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ABSTRACT

Flush communication channels, or F-cliannels, generalize more conventional asynchronous 
communication paradigms. A distributed system which uses an F-channel allows a program
mer to  define the delivery order of each message in relation to  other messages transm itted 
on the channel. Unreliable datagram s and FIFO (first-in-first-out) communication channels 
have strictly defined delivery semantics. No restrictions are allowed on message delivery 
order with unreliable datagram s—message delivery is completely unordered. FIFO chan
nels, on the other hand, insist messages are delivered in the order of their transmission. 
Flush channels can provide either of these delivery order semantics; in addition, F-cliannels 
allow the user to define the delivery of a message to be after the delivery of all messages 
previously transm itted or before the delivery of all messages subsequently transm itted or 
both. A system which communicates with a flush channel has a message delivery order that 
is a partial order.

Dynamically specifying a partial message delivery order complicates many aspects of how 
we implement and reason about the communication channel. From the system’s perspective, 
we develop a feasible implementation protocol and prove its correctness. The protocol 
effectively handles the partially ordered message delivery. From the user’s perspective, we 
derive an axiomatic verification methodology for flush applications. The added flexibility of 
defining the delivery order dynamically slightly increases the complexity for the application 
programmer. Our verification work helps the user effectively deal with the partially ordered 
message delivery in flush communication.

x



FLUSH COMMUNICATION CHANNELS: 

EFFECTIVE IMPLEMENTATION AND VERIFICATION



Good communication is as stimulating as black coffee, 
and just as hard to sleep after. 

Anne Morrow Lindbergh

Chapter 1

Introduction

1.1 C om m u nication  Paradigm s

A distributed system is a set of processes which communicate via message passing. Commu

nication is termed asynchronous when a  message sen d  operation does not wait for execution 

of its m atching rece iv e . The network subsystem which implements the communication 

path  between the sender and the receiver handles the message until delivery occurs at the 

destination process [Tan89].

One way to categorize asynchronous message passing constructs is by the delivery or

der restrictions placed upon messages. For example, unreliable datagram  communication 

imposes no delivery order restriction. The fact tha t datagram  m \ is transm itted  before 

says nothing about the order in which the destination process may receive those messages 

(if they are received at all). A virtual circuit or sequenced reliable packet protocol, on the 

other hand, imposes a rigid order on message delivery. If message m i is transm itted before 

message m 2 over a FIFO (first-in-first-out) channel, then m i must be delivered before m 2 . 

There is, however, 110 reason to impose all-or-nothing delivery order requirements on all 

messages in every distributed program.

Flush channels generalize the above two competing views of asynchronous message pass

2
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ing semantics by allowing a programmer to specify message delivery order restrictions as 

appropriate to  tlie needs of the program [Ahu9Q]. An F-channel is unidirectional and reli

able. The sen d  construct appears as:

sen d  (type, data) o n  F  

where type is the F-channel message type, data is the d a ta  to  be transm itted , and F  is the 

identity of the F-channel connecting two communicating processes. Four message types, 

each with a different impact upon delivery order, are available to  the programmer using 

F-channel communication:

o A iwo-way flush message (type 2F) Hushes the communication channel in 

two directions. The two-way flush message is delivered after every message 

transm itted before it and before every message transm itted  after it.

• A  forward flush  message (type F F ) flushes the channel in a forward direction.

The message is delivered after every message transm itted  before it.

•  A backward flush message (type B F ) flushes the channel in a backward direc

tion. The backward flush message is delivered before every message transm itted 

after it.

• An ordinary message (type O rd) does not flush the communication channel 

at all. The only constraints on the delivery of an ordinary message are those 

imposed by the other three message types.

It is im portant to  note that the ordering restrictions placed upon messages concerns their 

delivery to the destination user process; flush messages may arrive at the destination host 

in any order. We use the term arrival to denote the point in tim e th a t a message is passed 

from the network to the destination host. The term delivery represents the event when the 

message becomes eligible for reception by the destination process. A correct implementation 

of an F-channel ensures messages arriving at the destination process are delivered without 

violating the order specified by the transm itting process.
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The rec e iv e  operation for F-channel communication appears as:

rece iv e  (type, data) fro m  F.

The invoking destination process of the rece iv e  operation is blocked until there is a message 

available for delivery on F.

Program ming distributed systems which use F-channels is relatively straightforward. As 

illustrated in [Ahu90], such programming may be as simple as tha t which relies upon virtual 

circuit communication. A global snapshot protocol, similar in spirit to th a t of Chandy and 

Lam port [CL85] but cast into the context of a  system which uses F-channel communication, 

is presented in [Ahu90]. Communicauon paradigms for F-channels are developed in [AVS91]. 

In all of these examples, the use of F-channels provides a greater potential for concurrency 

than the use of FIFO channel communication but without the programming disadvantages 

of unreliable datagram  communication. This increase in concurrency of message delivery 

can occur when there are multiple physical paths between source and destination and packet 

switched routing is used.

1.2 F orm alization  o f  th e  F lush  C hannel D elivery  Order

To obtain the greater potential for concurrency offered with F-channel communication, we 

must solve the problem of dealing with the dynamic delivery order. FIFO communication 

channels and unreliable datagram  communication have static delivery order semantics in

dependent of the application program which utilizes the channel. The delivery order for 

an F-channel, on the other hand, is defined by the application program. As the program 

executes, the delivery order is created “on the fly” . We need an abstraction to easily under

stand this dynamic, and possibly complicated, delivery order tha t is inherent in F-channel 

communication.

Possible delivery orders are interpreted by Ahuja from the perspective of message cross

ing [Ahu90]. Two messages sent on an F-channel are said to cross when they are delivered
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in an order different from their transmission order. Crossing is allowed when no ordering 

restrictions exist between two messages. As defined, ordinary messages place no restrictions 

on the delivery order. A two-way flush, on the other hand, places strict delivery ordering 

requirements on the channel; no message (of any type) is allowed to cross a two-way flush 

message. Figure 1.1 illustrates how a two-way flush message, m 2F) restricts all crossings. 

The messages drawn as dashed lines are not allowed. (Real tim e increases from left to right 

on the time-lines.)

m2F  W ord H^Ord

Figure 1.1: Message Crossing: Two-way Flush and Ordinary Messages

A forward flush message, m pF , guarantees all messages sent before m pF  are delivered 

before m pF is delivered. As shown in Figure 1.2, messages sent after m pp  are perm itted to 

cross m pF  (from right to left). A backward flush message, m gp , guarantees all messages 

sent after the transmission of n igp  are delivered after t u b f ■ Messages sent before rngp are 

allowed to cross t u b f  (from left to right).

mFF mBF

Figure 1.2: Message Crossing: Forward and Backward Flush Messages

The problem with viewing the delivery order of messages in this manner is tha t the 

time-lines cannot show the possibility of message crossing. The time-lines, instead, show 

how the messages are actually delivered to the destination. For example, consider the two 

ordinary messages denoted m o rd in Figure 1.1. Since there are no ordering restrictions on
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these two messages, the first ordinary message may be delivered before or after the second. 

The time-line, however, can only illustrate one of the two possible delivery order scenarios.

Let M denote the multiset of messages transm itted on F-channel F. We define an 

irreflexive partial order, < + f , on M to represent the inherent delivery order in the system:

<a+F C M x M ,

such th a t for m , m '  G M, m  < + f  m ' if and only if m  cannot be delivered after m ' .  For 

example, if a two-way flush, m 2Fi is transm itted before an ordinary message, mord , then 

m-iF <+F m Ord■ We say tha t m 2F is a predecessor of m o rd or, equivalently, mord is a 

successor of m 2F- In either case, m 2F cannot be delivered after m o rd■ A given message may 

have many predecessors, but if m , m '  £ M and there is no m "  G M with m  <+ f  m "  «+f m f ,  

then we say tha t m  is an i m m e d i a t e  predecessor of m ' .  We define an irreflexive partial 

order, < f , to represent this immediate predecessor relation. T hat is, if m  is the immediate 

predecessor of m ;, then m  m 1. It is possible for elements of M to be unordered under 

<+F. If ordinary message m o rd is transm itted immediately before backward flush v ib f ,  the 

two messages may be delivered in any order. T hat is, mord /+F  m BF, and m g p  /+F fnord-

We can draw the immediate predecessor relation, <f , as a directed graph. Each element 

of M is denoted by a vertex. We connect message m  to  message m '  with a directed edge from 

m  to m !  if and only if m  is an immediate predecessor of m ' . Clearly, « + f  is the transitive 

and irreflexive closure of < f - The graph of immediate predecessors in a partially ordered 

set conveys all the information about the partial order in a simple manner, including the 

p o s s i b i l i t y  of one message being delivered before another.

Figure 1.3 illustrates an instance of the immediate predecessor abstraction. In this 

graph, a message is labeled as < t y p e , i > ]  t y p e  is the type of the flush message and i  is a 

unique sequence number for the message. We use the notation < c i , . . . ,c / t>  to mean a 

composite da ta  structure consisting of the elements through c*. One may validate the
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<Ord,0> 

<Ord,1> 

<Ord,2>7

<0rd,4>
<FF,6>

<2F,11><2F,3> <Ord,5>

<0rd,7>

<Ord,9>

<BF,8>
< O rd ,1 0 >

Figure 1.3: A Sample Immediate Predecessor Graph

directed edges from the definition of each flush message type in Section 1.1. For instance, 

messages numbered 0, 1, and 2 have directed edges to < 2F ,3> , and there is a path from 

<2F, 3> to all messages with higher sequence numbers. This is in keeping w ith the definition 

of a  two-way flush message—it must be delivered after every message transm itted before it 

and before every message transm itted after it.

We find it convenient to define Pred(m), the predecessor set of message m, as

Pred(m) = {m ' 6 M  : m! <+p to}.

For example, the backward flush labeled < B F ,8>  has predecessor set

Pred{<BF, 8>) =  {<2F, 3>, < 0 rd , 2> , <Ord, 1>, < 0 rd , 0>}.

Every message in Pred(<BF, 8>) must be delivered before <BF, 8>. Messages not in 

P red(< B F ,8>) are unrelated to the delivery of < B F ,8> . For example, < O rd ,4 >  may or 

may not be delivered before < B F ,8> . No protocol which implements an F-channel should 

delay the delivery of < B F ,8>  due to the non-delivery of < O rd ,4 > .

1.3 T h e P rob lem

Allowing the user to specify the message delivery order complicates implementation and 

verification. Delivery order semantics are no longer static. The restrictions placed on 

message delivery are specified by the sender on a  message by message basis. The underlying
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abstraction for the delivery order inherent in F-channel communication, <+f > allows us to 

represent the delivery restrictions simply. We use this irreflexive partial order throughout 

our consideration of flush communication.

From the system’s perspective, an effective implementation th a t supports a delivery 

order specified during execution is not obvious. Two attem pts a t implementing F-channels 

have appeared in the literature; neither protocol can be considered simple and efficient. We 

develop an implementation technique that effectively handles the dynamic delivery order. 

This technique deduces <j? and exploits the deduction to decide when a received message is 

eligible for delivery. Practical issues, such as finite buffer capacity, are considered as well.

Simulation results illustrate th a t an F-channel implementation offers the promise of 

ultra-high bandwidth communication over m ultiple physical paths. The results obtained are 

from the special case involving two of the four message types: ordinary messages “batched” 

with one flush message type. In addition to the simulation results, we provide analysis for 

the performance of batched ordinary messages as well. The two results validate one another. 

All implementation results, protocol and performance, are given in Chapter 2.

An application programmer, using the F-channel communication paradigm, has flexi

bility in defining the delivery order requirements. Defining the delivery order dynamically 

allows the programmer to choose the least amount of delivery order restrictions required, 

thus potentially improving the performance of the application. Unfortunately, the com

plexity of the system increases due to  the additional nondeterminism in message passing. 

To help the user understand the system, we develop a  methodology for reasoning about 

F-channel message passing in Chapter 3.

This thesis concerns the investigation of F-channel communication from the system’s 

and user’s perspectives. Using the irreflexive partial order defined intrinsically in F-channel 

communication, we explore implementation and verification areas for this non-traditional 

communication construct.



Let all things be done decently and in order.
New Testament, Corinthians XIV

Chapter 2

Implementation of a Flush 

Channel

Consider the logical unidirectional message path between two processes in a distributed 

system as shown in Figure 2.1. Let S  denote the sending process; let R  denote the receiver.

Logical M e ssag e  P ath

Send
F -c h a n n e l

Im plem entation
F -c h an n e l

Im plem entation

Physical
Link

Physical
Link

Networking support 
a t  h o st w here  S  re s id es

Interm ediate
N ode

Interm ediate
N ode

Networking support 
a t h o st w here R resides

RecvXmit

Receive

d(m)

Figure 2.1: Logical and Physical Message Paths

In this network, one may identify several im portant events in the lifetime of a message m 

sent by S  to R. t (m)  denotes the time of transmission o f  m  by 5; it is the time at which

9
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m  is passed to  the networking support by £”s execution of a se n d  command. a(m ) is the 

time of m ’s arrival a t the destination; m  may be buffered at the destination node for some 

period of time. d(m)  is the time of m ’s ultim ate delivery to  the user process R —it is the 

time when the destination process can allow the receipt of m  without violating any delivery 

order constraints.

In any communication paradigm  (FIFO, unordered, and flush), a  message may experi

ence a  delay at the destination host due to R's not having issued a receive . For both FIFO 

channels and F-channels, however, there may be an additional delay between a message’s 

arrival and its delivery to the destination process. This further postponement is called rese

quencing delay. It is the interval [a(m), d(m))  in Figure 2.1, and it accrues due to differences 

between the arrival order and the allowed delivery order(s). For a FIFO channel, a given 

message cannot be delivered until all messages transm itted  before it have been delivered. 

A message which takes a  fast path through the underlying physical network and arrives 

early, out of order, must be buffered until all messages transm itted before it have arrived 

and been delivered, ltesequencing delay is a m ajor impediment in attem pts to provide high 

bandwidth virtual circuits over m ultiple parallel links between source and destination (see, 

for example, [YN8C, Cho89, AR87]).

The resequencing problem is more complex for F-channels because the (partial) deliv

ery order required by an F-channel is generally more complex than  the (to ta l) FIFO order 

imposed by a  virtual circuit or a sequenced packet channel. Intuitively, however, the rese

quencing delay for an F-channel is generally less than th a t for a  virtual circuit. We expect 

the resequencing delay for an F-channel to increase when we add more restrictions to the de

livery order. The delay, however, should approach that of a virtual circuit only in the worst 

case. As such, F-channels offer promise as a  means of providing extremely high bandwidth 

inter-process communication over multiple transmission paths, without the programming 

disadvantages of datagram  communication. Delivery order requirements (and, indirectly, 

the associated resequencing delays) are imposed by the programmer in keeping with the
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semantics of the distributed application.

We assume the existence of an effective network layer mechanism which assures reliable 

transmission of messages. We do not make any assumptions about transmission delay, 

arrival order, or routing policies. The network support provides the following operations:

X m it d a ta  to  dest

sends a  message, with contents data, from the invoker’s site to the site specified as 

dest. Once the message is passed to the network layer software (i.e., before its delivery 

to  dest), the  invoker continues.

R e c v  buff fro m  src

will result in the delay of the invoker until a message arrives from host src. When 

such a message arrives, the contents of the message are stored in the invoker’s address 

space a t a  location denoted by buff. The invoker then continues.

Reiterating our previous definitions, we use the term arrival to mean that a message has 

been received by the network support software a t the destination host. The term delivery 

refers to  a  message’s reception by the user process, the ultim ate destination of the F-channel.

In summary, reexamining Figure 2.1, we need to implement the protocol layer which 

is shaded. We must provide users with F-channel sen d  and rece ive  operations which 

are faithful to  F-channel message type semantics. Our minimal networking needs are met 

by the X m it  and R e c v  operations—we implement a layer of software which provides F- 

channel s e n d  and rece iv e  operations to user processes on top of this networking support 

[KC91, KCA92]. The guiding principle for the implementation of the sen d  and receive  

primitives is based on Pred(m), the predecessor set of message m, defined in Section 1.2.

F lu s h  C h a n n e l Im p le m e n ta t io n  P o licy :

Message m  cannot be delivered unless all elements of Pred(m) have been delivered.
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2.1 T h e “W aitFor,; T echnique

Consider Pred(m). This predecessor set includes all messages tha t m ust be delivered before 

message m  can become eligible for delivery. To implement an F-channel, we deduce Pred(m) 

a t the receiver by the following method. We augment each message at the transm itter with 

two integers: a unique sequence number and its waitfor value. The waitfor value is the 

highest sequence number in the message’s predecessor set. The two integers effectively 

allow the destination to  deduce the structure of the partial order and, hence, the delivery 

order restrictions imposed on the F-channel by the sender. Suppose th a t F-channel F  

connects a user process at site P{ with a user process a t site Pj. As will be developed later 

in this section, an F-channel sen d  for any of the four message types will ultim ately result 

in the transmission of a message via a network call of the form

X m it <m.type, m.seqno, m.waitfor, m.data> to  Pj,

where m.type is m ’s flush message type, m.seqno is the sequence number of m , in.waitfor is 

m ’s waitfor value, and m.data is the data  to be transm itted.

The basic idea behind the WaitFor technique is the observation th a t different message 

types have different criteria for delivery [KC91, KCA92], How the sender sets the value 

of the waitfor field in a transm itted message and how the receiver interprets tha t value on 

arrival of the message are key in our adherence to the F-channel implementation policy. 

A two-way flush or a forward flush may not be delivered until all messages transm itted 

before it have also been delivered. Therefore, the sender sets m.waitfor to one less than 

m.seqno. The receiver infers tha t all messages with sequence numbers up to  the m.waitfor 

value in a two-way flush or forward flush message must be delivered before m  can be 

delivered. An ordinary message or a backward flush must wait only for the delivery of its 

immediate predecessor in <+p. Therefore, m.waitfor is set by the sender to the sequence 

number of the current backward flush point. (The backward flush point is the last message
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transm itted  th a t flushed the channel in a backward direction, i.e., the last two-way flush or 

backward flush message transm itted.) The receiver understands th a t an ordinary message 

or backward flush can be delivered when the message with sequence number m.waitfor has 

been delivered. The following discussion and pseudo-code show the actual details of the 

W aitFor technique.

The F-channel protocol a t P, must m aintain two integers, in support of F, to determine 

the sequence number and waitfor value of each transm itted message. se q n o (F ) represents 

the sequence number of the last message transm itted over F-channel F. b fp (F ) represents 

the sequence number of the last two-way flush or backward flush transm itted on F. Both 

seq n o (F ) and bfp(.F) take their value from the set { — 1 ,0 ,1 ,.. .}  and are initially —1.

To send an ordinary message over F , the sender implements the following protocol:

S end  (O rd , data) on  F  = 

s e q n o (F ) : =  seq n o (F ) 1;

X m it < O rd ,s e q n o (F ) , b fp (F ), data> to  Py,

Sending a backward flush is implemented as:

S en d  (B F , data) o n  F  = 

s e q n o (F ) :=  se q n o (F ) -(- 1;

X m it < B F ,se q n o (F ),b fp (F ),( /a < a >  to  P j \  

b fp (F )  := seq n o (F );

A forward flush is implemented as:

S en d  (F F , data) on  F  = 

s e q n o (F ) := seq n o (F ) +  1;

X m it < F F , se q n o (F ), seq n o (F ) — 1 ,data>  to  Pj]
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Finally, the two-way flush combines aspects of both the forward and backward flush types:

Send  (2F , data) on  F  =  

se q n o (F )  := seq n o (F ) +  1;

X m it < 2 F , seqno (F ), seq n o (F ) — 1 ,data>  to  P j ; 

b fp (F )  := seq n o (F );

Upon the arrival of a message at Pj ,  the receiving flush channel implementation decides 

if it m ust buffer the message or make it eligible for delivery to  the destination process. 

This decision is based on the interpretation of the waitfor field. A message arrives at the 

F-channel implementation of the receiving host Pj  as a result of:

R ecv  <m.type, m.seqno, m.waitfor, m.data> f ro m  P,.

In order to deduce whether this newly arrived message is deliverable, information about 

messages th a t have previously been delivered must be m aintained. d e lv (P )  is a set con

taining the sequence numbers of all messages which have arrived and have been delivered 

at site P j .  A message must be buffered if it arrives before the message(s) which makes it 

eligible for delivery; the set b u ffe r(P )  contains those messages which are currently buffered 

at the receiver. The time that a message spends in b u ffe r(F ) is the resequencing delay for 

th a t message.

We model the receiver as a daemon process which R ecvs messages from the network, 

interprets them as messages on an F-channel, and deals with them  appropriately. If the 

message arrives “too early” it must be buffered; otherwise it is delivered. The delivery of 

any message, newly arrived or formerly buffered, causes a re-examination of all buffered 

messages to see if any others are eligible for delivery. Below we list the pseudo-code for the 

implem entation at the destination of an F-channel:
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P ro c e s s  F-D aem on(Pj : site, F: FchannellD) 
w h ile  t ru e  do

R e c v  <m.type,m.seqno,m.waitfor,m.data>  fro m  P,-; 
b u ffe r(P )  :=  b u ffe r(F )  U {<m.type, m.seqno, m.waitfor, m.data>}\ 
change :=  t ru e ;  
w h ile  change d o  

change := false; 
fo re a c h  / 1 6 b u ffe r(P )  do 

DealW ith(/t); 
if  p.seqno 6  d e lv (F ) th e n  

c h a n g e t r u e ;
fi

od
o d

o d
e n d  F-Daemon

The real decision concerning whether a message is eligible for delivery takes place in 

the routine DealW itli. P ip e (F )  is a FIFO buffer between the F-Daemon and the user 

process, R , as they stand in a producer/consumer relationship. The D e p o s it routine 

inserts message m , structured as an F-channel message (< type, da ta> ), into P ip e (P )  and 

handles all required synchronization. As far as we are concerned, D epositing  a message 

in P ip e (F )  is the delivery of the message; the destination process must issue a rece iv e  in 

order to C o n su m e  the message from the pipe.

P r o c e d u r e  DealW ith(m  : message) 
if  (m.type =  O r d  V m.type =  B F )  th e n

if  (m .waitfor & d e lv (P )  V m.waitfor =  - 1 )  th e n  
b u f fe r (F )  b u f fe r (P )  — {?n}; 
d e lv (P )  := d e lv (P )  U {m.seqno}] 
D e p o s i t(< ro .  type, m.data>, P ip e (F ) ) ;

fi
else

if  (V6 : 0 < b < m .w aitfor : b e  d e lv (F ))  th e n  
b u f fe r (F )  b u ffe r (P )  — {m}; 
d e lv (P )  := d e lv (P )  U  {m.seqno}]
D e p o s i t  (<m.type, m .da tay , P ip e (F ) ) ;



C H A P T E R  2. IM P L E M E N TA T IO N  OF A FLUSH CHANNEL 16

fi 
fi

en d  DealW ith

The implem entation of the F-channel rece ive  is reduced to removing a message from 

P ip e (F ) . We assume the existence of a routine, C o n su m e, which performs all neces

sary producer/consum er synchronization and returns the message in P ip e (F )  which was 

produced (D ep o sited  into P ip e (F ’)) earlier than any others. Hence,

R e c e iv e  (type, da ta ) f ro m  F  =

C o n s u m e (< t ,d > ,P ip e ( i '1)); 

type, d a ta  :=  t, d;

Note th a t the synchronous nature  of the F-channel rece iv e  operation follows naturally from 

the producer/consum er synchronization implemented on P ip e (F ) . An empty P ip e (F )  

delays a rece ive .

r<FF,6,5>
<2F,11,10>

7<2F,3,2><Ord,1,-1>
:Ord,7,3>

.<Ord,9,8>

"<BF,8,3>
■<Ord,10,8>

Figure 2.2: The Immediate Predecessor Graph in Terms of the Wait For Protocol

Figure 2.2 shows the same covering relation as Figure 1.3, but here each message is 

augmented with the value of the waitfor field. The data  field is omitted. The message 

labeled < O rd ,l,- l>  may be delivered as soon as it is received. It has no predecessors in the 

partial order. The two-way flush < 2 F ,3 ,2 >  cannot be delivered until the first three ordinary 

messages have been delivered. Further, all messages to the right of < 2F ,3 ,2 >  will (explicitly 

or implicitly) not be delivered until < 2 F ,3 ,2 >  has been delivered. The case of <Ord,10,8> 

is interesting—according to  the protocol, as soon as the message with sequence number 8 is
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delivered, <Ord,10,8> may be delivered. But before <BF,8,3> m aybe  delivered, <2F,3,2> 

must be delivered. Clearly the use of the waitfor field in the protocol takes into account 

the transitivity of

2.2 C orrectness o f th e  W aitFor T echnique

Our argument in support of the correctness of the protocol is based upon the relationship 

between structural properties of the partial order and the components of the protocol. We 

ultim ately want to establish th a t the F-channel protocols a t the transm itter and receiver 

cooperate in such a way that the F-channel im plem entation policy is obeyed. An easy, but 

useful, first step in the argument is given by Lemma 1.

L em m a 1 For a two-way flush or a forward flush, m ,

Pred{m) = {in' : 0 < m'.seqno < m .w aitfor}.

P ro o f: All messages transm itted before m  must have sequence numbers lower than m.seqno 

as the sending F-channel software generates a monotonic stream  of sequence numbers with 

an increment of unity. No message transm itted before m may be delivered after m. Hence, 

the predecessor set of m  contains exactly those messages which were transm itted before m  on 

the F-channel. The lemma follows from the fact that the sender sets m.waitfor =  m.seqno— 1 

for both two-way and forward flush messages. 1

The case of ordinary and backward flushes is somewhat more complex. We begin with 

a lemma which establishes how these message types fit within <j+f  by considering their 

immediate predecessors.
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L em m a 2 I f  m  is an ordinary message or a backward flush and there exists a message m ' 

such that m '.seqno = m.waitfor, then

•  m' < f m,

o m 1 must be a two-way flush or a backward flush,

• there is no message m "  ^  m ' for which m." <p m.

P ro o f: On the transmission of m , an ordinary or backward flush message, the sender sets

m.waitfor to the sequence number of the backward flush point. If m ' is the backward flush 

point a t the transmission of rn, then the pair is added to  By definition, the

backward flush point is either empty or a singleton. If it is a singleton, then it is either a 

two-way flush or a backward flush message because forward flush and ordinary messages 

never alter the backward flush point.

Viewing <f  as an acyclic digraph, whenever a message is inserted into the covering relation, 

its in-degree is established, and th a t in-degree is not altered thereafter. Hence, m  will have

in-degree of one, in' <p m, and there can be no m " ^  m ' such that m " <f m. I

Having shown that an ordinary message or a backward flush has a unique predecessor in 

<F, if it has a predecessor at all, we establish exploitable structural properties of the entire 

predecessor set of such a message.

For an ordinary message or backward flush m , define the BFP-chain of m  as the set of 

messages

chain(m) =  {m^, m k - i , . . . ,  m j},

where

m k  <F  WiJk-l <F ■ ■ ■ <F m  1 ^ F  m -

Each element of chain(m) must be a backward or two-way flush. In graphical terms, the 

BFP-chain is the path of backward flushes back to the closest two-way flush, including that 

two-way flush. If there is no such two-way flush, it is the path  of backward flushes back
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to the minimal backward flush in <+F . T hat is, mk is a backward flush only if m has no 

two-way flush predecessor in <+F . The other m ;, 1 <  i < k — 1 are backward flushes. 

//ead(chain(m )), the head of the BFP-chain of m , is mjt, the two-way or backward flush 

which begins the chain of backward flushes leading to  m.

Given this notation, we may be more precise in describing the complete predecessor set 

of ordinary and backward flushes.

L em m a 3 I f  m  is an ordinary message or a backward flush, then m! 6 Pred(m ) if  and 

only if  m ' £ chain(m) U  Pied( //ear/(cliain(m ))).

P ro o f: [If] This part of the proof is straightforward. If m '  6 chain(m ), then clearly 

m ' 6 Pred(m). If m' 6 Pred(Head(chain(?7i))), then the transitiv ity  of «+F allows us to 

conclude th a t m 1 £ Pred(m) since //eac/(chain(m)) m ust be a two-way flush for in' to exist.

[Only If] We proceed by contradiction. That is, suppose that some message m ' £ Pred(m), 

but m ' (f chain(m) U Pred(Head(c\\&m(m))). This means th a t <jf  m ust appear as shown in 

Figure 2.3. m ' must be linked to m  or some element of chain(m) — //ear/(chain(m )), perhaps

BF/2F BF BF Ord/BF
pred(m) 9 --------

m „ n-1 m m

C a se  2

C a se  1 'm' m "

Figure 2.3: Contradiction: A Non-Chained Predecessor of m

through some successor in due to the hypothesis tha t m ' £ Pred(m ). T ha t successor 

is denoted m " in the figure. The first case is th a t m " m , but Lemma 2 disallows the 

possibility of m having more than a  single predecessor. In the second case, w ithout loss of 

generality, assume that m" <F m i 6 chain(m) -  Head(cha.in(m)). But by definition of a
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BFP-chain, m \  m ust be a  backward flush. Again, Lemma 2 disallows this edge in <f - In 

both cases we have reached a  contradiction. I

Having presented the above useful lemmas, we may now prove th a t the WaitFor protocol 

faithfully implements the Flush Channel Implementation Policy.

T h e o re m  1 (S A F E T Y ) Under the WaitFor technique, message m is consumed by a r e 

ce ive  at the destination process only if  Pred(rn) has already been consumed.

P ro o f: In DealW ith, if m  is a two-way flush or forward flush, it will not be D eposited  in 

P ip e (F )  unless all messages with equal or lower sequence numbers have been D eposited . 

By Lemma 1, these messages are precisely the predecessor set of m.

For an incoming backward flush or ordinary message m , Lemma 2 shows tha t m.waitfor is 

the sequence number of the im m ediate predecessor of m. In the definition of chain(m), m i 

is th a t imm ediate predecessor. DealW ith will not allow the delivery of m  until after the 

delivery of m \.  Generalizing this argument to each backward flush on the BFP-chain of m , 

DealW ith will insist the D e p o s its  are correctly ordered. The correctly ordered D ep o sit 

of 7/ead(chain(m)) and of Pred(Head(chain(m))) are handled by the protocol for two-way 

flushes, which was shown to be correct in the first part of this proof. We therefore conclude, 

by Lemma 3, th a t Pred(m) m ust have been delivered before rn is delivered.

As a final part of this argument, it is essential tha t P ip e (F ’) be a FIFO buffer. Thus,

user-invoked rece ives will C o n su m e  messages in the same order in which the protocol 

recognizes th a t they are eligible for delivery and D ep o sits  them in P ip e (F ’). H

Having proved the W aitFor protocol adheres to the Flush Channel Implementation 

Policy, one last step in our argument for correctness is necessary. A liveness proof ensures

th a t something good will eventually happen during execution [AS85, OL82].
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T h e o re m  2 (L IV E N E S S ) Assume that the receiver will, in fact, issue a rece iv e  for each 

send  executed by the sender. Message m, sent on an F-channel implemented as described 

above, will then be received in finite time.

P ro o f: Since the network is assumed to be reliable, a message must arrive at the destination 

host within finite tim e from its transmission, and therefore the F-Daemon will R e c v  the 

message. We proceed by induction on message sequence number. Our basis is the case 

tha t m.seqno =  0. In this case m.waitfor =  —1, and thus m  will be D eposited  in P ip e (F 1) 

without delay. The first rece iv e  will therefore C o n su m e  m  within a  finite time from its 

transmission.

Assume th a t messages with sequence numbers up to and including n  will be C on su m ed  

within finite time. Consider the case where m.seqno — n +  1. By Theorem 1, m  will not be 

D ep o sited  in P ip e (F )  until its predecessor set has been D eposited . Its predecessor set 

will include messages with sequence numbers no greater than n, since m.waitfor < m.seqno, 

m.waitfor is defined to be the highest sequence number in Prcd(m), and m.seqno — n + 1. 

By the inductive hypothesis, we conclude tha t Pred(m) will be D eposited  and C o n su m ed  

in finite time, m  will then be D eposited  by DealWith as invoked by the F-Daemon. The 

FIFO nature of P ip e (F )  then implies that m  will eventually be received . I

2.3 P rev io u s Im p lem en tation  Techniques

Two implem entations for F-channels have appeared in the literature. The following sections 

review these techniques.

2.3.1 T he F lood in g  Protocol

The first im plem entation in the literature [Ahu91] adheres to the F-channel implementa

tion policy by flooding each physical network path between sender and receiver for all but 

ordinary messages. The technique assumes a reliable network with every switch node in
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the network having incoming and outgoing FIFO queues for the incoming and outgoing 

channels connected to  the node (see Figure 2.4). A flush message (tha t is, a message of

type 2F , F F , or B F ) is transm itted  at the sender by placing a copy of the message in all 

outgoing queues tha t lead to  the destination. When a copy of a Hush message arrives at a 

switch node, the node places a copy of the message in all outgoing queues that lead to the 

destination. Thus, a copy of the flush message is transm itted  over every network channel

through some path in the underlying physical network.

A two-way flush is made eligible for delivery a t R  when every incoming FIFO queue has 

the two-way flush a t the head of the  queue. Any incoming queue with the two-way flush 

at the head of the queue is blocked until every incoming queue has the two-way flush at 

the head of the queue. This guarantees th a t the two-way flush will be delivered after every 

message transm itted  before it and before every message transm itted after it.

Likewise, a forward flush is m ade eligible for delivery when a copy of the message is 

at the head of each incoming queue. Thus, a forward flush will be delivered after every

Incoming
FIFO
Queues

Switch
Nodes

ReceiverSender

Queues

Figure 2.4: The Reliable Network in the Flooding Protocol

between sender and receiver. A single copy of an ordinary message is routed from S  to R
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message transm itted before it. In this situation, however, the incoming queues that have 

seen the forward ilush are not blocked—messages transm itted after the forward flush may 

be delivered while the forward flush waits for its delivery.

At R , a backward flush is made eligible for delivery a t the arrival of the first copy of 

the backward flush. As in the forward flush case, the incoming queues are not blocked. 

Handling a backward flush in this manner guarantees delivery of the backward flush before 

every message transm itted after it.

Nodes in the network pass ordinary messages through without any delays, blockages, or 

copying. The only delivery delays imposed on an ordinary message are those imposed by 

the other three message types.

The Flooding Protocol describes selective flooding of all network paths between sender 

and receiver for all but ordinary messages. In comparison, the W aitFor technique requires 

only a single copy of each message; the sequence number and the waitfor value are piggy

backed on the message, thus allowing the receiver to deduce a message’s place in the partial 

order.

2.3.2 T he T hree Counter Technique

In this section, we introduce the second implementation for F-channels available in the 

literature. We term this implementation the Three Counter technique and copy it from its 

original presentation [AVS91]. An F-channel between processes p  and q is denoted cpq.

We presume that for any cPi9, p(q) has an out-buffer (in-buffer) in which 
p  puts (from which q takes) messages to be sent (received) along cPi9. In the 
following, all messages referred to are those sent (received) along cPi9. The 
implementation protocol for cPi9 is as follows:

p  has counters T  and M . T  has a value equal to 1 plus the number of two- 
way-flushes sent so far. M  has a value equal to 1 plus the number of messages 
sent so far after the latest two-way-flush sent.1

M nilially, T  and M  are each 1. A fter sending a two-w ay-f lush  and before sending any o ther messages, 
T  is increm ented by 1 and M  is reinitialized to  1. A fter sending a message o ther than  two-way-f lush  and 
before sending any o ther messages, M  is increm ented by 1.
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p  assigns message m  (to  be sent) an identity < Type,Tm, M m> , where Tm 
and M m are values of T  and M  when m  is sent and Type  is the message type, 
ordinary, two-way-flush, forward-flush, or backward-flush.

q initially assumes th a t it has received a two-way-flush with identity 
Ctuio — way — flu sh ,0 ,0> ; thus the two-way-flush th a t we will refer to  as the 
T ^ h two-way-flush will have identity <  two -  way -  flush, (Tm -  1), *> where * 
can be any value.

q receives m  th a t is a two-way-flush or a, forward-flush from the input buffer 
only after it has received the T f f  two-way-flush and each message m ‘ with M m> 
less than M m (and more than  0) since receiving the T ,‘h two-way-flush.

If before sending m th a t is either an ordinary message or a backward-flush 
and after sending the Tv[k two-way-flush, — has sent one or more backward- 
flushes, then along with m  p sends M ij  where b f  is the latest backward-flush 
sent before m ?

q receives m  th a t is either an ordinary message or a backward-flush from 
the input buffer only after the two-way-flush and the backward-flush with 
identity <backward — flush, Tm, M bj>, if M^j was carried with m [AVS91].

The Three Counter technique resembles the W aitFor technique in that integers convey 

receipt order inform ation. The technique, however, was never formally shown to be correct. 

Therefore, one is skeptical that the protocol actually adheres to the F-channel implementa

tion policy. In the next section, we show th a t the W aitFor technique and the Three Counter 

technique are functionally equivalent. Hence, the correctness of the W aitFor technique also 

serve as a proof of the validity of the Three Counter technique.

Another criticism of the Three Counter technique is tha t it uses only two of the three 

required fields a t the destination process to decide whether a message is ready for delivery— 

each message transm itted  on the F-channel stores a value th a t is never used. Furthermore, 

the Three Counter technique, a t the delivery of a backward flush or ordinary message, 

ensures the previous two-way flush message has been delivered. Checking for the delivery of 

the previous two-way flush is redundant if a previous backward flush, transm itted after the 

two-way flush, exists. Due to transitivity  in the partial order, the previous two-way flush is 

guaranteed delivery if the previous backward flush is delivered.

2T h a t is, ra th e r than  sending ju s t < T y p e , T m ,M ,„ >  w ith m, p send < T y p e , T m , M m , M bj > .  Note tha t 
T i f  nuist be the sam e as Tm.
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2.4  T h ree  C ounter Technique =  W aitFor T echnique

Both the Three Counter technique and the WaitFor technique use integers appended to a 

message to convey delivery order information. We now prove that the two techniques are 

functionally equivalent. T hat is, given an arbitrary sequence of messages transm itted on an 

F-channel and an arb itrary  arrival order, both techniques generate the same delivery order. 

Once the equivalence is shown, the correctness of the W aitFor technique in Section 2.2 

serves as the missing validity proof for the Three Counter technique.

As before, suppose th a t F-channel F  connects a user process a t site P, with a user 

process a t site P j .  To convey receipt order information in the Three Counter technique, 

the sender augments a message with the three fields described in Section 2.3.2. Tm is the 

number of the next two-way flush tha t will be transm itted. Cm is the number of messages 

tha t have been transm itted since the transmission of the last two-way flush. C\,j is zero if no 

backward flush messages have been transm itted since the transmission of the last two-way 

flush; otherwise, Cb/ becomes the value of Cm after the transmission of the backward flush.

The Three Counter technique relies on the structure of the partial order between two- 

way flush messages. We define prev2F , at any given time, as the last two-way flush message 

transm itted  and n th2F  as the nth  two-way flush message transm itted.

L e m m a  4 For a two-way flush or a forward flush message, m,

Pred(m ) =  Pred(prev2F) U  {m ‘ : prev2F.seqno < m'.seqno < m.ivaitfor) .

P ro o f: The predecessor set of a two-way flush or forward flush message, m, contains exactly 

those messages which were transm itted before m on the F-channel (Lemma 1). If no previ

ously transm itted  two-way flush exists, then Pred(prev2F ) is empty and prev2F.seqno =  0. 

If a  previously transm itted two-way flush does exist, then, by Lemma 1,

Pred(prev2F) =  f m ': 0 < m'.seqno < prcv2F.waitfor).
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Since prev2F.seqno = prev2F .waitfor -f 1,

Pred(prev2F) U {m ' : prev2F.seqno < m'.seqno < m.waitfor},

= {m ' : 0 < m'.seqno < m.waitfor}

— Pred(m). M

L em m a 5 For a two-way flush or a forward flush message, m , i f  all messages transmitted 

between the (Tm -  l ) th  two-way flush (inclusive) and the Cmth  message have been delivered 

in the Three Counter technique, then all messages in Pred(m) have been delivered.

P ro o f: Suppose m is  a two-way flush or forward flush message and all messages transm itted 

between the (Tm — l) th  two-way flush (inclusive) and the Cmth message have been delivered. 

By Lemma 4, Pred(m) is all messages transm itted between the (Tm — l ) tk  two-way flush 

(inclusive) and the Cmth  message and the predecessor set of the (Tm — 1 )th  two-way flush. 

To verify Pred(prev2F) is delivered before m, prev2 F  =  (Tm — 1 )th  two-way flush, we 

proceed by induction on the number of two-way flush messages transm itted  before m.

The basis case is th a t no two-way flush messages have been transm itted  before m. Then 

Pred(prev2F) is empty. Assume that n two-way flush have been transm itted  before m 

and all messages in Pred(prev2F), prev2F  =  nth2F , are delivered before m  is deliv

ered. Consider the case where (n -(- 1) two-way flush messages are transm itted  before m: 

prev2F  =  (n  +  l)s<2F. By Lemma 4, Pred((n  -j- l)s<2F) is the predecessor set of the nth  

two-way flush and all messages transm itted between the nth  two-way flush (inclusive) and 

m. It is given tha t the previous two-way flush, the (n + l)s /2 F , has been delivered. In 

the Three Counter technique, this (n -f l).si2F is delivered only if all messages transm it

ted between the nth  two-way flush (inclusive) and the (n  +  l) s t  two-way flush have been 

delivered as well. By the inductive hypothesis, Pred{nth2F ) has been delivered before 

77i, hence Pred(prev2F), where prev2F = (n  +  l)s t2 F , is delivered before m is delivered. 

Since Pred(m) is the set of all previously transm itted messages (Lemma 1), all messages 

transm itted before m  have been delivered. I
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L e m m a  6 Suppose m  is a backward flush or ordinary message transmitted on an F-channel 

implemented with the Three Counter technique. Pred(m) has been delivered i f  the (Tm - 1  )th 

two-way flush is delivered and Cbf = 0  or the (Tm — 1 )th tivo-way flush and the backward 

flush with Cm equal to Cbf have been delivered.

P ro o f: Let m  be a backward flush or ordinary message. If Cbj =  0, then no backward 

flush has been transm itted since prev2F , the (Tm -  l ) t h  two-way flush. Thus, prev2F  is 

the backward flush point at the transmission of m. If Cbf j1 0, then Cbf is the counter of 

the last backward flush transm itted. Again, this message is the backward flush point at the 

transmission of m. In the Three Counter protocol, m  is delivered once the (Tm -  1 )th two- 

way flush is delivered and the message with counter Cbf (unless equal to zero) is delivered. 

In summary, m  is delivered if the backward flush point of m  is delivered. By an identical 

argum ent in Theorem 1, we conclude that Pred(m) is delivered if to ’s backward flush point 

is delivered. I

T h e o re m  3 Given the same partial order and the same arrival order at the destination, 

the WaitFor technique and the Three Counter technique generate the same delivery order.

P ro o f: Suppose two F-cliannels are available. One F-channel implements the WaitFor 

protocol; the other F-channel implements the Three Counter technique. Both F-channel 

implem entations are given the same partial order and the same arrival order. By Lemmas 5 

and 6, to in the Three Counter protocol is made eligible for delivery when Pred(m) is 

delivered. Likewise, in the W aitFor technique and proven in Theorem 1, m  is D eposited  

by DealW ith only if Pred(m) has been D eposited . Therefore, the eligibility of a message 

is based on the same factors in both protocols. I

Now th a t the equivalence has been shown, we display the Three Counter technique in a 

m anner similar to  the presentation of the WaitFor technique. The sen d  operation for this 

new protocol produces a network call of the form

X m it <typem , T m , C m , C b f , datam > to  P j ,
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where T m , C m , and Cbj  are the three integers tha t convey delivery order information to Pj  

and datam is the data  to be transm itted.

The F-channel implementation at site Pi  must m aintain three integers, in support of F ,  

to determine T m , C m , and Ct>j. We represent these integers as T (F),  C( F) ,  and C B F (F ). 

Initially, the values of T (F),  C(.F), and C B F (F )  are 1, 1, and 0 respectively.

To send an ordinary message over F ,  the sending F-channel in the Three Counter 

technique implements the following protocol:

S en d  (O rd , data) on  F  =

X m it < O rd , T (F) ,  C{F) ,  C B F (F ), data> to  Pj-,

C (F ) := C( F)  +  1;

Sending a  backward flush message is implemented as:

S end  (B F , data) on  F  =

X m it < B F , T (F ) , C (F),  C B F (F ), data>  to  P ,;

C B F (F )  := C (F );

C (F) := C ( F )  +  1;

A forward flush is implemented as:

S en d  (F F , data) o n  F  =

X m it < F F , T ( F ) ,  C( F) ,  C B F (F),  daia>  to  P j ;

C( F)  :=  C( F)  + I;

Finally, the two-way flush is implemented as:

Send  (2F , data) on  F  =

X m it < 2 F , T (F ) , C (F ), C B F (F ), data>  to  Pj-,

T (F ) := T ( F )  + 1;

C (F ) :=  1;

C B F (F )  := 0 ;
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Upon the arrival of a message at P j ,  the receiving F-channel decides if it must buffer 

the message or make it eligible for delivery to  the destination process. A message arrives 

a t the receiving host P j  as a result of:

R e c v  < typem, Tm, Cm , Cbf, datam> fro m  P,\

The receiver m aintains three d ata  structures in order to deduce the delivery order. la s t2 F (P )  

is an integer, initially zero, that represents the number of previous two-way flush messages 

tha t have been delivered. c o u n te r (P )  is a set, initially empty, that contains the Cin fields 

of all the messages th a t have been delivered since the delivery of the last two-way flush. 

b u ffe r(P ) , as in the W aitFor technique, is a set that contains those messages which are 

currently not eligible for delivery. We model the receiver in the Three Counter technique, 

similar to the W aitFor technique, as a daemon process which receives messages, interprets 

them , and deals with them appropriately.

P ro c e s s  F-Daemon(P,- : site, F : FchannellD) 
w h ile  t r u e  do

R e c v  <iypem, Tm , Cm, Cbf, datam > fro m  P,-; 
b u ffe r(P )  :=  b u ffe r(P )  U {< typem, Tm, Cm, Cbf , dalam>}\ 
change := tru e ; 
w h ile  change do  

change := false; 
fo reach  p G b u ffe r(P )  do 

DealWithQi); 
if  p  £  b u ffe r(P )  th e n  

change := tru e ;
fi

od
od

od
e n d  F-Daem on

As in the W aitFor technique, the real decision making takes place in DealWith.
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P ro c e d u re  DealW ith(m : message) 
i f  (typem =  O rd  V typem =  B F ) th e n

if  ( ( la s t2 F (F )  =  T m  — 1 )  A  ( C i /  =  O V  C i /  6  c o u n te r (F )) )  th e n  
buffer(jF) := b u ffe r(F ) -  {m}; 
c o u n te r (F )  :=  c o u n te r (F )  U {Cm};
D e p o s it (< typem , datam>, P ip e (F )) ;

fi
e lse

if  ((Iast2F(.F) =  Tm -  1) A (V t: 1 <  b < Cm : b 6 counter(F))) then 
buffer(F) := buffer(F) — { m } \  
if  (t y p e m  = 2F) then 

la s t2 F (F )  := T m; 
counter(F) := {}; 

else
c o u n te r ( /1) := c o u n te r (F )  U {Cm};

fi
D e p o s it ( <typem, datam >, P ip e (F )) ;

fi
fi

en d  DealWith

Figure 2.5 shows the same immediate predecessor graph as Figure 2.2, but here each 

message is augmented with the fields required in the Three Counter technique. 

<Ord.1 .1 .0> v  y<Ord,2(1,0>
\

<Ord,1.2,0> -*r<2F,1,4,0> _<Ord,2,2,0>7
<FF,2,3,0>

<2F,2.8.5>
<Ord,2,4,0>

<Ord,1,3,0> ' ^  <Ord,2,6,5>

-<Ord,2,7,5> 1

Figure 2.5: The Immediate Predecessor Graph in Terms of The Three Counter Technique

2.5 F low  C ontrol Issues

Before a prototype of the WaitFor protocol can be practically implemented, significant 

issues related to buffer capacity and sequence numbers must be solved. We deal with these 

issues in this section.



CH APTE R 2. IMPLEMENTATIO N OF A  FLUSH CHANNEL 31

2.5.1 B ounding Buffers

In most communication protocols, both the sending and receiving processes require message 

buffering capabilities. The sender’s buffer stores each message until an acknowledgement 

(ACK), explicit or implicit, is returned. The receiver’s buffer stores the messages tha t have 

arrived but are not ready for delivery. A buffered message at a receiver is attributed to 

either an arrival order inconsistent with the required delivery order or, simply, a  receiving 

user process which is slow to rece iv e  messages. One issue considered here is the problem 

encountered due to  bounded buffer space a t both the sender and receiver. We assume, in 

the following discussion, that no messages are lost in transit, th a t buffer overflow at the 

receiver is the only cause for retransmission, and tha t a  message is buffered at the sender 

until it is explicitly ACKed.

The difference in size between the sender’s and receiver’s buffers produces various effects. 

If the receiver’s buffer is larger than the sender’s buffer, then the excess buffer space a t the 

destination process will never be used. If the receiver’s buffer is equal in size to  the sender’s 

buffer, then buffer space is not wasted, and space is always available for arriving messages. 

In this case, retransmission of messages will never be required as there will be no buffer 

overflow a t the receiver.

Retransmission of messages, however, might be required when the receiver’s buffer is 

smaller than the sender’s buffer. For a FIFO channel, it is obvious which message to retrans

m it upon a  message’s arrival a t a full receiving buffer. The delivery order for a FIFO channel 

is identical to the transmission order; therefore, the sequence number at the receiver repre

senting the last message transm itted is the message selected to be retransm itted. Selecting 

to retransm it the last message transm itted delays the delivery of the fewest messages—all 

messages in the buffer must be received before this last message.

The choice of which message to retransm it at a full receiving buffer in an F-channel 

implementation is not as obvious. Upon buffer overflow, the receiver must decide upon a
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message to discard (thereby causing a retransmission) that will delay the delivery of the 

fewest messages. An F-channel implementation could use one of many different retrans

mission strategies: the first or last message transm itted, the type of flush message, the 

smallest message in the buffer, a random choice, etc. Of course, th reats to  liveness must be 

considered when devising a retransmission scheme.

T h e o re m  4 A ny retransmission strategy that handles a fu ll receiving buffer in an F-channel 

implementation cannot be optimal at all times.

P ro o f: An optimal retransmission strategy for a full buffer would always discard the mes

sage which yields the fewest (future) retransmissions. As the receiver has no knowledge of 

the full partial ordering on messages being transm itted or the order in which these mes

sages will arrive, the best retransmission selection cannot always be made. For example, 

Figure 2.6 is an immediate predecessor graph that illustrates the possible impact of the 

receiving F-channel software not having perfect (future) knowledge. Suppose the sender’s

<Ord,1> <FF,2>

<2F,6><Ord,4>

<BF,3>

<Ord,5>

Figure 2.6: The Retransmission Problem

buffer is of size seven, thereby allowing the transmission of all seven messages in succession, 

while the receiving buffer is of size one. If messages with sequence numbers 1 and 3 are the 

first two arrivals, the optimal choice of which message to discard cannot be made. If the 

arrival order is 4 5 0 2 6 following the arrival of 1 and 3, the system would be best served 

by retransm itting message with sequence number 3. On the other hand, an arrival order of 

0 4 5 2 6 produces fewer retransmissions if message 1 is discarded. Since a receiver will not 

have knowledge of the future arrival order, no retransmission strategy can always make the 

optim al selection for retransmission. I
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Theorem 4 illustrates the difficulties associated with any retransmission strategy. We 

do not have a general solution for this problem. Instead we assume, throughout this thesis, 

the sizes of the sender’s and receiver’s bufTers are equivalent. T hat is, a t the establishment 

of an F-channel, we presuppose that a negotiation of an equivalent buffer size takes place 

between the sender and receiver. This assumption will forgo the necessity of deciding which 

message to discard a t a full buffer.

2 .5 .2  B o u n d in g  S e q u e n c e  N u m b e r s

Bounding sequence numbers is trivial for any FIFO channel implementation, but not obvious 

for all F-channel implementations. The total delivery order of messages and the ACKing 

of each delivered message by the network support reveals a simple technique for bounding 

sequence numbers in a FIFO channel. The number of values required to distinguish each 

message in the channel is equivalent to the size of the sending buffer. As each message is 

ACKed, the sequence number of the delivered message is available for reuse.

In an F-channel implementation, bounding sequence numbers is not as simple. The 

difficulties appear when the sequence number of an F-channel message has a longer lifetime 

than the message itself. For example, in the flooding protocol of Section 2.3.1, sequence 

numbers only identify the message en route; thus a sequence number is available for reuse 

once the sender receives an ACK for the message’s receipt. On the other hand, in the 

WaitFor protocol of Section 2.1, the waitfor field is the sequence number of a message 

previously transm itted. Therefore, the waitfor field may extend the lifetime of a sequence 

number. T hat is, we cannot conclude tha t the delivery of a message with sequence number 

x finalizes all references to x.

T h e o re m  5 A n F-channel that uses the WaitFor protocol cannot use the policy to bound 

sequence numbers employed in FIFO channels.

P ro o f: In FIFO channels, a sequence number can be reused at the sender once the corre-
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sponding message lias been ACKed by the receiver. In F-channel communication, violations 

could occur in the delivery order if the reuse of a sequence number was based only on the 

ACK of the corresponding message. To illustrate the problem, consider the delivery of a 

message in the W aitFor technique; the delivery is based on the type of message and its wait

fo r  value. Now consider the immediate predecessor graph, augmented with the waitfor field, 

in Figure 2.7. Suppose the sender’s buffer is of size two. Upon the ACK of <2F,0,-1> and 

< O rd ,l,0> , the sender would reuse the sequence numbers by transm itting <BF,0,0> and 

the second < O rd ,l,0> . The waitfor fields in both of these messages are zero; however, the 

zeros do not refer to the same message. The receiver has no means to distinguish between 

the two zeros, and thus a message (e.g. the second <Ord,l>0>) may be delivered before it 

is eligible. This would violate the F-channel implementation policy. I

_  p_<Ord.1,0>
<2F.0,-1> <Ord,1,0>

Figure 2.7: The Bounding Sequence Number Problem

Although, in the W aitFor protocol, a sequence number cannot be reused upon the ACK 

of the corresponding message, some numbers become available a t an ACK of a two-way 

flush message due to the semantics of a two-way flush message.

T h e o re m  0 In  the WaitFor technique, i f  a message m is transmitted after a two-way flush 

message m ', then

m.waitfor > m'.seqno

P ro o f: Suppose message m  is transm itted after m \  a two-way flush message. Based 

on the semantics of a two-way flush message and the definition of a  predecessor set, 

m ' 6 Pred(m ). Lemma 1 proved tha t all messages transm itted before m ' will have se

quence numbers lower than m'.seqno. Since m.waitfor is the highest sequence number in 

Pred(m ), m.waitfor > m'.seqno. I
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A solution to  handle the fixed-width representation of sequence numbers in the WaitFor 

protocol is revealed by Theorem G. Once an ACK of a two-way flush is received, all sequence 

numbers preceding the sequence number of the two-way flush can be reused. The following 

section modifies the W aitFor technique to handle fixed-width representation of sequence 

numbers. As will be shown, other flow control issues are a direct eflect of bounding sequence 

numbers. To implement this protocol, the sending F-channel maintains the sequence number 

of the last two-way flush ACKed. At the receipt of an ACK for another two-way flush, the 

sender can reuse sequence numbers in the range [previous 2F  sequence number, current 2F 

sequence number).

If the system transm its a group of messages with no two-way flush messages and the 

number of messages in the group is larger than the modulus used to bound sequence num

bers, then the system must wait until every message is ACKed before reusing any number. 

T ha t is, the system transm its a dummy two-way flush on the F-channel. Upon the delivery 

of the dumm y two-way flush, the receiver resets all its variables to their initial values and 

transm its an ACK for the dummy message. Upon the receipt of this ACK, the sender resets 

all its variables as well; all sequence numbers then become available. W ithout synchro

nizing the system in this manner, bounding sequence numbers could violate the F-channel 

im plem entation policy (recall Theorem 5) or become deadlocked.

The use of a  dummy two-way flush would not be required if the modulus for sequence 

numbers was based on additional knowledge: the maximum number of messages transm it

ted between any two consecutive two-way flush messages. Given this value, Theorem 7 

illustrates a bound for sequence numbers.
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T h e o re m  7 Assume every F-channel application transmits a two-way flush as the first and 

last message of each application. In addition, assume m ax is the maximum number o f mes

sages between any two consecutive two-way flush messages and k is the size o f the sender’s 

(and receiver’s) buffer. The maximum range of sequence numbers required to distinguish 

messages in an F-channel implementation is then [0, m ax  -f k).

P ro o f: Figure 2.8 illustrates an immediate predecessor graph that uses all the sequence 

numbers in the allowed range: [0, m ax  +  k — 1). To verify no more numbers are required 

to  distinguish the messages, we consider the situation of the F-channel preceding and fol

lowing the transmission of the next message (augmented with sequence number 0). This 

example covers the worst possible scenario by having m ax  messages transm itted between 

two consecutive two-way flush messages.

Consider the two consecutive two-way flush messages shown in the figure. If the sender 

transm its the message with sequence number m ax  +  k — 1, we prove that at most one

unACKed message can exist between the two consecutive two-way flush messages. W ithout

loss of generality, assume <O rd,l,0>  is an unACKed message. No message with sequence 

number greater than m ax  can then be delivered. Since all messages with sequence numbers 

between the range [max +  I, m ax  +  k  — 1] are unACKed, only one space in the sender’s 

buffer is left for the unACKed < 0 r d , l , 0 >  message. Once < O r d , l , 0 >  is ACKed, the sending 

^ ^ , < O r d , 1 , 0 >  < O r d ,m a x + 2 , m a x + 1 >

<2F,0,-1> —-------*-<2F ,m ax+1,m ax> ‘̂ —> - —

— < O r d ,m a x ,y >  ^  < O r d ,m a x + k - 1 , m a x + 1 >

Figure 2.8: The Largest Sequence Number

F-channel software transm its the next message as sequence number 0. By Theorem 6, no 

message currently in the sending buffer can refer to a message with sequence number less 

than (m ax  -f 1); reusing sequence number 0 will not, violate the F-channel implementation 

policy. Hence, a sufficient modulus for sequence numbers in an F-channel is max  +  k. I
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Theorem 7 provides a  bound for sequence numbers given the value m ax. Obviously, 

knowledge of m ax  is not always possible since prior knowledge of all messages tha t will be 

transm itted  on the F-channel is unlikely. Therefore, an implem entation of an F-channel 

with fixed-width representation for sequence numbers should be based only on the two-way 

flush effect of Theorem 6. In the following section, we modify the W aitFor protocol to 

include all the bounding considerations discussed in this section.

2.6 T h e B ou n d ed  W aitFor T echnique

Suppose every F-channel application implicitly transm its a two-way flush message as the 

first and last message of each application. In addition, suppose num  is the sequence number 

modulus used in the F-channel implementation. We assume num  > 1; otherwise a FIFO 

delivery order occurs. One effect of bounded sequence numbers is that the size of the 

sending and receiving buffers becomes bounded as well—the size need not be larger than 

initii. Buffer sizes of num , however, will generally be too large for the system. Therefore, 

in this protocol, we continue to assume the buffer size at both the sender and receiver is k.

Following the original protocol, the sending F-channel software sets the value of the 

m.waitfor field, and the receiving F-channel software interprets that value in order to adhere 

to the F-channel im plem entation policy. To support the F-channel a t site P,, the sender 

continues to m aintain the two integers se q n o (P ) and b fp (F ). In our bounded WaitFor 

technique, however, both se q n o (P ) and b fp (F ) are initially 0 and take on values from 

the range { 0 ,1 , . . . ,  nu m  — 1}. Another integer, maintained by the sender, is necessary 

to represent the last two-way flush message ACKed by the receiver: 2F ack (F ). Initially, 

2F ack(F ) is 0. The sender’s buffer, of maximum size k, is called sb u ffe r(F ) . A message 

is removed from sb u ffe r(F )  once an ACK is received. We assume a timing mechanism 

retransm its a message if its ACK is not received within a given time. These messages are 

marked as retransmitted', we assume the destination process checks for previous delivery.
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In the original protocol, messages are transm itted unconditionally. In the bounded pro

tocol, a message cannot be transm itted unless space exists in the sender's buffer and a 

sequence number is available. Therefore, all transmissions are conditioned on the following 

criteria:

T ra n sm iss io n  C o n d itio n :

Isbu ffe^F )! < k A (seq n o (F ) +  1) m o d  num  ^  2F ack(F ).

If the transmission condition is true, then the sender can transm it a  message. If, however, 

the transmission condition is false, then the sender is delayed. We modify 2 F ack (F ) in two 

situations. First, when the sender receives an ACK of a two-way flush message, 2Fack(F ) 

is set to the sequence number of the ACKed two-way flush. Deadlock would occur, however, 

if the sender received ACKs on every message in the buffer and no two-way flush message 

was transm itted in the last num  messages. The second situation tha t modifies 2F ack(F ) 

covers this circumstance. If the sender’s buffer is empty and the transmission condition 

continues to fail, the sender transm its a dummy two-way flush. The delivery of this dummy 

message resets all the variables at the receiver. Its corresponding ACK, in the same vein, 

resets all the variables a t the sender. Updating the system in this m anner re-initializes the 

system. As no messages are in transit, re-initialization under these conditions has no effect 

on the correctness of the protocol.

The following pseudo-code is the bounded F-channel implem entation for the sender. We 

model the sender as a daemon process that either receives ACKs or transm its messages. 

Two binary flags in the process are assumed to be m aintained outside the daemon. A C K  

is m aintained by the network; when A C K  is true, an ACK is available to be received. 

M S G (m ) is maintained by software between the user application program and the daemon; 

when M S G (m ) is true, the message <m.type, m.data> is ready to be transm itted.
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P ro c e ss  FS-Daem on(Pj : site, F :  FcliannellD) 
w h ile  t r u e  do

if  (|sbufF er(F )| =  k V A C K ) th e n
R e c v  < O rd , ack.seqno, — 1, d>> fro m  P j ; 

fo reach  f t  £ sb u ffe r(F )  do  
i f ( /t .seqno — ack.seqno) th e n  

m.type, m.data : = p.type, p.data; 
m.seqno, in.wait/or := /i.seqno, fi.waitfor;

fi
od
sb u ffe r(F )  := s b u fle r(F )  — {?n}; 
i f  (m.seqno =  —1) th e n  

seq n o (F ) 0; 
b fp (F ) := 0;
2F ack(F ) := 0; 

e lse
if ( m. type =  2F ) th e n  

2F ack(F ) :=  m.seqno;
fi

fi
e lse

i f  ((seq n o (F ) +  1) mod num  ^  2F ack(F )) th e n  
if  M S G (m ) th e n  

se q n o (F ) :=  (seq n o (F ) +  1) mod num; 
m.seqno seq n o (F ); 
if  ( in.type =  O rd  V in.type =  B F ) th e n  

rn.wait.for := b fp (F ) 
e lse

m.waitfor := (seq n o (F ) — 1 +  num ) mod num;
fi
X m it <m.type, m.seqno, m.waitfor, m.data> to  P j  
i f  ( ni.type = B F  V m.type =  2F) th e n  

b fp (F )  :=  seq n o (F );
fi
sb u ffe r(F )  := sb u ffe r(F )  U {m};

fi
e lse

if  |sb u ffe r(F ) | = 0 th e n  
X m it < 2 F , - 1 ,  - 1 ,  $ >  to  P j ;  

sb u fie r(F ’) :=  sbufFer(F) U {< 2F , - 1 ,  - 1 ,  $> };
fi

fi
fi

od
e n d  FS-Daeinon
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To deduce whether a  newly arrived message is available for delivery in the bounded 

protocol, the receiver m aintains slight variations of the sets d e lv (F )  and rbuffer(jF ), and a 

new integer, 2 F d e Iv (I‘'). d e lv ( i7’) is a set containing the sequence numbers of all messages 

which have been delivered a t site Pj, since the delivery of the last two-way flush message. 

The set initially contains the element 0 (representing the implicit initial two-way flush 

transmission), the maximum number of elements is num , and the set is reset to one element 

whenever a two-way flush is delivered (actual or dummy). rbu fF er(i?), consistent with the 

original implementation, begins as an empty set. As mentioned, the size of this bufler 

is bounded by k. 2 F d e lv (J ')  is the sequence number representing the last two-way flush 

message tha t has been delivered. Initially, 2 F d e lv (F ) is 0.

The daemon that implements the bounded receiving F-channel software requires minimal 

changes. In fact, the only changes concern the explicit command to  ACK a message and 

the receipt of the dummy two-way flush.

P ro c e s s  FR-Daemon(P,- : site, F : FchannellD) 
w h ile  t r u e  do

R e c v  <m.type, m.seqno, m.waitfor, m.data>  fro m
rb u ffe r(F )  :=  rb u ffe r(F )  U {<m.type, m.seqno, m.waitfor, m.data> };
change := tru e ;
i f  m.seqno = — 1 th e n

rb u ffe r(F )  := rb u ffe r(F )  — {m}; 
d e lv (F )  := {0} ;
2 F d e lv (F ) :=  0; 
change :=  false;
X m it < O rd , m .seqno,- 1 ,  4>> to  Pt ;

fi
w h ile  change do 

change : =  false; 
fo reach  fi G rbufifer(F ) do  

BDealWith(/z); 
if  p.seqno  G d e lv (F ) th e n  

change := t ru e ;
X m it < O rd , fi.seqno, — 1 ,4>> to  P{\

fi
od

od
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od
e n d  FR-Daeinon

The main modification to DealWitli, shown below as BDealW ith, is the condition to 

determine the eligibility to deliver a  two-way flush or forward flush message. Instead of 

verifying all messages previously transm itted have been delivered, BDealW ith ensures all 

messages since the delivery of the last two-way flush (actual or dummy) have been delivered. 

Once the condition succeeds, the two-way flush or forward flush message is delivered. If the 

message is a two-way flush, then 2 F d e lv (F ) is updated.

P ro c e d u re  BDealWith(77r : message) 
if  ( m.type = O rd  V  m.type =  B F ) th e n  

if  ( m.waitfor £ d e lv (F ))  th e n
rb u ffe r(F )  := rb u ffe r(F )  — {m}; 
delv (F  ) :=  d e lv (F )  U {m.seqno};
D e p o s it (<m.type, m.data>, P ip e (F )) ;

fi
e lse

if  ((Vft : 0 < b < {{m.waitfor — 2Fdelv(7r ) +  num )  m od  num )) : 
( (2 F d e lv (F ) +  6) m o d  num ) €  d e lv (F ))  th e n  

rbufTer(F) := rbufTer(.F) — {m}; 
i f  {m.type = 2F) th e n  

d e lv (F ) := {m.seqno};
2 F d e lv (J 1) :=  m.seqno’, 

e lse
delv(jF) := d e lv (F ) U {m.seqno}’,

fi
D e p o s it {<m.type, m.data>, P ip e ( i i’));

fi
fi

en d  BDealWith
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2.7 C orrectn ess o f  th e  B ou n d ed  W aitFor T echnique

In order to  prove the correctness of the bounded W aitFor technique, we find it convenient 

to define a  new relation IZ/?. If x and y are two messages transm itted over F-channel F, 

then a: \Zf  V if an(i only if x  is transm itted before y. Clearly, C f  is a total order, the 

transmission order of messages on F.

L e m m a  7 For a two-way flash or a forward flush message, m , in the bounded WaitFor 

protocol,

Pred(m ) = Pied(prev2F )  U {7m ei;2F} U { 777/  : 777’e v 2 F  C /t 7?i'}.

P ro o f: By definition of a two-way flush or forward flush message, in, the predecessor set 

of m  contains exactly those messages which were transm itted before in. T hat is,

Pred(m) =  {771' :  in' \Zf  ”*}■

Since the bounded W aitFor protocol implicitly transm its a two-way flush message as the 

first message of each application, prev2F  will never be empty. If p7-ei;2F is the implicit 

two-way flush message, then Pred{prev2F) is empty. Otherwise,

Pred(prev2F ) =  { i n ': m ' C.F prev2F }.

In either case,

Pred{m ) =  Pi-ed(prev2F) U  {77ren2F} U  {in' : prev2F  C f  77*'} |

For an ordinary message or backward flush in, recall the BFP-chain of m  as the set of 

messages

chain(m) =  {m*, m t - i , . . . ,  m i}.
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The BFP-chain is the path  of backward flushes back to the closest two-way flush, Including 

that two-way flush. In the bounded W aitFor protocol, is guaranteed to be a two-way 

flush message due to the implicit transmission of the initial two-way flush message. We 

may now proceed with the safety theorem for the bounded W aitFor technique. This proof 

uses Lemma 3 from the correctness proof of the unbounded W aitFor protocol; however, the 

lemma continues to be valid.

T h e o re m  8 (S A F E T Y ) Under the bounded WaitFor technique, message m  is consumed 

by a rec e iv e  at the destination process only if Pred(m) has already been consumed.

P ro o f: Consider the delivery of message m, a  two-way flush or a forward flush message. 

The condition to deliver m in BDealW ith is

V6 : 0 < b < ((m .waitfor — 2 F d e lv (F )  +  n u m ) m o d  num ) : 

( (2 F d e lv (F ) -f b) m o d  n u m ) £ d e lv (F )

By definition, num  is the sequence number modulus. 2 F d e lv (F )  is the sequence num

ber representing the last two-way flush message that has been delivered. de lv (F ’) is a 

set containing the sequence numbers of all messages which have been delivered, since the 

delivery of the last two-way flush message, m.waitfor is one less (modulo num )  than the 

sequence number of m. Therefore, the condition states tha t m  is D eposited  in P ip e (F )  if 

all messages transm itted between the previous two-way flush (inclusive) and m have been 

D eposited . By Lemma 7, Pred(m) includes these messages and the predecessor set of the 

previously transm itted two-way flush message. To verify Pred(prev2F) is D eposited  be

fore m , we refer to a previous lemma. The proof here is analogous to the proof in Lemma 5 

and, therefore, omitted.

For an incoming backward flush or ordinary message ?n, the condition to deliver m  in the 

bounded W aitFor technique is based on the delivery of m.waitfor. In FS-Daemon, m.waitfor 

is the sequence number of m 's backward flush point. In the definition of chain(m), mi is
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m 's  backward flush point. BDealW ith will not allow the delivery of m until after the 

delivery of in i. Generalizing this argument to each backward flush on the BFP-chain of m, 

BDealW ith will insist the D ep o sits  are correctly ordered. The correctly ordered D ep o sit 

of 7/e«rf( chain (in)) and of Fred( IIead(clia in(in))) are handled by the protocol for two-way 

flushes, which was shown to be correct in the first part of this proof. We therefore conclude, 

by Lemma 3, tha t Pred(m ) must ha.ve been delivered before in is delivered.

As a final part of this argument, P ip e ( i r), in the bounded W aitFor technique, must be a 

FIFO buffer. Thus, rece ives will C o n su m e  messages in the same order in which BDeal

W ith recognizes they are eligible for delivery and D ep o s its  then in P ipe(jF ). I

T h e o re m  9 (L IV E N E S S ) Assume that ike receiver will, in fact, issue a rece iv e  for 

each sen d  executed by the sender. Message in, sent on the bounded WaitFor protocol o f an 

F-channel, will be received in finite time.

P ro o f: For the first part of the proof, let us assume that each message transm itted by a 

sen d  operation is placed on the network. Since the system is assumed to be reliable, each 

message will arrive at the destination within finite time from its transmission and, therefore, 

the FR-Daemon will R ecv  the message in finite time.

We proceed by induction on the number of messages transm itted in the system. The basis 

case is transm itting m , the first message. This message, for any message type, will have 

m.waitfor set to 0. Since d e lv (F ) initially contains 0, either of the delivery conditions will 

be satisfied in BDealW ith and, therefore, m  will be D ep o sited  in P ip e (F )  without delay. 

A rece iv e  will then C o n su m e  m  within finite time.

Assume that the first n messages transm itted in the system are C on su m ed  within finite 

time. Consider the case of in, the (?i +  l ) s t  message transm itted in the system. By Theo

rem 8, in will not be D eposited  in P ip e (F ')  until its predecessor set has been D eposited . 

We need to show, however, tha t the receiver will maintain information so m  can verify its 

predecessor set has been D eposited .
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Suppose m is a  two-way flush or forward flush message, m.waitfor will then be one less 

than m.seqno (modulo num ). The delivery condition for m requires all messages transm it

ted since the last two-way flush, including that two-way flush, be a member of de lv (F ). 

By the inductive hypothesis, we know these messages will be C o n su m ed  in finite time. 

W ithout regards to re-initialization, delv(7r) maintains the sequence numbers of all mes

sages delivered since the delivery of the last two-way flush. We, therefore, conclude m  will 

be D ep o sited  and C o n su m ed  in finite time as well.

Suppose m  is a  backward flush or ordinary message. Recall tha t m.waitfor is the sequence 

number of the backward flush point at the transmission of m. Since the backward flush point 

will be a message in the first n  messages transm itted, we know, by the inductive hypothesis, 

it will be C o n su m ed  within finite time. The set d e lv (F ) contains the sequence numbers of 

all messages th a t have been delivered since the delivery of the last two-way flush message. 

Furtherm ore, Lemma 2 proved no message will be “between” a backward flush point and a 

backward flush or ordinary message. Therefore, m.waitfor, referring to  a two-way flush or 

backward flush message, will be an element of d e lv (/ '1) in finite time and will not have the 

possibility of removal until after the delivery of rn.

As a  final part of this argum ent, it is essential that de lv (F ’) is re-initialized only when the 

system is empty of messages. The sender transm its a  dummy two-way flush message only 

when the system is empty and the receiver re initializes its variables only when the dummy 

two-way flush is delivered. Hence, d e lv ( ir') will contain the messages required to satisfy the 

delivery condition for each transm itted message in finite time.

In the first part of the proof, we assumed each message transm itted by a se n d  operation 

is placed on the network. At the sender of the bounded W aitFor technique, however, a 

message will not be placed on the channel by a X m it operation unless the transmission 

condition is verified:

|sbuffer(f<’)| < k A (seq n o (F ) +  1) m od  num  2Fack(I'').
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We now show that this condition, when false, will become true in finite time. In the first 

part of the proof, we verified tha t if a message is transm itted on the channel, then it will be 

received in finite time. At each delivery of a  message m , the receiver transm its an ACK for 

m to the sender. The sender will receive an ACK for each message it transm itted in finite 

time and will thus remove messages from sb u ffe r(F )  in finite time. For the transmission 

condition to be made true in finite time, we must also show that 2F ack(F ) is modified in 

finite time. If a two-way flush message is transm itted, 2Fack(F1) is updated. If, however, 

no two-way flush message is transm itted in num  messages, then the system will empty itself 

of all messages and the transmission condition will continue to be false. In this scenario, 

the sender transm its a dummy two-way flush, thus re-initializing all the variables. Since 

we assume num. > 1 and the initial values of se q n o (F ) and 2F ack (F ) are both 0, the 

transmission condition will become verified and each message from a se n d  operation will 

be placed on the network by a X m it operation in finite time.

Lastly, both sides of the F-channel exhibit liveness as long as messages are initially placed 

on the network. T hat is, in the receiver’s argument, we assumed each message to be 

transm itted is placed on the network. In the sender’s proof, we based the argument on the 

assumption th a t the sender receives ACKs for previously transm itted messages. Since the 

transmission condition will not delay the transmission of the first k  messages, the sender 

will begin placing messages on the network and the receiver will transm it ACKs for these 

messages in finite time. Therefore, messages sent on the bounded W aitFor technique will 

be transm itted and received in finite time. I
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2.8 P erform ance C onsiderations
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2 .8 .1  T h e  S y s t e m  M o d e l

An F-channel offers the implementor of a distributed application the flexibility of specifying 

a message delivery order apropos of the demands of the application. This stands in marked 

contrast to  the rigid FIFO delivery order imposed upon the application by virtual circuit 

communication. Intuitively, the more restrictive the delivery order, the less concurrency 

available to  exploit in message transmission over multiple links. In the next two sections, 

we investigate the gain in effective network bandwidth when ordinary messages are batched 

together by a  flush message and are transm itted over a multi-link F-channel, as compared 

to messages transm itted  over a multi-link virtual circuit. We assume the implementation of 

the F-channel is similar in spirit to that of the W aitFor technique; that is, one copy of each 

message is transm itted across the F-channel. First, simulation results in Section 2.9 show 

that the relaxed delivery order restrictions of the F-channel may reduce the mean delivery 

time of a  batch by a factor of three or four—this difference may be critical in meeting real

time requirements of the application. Second, in Section 2.10, analytical results are derived 

to validate the simulation results.

Link 1

Link 2

Link 3

\ Link N

Figure 2.9: Performance System Model

Consider the system model shown in Figure 2.9. Regardless of the communication 

paradigm , the figure illustrates two communicating processes connected by N  separate and 

independent links. Messages to be transm itted are generated by the sender (denoted by S ).
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Upon generation, if all N  links are busy, the message is placed in the FIFO transmission 

queue. If, on the other hand, a transmission link is available, the message is immediately 

transm itted. In this model, we assume that the transmission queue is unbounded. We 

also assume the existence of an underlying network layer mechanism which assures reliable 

transmission of messages.

As stated, messages may arrive a t the receiver (denoted by R ) in an unpredictable order. 

The ultim ate delivery of a  message, as discussed in the beginning of this chapter, may be 

delayed due to two reasons. F irst, for any communication paradigm (FIFO, unordered, and 

flush), the receiver may not have issued a rece iv e  command. Second, for both FIFO and 

flush communication paradigms, a message cannot be delivered until all ordering restrictions 

are satisfied, i.e., the resequencing delay. This second delay occurs while the message waits in 

the resequencing buffer. As we did for the transmission queue, we assume the resequencing 

buffer is unbounded in size.

2 .8 .2  D a t a  B a t c h e d  b y  F l u s h  M e s s a g e s

We have found, for every F-channel application developed to date, real-world examples nat

urally form batches of ordinary messages and an associated flush message of a given type 

[Ahu90, AVS91, CK91, CKA93], Any flush application tha t transm its information from the 

sender to the receiver and uses more than one flush type appears to be a contrived example. 

Although each flush type is independently beneficial, we question the usefulness of trans

m itting more than one flush type on an F-channel. Therefore, in the performance sections, 

we consider a message passing scenario partitioned into batches of ordinary messages and 

a singular flush message.

Following a batch of ordinary messages with a forward flush effectively “closes” the 

batch. The ordinary messages (from all batches) may be delivered in any order, but all 

ordinary messages in one batch must be delivered before the batch-term inating forward 

flush is delivered. Batches of ordinary messages separated by a two-way flush completely
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isolates batches from one another; i.e., all messages in batch i will be delivered before any 

message in batch i +  1 is delivered. Using a backward flush to precede a batch of ordinary 

messages “announces” the coming batch. No ordinary message in a given batch may be 

delivered until its preceding backward flush, but given th a t restriction, the delivery of all 

ordinary messages (for all batches) is unordered. In the following discussion, we consider 

the three batching scenarios in more detail. In each case, we suppose a batch, consisting of 

B  messages, represents a single frame in the transmission of digital image information. Each 

ordinary message in a given batch contains image data  for a small region of the display area 

and the identity of the region in which it should be displayed. The receiver constructs the 

frame in pieces—as ordinary messages arrive, its sub-image is pasted into the appropriate 

position. Each message consists of three fields. The first field is the type of the message; 

the second field indicates the batch number to which the message belongs; the third field, 

for an ordinary message, denotes the number of the message within the batch; the third 

field in a flush message is zero.

Batch 1

Batch 2

Figure 2.10: Batches Terminated with Forward Flushes

Let us again consider batching ordinary messages with forward flush messages. Fig

ure 2.10 shows the immediate predecessor graph for this application. We see tha t delivery 

of all of the ordinary messages is unordered (with respect to other ordinary messages). The 

destination process expects, however, all of the ordinary messages in a batch to be delivered 

before the forward flush “closes” the batch. The delivery of a forward flush signals that 

its entire frame has been delivered. One application of this batching protocol could be the
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storage of the image frames in separate files. The receipt of a forward flush signals that 

the entire frame has been received and stored, and tha t the file in which it has been stored

may be closed. As an end-to-end image integrity convention, the term inating forward flush 

could contain a  checksum; the destination process computes the checksum function incre

mentally as the ordinary messages stream  in. When the forward flush arrives, the checksum

If we let two-way flush messages delimit the ordinary messages, we see a different partial

tu te a batch may arrive in any order, but a  two-way flush ensures tha t all messages in one

receipt of a  two-way flush, the contents of the buffer are physically displayed, replacing the 

previously displayed frame.

Batching ordinary messages with backward flush messages can also be applied to  the 

transmission of digital image information. Figure 2.12 illustrates this message passing 

scenario. In this situation, the backward flush effectively “announces” the coming batch, 

presumably providing the consumer process with information used to define the ordinary 

messages included in the batch. As in the forward flush case, we see tha t all of the ordinary

in the message is compared to the receiver’s computed checksum before the frame is finally 

accepted.

order—Figure 2.11 illustrates this batching scenario. The ordinary messages which consti-

batch are delivered before any message in the next batch. Suppose we wish to transm it a 

group of images from one site to another for real-time animation. The individual frames are 

constructed in the display buffer as the ordinary messages arrive a t the destination. Upon

\ .

- J r d  1,1> 
..O rd 1 ,2 .

<

■.Ord ? 1., 
*Q rd

<2F,1,0> :2F,2,0>

/-C rd  1 E . vOrJ 2 B

Batch 1 Batch 2

Figure 2.11: Batches Separated with Two-way Flush Messages
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Batch 1

<BF,1,0>

<BF,2,0>

Figure 2.12: Batches Preceded by Backward Flushes

messages may be delivered in any order, but that each ordinary message must be delivered 

after the backward flush announcing the batch to which it belongs. Again suppose we 

wish to transm it a group of images from one site to another. Further suppose the display 

memory of the consumer is a scarce resource and that the backward flush includes the 

size of the image conveyed in its batch. The consumer, upon receipt of a backward flush, 

may calculate if the image will fit on the display. If so, the appropriate amount of display 

memory is reserved, and the incoming image is displayed as it is received. If the image is 

too large, then it is stored in a file for later display.

2.9 S im ulation  R esu lts

Once again, consider the system model shown in Figure 2.9. In the simulation results 

presented here, we compare the transmission of the batched data  examples on an F-channel 

with a virtual circuit over N  transmission paths. The message generation process is assumed 

to be Poisson; thus, the message inter-generation interval is exponential with mean 1/A. The 

transmission tim e on any link is, initially, an exponential random variable with mean l / / i .  

Later in this section, we replace the exponential random variable with a hyperexponential 

random variable and consider the e lie cl on the system when the variance in transmission
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times is increased. Initially, however, we have an exponential random variable with the 

value of p fixed at one; N ,  A, and B  are experimental param eters. (Recall that B  is the 

number of ordinary messages in a batch.) We define p , the system utilization, as

P =  X/ Np,

= A j N  when p — 1.0.

We may model this system, excluding the resequencing buffer, as an M / M / N  queue in 

which the condition for reaching steady state  is th a t p = < 1. We insist this equilibrium

condition holds in all the simulation trials. Since we do not know the regeneration points 

in this system, we use the m ethod of batched means to estim ate steady state. An interval 

estim ate for the unknown mean is then calculated on the means from the batched data  with 

95% confidence. Each run in the simulation consists of processing 200,000 messages; each 

batch size is 5,000 and, therefore, the number of batches in each run is 40.

We use mean message delay, D,  as the principal performance metric. Mean message 

delay includes queueing delay at the transm itter, time on the physical network link, and re

sequencing delay at the destination process; it is the mean end-to-end message transmission 

time (excluding any delay due to the lack of a rece iv e  a t the destination process). D  thus 

indicates the mean delay from time of arrival until a message is made eligible for delivery.

2 .9 .1  M u l t i - l i n k  V i r t u a l  C i r c u i t

As a benchmark, we consider the performance of a  virtual circuit in Figures 2.13 and 2.14. 

The analysis of resequencing delay in [AR87] validates these two figures. Figure 2.13 illus

trates the three individual components that complete the mean message delay for a virtual 

circuit implemented on 25 transmission links. We plot utilization, p , versus delay, showing 

95% confidence intervals. The figure exhibits that resequencing delay is an im portant factor 

in the to tal delay. In fact, resequencing delay dominates transmission delay and queueing
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Figure 2.13: Message Delays on a Virtual Circuit

delay for almost all utilizations. Although the exact form of the plot depends substan

tially on the fact th a t there are 25 links, any system with more than one link reveals that 

resequencing delay is an im portant factor in the total delay.

Unlike Figure 2.13, we do not plot a confidence interval in the subsequent figures of this 

thesis. Our simulator, however, calculated every data  point with a 95% confidence interval. 

In each simulation trial, the confidence intervals gradually increase as utilization increases. 

Since none of the confidence intervals are very large (in fact, most are drawn smaller than 

the symbol used to represent the mean on our plots), we omit them.

In Figure 2.14, we plot utilization, p, versus mean message delay, D.  In this plot, we 

consider the effect of varying the number of links on which the virtual circuit is implemented. 

At utilizations less than 0.5, we find tha t D  is exactly opposite what one would expect. 

Adding links to the system at low utilization increases the delay. In fact, a 100-link virtual



C H A P T E R  2. IMPLEMENTATIO N OF A FLUSH CHANNEL 54

circuit lias a  mean message delay higher than a single link virtual circuit until the utilization 

approaches 0.8. This result is explained by the importance of resequencing delay as links 

are added to  the system. W ith fewer links, queueing delay becomes more im portant at 

higher utilizations. We see, for example, tha t a 25-link virtual circuit becomes faster than 

an 8-link virtual circuit when utilization is greater than 0.9. A virtual circuit’s insistence on 

a  FIFO delivery order leads to a mean message delay that is non-monotonic (with respect to 

N ) and counterintuitive. In summary, increasing the number of physical links between two 

processes communicating in a FIFO manner does not necessarily result in a higher effective 

bandwidth.

N = varied 
p =■ varied 
B = 0

N-25

N=1

10°
0.2 0 .4 0.6 0.8

P

Figure 2.14: Virtual Circuit Mean Message Delay

As a comparison, we see monotonic, predictable behavior in Figure 2.15. In this plot, 

we have, basically, no delivery order restrictions—a single batch is transm itted (199,999 

ordinary messages followed by a forward flush). In effect, the figure illustrates the mean
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message delay for reliable datagram  communication. As in Figure 2.14, the vertical axis 

is mean message delay, and the horizontal axis is utilization. We immediately notice that 

the system always benefits (decreases D ) from the addition of communication links. Fur

thermore, every mean message delay in Figure 2.15 is less than the corresponding mean 

in Figure 2.14. The mean message delays are equivalent, however, when a single com

munication link connects the two processes, We realize the difference in the two plots is 

completely due to  the number of restrictions placed on the delivery order, i.e., a degree of 

order. F-channels allow the user to specify these two example degrees of order. In addition, 

F-channels allow many degrees of order between these two extremes. The following section 

investigates the im pact of degree of order upon mean message delay.

N-1
N -  variod 

p -  varied 

B -  109,999

101

IQ

N=25

10°

0.2 0 .4 0.6 0.8
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Figure 2.15: Reliable Datagram Mean Message Delay
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2 .9 .2  T h e  E f fe c t  o f  D e l iv e r y  O r d e r  R e s t r i c t i o n s

In this section, we investigate the effect of delivery order restrictions on the three different 

batching scenarios. All three plots in this section, Figures 2.16 to 2.18, keep the number of 

communication links between the sender and receiver fixed at 25 and we plot mean mes

sage delay versus the number of batches transm itted. The fewer the number of batches 

means the less the degree of order. The less order means the greater the potential that a 

multi-link channel can exploit concurrent message transmission without incurring excessive 

resequencing delays. At the left end of the horizontal axis there are, basically, no message 

delivery restrictions; a single batch is transm itted. In effect, we have reliable datagrams. 

At the right end of the horizontal axis, the mean message delay is equivalent to the mean 

message delay if the messages were transm itted  across a virtual circuit—200,000 flush mes

sages are processed. In the middle of the horizontal axis, for instance, we transm it 100 

batches of 1,999 ordinary messages (delimited by a flush message). Clearly, the horizontal

p -  0.95
N - 25 
p -  varlod 
B -  varied

4.0

p -  0.60

p -0 .50

xo
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Figure 2.16: Forward Flush Batching Scenario
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axis represents all possible degrees of order.

In the first of these three plots, Figure 2.16, we consider the impact of delivery order 

restrictions when transm itting batches of ordinary messages term inated by forward flush 

messages. The plot illustrates th a t mean message delay monotonically increases as delivery 

order restrictions increase. Furthermore, there is a  tremendous increase in D  as the degree 

of order goes from 20,000 to  200,000 batches for every utilization.

p = 0 95
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Figure 2.17: Two-way Flush Batching Scenario

In Figure 2.17, we consider the degree of order impact when we transm it batches of 

ordinary messages delimited by two-way flush messages. In this case, the dram atic increase 

in D  begins when the number of batches transm itted is 200. Consider a utilization of 0.5. 

When the number of batches increases from 200 to 20,000, the mean message delay increases 

by almost 300%.

Now let us compare batching ordinary messages by backward flush messages (Fig-
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Figure 2.18: Backward Flush Batching Scenario

ure 2.18) with the two-way (lush batching scenario. Again we see D  monotonically increasing 

as delivery order restrictions increase. Similar to  the two-way flush batching scenario, there 

is a dram atic increase in the mean message delay. In this case, however, the increase does 

not begin until the number of batches transm itted  becomes 2,000. Looking back at Fig

ure 2.17, we find the large increase in the mean message delay begins when the number of 

batches is 200. In addition, D  for the backward flush batching scenario is almost consis

tently less than D  for the two-way flush batching scenario. The only exceptions are at the 

two extreme ends of the degree of order: (basically) no order and to tal order. Take, for 

example, transm itting 2,000 batches, of batch size 99, when utilization is 0.8. The delivery 

of these batches will take 70% longer if the batches are delimited with two-way flush mes

sages instead of backward flush messages. In summary, batching ordinary messages with 

backward flush messages has lower mean message delays than batching ordinary messages
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with two-way flush messages.

As a final comparison between Figures 2.16 to 2.18, consider transm itting 20,000 batches, 

of size nine, when utilization is 0.8.

Batching Mean Message
Scenario Delay

F F 1.31
B F 1.83
2F 3.50
V C 3.67

In this situation, it takes 40% longer to use backward flush batching, 160% longer to 

use two-way flush batching, and 180% longer to use virtual circuit communication instead 

of transm itting  the batches with forward flush messages. In this section, we throughly 

examined the impact of degree of order upon mean message delay for each batching scenario. 

For each batching scenario and each utilization, the mean message delay reaches the mean 

message delay of virtual circuit communication in the worst possible case only. In the 

following section, we plot the impact of degree of order, given utilization of 0.5, for each 

batching scenario in one concise plot. In addition, the section analyzes the effect of our 

other two experimental parameters: p and N.

2 .9 .3  T h e  E f fe c t  o f  / i ,  p, a n d  N

In the simulation results presented in this section, we compare the three batching scenarios 

and virtual circuit communication. In each of the three plots, we keep two of the exper

imental param eters fixed and examine the effect of mean message delay when the third 

param eter is varied. Figure 2.19 brings together the batching scenario results of the pre

vious section for utilization of 0.5. As illustrated, the mean message delay, for any given 

F-channel batching possibility, monotonically increases as the amount of delivery res trie-
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Figure 2.19: Varying the Number of Batches

tions placed on message delivery increases. The figure considers a 25-link system and a 

utilization of 0.5. In this plot, each point represents the difference between the mean mes

sage delay for a virtual circuit and the mean message delay for a given communication 

scenario when the number of batches is varied. (A given communication scenario is either 

virtual circuit communication or F-channel communication utilizing a  named flush type to 

delimit the batches.) Each point in the plot is computed as

D a  = D x
D v c

where the subscript of D  represents the communication scenario. A value of f ) A close to 

1 indicates minimal gains for batched data  delivery over a multi-link F-channel compared 

to a virtual circuit over the same number of links. The smaller the value of D A , the
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greater the performance improvement. The value of D& is simply the fraction of the virtual 

circuit delay produced by the F-channel batching paradigm. For example, a value of 0.4 for 

means the specified batching scenario takes only 40% the tim e of transm itting these 

messages on a virtual circuit. We immediately note the performance gain a user will obtain 

if messages can be transm itted using an F-channel. In the best situation, message delay 

for a batching application communicating with an F-channel will be approximately one 

third that of the same application communicating with a virtual circuit. The delay for an 

F-channel approaches tha t of a virtual circuit in the worst case only. If the semantics of 

the application perm it, F-channels offer promise of providing high bandwidth inter-process 

communication. Since the Hush communication paradigm allows the user to specify the 

least delivery restrictions necessary for the application, the best mean message delay can 

be obtained.

v c
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Figure 2.20: Varying the System Utilization
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Since we have considered the degree of order efFect on each batching scenario, we now 

analyze the efFect of our other two experimental param eters: utilization and number of 

links. In Figure 2.20, we consider utilization. As in the previous figure, we plot £>a  on 

the vertical axis. In this case, however, we fix the batch size at 99 and p is the indepen

dent variable. The plot illustrates th a t both forward flush and backward flush batching 

scenarios have the best gain in performance (compared to virtual circuit communication) 

when utilization is 0.8. Ordinary messages separated by two-way flush messages, on the 

other hand, are best at about a 0.3 utilization. As utilization increases after the best gain 

in performance for each batching scenario, we realize tha t the queueing delay begins to 

override the resequencing delay benefits. In each batching scenario, however, we easily see 

the benefits of communicating with an F-channel.

Figure 2.21 considers the effect of varying the number of links. In this simulation experi-
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Figure 2.21: Varying the Number of Links
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m ent, we fix the batch size a t 99 and utilization at 0.5. The two-way flush batching scenario 

exhibits its best performance when the number of links in the system is approximately 20. 

As in the virtual circuit communication case, the mean message delay for batching ordi

nary messages with two-way flush messages degrades when more than 20 links exist in the 

system. (This result is heavily dependent on the fixed param eters.) The backward flush 

and forward flush batching scenarios, on the other hand., do not show a degradation even 

as the number of links in the system increases to  100. When we consider a 100-link system 

and batch ordinary messages with forward flush messages, we see the mean message delay 

is less than  25% of virtual circuit communication.

In this section, we compared the performance of virtual circuit communication with 

the three batching scenarios in F-channel communication. All the results illustrate that 

a programmer can obtain much faster da ta  transmission if batches of ordinary messages 

delimited with a flush message of a given type are transm itted  on an F-channel. In the 

three F-channel batching paradigms, there is a  clear correspondence between the degree 

of disorder allowed in message delivery and the potential for effective concurrent message 

transmission without excessive resequencing delay. In other words, referring to Figures 2.10 

to 2.12 of Section 2.8.2, the fact th a t batching with forward flush messages is less restrictive 

than batching with backward flush messages, which, in turn, is less restrictive than batch

ing with two-way flush messages is reflected directly in the sim ulation result of Figure 2.19. 

Furthermore, in all three batching scenarios, the larger batch sizes have smaller mean rese

quencing delays leading to  smaller mean delays. T h a t is, as the degree of order increases, 

there is a monotonic increase in the mean message delay.

A second conclusion may be drawn from Figure 2.20. Itesequencing delay is more im

portant in mid-range utilizations and, hence, D& is lowest for utilizations between 30% and 

70%. As discovered in virtual circuit communication and shown in Figure 2.13, resequenc

ing delay is less of a factor in the total delay when utilization is low, due to less out-of-order 

message delivery, and when utilization is high, due to  the increased importance of queueing
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delay. Figure 2.21 illustrates th a t the backward flush and forward flush batching scenarios 

exploit as many links as available. The more restrictive, in terms of message delivery order, 

two-way flush batching scenario lias a  response similar to virtual circuit communication; 

i.e., when the number of links in the system is increased, the mean delay is also increased. 

The performance of the two-way flush batching scenario of batch size 99 does improve, 

however, as the number of links in the system goes from 1 to 20. Having more than  20 links 

in the system and adding additional links decreases the performance gain in tire two-way 

flush batching scenario.

I t is also evident from the comparative plots of Figures 2.19-2.21 in this section that 

the performance of forward flush batching and backward flush batching are quite similar, 

but substantially better than the performance of two-way flush batching. Two-way flush 

batching, however, still outperforms a virtual circuit by a wide margin.

In this section, we analyzed the efFect of varying our three experimental parameters 

on mean message delay. We note that in modeling the transmission time distribution 

as exponential with param eter /t, we have ignored the effects of the transmission time 

distribution on the message delay. It is known [Cho89] that the resequencing delay for multi

link virtual circuits is sensitive to higher moments of the transmission time distribution. As 

a trivial example, if message transmission time is fixed at the constant value l / / i ,  there is 

no resequencing delay. All of our results have an implicit assumption tha t the sender and 

receiver are linked across a packet switched internetwork and, therefore, we expect message 

transmission tim e to be highly variable. In the following section, we examine the effect of 

the second moment of the transmission time.

2.9.4 T he EfFect o f Variance

Although the results of this section continue to be simulation-based performance results, we 

separate the preceding section with the results presented here due to the extreme differences 

in the underlying system. In this section, the message generation process continues to be
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Poisson with mean A, but the transmission time on any link is a 2-stage hyperexponential 

random  variable with mean 1 foi and squared coefficient of variation C 2 where

variance
6  =

When a  message is ready for transmission, it has probability oq to transm it on a link which

is exponentially distributed with mean l / f i i  and it has probability (1 — oq) to transm it on

a link which is exponentially distributed with mean l / / t 2 - Therefore,

1 aq 1 — oq
/i Hi H2

We may model this system, excluding the resequencing buffer, as an M /I I 2 / N  queue. In the 

following simulation results, /i continues to be fixed at one and C 2 becomes an experimental 

param eter. We plot C 2 versus R a ,  the fraction of the virtual circuit resequencing delay 

produced by the F-channel batching paradigm:

R a = A x
R v g

where X  represents a particular batching scenario.

In Figures 2.22 to 2.24, we keep the number of communication links and utilization fixed 

at eight and 0.5 respectively. At the left end of the horizontal axis, where C2 =  1.0001, R a  

represents the performance improvement of the particular batching scenario over virtual 

circuit communication when the message transmission distribution is approximately ex

ponential. As C 2 increases, the three figures illustrate that the three batching scenarios 

produce different degrees of sensitivity to increasing the variation in transmission times.

In the first of the next three plots, Figure 2.22, we consider the effect of variance when 

transm itting  batches of ordinary messages delimited by two-way flush messages. The plot 

illustrates th a t the two-way flush batching scenario is extremely sensitive to increases in
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Figure 2.22: Hyperexponential: Varying the Number of Batches

the coefficient of variation. As C 2 increases, the performance gain of the two-way flush 

batching paradigm is decreased. A batch size of 199,999 (basically no resequencing delay) 

is the only batch size not affected by the hyperexponential distribution. Consider a batch 

size of 999. When C 2 increases from 1.0001 to 600, Z?a increases from 0.5% to 80%.

In Figure 2.23, we consider the effect of a 2-stage hyperexponential transmission distri

bution on the transmission of ordinary messages term inated by forward flush messages. In 

this case, the effect of variance is not as severe. In fact, the performance gain of each batch 

size over virtual circuit communication remains unchanged for every C 2. Consider a batch 

size of one. 50% of the messages have no resequencing delay and 50% of the messages have 

a resequencing delay as if the message were transm itted across a virtual circuit. Therefore, 

regardless of C 2, the mean resequencing delay of a message in this batching scenario is one 

half the mean resequencing delay of a message transm itted across a virtual circuit. Every
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message transm itted across a virtual circuit is sensitive to increases in C 2; in the forward 

flush batching paradigm, only forward flush messages are affected by increases in C2.

Figure 2.24 illustrates the effect of variance when the ordinary messages are preceded 

by backward flush messages. As C 2 increases, R a  decreases. Again consider a batch size of 

one. W hen C2 =  1.001, R a  — 64%. When C2 =  1000, R a  =  42%. Recall the comparative 

plots of Figures 2.19 to 2.21. Although the forward flush and backward flush batching 

scenario results are similar, the forward flush batching scenario continuously outperforms 

the backward flush batching scenario. This result is interchanged when we consider the effect 

of variance. As C 2 increases, the backward flush batching scenario begins to outperform 

the forward flush batching scenario.

Figures 2.25 and 2.26 analyze the effect of utilization and number of links on the two-way 

flush batching scenario, the F-channel batching paradigm that exhibits the least amount
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Figure 2.24: Hyperexponential: Varying the Number of Batches

of performance gain when the efFect of variance is examined. In Figure 2.25, we consider 

utilization. As in the previous figures, we plot C 2 on the horizontal axis and R a  on the 

vertical axis. In this case, however, we fix the batch size at 19,999 and consider the effect of 

varying p. Higher utilizations lose the performance gain faster than lower utilizations when 

C 2 is increased. This result is intuitive; higher utilizations will be more adversely affected 

by greater variation in the transmission times.

Figure 2.26 considers the effect of variance on the two-way flush batching scenario when 

we alter the number of links in the system. In this simulation result, we fix the batch size 

at 19,999 and utilization at 0.5. In all cases, the performance gain is reduced as C 2 is 

increased. Consider a 25-link system. When C 2 = 100, R a =  8%, but when C 2 = 1000, 

R a  = 49%. As more links in the system allow more opportunity for messages to arrive 

out-of-order, the performance gain over a virtual circuit is reduced.
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One way to comprehend the effect of an increase in the variation of message transmis

sion, is to deduce the number of messages that are affected when the transmission time of 

one message is substantially increased. In the two-way flush batching scenario, one mes

sage can delay the delivery of all messages in subsequent batches. Therefore, this batching 

scenario is extremely sensitive to increases in C 2. In fact, batch sizes less than 99 and coeffi

cient of variations greater than  10 exhibit almost no performance gain over transm itting the 

messages across a virtual circuit. As C 2 is increased in a system transm itting forward flush 

batches, the performance gain over a virtual circuit remains unchanged. In other words, one 

slow message can delay the delivery of all subsequently transm itted forward flush messages; 

however, the delivery of ordinary messages is unaffected by a message with a long trans

mission time. The backward flush batching scenario illustrates a performance improvement 

over virtual circuit communication when variance is considered. In this baLching scenario,
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only the transmission of backward flush messages can delay the delivery of other messages 

in the system. Since fewer messages can affect the delivery of subsequently transm itted 

messages, the batching paradigm is less sensitive to increases in C 2.

For every batching scenario and every coefficient of variation, the resequencing delay of a 

message transm itted  across an F-channel is as good as, if not better, than the resequencing 

delay of a message transm itted across a virtual circuit. While increasing C 2 does adversely 

affect the performance gain of a  message in the two-way flush batching scenario, F-channel 

communication continues to outperform a virtual circuit.

We note th a t a central developmental trend in computation is that we (generally) achieve 

speed through the concurrent operation of many processors. The magnitude of such a speed

up depends upon the nature of the computation and how well it can be partitioned into 

concurrent activities. A similar phenomenon is obvious in this work—the use of F-channels
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provides the opportunity for concurrent message delivery over multiple links. F-channel 

communication can be used to relax delivery order restrictions and, hence, to make data 

transfer faster through concurrent message passing.

All the results presented in this section were obtained from a simulator. In the following 

section, we return to the transmission time on any link as an exponential random variable 

with mean 1 //« and we confirm the validity of the corresponding simulation results.

2.10  A n a ly tic  R esu lts

The to tal delay ( D ) of a particular message is a random variable. The random variable for 

the time spent in the transmission queue, waiting for an available link, is called the waiting 

( W ) delay. The transmission ( T ) delay is a random variable for the time a message spends 

en route from the sender to the receiver. The third random variable in the total delay, as 

discussed in Section 2.8, is the resequencing (R  ) delay. The total delay is then

D = W  +  T  + R.

Once again, consider the system shown in Figure 2.9. The message arrival process is Poisson 

w ith ra te  A. The service time, or transmission delay, is exponentially distributed with mean 

l//r:

T( x)  = 1 -  e x  > 0.

The system has N  identical links connecting two communicating processes. We assume 

there is an infinite number of messages to be transm itted. The system up to, but not 

including, the resequencing buffer is an M / M / N  queue. This subsystem will achieve steady 

sta te  for p =  ^  < 1.

Let pn be the steady sta te  probability of finding n messages in the subsystem. The state
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occupancy probabilities for the M / M / N  queue at steady sta te  are given by [Kle75]:

where

Pn =

Po
(.N p ) n

nl

i N Pr
N \ N n~N

< N

n >  N

Po = I ( i M L \
. t o  \  m  )  V I - p )

- l

(2 .1)

The expected to ta l delay is given by:

E [D] =  E [W] +  E [T] +  E[R]. ( 2 .2 )

Independent of the communication paradigm, E[W] is given from M / M / N  analysis [AR87],

E[W] = Po P (Np) N

\ N \  (1 - p ) 2  ’

and

E [T] =
P

The resequencing delay, on the other hand, does depend on the communication paradigm. 

In the next four sections, we discuss the expected resequencing delay for different commu

nication scenarios. The first section lists established results for the resequencing delay for a 

virtual circuit (VC). The next three sections derive the resequencing delay for the different 

batching scenarios discussed in Section 2.8.2.
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2 .1 0 .1  V i r t u a l  C i r c u i t  R e s e q u e n c i n g  D e la y

Analysis of the resequencing problem for virtual circuit communication has been considered 

in the literature by several authors. Yum and Ngai [YN86] studied the resequencing of 

messages in an M / M / N  queuing system with links of different speeds. Messages in this 

system were transm itted  down the fastest available link. They found that resequencing 

delays increase as the variation in the speed of the links increase. In [AR87], Agrawal and 

Ramaswamy focused on the distributional aspects of the resequencing delay in an M / M / N  

system. Chowdhury derived the distribution of the total delay [Cho89].

The expected resequencing delay of a message transm itted across a  virtual circuit could 

be derived from the resequencing delay distribution. It is far simpler, however, to derive 

the expected delay by conditioning the derivation on the number of messages in transm is

sion and then, subsequently, removing the condition [AR87]. We outline the approach of 

Agrawal and Ramaswamy since we use a similar argument. Suppose n < N  links are busy. 

When a message arrives, it is tagged and transm itted immediately. Let T 11+i represent the 

transmission tim e of this tagged message. Due to the memoryless property of the expo

nential transmission time distribution, the remaining transmission tim e for each message 

en route, a t the instant of transmission of the tagged message, is exponentially distributed 

with mean l / / t .  Let tk be the remaining transmission time of the message on the kth  busy 

link (k < n).  Thus, m ax(tj, t 2, . . . ,  tn, T li+i) is the time until all (n  +  1) messages en route 

have completed transmission.

Let VCR n be the resequencing delay of the tagged message transm itted across a virtual 

circuit when n links are busy. Then

E[VCR„] =  E[max(t1, t 2, . . . , t „ , T n+1) - T n+i]. (2.3)

Equation (2.3) is the expected resequencing delay conditioned on the number of busy links.



C H A P T E R  2. IMPLEMENTATIO N OF A FLUSH CHANNEL 74

If VCR  is the unconditioned resequencing delay, then

N - 1

E[VCR] = Y  Pb( n) E [v c /E »]>
n = 0

(2.4)

where pb(n) is the probability of finding n busy links upon the transmission of the tagged 

message. These probabilities can be obtained directly from the steady-state probability of 

sta te  occupancy in an M / M / N  queue [AR87]:

pb(n) = pn ,

Po
( N p )n

nl

pb(N-l)  =  Y j P
j —N —l

(N p ) N~l
= Po

( N - 1 ) 1 ( 1 - p ) '

0 < n < N - 2 .

(2.5)

Using equations (2.3)—(2.5), Agrawal and Ramaswamy derive the expected resequencing 

delay in [AR87]:

N —l
E[VCi2] =  Y  Pb(n) E[max(t1, t 2). . . , t 11,T u+1) - T n+1],

n —0
riv-2
EPo ( N p )” 1 (n p )n ^  N

(2.6 )

Combining the expected waiting, transmission, and resequencing delays produces an 

equation for the expected total delay a message experiences across a virtual circuit. If VCD  

represents the to tal delay of a particular message transm itted across a virtual circuit, then

N - 2

E ( Np) ” g  1 (Np) /V -l

k=2
• (2-7)

Results from this equation are within the confidence interval of the simulation results shown
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in Figures 2.13 and 2.14.

In [AR87], aspects of the resequencing distribution are discussed. They analytically 

show th a t E[VCR] always increases as

(1) N  increases,

(2) A increases,

(3) /i decreases.

Let us assume that p increases by either keeping A fixed and decreasing p  or by keeping p 

fixed and increasing A. Then, E[VCR] monotonically increases as N  or p increases. Since 

utilization cannot increase past 1.0, equation (2.6) reaches its lim it when p =  1.0 and all 

other variables are fixed. When all variables are fixed and N  is increased, E[VCi?] converges. 

To calculate the asymptote of the convergence, we consider the closed-form solution for a 

system with an infinite number of links. In [Kle75], we obtain the probability th a t n links 

are busy in an M / M /bo  system as

Pn

Using pn , Agrawal and Ramaswamy derive E[VCiioo]> the expected resequencing delay of a 

particular message transm itted across a virtual circuit in a system with an infinite number 

of links [AR87]:

E[VCRoo] = $ > „  E[V.CB„],
n —0
i.
/«

(2.9)
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2 .1 0 .2  F o r w a r d  F l u s h  B a t c h i n g  S c e n a r io

In this section, we consider the resequencing delay for the transmission of the forward flush 

batching scenario. Suppose F C /iu is the resequencing delay of a message just arrived to find 

n  busy links on an F-channel. Recall Figure 2.10; this graph illustrates th a t the predecessor 

set of an ordinary message is empty. The resequencing delay of an ordinary message is thus 

zero,

FC R °rd =  0.

The resequencing delay of a forward flush message is more interesting. When a  message 

of this type is tagged for transmission, every message previously transm itted  will be in the 

predecessor set of this tagged forward flush message. Hence, the delivery of a forward flush 

message must wait for the delivery of every message currently in transmission, i.e., all n 

messages. Therefore,

FC =  m ax(t1, t 2, . . . , t n,T n+1) - T 11+1.

If FF R n is the resequencing delay of a tagged message in the forward flush batching scenario 

conditioned on n  busy links, then

where B  is the batch size.

Following the derivation of the expected resequencing delay for virtual circuit commu

nication, we derive the expected resequencing delay of the forward flush batching scenario 

conditioned on the number of busy links in the system and then remove the conditioning.
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Equation 2.3 is the expected resequencing delay of a  message th a t must wait for the delivery 

of every message currently in transmission. Therefore,

E[FFi?n] =  ( ^ r r )(E [m a x (t1, t 2 , . . . t n>T n+1 ) ] - E [ T n+1]).

Since T(x )  is the c.d.f. of message transmission time, then

E lF F n “ l =  ( b T i )  0 T ( 1 "  -  j )  ■

Substituting z for T(x) ,  we obtain

d z  ,
* /*

which, upon integration, is equivalent to

Using pb(n), from (2.5), we remove the conditioning to obtain the expected resequencing 

delay of a particular message in the forward flush batching scenario.

E[FFJ?] =
N - 1

£  pb(n) E [F F «n],
n = 0

r N - 2

= f  1 W y 1 I
\ B  + l )  /t n! f c  k

( N p ) " - '  ^  x1
>' f c 2 k ' ( N  -  1)1(1- p ) & k

(2 .10)

Therefore,

E[FFR] = G b T i )  m c R ] ' ( 2 . 1 1 )



C H APTER 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 78

Equation 2.11 is intuitive; B  out of (B  1) messages in the system do not have any 

resequencing delay and 1 out of (B  +  1 ) messages in the system have a resequencing delay 

as if the message were transm itted across a virtual circuit.

Combining the expected waiting, transmission, and resequencing delays yields the total 

delay a  message in the forward flush batching scenario may expect:

E rF F n i  _  K> P ( N P ) N  i 
“  AN\  ( 1 - p )2 f (212)

The result of plotting this equation is within the confidence interval of the corresponding 

simulation result and illustrated in Figure 2.16.

We consider the expected resequencing delay of a message in the forward flush batching 

scenario as the three parameters (B ,  p , and N )  individually increase. Equation (2.10) shows 

th a t E[FF1Z] monotonically decreases when B  increases and all other variables are fixed. In 

[AR87], Agrawal and Ramaswamy proved that pbx (n) is stochastically larger than pb2 (n) if 

p in pbi(n)  is smaller than p in pb2 (n). (Recall th a t we assume p increases by keeping either 

A o r /i  fixed.) T hat is,

N - l  N - l
y ,  pbx(n)  < ' y  pb2 (n)  for 0 < k < N  -  1.
n=fc n=k

Since E[FFR„] increases when p  is decreased or n is increased, we conclude tha t E[FFR] 

monotonically increases as p  increases and all other variables are fixed. Furthermore, 

E[FFR] reaches a bound when p = 1.0. Lastly, we consider E[FF1Z] when N  is increased. 

For the virtual circuit communication paradigm, Agrawal and Ramaswamy proved tha t the 

expected resequencing delay monotonically increases as N  increases. Consider this fact in

tuitively; if N  increases and all o ther variables are fixed, more messages are on the links at 

any given tim e and, hence, there is more opportunity for the messages to arrive out of order. 

From equation (2.11), we conclude the mean message delay in the forward Hush batching
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scenario monotonically increases when N  increases as well. E[FFi2] converges to the ex

pected resequencing delay for a message in an M /M /oo system. Using (2.8), the probability 

th a t n links are busy in an M /M /oo  system, we derive the expected resequencing as

E[FF Rn]  =  ^ P n E[FF/EB],
n = 0

/  i \  ~  i ^ i

From the derivation of E[FFjR„], we know that £ £ * 2  |  is equivalent to  Jq jz^ ( 1 — x n)dx. 

Therefore,

/  1 \  1

- ( j + v ^ n L

The expected value then becomes

when the infinite series is expanded. Substituting y =  ( 1  — x)  and the power series for ex , 

we obtain

E [ F F ^ ]  =

upon integration and simplification. Again,

ElFFJioo] =  ( 5 7 1 )  EtVCfloo], (2.14)
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2 .1 0 .3  T w o - w a y  F l u s h  B a t c h i n g  S c e n a r io

Figure 2.11 shows the two-way flush batching scenario. Similar to a forward flush message, 

the delivery of a two-way flush message must wait for the delivery of every message currently 

in transmission. If a tagged two-way flush message is ready for transmission and n links are 

busy, then

Consider the transmission of the j th  ordinary message. If x messages from the predecessor 

set of this tagged ordinary message are in transit, then

the predecessor set of the j th  ordinary message. If i ordinary messages from the batch 

containing j  are in transit, then i — n — x. Instead of calculating the probability that x 

messages are in transit from the predecessor set given n links are busy, we calculate, upon 

the transmission of the yth ordinary message,

m ax(t1( t 2,

0

m ax(ti, r„+i)

if x = 0

if x  =  1

F C ii° rd' j  =  m ax(t!, t 2, T Il+, ) -  Tn+1, if as =  2

nicLx(ti, 1 2 s , t n, T n+i) T n+ i, if x — n

To calculate FCJZ^rd,J', we require the probability that x messages are in transit from

pordsj(z | n) =  P { i  ordinary messages in transit from the current batch | n busy links}.
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We re-write F C E °rd^' in terms of the number of ordinary messages in transit from the

current batch given n  links are busy:

pordSj(min(.j -  l,n )  | n) (m a x (t i ,t2 ) . . . ,  t„_niin(j-i.n)}T n+1) -  T n+1)

min(j—l,n)
pordsj(i | n) (m a x ( ti ,t2, . .  . , t„ _ i ,T n+i) -  T n+i).

i=o

Following the derivation of the expected resequencing delay in the two previous sections, 

we first consider the expected resequencing delay of the two-way flush batching scenario 

(E[2F7Z]) conditioned on the number of busy links in the M / M / N  system.

FCR n rd,j -  < + p o rd s j(2 | n) (m a x ( ti ,t2 , . . . , t Il_2 ,T n+i ) - T n+i)

+ p ord sj(l | n) (m a x ( ti ,t2, . . . , t n_ i ,T n+i)  -  T n+i) 

+pordsj(0 | n) (m ax(ti, t 2). • . ,  t„ , T I1+1) -  T n+1)

E [F C J?f],

( f + t J  S '  J j '  p o rd s j( i | n )E [m ax (tl j t 2 , . . . , t n_ i,T n+1 ) - T n+1] 

A  -f-1 )  E[ m ax (ti, t 2, . . . , tn, Tn^.j) — T n+i],

B inin(j—l.n)

The expected resequencing delay in the two-way flush batching scenario is then 

J V -1

E[2FiZ] -  £  pb(n) EI2F/2,],
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The expected to tal delay a message from the two-way flush batching scenario experiences 

is, as before, the combination of the three expected delays:

f M » \ N  i /  i \  T 3  N ~ l m in(j'-l.n) /  n -i'+ l

+ xW)QxH)l- ( 2
n=0 V k —2 /  J

We consider E[2FIZ] as B , p , and N  individually increase. Equation (2.15) shows that 

E[2FI2] monotonically decreases when B  increases and all other variables are fixed. Now 

consider E[2FI2] when p increases and all other variables are fixed. We know, from the pre

vious section, tha t pb(n) stochastically increases as p increases. Furthermore, (L ]T^~2+ 1  d ) 

increases as p, decreases or n  increases. Therefore, to verify E[2F7?] monotonically increases 

as p increases, we need to show th a t pordSj(i | n) stochastically increases as p increases. 

T ha t is, if p is higher in pordsj(i | n) 2 than p in pords7(i | n)1, we need to show that

A/-1 in in (j-l,n ) N - l  mii»(j—1 ,»t)

X X p°rds j(* | n)x < X X pordsj(i | n ) 2 for 0 < k < N  — 1.
n —k i= 0 n = k  i=0

This result is clear when we consider tha t pordsj(i | n) =  pn . Hence, as p

increases, the expected resequencing delay in the two-way flush batching scenario mono- 

tonically increases. Furthermore, E[2FI£] has a bound when p — 1.0. Lastly, we consider 

E[2Fi2] when N  is increased. Intuitively, if N  increases and all other variables are fixed, 

there is more opportunity for the messages to arrive out of order. Hence, the expected value 

monotonically increases as N  increases. For validation, consider equation (2.15). If N  is 

smaller in pbi(n)  than N  in pb2 (n), then

N - l  N - i

X Pbi(n) - X Pbz(n ) f°r 0 <  k < N  -  1.
n = k  n= k

Now consider pordsj(f | n). Since p is fixed, pordsj(i | n) for a given N  is identical to
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pordsj(i | n) for a higher N .  In addition, ( ^ E £ = 2+ 1  £) increases as N  increases. Therefore, 

equation (2.15) monotonically increases as N  increases. E[2F/d] converges to the expected 

resequencing delay for a message in a system with an infinite number of links. The proba

bility th a t n links are busy in an M /M /oo  system is from (2.8).

E[2FJJoo] =  j r > „ E [ 2 F E „ ] ,
n = 0

- t e l )
B  oo m in ( j—1 ,n)

X ) £  ft* £  pordsj(i I n) ( ^  £
i= l n r r l  i- 0  k— 2

+  I  ? ( - ! ) " - !  ( ± Y  1
'  W  « (»  +  !)!

(2 .17)

All of the derivations in this section require the probability tha t, upon the transmission 

of the j t h  ordinary message, i ordinary messages are in transit from the current batch given 

n links are busy: pords_,(i | n). We know that

m in ( j—l,n )

T :  pordsj(z | n) =  1

t'=0

and

pordsj(i | n) =
pordsj(i A n) 

E i= o  P°rdsj(i A n)

where

pordSj(i A n ) =  P { i  ordinary messages in transit from current batch A n busy links}.

We first consider pordsj(i A n) in the M /M /bo  system, and then restrict the system 

to a  finite number of links. Given a system with an infinite number of links, we con

sider the probability that a message previously transm itted is in transit when another 

message begins transmission. Suppose the inter-arrival interval preceding the transmission
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of m,- is A ; and the transmission time of mi  is T{. Then, as illustrated in Figure 2.27, 

P { A 2  < T\]  is the probability th a t mj is in transit when m 2  begins transmission. Further

more, P { A 2  +  .A3  < Ti} is the probability tha t m i is in transit when m 3  begins transmission.

Since the inter-arrival and transmission times are independent exponential random vari

ables, with means 1 /A and 1 / f-i respectively, we compute the above two probabilities as

too
P { A 2 <  Ti} =  /  P { A 2  < Ti I Ti =  x )ne~ tlxdx,

Jo

and

too
P { A 2  +  A 3  < Ti} = /  P { A 2  + A 3 < T 1 \ T 1 = x } ^ LXdx,

Jo

■  (A -f p

Generalizing, we obtain the probability tha t the n th  message previously transm itted  is in 

transit when a new message is transm itted [Ros73]:

H {A 2  +  A 3  +  . . .  +  A n < T i}
A

A +  /i ) ”■
P { n A < T 1) = a* (2.18)

Figure 2.27: Inter-arrival and Transmission Times: M /M /bo
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where a  =  x fe .

Returning to pordsj(i A n), let us consider two specific examples. Suppose the j th  

ordinary message from a batch is tagged and ready for transmission. Then

Po =  pordsj(0A  0 ),

= P { T  < A A T  < 2A  A T < 3.4 A ...} ;

i.e., no message previously transm itted is in transit when the yth ordinary message is 

transm itted . Due to  equation 2.18, the value of this probability would be trivial to obtain if 

the individual components within the probability were independent. We test for dependence 

by whether

P{Pi <  A 2  +  A 3 | Tt < A 3 } =  P { P j  < A 2  +  A3}.

Consider S,  the set of all possible values in the M /M /oo  system for (T i, A 2 , >1 3 , T/)- We 

define the events E\ ,  E 2 , and E 3  as the following subsets of the sample space S.

E ! =  {x  =  {TU A 2 , A 3 ,T 2 ) 1 Pi < A 2  A Ti < A 3  A P2 < A 3}.

E 2  = {a; =  (/T\, A 3, A 3 ,T/)  \ Pi < A 2  A 1\  > ^ 3  A T\ < A 2  P A 3  A T2  < j43}.

E 3  = {s =  (P i, A 2 , A 3, P 2 ) | Pi > A 2  A Pi < yl3 A Pi < ^ 2  +  ^ 3  A T2  < A 3}.

The union of P x, P 2> and E 3, defined as E ,  is all possible outcomes of T\ < A 3  P /I3 given 

P 2 < .A3 . We now define the events P i, F2, and P3 as the following subsets in S.

Pi =  {*  =  ( T u A 2, A 3,T2) \ T 1 < A 2 A T i <  A3).

F2 — {a; =  (P i, A2, A3, P2) | P i <  A2 A P i >  A3 A Pi <  A2 ■+■ A3}.

F3 =  {x  =  ( f  1, A2,  A3, 12) | Pi >  A2 A Pi <  A3 A Pj < A2 +  A 3}.
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The union of Fi, F2 , and P3, defined as F,  is all possible outcomes of T\ < A 2 + A3  without 

the constraint T 2 < A3.  When we consider the probabilities of E  and F,  we conclude 

th a t the dependence test fails. For instance, when 2\ < A 2 and Tj > .A3 , E  implies that 

T2 <  Ti. F2 makes 110 such implication. T hat is, F  represents possible outcomes tha t E  

cannot represent; hence, the probability of F  will be greater than the probability of E.  

Therefore,

P { T j  < A 2 +  A 3 \ T 2 <  A 3} £  P {7 \  <  A 2 + A 3)

and the individual components within pordsj(i A n) are dependent.

We can, however, obtain an approximation for pordsj(» A n) denoted pords!-(2 A n), by 

assuming they are independent. Thus,

pordSj(0 A 0) = P { T  < A } P { T  < 2 A } P { T  < 3 A }

=  ( l - a ) ( l - a 2) ( l - a 3) . . .

For another example, consider the transmission of the third ordinary message in a batch. 

Then

pords^fl A 1) — (1 -  a ) ( l  -  0 2 ) a 3 (1 -  a 4) ( l  -  <*5)(1 -  a 6 ) • ■ ■

+ (1  — a ) ( l  -  a 2) ( l  — a 3) a 4 (1 -  <*5)(1 -  <*6) • • •

+ (1  -  a ) ( l  -  a 2) ( l  -  ° ;3) ( l  — ° 4) <*5 (1 — a 6) . . .

and

p o r d s ^ f  A 1) =  a  (1 -  a 2) ( l  -  a 3) ( l  -  a 4) ( l  -  a 5) ( l  -  a 6) . . .

+ (1  — a )  a 2 (1 — a 3) ( l  — a 4) ( l  — a 5) ( l  — a 6) .
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Figure 2.28: Analysis vs. Simulation Results: M /M /oo

The above two examples indicate the method to obtain an approximation of pordsj(i A n). 

pordSj?(i A n) is a summation of probabilities. Each probability is a product of two prod

ucts. The first product is the probability that i ordinary messages from the ytli batch are 

in  transit; the second product is the probability that n  — i messages not from the j t l i  batch 

are in transit. The two examples of p o r d S j ( i  A n) above were chosen due to their simplicity. 

T hat is, the number of possible combinations for the first product is the number of

possible combinations for the second product is either one or oo. For simplification in the 

examples above, only one combination is possible for the first or second products or both.

In Figure 2.28, we plot the approximate expected resequencing delay for nine ordinary 

messages in a batch, E*[FC0r<1,J], when a — = 0.8; a represents the average number

of busy links in an M /M /oo  system. We compare this result to R  for a simulated 8 -link 

system with A = 0.8 and ft — 1.0. In the simulated system, the average number of busy
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links is 0.8 as well. The maximum number of busy links in the analysis is eight. We do not 

plot the associated resequencing delay for a two-way flush message; this value is equivalent 

to the value of the first ordinary message in a batch for both E[FC®n*'1] and R. As the 

figure illustrates (although we approximate pordsj(i A n) with pords^(i A ra)), the results 

from the analytical equations match the simulation results. In the simulation, the mean 

resequencing delay is between 0.0968 and 0.1014 with 95% confidence. The result from the 

approximate analysis is 0.1059.

0 .9
N = Infinity 
a  = 2.5 

p = 0.1 

B = 9

0.8

0 .7

a-0 .6

DC 0 .4

0 .3

0.2

0.1

2 3 4 5 6 7 B 9

Figure 2.29: Analysis vs. Simulation Results: M /M /bo

Figure 2.29 plots the approximate expected resequencing delay for nine ordinary mes

sages when the average number of busy links is 2.5. We compare the result to R  from a 

simulated 25-link system with A =  2.5 and / j  =  1.0. The average number of busy links 

in the simulation is also 2.5; the maximum number of busy links from the analysis is 13. 

In this situation, the mean resequencing delay from the simulator is between 0.4114 and
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0.4173. The analysis approximates the expected resequencing delay at 0.4357.

In a system with a finite number of links, we again consider the probability tha t a 

message previously transm itted is in transit when another message begins transmission. As 

before, A{ is the inter-arrival interval preceding the transmission of m,-; T; is its transmission 

time. Qi represents the queueing delay for message m,-. Figure 2.30 illustrates th a t the

A 1 . Q l  , T 1

A 2 Q 2

Figure 2.30: Inter-arrival and Transmission Times: M / M / N

probability tha t mj is in transit upon the transmission of m 2 is P {A 2 -f-Q2 < Q 1 +  Ti}- The 

probability that m i is in transit when m 3  begins transmission is P{/1 2 +  A 3 F Q 3  < Qi  + T i}.

Unlike a system with an infinite number of links, these two probabilities are difficult 

to obtain We do not examine the derivations of these probabilities, however, for what we 

require is P{A 2 +  Q 2 < Qi  +  T\ a n d  A2 +  A3 T Q 3  < Q\  +  7 \} . Let us consider a specific 

example. Suppose the j l l i  ordinary message from a batch is tagged and ready for transm is

sion. Then

pb(0) =  pordsj(0 A 0), 

=  P{Q + T < A  + Q a Q + T < 2 A  + Q / s Q + T < 3 A  + QA. . . } - ,

i.e., no message previously transm itted is in transit when the j th  ordinary message is 

transm itted.

As in the case of a system with an infinite number of links, the conditions within the 

probability are not independent. We, therefore, approximate the probability by assuming
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independence; e.g.,

pordsj(0  A 0) =  P{Q + T  < A + Q}P {Q + T  < 2 A  + Q}P{Q + T  < 3 A  + Q } . . . .

Because there is no simple derivation for P { Q + T  < n A p Q }, we approximate pordSj(i A n) 

one step further. For a given utilization, the queueing delays for any two messages will, 

most likely, be close in value. Therefore, we further approximate p o rd s^ i A n) as we did 

in the case of a system with an infinite number of links by subtracting out the queueing 

delays:

pordsj(0  A 0) = P { T  < A } P { T  < 2 A } P { T  < 3 A } . . . ,

=  (1 — a ) ( l  — a 2) ( l  — a 3) . . .

is'01aac
0
i
faa:

0.6

0 .4

1 2 3 4 5 6 7 8 9

Figure 2.31: Analysis vs. Simulation Results: M /M /8
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In Figure 2.31, we plot the approxim ate expected resequencing delay for nine ordinary 

messages, E*[FC0,<1, ■'], in an M /M / 8  system when A =  4.0 and /t =  1.0. We compare this 

result to the corresponding simulation result; the two results validate one another. The 

mean resequencing delay, R,  from the sim ulation is between 0.7177 and 0.7264; the result 

from the approximate expected value is 0.7450.

N - e

P -  varied

jrIDa
&

0

0 .4

0.2

0.2 0 .4 0.6 0.8
P

Figure 2.32: Analysis vs. Simulation Results: M /M / 8

Figure 2.32 plots the two expected resequencing delays of the two-way flush batching 

scenario, simulation and approximate analysis, for an 8 -link system. Although utilization 

varies from no queueing delay to system saturation, the sim ulation and approximate analysis 

results continue to validate one another.

One interesting phenomenon of the two-way flush batching scenario occurs when the 

batch size is increased. The j th  ordinary message in an F-channel application with batch 

size B  has the same expected resequencing delay as the j th  ordinary message in another
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F-channel application regardless of the batch size. If the batch size is increased by one, the 

to tal expected resequencing delay is the previous batch’s total expected resequencing delay 

with the consideration of the additional ordinary message in each batch. T hat is,

E[2FRB+r] =  ( j j f )  E l2 F «b] +  ( 3 ^ 2 )  E[FC0rd' B+1], (2.19)

2 .1 0 .4  B a c k w a rd  F lu s h  B a tc h in g  S c e n a r io

Recall Figure 2.12, the backward flush batching scenario. The delivery of a backward flush 

message is based upon the delivery of the previous backward flush point, which, in this 

situation, is the previous backward flush message transm itted. If a tagged backward flush 

message is ready for transmission, n links are busy, and the number of backward flush 

messages currently transm itting is i, then

FC R bf =  <

0

m a x (ti,T n+i) In + ij 

m ax(t1, t 2, Tn+1) — T n+1,

if i =  0  

if i =  1 

if i =  2

m ax (ti, t 2, . . . ,  t n,T n+i) T nq.j, if i — n

The criteria for delivery of an ordinary message are identical to the criteria for delivery of 

a backward flush message. If i is the number of messages in transit from the predecessor 

set of the tagged ordinary message, i.e., the number of backward flush messages in transit, 

then

F C R °rd =  FCRb f .

In order to  calculate the expected resequencing delay of this batching scenario, we require 

the probability tha t i backward flush messages are in transit when a tagged message is
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transm itted. This probability depends upon the number of message transmissions since 

the transmission of the previous backward flush message. For a backward flush message, 

(D + 1 ) messages have been transm itted since the transmission of the previous backward 

flush message; for the j t h  ordinary message in a batch, j  messages have been transm itted 

since the transmission of the previous backward flush. The probability th a t x backward 

flush messages are in transit a t the transmission of the tagged message is based upon c, 

the number of message transmissions since the transmission of the previous backward flush 

message, and n, the number of busy links. If

pbfc(i | n) =  P { i  backward flush messages in transit | n busy links}

then

FC jjBF. f l+ i  _

pbfB+i(0  I «) 0

+ pbffl+j ( i  | n) (m a x (ti,T n+i)  -  T n+i)  

+ p b fs+ i(£  I n) (m a x ( ti ,t2 ,T n+i) -  Tn+1)

+ pbfB+x(n | n) (m a x ( ti ,t2 , . . . , t n,T n+i ) - T n+i)
n

= ] £ P bfB + i(f l n) (m ax(t1 , t a, . . . , t i , T n+1) - T n+1).
i=0

F C tf? rd’i = Z ) P bfi (  i | n) (m ax(t1 , t 2). . . , t i ,T u+1) -  T n+1). 
i=o

As in the previous batching scenarios, we derive the expected resequencing delay for a 

message in the backward flush batching scenario (DF7E) conditioned on the number of busy 

links in the system. We then remove the conditioning. T hat is,

N —l
E[BFi2] =  E[BFE„],

n=0
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N - 1

Pb( n) E
n = 0

We substitute expressions for FCff®F’ and FCJ2®rd’  ̂ and then simplify the result with 

solutions previously displayed.

B TT )
N - l  n

Pi ( n)X ^ P b fs+1( i I n )E [m ax (ti,t2). . . , t i ,Tn+i) -  T n+1]
,n=0 t=0

N - l  B n
+  ]T) Pb(n) Y 2 Y 2  Pbfi ( ‘ I n )E [m ax (ti,t2, .. . , t i}T n+1) -  T n+1]

n —0 j —1 i—0

-  G*i)
N - l

£ p & ( n ) £ p b f fl+i ( t |  n ) ( - X ^ T  
:’= 0  V L k= 2  KLn= 0

1 ^ 1

B N - l

+EE IE pbfi(* In) ( -  t
j=1 n = 0  ,= 0  \  P  !-•>  h

l  i±i 1

k- 2

(2 .20)

We combine this expected resequencing delay with the waiting and transmission ex

pected delays to  obtain the total delay a message may expect in this batching scenario:

E[BFD] -  + -  +
XNl  (1 - p f  p  \ B  + 1

B  N - l

N - l

J 2 pK«)]CpbfB+i(*ln) - E i
n —0 i= 0  V 1 k= 2 K

1 ^ 1

B  N - l  n  /  1 i+1 i \

+ EE^(«)E pbfi(* In) (- £  k )
j= l  n=0 i= 0  \ P  k=2 /

( 2 .21 )

Lastly, we consider E[BFi£] as B, p, and N  individually increase. Equation (2.20) 

shows tha t E[BFfJ] monotonically decreases when B  increases and all other variables are 

fixed. When p increases, the expected resequencing delay in the backward flush batching 

scenario monotonically increases as well. The argument in support of this fact follows the 

corresponding argument in the two-way flush batching scenario and is, therefore, omitted. 

As before, the expected resequencing delay is bounded at p — 1.0. Finally, consider E[BFil] 

when N  is increased. From equation (2.20) we realize th a t the expected value monotonically 

increases as N  increases. Again, this argument is om itted since it is similar to the one
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presented in Section 2.10.3. E[BF1Z] converges to the expected resequencing delay in a 

system th a t transm its backward flush batches and has an infinite number of links.

W ithout re-iterating the discussion in Section 2.10.3, we approximate pbfc(i A n) with 

pbf£(i'A n). T hat is, in the approximation, we do not acknowledge queueing delay in a 

system with a finite number of links and we assume the individual components within the 

probability, e.g., T  < A, T  < 2 A , . . .  within P { T  < A A T  <  2A A ...} , are independent. Let 

us consider specific examples.

Suppose a backward flush message is tagged and ready for transmission. Then

OO
EfBFEoo] =  X > „  E[B F£b],

(2 .22)

All of the derivations in this section require pbfc(i | n). We know that

n
]T)pbfc( ! |n )  =  1

and

(2.23)

where

pbfc(i A n )  =  P { i  backward flush messages in transit A n busy links}.

pW*fl+,( f lA 0 )  -  P { T  < A } P { T  < 2 A } P { T  < 3 A ]  

— ( 1  -  a ) ( l  — a 2)(l — a 3) . . . .
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If the tagged message is an ordinary message instead of a backward flush message, then the 

probability is equivalent; i.e., given c, pbf^(0 AO) — pbfg+1(0 A 0).

For a second example, consider the transmission of a tagged message with c message 

transmissions, c =  2 ? +  1 if the tagged message is a backward flush, since the transmission 

of the previous backward flush message.

p b S (0 A 2 ) =  [ ( l - a c) ( l - a 2c) ( l - a 3 c) ( l - a 4c) . . . ]

X [ a  (1 -  a2)(l -  a3) .. .(1 -  < 0 ( 1  -  < 0 ( 1  -  <*c+2) ...

+  (1 -  a )  a 2 (1 -  a 3) .. .(1 -  < 0 ( 1  -  < 0 ( 1  -  a c+2) . . .

N -  infinity 
a  - 0 .8

0.20

0 .1 5

0 0 .1 0

0 .0 5

0.00

2 4 6 8 BF
m essage

Figure 2.33: Analysis vs. Simulation Results: M /M /bo
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pbf]!(2 A 1) = [ac (1 -  a 2c) ( l  -  a 3c) ( l  -  a 4c) . . .

+ ( 1  -  a c) a 2c ( 1  -  « 3c) ( l  -  a 4c) . . .

X [(1 -  o ) ( l  -  a 2)( 1 -  a 3) . .  .(1 -  £*c_1) ( l  -  a c+1) ( l  -  a c+2) ...]  .

The above two examples indicate the m ethod to  obtain an approximation of pbfc(i A ri). 

The approximation pbf£(a A n) is a  summation of probabilities. Each probability is a prod

uct of two products. The first product is the probability th a t i backward flush messages are 

in transit; the second product is the probability th a t n — i ordinary messages are in tran

sit. The value c aids us in locating the backward flush messages. The number of possible 

combinations for both the first and second products is oo.

In Figure 2.33, we plot the approximate expected resequencing delay for nine ordinary

0 .3 5 N -  infinity 

a =  2.5 

P a 0.1 

B = 9
0 .3 0

0 .2 5

p 0 .2 0

0 .1 5

0.10
& (FC)

0 .0 5

0.00
2 4 6 8 BF

m assago

Figure 2.34: Analysis vs. Simulation Results: M /M /oo
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messages in a batch, E*[FC0rd’J], and the approximate expected resequencing delay for the 

backward flush message when a = = 0.8. (Recall th a t a represents the average number

of busy links in an M / M / oo system.) We compare this result to R  for a simulated 8 -link 

system with A =  0.8 and p =  1.0. As the figure illustrates, the analytical and simulation 

results validate each other in the backward flush batching scenario as well. The mean 

resequencing delay from the sim ulator is between 0.0389 and 0.0403. The result from the 

analysis is 0.0400.

As in the two-way flush batching scenario, we compare the approximate expected rese

quencing delay for nine ordinary messages when the average number of busy links is a =  2.5 

to R for a  simulated 25-link system with A =  2.5 and /i =  1.0. Figure 2.34 plots the compar

ison of the singular messages. The mean resequencing delay from the simulator is between

0.1213 and 0.1250. The analysis approximates the expected resequencing delay at 0.1241.

0 .4 5

N - 8

P = 0 .5
0 .4 0

0 .3 5

0 .3 0

■D 0 .2 5

0.20

0 .1 5

E‘ |FC]

0.10

0 .0 5

2 BF4 6 Bm essage

Figure 2.35: Analysis vs. Simulation Results: M /M /8
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Figure 2.36: Analysis vs. Simulation Results: M / M / 8

Figure 2.35 plots the approxim ate expected resequencing delay for nine ordinary mes

sages, E*[FC°rd' J], and the approxim ate expected resequencing delay for the backward 

flush message when A =  4.0 and /.i — 1.0 in an M / M / 8  system. We compare this result 

to the corresponding simulation result. In this case, the approxim ate analysis produces 

an expected resequencing delay of 0.1932; the confidence interval from the corresponding 

simulation result is 0.1895 to 0.1949.

Figure 2.36 plots the two expected resequencing delays of the backward flush batching 

scenario, simulation and approxim ate analysis, for an 8 -link system. Although utilization 

is varied from no queueing delay to  system saturation, the simulation and approximate 

analysis results continue to validate one another.



‘For example’ is not proof.
Jewish Proverb

Chapter 3

Verification of a Flush Channel

The previous chapter shows tha t F-channel communication allows the possibility of 

higher bandwidth than communication by a virtual circuit. Unfortunately for the user, 

however, system programming which uses F-channels is more complex than  the conventional 

virtual circuit paradigm. To handle the additional program complexity, we develop an 

axiomatic verification methodology for F-channel communication.

3.1 Im portan ce o f P rogram  V erification

Formal program verification is not heavily used in software development because powerful 

proof techniques are complex and tedious to apply. Instead, programmers convince them

selves of program correctness by executing their program with different input cases. After 

a wide variety of test inputs leads to the intended results, the program mer has increased 

confidence tha t the program is correct. Program testing, in this manner, often accounts 

for more than half the time spent on the entire programming project [IIoa69]. In the case 

of distributed systems, arguing correctness via testing is even more problematic. The dif

ficulty originates from the large number of execution interleaving possible in concurrency. 

To illustrate, there are n\ possible execution orders for n concurrent atomic operations in a

100
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distributed system; testing for correctness must consider each of these 7i! possible executions.

In addition to the inadequacies of program testing, there are other advantages to formal 

verification. One can place greater reliance in a system th a t has been formally verified. 

Such reliance is generally impossible if testing is done exclusively. Another benefit is that 

formal proof techniques uncover invariants of concurrent systems which further increase the 

understanding of the entire system. In fact, one may postulate th a t effective testing and 

formal verification should be viewed as two sides of the same coin [LK91].

3.2 S y stem  C om m u nication  S ta tes

In order to formally discuss distributed programs, a definition of the state  of the system is 

essential [LS84]. The state of a  distributed program has three components:

• The data state is the mapping between program variables and their values.

• The control state is the mapping between the program counters of the programs’ 

processes and operations in the executable code of processes. It tracks the loci of 

control for the individual processes.

• The communication state maps “the network” (hardware and software) onto messages 

sent, received, and in transit. It allows one to deduce the messages which could 

possibly be delivered to the destination process.

Implicit variables, variables to which a program makes no explicit assignment, are typically 

used in operational developments of control and communication state . They encapsulate 

key aspects of the state of a process, but may not affect the execution of the overall system 

in any way [OG76]. For example, a process’ program counter is most useful in Hoare-style 

verification proofs [Lam8 8 ]; its value is altered as a process executes, but a declaration 

of, or direct assignment to, a program counter never appears in a program. Schlichting 

and Schneider [SS84] use several data  structures to  model the communication state  of
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distributed processes using asynchronous communication. The axiom atic semantics of a 

message passing construct are expressed in terms of how the implicit variables which model 

the communication state  are affected by execution of the construct.

3.3 Background: A x io m a tic  P ro o f M eth o d o lo g y

A distributed program consists of a number of separate processes. These processes share 

no common memory, and hence, a process may not access another process’ variables. We 

extend the axiomatic techniques for verification of concurrent and distributed programs 

[LG81, OG76, SS84] tha t require three steps in the proof of a  distributed program: a proof 

in isolation, a satisfaction proof, and a non-interference proof. In [AFR80], the power of 

synchronous communication is used to forgo a non-interference proof. Apt avoids this third 

step by requiring that all assertions only reference local states. In [MC81] and [Sou84], 

the authors also consider synchronous message passing. These two verification techniques 

further stress the importance of the proof in isolation by defining invariants th a t describe 

process interactions. Since we are concerned with asynchronous communication, we review 

all three steps in the verification process presented by [LG81, OG76, SS84]. The first step is 

a Proof in Isolation of all processes which comprise the program. This is achieved through a 

consistent Iloare-style annotation of each process. Let S  be an executable statem ent (atomic 

operation) in a process. The Iloare triple {P}5'{Q} means th a t if 5" is started  in a state 

which satisfies P  and S  term inates, then Q must hold [Hoa69]. P  is the precondition of S,  

pre(S'); Q is its postcondition, post(S'). P  and Q are also termed verification assertions. The 

relationship between post(5') and pre(5') are defined by the semantics of S.  For example, 

consider the assignment statem ent,

*  :=  / ,

where a: is a variable and /  is an expression. Any postcondition of the statem ent must also 

be true before the assignment, but with the old value of a:. This fact is expressed formally
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as the

Axiom o f  Assignment:

{ Q xj }  * : = f  { Q h

where Q j  denotes the textual substitution of /  for every free occurrence of x in Q [Hoa69j.

If each atomic action in a process is annotated with preconditions and postconditions 

such th a t its precondition holds when control is immediately before the action and its post

condition holds when control is immediately after the action, then the process is annotated 

consistently. For every axiomatic proof methodology that follows, we only consider the 

assertions surrounding communication statem ents. The remainder of the proof in isolation, 

verified with traditional Hoare-style annotations, is identical for the different communica

tion paradigms. The Satisfaction Proo/assures tha t postconditions of receives are consistent 

with d a ta  transm itted  by other processes. This step in the verification of a  program is nec

essary since postconditions of receives cannot be verified in isolation—the postcondition 

may make unsubstantiated claims about da ta  values being assigned. The Non-interference 

Proof  establishes th a t assertions in one process are not invalidated by actions in another;

i.e., actions of one process do not interfere with assertions in any other. Once these three 

separate proofs are completed, the distributed program is considered formally verified.

3 .3 .1  S y n c h r o n o u s  C o m m u n i c a t i o n

Synchronous message operations are defined in Iloare’s Communicating Sequential Pro

cesses (CSP) [Hoa78]. An interaction between two processes in CSP can be regarded as a 

distributed assignment statem ent. One serious flaw, which Hoare adm its, is the lack of a 

proof methodology for verification. Levin and Gries extended CSP to develop these missing 

proof rules [LG81]. For a set of distinct communicating processes, let us consider the three
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steps tha t are involved to prove correctness: a proof in isolation, a  satisfaction proof, and 

a non-interference proof.

The proof in isolation is in the Iloare-style discussed above. To complete the proof, the 

verifier first annotates each process in isolation with assertions of the form {P} S  {Q}.  Using 

the axioms and inference rules of the proof system, the verifier proves precondition P  implies 

postcondition Q upon term ination of each statem ent. When the statem ent in a process is a 

communication with another process, one cannot verify P  implies Q.  The soundness of the 

methodology, however, requires that Q be justified. In the proof in isolation, any postcon

dition is allowed—communication statements never term inate in isolation—therefore, the 

verifier assumes tha t Q is correct (a “miraculous postcondition”) in isolation. The role of 

the satisfaction proof is to verify this assumption [LG81].

Suppose P, and Pj are two processes in a communicating system. In process Pj, the 

assertions surrounding the transmission statem ent are

{P} Pjiexpr {T}.

For every matching rece iv e  statem ent in Pj,

{P} P,?var {Q},

we use the satisfaction rule to verify the postconditions of the communication: 

Synchronous Satisfaction Rule:

For every synchronous rece iv e  statem ent and every matching se n d  statem ent, verify the 

following to establish satisfaction:

(P  A P ) (P  A Q )ex p r

The third and final step for proving the correctness of a distributed program is non

interference. A non-interference proof is required when assertions in one process refer to
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variables in another process. One m ust show that for each assertion A,  and for every state

m ent, S,  parallel to  A,  the execution of S  preserves the tru th  of A. S  is considered parallel 

to A  if S  is a statem ent in one process and A  is an assertion in another. Assume that 

we are in a programming context in which only the execution of assignment statem ents, 

se n d  statem ents, and rece iv e  statem ents alter the data  or communication state of a pro

gram. The full im pact of an assignment statem ent is given by the assignment axiom. If a 

se n d  and a rec e iv e  are a matching communication pair, their impact upon the data  and 

communication sta te  must be expressed in terms of satisfaction.

Synchronous Non-interference Rule:

For assertion A  and parallel assignment, sen d  statem ent, or rece iv e  statem ent S,  prove

{A  A pre(5')} S  {A}.

For assertion A  and matching parallel Pj lexpr and P,?var statem ents, prove

(A A pre(Pjlexpr) A pre(P,?var)) => A £ " r.

3.3 .2  A synchronous Com m unication

Schlichting and Schneider extended the proof technique of Levin and Gries from synchronous 

to  asynchronous message passing in [SS84], Of interest in this work is tha t they developed 

proof rules for interprocess communication via unreliable datagram s and reliable virtual 

circuits. W ith unreliable datagram s, messages transm itted through the communication 

channel may be delivered in any order (if delivered at all). In the case of reliable vir

tual circuits, messages are assured delivery in the same order as they were transm itted. 

The following two discussions review the proof rules for these two types of asynchronous 

communication.
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U n re lia b le  D a ta g ra m s :

Following the formal proof technique of Levin and Gries [LG81], proving the correctness 

of a  system with unreliable datagram  communication also requires three steps: a proof 

in isolation, a satisfaction proof, and a non-interference proof. Schlichting and Schneider 

employ two implicit variables for each process to  model the communication 6 ta te  [SS84]. 

One variable is the send m ultiset, 0 7 5 , for process D.  A copy of every message transm itted 

to  process D  is contained in <j d • Likewise, the receive m ultiset, po,  includes a copy of 

every message received by process D.  As messages can only be received if  they have been 

transm itted, the system obeys the following axiom:

Unreliable Datagram Network Axiom :

P D  C  o d -

The proof in isolation of a distributed system, communicating with unreliable da ta

gram s, must take into account the asynchronous nature of the communication. Execution 

of a  transmission statem ent in synchronous communication blocks the process until receipt 

occurs. In the asynchronous situation, the execution of the statem ent

sen d  msg to  D

has the semantic impact of adding the message to od (&d ■= aD © {msg}). The sender then 

continues executing. For the proof in isolation, the assertions surrounding se n d  statem ents 

reflect the fact, using the assignment axiom, that the transmission merely inserts msg into 

o-£i.

Unreliable Datagram Send Axiom :

send  mSS t 0  D  i W )-
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Since a  datagram  rece iv e  is synchronous, its postcondition is miraculous.

Unreliable Datagram Receive Axiom :

{P} rece iv e  msg {<2}.

Consider the rece iv e  statem ent above. By the Unreliable Datagram  Network Axiom, 

a process D  cannot execute the rece iv e  unless there is a message available in the commu

nication channel. Suppose M T E X T  is a message tha t has been transm itted to process D , 

but has not been received; hence M T E X T  e  (<td 0  P d ) where 0  is the multiset difference 

operator. Execution of the rec e iv e  results in the addition of M T E X T  to po  and the 

assignment of M T E X T  to  msg. It is equivalent to the dual assignment

msg,/>D :=  M T E X T , p D (B { M T E X T } .

Unreliable Datagram Satisfaction Rule:

For every unreliable datagram  rece iv e  statem ent, verify the following to establish satisfac

tion:

(P  A M T E X T  6 <„„ 0  p d )) *  Q MT‘£xT,!U<MTDXTy 

The last proof rule required for unreliable datagram s is non-interference.

Unreliable Datagram Non-interference Rule:

For assertion A  and parallel assignment, sen d  statem ent, or rece iv e  statem ent S ,  prove

{A A pre(5)} S  {A}.

For assertion A  and parallel rece iv e  statem ent S , prove

(.A A pre(S) A M T E X T  e W o  0  p d )) => A ^ x r J ^ M T E X T y
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V ir tu a l  C irc u its

V irtual circuits are very popular in many communication networks; the communication 

channel becomes a totally reliable FIFO queue. The proofs concerning distributed systems 

using virtual circuits require the three customary steps: a proof in isolation, a satisfaction 

proof, and a non-interference proof. To model the communication sta te , two implicit vari

ables for each circuit are required. The variable ay  m aintains the messages transm itted on 

the virtual circuit V, while the variable p v  records the messages received from the virtual 

circuit. Both of these implicit variables are ordered sequences of messages. In [SS84] the 

following operations on two sequences, C\ and C i , are defined:

Cl < C2 is true if C\ is a prefix of C 2 ,
Ci +  val is the sequence obtained by appending vai to C \ ,
Ci — C2 is the sequence tha t results from deleting prefix C2 from C \ ,
hd(Ci)  is the first element in C\.

The Virtual Circuit Network Axiom insists that the virtual circuit be a fully reliable 

FIFO channel.

Virtual Circuit Network Axiom:

Pv  <  ov-

We now review the proof methodology for virtual circuit communication. Execution of 

a statem ent

sen d  msg o n  V

is identical to appending the message to  the implicit variable cry (ay  :=  ay  +  msg). The 

process then continues executing.

Virtual Circuit Send Axiom :

{f'C^+msg} sen d  msg on  V  {IV}.
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Except for the different properties involved in m anipulating a y , this axiom is identical to 

the sen d  axiom for unreliable datagram s. The rece iv e  axiom is miraculous:

Virtual Circuit Receive Axiom:

{P} rec e iv e  msg fro m  V  {Q}.

The satisfaction rule for virtual circuits validates the miraculous postconditions of re 

ceive statem ents. If the rec e iv e  statem ent above is executing and M T E X T  =  hd{ay -  p y ), 

then M T E X T  will be assigned to msg and will be appended to the sequence py.  It is equiv

alent to  the dual assignment

msg.pK := M T E X T ,  py  +  M T E X T .  

Virtual Circuit Satisfaction Rule:

For every virtual circuit rec e iv e  statem ent, verify the following to establish satisfaction:

(P  A (ay  -  p v )  ±  <k A M T E X T  =  hd(av  -  pv )) =* Q ^ XT> % +MTBXT.

The following non-interference rule proves tha t the assertions in the proof are globally true. 

Virtual Circuit Non-interference Rule:

For assertion A  and parallel assignment, sen d  statem ent, or rece iv e  statem ent S,  prove

{/I A pre(5)} S  {^1}.

For assertion A  and parallel rec e iv e  statem ent S,  prove

{A A pre(S) A {ay  -  p y )  £  <f> A M T E X T  =  lul{av  -  p v )) =* A I^t e x t , py+MTEXT-
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3.4 A n  A xiom atic  P r o o f M eth o d o lo g y  for F lush  C hannels

Communication with F-channels is different from the previously discussed asynchronous 

communication paradigms due to the dynamic nature of the delivery order requirements. 

We can no longer model the delivery restrictions of the communication state  as a static 

network axiom. Instead, we must construct the delivery order within the send axioms. We 

model the communication state  of F-channel F  as follows. Let op  denote the send multiset 

for F, and let pp  denote the receive multiset for F. We define X+f  on the multiset op,

X +f C (Tjr X Op,

such tha t for m, m ' € op, m  ~ivp m 1 if and only if m  cannot be delivered after to'. The 

-<+F relation is an irreflexive partial order constructed by the delivery order semantics of 

the messages transm itted over F. We find it convenient to define the covering relation of 

■<+F,

-<F Q OF x  Op,

as the smallest relation such th a t its transitive and irreflexive closure is -<+p. In other 

words, if to, to ' 6 op  and m -X+f m', m  -<p to ' if and only if there is no to" 6 op  such that 

t o  -X +f tn" -<+f m ' . As each message is transm itted on F , -X f  *s modified to reflect delivery 

order requirements for the message relative to those messages transm itted previously. As 

messages are transm itted, - < f  is constructed incrementally. X + f  is obtained by closure.

A system using an F-channel has two properties concerning the defined implicit variables. 

Like the previous proof methodologies, a message cannot be received if it has not been 

transm itted. -<+p specifies the required delivery order of each message in op.



C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 111

Flush Channel Network Axiom: For F-channel Ip, the following two properties m ust hold:

En Route Property: pp  C op

Order Property: For m , m '  G op, m '  G pp  (Vm : m  -<+f  m '  :: m  G p f ) .

Given the  network axiom for F-channels, we may proceed with the proof methodology. The 

next three sections give axiomatic proof rules for F-channels following the traditional proof 

technique: a  proof in isolation, a  satisfaction proof, and a non-interference proof. The rules 

are results developed from extending the methodologies presented in Section 3.3. In fact, 

in Section 3.10, we show that the following axiomatic proof methodology for F-channels is 

a true generalization of the verification process for communication with reliable datagrams 

and virtual circuits.

3 .4 .1  P r o o f  in  I s o la t io n

The semantics of an F-channel s e n d  are presented for four cases, each case corresponds to 

the type of the message being sent. Let m denote the composite < type, da ta> , the message 

which is transm itted , in all four of the transmission axioms. To aid in the construction 

of -i+p, the partial order specifying delivery constraints, two additional implicit variables 

are necessary. The backward flush point, rp, is a set which contains the last two-way or 

backward flush transm itted on F. As defined in Section 2.1, any message transm itted after 

a backward flush point must be delivered after the message defining this point. The free 

set, Clp, is a multiset of messages transm itted on F  which have no successor in -<+p. At 

the transmission of a  message th a t flushes the channel in a forward direction (forward flush 

and two-way flush messages), all messages in the free set and their predecessors must be 

delivered before the message being transm itted. Both rp  and t ip  are initially empty. During 

the course of message transmission, f tp  may become arbitrarily large; rp  will be at most a 

singleton. The following four axioms are necessary for a proof in isolation.
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O rd in a ry  M essage  T ra n sm iss io n  Consider the execution of

S i ‘. sen d  < O rd ,d a ta >  on  F .

When an ordinary message is transm itted , it is added to op .  The notation op  := op  0  {m} 

denotes that m is added to  the m ultiset op. Additionally, an ordinary message must be 

guaranteed delivery after the backward flush point. Thus, the partial order is expanded 

to ensure tha t Tp -*&p m. The newly sent message will also be added to the set of free 

messages—nothing follows it in the partial order (yet). Furthermore, the new message 

may remove the current backward flush point, Tp , from the free set. Tp now has a t least 

one successor in the partial order. Operationally speaking then, the net impact of the 

transmission of an ordinary message, m, is simply the multiple assignment:

op, -<p, Qp := o p  ® {m}, -<p ©A(m), f Ip  0  {m} © B {m),

where A(m) =  {(a:,m) | x  £ T p }  and 5 (m ) =  {a; | x  £ T p  A x £ JIf}- As a  notational 

contraction in the assignment to -<p, A(m) represents the potential additional element of the 

partial order which results when m is linked to a non-empty T p .  Likewise, B(m ) represents 

the potential deletion of T p  from the free set.

If W  =  post(5 j), then the assignment axiom allows us to deduce p re(5 j). Execution of 

S \  is equivalent to the three assignments above; namely

Ordinary Message Send Axiom:

S * - s e n d  < O rd ,d a ta >  o n  F  {W}.

Two-way F lu s h  Transmission W hen we transm it a two-way flush, m,

if?2 : se n d  < 2 F ,d a ta >  o n  F ,
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we impose substantial delivery ordering restrictions on the F-cliannel. F irst, the two-way 

{lush must be delivered after every element of the free set (as defined at the instant of m ’s 

transmission). Second, m ’s delivery must precede the delivery of every message transm itted 

after m. In operational terms,

o"Fi -<F> Hf» tf  := op  ® {m}, <f  ®C(m), {m}, {m}

where C(m ) =  { (x ,m ) | a; E  fl;?}. The addition of C'(m) to the partial order effectively 

means th a t any message which was in the free set just prior to  S 2  cannot be delivered after 

m. m then becomes the new free set (it has no successors yet), and it becomes the new 

backward flush point (it must be delivered before every subsequently transm itted message). 

In sum,

Two-way Flush Send Axiom:

: s e »d < 2F .< lata>  ° »  F  {W } .

F o rw a rd  F lu s h  T ra n sm iss io n  A forward flush, m, is transm itted  by

S 3 : sen d  < F F , data>  on  F.

Like a two-way flush, the delivery of a forward flush must be guaranteed after all messages 

in the free set; m becomes the only member of the free set. Unlike a two-way flush, however, 

a forward flush does not become the backward flush point—messages transm itted after m 

may be delivered before m. Transmission of a forward flush makes the following implicit 

assignments:

op , -<f , LIf  := crp ® {m}, A f  ©C(m), {m}.
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The set C (m) is as previously defined in the discussion of the two-way flush.

Forward Flush Send Axiom:

WrtwiWS!) 53; ,“d <pp.d*“» •» F w-

B a c k w a rd  F lu s h  T ra n sm iss io n  We transm it a backward flush message, m, with the 

statem ent

S>\\ sen d  < B F ,d a ta >  o n  F.

Some messages transm itted before m may be delivered after m (elements of the free set), 

therefore, m joins the free set. The addition of Tp -<+f  m to the partial order also (possibly) 

removes Tp from the free set. Lastly, m becomes the new backward flush point—no message 

transm itted  after m may be delivered before it. In operational terms, this means

<t f ,-<f ,SIf , tf  := o F 0  {m},-<7? ® ,4(m ),ilF®  {m} 0  J?(m ),{m }.

The sets -4(m) and -B(m) are as previously defined for ordinary message transmission. 

Backward Flush Send Axiom:

n.)fl;i{„)6«(m),S}} ■Si i se>>d <B P. d“““> • »  p  fW}.

M essa g e  R e c e p tio n  The statem ent

R  : rece iv e  <mtype, m data>  fro m  F  

is synchronous; term ination of this statem ent is in no way dependent upon the action of
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this statem ent. post(i?) is thus allowed to be miraculous. Hence,

Flush Channel Receive Axiom:

{P} R  : rec e iv e  Cmtype, m data>  fro m  F {Q}.

Of course, in a satisfaction proof, Q must be justified relative to P  and the message received 

(see Section 3.4.2).

The preceding discussion illustrates how the delivery order covering relation, -<p, is built 

as messages are transm itted on the F-channel. - ip  is extended to by closure. In order 

for this construction to  be meaningful, we must establish th a t the delivery order restrictions 

defined inherently in the F-channel are exactly represented in the structure of -><+/?. That 

is, if message m  cannot be received after m', then the constructed partial order must reflect 

this fact. Moreover, we require proof that the addition of m -t+p m 1 to the partial order 

implies m  cannot be received after m 1.

T h e o re m  10 Let m  and m 1 be messages transmitted on F-channel F. Then m  <+p m ‘ if  

and only i f  m  -t,+p m 1.

In order to establish this result, several structural properties of must first be pre

sented. We find it convenient to  exploit the graphical representation of the relation in 

making some of our arguments. The directed graph of a binary relation 7Z on set S  is 

G{1Z) — {S, TZ}. T hat is, G(TZ) is a graph on the set of nodes S ,  where edge ($1 , 5 2 ) is in 

edge set E  if and only if E 'R We switch between the graphical interpretation and

the algebraic interpretation as best suits the argument.

L e m m a  8 The binary relation -i+p is an irreflexive partial order.

P ro o f: The principal fact necessary for this proof is tha t on transmission of message m, 

no element of the form (?n, m 1), where m '  is an old element of op ,  is ever added to -ip. In
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graphical terms, this implies th a t G (-<f) is acyclic. Edge (m, m')  is in G(-n+f) only if there 

is a directed path of one or more edges from m  to m'  in G(-Xf).

The rules for the construction of -<p produce an irreilexive, non-transitive, and antisym

metric relation. The transitive and irreflexive closure of -<f preserves the irreflexive and 

antisymm etric properties. ~(+p is made transitive by the closure operator applied to X f . l

Recall the relation,

C fQ  of  x  o f -

For a :,j/€  op-, x C f  V if and only if x is transm itted before y over F-channel F.

L em m a 9 Let m  be a two-way flush or a forward flush sent on F-channel F. m ' -<+p m if  

and only if m' C f  m •

P ro o f: [If] By the axioms which define the semantics of the transmission of a forward or 

two-way flush, m , -<f -=<f  ® C(m )  where C (m )  =  {(a;,m) | x  6 Hf }- If m' 6 Of  when 

m  is transm itted , then m'  -<f  m, and clearly w! X+f rn. Suppose, on the other hand, that 

m ' Of  at the time of the transmission of m .  Then there m ust exist some m"  €  Of  such 

tha t m '  -<+ f  m"; otherwise, m ’ would be a free element. Then by the appropriate send  

axiom and closure, after m  is transm itted , m! -<+f  m -

[Only If] This follows directly from the construction of If m '  -<+F m, then by Lemma 8 

m'  must have been in G{<f ) a t the time m  was added. I

Lemma 9 gives us half of the proof of Theorem 10. We know th a t if m is a two-way or 

forward flush, all messages sent before m  must be received before m. The lemma shows that 

-<+F reflects this fact exactly. When we consider ordinary messages and backward flushes, 

the situation is a bit more complex.
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L e m m a  10 I f  m  is an ordinary  message or a backward flush, and  i f  m! -<f  m ,  then m'  

must  be a two-way  flush or a backward flush, and  there is no message m" £  ml fo r  which 

m" -<f  m .

P ro o f: This proof is similar to  th a t in Lemma 2. We, therefore, do not replicate it here. 

Replace all references to  < f  in Lemma 2 with -<f - B

Recall the BFP-chain defined in Section 2.2. In this situation, however, we define the 

chain using the covering relation instead of the immediate predecessor relation:

chain(m) =  { m k ,m k - i , . . m i} ,

where

mfc -<p n i k - i  -< f • • • < F  rn\ < f  

In the same vein, define P r e d { m ) =  {&• | x -<+f  m}.

L em m a 11 I f  m  is an ordinary message or  a backward flush, then m '  6 Pred (m )  if  and  

only i f  m '  G chain(m) © Pred ( //eac/(cha,i n (m ))).

P ro o f: This proof replicates tha t in Lemma 3. Replace all references to  <+f and <f  in 

Lemma 3 with -<+f  and -<f  respectively. I

Finally, we may establish the tru th  of Theorem 10 through Lemma 9 and Lemma 11. 

The former establishes tha t all messages sent before a two-way or forward flush must be 

received before the flush is received, and -<+p reflects that fact. The latter precisely describes 

the predecessor set of an ordinary message or a backward Hush. The set consists of elements 

th a t must be received before the message that the set defines. Lemma 11 illustrates that 

this predecessor set is represented directly in X+f - In summary, the partial order, as we
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construct it in the operational semantics of the F-channel sen d  primitives, represents the 

receipt-order restrictions exactly.

Figure 3.1 illustrates the same sample of imm ediate predecessors as Figure 1.3. The 

operational construction of the covering relation may be understood with this graph. We 

<Ord,0>

<0rd,2> '

<0rd,4>
<FF,6>

<2F,11><2F,3> <Ord,5>

<0rd,7>

<0rd,9>

<BF,8>
<Ord,10>

Figure 3.1: A Sample Covering Relation 

focus on four messages in order to amplify the rather dry development above.

< 2 F ,3 >  At the time of transmission of this message, there is no backward flush point and 

the ordinary messages numbered zero through two are in the free set. All elements of 

the free set are made predecessors of < 2 F ,3 >  when it is transm itted. This two-way 

flush message also becomes the backward flush point—all messages transm itted after 

it are its successors in -Up.

< F F ,6 >  When this forward flush is transm itted, the free set consists of the ordinary mes

sages < O rd , 4> and < O rd ,5 > . Their delivery m ust precede the delivery of < F F , 6>, 

and hence they precede it in -<p (and, by closure, in -<+f). It is im portant to realize 

tha t, unlike a two-way flush, a  forward flush does not become the new backward flush 

point. Some messages transm itted after a  forward flush may be delivered before it. 

When < F F , 6> is transm itted , it becomes the sole member of the free set. < 2 F ,3 >  

remains the backward flush point.
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< B F ,8 >  The delivery of < B F , 8> may be done in any order relative to < F F ,6 >  and 

< O rd ,7 >  as < B F ,8 >  joins the free set which includes these messages. The delivery 

of < B F , 8> must follow th a t of the backward flush point at the time of its transmis

sion, < 2 F ,3 > . Since < B F ,8 >  becomes the new backward flush point, its delivery 

will precede the delivery of every message transm itted after it.

< O rd ,9 >  This message joins the free set, while it removes < B F ,8 > , a t the time of its 

transmission. After the transmission of the message, the free set contains < F F , 6>, 

< O rd ,7 > , and < O rd ,9 > . It is also linked into the delivery order so tha t its delivery 

succeeds the backward flush point, < B F ,8 > .

3 .4 .2  S a t is f a c t io n

Secure in  the fact tha t the proof in isolation has led to  the description of a partial order 

which is faithful to  F-channel semantics, the role of the satisfaction proof is the resolution 

of the miracle in the F-channel receive axiom.

Consider a specific rece iv e , as annotated for the proof in isolation:

{P} R  : re c e iv e  cm type, m data>  fro m  F  {Q}.

Let M T E X T  be a message which is eligible for receipt. By the en-route property, it 

m ust have been transm itted on the F-channel, but it cannot have been received; i.e., 

M T E X T  € crp © PF' Us receipt m ust also be consistent with the order property as specified 

by -<+p. More precisely,

Vm : m  £ ap  A m  ~i+p M T E X T  :: m  £ pp.

If M T E X T  meets these two requirements, then the rece iv e  effectively behaves as the dual
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assignment:

<m type, m data>  := M T E X T ,

PF >— P f  © {M T EXT } .

In order to establish Q =  post(I2), the above rece iv e  should be executed in a state 

which is the weakest precondition1 [Dij76] of the dual assignment with respect to Q, 

wp(“<m type,m data> ,/?;? :=  M TEXT,  pp  © {MTEXT}",  Q).  Since this statem ent is sim

ply an assignment, we know that

w p(“< m type ,m data> , p F :=  MTEXT, p p @ { M T E X T Y , Q)  =  Q £ S ?;mdBta>'Pp^ {MTEXry

In order to verify satisfaction for the receive, we use the precondition and the F-channel 

network axiom to establish the weakest precondition.

Flush Channel Satisfaction Rule:

For every F-channel receive

{P} R  : rec e iv e  cm type, m data>  fro m  F {Q} ,

verify the following to  establish satisfaction:

P  A ( M TEX T  G crp ©  P f )  A (Vm : m  G op  A m  -<+p M TEX T :: m  € pF)
. r\  < C m typc,m data> t pj?

^  ^ M T E X T , pP ® { M T E X T }

An im portant part of the proof in isolation of the sender is the establishment of invariants

which describe the structure of The structural knowledge is necessary in order to

exploit the F-channel network axiom in the satisfaction proof.

1T he  weakest precondition of action S  w ith respect to  predicate A ,  denoted w p (S , / l ) ,  is the set of all 
s ta tes  such th a t  execution of S  in any one such s ta te  will te rn rn a te  with yl.true. If S  is the assignment 
“x  :=  e” , then, by the assignment axiom, :=  e” , A )  is simply v l f .
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3 .4 .3  N o n - in te r f e r e n c e

The non-interference rules for parallel assertion and statem ents is identical to previous proof 

methodologies. For a rece iv e  statem ent, however, we can use both the en route property 

and the order property to establish the implication.

Flush Channel Non-interference Rule:

For assertion A  and parallel assignment, se n d  statem ent, or rece iv e  statem ent S ,  prove

{ 4 A p re (5 )}  S  {A}.

For assertion A  and parallel rec e iv e  statem ent S ,  prove

A  A pre(S) A (M T E X T  e  crF Q pF ) A (Vm : m  6 a F A m  -<+F M T E X T  :: m  € pF )

. a < m ty p e ,m d a ta > , pp 
^  A  MTEXT ,  pFe { M T E X T ) '

The preceding development is best justified and appreciated by seeing the methodology 

applied. In the following section, we apply the methodology to a distributed application 

th a t uses all four of the flush message types [CK91]. The example illustrates the tedium 

that is necessary to correctly verify the application program. In Section 2.8.2, we discussed 

batching ordinary messages with a flush message type. As the delivery order of each batching 

example is less complex than a  delivery order that uses all four message types, we expect

the hardship of the verification process to  decrease as well. In Section 3.6, we validate this

expectation.
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3.5 V erification  o f a F lu sh  A p p lica tion

In this section, we apply the axiomatic proof methodology for F-channels to  a distributed 

application that uses all four of the flush message types. In the example, the producer 

process transm its two arrays (of unknown size initially) to a  consumer process. The con

sumer sums the elements of the array after all the elements have been delivered. Messages 

are of the form < type,arnum , index, value>  where type is the message type, arnum  is 

the number of the array to which the message belongs, index  is the index number within 

the array, and value is the value of arnum[index]. If less than four entries are required 

for a message, then the extra entries are transm itted as zero. A two-way flush message is 

transm itted to begin the application and denote the end of any previous applications; (ap

0  pF} =  0 a t the delivery of this message. To simplify the example, we assume &f and 

PF are empty before the transmission of the initial two-way flush transmission. Backward 

flush messages are used to  transm it the size of each array to the consumer. The program 

uses ordinary messages to transm it the elements of the array; these elements cannot be 

delivered until the size has been delivered. Lastly, forward flush messages denote the end

01 the array’s transmission. At this tim e, the consumer can sum the array. In the example, 

the consumer’s auxiliary variable X is an array of five sets, initially empty, tha t contain the 

messages delivered. Figure 3.2 illustrates the covering relation of this application example.

<O rd,1,1,A [1]>.

i,0>

j  <O rd.1,1,A [1]>«.

A  <Ord,1,2,A[2]>
n r . . .  . ^ % < F F , 1.3.0<2F,1,0,0>

■ <O rd,1,a,A [a]>-\^<Or
\  .  <Ord,2,1,B[1]>

\ <Ord,2,b,B[b]>

Figure 3.2: The Covering Relation

■<FF,2,b,0>
<BF.2,b,0> <°rd ,2 ,2 ,B [2 ]> ■

,<FF,2,b,0> — ► - <2F.2,0,0>
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PROD:: var A 
B
a,b
i

: array 1..M of integer; 
: array 1..N of integer;
: integer;
: integer;

... PREVIOUS APPLICATIONS ... 
s i :  se n d  (2F , 1, 0, 0) o n  F; 
find(a);
s2: se n d  (B F , 1, a, 0) on  F; 
i : = 0 ;
w h ile  i < a do

i := i +  1;
s3: sen d  (O rd , 1, i, A(i]) on F;

od;
s4: sen d  (F F , 1, a, 0) on  F; 
find(b);
s5: sen d  (B F , 2, b, 0) on  F; 
i :== 0;
w h ile  i < b do

i :=  i -f 1;
80: se n d  (O rd , 2, i, B[i)) on  F;

od;
s7: se n d  (F F , 2, b, 0) on  F; 
s8: se n d  (2F , 2, 0, 0) o n  F;

... FOLLOWING APPLICATIONS

*new application message* 
*find size of first array* 
*send size of first array*

*ok to sum first array* 
*fmd size of second array*
* send size of second array*

*ok to  sum second array* 
*new application message*

CONS:: var C 
D 
c,d
mtype 
marnum 
mindex, mvalue
j
done
sumC, sumD

array 1..M of integer; 
array 1..N of integer; 
integer;
{ 2F , B F , O rd , FF};
integer;
integer;
integer;
boolean;
integer;

... PREVIOUS APPLICATIONS ... 
C, D, sumC, sumD, done, X := $ , <F, 0, 0, fa lse ,  $ ; 
w h ile  n o t done do

r l :  rece iv e  (mtype, marnum, mindex, mvalue) fro m  F; 
case  mtype o f

2F: X[l] := X[l] U {marnum};
if  marnum = 2 th e n  

done true;
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fi;
B F : X[2] :=  X[2] U {marnum}; 

if marnum — 1 th e n  
c := mindex 

e lse
d :=  mindex:

f i;
O rd : if  marnum  = 1 th e n

C[mindex], X[3] := mvalue, X[3] U {mindex} 
e lse

D[mindex], X[4] :=  mvalue, X[4] U {mindex};
fi;

F F : j, X[5] := 0, X[5] U {marnum}; 
if  marnum =  1 th e n  

w h ile  i < mindex do
j := j +  1;
sumC := sumC +  C[j];

od
else

w h ile  j < mindex do
j := j +  i;
sumD := sumD +  D[j];

od;
fi;

od;
... FOLLOWING APPLICATIONS ...

To aid in the annotation of the producer process, we define the invariant

/  =  Vm G ctf ’■ T ( m ) .

The predicate, T { m ) ,  describes the state of the implicit variables at the transmission of 

message m .  As shown in Figure 3.2, m  is the composite

m =  < m . t y p e , m . a r n u m , m . i n d e x , m . v a l u e > ,

where m.type  is the type of the message, m.arnum  is the number of the array (1 or 2), 

m. index is the index in the array, and m.value  is the element of the array at m.index.  The



C H A P T E R  3. VERIFICATION OF  A FLUSH CHANNEL 125

annotation of the producer must establish the structural properties of the receipt order—the 

satisfaction and non-interference proofs explicitly require this information. On a message- 

by-message basis, I  states those required structural properties. Given tha t there is only a 

single F-channel in this example, we drop the F  subscript on the relevant implicit variables.

The form of I  deserves some discussion since it is the entity by which allowable message 

receipt order is factored into our reasoning. As each message is transm itted, it is incor

porated in the implicit variables to describe the subsequent communication state  of the 

F-channel. The transmission of a new message, m, however, will not remove any previously 

transm itted  message from a\ nor will it remove any previously established edge (message 

pair) from -<. The only possible change in a  is the addition of the newly transm itted mes

sage. The only possible changes in the structure of -< are new links between elements of 

the set representing the backward flush point or of the set representing free messages (as 

this set was ju st before the transmission of rn) and m  itself. Anything which was asserted 

about a  and -< before the transmission of m,  must still be true after the transmission of 

m .  If  m '  is the message transm itted  immediately before in and if I ( m ' )  is true, then I (m ')  

will be true after the transmission of m. Now, however, T(m )  will be true also. It is easy 

to  extend this argument inductively to see that I  follows.

The form of I  clearly restricts the form of I .  It m ust be parameterized in such a way 

tha t it remains true even after subsequent messages are transm itted. Absolute statem ents, 

say |<r(«i)| =  6, would not be valid. In the examples which follow, we take advantage 

of our knowledge of the receipt-order relation to state the values of the implicit variables 

just after the transmission of message m parametrically in terms of in itself. As will be 

shown explicitly in the detailed proof of the producer/consumer system below, I  is initially 

vacuously true in the producer; as each message is transm itted by the producer, I  is shown 

to be preserved. In the consumer, we show that no local action or communication invalidates 

I, and thus, I  is treated as a global invariant of the system.

We explain our use of /  in contrast with Schlichting and Schneider’s treatm ent of vir



C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 126

tual circuits [SS84]. The receipt order for a virtual circuit is much simpler than that for 

an F-channel—it is the same as the transmission order. The virtual circuit receipt-order 

restriction is static in the sense tha t the sender cannot specify alternative receipt orders. 

There is a single receipt order; the messages in the send multiset are totally ordered by 

time of transmission. This fact is explicitly used in their proofs through the operators on 

sequences. In a sense, their methodology implicitly uses an I  which states th a t (among 

other things) if message m is transm itted before message m',  then m  will be received before 

m ' .

An F-channel allows as many receipt orders as there are distinct topological sorts of

Further, the sending process “builds” -< as it sends messages. In this sense, the receipt 

order for an F-channel is dynamic: it is not known before the sender executes, and it is 

constructed incrementally as the sender transm its successive messages. I  is sufficiently weak 

to capture the complexity of the F-cliannel in a predicate which is globally true. We rely 

upon I  (and the F-channel network axiom) in the receiving process to manage explicitly 

the complex receipt-order requirements.

As mentioned, T{m)  describes the state  of the implicit variables at the transmission 

of m. We let the state  of the implicit variables just following the send of message m  be 

denoted as cr(m), r (m ), and Sl(m).

T{m )  =  A A Tr (ra) A

where
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^a(m) =  (<m.iype, m .am um >  — < 2 F ,1 >  =*► (cr(m) =  D,
where D  =  {< 2F , 1 ,0 ,0>}))

A (<m.type, m.arnum> = < B F , 1> =>■ (a(m ) = D © E ,  
where E  = { < B F ,1 ,« ,0 > } ))

A (<m.type, m.arnum> = < O rd , 1> =  X) ffi F  ffi F(in.index),
whereF(x) = {fi | Vi : 0 <  i < x  :: < O rd , 1, i, /l[i]>}))

A (<m.type, m.arnum>  =  < F F , 1> =*► (a(m ) = X> ffi F  ffi F (a ) © G, 
where G =  { < F F , 1, a ,0> }))

A (<m.type , m.arnu7«> = < B F , 2> =>- (a(m ) = X> © E  © F(a)  © G © II, 
w here// =  {< B F ,2 ,6 ,0 > } ))

A ( <m.type , m.arnum>  =  < O rd , 2> =>• (c(m ) = X) ffi F  © P (a ) © G © / /  © J(m .index), 
where J (x )  =  {/i | Vi : 0 <  i < x  :: < O rd , 2, i, X?[i]>}))

A ( <m.type, m.arnum>  =  < F F ,2 >  =>• (a(m ) — X> © E  © F (a ) © G © / /  © 7(6) © A', 
where AT =  { < F F ,2 ,6 ,0 > } ))

A (<m.type, m.arnum> — < 2 F ,2 >  => (a(m ) =  F  ffi F  ffi F (a )  © G © / /  ffi 7(6) © K  © L, 
whereX =  { < 2 F ,2 ,0 ,0 > } ));

T ^ ( m) =  (<m .type,m .arnum > = < B F ,1 >  => (-<(m) =  N ,
where N  = {(//.i,/t2) | Hi =  < 2 F , 1 ,0 ,0> A /r2 = < B F , 1, a ,0> }))

A (<m.type , m.arnum>  =  < O r d , l>  =£• (--<(m) =  iV ffi O(m.index), 
where 0 (z )  = {(/iX,/z2) | Vi : 0 < i < a; :: /zx =  < B F , 1, a, 0>

A//2 = < O rd , 1, j, >l[i]>}))
A (<m.type, m.arnum>  =  < F F , 1> =>■ (x (m ) =  N  © 0 (a )  ® P,

where P  = { (^ i,/r2) I Vi : 0 < i < a :: /zx =  < O rd , 1 ,z, d[i]>
A/t2 = < F F , 1, a, 0>}))

A ( <m.type , m.arnum> -  < B F ,2 >  => H ( a i)  =  N  © 0 (a )  © P  © Q, 
where Q - {(/zx,/z2) | /tx = < B F , l , a ,0 >  A /t2 =  < B F ,2 ,6 ,0>}))

A (<m.type , m.arnum> -  < O rd , 2> (-^(m) =  JV ffi 0 ( a )  © P  © Q ffi R(m.index),
where R (x)  = {(/zx,/i2) | Vi : 0 < i < x :: /tx =  < B F , 2 ,6 ,0>  A /z2 =  < O rd , 2, i, P[i]>})) 

A (<m.type, m.arnum> = < F F ,2 >  => (-<(m) =  N  ffi 0 (a )  © P  ffi Q ffi P(6) ffi S, 
where S  = {(h i , h2) I (Vi : 0 < i < 6 :: pi = < O rd ,2 , j, F [i]>  A /z2 =  < F F ,2 ,6 ,0 > )

V(/tx =  < F F , 1, a, 0> A /z2 =  < F F , 2, 6 ,0>)}))
A (<m.type,m .arnum>  =  < 2 F ,2 >  => (-<(ro) =  jV ffi 0 (a )  ffi P  ffi Q ffi P(6) ffi S  ffi T, 

where T  = {(/ix, / i2) | /tx =  < F F , 2, 6,0> A /z2 =  < 2 F , 2 ,0 ,0>}));

^r(m) =  (<m.type, m.arnum> = < 2 F , 1> =$■ r(m )  — {< 2 F , 1, 0 ,0>}) A
((m.type ^  2F  A m.arnum  = 1) =J- r ( j« )  =  { < B F , l ,a ,0 > } )  A 
((m.type ^  2F  A m.arnum  = 2) ^  r (m )  =  { < B F ,2 ,6 ,0 > } ) A 
(< m .type,m .arnum >  =  < 2 F ,2 >  =>• r(rrc) =  { < 2 F ,2 ,0 ,0>});
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(m) =  ( (m . ty p e  ^  O rd  A m .a rn um  =  1) =>- Sl(m)
=  { < m . t y p e , m .a r n u m , m.index ,  m . d a t a > })

A ( < m . t y p e ,  m . a r n u m >  — < O rd , 1> => f i(m ) =  {/i | Vi : 0 <  i  <  m. index  :: 
< O rd , l , i ,  A [i]> })

A ( < m . t y p e ,  m . a r n u m >  — <BF, 2> => t l ( m )  = {<FF,  1, a, 0 > , <BF, 2, b, 0 > })  
A ( < m . t y p e , m . a r n u m >  — < O rd ,2 >  =>■ Q ( m )  =  {<FF, l , a , 0 >

A (/i | Vi : 0 <  i <  m. index  :: < O rd , 2, i, B [i]> )} )
A ( ( < m . t y p e , m . a r n u m >  =  < F F , 2> V  < m . t y p e ,  m . a r n u m >  =  < 2 F ,2 > )

=> f l(m ) =  { < m . t y p e ,  m .a rnu m ,  m . i n d e x , m.data>}) - ,

This relatively intim idating set of assertions merely states, in tedious but complete 

logical term s, the sta te  of the implicit variables just after the transmission of message m  by 

the producer process. For example, the first conjunct of describes the edge in -< as it

appears immediately after the transmission of the first backward flush message. The second 

conjunct defines those edges which go from this backward flush message to the ordinary 

messages th a t transm it the first array. The third conjunct defines those edges which go 

from these ordinary messages to the forward flush message; a message tha t signals the end 

of the array transmission. It is merely a restatem ent of what is drawn in Figure 3.2.

PROD:: var A : array 1..M of integer;
B : array 1..N of integer;
a,b : integer;
i : integer;

... PREVIOUS APPLICATIONS ... 
{ /}

s i :  sen d  (2F , 1, 0, 0) on  F;
{ /}

find(a);
{ a <  M A /  }

s2: se n d  (B F , 1, a, 0) o n  F;
{ a  <  M A /  }

i := 0;
{ i  =  0 A a < M A / }  

w h ile  i < a do
{ i < a A a < M A / }

i := i +  1;
{ i < a A a < M A / }

s3: sen d  (O rd , 1, i, A[i]) o n  F;
{ i < u A u < M A / )
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od;
( i = a A a < M A [ }

s4: se n d  (F F , 1, a, 0) on  F;
{i  =  a A a < M A / }

find(b);
{ b < N A i = » A

s5: s e n d  (B F , 2, b, 0) on  F;
{ b  <  N A i =  a

i := 0;
{ i =  0 A b  <  

w h ile  i < b do
{ i <  b  A b  <

i := i +  1;
{ i <  b  a  b  < 

s6: se n d  (O rd , 2, i, B[i]) o n  F;
{ i <  b  A b  <

od;
{ i =  b  A b  <

s7: s e n d  (F F , 2, b, 0) o n  F;
{ i =  b A b <

s8: s e n d  (2 F , 2, 0, 0) on  F;
{ i =  b  a b  <

... FOLLOWING APPLICATIONS ...

The proof in isolation of the producer is straightforward. The invariant tru th  of I  is 

established as part of that proof. Initially, it is trivially true. As successive messages are 

sent, I  is inductively validated through application of the Send Axiom apropos of the type 

of message being transm itted. As an example, consider the sen d  statem ent labeled s4  in 

the code of the producer. We need to prove

{i =  a A a <  M A /}  s4 {i =  a A a < M A /} .

Given th a t i =  aAa < M follows directly from the precondition, we concentrate on I  and the 

semantics of the transmission of the forward flush message according to  the Forward Flush 

Send Axiom. The semantic effect of s4 is th a t message m  =  < F F , l ,a ,0 >  is transm itted



C H APTE R 3. VERIFICATIO N OF A FLUSH CHANNEL 130

on F. More precisely, we m ust show that

f «(">)■. . r r l
1 <7(m)®{m},-<(m)(I)C7(m),{m} J I /•

We can show this easily. We may check every conjunct of T{m )  for every message in a(m )  

to validate tha t /  is, in fact, preserved across s4.

In the consumer, the invariant tru th  of /follows directly from the tru th  of I  as established 

by the producer and the fact that no action in the consumer affects any variable used in I. 

We defer the non-interference aspects of this claim until later in this section.

Defining the set of messages which have been consumed thus far (in terms of the con

sumer’s variables X, C, and D) is helpful:

C (X ,C ,D ) =  {n  | (/i = < 2 F ,i ,0 ,0 > A  i £ X[l]) V  (f i  =  < B F , i , j ,0 >  A i £ X[2])

= < O rd , 1 , i ,  C[i]> A i £ X[3]) V  (ft =  < O rd , 2, i, D[r']> A i 6 X[4]) 

V ( / i  =  < F F , t ,  j ,  0>  A i € X[5])}.

A newly received message (with its  type assigned to the consumer’s variable mtype, its 

array number assigned to m arnum , its index assigned to mindex, and its value assigned to 

mvalue) must satisfy the following param etric assertion:

A/(X, C, D) = (mtype =  2F  A marnum ^  X[l] A ((m arnum  = 1 A Vi' : 1 < i < 5 :: X[i] =  <f>)
V(marnum =  2 A |X[1]| =  1 A |X[2]| =  2 A |X[3]| =  c A |X[4]| =  d A |X[5]| =  2)))

V(mtype =  B F  A marnum ^  X[2] A ((m arnum  =  1 A mindex < M A |X[1]| =  1 
AVi : 2 < i < 5 :: X[i] =  <fi)

V(marnum = 2 A mindex <  N A |X[1]| =  1 A |X[2]| =  1 A |X[3]| < c A X[4] =  <f> A |X[5]| < 1))) 
V(mtype =  O rd

A((marnum =  1 A mindex £ X[3] A |X[1]| =  1 A 1 < |X[2]| < 2 A |X[3]| < c 
A|X[4]| < d A X[5] =  <j>)

V(marnum =  2 A mindex £ X[4] A |X[1]| =  1 A |X[2]| =  2 A |X[3]| < c
A|X[4]| < d A |X[5]| < 1)))

V(mtype = F F  A marnum ^  X[5]
A((marnum =  1 A |X[1]| =  1 A 1 < |X[2]| < 2 A |X[3]| =  c A |X[4]| < d A X[5] -  <j>) 
V(marnum = 2 A |X[1]| =  1 A |X[2]| =  2 A |X[3]| =  c A |X[4]| =  d A |X[5]| =  1))).
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The above assertion follows from our understanding of the structure of the receipt-order 

relation. It is miraculous in the proof in isolation of the consumer. Establishing its tru th  is 

the primary task in the satisfaction proof.

CONS:: var C : array 1..M of integer;
D : array 1..N of integer;
c,d : integer;
m type : { 2F , B F , O rd , FF};
m arnum : integer;
mindex, mvalue : integer;
j  : integer;
done : boolean;
sumC, sumD : integer;

... PREVIOUS APPLICATIONS ...
{ p = 0 A l }

C, D, sumC, sumD, done, X := 0, 0, 0, 0, fa lse ,  $ ;
{ C = 0 a D = 0 A  sum C =  O A  sum D =  0 A done =  j  alse A X  =  <£A/? =  0 A / }  

w hile  n o t done do 
{ done =  false  A p — C (X ,C , D) A /  }

r l :  rece iv e  (mtype, marnum , mindex, mvalue) fro m  F;
{ N (X , C ,  D) A done == false  A p — C(X, C ,D ) ffi {< m type, m arnum , m index, m value>} A I  }

case  m type o f
2F: X[l] := X[l] U {marnum};

{ done =  false  A m type =  2 F  A m arnum  C X [l] A ((m arnum  =  1 A |X[1]| =  1 A V i: 2 <  i <  5 X[i] =  <fi)
V(m am um  =  2 A |X [l]| =  2 A |X[2]| =  2 A |X[3]| =  c A |X[4]| =  d A |X[5]| =  2)) A p =  C(X, C, D) A I  }

i f  marnum = 2 th e n
{ done — false  A m type =  2 F  A m arnum  6 X[l] A m u n u m  =  2 A |X[1]| =  2 A |X[2]| =  2

A | X [3] J =  cA  |X[4]| =  d A |X[5]| =  2 A p =  C(X, C, D) A /  }

done := true;
{ done =  true A m type =  2 F  A m arnum  €  X [ 1] A m arnum  =  2 A |X[1]| =  2A  |X[2]| =  2 

A|X[3]| =  c A |X[4]| =  d  A |X[5]| =  2 A p =  C(X, C, D) A I  }

fi;
B F : X[2] := X[2] U {marnum};

{ done =  false  A m type =  B F  A m arnum  € X [2] A p =  C(X, C, D ) /

A ((m airnum = 1 A m index <  M A |X[1]| =  1 A |X[2]| =  1 A Vi : 3 <  t <  5 i: X[i] =  0)

V (in am u m =  2 A m index <  N A |X[1]| =  1 A |X[2]| =  2 A jX[3]J <  c A X[4] = <j> A |X[5]| <  1)) }

i f  marnum = 1 th e n
{ done =  false  A m type =  B F  A m arnum  6 X[2] A m arnum  =  1 A m index <  M

A |X [1]| =  1 A |X(2]| =  1 A V i: 3 < . < 5 :: X[i] =  <j> A p  =  C (X ,C ,D ) A /  }

c :=  mindex
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{ c =  m index A done — false  A m type — B F  A m arnum  6  X[2] A m am um  =  I  A m index <  M 

A |X [l]| =  1 A |X[2]| =  1 A V i : 3 <  . <  5 :: X[i] =  <t> A p =  C(X, C ,D ) A ( }  
e lse

{ done =  false  A m type =  B F  A m arnum  £ X[2] A m arnum  =  2 A m index < N
A|X[1]| =  1 A  |X [2]| =  2 A |X [3]| <  c A  X[4] A  |X[5]| <  1 A  p =  C(X,  C, D) A /  }

d := mindex;
{ d  =  m index A done =  false  A m type =  B F  A m arnum  6  X[2] A m arnum  =  2 A m index <  N

A|X[1]| =  1 A |X[2]| =  2 A |X [3]| <  c A X[4] =  $  A |X[5]| < 1 A P =  C (X ,C t D) A /  }

fi;
O rd : if  marnum = 1 th e n

{ done =  fal se  A m type =  O rd  A m arnum  =  1 A m index fZ X[3] A |X[1]| =  1 A 1 < |X[2]| < 2

A|X[3]| < cA  |X[4]| <  d A X[5] =  A p =: C (X ,C ,D ) ffl {<m type, m am um , m index,m value>} A I  '

C[mindex], X[3] := mvalue, X[3] U {mindex}
{ Cfmindex] =  mvalue A done =  false  A m type =  O rd  A m am um  =  1 A m index £  X[3]

A |X[1]| =  1 A 1 <  |X[2]| <  2 A |X[3]| <  cA  |X[4]| <  dA X [5] =  <j> A p = C(X, C, D) A I  }

else
{ done =  false  A m type =  O rd  A m am um  =  2 A m index {S X[4] A |X[1]| =  1 A |X[2]| =  2

/\|X[3]| <  c A |X[4]| <  d  A |X[5]| <  1 A p =  C (X ,C , D) ® { <m type, m arnum , mindex, m vaiue>} A I
D[mindex], X[4] := mvalue, X[4] U {mindex};

{ D[mindex] — mvalue A done =  false  A m type =  O rd  A m am um  =  2 A m index £ X[4]

A|X[1]| =  1 A |X[2]| =  2 A |X [3]| <  c A |X[4]| <  d A |X[5]| <  1 A p = C(X, C, D) A /  }

f i;
F F : j, X[5] :=  0, X[5] U {marnum};

{ j  =  0 A done =  false  A m type =  F F  A m arnum  £ X[5] A p =  C(X, C, D) A /

A ((m am um  =  1 A |X[1]| =  1 A 1 <  |X[2]| <  2 A |X[3]| =  c A |X[4]| <  d  A |X[5]| =  l )  

v(m arnum  =  2 A |X[l]| =  1 A |X[2]| =  2 A |X[3]| =  c A |X[4]| =  d A |X[5]| =  2))} 

i f  marnum = 1 th e n
{ ;  =  0 A done =  false  A m type =  F F  A m am u m  £ X[5] A m arnum  = 1 A  (X[l II =  1 A 1 <  |X[2]| <  2

A|X[3]| =  c A |X[4]| <  d A |X[5]| =  1 A p =  C(X, C, D) A /  } 

w h ile  j <  mindex do
{ j  <  m index A aumC =  5 ^ ;=1 C[i] A done =  false A m type =  F F  A m arnum  £ X[5] A m arnum  =  1 

A|X[1]| =  1 A 1 <  |X[2]| <  2 A |X[3]| =  c A |X[4j| <  d A |X[5]| =  1 A p = C(X, C, D) A /  }

j := j +  i;
{ j  <  m index A suraC =  ^  d °ne  ~  fa l se  A m type =  F F  A m am um  £ X[5] A m arnum  =  1

A|X[l]| =  1 A 1 <  |X[2]| <  2 A | X [3] | =  cA  |X[4]| <  d A |X[5]| =  1 A  p = C(X, C, D) A /  }

sumC :=  sumC +  C[j];
{ j  <  m index A sum C : C[i] A done =  fal se  A m type — F  F  A m arnum  £ X[5] A m arnum  =  1

A|X[1]| =  1 A 1 <  |X[2]| <  2 A |X[3]| =  c A |X[4]| <  d  A |X[5]| =  1 A p =  C(X, C, D) A /  }

od
else

{ i  =  0 A done — false  A m type — F F  A m arnum  €  X[5] A m arnum  =  2

A|X[1]| =  1 A |X[2]| =  2 A IX [3] j =  c A |X[4]| =  d  A |X[5]| =  2 A pee C{X, C, D) A /  }

w h ile  j <  mindex do
{ j  <  m index A sumD =  X2i=i *-4*1 ^  (l° ne =  false A m type =  F F  A niarnuiu  £  X[5] A inarnum  =  2 

A|X[1]| =  1 A |X[2]| =  2 A |X[3]| =  c A |X[4]| =  d  A |X[S]| =  2 A p =  C(X, C, D) A /  }
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j j  +  i;
{ j  <  m index A sumD =  D[i] A done =  fal se  A m type =  F F  A m arnum  G X [5] A m arnum  =  2

A |X [1)| =  1 A |X [2]| =  2A  | X [3] ] =  c A |X [4 ]| =  d A |X [5 ]| =  2 A p =  C (X , C, D) A /  }

sumD := sumD +  D[j];
{ j  <  m index A sumD =  D[i] A done =  false  A m type =  F F  A m arnum  G X[5] A m arnum  =  2

A|X[1]| =  1 A |X[2]| =  2 A IX[3]I =  c A |X[4]| =  d A |X[5]| =  2 A p =  C(X, C, D) A /  } 

od;
fi;

od;
{ done =  true A |X[1]| =  2 A |X[2]| =  2 A |X [3]| =  c A |X[4]| =  d  A |X[5]| =  2 A p =  C(X, C, D) A f}

... FOLLOWING APPLICATIONS ...

We omit the proof in isolation of the consumer as it is straightforward. The invariant 

tru th  of I  is detailed in the non-interference discussion later in this section. We justify the 

miraculous postcondition of the rec e iv e  next. Let M T E X T  denote the message which is 

being received, i.e., cm type,m arnum , m index,mvalue>.

The antecedent in the satisfaction proof is

p re ( r l)  A (M T E X T  £ a  0  p)  A (Vm : m  G a  A m -<+ M T E X T  :: m  6 p).

We may substitute for p re ( r l) , yielding

(done = f a l s e A p  = C(X , C, T>)aT)A(MTEXT  6 aQp)A(Vm.  : m  € a  A m  -<+ M T E X T  :: m  G p).

Our obligation in the satisfaction proof is to  establish the tru th  of the following consequent 

assuming the previously stated antecedent:

i /  i  \< m ty p e fuiuriium ,m index,invalue> , p 
p o s i ^ n  ) MTEXTi  p® {MT EXT } '

or equivalently, we need to show

(A/'(X, C ,D) A done -  fa ls e  A p  =  C(X, C ,D)

0{< m type, marnum, mindex, m value>) A / )  jT S y r;m“ nUm,™ndeX,inVaIUe>,pe{Mr£A-r}-
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Given th a t (done =  fa lse  A p =  C(X, C, D) A I)  is in the antecedent, then clearly 

(done =  fa ls e  A p ®  {M T E X T }  =  C(X, C, D) ® {M T E X T }  A I) .

Therefore, we concentrate on A/^Xj C j D).

When the rece iv e  statem ent executes, we may ascertain several facts about the trans

mission of M T E X T  (i.e., the message being added to p). The field mtype can be any of the 

four message types. This follows from T a(MTEXT) which we know must be true for every 

element of p from the tru th  of /  and the fact th a t the en route property requires p C a. 

Suppose tha t mtype is 2F . From the cn route property and T a (MTEXT)>  we know that 

<m type, marnum, mindex, invalue> has not been received before and, therefore, marnum is 

not an element of X [l]. We also know, based on the order property and T ^ , ( m t e x t ) - >  

this two-way flush is either the first or the last message to  be received. This fact allows us 

to specify the number of values th a t must be in each element of X. In sum,

{ M T E X T  =  < 2 F ,p ,0 ,0 >  A p 0 X[l] A ((p =  1 A Vi : 1 < * < 5 :: X[i] =  <j>)

V(p = 2 A |X[1]| =  1 A |X[2]| =  2 A |X[3]| =  c A |X[4]| =  d A |X[5]| =  2))).

If we assume the message being received is a backward flush, then we can show facts 

about this message as well. F irst, as in the previous case, marnum  is not an element of X[2]; 

this follows from the fact the message has not been received before. Second, if the value 

of marnum is one, then, based on the order property and I - < ( \ i t e x t ) i this is the second 

message to be received (following the previous two-way flush message). If, on the other 

hand, the value of marnum is two, then based on the order property and T ^ ( m t e x t ),  this 

message is received after the first backward flush; ordinary messages and the forward flush 

for the first array may be received before or after this second backward flush. These facts 

lead us to  the following clause:
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(M T E X T  =  < B F , g ,» ,0 >  X[2] A ((q =  1 A v <  M A |X[1]| =  1 A Vi : 2 <  i <  5 :: X[i] =

y(q =  2 A v <  N A |X[1]| =  1 A |X[2]| =  1 A |X[3]| <  c A X[4] =  <f> A |X[5]| <  1))).

The index from the receipt of an ordinary message, based on the en route property and 

Z a(MTEXT)-> wiH not be an element of X[3] if the message pertains to the first array or will 

not be an element of X[4] if the message pertains to the second array. Suppose marnum 

is one. From the order property and I -^(MTEXT) > we know the first two-way flush and the 

first backward flush must be received. We also know the second backward flush message 

may be received, but neither forward flush message can be received. If we suppose marnum 

is two, then we know, from the order property and T^(\fXEXT)i the first two-way flush and 

both backward flush messages must be received, however, the  first forward flush message 

may or may not be received. In other words,

(M T E X T  = < O rd , s, t ,u >

A ((a =  1 A f 0  X[3] A |X[1]| =  1 A 1 < |X[2]| < 2 A |X[3]| < c A |X[4]| < d A X[5] =  <f>) 

V(a =  2 A t 0 X[4] A |X[1]| =  1 A |X[2]| =  2 A |X[3]| <  c A |X[4]| < d A |X[5]| < 1))).

Lastly, the index from the receipt of a  forward flush message, based again on the en 

route property and T a{MTEXT)i cannot be an element of X[5]. Furthermore, based on the 

order property and T ^ ( m t e x t )i the backward flush message and all the ordinary messages 

for the array ended by this forward Hush must have been received.

(M T E X T  =  < F F , w, x, 0> A w g  X[5]

A((u> =  1 A |X[1]| =  1 A 1 < |X[2]| < 2 A |X[3]| =  c A |X[4]| < d A X[5] =  <j>)

V(w =  2 A |X[1]| =  1 A |X[2]| =  2 A |X[3]| =  c A (X[4]| =  d A |X[5]| =  1))).

Combining what we have established,
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( (M T E X T  = < 2 F ,p ,0 ,0 > A p £ X [ l ]A  ((p =  1 A Vi : 1 <  i < 5 :: X[i] =  4>)
V(p =  2 A |X[1]| =  1 A |X[2]| =  2 A jX[3]| =  c A |X[4]| =  d A |X[5]| =  2)))

V ( M T E X T  =  < B F , q, v, 0> A q i  X[2] A ( ( « = 1 A i > < M A  |X[1]| =  1 A V i : 2 < i < 5 :: X[*J =  <f>) 
V(q = 2 A v < N A |X[1]| =  1 A |X[2]| -  1 A |X[3]| < c A X[4] =  (j> A |X[5]| < 1)))

V ( M T E X T  =  < O r d ,5 ,t ,  u>
A((s =  1 A t i  X[3] A |X[1]| =  1 A 1 < |X[2]| <  2 A )X[3]| <  c A |X[4]| < d A X[5] =  <f>)
V(s = 2 A t<£ X[4] A |X[1]| =  1 A |X[2]| =  2 A |X[3]| < c A |X[4]| < d A |X[5]| < 1)))

V( M T E X T  =  < F F , w, x,  0> A w #  Xf5]
A((w =  1 A |X[1]| =  1 A 1 < |X[2][ < 2 A |X[3]| =  c A |X[4]| < d A X[5] =  </>)
W(w — 2 A |X[1]| =  1 A |X[2]| -  2 A |X[3]| =  cA  |X[4]| = d A |X[5]| =  1))))

A(done =  fa ls e  A p®  { M T E X T }  = C(X,  C ,D ) © { M T E X T }  A I )

((<m type, marnum , mindex, mvalue> = < 2 F , p, 0 ,0 >  A p 0 X[l] A ((p =  1 A Vi : 1 < i < 5 :: X[i] =  
V(p =  2 A |X[1]| =  1 A |X[2]| =  2 A |X[3]| =  c A |X[4]| =  d A |X[5]| =  2)))

V(<m type, marnum , mindex, mvalue> =  < B F , q, v,  0> A q $  X[2]
A((q = 1 A v < M A |X[1]| =  1 A Vi : 2 < i < 5 :: X[i] =  (j))
V(g =  2 A n < N A |X[1]| =  1 A |X[2]| =  1 A |X[3]| < c A X[4] =  <j> A |X[5]| < 1)))

V(<mtype, marnum, mindex, mvalue> = < O rd ,s ,  t ,u>
A((s =  1 A t #  X[3] A |X[1]| =  1 A 1 < |X[2]| < 2 A |X[3]| < c A |X[4]| < d A X[5] =  </>)
V(s =  2 A t <? X[4] A |X[1]| =  1 A |X[2]| =  2 A |X[3]| < c A |X[4]| < d A |X[5]| < 1)))

V(<mtype, m arnum , mindex, mvalue> = < F F , w, x, 0> A w $  X[5]
A((tu =  1 A |X[1]| =  1 A 1 <  |X[2]| <  2 A |X[3]| =  c A |X[4]| <  d A X[5] =  4>)
\l(w = 2 A |X[1]| =  1 A |X[2]| =  2 A |X[3]| =  c A |X[4]| =  d A |X[5]| =  1))))

A(done =  fa ls e  A p = C(X,  C, D)
® {<m type,m arnum ,m index,m value>} A / ) < ^ ;mar„uI„|mindeX,mvalue>, .

(Af (X,  C, D) A done =  fa lse
A p =  C(X,  C, D) © {Cmtype, marnum, mindex, mvalue>} A P ■

This is the required consequent, and hence, satisfaction has been established.

Our final obligation is the non-interference proof. Trivially, assertions in the producer 

are not interfered with, by any operation in the consumer since the consumer never alters 

any variable used in any producer assertion. We claim that assertions in the consumer are 

also interference-free. The producer never alters any explicit variable used in a consumer 

assertion. The se n d  statem ents in the producer do alter the implicit variables of I,  and I  

is a  conjunct in every consumer assertion. We must prove that, for every assertion in the 

consumer, execution of the sen d  statem ents s i  through s8 in the producer do not invalidate 

th a t assertion. As an illustrative example, consider the loop invariant in the consumer and
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the se n d  labeled s4  in the producer. Our non-interference obligation is to show

{done =  fa lse  A p = C(X, C, D) A I  A pre(s4)} s4 {done =  fa lse  A p =  C(X, C, D) A 1} 

or equivalently,

{done =  fa ls e  Ap = C(X, C, D ) A /A i  =  aA a <  M A /}  s4 {done = fa lse A p  =  C(X, C, D ) A / }

The tru th  of p  =  C(X,C, D) cannot be affected by s4 since the sen d  alters none of the 

variables, explicit or implicit, appearing in that predicate. Our argument concerning the 

invariant tru th  of I  across s4 in the proof in isolation of the producer applies here as well. 

Hence, s4  cannot interfere with the loop invariant of the consumer. An analogous argument 

applies for every assertion in the consumer. Furthermore, a similar line of reasoning allows 

us to  conclude tha t s i  through s3 and s5 through s8, the other se n d  statem ents in the 

producer, do not interfere with any assertion in the consumer.

3.6 V erification  o f  F lush  B atch in g  A p p lica tion s

As in Section 3.5, the following three examples apply the axiomatic proof methodology of 

Section 3.4. The complexity of the verification process is reduced, however, as only two 

message types are transm itted in each example. Groups of ordinary messages are intended 

to  convey information from a “producer” process to a “consumer” process. Flush messages 

batch the groups of ordinary messages in a manner particular to each type of flush. (Recall 

Section 2.8.2.) In each example, the messages contain two data  fields: batch and num. For 

an ordinary message, batch is the batch to which the message belongs; num  is the number 

of the message within its batch. In a flush message, batch denotes the batch which the 

message is delimiting; num  is always zero.
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In all three examples, the following program variables convey identical information

We assume that each element of array mb is a positive integer, th a t mb is defined 

externally to  the processes, but tha t it is known to both the producer and the consumer.

3.6.1 B atch Exam ple 1: Illustrating P roof R ules for O R D /2 F

In the first batch example, only ordinary and two-way flush messages are transm itted. 

Figure 3.3 shows the covering relation for this example.

[CKA93]:

In the Producer:
bat : integer
job : integer
mb : integer array

current batch number
current message number within a batch
mb[i] is number of messages in batch i

In the Consumer: 
jobs : set
cb : integer

set containing ordinary messages received 
current batch number

/<Ord. mb[l)> cOrd, mb[2)>

Batch 1 Batch 2

Figure 3.3: Batches Delimited W ith Two-way Flushes

We define the invariant, as in Section 3.5,

I  — Vm € of ; I ( m )

in order to describe the sta te  of the implicit variables a t the transmission of message m. As
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shown in the figure, m is the composite

m  =  <m.type, m.batch, m .num > ,

where m.type is the message type, and m.batch and m.num  are as described in the preceding 

discussion.

In this batch example, the tedium of T(m )  is greatly reduced:

I (rn )  =  l ^ m )  A 2^(m) A I T(rn) A I f l (» n ))

where

=cr(m) =  {< 2F , i , 0> |0 < i < m.batch} © { < O rd , i, j> |0  < i < m.batch A 0 < j  < mb[ 
® {< O rd , m.batch, i> |0  < i < m.num)};

Zx(m) s  -<(m) =  { (< 2F , i, 0>, < O rd , i , j  >)|0 < i < m.batch A 0 < j  < mb[i]}
® {(< O rd , i,y > , < 2 F ,i  +  1,0>){0 < i < m.batch A 0 <  j  < mb[i]} 
® {(<2F , m.batch, 0> , < O rd , m.batch, i> ) |0  < i <  m .num};

I T(mj = r (m )  = { < 2 F , m.batch,0>);
Tn(m) = fi(m ) =  {< 2F , m.batch, 0> |m .num  =  0} © (< O rd , m.batch, i > 10 < i < m .num }.

The reduction to I (m ) , comparing to I (m )  in Section 3.5, is due to the simpler delivery 

order. Compare the covering relation of Figure 3.2 with tha t of Figure 3.3. Since the 

arrows, representing delivery order requirements, are more predictable in the second figure, 

it is easier to describe the state of the implicit variables at any given time.

P R O D U C E R ::
{ /}

b a t ,  jo b  :=  0 , 0;
{ b a t,jo b  =  0 ,0  A /  }

W h ile  t r u e  do
{ job  =  mb[bat] A /  } 

b a t,  jo b  :=  b a t  +  1 ,0 ;
{ ba t >  0 A jo b  =  0 A I  }

s i :  se n d  (2 F , b a t ,  jo b )  on  F ;
{ b a t >  0 A jo b  — 0 A /  }

W h ile  jo b  < m b[bat] do
{ job  < inb[bat] A /  }
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jo b  :=  jo b  -f 1;
{ jo b  <  inb[bat] A /  }

s2: send  (O rd , b a t ,  jo b )  on  F ;
{ jo b  <  mb [bat] A /  }

od;
{ jo b  =  m b[bat] A I  }

od;

We omit discussion of the proof in isolation of the producer process as it is straightfor

ward. Similar to  Section 3.5, the invariant tru th  of I  in the producer can be inductively 

validated as successive messages are transm itted.

We define the set of messages which have been consumed thus far, in term s of the 

consumer’s variables cb and jobs:

C(cb, jobs) =  {/u | (/i =  < O rd , x , y> A < x ,y >  e jobs) V ( f i  =  < 2 F , z , 0 >  A  0 <  z  <  cb)}.

A newly received message (w ith its  type assigned to the consumer’s variable mtype, its 

batch assigned to  mbatch, and its number assigned to  mnum) m ust satisfy the following 

param etric assertion:

A/^cb, jobs) =

(mtype =  O rd  A < m batch,m num > 0  jobs A mbatch =  cb A 0 < mnum < mb[mbatch])
cb

V(mtype = 2F  A mbatch =  cb +  1 A mnum — 0 A |jobs) =  ^  mb[i])
i = i

As before, establishing the tru th  of J\f(ch, jobs) is the prim ary task of the satisfaction proof. 

The annotated consumer process appears as:

C O N S U M E R ::
{ p =  0A / }  

jo b s , cb :=  0, 0;
{ jobs =  0 A c b =  0 A p  =  C(cb, jobs) A I }

W h ile  t r u e  do
{ p — C(cb, jobs) A /  }

r l :  rece iv e  (m ty p e , m b a tc h , m n u m ) fro m  F;
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{ -A/’(cb, jobs) A p — C (cb jo b s) © {<n\type, m batch, m num >} A  /  )

C ase  m ty p e  o f
O rd : jo b s  :=  jo b s  U { < m b a tc h ,m n u m > } ;

{m type =  O rd  A  <m batch , m iium > 6 jobs A  m batch =  cb A  0 <  m num  < mb[mbatch] A p =  C(cb, jobs) A /  }

2F: cb  :=  cb +  l j
{ m type =  2 F  A m batch =  cb A m num  =  0 A [jobs| =  1 A P ~  C(cb, jobs) A /  )

esac;
{ p — C(cb, jobs) A  /  }

od;

Let us now justify the miraculous postcondition of the rece ive . The satisfaction proof 

below is rather detailed; the satisfaction proofs for the next two batch examples contain 

less detail since all three are similar in form. Let M T E X T  denote any message eligible to 

be received, i.e., assigned to < mtype, mbatch, m num >. Our obligation in the satisfaction 

proof is to justify the following implication:

p re ( r l)  A ( M T E X T  £ a 0  p)  A (Vm : m  £ a A m  -<+ M T E X T  :: m £ p)

. \ ‘̂ -mtype,mbatcIi,mnum^ tp=? Voi>'‘( r i ) A1TEXTi p®{MTEXT)>

or equivalently, we need to show

(p — C(cb, jobs) A I )  A ( M T E X T  £ a  0  p) A (Vm : m £ a  A m  -<+ M T E X T  :: m  £ p)

=S- (A/"(cb, jobs) A p =  C(cb, jobs)

® {< m type,m batch.m num >} A / ) S S f L“ d— > ' )(4(T„ n .

Given th a t (p = C(cb, jobs)) A I  is in the antecedent, then clearly

(p ® {M T E X T }  =  C(cb, jobs) © {M T E X T } )  A I .

Therefore, we concentrate on establishing A/"(cb, jobs).

We consider M T E X T , the message being added to p ,  when the rece iv e  statem ent 

executes. The held mtype must be O rd  or 2F; this follows from T a(MTEXT)- F°r each 

message type, O rd  or 2F , we deduce three clauses in order to establish Af(cb, jobs). For 

a two-way flush, we verify the assertion in complete detail. We follow this complete proof
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with a verbal description tha t justifies the receipt of an ordinary message. (The complete 

proof for the receipt of an ordinary message is similar to the two-way flush case.) To begin, 

let us assume the message being received is a two-way flush.

Statement Justification
A l. M T E X T  = < 2 F , f ,  g>
A2. M T E X T  £ a
A3. < 2 F ,c b ,0 >  G p A £

< 2 F , k,Q> £ p for k > cb 
A4. /  =  cb +  1

A5. <7 = 0
A6. V m :  m e  a (M T E X T )  =f- 

m  G p
A l .  V m :  m e  a (M T E X T )  => 

m  is unique 
A8. Vm : m =  < O rd ,c ,d >  A 

m  e  p => <c, d> e jobs 
A9. |jobs| =  YliZ\ m b[*1 
A10. jjobsj =  £ i= i  mb[i]

Assumption
Antecedent (M T E X T  £ a Q p)
Antecedent (p =  C(cb, jobs))

A2, A3, and Antecedent ((Vm : m G <J A m 
M T E X T  m G p) and r))
A2 and Antecedent
A2 and Antecedent ((Vm : m  £ a A m  -<+ 
M T E X T  =>■ m G p) and a / te a t ) )
A2 and Antecedent ( I ^ a i t e x t ))

Antecedent {p =  C(cb,jobs))

A2, A6, A7, A8, and Antecedent (T a(MTEXT))
A4

A4, A5, and A10 establish half of A^(cb, jobs), i.e., when M T E X T  is a two-way flush. 

If we assume the message being received is an ordinary message, M T E X T  =  < O rd ,c , d>, 

we show three facts about this message as well. From the antecedent ((p =  C(cb,jobs)) 

and (M T E X T  £ a  © p )) and the fact that each <c,d>  is unique, the composite <c,d>  

has not been received before, and thus, cannot be an element of jobs. We also know, since 

< 2 F ,c b ,0 >  is the last two-way flush received, tha t c must be equal to the current batch 

(cb). Furthermore, from T a(M T EX T ) i  we know the number of this ordinary message must 

be within the current batch.

Combining what we have established,
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{{M T E X T  — < O rd , c, d> A <c, d> jobs Ac = c b A 0 < d <  mb[c])
V {M T E X T  =  < 2 F , / , 0 > A /  =  cb +  l A£r  =  OA |jobs| =  J^,i=1 mM*]))
A{p © { M T E X T }  = C{cb, jobs) © {M T E X T }  A J)

(((<m type, m batch, m num> =  < O rd ,c , d> A <c, d> $  jobs A c =  c b A 0 < d <  mb[c]) 
V(<mtype, m batch, mnum> =  < 2 F  , f , g >  A /  =  cb + l A ^  =  0A |jobs| =  Y%=i mM?1)) 
A(p =  C(cb,jobs) © {<m type, mbatch, mnum>} A 'ppB{MTEXT^

(A^(cb,jobs) A p — C(cb,jobs) © {<m type, mbatch, mnum>} A  

The above result is the required consequent, and hence, satisfaction has been established. 

To prove non-interference, we direct the reader to the reasoning for non-interference in 

Section 3.5. Since the two proofs are similar, we omit it in this example.

3.7  B atch  E xam p le 2: Illu stratin g  P ro o f R ules for O R D /B F

In this second batch example, each batch is preceded by a backward flush. Figure 3.4 

depicts this message-passing scenario. Again, we define the invariant, /  =  Vm G a : T{m)\ 

as in Example 3.6.1, we let m denote the composite <m.type, m.batch, m .num >.  We need 

to make only minor changes to I (m )  in the first batch example in order to describe the

Batch 1

:BF,3,0>

Figure 3.4: Batches Preceded by Backward Flushes
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transmission of message m  in the new batching system:

T(m )  — ^"a(m) A A A

where

= a (m )  =  {< B F , i ,0 > |0  < i < m.batch}
® {< O rd , i, j> |0  < i < m.batch A 0 <  j  <  mb[i]}
® {< O rd , m.batch, i> |0  < i < m.num};

=  -<(m)= { (< B F , i, 0>, < O rd , i , j> ) |0  < i < m.batch A 0 <  j  < mb[i]} 
® {(< B F )i ,0 > ,< B F , j  +  1 ,0> )|0  < i < m.batch}
® {(< B F , m.batch,0>, < O rd , m.batch, i> ) |0  <  i < m.num};

J T(mj = r (m )  =  {< B F , m.batch, 0};
J n (m) = {< B F , m.batch, 0> |m .num  =  0}

® {< O rd , i, j> |0  < i < m.batch A 0 < j  < mb[i]}
® { < O rd ( m .6a/c/i,i> |0  < i < m .num }.

The assertions in the producer proof, detailed below for the sake of completeness, are 

the same as the ones in the previous example. The only change in the producer is tha t the 

s e n d  at label s i  transm its a backward flush rather than a two-way flush. Similar to the 

example in Section 3.5, the invariant tru th  of /  in the producer is inductively validated as 

successive messages are sent.

P R O D U C E R ::

{ / )b a t ,  jo b  :=  0 , 0;
{ b a t, jo b  =  0 ,0  A I }

W h ile  t r u e  do
{ jo b  =  mbfbat] A /  } 

b a t ,  jo b  :=  b a t  +  1 , 0 ;
{ b a t >  0 A jo b  =  0 A /  }

s i :  s e n d  (B F , b a t ,  jo b )  on  F ;
{ b a t >  0 A jo b  =  0 A /  }

W h ile  jo b  < m b  [bat] do  
{ jo b  <  mb[bat] A I  }

jo b  :=  jo b  +  1;
{ jo b  <  mb[bat] A /  }

s2: send  (O rd , b a t ,  jo b )  on  F ;
{ jo b  <  mbfbat] A I  }
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od;
{ jo b  =  m b[bat] A /  }

od;

The definition of C, the set of messages consumed thus far, is similar to th a t of the 

previous example:

C(cb, jobs) =  {/x | (p  =  < O rd , x, y> A < x ,y >  G jobs) V (p =  <BF, z, 0> A 0 < z <  cb)}.

The param etric assertion Af, which describes a  newly received message, must be modified 

according to  the following reasoning. As in Example 3.6.1, the newly received message has 

its type assigned to the consumer’s variable “m type” , its batch assigned to “mbatcli” , and 

its number assigned to “mnum” . If the message currently received is < O rd ,c , d>, then c 

must be less than  or equal to  the most current batch announced by a backward flush. If 

the message currently received is a  backward flush, then the number of jobs received thus 

far must be less than  or equal to  the sum of the sizes of the batches previously announced. 

Equivalently,

A/”(cb,jobs) =

(m type = O rd  A < mbatch, m data>  0  jobs A mbatch < cb A 0 < mnum < mb[mbatch])
cb

V(mtype - B F A mbatch = cb +  1 A mnum = 0 A |jobs| < ^  mb[i]).
« '= i

The annotated consumer process appears as:

C O N S U M E R ::
{ p = 0 A / }  

jo b s , cb :=  0, 0;
{ jobs =  0 A c b = O A p  =  C(cb, jobs) A I  }

W h ile  t r u e  do
{ p — C(cb,jobs) A /  }

r l :  rece iv e  (m ty p e , m b a tc h , m n u m ) fro m  F;
{ .A/fcbJobs) A p =  C (cb jo b s) © {O ntype , m batch, m num >} A /  }

C a se  m ty p e  o f
O rd : jo b s  :=  jo b s  U { < m b a tc h , m n u m > };
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{ m type =  O rd  A Cm batch, m nuin>  €  jobs A m batch <  cb A 0 <  m num  < mb[mbatcli] A p — C(cb, jobs) A J  )

B F : cb  :=  cb  -\- 1;
{ m type =  B F  A m batch =  cb A m num  =  0 A (jobs| <  7 " ^ ,  1 mb[i] A p  =  C (cb,jobs) A /  } 

esac;
{ p — C(cb, jobs) A /  }

od;

The satisfaction proof is outlined below. The newly received message, M T E X T ,  must 

be an ordinary or a backward flush message. The antecedent of the satisfaction rule is

(y9 =  C(cb, jobs) A I )  A ( M T E X T  € a © p) A (Vm : m  £ a A m  -<+ M T E X T  m e p).

This leads to the desired consequent,

{{M T E X T  = < O rd ,c , d> A <c, d> #  jobs A c < c b A G < d <  mb[c])
V {M T E X T  =  < B F , /,<7> A /  =  c b + l A t /  =  0A |jobs| <  mb[i]))
A{p © {M T E X T }  = C(cb, jobs) © {M T E X T }  A I)

(A/"(cb, jobs) A p  = C(cb, jobs) © (<m type, mbatch, m num >} A t}  ■

Non-interference follows from a similar line of reasoning in the example of Section 3.5.

3.8 B atch  E xam ple 3: Illu stra tin g  P r o o f  R u les for O R D /F F

If we let forward flushes term inate batches, Figure 3.5, we get a totally different effect from 

th a t of the previous two batch examples.

<FF,1,0>

:FF,2,0>

Batch 2

Figure 3.5: Batches Terminated with Forward Flushes
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In this third and final batch example, the invariant which describes the implicit variables 

must be substantially modified to deal with the forward flush. The producer algorithm is 

structurally different from the previous two producers; in this example it is necessary to 

transm it the forward flush after the ordinary messages in the batch. As before, define 

I  =  Vm G o  : T(m ), where

X(m) — A A A To(m)- 

E laborating each conjunct:

T a(m) =  cr(m) = {<Ord,z, j> |0  < i < m.batch A 0 < j  < mb[z']} ® { < F F ,i ,0 > |0  <  i < m.batch} 
®{<Ord, m.batch, z>|0 < z < m.num}  ® { < F F , m.batch, 0>\m.num = 0} 
®{<Ord, m.batch, i>\m .num  =  0 A 0 < i < m b[m.batch]}\

=  -<(m)= { (< O rd , i , j > , < F F ,i ,0 > ) |0  < i < m.batch A 0 < j  < mb[i]}
® {(< F F , i — 1 ,0> , < F F , i, 0>)|1 < i < m.batch}
® {(< O rd , m.batch,i>, < F F , m.butch, Q>)\m.num  =  0A 0  < i < mb[m.6a<c/i]} 
® {(< F F , i — 1 ,0> , < F F , i, 0>)| m.num  — 0 A 1 < m.batch — z);

-̂ "r(m) = r ( m )  0,
2"n(OT) s f l ( m )  =  { < O rd , m.batch, z'>|0 < z < m.num}

® {< F F , i, 0> |m .nnm  ^  0 A 0 < i =  m.batch — 1}
® {< F F , m.batch, 0>\m.num — 0}.

Although the producer algorithm is changed from the previous two producers, the proof

in isolation continues to be straightforward. Moreover, the invariant tru th  of I  in this

producer is established using the same reasoning of the previous examples.

PRODUCER::
{ '}

bat, job := 0, 0;
{ b a t,jo b  =  0 ,0  A /  }

W hile true do
{ job =  mb[bat] A /  }

bat, job := bat -j- 1, 0;
{ ba t >  0 A jo b  =  0 A /  }

W hile job < mb[bat] do
{ job  <  mb[but] A /  }

job := job +  1;
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{ jo b  <  m b[bat] A /  }

s2: send (Ord, bat, job) on F;
{ jo b  <  m b[bat] A I  }

od;
{ jo b  =  nib [bat] A /  }

s i: send (F F , bat, 0) on F;
{ job  =  m bfbat] A /  }

od;

For the consumer, the param etric description of the set of consumed messages, C, is 

essentially the same as previously defined:

C(cb, jobs) = {̂ i | (ft = <Ord, x, y> A < x ,y >  E jobs) V (/.i = < F F , z, 0> A O <  z <  cb)}.

The assertion Af, describing a newly received message, is somewhat changed in keeping 

with the structure of the application. It is no longer necessary th a t c, from a newly received 

< O rd ,c ,d > , be less than or equal to  the current batch. Instead, c m ust only be larger 

than the last batch number term inated by a  forward flush. In addition, if the new message 

received is a  forward flush, then the number of jobs received is a t least the sum of the 

number of jobs in all of the currently term inated batches.

A/"(cb,jobs) =

(mtype =  O rd  A Cmbatch, mnum> ^  jobs A mbatch > cb A 0 <  mnum < mb[mbatch])
cb-fl

V(mtype =  F F  A mbatch =  cb +  1 A mnum = 0 A ^  mb[i] < |jobs|).
i=i

C O N S U M E R ::
{  p  =  0 A  /  } 

jobs, cb :=  0, 0;
{ jobs =  0 A c b  =  OAp  =  C(cb, jobs) A /  }

W hile true do
{  p =  C(cb, jobs) A  /  }

rl: receive (mtype, mbatch, mnum) from F;
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{ ^ / '(c b jo b a ) A p = C (cb,jobs) © {<m type, m batch ,m num > } A /  }

C ase  m ty p e  o f
O rd : jo b s  jo b s  U { < m b a tc h , m n u m > );

{m type =  O r d  A < m batch ,nm um >  6 jobs A m butch > cb A 0 <  m num  <  mb[mbatcli] A p — C(cb,jobs) A I  }

F F : cb  : =  cb +  l j
{ in type =  F F  A inbatch — cl) A m num  =  0 A mb[i] <  |jobs| A p =  C(cb, jobs) A /  }

esac;
{ p =  C(cb, jobs) A /  }

od;

Tlie satisfaction proof is shown below. As before, we assume

(p =  C(cb, jobs) A I )  A (M T E X T  6 a  © p) A (Vm : m  G a  A m  -<+ M T E X T  =J» m 6 p).

We then show, using I  and the F-channel network axiom,

( (M T E X T  = < O rd , c, d> A <c, d> £  jobs A c > c b A 0 < d <  mb[c])
M (M TE X T  =  < F F , f , g >  A /  =  cb +  l A</  =  0A 1 mb[*l < Ijobsl))
A(p  ® {M T E X T }  = C(cb, jobs) ® {M T E X T }  A I )

(W (cb, jobs) A p = C(cb, jobs) ® {<m type, mbatch, mnum>} A ^ m Te x t ^ ^ pS^TEXT}-  

Once again, we rely on the reasoning for non-interference of the example in Section 3.5 

to verify th a t this system is interference-free.

3.9 S oun dn ess and C om p leten ess

In this section, we show th a t the axiomatic proof methodology for F-channels is sound and 

relatively complete. To show soundness, we illustrate tha t what we prove in our verification 

methodology is true. Relative completeness, relative to some complete deductive system, 

establishes th a t the methodology can prove anything that is true. There is no complete 

deductive system for natural numbers, therefore, no programming language which uses 

the natural numbers is complete. To avoid this issue, as suggested by Cook [Coo78], we 

assume we have a complete deductive system; we then illustrate tha t our proot system can 

prove anything which is true. Since we know that many axiomatic proof methodologies for
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CSP are sound and relatively complete [AFR80, LG81, Sou84], we prove soundness and 

relative completeness for our proof system by simulating an F-channel with CSP sends and 

receives. We then derive the F-channel axiomatic proof system from the CSP code using a 

proof system for CSP which has been shown to be sound and relatively complete.

T h e o re m  11 The axiomatic proof methodology for processes communicating with F-channels 

is sound and relatively complete.

P ro o f: Suppose we have a distributed program th a t transm its flush messages on F-channel 

F  from process S  to process R. To model the F-channel, CSP processes S  and R  syn

chronously communicate w ith CSP process B. The main function of B is to  accept messages 

from S  and to  transm it these messages to R  in an order tha t is consistent with the definition 

of an F-channel. op, -<p, r p , and f Ip are variables th a t model the F-channel communi

cation state. A(m), J5(m), and C(m ) are functions, described in Section 3.4, tha t modify 

these variables.

The F-channel communication sta te  is maintained by process B. Dy definition of an F- 

channel, a message cannot be delivered before it is transm itted. In addition, a message 

m ust be delivered in the order denoted by -t+p. These two properties are stated in the 

Flush Channel Network Axiom. In our simulation of an F-channel, we define the invariant 

Ip c  to be consistent with the network axiom.

I FG : PF Q <?F>

For m, to' € op, m '  € pp  =$> (Vm : m <+p to ' :: m  £ pp).

If c  is an implicit conjunct in every assertion of the CSP code. The following annotated 

CSP code implements B.
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B  :: d o  r y  S I (o p ,  -<F,i^Fi tf ) skip;
D
s y  n o t(e m p ty (crF © pp))  ->

{ ( o f  9  P F ) 7  ̂0 } 
fo reach  p, 6  {ap  © pp)  do

{ /i e ( o f  9  p f ) }
i f  Pred(p) C pp  —> R\(<p.type, p .da ta> , pp  0  {p})\ b reak ;
D

true —> skip;
fi;

od;
od;

B  nondeterministically chooses one of two actions: it may accept an incoming message from 

S ; or it may, if an eligible message exists, transm it a message to  R.

S e n d  A x io m s: We consider each of the four flush message types separately. To implement

the transmission of an ordinary message,

S\\  sen d  < O rd ,d a ta >  on  F,

we sim ulate the communication statem ent with the following CSP transmission.

si: B \(op  0  { < O rd , da ta> } , -<p 0 d (< O rd , da ta> ),

Op 0  { < O rd ,d a ta > }  0  i? (< O rd ,d a ta > ) ,rp).

To transm it a two-way flush message,

S 2 I sen d  < 2 F ,d a ta >  on  F,

we execute the following synchronous communication.

S2 : B \(op  0  { < 2 F ,d a ta > } , -<p 0  f7(<2F, da ta> ), 

{< 2F , da ta> } , {< 2F , data> }).

We implement the transmission of a forward flush message,
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S 3 : s e n d  < F F ,d a ta >  o n  F,

with the following CSP transmission:

S3 : B\(op  © { < F F , da ta> } , <f  ® C (< F F , d a ta> ),

{ < F F , da ta> } , t f )-

A backward flush message transmission,

5 4 : sen d  < B F , data>  o n  F,

is simulated by

S4 : B\(ap@  { < B F , da ta> } , -<f  © A (< B F, da ta> ),

O-F ® { < B F , data>} 0  B (< B F , da ta> ), { < O rd , data> }).

Regardless of the message type, the flush communication statem ent is modeled by a syn

chronous transmission to B. We can derive the F-channel send axioms from the satisfaction 

of the four synchronous communication statements. For example, consider the transmission 

of a backward flush message. Suppose m is the message < B F , data> . For S4 , the simulated 

F-channel communication statem ent, we know that

m  3 4  {w >

from the assertions surrounding a  CSP transmission statem ent. To establish satisfaction for 

the communication between S  (at S4 ) and R  (at ;•*,), we use the Synchronous Satisfaction 

Rule.

( t \  1' w V F ' . - TF

The semantic efFect of the synchronous communication is a distributed assignment sta te

ment. Therefore,

rp _  ]x/aPi “fr ,  fljn, Tp
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Hence,

Backward Flush Send Axiom:

: s e n d  »■>F  m -

Since the other three send axioms are similar in form, we omit the corresponding derivations.

Receive Axiom: A receive statem ent in an F-channel program,

{P} R\\  rec e iv e  < m type,m data>  fro m  F  {Q},

is modeled by the following CSP communication statem ent:

{P} r j:  R ?(< m type,m data> ,p j?) {Q}-

We can easily derive the Flush Channel Receive Axiom from the simulated CSP code. Since 

the receive allows a miracle, the postcondition Q is miraculous in isolation.

S a tis fa c tio n  R u le : To derive the Flush Channel Satisfaction Rule, we begin with the

Synchronous Satisfaction Rule for sj, and r j.

P  A c  6  (*F e p f ) A P r e d M  £  PF =*•

Since P  and Q are unspecified, the above implication may not be valid. It is necessary, 

therefore, to  derive a satisfaction proof to  ensure the axiomatic technique for F-channels is 

sound. F irst, we introduce M T E X T ,  a new variable, to  replace /.i. Second, the condition 

to transm it a message in B  is based on the predecessor set of the message as defined in 

Chapter 1.2. Therefore,

Pred(fi) = Pred(M TEX T)  C pF =* Vm : m  € a F A m  -<+F M T E X T  :: m  £ pF
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Lastly, the fo re a c h  loop cannot continue indefinitely. Since messages are transm itted  to B  

in a FIFO basis, some message must be available for delivery if (op  0  pp) yi 0. The new 

satisfaction rule follows.

Flush Channel Satisfaction Rule:

For every F-cliannel receive

{P} Ri  : rec e iv e  C m type,m data>  fro m  F  {Q},

verify the following to establish satisfaction:

P  A ( M T E X T  e o p Q  p F) A (Vm : m £ op  A m M T E X T  :: m  6 pF)
. < m typc,m data> ,p jr 

^  <: M T E X T ,  pF ® { M T E X T } •

N o n -in te r fe re n c e  R u le : We derive the Flush Channel Non-interference Rule from the 

non-interference proof of the CSP program. In B,  consider all but the communication 

statem ents. None of these statem ents can interfere with parallel assertions in other processes 

as none of these statem ents update any variables. In addition, none of the assertions in B  

can interfere with parallel statem ents in other processes as the variables within the assertions 

are updated by synchronous communications involving B. The communication statem ents 

within B  match communication statem ents in S  and /{. Therefore, non-interference proofs 

of S  and R  establish the non-interference proof of process B.

For every assertion A  and for every statem ent S (not in B )  th a t is a parallel assignment, 

simulation of a se n d , or simulation of a rece ive , we must prove the first step of the 

Synchronous Non-interference Rule. We, therefore, define

{A  Apre(S)} S {4}

as the first step in the Flush Channel Non-interference Rule.
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For every assertion A  and matching synchronous communication statem ents, we must prove 

the second step in the Synchronous Non-interference Rule. Again, for example, consider s4 

and rb, and suppose tha t m represents < B F ,d a ta > . We must prove

A  A pre(s4) => ^ap®{m}1̂ © /4(m)in^©{m}eB(m),{m}-

This implication is equivalent to proving

{A  A pre(s4)} s4 : sen d  < B F , data>  o n  F  {A},

which is equivalent to validating the first step in the non-interference proof. We omit the 

details of the other three simulated sen d  statem ents, s j—s3, as the outcome is the same.

Now consider the second step of the Synchronous Non-interference Rule for Sb and 7‘j.

A  A p re(r1) A p  € (ap  © pp)  A Pred(p) C pp  =>

As in the satisfaction case, we introduce M T E X T , a new variable, for /t and substitute 

(Vm : m 6 o p  A m -<+f  M T E X T  :: m  G pp)  for Pred(M TEXT)  C pp. Therefore,

A A p re(ri)  A (M T E X T  6 crp Q pp)  A (Vm : m £ ap  A m -<+p M T E X T  :: m  € pp)
. a < ! iT i ty p e , in d a ta > , p p

^  A  M T E X T % p f ® { M T E X T } >

which is the second step in the Flush Channel Non-interference Rule.

All the rules and axioms in the F-channel axiomatic proof system have been derived from 

a CSP program th a t simulates an F-channel. We, therefore, conclude tha t the axiomatic 

proof methodology for processes communicating with F-channels is sound and relatively 

complete. |
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3.10  G eneralization  o f  C onventional A syn ch ron ous C om 

m un ication

A benefit in using F-cliannels is th a t they can model reliable datagram  and virtual circuit 

communication; F-cliannels are a  true generalization of these conventional inter-process 

communication regimes. To model reliable datagram s, the sender only transm its ordinary 

messages. To model a virtual circuit, the sender can transm it only two-way flush messages. 

In the following two sections, we prove tha t the axiomatic proof system above is a  true 

generalization of the verification process for communication with reliable datagram s and 

virtual circuits.

3 .1 0 .1  R e la t io n s h ip  b e tw e e n  R e l ia b le  D a ta g r a m s  a n d  F lu s h  C h a n n e ls

In this section, we prove the equivalent relationship between ordinary messages transm itted 

on an F-channel and reliable datagram s. Although the proof rules in Section 3.3.2 pertain 

to Unreliable D atagram s, we can use them for the reliable case as well.

L e m m a  12 In F-channel communication, - t f  is empty i f  the sender is restricted to trans

mitting only ordinary messages.

P ro o f: We establish this result by induction on the number of ordinary messages trans

m itted in the system. The basis case, th a t only one ordinary message is transm itted, is 

trivially true.

Assume that n  ordinary messages have been transm itted and Xj? =  0. Consider the

transmission of m ,  the (n -f- 1 )st ordinary message. By the Ordinary Message Send Axiom, 

a t the transmission of m , -ip  is updated to include A (m ) where A(m ) — {(a:, m) | x  £ Tp}. 

In a  flush system restricted to ordinary message transmissions, Tp — 0. Therefore, by the 

inductive hypothesis, X f  =  0 after the transmission of m. 1
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T h e o re m  12 Flush channels generalize reliable datagrams.

P ro o f: The implicit variables which model those messages sent and received in the proof 

rules for both unreliable datagram s and F-cliannels are multisets. In addition, they both 

adhere to  network axioms tha t insist pp  C <jp, i.e. the Unreliable D atagram  Network Axiom 

and the Flush Channel En Route Property. Flush channels also obey the Order Property. 

By Lemma 12, however, -<p is empty. Hence, the Order Property places no restraints on 

the delivery order; if a  message is available at the destination, it can be delivered.

The send axioms for unreliable datagram s and ordinary messages in F-channels include the 

assignment crp>/p ■— <Jd/f © {msg}- A transmission of an ordinary message also updates 

- < F  and t i p .  As discussed, - < f  remains empty. The Ordinary Message Send Axiom updates 

Hi? to  include the newly transm itted  message. This variable, however, is superfluous as Qp 

is never needed in an F-channel th a t only allows ordinary message transmissions. There

fore, the two send axioms for the different communication paradigms are equivalent. The 

Unreliable Datagram  Receive Axiom and the Flush Channel Receive Axiom are trivially 

equivalent.

Consider the satisfaction rules of the two communication paradigms. The first, second, and 

implication clauses in the rules are equivalent. The third additional clause in the Flush 

Channel Satisfaction Rule refers to  the delivery order. Since -<p is empty, the clause has 

no bearing on the satisfaction proof.

In both communication paradigms, the proof of non-interference requires two steps. The 

first step is identical in the axiomatic proof methodology for unreliable datagram s and 

F-channels. Consider the second step in the non-interference rules of these two verification 

methodologies. The first, second, third, and implication clauses are trivially identical. 

As before, the fourth extra clause in the Flush Channel Non-interference (Receive) Rule 

is vacuously true. In conclusion, transm itting only ordinary messages on an F-channel 

simulates the transmission of messages on a reliable datagram . I
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3.10.2 R elationship betw een V irtual C ircuits and Flush Channels

The previous section showed th a t F-channels generalize reliable datagram s. The following 

discussion is similar. In this section, we prove that the axiom atic proof system for F-channels 

is a generalization of the verification process for virtual circuits.

L e m m a  13 In F-channel communication, if the sender is restricted to transmitting only 

two-way flush messages, then -<p is a total order equivalent to the transmission order.

P ro o f: We proceed by induction on the number of two-way flush messages transm itted 

across the F-channel. The basis case, that only one two-way flush message is transm itted, 

is vacuously true.

Assume th a t -<p is a total order, identical to the transmission order, after n two-way flush 

transmissions. At the transmission of the nth two-way flush message, the Two-way Flush 

Send Axiom assigns the nth two-way flush to the free set. Consider the transmission of m, 

the ( n +  l)s< two-way flush message. By the send axiom, -<p is augmented to include C(m)  

where C ( m ) =  {(a;,m) | x 6 ft/,-}. Since ftp is a singleton, the n th  two-way flush message, 

-<F is updated with a single link that ensures the nth  two-way flush message is delivered 

before m .  By the inductive hypothesis, is a to tal order equivalent to the transmission 

order. I

T h e o re m  13 Flush channels generalize virtual circuits.

P ro o f: The implicit variables which model those messages sent and received in the proof 

rules for virtual circuits are sequences, guaranteeing a network axiom of p y  ^  a V- By 

Leinma 13, -<p is a total order in a  flush communication system th a t only transm its two- 

way flush messages. Thus, -d-p, the transitive closure of ~<p, is a  to tal order as well. Ilence, 

the V irtual Circuit Network Axiom and the Flush Channel Order Property, when -t+p is 

a total order, are equivalent; both communication paradigms will deliver messages in the 

transmission order.
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The Virtual Circuit Send Axiom updates a y  by appending the newly transm itted mes

sage. The Two-way Flush Send Axiom updates -<p by, essentially, appending the newly 

transm itted  message to the total order. Therefore, the send axioms of the two communi

cation paradigms are equivalent. As in the datagram  case, the receive axiom for these two 

asynchronous communication types are trivially equivalent.

Consider the satisfaction rules of the two communication paradigms. The first, second, 

and implication clauses in the rules are trivially equivalent. The third clause in the Virtual 

Circuit Satisfaction Rule states tha t M T E X T  must be the earliest message transm itted and 

not yet received. The th ird  clause in the Flush Channel Satisfaction Rule, due to Lemma 13, 

ensures this property as well. Thus, the two satisfaction rules are equivalent.

As before, the first step in the non-interference rules of the two communication paradigms 

are identical. The first, second, third, and implication clauses are trivially identical. The 

fourth clause, of both rules, verifies the messages are delivered in a  total order. Hence, 

transm itting  only two-way flush messages on an F-channel simulates the transmission of 

messages on a  virtual circuit. I

3.10.3  A C om m ent on th e G eneralization

It is im portant to  realize th a t the generalization of reliable datagram s and virtual circuits 

to flush communication channels comes at a non-trivial cost in terms of our ability to 

reason about distributed systems. If virtual circuits are the communication mechanism in 

a distributed system, then the structure of the delivery partial order is fully known. This 

is independent of how a  program chooses to pass da ta  across a virtual circuit. The partial 

order is a to tal order. When we use the full generality of an F-channel, we build the structure 

of the partial order “on the fly.” T hat structure cannot be known statically. Although this 

creates extra flexibility in the system, we feel that the complexity makes formal proof rules 

for flush systems imperative.



/  don’t want to achieve immortality through my work, 
I  want to achieve it through not dying.

Woody Allen

Chapter 4

Concluding Remarks

In this thesis, we investigated implementation and verification issues for flush commu

nication channels. F-channels generalized the communication paradigms tha t enforced no 

delivery order (unreliable datagram s) and total delivery order (virtual circuits). In com

munication with an F-channel, the programmer defined the delivery order of each message 

in relation to other messages transm itted on the channel. Throughout the thesis, our for

malization of the inherent partial order for message delivery facilitated our understanding 

of the dynamic, and possibly complex, delivery order.

From the system’s perspective, an effective implementation th a t supported a dynamic 

delivery order specified during execution was not obvious. We reviewed two implementation 

protocols in the literature for F-channel communication and discussed their drawbacks. 

Understanding the partial order of messages intrinsic in F-channel message transmissions 

assisted us in developing the “W aitFor” technique. We presented the protocol and proved its 

correctness by validating that the protocol faithfully obeyed safety and liveness behavioral 

properties. The correctness of the W aitFor technique also served as the missing validity 

proof for the Three Counter technique, as we proved the functional equivalence of these two 

protocols.

In regards to flow control issues in message transmissions, we considered the constraints

160
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of finite buffer space and limited sequence numbers. In both m atters, the partial delivery 

order precluded the use of conventional solutions. We presented solutions to bounding 

buffers and sequence numbers, acknowledged the flaws in the solutions, and argued that 

there is no preferable alternative. We then included bounding considerations in our WaitFor 

technique and proved the modified protocol was correct as well.

We presented results obtained from a simulation of F-channel message transmissions. 

As real-world examples naturally  formed batches of ordinary messages and an associated 

flush message of a given type, our simulator considered message passing scenarios th a t parti

tioned ordinary messages into batches. After we reviewed the performance of virtual circuit 

communication, we plotted simulation results tha t considered three experimental param e

ters: degree of order, utilization, and number of links. All the results demonstrated that 

F-channel da ta  transmission was faster than virtual circuit da ta  transmission. Furthermore, 

the performance of forward flush and backward flush batching scenarios were quite similar, 

but substantially better than batching the ordinary messages with two-way flush messages. 

The two-way flush batching scenario, however, continued to outperform a virtual circuit. In 

conclusion, partially ordered message delivery allowed the possibility of higher bandwidth 

communication.

In order to validate the simulation results, we presented stochastic analysis of the three 

batching scenarios. We lirst reviewed the derivation of the expected resequencing delay of 

a message transm itted  across a virtual circuit. The subsequent three sections considered 

the three batching scenarios in detail. In the forward flush batching case, the resequencing 

delay of an ordinary message was zero, while the mean resequencing delay of a forward 

flush message was identical to the mean resequencing delay of a message transm itted across 

a virtual circuit. It is to be expected, and shown to be correct, th a t the mean resequenc

ing delay of a message in the forward flush batching scenario was a portion of the mean 

resequencing delay of a message transm itted  across a virtual circuit. The analysis of the 

expected resequencing delay of a message in the two-way flush and backward flush batching
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scenarios was more complicated. In fact, approximations for the probabilities of distinct 

messages in transit were necessary in order to  validate the simulation results.

The performance results showed that F-channels offered promise of ultra-high bandwidth 

communication over multiple physical paths. The programmer had the flexibility to choose 

the least amount of delivery order restrictions required to obtain the best performance in 

message transmissions. Programming with a system th a t communicated with an F-channel 

was, however, more complex than the conventional virtual circuit paradigms. To handle the 

additional complexity in the system, we developed an axiomatic verification methodology 

for F-channel communication.

We reviewed the conventional axiomatic proof methodology for synchronous communica

tion with CSP and for asynchronous communication with unreliable datagram s and virtual 

circuits. We extended the methodology to F-channel communication by constructing the 

dynamic delivery order requirements within the axiomatic proof methodology. Though 

the addition of the delivery order construction increased the complexity of the verification 

methodology, we proved the axiomatic technique was sound and relatively complete. Lastly, 

we proved the equivalence of the axiomatic proof rules for F-channels and those for reli

able datagram s and virtual circuits, demonstrating that F-channels could model these two 

conventional communication paradigms.

The use of flush communication channels provided a greater potential for concurrency 

in message passing than the use of virtual circuit communication, w ithout the program

ming disadvantages of unreliable datagram  communication. In F-channel communication, 

the programmer had the ability to simulate a virtual circuit or a  reliable datagram ; the 

programmer chose a partial order for the message delivery order tha t best fit the needs of 

the application. F-channels allowed the flexibility to relax the delivery order restrictions in 

virtual circuit communication and, hence, increased the rate of da ta  transfer.

The results in this thesis suggested other possibilities of future work. From the imple

m entation results, analytic error bounds for the approximate expected resequencing delays
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are needed. We are convinced tha t closed-form solutions for the two-way flush and backward 

flush batching scenarios cannot be obtained. For this reason, our approximation method 

is worthwhile. Error bounds on the approximation, however, would strengthen the results 

presented.

In the bounded WaitFor technique, we transm itted a dummy  two-way flush message to 

reset the variables in the system when all messages had been ACKed and the transmission 

condition continued to be false. This dummy  message was necessary to avoid deadlock. 

In efFect, the transmission of the message synchronized the sender and receiver. In a sys

tem that thrives on concurrency, avoiding synchronizations was advantageous. We plan 

to consider other possibilities for a bounded WaitFor technique th a t do not require any 

synchronizations. Lastly, we want to implement a prototype for F-channel communication.

In verifying F-channel applications, we want to consider a second proof methodology. 

The axiomatic operational proof methodology in this thesis relied on nonlocal reasoning 

for correctness. W hether an application verified its intentions or not depended on global 

arguments built after the processes were annotated. We should not construct our view of 

a distributed system by adding order, as we must do with any definition of global state. 

Instead, we should reason with events and states in a distributed system using causal order 

as defined by Lam port’s “happened before” relation [Lam78]. In a causal proof methodology, 

we do not need to consider the communication state. Instead, we look into the possible 

causal relationships between senders and receivers.

The motivation for a causal proof methodology for F-channel communication is to sim

plify testing [Llo91]. Due to a dynamic, and possibly complex, delivery order in F-channel 

communication, verifying an application and testing the correctness of the assertions will 

further build our confidence that the application satisfies our expectations. Our initial con

sideration of a causal proof methodology for F-channel communication developed a causal 

reasoning technique that is correct for a two process system. Generalizing the technique to 

any number of processes produced problems. We believe that a  causal proof methodology
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for F-channel communication must abandon the definition of no auxiliary variables in the 

reasoning process. We plan to consider this area further in the future.
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