
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1993

Flush communication channels: Effective implementation and Flush communication channels: Effective implementation and

verification verification

Tracy Kay Camp
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Camp, Tracy Kay, "Flush communication channels: Effective implementation and verification" (1993).
Dissertations, Theses, and Masters Projects. Paper 1539623841.
https://dx.doi.org/doi:10.21220/s2-d22f-0049

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623841&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-d22f-0049
mailto:scholarworks@wm.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

U niversity M icrofilm s International
A B ell & H ow ell Inform ation C o m p a n y

3 0 0 North Z e e b R o a d . Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6 U SA
3 1 3 /7 6 1 - 4 7 0 0 8 0 0 /5 2 1 - 0 6 0 0

O rd e r N u m b e r 9429673

F lu sh com m unication channels: E ffective im plem entation and
verification

C am p, T racy Kay, P h .D .

The College of William and Mary, 1993

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

FLUSH COMMUNICATION CHANNELS:

EFFECTIVE IMPLEMENTATION AND VERIFICATION

A Dissertation

Presented to

The Facility of the Departm ent of Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Tracy Camp

1993

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Tra.cy Camp

Approved, August 1 9 9 3 ^ 0 j r

X Too—
PW1 Kearns, Thesis^Advisor

f c U j l

Stephen Vark

W i I K w , f e u
W illiam Bynum '

' f j
Robert Noonan

Stephen Kjmdson

I dedicate this dissertation to my parents, Sam and Betty Camp.

Contents

A cknow ledgem ents vii

L ist o f Figures v iii

A bstract x

1 I n t r o d u c t io n 2

1.1 Communication Paradigms .. 2

1.2 Formalization of the Flush Channel Delivery O rd e r .. 4

1.3 The P r o b le m .. 7

2 I m p le m e n ta t io n o f a F lu sh C h a n n e l 0

2.1 The “W aitFor” T e c h n iq u e .. 12

2.2 Correctness of the W aitFor T e c h n iq u e .. 17

2.3 Previous Implementation T echn iques... 21

2.3.1 The Flooding P ro to c o l.. 21

2.3.2 The Three Counter Technique ... 23

2.4 Three Counter Technique = W aitFor T echn ique... 25

2.5 Flow Control Issues .. 30

2.5.1 Bounding B uffers ... 31

iv

2.5.2 Bounding Sequence N u m b e rs ... 33

2.6 The Bounded W aitFor T echn ique ... 37

2.7 Correctness of the Bounded W aitFor T ech n iq u e ... 42

2.8 Performance C onsidera tions... 47

2.8.1 The System M o d e l ... 47

2.8.2 D ata Batched by Flush M essages.. 48

2.9 Simulation R e s u l ts .. 51

2.9.1 Multi-link V irtual C i r c u i t .. 52

2.9.2 The EfTect of Delivery Order R e s tr ic t io n s ... 56

2.9.3 The Effect of B , p, and N ... 59

2.9.4 The Effect of V arian ce .. 64

2.10 Analytic R e s u l t s .. 71

2.10.1 Virtual Circuit Resequencing Delay .. 73

2.10.2 Forward Flush Batching S cenario .. 76

2.10.3 Two-way Flush Batching S c e n a r io ... 80

2.10.4 Backward Flush Batching S c e n a rio ... 92

3 V erifica tio n o f a F lu sh C h a n n e l 100

3.1 Importance of Program Verification.. 100

3.2 System Communication States .. 101

3.3 Background: Axiomatic Proof M ethodo logy ... 102

3.3.1 Synchronous C o m m u n ica tio n ... 103

3.3.2 Asynchronous C o m m u n ic a tio n ... 105

3.4 An Axiomatic Proof Methodology for Flush C h a n n e l s 110

3.4.1 Proof in Iso la tion ... I l l

3.4.2 S a tis fac tio n ... 119

3.4.3 N on-in te rfe rence ... 121

v

3.5 Verification of a Flush A p p lic a tio n .. 122

3.6 Verification of Flush Batching Applications . . . * .. 137

3.6.1 Batch Example 1: Illustrating Proof Rules for 0 R D / 2 F 138

3.7 Batch Example 2: Illustrating Proof Rules for O R D /B F 143

3.8 Batch Example 3: Illustrating Proof Rules for O R D /F F 146

3.9 Soundness and C o m p le te n ess ... 149

3.10 Generalization of Conventional Asynchronous C om m unication...................... 156

3.10.1 Relationship between Reliable Datagrams and Flush Channels . . . 156

3.10.2 Relationship between Virtual Circuits and Flush C hannels................. 158

3.10.3 A Comment on the G en e ra liz a tio n .. 159

4 C o n c lu d in g R e m a rk s 160

vi

ACKNOWLED GEMENTS

I am extremely indebted to my advisor Phil Kearns, “P ” , for his guidance, criticism,
and patience in the creation of this document. He has been instrum ental in molding this
student into an effective researcher. Furthermore, my thanks go to the committee members
for their time on my behalf. I am also grateful to the Patricia Roberts-Harris Fellowship
and the National Science Foundation G rant CCR-8705603 for financial support.

For supporting me throughout my years a t W illiam and Mary, many thanks go to several
friends. Mike Seale for his diligence not only in problem solving, but in attem pting to win
on the racquetball court; Marge Cook for the low rent and late-night discussions; Tracey
Beauchat for all his system expertise; Steph Lake for bar hopping and sharing dreams; M att
Johnson for introducing me to this university and keeping me amused during my tenure
here; Laurie King for a special friendship along with crisis intervention and prevention; and
Glen Oberhauser for pushing me to stay on top of my dissertation and keeping me stable
during the stressful completion of this document.

In addition, thanks to my Uncle Dave who was my role model in becoming part of the
academic world. And lastly, I ’ll forever be indebted to my parents.

List of Figures

1.1 Message Crossing: Two-way Flush and Ordinary M essages............................. 5

1.2 Message Crossing: Forward and Backward Flush M essages............................. 5

1.3 A Sample Im m ediate Predecessor G r a p h ... 7

2.1 Logical and Physical Message P a t h s .. 9

2.2 The Im m ediate Predecessor Graph in Terms of the W aitFor Protocol 16

2.3 Contradiction: A Non-Chained Predecessor of m .. 19

2.4 The Reliable Network in the Flooding P ro to c o l .. 22

2.5 The Im m ediate Predecessor Graph in Terms of The Three Counter Technique 30

2.6 The Retransmission P r o b le m ... 32

2.7 The Bounding Sequence Number P ro b le m .. 34

2.8 The Largest Sequence Number ... 36

2.9 Performance System M o d e l .. 47

2.10 Batches Terminated with Forward F lu sh es .. 49

2.11 Batches Separated with Two-way Flush Messages . . .*.................................... 50

2.12 Batches Preceded by Backward Flushes ... 51

2.13 Message Delays on a V irtual C i r c u i t ... 53

2.14 Virtual Circuit Mean Message D e la y .. 54

2.15 Reliable D atagram Mean Message D e la y ... 55

2.16 Forward Flush Batching S c e n a rio .. 56

viii

2.17 Two-way Flush Batching S c e n a r io ... 57

2.18 Backward Flush Batching S c e n a rio ... 58

2.19 Varying the Number of B a tc h e s .. 60

2.20 Varying the System U ti l iz a t io n .. 61

2.21 Varying the Number of L i n k s ... 62

2.22 Hyperexponential: Varying the Number of B a tc h e s .. 66

2.23 Hyperexponential: Varying the Number of B a tc h e s .. 67

2.24 Hyperexponential: Varying the Number of B a tc h e s .. 68

2.25 Hyperexponential: Varying the System U t i l iz a t io n ... 69

2.26 Hyperexponential: Varying the Number of L i n k s ... 70

2.27 Inter-arrival and Transmission Times: M /M /b o .. 84

2.28 Analysis vs. Simulation Results: M /M / o o ... 87

2.29 Analysis vs. Simulation Results: M /M / b o ... 88

2.30 Inter-arrival and Transmission Times: M / M / N ... 89

2.31 Analysis vs. Simulation Results: M /M /8 .. 90

2.32 Analysis vs. Simulation Results: M /M /8 .. 91

2.33 Analysis vs. Simulation Results: M /M /b o .. 96

2.34 Analysis vs. Simulation Results: M /M /o o .. 97

2.35 Analysis vs. Simulation Results: M /M /8 .. 98

2.36 Analysis vs. Simulation Results: M /M /8 .. 99

3.1 A Sample Covering R e la tion .. 118

3.2 The Covering R e la tio n .. 122

3.3 Batches Delimited W ith Two-way F lu sh e s ... 138

3.4 Batches Preceded by Backward Flushes ... 143

3.5 Batches Terminated with Forward F lu sh es ... 146

ix

ABSTRACT

Flush communication channels, or F-cliannels, generalize more conventional asynchronous
communication paradigms. A distributed system which uses an F-channel allows a program
mer to define the delivery order of each message in relation to other messages transm itted
on the channel. Unreliable datagram s and FIFO (first-in-first-out) communication channels
have strictly defined delivery semantics. No restrictions are allowed on message delivery
order with unreliable datagram s—message delivery is completely unordered. FIFO chan
nels, on the other hand, insist messages are delivered in the order of their transmission.
Flush channels can provide either of these delivery order semantics; in addition, F-cliannels
allow the user to define the delivery of a message to be after the delivery of all messages
previously transm itted or before the delivery of all messages subsequently transm itted or
both. A system which communicates with a flush channel has a message delivery order that
is a partial order.

Dynamically specifying a partial message delivery order complicates many aspects of how
we implement and reason about the communication channel. From the system’s perspective,
we develop a feasible implementation protocol and prove its correctness. The protocol
effectively handles the partially ordered message delivery. From the user’s perspective, we
derive an axiomatic verification methodology for flush applications. The added flexibility of
defining the delivery order dynamically slightly increases the complexity for the application
programmer. Our verification work helps the user effectively deal with the partially ordered
message delivery in flush communication.

x

FLUSH COMMUNICATION CHANNELS:

EFFECTIVE IMPLEMENTATION AND VERIFICATION

Good communication is as stimulating as black coffee,
and just as hard to sleep after.

Anne Morrow Lindbergh

Chapter 1

Introduction

1.1 C om m u nication Paradigm s

A distributed system is a set of processes which communicate via message passing. Commu

nication is termed asynchronous when a message sen d operation does not wait for execution

of its m atching rece iv e . The network subsystem which implements the communication

path between the sender and the receiver handles the message until delivery occurs at the

destination process [Tan89].

One way to categorize asynchronous message passing constructs is by the delivery or

der restrictions placed upon messages. For example, unreliable datagram communication

imposes no delivery order restriction. The fact tha t datagram m \ is transm itted before

says nothing about the order in which the destination process may receive those messages

(if they are received at all). A virtual circuit or sequenced reliable packet protocol, on the

other hand, imposes a rigid order on message delivery. If message m i is transm itted before

message m 2 over a FIFO (first-in-first-out) channel, then m i must be delivered before m 2 .

There is, however, 110 reason to impose all-or-nothing delivery order requirements on all

messages in every distributed program.

Flush channels generalize the above two competing views of asynchronous message pass

2

CH APTER 1. INTRODUCTION 3

ing semantics by allowing a programmer to specify message delivery order restrictions as

appropriate to tlie needs of the program [Ahu9Q]. An F-channel is unidirectional and reli

able. The sen d construct appears as:

sen d (type, data) o n F

where type is the F-channel message type, data is the d a ta to be transm itted , and F is the

identity of the F-channel connecting two communicating processes. Four message types,

each with a different impact upon delivery order, are available to the programmer using

F-channel communication:

o A iwo-way flush message (type 2F) Hushes the communication channel in

two directions. The two-way flush message is delivered after every message

transm itted before it and before every message transm itted after it.

• A forward flush message (type F F) flushes the channel in a forward direction.

The message is delivered after every message transm itted before it.

• A backward flush message (type B F) flushes the channel in a backward direc

tion. The backward flush message is delivered before every message transm itted

after it.

• An ordinary message (type O rd) does not flush the communication channel

at all. The only constraints on the delivery of an ordinary message are those

imposed by the other three message types.

It is im portant to note that the ordering restrictions placed upon messages concerns their

delivery to the destination user process; flush messages may arrive at the destination host

in any order. We use the term arrival to denote the point in tim e th a t a message is passed

from the network to the destination host. The term delivery represents the event when the

message becomes eligible for reception by the destination process. A correct implementation

of an F-channel ensures messages arriving at the destination process are delivered without

violating the order specified by the transm itting process.

C H A P TE R 1. INTRODUCTION 4

The rec e iv e operation for F-channel communication appears as:

rece iv e (type, data) fro m F.

The invoking destination process of the rece iv e operation is blocked until there is a message

available for delivery on F.

Program ming distributed systems which use F-channels is relatively straightforward. As

illustrated in [Ahu90], such programming may be as simple as tha t which relies upon virtual

circuit communication. A global snapshot protocol, similar in spirit to th a t of Chandy and

Lam port [CL85] but cast into the context of a system which uses F-channel communication,

is presented in [Ahu90]. Communicauon paradigms for F-channels are developed in [AVS91].

In all of these examples, the use of F-channels provides a greater potential for concurrency

than the use of FIFO channel communication but without the programming disadvantages

of unreliable datagram communication. This increase in concurrency of message delivery

can occur when there are multiple physical paths between source and destination and packet

switched routing is used.

1.2 F orm alization o f th e F lush C hannel D elivery Order

To obtain the greater potential for concurrency offered with F-channel communication, we

must solve the problem of dealing with the dynamic delivery order. FIFO communication

channels and unreliable datagram communication have static delivery order semantics in

dependent of the application program which utilizes the channel. The delivery order for

an F-channel, on the other hand, is defined by the application program. As the program

executes, the delivery order is created “on the fly” . We need an abstraction to easily under

stand this dynamic, and possibly complicated, delivery order tha t is inherent in F-channel

communication.

Possible delivery orders are interpreted by Ahuja from the perspective of message cross

ing [Ahu90]. Two messages sent on an F-channel are said to cross when they are delivered

CH APTER 1. INTRO DU CTION 5

in an order different from their transmission order. Crossing is allowed when no ordering

restrictions exist between two messages. As defined, ordinary messages place no restrictions

on the delivery order. A two-way flush, on the other hand, places strict delivery ordering

requirements on the channel; no message (of any type) is allowed to cross a two-way flush

message. Figure 1.1 illustrates how a two-way flush message, m 2F) restricts all crossings.

The messages drawn as dashed lines are not allowed. (Real tim e increases from left to right

on the time-lines.)

m2F W ord H^Ord

Figure 1.1: Message Crossing: Two-way Flush and Ordinary Messages

A forward flush message, m pF , guarantees all messages sent before m pF are delivered

before m pF is delivered. As shown in Figure 1.2, messages sent after m pp are perm itted to

cross m pF (from right to left). A backward flush message, m gp , guarantees all messages

sent after the transmission of n igp are delivered after t u b f ■ Messages sent before rngp are

allowed to cross t u b f (from left to right).

mFF mBF

Figure 1.2: Message Crossing: Forward and Backward Flush Messages

The problem with viewing the delivery order of messages in this manner is tha t the

time-lines cannot show the possibility of message crossing. The time-lines, instead, show

how the messages are actually delivered to the destination. For example, consider the two

ordinary messages denoted m o rd in Figure 1.1. Since there are no ordering restrictions on

C H A P T E R 1. INTRODUCTION 6

these two messages, the first ordinary message may be delivered before or after the second.

The time-line, however, can only illustrate one of the two possible delivery order scenarios.

Let M denote the multiset of messages transm itted on F-channel F. We define an

irreflexive partial order, < + f , on M to represent the inherent delivery order in the system:

<a+F C M x M ,

such th a t for m , m ' G M, m < + f m ' if and only if m cannot be delivered after m ' . For

example, if a two-way flush, m 2Fi is transm itted before an ordinary message, mord , then

m-iF <+F m Ord■ We say tha t m 2F is a predecessor of m o rd or, equivalently, mord is a

successor of m 2F- In either case, m 2F cannot be delivered after m o rd■ A given message may

have many predecessors, but if m , m ' £ M and there is no m " G M with m <+ f m " «+f m f ,

then we say tha t m is an i m m e d i a t e predecessor of m ' . We define an irreflexive partial

order, < f , to represent this immediate predecessor relation. T hat is, if m is the immediate

predecessor of m ;, then m m 1. It is possible for elements of M to be unordered under

<+F. If ordinary message m o rd is transm itted immediately before backward flush v ib f , the

two messages may be delivered in any order. T hat is, mord /+F m BF, and m g p /+F fnord-

We can draw the immediate predecessor relation, <f , as a directed graph. Each element

of M is denoted by a vertex. We connect message m to message m ' with a directed edge from

m to m ! if and only if m is an immediate predecessor of m ' . Clearly, « + f is the transitive

and irreflexive closure of < f - The graph of immediate predecessors in a partially ordered

set conveys all the information about the partial order in a simple manner, including the

p o s s i b i l i t y of one message being delivered before another.

Figure 1.3 illustrates an instance of the immediate predecessor abstraction. In this

graph, a message is labeled as < t y p e , i >] t y p e is the type of the flush message and i is a

unique sequence number for the message. We use the notation < c i , . . . ,c / t> to mean a

composite da ta structure consisting of the elements through c*. One may validate the

CH APTER 1. INTRODUCTION 7

<Ord,0>

<Ord,1>

<Ord,2>7

<0rd,4>
<FF,6>

<2F,11><2F,3> <Ord,5>

<0rd,7>

<Ord,9>

<BF,8>
< O rd ,1 0 >

Figure 1.3: A Sample Immediate Predecessor Graph

directed edges from the definition of each flush message type in Section 1.1. For instance,

messages numbered 0, 1, and 2 have directed edges to < 2F ,3> , and there is a path from

<2F, 3> to all messages with higher sequence numbers. This is in keeping w ith the definition

of a two-way flush message—it must be delivered after every message transm itted before it

and before every message transm itted after it.

We find it convenient to define Pred(m), the predecessor set of message m, as

Pred(m) = {m ' 6 M : m! <+p to}.

For example, the backward flush labeled < B F ,8> has predecessor set

Pred{<BF, 8>) = {<2F, 3>, < 0 rd , 2> , <Ord, 1>, < 0 rd , 0>}.

Every message in Pred(<BF, 8>) must be delivered before <BF, 8>. Messages not in

P red(< B F ,8>) are unrelated to the delivery of < B F ,8> . For example, < O rd ,4 > may or

may not be delivered before < B F ,8> . No protocol which implements an F-channel should

delay the delivery of < B F ,8> due to the non-delivery of < O rd ,4 > .

1.3 T h e P rob lem

Allowing the user to specify the message delivery order complicates implementation and

verification. Delivery order semantics are no longer static. The restrictions placed on

message delivery are specified by the sender on a message by message basis. The underlying

CH APTE R 1. INTRODUCTION 8

abstraction for the delivery order inherent in F-channel communication, <+f > allows us to

represent the delivery restrictions simply. We use this irreflexive partial order throughout

our consideration of flush communication.

From the system’s perspective, an effective implementation th a t supports a delivery

order specified during execution is not obvious. Two attem pts a t implementing F-channels

have appeared in the literature; neither protocol can be considered simple and efficient. We

develop an implementation technique that effectively handles the dynamic delivery order.

This technique deduces <j? and exploits the deduction to decide when a received message is

eligible for delivery. Practical issues, such as finite buffer capacity, are considered as well.

Simulation results illustrate th a t an F-channel implementation offers the promise of

ultra-high bandwidth communication over m ultiple physical paths. The results obtained are

from the special case involving two of the four message types: ordinary messages “batched”

with one flush message type. In addition to the simulation results, we provide analysis for

the performance of batched ordinary messages as well. The two results validate one another.

All implementation results, protocol and performance, are given in Chapter 2.

An application programmer, using the F-channel communication paradigm, has flexi

bility in defining the delivery order requirements. Defining the delivery order dynamically

allows the programmer to choose the least amount of delivery order restrictions required,

thus potentially improving the performance of the application. Unfortunately, the com

plexity of the system increases due to the additional nondeterminism in message passing.

To help the user understand the system, we develop a methodology for reasoning about

F-channel message passing in Chapter 3.

This thesis concerns the investigation of F-channel communication from the system’s

and user’s perspectives. Using the irreflexive partial order defined intrinsically in F-channel

communication, we explore implementation and verification areas for this non-traditional

communication construct.

Let all things be done decently and in order.
New Testament, Corinthians XIV

Chapter 2

Implementation of a Flush

Channel

Consider the logical unidirectional message path between two processes in a distributed

system as shown in Figure 2.1. Let S denote the sending process; let R denote the receiver.

Logical M e ssag e P ath

Send
F -c h a n n e l

Im plem entation
F -c h an n e l

Im plem entation

Physical
Link

Physical
Link

Networking support
a t h o st w here S re s id es

Interm ediate
N ode

Interm ediate
N ode

Networking support
a t h o st w here R resides

RecvXmit

Receive

d(m)

Figure 2.1: Logical and Physical Message Paths

In this network, one may identify several im portant events in the lifetime of a message m

sent by S to R. t (m) denotes the time of transmission o f m by 5; it is the time at which

9

CH APTER 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 10

m is passed to the networking support by £”s execution of a se n d command. a(m) is the

time of m ’s arrival a t the destination; m may be buffered at the destination node for some

period of time. d(m) is the time of m ’s ultim ate delivery to the user process R —it is the

time when the destination process can allow the receipt of m without violating any delivery

order constraints.

In any communication paradigm (FIFO, unordered, and flush), a message may experi

ence a delay at the destination host due to R's not having issued a receive . For both FIFO

channels and F-channels, however, there may be an additional delay between a message’s

arrival and its delivery to the destination process. This further postponement is called rese

quencing delay. It is the interval [a(m), d(m)) in Figure 2.1, and it accrues due to differences

between the arrival order and the allowed delivery order(s). For a FIFO channel, a given

message cannot be delivered until all messages transm itted before it have been delivered.

A message which takes a fast path through the underlying physical network and arrives

early, out of order, must be buffered until all messages transm itted before it have arrived

and been delivered, ltesequencing delay is a m ajor impediment in attem pts to provide high

bandwidth virtual circuits over m ultiple parallel links between source and destination (see,

for example, [YN8C, Cho89, AR87]).

The resequencing problem is more complex for F-channels because the (partial) deliv

ery order required by an F-channel is generally more complex than the (to ta l) FIFO order

imposed by a virtual circuit or a sequenced packet channel. Intuitively, however, the rese

quencing delay for an F-channel is generally less than th a t for a virtual circuit. We expect

the resequencing delay for an F-channel to increase when we add more restrictions to the de

livery order. The delay, however, should approach that of a virtual circuit only in the worst

case. As such, F-channels offer promise as a means of providing extremely high bandwidth

inter-process communication over multiple transmission paths, without the programming

disadvantages of datagram communication. Delivery order requirements (and, indirectly,

the associated resequencing delays) are imposed by the programmer in keeping with the

C H APTE R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 11

semantics of the distributed application.

We assume the existence of an effective network layer mechanism which assures reliable

transmission of messages. We do not make any assumptions about transmission delay,

arrival order, or routing policies. The network support provides the following operations:

X m it d a ta to dest

sends a message, with contents data, from the invoker’s site to the site specified as

dest. Once the message is passed to the network layer software (i.e., before its delivery

to dest), the invoker continues.

R e c v buff fro m src

will result in the delay of the invoker until a message arrives from host src. When

such a message arrives, the contents of the message are stored in the invoker’s address

space a t a location denoted by buff. The invoker then continues.

Reiterating our previous definitions, we use the term arrival to mean that a message has

been received by the network support software a t the destination host. The term delivery

refers to a message’s reception by the user process, the ultim ate destination of the F-channel.

In summary, reexamining Figure 2.1, we need to implement the protocol layer which

is shaded. We must provide users with F-channel sen d and rece ive operations which

are faithful to F-channel message type semantics. Our minimal networking needs are met

by the X m it and R e c v operations—we implement a layer of software which provides F-

channel s e n d and rece iv e operations to user processes on top of this networking support

[KC91, KCA92]. The guiding principle for the implementation of the sen d and receive

primitives is based on Pred(m), the predecessor set of message m, defined in Section 1.2.

F lu s h C h a n n e l Im p le m e n ta t io n P o licy :

Message m cannot be delivered unless all elements of Pred(m) have been delivered.

CH APTE R 2. IMPLEMENTATION OF A FLUSH CHANNEL 12

2.1 T h e “W aitFor,; T echnique

Consider Pred(m). This predecessor set includes all messages tha t m ust be delivered before

message m can become eligible for delivery. To implement an F-channel, we deduce Pred(m)

a t the receiver by the following method. We augment each message at the transm itter with

two integers: a unique sequence number and its waitfor value. The waitfor value is the

highest sequence number in the message’s predecessor set. The two integers effectively

allow the destination to deduce the structure of the partial order and, hence, the delivery

order restrictions imposed on the F-channel by the sender. Suppose th a t F-channel F

connects a user process at site P{ with a user process a t site Pj. As will be developed later

in this section, an F-channel sen d for any of the four message types will ultim ately result

in the transmission of a message via a network call of the form

X m it <m.type, m.seqno, m.waitfor, m.data> to Pj,

where m.type is m ’s flush message type, m.seqno is the sequence number of m , in.waitfor is

m ’s waitfor value, and m.data is the data to be transm itted.

The basic idea behind the WaitFor technique is the observation th a t different message

types have different criteria for delivery [KC91, KCA92], How the sender sets the value

of the waitfor field in a transm itted message and how the receiver interprets tha t value on

arrival of the message are key in our adherence to the F-channel implementation policy.

A two-way flush or a forward flush may not be delivered until all messages transm itted

before it have also been delivered. Therefore, the sender sets m.waitfor to one less than

m.seqno. The receiver infers tha t all messages with sequence numbers up to the m.waitfor

value in a two-way flush or forward flush message must be delivered before m can be

delivered. An ordinary message or a backward flush must wait only for the delivery of its

immediate predecessor in <+p. Therefore, m.waitfor is set by the sender to the sequence

number of the current backward flush point. (The backward flush point is the last message

C H APTE R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 13

transm itted th a t flushed the channel in a backward direction, i.e., the last two-way flush or

backward flush message transm itted.) The receiver understands th a t an ordinary message

or backward flush can be delivered when the message with sequence number m.waitfor has

been delivered. The following discussion and pseudo-code show the actual details of the

W aitFor technique.

The F-channel protocol a t P, must m aintain two integers, in support of F, to determine

the sequence number and waitfor value of each transm itted message. se q n o (F) represents

the sequence number of the last message transm itted over F-channel F. b fp (F) represents

the sequence number of the last two-way flush or backward flush transm itted on F. Both

seq n o (F) and bfp(.F) take their value from the set { — 1 ,0 ,1 ,.. .} and are initially —1.

To send an ordinary message over F , the sender implements the following protocol:

S end (O rd , data) on F =

s e q n o (F) : = seq n o (F) 1;

X m it < O rd ,s e q n o (F) , b fp (F), data> to Py,

Sending a backward flush is implemented as:

S en d (B F , data) o n F =

s e q n o (F) := se q n o (F) -(- 1;

X m it < B F ,se q n o (F),b fp (F),(/a < a > to P j \

b fp (F) := seq n o (F);

A forward flush is implemented as:

S en d (F F , data) on F =

s e q n o (F) := seq n o (F) + 1;

X m it < F F , se q n o (F), seq n o (F) — 1 ,data> to Pj]

C H A P T E R 2. IMPLEMENTATION OF A FLUSH CHANNEL 14

Finally, the two-way flush combines aspects of both the forward and backward flush types:

Send (2F , data) on F =

se q n o (F) := seq n o (F) + 1;

X m it < 2 F , seqno (F), seq n o (F) — 1 ,data> to P j ;

b fp (F) := seq n o (F);

Upon the arrival of a message at Pj , the receiving flush channel implementation decides

if it m ust buffer the message or make it eligible for delivery to the destination process.

This decision is based on the interpretation of the waitfor field. A message arrives at the

F-channel implementation of the receiving host Pj as a result of:

R ecv <m.type, m.seqno, m.waitfor, m.data> f ro m P,.

In order to deduce whether this newly arrived message is deliverable, information about

messages th a t have previously been delivered must be m aintained. d e lv (P) is a set con

taining the sequence numbers of all messages which have arrived and have been delivered

at site P j . A message must be buffered if it arrives before the message(s) which makes it

eligible for delivery; the set b u ffe r(P) contains those messages which are currently buffered

at the receiver. The time that a message spends in b u ffe r(F) is the resequencing delay for

th a t message.

We model the receiver as a daemon process which R ecvs messages from the network,

interprets them as messages on an F-channel, and deals with them appropriately. If the

message arrives “too early” it must be buffered; otherwise it is delivered. The delivery of

any message, newly arrived or formerly buffered, causes a re-examination of all buffered

messages to see if any others are eligible for delivery. Below we list the pseudo-code for the

implem entation at the destination of an F-channel:

C H APTE R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 15

P ro c e s s F-D aem on(Pj : site, F: FchannellD)
w h ile t ru e do

R e c v <m.type,m.seqno,m.waitfor,m.data> fro m P,-;
b u ffe r(P) := b u ffe r(F) U {<m.type, m.seqno, m.waitfor, m.data>}\
change := t ru e ;
w h ile change d o

change := false;
fo re a c h / 1 6 b u ffe r(P) do

DealW ith(/t);
if p.seqno 6 d e lv (F) th e n

c h a n g e t r u e ;
fi

od
o d

o d
e n d F-Daemon

The real decision concerning whether a message is eligible for delivery takes place in

the routine DealW itli. P ip e (F) is a FIFO buffer between the F-Daemon and the user

process, R , as they stand in a producer/consumer relationship. The D e p o s it routine

inserts message m , structured as an F-channel message (< type, da ta>), into P ip e (P) and

handles all required synchronization. As far as we are concerned, D epositing a message

in P ip e (F) is the delivery of the message; the destination process must issue a rece iv e in

order to C o n su m e the message from the pipe.

P r o c e d u r e DealW ith(m : message)
if (m.type = O r d V m.type = B F) th e n

if (m .waitfor & d e lv (P) V m.waitfor = - 1) th e n
b u f fe r (F) b u f fe r (P) — {?n};
d e lv (P) := d e lv (P) U {m.seqno}]
D e p o s i t(< ro . type, m.data>, P ip e (F)) ;

fi
else

if (V6 : 0 < b < m .w aitfor : b e d e lv (F)) th e n
b u f fe r (F) b u ffe r (P) — {m};
d e lv (P) := d e lv (P) U {m.seqno}]
D e p o s i t (<m.type, m .da tay , P ip e (F)) ;

C H A P T E R 2. IM P L E M E N TA T IO N OF A FLUSH CHANNEL 16

fi
fi

en d DealW ith

The implem entation of the F-channel rece ive is reduced to removing a message from

P ip e (F) . We assume the existence of a routine, C o n su m e, which performs all neces

sary producer/consum er synchronization and returns the message in P ip e (F) which was

produced (D ep o sited into P ip e (F ’)) earlier than any others. Hence,

R e c e iv e (type, da ta) f ro m F =

C o n s u m e (< t ,d > ,P ip e (i '1));

type, d a ta := t, d;

Note th a t the synchronous nature of the F-channel rece iv e operation follows naturally from

the producer/consum er synchronization implemented on P ip e (F) . An empty P ip e (F)

delays a rece ive .

r<FF,6,5>
<2F,11,10>

7<2F,3,2><Ord,1,-1>
:Ord,7,3>

.<Ord,9,8>

"<BF,8,3>
■<Ord,10,8>

Figure 2.2: The Immediate Predecessor Graph in Terms of the Wait For Protocol

Figure 2.2 shows the same covering relation as Figure 1.3, but here each message is

augmented with the value of the waitfor field. The data field is omitted. The message

labeled < O rd ,l,- l> may be delivered as soon as it is received. It has no predecessors in the

partial order. The two-way flush < 2 F ,3 ,2 > cannot be delivered until the first three ordinary

messages have been delivered. Further, all messages to the right of < 2F ,3 ,2 > will (explicitly

or implicitly) not be delivered until < 2 F ,3 ,2 > has been delivered. The case of <Ord,10,8>

is interesting—according to the protocol, as soon as the message with sequence number 8 is

C H APTE R 2. IMPLEMENTATION OF A FLUSH CHANNEL 17

delivered, <Ord,10,8> may be delivered. But before <BF,8,3> m aybe delivered, <2F,3,2>

must be delivered. Clearly the use of the waitfor field in the protocol takes into account

the transitivity of

2.2 C orrectness o f th e W aitFor T echnique

Our argument in support of the correctness of the protocol is based upon the relationship

between structural properties of the partial order and the components of the protocol. We

ultim ately want to establish th a t the F-channel protocols a t the transm itter and receiver

cooperate in such a way that the F-channel im plem entation policy is obeyed. An easy, but

useful, first step in the argument is given by Lemma 1.

L em m a 1 For a two-way flush or a forward flush, m ,

Pred{m) = {in' : 0 < m'.seqno < m .w aitfor}.

P ro o f: All messages transm itted before m must have sequence numbers lower than m.seqno

as the sending F-channel software generates a monotonic stream of sequence numbers with

an increment of unity. No message transm itted before m may be delivered after m. Hence,

the predecessor set of m contains exactly those messages which were transm itted before m on

the F-channel. The lemma follows from the fact that the sender sets m.waitfor = m.seqno— 1

for both two-way and forward flush messages. 1

The case of ordinary and backward flushes is somewhat more complex. We begin with

a lemma which establishes how these message types fit within <j+f by considering their

immediate predecessors.

C H APTE R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 18

L em m a 2 I f m is an ordinary message or a backward flush and there exists a message m '

such that m '.seqno = m.waitfor, then

• m' < f m,

o m 1 must be a two-way flush or a backward flush,

• there is no message m " ^ m ' for which m." <p m.

P ro o f: On the transmission of m , an ordinary or backward flush message, the sender sets

m.waitfor to the sequence number of the backward flush point. If m ' is the backward flush

point a t the transmission of rn, then the pair is added to By definition, the

backward flush point is either empty or a singleton. If it is a singleton, then it is either a

two-way flush or a backward flush message because forward flush and ordinary messages

never alter the backward flush point.

Viewing <f as an acyclic digraph, whenever a message is inserted into the covering relation,

its in-degree is established, and th a t in-degree is not altered thereafter. Hence, m will have

in-degree of one, in' <p m, and there can be no m " ^ m ' such that m " <f m. I

Having shown that an ordinary message or a backward flush has a unique predecessor in

<F, if it has a predecessor at all, we establish exploitable structural properties of the entire

predecessor set of such a message.

For an ordinary message or backward flush m , define the BFP-chain of m as the set of

messages

chain(m) = {m^, m k - i , . . . , m j},

where

m k <F WiJk-l <F ■ ■ ■ <F m 1 ^ F m -

Each element of chain(m) must be a backward or two-way flush. In graphical terms, the

BFP-chain is the path of backward flushes back to the closest two-way flush, including that

two-way flush. If there is no such two-way flush, it is the path of backward flushes back

C H APTE R 2. IMPLEMENTATION OF A FLUSH CHANNEL 19

to the minimal backward flush in <+F . T hat is, mk is a backward flush only if m has no

two-way flush predecessor in <+F . The other m ;, 1 < i < k — 1 are backward flushes.

//ead(chain(m)), the head of the BFP-chain of m , is mjt, the two-way or backward flush

which begins the chain of backward flushes leading to m.

Given this notation, we may be more precise in describing the complete predecessor set

of ordinary and backward flushes.

L em m a 3 I f m is an ordinary message or a backward flush, then m! 6 Pred(m) if and

only if m ' £ chain(m) U Pied(//ear/(cliain(m))).

P ro o f: [If] This part of the proof is straightforward. If m ' 6 chain(m), then clearly

m ' 6 Pred(m). If m' 6 Pred(Head(chain(?7i))), then the transitiv ity of «+F allows us to

conclude th a t m 1 £ Pred(m) since //eac/(chain(m)) m ust be a two-way flush for in' to exist.

[Only If] We proceed by contradiction. That is, suppose that some message m ' £ Pred(m),

but m ' (f chain(m) U Pred(Head(c\\&m(m))). This means th a t <jf m ust appear as shown in

Figure 2.3. m ' must be linked to m or some element of chain(m) — //ear/(chain(m)), perhaps

BF/2F BF BF Ord/BF
pred(m) 9 --------

m „ n-1 m m

C a se 2

C a se 1 'm' m "

Figure 2.3: Contradiction: A Non-Chained Predecessor of m

through some successor in due to the hypothesis tha t m ' £ Pred(m). T ha t successor

is denoted m " in the figure. The first case is th a t m " m , but Lemma 2 disallows the

possibility of m having more than a single predecessor. In the second case, w ithout loss of

generality, assume that m" <F m i 6 chain(m) - Head(cha.in(m)). But by definition of a

C H A P T E R 2. IM PL EM E NTAT IO N OF A FLUSH CHANNEL 20

BFP-chain, m \ m ust be a backward flush. Again, Lemma 2 disallows this edge in <f - In

both cases we have reached a contradiction. I

Having presented the above useful lemmas, we may now prove th a t the WaitFor protocol

faithfully implements the Flush Channel Implementation Policy.

T h e o re m 1 (S A F E T Y) Under the WaitFor technique, message m is consumed by a r e

ce ive at the destination process only if Pred(rn) has already been consumed.

P ro o f: In DealW ith, if m is a two-way flush or forward flush, it will not be D eposited in

P ip e (F) unless all messages with equal or lower sequence numbers have been D eposited .

By Lemma 1, these messages are precisely the predecessor set of m.

For an incoming backward flush or ordinary message m , Lemma 2 shows tha t m.waitfor is

the sequence number of the im m ediate predecessor of m. In the definition of chain(m), m i

is th a t imm ediate predecessor. DealW ith will not allow the delivery of m until after the

delivery of m \. Generalizing this argument to each backward flush on the BFP-chain of m ,

DealW ith will insist the D e p o s its are correctly ordered. The correctly ordered D ep o sit

of 7/ead(chain(m)) and of Pred(Head(chain(m))) are handled by the protocol for two-way

flushes, which was shown to be correct in the first part of this proof. We therefore conclude,

by Lemma 3, th a t Pred(m) m ust have been delivered before rn is delivered.

As a final part of this argument, it is essential tha t P ip e (F ’) be a FIFO buffer. Thus,

user-invoked rece ives will C o n su m e messages in the same order in which the protocol

recognizes th a t they are eligible for delivery and D ep o sits them in P ip e (F ’). H

Having proved the W aitFor protocol adheres to the Flush Channel Implementation

Policy, one last step in our argument for correctness is necessary. A liveness proof ensures

th a t something good will eventually happen during execution [AS85, OL82].

C H APTE R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 21

T h e o re m 2 (L IV E N E S S) Assume that the receiver will, in fact, issue a rece iv e for each

send executed by the sender. Message m, sent on an F-channel implemented as described

above, will then be received in finite time.

P ro o f: Since the network is assumed to be reliable, a message must arrive at the destination

host within finite tim e from its transmission, and therefore the F-Daemon will R e c v the

message. We proceed by induction on message sequence number. Our basis is the case

tha t m.seqno = 0. In this case m.waitfor = —1, and thus m will be D eposited in P ip e (F 1)

without delay. The first rece iv e will therefore C o n su m e m within a finite time from its

transmission.

Assume th a t messages with sequence numbers up to and including n will be C on su m ed

within finite time. Consider the case where m.seqno — n + 1. By Theorem 1, m will not be

D ep o sited in P ip e (F) until its predecessor set has been D eposited . Its predecessor set

will include messages with sequence numbers no greater than n, since m.waitfor < m.seqno,

m.waitfor is defined to be the highest sequence number in Prcd(m), and m.seqno — n + 1.

By the inductive hypothesis, we conclude tha t Pred(m) will be D eposited and C o n su m ed

in finite time, m will then be D eposited by DealWith as invoked by the F-Daemon. The

FIFO nature of P ip e (F) then implies that m will eventually be received . I

2.3 P rev io u s Im p lem en tation Techniques

Two implem entations for F-channels have appeared in the literature. The following sections

review these techniques.

2.3.1 T he F lood in g Protocol

The first im plem entation in the literature [Ahu91] adheres to the F-channel implementa

tion policy by flooding each physical network path between sender and receiver for all but

ordinary messages. The technique assumes a reliable network with every switch node in

C H APTE R 2. IM PL EM E NTAT IO N OF A FLUSH CHANNEL 22

the network having incoming and outgoing FIFO queues for the incoming and outgoing

channels connected to the node (see Figure 2.4). A flush message (tha t is, a message of

type 2F , F F , or B F) is transm itted at the sender by placing a copy of the message in all

outgoing queues tha t lead to the destination. When a copy of a Hush message arrives at a

switch node, the node places a copy of the message in all outgoing queues that lead to the

destination. Thus, a copy of the flush message is transm itted over every network channel

through some path in the underlying physical network.

A two-way flush is made eligible for delivery a t R when every incoming FIFO queue has

the two-way flush a t the head of the queue. Any incoming queue with the two-way flush

at the head of the queue is blocked until every incoming queue has the two-way flush at

the head of the queue. This guarantees th a t the two-way flush will be delivered after every

message transm itted before it and before every message transm itted after it.

Likewise, a forward flush is m ade eligible for delivery when a copy of the message is

at the head of each incoming queue. Thus, a forward flush will be delivered after every

Incoming
FIFO
Queues

Switch
Nodes

ReceiverSender

Queues

Figure 2.4: The Reliable Network in the Flooding Protocol

between sender and receiver. A single copy of an ordinary message is routed from S to R

CH APTE R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 23

message transm itted before it. In this situation, however, the incoming queues that have

seen the forward ilush are not blocked—messages transm itted after the forward flush may

be delivered while the forward flush waits for its delivery.

At R , a backward flush is made eligible for delivery a t the arrival of the first copy of

the backward flush. As in the forward flush case, the incoming queues are not blocked.

Handling a backward flush in this manner guarantees delivery of the backward flush before

every message transm itted after it.

Nodes in the network pass ordinary messages through without any delays, blockages, or

copying. The only delivery delays imposed on an ordinary message are those imposed by

the other three message types.

The Flooding Protocol describes selective flooding of all network paths between sender

and receiver for all but ordinary messages. In comparison, the W aitFor technique requires

only a single copy of each message; the sequence number and the waitfor value are piggy

backed on the message, thus allowing the receiver to deduce a message’s place in the partial

order.

2.3.2 T he T hree Counter Technique

In this section, we introduce the second implementation for F-channels available in the

literature. We term this implementation the Three Counter technique and copy it from its

original presentation [AVS91]. An F-channel between processes p and q is denoted cpq.

We presume that for any cPi9, p(q) has an out-buffer (in-buffer) in which
p puts (from which q takes) messages to be sent (received) along cPi9. In the
following, all messages referred to are those sent (received) along cPi9. The
implementation protocol for cPi9 is as follows:

p has counters T and M . T has a value equal to 1 plus the number of two-
way-flushes sent so far. M has a value equal to 1 plus the number of messages
sent so far after the latest two-way-flush sent.1

M nilially, T and M are each 1. A fter sending a two-w ay-f lush and before sending any o ther messages,
T is increm ented by 1 and M is reinitialized to 1. A fter sending a message o ther than two-way-f lush and
before sending any o ther messages, M is increm ented by 1.

CH APTER 2. IM PL EM E N TAT IO N OF A FLUSH CHANNEL 24

p assigns message m (to be sent) an identity < Type,Tm, M m> , where Tm
and M m are values of T and M when m is sent and Type is the message type,
ordinary, two-way-flush, forward-flush, or backward-flush.

q initially assumes th a t it has received a two-way-flush with identity
Ctuio — way — flu sh ,0 ,0> ; thus the two-way-flush th a t we will refer to as the
T ^ h two-way-flush will have identity < two - way - flush, (Tm - 1), *> where *
can be any value.

q receives m th a t is a two-way-flush or a, forward-flush from the input buffer
only after it has received the T f f two-way-flush and each message m ‘ with M m>
less than M m (and more than 0) since receiving the T ,‘h two-way-flush.

If before sending m th a t is either an ordinary message or a backward-flush
and after sending the Tv[k two-way-flush, — has sent one or more backward-
flushes, then along with m p sends M ij where b f is the latest backward-flush
sent before m ?

q receives m th a t is either an ordinary message or a backward-flush from
the input buffer only after the two-way-flush and the backward-flush with
identity <backward — flush, Tm, M bj>, if M^j was carried with m [AVS91].

The Three Counter technique resembles the W aitFor technique in that integers convey

receipt order inform ation. The technique, however, was never formally shown to be correct.

Therefore, one is skeptical that the protocol actually adheres to the F-channel implementa

tion policy. In the next section, we show th a t the W aitFor technique and the Three Counter

technique are functionally equivalent. Hence, the correctness of the W aitFor technique also

serve as a proof of the validity of the Three Counter technique.

Another criticism of the Three Counter technique is tha t it uses only two of the three

required fields a t the destination process to decide whether a message is ready for delivery—

each message transm itted on the F-channel stores a value th a t is never used. Furthermore,

the Three Counter technique, a t the delivery of a backward flush or ordinary message,

ensures the previous two-way flush message has been delivered. Checking for the delivery of

the previous two-way flush is redundant if a previous backward flush, transm itted after the

two-way flush, exists. Due to transitivity in the partial order, the previous two-way flush is

guaranteed delivery if the previous backward flush is delivered.

2T h a t is, ra th e r than sending ju s t < T y p e , T m ,M ,„ > w ith m, p send < T y p e , T m , M m , M bj > . Note tha t
T i f nuist be the sam e as Tm.

C H A P T E R 2. IMPLEMENTATION OF A FLUSH CHANNEL 25

2.4 T h ree C ounter Technique = W aitFor T echnique

Both the Three Counter technique and the WaitFor technique use integers appended to a

message to convey delivery order information. We now prove that the two techniques are

functionally equivalent. T hat is, given an arbitrary sequence of messages transm itted on an

F-channel and an arb itrary arrival order, both techniques generate the same delivery order.

Once the equivalence is shown, the correctness of the W aitFor technique in Section 2.2

serves as the missing validity proof for the Three Counter technique.

As before, suppose th a t F-channel F connects a user process a t site P, with a user

process a t site P j . To convey receipt order information in the Three Counter technique,

the sender augments a message with the three fields described in Section 2.3.2. Tm is the

number of the next two-way flush tha t will be transm itted. Cm is the number of messages

tha t have been transm itted since the transmission of the last two-way flush. C\,j is zero if no

backward flush messages have been transm itted since the transmission of the last two-way

flush; otherwise, Cb/ becomes the value of Cm after the transmission of the backward flush.

The Three Counter technique relies on the structure of the partial order between two-

way flush messages. We define prev2F , at any given time, as the last two-way flush message

transm itted and n th2F as the nth two-way flush message transm itted.

L e m m a 4 For a two-way flush or a forward flush message, m,

Pred(m) = Pred(prev2F) U {m ‘ : prev2F.seqno < m'.seqno < m.ivaitfor) .

P ro o f: The predecessor set of a two-way flush or forward flush message, m, contains exactly

those messages which were transm itted before m on the F-channel (Lemma 1). If no previ

ously transm itted two-way flush exists, then Pred(prev2F) is empty and prev2F.seqno = 0.

If a previously transm itted two-way flush does exist, then, by Lemma 1,

Pred(prev2F) = f m ': 0 < m'.seqno < prcv2F.waitfor).

CH APTE R 2. IMPLEMENTATION OF A FLUSH CHANNEL 26

Since prev2F.seqno = prev2F .waitfor -f 1,

Pred(prev2F) U {m ' : prev2F.seqno < m'.seqno < m.waitfor},

= {m ' : 0 < m'.seqno < m.waitfor}

— Pred(m). M

L em m a 5 For a two-way flush or a forward flush message, m , i f all messages transmitted

between the (Tm - l) th two-way flush (inclusive) and the Cmth message have been delivered

in the Three Counter technique, then all messages in Pred(m) have been delivered.

P ro o f: Suppose m is a two-way flush or forward flush message and all messages transm itted

between the (Tm — l) th two-way flush (inclusive) and the Cmth message have been delivered.

By Lemma 4, Pred(m) is all messages transm itted between the (Tm — l) tk two-way flush

(inclusive) and the Cmth message and the predecessor set of the (Tm — 1)th two-way flush.

To verify Pred(prev2F) is delivered before m, prev2 F = (Tm — 1)th two-way flush, we

proceed by induction on the number of two-way flush messages transm itted before m.

The basis case is th a t no two-way flush messages have been transm itted before m. Then

Pred(prev2F) is empty. Assume that n two-way flush have been transm itted before m

and all messages in Pred(prev2F), prev2F = nth2F , are delivered before m is deliv

ered. Consider the case where (n -(- 1) two-way flush messages are transm itted before m:

prev2F = (n + l)s<2F. By Lemma 4, Pred((n -j- l)s<2F) is the predecessor set of the nth

two-way flush and all messages transm itted between the nth two-way flush (inclusive) and

m. It is given tha t the previous two-way flush, the (n + l)s /2 F , has been delivered. In

the Three Counter technique, this (n -f l).si2F is delivered only if all messages transm it

ted between the nth two-way flush (inclusive) and the (n + l) s t two-way flush have been

delivered as well. By the inductive hypothesis, Pred{nth2F) has been delivered before

77i, hence Pred(prev2F), where prev2F = (n + l)s t2 F , is delivered before m is delivered.

Since Pred(m) is the set of all previously transm itted messages (Lemma 1), all messages

transm itted before m have been delivered. I

C H A P T E R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 27

L e m m a 6 Suppose m is a backward flush or ordinary message transmitted on an F-channel

implemented with the Three Counter technique. Pred(m) has been delivered i f the (Tm - 1)th

two-way flush is delivered and Cbf = 0 or the (Tm — 1)th tivo-way flush and the backward

flush with Cm equal to Cbf have been delivered.

P ro o f: Let m be a backward flush or ordinary message. If Cbj = 0, then no backward

flush has been transm itted since prev2F , the (Tm - l) t h two-way flush. Thus, prev2F is

the backward flush point at the transmission of m. If Cbf j1 0, then Cbf is the counter of

the last backward flush transm itted. Again, this message is the backward flush point at the

transmission of m. In the Three Counter protocol, m is delivered once the (Tm - 1)th two-

way flush is delivered and the message with counter Cbf (unless equal to zero) is delivered.

In summary, m is delivered if the backward flush point of m is delivered. By an identical

argum ent in Theorem 1, we conclude that Pred(m) is delivered if to ’s backward flush point

is delivered. I

T h e o re m 3 Given the same partial order and the same arrival order at the destination,

the WaitFor technique and the Three Counter technique generate the same delivery order.

P ro o f: Suppose two F-cliannels are available. One F-channel implements the WaitFor

protocol; the other F-channel implements the Three Counter technique. Both F-channel

implem entations are given the same partial order and the same arrival order. By Lemmas 5

and 6, to in the Three Counter protocol is made eligible for delivery when Pred(m) is

delivered. Likewise, in the W aitFor technique and proven in Theorem 1, m is D eposited

by DealW ith only if Pred(m) has been D eposited . Therefore, the eligibility of a message

is based on the same factors in both protocols. I

Now th a t the equivalence has been shown, we display the Three Counter technique in a

m anner similar to the presentation of the WaitFor technique. The sen d operation for this

new protocol produces a network call of the form

X m it <typem , T m , C m , C b f , datam > to P j ,

C H APTE R 2. IMPLEMENTATION OF A FLUSH CHANNEL 28

where T m , C m , and Cbj are the three integers tha t convey delivery order information to Pj

and datam is the data to be transm itted.

The F-channel implementation at site Pi must m aintain three integers, in support of F ,

to determine T m , C m , and Ct>j. We represent these integers as T (F), C(F) , and C B F (F).

Initially, the values of T (F), C(.F), and C B F (F) are 1, 1, and 0 respectively.

To send an ordinary message over F , the sending F-channel in the Three Counter

technique implements the following protocol:

S en d (O rd , data) on F =

X m it < O rd , T (F) , C{F) , C B F (F), data> to Pj-,

C (F) := C(F) + 1;

Sending a backward flush message is implemented as:

S end (B F , data) on F =

X m it < B F , T (F) , C (F), C B F (F), data> to P ,;

C B F (F) := C (F);

C (F) := C (F) + 1;

A forward flush is implemented as:

S en d (F F , data) o n F =

X m it < F F , T (F) , C(F) , C B F (F), daia> to P j ;

C(F) := C(F) + I;

Finally, the two-way flush is implemented as:

Send (2F , data) on F =

X m it < 2 F , T (F) , C (F), C B F (F), data> to Pj-,

T (F) := T (F) + 1;

C (F) := 1;

C B F (F) := 0 ;

C H A P T E R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 29

Upon the arrival of a message at P j , the receiving F-channel decides if it must buffer

the message or make it eligible for delivery to the destination process. A message arrives

a t the receiving host P j as a result of:

R e c v < typem, Tm, Cm , Cbf, datam> fro m P,\

The receiver m aintains three d ata structures in order to deduce the delivery order. la s t2 F (P)

is an integer, initially zero, that represents the number of previous two-way flush messages

tha t have been delivered. c o u n te r (P) is a set, initially empty, that contains the Cin fields

of all the messages th a t have been delivered since the delivery of the last two-way flush.

b u ffe r(P) , as in the W aitFor technique, is a set that contains those messages which are

currently not eligible for delivery. We model the receiver in the Three Counter technique,

similar to the W aitFor technique, as a daemon process which receives messages, interprets

them , and deals with them appropriately.

P ro c e s s F-Daemon(P,- : site, F : FchannellD)
w h ile t r u e do

R e c v <iypem, Tm , Cm, Cbf, datam > fro m P,-;
b u ffe r(P) := b u ffe r(P) U {< typem, Tm, Cm, Cbf , dalam>}\
change := tru e ;
w h ile change do

change := false;
fo reach p G b u ffe r(P) do

DealWithQi);
if p £ b u ffe r(P) th e n

change := tru e ;
fi

od
od

od
e n d F-Daem on

As in the W aitFor technique, the real decision making takes place in DealWith.

C H APTE R 2. IMPLEMENTATION OF A FLUSH CHANNEL 30

P ro c e d u re DealW ith(m : message)
i f (typem = O rd V typem = B F) th e n

if ((la s t2 F (F) = T m — 1) A (C i / = O V C i / 6 c o u n te r (F))) th e n
buffer(jF) := b u ffe r(F) - {m};
c o u n te r (F) := c o u n te r (F) U {Cm};
D e p o s it (< typem , datam>, P ip e (F)) ;

fi
e lse

if ((Iast2F(.F) = Tm - 1) A (V t: 1 < b < Cm : b 6 counter(F))) then
buffer(F) := buffer(F) — { m } \
if (t y p e m = 2F) then

la s t2 F (F) := T m;
counter(F) := {};

else
c o u n te r (/1) := c o u n te r (F) U {Cm};

fi
D e p o s it (<typem, datam >, P ip e (F)) ;

fi
fi

en d DealWith

Figure 2.5 shows the same immediate predecessor graph as Figure 2.2, but here each

message is augmented with the fields required in the Three Counter technique.

<Ord.1 .1 .0> v y<Ord,2(1,0>
\

<Ord,1.2,0> -*r<2F,1,4,0> _<Ord,2,2,0>7
<FF,2,3,0>

<2F,2.8.5>
<Ord,2,4,0>

<Ord,1,3,0> ' ^ <Ord,2,6,5>

-<Ord,2,7,5> 1

Figure 2.5: The Immediate Predecessor Graph in Terms of The Three Counter Technique

2.5 F low C ontrol Issues

Before a prototype of the WaitFor protocol can be practically implemented, significant

issues related to buffer capacity and sequence numbers must be solved. We deal with these

issues in this section.

CH APTE R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 31

2.5.1 B ounding Buffers

In most communication protocols, both the sending and receiving processes require message

buffering capabilities. The sender’s buffer stores each message until an acknowledgement

(ACK), explicit or implicit, is returned. The receiver’s buffer stores the messages tha t have

arrived but are not ready for delivery. A buffered message at a receiver is attributed to

either an arrival order inconsistent with the required delivery order or, simply, a receiving

user process which is slow to rece iv e messages. One issue considered here is the problem

encountered due to bounded buffer space a t both the sender and receiver. We assume, in

the following discussion, that no messages are lost in transit, th a t buffer overflow at the

receiver is the only cause for retransmission, and tha t a message is buffered at the sender

until it is explicitly ACKed.

The difference in size between the sender’s and receiver’s buffers produces various effects.

If the receiver’s buffer is larger than the sender’s buffer, then the excess buffer space a t the

destination process will never be used. If the receiver’s buffer is equal in size to the sender’s

buffer, then buffer space is not wasted, and space is always available for arriving messages.

In this case, retransmission of messages will never be required as there will be no buffer

overflow a t the receiver.

Retransmission of messages, however, might be required when the receiver’s buffer is

smaller than the sender’s buffer. For a FIFO channel, it is obvious which message to retrans

m it upon a message’s arrival a t a full receiving buffer. The delivery order for a FIFO channel

is identical to the transmission order; therefore, the sequence number at the receiver repre

senting the last message transm itted is the message selected to be retransm itted. Selecting

to retransm it the last message transm itted delays the delivery of the fewest messages—all

messages in the buffer must be received before this last message.

The choice of which message to retransm it at a full receiving buffer in an F-channel

implementation is not as obvious. Upon buffer overflow, the receiver must decide upon a

C H APTE R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 32

message to discard (thereby causing a retransmission) that will delay the delivery of the

fewest messages. An F-channel implementation could use one of many different retrans

mission strategies: the first or last message transm itted, the type of flush message, the

smallest message in the buffer, a random choice, etc. Of course, th reats to liveness must be

considered when devising a retransmission scheme.

T h e o re m 4 A ny retransmission strategy that handles a fu ll receiving buffer in an F-channel

implementation cannot be optimal at all times.

P ro o f: An optimal retransmission strategy for a full buffer would always discard the mes

sage which yields the fewest (future) retransmissions. As the receiver has no knowledge of

the full partial ordering on messages being transm itted or the order in which these mes

sages will arrive, the best retransmission selection cannot always be made. For example,

Figure 2.6 is an immediate predecessor graph that illustrates the possible impact of the

receiving F-channel software not having perfect (future) knowledge. Suppose the sender’s

<Ord,1> <FF,2>

<2F,6><Ord,4>

<BF,3>

<Ord,5>

Figure 2.6: The Retransmission Problem

buffer is of size seven, thereby allowing the transmission of all seven messages in succession,

while the receiving buffer is of size one. If messages with sequence numbers 1 and 3 are the

first two arrivals, the optimal choice of which message to discard cannot be made. If the

arrival order is 4 5 0 2 6 following the arrival of 1 and 3, the system would be best served

by retransm itting message with sequence number 3. On the other hand, an arrival order of

0 4 5 2 6 produces fewer retransmissions if message 1 is discarded. Since a receiver will not

have knowledge of the future arrival order, no retransmission strategy can always make the

optim al selection for retransmission. I

CH APTE R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 33

Theorem 4 illustrates the difficulties associated with any retransmission strategy. We

do not have a general solution for this problem. Instead we assume, throughout this thesis,

the sizes of the sender’s and receiver’s bufTers are equivalent. T hat is, a t the establishment

of an F-channel, we presuppose that a negotiation of an equivalent buffer size takes place

between the sender and receiver. This assumption will forgo the necessity of deciding which

message to discard a t a full buffer.

2 .5 .2 B o u n d in g S e q u e n c e N u m b e r s

Bounding sequence numbers is trivial for any FIFO channel implementation, but not obvious

for all F-channel implementations. The total delivery order of messages and the ACKing

of each delivered message by the network support reveals a simple technique for bounding

sequence numbers in a FIFO channel. The number of values required to distinguish each

message in the channel is equivalent to the size of the sending buffer. As each message is

ACKed, the sequence number of the delivered message is available for reuse.

In an F-channel implementation, bounding sequence numbers is not as simple. The

difficulties appear when the sequence number of an F-channel message has a longer lifetime

than the message itself. For example, in the flooding protocol of Section 2.3.1, sequence

numbers only identify the message en route; thus a sequence number is available for reuse

once the sender receives an ACK for the message’s receipt. On the other hand, in the

WaitFor protocol of Section 2.1, the waitfor field is the sequence number of a message

previously transm itted. Therefore, the waitfor field may extend the lifetime of a sequence

number. T hat is, we cannot conclude tha t the delivery of a message with sequence number

x finalizes all references to x.

T h e o re m 5 A n F-channel that uses the WaitFor protocol cannot use the policy to bound

sequence numbers employed in FIFO channels.

P ro o f: In FIFO channels, a sequence number can be reused at the sender once the corre-

C H A P T E R 2. IMPLEMENTATION OF A FLUSH CHANNEL 34

sponding message lias been ACKed by the receiver. In F-channel communication, violations

could occur in the delivery order if the reuse of a sequence number was based only on the

ACK of the corresponding message. To illustrate the problem, consider the delivery of a

message in the W aitFor technique; the delivery is based on the type of message and its wait

fo r value. Now consider the immediate predecessor graph, augmented with the waitfor field,

in Figure 2.7. Suppose the sender’s buffer is of size two. Upon the ACK of <2F,0,-1> and

< O rd ,l,0> , the sender would reuse the sequence numbers by transm itting <BF,0,0> and

the second < O rd ,l,0> . The waitfor fields in both of these messages are zero; however, the

zeros do not refer to the same message. The receiver has no means to distinguish between

the two zeros, and thus a message (e.g. the second <Ord,l>0>) may be delivered before it

is eligible. This would violate the F-channel implementation policy. I

_ p_<Ord.1,0>
<2F.0,-1> <Ord,1,0>

Figure 2.7: The Bounding Sequence Number Problem

Although, in the W aitFor protocol, a sequence number cannot be reused upon the ACK

of the corresponding message, some numbers become available a t an ACK of a two-way

flush message due to the semantics of a two-way flush message.

T h e o re m 0 In the WaitFor technique, i f a message m is transmitted after a two-way flush

message m ', then

m.waitfor > m'.seqno

P ro o f: Suppose message m is transm itted after m \ a two-way flush message. Based

on the semantics of a two-way flush message and the definition of a predecessor set,

m ' 6 Pred(m). Lemma 1 proved tha t all messages transm itted before m ' will have se

quence numbers lower than m'.seqno. Since m.waitfor is the highest sequence number in

Pred(m), m.waitfor > m'.seqno. I

C H A P T E R 2. IM PLEMENTATIO N OF A FLUSH CHANNEL 35

A solution to handle the fixed-width representation of sequence numbers in the WaitFor

protocol is revealed by Theorem G. Once an ACK of a two-way flush is received, all sequence

numbers preceding the sequence number of the two-way flush can be reused. The following

section modifies the W aitFor technique to handle fixed-width representation of sequence

numbers. As will be shown, other flow control issues are a direct eflect of bounding sequence

numbers. To implement this protocol, the sending F-channel maintains the sequence number

of the last two-way flush ACKed. At the receipt of an ACK for another two-way flush, the

sender can reuse sequence numbers in the range [previous 2F sequence number, current 2F

sequence number).

If the system transm its a group of messages with no two-way flush messages and the

number of messages in the group is larger than the modulus used to bound sequence num

bers, then the system must wait until every message is ACKed before reusing any number.

T ha t is, the system transm its a dummy two-way flush on the F-channel. Upon the delivery

of the dumm y two-way flush, the receiver resets all its variables to their initial values and

transm its an ACK for the dummy message. Upon the receipt of this ACK, the sender resets

all its variables as well; all sequence numbers then become available. W ithout synchro

nizing the system in this manner, bounding sequence numbers could violate the F-channel

im plem entation policy (recall Theorem 5) or become deadlocked.

The use of a dummy two-way flush would not be required if the modulus for sequence

numbers was based on additional knowledge: the maximum number of messages transm it

ted between any two consecutive two-way flush messages. Given this value, Theorem 7

illustrates a bound for sequence numbers.

CH APTE R 2. IM PLEMENTATIO N OF A FLUSH CHANNEL 36

T h e o re m 7 Assume every F-channel application transmits a two-way flush as the first and

last message of each application. In addition, assume m ax is the maximum number o f mes

sages between any two consecutive two-way flush messages and k is the size o f the sender’s

(and receiver’s) buffer. The maximum range of sequence numbers required to distinguish

messages in an F-channel implementation is then [0, m ax -f k).

P ro o f: Figure 2.8 illustrates an immediate predecessor graph that uses all the sequence

numbers in the allowed range: [0, m ax + k — 1). To verify no more numbers are required

to distinguish the messages, we consider the situation of the F-channel preceding and fol

lowing the transmission of the next message (augmented with sequence number 0). This

example covers the worst possible scenario by having m ax messages transm itted between

two consecutive two-way flush messages.

Consider the two consecutive two-way flush messages shown in the figure. If the sender

transm its the message with sequence number m ax + k — 1, we prove that at most one

unACKed message can exist between the two consecutive two-way flush messages. W ithout

loss of generality, assume <O rd,l,0> is an unACKed message. No message with sequence

number greater than m ax can then be delivered. Since all messages with sequence numbers

between the range [max + I, m ax + k — 1] are unACKed, only one space in the sender’s

buffer is left for the unACKed < 0 r d , l , 0 > message. Once < O r d , l , 0 > is ACKed, the sending

^ ^ , < O r d , 1 , 0 > < O r d ,m a x + 2 , m a x + 1 >

<2F,0,-1> —-------*-<2F ,m ax+1,m ax> ‘̂ —> - —

— < O r d ,m a x ,y > ^ < O r d ,m a x + k - 1 , m a x + 1 >

Figure 2.8: The Largest Sequence Number

F-channel software transm its the next message as sequence number 0. By Theorem 6, no

message currently in the sending buffer can refer to a message with sequence number less

than (m ax -f 1); reusing sequence number 0 will not, violate the F-channel implementation

policy. Hence, a sufficient modulus for sequence numbers in an F-channel is max + k. I

C H A P T E R 2. IM PL EM E NTAT IO N OF A FLUSH CHANNEL 37

Theorem 7 provides a bound for sequence numbers given the value m ax. Obviously,

knowledge of m ax is not always possible since prior knowledge of all messages tha t will be

transm itted on the F-channel is unlikely. Therefore, an implem entation of an F-channel

with fixed-width representation for sequence numbers should be based only on the two-way

flush effect of Theorem 6. In the following section, we modify the W aitFor protocol to

include all the bounding considerations discussed in this section.

2.6 T h e B ou n d ed W aitFor T echnique

Suppose every F-channel application implicitly transm its a two-way flush message as the

first and last message of each application. In addition, suppose num is the sequence number

modulus used in the F-channel implementation. We assume num > 1; otherwise a FIFO

delivery order occurs. One effect of bounded sequence numbers is that the size of the

sending and receiving buffers becomes bounded as well—the size need not be larger than

initii. Buffer sizes of num , however, will generally be too large for the system. Therefore,

in this protocol, we continue to assume the buffer size at both the sender and receiver is k.

Following the original protocol, the sending F-channel software sets the value of the

m.waitfor field, and the receiving F-channel software interprets that value in order to adhere

to the F-channel im plem entation policy. To support the F-channel a t site P,, the sender

continues to m aintain the two integers se q n o (P) and b fp (F). In our bounded WaitFor

technique, however, both se q n o (P) and b fp (F) are initially 0 and take on values from

the range { 0 ,1 , . . . , nu m — 1}. Another integer, maintained by the sender, is necessary

to represent the last two-way flush message ACKed by the receiver: 2F ack (F). Initially,

2F ack(F) is 0. The sender’s buffer, of maximum size k, is called sb u ffe r(F) . A message

is removed from sb u ffe r(F) once an ACK is received. We assume a timing mechanism

retransm its a message if its ACK is not received within a given time. These messages are

marked as retransmitted', we assume the destination process checks for previous delivery.

CH APTE R 2. IMPLEMENTATION OF A FLUSH CHANNEL 38

In the original protocol, messages are transm itted unconditionally. In the bounded pro

tocol, a message cannot be transm itted unless space exists in the sender's buffer and a

sequence number is available. Therefore, all transmissions are conditioned on the following

criteria:

T ra n sm iss io n C o n d itio n :

Isbu ffe^F)! < k A (seq n o (F) + 1) m o d num ^ 2F ack(F).

If the transmission condition is true, then the sender can transm it a message. If, however,

the transmission condition is false, then the sender is delayed. We modify 2 F ack (F) in two

situations. First, when the sender receives an ACK of a two-way flush message, 2Fack(F)

is set to the sequence number of the ACKed two-way flush. Deadlock would occur, however,

if the sender received ACKs on every message in the buffer and no two-way flush message

was transm itted in the last num messages. The second situation tha t modifies 2F ack(F)

covers this circumstance. If the sender’s buffer is empty and the transmission condition

continues to fail, the sender transm its a dummy two-way flush. The delivery of this dummy

message resets all the variables at the receiver. Its corresponding ACK, in the same vein,

resets all the variables a t the sender. Updating the system in this m anner re-initializes the

system. As no messages are in transit, re-initialization under these conditions has no effect

on the correctness of the protocol.

The following pseudo-code is the bounded F-channel implem entation for the sender. We

model the sender as a daemon process that either receives ACKs or transm its messages.

Two binary flags in the process are assumed to be m aintained outside the daemon. A C K

is m aintained by the network; when A C K is true, an ACK is available to be received.

M S G (m) is maintained by software between the user application program and the daemon;

when M S G (m) is true, the message <m.type, m.data> is ready to be transm itted.

2. IMPLEMENTATIO N OF A FLUSH CHANNEL

P ro c e ss FS-Daem on(Pj : site, F : FcliannellD)
w h ile t r u e do

if (|sbufF er(F)| = k V A C K) th e n
R e c v < O rd , ack.seqno, — 1, d>> fro m P j ;

fo reach f t £ sb u ffe r(F) do
i f (/t .seqno — ack.seqno) th e n

m.type, m.data : = p.type, p.data;
m.seqno, in.wait/or := /i.seqno, fi.waitfor;

fi
od
sb u ffe r(F) := s b u fle r(F) — {?n};
i f (m.seqno = —1) th e n

seq n o (F) 0;
b fp (F) := 0;
2F ack(F) := 0;

e lse
if (m. type = 2F) th e n

2F ack(F) := m.seqno;
fi

fi
e lse

i f ((seq n o (F) + 1) mod num ^ 2F ack(F)) th e n
if M S G (m) th e n

se q n o (F) := (seq n o (F) + 1) mod num;
m.seqno seq n o (F);
if (in.type = O rd V in.type = B F) th e n

rn.wait.for := b fp (F)
e lse

m.waitfor := (seq n o (F) — 1 + num) mod num;
fi
X m it <m.type, m.seqno, m.waitfor, m.data> to P j
i f (ni.type = B F V m.type = 2F) th e n

b fp (F) := seq n o (F);
fi
sb u ffe r(F) := sb u ffe r(F) U {m};

fi
e lse

if |sb u ffe r(F) | = 0 th e n
X m it < 2 F , - 1 , - 1 , $ > to P j ;

sb u fie r(F ’) := sbufFer(F) U {< 2F , - 1 , - 1 , $> };
fi

fi
fi

od
e n d FS-Daeinon

CH APTER 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 40

To deduce whether a newly arrived message is available for delivery in the bounded

protocol, the receiver m aintains slight variations of the sets d e lv (F) and rbuffer(jF), and a

new integer, 2 F d e Iv (I‘'). d e lv (i7’) is a set containing the sequence numbers of all messages

which have been delivered a t site Pj, since the delivery of the last two-way flush message.

The set initially contains the element 0 (representing the implicit initial two-way flush

transmission), the maximum number of elements is num , and the set is reset to one element

whenever a two-way flush is delivered (actual or dummy). rbu fF er(i?), consistent with the

original implementation, begins as an empty set. As mentioned, the size of this bufler

is bounded by k. 2 F d e lv (J ') is the sequence number representing the last two-way flush

message tha t has been delivered. Initially, 2 F d e lv (F) is 0.

The daemon that implements the bounded receiving F-channel software requires minimal

changes. In fact, the only changes concern the explicit command to ACK a message and

the receipt of the dummy two-way flush.

P ro c e s s FR-Daemon(P,- : site, F : FchannellD)
w h ile t r u e do

R e c v <m.type, m.seqno, m.waitfor, m.data> fro m
rb u ffe r(F) := rb u ffe r(F) U {<m.type, m.seqno, m.waitfor, m.data> };
change := tru e ;
i f m.seqno = — 1 th e n

rb u ffe r(F) := rb u ffe r(F) — {m};
d e lv (F) := {0} ;
2 F d e lv (F) := 0;
change := false;
X m it < O rd , m .seqno,- 1 , 4>> to Pt ;

fi
w h ile change do

change : = false;
fo reach fi G rbufifer(F) do

BDealWith(/z);
if p.seqno G d e lv (F) th e n

change := t ru e ;
X m it < O rd , fi.seqno, — 1 ,4>> to P{\

fi
od

od

C H APTE R 2. IMPLEMENTATION OF A FLUSH CHANNEL 41

od
e n d FR-Daeinon

The main modification to DealWitli, shown below as BDealW ith, is the condition to

determine the eligibility to deliver a two-way flush or forward flush message. Instead of

verifying all messages previously transm itted have been delivered, BDealW ith ensures all

messages since the delivery of the last two-way flush (actual or dummy) have been delivered.

Once the condition succeeds, the two-way flush or forward flush message is delivered. If the

message is a two-way flush, then 2 F d e lv (F) is updated.

P ro c e d u re BDealWith(77r : message)
if (m.type = O rd V m.type = B F) th e n

if (m.waitfor £ d e lv (F)) th e n
rb u ffe r(F) := rb u ffe r(F) — {m};
delv (F) := d e lv (F) U {m.seqno};
D e p o s it (<m.type, m.data>, P ip e (F)) ;

fi
e lse

if ((Vft : 0 < b < {{m.waitfor — 2Fdelv(7r) + num) m od num)) :
((2 F d e lv (F) + 6) m o d num) € d e lv (F)) th e n

rbufTer(F) := rbufTer(.F) — {m};
i f {m.type = 2F) th e n

d e lv (F) := {m.seqno};
2 F d e lv (J 1) := m.seqno’,

e lse
delv(jF) := d e lv (F) U {m.seqno}’,

fi
D e p o s it {<m.type, m.data>, P ip e (i i’));

fi
fi

en d BDealWith

C H A P TE R 2. IM PLEM E NTATIO N OF A FLUSH CHANNEL 42

2.7 C orrectn ess o f th e B ou n d ed W aitFor T echnique

In order to prove the correctness of the bounded W aitFor technique, we find it convenient

to define a new relation IZ/?. If x and y are two messages transm itted over F-channel F,

then a: \Zf V if an(i only if x is transm itted before y. Clearly, C f is a total order, the

transmission order of messages on F.

L e m m a 7 For a two-way flash or a forward flush message, m , in the bounded WaitFor

protocol,

Pred(m) = Pied(prev2F) U {7m ei;2F} U { 777/ : 777’e v 2 F C /t 7?i'}.

P ro o f: By definition of a two-way flush or forward flush message, in, the predecessor set

of m contains exactly those messages which were transm itted before in. T hat is,

Pred(m) = {771' : in' \Zf ”*}■

Since the bounded W aitFor protocol implicitly transm its a two-way flush message as the

first message of each application, prev2F will never be empty. If p7-ei;2F is the implicit

two-way flush message, then Pred{prev2F) is empty. Otherwise,

Pred(prev2F) = { i n ': m ' C.F prev2F }.

In either case,

Pred{m) = Pi-ed(prev2F) U {77ren2F} U {in' : prev2F C f 77*'} |

For an ordinary message or backward flush in, recall the BFP-chain of m as the set of

messages

chain(m) = {m*, m t - i , . . . , m i}.

C H APTE R 2. IMPLEMENTATION OF A FLUSH CHANNEL 43

The BFP-chain is the path of backward flushes back to the closest two-way flush, Including

that two-way flush. In the bounded W aitFor protocol, is guaranteed to be a two-way

flush message due to the implicit transmission of the initial two-way flush message. We

may now proceed with the safety theorem for the bounded W aitFor technique. This proof

uses Lemma 3 from the correctness proof of the unbounded W aitFor protocol; however, the

lemma continues to be valid.

T h e o re m 8 (S A F E T Y) Under the bounded WaitFor technique, message m is consumed

by a rec e iv e at the destination process only if Pred(m) has already been consumed.

P ro o f: Consider the delivery of message m, a two-way flush or a forward flush message.

The condition to deliver m in BDealW ith is

V6 : 0 < b < ((m .waitfor — 2 F d e lv (F) + n u m) m o d num) :

((2 F d e lv (F) -f b) m o d n u m) £ d e lv (F)

By definition, num is the sequence number modulus. 2 F d e lv (F) is the sequence num

ber representing the last two-way flush message that has been delivered. de lv (F ’) is a

set containing the sequence numbers of all messages which have been delivered, since the

delivery of the last two-way flush message, m.waitfor is one less (modulo num) than the

sequence number of m. Therefore, the condition states tha t m is D eposited in P ip e (F) if

all messages transm itted between the previous two-way flush (inclusive) and m have been

D eposited . By Lemma 7, Pred(m) includes these messages and the predecessor set of the

previously transm itted two-way flush message. To verify Pred(prev2F) is D eposited be

fore m , we refer to a previous lemma. The proof here is analogous to the proof in Lemma 5

and, therefore, omitted.

For an incoming backward flush or ordinary message ?n, the condition to deliver m in the

bounded W aitFor technique is based on the delivery of m.waitfor. In FS-Daemon, m.waitfor

is the sequence number of m 's backward flush point. In the definition of chain(m), mi is

CH APTE R 2. IM PLEMENTATIO N OF A FLUSH CHANNEL 44

m 's backward flush point. BDealW ith will not allow the delivery of m until after the

delivery of in i. Generalizing this argument to each backward flush on the BFP-chain of m,

BDealW ith will insist the D ep o sits are correctly ordered. The correctly ordered D ep o sit

of 7/e«rf(chain (in)) and of Fred(IIead(clia in(in))) are handled by the protocol for two-way

flushes, which was shown to be correct in the first part of this proof. We therefore conclude,

by Lemma 3, tha t Pred(m) must ha.ve been delivered before in is delivered.

As a final part of this argument, P ip e (i r), in the bounded W aitFor technique, must be a

FIFO buffer. Thus, rece ives will C o n su m e messages in the same order in which BDeal

W ith recognizes they are eligible for delivery and D ep o s its then in P ipe(jF). I

T h e o re m 9 (L IV E N E S S) Assume that ike receiver will, in fact, issue a rece iv e for

each sen d executed by the sender. Message in, sent on the bounded WaitFor protocol o f an

F-channel, will be received in finite time.

P ro o f: For the first part of the proof, let us assume that each message transm itted by a

sen d operation is placed on the network. Since the system is assumed to be reliable, each

message will arrive at the destination within finite time from its transmission and, therefore,

the FR-Daemon will R ecv the message in finite time.

We proceed by induction on the number of messages transm itted in the system. The basis

case is transm itting m , the first message. This message, for any message type, will have

m.waitfor set to 0. Since d e lv (F) initially contains 0, either of the delivery conditions will

be satisfied in BDealW ith and, therefore, m will be D ep o sited in P ip e (F) without delay.

A rece iv e will then C o n su m e m within finite time.

Assume that the first n messages transm itted in the system are C on su m ed within finite

time. Consider the case of in, the (?i + l) s t message transm itted in the system. By Theo

rem 8, in will not be D eposited in P ip e (F ') until its predecessor set has been D eposited .

We need to show, however, tha t the receiver will maintain information so m can verify its

predecessor set has been D eposited .

C H A P T E R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 45

Suppose m is a two-way flush or forward flush message, m.waitfor will then be one less

than m.seqno (modulo num). The delivery condition for m requires all messages transm it

ted since the last two-way flush, including that two-way flush, be a member of de lv (F).

By the inductive hypothesis, we know these messages will be C o n su m ed in finite time.

W ithout regards to re-initialization, delv(7r) maintains the sequence numbers of all mes

sages delivered since the delivery of the last two-way flush. We, therefore, conclude m will

be D ep o sited and C o n su m ed in finite time as well.

Suppose m is a backward flush or ordinary message. Recall tha t m.waitfor is the sequence

number of the backward flush point at the transmission of m. Since the backward flush point

will be a message in the first n messages transm itted, we know, by the inductive hypothesis,

it will be C o n su m ed within finite time. The set d e lv (F) contains the sequence numbers of

all messages th a t have been delivered since the delivery of the last two-way flush message.

Furtherm ore, Lemma 2 proved no message will be “between” a backward flush point and a

backward flush or ordinary message. Therefore, m.waitfor, referring to a two-way flush or

backward flush message, will be an element of d e lv (/ '1) in finite time and will not have the

possibility of removal until after the delivery of rn.

As a final part of this argum ent, it is essential that de lv (F ’) is re-initialized only when the

system is empty of messages. The sender transm its a dummy two-way flush message only

when the system is empty and the receiver re initializes its variables only when the dummy

two-way flush is delivered. Hence, d e lv (ir') will contain the messages required to satisfy the

delivery condition for each transm itted message in finite time.

In the first part of the proof, we assumed each message transm itted by a se n d operation

is placed on the network. At the sender of the bounded W aitFor technique, however, a

message will not be placed on the channel by a X m it operation unless the transmission

condition is verified:

|sbuffer(f<’)| < k A (seq n o (F) + 1) m od num 2Fack(I'').

CH APTE R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 46

We now show that this condition, when false, will become true in finite time. In the first

part of the proof, we verified tha t if a message is transm itted on the channel, then it will be

received in finite time. At each delivery of a message m , the receiver transm its an ACK for

m to the sender. The sender will receive an ACK for each message it transm itted in finite

time and will thus remove messages from sb u ffe r(F) in finite time. For the transmission

condition to be made true in finite time, we must also show that 2F ack(F) is modified in

finite time. If a two-way flush message is transm itted, 2Fack(F1) is updated. If, however,

no two-way flush message is transm itted in num messages, then the system will empty itself

of all messages and the transmission condition will continue to be false. In this scenario,

the sender transm its a dummy two-way flush, thus re-initializing all the variables. Since

we assume num. > 1 and the initial values of se q n o (F) and 2F ack (F) are both 0, the

transmission condition will become verified and each message from a se n d operation will

be placed on the network by a X m it operation in finite time.

Lastly, both sides of the F-channel exhibit liveness as long as messages are initially placed

on the network. T hat is, in the receiver’s argument, we assumed each message to be

transm itted is placed on the network. In the sender’s proof, we based the argument on the

assumption th a t the sender receives ACKs for previously transm itted messages. Since the

transmission condition will not delay the transmission of the first k messages, the sender

will begin placing messages on the network and the receiver will transm it ACKs for these

messages in finite time. Therefore, messages sent on the bounded W aitFor technique will

be transm itted and received in finite time. I

C H A P T E R 2. IM PLEM E NTATIO N OF A FLUSH CHANNEL

2.8 P erform ance C onsiderations

47

2 .8 .1 T h e S y s t e m M o d e l

An F-channel offers the implementor of a distributed application the flexibility of specifying

a message delivery order apropos of the demands of the application. This stands in marked

contrast to the rigid FIFO delivery order imposed upon the application by virtual circuit

communication. Intuitively, the more restrictive the delivery order, the less concurrency

available to exploit in message transmission over multiple links. In the next two sections,

we investigate the gain in effective network bandwidth when ordinary messages are batched

together by a flush message and are transm itted over a multi-link F-channel, as compared

to messages transm itted over a multi-link virtual circuit. We assume the implementation of

the F-channel is similar in spirit to that of the W aitFor technique; that is, one copy of each

message is transm itted across the F-channel. First, simulation results in Section 2.9 show

that the relaxed delivery order restrictions of the F-channel may reduce the mean delivery

time of a batch by a factor of three or four—this difference may be critical in meeting real

time requirements of the application. Second, in Section 2.10, analytical results are derived

to validate the simulation results.

Link 1

Link 2

Link 3

\ Link N

Figure 2.9: Performance System Model

Consider the system model shown in Figure 2.9. Regardless of the communication

paradigm , the figure illustrates two communicating processes connected by N separate and

independent links. Messages to be transm itted are generated by the sender (denoted by S).

CH APTE R 2. IM PL EM E NTAT IO N OF A FLUSH CHANNEL 48

Upon generation, if all N links are busy, the message is placed in the FIFO transmission

queue. If, on the other hand, a transmission link is available, the message is immediately

transm itted. In this model, we assume that the transmission queue is unbounded. We

also assume the existence of an underlying network layer mechanism which assures reliable

transmission of messages.

As stated, messages may arrive a t the receiver (denoted by R) in an unpredictable order.

The ultim ate delivery of a message, as discussed in the beginning of this chapter, may be

delayed due to two reasons. F irst, for any communication paradigm (FIFO, unordered, and

flush), the receiver may not have issued a rece iv e command. Second, for both FIFO and

flush communication paradigms, a message cannot be delivered until all ordering restrictions

are satisfied, i.e., the resequencing delay. This second delay occurs while the message waits in

the resequencing buffer. As we did for the transmission queue, we assume the resequencing

buffer is unbounded in size.

2 .8 .2 D a t a B a t c h e d b y F l u s h M e s s a g e s

We have found, for every F-channel application developed to date, real-world examples nat

urally form batches of ordinary messages and an associated flush message of a given type

[Ahu90, AVS91, CK91, CKA93], Any flush application tha t transm its information from the

sender to the receiver and uses more than one flush type appears to be a contrived example.

Although each flush type is independently beneficial, we question the usefulness of trans

m itting more than one flush type on an F-channel. Therefore, in the performance sections,

we consider a message passing scenario partitioned into batches of ordinary messages and

a singular flush message.

Following a batch of ordinary messages with a forward flush effectively “closes” the

batch. The ordinary messages (from all batches) may be delivered in any order, but all

ordinary messages in one batch must be delivered before the batch-term inating forward

flush is delivered. Batches of ordinary messages separated by a two-way flush completely

CH APTE R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 49

isolates batches from one another; i.e., all messages in batch i will be delivered before any

message in batch i + 1 is delivered. Using a backward flush to precede a batch of ordinary

messages “announces” the coming batch. No ordinary message in a given batch may be

delivered until its preceding backward flush, but given th a t restriction, the delivery of all

ordinary messages (for all batches) is unordered. In the following discussion, we consider

the three batching scenarios in more detail. In each case, we suppose a batch, consisting of

B messages, represents a single frame in the transmission of digital image information. Each

ordinary message in a given batch contains image data for a small region of the display area

and the identity of the region in which it should be displayed. The receiver constructs the

frame in pieces—as ordinary messages arrive, its sub-image is pasted into the appropriate

position. Each message consists of three fields. The first field is the type of the message;

the second field indicates the batch number to which the message belongs; the third field,

for an ordinary message, denotes the number of the message within the batch; the third

field in a flush message is zero.

Batch 1

Batch 2

Figure 2.10: Batches Terminated with Forward Flushes

Let us again consider batching ordinary messages with forward flush messages. Fig

ure 2.10 shows the immediate predecessor graph for this application. We see tha t delivery

of all of the ordinary messages is unordered (with respect to other ordinary messages). The

destination process expects, however, all of the ordinary messages in a batch to be delivered

before the forward flush “closes” the batch. The delivery of a forward flush signals that

its entire frame has been delivered. One application of this batching protocol could be the

CH APTE R 2. IM PL EM E NTAT IO N OF A FLUSH CHANNEL 50

storage of the image frames in separate files. The receipt of a forward flush signals that

the entire frame has been received and stored, and tha t the file in which it has been stored

may be closed. As an end-to-end image integrity convention, the term inating forward flush

could contain a checksum; the destination process computes the checksum function incre

mentally as the ordinary messages stream in. When the forward flush arrives, the checksum

If we let two-way flush messages delimit the ordinary messages, we see a different partial

tu te a batch may arrive in any order, but a two-way flush ensures tha t all messages in one

receipt of a two-way flush, the contents of the buffer are physically displayed, replacing the

previously displayed frame.

Batching ordinary messages with backward flush messages can also be applied to the

transmission of digital image information. Figure 2.12 illustrates this message passing

scenario. In this situation, the backward flush effectively “announces” the coming batch,

presumably providing the consumer process with information used to define the ordinary

messages included in the batch. As in the forward flush case, we see tha t all of the ordinary

in the message is compared to the receiver’s computed checksum before the frame is finally

accepted.

order—Figure 2.11 illustrates this batching scenario. The ordinary messages which consti-

batch are delivered before any message in the next batch. Suppose we wish to transm it a

group of images from one site to another for real-time animation. The individual frames are

constructed in the display buffer as the ordinary messages arrive a t the destination. Upon

\ .

- J r d 1,1>
..O rd 1 ,2 .

<

■.Ord ? 1.,
*Q rd

<2F,1,0> :2F,2,0>

/-C rd 1 E . vOrJ 2 B

Batch 1 Batch 2

Figure 2.11: Batches Separated with Two-way Flush Messages

C H APTE R 2. IMPLEMENTATION OF A FLUSH CHANNEL 51

Batch 1

<BF,1,0>

<BF,2,0>

Figure 2.12: Batches Preceded by Backward Flushes

messages may be delivered in any order, but that each ordinary message must be delivered

after the backward flush announcing the batch to which it belongs. Again suppose we

wish to transm it a group of images from one site to another. Further suppose the display

memory of the consumer is a scarce resource and that the backward flush includes the

size of the image conveyed in its batch. The consumer, upon receipt of a backward flush,

may calculate if the image will fit on the display. If so, the appropriate amount of display

memory is reserved, and the incoming image is displayed as it is received. If the image is

too large, then it is stored in a file for later display.

2.9 S im ulation R esu lts

Once again, consider the system model shown in Figure 2.9. In the simulation results

presented here, we compare the transmission of the batched data examples on an F-channel

with a virtual circuit over N transmission paths. The message generation process is assumed

to be Poisson; thus, the message inter-generation interval is exponential with mean 1/A. The

transmission tim e on any link is, initially, an exponential random variable with mean l / / i .

Later in this section, we replace the exponential random variable with a hyperexponential

random variable and consider the e lie cl on the system when the variance in transmission

C H APTE R 2. IM PLEMENTATIO N OF A FLUSH CHANNEL 52

times is increased. Initially, however, we have an exponential random variable with the

value of p fixed at one; N , A, and B are experimental param eters. (Recall that B is the

number of ordinary messages in a batch.) We define p , the system utilization, as

P = X/ Np,

= A j N when p — 1.0.

We may model this system, excluding the resequencing buffer, as an M / M / N queue in

which the condition for reaching steady state is th a t p = < 1. We insist this equilibrium

condition holds in all the simulation trials. Since we do not know the regeneration points

in this system, we use the m ethod of batched means to estim ate steady state. An interval

estim ate for the unknown mean is then calculated on the means from the batched data with

95% confidence. Each run in the simulation consists of processing 200,000 messages; each

batch size is 5,000 and, therefore, the number of batches in each run is 40.

We use mean message delay, D, as the principal performance metric. Mean message

delay includes queueing delay at the transm itter, time on the physical network link, and re

sequencing delay at the destination process; it is the mean end-to-end message transmission

time (excluding any delay due to the lack of a rece iv e a t the destination process). D thus

indicates the mean delay from time of arrival until a message is made eligible for delivery.

2 .9 .1 M u l t i - l i n k V i r t u a l C i r c u i t

As a benchmark, we consider the performance of a virtual circuit in Figures 2.13 and 2.14.

The analysis of resequencing delay in [AR87] validates these two figures. Figure 2.13 illus

trates the three individual components that complete the mean message delay for a virtual

circuit implemented on 25 transmission links. We plot utilization, p , versus delay, showing

95% confidence intervals. The figure exhibits that resequencing delay is an im portant factor

in the to tal delay. In fact, resequencing delay dominates transmission delay and queueing

C H A P T E R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 53

N -2 5
p s varied
B = 04

Mean M essage Delay

3
Resequencing Delay

S'

2

Transmission Delay

Queueing Delay

0

0.2 0 .4 0 .6 0.8
P

Figure 2.13: Message Delays on a Virtual Circuit

delay for almost all utilizations. Although the exact form of the plot depends substan

tially on the fact th a t there are 25 links, any system with more than one link reveals that

resequencing delay is an im portant factor in the total delay.

Unlike Figure 2.13, we do not plot a confidence interval in the subsequent figures of this

thesis. Our simulator, however, calculated every data point with a 95% confidence interval.

In each simulation trial, the confidence intervals gradually increase as utilization increases.

Since none of the confidence intervals are very large (in fact, most are drawn smaller than

the symbol used to represent the mean on our plots), we omit them.

In Figure 2.14, we plot utilization, p, versus mean message delay, D. In this plot, we

consider the effect of varying the number of links on which the virtual circuit is implemented.

At utilizations less than 0.5, we find tha t D is exactly opposite what one would expect.

Adding links to the system at low utilization increases the delay. In fact, a 100-link virtual

C H A P T E R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 54

circuit lias a mean message delay higher than a single link virtual circuit until the utilization

approaches 0.8. This result is explained by the importance of resequencing delay as links

are added to the system. W ith fewer links, queueing delay becomes more im portant at

higher utilizations. We see, for example, tha t a 25-link virtual circuit becomes faster than

an 8-link virtual circuit when utilization is greater than 0.9. A virtual circuit’s insistence on

a FIFO delivery order leads to a mean message delay that is non-monotonic (with respect to

N) and counterintuitive. In summary, increasing the number of physical links between two

processes communicating in a FIFO manner does not necessarily result in a higher effective

bandwidth.

N = varied
p =■ varied
B = 0

N-25

N=1

10°
0.2 0 .4 0.6 0.8

P

Figure 2.14: Virtual Circuit Mean Message Delay

As a comparison, we see monotonic, predictable behavior in Figure 2.15. In this plot,

we have, basically, no delivery order restrictions—a single batch is transm itted (199,999

ordinary messages followed by a forward flush). In effect, the figure illustrates the mean

C H A P T E R 2. IM PLEMENTATIO N OF A FLUSH CHANNEL 55

message delay for reliable datagram communication. As in Figure 2.14, the vertical axis

is mean message delay, and the horizontal axis is utilization. We immediately notice that

the system always benefits (decreases D) from the addition of communication links. Fur

thermore, every mean message delay in Figure 2.15 is less than the corresponding mean

in Figure 2.14. The mean message delays are equivalent, however, when a single com

munication link connects the two processes, We realize the difference in the two plots is

completely due to the number of restrictions placed on the delivery order, i.e., a degree of

order. F-channels allow the user to specify these two example degrees of order. In addition,

F-channels allow many degrees of order between these two extremes. The following section

investigates the im pact of degree of order upon mean message delay.

N-1
N - variod

p - varied

B - 109,999

101

IQ

N=25

10°

0.2 0 .4 0.6 0.8
P

Figure 2.15: Reliable Datagram Mean Message Delay

CH APTER 2. IM PLEMENTATIO N OF A FLUSH CHANNEL 56

2 .9 .2 T h e E f fe c t o f D e l iv e r y O r d e r R e s t r i c t i o n s

In this section, we investigate the effect of delivery order restrictions on the three different

batching scenarios. All three plots in this section, Figures 2.16 to 2.18, keep the number of

communication links between the sender and receiver fixed at 25 and we plot mean mes

sage delay versus the number of batches transm itted. The fewer the number of batches

means the less the degree of order. The less order means the greater the potential that a

multi-link channel can exploit concurrent message transmission without incurring excessive

resequencing delays. At the left end of the horizontal axis there are, basically, no message

delivery restrictions; a single batch is transm itted. In effect, we have reliable datagrams.

At the right end of the horizontal axis, the mean message delay is equivalent to the mean

message delay if the messages were transm itted across a virtual circuit—200,000 flush mes

sages are processed. In the middle of the horizontal axis, for instance, we transm it 100

batches of 1,999 ordinary messages (delimited by a flush message). Clearly, the horizontal

p - 0.95
N - 25
p - varlod
B - varied

4.0

p - 0.60

p -0 .50

xo
IQ

2.5

2.0
p -0 .10

10* 104
Number of Batches

Figure 2.16: Forward Flush Batching Scenario

CH APTE R 2. IM PLEMENTATIO N OF A FLUSH CHANNEL 57

axis represents all possible degrees of order.

In the first of these three plots, Figure 2.16, we consider the impact of delivery order

restrictions when transm itting batches of ordinary messages term inated by forward flush

messages. The plot illustrates th a t mean message delay monotonically increases as delivery

order restrictions increase. Furthermore, there is a tremendous increase in D as the degree

of order goes from 20,000 to 200,000 batches for every utilization.

p = 0 95

N = 25
p = varied

B = varied

4 .0

3.5

p = 0.50

3.0

IQ

2 .5

2.0

10°
Number of Batches

Figure 2.17: Two-way Flush Batching Scenario

In Figure 2.17, we consider the degree of order impact when we transm it batches of

ordinary messages delimited by two-way flush messages. In this case, the dram atic increase

in D begins when the number of batches transm itted is 200. Consider a utilization of 0.5.

When the number of batches increases from 200 to 20,000, the mean message delay increases

by almost 300%.

Now let us compare batching ordinary messages by backward flush messages (Fig-

CH APTE R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 58

P - 0.95
N - 25
p ■ varied

B - varied

4 .0

3.5

p = 0.50

3.0

2.5

2.0
a P = 0.10

I0110°
Number of Batches

Figure 2.18: Backward Flush Batching Scenario

ure 2.18) with the two-way (lush batching scenario. Again we see D monotonically increasing

as delivery order restrictions increase. Similar to the two-way flush batching scenario, there

is a dram atic increase in the mean message delay. In this case, however, the increase does

not begin until the number of batches transm itted becomes 2,000. Looking back at Fig

ure 2.17, we find the large increase in the mean message delay begins when the number of

batches is 200. In addition, D for the backward flush batching scenario is almost consis

tently less than D for the two-way flush batching scenario. The only exceptions are at the

two extreme ends of the degree of order: (basically) no order and to tal order. Take, for

example, transm itting 2,000 batches, of batch size 99, when utilization is 0.8. The delivery

of these batches will take 70% longer if the batches are delimited with two-way flush mes

sages instead of backward flush messages. In summary, batching ordinary messages with

backward flush messages has lower mean message delays than batching ordinary messages

C H A P TE R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 59

with two-way flush messages.

As a final comparison between Figures 2.16 to 2.18, consider transm itting 20,000 batches,

of size nine, when utilization is 0.8.

Batching Mean Message
Scenario Delay

F F 1.31
B F 1.83
2F 3.50
V C 3.67

In this situation, it takes 40% longer to use backward flush batching, 160% longer to

use two-way flush batching, and 180% longer to use virtual circuit communication instead

of transm itting the batches with forward flush messages. In this section, we throughly

examined the impact of degree of order upon mean message delay for each batching scenario.

For each batching scenario and each utilization, the mean message delay reaches the mean

message delay of virtual circuit communication in the worst possible case only. In the

following section, we plot the impact of degree of order, given utilization of 0.5, for each

batching scenario in one concise plot. In addition, the section analyzes the effect of our

other two experimental parameters: p and N.

2 .9 .3 T h e E f fe c t o f / i , p, a n d N

In the simulation results presented in this section, we compare the three batching scenarios

and virtual circuit communication. In each of the three plots, we keep two of the exper

imental param eters fixed and examine the effect of mean message delay when the third

param eter is varied. Figure 2.19 brings together the batching scenario results of the pre

vious section for utilization of 0.5. As illustrated, the mean message delay, for any given

F-channel batching possibility, monotonically increases as the amount of delivery res trie-

CH A P T E R 2. IMPLEMENTATION OF A FLUSH CHANNEL 60

vc
1.0

0.9

0.8 2F

0 .7

<3

BF;0.6

0 .5

FF,

0.4

0 .3

1 0 '
Number of Batches

Figure 2.19: Varying the Number of Batches

tions placed on message delivery increases. The figure considers a 25-link system and a

utilization of 0.5. In this plot, each point represents the difference between the mean mes

sage delay for a virtual circuit and the mean message delay for a given communication

scenario when the number of batches is varied. (A given communication scenario is either

virtual circuit communication or F-channel communication utilizing a named flush type to

delimit the batches.) Each point in the plot is computed as

D a = D x
D v c

where the subscript of D represents the communication scenario. A value of f) A close to

1 indicates minimal gains for batched data delivery over a multi-link F-channel compared

to a virtual circuit over the same number of links. The smaller the value of D A , the

CH APTER 2. IM PLEMENTATIO N OF A FLUSH CHANNEL 61

greater the performance improvement. The value of D& is simply the fraction of the virtual

circuit delay produced by the F-channel batching paradigm. For example, a value of 0.4 for

means the specified batching scenario takes only 40% the tim e of transm itting these

messages on a virtual circuit. We immediately note the performance gain a user will obtain

if messages can be transm itted using an F-channel. In the best situation, message delay

for a batching application communicating with an F-channel will be approximately one

third that of the same application communicating with a virtual circuit. The delay for an

F-channel approaches tha t of a virtual circuit in the worst case only. If the semantics of

the application perm it, F-channels offer promise of providing high bandwidth inter-process

communication. Since the Hush communication paradigm allows the user to specify the

least delivery restrictions necessary for the application, the best mean message delay can

be obtained.

v c

N - 2 S
p = varies

B-99
0 .9

0.8

0 .7

IO
0.6

2F0 .5

0 .4

OF
FF

0 .3

0.2 0.4 0.6 0.8
P

Figure 2.20: Varying the System Utilization

C H A P T E R 2. IMPLEMENTATION OF A FLUSH CHANNEL 62

Since we have considered the degree of order efFect on each batching scenario, we now

analyze the efFect of our other two experimental param eters: utilization and number of

links. In Figure 2.20, we consider utilization. As in the previous figure, we plot £>a on

the vertical axis. In this case, however, we fix the batch size at 99 and p is the indepen

dent variable. The plot illustrates th a t both forward flush and backward flush batching

scenarios have the best gain in performance (compared to virtual circuit communication)

when utilization is 0.8. Ordinary messages separated by two-way flush messages, on the

other hand, are best at about a 0.3 utilization. As utilization increases after the best gain

in performance for each batching scenario, we realize tha t the queueing delay begins to

override the resequencing delay benefits. In each batching scenario, however, we easily see

the benefits of communicating with an F-channel.

Figure 2.21 considers the effect of varying the number of links. In this simulation experi-

vc
- n o o

N = varies
p » 0.5

B= 99

0 .9

O.B

0 .7

0.6

0 .5

0 .4

BF0 .3
FF

0.2
0 20 40 60 8 0 100

Figure 2.21: Varying the Number of Links

CH APTE R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 63

m ent, we fix the batch size a t 99 and utilization at 0.5. The two-way flush batching scenario

exhibits its best performance when the number of links in the system is approximately 20.

As in the virtual circuit communication case, the mean message delay for batching ordi

nary messages with two-way flush messages degrades when more than 20 links exist in the

system. (This result is heavily dependent on the fixed param eters.) The backward flush

and forward flush batching scenarios, on the other hand., do not show a degradation even

as the number of links in the system increases to 100. When we consider a 100-link system

and batch ordinary messages with forward flush messages, we see the mean message delay

is less than 25% of virtual circuit communication.

In this section, we compared the performance of virtual circuit communication with

the three batching scenarios in F-channel communication. All the results illustrate that

a programmer can obtain much faster da ta transmission if batches of ordinary messages

delimited with a flush message of a given type are transm itted on an F-channel. In the

three F-channel batching paradigms, there is a clear correspondence between the degree

of disorder allowed in message delivery and the potential for effective concurrent message

transmission without excessive resequencing delay. In other words, referring to Figures 2.10

to 2.12 of Section 2.8.2, the fact th a t batching with forward flush messages is less restrictive

than batching with backward flush messages, which, in turn, is less restrictive than batch

ing with two-way flush messages is reflected directly in the sim ulation result of Figure 2.19.

Furthermore, in all three batching scenarios, the larger batch sizes have smaller mean rese

quencing delays leading to smaller mean delays. T h a t is, as the degree of order increases,

there is a monotonic increase in the mean message delay.

A second conclusion may be drawn from Figure 2.20. Itesequencing delay is more im

portant in mid-range utilizations and, hence, D& is lowest for utilizations between 30% and

70%. As discovered in virtual circuit communication and shown in Figure 2.13, resequenc

ing delay is less of a factor in the total delay when utilization is low, due to less out-of-order

message delivery, and when utilization is high, due to the increased importance of queueing

C H A P T E R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 64

delay. Figure 2.21 illustrates th a t the backward flush and forward flush batching scenarios

exploit as many links as available. The more restrictive, in terms of message delivery order,

two-way flush batching scenario lias a response similar to virtual circuit communication;

i.e., when the number of links in the system is increased, the mean delay is also increased.

The performance of the two-way flush batching scenario of batch size 99 does improve,

however, as the number of links in the system goes from 1 to 20. Having more than 20 links

in the system and adding additional links decreases the performance gain in tire two-way

flush batching scenario.

I t is also evident from the comparative plots of Figures 2.19-2.21 in this section that

the performance of forward flush batching and backward flush batching are quite similar,

but substantially better than the performance of two-way flush batching. Two-way flush

batching, however, still outperforms a virtual circuit by a wide margin.

In this section, we analyzed the efFect of varying our three experimental parameters

on mean message delay. We note that in modeling the transmission time distribution

as exponential with param eter /t, we have ignored the effects of the transmission time

distribution on the message delay. It is known [Cho89] that the resequencing delay for multi

link virtual circuits is sensitive to higher moments of the transmission time distribution. As

a trivial example, if message transmission time is fixed at the constant value l / / i , there is

no resequencing delay. All of our results have an implicit assumption tha t the sender and

receiver are linked across a packet switched internetwork and, therefore, we expect message

transmission tim e to be highly variable. In the following section, we examine the effect of

the second moment of the transmission time.

2.9.4 T he EfFect o f Variance

Although the results of this section continue to be simulation-based performance results, we

separate the preceding section with the results presented here due to the extreme differences

in the underlying system. In this section, the message generation process continues to be

C H A P T E R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 65

Poisson with mean A, but the transmission time on any link is a 2-stage hyperexponential

random variable with mean 1 foi and squared coefficient of variation C 2 where

variance
6 =

When a message is ready for transmission, it has probability oq to transm it on a link which

is exponentially distributed with mean l / f i i and it has probability (1 — oq) to transm it on

a link which is exponentially distributed with mean l / / t 2 - Therefore,

1 aq 1 — oq
/i Hi H2

We may model this system, excluding the resequencing buffer, as an M /I I 2 / N queue. In the

following simulation results, /i continues to be fixed at one and C 2 becomes an experimental

param eter. We plot C 2 versus R a , the fraction of the virtual circuit resequencing delay

produced by the F-channel batching paradigm:

R a = A x
R v g

where X represents a particular batching scenario.

In Figures 2.22 to 2.24, we keep the number of communication links and utilization fixed

at eight and 0.5 respectively. At the left end of the horizontal axis, where C2 = 1.0001, R a

represents the performance improvement of the particular batching scenario over virtual

circuit communication when the message transmission distribution is approximately ex

ponential. As C 2 increases, the three figures illustrate that the three batching scenarios

produce different degrees of sensitivity to increasing the variation in transmission times.

In the first of the next three plots, Figure 2.22, we consider the effect of variance when

transm itting batches of ordinary messages delimited by two-way flush messages. The plot

illustrates th a t the two-way flush batching scenario is extremely sensitive to increases in

C H A P T E R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 66

vc
B - B 9

0.8 B r. 1,999

0 .6

0 .4

0 .2
B - 19,993

B = 199,9990,0

BOO 10006 0 0200 4 0 00
2

Figure 2.22: Hyperexponential: Varying the Number of Batches

the coefficient of variation. As C 2 increases, the performance gain of the two-way flush

batching paradigm is decreased. A batch size of 199,999 (basically no resequencing delay)

is the only batch size not affected by the hyperexponential distribution. Consider a batch

size of 999. When C 2 increases from 1.0001 to 600, Z?a increases from 0.5% to 80%.

In Figure 2.23, we consider the effect of a 2-stage hyperexponential transmission distri

bution on the transmission of ordinary messages term inated by forward flush messages. In

this case, the effect of variance is not as severe. In fact, the performance gain of each batch

size over virtual circuit communication remains unchanged for every C 2. Consider a batch

size of one. 50% of the messages have no resequencing delay and 50% of the messages have

a resequencing delay as if the message were transm itted across a virtual circuit. Therefore,

regardless of C 2, the mean resequencing delay of a message in this batching scenario is one

half the mean resequencing delay of a message transm itted across a virtual circuit. Every

C H A P T E R 2. IM PLEMENTATIO N OF A FLUSH CHANNEL 67

message transm itted across a virtual circuit is sensitive to increases in C 2; in the forward

flush batching paradigm, only forward flush messages are affected by increases in C2.

Figure 2.24 illustrates the effect of variance when the ordinary messages are preceded

by backward flush messages. As C 2 increases, R a decreases. Again consider a batch size of

one. W hen C2 = 1.001, R a — 64%. When C2 = 1000, R a = 42%. Recall the comparative

plots of Figures 2.19 to 2.21. Although the forward flush and backward flush batching

scenario results are similar, the forward flush batching scenario continuously outperforms

the backward flush batching scenario. This result is interchanged when we consider the effect

of variance. As C 2 increases, the backward flush batching scenario begins to outperform

the forward flush batching scenario.

Figures 2.25 and 2.26 analyze the effect of utilization and number of links on the two-way

flush batching scenario, the F-channel batching paradigm that exhibits the least amount

1.0

O.B

0.6

ICC3

0 .4

0.2

0.0

FF Batching

N-a
P .3 0.5

B _ varied

-o VC

-a B m 1

--- * B

— 1--------------------------1— - 1 1 1 1

200 400 600 800 1000

Figure 2.26: Hyperexponential: Varying the Number of Hatches

C H APTE R 2. IMPLEMENTATION OF A FLUSH CHANNEL 68

o VC

BF Batching

O.B

B = varied

0.6

I

0.4

0.2

-o B a 990.0

800 1000200 6000 400
2

Figure 2.24: Hyperexponential: Varying the Number of Batches

of performance gain when the efFect of variance is examined. In Figure 2.25, we consider

utilization. As in the previous figures, we plot C 2 on the horizontal axis and R a on the

vertical axis. In this case, however, we fix the batch size at 19,999 and consider the effect of

varying p. Higher utilizations lose the performance gain faster than lower utilizations when

C 2 is increased. This result is intuitive; higher utilizations will be more adversely affected

by greater variation in the transmission times.

Figure 2.26 considers the effect of variance on the two-way flush batching scenario when

we alter the number of links in the system. In this simulation result, we fix the batch size

at 19,999 and utilization at 0.5. In all cases, the performance gain is reduced as C 2 is

increased. Consider a 25-link system. When C 2 = 100, R a = 8%, but when C 2 = 1000,

R a = 49%. As more links in the system allow more opportunity for messages to arrive

out-of-order, the performance gain over a virtual circuit is reduced.

C H A P T E R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 69

^ vc

P = varied
0.8

B = 19,999

0.6

itr

0 .4

0.2

0.0

8000 200 400 600 1000
C2

Figure 2.25: Hyperexponential: Varying the System Utilization

One way to comprehend the effect of an increase in the variation of message transmis

sion, is to deduce the number of messages that are affected when the transmission time of

one message is substantially increased. In the two-way flush batching scenario, one mes

sage can delay the delivery of all messages in subsequent batches. Therefore, this batching

scenario is extremely sensitive to increases in C 2. In fact, batch sizes less than 99 and coeffi

cient of variations greater than 10 exhibit almost no performance gain over transm itting the

messages across a virtual circuit. As C 2 is increased in a system transm itting forward flush

batches, the performance gain over a virtual circuit remains unchanged. In other words, one

slow message can delay the delivery of all subsequently transm itted forward flush messages;

however, the delivery of ordinary messages is unaffected by a message with a long trans

mission time. The backward flush batching scenario illustrates a performance improvement

over virtual circuit communication when variance is considered. In this baLching scenario,

C H A P T E R 2. IM PLEMENTATIO N OF A FLUSH CHANNEL 70

■o VC

N - varied

P = 0 .5 N = 1000.B B - 19,999

0.6

|tr

0.4

0.2

0.0

0 200 400 600 800 1000

Figure 2.26: Hyperexponential: Varying the Number of Links

only the transmission of backward flush messages can delay the delivery of other messages

in the system. Since fewer messages can affect the delivery of subsequently transm itted

messages, the batching paradigm is less sensitive to increases in C 2.

For every batching scenario and every coefficient of variation, the resequencing delay of a

message transm itted across an F-channel is as good as, if not better, than the resequencing

delay of a message transm itted across a virtual circuit. While increasing C 2 does adversely

affect the performance gain of a message in the two-way flush batching scenario, F-channel

communication continues to outperform a virtual circuit.

We note th a t a central developmental trend in computation is that we (generally) achieve

speed through the concurrent operation of many processors. The magnitude of such a speed

up depends upon the nature of the computation and how well it can be partitioned into

concurrent activities. A similar phenomenon is obvious in this work—the use of F-channels

C H A P T E R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 71

provides the opportunity for concurrent message delivery over multiple links. F-channel

communication can be used to relax delivery order restrictions and, hence, to make data

transfer faster through concurrent message passing.

All the results presented in this section were obtained from a simulator. In the following

section, we return to the transmission time on any link as an exponential random variable

with mean 1 //« and we confirm the validity of the corresponding simulation results.

2.10 A n a ly tic R esu lts

The to tal delay (D) of a particular message is a random variable. The random variable for

the time spent in the transmission queue, waiting for an available link, is called the waiting

(W) delay. The transmission (T) delay is a random variable for the time a message spends

en route from the sender to the receiver. The third random variable in the total delay, as

discussed in Section 2.8, is the resequencing (R) delay. The total delay is then

D = W + T + R.

Once again, consider the system shown in Figure 2.9. The message arrival process is Poisson

w ith ra te A. The service time, or transmission delay, is exponentially distributed with mean

l//r:

T(x) = 1 - e x > 0.

The system has N identical links connecting two communicating processes. We assume

there is an infinite number of messages to be transm itted. The system up to, but not

including, the resequencing buffer is an M / M / N queue. This subsystem will achieve steady

sta te for p = ^ < 1.

Let pn be the steady sta te probability of finding n messages in the subsystem. The state

C H APTE R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 72

occupancy probabilities for the M / M / N queue at steady sta te are given by [Kle75]:

where

Pn =

Po
(.N p) n

nl

i N Pr
N \ N n~N

< N

n > N

Po = I (i M L \
. t o \ m) V I - p)

- l

(2 .1)

The expected to ta l delay is given by:

E [D] = E [W] + E [T] + E[R]. (2 .2)

Independent of the communication paradigm, E[W] is given from M / M / N analysis [AR87],

E[W] = Po P (Np) N

\ N \ (1 - p) 2 ’

and

E [T] =
P

The resequencing delay, on the other hand, does depend on the communication paradigm.

In the next four sections, we discuss the expected resequencing delay for different commu

nication scenarios. The first section lists established results for the resequencing delay for a

virtual circuit (VC). The next three sections derive the resequencing delay for the different

batching scenarios discussed in Section 2.8.2.

CH A P T E R 2. IMPLEMENTATION OF A FLUSH CHANNEL 73

2 .1 0 .1 V i r t u a l C i r c u i t R e s e q u e n c i n g D e la y

Analysis of the resequencing problem for virtual circuit communication has been considered

in the literature by several authors. Yum and Ngai [YN86] studied the resequencing of

messages in an M / M / N queuing system with links of different speeds. Messages in this

system were transm itted down the fastest available link. They found that resequencing

delays increase as the variation in the speed of the links increase. In [AR87], Agrawal and

Ramaswamy focused on the distributional aspects of the resequencing delay in an M / M / N

system. Chowdhury derived the distribution of the total delay [Cho89].

The expected resequencing delay of a message transm itted across a virtual circuit could

be derived from the resequencing delay distribution. It is far simpler, however, to derive

the expected delay by conditioning the derivation on the number of messages in transm is

sion and then, subsequently, removing the condition [AR87]. We outline the approach of

Agrawal and Ramaswamy since we use a similar argument. Suppose n < N links are busy.

When a message arrives, it is tagged and transm itted immediately. Let T 11+i represent the

transmission tim e of this tagged message. Due to the memoryless property of the expo

nential transmission time distribution, the remaining transmission tim e for each message

en route, a t the instant of transmission of the tagged message, is exponentially distributed

with mean l / / t . Let tk be the remaining transmission time of the message on the kth busy

link (k < n). Thus, m ax(tj, t 2, . . . , tn, T li+i) is the time until all (n + 1) messages en route

have completed transmission.

Let VCR n be the resequencing delay of the tagged message transm itted across a virtual

circuit when n links are busy. Then

E[VCR„] = E[max(t1, t 2, . . . , t „ , T n+1) - T n+i]. (2.3)

Equation (2.3) is the expected resequencing delay conditioned on the number of busy links.

C H A P T E R 2. IMPLEMENTATIO N OF A FLUSH CHANNEL 74

If VCR is the unconditioned resequencing delay, then

N - 1

E[VCR] = Y Pb(n) E [v c /E »]>
n = 0

(2.4)

where pb(n) is the probability of finding n busy links upon the transmission of the tagged

message. These probabilities can be obtained directly from the steady-state probability of

sta te occupancy in an M / M / N queue [AR87]:

pb(n) = pn ,

Po
(N p)n

nl

pb(N-l) = Y j P
j —N —l

(N p) N~l
= Po

(N - 1) 1 (1 - p) '

0 < n < N - 2 .

(2.5)

Using equations (2.3)—(2.5), Agrawal and Ramaswamy derive the expected resequencing

delay in [AR87]:

N —l
E[VCi2] = Y Pb(n) E[max(t1, t 2). . . , t 11,T u+1) - T n+1],

n —0
riv-2
EPo (N p)” 1 (n p)n ^ N

(2.6)

Combining the expected waiting, transmission, and resequencing delays produces an

equation for the expected total delay a message experiences across a virtual circuit. If VCD

represents the to tal delay of a particular message transm itted across a virtual circuit, then

N - 2

E (Np) ” g 1 (Np) /V -l

k=2
• (2-7)

Results from this equation are within the confidence interval of the simulation results shown

CH A P T E R 2. IMPLEMENTATION OF A FLUSH CHANNEL 75

in Figures 2.13 and 2.14.

In [AR87], aspects of the resequencing distribution are discussed. They analytically

show th a t E[VCR] always increases as

(1) N increases,

(2) A increases,

(3) /i decreases.

Let us assume that p increases by either keeping A fixed and decreasing p or by keeping p

fixed and increasing A. Then, E[VCR] monotonically increases as N or p increases. Since

utilization cannot increase past 1.0, equation (2.6) reaches its lim it when p = 1.0 and all

other variables are fixed. When all variables are fixed and N is increased, E[VCi?] converges.

To calculate the asymptote of the convergence, we consider the closed-form solution for a

system with an infinite number of links. In [Kle75], we obtain the probability th a t n links

are busy in an M / M /bo system as

Pn

Using pn , Agrawal and Ramaswamy derive E[VCiioo]> the expected resequencing delay of a

particular message transm itted across a virtual circuit in a system with an infinite number

of links [AR87]:

E[VCRoo] = $ > „ E[V.CB„],
n —0
i.
/«

(2.9)

C H APTE R 2. IMPLEMENTATION OF A FLUSH CHANNEL 76

2 .1 0 .2 F o r w a r d F l u s h B a t c h i n g S c e n a r io

In this section, we consider the resequencing delay for the transmission of the forward flush

batching scenario. Suppose F C /iu is the resequencing delay of a message just arrived to find

n busy links on an F-channel. Recall Figure 2.10; this graph illustrates th a t the predecessor

set of an ordinary message is empty. The resequencing delay of an ordinary message is thus

zero,

FC R °rd = 0.

The resequencing delay of a forward flush message is more interesting. When a message

of this type is tagged for transmission, every message previously transm itted will be in the

predecessor set of this tagged forward flush message. Hence, the delivery of a forward flush

message must wait for the delivery of every message currently in transmission, i.e., all n

messages. Therefore,

FC = m ax(t1, t 2, . . . , t n,T n+1) - T 11+1.

If FF R n is the resequencing delay of a tagged message in the forward flush batching scenario

conditioned on n busy links, then

where B is the batch size.

Following the derivation of the expected resequencing delay for virtual circuit commu

nication, we derive the expected resequencing delay of the forward flush batching scenario

conditioned on the number of busy links in the system and then remove the conditioning.

C H APTE R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 77

Equation 2.3 is the expected resequencing delay of a message th a t must wait for the delivery

of every message currently in transmission. Therefore,

E[FFi?n] = (^ r r)(E [m a x (t1, t 2 , . . . t n>T n+1)] - E [T n+1]).

Since T(x) is the c.d.f. of message transmission time, then

E lF F n “ l = (b T i) 0 T (1 " - j) ■

Substituting z for T(x) , we obtain

d z ,
* /*

which, upon integration, is equivalent to

Using pb(n), from (2.5), we remove the conditioning to obtain the expected resequencing

delay of a particular message in the forward flush batching scenario.

E[FFJ?] =
N - 1

£ pb(n) E [F F «n],
n = 0

r N - 2

= f 1 W y 1 I
\ B + l) /t n! f c k

(N p) " - ' ^ x1
>' f c 2 k ' (N - 1)1(1- p) & k

(2 .10)

Therefore,

E[FFR] = G b T i) m c R] ' (2 . 1 1)

C H APTER 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 78

Equation 2.11 is intuitive; B out of (B 1) messages in the system do not have any

resequencing delay and 1 out of (B + 1) messages in the system have a resequencing delay

as if the message were transm itted across a virtual circuit.

Combining the expected waiting, transmission, and resequencing delays yields the total

delay a message in the forward flush batching scenario may expect:

E rF F n i _ K> P (N P) N i
“ AN\ (1 - p)2 f (212)

The result of plotting this equation is within the confidence interval of the corresponding

simulation result and illustrated in Figure 2.16.

We consider the expected resequencing delay of a message in the forward flush batching

scenario as the three parameters (B , p , and N) individually increase. Equation (2.10) shows

th a t E[FF1Z] monotonically decreases when B increases and all other variables are fixed. In

[AR87], Agrawal and Ramaswamy proved that pbx (n) is stochastically larger than pb2 (n) if

p in pbi(n) is smaller than p in pb2 (n). (Recall th a t we assume p increases by keeping either

A o r /i fixed.) T hat is,

N - l N - l
y , pbx(n) < ' y pb2 (n) for 0 < k < N - 1.
n=fc n=k

Since E[FFR„] increases when p is decreased or n is increased, we conclude tha t E[FFR]

monotonically increases as p increases and all other variables are fixed. Furthermore,

E[FFR] reaches a bound when p = 1.0. Lastly, we consider E[FF1Z] when N is increased.

For the virtual circuit communication paradigm, Agrawal and Ramaswamy proved tha t the

expected resequencing delay monotonically increases as N increases. Consider this fact in

tuitively; if N increases and all o ther variables are fixed, more messages are on the links at

any given tim e and, hence, there is more opportunity for the messages to arrive out of order.

From equation (2.11), we conclude the mean message delay in the forward Hush batching

C H APTE R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 79

scenario monotonically increases when N increases as well. E[FFi2] converges to the ex

pected resequencing delay for a message in an M /M /oo system. Using (2.8), the probability

th a t n links are busy in an M /M /oo system, we derive the expected resequencing as

E[FF Rn] = ^ P n E[FF/EB],
n = 0

/ i \ ~ i ^ i

From the derivation of E[FFjR„], we know that £ £ * 2 | is equivalent to Jq jz^ (1 — x n)dx.

Therefore,

/ 1 \ 1

- (j + v ^ n L

The expected value then becomes

when the infinite series is expanded. Substituting y = (1 — x) and the power series for ex ,

we obtain

E [F F ^] =

upon integration and simplification. Again,

ElFFJioo] = (5 7 1) EtVCfloo], (2.14)

C H APTE R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 80

2 .1 0 .3 T w o - w a y F l u s h B a t c h i n g S c e n a r io

Figure 2.11 shows the two-way flush batching scenario. Similar to a forward flush message,

the delivery of a two-way flush message must wait for the delivery of every message currently

in transmission. If a tagged two-way flush message is ready for transmission and n links are

busy, then

Consider the transmission of the j th ordinary message. If x messages from the predecessor

set of this tagged ordinary message are in transit, then

the predecessor set of the j th ordinary message. If i ordinary messages from the batch

containing j are in transit, then i — n — x. Instead of calculating the probability that x

messages are in transit from the predecessor set given n links are busy, we calculate, upon

the transmission of the yth ordinary message,

m ax(t1(t 2,

0

m ax(ti, r„+i)

if x = 0

if x = 1

F C ii° rd' j = m ax(t!, t 2, T Il+,) - Tn+1, if as = 2

nicLx(ti, 1 2 s , t n, T n+i) T n+ i, if x — n

To calculate FCJZ^rd,J', we require the probability that x messages are in transit from

pordsj(z | n) = P { i ordinary messages in transit from the current batch | n busy links}.

C H APTER 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 81

We re-write F C E °rd^' in terms of the number of ordinary messages in transit from the

current batch given n links are busy:

pordSj(min(.j - l,n) | n) (m a x (t i ,t2) . . . , t„_niin(j-i.n)}T n+1) - T n+1)

min(j—l,n)
pordsj(i | n) (m a x (ti ,t2, . . . , t„ _ i ,T n+i) - T n+i).

i=o

Following the derivation of the expected resequencing delay in the two previous sections,

we first consider the expected resequencing delay of the two-way flush batching scenario

(E[2F7Z]) conditioned on the number of busy links in the M / M / N system.

FCR n rd,j - < + p o rd s j(2 | n) (m a x (ti ,t2 , . . . , t Il_2 ,T n+i) - T n+i)

+ p ord sj(l | n) (m a x (ti ,t2, . . . , t n_ i ,T n+i) - T n+i)

+pordsj(0 | n) (m ax(ti, t 2). • . , t„ , T I1+1) - T n+1)

E [F C J?f],

(f + t J S ' J j ' p o rd s j(i | n)E [m ax (tl j t 2 , . . . , t n_ i,T n+1) - T n+1]

A -f-1) E[m ax (ti, t 2, . . . , tn, Tn^.j) — T n+i],

B inin(j—l.n)

The expected resequencing delay in the two-way flush batching scenario is then

J V -1

E[2FiZ] - £ pb(n) EI2F/2,],

C H A P TE R 2. IM PLEM EN TATIO N OF A FLUSH CHANNEL 82

The expected to tal delay a message from the two-way flush batching scenario experiences

is, as before, the combination of the three expected delays:

f M » \ N i / i \ T 3 N ~ l m in(j'-l.n) / n -i'+ l

+ xW)QxH)l- (2
n=0 V k —2 / J

We consider E[2FIZ] as B , p , and N individually increase. Equation (2.15) shows that

E[2FI2] monotonically decreases when B increases and all other variables are fixed. Now

consider E[2FI2] when p increases and all other variables are fixed. We know, from the pre

vious section, tha t pb(n) stochastically increases as p increases. Furthermore, (L]T^~2+ 1 d)

increases as p, decreases or n increases. Therefore, to verify E[2F7?] monotonically increases

as p increases, we need to show th a t pordSj(i | n) stochastically increases as p increases.

T ha t is, if p is higher in pordsj(i | n) 2 than p in pords7(i | n)1, we need to show that

A/-1 in in (j-l,n) N - l mii»(j—1 ,»t)

X X p°rds j(* | n)x < X X pordsj(i | n) 2 for 0 < k < N — 1.
n —k i= 0 n = k i=0

This result is clear when we consider tha t pordsj(i | n) = pn . Hence, as p

increases, the expected resequencing delay in the two-way flush batching scenario mono-

tonically increases. Furthermore, E[2FI£] has a bound when p — 1.0. Lastly, we consider

E[2Fi2] when N is increased. Intuitively, if N increases and all other variables are fixed,

there is more opportunity for the messages to arrive out of order. Hence, the expected value

monotonically increases as N increases. For validation, consider equation (2.15). If N is

smaller in pbi(n) than N in pb2 (n), then

N - l N - i

X Pbi(n) - X Pbz(n) f°r 0 < k < N - 1.
n = k n= k

Now consider pordsj(f | n). Since p is fixed, pordsj(i | n) for a given N is identical to

C H APTE R 2. IM PLEM ENTATION OF A FLUSH CHANNEL 83

pordsj(i | n) for a higher N . In addition, (^ E £ = 2+ 1 £) increases as N increases. Therefore,

equation (2.15) monotonically increases as N increases. E[2F/d] converges to the expected

resequencing delay for a message in a system with an infinite number of links. The proba

bility th a t n links are busy in an M /M /oo system is from (2.8).

E[2FJJoo] = j r > „ E [2 F E „] ,
n = 0

- t e l)
B oo m in (j—1 ,n)

X) £ ft* £ pordsj(i I n) (^ £
i= l n r r l i- 0 k— 2

+ I ? (- !) " - ! (± Y 1
' W « (» + !)!

(2 .17)

All of the derivations in this section require the probability tha t, upon the transmission

of the j t h ordinary message, i ordinary messages are in transit from the current batch given

n links are busy: pords_,(i | n). We know that

m in (j—l,n)

T : pordsj(z | n) = 1

t'=0

and

pordsj(i | n) =
pordsj(i A n)

E i= o P°rdsj(i A n)

where

pordSj(i A n) = P { i ordinary messages in transit from current batch A n busy links}.

We first consider pordsj(i A n) in the M /M /bo system, and then restrict the system

to a finite number of links. Given a system with an infinite number of links, we con

sider the probability that a message previously transm itted is in transit when another

message begins transmission. Suppose the inter-arrival interval preceding the transmission

C H APTER 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 84

of m,- is A ; and the transmission time of mi is T{. Then, as illustrated in Figure 2.27,

P { A 2 < T\] is the probability th a t mj is in transit when m 2 begins transmission. Further

more, P { A 2 + .A3 < Ti} is the probability tha t m i is in transit when m 3 begins transmission.

Since the inter-arrival and transmission times are independent exponential random vari

ables, with means 1 /A and 1 / f-i respectively, we compute the above two probabilities as

too
P { A 2 < Ti} = / P { A 2 < Ti I Ti = x)ne~ tlxdx,

Jo

and

too
P { A 2 + A 3 < Ti} = / P { A 2 + A 3 < T 1 \ T 1 = x } ^ LXdx,

Jo

■ (A -f p

Generalizing, we obtain the probability tha t the n th message previously transm itted is in

transit when a new message is transm itted [Ros73]:

H {A 2 + A 3 + . . . + A n < T i}
A

A + /i) ”■
P { n A < T 1) = a* (2.18)

Figure 2.27: Inter-arrival and Transmission Times: M /M /bo

C H APTE R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 85

where a = x fe .

Returning to pordsj(i A n), let us consider two specific examples. Suppose the j th

ordinary message from a batch is tagged and ready for transmission. Then

Po = pordsj(0A 0),

= P { T < A A T < 2A A T < 3.4 A ...} ;

i.e., no message previously transm itted is in transit when the yth ordinary message is

transm itted . Due to equation 2.18, the value of this probability would be trivial to obtain if

the individual components within the probability were independent. We test for dependence

by whether

P{Pi < A 2 + A 3 | Tt < A 3 } = P { P j < A 2 + A3}.

Consider S, the set of all possible values in the M /M /oo system for (T i, A 2 , >1 3 , T/)- We

define the events E\ , E 2 , and E 3 as the following subsets of the sample space S.

E ! = {x = {TU A 2 , A 3 ,T 2) 1 Pi < A 2 A Ti < A 3 A P2 < A 3}.

E 2 = {a; = (/T\, A 3, A 3 ,T/) \ Pi < A 2 A 1\ > ^ 3 A T\ < A 2 P A 3 A T2 < j43}.

E 3 = {s = (P i, A 2 , A 3, P 2) | Pi > A 2 A Pi < yl3 A Pi < ^ 2 + ^ 3 A T2 < A 3}.

The union of P x, P 2> and E 3, defined as E , is all possible outcomes of T\ < A 3 P /I3 given

P 2 < .A3 . We now define the events P i, F2, and P3 as the following subsets in S.

Pi = {* = (T u A 2, A 3,T2) \ T 1 < A 2 A T i < A3).

F2 — {a; = (P i, A2, A3, P2) | P i < A2 A P i > A3 A Pi < A2 ■+■ A3}.

F3 = {x = (f 1, A2, A3, 12) | Pi > A2 A Pi < A3 A Pj < A2 + A 3}.

C H APTE R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 86

The union of Fi, F2 , and P3, defined as F, is all possible outcomes of T\ < A 2 + A3 without

the constraint T 2 < A3. When we consider the probabilities of E and F, we conclude

th a t the dependence test fails. For instance, when 2\ < A 2 and Tj > .A3 , E implies that

T2 < Ti. F2 makes 110 such implication. T hat is, F represents possible outcomes tha t E

cannot represent; hence, the probability of F will be greater than the probability of E.

Therefore,

P { T j < A 2 + A 3 \ T 2 < A 3} £ P {7 \ < A 2 + A 3)

and the individual components within pordsj(i A n) are dependent.

We can, however, obtain an approximation for pordsj(» A n) denoted pords!-(2 A n), by

assuming they are independent. Thus,

pordSj(0 A 0) = P { T < A } P { T < 2 A } P { T < 3 A }

= (l - a) (l - a 2) (l - a 3) . . .

For another example, consider the transmission of the third ordinary message in a batch.

Then

pords^fl A 1) — (1 - a) (l - 0 2) a 3 (1 - a 4) (l - <*5)(1 - a 6) • ■ ■

+ (1 — a) (l - a 2) (l — a 3) a 4 (1 - <*5)(1 - <*6) • • •

+ (1 - a) (l - a 2) (l - ° ;3) (l — ° 4) <*5 (1 — a 6) . . .

and

p o r d s ^ f A 1) = a (1 - a 2) (l - a 3) (l - a 4) (l - a 5) (l - a 6) . . .

+ (1 — a) a 2 (1 — a 3) (l — a 4) (l — a 5) (l — a 6) .

C H APTE R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 87

0 .3 5
N - Infinity

a = 0.8

P -0.10 .3 0

0 .2 5

o 0.20

0 .1 5

0.10

0 .0 5

0.00

2 3 5 6 71 4 8 9

Figure 2.28: Analysis vs. Simulation Results: M /M /oo

The above two examples indicate the method to obtain an approximation of pordsj(i A n).

pordSj?(i A n) is a summation of probabilities. Each probability is a product of two prod

ucts. The first product is the probability that i ordinary messages from the ytli batch are

in transit; the second product is the probability that n — i messages not from the j t l i batch

are in transit. The two examples of p o r d S j (i A n) above were chosen due to their simplicity.

T hat is, the number of possible combinations for the first product is the number of

possible combinations for the second product is either one or oo. For simplification in the

examples above, only one combination is possible for the first or second products or both.

In Figure 2.28, we plot the approximate expected resequencing delay for nine ordinary

messages in a batch, E*[FC0r<1,J], when a — = 0.8; a represents the average number

of busy links in an M /M /oo system. We compare this result to R for a simulated 8 -link

system with A = 0.8 and ft — 1.0. In the simulated system, the average number of busy

CH APTE R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 88

links is 0.8 as well. The maximum number of busy links in the analysis is eight. We do not

plot the associated resequencing delay for a two-way flush message; this value is equivalent

to the value of the first ordinary message in a batch for both E[FC®n*'1] and R. As the

figure illustrates (although we approximate pordsj(i A n) with pords^(i A ra)), the results

from the analytical equations match the simulation results. In the simulation, the mean

resequencing delay is between 0.0968 and 0.1014 with 95% confidence. The result from the

approximate analysis is 0.1059.

0 .9
N = Infinity
a = 2.5

p = 0.1

B = 9

0.8

0 .7

a-0 .6

DC 0 .4

0 .3

0.2

0.1

2 3 4 5 6 7 B 9

Figure 2.29: Analysis vs. Simulation Results: M /M /bo

Figure 2.29 plots the approximate expected resequencing delay for nine ordinary mes

sages when the average number of busy links is 2.5. We compare the result to R from a

simulated 25-link system with A = 2.5 and / j = 1.0. The average number of busy links

in the simulation is also 2.5; the maximum number of busy links from the analysis is 13.

In this situation, the mean resequencing delay from the simulator is between 0.4114 and

C H APTER 2. IM PLEM ENTATION OF A FLUSH CHANNEL 89

0.4173. The analysis approximates the expected resequencing delay at 0.4357.

In a system with a finite number of links, we again consider the probability tha t a

message previously transm itted is in transit when another message begins transmission. As

before, A{ is the inter-arrival interval preceding the transmission of m,-; T; is its transmission

time. Qi represents the queueing delay for message m,-. Figure 2.30 illustrates th a t the

A 1 . Q l , T 1

A 2 Q 2

Figure 2.30: Inter-arrival and Transmission Times: M / M / N

probability tha t mj is in transit upon the transmission of m 2 is P {A 2 -f-Q2 < Q 1 + Ti}- The

probability that m i is in transit when m 3 begins transmission is P{/1 2 + A 3 F Q 3 < Qi + T i}.

Unlike a system with an infinite number of links, these two probabilities are difficult

to obtain We do not examine the derivations of these probabilities, however, for what we

require is P{A 2 + Q 2 < Qi + T\ a n d A2 + A3 T Q 3 < Q\ + 7 \} . Let us consider a specific

example. Suppose the j l l i ordinary message from a batch is tagged and ready for transm is

sion. Then

pb(0) = pordsj(0 A 0),

= P{Q + T < A + Q a Q + T < 2 A + Q / s Q + T < 3 A + QA. . . } - ,

i.e., no message previously transm itted is in transit when the j th ordinary message is

transm itted.

As in the case of a system with an infinite number of links, the conditions within the

probability are not independent. We, therefore, approximate the probability by assuming

C H A P TE R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 90

independence; e.g.,

pordsj(0 A 0) = P{Q + T < A + Q}P {Q + T < 2 A + Q}P{Q + T < 3 A + Q }

Because there is no simple derivation for P { Q + T < n A p Q }, we approximate pordSj(i A n)

one step further. For a given utilization, the queueing delays for any two messages will,

most likely, be close in value. Therefore, we further approximate p o rd s^ i A n) as we did

in the case of a system with an infinite number of links by subtracting out the queueing

delays:

pordsj(0 A 0) = P { T < A } P { T < 2 A } P { T < 3 A } . . . ,

= (1 — a) (l — a 2) (l — a 3) . . .

is'01aac
0
i
faa:

0.6

0 .4

1 2 3 4 5 6 7 8 9

Figure 2.31: Analysis vs. Simulation Results: M /M /8

C H APTE R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 91

In Figure 2.31, we plot the approxim ate expected resequencing delay for nine ordinary

messages, E*[FC0,<1, ■'], in an M /M / 8 system when A = 4.0 and /t = 1.0. We compare this

result to the corresponding simulation result; the two results validate one another. The

mean resequencing delay, R, from the sim ulation is between 0.7177 and 0.7264; the result

from the approximate expected value is 0.7450.

N - e

P - varied

jrIDa
&

0

0 .4

0.2

0.2 0 .4 0.6 0.8
P

Figure 2.32: Analysis vs. Simulation Results: M /M / 8

Figure 2.32 plots the two expected resequencing delays of the two-way flush batching

scenario, simulation and approximate analysis, for an 8 -link system. Although utilization

varies from no queueing delay to system saturation, the sim ulation and approximate analysis

results continue to validate one another.

One interesting phenomenon of the two-way flush batching scenario occurs when the

batch size is increased. The j th ordinary message in an F-channel application with batch

size B has the same expected resequencing delay as the j th ordinary message in another

C H APTE R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 92

F-channel application regardless of the batch size. If the batch size is increased by one, the

to tal expected resequencing delay is the previous batch’s total expected resequencing delay

with the consideration of the additional ordinary message in each batch. T hat is,

E[2FRB+r] = (j j f) E l2 F «b] + (3 ^ 2) E[FC0rd' B+1], (2.19)

2 .1 0 .4 B a c k w a rd F lu s h B a tc h in g S c e n a r io

Recall Figure 2.12, the backward flush batching scenario. The delivery of a backward flush

message is based upon the delivery of the previous backward flush point, which, in this

situation, is the previous backward flush message transm itted. If a tagged backward flush

message is ready for transmission, n links are busy, and the number of backward flush

messages currently transm itting is i, then

FC R bf = <

0

m a x (ti,T n+i) In + ij

m ax(t1, t 2, Tn+1) — T n+1,

if i = 0

if i = 1

if i = 2

m ax (ti, t 2, . . . , t n,T n+i) T nq.j, if i — n

The criteria for delivery of an ordinary message are identical to the criteria for delivery of

a backward flush message. If i is the number of messages in transit from the predecessor

set of the tagged ordinary message, i.e., the number of backward flush messages in transit,

then

F C R °rd = FCRb f .

In order to calculate the expected resequencing delay of this batching scenario, we require

the probability tha t i backward flush messages are in transit when a tagged message is

C H APTE R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 93

transm itted. This probability depends upon the number of message transmissions since

the transmission of the previous backward flush message. For a backward flush message,

(D + 1) messages have been transm itted since the transmission of the previous backward

flush message; for the j t h ordinary message in a batch, j messages have been transm itted

since the transmission of the previous backward flush. The probability th a t x backward

flush messages are in transit a t the transmission of the tagged message is based upon c,

the number of message transmissions since the transmission of the previous backward flush

message, and n, the number of busy links. If

pbfc(i | n) = P { i backward flush messages in transit | n busy links}

then

FC jjBF. f l+ i _

pbfB+i(0 I «) 0

+ pbffl+j (i | n) (m a x (ti,T n+i) - T n+i)

+ p b fs+ i(£ I n) (m a x (ti ,t2 ,T n+i) - Tn+1)

+ pbfB+x(n | n) (m a x (ti ,t2 , . . . , t n,T n+i) - T n+i)
n

=] £ P bfB + i(f l n) (m ax(t1 , t a, . . . , t i , T n+1) - T n+1).
i=0

F C tf? rd’i = Z) P bfi (i | n) (m ax(t1 , t 2). . . , t i ,T u+1) - T n+1).
i=o

As in the previous batching scenarios, we derive the expected resequencing delay for a

message in the backward flush batching scenario (DF7E) conditioned on the number of busy

links in the system. We then remove the conditioning. T hat is,

N —l
E[BFi2] = E[BFE„],

n=0

C H APTE R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 94

N - 1

Pb(n) E
n = 0

We substitute expressions for FCff®F’ and FCJ2®rd’ ̂ and then simplify the result with

solutions previously displayed.

B TT)
N - l n

Pi (n)X ^ P b fs+1(i I n)E [m ax (ti,t2). . . , t i ,Tn+i) - T n+1]
,n=0 t=0

N - l B n
+]T) Pb(n) Y 2 Y 2 Pbfi (‘ I n)E [m ax (ti,t2, .. . , t i}T n+1) - T n+1]

n —0 j —1 i—0

- G*i)
N - l

£ p & (n) £ p b f fl+i (t | n) (- X ^ T
:’= 0 V L k= 2 KLn= 0

1 ^ 1

B N - l

+EE IE pbfi(* In) (- t
j=1 n = 0 ,= 0 \ P !-•> h

l i±i 1

k- 2

(2 .20)

We combine this expected resequencing delay with the waiting and transmission ex

pected delays to obtain the total delay a message may expect in this batching scenario:

E[BFD] - + - +
XNl (1 - p f p \ B + 1

B N - l

N - l

J 2 pK«)]CpbfB+i(*ln) - E i
n —0 i= 0 V 1 k= 2 K

1 ^ 1

B N - l n / 1 i+1 i \

+ EE^(«)E pbfi(* In) (- £ k)
j= l n=0 i= 0 \ P k=2 /

(2 .21)

Lastly, we consider E[BFi£] as B, p, and N individually increase. Equation (2.20)

shows tha t E[BFfJ] monotonically decreases when B increases and all other variables are

fixed. When p increases, the expected resequencing delay in the backward flush batching

scenario monotonically increases as well. The argument in support of this fact follows the

corresponding argument in the two-way flush batching scenario and is, therefore, omitted.

As before, the expected resequencing delay is bounded at p — 1.0. Finally, consider E[BFil]

when N is increased. From equation (2.20) we realize th a t the expected value monotonically

increases as N increases. Again, this argument is om itted since it is similar to the one

C H A P TE R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 95

presented in Section 2.10.3. E[BF1Z] converges to the expected resequencing delay in a

system th a t transm its backward flush batches and has an infinite number of links.

W ithout re-iterating the discussion in Section 2.10.3, we approximate pbfc(i A n) with

pbf£(i'A n). T hat is, in the approximation, we do not acknowledge queueing delay in a

system with a finite number of links and we assume the individual components within the

probability, e.g., T < A, T < 2 A , . . . within P { T < A A T < 2A A ...} , are independent. Let

us consider specific examples.

Suppose a backward flush message is tagged and ready for transmission. Then

OO
EfBFEoo] = X > „ E[B F£b],

(2 .22)

All of the derivations in this section require pbfc(i | n). We know that

n
]T)pbfc(! |n) = 1

and

(2.23)

where

pbfc(i A n) = P { i backward flush messages in transit A n busy links}.

pW*fl+,(f lA 0) - P { T < A } P { T < 2 A } P { T < 3 A]

— (1 - a) (l — a 2)(l — a 3)

C H APTER 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 96

If the tagged message is an ordinary message instead of a backward flush message, then the

probability is equivalent; i.e., given c, pbf^(0 AO) — pbfg+1(0 A 0).

For a second example, consider the transmission of a tagged message with c message

transmissions, c = 2 ? + 1 if the tagged message is a backward flush, since the transmission

of the previous backward flush message.

p b S (0 A 2) = [(l - a c) (l - a 2c) (l - a 3 c) (l - a 4c) . . .]

X [a (1 - a2)(l - a3) .. .(1 - < 0 (1 - < 0 (1 - <*c+2) ...

+ (1 - a) a 2 (1 - a 3) .. .(1 - < 0 (1 - < 0 (1 - a c+2) . . .

N - infinity
a - 0 .8

0.20

0 .1 5

0 0 .1 0

0 .0 5

0.00

2 4 6 8 BF
m essage

Figure 2.33: Analysis vs. Simulation Results: M /M /bo

C H APTE R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 97

pbf]!(2 A 1) = [ac (1 - a 2c) (l - a 3c) (l - a 4c) . . .

+ (1 - a c) a 2c (1 - « 3c) (l - a 4c) . . .

X [(1 - o) (l - a 2)(1 - a 3) . . .(1 - £*c_1) (l - a c+1) (l - a c+2) ...] .

The above two examples indicate the m ethod to obtain an approximation of pbfc(i A ri).

The approximation pbf£(a A n) is a summation of probabilities. Each probability is a prod

uct of two products. The first product is the probability th a t i backward flush messages are

in transit; the second product is the probability th a t n — i ordinary messages are in tran

sit. The value c aids us in locating the backward flush messages. The number of possible

combinations for both the first and second products is oo.

In Figure 2.33, we plot the approximate expected resequencing delay for nine ordinary

0 .3 5 N - infinity

a = 2.5

P a 0.1

B = 9
0 .3 0

0 .2 5

p 0 .2 0

0 .1 5

0.10
& (FC)

0 .0 5

0.00
2 4 6 8 BF

m assago

Figure 2.34: Analysis vs. Simulation Results: M /M /oo

CH APTE R 2. IM PLEM ENTATIO N OF A FLUSH CHANNEL 98

messages in a batch, E*[FC0rd’J], and the approximate expected resequencing delay for the

backward flush message when a = = 0.8. (Recall th a t a represents the average number

of busy links in an M / M / oo system.) We compare this result to R for a simulated 8 -link

system with A = 0.8 and p = 1.0. As the figure illustrates, the analytical and simulation

results validate each other in the backward flush batching scenario as well. The mean

resequencing delay from the sim ulator is between 0.0389 and 0.0403. The result from the

analysis is 0.0400.

As in the two-way flush batching scenario, we compare the approximate expected rese

quencing delay for nine ordinary messages when the average number of busy links is a = 2.5

to R for a simulated 25-link system with A = 2.5 and /i = 1.0. Figure 2.34 plots the compar

ison of the singular messages. The mean resequencing delay from the simulator is between

0.1213 and 0.1250. The analysis approximates the expected resequencing delay at 0.1241.

0 .4 5

N - 8

P = 0 .5
0 .4 0

0 .3 5

0 .3 0

■D 0 .2 5

0.20

0 .1 5

E‘ |FC]

0.10

0 .0 5

2 BF4 6 Bm essage

Figure 2.35: Analysis vs. Simulation Results: M /M /8

C H A P TE R 2. IM PLEM E N TATIO N OF A FLUSH CHANNEL 99

E ‘(BFR]

0 .3 0 N = 8

P = varied

0 .2 5

is"
3 0.20

I 0 .1 5 cc

0.10

0 .0 5

0.2 0 .4 p 0 .6 0.8

Figure 2.36: Analysis vs. Simulation Results: M / M / 8

Figure 2.35 plots the approxim ate expected resequencing delay for nine ordinary mes

sages, E*[FC°rd' J], and the approxim ate expected resequencing delay for the backward

flush message when A = 4.0 and /.i — 1.0 in an M / M / 8 system. We compare this result

to the corresponding simulation result. In this case, the approxim ate analysis produces

an expected resequencing delay of 0.1932; the confidence interval from the corresponding

simulation result is 0.1895 to 0.1949.

Figure 2.36 plots the two expected resequencing delays of the backward flush batching

scenario, simulation and approxim ate analysis, for an 8 -link system. Although utilization

is varied from no queueing delay to system saturation, the simulation and approximate

analysis results continue to validate one another.

‘For example’ is not proof.
Jewish Proverb

Chapter 3

Verification of a Flush Channel

The previous chapter shows tha t F-channel communication allows the possibility of

higher bandwidth than communication by a virtual circuit. Unfortunately for the user,

however, system programming which uses F-channels is more complex than the conventional

virtual circuit paradigm. To handle the additional program complexity, we develop an

axiomatic verification methodology for F-channel communication.

3.1 Im portan ce o f P rogram V erification

Formal program verification is not heavily used in software development because powerful

proof techniques are complex and tedious to apply. Instead, programmers convince them

selves of program correctness by executing their program with different input cases. After

a wide variety of test inputs leads to the intended results, the program mer has increased

confidence tha t the program is correct. Program testing, in this manner, often accounts

for more than half the time spent on the entire programming project [IIoa69]. In the case

of distributed systems, arguing correctness via testing is even more problematic. The dif

ficulty originates from the large number of execution interleaving possible in concurrency.

To illustrate, there are n\ possible execution orders for n concurrent atomic operations in a

100

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 101

distributed system; testing for correctness must consider each of these 7i! possible executions.

In addition to the inadequacies of program testing, there are other advantages to formal

verification. One can place greater reliance in a system th a t has been formally verified.

Such reliance is generally impossible if testing is done exclusively. Another benefit is that

formal proof techniques uncover invariants of concurrent systems which further increase the

understanding of the entire system. In fact, one may postulate th a t effective testing and

formal verification should be viewed as two sides of the same coin [LK91].

3.2 S y stem C om m u nication S ta tes

In order to formally discuss distributed programs, a definition of the state of the system is

essential [LS84]. The state of a distributed program has three components:

• The data state is the mapping between program variables and their values.

• The control state is the mapping between the program counters of the programs’

processes and operations in the executable code of processes. It tracks the loci of

control for the individual processes.

• The communication state maps “the network” (hardware and software) onto messages

sent, received, and in transit. It allows one to deduce the messages which could

possibly be delivered to the destination process.

Implicit variables, variables to which a program makes no explicit assignment, are typically

used in operational developments of control and communication state . They encapsulate

key aspects of the state of a process, but may not affect the execution of the overall system

in any way [OG76]. For example, a process’ program counter is most useful in Hoare-style

verification proofs [Lam8 8]; its value is altered as a process executes, but a declaration

of, or direct assignment to, a program counter never appears in a program. Schlichting

and Schneider [SS84] use several data structures to model the communication state of

C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 102

distributed processes using asynchronous communication. The axiom atic semantics of a

message passing construct are expressed in terms of how the implicit variables which model

the communication state are affected by execution of the construct.

3.3 Background: A x io m a tic P ro o f M eth o d o lo g y

A distributed program consists of a number of separate processes. These processes share

no common memory, and hence, a process may not access another process’ variables. We

extend the axiomatic techniques for verification of concurrent and distributed programs

[LG81, OG76, SS84] tha t require three steps in the proof of a distributed program: a proof

in isolation, a satisfaction proof, and a non-interference proof. In [AFR80], the power of

synchronous communication is used to forgo a non-interference proof. Apt avoids this third

step by requiring that all assertions only reference local states. In [MC81] and [Sou84],

the authors also consider synchronous message passing. These two verification techniques

further stress the importance of the proof in isolation by defining invariants th a t describe

process interactions. Since we are concerned with asynchronous communication, we review

all three steps in the verification process presented by [LG81, OG76, SS84]. The first step is

a Proof in Isolation of all processes which comprise the program. This is achieved through a

consistent Iloare-style annotation of each process. Let S be an executable statem ent (atomic

operation) in a process. The Iloare triple {P}5'{Q} means th a t if 5" is started in a state

which satisfies P and S term inates, then Q must hold [Hoa69]. P is the precondition of S,

pre(S'); Q is its postcondition, post(S'). P and Q are also termed verification assertions. The

relationship between post(5') and pre(5') are defined by the semantics of S. For example,

consider the assignment statem ent,

* := / ,

where a: is a variable and / is an expression. Any postcondition of the statem ent must also

be true before the assignment, but with the old value of a:. This fact is expressed formally

C H A P TE R 3. VERIFICATIO N OF A FLUSH CHANNEL 103

as the

Axiom o f Assignment:

{ Q xj } * : = f { Q h

where Q j denotes the textual substitution of / for every free occurrence of x in Q [Hoa69j.

If each atomic action in a process is annotated with preconditions and postconditions

such th a t its precondition holds when control is immediately before the action and its post

condition holds when control is immediately after the action, then the process is annotated

consistently. For every axiomatic proof methodology that follows, we only consider the

assertions surrounding communication statem ents. The remainder of the proof in isolation,

verified with traditional Hoare-style annotations, is identical for the different communica

tion paradigms. The Satisfaction Proo/assures tha t postconditions of receives are consistent

with d a ta transm itted by other processes. This step in the verification of a program is nec

essary since postconditions of receives cannot be verified in isolation—the postcondition

may make unsubstantiated claims about da ta values being assigned. The Non-interference

Proof establishes th a t assertions in one process are not invalidated by actions in another;

i.e., actions of one process do not interfere with assertions in any other. Once these three

separate proofs are completed, the distributed program is considered formally verified.

3 .3 .1 S y n c h r o n o u s C o m m u n i c a t i o n

Synchronous message operations are defined in Iloare’s Communicating Sequential Pro

cesses (CSP) [Hoa78]. An interaction between two processes in CSP can be regarded as a

distributed assignment statem ent. One serious flaw, which Hoare adm its, is the lack of a

proof methodology for verification. Levin and Gries extended CSP to develop these missing

proof rules [LG81]. For a set of distinct communicating processes, let us consider the three

C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 104

steps tha t are involved to prove correctness: a proof in isolation, a satisfaction proof, and

a non-interference proof.

The proof in isolation is in the Iloare-style discussed above. To complete the proof, the

verifier first annotates each process in isolation with assertions of the form {P} S {Q}. Using

the axioms and inference rules of the proof system, the verifier proves precondition P implies

postcondition Q upon term ination of each statem ent. When the statem ent in a process is a

communication with another process, one cannot verify P implies Q. The soundness of the

methodology, however, requires that Q be justified. In the proof in isolation, any postcon

dition is allowed—communication statements never term inate in isolation—therefore, the

verifier assumes tha t Q is correct (a “miraculous postcondition”) in isolation. The role of

the satisfaction proof is to verify this assumption [LG81].

Suppose P, and Pj are two processes in a communicating system. In process Pj, the

assertions surrounding the transmission statem ent are

{P} Pjiexpr {T}.

For every matching rece iv e statem ent in Pj,

{P} P,?var {Q},

we use the satisfaction rule to verify the postconditions of the communication:

Synchronous Satisfaction Rule:

For every synchronous rece iv e statem ent and every matching se n d statem ent, verify the

following to establish satisfaction:

(P A P) (P A Q)ex p r

The third and final step for proving the correctness of a distributed program is non

interference. A non-interference proof is required when assertions in one process refer to

C H A P TE R 3. VERIFICATIO N OF A FLUSH CHANNEL 105

variables in another process. One m ust show that for each assertion A, and for every state

m ent, S, parallel to A, the execution of S preserves the tru th of A. S is considered parallel

to A if S is a statem ent in one process and A is an assertion in another. Assume that

we are in a programming context in which only the execution of assignment statem ents,

se n d statem ents, and rece iv e statem ents alter the data or communication state of a pro

gram. The full im pact of an assignment statem ent is given by the assignment axiom. If a

se n d and a rec e iv e are a matching communication pair, their impact upon the data and

communication sta te must be expressed in terms of satisfaction.

Synchronous Non-interference Rule:

For assertion A and parallel assignment, sen d statem ent, or rece iv e statem ent S, prove

{A A pre(5')} S {A}.

For assertion A and matching parallel Pj lexpr and P,?var statem ents, prove

(A A pre(Pjlexpr) A pre(P,?var)) => A £ " r.

3.3 .2 A synchronous Com m unication

Schlichting and Schneider extended the proof technique of Levin and Gries from synchronous

to asynchronous message passing in [SS84], Of interest in this work is tha t they developed

proof rules for interprocess communication via unreliable datagram s and reliable virtual

circuits. W ith unreliable datagram s, messages transm itted through the communication

channel may be delivered in any order (if delivered at all). In the case of reliable vir

tual circuits, messages are assured delivery in the same order as they were transm itted.

The following two discussions review the proof rules for these two types of asynchronous

communication.

C H APTER 3. VERIFICATION OF A FLUSH CHANNEL 106

U n re lia b le D a ta g ra m s :

Following the formal proof technique of Levin and Gries [LG81], proving the correctness

of a system with unreliable datagram communication also requires three steps: a proof

in isolation, a satisfaction proof, and a non-interference proof. Schlichting and Schneider

employ two implicit variables for each process to model the communication 6 ta te [SS84].

One variable is the send m ultiset, 0 7 5 , for process D. A copy of every message transm itted

to process D is contained in <j d • Likewise, the receive m ultiset, po, includes a copy of

every message received by process D. As messages can only be received if they have been

transm itted, the system obeys the following axiom:

Unreliable Datagram Network Axiom :

P D C o d -

The proof in isolation of a distributed system, communicating with unreliable da ta

gram s, must take into account the asynchronous nature of the communication. Execution

of a transmission statem ent in synchronous communication blocks the process until receipt

occurs. In the asynchronous situation, the execution of the statem ent

sen d msg to D

has the semantic impact of adding the message to od (&d ■= aD © {msg}). The sender then

continues executing. For the proof in isolation, the assertions surrounding se n d statem ents

reflect the fact, using the assignment axiom, that the transmission merely inserts msg into

o-£i.

Unreliable Datagram Send Axiom :

send mSS t 0 D i W)-

C H A P T E R 3. VERIFICATION OF A FLUSH CHANNEL 107

Since a datagram rece iv e is synchronous, its postcondition is miraculous.

Unreliable Datagram Receive Axiom :

{P} rece iv e msg {<2}.

Consider the rece iv e statem ent above. By the Unreliable Datagram Network Axiom,

a process D cannot execute the rece iv e unless there is a message available in the commu

nication channel. Suppose M T E X T is a message tha t has been transm itted to process D ,

but has not been received; hence M T E X T e (<td 0 P d) where 0 is the multiset difference

operator. Execution of the rec e iv e results in the addition of M T E X T to po and the

assignment of M T E X T to msg. It is equivalent to the dual assignment

msg,/>D := M T E X T , p D (B { M T E X T } .

Unreliable Datagram Satisfaction Rule:

For every unreliable datagram rece iv e statem ent, verify the following to establish satisfac

tion:

(P A M T E X T 6 <„„ 0 p d)) * Q MT‘£xT,!U<MTDXTy

The last proof rule required for unreliable datagram s is non-interference.

Unreliable Datagram Non-interference Rule:

For assertion A and parallel assignment, sen d statem ent, or rece iv e statem ent S , prove

{A A pre(5)} S {A}.

For assertion A and parallel rece iv e statem ent S , prove

(.A A pre(S) A M T E X T e W o 0 p d)) => A ^ x r J ^ M T E X T y

C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 108

V ir tu a l C irc u its

V irtual circuits are very popular in many communication networks; the communication

channel becomes a totally reliable FIFO queue. The proofs concerning distributed systems

using virtual circuits require the three customary steps: a proof in isolation, a satisfaction

proof, and a non-interference proof. To model the communication sta te , two implicit vari

ables for each circuit are required. The variable ay m aintains the messages transm itted on

the virtual circuit V, while the variable p v records the messages received from the virtual

circuit. Both of these implicit variables are ordered sequences of messages. In [SS84] the

following operations on two sequences, C\ and C i , are defined:

Cl < C2 is true if C\ is a prefix of C 2 ,
Ci + val is the sequence obtained by appending vai to C \ ,
Ci — C2 is the sequence tha t results from deleting prefix C2 from C \ ,
hd(Ci) is the first element in C\.

The Virtual Circuit Network Axiom insists that the virtual circuit be a fully reliable

FIFO channel.

Virtual Circuit Network Axiom:

Pv < ov-

We now review the proof methodology for virtual circuit communication. Execution of

a statem ent

sen d msg o n V

is identical to appending the message to the implicit variable cry (ay := ay + msg). The

process then continues executing.

Virtual Circuit Send Axiom :

{f'C^+msg} sen d msg on V {IV}.

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 109

Except for the different properties involved in m anipulating a y , this axiom is identical to

the sen d axiom for unreliable datagram s. The rece iv e axiom is miraculous:

Virtual Circuit Receive Axiom:

{P} rec e iv e msg fro m V {Q}.

The satisfaction rule for virtual circuits validates the miraculous postconditions of re

ceive statem ents. If the rec e iv e statem ent above is executing and M T E X T = hd{ay - p y),

then M T E X T will be assigned to msg and will be appended to the sequence py. It is equiv

alent to the dual assignment

msg.pK := M T E X T , py + M T E X T .

Virtual Circuit Satisfaction Rule:

For every virtual circuit rec e iv e statem ent, verify the following to establish satisfaction:

(P A (ay - p v) ± <k A M T E X T = hd(av - pv)) =* Q ^ XT> % +MTBXT.

The following non-interference rule proves tha t the assertions in the proof are globally true.

Virtual Circuit Non-interference Rule:

For assertion A and parallel assignment, sen d statem ent, or rece iv e statem ent S, prove

{/I A pre(5)} S {^1}.

For assertion A and parallel rec e iv e statem ent S, prove

{A A pre(S) A {ay - p y) £ <f> A M T E X T = lul{av - p v)) =* A I^t e x t , py+MTEXT-

C H APTER 3. VERIFICATION OF A FLUSH CHANNEL 110

3.4 A n A xiom atic P r o o f M eth o d o lo g y for F lush C hannels

Communication with F-channels is different from the previously discussed asynchronous

communication paradigms due to the dynamic nature of the delivery order requirements.

We can no longer model the delivery restrictions of the communication state as a static

network axiom. Instead, we must construct the delivery order within the send axioms. We

model the communication state of F-channel F as follows. Let op denote the send multiset

for F, and let pp denote the receive multiset for F. We define X+f on the multiset op,

X +f C (Tjr X Op,

such tha t for m, m ' € op, m ~ivp m 1 if and only if m cannot be delivered after to'. The

-<+F relation is an irreflexive partial order constructed by the delivery order semantics of

the messages transm itted over F. We find it convenient to define the covering relation of

■<+F,

-<F Q OF x Op,

as the smallest relation such th a t its transitive and irreflexive closure is -<+p. In other

words, if to, to ' 6 op and m -X+f m', m -<p to ' if and only if there is no to" 6 op such that

t o -X +f tn" -<+f m ' . As each message is transm itted on F , -X f *s modified to reflect delivery

order requirements for the message relative to those messages transm itted previously. As

messages are transm itted, - < f is constructed incrementally. X + f is obtained by closure.

A system using an F-channel has two properties concerning the defined implicit variables.

Like the previous proof methodologies, a message cannot be received if it has not been

transm itted. -<+p specifies the required delivery order of each message in op.

C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 111

Flush Channel Network Axiom: For F-channel Ip, the following two properties m ust hold:

En Route Property: pp C op

Order Property: For m , m ' G op, m ' G pp (Vm : m -<+f m ' :: m G p f) .

Given the network axiom for F-channels, we may proceed with the proof methodology. The

next three sections give axiomatic proof rules for F-channels following the traditional proof

technique: a proof in isolation, a satisfaction proof, and a non-interference proof. The rules

are results developed from extending the methodologies presented in Section 3.3. In fact,

in Section 3.10, we show that the following axiomatic proof methodology for F-channels is

a true generalization of the verification process for communication with reliable datagrams

and virtual circuits.

3 .4 .1 P r o o f in I s o la t io n

The semantics of an F-channel s e n d are presented for four cases, each case corresponds to

the type of the message being sent. Let m denote the composite < type, da ta> , the message

which is transm itted , in all four of the transmission axioms. To aid in the construction

of -i+p, the partial order specifying delivery constraints, two additional implicit variables

are necessary. The backward flush point, rp, is a set which contains the last two-way or

backward flush transm itted on F. As defined in Section 2.1, any message transm itted after

a backward flush point must be delivered after the message defining this point. The free

set, Clp, is a multiset of messages transm itted on F which have no successor in -<+p. At

the transmission of a message th a t flushes the channel in a forward direction (forward flush

and two-way flush messages), all messages in the free set and their predecessors must be

delivered before the message being transm itted. Both rp and t ip are initially empty. During

the course of message transmission, f tp may become arbitrarily large; rp will be at most a

singleton. The following four axioms are necessary for a proof in isolation.

C H APTER 3. VERIFICATION OF A FLUSH CHANNEL 112

O rd in a ry M essage T ra n sm iss io n Consider the execution of

S i ‘. sen d < O rd ,d a ta > on F .

When an ordinary message is transm itted , it is added to op . The notation op := op 0 {m}

denotes that m is added to the m ultiset op. Additionally, an ordinary message must be

guaranteed delivery after the backward flush point. Thus, the partial order is expanded

to ensure tha t Tp -*&p m. The newly sent message will also be added to the set of free

messages—nothing follows it in the partial order (yet). Furthermore, the new message

may remove the current backward flush point, Tp , from the free set. Tp now has a t least

one successor in the partial order. Operationally speaking then, the net impact of the

transmission of an ordinary message, m, is simply the multiple assignment:

op, -<p, Qp := o p ® {m}, -<p ©A(m), f Ip 0 {m} © B {m),

where A(m) = {(a:,m) | x £ T p } and 5 (m) = {a; | x £ T p A x £ JIf}- As a notational

contraction in the assignment to -<p, A(m) represents the potential additional element of the

partial order which results when m is linked to a non-empty T p . Likewise, B(m) represents

the potential deletion of T p from the free set.

If W = post(5 j), then the assignment axiom allows us to deduce p re(5 j). Execution of

S \ is equivalent to the three assignments above; namely

Ordinary Message Send Axiom:

S * - s e n d < O rd ,d a ta > o n F {W}.

Two-way F lu s h Transmission W hen we transm it a two-way flush, m,

if?2 : se n d < 2 F ,d a ta > o n F ,

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 113

we impose substantial delivery ordering restrictions on the F-cliannel. F irst, the two-way

{lush must be delivered after every element of the free set (as defined at the instant of m ’s

transmission). Second, m ’s delivery must precede the delivery of every message transm itted

after m. In operational terms,

o"Fi -<F> Hf» tf := op ® {m}, <f ®C(m), {m}, {m}

where C(m) = { (x ,m) | a; E fl;?}. The addition of C'(m) to the partial order effectively

means th a t any message which was in the free set just prior to S 2 cannot be delivered after

m. m then becomes the new free set (it has no successors yet), and it becomes the new

backward flush point (it must be delivered before every subsequently transm itted message).

In sum,

Two-way Flush Send Axiom:

: s e »d < 2F .< lata> ° » F {W } .

F o rw a rd F lu s h T ra n sm iss io n A forward flush, m, is transm itted by

S 3 : sen d < F F , data> on F.

Like a two-way flush, the delivery of a forward flush must be guaranteed after all messages

in the free set; m becomes the only member of the free set. Unlike a two-way flush, however,

a forward flush does not become the backward flush point—messages transm itted after m

may be delivered before m. Transmission of a forward flush makes the following implicit

assignments:

op , -<f , LIf := crp ® {m}, A f ©C(m), {m}.

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 114

The set C (m) is as previously defined in the discussion of the two-way flush.

Forward Flush Send Axiom:

WrtwiWS!) 53; ,“d <pp.d*“» •» F w-

B a c k w a rd F lu s h T ra n sm iss io n We transm it a backward flush message, m, with the

statem ent

S>\\ sen d < B F ,d a ta > o n F.

Some messages transm itted before m may be delivered after m (elements of the free set),

therefore, m joins the free set. The addition of Tp -<+f m to the partial order also (possibly)

removes Tp from the free set. Lastly, m becomes the new backward flush point—no message

transm itted after m may be delivered before it. In operational terms, this means

<t f ,-<f ,SIf , tf := o F 0 {m},-<7? ® ,4(m),ilF® {m} 0 J?(m),{m }.

The sets -4(m) and -B(m) are as previously defined for ordinary message transmission.

Backward Flush Send Axiom:

n.)fl;i{„)6«(m),S}} ■Si i se>>d <B P. d“““> • » p fW}.

M essa g e R e c e p tio n The statem ent

R : rece iv e <mtype, m data> fro m F

is synchronous; term ination of this statem ent is in no way dependent upon the action of

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 115

this statem ent. post(i?) is thus allowed to be miraculous. Hence,

Flush Channel Receive Axiom:

{P} R : rec e iv e Cmtype, m data> fro m F {Q}.

Of course, in a satisfaction proof, Q must be justified relative to P and the message received

(see Section 3.4.2).

The preceding discussion illustrates how the delivery order covering relation, -<p, is built

as messages are transm itted on the F-channel. - ip is extended to by closure. In order

for this construction to be meaningful, we must establish th a t the delivery order restrictions

defined inherently in the F-channel are exactly represented in the structure of -><+/?. That

is, if message m cannot be received after m', then the constructed partial order must reflect

this fact. Moreover, we require proof that the addition of m -t+p m 1 to the partial order

implies m cannot be received after m 1.

T h e o re m 10 Let m and m 1 be messages transmitted on F-channel F. Then m <+p m ‘ if

and only i f m -t,+p m 1.

In order to establish this result, several structural properties of must first be pre

sented. We find it convenient to exploit the graphical representation of the relation in

making some of our arguments. The directed graph of a binary relation 7Z on set S is

G{1Z) — {S, TZ}. T hat is, G(TZ) is a graph on the set of nodes S , where edge ($1 , 5 2) is in

edge set E if and only if E 'R We switch between the graphical interpretation and

the algebraic interpretation as best suits the argument.

L e m m a 8 The binary relation -i+p is an irreflexive partial order.

P ro o f: The principal fact necessary for this proof is tha t on transmission of message m,

no element of the form (?n, m 1), where m ' is an old element of op , is ever added to -ip. In

CH APTE R 3. VERIFICATIO N OF A FLUSH CHANNEL 116

graphical terms, this implies th a t G (-<f) is acyclic. Edge (m, m') is in G(-n+f) only if there

is a directed path of one or more edges from m to m' in G(-Xf).

The rules for the construction of -<p produce an irreilexive, non-transitive, and antisym

metric relation. The transitive and irreflexive closure of -<f preserves the irreflexive and

antisymm etric properties. ~(+p is made transitive by the closure operator applied to X f . l

Recall the relation,

C fQ of x o f -

For a :,j/€ op-, x C f V if and only if x is transm itted before y over F-channel F.

L em m a 9 Let m be a two-way flush or a forward flush sent on F-channel F. m ' -<+p m if

and only if m' C f m •

P ro o f: [If] By the axioms which define the semantics of the transmission of a forward or

two-way flush, m , -<f -=<f ® C(m) where C (m) = {(a;,m) | x 6 Hf }- If m' 6 Of when

m is transm itted , then m' -<f m, and clearly w! X+f rn. Suppose, on the other hand, that

m ' Of at the time of the transmission of m . Then there m ust exist some m" € Of such

tha t m ' -<+ f m"; otherwise, m ’ would be a free element. Then by the appropriate send

axiom and closure, after m is transm itted , m! -<+f m -

[Only If] This follows directly from the construction of If m ' -<+F m, then by Lemma 8

m' must have been in G{<f) a t the time m was added. I

Lemma 9 gives us half of the proof of Theorem 10. We know th a t if m is a two-way or

forward flush, all messages sent before m must be received before m. The lemma shows that

-<+F reflects this fact exactly. When we consider ordinary messages and backward flushes,

the situation is a bit more complex.

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 117

L e m m a 10 I f m is an ordinary message or a backward flush, and i f m! -<f m , then m'

must be a two-way flush or a backward flush, and there is no message m" £ ml fo r which

m" -<f m .

P ro o f: This proof is similar to th a t in Lemma 2. We, therefore, do not replicate it here.

Replace all references to < f in Lemma 2 with -<f - B

Recall the BFP-chain defined in Section 2.2. In this situation, however, we define the

chain using the covering relation instead of the immediate predecessor relation:

chain(m) = { m k ,m k - i , . . m i} ,

where

mfc -<p n i k - i -< f • • • < F rn\ < f

In the same vein, define P r e d { m) = {&• | x -<+f m}.

L em m a 11 I f m is an ordinary message or a backward flush, then m ' 6 Pred (m) if and

only i f m ' G chain(m) © Pred (//eac/(cha,i n (m))).

P ro o f: This proof replicates tha t in Lemma 3. Replace all references to <+f and <f in

Lemma 3 with -<+f and -<f respectively. I

Finally, we may establish the tru th of Theorem 10 through Lemma 9 and Lemma 11.

The former establishes tha t all messages sent before a two-way or forward flush must be

received before the flush is received, and -<+p reflects that fact. The latter precisely describes

the predecessor set of an ordinary message or a backward Hush. The set consists of elements

th a t must be received before the message that the set defines. Lemma 11 illustrates that

this predecessor set is represented directly in X+f - In summary, the partial order, as we

C H APTER 3. VERIFICATION OF A FLUSH CHANNEL 118

construct it in the operational semantics of the F-channel sen d primitives, represents the

receipt-order restrictions exactly.

Figure 3.1 illustrates the same sample of imm ediate predecessors as Figure 1.3. The

operational construction of the covering relation may be understood with this graph. We

<Ord,0>

<0rd,2> '

<0rd,4>
<FF,6>

<2F,11><2F,3> <Ord,5>

<0rd,7>

<0rd,9>

<BF,8>
<Ord,10>

Figure 3.1: A Sample Covering Relation

focus on four messages in order to amplify the rather dry development above.

< 2 F ,3 > At the time of transmission of this message, there is no backward flush point and

the ordinary messages numbered zero through two are in the free set. All elements of

the free set are made predecessors of < 2 F ,3 > when it is transm itted. This two-way

flush message also becomes the backward flush point—all messages transm itted after

it are its successors in -Up.

< F F ,6 > When this forward flush is transm itted, the free set consists of the ordinary mes

sages < O rd , 4> and < O rd ,5 > . Their delivery m ust precede the delivery of < F F , 6>,

and hence they precede it in -<p (and, by closure, in -<+f). It is im portant to realize

tha t, unlike a two-way flush, a forward flush does not become the new backward flush

point. Some messages transm itted after a forward flush may be delivered before it.

When < F F , 6> is transm itted , it becomes the sole member of the free set. < 2 F ,3 >

remains the backward flush point.

C H A P TE R 3. VERIFICATIO N OF A FLUSH CHANNEL 119

< B F ,8 > The delivery of < B F , 8> may be done in any order relative to < F F ,6 > and

< O rd ,7 > as < B F ,8 > joins the free set which includes these messages. The delivery

of < B F , 8> must follow th a t of the backward flush point at the time of its transmis

sion, < 2 F ,3 > . Since < B F ,8 > becomes the new backward flush point, its delivery

will precede the delivery of every message transm itted after it.

< O rd ,9 > This message joins the free set, while it removes < B F ,8 > , a t the time of its

transmission. After the transmission of the message, the free set contains < F F , 6>,

< O rd ,7 > , and < O rd ,9 > . It is also linked into the delivery order so tha t its delivery

succeeds the backward flush point, < B F ,8 > .

3 .4 .2 S a t is f a c t io n

Secure in the fact tha t the proof in isolation has led to the description of a partial order

which is faithful to F-channel semantics, the role of the satisfaction proof is the resolution

of the miracle in the F-channel receive axiom.

Consider a specific rece iv e , as annotated for the proof in isolation:

{P} R : re c e iv e cm type, m data> fro m F {Q}.

Let M T E X T be a message which is eligible for receipt. By the en-route property, it

m ust have been transm itted on the F-channel, but it cannot have been received; i.e.,

M T E X T € crp © PF' Us receipt m ust also be consistent with the order property as specified

by -<+p. More precisely,

Vm : m £ ap A m ~i+p M T E X T :: m £ pp.

If M T E X T meets these two requirements, then the rece iv e effectively behaves as the dual

C H APTER 3. VERIFICATIO N OF A FLUSH CHANNEL 120

assignment:

<m type, m data> := M T E X T ,

PF >— P f © {M T EXT } .

In order to establish Q = post(I2), the above rece iv e should be executed in a state

which is the weakest precondition1 [Dij76] of the dual assignment with respect to Q,

wp(“<m type,m data> ,/?;? := M TEXT, pp © {MTEXT}", Q). Since this statem ent is sim

ply an assignment, we know that

w p(“< m type ,m data> , p F := MTEXT, p p @ { M T E X T Y , Q) = Q £ S ?;mdBta>'Pp^ {MTEXry

In order to verify satisfaction for the receive, we use the precondition and the F-channel

network axiom to establish the weakest precondition.

Flush Channel Satisfaction Rule:

For every F-channel receive

{P} R : rec e iv e cm type, m data> fro m F {Q} ,

verify the following to establish satisfaction:

P A (M TEX T G crp © P f) A (Vm : m G op A m -<+p M TEX T :: m € pF)
. r\ < C m typc,m data> t pj?

^ ^ M T E X T , pP ® { M T E X T }

An im portant part of the proof in isolation of the sender is the establishment of invariants

which describe the structure of The structural knowledge is necessary in order to

exploit the F-channel network axiom in the satisfaction proof.

1T he weakest precondition of action S w ith respect to predicate A , denoted w p (S , / l) , is the set of all
s ta tes such th a t execution of S in any one such s ta te will te rn rn a te with yl.true. If S is the assignment
“x := e” , then, by the assignment axiom, := e” , A) is simply v l f .

C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 121

3 .4 .3 N o n - in te r f e r e n c e

The non-interference rules for parallel assertion and statem ents is identical to previous proof

methodologies. For a rece iv e statem ent, however, we can use both the en route property

and the order property to establish the implication.

Flush Channel Non-interference Rule:

For assertion A and parallel assignment, se n d statem ent, or rece iv e statem ent S , prove

{ 4 A p re (5)} S {A}.

For assertion A and parallel rec e iv e statem ent S , prove

A A pre(S) A (M T E X T e crF Q pF) A (Vm : m 6 a F A m -<+F M T E X T :: m € pF)

. a < m ty p e ,m d a ta > , pp
^ A MTEXT , pFe { M T E X T) '

The preceding development is best justified and appreciated by seeing the methodology

applied. In the following section, we apply the methodology to a distributed application

th a t uses all four of the flush message types [CK91]. The example illustrates the tedium

that is necessary to correctly verify the application program. In Section 2.8.2, we discussed

batching ordinary messages with a flush message type. As the delivery order of each batching

example is less complex than a delivery order that uses all four message types, we expect

the hardship of the verification process to decrease as well. In Section 3.6, we validate this

expectation.

C H APTER 3. VERIFICATION OF A FLUSH CHANNEL 122

3.5 V erification o f a F lu sh A p p lica tion

In this section, we apply the axiomatic proof methodology for F-channels to a distributed

application that uses all four of the flush message types. In the example, the producer

process transm its two arrays (of unknown size initially) to a consumer process. The con

sumer sums the elements of the array after all the elements have been delivered. Messages

are of the form < type,arnum , index, value> where type is the message type, arnum is

the number of the array to which the message belongs, index is the index number within

the array, and value is the value of arnum[index]. If less than four entries are required

for a message, then the extra entries are transm itted as zero. A two-way flush message is

transm itted to begin the application and denote the end of any previous applications; (ap

0 pF} = 0 a t the delivery of this message. To simplify the example, we assume &f and

PF are empty before the transmission of the initial two-way flush transmission. Backward

flush messages are used to transm it the size of each array to the consumer. The program

uses ordinary messages to transm it the elements of the array; these elements cannot be

delivered until the size has been delivered. Lastly, forward flush messages denote the end

01 the array’s transmission. At this tim e, the consumer can sum the array. In the example,

the consumer’s auxiliary variable X is an array of five sets, initially empty, tha t contain the

messages delivered. Figure 3.2 illustrates the covering relation of this application example.

<O rd,1,1,A [1]>.

i,0>

j <O rd.1,1,A [1]>«.

A <Ord,1,2,A[2]>
n r ^ % < F F , 1.3.0<2F,1,0,0>

■ <O rd,1,a,A [a]>-\^<Or
\ . <Ord,2,1,B[1]>

\ <Ord,2,b,B[b]>

Figure 3.2: The Covering Relation

■<FF,2,b,0>
<BF.2,b,0> <°rd ,2 ,2 ,B [2]> ■

,<FF,2,b,0> — ► - <2F.2,0,0>

C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 123

PROD:: var A
B
a,b
i

: array 1..M of integer;
: array 1..N of integer;
: integer;
: integer;

... PREVIOUS APPLICATIONS ...
s i : se n d (2F , 1, 0, 0) o n F;
find(a);
s2: se n d (B F , 1, a, 0) on F;
i : = 0 ;
w h ile i < a do

i := i + 1;
s3: sen d (O rd , 1, i, A(i]) on F;

od;
s4: sen d (F F , 1, a, 0) on F;
find(b);
s5: sen d (B F , 2, b, 0) on F;
i :== 0;
w h ile i < b do

i := i -f 1;
80: se n d (O rd , 2, i, B[i)) on F;

od;
s7: se n d (F F , 2, b, 0) on F;
s8: se n d (2F , 2, 0, 0) o n F;

... FOLLOWING APPLICATIONS

new application message
find size of first array
send size of first array

ok to sum first array
fmd size of second array
* send size of second array*

ok to sum second array
new application message

CONS:: var C
D
c,d
mtype
marnum
mindex, mvalue
j
done
sumC, sumD

array 1..M of integer;
array 1..N of integer;
integer;
{ 2F , B F , O rd , FF};
integer;
integer;
integer;
boolean;
integer;

... PREVIOUS APPLICATIONS ...
C, D, sumC, sumD, done, X := $, <F, 0, 0, fa lse , $;
w h ile n o t done do

r l : rece iv e (mtype, marnum, mindex, mvalue) fro m F;
case mtype o f

2F: X[l] := X[l] U {marnum};
if marnum = 2 th e n

done true;

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 124

fi;
B F : X[2] := X[2] U {marnum};

if marnum — 1 th e n
c := mindex

e lse
d := mindex:

f i;
O rd : if marnum = 1 th e n

C[mindex], X[3] := mvalue, X[3] U {mindex}
e lse

D[mindex], X[4] := mvalue, X[4] U {mindex};
fi;

F F : j, X[5] := 0, X[5] U {marnum};
if marnum = 1 th e n

w h ile i < mindex do
j := j + 1;
sumC := sumC + C[j];

od
else

w h ile j < mindex do
j := j + i;
sumD := sumD + D[j];

od;
fi;

od;
... FOLLOWING APPLICATIONS ...

To aid in the annotation of the producer process, we define the invariant

/ = Vm G ctf ’■ T (m) .

The predicate, T { m) , describes the state of the implicit variables at the transmission of

message m . As shown in Figure 3.2, m is the composite

m = < m . t y p e , m . a r n u m , m . i n d e x , m . v a l u e > ,

where m.type is the type of the message, m.arnum is the number of the array (1 or 2),

m. index is the index in the array, and m.value is the element of the array at m.index. The

C H A P T E R 3. VERIFICATION OF A FLUSH CHANNEL 125

annotation of the producer must establish the structural properties of the receipt order—the

satisfaction and non-interference proofs explicitly require this information. On a message-

by-message basis, I states those required structural properties. Given tha t there is only a

single F-channel in this example, we drop the F subscript on the relevant implicit variables.

The form of I deserves some discussion since it is the entity by which allowable message

receipt order is factored into our reasoning. As each message is transm itted, it is incor

porated in the implicit variables to describe the subsequent communication state of the

F-channel. The transmission of a new message, m, however, will not remove any previously

transm itted message from a\ nor will it remove any previously established edge (message

pair) from -<. The only possible change in a is the addition of the newly transm itted mes

sage. The only possible changes in the structure of -< are new links between elements of

the set representing the backward flush point or of the set representing free messages (as

this set was ju st before the transmission of rn) and m itself. Anything which was asserted

about a and -< before the transmission of m, must still be true after the transmission of

m . If m ' is the message transm itted immediately before in and if I (m ') is true, then I (m ')

will be true after the transmission of m. Now, however, T(m) will be true also. It is easy

to extend this argument inductively to see that I follows.

The form of I clearly restricts the form of I . It m ust be parameterized in such a way

tha t it remains true even after subsequent messages are transm itted. Absolute statem ents,

say |<r(«i)| = 6, would not be valid. In the examples which follow, we take advantage

of our knowledge of the receipt-order relation to state the values of the implicit variables

just after the transmission of message m parametrically in terms of in itself. As will be

shown explicitly in the detailed proof of the producer/consumer system below, I is initially

vacuously true in the producer; as each message is transm itted by the producer, I is shown

to be preserved. In the consumer, we show that no local action or communication invalidates

I, and thus, I is treated as a global invariant of the system.

We explain our use of / in contrast with Schlichting and Schneider’s treatm ent of vir

C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 126

tual circuits [SS84]. The receipt order for a virtual circuit is much simpler than that for

an F-channel—it is the same as the transmission order. The virtual circuit receipt-order

restriction is static in the sense tha t the sender cannot specify alternative receipt orders.

There is a single receipt order; the messages in the send multiset are totally ordered by

time of transmission. This fact is explicitly used in their proofs through the operators on

sequences. In a sense, their methodology implicitly uses an I which states th a t (among

other things) if message m is transm itted before message m', then m will be received before

m ' .

An F-channel allows as many receipt orders as there are distinct topological sorts of

Further, the sending process “builds” -< as it sends messages. In this sense, the receipt

order for an F-channel is dynamic: it is not known before the sender executes, and it is

constructed incrementally as the sender transm its successive messages. I is sufficiently weak

to capture the complexity of the F-cliannel in a predicate which is globally true. We rely

upon I (and the F-channel network axiom) in the receiving process to manage explicitly

the complex receipt-order requirements.

As mentioned, T{m) describes the state of the implicit variables at the transmission

of m. We let the state of the implicit variables just following the send of message m be

denoted as cr(m), r (m), and Sl(m).

T{m) = A A Tr (ra) A

where

C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 127

^a(m) = (<m.iype, m .am um > — < 2 F ,1 > =*► (cr(m) = D,
where D = {< 2F , 1 ,0 ,0>}))

A (<m.type, m.arnum> = < B F , 1> =>■ (a(m) = D © E ,
where E = { < B F ,1 ,« ,0 > }))

A (<m.type, m.arnum> = < O rd , 1> = X) ffi F ffi F(in.index),
whereF(x) = {fi | Vi : 0 < i < x :: < O rd , 1, i, /l[i]>}))

A (<m.type, m.arnum> = < F F , 1> =*► (a(m) = X> ffi F ffi F (a) © G,
where G = { < F F , 1, a ,0> }))

A (<m.type , m.arnu7«> = < B F , 2> =>- (a(m) = X> © E © F(a) © G © II,
w here// = {< B F ,2 ,6 ,0 > }))

A (<m.type , m.arnum> = < O rd , 2> =>• (c(m) = X) ffi F © P (a) © G © / / © J(m .index),
where J (x) = {/i | Vi : 0 < i < x :: < O rd , 2, i, X?[i]>}))

A (<m.type, m.arnum> = < F F ,2 > =>• (a(m) — X> © E © F (a) © G © / / © 7(6) © A',
where AT = { < F F ,2 ,6 ,0 > }))

A (<m.type, m.arnum> — < 2 F ,2 > => (a(m) = F ffi F ffi F (a) © G © / / ffi 7(6) © K © L,
whereX = { < 2 F ,2 ,0 ,0 > }));

T ^ (m) = (<m .type,m .arnum > = < B F ,1 > => (-<(m) = N ,
where N = {(//.i,/t2) | Hi = < 2 F , 1 ,0 ,0> A /r2 = < B F , 1, a ,0> }))

A (<m.type , m.arnum> = < O r d , l> =£• (--<(m) = iV ffi O(m.index),
where 0 (z) = {(/iX,/z2) | Vi : 0 < i < a; :: /zx = < B F , 1, a, 0>

A//2 = < O rd , 1, j, >l[i]>}))
A (<m.type, m.arnum> = < F F , 1> =>■ (x (m) = N © 0 (a) ® P,

where P = { (^ i,/r2) I Vi : 0 < i < a :: /zx = < O rd , 1 ,z, d[i]>
A/t2 = < F F , 1, a, 0>}))

A (<m.type , m.arnum> - < B F ,2 > => H (a i) = N © 0 (a) © P © Q,
where Q - {(/zx,/z2) | /tx = < B F , l , a ,0 > A /t2 = < B F ,2 ,6 ,0>}))

A (<m.type , m.arnum> - < O rd , 2> (-^(m) = JV ffi 0 (a) © P © Q ffi R(m.index),
where R (x) = {(/zx,/i2) | Vi : 0 < i < x :: /tx = < B F , 2 ,6 ,0> A /z2 = < O rd , 2, i, P[i]>}))

A (<m.type, m.arnum> = < F F ,2 > => (-<(m) = N ffi 0 (a) © P ffi Q ffi P(6) ffi S,
where S = {(h i , h2) I (Vi : 0 < i < 6 :: pi = < O rd ,2 , j, F [i]> A /z2 = < F F ,2 ,6 ,0 >)

V(/tx = < F F , 1, a, 0> A /z2 = < F F , 2, 6 ,0>)}))
A (<m.type,m .arnum> = < 2 F ,2 > => (-<(ro) = jV ffi 0 (a) ffi P ffi Q ffi P(6) ffi S ffi T,

where T = {(/ix, / i2) | /tx = < F F , 2, 6,0> A /z2 = < 2 F , 2 ,0 ,0>}));

^r(m) = (<m.type, m.arnum> = < 2 F , 1> =$■ r(m) — {< 2 F , 1, 0 ,0>}) A
((m.type ^ 2F A m.arnum = 1) =J- r (j«) = { < B F , l ,a ,0 > }) A
((m.type ^ 2F A m.arnum = 2) ^ r (m) = { < B F ,2 ,6 ,0 > }) A
(< m .type,m .arnum > = < 2 F ,2 > =>• r(rrc) = { < 2 F ,2 ,0 ,0>});

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 128

(m) = ((m . ty p e ^ O rd A m .a rn um = 1) =>- Sl(m)
= { < m . t y p e , m .a r n u m , m.index , m . d a t a > })

A (< m . t y p e , m . a r n u m > — < O rd , 1> => f i(m) = {/i | Vi : 0 < i < m. index ::
< O rd , l , i , A [i]> })

A (< m . t y p e , m . a r n u m > — <BF, 2> => t l (m) = {<FF, 1, a, 0 > , <BF, 2, b, 0 > })
A (< m . t y p e , m . a r n u m > — < O rd ,2 > =>■ Q (m) = {<FF, l , a , 0 >

A (/i | Vi : 0 < i < m. index :: < O rd , 2, i, B [i]>)})
A ((< m . t y p e , m . a r n u m > = < F F , 2> V < m . t y p e , m . a r n u m > = < 2 F ,2 >)

=> f l(m) = { < m . t y p e , m .a rnu m , m . i n d e x , m.data>}) - ,

This relatively intim idating set of assertions merely states, in tedious but complete

logical term s, the sta te of the implicit variables just after the transmission of message m by

the producer process. For example, the first conjunct of describes the edge in -< as it

appears immediately after the transmission of the first backward flush message. The second

conjunct defines those edges which go from this backward flush message to the ordinary

messages th a t transm it the first array. The third conjunct defines those edges which go

from these ordinary messages to the forward flush message; a message tha t signals the end

of the array transmission. It is merely a restatem ent of what is drawn in Figure 3.2.

PROD:: var A : array 1..M of integer;
B : array 1..N of integer;
a,b : integer;
i : integer;

... PREVIOUS APPLICATIONS ...
{ /}

s i : sen d (2F , 1, 0, 0) on F;
{ /}

find(a);
{ a < M A / }

s2: se n d (B F , 1, a, 0) o n F;
{ a < M A / }

i := 0;
{ i = 0 A a < M A / }

w h ile i < a do
{ i < a A a < M A / }

i := i + 1;
{ i < a A a < M A / }

s3: sen d (O rd , 1, i, A[i]) o n F;
{ i < u A u < M A /)

C H APTER 3. VERIFICATION OF A FLUSH CHANNEL 129

od;
(i = a A a < M A [}

s4: se n d (F F , 1, a, 0) on F;
{i = a A a < M A / }

find(b);
{ b < N A i = » A

s5: s e n d (B F , 2, b, 0) on F;
{ b < N A i = a

i := 0;
{ i = 0 A b <

w h ile i < b do
{ i < b A b <

i := i + 1;
{ i < b a b <

s6: se n d (O rd , 2, i, B[i]) o n F;
{ i < b A b <

od;
{ i = b A b <

s7: s e n d (F F , 2, b, 0) o n F;
{ i = b A b <

s8: s e n d (2 F , 2, 0, 0) on F;
{ i = b a b <

... FOLLOWING APPLICATIONS ...

The proof in isolation of the producer is straightforward. The invariant tru th of I is

established as part of that proof. Initially, it is trivially true. As successive messages are

sent, I is inductively validated through application of the Send Axiom apropos of the type

of message being transm itted. As an example, consider the sen d statem ent labeled s4 in

the code of the producer. We need to prove

{i = a A a < M A /} s4 {i = a A a < M A /} .

Given th a t i = aAa < M follows directly from the precondition, we concentrate on I and the

semantics of the transmission of the forward flush message according to the Forward Flush

Send Axiom. The semantic effect of s4 is th a t message m = < F F , l ,a ,0 > is transm itted

C H APTE R 3. VERIFICATIO N OF A FLUSH CHANNEL 130

on F. More precisely, we m ust show that

f «(">)■. . r r l
1 <7(m)®{m},-<(m)(I)C7(m),{m} J I /•

We can show this easily. We may check every conjunct of T{m) for every message in a(m)

to validate tha t / is, in fact, preserved across s4.

In the consumer, the invariant tru th of /follows directly from the tru th of I as established

by the producer and the fact that no action in the consumer affects any variable used in I.

We defer the non-interference aspects of this claim until later in this section.

Defining the set of messages which have been consumed thus far (in terms of the con

sumer’s variables X, C, and D) is helpful:

C (X ,C ,D) = {n | (/i = < 2 F ,i ,0 ,0 > A i £ X[l]) V (f i = < B F , i , j ,0 > A i £ X[2])

= < O rd , 1 , i , C[i]> A i £ X[3]) V (ft = < O rd , 2, i, D[r']> A i 6 X[4])

V (/ i = < F F , t , j , 0> A i € X[5])}.

A newly received message (with its type assigned to the consumer’s variable mtype, its

array number assigned to m arnum , its index assigned to mindex, and its value assigned to

mvalue) must satisfy the following param etric assertion:

A/(X, C, D) = (mtype = 2F A marnum ^ X[l] A ((m arnum = 1 A Vi' : 1 < i < 5 :: X[i] = <f>)
V(marnum = 2 A |X[1]| = 1 A |X[2]| = 2 A |X[3]| = c A |X[4]| = d A |X[5]| = 2)))

V(mtype = B F A marnum ^ X[2] A ((m arnum = 1 A mindex < M A |X[1]| = 1
AVi : 2 < i < 5 :: X[i] = <fi)

V(marnum = 2 A mindex < N A |X[1]| = 1 A |X[2]| = 1 A |X[3]| < c A X[4] = <f> A |X[5]| < 1)))
V(mtype = O rd

A((marnum = 1 A mindex £ X[3] A |X[1]| = 1 A 1 < |X[2]| < 2 A |X[3]| < c
A|X[4]| < d A X[5] = <j>)

V(marnum = 2 A mindex £ X[4] A |X[1]| = 1 A |X[2]| = 2 A |X[3]| < c
A|X[4]| < d A |X[5]| < 1)))

V(mtype = F F A marnum ^ X[5]
A((marnum = 1 A |X[1]| = 1 A 1 < |X[2]| < 2 A |X[3]| = c A |X[4]| < d A X[5] - <j>)
V(marnum = 2 A |X[1]| = 1 A |X[2]| = 2 A |X[3]| = c A |X[4]| = d A |X[5]| = 1))).

C H APTER 3. VERIFICATION OF A FLUSH CHANNEL 131

The above assertion follows from our understanding of the structure of the receipt-order

relation. It is miraculous in the proof in isolation of the consumer. Establishing its tru th is

the primary task in the satisfaction proof.

CONS:: var C : array 1..M of integer;
D : array 1..N of integer;
c,d : integer;
m type : { 2F , B F , O rd , FF};
m arnum : integer;
mindex, mvalue : integer;
j : integer;
done : boolean;
sumC, sumD : integer;

... PREVIOUS APPLICATIONS ...
{ p = 0 A l }

C, D, sumC, sumD, done, X := 0, 0, 0, 0, fa lse , $;
{ C = 0 a D = 0 A sum C = O A sum D = 0 A done = j alse A X = <£A/? = 0 A / }

w hile n o t done do
{ done = false A p — C (X ,C , D) A / }

r l : rece iv e (mtype, marnum , mindex, mvalue) fro m F;
{ N (X , C , D) A done == false A p — C(X, C ,D) ffi {< m type, m arnum , m index, m value>} A I }

case m type o f
2F: X[l] := X[l] U {marnum};

{ done = false A m type = 2 F A m arnum C X [l] A ((m arnum = 1 A |X[1]| = 1 A V i: 2 < i < 5 X[i] = <fi)
V(m am um = 2 A |X [l]| = 2 A |X[2]| = 2 A |X[3]| = c A |X[4]| = d A |X[5]| = 2)) A p = C(X, C, D) A I }

i f marnum = 2 th e n
{ done — false A m type = 2 F A m arnum 6 X[l] A m u n u m = 2 A |X[1]| = 2 A |X[2]| = 2

A | X [3] J = cA |X[4]| = d A |X[5]| = 2 A p = C(X, C, D) A / }

done := true;
{ done = true A m type = 2 F A m arnum € X [1] A m arnum = 2 A |X[1]| = 2A |X[2]| = 2

A|X[3]| = c A |X[4]| = d A |X[5]| = 2 A p = C(X, C, D) A I }

fi;
B F : X[2] := X[2] U {marnum};

{ done = false A m type = B F A m arnum € X [2] A p = C(X, C, D) /

A ((m airnum = 1 A m index < M A |X[1]| = 1 A |X[2]| = 1 A Vi : 3 < t < 5 i: X[i] = 0)

V (in am u m = 2 A m index < N A |X[1]| = 1 A |X[2]| = 2 A jX[3]J < c A X[4] = <j> A |X[5]| < 1)) }

i f marnum = 1 th e n
{ done = false A m type = B F A m arnum 6 X[2] A m arnum = 1 A m index < M

A |X [1]| = 1 A |X(2]| = 1 A V i: 3 < . < 5 :: X[i] = <j> A p = C (X ,C ,D) A / }

c := mindex

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL

{ c = m index A done — false A m type — B F A m arnum 6 X[2] A m am um = I A m index < M

A |X [l]| = 1 A |X[2]| = 1 A V i : 3 < . < 5 :: X[i] = <t> A p = C(X, C ,D) A (}
e lse

{ done = false A m type = B F A m arnum £ X[2] A m arnum = 2 A m index < N
A|X[1]| = 1 A |X [2]| = 2 A |X [3]| < c A X[4] A |X[5]| < 1 A p = C(X, C, D) A / }

d := mindex;
{ d = m index A done = false A m type = B F A m arnum 6 X[2] A m arnum = 2 A m index < N

A|X[1]| = 1 A |X[2]| = 2 A |X [3]| < c A X[4] = $ A |X[5]| < 1 A P = C (X ,C t D) A / }

fi;
O rd : if marnum = 1 th e n

{ done = fal se A m type = O rd A m arnum = 1 A m index fZ X[3] A |X[1]| = 1 A 1 < |X[2]| < 2

A|X[3]| < cA |X[4]| < d A X[5] = A p =: C (X ,C ,D) ffl {<m type, m am um , m index,m value>} A I '

C[mindex], X[3] := mvalue, X[3] U {mindex}
{ Cfmindex] = mvalue A done = false A m type = O rd A m am um = 1 A m index £ X[3]

A |X[1]| = 1 A 1 < |X[2]| < 2 A |X[3]| < cA |X[4]| < dA X [5] = <j> A p = C(X, C, D) A I }

else
{ done = false A m type = O rd A m am um = 2 A m index {S X[4] A |X[1]| = 1 A |X[2]| = 2

/\|X[3]| < c A |X[4]| < d A |X[5]| < 1 A p = C (X ,C , D) ® { <m type, m arnum , mindex, m vaiue>} A I
D[mindex], X[4] := mvalue, X[4] U {mindex};

{ D[mindex] — mvalue A done = false A m type = O rd A m am um = 2 A m index £ X[4]

A|X[1]| = 1 A |X[2]| = 2 A |X [3]| < c A |X[4]| < d A |X[5]| < 1 A p = C(X, C, D) A / }

f i;
F F : j, X[5] := 0, X[5] U {marnum};

{ j = 0 A done = false A m type = F F A m arnum £ X[5] A p = C(X, C, D) A /

A ((m am um = 1 A |X[1]| = 1 A 1 < |X[2]| < 2 A |X[3]| = c A |X[4]| < d A |X[5]| = l)

v(m arnum = 2 A |X[l]| = 1 A |X[2]| = 2 A |X[3]| = c A |X[4]| = d A |X[5]| = 2))}

i f marnum = 1 th e n
{ ; = 0 A done = false A m type = F F A m am u m £ X[5] A m arnum = 1 A (X[l II = 1 A 1 < |X[2]| < 2

A|X[3]| = c A |X[4]| < d A |X[5]| = 1 A p = C(X, C, D) A / }

w h ile j < mindex do
{ j < m index A aumC = 5 ^ ;=1 C[i] A done = false A m type = F F A m arnum £ X[5] A m arnum = 1

A|X[1]| = 1 A 1 < |X[2]| < 2 A |X[3]| = c A |X[4j| < d A |X[5]| = 1 A p = C(X, C, D) A / }

j := j + i;
{ j < m index A suraC = ^ d °ne ~ fa l se A m type = F F A m am um £ X[5] A m arnum = 1

A|X[l]| = 1 A 1 < |X[2]| < 2 A | X [3] | = cA |X[4]| < d A |X[5]| = 1 A p = C(X, C, D) A / }

sumC := sumC + C[j];
{ j < m index A sum C : C[i] A done = fal se A m type — F F A m arnum £ X[5] A m arnum = 1

A|X[1]| = 1 A 1 < |X[2]| < 2 A |X[3]| = c A |X[4]| < d A |X[5]| = 1 A p = C(X, C, D) A / }

od
else

{ i = 0 A done — false A m type — F F A m arnum € X[5] A m arnum = 2

A|X[1]| = 1 A |X[2]| = 2 A IX [3] j = c A |X[4]| = d A |X[5]| = 2 A pee C{X, C, D) A / }

w h ile j < mindex do
{ j < m index A sumD = X2i=i *-4*1 ^ (l° ne = false A m type = F F A niarnuiu £ X[5] A inarnum = 2

A|X[1]| = 1 A |X[2]| = 2 A |X[3]| = c A |X[4]| = d A |X[S]| = 2 A p = C(X, C, D) A / }

C H APTER 3. VERIFICATION OF A FLUSH CHANNEL 133

j j + i;
{ j < m index A sumD = D[i] A done = fal se A m type = F F A m arnum G X [5] A m arnum = 2

A |X [1)| = 1 A |X [2]| = 2A | X [3]] = c A |X [4]| = d A |X [5]| = 2 A p = C (X , C, D) A / }

sumD := sumD + D[j];
{ j < m index A sumD = D[i] A done = false A m type = F F A m arnum G X[5] A m arnum = 2

A|X[1]| = 1 A |X[2]| = 2 A IX[3]I = c A |X[4]| = d A |X[5]| = 2 A p = C(X, C, D) A / }

od;
fi;

od;
{ done = true A |X[1]| = 2 A |X[2]| = 2 A |X [3]| = c A |X[4]| = d A |X[5]| = 2 A p = C(X, C, D) A f}

... FOLLOWING APPLICATIONS ...

We omit the proof in isolation of the consumer as it is straightforward. The invariant

tru th of I is detailed in the non-interference discussion later in this section. We justify the

miraculous postcondition of the rec e iv e next. Let M T E X T denote the message which is

being received, i.e., cm type,m arnum , m index,mvalue>.

The antecedent in the satisfaction proof is

p re (r l) A (M T E X T £ a 0 p) A (Vm : m G a A m -<+ M T E X T :: m 6 p).

We may substitute for p re (r l) , yielding

(done = f a l s e A p = C(X , C, T>)aT)A(MTEXT 6 aQp)A(Vm. : m € a A m -<+ M T E X T :: m G p).

Our obligation in the satisfaction proof is to establish the tru th of the following consequent

assuming the previously stated antecedent:

i / i \< m ty p e fuiuriium ,m index,invalue> , p
p o s i ^ n) MTEXTi p® {MT EXT } '

or equivalently, we need to show

(A/'(X, C ,D) A done - fa ls e A p = C(X, C ,D)

0{< m type, marnum, mindex, m value>) A /) jT S y r;m“ nUm,™ndeX,inVaIUe>,pe{Mr£A-r}-

C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 134

Given th a t (done = fa lse A p = C(X, C, D) A I) is in the antecedent, then clearly

(done = fa ls e A p ® {M T E X T } = C(X, C, D) ® {M T E X T } A I) .

Therefore, we concentrate on A/^Xj C j D).

When the rece iv e statem ent executes, we may ascertain several facts about the trans

mission of M T E X T (i.e., the message being added to p). The field mtype can be any of the

four message types. This follows from T a(MTEXT) which we know must be true for every

element of p from the tru th of / and the fact th a t the en route property requires p C a.

Suppose tha t mtype is 2F . From the cn route property and T a (MTEXT)> we know that

<m type, marnum, mindex, invalue> has not been received before and, therefore, marnum is

not an element of X [l]. We also know, based on the order property and T ^ , (m t e x t) - >

this two-way flush is either the first or the last message to be received. This fact allows us

to specify the number of values th a t must be in each element of X. In sum,

{ M T E X T = < 2 F ,p ,0 ,0 > A p 0 X[l] A ((p = 1 A Vi : 1 < * < 5 :: X[i] = <j>)

V(p = 2 A |X[1]| = 1 A |X[2]| = 2 A |X[3]| = c A |X[4]| = d A |X[5]| = 2))).

If we assume the message being received is a backward flush, then we can show facts

about this message as well. F irst, as in the previous case, marnum is not an element of X[2];

this follows from the fact the message has not been received before. Second, if the value

of marnum is one, then, based on the order property and I - < (\ i t e x t) i this is the second

message to be received (following the previous two-way flush message). If, on the other

hand, the value of marnum is two, then based on the order property and T ^ (m t e x t), this

message is received after the first backward flush; ordinary messages and the forward flush

for the first array may be received before or after this second backward flush. These facts

lead us to the following clause:

CH APTE R 3. VERIFICATION OF A FLUSH CHANNEL 135

(M T E X T = < B F , g ,» ,0 > X[2] A ((q = 1 A v < M A |X[1]| = 1 A Vi : 2 < i < 5 :: X[i] =

y(q = 2 A v < N A |X[1]| = 1 A |X[2]| = 1 A |X[3]| < c A X[4] = <f> A |X[5]| < 1))).

The index from the receipt of an ordinary message, based on the en route property and

Z a(MTEXT)-> wiH not be an element of X[3] if the message pertains to the first array or will

not be an element of X[4] if the message pertains to the second array. Suppose marnum

is one. From the order property and I -^(MTEXT) > we know the first two-way flush and the

first backward flush must be received. We also know the second backward flush message

may be received, but neither forward flush message can be received. If we suppose marnum

is two, then we know, from the order property and T^(\fXEXT)i the first two-way flush and

both backward flush messages must be received, however, the first forward flush message

may or may not be received. In other words,

(M T E X T = < O rd , s, t ,u >

A ((a = 1 A f 0 X[3] A |X[1]| = 1 A 1 < |X[2]| < 2 A |X[3]| < c A |X[4]| < d A X[5] = <f>)

V(a = 2 A t 0 X[4] A |X[1]| = 1 A |X[2]| = 2 A |X[3]| < c A |X[4]| < d A |X[5]| < 1))).

Lastly, the index from the receipt of a forward flush message, based again on the en

route property and T a{MTEXT)i cannot be an element of X[5]. Furthermore, based on the

order property and T ^ (m t e x t)i the backward flush message and all the ordinary messages

for the array ended by this forward Hush must have been received.

(M T E X T = < F F , w, x, 0> A w g X[5]

A((u> = 1 A |X[1]| = 1 A 1 < |X[2]| < 2 A |X[3]| = c A |X[4]| < d A X[5] = <j>)

V(w = 2 A |X[1]| = 1 A |X[2]| = 2 A |X[3]| = c A (X[4]| = d A |X[5]| = 1))).

Combining what we have established,

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 136

((M T E X T = < 2 F ,p ,0 ,0 > A p £ X [l]A ((p = 1 A Vi : 1 < i < 5 :: X[i] = 4>)
V(p = 2 A |X[1]| = 1 A |X[2]| = 2 A jX[3]| = c A |X[4]| = d A |X[5]| = 2)))

V (M T E X T = < B F , q, v, 0> A q i X[2] A ((« = 1 A i > < M A |X[1]| = 1 A V i : 2 < i < 5 :: X[*J = <f>)
V(q = 2 A v < N A |X[1]| = 1 A |X[2]| - 1 A |X[3]| < c A X[4] = (j> A |X[5]| < 1)))

V (M T E X T = < O r d ,5 ,t , u>
A((s = 1 A t i X[3] A |X[1]| = 1 A 1 < |X[2]| < 2 A)X[3]| < c A |X[4]| < d A X[5] = <f>)
V(s = 2 A t<£ X[4] A |X[1]| = 1 A |X[2]| = 2 A |X[3]| < c A |X[4]| < d A |X[5]| < 1)))

V(M T E X T = < F F , w, x, 0> A w # Xf5]
A((w = 1 A |X[1]| = 1 A 1 < |X[2][< 2 A |X[3]| = c A |X[4]| < d A X[5] = </>)
W(w — 2 A |X[1]| = 1 A |X[2]| - 2 A |X[3]| = cA |X[4]| = d A |X[5]| = 1))))

A(done = fa ls e A p® { M T E X T } = C(X, C ,D) © { M T E X T } A I)

((<m type, marnum , mindex, mvalue> = < 2 F , p, 0 ,0 > A p 0 X[l] A ((p = 1 A Vi : 1 < i < 5 :: X[i] =
V(p = 2 A |X[1]| = 1 A |X[2]| = 2 A |X[3]| = c A |X[4]| = d A |X[5]| = 2)))

V(<m type, marnum , mindex, mvalue> = < B F , q, v, 0> A q $ X[2]
A((q = 1 A v < M A |X[1]| = 1 A Vi : 2 < i < 5 :: X[i] = (j))
V(g = 2 A n < N A |X[1]| = 1 A |X[2]| = 1 A |X[3]| < c A X[4] = <j> A |X[5]| < 1)))

V(<mtype, marnum, mindex, mvalue> = < O rd ,s , t ,u>
A((s = 1 A t # X[3] A |X[1]| = 1 A 1 < |X[2]| < 2 A |X[3]| < c A |X[4]| < d A X[5] = </>)
V(s = 2 A t <? X[4] A |X[1]| = 1 A |X[2]| = 2 A |X[3]| < c A |X[4]| < d A |X[5]| < 1)))

V(<mtype, m arnum , mindex, mvalue> = < F F , w, x, 0> A w $ X[5]
A((tu = 1 A |X[1]| = 1 A 1 < |X[2]| < 2 A |X[3]| = c A |X[4]| < d A X[5] = 4>)
\l(w = 2 A |X[1]| = 1 A |X[2]| = 2 A |X[3]| = c A |X[4]| = d A |X[5]| = 1))))

A(done = fa ls e A p = C(X, C, D)
® {<m type,m arnum ,m index,m value>} A /) < ^ ;mar„uI„|mindeX,mvalue>, .

(Af (X, C, D) A done = fa lse
A p = C(X, C, D) © {Cmtype, marnum, mindex, mvalue>} A P ■

This is the required consequent, and hence, satisfaction has been established.

Our final obligation is the non-interference proof. Trivially, assertions in the producer

are not interfered with, by any operation in the consumer since the consumer never alters

any variable used in any producer assertion. We claim that assertions in the consumer are

also interference-free. The producer never alters any explicit variable used in a consumer

assertion. The se n d statem ents in the producer do alter the implicit variables of I, and I

is a conjunct in every consumer assertion. We must prove that, for every assertion in the

consumer, execution of the sen d statem ents s i through s8 in the producer do not invalidate

th a t assertion. As an illustrative example, consider the loop invariant in the consumer and

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 137

the se n d labeled s4 in the producer. Our non-interference obligation is to show

{done = fa lse A p = C(X, C, D) A I A pre(s4)} s4 {done = fa lse A p = C(X, C, D) A 1}

or equivalently,

{done = fa ls e Ap = C(X, C, D) A /A i = aA a < M A /} s4 {done = fa lse A p = C(X, C, D) A / }

The tru th of p = C(X,C, D) cannot be affected by s4 since the sen d alters none of the

variables, explicit or implicit, appearing in that predicate. Our argument concerning the

invariant tru th of I across s4 in the proof in isolation of the producer applies here as well.

Hence, s4 cannot interfere with the loop invariant of the consumer. An analogous argument

applies for every assertion in the consumer. Furthermore, a similar line of reasoning allows

us to conclude tha t s i through s3 and s5 through s8, the other se n d statem ents in the

producer, do not interfere with any assertion in the consumer.

3.6 V erification o f F lush B atch in g A p p lica tion s

As in Section 3.5, the following three examples apply the axiomatic proof methodology of

Section 3.4. The complexity of the verification process is reduced, however, as only two

message types are transm itted in each example. Groups of ordinary messages are intended

to convey information from a “producer” process to a “consumer” process. Flush messages

batch the groups of ordinary messages in a manner particular to each type of flush. (Recall

Section 2.8.2.) In each example, the messages contain two data fields: batch and num. For

an ordinary message, batch is the batch to which the message belongs; num is the number

of the message within its batch. In a flush message, batch denotes the batch which the

message is delimiting; num is always zero.

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 138

In all three examples, the following program variables convey identical information

We assume that each element of array mb is a positive integer, th a t mb is defined

externally to the processes, but tha t it is known to both the producer and the consumer.

3.6.1 B atch Exam ple 1: Illustrating P roof R ules for O R D /2 F

In the first batch example, only ordinary and two-way flush messages are transm itted.

Figure 3.3 shows the covering relation for this example.

[CKA93]:

In the Producer:
bat : integer
job : integer
mb : integer array

current batch number
current message number within a batch
mb[i] is number of messages in batch i

In the Consumer:
jobs : set
cb : integer

set containing ordinary messages received
current batch number

/<Ord. mb[l)> cOrd, mb[2)>

Batch 1 Batch 2

Figure 3.3: Batches Delimited W ith Two-way Flushes

We define the invariant, as in Section 3.5,

I — Vm € of ; I (m)

in order to describe the sta te of the implicit variables a t the transmission of message m. As

CH APTE R 3. VERIFICATION OF A FLUSH CHANNEL 139

shown in the figure, m is the composite

m = <m.type, m.batch, m .num > ,

where m.type is the message type, and m.batch and m.num are as described in the preceding

discussion.

In this batch example, the tedium of T(m) is greatly reduced:

I (rn) = l ^ m) A 2^(m) A I T(rn) A I f l (» n))

where

=cr(m) = {< 2F , i , 0> |0 < i < m.batch} © { < O rd , i, j> |0 < i < m.batch A 0 < j < mb[
® {< O rd , m.batch, i> |0 < i < m.num)};

Zx(m) s -<(m) = { (< 2F , i, 0>, < O rd , i , j >)|0 < i < m.batch A 0 < j < mb[i]}
® {(< O rd , i,y > , < 2 F ,i + 1,0>){0 < i < m.batch A 0 < j < mb[i]}
® {(<2F , m.batch, 0> , < O rd , m.batch, i>) |0 < i < m .num};

I T(mj = r (m) = { < 2 F , m.batch,0>);
Tn(m) = fi(m) = {< 2F , m.batch, 0> |m .num = 0} © (< O rd , m.batch, i > 10 < i < m .num }.

The reduction to I (m) , comparing to I (m) in Section 3.5, is due to the simpler delivery

order. Compare the covering relation of Figure 3.2 with tha t of Figure 3.3. Since the

arrows, representing delivery order requirements, are more predictable in the second figure,

it is easier to describe the state of the implicit variables at any given time.

P R O D U C E R ::
{ /}

b a t , jo b := 0 , 0;
{ b a t,jo b = 0 ,0 A / }

W h ile t r u e do
{ job = mb[bat] A / }

b a t, jo b := b a t + 1 ,0 ;
{ ba t > 0 A jo b = 0 A I }

s i : se n d (2 F , b a t , jo b) on F ;
{ b a t > 0 A jo b — 0 A / }

W h ile jo b < m b[bat] do
{ job < inb[bat] A / }

CH APTER 3. VERIFICATION OF A FLUSH CHANNEL 140

jo b := jo b -f 1;
{ jo b < inb[bat] A / }

s2: send (O rd , b a t , jo b) on F ;
{ jo b < mb [bat] A / }

od;
{ jo b = m b[bat] A I }

od;

We omit discussion of the proof in isolation of the producer process as it is straightfor

ward. Similar to Section 3.5, the invariant tru th of I in the producer can be inductively

validated as successive messages are transm itted.

We define the set of messages which have been consumed thus far, in term s of the

consumer’s variables cb and jobs:

C(cb, jobs) = {/u | (/i = < O rd , x , y> A < x ,y > e jobs) V (f i = < 2 F , z , 0 > A 0 < z < cb)}.

A newly received message (w ith its type assigned to the consumer’s variable mtype, its

batch assigned to mbatch, and its number assigned to mnum) m ust satisfy the following

param etric assertion:

A/^cb, jobs) =

(mtype = O rd A < m batch,m num > 0 jobs A mbatch = cb A 0 < mnum < mb[mbatch])
cb

V(mtype = 2F A mbatch = cb + 1 A mnum — 0 A |jobs) = ^ mb[i])
i = i

As before, establishing the tru th of J\f(ch, jobs) is the prim ary task of the satisfaction proof.

The annotated consumer process appears as:

C O N S U M E R ::
{ p = 0A / }

jo b s , cb := 0, 0;
{ jobs = 0 A c b = 0 A p = C(cb, jobs) A I }

W h ile t r u e do
{ p — C(cb, jobs) A / }

r l : rece iv e (m ty p e , m b a tc h , m n u m) fro m F;

CH APTE R 3. VERIFICATION OF A FLUSH CHANNEL 141

{ -A/’(cb, jobs) A p — C (cb jo b s) © {<n\type, m batch, m num >} A /)

C ase m ty p e o f
O rd : jo b s := jo b s U { < m b a tc h ,m n u m > } ;

{m type = O rd A <m batch , m iium > 6 jobs A m batch = cb A 0 < m num < mb[mbatch] A p = C(cb, jobs) A / }

2F: cb := cb + l j
{ m type = 2 F A m batch = cb A m num = 0 A [jobs| = 1 A P ~ C(cb, jobs) A /)

esac;
{ p — C(cb, jobs) A / }

od;

Let us now justify the miraculous postcondition of the rece ive . The satisfaction proof

below is rather detailed; the satisfaction proofs for the next two batch examples contain

less detail since all three are similar in form. Let M T E X T denote any message eligible to

be received, i.e., assigned to < mtype, mbatch, m num >. Our obligation in the satisfaction

proof is to justify the following implication:

p re (r l) A (M T E X T £ a 0 p) A (Vm : m £ a A m -<+ M T E X T :: m £ p)

. \ ‘̂ -mtype,mbatcIi,mnum^ tp=? Voi>'‘(r i) A1TEXTi p®{MTEXT)>

or equivalently, we need to show

(p — C(cb, jobs) A I) A (M T E X T £ a 0 p) A (Vm : m £ a A m -<+ M T E X T :: m £ p)

=S- (A/"(cb, jobs) A p = C(cb, jobs)

® {< m type,m batch.m num >} A /) S S f L“ d— > ')(4(T„ n .

Given th a t (p = C(cb, jobs)) A I is in the antecedent, then clearly

(p ® {M T E X T } = C(cb, jobs) © {M T E X T }) A I .

Therefore, we concentrate on establishing A/"(cb, jobs).

We consider M T E X T , the message being added to p , when the rece iv e statem ent

executes. The held mtype must be O rd or 2F; this follows from T a(MTEXT)- F°r each

message type, O rd or 2F , we deduce three clauses in order to establish Af(cb, jobs). For

a two-way flush, we verify the assertion in complete detail. We follow this complete proof

C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 142

with a verbal description tha t justifies the receipt of an ordinary message. (The complete

proof for the receipt of an ordinary message is similar to the two-way flush case.) To begin,

let us assume the message being received is a two-way flush.

Statement Justification
A l. M T E X T = < 2 F , f , g>
A2. M T E X T £ a
A3. < 2 F ,c b ,0 > G p A £

< 2 F , k,Q> £ p for k > cb
A4. / = cb + 1

A5. <7 = 0
A6. V m : m e a (M T E X T) =f-

m G p
A l . V m : m e a (M T E X T) =>

m is unique
A8. Vm : m = < O rd ,c ,d > A

m e p => <c, d> e jobs
A9. |jobs| = YliZ\ m b[*1
A10. jjobsj = £ i= i mb[i]

Assumption
Antecedent (M T E X T £ a Q p)
Antecedent (p = C(cb, jobs))

A2, A3, and Antecedent ((Vm : m G <J A m
M T E X T m G p) and r))
A2 and Antecedent
A2 and Antecedent ((Vm : m £ a A m -<+
M T E X T =>■ m G p) and a / te a t))
A2 and Antecedent (I ^ a i t e x t))

Antecedent {p = C(cb,jobs))

A2, A6, A7, A8, and Antecedent (T a(MTEXT))
A4

A4, A5, and A10 establish half of A^(cb, jobs), i.e., when M T E X T is a two-way flush.

If we assume the message being received is an ordinary message, M T E X T = < O rd ,c , d>,

we show three facts about this message as well. From the antecedent ((p = C(cb,jobs))

and (M T E X T £ a © p)) and the fact that each <c,d> is unique, the composite <c,d>

has not been received before, and thus, cannot be an element of jobs. We also know, since

< 2 F ,c b ,0 > is the last two-way flush received, tha t c must be equal to the current batch

(cb). Furthermore, from T a(M T EX T) i we know the number of this ordinary message must

be within the current batch.

Combining what we have established,

CH APTE R 3. VERIFICATION OF A FLUSH CHANNEL 143

{{M T E X T — < O rd , c, d> A <c, d> jobs Ac = c b A 0 < d < mb[c])
V {M T E X T = < 2 F , / , 0 > A / = cb + l A£r = OA |jobs| = J^,i=1 mM*]))
A{p © { M T E X T } = C{cb, jobs) © {M T E X T } A J)

(((<m type, m batch, m num> = < O rd ,c , d> A <c, d> $ jobs A c = c b A 0 < d < mb[c])
V(<mtype, m batch, mnum> = < 2 F , f , g > A / = cb + l A ^ = 0A |jobs| = Y%=i mM?1))
A(p = C(cb,jobs) © {<m type, mbatch, mnum>} A 'ppB{MTEXT^

(A^(cb,jobs) A p — C(cb,jobs) © {<m type, mbatch, mnum>} A

The above result is the required consequent, and hence, satisfaction has been established.

To prove non-interference, we direct the reader to the reasoning for non-interference in

Section 3.5. Since the two proofs are similar, we omit it in this example.

3.7 B atch E xam p le 2: Illu stratin g P ro o f R ules for O R D /B F

In this second batch example, each batch is preceded by a backward flush. Figure 3.4

depicts this message-passing scenario. Again, we define the invariant, / = Vm G a : T{m)\

as in Example 3.6.1, we let m denote the composite <m.type, m.batch, m .num >. We need

to make only minor changes to I (m) in the first batch example in order to describe the

Batch 1

:BF,3,0>

Figure 3.4: Batches Preceded by Backward Flushes

C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 144

transmission of message m in the new batching system:

T(m) — ^"a(m) A A A

where

= a (m) = {< B F , i ,0 > |0 < i < m.batch}
® {< O rd , i, j> |0 < i < m.batch A 0 < j < mb[i]}
® {< O rd , m.batch, i> |0 < i < m.num};

= -<(m)= { (< B F , i, 0>, < O rd , i , j>) |0 < i < m.batch A 0 < j < mb[i]}
® {(< B F)i ,0 > ,< B F , j + 1 ,0>)|0 < i < m.batch}
® {(< B F , m.batch,0>, < O rd , m.batch, i>) |0 < i < m.num};

J T(mj = r (m) = {< B F , m.batch, 0};
J n (m) = {< B F , m.batch, 0> |m .num = 0}

® {< O rd , i, j> |0 < i < m.batch A 0 < j < mb[i]}
® { < O rd (m .6a/c/i,i> |0 < i < m .num }.

The assertions in the producer proof, detailed below for the sake of completeness, are

the same as the ones in the previous example. The only change in the producer is tha t the

s e n d at label s i transm its a backward flush rather than a two-way flush. Similar to the

example in Section 3.5, the invariant tru th of / in the producer is inductively validated as

successive messages are sent.

P R O D U C E R ::

{ /)b a t , jo b := 0 , 0;
{ b a t, jo b = 0 ,0 A I }

W h ile t r u e do
{ jo b = mbfbat] A / }

b a t , jo b := b a t + 1 , 0 ;
{ b a t > 0 A jo b = 0 A / }

s i : s e n d (B F , b a t , jo b) on F ;
{ b a t > 0 A jo b = 0 A / }

W h ile jo b < m b [bat] do
{ jo b < mb[bat] A I }

jo b := jo b + 1;
{ jo b < mb[bat] A / }

s2: send (O rd , b a t , jo b) on F ;
{ jo b < mbfbat] A I }

C H A P TE R 3. VERIFICATIO N OF A FLUSH CHANNEL 145

od;
{ jo b = m b[bat] A / }

od;

The definition of C, the set of messages consumed thus far, is similar to th a t of the

previous example:

C(cb, jobs) = {/x | (p = < O rd , x, y> A < x ,y > G jobs) V (p = <BF, z, 0> A 0 < z < cb)}.

The param etric assertion Af, which describes a newly received message, must be modified

according to the following reasoning. As in Example 3.6.1, the newly received message has

its type assigned to the consumer’s variable “m type” , its batch assigned to “mbatcli” , and

its number assigned to “mnum” . If the message currently received is < O rd ,c , d>, then c

must be less than or equal to the most current batch announced by a backward flush. If

the message currently received is a backward flush, then the number of jobs received thus

far must be less than or equal to the sum of the sizes of the batches previously announced.

Equivalently,

A/”(cb,jobs) =

(m type = O rd A < mbatch, m data> 0 jobs A mbatch < cb A 0 < mnum < mb[mbatch])
cb

V(mtype - B F A mbatch = cb + 1 A mnum = 0 A |jobs| < ^ mb[i]).
« '= i

The annotated consumer process appears as:

C O N S U M E R ::
{ p = 0 A / }

jo b s , cb := 0, 0;
{ jobs = 0 A c b = O A p = C(cb, jobs) A I }

W h ile t r u e do
{ p — C(cb,jobs) A / }

r l : rece iv e (m ty p e , m b a tc h , m n u m) fro m F;
{ .A/fcbJobs) A p = C (cb jo b s) © {O ntype , m batch, m num >} A / }

C a se m ty p e o f
O rd : jo b s := jo b s U { < m b a tc h , m n u m > };

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 146

{ m type = O rd A Cm batch, m nuin> € jobs A m batch < cb A 0 < m num < mb[mbatcli] A p — C(cb, jobs) A J)

B F : cb := cb -\- 1;
{ m type = B F A m batch = cb A m num = 0 A (jobs| < 7 " ^ , 1 mb[i] A p = C (cb,jobs) A / }

esac;
{ p — C(cb, jobs) A / }

od;

The satisfaction proof is outlined below. The newly received message, M T E X T , must

be an ordinary or a backward flush message. The antecedent of the satisfaction rule is

(y9 = C(cb, jobs) A I) A (M T E X T € a © p) A (Vm : m £ a A m -<+ M T E X T m e p).

This leads to the desired consequent,

{{M T E X T = < O rd ,c , d> A <c, d> # jobs A c < c b A G < d < mb[c])
V {M T E X T = < B F , /,<7> A / = c b + l A t / = 0A |jobs| < mb[i]))
A{p © {M T E X T } = C(cb, jobs) © {M T E X T } A I)

(A/"(cb, jobs) A p = C(cb, jobs) © (<m type, mbatch, m num >} A t} ■

Non-interference follows from a similar line of reasoning in the example of Section 3.5.

3.8 B atch E xam ple 3: Illu stra tin g P r o o f R u les for O R D /F F

If we let forward flushes term inate batches, Figure 3.5, we get a totally different effect from

th a t of the previous two batch examples.

<FF,1,0>

:FF,2,0>

Batch 2

Figure 3.5: Batches Terminated with Forward Flushes

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 147

In this third and final batch example, the invariant which describes the implicit variables

must be substantially modified to deal with the forward flush. The producer algorithm is

structurally different from the previous two producers; in this example it is necessary to

transm it the forward flush after the ordinary messages in the batch. As before, define

I = Vm G o : T(m), where

X(m) — A A A To(m)-

E laborating each conjunct:

T a(m) = cr(m) = {<Ord,z, j> |0 < i < m.batch A 0 < j < mb[z']} ® { < F F ,i ,0 > |0 < i < m.batch}
®{<Ord, m.batch, z>|0 < z < m.num} ® { < F F , m.batch, 0>\m.num = 0}
®{<Ord, m.batch, i>\m .num = 0 A 0 < i < m b[m.batch]}\

= -<(m)= { (< O rd , i , j > , < F F ,i ,0 >) |0 < i < m.batch A 0 < j < mb[i]}
® {(< F F , i — 1 ,0> , < F F , i, 0>)|1 < i < m.batch}
® {(< O rd , m.batch,i>, < F F , m.butch, Q>)\m.num = 0A 0 < i < mb[m.6a<c/i]}
® {(< F F , i — 1 ,0> , < F F , i, 0>)| m.num — 0 A 1 < m.batch — z);

-̂ "r(m) = r (m) 0,
2"n(OT) s f l (m) = { < O rd , m.batch, z'>|0 < z < m.num}

® {< F F , i, 0> |m .nnm ^ 0 A 0 < i = m.batch — 1}
® {< F F , m.batch, 0>\m.num — 0}.

Although the producer algorithm is changed from the previous two producers, the proof

in isolation continues to be straightforward. Moreover, the invariant tru th of I in this

producer is established using the same reasoning of the previous examples.

PRODUCER::
{ '}

bat, job := 0, 0;
{ b a t,jo b = 0 ,0 A / }

W hile true do
{ job = mb[bat] A / }

bat, job := bat -j- 1, 0;
{ ba t > 0 A jo b = 0 A / }

W hile job < mb[bat] do
{ job < mb[but] A / }

job := job + 1;

C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 148

{ jo b < m b[bat] A / }

s2: send (Ord, bat, job) on F;
{ jo b < m b[bat] A I }

od;
{ jo b = nib [bat] A / }

s i: send (F F , bat, 0) on F;
{ job = m bfbat] A / }

od;

For the consumer, the param etric description of the set of consumed messages, C, is

essentially the same as previously defined:

C(cb, jobs) = {̂ i | (ft = <Ord, x, y> A < x ,y > E jobs) V (/.i = < F F , z, 0> A O < z < cb)}.

The assertion Af, describing a newly received message, is somewhat changed in keeping

with the structure of the application. It is no longer necessary th a t c, from a newly received

< O rd ,c ,d > , be less than or equal to the current batch. Instead, c m ust only be larger

than the last batch number term inated by a forward flush. In addition, if the new message

received is a forward flush, then the number of jobs received is a t least the sum of the

number of jobs in all of the currently term inated batches.

A/"(cb,jobs) =

(mtype = O rd A Cmbatch, mnum> ^ jobs A mbatch > cb A 0 < mnum < mb[mbatch])
cb-fl

V(mtype = F F A mbatch = cb + 1 A mnum = 0 A ^ mb[i] < |jobs|).
i=i

C O N S U M E R ::
{ p = 0 A / }

jobs, cb := 0, 0;
{ jobs = 0 A c b = OAp = C(cb, jobs) A / }

W hile true do
{ p = C(cb, jobs) A / }

rl: receive (mtype, mbatch, mnum) from F;

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 149

{ ^ / '(c b jo b a) A p = C (cb,jobs) © {<m type, m batch ,m num > } A / }

C ase m ty p e o f
O rd : jo b s jo b s U { < m b a tc h , m n u m >);

{m type = O r d A < m batch ,nm um > 6 jobs A m butch > cb A 0 < m num < mb[mbatcli] A p — C(cb,jobs) A I }

F F : cb : = cb + l j
{ in type = F F A inbatch — cl) A m num = 0 A mb[i] < |jobs| A p = C(cb, jobs) A / }

esac;
{ p = C(cb, jobs) A / }

od;

Tlie satisfaction proof is shown below. As before, we assume

(p = C(cb, jobs) A I) A (M T E X T 6 a © p) A (Vm : m G a A m -<+ M T E X T =J» m 6 p).

We then show, using I and the F-channel network axiom,

((M T E X T = < O rd , c, d> A <c, d> £ jobs A c > c b A 0 < d < mb[c])
M (M TE X T = < F F , f , g > A / = cb + l A</ = 0A 1 mb[*l < Ijobsl))
A(p ® {M T E X T } = C(cb, jobs) ® {M T E X T } A I)

(W (cb, jobs) A p = C(cb, jobs) ® {<m type, mbatch, mnum>} A ^ m Te x t ^ ^ pS^TEXT}-

Once again, we rely on the reasoning for non-interference of the example in Section 3.5

to verify th a t this system is interference-free.

3.9 S oun dn ess and C om p leten ess

In this section, we show th a t the axiomatic proof methodology for F-channels is sound and

relatively complete. To show soundness, we illustrate tha t what we prove in our verification

methodology is true. Relative completeness, relative to some complete deductive system,

establishes th a t the methodology can prove anything that is true. There is no complete

deductive system for natural numbers, therefore, no programming language which uses

the natural numbers is complete. To avoid this issue, as suggested by Cook [Coo78], we

assume we have a complete deductive system; we then illustrate tha t our proot system can

prove anything which is true. Since we know that many axiomatic proof methodologies for

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 150

CSP are sound and relatively complete [AFR80, LG81, Sou84], we prove soundness and

relative completeness for our proof system by simulating an F-channel with CSP sends and

receives. We then derive the F-channel axiomatic proof system from the CSP code using a

proof system for CSP which has been shown to be sound and relatively complete.

T h e o re m 11 The axiomatic proof methodology for processes communicating with F-channels

is sound and relatively complete.

P ro o f: Suppose we have a distributed program th a t transm its flush messages on F-channel

F from process S to process R. To model the F-channel, CSP processes S and R syn

chronously communicate w ith CSP process B. The main function of B is to accept messages

from S and to transm it these messages to R in an order tha t is consistent with the definition

of an F-channel. op, -<p, r p , and f Ip are variables th a t model the F-channel communi

cation state. A(m), J5(m), and C(m) are functions, described in Section 3.4, tha t modify

these variables.

The F-channel communication sta te is maintained by process B. Dy definition of an F-

channel, a message cannot be delivered before it is transm itted. In addition, a message

m ust be delivered in the order denoted by -t+p. These two properties are stated in the

Flush Channel Network Axiom. In our simulation of an F-channel, we define the invariant

Ip c to be consistent with the network axiom.

I FG : PF Q <?F>

For m, to' € op, m ' € pp =$> (Vm : m <+p to ' :: m £ pp).

If c is an implicit conjunct in every assertion of the CSP code. The following annotated

CSP code implements B.

C H A P T E R 3. VERIFICATION OF A FLUSH CHANNEL 151

B :: d o r y S I (o p , -<F,i^Fi tf) skip;
D
s y n o t(e m p ty (crF © pp)) ->

{ (o f 9 P F) 7 ̂0 }
fo reach p, 6 {ap © pp) do

{ /i e (o f 9 p f) }
i f Pred(p) C pp —> R\(<p.type, p .da ta> , pp 0 {p})\ b reak ;
D

true —> skip;
fi;

od;
od;

B nondeterministically chooses one of two actions: it may accept an incoming message from

S ; or it may, if an eligible message exists, transm it a message to R.

S e n d A x io m s: We consider each of the four flush message types separately. To implement

the transmission of an ordinary message,

S\\ sen d < O rd ,d a ta > on F,

we sim ulate the communication statem ent with the following CSP transmission.

si: B \(op 0 { < O rd , da ta> } , -<p 0 d (< O rd , da ta>),

Op 0 { < O rd ,d a ta > } 0 i? (< O rd ,d a ta >) ,rp).

To transm it a two-way flush message,

S 2 I sen d < 2 F ,d a ta > on F,

we execute the following synchronous communication.

S2 : B \(op 0 { < 2 F ,d a ta > } , -<p 0 f7(<2F, da ta>),

{< 2F , da ta> } , {< 2F , data> }).

We implement the transmission of a forward flush message,

C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 152

S 3 : s e n d < F F ,d a ta > o n F,

with the following CSP transmission:

S3 : B\(op © { < F F , da ta> } , <f ® C (< F F , d a ta>),

{ < F F , da ta> } , t f)-

A backward flush message transmission,

5 4 : sen d < B F , data> o n F,

is simulated by

S4 : B\(ap@ { < B F , da ta> } , -<f © A (< B F, da ta>),

O-F ® { < B F , data>} 0 B (< B F , da ta>), { < O rd , data> }).

Regardless of the message type, the flush communication statem ent is modeled by a syn

chronous transmission to B. We can derive the F-channel send axioms from the satisfaction

of the four synchronous communication statements. For example, consider the transmission

of a backward flush message. Suppose m is the message < B F , data> . For S4 , the simulated

F-channel communication statem ent, we know that

m 3 4 {w >

from the assertions surrounding a CSP transmission statem ent. To establish satisfaction for

the communication between S (at S4) and R (at ;•*,), we use the Synchronous Satisfaction

Rule.

(t \ 1' w V F ' . - TF

The semantic efFect of the synchronous communication is a distributed assignment sta te

ment. Therefore,

rp _]x/aPi “fr , fljn, Tp

C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 153

Hence,

Backward Flush Send Axiom:

: s e n d »■>F m -

Since the other three send axioms are similar in form, we omit the corresponding derivations.

Receive Axiom: A receive statem ent in an F-channel program,

{P} R\\ rec e iv e < m type,m data> fro m F {Q},

is modeled by the following CSP communication statem ent:

{P} r j: R ?(< m type,m data> ,p j?) {Q}-

We can easily derive the Flush Channel Receive Axiom from the simulated CSP code. Since

the receive allows a miracle, the postcondition Q is miraculous in isolation.

S a tis fa c tio n R u le : To derive the Flush Channel Satisfaction Rule, we begin with the

Synchronous Satisfaction Rule for sj, and r j.

P A c 6 (*F e p f) A P r e d M £ PF =*•

Since P and Q are unspecified, the above implication may not be valid. It is necessary,

therefore, to derive a satisfaction proof to ensure the axiomatic technique for F-channels is

sound. F irst, we introduce M T E X T , a new variable, to replace /.i. Second, the condition

to transm it a message in B is based on the predecessor set of the message as defined in

Chapter 1.2. Therefore,

Pred(fi) = Pred(M TEX T) C pF =* Vm : m € a F A m -<+F M T E X T :: m £ pF

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 154

Lastly, the fo re a c h loop cannot continue indefinitely. Since messages are transm itted to B

in a FIFO basis, some message must be available for delivery if (op 0 pp) yi 0. The new

satisfaction rule follows.

Flush Channel Satisfaction Rule:

For every F-cliannel receive

{P} Ri : rec e iv e C m type,m data> fro m F {Q},

verify the following to establish satisfaction:

P A (M T E X T e o p Q p F) A (Vm : m £ op A m M T E X T :: m 6 pF)
. < m typc,m data> ,p jr

^ <: M T E X T , pF ® { M T E X T } •

N o n -in te r fe re n c e R u le : We derive the Flush Channel Non-interference Rule from the

non-interference proof of the CSP program. In B, consider all but the communication

statem ents. None of these statem ents can interfere with parallel assertions in other processes

as none of these statem ents update any variables. In addition, none of the assertions in B

can interfere with parallel statem ents in other processes as the variables within the assertions

are updated by synchronous communications involving B. The communication statem ents

within B match communication statem ents in S and /{. Therefore, non-interference proofs

of S and R establish the non-interference proof of process B.

For every assertion A and for every statem ent S (not in B) th a t is a parallel assignment,

simulation of a se n d , or simulation of a rece ive , we must prove the first step of the

Synchronous Non-interference Rule. We, therefore, define

{A Apre(S)} S {4}

as the first step in the Flush Channel Non-interference Rule.

C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 155

For every assertion A and matching synchronous communication statem ents, we must prove

the second step in the Synchronous Non-interference Rule. Again, for example, consider s4

and rb, and suppose tha t m represents < B F ,d a ta > . We must prove

A A pre(s4) => ^ap®{m}1̂ © /4(m)in^©{m}eB(m),{m}-

This implication is equivalent to proving

{A A pre(s4)} s4 : sen d < B F , data> o n F {A},

which is equivalent to validating the first step in the non-interference proof. We omit the

details of the other three simulated sen d statem ents, s j—s3, as the outcome is the same.

Now consider the second step of the Synchronous Non-interference Rule for Sb and 7‘j.

A A p re(r1) A p € (ap © pp) A Pred(p) C pp =>

As in the satisfaction case, we introduce M T E X T , a new variable, for /t and substitute

(Vm : m 6 o p A m -<+f M T E X T :: m G pp) for Pred(M TEXT) C pp. Therefore,

A A p re(ri) A (M T E X T 6 crp Q pp) A (Vm : m £ ap A m -<+p M T E X T :: m € pp)
. a < ! iT i ty p e , in d a ta > , p p

^ A M T E X T % p f ® { M T E X T } >

which is the second step in the Flush Channel Non-interference Rule.

All the rules and axioms in the F-channel axiomatic proof system have been derived from

a CSP program th a t simulates an F-channel. We, therefore, conclude tha t the axiomatic

proof methodology for processes communicating with F-channels is sound and relatively

complete. |

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 156

3.10 G eneralization o f C onventional A syn ch ron ous C om

m un ication

A benefit in using F-cliannels is th a t they can model reliable datagram and virtual circuit

communication; F-cliannels are a true generalization of these conventional inter-process

communication regimes. To model reliable datagram s, the sender only transm its ordinary

messages. To model a virtual circuit, the sender can transm it only two-way flush messages.

In the following two sections, we prove tha t the axiomatic proof system above is a true

generalization of the verification process for communication with reliable datagram s and

virtual circuits.

3 .1 0 .1 R e la t io n s h ip b e tw e e n R e l ia b le D a ta g r a m s a n d F lu s h C h a n n e ls

In this section, we prove the equivalent relationship between ordinary messages transm itted

on an F-channel and reliable datagram s. Although the proof rules in Section 3.3.2 pertain

to Unreliable D atagram s, we can use them for the reliable case as well.

L e m m a 12 In F-channel communication, - t f is empty i f the sender is restricted to trans

mitting only ordinary messages.

P ro o f: We establish this result by induction on the number of ordinary messages trans

m itted in the system. The basis case, th a t only one ordinary message is transm itted, is

trivially true.

Assume that n ordinary messages have been transm itted and Xj? = 0. Consider the

transmission of m , the (n -f- 1)st ordinary message. By the Ordinary Message Send Axiom,

a t the transmission of m , -ip is updated to include A (m) where A(m) — {(a:, m) | x £ Tp}.

In a flush system restricted to ordinary message transmissions, Tp — 0. Therefore, by the

inductive hypothesis, X f = 0 after the transmission of m. 1

C H APTE R 3. VERIFICATION OF A FLUSH CHANNEL 157

T h e o re m 12 Flush channels generalize reliable datagrams.

P ro o f: The implicit variables which model those messages sent and received in the proof

rules for both unreliable datagram s and F-cliannels are multisets. In addition, they both

adhere to network axioms tha t insist pp C <jp, i.e. the Unreliable D atagram Network Axiom

and the Flush Channel En Route Property. Flush channels also obey the Order Property.

By Lemma 12, however, -<p is empty. Hence, the Order Property places no restraints on

the delivery order; if a message is available at the destination, it can be delivered.

The send axioms for unreliable datagram s and ordinary messages in F-channels include the

assignment crp>/p ■— <Jd/f © {msg}- A transmission of an ordinary message also updates

- < F and t i p . As discussed, - < f remains empty. The Ordinary Message Send Axiom updates

Hi? to include the newly transm itted message. This variable, however, is superfluous as Qp

is never needed in an F-channel th a t only allows ordinary message transmissions. There

fore, the two send axioms for the different communication paradigms are equivalent. The

Unreliable Datagram Receive Axiom and the Flush Channel Receive Axiom are trivially

equivalent.

Consider the satisfaction rules of the two communication paradigms. The first, second, and

implication clauses in the rules are equivalent. The third additional clause in the Flush

Channel Satisfaction Rule refers to the delivery order. Since -<p is empty, the clause has

no bearing on the satisfaction proof.

In both communication paradigms, the proof of non-interference requires two steps. The

first step is identical in the axiomatic proof methodology for unreliable datagram s and

F-channels. Consider the second step in the non-interference rules of these two verification

methodologies. The first, second, third, and implication clauses are trivially identical.

As before, the fourth extra clause in the Flush Channel Non-interference (Receive) Rule

is vacuously true. In conclusion, transm itting only ordinary messages on an F-channel

simulates the transmission of messages on a reliable datagram . I

C H A P TE R 3. VERIFICATION OF A FLUSH CHANNEL 158

3.10.2 R elationship betw een V irtual C ircuits and Flush Channels

The previous section showed th a t F-channels generalize reliable datagram s. The following

discussion is similar. In this section, we prove that the axiom atic proof system for F-channels

is a generalization of the verification process for virtual circuits.

L e m m a 13 In F-channel communication, if the sender is restricted to transmitting only

two-way flush messages, then -<p is a total order equivalent to the transmission order.

P ro o f: We proceed by induction on the number of two-way flush messages transm itted

across the F-channel. The basis case, that only one two-way flush message is transm itted,

is vacuously true.

Assume th a t -<p is a total order, identical to the transmission order, after n two-way flush

transmissions. At the transmission of the nth two-way flush message, the Two-way Flush

Send Axiom assigns the nth two-way flush to the free set. Consider the transmission of m,

the (n + l)s< two-way flush message. By the send axiom, -<p is augmented to include C(m)

where C (m) = {(a;,m) | x 6 ft/,-}. Since ftp is a singleton, the n th two-way flush message,

-<F is updated with a single link that ensures the nth two-way flush message is delivered

before m . By the inductive hypothesis, is a to tal order equivalent to the transmission

order. I

T h e o re m 13 Flush channels generalize virtual circuits.

P ro o f: The implicit variables which model those messages sent and received in the proof

rules for virtual circuits are sequences, guaranteeing a network axiom of p y ^ a V- By

Leinma 13, -<p is a total order in a flush communication system th a t only transm its two-

way flush messages. Thus, -d-p, the transitive closure of ~<p, is a to tal order as well. Ilence,

the V irtual Circuit Network Axiom and the Flush Channel Order Property, when -t+p is

a total order, are equivalent; both communication paradigms will deliver messages in the

transmission order.

C H A P TE R 3. VERIFICATIO N OF A FLUSH CHANNEL 159

The Virtual Circuit Send Axiom updates a y by appending the newly transm itted mes

sage. The Two-way Flush Send Axiom updates -<p by, essentially, appending the newly

transm itted message to the total order. Therefore, the send axioms of the two communi

cation paradigms are equivalent. As in the datagram case, the receive axiom for these two

asynchronous communication types are trivially equivalent.

Consider the satisfaction rules of the two communication paradigms. The first, second,

and implication clauses in the rules are trivially equivalent. The third clause in the Virtual

Circuit Satisfaction Rule states tha t M T E X T must be the earliest message transm itted and

not yet received. The th ird clause in the Flush Channel Satisfaction Rule, due to Lemma 13,

ensures this property as well. Thus, the two satisfaction rules are equivalent.

As before, the first step in the non-interference rules of the two communication paradigms

are identical. The first, second, third, and implication clauses are trivially identical. The

fourth clause, of both rules, verifies the messages are delivered in a total order. Hence,

transm itting only two-way flush messages on an F-channel simulates the transmission of

messages on a virtual circuit. I

3.10.3 A C om m ent on th e G eneralization

It is im portant to realize th a t the generalization of reliable datagram s and virtual circuits

to flush communication channels comes at a non-trivial cost in terms of our ability to

reason about distributed systems. If virtual circuits are the communication mechanism in

a distributed system, then the structure of the delivery partial order is fully known. This

is independent of how a program chooses to pass da ta across a virtual circuit. The partial

order is a to tal order. When we use the full generality of an F-channel, we build the structure

of the partial order “on the fly.” T hat structure cannot be known statically. Although this

creates extra flexibility in the system, we feel that the complexity makes formal proof rules

for flush systems imperative.

/ don’t want to achieve immortality through my work,
I want to achieve it through not dying.

Woody Allen

Chapter 4

Concluding Remarks

In this thesis, we investigated implementation and verification issues for flush commu

nication channels. F-channels generalized the communication paradigms tha t enforced no

delivery order (unreliable datagram s) and total delivery order (virtual circuits). In com

munication with an F-channel, the programmer defined the delivery order of each message

in relation to other messages transm itted on the channel. Throughout the thesis, our for

malization of the inherent partial order for message delivery facilitated our understanding

of the dynamic, and possibly complex, delivery order.

From the system’s perspective, an effective implementation th a t supported a dynamic

delivery order specified during execution was not obvious. We reviewed two implementation

protocols in the literature for F-channel communication and discussed their drawbacks.

Understanding the partial order of messages intrinsic in F-channel message transmissions

assisted us in developing the “W aitFor” technique. We presented the protocol and proved its

correctness by validating that the protocol faithfully obeyed safety and liveness behavioral

properties. The correctness of the W aitFor technique also served as the missing validity

proof for the Three Counter technique, as we proved the functional equivalence of these two

protocols.

In regards to flow control issues in message transmissions, we considered the constraints

160

C H A P TE R 4. CONCLUDING R E M A R K S 161

of finite buffer space and limited sequence numbers. In both m atters, the partial delivery

order precluded the use of conventional solutions. We presented solutions to bounding

buffers and sequence numbers, acknowledged the flaws in the solutions, and argued that

there is no preferable alternative. We then included bounding considerations in our WaitFor

technique and proved the modified protocol was correct as well.

We presented results obtained from a simulation of F-channel message transmissions.

As real-world examples naturally formed batches of ordinary messages and an associated

flush message of a given type, our simulator considered message passing scenarios th a t parti

tioned ordinary messages into batches. After we reviewed the performance of virtual circuit

communication, we plotted simulation results tha t considered three experimental param e

ters: degree of order, utilization, and number of links. All the results demonstrated that

F-channel da ta transmission was faster than virtual circuit da ta transmission. Furthermore,

the performance of forward flush and backward flush batching scenarios were quite similar,

but substantially better than batching the ordinary messages with two-way flush messages.

The two-way flush batching scenario, however, continued to outperform a virtual circuit. In

conclusion, partially ordered message delivery allowed the possibility of higher bandwidth

communication.

In order to validate the simulation results, we presented stochastic analysis of the three

batching scenarios. We lirst reviewed the derivation of the expected resequencing delay of

a message transm itted across a virtual circuit. The subsequent three sections considered

the three batching scenarios in detail. In the forward flush batching case, the resequencing

delay of an ordinary message was zero, while the mean resequencing delay of a forward

flush message was identical to the mean resequencing delay of a message transm itted across

a virtual circuit. It is to be expected, and shown to be correct, th a t the mean resequenc

ing delay of a message in the forward flush batching scenario was a portion of the mean

resequencing delay of a message transm itted across a virtual circuit. The analysis of the

expected resequencing delay of a message in the two-way flush and backward flush batching

C H A P TE R 4. CONCLUDING R E M A R K S 162

scenarios was more complicated. In fact, approximations for the probabilities of distinct

messages in transit were necessary in order to validate the simulation results.

The performance results showed that F-channels offered promise of ultra-high bandwidth

communication over multiple physical paths. The programmer had the flexibility to choose

the least amount of delivery order restrictions required to obtain the best performance in

message transmissions. Programming with a system th a t communicated with an F-channel

was, however, more complex than the conventional virtual circuit paradigms. To handle the

additional complexity in the system, we developed an axiomatic verification methodology

for F-channel communication.

We reviewed the conventional axiomatic proof methodology for synchronous communica

tion with CSP and for asynchronous communication with unreliable datagram s and virtual

circuits. We extended the methodology to F-channel communication by constructing the

dynamic delivery order requirements within the axiomatic proof methodology. Though

the addition of the delivery order construction increased the complexity of the verification

methodology, we proved the axiomatic technique was sound and relatively complete. Lastly,

we proved the equivalence of the axiomatic proof rules for F-channels and those for reli

able datagram s and virtual circuits, demonstrating that F-channels could model these two

conventional communication paradigms.

The use of flush communication channels provided a greater potential for concurrency

in message passing than the use of virtual circuit communication, w ithout the program

ming disadvantages of unreliable datagram communication. In F-channel communication,

the programmer had the ability to simulate a virtual circuit or a reliable datagram ; the

programmer chose a partial order for the message delivery order tha t best fit the needs of

the application. F-channels allowed the flexibility to relax the delivery order restrictions in

virtual circuit communication and, hence, increased the rate of da ta transfer.

The results in this thesis suggested other possibilities of future work. From the imple

m entation results, analytic error bounds for the approximate expected resequencing delays

CH APTER 4. CONCLUDING REM ARK S 163

are needed. We are convinced tha t closed-form solutions for the two-way flush and backward

flush batching scenarios cannot be obtained. For this reason, our approximation method

is worthwhile. Error bounds on the approximation, however, would strengthen the results

presented.

In the bounded WaitFor technique, we transm itted a dummy two-way flush message to

reset the variables in the system when all messages had been ACKed and the transmission

condition continued to be false. This dummy message was necessary to avoid deadlock.

In efFect, the transmission of the message synchronized the sender and receiver. In a sys

tem that thrives on concurrency, avoiding synchronizations was advantageous. We plan

to consider other possibilities for a bounded WaitFor technique th a t do not require any

synchronizations. Lastly, we want to implement a prototype for F-channel communication.

In verifying F-channel applications, we want to consider a second proof methodology.

The axiomatic operational proof methodology in this thesis relied on nonlocal reasoning

for correctness. W hether an application verified its intentions or not depended on global

arguments built after the processes were annotated. We should not construct our view of

a distributed system by adding order, as we must do with any definition of global state.

Instead, we should reason with events and states in a distributed system using causal order

as defined by Lam port’s “happened before” relation [Lam78]. In a causal proof methodology,

we do not need to consider the communication state. Instead, we look into the possible

causal relationships between senders and receivers.

The motivation for a causal proof methodology for F-channel communication is to sim

plify testing [Llo91]. Due to a dynamic, and possibly complex, delivery order in F-channel

communication, verifying an application and testing the correctness of the assertions will

further build our confidence that the application satisfies our expectations. Our initial con

sideration of a causal proof methodology for F-channel communication developed a causal

reasoning technique that is correct for a two process system. Generalizing the technique to

any number of processes produced problems. We believe that a causal proof methodology

C H A P TE R 4. CONCLUDING R E M A R K S 164

for F-channel communication must abandon the definition of no auxiliary variables in the

reasoning process. We plan to consider this area further in the future.

Bibliography

[AFR80] K.R. Apt, N. Francez, and W .P. De Roever. A proof system for communicating
sequential processes. A C M Transactions on Programming Languages and Systems,
2:359-385, 1980.

[Ahu99] M. Ahuja. Flush primitives for asynchronous distributed systems. Information
Processing Letters, 34:5-12, 1990.

[Ahu91] M. Ahuja. An implementation of F-channels, a preferable alternative to FIFO
channels. In Proceedings of the 11th International Conference on Distributed Com
puting Systems, pages 180-189, 1991.

[AR87] S. Agrawal and R. Ramaswamy. Analysis of the resequencing delay for MJ MJ m
systems. In Proceedings o f the 1987 A C M SIG M E T R IC S Conference on Measure
ment and Modeling of Computer Systems, pages 27-35, 1987.

[AS85] B. Alpern and F.B. Schneider. Defining liveness. Information Processing Letters,
21(4):181-185,1985.

[AVS91] M. Ahuja, K. Varadltan, and A.B. Sinlia. Flush message passing in communicat
ing sequential processes. In N. Rishe, S. Navathe, and D. Tal, editors, Parallel
Architectures, pages 31-47. IEEE Computer Society Press, 1991.

[Cho89] S. Chowdhury. The mean resequencing delay for Mf Hk / o o systems. IEEE Trans
actions on Sofhvare Engineering, 15(12):1633-1638,1989.

[CK91] T . Camp and P. Kearns. Proof rules for flush channels: An axiomatic approach.
Technical Report W M -91-2, The College of W illiam and Mary, 1991.

[CKA93] T. Camp, P. Kearns, and M. Ahuja. Proof rules for flush channels. IEEE Trans
actions on Software Engineering, 19(4):366-378, April 1993.

K.M. Chandy and L. Lamport. D istributed snapshots: Determining global states
of distributed systems. A C M Transactions on Computer Systems, 3(l):63-75,
1985.

S.A. Cook. Soundness and completeness of an axiom system for program verifi
cation. S IA M Journal o f Computing, 7(l):70-90, 1978.

E.W . Dijkstra. A Discipline of Programming. Prentice Ilall, Englewood Cliffs,
1976.

[CL85]

[Coo78]

[Dij76]

165

BIBLIO G RAPH Y 166

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Communications
o f the ACM, 12(10):576-583, 1969.

[IIoa78] C.A.R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666-677, 1978.

[KC91] P. Kearns and T. Camp. An implementation of flush channels based on a veri
fication methodology. Technical Report W M -91-6, The College of William and
Mary, 1991.

[KCA92] P. Kearns, T. Camp, and M. Ahuja. An im plem entation of flush channels based
on a verification methodology. Proceedings of the 12th International Conference
on Distributed Computing Systems, pages 336-343, 1992.

[Kle75] L. Kleinrock. Queuing Systems, volume 1. John Wiley & Sons, Inc., 1975.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, 1978.

[Lam88] L. Lamport. Control predicates are better than dummy variables for reasoning
about program control. AC M Transactions on Programming Languages and Sys
tems, 10(2):267-281, 1988.

[LG81] G.M. Levin and D. Gries. A proof technique for communicating sequential pro
cesses. Acta Informatica, 15:281-302, 1981.

[LK91] W.S. Lloyd and P. Kearns. Using tracing to direct our reasoning about distributed
programs. In Proceedings o f the 11th International Conference on Distributed
Computing Systems, pages 552-559, 1991.

[Llo91] W.S. Lloyd. Causal Reasoning about Distributed Programs. PhD thesis, The
College of William and Mary, 1991.

[LS84] L. Lamport and F.B. Schneider. The ‘Hoare logic’ of CSP, and all that. ACM
Transactions on Programming Languages and Systems, 6(2):281-296, 1984.

[MC81] J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Transactions
on Software Engineering, SE-7:417-426, 1981.

[OG76] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6:319-340, 1976.

[OL82] S. Owicki and L. Lamport. Proving liveness properties of concurrent programs.
A C M Transactions on Programming Languages and Systems, 4(3):455-495,1982.

[Ros73] S.M. Ross. Introduction to Probability Models. Academic Press, Inc., 1973.

[Sou84] N. Soundararajan. Axiomatic semantics of communicating sequential processes.
AC M Transactions on Programming Languages and Systems, 6(4):647-662,1984.

BIB LIO G R A P H Y 167

[SS84]

[Tan89]

[YN86]

R.D. Schlichting and F.B. Schneider. Using message passing for distributed pro
gramming: Proof rules and disciplines. A C M Transactions on Programming Lan
guages and Systems, 6(3):402-431, 1984.

A.S. Tanenbaum. Computer Networks. Prentice-Hall, Inc., 1989.

T-S. Yum and T-Y. Ngai. Resequencing of messages in communication networks.
IE E E Transactions on Communications, CO M -34(2):143-149,1986.

VITA

Tracy Camp was born in D etroit on September 27,1964. After graduating from Lakeland

High School in Milford, Michigan, she attended Kalamazoo College in her home state and

received a B.S. degree in M athem atics, June 1987. She then continued her education at

Michigan State University in Lansing and received an M.S. degree in Computer Science,

March 1989. In September 1989, Ms. Camp entered the College of William and Mary and

expects to receive her doctorate in Computer Science in 1993. She will join the faculty at

the University of A labam a at Tuscaloosa in September 1993.

	Flush communication channels: Effective implementation and verification
	Recommended Citation

	00001.tif

