alternate approach requires significant modification of 

an existing simulation program, it is not simple to implement.

Although the software engineering implications of this statement are not in­

vestigated in this dissertation, it is important to note that unlike the alternate 

approach, the FDE Histogram method is very simple to incorporate into an exist­

ing discrete-event simulation experiment. Therefore for this dissertation the simpler 

FDE Histogram method is used for building the histograms.

As a simple illustration of the FDE Histogram method, a non-stationary Poisson
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arrival process is simulated using the thinning method. Customers arrive at a service 

facility according to a non-stationary Poisson process with arrival rate

X(t) — 1.00 +  0.10sin(27rwi<) (3.8)

The thinning method is used to simulate the arrival process. The arrivals constitute 

the events of interest. The histogram bin size is 8 =  1 and T  = n = 4096. T\ = 0 

is used because the resulting spectra indicate that warmup is not necessary. The 

number of replications is S  = 100.

Figures 3.4a, 3.4c, 3.4e and 3.4g illustrate a portion of the resulting ensemble 

averaged histogram corresponding to four different values of In each case, the 

histogram is a noisy estimate of X(t). The noise level can be reduced, if desired, 

by averaging additional replications. However, as figures 3.4b, 3.4d, 3.4f and 3.4h 

illustrate, additional noise suppression is not necessary because, as desired, the 

corresponding spectral estimates exhibit a distinct spike at u>i. Four different fre­

quencies are chosen to demonstrate that the FDE Histogram method works well 

over a wide frequency band.2

3.3 FD E H istogram  M ethod— Exam ples

Several examples are presented in this section to demonstrate the effectiveness of

the FDE Histogram method. Example 3.4 is a FDE for a M /G / l  queue. Example

2The horizontal scale for figures 3.4f and 3.4h is different from that of figures 3.4b and 3.4d to 

clearly exhibit the spike at in each case.
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Figure 3.4: An arrival process response sequence and spectra using the FDE His­

togram method.
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3.5 is a FDE for a tandem network of single-server queues. Examples 3.6 and 3.7 

present FDEs for two general networks of single-server queues.

E xam ple 3.4 A FDE for a M /G / l  queue is performed using the FDE Histogram 

method. Customers arrive as a non-stationary Poisson process, with an arrival rate

A(t) =  1.0 +  0.1 sin(27ra;xt). (3.9)

The thinning method is used to simulate the arrival process. As in section 3.2, four 

different oscillation frequencies, wi =  0.001953, 0.007812, 0.031250 and 0.125000 

are considered to demonstrate that the FDE Histogram method works well for 

a range of frequencies. The service rate is fixed at fi =  2. Four service time 

distributions are considered

1. Exponential with mean 0.5 (standard deviation 0.5);

2. Uniform between 0.35 and 0.65 (standard deviation 0.0866);

3. Erlang with shape parameter 4.0 and scale parameter 0.125 (standard devia­

tion 0.25);

4. Lognormal with scale parameter —0.698 and shape parameter t/0 A  =  0.31622 

(standard deviation 0.05).

A FDE for the M/ G/ l  queue is performed to determine the sensitivity of the depar­

ture rate to variations of the arrival rate. Figures 3.5a-3.5d illustrate the departure
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Figure 3.5: Departure rate spectra for M /G /l queues, wj =  0.001953 and u>i =

0.007812.
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Tandem Queuing System

queue 2 queue 3queue 1

- 1 0
server 1 server 2 server 3

Figure 3.6: Tandem of queues, 

rate spectra obtained by using the FDE Histogram method with the histogram bin 

width 6 =  1, S  =  100 replications, T  =  n =  4096 and I \  =  0.

In vivid contrast to the smeared spectrum obtained when naively using the 

simulation clock time (figure 3.1), each of figures 3.5a-3.5d have a distinct spike 

in the departure rate spectrum at u>i. The distinct spikes at u i demonstrate that 

unlike traditional FDEs, the FDE Histogram method effectively and correctly uses 

the simulation clock time as the FDE oscillation parameter.3

Exam ple 3.6 A FDE for a tandem network of three infinite capacity M /G / l  

queues (figure 3.6) is performed using the FDE Histogram method. External ar­

rivals take place at node 1 according to a non-stationary Poisson process, with the

arrival rate given by equation 3.9 with u>i = 0.031250. After exiting one node cus­

3The height of the spike at Wi is proportional to the standard deviation of the service time dis­

tribution; i.e., the spike corresponding to the service time distribution with the smallest standard 

deviation (Lognormal) is the shortest while that corresponding to the service time distribution 

with the largest standard deviation (Exponential) is the tallest.
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tomers move to the next node in series and finally leave the system from node 3. 

Server 1 has an exponentially distributed service time with mean 0.5. The mean 

service time distribution of server 2 is Uniform between 0.35 and 0.65 and that of 

server 3 is Erlang with shape parameter 4.0 and scale parameter 0.125. The service 

rate at each node is 2.

The departure rate from each node is determined using the FDE Histogram 

method with T  =  n  =  4096, 6 =  1.0, 7\ =  0 and S  = 100. Figure 3.7a depicts 

the arrival rate spectrum at node 1. Figures 3.7b-3.7d depict the departure rate 

spectra for nodes 1, 2 and 3 respectively. For nodes 2 and 3 the arrival process is no 

longer Poisson. The departure rate spectrum from each node still exhibits a distinct 

spike at the frequency of input oscillation, however, indicating that (as expected) 

the departure rate at each node in a tandem network of M /G / l  queues is sensitive 

to variations in the external arrival rate. The distinct spike in each spectrum at 

demonstrates the effectiveness of the FDE Histogram method in performing a FDE 

for a tandem network of M /G / l  queues.

Exam ple 3.6 A FDE for a feed-forward network of queues (figure 3.8) is performed 

using the FDE Histogram method. Each node is a single-server M /G / l  FIFO queue 

with mean service rate (i = 2. Server 1 has exponentially distributed service times 

with mean 0.5; the service time distribution of server 2 is Uniform between 0.35 

and 0.65, the service time distribution of server 3 is Erlang with shape parameter 

4.0 and scale parameter 0.125 and that of server 4 is Lognormal with scale pa-
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Figure 3.8: Feed-forward network of single server FIFO queues.

rameter —0.698 and shape parameter \/0T  =  0.31622. External arrivals occur at 

node 1 according to a non-stationary Poisson process with the arrival rate given 

by equation 3.9 with ui\ =  0.031250. After exiting one node, a customer selects its 

next destination (another node or the outside world) consistent with the indicated 

transition probability associated with each path. The departure rate at each node 

is selected as the response statistic of interest and the FDE Histogram method is 

used to obtain the departure rate spectrum at each node.

Figure 3.9 is the arrival rate spectrum and figure 3.10 is the departure rate 

spectra for each node. As in the much simpler case of a single-server queue, the 

response spectra at each node exhibits a distinct spike at the frequency of input 

oscillation, despite the fact that the arrival process to each of the internal nodes 

in the network is no longer Poisson. Let jfo, y2, #3, y4, j/5 denote the height of the 

spikes at u>i in the departure rate spectra for node 1,2,3,4,5 respectively. It is



51

observed that

j/2 «  0.6yi (3.10)

where 0.6 is the transition probability from node 1 to node 2,

2/3 «  0.42/! (3.11)

where 0.4 is the transition probability from node 1 to node 3, and

2/4 «  O.82/2 +  O.82/3 (3.12)

where 0.8 is the transition probability from node 2 to node 4 and from node 3 to 

node 4. Equations 3.10-3.12 are used in chapter 6 to show analytically that the

height of the spike at u)\ in the departure rate spectrum of each node is related

to that of the other departure rate spectra via the transition probabilities of the 

network.

Exam ple 3.7 A FDE for a feedback network of M /G f  1 queues (figure 3.11) is 

performed using the FDE Histogram method. As in the feed-forward network, each 

node is a single-server M /G / l  FIFO queue with mean service rate ft =  2. Servers 1 

and 5 have exponentially distributed service times; the service time distribution of 

server 2 is Uniform between 0.35 and 0.65, the service time distribution of server 3 

is Erlang with shape parameter 4.0 and scale parameter 0.125 while that of server 4 

is Lognormal with scale parameter —0.698 and shape parameter \/o T  = 0.31622. 

External arrivals occur at node 1 according to a non-stationary Poisson process with 

rate given by equation 3.9 with u>i = 0.031250. After exiting one node, a customer
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Figure 3.9: Arrival rate spectrum for the feed-forward network in figure 3.8;

A(0) =  1.0; a  =  1.0; « i =  0.031250.

selects its next destination (another node or the outside world) consistent with the 

indicated transition probability associated with each path. The departure rate at 

each node is selected as the response statistic of interest and the FDE Histogram 

method is used to obtain the departure rate spectrum at each node.

Figure 3.12 is the external arrival rate spectrum and 3.13 the departure rate 

spectra for each node, respectively. As in the case of the feed-forward network (ex­

ample 3.6), the departure rate spectra at each node is seen to exhibit a distinct spike 

at the frequency of input oscillation. In chapter 6 it is demonstrated analytically 

that the height of the spike at ioi in the departure rate spectrum of each node is 

related to that of the other departure rate spectra via the transition probabilities 

of the network.
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Figure 3.10: Departure rate spectra for the feed-forward network in figure 3.8;

A(0) =  1.0; a  =  0.1; a* =  0.031250.
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Figure 3.13: Departure rate spectra for the feedback network in figure 3.11;

A(0) =  1.0; a  =  0.1; u>i =  0.031250; Average service rate per node =  2.0.



56

The FDE Histogram method derived in this chapter solves the existing FDE 

indexing problem by using the simulation clock time as the oscillation parameter 

and by generating uniformly-spaced samples for the response sequence. The FDE 

Histogram method can be effectively used when the selected response statistic is 

a rate function. The extended FDE Histogram method presented in chapter 4 can 

be used when the selected response statistic is not a rate function. Correct imple­

mentations of examples 2.2-2.4 are presented in chapter 4, using the extended FDE 

Histogram method.

Similar to traditional FDEs, the FDE Histogram method presented in this chap­

ter is based on the assumption that sinusoidal oscillation of a system parameter at 

a selected frequency induces oscillations at the same frequency in a system re­

sponse statistic, provided that the response statistic is sensitive to the oscillated 

parameter. This frequency-invariance assumption has been empirically verified by 

several FDE practitioners, but never theoretically defended. Theoretical support 

for this assumption is presented in chapter 5 for M/M /1  queues. In chap ter 6, the 

frequency-invariance assumption is shown to be true for networks of such queues.



CHAPTER IV

EXTENDED FDE HISTOGRAM METHOD

4.1 Extended FDE Histogram  M ethod

The FDE Histogram method presented in chapter 3 is conditioned on the selected 

response statistic being a rate function; e.g., an arrival rate or a departure rate. 

Unfortunately, most commonly used system response statistics are not rate func­

tions, a fact (implicitly) recognized by early FDE practitioners who devoted their 

attention to (non-rate) response statistics like the expected wait in the system or 

the system utilization. The FDE Histogram method is thus of limited direct use. As 

demonstrated in this chapter, the FDE Histogram method can be easily extended, 

however, to system response statistics that are not rate functions.

The mathematics used to extend the FDE Histogram method to estimate non­

rate system response statistics is presented in section 4.1.1. An outline of the 

extended FDE Histogram method is presented in section 4.1.2, followed by a pseudo­

code implementation in section 4.1.3. Specific examples of estimating the expected 

wait and utilization for a M /G / l  queue using the extended FDE Histogram method 

are given in sections 4.1.4 and 4.1.5 respectively. In section 4.2, a method for 

estimating the expected number in the system is outlined. The effectiveness of 

the extended FDE Histogram method is further demonstrated in section 4.3 by

57
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performing a FDE for the feedback queuing systems and simple manufacturing 

system discussed in chapter 2.

4.1.1 Mathematical Basis

Corresponding to the non-stationary counting process {N(t) , t  > 0} defined in 

section 3.2, let n(<, 5) be the expected number of events occurring in the interval 

(t,t  +  £]. That is, n(t,6) = m{t + 6) — m(<), where m(t)  =  i?[lV(<)]. The FDE 

Histogram method estimates n(t, 8) via replication—the time line t > 0 is divided 

into intervals of length 8 and during the qtli replication of the process the total 

number of events nq(t,8) that occur in the interval (t, t +  6] is determined. If the 

number of replications S  is large, then n(f, 6) can be estimated by

-  4 lT n? M )- C4-1)
*9=1

Let u(t) be the expected value of the system response statistic that is to be esti­

mated, e.g., the expected wait in a M /G / l  queue. Let uq(t,S) represent the sum 

of the responses (e.g., waiting times) associated with the nq(t,6) events that occur 

in the interval (t, t + £] during the qth replication of the system. Let u(t, 8) repre­

sent the sum of the responses accumulated in the interval (<,< +  <5] averaged over S  

replications. Then u(t, 6) can be estimated by

(4.2)
*9=1

The expected response in each interval is the ratio of the sum of the responses as­

sociated with all the events occurring in the interval to the total number of events
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occurring in the interval. Equivalently, in each interval (t, t +  6] the expected re­

sponse is

( 4 -3 )

Provided S  is large and 6 is small, the system response statistic u{t) is approximately 

equal to u(t,6).

4.1.2 O utline

The outline for the extended FDE Histogram method is:

1. Setup: Select the simulation stopping time T, the number of histogram bins 

n and the histogram bin width 6. As in chapter 3, the parameters T, n and 6 

should be selected so that T  = T\ +  nS, where J \  is a warm-up time and n6 

is the time over which data is collected. Initialize the histogram. Select the 

number of replications S.

2. Sim ulation: Select a system response statistic of interest. For each repli­

cation, vary the selected system parameters xi, x2, ■ ■. sinusoidally with fre­

quency wi, u>2, • • - j determine the number of associated events of interest oc­

curring in the intervals (0, 6], (5, 26], (26, 36 ],..., ((n — 1)6, n6] and sum the 

corresponding response in each interval.

3. P o st process: After S  replications, estimate the average response in each in­

terval by using equation 4.3; the resulting histogram values define the response
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sequence. Then calculate the DFT of the response sequence and compute the 

magnitude of the complex DFT to perform the spectral analysis.

4.1.3 Pseudo-code 
type

hist_record = record
u: double; 
n : longint; 

end;
var

hist : array [0..n-l] of hist_record;

for i:= 0 to n-1 do { Setup } 
begin

hist[i].u := 0.0; 
hist[i] .n := 0; 

end
for q:= 1 to S do { Perform S replications } 
begin

t := 0.0;
while (t <= T) do { Simulate and build histogram } 
begin

t := Time of next event e;
Process next event e;
if (e = event of interest) then
begin

i := t div (bin width); { determine bin for t }
hist[i].n := hist[i].n +1; { Build histogram }
hist[i].u := response for event e { Sinn response }

end
end

end;
for i:= 0 to n-1 do { Determine the response sequence }

average[i] := hist[i].u/hist[i).n;
DFT(average[0..n-1]); { Calculate the DFT of the response sequence } 
PSD(average[0..n-1]); { Compute the magnitude of the complex DFT >

The guidelines for the selection of T , K,  6, S and u j\, u;2 , . . .  for the FDE Histogram

method hold for the extended FDE Histogram method as well.
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4.1.4 Estimating the Expected Wait

To estimate the expected wait in a system, nq(t,6) is defined as the number of 

arrivals in the interval (/,f +  6] during the qth replication and uq(t,S) is defined as 

the sum of the waits experienced by these customers. The expected wait (response) 

sequence can then be obtained by using equation 4.3.

Example 4.1 A FDE for a single-server M /G / l  FIFO queue is performed using

the extended FDE Histogram method. The service time of a customer entering

service at time t is drawn from an Erlang distribution with shape parameter 4.0 and

sinusoidally varying scale parameter 0.25 +  0.025 sin(2ira;i<) where ui\ = 0.031250.

The average service rate is 1.0. The arrival rate is fixed at A =  0.5. The waiting

time in the system of the ith customer arriving at time f,- is selected as the response

statistic of interest; i.e., £,• is the oscillation index and i is the sampling index.1

The extended FDE Histogram method is used to build a histogram of the time-

dependent expected waiting time in the system. A histogram bin size of S =  1 is

used and T  =  n = 4096. The resulting spectrum indicates that warmup is not

necessary, so 7\ =  0. The number of replications is S  =  100.

Figure 4.1a depicts the expected wait response sequence and figure 4.1b shows

the corresponding spectrum. Sinusoidal variation of the service time at frequency u>i

induces similar oscillations in the expected wait in the system at the same frequency.

1The arrival time t,- of the ith customer is stored and at the departure time of the »th customer, 

the wait in the system of the ith customer is determined and binned using 1,-.
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Figure 4.1: Response sequence and corresponding spectrum for the expected wait 

in a M /G /l queue, wi =  0.031250.

As expected and as indicated by the spectrum, the expected wait is sensitive to 

variations of the service rate. Unlike example 3.1, where Morrice et al.’s incorrect 

FDE approach resulted in a noisy spectrum with spurious spikes, figure 4.1b has a 

distinct spike at u>i with no spurious spikes. The results in figure 4.1b demonstrate 

the effectiveness of the extended FDE Histogram method in performing FDE data 

analysis for a single-server queue if the simulation clock time is used as the oscillation 

parameter.

4.1.5 Estimating the Expected Utilization

For the purpose of the extended FDE Histogram method, the traditional definition 

of system utilization is written in an equivalent form, as the ratio of the total number 

of departures that leaves the server busy to the total number of departures [18]. 

Therefore, to estimate the expected system utilization, the number of departures
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that occur in the interval (<, t +  5] during the qth replication is selected to be n?(t, 8) 

and of these departures, the number that leave the server busy is selected to be 

uq(t, 6). The utilization (response) sequence can then be obtained by using equation 

4.3.

Exam ple 4.2 A FDE for a M /G / l  queue is performed using the extended FDE 

Histogram method. The system utilization is the response statistic of interest. 

Customers arrive as a non-stationary Poisson process, with arrival rate

A (t) = 1.0 +  0.1 sin(27ru;i<) (4.4)

and u>i =  0.031250. The thinning method is used to simulate the non-stationary 

Poisson arrival process. Customers join a FIFO queue before a single server. The 

service time distribution is Lognormal with scale parameter —0.698 and shape pa­

rameter v^OT ~  0.31622. The service rate is fixed at \i =  2.

The extended FDE Histogram method is used to analyze the system utilization. 

As before 6 =  1, T  =  n =  4096, T\ =  0 and S  =  100 is used. Figure 4.2a is 

the response sequence corresponding to the system utilization, figure 4.2b is the 

corresponding spectrum. Sinusoidal variation of the arrival rate at frequency u;j 

induces similar oscillations in the system utilization at the same frequency. The 

spectrum has a distinct spike at u>i indicating that the system utilization is sensitive 

to variations of the arrival rate. Therefore, the extended FDE Histogram method is 

effective in performing a FDE if the simulation clock time is used as the oscillation 

parameter.
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Figure 4.2a: Response Sequence
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Figure 4.2: Response sequence and corresponding spectrum for the utilization in a 

M /G /l queue, oji =  0.031250.

4.2 Estim ating the Expected N um ber in the System

Unlike the expected wait in the system, but similar to the utilization, the number in 

the system is an instantaneous statistic. Unlike the utilization, however, the number 

in the system cannot be (naturally) modeled as a counting process. Therefore, 

instead of using a stochastic counting process, an equally spaced response sequence 

corresponding to the expected number in the system can be generated by sampling 

the number in the system at regular time intervals.2

To estimate the expected number in the system, a new event is introduced into 

the simulation. The new event is invoked at times 6,26,36... For each replication,

2This method of generating the sequence of expected number in the system was advocated by 

Dr. Douglas J. Morrice and was first presented in a paper by Mitra, et al. [25].
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at time i6, the number in the system is determined and accumulated over S  repli­

cations. Provided S  is large, the average number in the system at times 6,26,36. . .  

constitute the expected number in the system response sequence. The same method 

can be used to estimate the expected number in the queue.

Exam ple 4.3 A FDE for a Af/G/1 queue is performed with the expected number 

in the system as the response statistic of interest. Customers arrive as a non- 

stationary Poisson process, with arrival rate

X(t) =  1.0 + 0.1 sin(27rwit) (4.5)

and u>i =  0.031250. As before, the thinning method is used to simulate the non- 

stationary Poisson arrival process. Customers join a FIFO queue before a single 

server. The service time distribution is Uniform between 0.35 and 0.65. The service 

rate is fixed at fi = 2.

As before 6 = 1, T  = n = 4096, T\ =  0 and S  =  100 is used. Figure 4.3a 

is the response sequence corresponding to the expected number in the system and 

figure 4.3b is the corresponding spectrum. Sinusoidal variation of the arrival rate 

at frequency u>i induces similar oscillations in the expected number in the system 

at the same frequency. The spectrum exhibits a distinct spike at indicating that 

the expected number in the system is sensitive to variations of the arrival rate. 

Therefore, the extended FDE Histogram method is effective in performing a FDE 

if the simulation clock time is used as the oscillation parameter.
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Figure 4.3o: Response Sequence
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Figure 4.3: Response sequence and corresponding spectrum for the expected number 

in a M /G /l  queuing system, = 0.03125.

4.3 Application o f the Extended FDE H istogram  M ethod

In section 2.2 it was demonstrated that when traditional FDE methods are used, 

the oscillation index has to be selected in an application dependent manner. In 

vivid contrast to traditional FDE methods the extended FDE Histogram method 

is elegantly simple—all that is required is the variation of the system parameters 

using the simulation clock time and the sampling of the response statistic using the 

well-defined oscillation index. In this section, the extended FDE Histogram method 

is applied to feedback queuing systems (examples 2.2 and 2.3) and a manufacturing 

system (example 2.4). These examples emphasize the simplicity, correctness and 

elegance of the extended FDE Histogram method.
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Figure 4.4: Response sequence and spectrum of the expected wait in a feedback 

queue, wi =  0.031250.

Exam ple 4.4 A FDE for the feedback M /M /1  queuing system described in exam­

ple 2.2 is performed using the extended FDE Histogram method. Customers arrive 

as a Poisson process with fixed arrival rate A =  0.5 and join a FIFO queue before a 

single server. The service time of a customer entering service at time t is sampled 

from an exponential distribution with service rate

fi(t) =  1.0 +  0.4 s in (2 7 rw j< )  (4.6)

where u?i =  0.031250. After receiving service a customer rejoins the end of the 

queue with probability p =  0.25 or leaves the system with probability 1 — p = 0.75.

A simulation stopping time of T  = 5120 is selected. The system is allowed to 

warm up for 7\ =  1024 time units (selected empirically); warm up is necessary 

in this case to reduce the low frequency noise in the spectrum caused by the slow
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rise in the expected wait from zero to the nominal steady-state value of 2.0. The 

expected waiting time in the system (including feedback) of customers entering the 

system (after 7\) is the selected response statistic of interest. The histogram bin 

size is 6 =  1, the number of bins is n =  4096 and S  =  100.

Figure 4.4a depicts a portion of the response sequence and figure 4.4b the cor­

responding spectrum. The spectrum has a distinct spike at the frequency of input 

oscillation indicating (as expected) that the expected waiting time in a feedback 

queue is sensitive to variations of the service rate. Note that when the extended 

FDE Histogram method is used there is no need to sort the response sequence by 

the index of arriving customers, as is necessary when the traditional FDE methods 

are used.

Exam ple 4.6 As a variation of example 2.3, a FDE for the feedback M /M /1  queu­

ing system is performed with a sinusoidally varying arrival rate and a sinusoidally 

varying probability of feedback, using the extended FDE Histogram method. Cus­

tomers arrive as a non-stationary Poisson process with arrival rate

\( t)  =  1.0 +  0.1 sin(27rwif) (4.7)

and uj\ =  0.031250. The thinning method is used to simulate the non-stationary

Poisson arrival process. Customers join a FIFO queue before a single server, which

has an exponentially distributed random service time and fixed service rate p =  2.0. 

After receiving service a customer rejoins the end of the queue with probability

p(t) =  0.25 +  0.1 sin(27ru;2t) (4.8)
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Figure 4.5: Response sequence and spectrum of the expected wait in a feedback 

queue, u>i =  0.031250 and w2 =  0.50048.

and w2 =  0.050048. As before, a simulation stopping time of T =  5120 is selected 

and the system is allowed to warm up with T\ =  1024 (selected empirically). The 

expected waiting time in the system (including feedback) of customers entering the 

system (after Ti) is the selected response statistic of interest. Again 8 =  1, n = 4096 

and S  = 100 is used. Figure 4.5a depicts a portion of the response sequence and 

figure 4.5b the corresponding spectrum. As expected, the spectrum has distinct 

spikes at both u>i and u 2 indicating that the wait in the system is sensitive to 

sinusoidal variations of the arrival rate and the feedback probability. Note that, 

unlike example 2.3 there is no need to sort the response sequence by the index of 

arriving customers, thereby demonstrating the simplicity and effectiveness of the 

extended FDE Histogram method.
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Exam ple 4.6 A FDE for the simple manufacturing assembly station in example 

2.4 is repeated using the extended Histogram method. The arrival rate of a type 

1 job is given by equation 3.2, that of a type 2 job is given by equation 3.3 while 

the service rate of a type 3 job is given by equation 3.4. The thinning method 

is used to simulate the non-stationary Poisson arrival processes. For the ith type 

3 job departing the system at time the difference between its departure time 

and the arrival time of the latest component job (either the type 1 job or the 

second of the two type 2 jobs) is selected as the response statistic of interest. The 

extended FDE Histogram method is used to generate the corresponding response 

sequence. A stopping time of T  = 4096 is selected and no warm-up is used. The 

number of bins is n =  4096 with 8 = 1 and S  =  100. Figure 4.6a is a portion 

of the response sequence, figure 4.6b represents the corresponding spectrum. The 

spectrum exhibits distinct spikes at u>2 and u;3. The spike at is not very distinct 

because, as discussed in example 2.4, for the given nominal parameter settings, 

type 2 jobs are the bottleneck and therefore A2 has more effect on the response than 

Ai; the service rate has a significant effect on the response also since a significant 

portion of each response observation is the time in service.

To further illustrate that the extended FDE Histogram method can detect bot­

tleneck jobs, the FDE is repeated with

Ai(<) =  0.45 +  0.05sin(27ru?i<) (4.9)
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Figure 4.6b: Spectrum
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Figure 4.6: Response sequence and spectrum for the manufacturing example with 

type 2 jobs as the bottleneck.

and =  0.01; A2(<) and fi(t) are unchanged. A stopping time of T  = 8192 is 

selected and a warm-up of 7\ =  1024 is used. As before, n =  4096, 5 = 1  and 

S  =  100 is selected. Figure 4.7a is a portion of the response sequence, figure 4.7b is 

the corresponding spectrum. In this case the type 1 jobs axe the bottleneck because, 

on average, the arrival rates for type 1 jobs are less than half the arrival rates for 

type 2 jobs. As before the assembly rate has a significant effect on the response. 

Consistent with expectations, the response spectrum exhibits distinct spikes at u\ 

and W3. The results indicate that unlike Morrice et al.’s incorrect methods for using 

the simulation clock time as the oscillation parameter, the extended FDE Histogram 

Method is an efficient and effective tool for performing a FDE for the manufacturing 

example.
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Figure 4.7b: Spectrum
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Figure 4.7: Response sequence and spectrum for the manufacturing example with 

type 1 jobs as the bottleneck (5 =  100).

To demonstrate how increasing the number of replications decreases the spectral 

noise, the above experiment is repeated with S  =  1000 and all other parameters 

unchanged. Figure 4.8a is a portion of the response sequence and figure 4.8b is the 

corresponding spectrum. As in the case when S  = 100, the spectrum has spikes 

at wi and As discussed in chapter 1, the noise in the response sequence and 

the corresponding spectrum is significantly reduced by increasing the number of 

replications from 5  =  100 (see figure 4.7) to S  = 1000 (see figure 4.8).

Examples 4.1-4.6 indicate that the extended FDE Histogram method can be 

effectively used to perform FDE data analysis using the simulation clock time as 

the FDE oscillation parameter when the response statistic of interest is not a rate 

function. Unlike the smeared spectra obtained in section 3.1, the spectra obtained in
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Figure 4.8a: Response Sequence
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Figure 4.8: Response sequence and spectrum for the manufacturing example with 

type 1 jobs as the bottleneck (5 =  1000).

these examples using the extended FDE Histogram method exhibit distinct spikes at 

the frequencies of input oscillation, clearly indicating the sensitivity of the response 

statistics to variations in the system parameters. Also, because the extended FDE 

Histogram method uses the simulation clock time as the oscillation parameter, it 

obviates the need in traditional FDE’s to select a discrete common oscillation index 

for each system parameter. Therefore, the extended FDE Histogram method is a 

simple, unifying approach to FDEs.



CHAPTER V

FR EQ U EN C Y  R ESPO N SE OF A M /M /1  QU EU E

5.1 FD E M odel Assum ption

As discussed in chapter 2, FDEs are based on a “w-in/w-out” or frequency-invariance 

assumption. That is, if a particular system response statistic is sensitive to a system 

parameter, then sinusoidal variation of that system parameter at a fixed frequency 

will induce similar sinusoidal variations in the response statistic, at the same fre­

quency. Most of the systems on which a FDE has been performed have a M /G /l  

queuing system as the basic unit. The frequency-invariance assumption for M /G /l  

queues has been verified numerically by several queuing theory researchers [3], [16], 

[17], [20], [21], [30], [32], [33], [35], [45], [48]. No theoretical support exists for this 

assumption, however. In this chapter the mathematical theory to support the FDE 

model assumption for a M /M /1  queue with sinusoidally varying arrival rate and 

fixed service rate is derived.1

For a stationary M /M /1  queuing system with fixed arrival rate A0 and fixed

1 Using the mathematical developments provided in this chapter, the frequency response for a 

M /M /1  queue with sinusoidally varying arrival and service rates or for other M / G / l  queues (e.g., 

with Uniform or Erlang service time distributions) could (probably) be derived. Such derivations 

have been identified for future research.

74



75

service rate fi (Xo/fi < 1), the steady-state departure rate is A0. The system can 

be converted to a non-stationary M /M / 1  queue by introducing small sinusoidal 

variations into the arrival rate such that2

r
A (t)  =  A0 +  5 ^  aACos(27ru>fc<). ( 5 .1 )

A=i

The departure rate (as given by Cohen [4]) is

t t t )  =  n ( l - P o ( t j )  (5.2)

where Po(t) is the probability of a free server at time t. Therefore, an expression 

for Po(t) is necessary to derive an expression for £(<). An expression for Po(t) for a 

M /M / 1  queuing system with arrival rate given by equation 5.1 and fixed service rate 

is derived in section 5.2. In section 5.3, this expression for Po{t) is used to establish 

that £(t)  is a phase shifted, amplitude modulated version of the arrival rate, thereby 

validating the frequency-invariance FDE model assumption for a M /M / 1  queue.

5.2 Solutions for Po(t)

Po(t) can be obtained by solving the well-known Kolmogrov equations, given by

=  - A ( * ) P o ( f )  + M*)iM*) (5-3)

=  _ (A (< )  + M t ) ) P , ( t )  + A(0 f l - i (0  +  M 0fl+ i(0  / =  1 ,2 ,... (5.4) 

with the initial conditions:

Pi(0) =  pi I =  0 ,1 ,2 ,... (5.5)

2For r  =  1, equation 5.1 corresponds to the equation for A(t) used in chapters 2-4.
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where Pi(t) is the probability of / jobs in the system at time t. For the purpose of 

the derivations in this chapter, a constant service rate fi(t) =  /it is considered.

An approximate analytical expression for Po(t)  in terms of Ao, /t, a l5 a 2, . . . ,  a r, 

u>i, U2 , . . . tu r and 2r unknown parameters is derived in section 5.2.1 using a nu­

merical solution of the Kolmogrov equations. In section 5.2.2 a differential equation 

relating Po{t), A(<) and /t is derived and in section 5.2.3 the analytical expression 

and the differential equation are used to solve for the unknown parameters in the 

analytical expression for Po(t),  thereby giving an analytical solution for Po(t).

5.2.1 Numerical Solution for Po(t)

Single Frequency of Oscillation

First an arrival rate

A (t)  = Ao +  a i cos(27tu;i<) (5.6)

is considered. To solve the Kolmogrov equations numerically, it is necessary to 

assume that the queue is effectively truncated. If a large truncation level is selected, 

however, then truncation does not have any significant effect on the numerical 

results. For the range of values of Ao, p, c*i and u>i considered, experimental results 

indicate that a truncation level of / < 30 is sufficient. The Kolmogrov differential 

equations for Pi(t) are solved numerically for / =  0 ,1 ,. . . ,  30 using fourth and fifth 

order Runge Kutta formulas provided by the Matlab [22] software package.

Figure 5.1 is a typical plot of Pq(t)  versus t  obtained by solving equations 5.3
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Figure 5.1: Po(0 versus =  1-0, // =  2.0, (ai,u>i) =  (0.3,0.03125). 

and 5.4 using po = 0.456, pi =  po(l — Po)1 for I =  1 ,2 ,3 ,... ,  30 and A(f) =  1.0 + 

0.3 cos(27ra;i<) with u>\ = 0.03125 and p = 2.0. Plots of Po(t)  versus t  indicate that 

Po(t) is periodic with period l/wj and thus has a Fourier series representation of 

the form
OO

P0(t) = 1 — po — 53 P» cos(27ri/u>it — <}>„) (5.7)
i/=i

where the magnitude p„ and the phase <j>„ are to be determined for v  =  1 ,2 ,... The

Fourier series is written in a somewhat non-standard form because the departure

rate (1 — Po(t))p  is of primary interest and

OO

1 — ft(<) =  Po +  5Z P» cos(27ri/u;1t — (f>„) (5.8)
U=1

where po = Xo/p is expected to be the a i =  0 utilization of the system.

Standard least-squares techniques are used to fit equation 5.7 to numerical values 

of PQ{t)  and thereby obtain values for p0, pv and <f>u, for a small range of v values. 

Tables 5.1-5.4 show the resulting values of po, pv for different parameter settings. 

The results indicate that, as expected, po = Aojp  and pi =  a \k i/p  where ki is a
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Table 5.1: Po,Pi,P2 ,- ■ • in the Fourier series representation of P0(t) for different 

Aq =  0.5, ct\ = 0.1 and p =  4.00.___________________________________________

U>x Fourier Coefficients

Po Pi P2 Po pi Ps Po

0.007812 0.875000 0.024996 0.000011 0.000000 0.000000 0.000000 0.000000

0.015625 0.875000 0.024984 0.000023 0.000000 0.000000 0.000000 0.000000

0.031250 0.875000 0.024937 0.000045 0.000001 0.000000 0.000000 0.000000

0.062500 0.874999 0.024750 0.000082 0.000000 0.000001 0.000001 0.000001

0.125000 0.874998 0.024061 0.000128 0.000002 0.000002 0.000002 0.000002

function of Ao, p and u\. Moreover, for v =  2 ,3 ,... ,  the coefficients pv are effectively 

zero relative to p\. That is, if A(t) is given by equation 5.6 with p constant, then

Po(t) « 1  —— — Ai — cos(27ru»if — ^i) (5.9)
p p

provided Ao + «i < p.

Multiple Frequencies of Oscillation

Next equation 5.1 is considered for r  > 1. Figures 5.2a-5.2h are r  =  2 plots of 

Po[t) verses t and the magnitude of the corresponding (complex-valued) DFT for 

different values of p obtained by solving the Kolmogrov equations. Figures 5.3 

and 5.4 show Po(t) versus t and the corresponding spectrum for r  =  3 and r =  7. 

All three figures indicate that when A(t) is given by equation 5.1, then Po(t) has a 

Fourier series representation with r distinct spikes in its spectrum at u>i,u?2, . . .  ,u?r.
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Table 5.2: pQ, pi, p2>.. .  in the Fourier series representation of Po(t) for different <*1;

Ap =  1.0, (i =  4.00 and =  0.015625.

<*1 Fourier Coefficients

Po Pi P0 Po P4 Ps po

0.100000 0.750000 0.024964 0.000036 0.000001 0.000000 0.000000 0.000000

0.200000 0.750000 0.049928 0.000144 0.000007 0.000000 0.000000 0.000000

0.300000 0.750000 0.074889 0.000325 0.000024 0.000001 0.000000 0.000000

0.400000 0.750000 0.099847 0.000581 0.000056 0.000005 0.000000 0.000000

0.500000 0.750000 0.124801 0.000916 0.000111 0.000012 0.000001 0.000000

0.600000 0.750000 0.149750 0.001334 0.000193 0.000025 0.000003 0.000000

0.700000 0.750000 0.174691 0.001838 0.000310 0.000046 0.000007 0.000001

Table 5.3: po, p i,p2, . . .  in the Fourier series representation of Po(t) for different pt;

Ap =  1.0, ax =  0.1 and u>i =  0.015625.

p Fourier Coefficients

Po Pi Po Po P4 Ps Po

4.000000 0.750000 0.024964 0.000036 0.000001 0.000000 0.000000 0.000000

2.000000 0.500000 0.048260 0.000680 0.000028 0.000001 0.000000 0.000000

1.333333 0.250948 0.048673 0.002239 0.000181 0.000155 0.000128 0.000111
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Figure 5.2: P0(t) and its corresponding spectrum for a M/M/1 queue with A0 =  1.0, 

(Qi;^ i)  =  (0.1,0.03125), (02,0 2̂) =  (0.05,0.08984) and different values of /z.
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Table 5.4: po,pi,p2 , . . .  in the Fourier series representation of P0(t) for different Ao; 

a>i = 0.1, p =  4.0 and ui\ = 0.015625.______________________________________

Ao Fourier Coefficients

Po P i P i Po P i PS Po

1.000000 0.750000 0.024964 0.000036 0.000001 0.000000 0.000000 0.000000

1.500000 0.625000 0.024914 0.000060 0.000002 0.000000 0.000000 0.000000

2.000000 0.500000 0.024765 0.000110 0.000003 0.000000 0.000000 0.000000

2.500000 0.374990 0.024229 0.000205 0.000007 0.000001 0.000001 0.000001

Figure 5.3a; p0= 0 .41.0i
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Figure 5.3: P0(t) and its spectrum for a M/Af/1 queue with (c*i,u>i) =

(0.1,0.031250), (a2,wa) = (0.05,0.08984), (a3,w3) = (0.2,0.12109375), A0 =  1.0 

and p = 2.5.
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Figure 5.4: Po(t) and its spectrum for a M / M / 1 queue; (ai,u>i) =  (0.05,0.031250), 

(oa.wa) =  (0.06,0.04296), (a3,u>3) =  (0.07,0.07421), (a4,w4) =  (0.08,0.08984), 

(a s,ws) =  (0.04,0.16015), (a6,u>6) =  (0.09,0.20703), (a7,w7) =  (0.1,0.14453), 

Ao =  1.0 and fi =  2.5.

Standard least-square techniques are used to estimate the Fourier coefficients in the 

Fourier series representation of Po{t). The least-square fits indicate that, provided 

the maximum amplitude of oscillation of the arrival rate is less then fx, Po(t) can 

be approximated by

P0(t) s a l -  — kh cos(27rwht -  <t>h). (5.10)
P h=1 P

Equation 5.10 is a key, albeit empirical, result that has been verified with many 

numerical simulations.

5.2.2 D ifferential Equation For P0(t)

In this section, a differential expression relating Po(t), A(t)  and fi is derived. The 

differential equation and equation 5.10 are used to derive an analytical expression
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for Po(t) in section 5.2.3. For a time-dependent M /M / 1  queue, let Q(t)  represent 

the expected number in the system. Therefore by definition

0 W = £ w ) -  (5-ii)
1 = 1

Differentiating both sides of equation 5.11 with respect to t  yields

Q 'V ) =
1=1

=  £  f ( m o a - i ( o  -  ( a w + m m ) + M O fl+i(o) (5.12)
1=1

where A(t) and fi(t) represent the time-varying arrival and service rates, respectively.3 

Simplifying equation 5.12 yields

Q'(t) =  \ ( t ) - v ( t ) ( l - P 0(tj )  (5.13)

In [32], Rider derives an approximation expression for Po(t) as

A (i) =  (1 -  e-«WT)(l -  p(t)) + (5.14)

where T  is an unknown small positive parameter. Rider shows that simulation 

results for Q ( t ) obtained using equations 5.13 and 5.14 with T  set to zero are close

to the numerical results obtained by solving the Kolmogrov equations and then

using equation 5.11 to computer Q(t).  When T  = 0, equation 5.14 reduces to

Po(,) =  T + W  (SU5)
3A time-varying service rate fi(t) is used to derive the differential equation for Po(t). Substi­

tuting fi =  fi(t) in the resulting differential equation will yield the required differential equation 

when the service rate is constant.
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Tipper et al.[47] validated the accuracy of equation 5.15 via simulation and numer­

ical methods.

As an independent validation, in this dissertation the accuracy of equation 5.15 

is tested numerically for a range of parameter values of interest. Equation 5.6 is used 

to represent A(/). Figures 5.5a-5.5f show Po(t) obtained by numerically integrating 

equations 5.3 and 5.4 to give Pi(t)  for / =  0,1 ,2 , . . .  ,30 and Po(t)  obtained by (i) 

numerically integrating equations 5.3 and 5.4, (it)  using the numerical solutions 

of P/(t)  for I = 0 ,1 ,2 , . . . ,30  to give Q(t)  using equation 5.11 and finally (Hi) 

substituting numerical value of Q(t)  into equation 5.15. The two Po(t)  versus t 

figures are indistinguishable, except when Ao +  <*1 approaches fi. That is, equation 

5.15 is a good approximation for Po(t)  provided A0 +  e*i < fi.

Provided Ao +  a j < fi, Q(t)  can be eliminated from equations 5.13 and 5.15 to 

obtain an equation relating Po(t),  A(t) and fi(t). That is, equation 5.15 gives

1 +  Q(f)=  1
Po(t)

or,

O 'w  = t U p  (5.16)

Combining equations 5.13 and 5.16 yields

- p » )

or,

-  K M  =  « < )  -  K*))PHt) + /<(<)/?((). (5.17)
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Figure 5.5: Po(t) obtained by solving the Kolmogrov equations (continuous plot)

and by using equation 5.15 (dashed plot).
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Therefore eliminating Q(t) from equations 5.13 and 5.15 results in the following 

Abel’s equation [28] of the first kind relating the arrival rate X(t), the service rate 

fi(t) and Po(t)

p ' ( t ) + M i *  (<)+m  -  m P o  ( o = o. (5.18)

When fi(t) = fi, the Abel’s equation for Po(t) is

Po(t) + fiPg(t) +  (A(<) -  fi)P*(t) =  0. (5.19)

5.2.3 A nalytical Solution for P0[t)

Single Frequency of Oscillation

When the arrival rate is given by equation 5.6, the corresponding expression for 

Po{t) is given by equation 5.9 in terms of two unknowns k\ and <f>j. Equations for 

ki and <j>\ are now derived.

Because equations 5.3 and 5.4 are linear, if A(t) is allowed to be complex-valued 

then the probabilities Pj(t) are complex-valued as well. The real parts of the prob­

abilities correspond to the solution associated with the real part of A(t). Therefore,

a solution for Po(t) can be obtained by using a complex variable form of A(t) and

equation 5.9 and then considering the real part of the resulting expression for Po(t).4

4Although the FDEs are performed with sinusoidal inputs, the mathematical derivations pre­

sented here are based on cosinusoidal inputs for the sake of simplicity of dealing with the complex 

variables. Equivalent expressions can be derived if sinusoidal inputs are considered—at the expense 

of some mathematical simplicity.
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Zl

That is, it is assumed that

A (t) =  A0 +  a\ei2ltUlt (5.20)

P0(t) =  (1 _  ^£) _  (5.21)
fi fi

where z\ is a complex number. Substituting (5.20) and (5.21) in (5.19) yields 

( a\eie™lt\  3 ( a\ei6™li 2aiel4,ru'ltAo , 2aie,4,fh,>t\  2
V /*2 /  \  /*2 v2 v- ) Zl
(  i2jrwi t 2o1e’4irwitA0 e '^ 'A g  2a1ei4*“lt 2ei2™'t\ 0 2iei2™'tnuj1\

+ { e + p 2 p2 p  + ~ ~ r ~  £ )
+ e i2nu>l t  ̂  _  ^ 0  +  ^  =  o ^  ^

Provided ax is sufficiently small, terms of order on or smaller can be ignored, in

which case equation 5.22 simplifies to

( _ i  _  M  ^  (1 -  2 ^  +  4 )  =  0 (5.23)
V fi2 fi fi J \ n f*2J

Because e,2nwit ^  0 for all t, solving for z\ yields

Zl (Ao — fi)2 +  ilnu ifi 1 +  ib\ (5.24)

where

*' =  ( &  <5-25>

Therefore, the real part of equation 5.25 gives

P0(t) =  ^1 — cos(2irwxt — <f>i) (5.26)

where

*i =  , (5.27)
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and

<f>i =  tan-1 (61). (5.28)

Validating the Analytical Expression of P0(t)

The approximate analytical expressions for Po(t) (equation 5.26) is obtained 

by solving the differential equation for Po(t)  (equation 5.19) using an empirically 

determined form for Po(t) (equation 5.9). To determine the validity of the empirical 

form, the analytical solution for Po{t) (equation 5.26) is compared to the numerical 

solution of Po(t) obtained by solving the Kolmogrov equations (equations 5.3 and 

5.4).

Figures 5.6a-5.6e show Po(t) versus t  obtained by numerically integrating equa­

tions 5.3 and 5.4 as discussed in section 5.2.2 and Po(t) obtained analytically using 

equation 5.26. Figure 5.6 indicates that the solutions given by equation 5.26 match 

the numerical solution for Po(t) provided Ao + «i < fi. As Ao +  e*i —► fi, the match 

becomes less accurate.

Multiple Frequencies of Oscillation

Equation 5.10 gives an analytical expression for Po(t) for a M / M / 1  queue with 

arrival rate given by equation 5.1 and fixed service rate fi. The following theorem 

specifies the values of kh and (f>h for h = 1, 2, . . . ,  r  in equation 5.10.

Theorem 5.2.1 I f  the arrival rate A(f) to a M /M / 1  queue with service rate fi is

T

A(<) =  A0 + ^  ah cos(2icukt) (5.29)
h=l
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and the corresponding probability o f a free server is

p 0( t)  =  1 — —  — T 2  cos(27runt — <j>h) (5 .30 )
I* &  /*

then for all h =  1 ,2 , . . . ,  r,

where

kk *  W ( 1  +  b l)  (5 .31 )

<f>h ~  ta n -1  (6 /,) (5 .32)

2nu}hp.
bh = (Ao - p Y

provided Ao +  +  02 +  . . .  +  aT < p.

Proof: Expressions for kh and <f>h, for h =  1 ,2 , . . . ,  r  can be obtained by combining

equations (5.19) and (5.30). As in section 5.2.3, these expressions are obtained by

using a complex variable form of A(t) and equation (5.30). That is, the equations

A (t) =  Ao +  a hei2̂ 1 (5.33)
h=l

P0(t) =  1 - ± 2 . - j 2 — zhei2™>'t (5.34)
P h=1 P

are used, where z i ,z 2, . . . , z r are unknown, complex-valued quantities. Equations 

(5.34) indicates that

Po(t) = -i2 ir £  ctH Z^e*™ *  (5.35)
h=i v-

and

Po (0(/*ft(f) +  A(<) -  m) =  ( l -  -  -  E  ^ z n e ^ y  £  ei2̂ a k{l -  zh). (5.36)
^ h=i /i=i
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Assuming that a i , a 2, . . .  , a r are sufficiently small so that all terms of quadratic or 

higher order are approximately zero, equation (5.36) reduces to:

Pg(t)(l*Po(t) + A(<) -  /i) ~  ( l -  ^ ) 2 £  -  zh). (5.37)
/1 h=1

Equations (5.19), (5.35) and (5.37) give

-i2 ir ^2  ahzh— e,2*‘J'ht +  ( l -  —) 2 ^  e,2lri,'',tO(ft(l -  zh) ~  0 
h=i f1 P h=i

or,

J2  ctke ^ *  ((1 -  ^ ) 2 -  zh(( 1 -  ^ ) 2 +  z27t——)] ~  0. (5.38)
V- f1 t* J

Provided ui,u>i, . . . ,  wr axe distinct, e,2™ht for h = 1,2, • • • , r  are linearly indepen­

dent functions and the only way equation (5.38) can be valid for all t is when

(1 -  ^ ) 2 -  Zh((l -  + i2ir~ )  ~  0 A =  1,2, . . .  ,r. (5.39)

Equivalently,

(1 _  ^2)2 ~  Zh^ i  _  b l f f i  +  z 2 tt^ )  h =  1,2, . ..  , r
r  r* r*

or,

ZH~ T T i h  A =  1’2’--->r  (5-40)

where

^ h = 1 ' 2 r - <5-41>

Substituting in equation (5.34) and using the real part of the resulting expression 

for P0(t),

P0{t) =  1 -  — -  ^2  ~ k h  cos(27ru>ftt -  <j>h) (5.42)
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where

kh ~  l /y / l  + ibh h =  1,2, . . .  ,r

and

<j>h ^  tan_1(6/i) A =  l , 2 , . . . , r  

which proves theorem 5.2.1.

5.2.4 High Utilization

Figure 5.6 indicates that if Ao + «i is close to fi, then the exact numerical solution 

differs from the (approximate) analytical solution, thereby requiring a correction to 

be introduced to equation 5.26 to match the numerical results. To determine the 

correction term, Po{t) is derived from equations 5.13 and 5.14 instead of equations 

5.13 and 5.15. For /i(t) =  //, equation 5.14 can be rewritten as

p- ii) = M  + T T W )  (!U3)

where

g(t) = ( l - e - “T) ( l - p ( t ) ) .  (5.44)

From equation 5.43 it follows that

n 'm - c - x T -P oW  + a'it) f545)
Q U  (p0( t ) - g ( t ) r  (5,45)

Elimination of Q'(t) from equations 5.13 and 5.45 results in

P'(<) +  AP$(t) +  BPl{t) + CP0{t) + B  = 0 (5.46)



where,

A = e ^ fi ,

B  =  eMT(-2/^(<) +  A(<) -  /i),

C = e^ ifig 2^ )  -  2g{t)(\(t) -  /*)),

D =  e"T(i72 (<)(A(<) -  /i))  -  g \t) .

Note that for T  =  0, g(t) =  0, B  =  A(<) — /i, C  =  D =  0 and equation 5.46 reduces

to equation 5.19.

Using equation 5.21 as an approximation for Fb(0 and substituting equations 

5.20 and 5.21 in equation 5.46 gives

1 +  i6i(e"T -  1) /B ^
*  =  l + . t . e . r  (5'4?)

where b\ is given by equation 5.25. Equation 5.47 yields

_  b2e,iT ib\
Zl ~  1 +  6?e2̂  ”  1 +  bje2»T

= d - i e  (5.48)

where

and

We*11
' - ‘ - r r i u s i  <5-« )

e = T + ^ -  <5-50>

The real part of equation 5.48 giyes
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where d and e are given by equations 5.49 and 5.50 respectively.

In equation 5.51, T  is a correction factor which is not known. If analytical 

solutions approximately matched to the numerical solutions are desired, however, T  

can be adjusted to get a good approximation. Consider a M /M /I  queue with high 

average utilization. Specifically Ao =  1.0, a i =  0.1, p =  1.25 and u>i =  0.03125. 

These parameter settings are used with equations 5.3 and 5.4 to get a numerical 

solution for Po{t) which is then compared with equation 5.51 for various values of 

T. Figure 5.7 illustrates the results for four different values of T. For T  = 0.0, 

equation 5.51 yields a solution smaller than the numerical results (see figure 5.7a); 

for T  =  0.8/ p the equation 5.51 solution overshoots the numerical results (see figure 

5.7b); T  =  0.5/// gives a closer match (see figure 5.7c) and T  = 0.47/// gives an 

almost exact match (see figure 5.7d). Thus by manipulating T  a good approximation 

for the analytical solution of Po(t) can be obtained from equation 5.51 when Ao +  a  

is close to /t, is desired.

5.3 D eparture R ate from a M/ M/ 1  Queue

The departure rate for a M /M /l  queue with arrival rate given by equation 5.1 and 

fixed service rate p is obtained by substituting equation 5.30 in equation 5.2. That 

is
r

£(t) =  A0 +  J2  <Xhh cos(2iruht -  <j>h) (5.52)
h=l
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Figure 5.7a: T = 0.0 Figure 5.7b: T = 0.8/ / t  
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Figure 5.7: P0(t) versus t (dashed plot: analytical and continuous plot: numerical) 

for different values of T, with X0 =  1.0, // = 1.25, <*i =  0.1, u  = 0.03125.
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where fa and fa  are given by equations 5.31 and 5.32 respectively. Provided A0 + 

£*i+CC2+ . . -+otr < fi, equation 5.52 indicates that the departure rate from a M /M /1  

queue with sinusoidally varying arrival rate and fixed service rate is an amplitude 

modulated, phase shifted version of the arrival rate. Thus, equation 5.52 validates 

the frequency-invariance FDE model assumption. This mathematical derivation 

is applied in chapter 6 to determine the frequency response of a M /M / 1 queuing 

system and to determine the frequency response of a network of such queues.



CH APTER VI

FR EQ U E N C Y  R ESPO N SE O F M /M /1  Q U EU IN G  N ET W O R K S

In the first section of this chapter, the mathematical derivation of chapter 5 is 

used to determine the frequency response of a M /M /1  queuing system. Then, in 

section 6.2 a FDE for two networks of M /M /1  queues is used to demonstrate that 

the frequency-invariance FDE model assumption is valid for a network of M /M /1  

queues, provided the maximum amplitude of oscillation of the arrival rate at each 

node is less than its service rate. The frequency response characterization of a 

network of M /M /1  queues opens up avenues of FDE-based modeling and Fourier 

analysis of systems common in a wide variety of applications such as computer and 

communication networks.

6.1 M/ M/ 1  Queue Frequency R esponse

In section 5.3 it was demonstrated that when the input (arrival rate) to the M /M /1  

queuing system is varied according to

A (t) =  Ao + a  cos(2tr*;<) (6.1)

then the corresponding system output (departure rate) is

£(*) =  A0 +  —r--Q =„ cos(27ru>t — tan-1 (b)) (6.2)
V1 +  o2

97
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where

L 27rU>l* to o\

i = ( w ? -  (6-3)

By definition the frequency response of a system is defined as the ratio of the output 

spectrum to the input spectrum, at every frequency. That means that if the M /M  /I  

queue is regarded as a linear system, then the frequency transfer function of the 

system .is

H{oj) =  , —1... (6.4)
y/l+u>/uc

where

(A0 -  n f
( *

Usually, the system frequency response is represented by two plots—the amplitude 

|//(w)| versus w and the phase angle LH{u>) versus u>. A plot of |//(w)| versus u  

and versus u  together is known as a Bode plot.

Bode plots for a M /M /1  queue can be obtained by using equation 6.4. Bode 

plots also can be obtained by performing a FDE for a M /M /1 queue—the magnitude 

of the ratio of the DFTs of the departure rate and the arrival rate at the frequencies 

of input oscillation gives |/f(u>)| while the difference between the phase angles give 

LH(u>). Bode plots obtained by using the FDE Histogram method for different 

values of utilization are compared with the frequency response given by equation 

6.4; figure 6.1 shows the amplitude plots and 6.2 the phase plots for different values 

of A0/fi = 0.1, 0.3, 0.5, 0.7, with aj =  0.1 and Ao =  1.0. The figures indicate that 

the analytical solution for |//(w)| given by equation 6.4 matches the simulation
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results even for high average utilization, while the analytical solution for LH(lj) 

matches the simulation results only for small utilization and u).

6.2 Frequency R esponse o f a Com plex Network o f Queues

This section investigates the frequency response of an open network of s M /M /1

service nodes. Each service node has an Exponential service time distribution and

infinite capacity. For v = 1 ,2 ,. . . , s ,  the (stationary) service rate of node v is

fiv. If there is a network link between nodes v and t/, then p(v, v') represent the

transition probability associated with the link. The 0th node denotes the exterior of

the network; the “source” of external arrivals and the “sink” for network departures.

With this convention, the network transition matrix is written as:

/p(0,0) p(0,1) p(0,2) . . .  p(0,s)

p(l,0) p ( l ,l )  p(l,2) . . .  p (l,s)

\p (s ,0 ) p (s ,l) p(s,2) . . .  p{s,s)J

The 0th row of this matrix represents the external arrival probabilities; the 0th 

column represents the network departure probabilities. External arrivals to the 

network occur according to a non-stationary Poisson process with rate

A (t) = A0 + ao sin(2jru;ot) (6.6)

That means that, for v' = 1 ,2 ,... ,s , external arrivals occur at node v' with proba­

bility p(0, v') and therefore A(t)p(0, v') is the external arrival rate at node v'.
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Figure 6.1: Amplitude plots for the frequency response of a M /M /1  queue compar­

ing simulated and analytical results.
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Let A(wo) represent the magnitude of the DFT of the external arrival sequence 

and let £v{uo) represent the magnitude of the DFT of the departure rate sequence 

from node v at Wo-1. For each node v, let A„ and av represent the sum of the nominal 

values of all inputs to the node and the sum of the amplitudes of oscillation for all 

inputs to the node respectively; let kv(u>0) =  |i/„(u;o)| =  1/\J{1 +  V*) represent the 

magnitude of the transfer function from node v' where bv< =  27rwo//v(A„' — fiv>)2- 

Provided the maximum amplitude of oscillation of the arrival rate at each node 

is less than its service rate, the “u>-in/u>-out” assumption for each node holds and 

thus, the “flow out power spectrum equals flow in power spectrum times transfer 

function of the node”. The flow balance can be characterized by

8

iAuo) =  +  £ £ v (v o )p (v ,v ') )  v '=  1,2 (6.7)
v= l

A unique solution of these equations can be obtained to express each | v«(u>o) as a 

function of A(w0).

To demonstrate the application of equation 6.7, the “feed-forward” network in

1Only the magnitude of the DFTs at the frequency of oscillation of the external arrival rate 

cj = u 0 is considered, because the magnitude of the DFTs at other frequencies is essentially

negligible.



103

figure 3.8 is considered. For this network s =  4 and the transition matrix is
/o.o 1.0 0.0 0.0 0.0 A

0.0 0.0 0.6 0.4 0.0

0.2 0.0 0.0 0.0 0.8

0.2 0.0 0.0 0.0 0.8

, 1.0 0.0 0.0 0.0 0.0 >
The only variation from the network in example 3.6 is that each node exponential 

server. External arrivals occur only at node 1 according to a non-stationary Poisson 

process with rate A(t) given by equation 6.6.

From equation 6.7, the departure rate spectrum from each node is

|i(wo) =  fci(u;o)A(u;o)

6(^o) =  M^oXO.e^Wo))

£3 (^0 ) =  fc3(wo)(0.4£i(wb))

£i(wo) =  A;4 (a-»o)(0.8^2 (^0) +  0.8|3(u;o))

(6.8)

(6.9)

(6 .10)

(6 .11)

provided that the maximum amplitude of the arrival rate at each node is less than 

its service rate.

The (unique) solution to equations 6.8-6.11 is

£1 (^ 0 ) =  &i(u;o)A(u;o) (6 .1 2 )

£2(^0) =  0.6&i(a;o)A:2(wo)A(u;o) (6.13)

£3(^0) =  0.4&i(u>o)&3(wo)A(u;o) (6.14)

£4 (^0 ) =  0.48fci(wo)fc2(wo)fc4(wo)A(wo) +  0.32fci(u>o)fc3(wo)A;4(u;o)A(wo).(6.15)
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Table 6.1: A„, a„, and kv for each node v of the network.

V A„ Qv ky

1 1.0 0 .100 0 .999

2 0 .6 0 .058 0 .998

3 0 .4 0 .039 0 .999

4 0 .8 0 .077 0 .997

Exam ple 6.1 A FDE for the network in figure 3.8, with A(<) =  1.0+0.1 sin(27ru>0t), 

u)0 = 0.031250 and (iv =  4.0 for v = 1,2,3,4 yields A(o>0) =  203, £i(wo) =  202, 

62(^0) =  120, ^(wo) =  80 and ^(wo) =  160. Table 6.1 gives the nominal values of 

the arrival rate, the maximum amplitude of oscillation and the magnitude of the 

transfer function at each node for the network i.e., for each node v, A„ +  a v < fxv. 

Substituting A(wo) and kv for v = 1 ,... ,4 in equations 6.12-6.15 gives

l i M  =  (0.99)(203) =  202 

6(wb) =  (0.6)(0.99)(0.99)(203) *  121 

6 M  =  (0.4)(0.99)(0.99)(203) «8 1

£4{u)0) = 0.8((0.6)(0.99)(0.99) +  0.4(0.99)(0.99))(0.99)(203) w 161. (6.16)

Thus the FDE results are (essentially) identical to the results obtained by using 

equation 6.7. That is, provided the maximum amplitude of oscillation of the arrival 

rate to each node is less than the service rate, the input frequency is invariant and
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spectral energy in the network is flow balanced. Equation 6.7 also validates the 

claim made in chapter 3 that the height of the spike in the departure rate spectrum 

of each node is related to that of the other departure rate spectra via the transition 

probabilities of the network.

E xam ple 6.2 A FDE for the feedback network given in figure 3.11, with s = 5

and the corresponding transition matrix

/0.0 0.4 0.0 0.6 0.0 0.0 \

0.0 0.0 0.8 0.2 0.0 0.0

0.2 0.4 0.0 0.0 0.0 0.4

0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.2 0.0 0.0 0.8

V 1.0 0.0 0.0 0.0 0.0 0 .0 /

is performed with A(t) = 1.0 +  0.1 sin(27ru7O0  where u o =  0.031250 and fiv =  4.0

for v = 1,2,3,4. The FDE yields A(w0) = 203, £i(uo) =  134, £2(u>0) =  136, 

£3(^0) =  148, £i(wo) = 148 and £s(u>o) =  171. From equation 6.7, the flow-balance 

equations for the feed-back network are:

6 ( w o ) =  ( 0 . 4 A ( u > o )  +  0 . 4 y 2 ( u > o ) ) A : i  ( w 0 ) ( 6 . 17 )

£ 2 ( ^ 0 ) =  ( 0 . 8 £ i  ( w o )  +  0 . 2 £ j ( w o ) ) f c 2 ( u ; o ) ( 6 . 18 )

^ 3 ( ^ 0 ) =  ( 0 . 6 A ( u ; o )  +  0 . 2 | i ( u ; o ) ) f e ( w o ) ( 6 . 19 )

£ j ( w o ) =  £ 3 ( ^ 0 )  ̂ 4 ( ^ 0 ) ( 6 . 2 0 )

6 ( ^ 0 ) =  ( 0 . 4 £ 2 ( u > o )  +  0 . 8 f 4( u ; o ) ) & 5 ( w o ) . ( 6 . 2 1 )
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The nominal value of the arrival rate, the maximum amplitude of oscillation and 

the magnitude of the frequency response at each node in the network are such that

A„ +  av < fiv for v =  1 ,2 ,. . . , s  and kv fn 1.0. Substituting A(w0) and kv for

v =  1 , . . . ,  5 in equations 6.17-6.21 gives

£ 1 ( ^ 0 )  =  0 .4 A (w o )  +  0 .4 £ 2 (u?o)

£ 2 ( ^ 0 ) =  0 .8 £ i(a > o )  +  0 .2 £ 4 (w o )

£3 ( ^ 0 ) =  0 .6 A (w o )  +  0 .2 £ i( w o )

£4(^0) =  £3(^0)

£s(wo) =  0.4£2(a;o) +  0.8£4(wo). (6.22)

The (unique) solution to these five equations is:

6 M  =  ( 5 6 0 / 8 3 0 )  A M  

6 M  =  ( 5 7 0 / 8 3 0 ) A M  

£3 (u>0 ) =  ( 6 1 0 / 8 3 0 )  A (w o )

& M  =  ( 6 1 0 / 8 3 0 )  A (w b )

£ s M  =  ( 7 1 6 / 8 3 0 ) A ( w o ) .  ( 6 .2 3 )

Substituting A(w0) =  203 in equation 6.23 yields

6 M  = (560/830)(203) =  138 

6 M  = (570/830)(203) =  140 

6 M  = (610/830)(203) =  149
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=  (610/830)(203) =  149 

6 M  =  (716/830)(203) =  175. (6.24)

The values of |„(wo) in equation 6.24 are approximately equal to the values generated 

by the FDE for the network. This example further demonstrates that (i) provided 

the maximum amplitude of oscillation of the arrival rate to each node is less than 

the service rate, each node in a network of M /M /1  queues obeys the frequency 

invariance property (ii) spectral energy in the network are flow balanced (in) the 

height of the spike in the departure rate spectrum of each node at the frequency of 

oscillation of the external arrival rate is related to that of the other departure rate 

spectra via the transition probabilities of the network.



CHAPTER VII 

Conclusions

7.1 Conclusions

Since their introduction in the early 80's, significant work has been done to extend 

the applicability of FDEs to regression analysis, simulation optimization and gra­

dient estimation. Two fundamental theoretical and data analysis FDE problems 

remain, however. These problems are a roadblock to the widespread acceptance 

and use of FDEs. The objective of this dissertation has been to investigate and 

solve these problems.

To perform a FDE spectral analysis correctly, it is necessary to select a suitable 

oscillation parameter and corresponding oscillation index. Until recently, the proper 

choice of the oscillation parameter and index has been an open problem in the 

FDE literature—the so-called “FDE indexing problem”. Solutions to the FDE 

indexing problem using the simulation clock time, the FDE Histogram method 

and the extended FDE Histogram method, were developed in chapters 3 and 4 

of this dissertation, respectively. The FDE Histogram method is used for FDE 

data analysis when the selected system response statistic is a rate function. The 

extended FDE Histogram method is used for the FDE data analysis of non-rate 

response statistics. Several discrete-event simulations were provided to demonstrate
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the effectiveness of the two methods.

FDEs axe based upon the assumption that if a particular system response statis­

tic is sensitive to a system parameter, then sinusoidal variation of that system pa­

rameter at a fixed frequency will induce similar sinusoidal variations in the response 

statistic, at the same frequency. Chapter 5 of this dissertation presented numerical 

and analytical support for this FDE model assumption for a M /M /l  queue. In 

chapter 6 the validity of this FDE model assumption was demonstrated for two 

networks of M /M /l  queues.

7.2 Future Research

7.2.1 Frequency R esponse of a  M (t)/M (t) / 1 queue

In this dissertation the frequency response for a M /M /l  queuing system with time- 

varying arrival rate and fixed service rate is derived. Further research is necessary 

to determine whether the derivation can be extended to M /M /l  queues with sinu­

soidally varying arrival and service rates, or for other non-stationary M /G /l  queues. 

Also, using the analytical expression for Po(t) for a M /M /l  queue, the analytical 

expressions for other system statistic like the expected number in the system and 

expected wait need to be derived.



7.2.2 Gradient Estimation

Recent efforts have been made by Jacobson [12] to apply traditional FDE methods to 

perform gradient estimation. The use of the FDE Histogram method and extended 

Histogram method for harmonic gradient estimation needs to be investigated.

7.2.3 Network Decomposition

This dissertation demonstrates that the frequency response of each network node in 

a network of queues is related to the arrival spectrum via the transition probabilities 

of the paths leading to that node. Hence the spectral estimates could be used as 

“estimators” for the transition probabilities in the network, for a fixed-topology 

network. Estimating the transition probabilities using a FDE would thus yield 

a method for performing the decomposition of complex networks or to identify 

network bottlenecks.

7.2.4 Performance Analysis of “Connected” System s

Complex stochastic queuing networks occur in a wide variety of applications and 

their perturbation (sensitivity) analysis is a daunting task, except in the simplest 

of cases. Analytical methods for analyzing the performance of such systems is 

limited, if not non-existent in most cases. What is required is a simulation-based 

analysis technique that allows the models to be realistic (as opposed to being overly 

simplistic for tractable analysis) and at the same time provides the capability to
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extract meaningful performance metrics from the simulation data. FDEs have the 

potential of providing a solution to this problem. In particular, the Fourier-based 

performance analysis of a network of time-dependent queues needs to be investigated 

for actual networks.

7.2.5 FDE for Terminating Simulations

As pointed by Sargent et. al. in [38], in most of the available FDE literature, 

the system is allowed to reach a quasi steady-state before the data is collected for 

spectral analysis. The Histogram method needs to be extended to perform data 

analysis for terminating simulations.
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