3

% WILLIAM & MARY
CHARTERED 1693 W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1993

Flush communication channels: Effective implementation and
verification

Tracy Kay Camp
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

6‘ Part of the Computer Sciences Commons

Recommended Citation

Camp, Tracy Kay, "Flush communication channels: Effective implementation and verification" (1993).
Dissertations, Theses, and Masters Projects. Paper 1539623841.
https://dx.doi.org/doi:10.21220/s2-d22f-0049

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623841&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-d22f-0049
mailto:scholarworks@wm.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

Order Number 9429673

Flush communication channels: Effective implementation and
verification

Camp, Tracy Kay, Ph.D.
The College of William and Mary, 1993

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

FLUSH COMMUNICATION CHANNELS:
EFFECTIVE IMPLEMENTATION AND VERIFICATION

A Dissertation
Presented to
The Faculty of the Department of Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment
Of the Requirements for the Degree of

Doctor of Philosophy

by
Tracy Camp
1993

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of -
the requirements for the degree of

Doctor of Philosophy

ooy Came

Tracy Camp

Approved, August 1993 J
@« Z’ 7Coa—

Pf/ 1 Kearns, Thesi isor

Skohe. ta&

Stephen Park

WM%W»

William Bynum
Robert Noonan

S711en KIZIdSOn

ii

I dedicate this dissertation to my parents, Sam and Betty Camp.

iii

Contents

Acknowledgements vii
List of Figures viii
Abstract X
1 Introduction 2
1.1 Communication Paradigms 0., 2

1.2 Formalization of the Flush Channel Delivery Order 4

1.3 TheProblem e 7

2 Implementation of a Flush Channel 9
2.1 The “WaitFor” Technique, 12
2.2 Correctness of the WaitFor Technique 17
2.3 Previous Implementation Techniques 21
2.3.1 The Flooding Protocol 21

2.3.2 The Three Counter Technique 23

2.4 Three Counter Technique = WaitFor Technique 25
2.5 TFlow Control Issues e e 30
2.5.1 Bounding Buffers e e 31

iv

2.6
2.7
2.8

2.9

2.10

2.5.2 Bounding Sequence Numbers
The Bounded WaitFor Technique« v v vt v v v oo
Correctness of the Bounded WaitFor Technique
Performance Considerations v v v i oo
2.8.1 TheSystem Model i i e
2.8.2 Data Batched by Flush Messages
Simulation Results o L o e
2.9.1 Multi-link Virtual Cirewdto oo
2.9.2 The Effect of Delivery Order Restrictions
293 TheEffectof B,p,and N v
294 TheEffectof Variance v i oo
AnalyticResults i e e e e e
2.10.1 Virtual Circuit Resequencing Delay
2.10.2 Forward Flush Batching Scenarioo oo v v v v v v
2.10.3 Two-way Flush Batching Scenario

2.10.4 Backward Flush Batching Scenario v v v v b

Verification of a Flush Channel

3.1
3.2
3.3

3.4

Importance of Program Verification.
System Communication Stateso,
Background: Axiomatic Proof Methodology
3.3.1 Synchronous Communication
3.3.2 Asynchronous Communication
An Axiomatic Proof Methodology for Flush Channels
3.4.1 Proofinlsolation.,
34.2 Satisfaction L e
3.4.3 Non-interference e

47

100
100
101
102
103
105
110
111
119
121

3.5 Verification of a Flush Application 122
3.6 Verification of Flush Batching Applications . . ., 137
3.6.1 Batch Example 1: Illustrating Proof Rules for ORD/2F 138

3.7 Batch Example 2: Illustrating Proof Rules for ORD/BF 143
3.8 Batch Example 3: Illustrating Proof Rules for ORD/FF 146
3.9 Soundness and Completeness 149
3.10 Generalization of Conventional Asynchronous Communication. 156
3.10.1 Relationship between Reliable Datagrams and Flush Channels . .. 156
3.10.2 Relationship between Virtual Circuits and Ilush Channels. 158
3.10.3 A Comment on the Generalization 159

4 Concluding Remarks 160

vi

ACKNOWLEDGEMENTS

I am extremely indebted to my advisor Phil Kearns, “P”, for his guidance, criticism,
and patience in the creation of this document. He has been instrumental in molding this
student into an effective researcher. Furthermore, my thanks go to the committee members
for their time on my behalf. T am also grateful to the Patricia Roberts-Harris Fellowship
and the National Science Foundation Grant CCR-8705603 for financial support.

For supporting me throughout my years at William and Mary, many thanks go to several
friends. Mike Seale for his diligence not only in problem solving, but in attempting to win
on the racquetball court; Marge Cook for the low rent and late-night discussions; Tracey
Beauchat for all his system expertise; Steph Lake for bar hopping and sharing dreams; Matt
Johnson for introducing me to this university and keeping me amused during my tenure
here; Laurie King for a special friendship along with crisis intervention and prevention; and
Glen Oberhauser for pushing me to stay on top of my dissertation and keeping me stable
during the stressful completion of this document.

In addition, thanks to my Uncle Dave who was my role model in becoming part of the
academic world. And lastly, I'll forever be indebted to my parents.

vii

List of Figures

11
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

Message Crossing: Two-way Flush and Ordinary Messages 5
Message Crossing: Forward and Backward Flush Messages 5
A Sample Immediate Predecessor Graph 7
Logical and Physical Message Paths 9
The Immediate Predecessor Graph in Terms of the WaitFor Protocol 16

Contradiction: A Non-Chained Predecessorof m 19
The Reliable Network in the Flooding Protocol 22
The Immediate Predecessor Graph in Terms of The Three Counter Technique 30

The Retransmission Problem 32
The Bounding Sequence Number Problem 34
The Largest Sequence Number L oo oot 36
Performance System Model e 47
Batches Terminated with Forward Flushes 49
Batches Separated with Two-way Flush Messages 50
Batches Preceded by Backward Flushes IV |
Message Delays on a Virtual Circuit oo .. 53
Virtual Circuit Mean Message Delay 54
Reliable Datagram Mean Message Delay 55
Forward Flush Batching Scenario 56

viii

2.17 Two-way Flush Batching Scenario v v i v v v v v v o 57

2.18 Backward Flush Batching Scenario v v v oo 58
2.19 Varying the Numberof Batches 60
2.20 Varying the System Utilization 0. 61
2.21 Varying the Numberof Links 62
2.22 Hyperexponential: Varying the Number of Batches 66
2.23 Hyperexponential: Varying the Number of Batches 67
2.24 Hyperexponential: Varying the Number of Batches 68
2.25 Hyperexponential: Varying the System Utilization 69
2.26 Hyperexponential: Varying the Number of Links 70
2.27 Inter-arrival and Transmission Times: M/M/coo oo oo o 84
2.28 Analysis vs. Simulation Results: M/M/coo 87
2.29 Analysis vs. Simulation Results: M/M/co v oo v v v v v v v v v 88
2.30 Inter-arrival and Transmission Times: M/M/N 89
2.31 Analysis vs. Simulation Results: M/M/8. 90
2.32 Analysis vs. Simulation Results: M/M/8. 91
2.33 Analysis vs. Simulation Results: M/M/oo oo i v oo 96
2.34 Analysis vs. Simulation Results: M/M/oo 97
2.35 Analysis vs. Simulation Results: M/M/8. 98
2.36 Analysis vs. Simulation Results: M/M/8. 99
3.1 A Sample Covering Relation. 118
3.2 TheCovering Relation it e it e 122
3.3 Batches Delimited With Two-way Ilushes 138
3.4 Batches Preceded vy Backward Flushes 143
3.5 Batches Terminated with Forward Flushes 146

ABSTRACT

Flush communication channels, or F-channels, generalize more conventional asynchronous
communication paradigms. A distributed system which uses an F*-channel allows a program-
mer to define the delivery order of each message in relation to other messages transmitted
on the channel. Unreliable datagrams and FIFO (first-in-first-out) communication channels
have strictly defined delivery semantics. No restrictions are allowed on message delivery
order with unreliable datagrams—message delivery is completely unordered. FIFO chan-
nels, on the other hand, insist messages are delivered in the order of their transmission.
Flush channels can provide either of these delivery order semantics; in addition, F-channels
allow the user to define the delivery of a message to be after the delivery of all messages
previously transmitted or before the delivery of all messages subsequently transmitted or
both. A system which communicates with a flush channel has a message delivery order that
is a partial order.

Dynamically specifying a partial message delivery order complicates many aspects of how
we implement and reason about the communication channel. From the system’s perspective,
we develop a feasible implementation protocol and prove its correctness. The protocol
effectively handles the partially ordered message delivery. From the user’s perspective, we
derive an axiomatic verification methodology for flush applications. The added flexibility of
defining the delivery order dynamically slightly increases the complexity for the application
programmer. Our verification work helps the user effectively deal with the partially ordered
message delivery in flush communication.

FLUSH COMMUNICATION CIIANNELS:
EFFECTIVE IMPLEMENTATION AND VERIFICATION

Good communication is as stimulating as black coffee,
and just as hard to sleep after.
Anne Morrow Lindbergh

Chapter 1

Introduction

1.1 Communication Paradigms

A distributed system is a set of processes which communicate via message passing. Commu-
nication is termed asynchronous when a message send operation does not wait for execution
of its matching receive. The network subsystem which implements the communication
path between the sender and the receiver handles the message until delivery occurs at the
destination process [Tan89)].

One way to categorize asynchronous message passing constructs is by the delivery or-
der restrictions placed upon messages. For example, unreliable datagram communication
imposes no delivery order restriction. The fact that datagram m, is transmitted before m,
says nothing about the order in which the destination process may receive those messages
(if they are received at all). A virtual circuit or sequenced reliable packet protocol, on the
other hand, imposes a rigid order on message delivery. If message m, is transmitted before
message mg over a FIF'O (first-in-first-out) channel, then m; must be delivered before m,.
There is, however, no reason to impose all-or-nothing delivery order requirements on all
messages in every distributed program.

Flush channels generalize the above two competing views of asynchronous message pass-

CHAPTER 1. INTRODUCTION 3

ing semantics by allowing a programmer to specify message delivery order restrictions as
appropriate to the needs of the program [Ahu90}. An F-channel is unidirectional and reli-
able. The send construct appears as:

send (type, data) on F
where type is the F-channel message type, data is the data to be transmitted, and F' is the
identity of the F-channel connecting two communicating processes. Four message types,
each with a different impact upon delivery order, are available to the programmer using

F-channel communication:

o A lwo-way flush message (type 2F) flushes the communication channel in
two directions. The two-way flush message is delivered after every message

transmitted before it and before every message transmitted after it.

e A forward flush message (type FF') flushes the channel in a forward direction.

The message is delivered after every message transmitted before it.

e A backward flush message (type BI') flushes the channel in a backward direc-
tion. The backward flush message is delivered before every message transmitted

after it.

e An ordinary message (type Ord) does not flush the communication channel
at all. The only constraints on the delivery of an ordinary message are those

imposed by the other three message types.

It is important to note that the ordering restrictions placed upon messages concerns their
delivery to the destination user process; flush messages may arrive at the destination host
in any order. We use the term arrival to denote the point in time that a message is passed
from the network to the destination host. The term delivery represents the event when the
message becomes eligible for reception by the destination process. A correct implementation
of an I'-channel ensures messages arriving at the destination process are delivered without

violating the order specified by the transmitting process.

CHAPTER 1. INTRODUCTION 4

The receive operation for F-channel communication appears as:
receive (type, data) from F.
The invoking destination process of the receive operation is blocked until there is a message
available for delivery on F'.

Programming distributed systems which use F-channels is relatively straightforward. As
illustrated in [Ahu90], such programming may be as simple as that which relies upon virtual
circuit communication. A global snapshot protocol, similar in spirit to that of Chandy and
Lamport [CL85] but cast into the context of a system which uses F-channel communication,
is presented in [Ahu90]. Communication paradigms for I'-channels are developed in [AVS91].
In all of these examples, the use of I’-channels provides a greater potential for concurrency
than the use of FII'O channel communication but without the programming disadvantages
of unreliable datagram communication. This increase in concurrency of message delivery
can occur when there are multiple physical paths between source and destination and packet

switched routing is used.

1.2 Formalization of the Flush Channel Delivery Order

To obtain the greater potential for concurrency offered with F-channel communication, we
must solve the problem of dealing with the dynamic delivery order. FIFO communication
channels and unreliable datagram communication have static delivery order semantics in-
dependent of the application program which utilizes the channel. The delivery order for
an I-channel, on the other hand, is defined by the application program. As the program
executes, the delivery order is created “on the fly”. We need an abstraction to easily under-
stand this dynamic, and possibly complicated, delivery order that is inkerent in F-channel
communication.

Possible delivery orders are interpreted by Ahuja from the perspective of message cross-

ing [Ahu90}. Two messages sent on an F-channel are said to cross when they are delivered

CHAPTER 1. INTRODUCTION 5

in an order different from their transmission order. Crossing is allowed when no ordering
restrictions exist between two messages. As defined, ordinary messages place no restrictions
on the delivery order. A two-way flush, on the other hand, places strict delivery ordering
requirements on the channel; no message (of any type) is allowed to cross a two-way flush
message. Figure 1.1 illustrates how a two-way flush message, maF, restricts all crossings.
The messages drawn as dashed lines are not allowed. (Real time increases from left to right

on the time-lines.)

Myp Morg Mord

Figure 1.1: Message Crossing: Two-way Flush and Ordinary Messages

A forward flush message, mpp, guarantees all messages sent before mpp are delivered
before mpg is delivered. As shown in Figure 1.2, messages sent after mpp are permitted to
cross mpp (from right to left). A backward flush message, mpp, guarantees all messages
sent after the transmission of mpp are delivered after mpr. Messages sent before mgp are

allowed to cross mpyp (from left to right).

Figure 1.2: Message Crossing: Forward and Backward Flush Messages

The problem with viewing the delivery order of messages in this manner is that the
time-lines cannot show the possibility of message crossing. The time-lines, instead, show
how the messages are actually delivered Lo the destination. For example, consider the two

ordinary messages denoted mg,q in Figure 1.1. Since there are no ordering restrictions on

CHAPTER 1. INTRODUCTION 6

these two messages, the first ordinary message may be delivered before or after the second.
The time-line, however, can only illustrate one of the two possible delivery order scenarios.
Let M denote the multiset of messages transmitted on F-channel F. We define an

irreflexive partial order, @+, on M to represent the inherent delivery order in the system:
aHp CMx M,

such that for m,m’ € M, m «+Fp m' if and only if m cannot be delivered after m’. For
example, if a two-way flush, mqp, is transmitted before an ordinary message, mp,q, then
Mo 9+p mord. We say that mop is a predecessor of mp,q or, equivalently, mo,q is a
successor of map. In either case, mqp cannot be delivered after mp,y. A given message may
have many predecessors, but if m, m’ € M and there is no m” € M with m <+p m"” a+p m’,
then we say that m is an immediate predecessor of m/. We define an irreflexive partial
order, <p, to represent this immediate predecessor relation. That is, if m is the immediate
predecessor of m/, then m ap m’. It is possible for elements of M to be unordered under
<+p. If ordinary message mo,q4 is transmitted immediately before backward flush mpgg, the
two messages may be delivered in any order. That is, moyu #+F mpr, and mgp d+F morq.

We can draw the immediate predecessor relation, <, as a directed graph. Each element
of M is denoted by a vertex. We connect message m to message m' with a directed edge from
m to m' if and only if m is an immediate predecessor of m/. Clearly, a+p is the transitive
and irreflexive closure of ap. The graph of immediate predecessors in a partially ordered
set conveys all the information about the partial order in a simple manner, including the
possibility of one message being delivered before another.

I'igure 1.3 illustrates an instance of the immediate predecessor abstraction. In this
graph, a message is labeled as <type,i>; type is the type of the flush message and i is a
unique sequence number for the message. We use the notation <¢;,...,cr> to mean a

composite data structure consisting of the elements ¢; through ¢;. One may validate the

CHAPTER 1. INTRODUCTION 7

<0rd,0>

<Ord 4>
> <FF,6> ——
<Ord,5> <2F,11>

<Ord7> /
<Ord,9>
<BF 8> <
<0rd, 10>

Figure 1.3: A Sample Immediate Predecessor Graph

<Ord, 1> —7 <2F 3>

<0rd,2>

directed edges from the definition of each flush message type in Section 1.1. For instance,
messages numbered 0, 1, and 2 have directed edges to <2F,3>, and there is a path from
<2F, 3> to all messages with higher sequence numbers. This is in keeping with the definition
of a two-way flush message—it must be delivered after every message transmitted before it
and before every message transmitted after it.

We find it convenient to define Pred(m), the predecessor set of message m, as
Pred(m) = {m' € M : m’ a+p m}.

For example, the backward flush labeled <BF,8> has predecessor set

Pred(<BF,8>) = {<2F,3>,<0rd,2>,<0rd,1>,<0rd, 0> }.
Lvery message in Pred(<BF,8>) must be delivered before <BF,8>. Messages not in
Pred(<BF,8>) are unrelated to the delivery of <BF,8>. For example, <Ord, 4> may or
may not be delivered before <BF,8>. No protocol which implements an F-channel should

delay the delivery of <BF,8> due to the non-delivery of <Ord, 4>.

1.3 The Problem

Allowing the user to specify the message delivery order complicates implementation and
verification. Delivery order semantics are no longer static. The restrictions placed on

message delivery are specified by the sender on a message by message basis. The underlying

CHAPTER 1. INTRODUCTION 8

abstraction for the delivery order inherent in F-channel communication, <+, allows us to
represent the delivery restrictions simply. We use this irreflexive partial order throughout
our consideration of flush communication.

TFrom the system’s perspective, an effective implementation that supports a delivery
order specified during execution is not obvious. Two attempts at implementing [-channels
have appeared in the literature; neither protocol can be considered simple and efficient. We
develop an implementation technique that effectively handles the dynamic delivery order.
This technique deduces aF and exploits the deduction to decide when a received message is
eligible for delivery. Practical issues, such as finite buffer capacity, are considered as well.

Simulation results illustrate that an F-channel implementation offers the promise of
ultra-high bandwidth communication over multiple physical paths. The results obtained are
from the special case involving two of the four message types: ordinary messages “batched”
with one flush message type. In addition to the simulation results, we provide analysis for
the performance of batched ordinary messages as well. The two results validate one another.
All implementation results, protocol and performance, are given in Chapter 2.

An application programmer, using the P-channel communication paradigm, has flexi-
bility in defining the delivery order requirements. Defining the delivery order dynamically
allows the programmer to choose the least amount of delivery order restrictions required,
thus potentially improving the performance of the application. Unfortunately, the com-
plexity of the system increases due to the additional nondeterminism in message passing.
To help the user understand the system, we develop a methodology for reasoning about
I"-channel message passing in Chapter 3.

This thesis concerns the investigation of I-channel communication from the system’s
and user’s perspectives, Using the irreflexive partial order defined intrinsically in F-channel
communication, we explore implementation and verification areas for this non-traditional

communication construct.

Let all things be done decently and in order.
New Testament, Corinthians XIV

Chapter 2

Implementation of a Flush

Channel

Consider the logical unidirectional message path between two processes in a distributed

system as shown in Figure 2.1. Let S denote the sending process; let R denote the receiver.

Logical Message Path
S tllllIlllllllllllllllllllllllllIllllllllllIlllllllllIllllllllllIlIIIIlIIlIIIlIIIIlII>-

F-channel F-channel
implementation Implementation

Physical Physical
Xmit Link Link Recv
® ® & mEEaES———
y a(m)
Networking support Intermediata Intermediate Networking support
at host where S resides Node Node at host where R resides
LN N]

Figure 2.1: Logical and Physical Message Paths

In this network, one may identify several important events in the lifetime of a message m

sent by S to R. t(m) denotes the time of transmission of m by S; it is the time at which

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 10

m is passed to the networking support by $’s execution of a send command. a(m) is the
time of m’s arrival at the destination; m may be buffered at the destination node for some
period of time. d(m) is the time of m’s ultimate delivery to the user process R—it is the
time when the destination process can allow the receipt of m without violating any delivery
order constraints.

In any communication paradigm (FIFO, unordered, and flush), a message may experi-
ence a delay at the destination host due to R’s not having issued a receive. For both FIFO
channels and I-channels, however, there may be an additional delay between a message’s
arrival and its delivery to the destination process. This further postponement is called rese-
quencing delay. It is the interval [a(m), d(m)) in Figure 2.1, and it accrues due to differences
between the arrival order and the allowed delivery order(s). For a FIFO channel, a given
message cannot be delivered until all messages transmitted before it have been delivered.
A message which takes a fast path through the underlying physical network and arrives
early, out of order, must be buffered until all messages transmitted before it have arrived
and been delivered. Resequencing delay is a major impediment in attempts to provide high
bandwidth virtual circuits over multiple parallel links between source and destination (see,
for example, [YN8G, Cho89, AR87]).

The resequencing problem is more complex for F-channels because the (partial) deliv-
ery order required by an F-channel is generally more complex than the (total) FIFO order
imposed by a virtual circuit or a sequenced packet channel. Intuitively, however, the rese-
quencing delay for an F-channel is generally less than that for a virtual circuit. We expect
the resequencing delay for an F-channel toincrease when we add more restrictions to the de-
livery order. The delay, however, should approach that of a virtual circuit only in the worst
case. As such, F-channels offer promise as a means of providing extremely high bandwidth
inter-process communication over multiple transmission paths, without the programming
disadvantages of datagram communication. Delivery order requirements (and, indirectly,

the associated resequencing delays) are imposed by the programmer in keeping with the

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 11

semantics of the distributed application.
We assume the existence of an effective netwerk layer mechanism which assures reliable
transmission of messages. We do not make any assumptions about transmission delay,

arrival order, or routing policies. The network support provides the following operations:

X mit data to dest

sends a message, with contents data, from the invoker’s site to the site specified as
dest. Once the message is passed to the network layer software (i.e., before its delivery

to dest), the invoker continues.

Recv buff from src
will result in the delay of the invoker until a message arrives from host src. When
such a message arrives, the contents of the message are stored in the invoker’s address

space at a location denoted by buff. The invoker then continues.

Reiterating our previous definitions, we use the term arrival to mean that a message has
been received by the network support software at the destination host. The term delivery
refers to a message’s reception by the user process, the ultimate destination of the I*-channel.

In summary, reexamining Figure 2.1, we need to implement the protocol layer which
is shaded. We must provide users with F-channel send and receive operations which
are faithful to F-channel message type semantics. Our minimal networking needs are met
by the Xmit and Recv operations—we implement a layer of software which provides F-
channel send and receive operations to user processes on top of this networking support
[KC91, KCA92]. The guiding principle for the implementation of the send and receive

primitives is based on Pred(m), the predecessor set of message m, defined in Section 1.2.

Flush Channel Implementation Policy:

Message m cannot be delivered unless all elements of Pred(m) bave been delivered.

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 12

2.1 The “WaitFor” Technique

Consider Pred(m). This predecessor set includes all messages that must be delivered before
message m can become eligible for delivery. To implement an F-channel, we deduce Pred(m)
at the receiver by the following method. We augment each message at the transmitter with
two integers: a unique sequence number and its waitfor value. The waitfor value is the
highest sequence number in the message’s predecessor set. The two integers effectively
allow the destination to deduce the structure of the partial order and, hence, the delivery
order restrictions imposed on the F-channel by the sender. Suppose that I’-channel £ -
connects a user process at site P; with a user process at site P;. As will be developed later
in this section, an I"-channel send for any of the four message types will ultimately result

in the transmission of a message via a network call of the form
Xmit <m.type, m.seqrno, m.waitfor, m.data> to P;,

where m.type is m’s flush message type, m.seqno is the sequence number of m, m.waitfor is
m’s wailfor value, and m.data is the data to be transmitted.

The basic idea behind the WaitFor technique is the observation that different message
types have different criteria for delivery [KC91, KCA92]. How the sender sets the value
of the waitfor field in a transmitted message and how the receiver interprets that value on
arrival of the message are key in our adherence to the F-channel implementation policy.
A two-way flush or a forward flush may not be delivered until all messages transmitted
before it have also been delivered. Therefore, the sender sets m.waitfor to one less than
m.seqno. The receiver infers that all messages with sequence numbers up to the m.waitfor
value in a two-way flush or forward flush message must be delivered before m can be
delivered. An ordinary message or a backward flush must wait only for the delivery of its
immediate predecessor in «+p. Therefore, m.waitfor is set by the sender to the sequence

number of the current backward flush point. (The backward flush point is the last message

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 13

transmitted that flushed the channel in a backward direction, i.e., the last two-way flush or
backward flush message transmitted.) The receiver understands that an ordinary message
or backward flush can be delivered when the message with sequence number m.wailfor has
been delivered. The following discussion and pseudo-code show the actual details of the
WaitFor technique.

The F-channel protocol at P; must maintain two integers, in support of F, to determine
the sequence number and waitfor value of each transmitted message. seqno([F") represents
the sequence number of the last message transmitted over F-channel F. bfp(F’) represents
the sequence number of the last two-way flush or backward flush transmitted on F'. Both
seqno(F) and bfp(F') take their value from the set {—1,0,1,...} and are initially —1.

To send an ordinary message over I, the sender implements the following protocol:

Send (Ord, data) on F =
seqno(F) := seqno(F) + 1;

Xmit <Ord, seqno(F), bfp(F), data> to Pj;
Sending a backward flush is implemented as:

Send (BF, data) on F =
seqno(F') := seqno(F) + 1;
Xmit <BF,seqno(F), bfp(F),data> to Pj;
bfp(F) := seqno(F);

A forward flush is implemented as:

Send (I'F, data) on F =
seqno(I") := seqno(I') + 1;

Xmit <IFF,seqno(F'),seqno(F’) — 1, data> to Pj;

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 14

Finally, the two-way flush combines aspects of both the forward and backward flush types:

Send (2F, data) on F =
seqno(F) := seqno(F') + 1;
Xmit <2F,seqno(F),seqno(F) - 1,data> to Pj;

bfp(F) := seqno(F);

Upon the arrival of a message at P;, the receiving flush channel implementation decides
if it must buffer the message or make it eligible for delivery to the destination process.
This decision is based on the interpretation of the weaitfor field. A message arrives at the

I"-channel implementation of the receiving host P; as a result of:
Recv <m.type, m.seqno, m.waitfor, m.data> from P;.

In order to deduce whether this newly arrived message is deliverable, information about
messages that have previously been delivered must be maintained. delv(F) is a set con-
taining the sequence numbers of all messages which have arrived and have been delivered
at site P;. A message must be buffered if it arrives before the message(s) which makes it
eligible for delivery; the set buffer(") contains those messages which are currently buffered
at the receiver. The time that a message spends in buffer(F') is the resequencing delay for
that message.

We model the receiver as a daemon process which Recvs messages from the network,
interprets them as messages on an I-channel, and deals with them appropriately. If the
message arrives “too early” it must be buffered; otherwise it is delivered. The delivery of
any message, newly arrived or formerly buffered, causes a re-examination of all buffered
messages to see if any others are eligible for delivery. Below we list the pseudo-code for the

implementation at the destination of an I-channel:

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHHANNEL 15

Process F-Daemon(P; : site, F: FchannelID)
while true do
Recv <m.type,m.seqno,m.waitfor,m.data> from Fj;
buffer(F) := buffer(F) U {<m.type, m.seqno, m.waitfor, m.data>};
change := true;
while change do
change := false;
foreach ;. € buffer(F) do
DealWith(u);
if y1.seqno € delv(JF) then
change := true;
fi
od
od
od

end I'-Daemon

The real decision concerning whether a message is eligible for delivery takes place in
the routine DealWith. Pipe(F) is a FIFO buffer between the -Daemon and the user
process, R, as they stand in a producer/consumer relationship. The Deposit routine
inserts message m, structured as an F-channel message (<type, data>), into Pipe(F) and
handles all required synchronization. As far as we are concerned, Depositing a message
in Pipe(I") is the delivery of the message; the destination process must issue a receive in

order to Consume the message from the pipe.

Procedure DealWith(m : message)
if (n.type = Ord vV m.type = BF') then
if (m.waitfor € delv(F) V m.waitfor = —1) then
buffer(F') := buffer(F") — {m};
delv(F) := delv(F) U {m.seqno};
Deposit(<m.type, m.data>, Pipe(F));
fi
else
if (Vb :0 < b < mowaitfor: b € delv(F)) then
buffer(I") := buffer(F) — {m};
delv(F) := delv(F) U {m.seqno};
Deposit (<m.type, m.data>, Pipe(F));

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 16

fi
fi
end DealWith

The implementation of the F-channel receive is reduced to removing a message from
Pipe(F'). We assume the existence of a routine, Consume, which performs all neces-
sary producer/consumer synchronization and returns the message in Pipe(F’) which was

produced (Deposited into Pipe(F’)) earlier than any others. Hence,

Receive (type, data) from F =

Consume(<t,d>,Pipe(1'));

type, data :=t, d;
Note that the synchronous nature of the F-channel receive operation follows naturally from
the producer/consumer synchronization implemented on Pipe(F'). An empty Pipe(F’)

delays a receive,

<0rd,0,-1>

<Ord,1 ,——1;\’\7<2F,3,2>

<0rd,2,~1>

Figure 2.2: The Immediate Predecessor Graph in Terms of the WaitFor Protocol

Figure 2.2 shows the same covering relation as Figure 1.3, but here each message is
augmented with the value of the waitfor field. The data field is omitted. The message
labeled <Ord,1,-1> may be delivered as soon as it is received. It has no predecessors in the
partial order. The two-way flush <2F,3,2> cannot be delivered until the first three ordinary
messages have been delivered. Further, all messages to the right of <2F,3,2> will (explicitly
or implicitly) not be delivered until <2F,3,2> has been delivered. The case of <Ord,10,8>

is interesting—according to the protocol, as soon as the message with sequence number 8 is

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 17

delivered, <0Ord,10,8> may be delivered. But before <BF,8,3> may be delivered, <2F,3,2>
must be delivered. Clearly the use of the waitfor field in the protocol takes into account

the transitivity of a+p.

2.2 Correctness of the WaitFor Technique

Our argument in support of the correctness of the protocol is based upon the relationship
between structural properties of the partial order and the components of the protocol. We
ultimately want to establish that the F-channel protocols at the transmitter and receiver
cooperate in such a way that the I'-channel implementation policy is obeyed. An easy, but

useful, first step in the argument is given by Lemma 1.

Lemma 1 For a two-way flush or a forward flush, m,

Pred(m) = {m’ : 0 < m/.seqno < m.waitfor}.

Proof: All messages transmitted before m must have sequence numbers lower than m.seqno
as the sending F-channel software generates a monotonic stream of sequence numbers with
an increment of unity. No message transmitted before m may be delivered after m. Hence,
the predecessor set of m contains exactly those messages which were transmitted before m on
the F-channel. The lemma follows from the fact that tle sender sets m.waitfor = m.seqno—1
for both two-way and forward flush messages. |

The case of ordinary and backward flushes is somewhat more complex. We begin with
a lemma which establishes how these message types fit within <+p by considering their

immediate predecessors.

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 18

Lemma 2 If m is an ordinary message or a backward flush and there exists a message m’
such that m'.seqno = m.waitfor, then

o m! ap m,

o m! must be a two-way flush or a backward flush,

e there is no message m"” # m' for which m" ap m.

Proof: On the transmission of m, an ordinary or backward flush message, the sender sets
m.waitfor to the sequence number of the backward flush point. If m’ is the backward flush
point at the transmission of m, then the pair (m/,m) is added to ap. By definition, the
backward flush point is either empty or a singleton. If it is a singleton, then it is either a
two-way flush or a backward flush message because forward flush and ordinary messages

never alter the backward flush point.

Viewing < as an acyclic digraph, whenever a message is inserted into the covering relation,
its in-degree is established, and that in-degree is not altered thereafter. Hence, m will have
in-degree of one, m’ ap m, and there can be no m” # m’ such that m” ap m. [|

Having shown that an ordinary message or a backward flush has a unique predecessor in
qp, if it has a predecessor at all, we establish exploitable structural properties of the entire
predecessor set of such a message.

For an ordinary message or backward flush m, define the BFP-chain of m as the set of
messages

chain(m) = {my, mp_1,...,my},

where

ME Ap My A ... A My dp M,

Each element of chain(m) must be a backward or two-way flush. In graphical terms, the
BI'P-chain is the path of backward flushes back to the closest two-way flush, including that

two-way flush. If there is no such two-way flush, it is the path of backward flushes back

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 19

to the minimal backward flush in <+. That is, m is a backward flush only if m has no
two-way flush predecessor in a+p. The other m;, 1 £ i < k — 1 are backward flushes.
Head(chain(m)), the head of the BFP-chain of m, is my, the two-way or backward flush
which begins the chain of backward flushes leading to m.

Given this notation, we may be more precise in describing the complete predecessor set

of ordinary and backward flushes.

Lemma 3 If m is an ordinary message or a backward flush, then m' € Pred(m) if and
Y

only if m' € chain(m) U Pred(Head(chain(m))).

Proof: [If] This part of the proof is straightforward. If m’ € chain(m), then clearly
m' € Pred(m). If m' € Pred(Head(chain(m))), then the transitivity of <+ allows us to

conclude that m’ € Pred(m) since Head(chain(m)) must be a two-way flush for m’ to exist.

[Only If] We proceed by contradiction. That is, suppose that some message m’ € Pred(m),
but m’ & chain(m) U Pred(Head(chain(m))). This means that 4 must appear as shown in

Figure 2.3. m' must be linked to m or some element of chain(m)— Head(chain(m)), perhaps

BF/2F BF BF Ord/BF
d| Q b QP P P —
Pt m om Yy A
n n-1 17
Case2 .- &
@ — tt B O rrecncneanand <
m m” Case i

Figure 2.3: Contradiction: A Non-Chained Predecessor of m

through some successor in <p, due to the hypothesis that m’ € Pred(m). That successor
is denoted m" in the figure. The first case is that m” 4 m, but Lemma 2 disallows the
possibility of m having more than a single predecessor. In the second case, without loss of

generality, assume that m” ap my € chain(m) — Head(chain(m)). But by definition of a

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 20

BFP-chain, m; must be a backward flush. Again, Lemma 2 disallows this edge in 4p. In

both cases we have reached a contradiction. [|

Having presented the above useful lemmas, we may now prove that the WaitFor protocol

faithfully implements the Flush Channel Implementation Policy.

Theorem 1 (SAFETY) Under the Waitkor technique, message m is consumed by a re-

ceive at the destination process only if Pred(m) has already been consumed.

Proof: In DealWith, if m is a two-way flush or forward flush, it will not be Deposited in
Pipe(F) unless all messages with equal or lower sequence numbers have been Deposited.

By Lemma 1, these messages are precisely the predecessor set of m.

For an incoming backward flush or ordinary message m, Lemma 2 shows that m.waitfor is
the sequence number of the immediate predecessor of m. In the definition of chain(m), m,
is that immediate predecessor. DealWith will not allow the delivery of m until after the
delivery of m;. Generalizing this argument to each backward flush on the BI'P-chain of m,
DealWith will insist the Deposits are correctly ordered. The correctly ordered Deposit
of Head(chain(m)) and of Pred(Head(chain(m))) are handled by the protocol for two-way
flushes, which was shown to be correct in the first part of this praof. We therefore conclude,

by Lemma 3, that Pred(m) must have been delivered before m is delivered.

As a final part of this argument, it is essential that Pipe(F) be a FIFO buffer. Thus,
user-invoked receives will Consume messages in the same order in which the protocol
recognizes that they are eligible for delivery and Deposits them in Pipe(F). [

Having proved the Waitl'or protocol adheres to the Flush Channel Implementation
Policy, one last step in our argument for correctness is necessary. A liveness proof ensures

that something good will eventually happen during execution [AS85, OL82].

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 21

Theorem 2 (LIVENESS) Assume that the receiver will, in fact, issue a receive for each
send ezecuted by the sender. Message m, sent on an F-channel implemented as described

above, will then be received in finite time.

Proof: Since the network is assumed to be reliable, a message must arrive at the destination
host within finite time from its transmission, and therefore the F-Daemon will Recv the
message. We proceed by induction on message sequence number. Our basis is the case
that m.seqno = 0. In this case m.waitfor = —1, and thus m will be Deposited in Pipe(F’)
without delay. The first receive will therefore Consume m within a finite time from its

transmission.

Assume that messages with sequence numbers up to and including n will be Consumed
within finite time. Consider the case where m.segno = n 4 1. By Theorem 1, m will not be
Deposited in Pipe(F) until its predecessor set has been Deposited. Its predecessor set
will include messages with sequence numbers no greater than n, since m.weaitfor < m.seqno,
m.waitfor is defined to be the highest scquence number in Pred(m), and m.seqno = n + 1.
By the inductive hypothesis, we conclude that Pred(m) will be Deposited and Consumed
in finite time. m will then be Deposited by DealWith as invoked by the F-Daemon. The

FIFO nature of Pipe(F') then implies that m will eventually be received. | |

2.3 Previous Implementation Techniques

Two implementations for I'-channels have appeared in the literature. The following sections

review these techniques.

2.3.1 The Flooding Protocel

The first implementation in the literature [Ahu91] adheres to the F-channel implementa-
tion policy by flooding each physical network path between sender and receiver for all but

ordinary messages. The technique assumes a reliable network with every switch node in

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 22

the network having incoming and outgoing FIFO queues for the incoming and outgoing

channels connected to the node (see Figure 2.4). A flush message (that is, a message of

Incoming o ol
FIFO
Queues \@ /§

N
PN 2

/9/
@ I — ﬁ\gggg p -1
Sender \Zb\ \\ZD /§ | //§ Receiver

— T m -~

/ RN Qutgoing
FIF
Queues

Figure 2.4: The Reliable Network in the Flooding Protocol

type 2F, FF, or BF) is transmitted at the sender by placing a copy of the message in all
outgoing queues that lead to the destination. When a copy of a flush message arrives at a
switch node, the node places a copy of the message in all outgoing queues that lead to the
destination. Thus, a copy of the flush message is transmitted over every network channel
between sender and receiver. A single copy of an ordinary message is routed from S to R
through some path in the underlying physical network.

A two-way flush is made eligible for delivery at R when every incoming FIF'O queue has
the two-way flush at the head of the queue. Any incoming queue with the two-way flush
at the head of the queue is blocked until every incoming queue has the two-way flush at
the head of the queue. This guarantees that the two-way flush will be delivered after every
message transmitted before it and before every message transmitted after it.

Likewise, a forward flush is made eligible for delivery when a copy of the message is

at the head of each incoming queue. Thus, a forward flush will be delivered after every

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 23

message transmitted before it. In this situation, however, the incoming queues that have
seen the forward flush are not blocked—messages transmitted after the forward flush may
be delivered while the forward flush waits for its delivery.

At R, a backward flush is made eligible for delivery at the arrival of the first copy of
the backward flush. As in the forward flush case, the incoming queues are not blocked.
Handling a backward flush in this manner guarantees delivery of the backward flush before
every message transmitted after it.

Nodes in the network pass ordinary messages through without any delays, blockages, or
copying. The only delivery delays imposed on an ordinary messageA are those imposed by
the other three message types.

The Flooding Protocol describes selective flooding of all network paths between sender
and receiver for all but ordinary messages. In comparison, the WaitFor technique requires
only a single copy of each message; the sequence number and the waitfor value are piggy-
backed on the message, thus allowing the receiver to deduce a message’s place in the partial

order.

2.3.2 The Three Counter Technique

In this section, we introduce the second implementation for I-channels available in the
literature. We term this implementation the Three Counter technique and copy it from its

original presentation [AVS91]. An I"-channel between processes p and g is denoted c,, .

We presume that for any ¢, 4, p(¢) has an out-buffer (in-buffer) in which
p puts (from which g takes) messages to be sent (received) along cp 4. In the
following, all messages referred to are those sent (received) along c,,. The
implementation protocol for ¢, 4 is as follows:

p has counters T and M. T has a value equal to 1 plus the number of two-
way-flushes sent so far. M has a value equal to 1 plus the number of messages
sent so far after the latesi two-way-flush sent.!

Ynitially, T and M are each 1. Afier sending a two-way-flush and before sending any other messages,
T is incremented by 1 and M is reinitialized to 1. After sending a message other than two-way-flush and
before sending any other messages, M is incremented by 1.

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 24

p assigns message m (to be sent) an identity <Type, Tp,, Mn>, where T,
and M,, are values of T"and M when m is sent and Type is the message type,
ordinary, two-way-flush, forward-flush, or backward-flush.

g initially assumes that it has received a two-way-flush with identity
<two — way — flush,0,0>; thus the two-way-flush that we will refer to as the

T, two-way-flush will have identity <two — way — flush, (T, — 1), *> where *

can be any value.
q receives m that is a two-way-flush or a forward-flush from the input buffer

only after it has received the Tm‘h two-way-flush and each message m’' with M,
less than My, (and more than 0) since receiving the T, two-way-flush.

If before sending m that is either an ordinary message or a backward-flush
and after sending the T,f* two-way-flush, — has sent one or more backward-

flushes, then along with m p sends My; where bf is the latest backward-flush

sent before m.?

q receives m that is either an ordinary message or a backward-flush from
the input buffer only after the Tt two-way-flush and the backward-flush with
identity <backward — flush,Ty,, Mys>, if Mys was carried with m [AVS91].

The Three Counter technique resembles the WaitTFor technique in that integers convey
receipt order information. The technique, however, was never formally shown to be correct.
Therefore, one is skeptical that the protocol actually adheres to the F-channel implementa-
tion policy. In the next section, we show that the WaitFor technique and the Three Counter
technique are functionally equivalent. lence, the correctness of the WaitFor technique also
serve as a proof of the validity of the Three Counter technique.

Another criticism of the Three Counter technique is that it uses only two of the three
required fields at the destination process to decide whether a message is ready for delivery—
each message transmitted on the F-channel stores a value that is never used. Furthermore,
the Three Counter technique, at the delivery of a backward flush or ordinary message,
ensures the previous two-way flush message has been delivered. Checking for the delivery of
the previous two-way flush is redundant if a previous backward flush, transmitted after the
two-way flush, exists. Due to transitivity in the partial order, the previous two-way flush is

guaranteed delivery if the previous backward flush is delivered.

2That is, rather than sending just <Type, Tou, My > with m, p send <Type, T, Mu,, Mys>. Note that
Tyy must be the same as Th,..

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 25

2.4 Three Counter Technique = WaitFor Technique

Both the Three Counter technique and the WaitFor technique use integers appended to a
message to convey delivery order information. We now prove that the two techniques are
functionally equivalent. That is, given an arbitrary sequénce of messages transmitted on an
F-channel and an arbitrary arrival order, both techniques generate the same delivery order.
Once the equivalence is shown, the correctness of the WaitTor technique in Section 2.2
serves as the missing validity proof for the Three Counter technique.

As before, suppose that F-channel I° connects a user process at site P; with a user
process at site P;. To convey receipt order information in the Three Counter technique,
the sender augments a message with the three fields described in Section 2.3.2. T, is the
number of the next two-way flush that will be transmitted. Cy, is the number of messages
that have been transmitted since the transmission of the last two-way flush. Cjy is zero if no
backward flush messages have been transmitted since the transmission of the last two-way
flush; otherwise, Cjy becomes the value of (', after the transmission of the backward flush.

The Three Counter technique relies on the structure of the partial order between two-
way flush messages. We define prev2F, at any given time, as the last two-way flush message

transmitted and nth2F as the nth two-way flush message transmitted.

Lemma 4 For a two-way flush or a forward flush message, m,
Pred(m) = Pred(prev2F) U {m': prev2F.seqno < m’'.seqno < m.waitfor}.

Proof: The predecessor set of a two-way flush or forward flush message, m, contains exactly
those messages which were transmitted before m on the F-channel (Lemma 1). If no previ-
ously transmitted two-way flush exists, then Pred(prev2F) is empty and prev2F.seqno = 0.
If a previously transmitted two-way flush does exist, then, by Lemma 1,

Pred(prev2F) = {m’: 0 < m/.seqno < prev2F.waitfor}.

W liand

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 26

Since prev2F.seqno = prev2F.waitfor + 1,
Pred(prev2F) U {m' : prev2F .seqno < m'.seqno < m.waitfor},
= {m': 0 < m'.seqno < m.waitfor}

= Pred(m). |

Lemma 5 For a two-way flush or a forward flush message, m, if all messages transmitted
between the (T, — 1)th two-way flush (inclusive) and the Cy, th message have been delivered

in the Three Counter technique, then all messages in Pred(m) have been delivered.

Proof: Suppose m is a two-way flush or forward flush message and all messages transmitted
between the (T3, — 1)th two-way flush (inclusive) and the C,,th message have been delivered.
By Lemma 4, Pred(m) is all messages transmitted between the (1}, — 1)th two-way flush
(inclusive) and the C,,th message and the predecessor set of the (T3, — 1)th two-way flush.
To verify Pred(prev2F) is delivered before m, prev2F = (T, — 1)th two-way flush, we

proceed by induction on the number of two-way flush messages transmitted before m.

The basis case is thai no two-way flush messages have been transmitted before m. Then
Pred(prev2F) is empty. Assume that n two-way flush have been transmitted before m
and all messages in Pred(prev2F), prev2F = nth2F, are delivered before m is deliv-
ered. Consider the case where (n + 1) two-way flush messages are transmitted before m:
prev2F = (n 4 1)st2F. By Lemma 4, Pred((n + 1)st2F) is the predecessor set of the nth
two-way flush and all messages transmitted between the nth two-way flush (inclusive) and
m. It is given that the previous two-way flush, the (n + 1)st2F, has been delivered. In
the Three Counter technique, this (n 4+ 1)st2F is delivered only if all messages transmit-
ted between the nth two-way flush (inclusive) and the (n + 1)st two-way flush have been
delivered as well. By the inductive hypothesis, Pred(nth2F) has been delivered before
m, hence Pred(prev2F), where prev2F = (n + 1)st2F, is delivered before m is delivered.
Since Pred(m) is the set of all previously transmitted messages (Lemma 1), all messages

transmitted before 1n have been delivered. |

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 27

Lemma 6 Suppose m is a backward flush or ordinary message transmitted on an F-channel
implemented with the Three Counter techni’que. Pred(m) has been delivered if the (15, —1)th
two-way flush is delivered and Cys = 0 or the (T, — 1)th two-way flush and the backward

flush with Cy, equal to Cys have been delivered.

Proof: Let m be a backward flush or ordinary message. If Cyy = 0, then no backward
flush has been transmitted since prev2F, the (T}, — 1)th two-way flush. Thus, prev2I is
the backward flush point at the transmission of m. If Cyy # 0, then Cyy is the counter of
the last backward flush transmitted. Again, this message is the backward flush point at the
transmission of m. In the Three Counter protocol, m is delivered once the (T, — 1)th two-
way flush is delivered and the message with counter Cyy (unless equal to zero) is delivered.
In summary, m is delivered if the backward flush point of m is delivered. By an identical
argument in Theorem 1, we conclude that Pred(m) is delivered if m’s backward flush point

is delivered. |

Theorem 3 Given the same partial order and the same arrival order at the destination,

the WaitFor technique and the Three Counter technique generate the same delivery order.

Proof: Suppose two F-channels are available. One P-channel implements the WaitFor
protocol; the other I'-channel implements the Three Counter technique. Both F-channel
implementations are given the same partial order and the same arrival order. By Lemmas 5
and 6, m in the Three Counter protocol is made eligible for delivery when Pred(m) is
delivered. Likewise, in the WaitFor technique and proven in Theorem 1, m is Deposited
by DealWith only if Pred(m) has been Deposited. Therefore, the eligibility of a message
is based on the same factors in both protocols. [|

Now that the equivalence has been shown, we display the Three Counter technique in a
manner similar to the presentation of the WaitFor technique. The send operation for this
new protocol produces a network call of the form

Xmit <typem, T, Cin, Cis, data,,> to p;,

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 28

where Ty,, Cn, and Cpy are the three integers that convey delivery order information to P;

and data,, is the data to be transmitted.

The F-channel implementation at site P; must maintain three integers, in support of F,
to determine Ty,, Cp,, and Cyy. We represent these integers as T(F'), C(F'), and CBF(F).
Initially, the values of T(F), C(F), and CBF(F) are 1, 1, and 0 respectively.

To send an ordinary message over F, the sending I-channel in the Three Counter

technique implements the following protocol:

Send (Ord, data) on I' =
Xmit <Ord, T(F), C(F), CBF(F), data> to Pj;

C(F) :=C(F) + 1
Sending a backward flush message is implemented as:

Send (BF, data) on F =
Xmit <BF, T(F), C(F), CBF(F), data> to P;;
CBF(F) := C(F);
C(F) :=C(F) + 1

A forward flush is implemented as:

Send (FF, data) on F =
Xmit <FF, T(F), C(F), CBI(F), data> to P;;

C(F) :=C(I) + 1;
Finally, the two-way flush is implemented as:

Send (2F, data) on F =
Xmit <2F, T(F), C(F"), CBF(F'), data> to P;;
T(F) = T(F) + 1;
C(F) :=1;
CBF(F) :=0;

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 29

Upon the arrival of a message at P;, the receiving F-channel decides if it must buffer
the message or make it eligible for delivery to the destination process. A message arrives
at the receiving host P; as a result of:

Recv <typem, Tm, Cm, Cbs, data,> from P
The receiver maintains three data structures in order to deduce the delivery order. last2F(F’)
is an integer, initially zero, that represents the number of previous two-way flush messages
that have been delivered. counter([I") is a set, initially empty, that contains the C,, fields
of all the messages that have been delivered since the delivery of the last two-way flush.
buffer(F), as in the WaitFor technique, is a set that contains those messages which are
currently not eligible for delivery. We model the receiver in the Three Counter technique,
similar to the WaitFor technique, as a daemon process which receives messages, interprets

them, and deals with them appropriately.

Process F-Daemon(P; : site, F: I'channelID)
while true do
Recv <typen, T, Cn, Cby, data,> from Fj;
buffer(F) := buffer(F)U {<typem, Tm, Cm, Chy, data,>};
change := true;
while change do
change := false;
foreach p € buffer(F’) do
DealWith(u);
if ;o ¢ buffer(F) then
change := true;
fi
od
od
od
end -Daemon

As in the WaitFor technique, the real decision making takes place in DealWith.

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 30

Procedure DealWith(m : message)
if (type.n = Ord V type,, = BF) then
if ((last2F(F) = Ty, — 1) A (Coy = 0V Cy € counter(F'))) then
buffer(F) := buffer(F) — {m};
counter(F) := counter(F)U {Cp,};
Deposit (<typen, data,,>, Pipe(F));
fi
else
if (last2F(F) =T, - 1) A (Vb: 1< b < C), : b € counter(f))) then
buffer(F') := buffer(f’) — {m};
if (type;m = 2F) then
last2F(F) = Tip;
counter(F) := {};

else

counter(F) := counter(F)U {C,, };
fi
Deposit (<typey, data,,>, Pipe(F));

fi
fi
end DealWith

Figure 2.5 shows the same immediate predecessor graph as Figure 2.2, but here each
message is augmented with the fields required in the Three Counter technique.

<Ord,1,1,0> <0rd,2,1,0>

\;<FF,2,3,0> —_—
<0rd,2,2,0> <2F,2,8,5>
<0Ord,2,4,0> —4,

<0rd,2,6,5>
<BF,2,5,0> <A
<0rd,2,7,5>

Figure 2.5: The Immediate Predecessor Graph in Terms of The Three Counter Technique

<0Ord,1,2,0> ~»=<2F,1,4,0>

<0rd,1,3,0> f

2.5 Flow Control Issues

Before a prototype of the WaitFor protocol can be practically implemented, significant
issues related to bufler capacity and sequence numbers must be solved. We deal with these

issues in this section.

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL ‘ 31

2.5.1 Bounding Buffers

In most communication protocols, both the sending and receiving processes require message
buffering capabilities. The sender’s buffer stores each message until an acknowledgement
(ACK), explicit or implicit, is returned. The receiver’s buffer stores the messages that have
arrived but are not ready for delivery. A buffered message at a receiver is attributed to
either an arrival order inconsistent with the required delivery order or, simply, a receiving
user process which is slow to receive messages. One issue considered here is the problem
encountered due to bounded buffer space at both the sender and receiver. We assume, in
the following discussion, that no messages are lost in transit, that buffer overflow at the
receiver is the only cause for retransmission, and that a message is buffered at the sender
until it is explicitly ACKed.

The difference in size between the sender’s and receiver’s buffers produces various effects.
If the receiver’s buffer is larger than the sender’s buffer, then the excess buffer space at the
destination process will never be used. If the receiver’s buffer is equal in size to the sender’s
buffer, then buffer space is not wasted, and space is always available for arriving messages.
In this case, retransmission of messages will never be required as there will be no buffer
overflow at the receiver.

Retransmission of messages, however, might be required when the receiver’s buffer is
smaller than the sender’s buffer. For a FIF'O channel, it is obvious which message to retrans-
mit upon a message’s arrival at a full receiving buffer. The delivery order for a FIFO channel
is identical to the transmission order; therefore, the sequence number at the receiver repre-
senting the last message transmitted is the message selected to be retransmitted. Selecting
to retransmit the last message transmitted delays the delivery of the fewest messages—all
messages in the buffer must be received before this last message.

The choice of which message Lo retransmit at a full receiving buffer in an F-channel

implementation is not as obvious. Upon buffer overflow, the receiver must decide upon a

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 32

message to discard (thereby causing a retransmission) that will delay the delivery of the
fewest messages. An IP-channel implementation could use one of many different retrans-
mission strategies: the first or last message transmitted, the type of [lush message, the
smallest message in the buffer, a random choice, etc. Of course, threats to liveness must be

considered when devising a retransmission scheme.

Theorem 4 Any retransmission stralegy that handles a full receiving buffer in an F-channel

implementation cannot be optimal at all times.

Proof: An optimal retransmission strategy for a full buffer would always discard the mes-
sage which yields the fewest (future) retransmissions. As the receiver has no knowledge of
the full partial ordering on messages being transmitted or the order in which these mes-
sages will arrive, the best retransmission selection cannot always be made. For example,
Figure 2.6 is an immediate predecessor graph that illustrates the possible impact of the

receiving I'-channel software not having perfect (future) knowledge. Suppose the sender’s

<Ord,1> —p= <FF 2>
<2F,0> \
<Ord 4> <2F,6>
<BF,3> <\ 7
<0rd,5

>

Figure 2.6: The Retransmission Problem

buffer is of size seven, thereby allowing the transmission of all seven messages in succession,
while the receiving buffer is of size one. If messages with sequence numbers 1 and 3 are the
first two arrivals, the optimal choice of which message to discard cannot be made. If the
arrival order is 4 5 0 2 6 following the arrival of 1 and 3, the system would be best served
by retransmitting message with sequence number 3. On the other hand, an arrival order of
045 2 6 produces fewer retransmissions if message 1 is discarded. Since a receiver will not
have knowledge of the future arrival order, no retransmission strategy can always make the

optimal selection for retransmission. [|

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 33

Theorem 4 illustrates the difliculties associated with any retransmission strategy. We
do not have a general solution for this problem. Instead we assume, throughout this thesis,
the sizes of the sender’s and receiver’s bulfers are equivalent. That is, at the establishment
of an F-channel, we presuppose that a negotiation of an equivalent buffer size takes place
between the sender and receiver. This assumption will forgo the necessity of deciding which

message to discard at a full buffer.

2.5.2 Bounding Sequence Numbers

Bounding sequence numbers is trivial for any FIFO channel implementation, but not obvious
for all F-channel implementations. The total delivery order of messages and the ACKing
of each delivered message by the network support reveals a simple technique for bounding
sequence numbers in a I'IFO channel. The number of values required to distinguish each
message in the channel is equivalent to the size of the sending bufler, As each message is
ACKed, the sequence number of the delivered message is available for reuse.

In an F-channel implementation, bounding sequence numbers is not as simple. The
difficulties appear when the sequence number of an I'-channel message has a longer lifetime
than the message itself. For example, in the flooding protocol of Section 2.3.1, sequence
numbers only identify the message en route; thus a sequence number is available for reuse
once the sender receives an ACK for the message’s receipt. On the other hand, in the
WaitlFor protocol of Section 2.1, the waitfor field is the sequence number of a message
previously transmitted. Therefore, the waitfor field may extend the lifetime of a sequence
number. That is, we cannot conclude that the delivery of a message with sequence number

z finalizes all references to z.

Theorem 5 An F-channel that uses the WaitFor protocol cannot use the policy lo bound

sequence numbers employed in FIFO channels.

Proof: In FIFO channels, a sequence number can be reused at the sender once the corre-

CHHAPTER 2. IMPLEMENTATION OF A FLUSHI CHANNEL 34

sponding message has been ACKed by the receiver. In F-channel communication, violations
could occur in the delivery order if the reuse of a sequence number was based only on the
ACK of the corresponding message. To illustrate the problem, consider the delivery of a
message in the WaitFor technique; the delivery is based on the type of message and its wait-
Jor value. Now consider the immediate predecessor graph, augmented with the waitfor field,
in Figure 2.7. Suppose the sender’s buffer is of size two. Upon the ACK of <2F,0,-1> and
<0rd,1,0>, the sender would reuse the sequence numbers by transmitting <BF,0,0> a.nd
the second <Ord,1,0>. The waiifor fields in both of these messages are zero; however, the
zeros do not refer to the same message. The receiver has no means to distinguish between
the two zeros, and thus a message (e.g. the second <Ord,1,0>) may be delivered before it
is eligibie. This would violate the F-channel implementation policy. | |

<0Ord,1,0>

<2F,0,~1> < <Ord,1,0>
<BF,0,0> —

Figure 2.7: The Bounding Sequence Number Problem

Although, in the WaitFor protocol, a sequence number cannot be reused upon the ACK
of the corresponding message, some numbers become available at an ACK of a two-way

flush message due to the semantics of a two-way flush message.

Theorem 8 In the WaitFor technique, if @ message m is transmitted after a two-way flush

message m/, then

m.waitfor > m'.seqno

i:’roof: Suppose message m is transmitted after m/, a two-way flush message. Based
on the semantics of a two-way flush message and the definition of a predecessor set,
m' € Pred(m). Lemma 1 proved that all messages transmitted before m’ will have se-
quence numbers lower than m'.segno. Since m.waitfor is the highest sequence number in

Pred(m), m.waitfor > m’'.seqno. |

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 35

A solution to handle the fixed-width representation of sequence numbers in the WaitFor
protocol is revealed by Theorem 6. Once an ACK of a two-way flush is received, all sequence
numbers preceding the sequence number of the two-way flush can be reused. The following
section modifies the WaitFor technique to handle fixed-width representation of sequence
numbers. As will be shown, other flow control issues are a direct effect of bounding sequence
numbers. To implement this protocol, the sending F-channel maintains the sequence number
of the last two-way flush ACKed. At the receipt of an ACK for another two-way flush, the
sender can reuse sequence numbers in the range [previous 2F sequence number, current 2F
sequence number).

If the system transmits a group of messages with no two-way flush messages and the
number of messages in the group is larger than the modulus used to bound sequence num-
bers, then the system must wait until every message is ACKed before reusing any number.
That is, the system transmits a dummy two-way flush on the F-channel. Upon the delivery
of the dummy two-way flush, the receiver resets all its variables to their initial values a_nd
transmits an ACK for the dummy message. Upon the receipt of this ACK, the sender resets
all its variables as well; all sequence numbers then becomne available. Without synchro-
nizing the system in this manner, bounding sequence numbers could violate the F-channel
implementation policy (recall Theorem 5) or become deadlocked.

The use of a dummy two-way flush would not be required if the modulus for sequence
numbers was based on additional knowledge: the maximum number of messages transmit-
ted between any two consecutive two-way [lush messages. Given this value, Theorem 7

illustrates a bound for sequence numbers.

CHAPTER 2. IMPLEMENTATION OF' A FLUSH CHANNEL 36

Theorem 7 Assume every I'-channel application transmits a two-way flush as the first and
last message of each application. In addition, assume maz is the mazimum number of mes-
sages between any two consecutive two-way flush messages and k is the size of the sender’s
(and receiver’s) buffer. The mazimum range of sequence numbers required to distinguish

messages in an I[-channel implementation is then [0, maz 4 k).

Proof: Figure 2.8 illustrates an immediate predecessor graph that uses all the sequence
numbers in the allowed range: [0, mez + &k —1). To verify no more numbers are required
to distinguish the messages, we consider the situation of the I-channel preceding and fol-
lowing the transmission of the next message (augmented with sequence number 0). This
example.covers the worst possible scenario by having maz messages transmitted between

two consecutive two-way Mush messages.

Consider the two consecutive two-way flush messages shown in the figure. If the sender
transmits the message with sequence number maz 4+ k& — 1, we prove that at most one
unACKed message can exist between the two consecutive two-way flush messages. Without
loss of generality, assume <Ord,1,0> is an unACKed message. No message with sequence
number greater than maz can then be delivered. Since all messages with sequence numbers
between the range [maz + 1, maz + k ~ 1] are unACKed, only one space in the sender’s
buffer is left for the unACKed <Ord,1,0> message. Once <Ord,1,0> is ACKed, the sending

<0rd,1,0> <Ord,max+2,max+1>

<2F,0,-1> —————3<2F, max+1,max>

o

<Ord,max,y> <Ord,max+k—-1,max+1>

Figure 2.8: The Largest Sequence Number

P-channel software transmits the next message as sequence number 0. By Theorem 6, no
message currently in the sending buffer can refer to a message with sequence number less
than (maz + 1); reusing sequence number 0 will not violate the F-channel implementation

policy. Hence, a suflicient modulus for sequence numbers in an F-channel is maz + k. N

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 37

Theorem 7 provides a bound for sequence numbers given the value maz. Obviously,
knowledge of max is not always possible since prior knowledge of all messages that will be
transmitted on the F-channel is unlikely. Therefore, an implementation of an F-channel
with fixed-width representation for sequence numbers should be based only on the two-way
flush effect of Theorem 6. In the following section, we modify the WaitFor protocol to

include all the hounding considerations discussed in this section.

2.6 The Bounded WaitFor Technique

Suppose every F-channel application implicitly transmits a two-way flush message as the
first and last message of each application. In addition, suppose num is the sequence number
modulus used in the F-channel implementation. We assume num > 1; otherwise a FII'O
delivery order occurs. One eflect of bounded sequence numbers is that the size of the
sending and receiving buffers becomes bounded as well—the size need not be larger than
num. Bulfer sizes of num, however, will generally be too large for the system. Therefore,
in this protocol, we continue to assume the buffer size at both the sender and receiver is k.

‘ollowing the original protocol, the sending F-channel software sets the value of the
m.waitfor field, and the receiving I-channel software interprets that value in order to adlere
to the I'-channel implementation policy. To support the F-channel at site P;, the sender
continues to maintain the two integers seqno(F') and bfp(F’). In our bounded WaitFor
technique, however, both seqno(I’) and bfp(F") are initially 0 and take on values from
the range {0,1,...,num — 1}. Another integer, maintained by the sender, is necessary
to represent the last two-way flush message ACKed by the receiver: 2Fack(F"). Initially,
2Fack(I") is 0. The sender’s buffer, of maximum size k, is called sbuffer(f’). A message
is removed from sbuffer(F') once an ACK is received. We assume a timing mechanism
retransmits a message if its ACK is not received within a given time. These messages are

marked as retransmitted; we assume the destination process checks for previous delivery.

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 38

In the original protocol, messages are transmitted unconditionally. In the bounded pro-
tocol, a message cannot be transmitted unless space exists in the sender’s buffer and a
sequence number is available. Therefore, all transmissions are conditioned on the following

criteria:

Transmission Condition:

|sbuffer(F)| < k A (seqno(F) + 1) mod num # 2Fack(F).

If the transmission condition is true, then the sender can transmit a message. If, however,
the transmission condition is false, then the sender is delayed. We modify 2Fack(F) in two
situations. First, when the sender receives an ACK of a two-way flush message, 2Fack([")
is set to the sequence number of the ACKed two-way flush. Deadlock would occur, however,
if the sender received ACKs on every message in the buffer and no two-way flush message
was transmitted in the last num messages. The second situation that modifies 2Fack(F)
covers this circumstance. If the sender’s buffer is empty and the transmission condition
continues to fail, the sender transmits a dummy two-way flush. The delivery of this dummy
message resets all the variables at the receiver. Its corresponding ACK, in the same vein,
resets all the variables at the sender. Updating the system in this manner re-initjalizes the
system. As no messages are in transit, re-initialization under these conditions has no effect
on the correctness of the protocol.

The following pseudo-code is the bounded F'-channel implementation for the sender. We
model the sender as a daemon process that either receives ACKs or transmits messages.
Two binary flags in the process are assumed to be maintained outside the daemon. ACK
is maintained by the network; when ACK is true, an ACK is available to be received.
MSG(m) is maintained by software between the user application program and the daemon;

when MSG(m) is true, the message <m.type, m.data> is ready to be transmitted.

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL

Process FS-Daemon(P; : site, I': FchannellD)
while true do
if (|sbuffer(F)| = k v ACK) then
Recv <Ord, ack.seqno, —1,®> from Pj;
foreach i € sbuffer(F") do
if (1¢.segno = ack.seqno) then

m.type, m.data := p.type, p.dala;
m.seqno, m.waitfor 1= j.seqno, j.wailfor;

fi
od
sbuffer([") := sbuffer(F) — {m};
if (m.seqno = —1) then
seqno(l’) := 0;
bfp(F) :=0;
2Fack(F) :=0;
else

if (m.type = 2F) then
2Fack(l") := m.segno;
fi
fi
else
if ((seqno(I") + 1) mod num # 2Fack(F’)) then
if MSG(m) then
seqno(I’) := (seqno(l') + 1) mod num;
m.seqno := seqno(I’);
if (m.type = Ord V m.type = BF) then
" m.waitfor := bip(F)
else
m.waitfor := (seqno(F') — 1 + num) mod num;
fi
Xmit <m.type, m.seqno, m.waitfor, m.data> to Pj;
if (m.type = BF V m.type = 2F) then
bip(F) := seqno(I');
fi
sbuffer(F) := sbuffer(F) U {m};
fi
else
if |sbuffer(F)] = 0 then
Xmit <2F, -1,-1,9> to Pj;
sbuffer(F') := sbuffer(F) U {<2F, ~1,-1,8>};
fi
fi
fi
od
end FS-Daemon

39

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 40

To deduce whether a newly arrived message is available for delivery in the bounded
protocol, the receiver maintains slight variations of the sets delv(F') and rbuffer(F'), and a
new integer, 2Fdelv(F’). delv(F') is a set containing the sequence numbers of all messages
which have been delivered at site P}, since the delivery of the last two-way flush message.
The set initially contains the element 0 (representing the implicit initial two-way flush
transmission), the maximum number of elements is num, and the set is reset to one element
whenever a iwo-wa.y flush is delivered (actual or dummy). rbuffer(I"), consistent with the
original implementation, begins as an empty set. As mentioned, the size of this buffer
is bounded by k. 2Fdelv([F') is the sequence number representing the last two-way flush
message that has been delivered. Initially, 2Fdelv(F) is 0.

The daemon that implements the bounded receiving F-channel software requires minimal
changes. In fact, the only changes concern the explicit command to ACK a message and

the receipt of the dummy two-way flush.

Process FR-Daemon(/F% : site, I': FchannellD)
while true do
Recv <m.type, m.seqno, m.waitfor, m.data> from Py
rbuffer(I") := rbuffer(F) U {<m.type, m.seqno, m.waitfor, m.data>};
change := true;
if m.seqno = —1 then
rbuffer(F') := rbuffer(F) — {m};
delv(F) := {0};
2Fdelv(F) :=0;
change := false;
Xmit <Ord, m.seqno,—-1,8> to I
fi
while change do
change := false;
foreach p € rbuffer(F) do
BDeal With();
if p.seqno € delv(F) then
change := true;
Xmit <Ord, p.seqno,—1,8> to P;;
fi
od
od

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 41

od
end FR-Daemon

The main modification to DealWith, shown below as BDealWith, is the condition to
determine the eligibility to deliver a two-way flush or forward flush message. Instead of
verifying all messages previously transmitted have been delivered, BDealWith ensures all
messages since the delivery of the last two-way flush (actual or dummy) have been delivered.
Once the condition succeeds, the two-way flush or forward flush message is delivered. If the

message is a two-way flush, then 2Fdelv(F) is updated.

Procedure BDealWith(m : message)
if (m.type = Ord V m.type = BF) then
if (m.waitfor € delv(IF")) then
rbuffer(F’) := rbuffer(F) — {m};
delv(I') := delv(F') U {m.seqno};
Deposit (<m.type, m.data>, Pipe(I));
fi
else
i ((Vh: 0 < b < ((mowaitfor — 2Fdelv(I") + num) mod num)) :
((2Fdelv(I) 4+ b) mod num) € delv(F')) then
rbuffer(F') := rbuffer(F) — {m};
if (m.type = 2F) then
delv(F) := {m.seqno};
2Fdelv(I') := m.segno;
else
delv(F) := delv(F) U {m.seqno};
fi
Deposit (<m.type, m.data>, Pipe(I));
fi
fi
end BDealWith

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 42

2.7 Correctness of the Bounded WaitFor Technique

In order to prove the correctness of the bounded WaitFor technique, we find it convenient
to define a new relation Cp. If ¢ and y are two messages transmitted over F-channel F,
then ¢ Cp y if and only if = is transmitted before y. Clearly, Cr is a total order, the

transmission order of messages on F.

Lemma 7 For a two-way flush or a forward flush message, m, in the bounded Waitlor

protocol,

Pred(m) = Pred(prev2F) U {prev2F} U {m': prev2F Cp m'}.

Proof: By definition of a two-way flush or forward flush message, m, the predecessor set

of m contains exactly those messages which were transmitted before m. That is,
Pred(m) = {m': m' Cp m}.

Since the bounded WaitFor protocol implicitly transmits a two-way flush message as the
first message of each application, prev2F will never be empty. If prev2F is the implicit

two-way flush message, then Pred(prev2F) is empty. Otherwise,
Pred(prev2F) = {m': m' Cp prev2F}.
In either case,

Pred(m) = Pred(prev2F) U {prev2F} U {m': prev2F Cr m'} [|

For an ordinary message or backward flush m, recall the BFP-chain of m as the set of

messages

chain(m) = {mg, mr-1,...,m1}.

CHAPTER 2. IMPLEMENTATION OF A 'LUSH CHANNEL 43

The BFP-chain is the path of backward flushes back to the closest two-way flush, including
that two-way flush. In the bounded WaitFor protocol, m;, is guaranteed to be a two-way
flush message due to the implicit transmission of the initial two-way flush message. We
may now proceed with the safety theorem for the bounded WaitFor technique. This proof

uses Lemma 3 from the correctness proof of the unbounded WaitFor protocol; however, the

lemma continues to be valid.

Theorem 8 (SAFETY) Under the bounded Waitlor technique, message m is consumed

by a receive al the destinalion process only if Pred(m) has already been consumed.

Proof: Consider the delivery of message m, a two-way flush or a forward flush message.

The condition to deliver m in BDealWith is

Vb :0 < b £ ((m.waitfor — 2Fdelv(F) + num) mod num) :
((2Fdelv(F) -+ b) mod num) € delv(F)

By definition, num is the sequence number modulus. 2Fdelv(F’) is the sequence num-
ber representing the last two-way flush message that has been delivered. delv([F) is a
set containing the sequence numbers of all messages which have been delivered, since the
delivery of the last two-way flush message. m.waitfor is one less (modulo num) than the
sequence number of m. Therefore, the condition states that m is Deposited in Pipe(F') if
all messages transmitted between the previous two-way flush (inclusive) and m have been
Deposited. By Lemma 7, Pred(m) includes these messages and the predecessor set of the
previously transmitted two-way flush message. To verify Pred(prev2F) is Deposited be-
fore m, we refer to a previous lemma. The proof here is analogous to the proof in Lemma 5

and, therefore, omitted.

For an incoming backward flush or ordinary message m, the condition to deliver m in the
bounded WaitFor technique is based on the delivery of m.waitfor. In FS-Daemon, m.waitfor

is the sequence number of m’s backward flush point. In the definition of chain(m), m; is

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 44

m’s backward flush point. BDealWith will not allow the delivery of m until after the
delivery of m;. Generalizing this argument to each backward flush on the BFP-chain of m,
BDealWith will insist the Deposits are correctly ordered. The correctly ordered Deposit
of Head(chain(m)) and of Pred(Head(chain(m))) are handled by the protocol for two-way
flushes, which was shown to be correct in the first part of this proof. We therefore conclude,

by Lemma 3, that Pred(m) must have been delivered before m is delivered.

As a final part of this argument, Pipe(I"), in the bounded WaitFor technique, must be a
FIFO buffer. Thus, receives will Consume messages in the same order in which BDeal-

With recognizes they are eligible for delivery and Deposits then in Pipe(F). K

Theorem 9 (LIVENESS) Assume that the receiver will, in fact, issue a receive for
each send ezecuted by the sender. Message m, sent on the bounded WaitFor protocol of an

F-channel, will be received in finite time.

Proof: For the first part of the proof, let us assume that each message transmitted by a
send operation is placed on the network. Since the system is assumed to be reliable, each
message will arrive at the destination within finite time from its transmission and, therefore,

the FR-Daemon will Recv the message in finite time.

We proceed by induction on the number of messages transmitted in the system. The basis
case is transmitting m, the first message. This message, for any message type, will have
m.wailfor set to 0. Since delv(F) initially contains 0, either of the delivery conditions will
be satisfied in BDealWith and, therefore, m will be Deposited in Pipe(F') without delay.

A receive will then Consume . within finite time.

Assume that the first n messages transmitted in the system are Consumed within finite
time. Consider the case of m, the (n + 1)st message transmitted in the system. By Theo-
rem 8, m will not be Deposited in Pipe(I') until its predecessor set has been Deposited.
We need to show, however, that the receiver will maintain information so m can verify its

predecessor set has been Deposited.

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 45

Suppose m is a two-way flush or forward flush message. m.waitfor will then be one less
than m.seqno (modulo num). The delivery condition for m requires all messages transmit-
ted since the last two-way flush, including that two-way flush, be a member of delv(F).
By the inductive hypothesis, we know these messages will be Consumed in finite time.
Without regards to re-initialization, delv(F") maintains the sequence numbers of all mes-
sages delivered since the delivery of the last two-way {lush. We, therefore, conclude m will

be Deposited and Consumed in finite time as well.

Suppose m is a backward flush or ordinary message. Recall that m.waitfor is the sequence
number of the backward flush point at the transmission of m. Since the backward flush point
will be a message in the first n messages transmitted, we know, by the inductive hypothesis,
it will be Consumed within finite time. The set delv(F) contains the sequence numbers of
all messages that have been delivered since the delivery of the last two-way flush message.
Furthermore, Lemma 2 proved no message will be “between” a backward flush point and a
backward flusk or ordinary message. Therefore, m.waitfor, referring to a two-way flush or
backward flush message, will be an element of delv(F') in finite time and will not have the

possibility of removal until after the delivery of m.

As a final part of this argument, it is essential that delv(F’) is re-initialized only when the
system is empty of messages. The sender transmits a dummy two-way flush message only
when the system is empty and the receiver re-initializes its variables only when the dummy
two-way flush is delivered. lience, delv(F’) will contain the messages required to satisfy the

delivery condition for each transmitted message in finite time.

In the first part of the proof, we assumed each message transmitted by a send operation
is placed on the network. At the sender of the bounded WaitFor technique, however, a
message will not be placed on the channel by a Xmit operation unless the transmission
condition is verified:

[sbufter(£”)| < k A (seqno(F) + 1) mod num # 2Fack(F).

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNLL 46

We now show that this condition, when false, will become true in finite time. In the first
part of the proof, we verified that if a message is transmitted on the channel, then it will be
received in finite time. At each delivery of a message m, the receiver transmits an ACK for
m to the sender. The sender will receive an ACK for each message it transmitted in finite
time and will thus remove messages from sbuffer(F') in finite time. For the transmission
condition to be made true in finite time, we must also show that 2Fack(F') is modified in
finite time. If a two-way flush message is transmitted, 2Fack(F’) is updated. If, however,
no two-way flush message is transmitted in num messages, then the system will empty itself
of all messages and the transmission condition will continue to be false. In this scenario,
the sender transmits a dummy two-way flush, thus re-initializing all the variables. Since
we assume num > 1 and the initial values of seqno(F') and 2Fack(F') are both 0, the
transmission condition will become verified and each message from a send operation will

be placed on the network by a Xmit operation in finite time.

Lastly, both sides of the F-channel exhibit liveness as long as messages are initially placed
on the network. That is, in the receiver’s argument, we assumed each message o be
transmitted is placed on the network. In the sender’s proof, we based the argument on the
assumption that the sender receives ACKs for previously transmitted messages. Since the
transmission condition will not delay the transmission of the first k& messages, the sender
will begin placing messages on the network and the receiver will transmit ACKs for these
messages in finite time. Therefore, messages sent on the bounded WaitFor technique will

be transmitted and received in finite time. [|

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 47
2.8 DPerformance Considerations

2.8.1 The System Model

An F-channel offers the implementor of a distributed application the flexibility of specifying
a message delivery order apropos of the demands of the application. This stands in marked
contrast to the rigid FIFO delivery order imposed upon the application by virtual circuit
communication. Intuitively, the more restrictive the delivery order, the less concurrency
available to exploit in message transmission over multiple links. In the next two sections,
we investigate the gain in effective network bandwidth when ordinary messages are batched
together by a flush message and are transmitted over a mulli-link F-channel, as compared
to messages transmitted over a multi-link virtual circuit., We assume the implementation of
the F-channel is similar in spirit to that of the WaitTor technique; that is, one copy of each
message is transmitted across the F-channel. TFirst, simulation results in Section 2.9 show
that the relaxed delivery order restrictions of the F-channel may reduce the mean delivery
time of a batch by a factor of three or four—this difference may be critical in meeting real-
time requirements of the application. Second, in Section 2.10, analytical results are derived

to validate the siinulation results.

Link 1 28

-
Link 2

-
Link 3 18

v — |

Link N U

o

Iigure 2.9: Performance System Model

Consider the system model shown in Figure 2.9. Regardless of the communication
paradigm, the figure illustrates two communicating processes connected by N separate and

independent links. Messages to be transmitted are generated by the sender (denoted by S).

CHAPTER 2. IMPLEMENTATION OF A FLUSH CIHHANNEL 48

Upon generation, if all N links are busy, the message is placed in the FIFO transmission
queue. If, on the other hand, a transmission link is available, the message is immediately
transmitted. In this model, we assume that the transmission queue is unbounded. We
also assume the existence of an underlying network layer mechanism which assures reliable
transmission of messages.

As stated, messages may arrive at the receiver (denoted by R) in an unpredictable order.
The ultimate delivery of a message, as discussed in the beginning of this chapter, may be
delayed due to two reasons. First, for any communication paradigm (I'IFO, unordered, and
flush), the receiver may not have issued a receive command. Second, for both FIFO and
flush communication paradigms, a message cannot be delivered until all ordering restrictions
are satisfied, i.e., the resequencing delay. This second delay occurs while the message waits in
the resequencing buffer. As we did for the transmission queue, we assume the resequencing

buffer is unbounded in size.

2.8.2 Data Batched by Flush Messages

We have found, for every F-channel application developed to date, real-world examples nat-
urally form batches of ordinary messages and an associated flush message of a given type
[Ahu90, AVS91, CK91, CKA93]. Any flush application that transmits information from the
sender to the receiver and uses more than one flush type appears to be a contrived example.
Although each flush type is independently beneficial, we question the usefulness of trans-
mitting more than one flush type on an F-channel. Therefore, in the performance sections,
we consider a message passing scenario partitioned into batches of ordinary messages and
a singular flush message.

Following a batch of ordinary messages.with a forward flush effectively “closes” the
batch. The ordinary messages (from all batches) may be delivered in any order, but all
ordinary messages in one batch must be delivered before the batch-terminating forward

ftush is delivered. Batches of ordinary messages separated by a two-way flush completely

CHAPTER 2 IMPLEMENTATION OF A FLUSH CHANNEL 419

isolates batches from one another; i.e., all messages in batch ¢ will be delivered before any
message in batch i + 1 is delivered. Using a backward flush to precede a batch of ordinary
messages “announces” the coming batch. No ordinary message in a given batch may be
delivered until its preceding backward flush, but given that restriction, the delivery of all
ordinary messages (for all batches) is unordered. In the following discussion, we consider
the three batching scenarios in more detail. In each case, we suppose a batch, consisting of
B messages, represents a single frame in the transmission of digital image information. Each
ordinary message in a given batch contains image data for a small region of the display area
and the identity of the region in which it should be displayed. The receiver constructs the
frame in pieces—as ordinary messages arrive, its sub-image is pasted into the appropriate
position. Each message consists of three fields. The first field is the type of the message;
the second field indicates the batch number to which the message belongs; the third field,
for an ordinary message, denotes the number of the message within the batch; the third

field in a flush message is zero.

Batch 1

Batch 2

Figure 2.10: Batches Terminated with Forward Flushes

Let us again consider batching ordinary messages with forward flush messages. Tig-
ure 2.10 shows the immediate predecessor graph for this application. We see that delivery
of all of the ordinary messages is unordered (with respect to other ordinary messages). The
destination process expects, however, all of the ordinary messages in a batch to be delivered
before the forward flush “closes” the batch. The delivery of a forward flush signals that

its entire frame has been delivered. One application of this batching protocol could be the

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 50

storage of the image frames in separate files. The receipt of a forward flush signals that
the entire frame has been received and stored, and that the file in which it has been stored
may be closed. As an end-to-end image integrity convention, the te_rmina.ting forward flush
could contain a checksum; the destination process computes the checksum function incre-
mentally as the ordinary messages stream in. When the forward flush arrives, the checksum
in the message is compared to the receiver’s computed clhiecksum before the frame is finally
accepted.

If we let two-way flush messages delimit the ordinary messages, we see a different partial
order—Figure 2.11 illustrates this batching scenario. The ordinary messages which consti-
tute a batch may arrive in any order, but a two-way flush ensures that all messages in one
batch are delivered before any message in the next batch. Suppose we wish to transmit a
group of images from one site to another for real-time animation. The individual frames are
constructed in the display buffer as the ordinary messages arrive at the destination. Upon
receipt of a two-way flush, the contents of the buffer are physically displayed, replacing the

previously displayed frame.

2F.2,0>

<2F,1,0> <2F.3.0> <

Batch 1 Batch 2

Figure 2.11: Batches Separated with Two-way Flush Messages

Batching ordinary messages with backward flush messages can also be applied to the
transmission of digital image information. FPigure 2.12 illustrates this message passing
scenario. In this situation, the backward flush effectively “announces” the coming batch,
presumably providing the consumer process with information used to define the ordinary

messages included in the batch. Asin the forward flush case, we sce that all of the ordinary

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 51

Batch 1

<BF,1,0>
Batch 2

<BF,3,0><

Figure 2.12: Batches Preceded by Backward Flushes

messages may be delivered in any order, but that each ordinary message must be delivered
after the backward flush announcing the batch to which it belongs. Again suppose we
wish to transmit a group of images from one site to another. Further suppose the display
memory of the consumer is a scarce resource and that the backward flush includes the
size of the image conveyed in its batch. The consumer, upon receipt of a backward flush,
may calculate if the image will fit on the display. If so, the appropriate amount of display
memory is reserved, and the incoming image is displayed as it is received. If the image is

too large, then it is stored in a file for later display.

2.9 Simulation Results

Once again, consider the system model shown in Figure 2.9. In the simulation results
presented here, we compare the transmission of the batched data examples on an I-channel
with a virtual circuit over N transmission paths. The message generation process is assumed
to be Poisson; thus, the message inter-generation interval is exponential with mean 1/A. The
transmission time on any link is, initially, an exponential random variable with mean 1/p.
Later in this section, we replace the exponential random variable with a hyperexponential

random variable and consider the eltect on the system when the variance in transmission

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 52

times is increased. Initially, however, we have an exponential random variable with the
value of y fixed at one; N, A, and B are experimental parameters. (Recall that B is the

number of ordinary messages in a batch.) We define p, the system utilization, as

p = A/Ny,
= A/N when g = 1.0.

We may model this system, excluding the resequencing buffer, as an M/M/N queue in
which the condition for reaching steady state is that p = % < 1. We insist this equilibrium
condition holds in all the simulation trials. Since we do not know the regeneration points
in this system, we use the method of batched means to estimate steady state. An interval
estimate for the unknown mean is then calculated on the means from the batched data with
95% confidence. Fach run in the simulation consists of processing 200,000 messages; each
batch size is 5,000 and, therefore, the number of batches in each run is 40.

We use mean message delay, D, as the principal performance metric. Mean message
delay includes queueing delay at the transmitter, time on the physical network link, and re-
sequencing delay at the destination process; it is the mean end-to-end message transmission
time (excluding any delay due to the lack of a receive at the destination process). D thus

indicates the mean delay from time of arrival until a message is made eligible for delivery.

2.9.1 Multi-link Virtual Circuit

As a benchmark, we consider the performance of a virtual circuit in Figures 2.13 and 2.14.
The analysis of resequencing delay in [AR87] validates these two figures. Figure 2.13 illus-
trates the three individual components that complete the mean message delay for a virtual
circuit implemented on 25 transmission links. We plot utilization, p, versus delay, showing
95% confidence intervals. The figure exhibits that resequencing delay is an important factor

in the total delay. In fact, resequencing delay dominates transmission delay and queueing

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL ’53

Nw=25

p = varled
4 r B =0

Mean Message Delay

Resequencing Delay

Transmission Delay

1} o o < 0 —o
Quesusing Delay J
o o — r'e v A
A Il 1 1 1 L A . L
0.2 0.4 0.6 0.8
p

Figure 2.13: Message Delays on a Virtual Circuit

delay for almost all utilizations. Although the exact form of the plot depends substan-
tially on the fact that there are 25 links, any system with more than one link reveals that
resequencing delay is an important factor in the total delay.

Unlike Figure 2.13, we do not plot a confidence interval in the subsequent figures of this
thesis. Our simulator, however, calculated every data point with a 95% confidence interval.
In each simulation trial, the confidence intervals gradually increase as utilization increases.
Since none of the confidence intervals are very large (in fact, most are drawn smaller than
the symbol used to represent the mean on our plots), we omit them.

In Figure 2.14, we plot utilization, p, versus mean message delay, D. In this plot, we
consider the effect of varying the number of links on which the virtual circuit is implemented.
At utilizations less than 0.5, we find that D is exactly opposite what one would expect.

Adding links to the system at low utilization increases the delay. In fact, a 100-link virtual

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 54

circuit has a mean message delay higher than a single link virtual circuit until the utilization
approaches 0.8. This result is explained by the importance of resequencing delay as links
are added to the systemn. With fewer links, queueing delay becomes more important at
higher utilizations. We see, for example, that a 25-link virtual circuit becomes faster than
an 8-link virtual circuit when utilization is greater than 0.9. A virtual circuit’s insistence on
a FIFO delivery order leads to a mean message delay that is non-monotonic (with respect to
N) and counterintuitive. In summary, increasing the number of physical links between two

processes communicating in a FIFFO manner does not necessarily result in a higher effective

bandwidth.
N = varled
p = varled
B=0
10!
7=
109 | 1] 1 ! L 1 1 1
0.2 0.4 a.6 0.8
p

Figure 2.14: Virtual Circuit Mean Message Delay

As a comparison, we sce monotonic, predictable behavior in Figure 2.15. In this plot,
we have, basically, no delivery order restrictions—a single batch is transmitted (199,999

ordinary messages followed by a forward flush). In effect, the figure illustrates the mean

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 55

message delay for reliable datagram communication. As in Figure 2.14, the vertical axis
is mean message delay, and the horizontal axis is utilization. We immediately notice that
the system always benefits (decreases D) from the addition of communication links. Fur-
thermore, every mean message delay in I'igure 2.15 is less than the corresponding mean
in Figure 2.14. The mean message delays are equivalent, however, when a single com-
munication link connects the two processes, We realize the difference in the two plots is
completely due to the number of restrictions placed on the delivery order, i.c., a degree of
order. F-channels allow the user to specify these two example degrees of order. In addition,
I’-channels allow many degrees of order between these two extremes. The following section

investigates the impact of degree of order upon mean message delay.

N=1
N = varied
p = vared
B = 199,989
101 L
[[=]
N=8
N=25
N=100
100 |- 8——n o ——Gé’g-—/—"/'
i | 1 1 t] [l — L 1
0.2 0.4 0.6 0.8
P

Figure 2.15: Reliable Datagram Mean Message Delay

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 56

2.9.2 The Effect of Delivery Order Restrictions

In this section, we investigate the effect of delivery order restrictions on the three different
batching scenarios. All three plots in this section, Figures 2.16 to 2.18, keep the number of
communication links between the sender and receiver fixed at 25 and we plot mean mes-
sage delay versus the number of batches transmitted. The fewer the number of batches
means the less the degree of order. The less order means the greater the potential that a -
multi-link channel can exploit concurrent message transmission without incurring excessive
resequencing delays. At the left end of the horizontal axis there are, basically, no message
delivery restrictions; a single batch is transmitted. In effect, we have reliable datagrams.
At the right end of the horizontal axis, the mean message delay is equivalent to the mean
message delay if the messages were transmitted across a virtual circuit—200,000 flush mes-
sages are processed. In the middle of the horizontal axis, for instance, we transmit 100

batches of 1,999 ordinary messages (delimited by a flush message). Clearly, the horizontal

p =095
N=26
4.0} p=varled
B = varled
p = 0.80
3.5F
P =050
3.0}
1a
2.5}
20
p =010
1.5} - > °
1.0} BI=————R-&—
JINTN RS 1 113t S 1)1 i I EETHIN 11
100 10t 102 103 104 10%

Number of Batches

Figure 2.16: Forward Flush Batching Scenario

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 57

axis represents all possible degrees of order.

In the first of these three plots, Figure 2.16, we consider the impact of delivery order
restrictions when transmitting batches of ordinary messages terminated by forward flush
messages. The plot illustrates that mean message delay monotonically increases as delivery
order restrictions increase. Furthermore, there is a tremendous increase in D as the degree

of order goes from 20,000 to 200,000 batches for every utilization.

p =095
3.0k Na25
p = varied
B = varied _—¢ p =080
35}
p =050
30
[a]
2.5}
201
p=0.10
15 o o
1.0
ST R WA TT0) A RN 1T/ B AN 1T SRR A

100 107 102 108 104 109
Number of Batches

Figure 2.17: Two-way Tlush Batching Scenario

In Figure 2.17, we consider the degree of order impact when we transmit batches of
ordinary messages delimited by two-way flush messages. In Lhis case, the dramatic increase
in D begins when the number of batches transmitted is 200. Consider a utilization of 0.5.
When the number of batches increases from 200 to 20,000, the mean message delay increases
by almost 300%.

Now let us compare batching ordinary messages by backward flush messages (Fig-

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 58

P =095
N 25
40 p = varled
B =« varied
p=0.80
3.5
p=0.50
3.0
[=)
25
0}
2 n P=0.10
1.5
1.0} —
Wi b L 1 Lt i) 1 aitsll Lt LiLtil (W ERTIT) i
100 10 102 03 104 105
Number of Batchas

Figure 2.18: Backward Flush Batching Scenario

ure 2.18) with the two-way flush batching scenario. Again we see D monotonically increasing
as delivery order restrictions increase. Similar to the two-way flush batching scenario, there
is a dramatic increase in the mean message delay. In this case, however, the increase does
not begin until the number of baiclies transmitted becomes 2,000. Looking back at Fig-
ure 2.17, we find the large increase in the mean message delay begins when the number of
batches is 200. In addition, D for the backward flush batching scenario is almost consis-
tently less than D for the two-way flush batching scenario. The only exceptions are at the
two extreme ends of the degree of order: (basically) no order and total order. Take, for
example, transmitting 2,000 batches, of batch size 99, when utilization is 0.8. The delivery
of these batches will take 70% longer if the batches are delimited with two-way flush mes-
sages instead of backward flush messages. In summary, batching ordinary messages with

backward [lush messages has lower mean message delays than batching ordinary messages

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 59

with two-way flush messages.

As a final comparison between Figures 2.16 to 2.18, consider transmitting 20,000 batches,

of size nine, when utilization is 0.8.

Batching Mean Message
Scenario Delay

FF 1.31

BF 1.83

2F 3.50

vC 3.67

In this situation, it takes 40% longer to use backward flush batching, 160% longer to
use two-way flush batching, and 180% longer to use virtual circuit communication instead
of transmitting the batches with forward flush messages. In this section, we throughly
examined the impact of degree of order upon mean message delay for each batching scenario.
For each batching scenario and each utilization, the mean message delay reaches the mean
message delay of virtual circuit communication in the worst possible case only. In the
following section, we plot the impact of degree of order, given utilization of 0.5, for each
batching scenario in one concise plot. In addition, the section analyzes the effect of our

other two experimental parameters: p and N.

2.9.3 The Effect of B, p, and N

In the simulation results presented in this section, we compare the three batching scenarios
and virtual circuit communication. In each of the three plots, we keep two of the exper-
imental parameters fixed and examine the effect of mean message delay when the third
parameter is varied. Pligure 2.19 brings together the batching scenario results of the pre-
vious section .for utilization of 0.5. As illustrated, the mean message delay, for any given

F-channel batching possibility, monotonically increases as the amount of delivery restric-

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 60

VG

N=25
0.9f p=05
B = vaiied
08 = 2F

0.7}
<
[{=]
0.6} BF
0.5}
FF
0.4}
A i =8
0.35 R

YT N S U 71T IS N W YOO 0 4 'O O V1) O T W 11V
100 10! 102 103 104 10%
Number of Batches

Figure 2.19: Varying the Number of Batches

tions placed on message delivery increases. T'he figure considers a 25-link system and a
utilization of 0.5. In this plot, each point represents the difference between the mean mes-
sage delay for a virtual circuit and the mean message delay for a given communication
scenario when the number of batches is varied. (A given communication scenario is either
virtual circuit communication or I-channel communication utilizing a named flush type to

delimit the batches.) Each point in the plot is computed as

Pa=p0

where the subscript of D represents the communication scenario. A value of Dy close to
1 indicates minimal gains for batched data delivery over a multi-link F-channel compared

to a virtual circuit over the same number of links. The smaller the value of Da, the

CHAPTER 2. IMPLEMENTATION OF A FLUSH CIIANNEL 61

greater the performance improvement. The value of Dy is simply the fraction of the virtual
circuit delay produced by the F-channel batching paradigm. For example, a value of 0.4 for
D means the specified batching scenario takes only 40% the time of transmitting these
messages on a virtual circuit. We immediately note the performance gain a user will obtain
if messages can be transmitted using an F-channel. In the best situation, message delay
for a batching application communicating with an F-channel will be approximately one
third that of the same application communicating with a virtual circuit. The delay for an
I'-channel approaches that of a virtual circuit in the worst case only. If the semantics of
the application permit, F'-channels offer promise of providing high bandwidth inter-process
communication. Since the flush communication paradigm allows the user to specify the
least delivery restrictions necessary for the application, the best mean message delay can

be obtained.

vC
1.0 = = £ & = & & & 80
N=25
0.9} p =vailes
B=99
0.8}
0.7}
<
Q
0.6}
0‘5 - 2F
0.4}
BF
~
FF Q\G\Q_J
0.3
L l 1 i i [} i 1
0.2 0.4 0.6 0.8

Figure 2.20: Varying the System Utilization

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 62

Since we have considered the degree of order effect on each batching scenario, we now
analyze the effect of our other two experimental parameters: utilization and number of
links. In Figure 2.20, we consider utilization. As in the previous figure, we plot D on
the vertical axis. In this case, however, we fix the batch size at 99 and p is the indepen-
dent variable. The plot illustrates that both forward flush and backward flush batching
scenarios have the best gain in performance (compared to virtual circuit communication)
when ;\tilization is 0.8. Ordinary messages separated by two-way flush messages, on the
other hand, are best at about a 0.3 utilization. As utilization increases after the best gain
in performance for each batching scenario, we realize that the queueing delay begins to
override the resequencing delay benefits. In each batching scenario, however, we easily see
the benefits of communicating with an I"-channel.

Figure 2.21 considers the effect of varying the number of links. In this simulation experi-

vC

N=varies
p=0.5

B=99
0.8}

2F

0.6

0.5}

0.4}

0.3 BF

FF

0.2k !) 1 1 L

0 20 40 N 60 80 100

Figure 2.21: Varying the Number of Links

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 63

ment, we fix the batch size at 99 and utilization at 0.5. The two-way flush batching scenario
exhibits its best performance when the number of links in the system is approximately 20.
As in the virtual circuit communication case, the mean message delay for batching ordi-
nary messages with two-way flush messages degrades when more than 20 links exist in the
system. (This result is heavily dependent on the fixed parameters.) The backward flush
and forward flush batching scenarios, on the other hand, do not show a degradation even
as the number of links in the system increases to 100. When we consider a 100-link system
and batch ordinary messages with forward flush messages, we see the mean message delay
is less than 25% of virtual circuit communication.

In this section, we compared the performance of virtual circuit communication with
the three batching scenarios in I-channel communication. All the results illustrate that
a programmer can obtain much faster data transmission if batches of ordinary messages
delimited with a flush message of a given type are transmitted on an F-channel. In the
three F-channel batching paradigms, there is a clear carrespondence between the degree
of disorder allowed in message delivery and the potential for effective concurrent message
transmission without excessive resequencing delay. In other words, referring to Figures 2.10
to 2.12 of Section 2.8.2, the fact that batching with forward flush messages is less restrictive
than batching with backward flush messages, which, in turn, is less restrictive than batch-
ing with two-way flush messages is reflected directly in the simulation result of Figure 2.19.
Furthermore, in all three batching scenarios, the larger batch sizes have smaller mean rese-
quencing delays leading to smaller mean delays. That is, as the degree of order increases,
there is a monotonic increase in the mean message delay.

A second conclusion may be drawn from Figure 2.20. Resequencing delay is more im-
portant in mid-range utilizations and, hence, Da is lowest for utilizations between 30% and
70%. As discovered in virtual circuit communication and shown in Figure 2.13, resequenc-
ing delay is less of a factor in the total delay when utilization is low, due to less out-of-order

message delivery, and when utilization is high, due to tle increased importance of queueing

CHAPTER 2. IMPLEMENTATION OF A FLUSH CIHHANNEL 64

delay. Figure 2.21 illustrates that the backward flush and forward flush batching scenarios
exploit as many links as available. The more restrictive, in terms of message delivery order,
two-way flush batching scenario has a response similar to virtual circuit communication;
i.e., when the number of links in the system is increased, the mean delay is also increased.
The performance of the two-way flush batching scenario of batch size 99 does improve,
however, as the number of links in the system goes from 1 to 20. Having more than 20 links
in the system and adding additional links decreases the performance gain in the two-way
flush batching scenario.

It is also evident from the comparative plots of Figures 2.19-2.21 in this section that
the performance of forward flush batching and backward flush batching are quite similar,
but substantially better than the performance of two-way flush batching. Two-way flush
batching, however, still outperforms a virtual circuit by a wide margin.

In this section, we analyzed the effect of varying our three experimental parameters
on mean message delay. We note that in modeling the transmission time distribution
as exponential with parameter p, we have ignored the effects of the transmission time
distribution on the message delay. It is known [Cho89] that the resequencing delay for multi-
link virtual circuits is sensitive to higher moments of the transmission time distribution. As
a trivial example, if message transmission time is fixed at the constant value 1/, there is
no resequencing delay. All of our results have an implicit assumption that the sender and
receiver are linked across a packet switched internetwork and, therefore, we expect message
transmission time to be highly variable. In the following section, we examine the effect of

the second moment of the transmission time.

2.9.4 The Effect of Variance

Although the results of this section continue to be simulation-based performance results, we
separate the preceding section with the results presented here due to the extreme differences

in the underlying system. In this section, the message generation process continues to be

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 65

Poisson with mean A, but the transmission time on any link is a 2-stage hyperexponential

random variable with mean 1/yx and squared coeflicient of variation C? where

variance
Ct = ————

(1/p)?
When a message is ready for transmission, it has probability e, to transmit on a link which

is exponentially distributed with mean 1/ and it has probability (1 — a;) to transmit on

a link which is exponentially distributed with mean 1/puz. Therefore,

l—ﬂ 1——(Y1

JL 3] 1%

We may model this system, excluding the resequencing bufler, as an M/H; /N queue. In the
following simulation results, ¢ continues to be fixed at one and C? becomes an experimental
parameter. We plot C? versus Ra, the fraction of the virtual circuit resequencing delay

produced by the F-channel batching paradigm:
- Rx
R = =——
27 Rve

where X represents a particular batching scenario.

In Figures 2.22 to 2.24, we keep the number of communication links and utilization fixed
at eight and 0.5 respectively. At the left end of the horizontal axis, where C? = 1.0001, Ra
represents the performance improvement of the particular batching scenario over virtual
circuit communication when the message transmission distribution is approximately ex-
ponential. As C? increases, the three figures illustrate that the three batching scenarios
produce different degrees of sensitivity to increasing the variation in transmission times.

In the first of the next three plots, Figure 2.22, we consider the effect of variance when
transmitting batches of ordinary messages delimited by two-way flush messages. The plot

illustrates that the two-way flush batching scenario is extremely sensitive to increases in

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 66

vC
1.0 L [+ © Q
= -8 B=39
B =999
0.8r B =1,899
0.6 }
HIQ 2F Batching
N=8
0.4} p=05
B = varled
0.2}
B =19,999
0.0 & - > v B =189999
1 I3 1 1 1 N
a 200 400 2 600 800 1000
C

Figure 2.22: Hyperexponential: Varying the Number of Batches

the coefficient of variation. As C? increases, the performance gain of the two-way flush
batching paradigm is decreased. A batch size of 199,999 (basically no resequencing delay)
is the only batch size not affected by the hyperexponential distribution. Consider a batch
size of 999. When C? increases from 1.0001 to 500, R increases from 0.5% to 80%.

In Figure 2.23, we consider the effect of a 2-stage hyperexponential transmission distri-
bution oﬁ the transmission of ordinary messages terminated by forward flush messages. In
this case, the effect of variance is not as severe. In fact, the performance gain of each batch
size over virtual circuit communication remains unchanged for every C?. Consider a batch
size of one. 50% of the messages have no resequencing delay and 50% of the messages have
a resequencing delay as if the message were transmitted across a virtual circuit. Therefore,
regardless of C2, the mean resequencing delay of a message in this batching scenario is one

half the mean resequencing delay of a message transmitted across a virtual circuit. Every

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 67

message transmitted across a virtual circuit is sensitive to increases in C?; in the forward
flush batching paradigm, only forward flush messages are affected by increases in C2.

Figure 2.24 illustrates the effect of variance when the ordinary messages are preceded
by backward flush messages. As C? increases, Ra decreases. Again consider a batch size of
one. When C? = 1.001, Ra = 64%. When C? = 1000, Ra = 42%. Recall the comparative
plots of Figures 2.19 to 2.21. Although the forward flush and backward flush batching
scenario results are similar, the forward flush batching scenario continuously outperforms
the backward flush batching scenario. This result is interchanged when we consider the effect
of variance. As C? increases, the backward flush batching scenario begins to 0utperform
the forward flush batching scenario.

Figures 2.25 a,nd 2.26 analyze the effect of utilization and number of links on the two-way

flush batching scenario, the F-channel batching paradigm that exhibits the least amount

1.0} o—o e o VC
FF Batching
Na8
0.8} P =05
B = varied
0.6 |-
u:q Q@ 1! a 6 Bu1
0.4¢
0.2
a- s 4 Ba9
ool ® - B=99
i I L 1 L] 13
0 200 400 600 800 1000
2
[¢]

Figure 2.23: Hyperexponential: Varying the Number of Batches

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 68

1.0} o—o © © VG
BF Batching
N=8

0.8% p=05S
B = varied

0.6}

III<
0.4 \ﬂ 8=
0.2}

T 8.3

0.0} o B=89

i A 1 1 1 i

0 200 400 » 600 800 1000
G

Figure 2.24: Ilyperexponential: Varying the Number of Batches

of performance gain when the effect of variance is examined. In Figure 2.25, we consider
utilization. As in the previous figures, we plot C? on the horizontal axis and Ra on the
vertical axis. In this case, however, we fix the batch size at 19,999 and consider the effect of
varying p. Higher utilizations lose the performance gain faster than lower utilizations when
C? is increased. This result is intuitive; higher utilizations will be more adversely affected
by greater variation in the transmission times.

Figure 2.26 considers the effect of variance on the two-way flush batching scenario when
we alter the number of links in the system. In this simulation result, we fix the batch size
at 19,999 and utilization at 0.5. In all cases, the performance gain is reduced as C? is
increased. Consider a 25-link system. When C? = 100, Ry = 8%, but when C? = 1000,

R = 49%. As more links in the system allow more opportunity for messages to arrive

out-of-order, the performance gain over a virtual circuit is reduced.

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 69

1.0 o—o © o VC
N=8
P =varied
o8 B=19,999
0.6}
<
4
0.4 p=03
0.2}
pP=0S5
8 p=01
0.0
1 1 1 1 1 1
0 200 400 600 800 1000
CZ

Figure 2.25: Hyperexponential: Varying the System Utilization

One way to comprehend the effect of an incrcase in the variation of message transmis-
sion, is to deduce the number of messages that are affected when the transmission time of
one message is substantially increased. In the two-way flush batching scenario, one mes-
sage can delay the delivery of all messages in subsequent batches. Therefore, this hatching
scenario is extremely sensitive to increases in C?. In fact, batch sizes less than 99 and coeffi-
cient of variations grealer than 10 exhibit almost no performance gain over transmitting the
messages across a virtual circuit. As C? is increased in a system transmitting forward flush
batches, the performance gain over a virtual circuit remains unchanged. In other words, one
slow message can delay the delivery of all subsequently transmitted forward flush messages;
however, the delivery of ordinary messages is unaffected by a message with a long trans-
mission time. The backward flush batching scenario illustrates a performance improvement

over virtual circuit communication when variance is counsidered. In this batching scenario,

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 70

1.0} o—o) o VC
N = varied
oslh P =05 N 100
) B = 19,999
0.6
| N=25
0.4
0.2}
/ N-B
0.0}
1 | L 1 1 1
0 200 400 . 600 800 1000
c

Figure 2.26: Hyperexponential; Varying the Number of Links

only the transmission of backward flush messages can delay the delivery of other messages
in the system. Since fewer messages can affect the delivery of subsequently transmitted
messages, the batching paradigm is less sensitive to increases in C2.

For every batching scenario and every coefficient of variation, the resequencing delay of a
message transmitted across an I-channel is as good as, if not better, than the resequencing
delay of a message transmitted across a virtual circuit. While increasing C? does adversely
affect the performance gain of a message in the two-way flush batching scenario, I*-channel
communication continues to outperform a virtual circuit.

We note that a central developmental trend in computation is that we (generally) achieve
speed through the concurrent operation of many processors. The magnitude of such a speed-
up depends upon the nature of the computation and how well it can be partitioned into

concurrent activities. A similar phenomenon is obvious in this work—the use of F-channels

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 71

provides the opportunity for concurrent message delivery over maultiple links. F-channel
communication can be used to relax delivery order mstrictio;ls and, hence, to make data
transfer faster through concurrent message passing.

All the results presented in this section were obtained from a simulator. In the following
section, we return to the transmission time on any link as an exponential random variable

with mean 1/p and we confirin the validity of the corresponding simulation results.

2.10 Analytic Results

The total delay (D) of a particular message is a random variable. The random variable for
the time spent in the transmission queue, waiting for an available link, is called the waiting
(W) delay. The transmission (T') delay is a random variable for the time a message spends
en route from the sender to the receiver. The third random variable in the total delay, as

discussed in Section 2.8, is the resequencing (R) delay. The total delay is then
D=W+T+ R.

Once again, consider the system shown in Figure 2.9. The message arrival process is Poisson
with rate A. The service time, or transmission delay, is exponentially distributed with mean
1/

T(z)=1-e™** z > 0.

The system has N identical links connecting two communicating processes. We assume
there is an infinite number of messages to be transmitted. The system up to, but not
including, the resequencing buffer is an M/M/N queue. This subsystem will achieve steady
state for p = NAZ <1

Let p, be the steady state probability of finding n messages in the subsystem. The state

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 72

occupancy probabilities for the M/M/N queue at steady state are given by [Kle75]:

(Np)"

Po 01 ns N

Pn = (2.1)
(Np)"
Py "2
where
N-1 N -
_ (Np)" (Mp) (1)
bo = [nZ=% n! + N! 1-p
The expected total delay is given by:

E[D] = E[W] + E[T] + E[R]. (2.2)

Independent of the communication paradigm, E[W] is given from M/M/N analysis [AR87],

N N
- G
and
E[T] = ~.

The resequencing delay, on the other hand, does depend on the communication paradigm.
In the next four sections, we discuss the expected resequencing delay for different commu-
nication scenarios. The first section lists established results for the resequencing delay for a
virtual circuit (VC). The next three sections derive the resequencing delay for the different

batching scenarios discussed in Section 2.8.2.

id £Vrntrnd

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 73

2.10.1 Virtual Circuit Resequencing Delay

Analysis of the resequencing problem for virtual circuit communication has been considered
in the literature by several authors. Yum and Ngai [YN86] studied the resequencing of
messages in an M/M/N queuing system with links of different speeds. Messages in this
system were transmitted down the fastest available link. They found that resequencing
delays increase as the variation in the speed of the links increase. In [AR87], Agrawal and
Ramaswamy focused on the distributional aspects of the resequencing delay in an M/M/N
system. Chowdhury derived the distribution of the total delay [Cho89)].

The expected resequencing delay of a message transmitted across a virtual circuit could
be derived from the resequencing delay distribution. It is far simpler, however, to derive
the expected delay by conditioning the derivation on the number of messages in transmis-
sion and then, subsequently, removing the condition [AR87]. We outline the approach of
Agrawal and Ramaswamy since we use a similar argument, Suppose n < N links arc busy.
When a message arrives, it is tagged and transmitted immediately. Let T,y represent the
transmission time of this tagged message. Due to the memoryless property of the expo-
nential transmission time distribution, the remaining transmission time for each message
en route, at the instant of transmission of the tagged message, is exponentially distributed
with mean 1/u. Let ty be the remaining transmission time of the message on the kth busy
link (k < n). Thus, max(ty,t2,...,ty, Tys1) is the time until all (n + 1) messages en route
have completed transmission.

Let VCR, be the resequencing delay of the tagged message transmitted across a virtual

circuit when » links are busy. Then

E[VCRH] = E[max(tl, tz, ey tn, T"+1) — Tn+1]. (23)

Equation (2.3) is the expected resequencing delay conditioned on the number of busy links.

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 74

If VCR is the unconditioned resequencing delay, then

E[VCR] = Ni pb(n) E[VCR,], (2.4)

n=0

where pb(n) is the probability of finding n busy links upon the transmission of the tagged
message. These probabilities can be obtained directly from the steady-state probability of

state occupancy in an M/M/N queue [AR87]:

pb(n) = pa,
n
= po A" 0<n<N-—2
n!
(2.5)
pb(N'I) = Z Pn,
J=N-1

2 (Np)N-!
W -D-p)

Using equations (2.3)—(2.5), Agrawal and Ramaswamy derive the expected resequencing

delay in [AR8T]:

E[VCR] = NZ_I pb(n) E[max(tq,t2,...,tn, Tug1) = Tuyal,
n=0
- (Np)" 1, (NN
= [Z 2 + V- D= }: (2.6)

Combining the expected waiting, transmission, and resequencing delays produces an
equation for the expected total delay a message experiences across a virtual circuit. If VCD

represents the total delay of a particular message transmitted across a virtual circuit, then

: _ po p(Np)N 1 po [RE(1 (Np)N-1
E[VCD] = 33 0= p)2+t+ﬂ 2 gz-—————,(l_p)z (2.7)

Results from this equation are within the confidence interval of the simulation results shown

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 75

in Figures 2.13 and 2.14.
In [ARS87], aspects of the resequencing distribution are discussed. They analytically

show that E[VCR] always increases as

(1) N increases,
(2) A increases,

(3) 1 decreases.

Let us assume that p increases by either keeping A fixed and decreasing p or by keeping p
fixed and increasing A. Then, E[VCR] monotonically increases as N or p increases. Since
utilization cannot increase past 1.0, equation (2.6) reaches its limit when p = 1.0 and all
other variables are fixed. When all variables are fixed and NV is increased, E[VCR] converges.
To calculate the asymptote of the convergence, we consider the closed-form solution for a
system with an infinite number of links. In [Kle75], we obtain the probability that n links

are busy in an M/M /oo system as

o= (2) Lo 28)

n) nl

Using p,., Agrawal and Ramaswamy derive E[VCR,], the expected resequencing delay of a
particular message transmitted across a virtual circuit in a system with an infinite number

of links [AR87]:

E[VCROO] = an E[V,CRnL

n=0

1 o n~—1 AN 1
F[Z(_l)) n(n+1)!]' (2:9)

n=1

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 76

2.10.2 Forward Flush Batching Scenario

In this section, we consider the resequencing delay for the transmission of the forward flush
batching scenario. Suppose I'CR, is the resequencing delay of a message just arrived to find
n busy links on an F-channel. Recall Figure 2.10; this graph illustrates that the predecessor
set of an ordinary message is empty. The resequencing delay of an ordinary message is thus

zero,
FCRY™ = 0.

The resequencing delay of a forward flush message is more interesting. When a message
of this type is tagged for transmission, every message previously transmitted will be in the
predecessor set of this tagged forward flush message. Hence, the delivery of a forward flush
message must wait for the delivery of every message currently in transmission, i.e., all n

messages. Therefore,
FCR,I:F = ma,x(tl, to, ..., tn, Tn+1) - Tn—{-l-

If FFR, is the resequencing delay of a tagged message in the forward flush batching scenario

conditioned on n busy links, then

B 1
r a = Ord) n FF
R (————I)FCRn + (———G —) FCELF,

_ - pFF
- (B l)rcnn,

=+

+

where B is the batch size.
Following the derivation of the expected resequencing delay for virtual circuit commu-
nication, we derive the expected resequencing delay of the forward flush batching scenario

conditioned on the number of busy links in the system and then remove the conditioning.

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 77

Equation 2.3 is the expected resequencing delay of a message that must wait for the delivery

of every message currently in transmission. Therefore,

E[FFR,] = (ﬁ) (E[max(ty, 2, - - tus Tas1)] = E[Tnga]).

Since T'(2) is the c.d.f. of message transmission time, then

E[FFR,] = (E’iﬁ) (/0 1t - (T@))")de — i)

Substituting z for T'(z), we obtain

1 1(1- "“) 1
E[FFR,] = _—
[FFR,] (B-f—l)(/(; 1—2 ,u ’
which, upon integration, is equivalent to
1 1 H1
E[FFR,] = (—-——)|~ = —==1.
(FF] (B+1) (ngk ,U)

Using pb(n), from (2.5), we remove the conditioning to obtain the expected resequencing

delay of a particular message in the forward flush batching scenario.

E[FFR] = Zpb(n) E[FFR,],

]
(e \ﬁ
v
l__l
3
t:‘
:
e
/_"\
o
2
T Mt
v
+
=]
=
2
—~
N’
TN
-
M=
Bl
~——

] (2.10)

Therefore,

E[FFR] = (BLH) E[VCE]. (2.11)

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 78

Equation 2.11 is intuitive; B out of (B + 1) messages in the system do not have any
resequencing delay and 1 out of (B + 1) messages in the system have a resequencing delay
as if the message were transmitted across a virtunal circuit.

Combining the expected waiting, transmission, and resequencing delays yields the total

delay a message in the forward flush batching scenario may expect:

Np)V 1 1\ A 1%
E[FFD] = X;%I._' f’(T(_—‘;-))jg— tot <§¥T) 2;0 pb(n) (Z %3 Z) . (212)

The result of plotting this equation is within the confidence interval of the corresponding
simulation result and illustrated in Figure 2.16.

We consider the expected resequencing delay of a message in the forward flush batching
scenario as the three parameters (B, p, and V) individually increase. Equation (2.10) shows
that E[FFFR] monotonically decreases when B increases and all other variables are fixed. In
[AR8T7], Agrawal and Ramaswamy proved that pby(n) is stochastically larger than pby(n) if
p in pbi(n) is smaller than p in pbs(n). (Recall that we assume p increases by keeping either

A or p fixed.) That is,

N-1 N-1
E pby(n) < Z pbo(n) for0 <k <N -1,
n=k n=k

Since E[FFR,] increases when pu is decreased or n is increased, we conclude that E[FFR]
monotonically increases as p increases and all other variables are fixed. Furthermore,
E[FFR] reaches a bound when p = 1.0. Lastly, we consider E[FFR] when N is increased.
For the virtual circuit communication paradigm, Agrawal and Ramaswamy proved that the
expected resequencing delay monotonically increases as N increases. Consider this fact in-
tuitively; if NV increases and all other variables are fixed, more messages are on the links at
any given time and, hence, there is more opportunity for the messages to arrive out of order.

I'rom equation (2.11), we conclude the mean message delay in the forward flush batching

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 79

scenario monotonically increases when N increases as well. E[FTFR] converges to the ex-
pected resequencing delay for a message in an M/M /oo system. Using (2.8), the probability

that n links are busy in an M/M/oco system, we derive the expected resequencing as

> pn E[FFR,),

n=0
1 oo
(B ¥ 1) gp"

From the derivation of E[FFR,], we know that 3_7%; 1 is equivalent to fj = 1% (1 = a™)de.

E[FFRo]

1 n+1

IpS

I

Therefore,

2™)d.

. 1 e 171 2
D[l PROO] - (m);pn ;Z o 1

The expected value then becomes

1 \1 ‘

when the infinite series is expanded. Substituting y = (1 — z) and the power series for €%,

we obtain

i + ()L S () 5o (8o
(B-}-l) H 12:1(™ 1() Tni__ﬁ (2.13)

upon integration and simplification. Again,

E[FFRes] = (79‘1?1) E[VCR.,]. (2.14)

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 80

2.10.3 Two-way Flush Batching Scenario

Figure 2.11 shows the two-way flush batching scenario. Similar to a forward flush message,
the delivery of a two-way flush message must wait for the delivery of every message currently

in transmission. If a tagged two-way flush message is ready for transmission and n links are

busy, then
FCR?F = ma‘x(tl’ ta,. .., tn, Tn-i-l) - Tn—}-l'

Consider the transmission of the jth ordinary message. If 2 messages from the predecessor

set of this tagged ordinary message are in transit, then

0 ifz=0
ma.x(tl,Tn.l.l) - Tn+1, ifz=1
FCRr?rd'j = 9 max(tl,tg,T,.H) - Tn+11 ifz=2

\. max(t1,t2, .. .,tn,T".}.l) - Tn+], ifx = n

To calculate FCRO*:7, we require the probability that z messages are in transit from
the predecessor set of the jth ordinary message. If ¢ ordinary messages from the batch
containing j are in transit, then ¢ = n — 2. Instead of calculating the probability that 2
messages are in transit from the predecessor set given n links are busy, we calculale, upon

the transmission of the jth ordinary message,

pords;(i| n) = P{i ordinary messages in transit {rom the current batch [n busy links}.

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 81

We re-write FCRO™: 7 in terms of the number of ordinary messages in transit from the

current batch given n links are busy:

’

pOI‘de(n’lil\(j - 1,11) l n) (ma'x(th ta,.. 0, t'n—min(j—-l,n)a Tn+1) - Tn+l)

FCRy™7 = 3 +pords;(2] n) (max(ts, 2, -, tu=2 Tus1) = Tuy1)

+pords;(1 | ») (max(ti,te, ..., ta=1,Tns1) = Tny1)

+pords;(0| n) (max(ti,t2, ...t Tig1) = Thnyr)

\
min(j—1,n)

= Z pords;(i | n) (max(ti,t2,. .., tn_i, Tn1) = Tns1).
=0

Following the derivation of the expected resequencing delay in the two previous sections,
we first consider the expected resequencing delay of the two-way flush batching scenario

(E[2F R]) conditioned on the number of busy links in the M/M/N system.

1 1
E[2F = (5— E Ord, i () B[FCREF
[2F R, (B+1)]§ (FCRY) + (1) BIFCRE,
1 B min(j—1,n)
= (—.——T\ vu ..-T_, ",t)r\vr‘c-(r; I mY Tlmavlt. t. + LS AR NS AR
1 _ﬂ—l) Z pords;(é | n) Blmax(ty, t2,. .., ta=i, Tng1) — Tn1)
j=1 i=0
1
+ B—'H) E[ma'x(tl; t2, ..., tn, Tn+1) - Tn+1]7
= (- B min(j-1,n) 1"z 141 1 1 n+1 1
ords;(i| n =]+ 1= =11
() > X vordsil)(; D k) (;Eﬁ)
The expected resequencing delay in the two-way flush batching scenario is then
N-1
BRFR] = 3 pi(n) B2FR,
() iN—l n‘jn%—:lln) 1 ﬂ—i—l l
= pb(n) pords;(z | n) (— —)
b +1 j=1 n=0 =0 ! K k=2 k
1 n+1 1
+ Z pb(ﬂ)(3 k” (2.15)
n=0 k=2

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 82

The expected total delay a message from the two-way flush batching scenario experiences

is, as before, the combination of the three expected' delays:

min(j—1,n) n—i+41
1 n —_ po ._’M () S (q l .l
E2PD) = STty + B]Z;;pb g pords;(i |) ;.Z=:z k
1 n+1 1
+ Zpb(n (ZL)]' (2.16)
k=2

We consider E[2FR] as B, p, and N individually increase. Equation (2.15) shows that
E[2FR] monotonically decreases when B increases and all other variables are fixed. Now
consider E[2IF'R] when p increases and all other variables are fixed. We know, from the pre-
vious section, that pb(n) stochastically increases as p increases. Furthermore, (DI i+l i
increases as p decreases or n increases. Therefore, to verify E[2FR] monotonically increases

as p increases, we need to show that pords;(i| n) stochastically increases as p increases.

That is, if p is higher in pords;(i| n), than p in pords;(i | n);, we need to show that

N—1min(j--1,n) ~1 min{j—1,n)

> > pordsj(i| n), < Z Z pords;(i| n), for0< k<N -1,
n=k i=0 1=k i=0

mm(] 1in) pOI‘de(i| ’I’L) = pn. lence, as p

This result is clear when we consider that 3°,_
increases, the expected resequencing delay in the two-way flush batching scenario mono-
tonically increases. Furthermore, E[2FR] has a bound when p = 1.0. Lastly, we consider
E[2FR] when N is increased. Intuitively, if N increases and all other variables are fixed,
there is more opportunity for the messages to arrive out of order. Hence, the expected value

monotonically increases as N increases. For validation, consider equation (2.15). If N is

smaller in pb;(n) than N in pby(n), then

N-1 N-1
D pby(n) £) pby(n) for0< k< N —1.
n=k n=k

Now consider pords;(i| n). Since p is fixed, pords;(i | n) for a given N is identical to

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 83

pords;(i | n) for a higher N. In addition, (5; Y r25t! 1) increases as N increases. Therefore,
equation (2.15) monotonically increases as N increases. E[2I"R] converges to the expected
resequencing delay for a message in a system with an infinite number of links. The proba-

bility that n links are busy in an M/M /oo system is from (2.8).

E[2FR°°] = an E[2FRu]$

n=0
) min(i'—il,n) 1 n-§-1 1
= Pn pOl‘dS'(i | Tl) <— —)
(B +1 Z—; nz—: =0 ! roim k

+ u,; -1 (_)n n(n:- 1)'] (2.17)

All of the derivations in this section reqguire the probability that, upon the transmission
of the jth ordinary message, 7 ordinary messages are in transit from the current batch given

n links are busy: pords;(i| n). We know that

min(j—-1,n)

> pordsi(i|n) = 1

i=0

and
pords; (i | n) porde(z A n)
E;—o pords;(i A n)
where
pords;(i A n) = P{iordinary messages in transit from current batch A n busy links}.

We first consider pords;(i A n) in the M/M/co system, and then restrict the system
to a finite number of links. Given a system with an infinite number of links, we con-
sider the probability that a message previously transmitted is in transit when another

message begins transmission. Suppose the inter-arrival interval preceding the transmission

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 84

of m; is A; and the transmission time of m; is 7;. Then, as illustrated in Figure 2.27,
P{Ay < T} is the probability that m; is in transit when mq begins transmission. Further-
more, P{A; + A3 < T1} is the probability that m, is in transit when mg begins transmission.

Since the inter-arrival and transmission times are independent exponential random vari-

ables, with means 1/A and 1/u respectively, we compute the above two probabilities as

P{A, <Th} = /0 P{A; < Ty | T\ = a}pue *dz,
A

Adp

and

P{A;+ A3 <Ti} = /(; P{Az+ A3 < TY | Ty = a}pe " d,
/\ 2
- (A+ /L) '

Generalizing, we obtain the probability that the nth message previously transmitted is in

transit when a new message is transmitted [Ros73}:

/\ n
P{As+ As+ ...+ A, <T1} = () ,

A u
P{nrA<Ti} = o (2.18)
| A | T |
| | I
A, K
| | ?
i i :
Ag

—

Figure 2.27: Inter-arrival and Transmission Times: M/M/co

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 85

— A
where a = pwart

Returning to pords;(i A n), let us consider two specific examples. Suppose the jth

ordinary message from a batch is tagged and ready for transmission. Then

po = pords;(0A 0),

Il

PT<AANT <2AANT <34AAN...}

i.e., no message previously transmitted is in transit when the jth ordinary message is
transmitted. Due to equation 2.18, the value of this probability would be trivial to obtain if
the individual components within the probability were independent. We test for dependence

by whether
P{T] <A2+A3'T2<A3} = P{T] <A2+A3}.

Consider 5, the set of all possible values in the M/M/oco system for (T, A2, A3, T2). We

define the events F, E;, and Ej3 as the following subsets of the sample space S.

F {:l! = (T1,A2,A3,T2) | Ti< Ay N T <43 AT < A3}

Ey = {m:(Tl,Az,Ag,Tg)|Tl<A2 ANATy>A3 ATy < A+ As A T2<A3}.

Es = {IZ:=(T1,A2,A3,T2)IT1>A2 ANTi<Az A TI < Ay + A3 A T2<A3}.

The union of E,, E,, and Ej3, defined as E, is all possible outcomes of T < A; + A3 given

T2 < As. We now define the events Iy, Fy, and Fj as the following subsets in 5.

o= {:L = (-TI,AZ,AB,T').) I Ty <Ay AT < A3}.
Py, = {g=(T1,A2,43T) |T1 <Ay A Ty > A3 A T3 < A2 + A3},

I = {(L = (,1111/12’/13:’1‘2) I Ty > A2 ATy < Az A Ty < Ax + Ag}.

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 86

The union of Fy, I, and F3, defined as F, is all possible outcomes of Ty < A2 + A3 without
the constraint 7, < Az. When we consider the probabilities of IZ and F', we conclude
that the dependence test fails. For instance, when T4 < A and T7 > A3, E implies that
T, < Ty. F, makes no such implication. That is, I’ represents possible outcomes that E
cannot represent; hence, the probability of F' will be greater than the probability of E.

Therefore,

P{Ty < Az + A3 | T2 < Az} # P{T1 < Ay + A3}

and the individual components within pords;(i A) are dependent.
We can, however, obtain an approximation for pords;(i A n) denoted pords}(i A n), by

assuming they are independent. Thus,

P{T < A}P{T < 24}P{T < 34}...,

pords} (0 A 0)

(1-a)(1-a?)(1-a)...

For another example, consider the transmission of the third ordinary message in a batch.

Then
pordsj(0A 1) = (1-a)(l—-az)a®(1-a*)(1-a®)(1-af)...
+(1 —a)(1 - az)(1— o) o (1 - a®)(1 - af)...
+(1 - a)(1 - az)(1 -e®)(1-a?)a® (1-af)...
and

pordsj(1 A 1) = a(l—az)(l1-a®)(1-a')(1-a®)(1-a%)...

+(1 - @) az (1 — e®)(1 - a*)(1 - ®)(1 - o). ..

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 87

0.351 N = Infinity
a=08
o.30k P =0.1
B=9
0.25}
F
Q
00,20
2
Ki}
g
g 0.15}
3
@
o.10f E'IFCRO]
0.05}
0.00
L 1 1 1 1 1 i 1 1

Figure 2.28: Analysis vs. Simulation Results: M/M/co

The above two examples indicate the method to obtain an approximation of pords; (i A n).
pordsj(i A n) is a summation of probabilities. Each probability is a product of two prod-
ucts. The first product is the probability that ¢ ordinary messages from the jth batch are
in transit; the second product is the probability that n — ¢ messages not from the jth batch
are in transit, The two examples of pords?(é A n) above were chosen due to their simplicity.
That is, the number of possible combinations for the first product is (j"l-l); the number of
possible combinations for the second product is either one or co. For simplification in the
examples above, only one combination is possible for the first or second products or both.

In Figure 2.28, we plot the approximate expected resequencing delay for nine ordinary
messages in a batch, E*[FCO™J], when o = %; = 0.8; a represents the average number

of busy links in an M/M/oco system. We compare this result to R for a simulated 8-link

system wiih A = 0.8 and g = 1.0. In the simulated system, the average number of busy

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 88

links is 0.8 as well. The maximum number of busy links in the analysis is eight. We do not
plot the associated resequencing delay for a two-way flush message; this value is equivalent
to the value of the first ordinary message in a batch for both E[FCO*%1] and R. As the
figure illustrates (although we approximate pords;(i A n) with pords¥(i A n}), the results
from the analytical equations match the simulation results. In the simulation, the mean
resequencing delay is between 0.0968 and 0.1014 with 95% confidence. The result from the

approximate analysis is 0.1059.

0.9

N = [nflnity
a=25

P =01
B:lg

0.8

E'[FCROI)

Resequencing Delay
o
tn
1

0.2

0.

Figure 2.29: Analysis vs. Simulation Results: M/M /oo

Figure 2.29 plots the approximate expected resequencing delay for nine ordinary mes-
sages when the average number of busy links is 2.5. We compare the result to R from a
simulated 25-link system with A = 2.5 and ¢ = 1.0. The average number of busy links
in the simulation is also 2.5; the maximum number of busy links from the analysis is 13.

In this situation, the mean resequencing delay from the simulator is between 0.4114 and

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 89

0.4173. The analysis approximaltes the expected resequencing delay at 0.4357.

In a system with a finite number of links, we again consider the probability that a
message previously transmitled is in transit when another message begins transmission. As
before, A; is the inter-arrival interval preceding the transmission of m;; T; is its transmission
time. @; represents the queueing delay for message m;. Figure 2.30 illustrates that the
Ay Qy T,]

J | !

Figure 2.30: Inter-arrival and Transmission Times: M/M/N

probability that m; is in transit upon the transmission of mg is P{A2+ Q2 < Q1 +T1}. The
probability that m, is in transit when mg begins transmission is P{A2+ Az + Qs < Q1 +T1}.

Unlike a system with an infinite number of links, these two probabilities are difficult
to obtain We do not examine the derivations of these probabilities, however, for what we
require is P{As + Q2 < Q1 + T1 and Az + Az + Q3 < Qy + T1}. Let us consider a specific
example. Suppose the jih ordinary message from a batch is tagged and ready for transmis-

sion. Then

pb(0) pords;(0 A 0),

PlQ+T<A+QAQ+T <24+QAQ+T <3A+QA..};

Il

i.e., no message previously transmitted is in transit when the jth ordinary message is
transmittled.
As in the case of a system with an infinite number of links, the conditions within the

probability are not independent. We, thercfore, approximate the probability by assuming

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 90

independence; e.g.,
pordsj(0A 0) = P{Q+T<A+Q}P{Q+T<24+Q}P{Q+T<34+Q}....

Because there is no simple derivation for P{Q+T < nA+Q}, we approximate pords}(i A n)
one step further. For a given utilization, the queueing delays for any two messages will,
most likely, be close in value. Therefore, we further approximate pords}(i A n) as we did

in the case of a system with an infinite number of links by subtracting out the queueing

delays:

pords}(0 A 0) P{T < A}P{T < 24}P{T < 34}...,

(1-a)(1-a®)(1-a)...

1.2}

Resequencing Delay
[}
o 4]
b

0.6

Figure 2.31: Analysis vs. Simulation Results: M/M/8

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 91

In Figure 2.31, we plot the approximate expected resequencing delay for nine ordinary
messages, E*[FC®* 7], in an M/M/8 system when A = 4.0 and p = 1.0. We compare this
result to the corresponding simulation result; the two results validate one another. The

mean resequencing delay, R, from the simulation is between 0.7177 and 0.7264; the result

from the approximate expected value is 0.7450.

NeB
12r P = varled
B=0
1.0}
E*[2FR)
&
2 0.8}
b4
%
o 0.6
&
0.4}
0.2}
1 1 1 1 1 1 1 1 J.

Figure 2.32: Analysis vs. Simulation Results: M/M/8

Figure 2.32 plots the two expected resequencing delays of the two-way flush batching
scenario, simulation and approximate analysis, for an 8-link system. Although utilization
varies from no queueing delay to system saturation, the simulation and approximate analysis
results continue to validate one another.

One interesting phenomenon of the two-way flush batching scenario occurs when the
batch size is increased. The jth ordinary message in an F-channel application with batch

size B has the same expected resequencing delay as the 7th ordinary message in another

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 92

P-channel application regardless of the batch size. If the batch size is increased by one, the
total expected resequencing delay is the previous batch’s total expected resequencing delay

with the consideration of the additional ordinary message in each batch. That is,

B 1
E[2FRp41] = (B—i_.‘lz') E[2FRp] + (m) E[FCOsd B41y, (2.19)

2.10.4 Backward Flush Batching Scenario

Recall Figure 2.12, the backward flush batching scenario. The delivery of a backward flush
message is based upon the delivery of the previous backward flush point, which, in this
situation, is the previous backward flush message transmitted. If a tagged backward flush
message is ready for transmission, n links are busy, and the number of backward flush

messages currently transmitting is ¢, then

0 ift=0
max(tl,TM.l) - Tn-{-la ifi=1
FCREF =9 InaX(tl,tz,Tn+1) - Tn+1, ifi =2

| max(ti,t2,..., 00, Tny1) — Tagr, ifi=n

The criteria for delivery of an ordinary message are identical to the criteria for delivery of
a backward flush message. If { is the number of messages in transit from the predecessor
set of the tagged ordinary message, i.e., the number of backward flush messages in transit,

then
FCRO™ = FCREF.

In order to calculate the expected resequencing delay of this batching scenario, we require

the probability that ¢ backward flush messages are in transit when a tagged message is

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 93

transmitted. This probability depends upon the number of message transmissions since
the transmission of the previous backward flush meésage. For a backward flush message,
(B + 1) messages have been transmitted since the transmission of the previous backward
flush message; for the jth ordinary message in a batch, j messages have been transmitted
since the transmission of the previous backward flush. The probability that z backward
flush messages are in transit at the transmission of the tagged message is based upon ¢,
the number of message transmissions since the transmission of the previous backward flush

message, and n, the number of busy links. If
pbf.(i| n) = P{i backward flush messages in transit | » busy links}

then

pbfp41(0| n) 0

+pbfpy1(1 | n) (max(ty, Tas1) — Tas1)
BF, —

FCRnF B+l - 4 +pbf3+1(2 l 72) (max(tl,tg,Tn+1) — Tn+1)

+beB+1(n I n) (max(tl, to,..., tn) Tn+1) - Tn+l)

\

n
= > pbipii(i| n) (max(ty, tz, ..., 4, Tng1) — Tasa)-
=0

n
Ord, j .
FCRO™J = Zpbf]-(z | n) (max(t1,t2,...,t, Tuy1) — Top1)-
=0
As in the previous batching scenarios, we derive the expected resequencing delay for a
message in the backward flush batching scenario (BI'R) conditioned on the number of busy

links in the system. We then remove the conditioning. That is,

E[BFR] = Ni pb(n) E[BFR,),

n=0

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 94

N-1

_ (1 \ peopBF B4t (1) Ord, j
= Zpb(n)E[<B+1)ICRn +{F ZI‘CR :

n=0

We substitute expressions for FCREF: B+1 and FCRO™4 7 and then simplify the result with

solutions previously displayed.

1
E[BFR] = (m) [Z pb(n)zpbe-i-l(z [n)E[ma‘x(tlat% . 1ti7 Tn+l) - Tn+1]
=0

N-1 B
+ pb(n)ZZpbfj(il n)E[max(ty,t2,...,t, Tny1) — Tn+1]} ,

n=0 7=11i=0

n 1+1 1
- e Erogsen (252

k=
B N-1 2:—{-1 1
+> b(n)Zpbf (z|n)(ZL)}. (2.20)
j=1 n=0 i=0 gy

We combine this expected resequencing delay with the waiting and transmission ex-

pected delays to obtain the total delay a message may expect in this batching scenario:

N it1
E[BFD] = ’;’“ ’El(N’;))Q +—+ (B+1> [Z pb(n Zpbfmz(zl n) (1) ,t)

k=
B N-1 i+1 1 ’
+2.20 pb(n)zpbf (] n) (> k)] : (2.21)
J-—l a=0 1=0 k 2

Lastly, we consider E[BFR] as B, p, and N individually increase. Equation (2.20)
shows that E[BFR] monotonically decreases when B increases and all other variables are
fixed. When p increases, the expected resequencing delay in the backward flush batching
scenario monotonically increases as well. The argument in support of this fact follows the
corresponding argument in the two-way flush batching scenario and is, therelore, omitted.
As before, the expected resequencing delay is bounded at p = 1.0. Finally, consider E{BF R}
when N is increased. I'rom equation (2.20) we realize that the expected value monotonically

increases as N increases. Again, this argument is omitted since it is similar to the one

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 95

presented in Section 2.10.3. E[BI'R] converges to the expected resequencing delay in a

system that transmits backward flush batches and has an infinite number of links.

E[BFRs,] = D pa E[BFR,],

n=0
= (771) (St 2 g
B oo n 1 i+1 1
+3. Y pa . pbfi(i| n) (— 3 Z) : (2.22)
j=ln=1 i=0 Hi5

All of the derivations in this section require pbf.(7 | n). We know that

Zn:pbfc(z'l n) = 1

1=0
and
. pbf(i A n)
bf, = 2.2
PG) FopbE(i A W) (229
where
pbfe(¢ A n) = P{i backward flush messages in transit A n busy links}.

Without re-iterating the discussion in Section 2.10.3, we approximate pbl.(i A n) with
pbfi(i A n). That is, in the approximation, we do not acknowledge queueing delay in a
system with a finite number of links and we assume the individual components within the
probability, e.g., T < A, T < 24,... within P{T < AAT < 24AA...}, are independent. Let
us consider specific examples.

Suppose a backward flush message is tagged and ready for transmission. Then

Il

pbfp, (0 A 0) P{T < A}P{T < 2A}P{T < 3A}...,

(1-a)(1-a?)(1-0a%)....

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 96

If the tagged message is an ordinary message instead of a backward flush message, then the
probability is equivalent; i.e., given ¢, pbfi(0 A 0) = pbfg (0 A 0).
For a second example, consider the transmission of a tagged message with ¢ message

transmissions, ¢ = D 4 1 if the tagged message is a backward flush, since the transmission

of the previous backward flush message.

pbii(0A 1) = [(1-a°)(1—a®)(1—a®)(1-0a*)..]

x [a (1-a®)(1-6?)...(1 - a1)(1 = a*)(1 - a*?) .

+(l-a)a®(1-0a%)...(1 -1 -aF)1-at?)...

|-

N = infinity

a=08
0201 P =01

B=9
0.15}

Resequencing Delay
Q
o

0.05|

0.00}

message

Figure 2.33: Analysis vs. Simulation Results: M/M/co

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 97

pbft(1 A1) = [a° (1 - a®)(1 - a®)(1 - at)...

+ (1 -a%)a® (1 —a®)(1—-a...

)

x [(1- @)1= a)(1-a%)...(1 ==)1 - a*T)(1 - a*?).. |

The above two examples indicate the method to obtain an approximation of pbf.(i A n).
The approximation pbff(i A n) is a summation of probabilities. Each probability is a prod-
uct of two products. The first product is the probability that ¢ backward flush messages are
in transit; the second product is the probability that » — ¢ ordinary messages are in tran-
sit. The value ¢ aids us in locating the backward flush messages. The number of possible
combinations for both the first and second products is co.

In Figure 2.33, we plot the approximale expected resequencing delay for nine ordinary

0.35 N = infinity
asa 2.5
= 0.1
0.30 e
B=9

0.25\-

Resequencing Delay
et
N
o
1

0.15}

0.05}

0.00 1 ! : L L

message

Figure 2.34: Analysis vs. Simulation Results: M/M/co

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 98

messages in a batch, E"‘[FCO"" 7], and the approximate expected resequencing delay for the
backward flush message when a = % = 0.8. (Recall that @ represents the average number
of busy links in an M/M /oo system.) We compare this result to R for a simulated 8-link
system with A = 0.8 and p = 1.0. As the figure illustrates, the analytical and simulation
results validate each other in the backward flush batching scenario as well. The mean
resequencing delay from the simulator is between 0.0389 and 0.0403. The result from the
analysis is 0.0400.

As in the two-way flush batching scenario, we compare the approximate expected rese-
quencing delay for nine ordinary messages when the average number of busy links is a = 2.5
to R for a simulated 25-link system with A = 2.5 and p = 1.0. Figure 2.34 plots the compar-

ison of the singular messages. The mean resequencing delay from the simulator is between

0.1213 and 0.1250. The analysis approximates the expected resequencing delay at 0.1241,

0.45F
0.40
0.35-

0.30

Resequencing Delay
o
N
(3]
[

o

N

=]
T

0.05F

4 massage

Figure 2.35: Analysis vs. Simulation Results: M/M/8

CHAPTER 2. IMPLEMENTATION OF A FLUSH CHANNEL 99

E'[BFR]
0.30} PNeg R
P =varled
B=9
0.25(-
g
2 0.20f
2
:
3 0.15)
@
0.10}
0.05}
1 1 | 13 1 1 1 1 1
0.2 0.4 , 0.6 0.8

Figure 2.36: Analysis vs. Simulation Results: M/M/8

Figure 2.35 plots the approximate expected resequencing delay for nine ordinary mes-
sages, E*[FCC™: 7], and the approximate expected resequencing delay for the backward
flush message when A = 4.0 and g = 1.0 in an M/M/8 system. We compare this result
to the corresponding simulation result. In this case, the approximate analysis produces
an expected resequencing delay of 0.1932; the confidence interval from the corresponding
simulation result is 0.1895 to 0.1949.

Figure 2.36 plots the iwo expected resequencing delays of the backward flush batching
scenario, simulation and approximate analysis, for an 8-link system. Although utilization
is varied from no queuecing delay to system saturation, the simulation and approximate

analysis results continue to validate one another.

‘For example’ is not proof.
Jewish Proverb

Chapter 3

Verification of a Flush Channel

The previous chapter shows that F-channel communication allows the possibility of
higher bandwidth than communication by a virtual circuit. Unfortunately for the user,
however, system programming which uses F-channels is more complex than the conventional
virtnal circuit paradigm. To handle the additional program complexity, we develop an

axiomatic verification methodology for F-channel communication.

3.1 Importance of Program Verification

Formal program verification is not heavily used in software development because powerful
proof techniques are complex and tedious to apply. Instead, programmers convince them-
selves of program correctness by executing their program with different input cases. After
a wide variety of test inputs leads to the intended results, the programmer has increased
confidence that the program is correct. Program testing, in this manner, often accounts
for more than half the time spent on the entire programming project [Hoa69]. In the case
of distributed systems, arguing correctness via testing is even more problematic. The dif-
ficulty originates from the large number of execution interleaving possible in concurrency.

To illustrate, there are n! possible execution orders for n concurrent atomic operations in a

100

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 101

distributed system; testing for correctness must consider each of these n! possible executions.

In addition to the inadequacies of program testing, there are other advantages to formal
verification. Ore can place greater reliance in a system that has been formally verified.
Such reliance is generally impossible if testing is done exclusively. Another benefit is that
formal proof techniques uncover invariants of concurrent systems which further increase the
understanding of the entire system. In fact, one may postulate that effective testing and

formal verification should be viewed as two sides of the same coin [LI91].

3.2 System Communication States

In order to formally discuss distributed programs, a definition of the state of the system is

essential [LS84]. The state of a distributed program has three components:
o The data state is the mapping between program variables and their values.

e The control state is the mapping between the program counters of the programs’
processes and operations in the executable code of processes. It tracks the loci of

control for the individual processes.

o The communication state maps “the network” (hardware and software) onto messages
sent, received, and in transit. It allows one to deduce the messages which could

possibly be delivered to the destination process.

Implicit variables, variables to which a program makes no explicit assignment, are typically
used in operational developments of control and communication state. They encapsulate
key aspects of the state of a process, but may not affect the execution of the overall system
in any way [OG76]. For example, a process’ program counter is most useful in Hoare-style
verification proofs [Lam88]; its value is altered as a process executes, but a declaration
of, or direct assignment to, a program counter never appears in a program. Schlichting

and Schneider [SS84] use several data structures to model the communication state of

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 102

distributed processes using asynchronous communication. The axiomatic semantics of a
message passing construct are expressed in terms of how the implicit variables which model

the communication state are affected by execution of the construct.

3.3 Background: Axiomatic Proof Methodology

A distributed program consists of a number of separate processes. These processes share
no common memory, and hence, a process may not access another process’ variables. We
extend the axiomatic techniques for verification of concurrent and distributed programs
[LG81, OG76, SS84] that require three steps in the proof of a distributed program: a proof
in isolation, a satisfaction proof, and a non-interference proof. In [AFR80], the power of
synchronous communication is used to forgo a non-interference proof. Apt avoids this third
step by requiring that all assertions only reference local states. In [MCB81] and [Sou84],
the authors also consider synchronous message passing. These two verification techniques
further stress the importance of the proof in isolation by defining invariants that describe
process interactions. Since we are concerned with asynchronous communication, we review
all three steps in the verification process presented by [LG81, OG76, SS584]. The first step is
a Proof in Isolation of all processes which comprise the program. This is achieved through a
consistent Hoare-style annotation of each process. Let .S be an executable statement (atomic
operation) in a process. The Hoare triple {P}5{Q} means that if S is started in a state
which satisfies P and S terminates, then @ must hold [Hoa69). P is the precondition of 5,
pre($); Q is its postcondition, post(S). P and @ are also termed verification assertions. The
relationship between post(.5) and pre(S) are defined by the semantics of S. For example,

consider the assignment statement,

z = f,

where z is a variable and f is an expression. Any postcondition of the statement must also

be true before the assignment, but with the old value of z. This fact is expressed formally

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 103
as the

Aziom of Assignment:

{7} ==/ {@}

where Q% denotes the textual substitution of f for every free occurrence of z in @ [Hoa69).

If each alomic action in a process is annotated with preconditions and postconditions
such that its precondition holds when control is immediately before the action and its post-
condition holds when control is immediately after the action, then the process is annotated
consistently. Tor every axiomatic proof methodology that follows, we only consider the
assertions surrounding communication statements. The remainder of the proof in isolation,
verified with traditional lloare-style annotations, is identical for the different communica-
tion paradigms. The Satisfaction Proof assures that postconditions of receives are consistent
with data transmitted by other processes. This step in the verification of a program is nec-
essary since postconditions of receives cannot be verified in isolation—the postcondition
may make unsubstantiated claims about data values being assigned. The Non-interference
Proof establishes that assertions in one process are not invalidated by actions in another;
i.e., actions of one process do not interfere with assertions in any other. Once these three

separate proofs are completed, the distributed program is considered formally verified.

3.3.1 Synchronous Communication

Synchronous message operations are defined in Hoare’s Communicating Sequential Pro-
cesses (CSP) [Hoa78]. An interaction between two processes in CSP can be regarded as a
distributed assignment statement. One serious flaw, which Hoare admits, is the lack of a
proof methodology for verification. Levin and Gries extended CSP to develop these missing

proof rules [LG81]. For a set of distinct communicating processes, let us consider the three

CHAPTER 3. VERIFICATION OF A FLUSH CIIANNEL 104

steps that are involved to prove correctness: a proof in isolation, a satisfaction proof, and
a non-interference proof.

The proof in isolation is in the Hoare-style discussed above. To complete the proof, the
verifier first annotates each process in isolation with assertions of the form {P} S {@}. Using
the axioms and inference rules of the proof system, the verifier proves precondition P implies
postcondition @ upon termination of each statement. When the statement in a process is a
communication with another process, one cannot verify P implies Q). The soundness of the
methodology, however, requires that ¢ be justified. In the proof in isolation, any postcon-
dition is allowed—communication statements never terminate in isolation—therefore, the
verifier assumes that @ is correct (a “miraculous postcondition”) in isolation. The role of
the satisfaction proof is to verify this assumption [LG81].

Suppose P; and P; are two processes in a communicating system. In process P;, the

assertions surrounding the transmission statement are
{R} P;lexpr {T}.
For every matching receive statement in P;,

{P} Plvar {Q},

we use the satisfaction rule to verify the postconditions of the communication:

Synchronous Satisfaction Rule:
For every synchronous receive statement and every matching send statement, verify the

following to establish satisfaction:

(RAP) = (T AQ)eipe-

The third and final step for proving the correctness of a distributed program is non-

interference. A non-interference proof is required when assertions in one process refer to

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 105

variables in another process. One must show that for each assertion A, and for every state-
ment, S, parallel to A, the execution of S preserves the truth of A. § is considered parallel
to A if § is a statement in one process and A is an assertion in another. Assume that
we are in a programming context in which only the execution of assignment statements,
send statements, and receive statements alter the data or communication state of a pro-
gram. The full impact of an assignment statement is given by the assignment axiom. If a
send and a receive are a matching communication pair, their impact upon the data and
communication state must be expressed in terms of satisfaction.

Synchronous Non-interference Rule:

For assertion A and parallel assignment, send statement, or receive statement .5, prove
{AApre(S)} S {4}.
For assertion A and matching parallel P;lexpr and P;?var statements, prove

(A A pre(Pjlexpr) A pre(P;?var)) =» A 2.

3.3.2 Asynchronous Communication

Schlichting and Schneider extended the proof technique of Levin and Gries from synchronous
to asynchronous message passing in [SS84]. Of interest in this work is that they developed
proof rules for interprocess communication via unreliable datagrams and reliable virtual
circuits. With unreliable datagrams, messages transmitted through the communication
channel may be delivered in any order (if delivered at all). In the case of reliable vir-
tual circuits, messages are assured delivery in the same order as they were transmitted.
The following two discussions review the proof rules for these two types of asynchronous

communication.

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 106

Unreliable Datagrams:

Following the formal proof technique of Levin and Gries [LG81], proving the correctness
of a system with unreliable datagram communication also requires three steps: a proof
in isolation, a satisfaction proof, and a non-interference proof. Schlichting and Schneider
employ two implicit variables for each process to model the communication state [SS84].
One variable is the send multiset, op, for process D. A copy of every message transmitted
to process D is contained in op. Likewise, the receive multiset, pp, includes a copy of
every message received by process D. As messages can only be received if they have been
transmitted, the system obeys the following axiom:

Unreliable Datagram Network Aziom:

pp € op.

The proof in isolation of a distributed system, communicating with unreliable data-
grams, must take into account the asynchronous nature of the communication. Execution
of a transmission statement in synchronous communication blocks the process until receipt

occurs. In the asynchronous situation, the execution of the statement
send msg to D

has the semantic impact of adding the message to op (¢p := op ® {msg}). The sender then
continues executing. For the proof in isolation, the assertions surrounding send statements

reflect the fact, using the assignment axiom, that the transmission merely inserts msg into

op.

Unreliable Datagram Send Aziom:

{W, Do imsg)} send msg to D {W}.

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 107

Since a datagram receive is synchronous, its postcondition is miraculous.

Unreliable Datagram Receive Aziom:

{P} receive msg {Q}.

Consider the receive statement above. By the Unreliable Datagram Network Axiom,
a process D cannot execute the receive unless there is a message available in the commu-
nication channel. Suppose MTEXT is a message that has been transmitted to process D,
but has not been received; hence MTEXT € (6p © pp) where © is the multiset difference

operator. Execution of the receive results in the addition of MTEXT to pp and the

assignment of MTEXT to msg. It is equivalent to the dual assignment

msg, pp := MTEXT, pp ® {MTEXT).

Unreliable Datagram Satisfaction Rule:

For every unreliable datagram receive statement, verify the following to establish satisfac-
tion:

(PAMTEXT € (oD © pp)) = Q yi1¥xr, pop(mMTEXT)
The last proof rule required for unreliable datagrams is non-interference.

Unreliable Datagram Non-interference Rule:

For assertion A and parallel assignment, send statement, or receive statement S, prove
{AApre(S)} § {A}).
For assertion A and parallel receive statement S, prove

(AApre(SYAMTEXT € (op© pp)) = 4 I‘I'?;%XT, :5${MTEXT],

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 108

Virtual Circuits
Virtual circuits are very popular in many communication networks; the communication
channel becomes a totally reliable F'IFO queue. The proofs concerning distributed systems
using virtual circuits require the three customary steps: a proof in isolation, a satisfaction
proof, and a non-interference proof. To model the communication state, two implicit vari-
ables for each circuit are required. The variable oy maintains the messages transmitted on
the virtual circuit V, while the variable py records the messages received from the virtual
circuit. Both of these implicit variables are ordered sequences of messages. In [SS84] the
following operations on two sequences, C; and CY, are defined:

C1 £ Cy istrueif Cy is a prefix of Cy,

C1 + val is the sequence obtained by appending val to Cy,

Ci — C, is the sequence that results from deleting prefix C; from Cj,

hd(Ch) is the first element in Cj.

The Virtual Circuit Network Axiom insists that the virtual circuit be a fully reliable

FIFO channel.

Virtual Circuit Network Aziom:

pv < ov.

We now review the proof methodology for virtual circuit communication. Execution of

a statement
send msg on V

is identical to appending the message to the implicit variable oy (ov := oy + msg). The

process then continues executing.

Virtual Circuit Send Axiom:

{Wsy 4msg) send msgon V {W}.

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 109

Except for the different properties involved in manipulating oy, this axiom is identical to

the send axiom for unreliable datagrams. The receive axiom is miraculous:
Virtual Circuit Receive Aziom:
{P} receive msg from V {Q}.
The satisfaction rule for virtual circuits validates the miraculous postconditions of re-

ceive statements. If the receive statement above is executing and MTEXT = hd(oy — pv),

then MTEXT will be assigned to msg and will be appended to the sequence py. Tt is equiv-

alent to the dual assignment

msg, py 1= MTEXT,py + MTEXT.

Virtual Circuit Satisfaction Rule:

For every virtual circuit receive statement, verify the following to establish satisfaction:

(PA(ov —pv) # ¢ AMTEXT = hd(ov — pv)) = Q prraxr, bV mrexr

The following non-interference rule proves that the assertions in the proof are globally true.

Virtual Circuit Non-interference Rule:

For assertion A and parallel assignment, send statement, or receive statement .5, prove
{AApre(S)} S {4}
For assertion A and parallel receive statement S, prove

(AApre(5)A(ov —pv) # ¢ AMTEXT = hd(ov — pv)) = A yigsixr Y iamrexe

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 110

3.4 An Axiomatic Proof Methodology for Flush Channels

Communication with F-channels is different from the previously discussed asynchronous
communication paradigms due to the dynamic nature of the delivery order requirements.
We can no longer model the delivery restrictions of the communication state as a static
network axiom. Instead, we must construct the delivery order within the send axioms. We
model the commuuication state of F-channel ' as follows. Let op denote the send multiset

for F, and let pr denote the receive multiset for F'. We define <+ on the multiset of,
<+p C OF X OF,

such that for m,m' € ap, m <+ g m' if and only if m cannot be delivered after m’. The
<t relation is an irreflexive partial order constructed by the delivery order semantics of
the messages transmitted over F. We find it convenient to define the covering relation of
=<+,

~<rp Cop Xop,

as the smallest relation such that its transitive and irreflexive closure is <. In other
words, if m,m’ € op and m <+p m', m <p m' if and only if there is no m” € o such that
m <+p m” <+p m'. As each message is transmitted on F, <p is modified to reflect delivery
order requirements for the message relative to those messages transmitted previously. As
messages are transmitted, <p is constructed incrementally. <+ g is obtained by closure.

A system using an I'-channel has two properties concerning the defined implicit variables.
Like the previous proof methodologies, a message cannot be received if it has not been

transmitted. <+p specifies the required delivery order of each message in op.

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 111

Flush Channel Network Aziom: For F-channel F, the following two properties must hold:

En Route Property: pr C oF

Order Property: TFor m,m' € op, m' € pr = (Vm :m <+ m' i m € pr).

Given the network axiom for I"-channels, we may proceed with the proof methodology. The
next three sections give axiomatic proof rules for F-channels following the traditional proof
technique: a proof in isolation, a satisfaction proof, and a non-interference proof. The rules
are results developed from extending the methodologies prgsented in Section 3.3. In fact,
in Section 3.10, we show that the following axiomatic proof methodology for I-channels is
a true generalization of the verification process for communication with reliable datagrams

and virtual circuits.

3.4.1 Proof in Isolation

The semantics of an F-channel send are presented for four cases, each case corresponds to
the type of the message being sent. Let m denote the composite <type,data>, the message
which is transmitted, in all four of the transmission axioms. To aid in the construction
of <, the partial order specifying delivery constraints, two additional implicit variables
are necessary. The backward flush point, T, is a set which contains the last two-way or
backward flush transmitted on F. As defined in Section 2.1, any message transmitted after
a backward flush boint must be delivered after the message defining this point. The free
set, QF, is a multiset of messages transmitted on I’ which have no successor in <+p. At
the transmission of a message that flushes the channel in a forward direction (forward flush
and two-way flush messages), all messages in the free set and their predecessors must be
delivered before the message being transmitted. Both 77 and Q are initially empty. During
the course of message transmission, Q;z may become arbitrarily large; 77 will be at most a

singleton. The following four axioms are necessary for a proof in isolation.

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 112

Ordinary Message Transmission Consider the execution of
S1: send <Ord, data> on F.

When an ordinary message is transmitted, it is added to op. The notation oF := op & {m}
denotes that m is added to the multiset op. Additionally, an ordinary message must be
guaranteed delivery after the backward flush point. Thus, the partial order is expanded
to ensure that 7» <+r m. The newly sent message will also be added to the set of free
messages—nothing follows it in the partial order (yet). Furthermore, the new message
may remove the current backward flush point, 75, from the free set. 77 now has at least
one successor in the partial order. Operationally speaking then, the net impact of the

transmission of an ordinary message, m, is simply the multiple assignment:
oF, <F,Qp 1= o ® {m}, <p ®A(m), r & {m} © B(m),

where A(m) = {(z,m) | z € 77} and B(m) = {z | 2 € 77 Az € QF}. As a notational
contraction in the assignment to <g, A(m) represents the potential additional element of the
partial order which results when m is linked to a non-empty 77. Likewise, B(m) represents
the potential deletion of 7 from the free set.

If W = post(S)), then the assignment axiom allows us to deduce pre(S). Execution of

Sy is equivalent to the three assignments above; namely

Ordinary Message Send Aziom:
{weor *r A(m),giea{m}eB(m)} 51 :send <Ord, data> on F {W}.

aF@{m}r*F‘e

Two-way Flush Transmission When we transmit a two-way flush, m,

S,: send <2F, data> on F,

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 113

we impose substantial delivery ordering restrictions on the F-channel. First, the two-way
flush must be delivered after every element of the {ree set (as defined at the instant of m’s
transmission). Second, m’s delivery must precede the delivery of every message transmitted

after m. In operational terms,
oF,<F,QF,7F = of ® {m}, <F ®C(m), {m}, {m}

where C(m) = {(z,m) | z € Qr}. The addition of C'(1n) to the partial order effectively
means that any message which was in the free set just prior to S2 cannot be delivered after
m. m then becomes the new free set (it has no successors yet), and it becomes the new
backward flush point (it must be delivered before every subsequently transmitted message).

In sum,

Two-way Flush Send Aziom:

(W Ee) 3 w0 o by} S2 i send <2F,data> on F {W}.

Forward Flush Transmission A forward flush, m, is transmitted by

S3: send <FF,data> on F.
Like a two-way flush, the delivery of a forward flush must be guaranteed after all messages
in the free set; m becomes the only member of the free set. Unlike a two-way flush, however,
a forward flush does not become the backward flush point—messages transmitted after m
may be delivered before m. Transmission of a forward flush makes the following implicit

assignments:

or, *FaQF =ofp® {m}"<F GBC(m)’ {m}'

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 114

The set C(m) is as previously defined in the discussion of the two-way flush.

Forward Flush Send Aziom:

{WaFé{m},:;éC(m),{?nF}} 53 : send <FF,data> on F {W}.

oF

Backward Flush Transmission We transmit a backward flush message, m, with the
statement

Sy send <BF,data> on F.
Some messages transmitted before m may be delivered after m (elements of the free set),
therefore, m joins the free set. The addition of 77 ~<+F m to the partial order also (possibly)
removes 7r from the free set. Lastly, m becomes the new backward flush point—no message

transmitted after m may be delivered before it. In operational terms, this means
op,=<p,p, TF (= op @ {m}, ~<F (BA(m), Qr & {m} e B(m), {m}

The sets A(m) and B(m) are as previously defined for ordinary message transmission.

Backward Flush Send Aziom:

op, , Qp, T,
{ UFFG'){m}y:ﬁ:@A(m),ﬂ:“@{m}GB(nl),{l{;}} »94 : send <BF, data> on F {"V}.

Message Reception The statement
R : receive <mtype,mdata> from F

is synchronous; termination of this statement is in no way dependent upon the action of

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 115

this statement. post(R) is thus allowed to be miraculous. Hence,

Flush Channel Receive Aziom:
{P} R:receive <mtype,mdata> from F {Q}.

Of course, in a satisfaction proof, @ must be justified relative to P and the message received
(see Section 3.4.2).

The preceding discussion illustrates how the delivery order covering relation, <, is built
as messages are transmitted on the F-channel. <p is extended to <+g by closure. In order
for this construction to be meaningful, we must establish that the delivery order restrictions
defined inherently in the I"-channel are exactly represented in the structure of <+y. That
is, if message m cannot be received after m’, then the constructed partial order must reflect
this fact. Moreover, we require proof that the addition of m <+pg m’ to the partial order

implies m cannot be received after m’.

Theorem 10 Let m and m' be messages transmitted on F-channel F. Then m a+p m' if

and only if m < p m’.

In order to establish this result, several structural properties of <+ must first be pre-
sented. We find it convenient to exploit the graphical representation of the relation in
making some of our arguments. The directed graph of a binary relation R on set § is
G(R) = {5,R}. That is, G(R) is a graph on the set of nodes .5, where edge (s1, s2) is in
edge set I if and only if (sy,52) € R. We switch between the graphical interpretation and

the algebraic interpretation as best suits the argument.
Lemma 8 The binary relation <+ is an irreflexive partial order.

Proof: The principal fact necessary for this proof is that on transmission of message m,

no element of the form (m, m'), where m’ is an old element of o5, is ever added to <p. In

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 116

graphical terms, this implies that G(<r) is acyclic. Edge (m,m’) is in G(=+F) only if there

is a directed path of one or more edges from m to m’ in G(<F).

The rules for the construction of <p produce an irreflexive, non-transitive, and antisym-
metric relation. The transitive and irreflexive closure of < preserves the irreflexive and

antisymmetric properties. <+ is made transitive by the closure operator applied to <. |

Recall the relation,

CrC oF X OF.
For z,y € ap, * CF y if and only if z is transmitted before y over F-channel F.

Lemma 9 Let m be a two-way flush or a forward flush sent on F-channel F. m' <+ m if

and only if m' Cp m.

Proof: [If] By the axioms which define the semantics of the transmission of a forward or
two-way flush, m, <p:=<p ®C(m) where C(m) = {(z,m) | z € Qr}. If m' € Qp when
m is transmitted, then m’' <p m, and clearly m’ <+ m. Suppose, on the other hand, that
m' ¢ Qp at the time of the transmission of m. Then there must exist some m” € Qp such
that m' <+ m”; otherwise, m' would be a free element. Then by the appropriate send

axiom and closure, after m is transmitted, m' <+ g m.

[Only If] This follows directly from the construction of <p. If m’ <+ m, then by Lemma 8

m’ must have been in G(<F) at the time m was added. N

Lemma 9 gives us half of the proof of Theorem 10. We know that if m is a two-way or
forward flush, all messages sent before m must be received before m. The lemma shows that
<+ reflects this fact exactly. When we consider ordinary messages and backward flushes,

the situation is a bit more complex.

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 117

Lemma 10 If m is an ordinary message or a backward flush, and if m’ <p m, then m'

must be a two-way flush or a backward flush, and there is no message m" # m' for which

m'’ <p m.

Proof: This proof is similar to that in Lemma 2. We, therefore, do not replicate it here.

Replace all references to <f in Lemma 2 with <p. R

Recall the BFP-chain defined in Section 2.2. In this situation, however, we define the

chain using the covering relation instead of the immediate predecessor relation:
chain(m) = {mg, mg-1,...,mM1},

where

mg <p Mp_1 <p ... <pmMy <pm.
In the same vein, define Pred(m) = {2 | <+ m}.

Lemma 11 If m is an ordinary message or a backward flush, then m' € Pred(m) if and

only if m' € chain(m) @& Pred(Head(chain(m))).

Proof: This proof replicates that in Lemma 3. Replace all references to a+r and <g in

Lemma 3 with <y and <y respectively. |

Finally, we may establish the truth of Theorem 10 through Lemma 9 and Lemma 11.
The former establishes that all messages sent before a two-way or forward flush must be
received before the flush is received, and <t reflects that fact. The latter precisely describes
the predecessor set of an ordinary message or a backward flush. The set consists of elements
that must be received before the message that the set defines. Lemma 11 illustrates that

this predecessor set is represented direclly in <tp. In summary, the partial order, as we

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 118

construct it in the operational semantics of the F-channel send primitives, represents the

receipt-order restrictions exactly.

Figure 3.1 illustrates the same sample of immediate predecessors as Figure 1.3. The

operational construction of the covering relation may be understood with this graph. We

<Ord,0> <Ord 4>
\/7 FFe—
<Ord,1> <2F,3> <0rd,5> <2F,11>
<0rd,2>

<0rd, 7>

<0rd,9>
<BF 8> <\
<0Ord,10>
Figure 3.1: A Sample Covering Relation

focus on four messages in order to amplify the rather dry development above.

<2T",3> At the time of transmission of this message, there is no backward flush point and
the ordinary messages numbered zero through two are in the free set. All elements of
the free set are made predecessors of <2F,3> when it is transmitted. This two-way

flush message also becomes the backward flush point—all messages transmitted after

it are its successors in < p.

<FF,6> When this forward flush is transmitted, the free set consists of the ordinary mes-
sages <Ord, 4> and <Ord, 5>. Their delivery must precede the delivery of <FF, 6>,
and hence they precede it in <p (and, by closure, in <+g). It is important to realize
that, unlike a two-way flush, a forward flush does not become the new backward flush
point. Some messages transmitted after a forward flush may be delivered before it.
When <FF,6> is transmitted, it becomes the sole member of the free set. <2F,3>

remains the backward flush point.

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 119

<BF,8> The delivery of <BT,8> may be done in any order relative to <FF,6> and
<Ord, 7> as <BF,8> joins the free set which includes these messages. The delivery
of <BF, 8> must follow that of the backward flush point at the time of its transmis-
sion, <2F,3>. Since <BF,8> becomes the new backward flush point, its delivery

will precede the delivery of every message transmitted after it.

<O0Ord, 9> This message joins the free set, while it removes <BF, 8>, at the time of its
transmission. After the transmission of the message, the free set contains <FF 6>,
<Ord, 7>, and <Ord, 9>. It is also linked into the delivery order so that its delivery

succeeds the backward flush point, <BF 8>.

3.4.2 Satisfaction

Secure in the fact that the proof in isolation has led to the description of a partial order
which is faithful to F-channel semantics, the role of the satisfaction proof is the resolution
of the miracle in the F-channel receive axiom.

Consider a specific receive, as annotated for the proof in isolation:
{P} R:receive <mtype, mdata> from F {Q}.

Let MTEXT be a message which is eligible for receipt. By the en-route property, it
must have been transmitted on the F-channel, but it cannot have been received; i.e.,
MTEXT € or © pr. Its receipt must also be consistent with the order property as specified

.

by <. More precisely,
Ym:meopAm=<4r MTEXT :: m € pp.

If MTEXT meets these two requirements, then the receive effectively behaves as the dual

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 120

assignment:
<mtype, mdata> := MTEXT,
pr = pr® {MTEXT}.
In order to establish = post(R), the above receive should be executed in a state

which is the weakest precondition! [Dij76] of the dual assignment with respect to @Q,

wp(“<mtype,mdata>,pr i= MTEXT,pr & {MTEXT}",@). Since this statement is sim-

ply an assignment, we know that

wp(“<mtype,mdata>,pr := MTEXT, pp®d{MTEXT}",Q) = Q E?E)’}’Rmd“m> '::a){MTEXT}'
In order to verily satisfaction for the receive, we use the precondition and the F-channel

network axiom to establish the weakest precondition.

Flush Channel Satisfaction Rule:

For every I"-channel receive

{P} R:receive <mtype, mdata> from F {Q},

verify the following to establish satisfaction:
P A (MTEXT €orSpr) N (Ym:meap Am <+p MTEXT :: m € pr)

= Q <mtype,mdata>, pp
MTEXT, pr®{MTEXT}

An important part of the proof in isolation of the sender is the establishment of invariants
which describe the structure of <tp. The structural knowledge is necessary in order to

exploit the F-channel network axiom in the satisfaction proof.

1The weakest precondition of action S with respect to predicate A, denoted wp(S, A), is the set of all
states such that execution of S in any one such state will terminate with A true. If S is the assignment
“x 1= e”, then, by the assignment axiom, wp(“z := e”, A) is simply AZ.

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 121

3.4.3 Non-interference

The non-interference rules for parallel assertion and statements is identical to previous proof
methodologies. For a receive statement, however, we can use both the en route property
and the order property to establish the implication.

Flush Channel Non-interference Rule:

For assertion A and parallel assignment, send statement, or receive statement 5, prove
{AApre(S)} S {A}.
For assertion A and parallel receive statement S, prove

ANpre(SYA (MTEXT € op © pr)A(Ym:m € op Am <+p MTEXT ::m € pr)

=>4 E%né?;:mdmo'::e{hfmxr}-

The preceding development is best justified and appreciated by seeing the methodology
applied. In the following section, we apply the methodology to a distributed application
that uses all four of the flush message types [CK91]. The example illustrates the tedium
that is necessary to correctly verify the application program. In Section 2.8.2, we discussed
batching ordinary messages with a flush message type. As the delivery order of each batching
example is less complex than a delivery order that uses all four message types, we expect
the hardship of the verification process to decrease as well. In Section 3.6, we validate this

expectation.

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 122

3.5 Verification of a Flush Application

In this section, we apply the axiomatic proof methodology for F-channels to a distributed
application that uses all four of the flush message types. In the example, the producer
process transmits two arrays (of unknown size initially) to a consumer process. The con-
sumer sums the elements of the array after all the elements have been delivered. Messages
are of the form <type,arnum,index,value> where type is the message type, arnum is
the number of the array to which the message belongs, indez is the index number within
the array, and velue is the value of arnumfindex]. If less than four entries are required
for a message, then the extra entries are transmitted as zero. A two-way flush message is
transmitted to begin the application and denote the end of any previous applications; (o
© pr) = 0 at the delivery of this message. To simplify the example, we assume op and
pr are empty before the transmission of the initial two-way flush transmission. Backward
flush messages are used to transmit the size of each array to the consumer. The program
uses ordinary messages to transmit the elements of the array; these elements cannot be
delivered until the size has been delivered. Lastly, forward flush messages denote the end
of the array’s transmission. At this time, the consumer can sum the array. In the example,
the consumer’s auxiliary variable X is an array of five sets, initially empty, that contain the

messages delivered. Figure 3.2 illustratles the covering relation of this application example.

<Ord,1,1,A[1)>
<Ord,1,2,A[2]> §

<2F,1,0,0> —p» <BF,1,a,0> /<FF.1 ,a,0>
<Ord.1,aAfal>

<0rd,2,1,B[1]>
<BF,2,b,0> <0rd,2,2,B[2]>
. <FF,2,0,0> —p <2F,2,0,0>

<Ord,2,b,B[b]>

Figure 3.2: The Covering Relation

et 00 Yennd

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL

PROD:: var A : array 1..M of integer;
B : array 1..N of integer;
a,b : integer;
i : integer;

... PREVIOUS APPLICATIONS ...

sl: send (2F, 1,0,0) on F; *new application message*
find(a); *find size of first array*
s2: send (BF, 1, a, 0) on F; *send size of first array*
i=0;
whilei < a do

=14 1;

s3: send (Ord, 1, i, Afi]) on F;
od;
s4: send (FF, 1, a, 0) on F; *ok to sum first array*
find(b); *find size of second array*
sb: send (BF, 2, b, 0) on I} * send size of second array*
i:= 0
whilei < b do

=141

86: send (Ord, 2, i, B[i]) on T;
od;
s7: send (FF, 2, b, 0) on F; *ok to sum second array*
s8: send (2F, 2, 0, 0) on F; *new application message*

... FOLLOWING APPLICATIONS ...

CONS:: var C : array 1..M of integer;
D : array 1..N of integer;
c,d : integer;
mtype : { 2F, BF, Ord, FF};
marnum : integer;
mindex, mvalue : integer;
J : integer;
done : boolean;
sumC, sumD : integer;

... PREVIOUS APPLICATIONS ...

C, D, sumC, sumD, done, X := &, &, 0, 0, false, ®;
while not done do

rl: receive (mtype, marnum, mindex, mvalue) from F;

case mtype of

2F: X[1] := X[1) U {marnum};
if marnum = 2 then
done := true;

123

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 124

fi;
BF: X[2] := X[2] U {marnum};
if marnum = 1 then
¢ := mindex
else
d := mindex;
fi;
Ord: if marnum = 1 then
C[mindex], X[3] := mvalue, X[3] U {mindex}
else
D[mindex], X[4] := mvalue, X[4] U {mindex};
fi;
FF: j, X[5] := 0, X[5] U {marnum};
if marnum = 1 then
while j < mindex do
=i+ 1
sumC := sumC + C[j];

od
else
while j < mindex do
i=i+]
sumD := sumD + Dj};
od;
fi;

od;
... FOLLOWING APPLICATIONS ...

To aid in the annotation of the producer process, we define the invariant
I =Vm € op:I(m).

The predicate, Z(m), describes the state of the implicit variables at the transmission of

message m. As shown in Figure 3.2, m is the composite
m = <m.type, m.arnum, m.index, m.value>,

where m.lype is the type of the message, m.arnum is the number of the array (1 or 2),

m.indez is the index in the array, and m.value is the element of the array at m.indez. The

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 125

annota,tion of the producer must establish the structural properties of the receipt order—the
satisfaction and non-interference proofs explicitly require this information. On a message-
by-message basis, I states those required structural properties. Given that there is only a
single I-channel in this example, we drop the F' subscript on the relevant implicit variables.

The form of I deserves some discussion since it is the entity by which allowable message
receipt order is factored into our reasoning. As each message is transmitted, it is incor-
porated in the implicit variables to describe the subsequent communication state of the
F-channel. The transmission of a new message, m, however, will not remove any previously
transmitted message from o; nor will it remove any previously established edge (message
pair) from <. The only possible change in ¢ is the addition of the newly transmitted mes-
sage. The only possible changes in the structure of < are new links between elements of
the set representing the backward flush point or of the set representing free messages (as
this set was just before the transmission of m) and m itself. Anything which was asserted
about ¢ and < before the transmission of m, must still be true after the transmission of
m. If m' is the message transmitted immediately before m and if Z(m') is true, then Z(m’)
will be true after the transmission of m. Now, however, Z(m) will be true also. It is easy
to extend this argument inductively to see that I follows.

The form of I clearly restricts the form of Z. It must be parameterized in such a way
that it remains true even after subsequent messages are transmitted. Absolute statcments,
say |o(m)| = 6, would not be valid. In the examples which follow, we take advantage
of our knowledge of the receipt-order relation to state the values of the implicit variables
just after the transmission of message m parametrically in terms of m itself. As will be
shown explicitly in the detailed proof of the producer/consumer system below, I is initially
vacuously true in the producer; as each message is transmitted by the producer, I is shown
to be preserved. In the consumer, we show that no local action or communication invalidates
I, and thus, I is treated as a global invariant of the system.

We explain our use of I in contrast with Schlichting and Schneider’s treatment of vir-

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 126

tual circuits [SS84]. The receipt order for a virtual circuit is much simpler than that for
an F-channel—it is the same as’ the transmission order. The virtual circuit receipt-order
restriction is static in the sense that the sender cannot specify alternative receipt orders.
There is a single receipt order; the messages in the send multiset are totally ordered by
time of transmission. This fact is explicitly used in their proofs through the operators on
sequences. In a sense, their methodology implicitly uses an I which states that (among
other things) if message m is transmitted before message m/, then m will be received before
m’.

An F-channel allows as many receipt orders as there are distinct topological sorts of
<. Turther, the sending process “builds” < as it sends messages. In this sense, the receipt
order for an F-channel is dynamic: it is not known before the sender executes, and it is
constructed incrementally as the sender transmits successive messages. I issufficiently weak
to capture the complexity of the I-channel in a predicate which is globally true. We rely
upon I (and the F-channel network axiom) in the receiving process to manage explicitly
the complex receipt-order requirements,

As mentioned, Z(m) describes the state of the implicit variables at the transmission

of m. We let the state of the implicit variables just following the send of message m be

denoted as o(m), <(m), 7(m), and Q(m).

I(m) = Ia(m) A I{(m) A I-r(m) A Iﬂ('m):

where

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 127

Tomy = (<m.type,m.arnum> = <2F,1> = (o(m)= D,
where D = {<2F, 1,0,0>}))
A (<m.type, m.arnum> = <BF,1> = (6(m) =D @ F,
where E = {<BF, 1,q,0>}))
A (<m.lype, m.arnum> = <Ord, 1> = (o(m) = D ® F @& F(m.indez),
whereF(z) = {p | Vi: 0 <i <z :: <Ord, 1,1, A[i]>}))
A (<m.type, m.arnum> = <FF,1> = (¢(m)=D & E® F(a) ® G,
where G = {<FF, 1,q,0>}))
A (<m.type, m.arnum> = <BF,2> = (o(m)=D @ E® F(a) DG D H,
where H = {<BF,2,b,0>}))
A (<m.type, m.arnum> = <0Ord,2> = (¢(m) = DO E ® F(a) ® G ® H & J(m.indez),
whereJ(z) = {p | Vi: 0 <i <z ::<0rd, 2,4, B[i]>}))
A (<m.type, m.arnum> = <FF,2> = (o(m)=DO L O Fla) DGO HOJ(D)D K,
where K = {<FF,2,b,0>}))
A (<m.type, m.arnum> = <2F,2> = (c(m)= DO ED F(a) GO HBJb)D K D L,
whereL = {<2F,2,0,0>}));

Iim) = (<m.type,m.arnum> = <BF,1> = (<(m) = N,
where N = {(p1,102) | 11 = <2F,1,0,0> A p2 = <BF,1,q,0>}))
A (<m.type, m.arnum> = <Ord,1> = (X(m) = N @ O(m.indez),
where O(z) = {(e1,p2) | Vi: 0 < 2 <z 1y = <BF,1,¢,0>
Atz = <Ord, 1,4, A[]>})) |
A (<m.type, m.arnum> = <FF,1> = (<X(m) = N ® O(a) ® P,
where P = {(p1,p2) | Vi:0 < i< a::py = <Ord, 1,1, A[i]>
Az = <FF,1,a,0>}))
A (<m.type, m.arnum> = <BF,2> = (X(m) =N 0 0(a) d P Q,
where Q = {(p1,p2) | p1 = <BT, 1,a,0> A pp = <BF,2,5,0>}))
A (<m.type, m.arnum> = <Ord, 2> = (X(m) = N & O(a)® P & Q & R(m.indez),
where B(z) = {(ju,p2) | Vi :0 < i < @y = <BF,2,b,0> A p2 = <Ord, 2,4, B[i]>}))
A (<m.type, m.arnum> = <FF,2> = (X(m)= N9 O0(a) 3 PO Q ® R(b)D S,
where § = {(u1,p2) | (Vi: 0 < i< b::py = <Ord, 2,4, B[i]> A pa = <FF,2,b,0>)
V(1 = <FF,1,a,0> A py = <FF,2,0,0>)}))
A (<m.type, m.arnum> = <2F,2> = (K(m) =N 0 O0(e) 8 POQ ® R(H)D S DT,
where T' = {(p1, 2} | 111 = <FF,2,6,0> A pp = <2F,2,0,0>}));

Zim) = (<m.lype,m.arnum> = <2F,1> = r(m) = {<2F,1,0,0>}) A
((m.type # 2F A m.arnum = 1) = 7(m) = {<BF, 1,a,0>}) A
((m.type # 2F A m.arnum = 2) = v(m) = {<BF,2,b,0>}) A
(<m.type, m.arnum> = <2F, 2> = 7(m) = {<2F,2,0,0>});

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 128

Zamy = ((m.type # Ord A m.arnum = 1) = Q(m) ’
= {<m.type, m.arnum, m.indez, m.data>})
A (<m.type, m.arnum> = <Ord, 1> = Q(m) = {p | Vi: 0 < i < m.index ::
<0rd, 1,1, A[i]>})
A (<m.type, m.arnum> = <BF,2> = Q(m) = {<FF,1,q,0>,<BF,2,b,0>})
A (<m.type, m.arnum> = <Ord, 2> = Q(m) = {<FF,1,q,0>
A (| Vi:0< i< m.inder :: <Ord, 2,1, B[i]>)})
A ((<m.type, m.arnum> = <FF,2> V <m.type, m.arnum> = <2F,2>)
= Q(m) = {<m.type, m.arnum, m.indez, m.data>});

This relatively intimidating set of assertions merely states, in tedious but complete
logical terms, the state of the implicit variables just after the transmission of message m by
the producer process. For example, the first conjunct of 7 4(;,) describes the edge in < as it
appears immediately after the transmission of the first backward flush message. The second
conjunct defines those edges which go from this backward flush message to the ordinary
messages that transmit the first array. The third conjunct defines those edges which go
from these ordinary messages to the forward flush message; a message that signals the end

of the array transmission. It is merely a restatement of what is drawn in Figure 3.2.

PROD:: var A : array 1..M of integer;
B : array 1..N of integer;
a,b : integer;
i ¢ integer;

... PREVIOUS APPLICATIONS ...

{1}
sl: send (2F, 1,0, 0) on F;
{1}
find(a);
{a<MAT}
s2: send (BF, 1, a, 0) on F;
{a<MAIT}
i=0;

{i=0Aag<MAIl}
whilei < a do
{i<ana<Mal}
=i+ 1
{i<ana<MAaI}
s3: send (Ord, 1, i, A[i]) on T
{i€aragMAl)

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL

od;
{i=aAna<MATI}
s4: send (FF, 1, a, 0) on I';
{i=aAa<MAT}
find(b);
{b<NAi=an
s5: send (BF, 2,b, 0) on F
{b<NAi=a

i:=0;
{i=0AbZ<
whilei < b do
{i<bAbg
ii=1+4+1;
{i<bAb<
86: send (Ord, 2, i, B[i]) on F;
{i<bAb<
od;
{i=bAb<
s7: send (FF, 2, b, 0) on F;
{i=bAb<
88: send (2F, 2, 0, 0) on F;
{i=bAbZ<

... FOLLOWING APPLICATIONS ...

129

The proof in isolation of the producer is straightforward. The invariant truth of I is

established as part of that proof. Initially, it is trivially true. As successive messages are

gent, I is inductively validated through application of the Send Axiom apropos of the type

of message being transmitted. As an example, consider the send statement labeled s4 in

the code of the producer. We need to prove

{i=ana<MAI}sda{i=ana<MAI}.

Given that i = aAa < M follows directly from the precondition, we concentrate on I and the

semantics of the transmission of the forward flush message according to the Forward Flush

Send Axiom. The semantic effect of s4 is that message m = <FF,1,a,0> is transmitted

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 130

on F. More precisely, we must show that

U ENatm) <ompowm,my T 52 {1}
We can show this easily. We may check every conjunct of Z(m) for every message in a(m)
to validate that I is, in fact, preserved across s4.
In the consumer, the invariant truth of Ifollows directly from the truth of Iasestablished
by the producer and the fact that no action in the consumer affects any variable used in I.
We defer the non-interference aspects of this claim until later in this section.

Defining the set of messages which have been consumed thus far (in terms of the con-

sumer’s variables X, C, and D) is helpful:

CX,C,D)={p]| (e = <2F,,0,0>A i€ X[1]) V (1= <BF,i,5,0> Ai € X[2])
V(g =<0Ord, 1,7, C[i]>A i € X[3]) v (r = <Ord, 2,i,D[i]> A i € X[4])
V(p = <FF,i,5,0> A i € X[5])}.

A newly received message (with its type assigned to the consumer’s variable mtype, its
array number assigned to marnum, its index assigned to mindex, and its value assigned to

mvalue) must satisfy the following parametric assertion:

N(X,C,D) = (mtype = 2F A marnum ¢ X[1] A ((marnum = 1AVi: 1< i <5 X[i] = ¢)
V(marnum = 2 A |[X[1]| = 1 A [X[2]] = 2A [X[3]| = c A |X[4]| = d A [X[5]| = 2)))
V(mtype = BF A marnum ¢ X[2] A ((marnum = 1 A mindex < M A [X[1])] = 1
AVi:2<i<5uX[i]=¢)
V(marnum = 2 A mindex < N A [X[1]] = 1 A [X[2]] = 1 A |X[3]] < c A X[4] = ¢ A |X[5]] < 1)))
V(mtype = Ord
A((marnum = 1 Amindex ¢ X[3]A [X[1]] = 1A 1 < |X[2]] < 2A|X[3]] < ¢
AIXH] < A A X[5] = ¢)
V(marnum = 2 A mindex ¢ X[4] A [X[1]} = 1A X2} = 2A1X[3]| < ¢
AIX[]l < d A [X[5]] < 1))
V(mtype = FF A marnum ¢ X[5]
A((marnum = LA[X[1]] = 1AL < [X[2]] S 2A |X[3]] = c A X[A]| S d AX[5] = ¢)
V(marnum = 2 A [X[1])] = 1A [X[2]] = 2A |X[3]] = c A |X[4]] = d A |X[5]| = 1))).

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 131

The above assertion follows from our understanding of the structure of the receipt-order
relation. It is miraculous in the proof in isolation of the consumer. Establishing its truth is

the primary task in the satisfaction proof.

CONS:: var C : array 1..M of integer;

D : array 1..N of integer;
c,d : integer;

mtype : { 2F, BF, Oxd, FF};
marnum : integer;

mindex, mvalue ; integer;

j : integer;

done : boolean;

sumC, sumD : integer;

... PREVIOUS APTPLICATIONS ...
{p=0AT}
C, D, sumC, sumD, done, X := 0, 0, 0, 0, false, ¥;
{C=0AD=0AsumC =0AsumD =O0Adone = false AX=CAp=0AT}
while not done do
{ done = false A p=C(X,C,D)AT}
rl: receive (mtype, marnum, mindex, mvalue) from F;
{ N(X,C,D) Adone = false A p = C(X,C,D) & {<mtype, marnum, mindex, mvalue>} A T }
case mtype of
2F: X[1] := X[1] U {marnum};
{ done = false Amtype = 2F A marnum € X[1) A ((marnum = 1A [X[1]] =1AVi:2<i <5 = X[i]] = ¢)
V(marnum = 2 A [X[1]] = 2A [X[2]] = 2 A [X[3)] = ¢ A [X[4]| = d A [X[5]| = 2)) A p = C(X,C,D) A T }
if marnum = 2 then
{ done = false Amtype = 2F Amarnum € X{1] A marnum == 2 A [X[1]} = 2 A |X[2)} = 2
AX[Bll =cAX[d]l=dA|X[B]l=2Ap=C(X,C,D)A T}
done := true;
{ done = true A mtype = 2F Amarnum € X[1} A marnum = 2 A [X[1]] = 2 A [X[2]] = 2
AIXBll=cA XMl =daX[Bll=2Ap=C(X,C,D)AT}
fi;
BF: X[2] := X[2] U {marnum};
{ done = false Amtype = BF A marnum € X{[2] A p = C(X,C,D)I
A{(marnum = 1 Amindex SMAX[)|=1AX[2l =1AVi:3<i<5:X]]=¢)
V(marnum = 2 A mindex N A[X[1]| = 1AX[2][= 2 A X[3]| € cAX[4] = o A [X[5]] < 1)) }
if marnum = 1 then
{ done = false Amtype = BF A marnum € X[2] A marnum = 1 A mindex < M
AXRY =1AXRY =1AVi:3<i<5uX[il=pAp=C(X,C,D)AI}
¢ := mindex

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL

{ ¢ = mindex A done = false A mtype = BF A marnum € X[2} A marnum = 1 A mindex <M
AX[)l=1AX2l=1AVi:3<i<5uX[i]=¢6Ap=C(X,C,D)AL}
else
{ done = false Amtype = BF A marnum € X[2] A marnum = 2 Amindex < N
AX[]l=1AX[2) =2AXB)| S cAX[]=¢AIX[B]l<1Ap=C(X,C,D)AT}
d := mindex;
{ d = mindex A done = false A mtype = BF Amarnum € X[2] A marnum = 2 Amindex < N
AMXI =1A X2 =2AXB)| L cAX[] = A |X[B)| < 1Ap=C(X,C,D)AT}
fi;
Ord: if marnum = 1 then
{ done = false Amtype = Ord Amarnum = 1 Amindex ¢ X[(3] A [X[1}] =1A1 < |X[2]}] < 2

AX[EB) < cA|X[H]| £ dAX[5] = ¢ A p = C(X, C, D) & { <mtype, marnum, mindex, mvalue>} A I }

C[mindex], X[3] := mvalue, X[3} U {mindex}
{ C[mindex] = mvalue A done = false A mtype = Ord A marnum = 1 A mindex € X[3]
ATl = 141 < X[2]) € 24 [X[8)l € oA [X[4I| < A AX[S] = $ A p = C(X,C,D) AT)
else
{ done = false Amtype = Ord A marnum = 2 A mindex ¢ X[4] A |X[1])] = 1 A |X[2])} = 2

AMX[3)| € cA |X[M)} < d A [X[5)} £ 1A p=C(X,C,D) @ {<mtype, marnum, mindex, mvalue>} A I'}

D[mindex], X[4] := mvalue, X[4] U {mindex};
{ D[mindex] = mvalue A done = false A mtype = Ord A marnum = 2 A mindex € X[4]
AIX[I = 1A IX2)l = 2 A X < o A XA < dATKIS] < 1Ap = E(X,G,D) A T)
fi;
FF: j, X[5] := 0, X[5] U {marnum};
{7 =0Adone = false Amtype = FF Amarnum € X[5] Ap =C(X,C,D)A [
A((marnum =1 A X1} = tAL S X[2h <2 A X8} = c A Xl € d A IX[B) = 1)
v{marnum = 2 A [X[1]| = 1 A [X[2)] = 2 A |X[3]]l = c A [X[4]] = d A |X[5)] = 2))}
if marnum = 1 then
{J = 0Adone = false Amtype = FF A marnum € X[5] Amarnum =1 A [X[1]] = 1A 1 < [X[2]| < 2
AXBl =cA XMl <dAIX[S]|=1Ap=C(X,C,D}AT}
while j < mindex do
{ 7 < mindex A sumC = Z‘:___l C[i] A done = false Amtype = FF A marnum € X[5] Amarnum = 1
AX[l=1A < [X[2)| € 2AX[3]l = c A [X[4]| SdAIX[B)l = 1A p=C(X,C,D) AT}
_ J=i+ 1
{ 7 € mindex A sumC = 2?;‘ C[i) Adone = false Amtype = FF A marnum € X[5] A marnum = 1
AX[ll=1A1 < [X[2]| S 2AX[3) =cA[X[M]| S dA[X[5]l=1Ap=C(X,C,D)AT }
sumC := sumC + CJ[j);
{ 7 € mindex A sumC = Z{:J Cli] A done = false A mtype = FF A marnum € X[5] A marnum = 1
AXI = 1A1 S X2 < 2 A |X[3)] = c A X4 S dAX[S) =1 Ap = C(X,C,D) AT }
od
else
{j =0Adone = false Amtype = FF A marnum € X{5] A marnum = 2
AXDI =14 X2l = 2A X[3])| = c A IX[4]l = d A |X[5]] = 2Ap = C(X,C,D)A T }
_ while j < mindex do
{j < mindex A sumD = Z{___l D[i] A done = false Amiype = FF A marnum € X(5] A marnum = 2
AX[Al=1A X2l =2AX[8)l = cA|X[4]]| = d A |X[5]| = 2Ap = C(X,C,D)A T }

132

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 133

‘ i=i+1
{ 7 € mindex A sumD = Zf;‘ D[{] A done = false Amtype = FF A marnum € X{5] A marnum = 2
AIX[p) =1a X2l =2AX[Bll =cA X[=dalX[sll=2Ap=C(X,C,D)A T}

sumD := sumD + D[j];
{ 7 < mindex A sumD = Zfd D[i} A done = false Amtype = FF A marnum € X[5] A marnum = 2
AXIi=1AaX[2)=2A X8l =cA|X[4]|=dA[X[B]l=2Ap=C(X,C,D)A T}
od;
fi;
od;
{done = trueA|X[1)| = 2A |X[2ll = 2A [X[B) = cA|X[4)l= d A [X[5]] = 2A p=C(X,C,D) A I}
... FOLLOWING APPLICATIONS ...

We omit the proof in isolation of the consumer as it is straightforward. The invariant
truth of I is detailed in the non-interference discussion later in this section. We justify the
miraculous postcondition of the receive next. Let MTEXT denote the message which is
being received, i.e., <mtype, marnum, mindex, mvalue>.

The antecedent in the satisfaction proof is
pre(ri)A (MTEXT € o 6 p)A(Vm: m € 6 Am <+ MTEXT :: m € p).
We may substitute for pre(rl), yielding
(done = falseAp = C(X,C,D)AI)A(MTEXT € 06p)A(Vm : m € oAm <+ MTEXT ::m € p).

Our obligation in the satisfaction proof is to establish the truth of the following consequent

assuming the previously stated antecedent:

<mtype,marnum,mindex,mvalue>>, p

Post(rl) unpyy p@®{MTEXT)

or equivalently, we need to show

(NM(X,C,D) A done = false A p=C(X,C,D)

<mtype,marnum,mindex,mvalue>, p

®{<mtype, marnum, mindex, mvalue>} A I) jypaer O {MTEXT)"

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 134

Given that (done = false A p = C(X,C,D) A I) is in the antecedent, then clearly

(done = false Ap @ {MTEXT} = C(X,C,D)® {MTEXT} AI).

Therefore, we concentrate on A (X, C, D).

When the receive statement executes, we may ascertain several facts about the trans-
mission of MTEXT (i.e., the message being added to p). The field mtype can be any of the
four message types. This follows from Z,(prrpxr) Which we know must be true for every
element of p from the truth of I and the fact that the en route property requires p C o.
Suppose that mtype is 2F. From the cn route property and Z,arpxT), we know that
<mtype, marnum, mindex, mvalue> has not been received before and, therefore, marnum is
not an element of X[1]. We also know, based on the order property and Z¢(arrex7), that
this two-way flush is either the first or the last message to be received. This fact allows us

to specify the number of values that must be in each element of X. In sum,

(MTEXT = <2F,p,0,0>Ap ¢ X[I]A((p=1AVi:1 < <5 X[l =¢)
V(p =2 A X[l = LA [X[2]l = 2A [X3I| = ¢ A [X[4]] = d A [X[5]] = 2))).

If we assume the message being received is a backward flush, then we can show facts
about this message as well. First, as in the previous case, marnum is not an element of X[2];
this follows from the fact the message has not been received before. Second, if the value
of marnum is one, then, based on the order property and Z(mrEXT), this is the second
message to be received (following the previous two-way flush message). If, on the other
hand, the value of marnum is two, then based on the order property and Z(mTEXT), this
message is received after the first backward flush; ordinary messages and the forward flush
for the first array may be received before or after this second backward flush. These facts

lead us to the following clause:

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 135

(MTEXT = <BF,q,v,0>Aq ¢ X[2]A ((g=1Av < MAX[1]] =1AVi:2< <52 X[¢] =)
Vig=2Av < NAX[] = 1A X2l = 1A X[3]] < cAX[4] = A [X[5]| < 1))).

The index from the receipt of an ordinary message, based on the en route property and
Zo(MmTEXT)> Will nOt be an element of X[3] if the mess:ige pertains to the first array or will
not be an element of X[4] if the message pertains to the second array. Suppose marnum
is one. From the order property and T ¢prExT), We know the first two-way flush and the
first backward flush must be received. We also know the second backward flush message
may be received, but neither forward flush message can be received. If we suppose marnum
is two, then we know, from the order property and Z <(yrrgxT), the first two-way flush and
both backward flush messages must be received, however, the first forward flush message

may or may not be received. In other words,

(MTEXT = <Ord, s,t,u>
A((s=1AtEXBIAX[Q]] =1A1 < |X[2]] S 2A[X[3)l < c A |X[4]] £ d AX[5] = ¢)
V{s=2At ¢ XA IX[1]] = 1A [X[2]) = 2 A [X[3]] < c A IX[4]] < d A IX[5]| < 1))).

Lastly, the index from the receipt of a forward flush message, based again on the en
route property and Z,(prExT), cannot be an element of X[5]. Furthermore, based on the
order property and Z 4 arrgxT), the backward flush message and all the ordinary messages

for the array ended by this forward flush must have been received.

(MTEXT = <FF,w,z,0> A w ¢ X[5]
M(w =21A X[=141 < [X[2]] < 2A X[3]] = cA X[4]] < d A X[5] = ¢)
Vw=2AIX[1]| = 1A [X[2]| = 2A |X[3]| = c A [X[4]| = d A |X[5]| = 1))).

Combining what we have established,

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 136

((MTEXT = <2F,p,0,0>Ap g X[1JA ((p=1AVi:1<i<5:X[i] = ¢)
V(p =2 A X[= 1A IX[2]] = 2 A X[3]| = ¢ A X[4]] = d A [X[5]] = 2)))
V(MTEXT = <BF,q,0,0>Aq€X[2]A((¢=1Av S MAX[1]| = 1AVi: 2L i < 5 X][i] =¢)
V(g=2Av < NAXI) =1AX[2] = 1AIX[3)| < cAX[4] = ¢ A|X[5]] < 1)))
V(IMTEXT = <Ord, s, t,u>
AM(s=1At g X[BIAIX[1)l=1A1 < [X[2]] S 2A|X[3]] < c A |X[4]| £ dAX[5] = ¢)
V(s =2 At ¢ X[A X[l = 1 A[X[2]l = 2 A [X[3]| € ¢ A IXH]| < dA (X[5]] < 1))
V(MTEXT = <FF,w,z,0> A w & X[5]
A(w =1AX[1) =1A1 < X2) < 2AX[3]] = c A |X[4]| £ dAX[5] = ¢)
V(w =2 A X[1)| = LA [X2]] = 2 A [X(3I| = ¢ A X[4]] = d A [X[5]| = 1))
A(done = false A p® {MTEXT} = C(X,C,D)& {MTEXT} A T)

((<mtype, marnum, mindex, mvalue> = <2F,p,0,0>Ap ¢ X[1JA ((p=1AVi: 1< i <5 = X[i] = ¢)
V(p =2 [X[1]l = 1 A X[2)] = 2 A [X[3]| = ¢ A [X[4]] = d A [X[5]] = 2)))
V(<mtype, marnum, mindex, mvalue> = <BF, ¢,v,0> A q ¢ X[2)
AMg=1Av<MAX[Q)|=1AVi:2<i <5 X[i] =¢)
Vig=2Av < NAIX[= 1AIX[2)l = 1 AIX[3]] < ¢ A X[d] = ¢ A [X[5]] < 1)))
V(<mtype, marnum, mindex, mvalue> = <Ord, s, ¢, u>
A(s = 1At X[3]AIX[1]] = 1A 1< IX2][< 2 A X[3]| < ¢ A [X[4]| < d A X[5] = ¢)
V(is=2At g X[AIX[1) = 1A IX[2])] = 2A IX[3]] < c A [X[4]] < d A |X[5]] £ 1)))
vV(<mtype, marnum, mindex, mvalue> = <FF,w,z,0> A w ¢ X[5]
AMw=1AIX[1)l=1A1 < |X[2]] £ 2AX[3]] = c A |X[4]] £ dAX[5] = ¢)
V(w =2 A [X[1l = 1A [X[2]] = 2 A [X[3]] = c A [X[4]] = dA [X[5]| = 1))))
A(done = false A p = C(X, C, D) .
@{<mtype, marnum, mindex, mvalue>} A I)E’;‘g};::mm“m’mmdex’m"“]"c>’ Z@{MTEXT} .

(=./\f(X, C,D) A done = false
A p =C(X,C,D) @ {<mtype, marnum, mindex, mvalue>} A [)E"T‘LE"}(’;.’:"“""'“'mi':gf;;}‘;%l;}%' ’
This is the required consequent, and hence, satisfaction lias been established.
Our final obligation is the non-interference proof. Trivially, assertions in the producer
are not interfered with by any operation in the consumer since the consumer never alters
any variable used in any producer assertion. We claim that assertions in the consumer are
also interference-free. The producer never alters any explicit variable nsed in a consumer
assertion. The send statements in the producer do alter the implicit variables of I, and I
is a conjunct in every consumer assertion. We must prove that, for every assertion in the
consumer, execution of the send statements s1 through s8 in the producer do not invalidate

that assertion. As an illustrative example, consider the loop invariant in the consumer and

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 137

the send labeled s4 in the producer. Qur non-interference obligation is to show

{done = false A p = C(X,C,D) AT Apre(s4)} s4 {done = false A p = C(X,C,D)A T}
or equivalently,
{done = falseAp = C(X,C,D)AIAi = aha < MAI}s4 {done = falseAp = C(X,C,D)ATI}

The truth of p = C(X, C,D) cannot be affected by s4 since the send alters none of the
variables, explicit or implicit, appearing in that predicate. Our argument concerning the
invariant truth of I across s4 in the proof in isolation of the producer applies here as well.
Hence, s4 cannot interfere with the loop invariant of the consumer. An analogous argument
applies for every assertion in the consumer. Furthermore, a similar line of reasoning allows
us to conclude that s1 through s3 and s5 through s8, the other send statements in the

producer, do not interfere with any assertion in the consumer.

3.6 Verification of Flush Batching Applications

As in Section 3.5, the following three examples apply the axiomatic proof methodology of
Section 3.4. The complexity of the verification process is reduced, however, as only two
message types are transmitted in each example. Groups of ordinary messages are intended
to convey information from a “producer” process to a “consumer” process. Flush messages
batch the groups of ordinary messages in a manner particular to each type of flush. (Recall
Section 2.8.2.) In each example, the messages contain two data fields: batch and num. For
an ordinary message, balch is the batch to which the message belongs; num is the number
of the message within its batch. In a flush message, batch denotes the batch which the

message is delimiting; num is always zero.

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 138

In all three examples, the following program variables convey identical information

[CKA93):

In the Producer:

bat : integer ; current batch number
job : integer i current message number within a batch
mb : integer array i mbli] is number of messages in batch i

In the Consumer:
jobs : set ; set containing ordinary messages received

cb : integer ; current batch number

We assume that each element of array mb is a positive integer, that mb is defined
externally to the processes, but that it is known to both the producer and the consumer.

3.6.1 Batch Example 1: Illustrating Proof Rules for ORD/2F

In the first batch example, only ordinary and two-way flush messages are transmitted.

I'igure 3.3 shows the covering relation for this example.

<2F, 1>

<oF, 2> ¢

Batch 1 Batch 2

Figure 3.3: Batches Delimited With Two-way Flushes

We define the invariant, as in Section 3.5,

I =VYm € op:I(m)

in order to describe the state of the implicit variables at the transmission of message m. As

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 139

shown in the figure, m is the composite
m = <m.type, m.baich, m.num>,

where m.type is the message type, and m.batch and m.num are as described in the preceding
discussion.

In this batch example, the tedium of Z(m) is greatly reduced:

I(m) = Zo(m) AZ(m) A Lr(m) A Za(m)s

where

Zo(m) =0(m) ={<2F,i,0>]0 < i < m.batch} @ {<Ord,i,j>|0 < i < m.batch A0 < j < mb[i]}
®{<Ord, m.batch,i>|0 < i < m.num)};

Iim)==(m)={(<2F,i,0>,<O0rd,s,j>)|0 < i < m.batch A 0 < j < mb[i]}
®{(<Ord,,j>,<2F,i + 1,0>)|0 < i < m.batch A0 < j < mbf:]}
®{(<2F, m.batch,0>,<Ord, m.batch,i>)|0 < i £ m.num};

I, (m) =7(m) = {<2F, m.batch,0>};

Za(m) =Qm) = {<2F, m.batch,0>|m.num = 0} ® {<Ord, m.batch,i>|0 < i < m.num}.

The reduction to Z(m), comparing to Z(m) in Section 3.5, is due to the simpler delivery
order. Compare the covering relation of Figure 3.2 with that of Figure 3.3. Since the
arrows, representing delivery order requirements, are more predictable in the second figure,

it is easier to describe the state of the implicit variables at any given time.

PRODUCER::
{r}
bat, job := 0, 0;
{ bat,job=0,0 A I}
While true do
{ job = mbbat] A 1}
bat, job := bat 4 1, 0;
{bat>0 A job=0 A I}
sl: send (2F, bat, job) on F;
{bat >0 A job=0 A I}
While job < mb[bat] do
{ job < wbfbat] A T}

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 140

job := job + 1;
{job<mblbat] A I}
s2: send (Ord, bat, job) on F;
{ job < mbfbat] A I}
od;
{job=mbbat] A I}
od;
We omit discussion of the proof in isolation of the producer process as it is straightfor-
ward. Similar to Section 3.5, the invariant truth of I in the producer can be inductively
validated as successive messages are transmitted.

We define the set of messages which have been consumed thus far, in terms of the

consumer’s variables cb and jobs:

C(cb,jobs) = {u | (0 = <Ord, z,y> A<z, y> € jobs) V (1t = <2F,2,0> A0 < z < cb)}.

A newly received message (with its type assigned to the consumer’s variable mtype, its

batch assigned to mbatch, and its number assigned to mnum) must satisfy the following

parametric assertion:

N(chb, jobs) =
(mtype = Ord A <mbatch, mnum> ¢ jobs A mbatch = cb A 0 < mnum < mb[mbatch])

cb
V(mtype = 2F A mbatch = cb 41 Amnum = 0 A |jobs| = > mbl[i])
i=1

As before, establishing the truth of A'(cb, jobs) is the primary task of the satisfaction proof.

The annotated consumer process appears as:

CONSUMER.::
{p=0AT}
Jjobs, ¢b := 0, 0;
{jobs=@Acb=0A p=C(ch,jobs)A T}
While true do
{ p=C(cb,jobs) AT}
rl: receive (mtype, mbatch, mnum) from F;

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 141

{ N(cb, jobs) A p = C(cb, jobs) & { <mtype, mbatch,mnum>} AT}

Case mtype of
Ord: jobs := jobs U {<mbatch, mnum>};

{mtype = Ord A <mbatch, mmum> € jobs A mbatch = cb A 0 < nmum < mb[mbatch] A p = C(cb,jobs) A T }
21 cb := ¢cb + 1;
{ mtype = 2F A mbatch = cb A mnum = 0 A [jobs| = le_‘ mbfi] A p = C(cb,jobs) A T }
esac;
{ p=C(cb,jobs) AT}
od;

Let us now justify the miraculous postcondition of the receive. The satisfaction proof
below is rather detailed; the satisfaction proofs for the next two batch examples contain
less detail since all three are similar in form. Let MTEXT denote any message eligible to
be received, i.e., assigned to <mtype, mbatch, mnum>. Our obligation in the satisfaction
proof is to justify the following implication:

pre(rI)A(MTEXT € 00 p)AN(Vm:m € o Am <+ MTEXT :: m € p)

) <mtype,mbatch,mnum>,p
= post(rl)MTEXT' o®{MTEXT)>

or equivalently, we need to show

(p = C(cb,jobs) AI)DA(MTEXT € a ©p)A(¥Ym : m € 0 Am <+ MTEXT :: m € p)
= (NM(cb, jobs) A p = C(cb, jobs)

®{<mtype, mbatch, mnum>} A I),f,'ﬁg}’;:f"b“ld"m"“m> ':@{MTEXT}-

Given that (p = C(cb, jobs)) A I is in the antecedent, then clearly
(p& {MTEXT} = C(cb, jobs) @ {MTEXT}) A I.

Therefore, we concentrate on establishing A/(cb, jobs).

We consider MTEXT, the message being added to p, when the receive statement
executes. The field mtype must be Ord or 2F; this follows from Zs(mrEXT). Tor each
message type, Ord or 2F, we deduce three clauses in order to establish A(cb, jobs). For

a two-way flush, we verify the assertion in complete detail. We follow this complete proof

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 142

with a verbal description that justifies the receipt of an ordinary message. (The complete
proof for the receipt of an ordinary message is similar to the two-way flush case.) To begin,

let us assume the message being received is a two-way flush.

Statement Justification
Al. MTEXT = <2F, f,g> Assumption
A2, MTEXTe€o Antecedent (MTEXT € 0 © p)
A3. <2F,cb,0>€pA A Antecedent (p = C(cb, jobs))
<2F,k,0> € pfor k > cb
A4, f=cb+1 A2, A3, and Antecedent ((Vm : m € o A m <
MTEXT = m ¢ p) and I{(A[TEXT))
A5, g=0 A2 and Antecedent (Zy(p7EXT))
A6. Ym:m € a(MTEXT) = | A2 and Antecedent ((Ym : m € o A m -4
mep MTEXT = m € p) and T arrexT))
A7. Vm:m € o(MTEXT) = | A2 and Antecedent (Z,(arrexT))
m is unique
A8. Vm :m = <Ord,¢,d> A | Antecedent (p = C(cb, jobs))
m € p=> <c,d> € jobs
A9. [jobs| = /7 mb[i] A2, A6, AT, A8, and Antecedent (Zo(prrexT))
A10. |jobs| = T2, mb[{] A4

A4, A5, and A10 establish half of A(cb,jobs), i.e., when MTEXT is a two-way flush.
If we assume the message being received is an ordinary message, MTEXT = <Ord, ¢, d>,
we show three facts about this message as well. From the antecedent ((p = C(cb, jobs))
and (MTEXT € o © p)) and the fact that each <c,d> is unique, the composite <c, d>
has not been received before, and thus, cannot be an element of jobs. We also know, since
<2F, cb,0> is the last two-way flush received, that ¢ must be equal to the current batch
(cb). Turthermore, from Z,(prpxT), We know the number of this ordinary message must
be within the current batch.

Combining what we have established,

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 143

((MTEXT = <Ord, ¢,d> A <c,d> ¢ jobs Ac = cb A 0 < d < mble])
V(MTEXT = <2F, f,g> A f =cb+ 1A g = 0A|jobs| = Y52, mbli]))
Alp ® {MTEXT} = C(cb, jobs) ® {MTEXT} A I)
(((<mtype, mbatch, mnum> = <Ord, ¢,d> A <e,d> ¢ jobs A ¢ = c¢b A 0 < d < mb|c])
V(<mtype, mbatch, mnum> = <2F, f,g> A f =cb + 1A g = 0 A [jobs| = T2, mb[]))
p

<mtype,mbatch,mnum>>,

A(p = C(cb, jobs) @ {<mtype, mbatch, mnum>} A I))MTEXT, o {MTEXT}

- , . <tutype,mbatch, >,
(N (cb, jobs) A p = C(cb, jobs) & {<mtype, mbaich, mnum>} A I)M'Yfg}’;.'m a B MTEXT)"

The above result is the required consequent, and hence, satisfaction has been established.
To prove non-interference, we direct the reader to the reasoning for non-interference in

Section 3.5. Since the two proofs are similar, we omit it in this example.

3.7 Batch Example 2: Illustrating Proof Rules for ORD/BF

In this second batch example, each batch is preceded by a backward flush. Figure 3.4
depicts this message-passing scenario. Again, we define the invariant, I = Vm € o : Z(m);
as in Example 3.6.1, we let m denote the composite <m.type, m.batch, m.num>. We need

to make only minor changes to Z(m) in the first batch example in order to describe the

Batch 1

<BF,1,0>
Batch 2

<BF.2,0>

BF.3,0> <

Figure 3.4: Batches Preceded by Backward Flushes

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 144

transmission of message m in the new batching system:
I(m) = Z-a(m) A I—(('m) A Z-1'(m) A Z-Q(m)3

where

Zo(m) =0(m) = {<BF,%,0>|0 < i < m.batch}
®{<O0rd,,j>[0 < i < m.batch A 0 < j < mib[d]}
®{<Ord, m.batch,i>|0 < i < m.num};
Z i(m)==(m)={(<BF,,0>,<0rd,,j>)|0 < i < m.batch A0 < j < mb[i]}
®{(<BF,i,0>,<BF,i + 1,0>)|0 < i < m.batch}
®{(<BF, m.baich,0>, <Ord, m.batch,i>)|0 < i < m.num};
Z,(m) =7(m) = {<BF, m.batch, 0};
Ioim)=Q(m)={<BF, m.batch, 0>|m.num = 0}
®{<O0rd,7,j>|0 < i < m.batch A 0 < j < mb[i]}
®{<O0rd, m.baich,i>|0 < i < m.num}.

The assertions in the producer proof, detailed below for the sake of completeness, are
the same as the ones in the previous example. The only change in the producer is that the
send at label sl transmits a backward flush rather than a two-way flush. Similar to the
example in Section 3.5, the invariant truth of I in the producer is inductively validated as

successive messages are sent.

PRODUCER::
{1}
bat, job := 0, O;
{ bat,job=0,0 A I}
While true do
{job=mblbat] A I}
bat, job := bat 4+ 1, 0;
{bat>0 A job=0 A I}
sl: send (BF, bat, job) on F;
{bat>0 A job=0 A I}
While job < mh(bat] do
{job < mbfbat] A I}
Job := job 4 1;
{ job < mb[bat] A T}
s2: send (Ord, bat, job) on Fj
{ job < mb{bat}] A I}

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 145

od;
{ job=mb[bat] A I}
od;
The definition of C, the set of messages consumed thus far, is similar to that of the

previous example:

C(cb,jobs) = {u | (g = <Ord, z,y> A <x,y> € jobs) vV (p = <BF,2,0> A0 < z < cb)}.

The parametric assertion A/, which describes a newly received message, must be modilied
according to the following reasoning. As in Example 3.6.1, the newly received message has
its type assigned to the consumer’s variable “mtype”, its batch assigned to “mbatch”, and
its number assigned to “mnum”. If the message currently received is <Ord,¢,d>, then ¢
must be less than or equal to the most current batch announced by a backward flush. If
the message currently received is a backward flush, then the number of jobs received thus

far must be less than or equal to the sum of the sizes of the batches previously announced.

Equivalently,
N(cb,jobs) =
(mtype = Ord A <mbatch, mdata> ¢ jobs A mbatch < cb A0 < mnum < mb[mbatch])
V(mtype = BF A mbatch = cb + 1 A mnum = 0 A |jobs| < ib: mb][i]).
i=1

The annotated consumer process appears as:

CONSUMER.::
{p=0A1TI}
jobs, cb := 0, 0;
{ jobs=0Acb=0A p=C(cb,jobs) A I }
‘While true do
{ p=C(cb,jobs) AT}
rl: receive (mtype, mbatch, mnum) from F;
{ N(cb, jobs) A p = C(cb, jobs) @ {<mtype,mbatch,mnum>} A I }
Case mtype of
Ord: jobs := jobs U {<mbatch, mnum>};

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 146

{ mtype = Ord A <mbatch, mmum> € jobs A mbatch < cb A0 < mnum £ mb{mbatch] A p = C(cb, jobs) AT }
BF: c¢b:=cb 4 1;
{ mtype = BF A mbatch = cb Amnum = 0 A [jobs| < zf:_;l mbfi] A p = C(cb,jobs) AT }
esac;
{p=C(cb,jobs) AT}
od;

The satisfaction proof is outlined below. The newly received message, MTEXT, must

be an ordinary or a backward flush message. The antecedent of the satisfaction rule is
(p=C(cb,jobs) AI) AN(MTEXT € 0 6 p)A(VYm:m € o Am <+ MTEXT = m € p).

This leads to the desired consequent,

((MTEXT = <Ord,c,d> A <e¢,d> ¢ jobs A e < cb A 0 < d < mbfc])
V(MTEXT = <BF, f,g> A f = cb+ 1 A g = 0A|jobs| < T, mb[4]))
Ap ® {MTEXT} = C(ch, jobs) ® {MTEXT} A I)
(NM(cb, jobs) A p = C(cb, jobs) & {<mtype, mbatch, mnum>} A I)E'Tng\?;:‘mbam::&nMu;‘E%%}.

Non-interference follows from a similar line of reasoning in the example of Section 3.5.

3.8 Batch Example 3: Illustrating Proof Rules for ORD /FF

If we let forward flushes terminate batches, Figure 3.5, we get a totally different effect from
that of the previous two batch examples.

<FF,1,0>

Figure 3.5: Batches Terminated with Forward Flushes

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 147

In this third and final batch example, the invariant which describes the implicit variables
must be substantially modified to deal with the forward flush. The producer algorithm is
structurally different from the previous two producers; in this example it is necessary to

transmit the forward flush after the ordinary messages in the batch. As before, define

I =Vm € o:I(m), where
I(m)= Ia(m) /\I_<(m) A IT(m) A Ig(m).

Elaborating each conjunct:

To(m) =0(m) ={<O0rd,s,5>|0 < i < m.batch A0 < j < mb[¢]} ® {<FF,:,0>|0 < i < m.batch}
®{<Ord, m.batch,i>|0 < i < m.num} ® {<FF, m.batch,0>|m.num = 0}
®{<Ord, m.batch,i>|m.num = 0 A 0 < i < mb(m.batch]};

Z ymy==(m)={(<Ord,i,j>, <FF,i,0>)[0 < i < m.batch A0 < j < mbli]}
®{(<FF,i— 1,0>, <FF,,0>)|1 < i < m.batch)
®{(<Ord, m.batch,i>, <FF, m.batch,0>)|m.num = 0 A 0 < ¢ £ mb{m.batch)}
®{(<FF,i— 1,0>,<FF,:,0>)|m.num = 0 A1 < m.batch = i};

Ir(m) ET(Tn) :0v

Za(m) =Q(m) = {<Ord, m.batch,i>|0 < i < m.num}

S{<FTF,i,0>|m.num # 0 A0 < i = m.batch — 1}
@{<FF, m.batch,0>|m.num = 0}.

Although the producer algorithm is changed from the previous two producers, the proof
in isolation continues to be straightforward. Moreover, the invariant truth of I in this

producer is established using the same reasoning of the previous examples.

PRODUCER::
{1}
bat, job := 0, 0;
{ bat,job=0,0 A I}
‘While true do
{ job = mblbat] A I}
bat, job := bat -+ 1, 0;
{bat>0 A job=0 A I}
While job < mb[bat] do
{ job < mblbat] A I}
job := job 4 1;

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 148

{ job < mb[bat] A I}
s2: send (Ord, bat, job) on F;

{ job < mbfbat] A T}

od;
{ job =mbfbat] A I}

s1: send (FF, bat, 0) on F;
{ job =mbfbat] A I}

od;
For the consumer, the parametric description of the set of consumed messages, C, is

essentially the same as previously defined:

C(cb, jobs) = {u | (p = <Ord,z,y> A <z,y> € jobs) V (1t = <FF, 2,0> A0 < z < cb)}.

The assertion A/, describing a newly received message, is somewhat changed in keeping
with the structure of the application. It is no longer necessary that ¢, from a newly received
<Ord,¢,d>, be less than or equal to the current batch. Instead, ¢ must only be larger
than the last batch number terminated by a forward flush. In addition, if the new message
received is a forward flush, then the number of jobs received is at least the sum of the

number of jobs in all of the currently terminated batches.

N(cb, jobs) =
(mtype = Ord A <mbatch, mnum> ¢ jobs A mbatch > c¢b A 0 < mnum < mb[mbatch])
cb+-1 .
V(mtype = FF A mbatch = cb + 1 Amnum = 0A) mb[i] < [jobs]|).
i=1

CONSUMER::
{p=0nA1}
Jjobs, cb := 0, 0;
{jobs=0Acb=0Ap=C(cb,jobs) AT}
While true do
{ p=C(cb,jobs) A T}
rl: receive (mtype, mbatch, mnum) from F;

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 149

{ M(cb,jobs) A p = C(cb, jobs) & {<mtype, mbatch,mnum>} AT}
Case mtype of
Ord: jobs := jobs U {<mbatch, mnum>};
{mtype = Ord A <mbatch,mnum> € jobs A mbatch > cb A 0 < mnum < mb[mbatch] A p = C(cb,jobs) AT }
FF: cb:=cbh +4 1;
{ mtype = FF A mbatch = cb Anmum =0 A z::l mbfi} < |jobs] A p = C(cb, jobs) A T }
esac;
{ p=C(cb,jobs) AT}
od;

The satisfaction proof is shown below. As before, we assume
(p = C(cb,jobs) AI) A\(MTEXT € 0 © p)A(NYm :m € o Am <+ MTEXT = m € p).

We then show, using I and the F-channel network axiom,

((MTEXT = <Ord,¢,d> A <c,d> ¢ jobs Ac > cb A0 < d < mble])
V(MTEXT = <FF, f,g> A f =cb+1Ag=0A LT mbfi] < |jobs|))
AMp® {MTEXT} = C(cb, jobs) ® {MTEXT} AI)

(N (cb, jobs) A p = C(cb, jobs) @ {<mtype, mbatch, mnum>} A I)ffq',‘g\‘,’;"‘?’b'“c:)‘gﬁ}‘;?};éf}}_

Once again, we rely on the reasoning for non-interference of the example in Section 3.5

to verify that this system is interference-free.

3.9 Soundness and Completeness

In this section, we show that the axiomatic proof methodology for F-channels is sound and
relatively complete. To show soundness, we illustrate that what we prove in our verification
methodology is true. Relative completeness, relative to some complete deductive system,
establishes that the methodology can prove anything that is true. There is no complete
deductive system for natural numbers, therefore, no programming language which uses
the natural numbers is complete. To avoid this issue, as suggested by Cook [Coo78], we
assume we have a complete deductive system; we then illustrate that our proot system can

prove anything which is true. Since we know that many axiomatic proof methodologies for

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 150

CSP are sound and relatively complete [AFR80, LG81, Sou84}, we prove soundness and
relative completeness for our proof system by simulating an F-channel with CSP sends and
receives. We then derive the I-channel axiomatic proof system from the CSP code using a

proof system for CSP which has been shown to be sound and relatively complete.

Theorem 11 The aziomatic proof methodology for processes cornmunicating with F-channels

is sound and relatively complete.

Proof: Suppose we have a distributed program that transmits flush messages on I*-channel
F from process § to process B. To model the I-channel, CSP processes S and R syn-
chronously communicate with CSP process B. The main function of B is to accept messages
from S and to transmit these messages to R in an order that is consistent with the definition
of an F-channel. op, <y, TF, and Qp are variables that model the F-channel communi-
cation state. A(m), B(m), and C(m) are functions, described in Section 3.4, that modify

these variables.

The I"-channel communication state is maintained by process B. By definition of an F-
channel, a message cannot be delivered before it is transmitted. In addition, a message
must be delivered in the order denoted by ~<+p. These two properties are stated in the
Flush Channel Network Axiom. In our simulation of an F-channel, we define the invariant

Irc to be consistent with the network axiom.

Irc : pr Cor,

For m,m' € op,m’' € pp = (Vm:m <tr m' . m € pr).

Irc is an implicit conjunct in every assertion of the CSP code. The following annotated

CSP code implements B.

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 151

B: do 7 S'oF, <r,QF, TF) — skip;
I
sp: not(empty(or © pp)) —
{(oropr)#0}
foreach u € (ocp © pr) do

{re(oropr)}
if Pred(u) C pr — RN <p.type,p.data>,pr @ {u}); break;

true — skip;
fi;
od;
od;

B nondeterministically chooses one of two actions: it may accept an incoming message from

S or it may, if an eligible message exists, transmit a message to R.

Send Axioms: We consider each of the four flush message types separately. To implement

the transmission of an ordinary message,
S1: send <Ord, data> on F,
we simulate the communication statement with the following CSP transmission.

81: Bl(op @ {<Ord,data>}, <p ®A(<Ord, data>),

Qr ® {<Ord,data>} © B(<Ord, data>), 7r).

To transmit a two-way flush message,
Sy: send <2F,data> on F,
we execute the following synchronous communication.

s2: Bl(or @ {<2F,data>}, <r & C(<2F, data>),

{<2F,data>}, {<2F, data>}).

We implement the transmission of a forward flush message,

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 152
S3: send <FF,data> on F,

with the following CSP transmission:

s3: B op @ {<FI',data>}, <r @& C(<FF,data>),

{<FF,data>},7F).

A backward flush message transmission,

S4: send <BF,data> on F,

is simulated by

s4: BY(or ® {<BF,data>},<r ®A(<BF,data>),
Qr @ {<BF, data>} © B(<BF, data>), {<Ord, data>}).

Regardless of the message type, the flush communication statement is modeled by a syn-
chronous transmission to B. We can derive the F-channel send axioms from the satisfaction
of the four synchronous communication statements. For example, consider the transmission
of a backward flush message. Suppose m is the message <BF, data>. For s4, the simulated

F-channel communication statement, we know that
{T} ss {W}

from the assertions surrounding a CSP transmission statement. To establish satisfaction for
the communication between S (at s4) and R (at r4), we use the Synchronous Satisfaction

Rule.

op, <F QF, T
(T) = (W) o ()}, < p® A () 0 () B (m),{m)

The semantic effect of the synchronous communication is a distributed assignment state-

ment. Therefore,

_ op, <pP, Qp, T
T = W, o (m) < r® Am), 2pd (m)© B(m) {m)"

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 153

Hence,

Backward Flush Send Aziom:

oF,) Qr, .
{Waﬁe{m}.jﬁa A(m)’ng@{m]ea(m)};}} S, : send <BF,data> on F {W}.

Since the other three send axioms are similar in form, we omit the corresponding derivations.

Receive Axiom: A receive statement in an F-channel program,
{P} Ri: receive <mtype,mdata> from F {Q},

is modeled by the following CSP communication statement:
{P} 11 B?(<mtype,mdata>,pr) {Q}.

We can easily derive the Flush Channel Receive Axiom from the simulated CSP code. Since

the receive allows a miracle, the postcondition (Q is miraculous in isolation.

Satisfaction Rule: To derive the Ilush Channel Satisfaction Rule, we begin with the

Synchronous Satisfaction Rule for s, and r;.

< mdata>,
PAp€(or8pr) A Pred(p) C pr = Q<:?.;{;:,:).d§;2>, ‘;?@{#}.

Since P and @ are unspecified, the above implication may not be valid. It is necessary,
therefore, to derive a satisfaction proof to ensure the axiomatic technique for F-channels is
sound. First, we introduce MTEXT, a new variable, to replace . Second, the condition
to transmit a message in B is based on the predecessor set of the message as defined in

Chapter 1.2. Therefore,

Pred(p) = Pred(MTEXT) C pp =>Vm :m € ap Am <+p MTEXT ::m € pp

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 154

Lastly, the foreach loop cannot continue indefinitely. Since messages are transmitted to B
in a FIFO basis, some message must be available for delivery if (oF © pr) # 0. The new

satisfaction rule follows.

Flush Channel Satisfaction Rule:

For every F-channel receive
{P} R, :receive <mtype,mdata> from F {Q},

verify the following to establish satisfaction:

P A (MTEXT€or©pr) AN (VYm:me€orp Am <p MTEXT :: m € pF)

= Q <mtype,mdata>, pp
MTEXT, pr®{MTEXT}"

Non-interference Rule: We derive the Flush Channel Non-interference Rule from the
non-interference proof of the CSP program. In B, consider all but the communication
statements. None of these statements can interfere with parallel assertions in other processes
as none of these statements update any variables. In addition, none of the assertions in B
can interfere with parallel statements in other processes as the variables within the assertions
are updated by synchronous communications involving B. The communication statements
within B match communication statements in .S and R. Therefore, non-interference proofs

of § and R establish the non-interference proof of process 3.

For every assertion A and for every statement S (not in B) that is a parallel assignment,
simulation of a send, or simulation of a receive, we must prove the first step of the

Synchronous Non-interference Rule. We, therefore, define

{A Apre(S)} S {4}

as the first step in the Flush Channel Non-interference Rule.

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 155

For every assertion 4 and matching synchronous communication statements, we must prove
the second step in the Synchronous Non-interference Rule. Again, for example, consider s4

and 7y, and suppose that m represents <BF, data>. We must prove

(4o * » n + T
A A pre(ss) = A7T6 (m), <r®Am),R 0 {m}OB (m),{m)*
This implication is equivalent to proving

{A A pre(ss)} 34:send <BF,data>on FF {4},

which is equivalent to validating the first step in the non-interference proof. We omit the

details of the other three simulated send statements, $3—33, as the outcome is the same.

Now consider the second step of the Synchronous Non-interference Rule for s, and »;.

ymdat [
A Apre(r;) A p € (op ©pF) A Pred(u) C pr = AEZ‘Z’;?,ZQ?;Q;.Z?@{“}'
As in the satisfaction case, we introduce MTEXT, a new variable, for ¢ and substitute

(Ym:m € op Am <p MTEXT ::m € pp) for Pred(MTEXT) C pp. Therefore,

AApre(r)) A(MTEXT € or © pr)A(Vm:m € op Am <ty MTEXT ::m € pp)

= A <mtypemdata>,pp
MTEXT, pr®{MTEXT}>

which is the second step in the Flush Channel Non-interference Rule.

All the rules and axioms in the I-channel axiomatic proof system have been derived from
a CSP program that simulates an F-channel. We, therefore, conclude that the axiomatic
proof methodology for processes communicating with F-channels is sound and relatively

complete. [|

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 156

3.10 Generalization of Conventional Asynchronous Com-
munication

A benefit in using F-channels is that they can model reliable datagram and virtual circuit
communication; -channels are a true generalization of these conventional inter-process
communication regimes. To model reliable datagrams, the sender only transmits ordinary
messages. To model a virtual circuit, the sender can transmit only two-way flush messages.
In the following two sections, we prove that the axiomatic proof system above is a true
generalization of the verification process for communication with reliable datagrams and

virtual circuits.

3.10.1 Relationship between Reliable Datagrams and Flush Channels

In this section, we prove the equivalent relationship between ordinary messages transmitted
on an F-channel and reliable datagrams. Although the proof rules in Section 3.3.2 pertain

to Unreliable Datagrams, we can use them for the reliable case as well.

Lemma 12 In F-channel communication, < g is empty if the sender is restricted to trans-

mitting only ordinary messages.

Proof: We establish this result by induction on the number of ordinary messages trans-
mitted in the system. The basis case, that only one ordinary message is transmitted, is

trivially true.

Assume that n ordinary messages have been transmitted and <p = . Consider the
transmission of m, the (n 4 1)st ordinary message. By the Ordinary Message Send Axiom,
at the transmission of m, < is updated to include A(m) where A(m) = {(z,m) |z € 7r}.
In a flush system restricted to ordinary message transmissions, 7p =). Therefore, by the

inductive hypothesis, <y = § after the transmission of m. [|

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 157

Theorem 12 Flush channels generalize reliable datagrams.

Proof: The implicit variables which model those messages sent and received in the proof
rules for both unreliable datagrams and F-channels are multisets. In addition, they both
adhere to network axioms that insist pg C o, i.e. the Unreliable Datagram Network Axiom
and the Flush Channel En Route Property. Flush channels also obey the Order Property.
By Lemma 12, however, <p is empty. Hence, the Order Property places no restraints on

the delivery order; if a message is available at the destination, it can be delivered.

The send axioms for unreliable datagrams and ordinary messages in I-~channels include the
assignment op/r := op;rr © {msg}. A transmission of an ordinary message also updates
<pr and Qp. As discussed, < remains empty. The Ordinary Message Send Axiom updates
Qp toinclude the newly transmitted message. This variable, however, is superfluous as Qp
is never needed in an F-channel that only allows ordinary message transmissions. There-
fore, the two send axioms for the different communication paradigms are equivalent, The
Unreliable Datagram Receive Axiom and the Flush Channel Receive Axiom are trivially

equivalent.

Consider the satisfaction rules of the two communication paradigms. The first, second, and
implication clauses in the rules are equivalent. The third additional clause in the Flush
Channel Satisfaction Rule refers to the delivery order. Since <p is empty, the clause has

no bearing on the satisfaction proof.

In both communication paradigms, the proof of non-interference requires two steps. The
first step is identical in the axiomatic proof methodology for unreliable datagrams and
F-channels. Consider the second step in the non-interference rules of these two verification
methodologies. The first, second, third, and implication clauses are trivially identical.
As before, the fourth extra clause in the Flush Channel Non-interference (Receive) Rule
is vacuously true. In conclusion, transmitting only ordinary messages on an F-channel

simulates the transmission of messages on a reliable datagram. |

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 158

3.10.2 Relationship between Virtual Circuits and Flush Channels

The previous section showed that I-channels generalize reliable datagrams. The following

discussion is similar. In this section, we prove that the axiomatic proof system for I-channels

is a generalization of the verification process for virtual circuits.

Lemma 13 In I-channel communication, if the sender is restricted to transmitling only

two-way flush messages, then <y is a total order equivalent to the transmission order.

Proof: We proceed by induction on the number of two-way flush messages transmitted
across the I*-channel. The basis case, that only one two-way flush message is transmitted,

is vacuously true.

Assume that < is a total order, identical to the transmission order, after n two-way flush
transmissions. At the transmission of the nth two-way flush message, the Two-way Flush
Send Axiom assigns the nth two-way flush to the free set. Consider the transmission of m,
the (n+1)st two-way flush message. By the send axiom, <y is augmented to include C(m)
where C(m) = {(z,m)| z € Q}. Since Qp is a singleton, the nth two-way flush message,
~<F is updated with a single link that ensures the nth two-way flush message is delivered
before m. By the inductive hypothesis, <p is a total order equivalent to the transmission

order, |
Theorem 13 Flush channels generalize virtual circuits.

Proof: The implicit variables which model those messages sent and received in the proof
rules for virtual circuits are sequences, guaranteeing a network axiom of py < oy. By
Lemma 13, < is a total order in a flush communication system that only transmits two-
way flush messages. Thus, <+, the transitive closure of <, is a Lotal order as well. Hence,
the Virtual Circuit Network Axiom and the Flush Channel Order Property, when 4y is
a total order, are equivalent; both communication paradigms will deliver messages in the

transmission order.

CHAPTER 3. VERIFICATION OF A FLUSH CHANNEL 159

The Virtual Circuit Send Axiom updates oy by appending the newly transmitted mes-
sage. The Two-way Flush Send Axiom updates <p by, essentially, appending the newly
transmitted message to the total order. Therefore, the send axioms of the two communi-
cation paradigms are equivalent. As in the datagram case, the receive axiom for these two

asynchronous communication types are trivially equivalent.

Consider the satisfaction rules of the two communication paradigms. The first, second,
and implication clauses in the rules are trivially equivalent. The third clause in the Virtual
Circuit Satisfaction Rule states that MTEXT must be the earliest message transmitted and
not yet received. The third clause in the Flush Channel Satisfaction Rule, due to Lemma 13,

ensures this property as well. Thus, the two satisfaction rules are equivalent.

As before, the first step in the non-interference rules of the two communication paradigms
are identical. The first, second, third, and implication clauses are trivially identical. The
fourth clause, of both rules, verifies the messages are delivered in a total order. Hence,
transmitting only two-way flush messages on an F-channel simulates the transmission of

messages on a virtual circuit, |

3.10.3 A Comment on the Generalization

It is important to realize that the generalization of reliable datagrams and virtual circuits
to flush communication channels comes at a non-trivial cost in terms of our ability to
reason about distributed systems. If virtual circuits are the communication mechanism in
a distributed system, then the structure of the delivery partial order is fully known. This
is independent of how a program chooses to pass data across a virtual circuit. The partial
order is a total order. When we use the full generality of an F-channel, we build the structure
of the partial order “on the fly.” That structure cannot be known statically. Although this
creates extra flexibility in the system, we feel that the complexity makes formal proof rules

for flush systems imperative.

I don’t want to achieve immortality through my work,
I want to achieve it through not dying.
Woody Allen

Chapter 4

Concluding Remarks

In this thesis, we investigated implementation and verification issues for flush commu-
nication channels. F-channels generalized the communication paradigms that enforced no
delivery order (unreliable datagrams) and total delivery order (virtual circuits). In com-
munication with an F-channel, the programmer defined the delivery order of each message
in relation to other messages transmitted on the channel. Throughout the thesis, our for-
malization of the inherent partial order for message delivery facilitated our understanding
of the dynamic, and possibly complex, delivery order.

From the system’s perspective, an effective implementation that supported a dynamic
delivery order specified during execution was not obvious. We reviewed two implementation
protocols in the literature for ¥-channel communication and discussed their drawbacks.
Understanding the partial order of messages intrinsic in F-channel message transmissions
assisted us in developing the “WaitFor” technique. We presented the protocol and proved its
correctness by validating that the protocol faithfully obeyed safety and liveness behavioral
properties. The correctness of the WaitFor technique also served as the missing validity
proof for the Three Counter technique, as we proved the functional equivalence of these two
protocols.

In regards to flow control issues in message transmissions, we considered the constraints

160

CHAPTER 4. CONCLUDING REMARKS 161

of finite buffer space and limited sequence numbers. In both matters, the partial delivery
order precluded the use of conventional solutions. We presented solutions to bounding
buffers and sequence numbers, acknowledged the flaws in the solutions, and argued that
there is no preferable alternative. We then included bounding considerations in our WaitFor
technique and proved the modified protocol was correct as well.

We presented resulls obtained from a simulation of I*-channel message transmissions.
As real-world examples naturally formed batches of ordinary messages and an associated
flush message of a given type, our simulator considered message passing scenarios that parti-
tioned ordinary messages into batches. After we reviewed the performance of virtual circuit
communication, we plotted simulation results that considered three experimental parame-
ters: degree of order, utilization, and number of links. All the results demonstrated that
F-channel data transmission was faster than virtual circuit data transmission. Furthermore,
the performance of forward flush and backward flush batching scenarios were quite similar,
but substantially better than batching the ordinary messages with two-way flush messages.
The two-way flush batching scenario, however, continued to outperform a virtual circuit. In
conclusion, partially ordered message delivery allowed the possibility of higher bandwidth
communication.

In order to validate the simulation results, we presented stochastic analysis of the three
batching scenarios. We first reviewed the derivation of the expected resequencing delay of
a message transmitted across a virtual circuit. The subsequent three sections considered
the three batching scenarios in detail. In the forward flush batching case, the resequencing
delay of an ordinary message was zero, while the mean resequencing delay of a forward
flush message was identical to the mean resequencing delay of a message transmitted across
a virtual circuit. It is to be expected, and shown to be correct, that the mean resequenc-
ing delay of a message in the forward flush batching scenario was a portion of the mean
resequencing delay of a message transmitted across a virtual circuit. The analysis of the

expected resequencing delay of a message in the two-way flush and backward flush batching

G

CHAPTER 4. CONCLUDING REMARKS 162

scenarios was more complicated. In fact, approximations for the probabilities of distinct
messages in transit were necessary in order to validate the simulation results.

The performance results showed that F-channels offered promise of ultra-high bandwidth
communication over multiple physical paths. The programmer had the flexibility to choose
the least amount of delivery order restrictions required to obtain the best performance in
message transmissions. Programming with a system that communicated with an F-channel
was, however, more complex than the conventional virtual circuit paradigms. To handle the
additional complexity in the system, we developed an axiomatic verification methodology
for I"-channel communication.

Wereviewed the conventional axiomatic proof methodology for synchronous communica-
tion with CSP and for asynchronous communication with unreliable datagrams and virtual
circuits. We extended the methodology to I-channel communication by constructing the
dynamic delivery order requirements within the axiomatic proof methodology. Though
the addition of the delivery order construction increased the complexity of the verification
methodology, we proved the axiomatic technique was sound and relatively complete. Lastly,
we proved the equivalence of the axiomatic proof rules for IF-channels and those for reli-
able datagrams and virtual circuits, demonstrating that I'-channels could model these two
conventional communication paradigms.

The use of flush communication channels provided a greater potential for concurrency
in message passing than the use of virtual circuit communication, without the program-
ming disadvantages of unreliable datagram communication. In ¥-channel communication,
the programmer had the ability to simulate a virtual circuit or a reliable datagram; the
programmer chose a partial order for the message delivery order that best fit the needs of
the application. I'-channels allowed the flexibility to relax the delivery order restrictions in
virtual circuit commmunication and, hence, increased the rate of data transfer.

The results in this thesis suggested other possibilities of future work. From the imple-

mentation results, analytic error bounds for the approximate expected resequencing delays

CHAPTER 4. CONCLUDING REMARKS 163

are needed. We are convinced that closed-form solutions for the two-way flush and backward
flush batching scenarios cannot be obtained. Tor this reason, our approximation method
is worthwhile. Error bounds on the approximation, however, would strengthen the results
presented.

In the bounded WaitFor technique, we transmitted a dummy two-way flush message to
reset the variables in the system when all messages had been ACKed and the transmission
condition continued to be false. This dummy message was necessary to avoid deadlock.
In effect, the transmission of the message synchronized the sender and receiver. In a sys-
tem that thrives on concurrency, avoiding synchronizations was advantageous. We plan
to consider other possibilities for a bounded WaitFor technique that do not require any
synchronizations. Lastly, we want to implement a prototype for I*-channel communication,

In verifying F-channel applications, we want to consider a second proof methodology.
The axiomatic operational proof methodology in this thesis relied on nonlocal reasoning
for correctness. Whether an application verified its intentions or not depended on global
arguments built after the processes were annotated. We should not construct our view of
a distributed system by adding order, as we must do with any definition of global stale.
Instead, we should reason with events and states in a distributed system using causal order
as defined by Lamport’s “happened before” relation [Lam78]. In a causal proof methodology,
we do not need to consider the communication state. Instead, we look into the possible
causal relationships belween senders and receivers.

The motivation for a causal proof methodology for F-channel communication is to sim-
plify testing [L1091]. Due to a dynamic, and possibly complex, delivery order in F-channel
communication, verifying an application and testing the correctness of the assertions will
further build our confidence that the application satisfies our expectations. Our initial con-
sideration of a causal proof methodology for I-channel communication developed a causal
reasoning technique that is correct for a two process system. Generalizing the technique to

any number of processes produced problems. We believe that a causal proof methodology

CHAPTER 4. CONCLUDING REMARKS 164

for F-channel communication must abandon the definition of no auxiliary variables in the

reasoning process. We plan to consider this area further in the future.

Bibliography

[AFR80]

[Ahu99)

[Ahug1]

[ARST]

[AS85]

[AVS91]

[Cho89]
[CK91]
[CKA93]

[CL85]

[Coo78]

[Dij76]

K.R. Apt, N. Francez, and W.P. De Roever. A proof system for communicating
sequential processes. ACM Transactions on Programming Languages and Systems,
2:359-385, 1980.

M. Ahuja. Flush primitives for asynchronous distributed systems. Information
Processing Letlers, 34:5-12, 1990.

M. Ahuja. An implementation of F-channels, a preferable alternative to FIFQ
channels. In Proceedings of the 11th International Conference on Distributed Com-
puting Systems, pages 180-189, 1991.

S. Agrawal and R. Ramaswamy. Analysis of the resequencing delay for M /M /m
systems. In Proceedings of the 1987 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems, pages 27-35, 1987.

B. Alpern and F.B. Schneider. Defining liveness. Information Processing Letters,

21(4):181-185, 1985.

M. Ahuja, K. Varadhan, and A.B. Sinha. Flush message passing in communicat-
ing sequential processes. In N. Rishe, S. Navathe, and D. Tal, editors, Paralle!
Architectures, pages 31-47. IEEE Computer Society Press, 1991.

S. Chowdhury. The mean resequencing delay for M/ H /oo systems. IEEE Trans-
actions on Software Engineering, 15(12):1633-1638, 1989.

T. Camp and P. Kearns. Proof rules for flush channels: An axiomatic approach.
Technical Report WM-91-2, The College of William and Mary, 1991.

T. Camp, P. Kearns, and M. Ahuja. Proof rules for flush channels. IEEE Trans-
actions on Software Engineering, 19(4):366-378, April 1993.

K.M. Chandy and L. Lamport. Distributed snapshots: Determining global states
of distributed systems. ACM Transactions on Computer Systems, 3(1):63-75,
1985.

S.A. Cook. Soundness and completeness of an axiom system for program verifi-
cation. SIAM Journal of Compulting, 7(1):70-90, 1978,

E.W. Dijkstra. A Discipline of Programming. Prentice Iall, Englewood Cliffs,
1976.

165

BIBLIOGRAPHY 166

[Hoa69]
[oa78]

(KC91)

(KCA92)

[Kle75]

[Lam78]

[Lam88)

[LG81]

[LK91]

[L1091]
[L584]

[MC81]
[0G76]
[0L82]

[Ros73)
[Sou84]

C.A.R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12(10):576-583, 1969.

C.A.R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666-677, 1978.

P. Kearns and T. Camp. An implementation of flush channels based on a veri-
fication methodology. Technical Report WM-91-6, The College of William and
Mary, 1991.

P. Kearns, T. Camp, and M. Ahuja. An implementation of flush channels based
on a verification methodology. Proceedings of the 12th International Conference
on Distributed Computing Systems, pages 336-343, 1992.

L. Kleintock. Queuing Systems, volume 1. John Wiley & Sons, Inc., 1975.

L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, 1978.

L. Lamport. Control predicates are better than dummy variables for reasoning
about program control. ACM Transactions on Programming Languages and Sys-
tems, 10(2):267-281, 1988.

G.M. Levin and D. Gries. A proof technique for communicating sequential pro-
cesses. Acta Informaltica, 15:281-302, 1981.

W.S. Lloyd and P. Kearns. Using tracing to direct our reasoning about distributed
programs. In Proceedings of the 1I1th International Conference on Distributed
Computing Systems, pages 552-559, 1991.

W.S. Lloyd. Clausal Reasoning about Distributed Programs. PhD thesis, The
College of William and Mary, 1991.

L. Lamport and F.B. Schneider. The ‘loare logic’ of CSP, and all that. ACM
Transactions on Programming Languages and Systems, 6(2):281-296, 1984.

J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Transactions
on Software Engineering, SE-7:417-426, 1981.

S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6:319-340, 1976.

S. Owicki and L. Lamport. Proving liveness properties of concurrent programs.
ACM Transactions on Programming Languages and Systems, 4(3):455-495, 1982,

S.M. Ross. Introduction to Probability Models. Academic Press, Inc., 1973.

N. Soundararajan. Axiomatic semantics of communicating sequential processes.
ACM Transaclions on Programming Languages and Systems, 6(4):647-662, 1984.

BIBLIOGRAPHY 167

[SS84] R.D. Schlichting and F.B. Schneider. Using message passing for distributed pro-
gramming: Proof rules and disciplines. ACM Transactions on Programming Lan-
guages and Systems, 6(3):402-431, 1984.

[Tan89] A.S. Tanenbaum. Computer Networks. Prentice-Hall, Inc., 1989.

[YN86] T-S. Yum and T-Y. Ngai. Resequencing of messages in communication networks.
IEEE Transactions on Commaunications, COM-34(2):143-149, 1986.

VITA

Tracy Camp was born in Detroit on September 27, 1964. After graduating from Lakeland
High School in Milford, Michigan, she attended Kalamazoo College in her home state and
received a B.S. degree in Mathematics, June 1987. She then continued her education at
Michigan State University in Lansing and received an M.S. degree in Computer Science,
March 1989. In September 1989, Ms. Camp entered the College of William and Mary and
expects to receive her doctorate in Computer Science in 1993. She will join the faculty at

the University of Alabama at Tuscaloosa in September 1993.

	Flush communication channels: Effective implementation and verification
	Recommended Citation

	00001.tif

