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Abstract

Blackboard systems are a natural progression of knowledge-based systems into a 
more powerful problem solving technique. They provide a way for several highly 
specialized knowledge sources to cooperate to solve large, complex problems. 
Blackboard systems incorporate the concepts developed by rule-based and expert 
systems programmers and include the ability to add conventionally coded knowledge 
sources. The small and specialized knowledge sources are easier to develop and test 
and can be hosted on hardware specifically suited to the task that they are solving.

The lack of a coherent set of design tools and guidelines results in blackboard 
systems being developed in an ad hoc fashion. Designers have been forced to make 
design choices in a void. Often the designer is stuck with a poorly designed system 
simply because revisions are too difficult once the system has been implemented. The 
lack of design and analysis tools is one of the reasons why incorporating concurrency 
into the blackboard problem-solving model has not been successful. The use of a 
centralized control mechanism, and contention in accessing the blackboard have also 
restricted the success o f previous systems.

The Formal Model for Blackboard Systems was developed to provide a consistent 
method for describing a blackboard system. The Formal Model outlines the basic 
components of a blackboard system, and how the components interact. A set of 
blackboard system design tools has been developed and validated for implementing 
systems that are expressed using the Formal Model. The tools are used to test and 
refine a proposed blackboard system design before the design is implemented. The set 
o f  blackboard system design tools consists of a Knowledge Source Organizer, a 
Knowledge Source Input/Output Connectivity Analyzer, and a validated Blackboard 
System Simulation Model. My research has shown that the level of independence and 
specialization of the knowledge sources directly affects the performance of blackboard 
systems. Using the design, simulation, and analysis tools, I developed a concurrent 
object-oriented blackboard system that is faster, more efficient, and more powerful than 
existing systems. The use of the design and analysis tools provided the highly 
specialized and highly independent knowledge sources required for my concurrent 
blackboard system to achieve its design goals.
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Chapter 1 
Introduction

Blackboard systems are a natural progression of Knowledge-Based systems into a 
more powerful problem-solving technique. They provide a way for several highly 
specialized knowledge sources to cooperate to solve large and complex problems. 
Blackboard systems incorporate the concepts developed by rule-based and expert 
systems programmers and include the ability to add conventionally coded software to 
cooperate in solving problems. The smaller, specialized knowledge sources are easy to 
develop and test, and can be hosted on hardware specifically suited to their.

1.1 Statement of the Problem

Designing and developing blackboard systems is a difficult process. The designer 
is trying to balance several conflicting goals and achieve a high degree of concurrent 
knowledge source execution while maintaining both knowledge and semantic 
consistency on the blackboard. Blackboard systems have not attained their apparent 
potential because no established tools or methods exist to guide in their construction or 
analyze their performance.

“At present (1989), intuition is the primary criterion for making an 
appropriate set of design choices. Application characteristics, hardware 
and communication characteristics, and how the application is 
implemented are all likely to strongly affect the performance of a 
parallel or distributed blackboard application.

What is needed are system engineering guidelines for making 
appropriate design choices and improved languages and tools for 
constructing parallel and distributed blackboard applications. Such 
engineering guidelines require empirical measurements of pioneering 
applications. A few data points are beginning to emerge, but direct 
measurement of applications designed and executed on real parallel or 
distributed hardware remains to be performed.”1

My assessment of the current state-of-the-art in blackboard systems (Chapter 2) is 
that the techniques used to design, analyze, and develop blackboard systems are not 
sufficient. Successful blackboard systems application requires the development of a 
unified design and analysis methodology. This assessment is supported by the 
discussions at the AAAI Workshops on Blackboard Systems and other related 
research. In “A Survey of the Eighth National Conference on Artificial Intelligence:
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Pulling Together or Pulling Apart?” Paul Cohen presents some interesting hypotheses 
on the state of AI research. His research shows that common methodological 
problems—from poor system evaluation to absurd assumption—arise because the 
methodologies applied by most current AI researchers are not sufficient.2

“I offer evidence for four hypotheses: First, AI research is 
dominated by two methodologies. Second, with respect to the goal of 
developing science and technology to support the design and analysis of 
AI systems, neither methodology is sufficient alone. Third, the bulk of 
AI research consequently suffers from familiar methodological 
problems, such as a lack of evaluation, a lack of hypothesis and 
predictions, irrelevant models, and weak analytic tools. Fourth, a 
methodology exists that merges the current “big two” and eliminates 
the conditions that give rise to methodological problems.”3

Cohen’s results show that most AI research applies one of two existing methodologies: 
model-centered research, or system-centered research. Model-centered research 
involves defining, extending, differentiating, and generalizing models. System- 
centered research involves designing and implementing systems to perform tasks that 
are too large and complex to be accomplished by a single algorithm.4 The results are 
clear: No single existing blackboard system design and analysis methodology is 
sufficient.

1.2 Unified Design and Analysis Methodology for 
Concurrent Blackboard Systems

To address these problems, I have developed a methodology and a set of unified 
techniques for the design, simulation, analysis, and implementation of concurrent 
blackboard systems. The techniques include: a formal model for blackboard systems, 
a set of design and analysis techniques, a simulation model, and an automatic code 
generator for blackboard systems. This methodology provides for automatic 
generation of the blackboard system software based on the formal blackboard system 
design specifications.

The lack of a coherent set of design techniques and methodologies for blackboard 
systems has resulted in blackboard systems being developed in an ad hoc fashion. 
Some shells for building blackboard systems exist, such as Cage, Poligon, and GBB. 
These shells have no design aids or analysis tools and are insufficient. The shells do 
not provide the system designer with the tools or information required to successfully 
implement a system. As a result, many system designers have been stuck with poorly
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designed systems because revisions are too difficult once the system has been 
implemented. The lack of design and analysis techniques is a major reason why 
incorporating concurrency into the blackboard problem-solving model has not been 
successful.

1.2.1 A Formal Model for Blackboard Systems

The need for a formal model for blackboard systems was highlighted at The First 
Workshop on Blackboard Systems5 and has been repeated at the subsequent 
workshops6.

“As more and more systems appear claiming to use the blackboard 
paradigm, it is increasingly necessary to determine a set of criteria that 
define the essential elements of blackboard systems.”7

As interest in blackboard systems has grown, a formal description of the blackboard 
problem solving paradigm and the components of a blackboard system have become 
crucial. A formal model is required to define the basic components of a blackboard 
system. The formal model should specify what is, and what is not, a blackboard 
system. The Blackboard Architecture and Organization Panel at the workshop was 
concerned with identifying the basic attributes of a blackboard system, and with how 
far a system can deviate from the defined architecture and still be classified as a 
blackboard system.

I have developed a formal model for blackboard systems to address these issues. 
The Formal Model for Blackboard Systems is presented in detail in Chapter Three.
The formal model outlines the basic components of a blackboard system, and how the 
components interact. Systems that cannot be expressed using the formal model are not 
valid blackboard systems. The formal model is consistent with the description of a 
blackboard system presented by H. Penny Nii8, and the formal description presented at 
the blackboard systems workshops.

1.2.2 Blackboard System Design and Analysis Techniques

The set of blackboard system design techniques consists of a Knowledge Source 
Organizer, and a Knowledge Source Connectivity Analyzer. These generic techniques 
are used to test and refine a proposed blackboard system design before implementing 
the system. My preliminary research 9.10.11.12 has shown that the level of
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independence and specialization of the knowledge sources directly affects the 
performance of blackboard systems.

This dissertation describes the first use of specialized blackboard system design and 
analysis techniques to design and predict the performance of concurrent blackboard 
systems. These techniques can be applied to many distributed system design problems 
and other parallelization problems. The design techniques measure knowledge source 
outpul/input connectivity across a shared blackboard data structure. This information is 
used to determine knowledge source independence and point out potential hotspots on 
the blackboard data structure.

The first technique, Knowledge Source Organization, decomposes the problem into 
component parts and aids in the initial selection of knowledge sources and the 
formation of the blackboard structure. Knowledge Source Organization develops the 
basic specification of the blackboard data objects and the knowledge sources.

The second technique, Knowledge Source Connectivity Analysis, completes the 
formal specification of a blackboard system, and computes a knowledge source 
connectivity graph showing blackboard data object connectivity between knowledge 
sources. The blackboard data object connectivity information is used to determine the 
interdependencies between knowledge sources and locate hotspots on the blackboard. 
The information is also used to predict the overall system performance and blackboard 
overhead for individual blackboard components. Knowledge sources that are tightly 
coupled may be combined into a single knowledge source to decrease the traffic on the 
blackboard and to increase system performance. Knowledge sources that have a high 
overhead and small execution times may be combined to reduce the overhead costs. 
This technique can be applied to many generic parallelization problems to analyze data 
connectivity in the system.

1.2.3 Blackboard System Simulation Model

The Blackboard System Simulation Model is a serial discrete event simulation. 
Verification of the simulation model and the implementation of the simulation system 
was performed using example blackboard system specifications. The performance of 
the simulation system was validated by comparing the performance predicted by the 
simulation model to the performance of known blackboard systems. Any 
discrepancies between the predicted and the actual performance of the system were
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used to refine the blackboard simulation model, or possibly the blackboard system 
implementation. This refinement process was iterated at each stage of development 
until the predicted and actual performance values converged. The verification and 
validation of the simulation model is discussed in detail in Chapter Eight.

This dissertation describes the first use of simulation to predict the performance of 
blackboard systems. The knowledge source distribution information and the 
blackboard data connectivity generated by the knowledge source connectivity analysis 
is used to build the simulation model of the system. The execution of the knowledge 
sources and their interaction with the blackboard data objects are modeled.

Once validated, a blackboard simulation model allows tradeoff and performance 
analysis to be completed before systems are implemented. The simulation model may 
also be used to determine the effect of different hardware and software configurations 
on system performance. The data generated by the model can be used to predict the 
performance of a single blackboard system implemented using several 
hardware/software configurations. The designer can develop an initial design using the 
blackboard system design tools and then use the blackboard system simulation model 
and blackboard system analysis tools to refine the design. (Figure 1.1) When the 
design goals have been met, and the systems performance validated by the blackboard 
system simulation model, the design can be implemented. The use of a design- 
>simulate->refine process makes it easier for designers to meet design and 
performance goals, resulting in more efficient concurrent blackboard systems.

Design Simulate ------ > Analyze

t

Implement

Refine Design

Figure 1.1. Blackboard System Design Process

1.2.3 Blackboard System Code Generator

The Blackboard System Code Generator generates all of the software required to 
implement a blackboard system based on a valid system specification. The code 
generator does not generate the software for the knowledge sources. The system
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generates the Blackboard Data Structure and all required support software. This 
includes all required blackboard data object locks and synchronization primitives. The 
system generated software is implemented using the Concurrent Object-Oriented 
Blackboard System.

1.3 The Concurrent Object-Oriented Blackboard System

The Concurrent Object-Oriented Blackboard System (COBS) is an implementation 
of the formal model for blackboard systems, the design and analysis techniques, and 
the simulation model. The basic premise of COBS is that a concurrent blackboard 
system consisting of a set of highly independent, highly specialized knowledge sources 
cooperating using a shared object-oriented blackboard with no centralized blackboard 
controller will achieve the potential of the blackboard model of problem solving and 
outperform a conventionally designed blackboard system.

To date, most concurrent blackboard systems have centered on solving the memory 
contention problem or on reducing centralized control. Three generic concepts combine 
to form a synergistic solution to both of these problems.

1) A Daemon Driven Control Structure

2) The use of Blackboard Handlers

3) Highly Specialized, Highly Independent Knowledge Sources

COBS uses a associative memory-based control structure and blackboard handlers to 
implement a distributed control structure. The associative memory is implemented 
using an object-oriented data structure and daemon functions. This type of control 
structure models the associative memory concept of how the human brain functions 
and allows concurrent processing. The distributed control structure and the use of 
highly specialized, highly independent knowledge sources reduce memory contention 
on the blackboard and remove centralized control.

Blackboard control and knowledge source selection is achieved using daemons 
attached to the blackboard data objects. The daemons activate blackboard handlers 
when the data elements on the blackboard are updated. This daemon-driven control 
structure removes the need for a centralized blackboard control mechanism and allows 
concurrent knowledge source execution. The blackboard handlers control knowledge
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source activation and provide the knowledge sources read/write access to the 
blackboard.

COBS was used to develop several applications. The applications, presented in 
detail in Chapter Seven, were used to validate the blackboard system simulation model. 
A preliminary blackboard simulation model was used in conjunction with the 
blackboard system design tools to fine tune the performance of the blackboard system 
before the design was implemented.

Knowledge Knowledge
Source Source

Knowledge
Source

Knowledge
Source

/

I Blackboard! 
"Handler |

BlackBoard

Blackboard. 
Handler

I Blackboard Blackboard!
|  Handler Handler |

I Blackboard 
f Handler

Blackboard 
Handler 1\

Knowledge
Source

Knowledge
Source

Figure 1.2. Concurrent Object-Oriented Blackboard System Schematic

1.4 Paladin and Concurrent-Claws

A Tactical Decision Generator for Air-to-Air combat was developed to evaluate 
COBS. Past research 13.14,15.16 has shown that this application requires a set of highly 
specialized knowledge sources cooperating in a dynamic environment. This application 
should effectively test all features of COBS. A concurrent blackboard system, Paladin, 
is used as an "Iron Pilot" for evaluating super-agile aircraft performance at NASA 
Langley Research Center. An "Iron Pilot" is a deterministic autopilot that acts as a 
challenging opponent in a simulated air combat engagement.

Paladin consists of multiple cooperating knowledge-based systems developed to 
study within-visual-range air combat engagements. This system incorporates modem 
airplane simulation techniques, sensors, and weapon systems. A concurrent message- 
passing version of the application, Concurrent-CLAWS, was developed and tested on
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a 16 processor Intel Hyper Cube17. The concurrent version highlighted the gains that 
could be made by using a concurrent blackboard system and outlined many of the 
problems associated with designing concurrent blackboard systems. The experience 
gained in designing and developing these preliminary systems has affected the basic 
structure of COBS and highlighted the need for design and analysis tools for 
blackboard systems.

1.5 Thesis Outline

This thesis is organized in the following manner:

Chapter 2: The Blackboard Problem-solving model. This chapter restates the 
standard definitions of the blackboard problem-solving model and presents the 
development of serial implementations of the blackboard model. Concurrent 
blackboard systems are presented. Several problems associated with current 
implementations of parallel and distributed blackboard systems are discussed.

Chapter 3: A Formal Model For Blackboard Systems. This chapter presents a 
formal specification of the blackboard problem-solving model and the 
components of a blackboard system.

Chapter 4: Blackboard System Design and Analysis Techniques. This chapter 
describes a set of design and analysis techniques for blackboard systems. 
Knowledge Source Connectivity is defined, and its effect on the performance of 
a blackboard system design is presented. Four examples are given, and the 
results of the design analyses are presented.

Chapter 5: A Simulation Model for Blackboard Systems. This chapter discusses 
a serial simulation model for blackboard systems that is used to model the 
performance of proposed blackboard system designs. A set of blackboard 
system performance metrics is developed to measure blackboard system 
performance.

Chapter 6: The Concurrent Object-Oriented Blackboard System. This chapter 
describes the Concurrent Object-Oriented Blackboard System model, and how 
it implements the formal model for blackboard systems. The four examples 
defined in Chapter Four are analyzed, and the results of the design analyses are 
used to verify the performance of the COBS design and analysis tools
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Chapter 7: Paladin. The application that will be developed to evaluate the
Concurrent Object-Oriented Blackboard System, the set of design and analysis 
tools, and the blackboard simulation model is presented in this chapter.

Chapter 8: Validation of the Concurrent Object-Oriented Blackboard System 
Simulation Model. This chapter describes the validation of the COBS 
simulation system using the two applications described in Chapter Seven and 
the blackboard system simulation model. The results of the analysis and 
simulation of the two examples and the systems actual performance data is used 
to validate the performance of the COBS simulation system.

Chapter 9: Utilizing the Concurrent Object-Oriented Blackboard System
Simulation Model. This chapter describes the design and development of two 
applications using the set of design and analysis tools for concurrent blackboard 
systems and the blackboard system simulation model.

Chapter 10: Conclusions This chapter presents the summary of the Formal Design 
and Analysis Techniques, and outlines future work.
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Chapter 2 
The Blackboard Problem-solving model

This chapter presents a historical overview of the development of the blackboard 
model, an overview of concurrent blackboard systems, and some of the issues 
involved in designing and implementing a parallel or distributed blackboard systems.

2.1 The Blackboard Model

The basic concepts of the blackboard problem-solving model were first presented 
in 1962 by Allen Newell. Newell describes the following model of problem solving:

“Metaphorically we can think of a set of workers, all looking at the 
same blackboard: each is able to read everything that is on it, and to 
judge when he has something worthwhile to add to i t  This conception 
is just that of Selfridge's Pandemonium1: a set of daemons, each 
independently looking at the total situation and shrieking in proportion 
to what they see that fits their natures...”2

The problem solving technique outlined by Newell, and in Simon’s paper on 
information processing theory3 are the basis of the blackboard problem-solving 
model.4 The concepts presented by Newell led to the development of the production 
system problem-solving approach, and were later used in the development of the OPS 
5 system.

A blackboard system consists of a set of knowledge sources, a blackboard data 
structure, and an opportunistic control strategy used to activate the knowledge sources. 
The control strategy is termed “opportunistic” due to the self-activating nature of the 
knowledge sources. Each knowledge source monitors the blackboard and activates 
itself based on the state of the blackboard. The blackboard model of problem solving is 
best described by H. Penny Nii.

“A Blackboard System can be viewed as a collection of intelligent 
agents who are gathered around a blackboard, looking at pieces of 
information written on it, thinking about the current state of the solution, 
and writing their conclusions on the blackboard as they generate 
them.”5

The blackboard is a centralized global data structure, often partitioned in a 
hierarchical manner, used to represent the problem domain. The blackboard is also 
used to allow inter-knowledge source communication and acts as a shared memory

13
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visible to all of the knowledge sources. This design allows for opportunistic problem 
solving and allows a knowledge source to contribute towards the solution of the current 
problem without knowing which of the other knowledge sources will use the 
information. The use of opportunistic problem solving allows the data transfers on the 
blackboard to determine which processes are active at a given time. The use o f an 
opportunistic data-driven control structure, and highly specialized knowledge sources 
allows a set of knowledge sources to cooperate to solve large, complex problems.

The blackboard problem-solving model is an evolution of the rule-based/expert 
system model of problem solving that seeks to build on the inherent strengths of those 
systems.

• Knowledge sources should be highly specialized and highly 
independent. This allows several rule-based/expert systems to 
cooperate to solve problems that are larger than can be managed by a 
single expert system. Specialization and independence provide modular 
protection, restricting the effect o f a rule firing to the knowledge source 
it fires in.

• The control of rule application in a blackboard system is distributed 
across the set of knowledge sources. Conflict resolution is carried out at 
the blackboard level instead of being centralized in one rule base.

• A different inference engine and knowledge representation scheme can 
be selected for each knowledge source. This allows each knowledge 
source to use the knowledge representation scheme and 
problem-solving strategy best suited to solve its subset of the problem.

• Blackboard systems provide for parallel execution o f the knowledge 
sources. This parallel execution of the separate knowledge sources 
cannot be modeled in a rule- based system using a single rule base 
without having a set of rules in the rule base whose only purpose is to 
order the firing of other rules. The addition of the “ sequencing” rules 
violates the basic principle that the rules in a rule-based system are not 
serialized and can fire in any order.
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2.2 Description of the Blackboard Model
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Due to the hierarchical structure of the blackboard, each data object on the 
blackboard will usually have only one knowledge source that can update i t  It is 
important to note that although knowledge sources are often referred to as "experts", 
knowledge sources are not restricted to Expert Systems or other AI systems. Many 
knowledge sources are numeric or algorithmic in nature. The use of multiple, 
independent knowledge sources allows each knowledge source to use the data 
representation scheme and problem-solving strategy that best suit the specific purpose 
o f the knowledge source. The use of independent knowledge sources also provides for 
modular protection between knowledge sources. A change in the functionality of one 
knowledge source cannot effect the function of another knowledge source.

Penny Nii and others6'7,8 have delineated three properties that the knowledge 
sources of a blackboard system should possess:

1) Knowledge sources can see everything on the blackboard at all times, 
and what they see represents the current state of the solution. This 
implies the ability to do concurrent atomic reads.

2) Knowledge sources can write their conclusions on the blackboard at any 
time without getting in the way of any other knowledge sources. This 
implies the ability to do concurrent writes to the blackboard.

3) The act of writing on the blackboard will not confuse any other 
knowledge sources. This implies that serializability is maintained and 
that write operations are atomic.

The implication of these properties is that a single problem is being solved 
asynchronously, in parallel, with no memory contention. This is not the case in serial 
implementations of blackboard systems. Most serial blackboard systems, including 
the early versions of Paladin9, modify the blackboard system problem-solving model 
in such a way that it cannot be executed in parallel. Knowledge sources are treated as 
schedulable entities that are queued for execution, with only one knowledge source 
executing at a time. This modification to the blackboard model requires the additional 
overhead of adding a centralized control mechanism to handle the scheduling and 
execution of the knowledge source.
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Serial blackboard systems implement the blackboard data structure as an 
interconnected data structure that is not globally visible to all of the knowledge sources 
at all times. These systems make the assumption that the knowledge source execution 
sequence selected by the control module preserves the consistency of the blackboard. 
Although serial blackboard systems remove the concurrency described in the model by 
allowing only one knowledge source to execute at a time, the use of the shared 
blackboard data structure still allows opportunistic problem solving.

These constraints and modifications to the blackboard model must be removed for 
the promise of the model to be fully realized. Current research in the area of 
blackboard systems centers on the development of concurrent blackboard systems that 
allow the knowledge sources to execute concurrently.

2.3 Concurrent Blackboard Systems

The development of concurrent blackboard systems requires a combination of 
expertise and tools from the AI field and from the Operating Systems/Concurrency 
Control fields. Past research on concurrent blackboard systems has lacked this global 
approach and has not realized the full potential of concurrent blackboard systems.

There are two major motivations for developing concurrent blackboard systems. 
The first, and most obvious motivation, is that properly implemented concurrent 
blackboard systems will outperform existing rule-based systems, expert systems, and 
serial blackboard systems. Concurrent blackboards also deliver more processing 
power than can be obtained in a uniprocessing environment. This increase in 
processing power allows the solution of larger and more complex problems. The 
second motivation is to allow the system designers to integrate a network of 
computers, each best suited to execute a specific type of knowledge source, into a 
single problem solving approach. An example of such a system is a heterogeneous 
network consisting of conventional architecture machines (VAX 3200™, Sun 
SPARC™) for numeric processing, specialized AI hardware for symbolic processing, 
and a shared memory parallel processing machine to host the blackboard. This type of 
network allows each knowledge source to be implemented in a computationally 
favorable environment and programming language.
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2.3.1 Performance Issues
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There are several factors that can affect the performance of concurrent blackboard 
systems. The four most common are listed below. This list will be used as a reference 
when discussing the performance of existing blackboard systems later in this chapter.

• Contention for shared data and shared resources.

• The cost of communications in a multiprocessor system. Several 
current blackboard systems, including Concurrent-CLAWS10, have 
demonstrated that message-passing costs, including message creation 
and receipt costs, and the finite bandwidth of the communication 
network, can become a significant portion of the system's execution 
time.

• Maintaining semantic consistency. Semantic consistency requires that 
the inputs to a knowledge source do not change during the time in 
which the knowledge source performs its problem-solving activities and 
places its results onto the blackboard.

• Process creation and management costs. These costs are significant 
only for systems that dynamically create and delete processes. Corkill11 

outlines the problems with this type of approach and with the use of 
time-sliced multiplexing of knowledge sources. The major problem 
with time-slicing is blackboard consistency. Changes can be made to 
the blackboard while a knowledge source is paused that affect the 
computation of the paused knowledge source. Corkill presents two 
“simple” approaches to overcoming this problem. Both are 
computationally expensive and can lead to systems where little progress 
is made due to the overhead of blackboard consistency recovery.
Corkill states that “dealing with multiplexed knowledge source 
executions in a uniprocessor environment has not been worth the 
effort.” 12

2.3.2 Opportunities for Concurrent Execution

There are many levels in blackboard systems at which concurrency can be 
exploited. Concurrency is found at the application level, where the designer must
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recognize and exploit the inherently concurrent features of the problem being solved.
It is important to consider the grain size of the tasks being executed concurrently to 
insure that the performance gains outweigh the cost of implementing concurrent 
knowledge source execution.

Concurrency can also be exploited at a lower level if a language with built-in 
parallel-processing constructs, such as vector operations, can be applied to the 
problem. In the case of blackboard systems, it is also important to find a language 
that supports frame-based or object-oriented programming features to ease 
implementation of the blackboard data structure. One of the driving factors in 
designing a blackboard system is the type or types of hardware the system will be 
implemented on. This decision lays the architectural framework for the system and 
may constrain other features such as programming language selection.

Current research has outlined many options for exploiting parallelism in 
blackboard systems. The following list is presented as a introduction to some of these 
options. More detailed descriptions of how an option is implemented follow in the 
sections describing parallel and distributed implementations of blackboard systems.

1) Knowledge Parallelism: This exploits the ability to run multiple 
instances of a knowledge source in parallel.

2) Pipeline Parallelism: Data flow through levels in the blackboard is used 
to create execution pipelines.

3) Data Parallelism: Create partitions in the blackboard and distribute them 
so that different knowledge sources can concurrently access the 
blackboard data structure partitions and execute in parallel.

4) Control Concurrency: Allow the control element to execute 
concurrently with the knowledge sources.

5) Rule Execution: This allows several (or all) rules in an active 
knowledge source to be executed concurrently.

6 ) Blackboard Internals: Allowing concurrent object creation, deletion, 
retrieval, and modification.
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2.3.3 Multiple Instances of a Knowledge Source
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Several systems13*14 have proposed the use of multiple instances of a knowledge 
source. The use of multiple instances of a knowledge source may lead to significant 
data coherence problems on the blackboard data structure. There are two commonly 
used ways to implement multiple instances of a knowledge source.

• Instances of knowledge sources can be partitioned into parallel 
execution pipelines.

Pipelining knowledge sources requires data parallelism on the blackboard 
Pipelining is implemented by developing knowledge source pipelines and having each 
pipeline execute on a unique set of input data. The use of unique sets of inputs and 
outputs for each knowledge source pipeline protects the system from data coherence 
problems.

• Individual instances of the knowledge source can run in parallel.

Several systems claim to allow multiple instances of a single knowledge source to 
execute concurrently. These systems all use a serial control component to activate 
knowledge sources. The serial control structure allows a single knowledge source to 
execute at any given time, protecting the system from memory coherence problems. If 
the knowledge sources are not pipelined and they are allowed to execute concurrently 
severe data coherence problems can result. Without pipelines it is difficult to insure 
that a knowledge source does not interfere with another activation of that knowledge 
source, and that instances of a knowledge source do not attempt to update the same 
blackboard data object. The effect of allowing multiple instances of a knowledge 
source in the blackboard model o f problem solving is discussed in detail in Chapter 
Three.

2.4 Types of Concurrent Blackboard Systems

Concurrent blackboard systems can be partitioned into two classes: parallel 
blackboard systems and distributed blackboard systems. Parallel blackboard systems 
are developed for multiprocessor shared memory architectures and distributed 
blackboard systems are developed for distributed memory, message-passing 
architectures.
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2.4.1 Parallel Blackboard Systems

Parallel blackboard systems(Figure 2.1) stress the concurrent execution of 
knowledge sources and the blackboard control components in a shared address space. 
As outlined by Corkill15, the major point of concern in parallel blackboard systems is 
the potential for asynchronous modifications to the blackboard by concurrently 
executing knowledge sources. These modifications may invalidate the results of other 
executing knowledge sources. Concurrency in parallel blackboard systems is also 
restricted by the use of a single, centralized control module. Nii states

“ A centralized controller drastically limits speedup, and knowledge 
source invocation should be distributed without synchronization.” 16

Knowledge
Source

Knowledge
Source

Knowledge
Source

Knowledge
Source

Knowledge
Source

Knowledge
Source

Parallel Processor. 
Shared Address Space System.

Blackboard

Figure 2.1. Parallel Blackboard System Schematic

2.4.1.1 The Cage Architecture

Rice, Aiello, and Nii17 developed the Cage system. Cage extends the serial 
Attempt to GEneralize (AGE) system allowing for parallel execution of its applications 
components. The system allows for concurrent knowledge source execution, 
concurrent rule execution, and concurrent rule clause execution.

Two types of knowledge source concurrency exist in Cage. Multiple knowledge 
sources can execute on different levels o f the blackboard data structure, or multiple
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instances of a knowledge source can execute on different data objects on the same level 
of the blackboard. Multiple instances of a knowledge source executing concurrendy are 
used to form execution pipelines that flow data up the blackboard data structure. Cage 
supports synchronized knowledge source execution. The synchronization is managed 
by the blackboard control structure. If synchronization is used, knowledge sources are 
held at a barrier until all previously selected knowledge sources complete execution. 
When no synchronization is used, knowledge sources execute when they are triggered.

The researchers investigated the use of concurrency at the rule execution level using 
a simulated parallel hardware environment. The condition clauses for all of the rules in 
the active knowledge sources were evaluated in parallel and the appropriate action 
clauses were executed in parallel. This sequence can be executed with or without 
synchronization between the evaluation of the condition clauses. When 
synchronization is used, it is implemented using barrier synchronization primitives.

Concurrent rule execution did not achieve the expected execution speedups. The 
cost of the barrier synchronization, the memory contention caused by the parallel 
execution of the condition clauses, the lack of a regular or “normal” rule form, and the 
lack of hardware support introduced overhead that outweighed the speedup gains 
possible with concurrent rule execution. This concept does not show promise for 
achieving speedup unless hardware support for concurrent rule execution is developed, 
and a normalized rule form is used to express knowledge in the knowledge sources.

Cage knowledge sources use atomic read and write operations to insure data 
coherence. The researchers discovered that a detailed specification of a knowledge 
source’s activation conditions is required for concurrent blackboard systems. This is 
caused by the asynchronous operation of the knowledge sources. Cage uses complex 
preconditions to ensure that it is appropriate to activate a knowledge source and 
implements “conditional actions” to protect the system from race conditions. A 
conditional action tests the value of a data object before the data object is updated.

2.4.1.2 Shared Memory Blackboard Approach

Daniel Corkill18 discusses several approaches to executing knowledge sources 
concurrently on a shared memory architecture and then proposes a Shared Memory 
Blackboard Approach. The first approach Corkill presents executes each knowledge 
source as an uninterruptable task. This approach can result in both memory contention
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and resource allocation bottlenecks. The second approach Corkill discusses is time 
slicing the execution of the knowledge sources. Each knowledge source creates a 
“local” copy of all blackboard elements required for execution. This approach has 
several faults, including the introduction of context switching costs and other operating 
system overhead into the system execution time. The final approach discussed is to 
treat an entire knowledge source activation as an atomic operation. This approach 
requires the ability to treat blackboard objects, and even whole regions of the 
blackboard, as “allocatable resources” that can be locked for either exclusive access or 
for read-only access. This system places the responsibility for deadlock prevention on 
the programmer. Locking blackboard objects and regions is computationally expensive 
and can cause knowledge source blocking due to memory contention.

Corkiirs shared memory blackboard approach allows each processor to directly 
access the shared blackboard data structure. Corkill proposes two ways to map the 
knowledge sources of a blackboard system to the available processors. He presents a 
functional mapping and a computational server mapping.

In the functional mapping approach each type of knowledge source is assigned to a 
specific processor. If multiple instances of a knowledge source are required the 
additional instances are queued for execution on the processor. This approach is suited 
for heterogeneous computer networks where different knowledge sources execute on 
specialized processors. The main problem with this approach is that processing 
demands may not be uniform. This will result in some processors being overloaded, 
with several instances of a knowledge source queued for execution, while other 
processors may be setting idle.

The computational server model is suited for a homogeneous computer network. 
Knowledge source activations are queued for execution. When a processor completes 
execution of a knowledge source it selects the highest rated knowledge source 
activation from the activation queue. This approach results in better load balancing 
across the network, but requires that all knowledge sources can be executed by all 
processors. Corkill outlines a way to extend the computational server model to 
heterogeneous networks. An activation queue is created for each type of processor in 
the network and knowledge sources are queued according to their processing 
requirements.
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The implementation of Corkiirs shared memory blackboard approach supports 
both object and region locking. Locks are ordered before they are acquired. If a lock 
cannot be acquired the process blocks waiting for that lock. Integrating blackboard 
monitoring and control requires determining which processes are responsible for which 
activities. The control shells define event handlers that are used by the processes to 
handle the initialization tasks associated with an event The event handlers must be 
defined to interact correctly with the multiprocessing control shell. No performance 
data for the shared memory blackboard approach was presented.

2.4.1.3 The Agora System

Roberto Bisiani19 developed the Agora system to support the ANGEL speech 
recognition system. ANGEL consists of four loosely connected blackboard 
subsystems communicating through a centralized blackboard data structure. A 
pipelining control structure is used to activate the blackboard subsystems. Bisiani 
stresses that each blackboard subsystem has different performance and hardware 
requirements. The use of a blackboard problem solving structure provides software 
engineering support by decoupling the system integration mechanisms from the 
behavior of the knowledge sources.

The Agora system supports the concept of Shared Data Types (SDT). The 
knowledge sources in Agora communicate via shared access to the blackboard data 
objects. The data objects are strongly typed and can only be accessed by used defined 
accessor functions. Data objects can be created dynamically, and modifications to the 
object are reported to all interested knowledge sources. Data object sharing is used to 
insure that data objects are consistent and accessible across processor boundaries.

SDT’s are abstract data types consisting of two elements. Data definitions specify 
the structure of the data elements, and accessor functions specify the available 
operations for instances of the data type. An instance of an SDT is refered to as a 
Shared Data Structure (SDS). Agora provides a set of basic accessor functions for 
managing SDS’s. Knowledge sources are activated when they receive an activation 
request posted from another knowledge source. When an SDS is modified the 
knowledge source updating the SDS sends an activation message to all knowledge 
sources that “have declared an interest” in the SDS. The activation operations are 
managed by the Agora system, not by the applications programmer.
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Bisiani presents a unique memory management scheme to reduce hotspots in 
memory. Agora uses a write-once memory management system. The use of a write- 
once memory management system removes the need for blackboard data element read 
locking. This allows read operations to return stale data. The programmer is required 
to implement any protocols required to prevent stale data from being read by a 
knowledge source.

The write once memory management system implemented by Agora is 
extraordinarily memory expensive. Additional system overhead is required to support 
either “stop and wait” or “background” garbage collection. Memory coherence 
problems can occur if the user does not implement the memory coherence protocols 
correctly, or if no protocols are implemented. The cost of the background garbage 
collection and the memory coherence protocols may outweigh any performance gains 
achieved by Agora. Only minimal performance data was presented for the Agora 
system.

2.4.2 Conclusions

The systems discussed above approach the problems presented by shared memory 
parallel blackboard systems from many different perspectives. The Cage system and 
Corkiirs Shared Memory Blackboard face bottlenecks at the shared blackboard data 
structure. The lack of two-phase locking protocols cause knowledge source 
serializability problems. The Agora systems uses its write-once memory management 
scheme to avoid memory contention problems, but allows access to stale data and adds 
the overhead of the garbage collection system. A successful blackboard system 
implementation must support knowledge source pipelining and two-phase locking 
protocols, and reduce memory contention on the blackboard data structure.

2.5 Distributed Blackboard Systems

Distributed blackboard systems are designed to use a distributed, message-passing 
architecture. This design allows blackboard data to be communicated among 
autonomous blackboard subsystems or knowledge sources. The major issue in 
designing a distributed blackboard system is deciding what information to 
communicate, where to store it, and when and where to send it.

The are two types of distributed blackboard systems. The first type of distributed 
blackboard system, shown in figure 2 .2 , uses a centralized blackboard data structure
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that is accessed by a set of distributed knowledge sources. The second type, shown in 
figure 2.3, distributes the blackboard data structure, allowing each knowledge source 
direct access to some part of the blackboard data structure. Systems that distribute the 
blackboard data structure have additional data coherence problems not found in 
centralized blackboard based systems, and in many cases violate the fundamental 
requirement that all knowledge sources can see and access all of the blackboard data 
objects at all times. Several systems that use a distributed blackboard data structure 
will be discussed in detail later in this chapter._________________________________

Knowledge Knowledge Knowledge
Source Source Source

I
Blackboard 1 

Blackboard processor

Knowledge Knowledge Knowledge
Source Source Source

Figure 2.2. Distributed Blackboard System with 
Centralized Blackboard Data Structure
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Figure 2.3. Distributed Blackboard System with 
Distributed Blackboard Data Structure

2.5.1 Centralized Blackboard Data Structure

How a problem is distributed across the available hardware platforms and how 
tightly the knowledge sources are coupled has a significant impact on the system’s 
performance. Currently, no techniques exist to aid the designer in decomposing a 
problem into a set of knowledge sources and in evaluating the preliminary design. If 
the knowledge sources are tightly coupled, a large number of messages will be passed 
and blackboard consistency becomes a major concern. If the knowledge sources are 
highly independent but share large amounts of data, communication delays will limit 
concurrency as nodes are forced to wait for information.

2.5.1.1 Poligon

Rice, Aiello and Nii20 present several options for gaining speedups in a distributed 
blackboard system.

1) Eliminate the centralized scheduling mechanism

2) Optimize system design for a distributed memory, message-passing 
hardware

3) Distribute the data across the blackboard to reduce hotspots
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Items one and three are directly applicable to both parallel blackboard systems and 
distributed blackboard systems. Item two is not a trivial task due to the lack of existing 
algorithms or tools to perform the optimization. In many cases, the execution of the 
system’s knowledge sources is so irregular, due in part to the use o f opportunistic 
problem solving techniques, that a complete optimization is not possible.

Poligon21 is based on a distributed memory hardware model when each processor 
is viewed as a blackboard node. They define a blackboard node as follows:

“a blackboard node is a process on a processor, surrounded by a 
collection of processors able to service its requests to execute rules.”22

The implicit assumption in this definition is that all knowledge sources are rule-based 
systems. This assumption may severely limit the performance of systems 
implemented using Poligon, and limits the types of problems it is suited to address. 
Poligon provides no user accessible data locks, nodes are automatically locked during 
read and write operations. The blackboard architecture is designed to prevent deadlock 
from occuring, but livelock can still occur. Processing nodes are capable of evaluating 
their own performance. The nodes assess each request to modify their local state. The 
node determines if it should perform the update or take other action based on its 
progress towards solving the current problem.

Rice, Aiello and Nii draw several conclusions from their experiments using 
Poligon. Their first conclusion is :

“The difficulty of implementation of applications is due largely to 
the divergence of implementations of serial blackboard systems from 
the pure blackboard model in order to make implementation and 
programming more manageable.”23

They state that the applications they tested did not have enough data parallelism to 
support pipeline parallelism so the effect of pipeline parallelism could not be fully 
evaluated. Data communication costs were not viewed as being excessive, as long as 
data flowed through the pipelines. Hardware supporting a non-blocking message 
passing protocol was used for communication. This type of protocol supports high 
speed data transfers but may result in data inconsistencies. The final point presented 
may be the most important:
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“The use of a central controller to determine which knowledge 

sources to run in parallel drastically limited the speedup possible, no 
matter how many knowledge sources were executed in parallel.”24

2.5.1.2 The Blackboard Server Approach

Daniel Corkill25 also describes a blackboard server approach to developing a 
distributed blackboard system. The blackboard server approach implements a 
centralized shared blackboard. The approach does not allow multiple access paths to 
the blackboard and maintains a single version of each blackboard data object. The 
blackboard is divided into non-overlapping blackboard responsibility areas and a 
unique blackboard server is allocated to each area. The knowledge sources send all 
blackboard interaction requests to the appropriate server, which then queues the request 
for processing. This implementation requires that all knowledge sources know which 
blackboard server handles which specific data elements on the blackboard. Corkill 
discusses two blackboard partitioning extremes. In one case a single node can act as a 
server for the whole blackboard. In the other extreme a node can be assigned to act as a 
server for a disjoint section of the blackboard. The correct balance between these two 
extremes for each unique application may be difficult to determine. If the required 
message routing information is not made available to all of the knowledge sources, 
then all of the data is not visible to all of the knowledge sources and opportunistic 
problem solving performance will degrade.

The blackboard server approach may also suffer from several performance 
problems. If hotspots in memory occur, some blackboard servers may become 
overloaded while others are idle. Queuing the memory requests adds a serialized 
component to the memory access system and additional system overhead. The 
blackboard server approach outlined by Corkill is based on some partitioning of 
blackboard data structure. It may be more efficient to assign a unique knowledge 
source server to each knowledge source. Assigning a unique knowledge source server 
does not require message routing information and should reduces hotspots on the 
blackboard. This does not require queuing of blackboard data requests and the 
associated system overhead.

2.5.2 Distributed Blackboard Data Structure

To incorporate message-passing into a distributed blackboard system the central 
blackboard controller must handle all incoming data requests. This requirement is
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nontrivial and may reduce the use of opportunistic problem solving by forcing 
serialized message handling, creating a bottleneck at the blackboard. Several methods 
of distributing the blackboard data structure have been proposed to address this 
problem.

Distributing the blackboard data structure introduces several subtle changes in the 
way knowledge sources function. One added requirement is that some entity, either the 
blackboard controller or the knowledge sources themselves, must know where all of 
the data a knowledge source requires can be found, and who the knowledge source 
must notify when it completes execution. Without the use of specialized knowledge 
source organization and knowledge source connectivity analysis techniques, the affect 
of this requirement cannot be assessed during the system design phase. This 
requirement is nontrivial and may reduce the use of opportunistic problem solving by 
forcing lockstep execution of knowledge sources.

2.5.2.1 Functionally Accurate, Cooperative Communication

To address problems caused by having a distributed blackboard data structure 
Lesser and Corkill26 have proposed a Functionally Accurate, Cooperative (FA/C) 
communication system for building distributed blackboard systems. The system 
utilizes cooperating instances of a blackboard system running concurrently and 
communicating using a global blackboard. Each knowledge source, or processing 
node, can be viewed as an instance of a blackboard system. “Functionally accurate” 
refers to the ability of the system to generate “acceptably accurate” solutions without 
requiring that all of the intermediate results shared by the knowledge sources 
(processing nodes) are correct and consistent. “Cooperative” refers to the iterative style 
of knowledge source interaction. Each knowledge source produces tentative results 
that may be incorrect, incomplete, or inconsistent with the tentative results produced by 
other knowledge sources. Consistencies between the tentative results can be seen as 
reinforcing the results produced by the other knowledge sources. The hope of this 
approach is that significantly less communication is required to exchange tentative 
results instead of passing all of the raw data and processing the results. Blocking and 
synchronization overhead can be reduced or eliminated. This should increase 
parallelism and opportunistic problem solving. FA/C was developed to address the 
problem of maintaining semantic consistency on the blackboard data structure. No test 
results were presented that measured the effectiveness and cost of implementing this
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type of system, but FA/C communication does show some potential for reducing 
message-passing costs and “lockstep” style system execution.

2.5.2.2 The Distributed Blackboard Approach

In the distributed blackboard approach Corkill27 describes a system where each 
processing node has a separate local blackboard that contains the local data objects and 
copies of all data objects received from other nodes. The distribution of the blackboard 
data objects is an important design consideration for this type of system. The user 
must decide if local blackboard data structures will “overlap” and on the level 
blackboard data object consistency that will be implemented. Blackboard data 
structures “overlap” if two or more blackboard data structures have a copy of a 
blackboard data object.

There is a direct relationship between the degree of overlap of the blackboard data 
structures and the communications costs required to maintain blackboard data object 
consistency. Allowing blackboard data objects to overlap increases the cost of 
maintaining blackboard data structure consistency. An update message must be sent to 
each node that “shares” a blackboard data object. Blackboard overlap also increases the 
chance that nodes will process inconsistent data, resulting in an incorrect conclusion.

The benefit of not allowing backboard data structures to overlap is that a single 
copy of each blackboard data object exists making blackboard consistency easier to 
maintain. This data-object sharing approach results in increased communication costs 
if a large number of nodes share data objects. Each node has to generate a request for a 
data object stored on a non-local node every time the data object is needed. These 
communications costs can become a significant part on a node’s execution time. It is 
clear that the amount of blackboard overlap and the required level of blackboard 
consistency directly affect a systems communications costs and overall performance. 
Design, simulation, and analysis techniques are required to balance these costs before a 
system is implemented. Inter-node communications costs and the cost of blackboard 
consistency are a function of the implementation of a distributed blackboard data 
structure, and are not inherent in the blackboard system problem solving paradigm.

2.5.2.3 “Virtual” Blackboard Systems

V. Jagannathan28 proposes a “Virtual Blackboard” for reducing communication 
costs when using a distributed blackboard data structure. In this model, all of the
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knowledge sources see a single blackboard, even though the blackboard is actually 
distributed among the cooperating blackboard “instances.” The blackboard system is 
divided into blackboard instances. Each instance consists of a blackboard and a set of 
knowledge sources. Each blackboard instance contains a subset of the current state 
information. The virtual blackboard instances do not overlap. Concurrency is 
restricted to the blackboard level and is not available at the knowledge source level.
This virtual blackboard model reduces to a set of serial blackboard systems executing 
concurrently on a distributed architecture machine and communicating using a 
message-passing system.

The virtual blackboard model uses message passing to allow each knowledge 
source to see and access any part of the blackboard. The use of non-overlapping 
blackboard instances reduces data consistency costs, but increases message passing 
costs when knowledge sources must access non-local data objects. Jagannathan states:

“If data is judiciously decomposed among multiple blackboard 
instances, such that knowledge sources within one blackboard instance 
by and large access the blackboard local to it, the blackboard will be less 
of a bottleneck.”29

Unfortunately, he does not provide any design or analysis techniques to aid the user 
in “judiciously decomposing” the blackboard data structure. Decomposing the 
blackboard is a difficult task, and an improper decomposition results in increased 
message passing costs. The increased message passing costs may overcome any 
performance increase gained by concurrent execution of the linked blackboard systems.

The virtual blackboard system provides three methods for synchronizing 
knowledge source execution:

1) Trigger Conditions. Events can set trigger conditions that determine 
when a knowledge source should be fired. A knowledge source can 
generate a trigger condition that will cause another knowledge source to 
be activated.

2) Preconditions. Preconditions can be used as a filter to “guard” a 
knowledge source that has been triggered by another knowledge source.

3) Control Knowledge. A centralized controller can be used to order 
knowledge source execution. This approach adds the overhead on a
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centralized controller and may reduce the opportunity for concurrent 
knowledge source execution.

The performance data presented for the virtual blackboard system is inconclusive 
and Jagannathan states that further research is being conducted. The current 
implementation of the virtual blackboard system has several problems. Problems 
caused by an improper decomposition of the blackboard have already been discussed. 
The system’s use of blackboard level locks to maintain consistency reduces the level of 
concurrency available to the user. The system implements a deadlock detection system 
but cannot detect knowledge source feedback loops. Infinite knowledge source looping 
occurs when a set knowledge sources form a feedback loop, with each knowledge 
source activating the other next in the loop when it completes execution.

2.5.3 Conclusions

These approaches to concurrent blackboard systems require the user partition the 
blackboard to increase system performance, but do provide techniques to aid in the 
partitioning. The systems that allow overlapping of blackboard data objects add to the 
systems overhead and increase the chance of blackboard consistency problems. These 
approaches are best suited to “mega-blackboard systems”, systems built using 
blackboard systems as the knowledge sources.

2.6 Conclusions

This chapter presents the blackboard problem-solving model and the original serial 
implementations of blackboard systems. The cost of adding the centralized control 
module to serial implementations of blackboard systems has a detrimental effect on the 
performance of the blackboard systems. The centralized control module is not a part of 
the original blackboard system problem-solving model. The results of the research 
presented shows that the development of concurrent blackboard systems requires a 
unified approach, combining techniques from the AI field and from the Operating 
Systems/Concurrency Control fields.
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Chapter 3
A Formal Model for Blackboard Systems

Blackboard systems can be viewed as a set of cooperating intelligent agents, 
working to solve a common problem. Each intelligent agent, known as a knowledge 
source, independently monitors the global blackboard data structure and determines 
when it can advance the current solution of the problem. Based on its current inputs, 
the knowledge source computes a set of outputs and posts the outputs on the 
blackboard. A description of the blackboard data structure, the function computed by 
each knowledge source, and the knowledge source’s input and output variables are 
sufficient to create a formal model of a blackboard system.

3.1 Formal Definition of a Blackboard System

All blackboard systems can be modeled as a blackboard data structure and a set of 
cooperating knowledge sources. The blackboard data structure contains all shared 
blackboard data objects and can be accessed by all of the knowledge sources. The 
blackboard also contains all data used to determine when a knowledge source can be 
activated. Knowledge sources are processes that take inputs from the blackboard, 
perform some computation, and then place results on the blackboard.

Definition 3-1: Blackboard Data Object 

A  blackboard data object, dj, consists of a value.

*

Each blackboard data object is of a predefined blackboard data object type, and each 
blackboard data object type has range of legal values.

Definition 3-2: Blackboard Data Structure

A  blackboard data structure is a global data structure consisting of a set of 
blackboard data objects, {dj,.. .,dj}, used to represent the problem domain.

+

The blackboard is used to allow inter-knowledge source communication and acts 
as a shared memory that is visible to all of the knowledge sources.

35
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Definition 3-3: Knowledge Source

36

A knowledge source consists of a set of input variables, IV = {ivi,..., ivn}, a 
set of input conditionals, IC = {ici,—, icn}» a set o f output variables,
OV = {ovi,..., ovm), a description of the computation performed by the 
knowledge source, F, a set of preconditions, PR = {pri,..., prjc}, a set of 
postconditions, PT = (ptj,..., ptfc} and a input queue, IQ.

*

Informally, a knowledge source’s input conditionals are a set of boolean variables 
used to notify a knowledge source when one of its input variables has been updated. 
The preconditions are a set of boolean functions that all must be TRUE for a 
knowledge source to be activated, and the postconditions are a set of boolean functions 
that all must be TRUE for a knowledge source to post the result of its computation to 
the blackboard. If all of a knowledge source’s activation conditions are met while the 
knowledge source is executing, the input queue is used to store the knowledge source’s 
input variables. These terms are defined in detail later in this chapter.

There are two classes of knowledge source input variables: explicit input variables 
and generic input variables. An explicit input variable specifies a single, unique 
blackboard data object that is used as the input variable to a knowledge source. A 
knowledge source can only use the blackboard data object specified by the explicit input 
variable as a valid input. A generic input variable specifies a class or type of 
blackboard data object that can be used as the input variable to the knowledge source. 
The knowledge source will accept an instance of a blackboard data object of the 
specified class as an input variable. The use of generic input variables allows 
development of knowledge sources that function on a class of blackboard data objects. 
Knowledge sources can be classified by their input variables: Explicit Knowledge 
Sources have only explicit input variables, Mixed Knowledge Sources have both explicit 
and generic input variables, and Generic Knowledge Sources have only generic input 
variables.
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Definition 3-3.1: Knowledge Source Input Conditionals

37

The input conditionals, IC, for a knowledge source are a set of boolean 
variables {ici,.. icn), one for each generic or explicit blackboard data 
object that is an input variable for the knowledge source.

*

For each knowledge source, ksj, the set of knowledge source input conditionals, 
{ici,..., icn}> define the current state of the set of input variables for the knowledge 
source. The knowledge sources input conditionals for knowledge source ksj contain a 
boolean flag for each of the input variables for ksi. Each knowledge source stores the 
current value of its input conditionals locally. At knowledge source activation all of the 
knowledge source’s input conditionals are reset to FALSE. The input conditional for 
an explicit input variable is set to TRUE when that specific input variable is updated, 
the input conditional for a generic input variable is set to TRUE when an blackboard 
data object of the specified class is updated.

Definition 3-3.2: Knowledge Source Preconditions

The knowledge source preconditions, PR, are a set of preconditions,
{pri,.. .,prk}, that must be TRUE for a knowledge source to be activated.

*

The knowledge source preconditions are a set of boolean functions that access the 
current values of any collection of blackboard data objects. The set of preconditions is 
defined by the user to include application-dependent conditions. Once a precondition is 
evaluated the precondition holds that value until the knowledge source is signaled to 
reevaluate the boolean function. Knowledge sources are signaled to evaluate their 
preconditions when an input data object of the precondition function is updated on the 
blackboard.

A precondition is different from an input conditional. A precondition is an 
activation condition based on the state of a blackboard data object, or a collection of 
blackboard data objects. These blackboard data objects may or many not be inputs to 
the function computed by the knowledge source. Input conditionals are used to notify a 
knowledge source that its input variables have been updated on the blackboard and the
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knowledge source is ready to activate. Preconditions are used to block the activation of 
knowledge sources that are ready to execute until a set o f user defined conditions are 
TRUE. The set of knowledge source preconditions may be the empty set.

Definition 3-3.3: Knowledge Source Postconditions

The knowledge source postconditions, PT, are a set of postconditions, {pti,..., 
ptp}, that must be true for a knowledge source activation to post output to the 
blackboard.

*

The set of knowledge source postconditions is application-dependent and must be 
created by the user. The use of postconditions allows a knowledge source to insure that 
the results o f a computation are still valid and to keep confusing or conflicting data 
from being posted on the blackboard. The set of knowledge source postconditions 
may be the empty set.

A knowledge source cannot be activated until all of the knowledge source’s input 
conditionals are TRUE, and all of the knowledge source’s preconditions are TRUE. 
Once a knowledge source has been activated the knowledge source is ready to be 
executed. When a knowledge source completes execution it updates its output data 
objects on the blackboard. The act of updating a blackboard data object causes the input 
conditionals for all knowledge sources that access the blackboard data object to be set to 
TRUE. All knowledge sources that use the data object as an input to a precondition are 
notified that the data object has been updated.

Definition 3-4: Knowledge Source Activation

A knowledge source activation is an instantiation of a knowledge source, A 
knowledge source can only be activated when all of the blackboard data objects 
that it uses as inputs have been updated and the associated input conditionals, 
{ici,..., icn}, are TRUE, and all o f the knowledge source’s preconditions 
{pri,..., prn} are TRUE.

+

When activated, a knowledge source performs an atomic read operation to copy all 
required input data objects, and stores them in its input variables. The input variables
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are then placed in the knowledge source’s input queue and the knowledge source’s 
input conditionals are reset to FALSE. The activation of a knowledge source is an 
atomic operation.

Definition 3-5: Knowledge Source Execution

A knowledge source execution is the execution of a knowledge source’s 
computation. A knowledge source can only be executed when when the 
knowledge source’s input queue is not empty.

+

All knowledge sources are uninterruptable processes. Once a knowledge source 
starts execution it runs to completion. All knowledge source input and output 
operations are atomic operations. Knowledge sources are serializable, and knowledge 
sources allow multiple, concurrent read operations. Knowledge source serialization can 
be achieved using a two-phase locking protocol or read/write synchronization. 
Executing a knowledge source is an atomic operation. At completion a knowledge 
source checks its input queue. If there are knowledge source activations queued for 
execution the knowledge source is executed with the inputs from the top o f the input 
queue and the input queue is updated by removing the top element from the queue.

The blackboard system model has three types of knowledge sources: sensors, 
actuators, and knowledge processors. Sensors take their inputs from external sources 
and place their outputs on the blackboard. Actuators take their inputs from the 
blackboard and do not generate blackboard data objects as outputs. Knowledge 
processors take their inputs from the blackboard and place their outputs on the 
blackboard.

Definition 3-6: Sensor

A sensor, ksj, is a specialized type of knowledge source that handles inputs 
from external sources. Each sensor has a set of explicit input variables,
IV = {ivi,..., ivn}, and an empty set of postconditions, PT = <J).

*

The inputs to a sensor are generated from a stochastic model of the sensor’s 
domain, from pre-recorded actual sensor data, or from actual real-time sensor data. At
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completion, a sensor performs an atomic write operation to post its output variables on 
the blackboard. All sensors have explicit external input variables, so all sensors fall in 
the class of explicit knowledge sources.

Definition 3-7: Actuator

A actuator, ksi, is a specialized type of knowledge source that uses blackboard 
data objects as inputs but does not update data objects on the blackboard. Each 
actuator has a set of input variables, IV = (iv i,.. ivn}, an empty set of output 
variables, OV = <j>, and an empty set of postconditions, FT = <}>.
*

Actuators take data objects from the blackboard, perform a computation, and 
modify their local state. Actuators do not update blackboard data objects on the 
blackboard. Actuators can have generic or explicit input variables, so they can be of 
any of the three knowledge source classes; explicit, mixed, or generic.

Definition 3-8: Knowledge Processor

A knowledge processor, ksj, is a specialized type of knowledge source. 
Knowledge processors take all of their input directly from the blackboard.

*

At completion, a knowledge processor tests its postconditions. If the 
postconditions are TRUE, the knowledge processor execution performs an atomic 
write operation to update its output variables on the blackboard. If the postconditions 
are not valid, the knowledge processor activation discards the output and terminates. 
Knowledge processors can have generic or explicit input variables, so they can be of 
any of the three knowledge source classes; explicit, mixed, or generic.

We can now define a blackboard system:

Definition 3-9: Blackboard System

A blackboard system, B, is a tuple (X, P, p, Is, 0 )
• X is a set of blackboard data objects,

X = {di,...,di};
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• P is the set of blackboard data object states: 
p  = Vi XV2 X ... x Vi
where Vq is a set of all valid values for blackboard data object dq;

• P is the set of knowledge sources, p = {ksi,..., ksj); each knowledge
source's domain is a subset of P, and its range is a subset of P;

Is is an i-vector describing the i initial values of the blackboard data 
objects, so Is e  P;

• 0  is a relation on p, 0  c  P x p.

(ksj, ksfc) e  0  if and only if 3 dj e  X such that dj e  OV (ksj) a  dj e  
IV(ksk).

If (ksj, ksk) e  © we say that ksk is a successor of ksj, and ksj is a 
predecessor of ksk-

+

3.2 Knowledge Source Activation Graph

For a given blackboard system, B, we can form a Knowledge Source Activation graph.

Definition 3-10: Knowledge Source Activation Graph

A Knowledge Source Activation Graph, K, for a blackboard system B, 
is a directed graph formed using the input set and output set for each 
knowledge source ksk in p. A node in the graph is formed for each 
knowledge source in p. The arcs in the graph are generated using the 
input and output sets for each knowledge source. An outgoing arc is 
generated for each output, ovm, for each knowledge source ksk in p.
The arcs are connected to all knowledge sources in P that use the output 
data object, ovmi as an input. Incoming arcs are then generated for all 
sensor inputs for each knowledge source in p.

+

Each knowledge source ksj in P corresponds to a node in the knowledge source 
activation graph K. The arcs in the graph represent the flow of data objects between the
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knowledge sources. Each arc in the graph represents either a specific or generic 
blackboard data object If the activation graph of a blackboard system is acyclic, the 
blackboard system is safe and deadlock cannot occur. If any cycles exist in the 
activation graph, unsafe states exist in the system and deadlock may occur between the 
associated knowledge sources. Cycles also highlight a circular relationship, or 
feedback loop, between the connected knowledge sources.

Definition 3 -11 : Safe Blackboard System

A Safe Blackboard System, B, is blackboard system with an acyclic 
knowledge source connectivity graph

*

The knowledge source activation graph for a safe blackboard system contains no 
closed paths, and the blackboard system cannot deadlock. A safe blackboard system is 
a feed-forward system, where all data objects flow in one direction, and there are no 
feedback loops in the system.

3.3 Examples

This section presents a formal specification of two blackboard systems and the 
resulting knowledge source activation graphs. The detailed specifications of the 
systems are contained in Appendix A. These two systems were developed to show the 
power of the formal model, and the complexity of the problem facing a blackboard 
system designer. The first system was designed with some common blackboard 
system problems incorporated in the design. The first blackboard system specification 
produces a knowledge source activation graph that has cycles and contains unsafe 
states. The second blackboard system specification redefined the preliminary design, 
producing an safe acyclic knowledge source activation graph.

3.3.1 Description of the Example Problem

The application used for this example is a simplified fire control system for a 
modem attack submarine. The example includes a subset of the knowledge sources 
and blackboard data objects used by the fire control system. The example contains the 
four knowledge sources described below:
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• K si is a Weapons Data Preprocessor. This 
knowledge sources accepts two sensor inputs,dl and 
d2, and computes three outputs, d3 , d*, and ds.

di =Line-of-sight-angle to the opponent.

d2  = Range to the opponent.

d3 = Line-of-sight-angle Rate of Change.

d4  = Arc the Weapons Parameters Met?

d5 = Range Rate.

• Ks2  performs Positional assessment. This 
knowledge sources accepts d3, and d9 as inputs, and 
computes two outputs, dg and dj.

dg = Is the Weapon Solution Valid?

d7 = Is the Position Improving?

• KS3 performs Weapons Control. This knowledge 
sources accepts d4  and dg as inputs and computes dg 
as an output,

ds = Is the Weapon Locked and Armed?

• KS4  performs Fire Control. This knowledge 
sources accepts ds, d7, and ds as inputs and 
computes d9 as an output.

d9 = Trigger.

Knowledge source ksi accept the raw sensor inputs, computes the line-of-sight- 
angle rate of change, determines if the weapons parameters are met, computes the 
range rate of change, and posts it’s outputs to the blackboard. Knowledge source ks2 

reads d3 from the blackboard, determines if the weapons solution is valid, determines if 
the position is improving, and posts it’s outputs to the blackboard. Knowledge source 
ks3 reads d4 and dg from the blackboard, determines if  the weapons system is locked
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and aimed, and posts it’s output to the blackboard. Knowledge source ks4 reads ds, 
d7, and d8 from the blackboard, determines if the trigger should be pulled, and posts 
it’s output to the blackboard. The functions computed by each knowledge source are 
included in the specification of Bi.

3.3.2 Blackboard System Specifications

Specification of the blackboard system Bi:

X = {di, d2 , d3 , d4, ds, de, d7, ds, d9};

P =  {Vi x V2 X V3 x V4 X V5 X V ex V7 x V gx V9 };
Vl = V2 = ... V9 = {{U}u 91} U = Undefined, 91 = the set of real 
numbers

P =  {ksi,ks2 , ks3,k s4 }; 
ksi = {IV = {di,d2},

IC =  {ici, ic2 ),
F  = {d3 = (dipast - di /  update rate),

d4 = ((di <= 30) and (d2  <= 30,000)) 
ds = (d2past - d2 /  update rate)}

OV = (d3,d4 ,d5},
PR = (j),
PT = <])}.

ks2 = {IV  = (d3,d 9),
IC = {ic3, ic9 },
F  = {d6  = ((d3 >=4.10) and d9),

d7 = (d3 >= d 3 p a s t )  and (d3 <= 4.10)))
OV = {dg, d7),
PR = {pri = (# o f weapons *  0), pr2 = (sonar_valid)},

PT = 4>) -
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ks3 = {IV ={d 4 ,d 6 },
IC={ic4 ,ic 6),
F = {d8 = ((d4 = l)a n d (d 6 * l))} ,
O V = {d8},
PR = {pr3 -  (# of weapons *  0), pr4  = (tracking-system_valid)}, 

PT = (ptl = (d5 *  U)}.

ks4 ={IV = {ds ,d7 ,dsl,
IC = {ics, ic7, icg},
F = {d9 = ((d5 <= 100) and d7 and ds))}
OV = {d9),
PR = {prs -  (aggressive_mode),

Pr6  = (aggressive_mission), 
pr7  a (fire_command)},

PT = <|>.

Is = {di = l , d 2  = l ,d 3 = U ,d 4  = U ,d 5 = U ,d 6 = U ,d 7 = U ,d 8 = U, 
d9 =U )

© ={<ksi, ks2>, (ksi, ks3>, (ksi, ks4>, (ks2, ks3>, (ks2, ks4>, (kS3 , kS4>, 
(ks4, ks2>}

KS3KSI

d9
KS4KS2

Figure 3.1 Unsafe Knowledge Source Activation Graph

The blackboard system Bi has two cycles. A direct loop, or closed path of length 
two, exists between the Positional Assessment knowledge source and the Fire Control
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Knowledge Source. A  closed path o f  length three exists between the Positional 
Assessment knowledge source, the Weapons Control knowledge source, and the Fire 
Control Knowledge Source.

The B2 specification modifies the functionality of the Positional Assessment 
knowledge source and the Fire Control knowledge source to remove the feedback link 
created by d9, the Trigger data object Data object dg, Is the Weapon Solution Valid?, 
is redefined so that it does not require the value of Trigger, and the Fire Control 
knowledge source is modified to hold the past value of Trigger and use the past value 
in its computation.

Specification of the blackboard system B2:

X = {di, d2, d3, d4, ds, dg, d7 , ds, d9 };

•  P =  [ V i  x  V 2 X  V 3  x  V 4  x  V 5 X  V 6 X  V 7 X  ^ 8 *  V 9 } ;

V1 = V 2 = ... V9 = {{U } u %  }

p =  {ksi, ks2,kS3,kS4 );
k s i*  {IV = {d],d2},

IC = {ici, ic2}»
F = {d3 = (dipast - di /  update rate),

d4 = ((di <= 30) and (d2 <— 30,000)) 
ds = (d2past - d2 /  update rate)}

OV = {d3,d4 , ds),
PR = <|),
PT = <f>).

ks2 = {IV ={d3},
IC = {ic3),
F  =  {dg = (d3  >= 4.10),

d7 = (d3 >= d3Past) and (d3 <= 4.10))}
O V ={dg,d7},
PR = {pri = (# o f  weapons *  0), pr2 = (sonar_va!id)},
PT = <{.}.
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ks3 = {IV =  (d4,d6),
IC = {ic4,ic6h
F = {ds = ((d4 =  1) and (dg *  1))},
O V = {dg},
PR = {pr3 = (# o f weapons s* 0), pr4 = (tracking-system_valid)}, 
PT = {pti = (d5 ^U )}.

kS4 = {IV ={d5,d7,d8),
IC= {ic5,ic7,ic 8 },
F = {d9 = ((ds <= 100) and d7 and ds))}
O V = { d 9],
PR = {prs -  (aggressive_mode),

prg = (aggressive_mission), 
pr7 = (fire_command)},

PT = <}).

I s = { d 1 = l , d 2 = l , d 3 = U , d 4  = U,d5 = U,d6 = U1d7=U,d8 = U > 
d9 =U}

© ={(ksi, ks2>, (ksi, ks3>, (ksi, ks4>, (ks2, ks3>, (ks2 , ks4>, <ks3 , ks4>}

KS3K S I

d3

KS4KS 2

Figure 3.2 Safe Knowledge Source Activation Graph
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3.3.3 Blackboard System Execution Traces

48

The blackboard system Bj is unsafe, and due to the initial values of the blackboard 
data objects specified in Is, the system will livelock after the execution of ksi. The 
blackboard system B2 is safe and will not livelock or deadlock. A detailed trace of the 
blackboard system execution is included in Appendix A. The trace shows the state of 
the Bi from system initialization to livelock.

Bi tivelocks after ksi is executed. Ks2 cannot be activated until ks4 is activated and 
computes a value for d<>, setting icg to TRUE. KS3 cannot be activated until ks2 is 
activated and computes a value for dg, setting ic6 to TRUE. Ks4 cannot be activated 
until ks2 is activated and computes a value for d7, setting ic7 to TRUE, and ks3 is 
activated and computes a value for ds, setting ics to TRUE. Ks2 is waiting for ks4 , ks3 

is waiting for ks2 , and ks4 is waiting for ks2  and ks3. Ksi will activate and execute 
until all of its sensor data has be processed. Bi will halt execution at that time.

By changing the initial values of the blackboard data objects specified in Is we can 
show that fact that a system is unsafe does not imply that the system will livelock or 
deadlock. A trace of the blackboard system execution (included in Appendix A) 
shows the state of the blackboard system Bi from system initialization through the 
completion of the first execution cycle.

Bi completes the first path through the execution cycle without experiencing 
liveness problems. The system will continue to execute safely as long as data arrives at 
the sensor, ksi. It is the state of the blackboard data objects and sensor inputs that can 
cause an unsafe system to livelock or deadlock. An unsafe system design does not 
insure that a system will livelock or deadlock, but reveals where the potential for 
liveness problems exists.

A trace of the execution of blackboard system B2 is included in Appendix A. B2 is 
a safe blackboard system and does experience liveness problems. The system will 
execute safely as long as data arrives at the sensor, ksi.

3.3.4 Conclusions

Preconditions are not included in the static analysis of the knowledge source 
activation graphs since the values of the precondition input variables required to 
compute the state of the preconditions are dynamic. The safety of proposed blackboard
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system designs is an important consideration. Two methods for guaranteeing 
knowledge source serializability are supported by the formal model. Knowledge 
sources use a two-phase locking system for all communications with the blackboard 
handlers. Communication between parent and child knowledge sources in message 
passing blackboard systems or meta-blackboard systems is implemented using 
read/write synchronization. The two-phase locking protocol and read/write 
synchronization both guarantee serialization.

If it is not possible to develop a safe blackboard system design, the designer must 
use the knowledge source connectivity information to determine the inter-knowledge 
source data object dependencies. The data object dependencies can be used to help 
determine an initial blackboard state that will allow the system to initialize safely. The 
knowledge source connectivity data can also be used to develop the sets of knowledge 
source preconditions and knowledge source postconditions.

3.4 Multiple Instances of a Knowledge Source

The Blackboard System Formal Model will support both single instances of a 
knowledge source and multiple instances of a knowledge source. Although the system 
will support multiple instances of a knowledge source, the use of multiple instances of 
a knowledge source is a complex problem that requires further research. The use of 
multiple instances of a knowledge source may lead to significant data coherence 
problems on the blackboard data structure if the multiple instances of the knowledge 
source are updating the same specific blackboard data object.

Past research1 has exploited the use of multiple instances of a knowledge source 
executing on a restricted class of generic blackboard data objects. The Cube_CLAWS 
system demonstrated that multiple instances of a generic knowledge source can be used 
to develop multiple execution pipelines that increase system perfoimance and decrease 
system execution times. The success of Cube_CLAWS is a direct result of the use of 
generic knowledge sources. Each instance of the generic knowledge source executes 
with a unique set of inputs and posts a unique set of outputs on the blackboard.

In the case of specific or mixed knowledge sources, the situation is different. 
Multiple instances of these types of knowledge sources execute with multiple instances 
of a specific blackboard data object as inputs and post multiple instances of a specific 
blackboard data object as outputs. The posting of multiple copies of a specific
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blackboard data object to the blackboard results in data coherence problems on the 
blackboard unless additional data coherence management software, and the resulting 
system overhead, is added to the formal model. Lesser and Corkill developed the 
FA/C system to address this problem. FA/C is intended to allow inconsistent 
blackboard data objects to be passed among the shared blackboard data structure. The 
FA/C concept is best suited for distributed blackboard systems. FA/C was tested using 
knowledge sources that are all similar instances of a of blackboard system designed to 
solve a single problem. Several instances of the knowledge source process overlapping 
inputs. The results are used to support or reject conclusions reached by other 
knowledge sources.

Several past systems (e.g. Cage, Poligon, Erasmus, and GBB)2» 3>4 have 
implemented “multiple instances” of knowledge sources, but these systems have used 
serial control structures to manage the knowledge source activations. The use of a 
serial control structure resulted in serial knowledge source executions and protected the 
systems from blackboard data coherence problems. The formal model for blackboard 
systems can model these types of systems. Separating a knowledge source’s activation 
from the knowledge source’s execution allows the formal model to model the 
concurrent activation of multiple instances of a knowledge source followed by their 
serial execution.
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Endnotes for Chapter Three

1 McManus, 1990

2 Nii, Aiello, and Rice, 1988

3 Jagannathan, 1989.

4 Corkill, 1989.



Chapter 4 
Blackboard System Design and Analysis 
Techniques

Designing and developing a concurrent blackboard system is a difficult process. 
The designer is trying to balance conflicting goals: achieving a high degree of 
concurrent knowledge source execution while maintaining both memory and semantic 
consistency. Several major problems facing the designers of concurrent blackboard 
systems have been outlined in the literature.

• Speculative parallelism can be very costly and adversely affect system 
performance.

• Memory management and memory coherence can become difficult and 
expensive.

• Process locking and concurrency control overhead can become costly 
and adversely affect opportunistic problem solving.

• Real-time systems require predictable response times.

• Overly restrictive concurrency control can restrict the parallel execution 
of knowledge sources.

• Dynamically allocating and de-allocating knowledge sources to achieve 
good processor utilization and load balancing can be expensive, and the 
overhead required may outweigh the gains of parallel execution if the 
knowledge sources are small or execute swiftly

Blackboard systems have not attained their apparent potential because there are no 
established tools or methods to guide in their construction and analyze their 
performance. Building systems that realize the full potential of the blackboard 
problem-solving model requires a coherent set of blackboard system design and 
analysis techniques that address the problems listed above. I have developed a set of 
design and analysis techniques for concurrent blackboard systems that support the 
formal model for blackboard systems and address these issues.

52
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4.1 Unified Approach to System Design and Analysis

My preliminary re se a rc h 2<3*4 has shown that efficient implementation of 
blackboard systems requires that the knowledge sources be highly specialized and 
highly independent

Definition 4-1: Knowledge Source Specialization

A pair of knowledge sources {ksj,ksk) are specialized if each knowledge 
source is designed to solve a specific task or subtask.

*

Designing specialized knowledge sources provides the following benefits:

• Improves performance of rule-based and knowledge-based systems. 
Specialization results in smaller rule bases and allows for the use of 
meta-knowledge to guide rule-partirion selection, which results in fewer 
rules being active and faster system performance5.

• Provides for small knowledge sources that solve specific problems and 
can cooperate in parallel on large problems. The small, specialized 
knowledge sources are easy to develop and test since each knowledge 
source solves a small part of the total problem.

• Reduces input and output overlap, write set conflicts, memory 
contention at the blackboard level, and concurrency control 
requirements. Specialization reduces the number of knowledge sources 
accessing a data object, reducing data object locking and updating 
overhead.

• Reduces the chance of semantic synchronization being violated because 
it reduces the chance of one knowledge source’s output invalidating the 
output of another knowledge source.
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Definition 4-2: Knowledge Source Interdependence

A pair of knowledge sources (ksj.kskl are interdependent if ksj provides the 
majority of the inputs to ksk.

+

Definition 4-3: Knowledge Source Independence

A pair of knowledge sources (ksj,ksk) are independent if ksj does not provide 
the majority of the inputs to ksk.

♦

Designing independent knowledge sources provides the following benefits:

• Centralizes problem solving functionality, making the function of each 
knowledge source easier to understand and providing for modular 
protection.

• Increases opportunistic execution of knowledge sources. Independence 
reduces the development of unintended knowledge source pipelines.
Pipelining results in serial execution of the related knowledge sources, 
diminishing the opportunities for concurrent knowledge source 
execution.

A system implemented using a set of highly specialized, highly independent 
knowledge sources with a data transfer driven control mechanism will be faster, more 
efficient, and more powerful than cuirent systems.

4.2 Knowledge Source Connectivity Analysis

Knowledge source connectivity analysis is a method for evaluating blackboard 
system design specifications developed using the formal model for blackboard 
systems. Connectivity analysis determines the data transfers between the knowledge 
sources and data migration across the blackboard. Specialization, serialization, and 
interdependence are evaluated for each knowledge source pair and feedback loops in the 
design are detected. These techniques evaluate a design specification before the 
blackboard system is developed. This allows the designer to address knowledge
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source interdependence problems, connectivity problems, and design feedback loops as 
a part of the initial design process.

Knowledge source connectivity analysis measures the output to input connectivity, 
Junctional connectivity, and output set overlap between pairs of knowledge sources. 
Output to input connectivity is a measure of the interdependence and functional 
connectivity between pairs of knowledge sources, and output set overlap is a measure 
of the specialization of pairs of knowledge sources.

Knowledge source pairs with a high level of output to input connectivity are 
functionally connected, while knowledge source pairs with a low level of output to 
input connectivity are independent of each other. Knowledge source pairs with a high 
level of input to output connectivity are serially connected, while knowledge source 
pairs with a low level of input to output connectivity are independent of each other. 
Knowledge source pairs that have a high level of output set overlap compute similar 
functions and lack specialization. Knowledge source pairs with a low level of output 
set overlap are highly specialized with respect to each other. Interdependence, 
serialization, and specialization values are used to refine the design of blackboard 
systems.

Knowledge source connectivity analysis requires a specification of the system 
developed using the formal model for blackboard systems. For each knowledge 
source, ksj, in p we can form a set vPj containing all of the input variables of ksj; and an 
output set <i>j containing all of the output variables of ksj. *Fj consists of both the 
blackboard inputs and the external inputs. If ksj is a sensor, 'Fj may contain only 
external inputs.

Once 'Fj and d>j have been formed for all ksj in J5 we can compute the sets Ijjc and 
0 j>k for all knowledge source pairs {ksj,ksk} in P (j #  k).

Yj = {ivi, iv2 , ..., ivn) 
d>j = {ovi, ov2 , ..., ovm)

(4.1)
(4.2)

rj,k = d>j o  d>k
Aj.k = <I>j n  'Fk

(4.3)
(4.4)

The set Tj^ is computed to assess th & Junctional specialization of a pair of 
knowledge sources. The cardinality of the set r Jtk for each pair {ksj,kskl in p is a
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measure of output overlap for the pair (ksj,ksk). Knowledge source pairs {ksj,kskl 
with a large output overlap imply that ksj and ksk share a large number of output 
variables and compute similar functions. Knowledge source pairs {ksj.ksk} with a low 
overlap imply that ksj and ksk compute different functions. A proposed heuristic to 
measure knowledge source specialization is to compute a specialization value, £2^  for 
each pair {ksj.kskl in (3.

Definition 4-4: Specialization Value

Specialization values measure the specialization of a pair of knowledge sources, 
{ksj,ksk}. The specialization value is computed using Equation 4.5

This heuristic was developed to compute the percentage of overlap between the sets 
C>j and d>k. The cardinality of the set T d iv id e d  by the minimum of the cardinalities 
of the sets Oj and Ok computes a percentage of overlap between the set I^k and the 
smaller of the sets Oj and Ok. As Qjjc approaches 1.0 the output overlap between ksj 
and ksk increases. As £2j,k approaches 0.0 the output overlap between ksj and ksk 
decreases. For the limiting cases, if Oj u  Ok or Ok => Oj we know that = 1.0, and 
ksj and ksk compute the same outputs and the knowledge sources arc not specialized.
If r jik = $ then fiJtk = 0.0, and the two knowledge sources have no common outputs, 
and they arc highly specialized in relation to each other.

The set Aj,k is computed to assess the connectivity between a pair of knowledge 
sources. The cardinality of the set Ajjc for each pair {ksj,ksk} in P is a measure the 
output to input connectivity for the pair {ksj,ksk}. Knowledge source pairs {ksj,ksk) 
with a high output to input connectivity imply that ksk is highly dependent on ksj for its 
input variables. Knowledge source pairs (ksj.ksk) with a low output to input 
connectivity imply that ksk's inputs are independent of ksj's outputs. A proposed 
heuristic to measure knowledge source output to input connectivity is to compute a 
interdependence value, Ilj^  for each pair {ksj.kskl in p.

caidCfj,,)

min(card!
(4.5)
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Definition 4-5: Interdependence Value

Interdependence values measure the functional connectivity between a pair o f 
knowledge sources, {ksj.ksk}. The interdependence value is computed using 
Equation 4.7

(card Aj k) 

(card <J>j)V    (4 /7)

This heuristic was developed to  compute the percentage o f the output data objects o f ksj 
that are used as input data objects by ksk. T he cardinality o f the set A j^  divided by d»j 
computes a percentage of overlap between the set Ajjc and O j . As TIj jc approaches
1 .0  the output to input connectivity between ksj and ksk strengthens and the knowledge 
sources become more interdependent. As Ilj.k approaches 0.0 the output to input 
connectivity between ksj and ksk weakens, and  the knowledge sources become 
independent. For the limiting cases, if d>j => *Fk> Tlĵ k = 1.0 and ksj and ksk have direct 
output to input connectivity and are interdependent. If Aj,k = <J>, rijjc = 0.0, and the two 
knowledge sources have no output to input connectivity and are independent.

Figure 4.1. Large ITj#k Value

Figure 4.2. Small Tlj^ Value

Knowledge source pairs that have high interdependence values are good candidates 
for knowledge source consolidation. The first knowledge source is providing a 
significant percentage of its outputs to a single knowledge source. The functionally

23

^
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connected pair can be reduced to a single knowledge source that combines the 
functionality of the two.

Definition 4-6: Serialization Value

Serialization values measure the output to input connectivity between a pair of 
knowledge sources, {ksj Jcsk). The serialization value is computed using 
Equation 4.8

(card Ajk )

S ik = ------------------- <4 -8 >J,k (card XF .)

This heuristic was developed to compute the percentage of serialization between the 
the knowledge sources ksj and ksk. This heuristic computes the percentage of the input 
data objects for knowledge source ksk that are provided by knowledge source ksj. The 
cardinality of the set Aj^: divided by Tk computes a percentage of overlap between the 
set Aj,k and Tk- As 2j,k approaches 1.0 the serialization between ksj and ksk 
strengthens. As £j,k approaches 0.0 the serialization between ksj and ksk weakens.
For the limiting cases, if ̂ = 3  Oj, 11^= 1.0 and ksj and ksk have direct serialization. 
IfAj,k = <i>, Ej k= 0 .0  and the two knowledge sources are independent and can execute 
concurrently.

Strongly connected knowledge sources have high serialization values. These 
knowledge sources form serialized execution pipelines, with each knowledge source 
blocking for the knowledge sources ahead o f it to complete. Unless multiple copies of 
the serialized knowledge sources are developed the serial pipelines reduce concurrent 
execution. Weakly connected knowledge sources reduce knowledge source 
serialization and increase the opportunity for concurrent knowledge source execution.

Knowledge source pairs that have high serialization values are good candidates for 
knowledge source consolidation. The first knowledge source is providing all of the 
inputs to the second knowledge source. The serially connected pair can be reduced to a 
single knowledge source that combines the functionality of the two.
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4.3 Examples of Connectivity Analysis

This section demonstrates the application of the connectivity analysis techniques 
using a set of example blackboard systems. Bi is the specification of the submarine 
Fire Control system presented in Chapter Three. The other example specifications, B2 , 
B3 , and B4, are redesigns of the Bi specification. The blackboard systems described in 
this section were used to verify the connectivity analysis techniques and the simulation 
system.

During the evaluation process tightly coupled knowledge sources are detected using 
interdependence values and serialization values to measure knowledge source coupling. 
The blackboard system design is refined to increase the specialization of the knowledge 
sources and reduce knowledge source serialization. This process is repeated until 
design constraints are met, or until Iljjc and 2 j,k stop decreasing

The blackboard system design is also tested for feedback loops. The effect of 
feedback loops on the execution of blackboard systems was described in detail in 
Chapter Three. A knowledge source connectivity graph of the system is evaluated 
using a cycle detection algorithm6 *7 and all cycles are highlighted. This information is 
used to redesign the system to remove as many of the cycles as possible.

These techniques highlight potential memory hotspots, system bottlenecks, and 
knowledge sources where the message-passing costs outweigh the gains made by 
concurrent knowledge source execution. The techniques can predict the amount of time 
each knowledge source should require to read/write their blackboard objects, and where 
potential memory access conflicts can occur between knowledge sources.

4.3.1 Blackboard System Bi Analysis Results;

The complete results of the connectivity analysis of Bi is included in Appendix B. 
The data has been reduced to table form for ease of presentation and discussion. Table
4.1 contains the basic connectivity analysis results for each knowledge source in Bi. 
The table lists 'F, O, the predecessors, the successors, the cardinality *F, and the 
cardinality 4> for each knowledge source. The data shows that ks4 is both a 
predecessor and a successor of ks2. This uncovers a direct loop between ks2 and ks4 . 
The data for ks4 also shows the direct loop between ks2 and ks4 .
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Table 4.1 Bi Connectivity Analysis Results
Knowledge

Source ksi kS2 ks3 ks4

{di d2 ) {ds dg} {dadel (ds d7  da)
0 : ld3 <U dsl {ded7} Ids) {d9)

Predecessors: {ks4 k$i) : {ksi ks2 l . fks.i.ka2 ksj}....
Successors: {ks2  kŝ  ks4 ) - : fksal {ks2l

Cardinality 2 2 2 3
Cardinality $ : 3 2 1 1

Table 4.2 contains the Output Overlap sets (F) for each knowledge source in Bj.
T = <}> for all of the knowledge sources.

Table 4.2 Bi Output Overlaps: T
Knowledge

Source ksi kS3

ksi

kS3

Table 4.3 contains the Specialization Values (fit) for each knowledge source. Since 
there is no output overlap (T = <]» for all of the knowledge sources) the specialization 
values are 0.0. All of the knowledge sources are highly specialized in relation to each
other.

Table 4.3 Bi Specialization Values: £2
Knowledge

Source ksj

0.0 0.00.0ksi
0.00.0 0.0kS2

0.00.00.0
0.00.0 0.0

Table 4.4 contains the Output to Input Connectivity sets (A) for pair of each
knowledge sources.
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Table 4.4 Bi Output to Input Connectivity: A
Knowledge

Source

Table 4.5 contains the Connectivity Values (TT) for each pair of knowledge sources. 
For this design, interdependence values of 0.0 to 0.5 are considered acceptable. The 
data shows that ks4 and ks2  are functionally connected (II = 1.0 ) and ks3 and kS4 are
functionally connected (II = 1.0).

Table 4.5 Bi Interdependence Values: II
Knowledge

Source kS3k s i

0.330.33 0.33ksj
0.50.0 0.5

0.00.0
1.0 0.00.0

The low serialization values show that this design produces a system that meets our 
serialization goals. For this design, serialization values of 0.0 to 0.5 are considered 
acceptable.

Table 4.6 Bi Serialization Values: £
Knowledge

Source
kS3k s i

0.5 0.5 0.33k s i

0.5 0.330.0
0.0 0.330.0kS3

0.5 0.00.0

The connectivity graph analysis detects two cycles in the design of blackboard 
system Bi. As uncovered by the preliminary analysis, a direct loop, or closed path of 
length two, exists between ks2 and ks4 . A closed path of length three exists between 
ks2 , ks3, and ks4 . The system will be redesigned to remove these cycles.
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d4
KS 3KSI

KS4KS2

Figure 4.3 Connectivity Graph for Bi

4.3.2 Blackboard System B2  Analysis Results

Blackboard system specification B2 is the result of redesigning Bj to remove the 
feedback loops. The process used to redesign Bi is described in Chapter Three. The 
redesign does not consider knowledge source specialization or interdependence. The 
complete results of the connectivity analysis of B2 are also included in Appendix B. 
Table 4.7 contains the basic connectivity analysis results for each knowledge source in 
B2 . No direct loops exist in the design.

Table 4.7 B2  Connectivity Analysis Results
Knowledge

Source ksi ks2 kS3 kS4

(di d2) (d3) (d4drt) (ds d7  d8)
O: (d3 d4 ds) (d6 d7) (ds) (ds)

Predecessors: * (ksi) (ksi ks2) (ksi ks2 ks3)

Successors: (ks2 ks3 ks4) (ks3 kS4) (kS4) <t)

Cardinality 'F: 2 1 2 3
Cardinality d>: 3 2 1 1

Table 4.8 contains the Output Overlap sets (O  for each knowledge source in B2.
T = <J» for all of the knowledge sources.
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Table 4.8 B2 Output Overlaps: T
Knowledge

Source

Table 4.9 contains the Specialization Values (£2) for each knowledge source. Since 
there is no output overlap (T = <|> for all of the knowledge sources) the specialization 
values are 0.0. As with the design on B i, all of the knowledge sources are highly
specialized in ieladon to each other.

Table 4.9 B2 Specialization Values: fl
Knowledge

Source
k s i

0.0 0.00.0k s i

0.0 0.00.0
0.00.00.0

0.00.00.0kS4

Table 4.10 contains the Output to Input Connectivity sets (A) for pair of each
knowledge sources.

Table 4.10 B2 O utput to Input Connectivity: A
Knowledge

Source
kS4ksi

k s i

kS4

Table 4.11 contains the Interdependence Values (Tl) for each pair of knowledge 
sources. For this design, interdependence values of 0.0 to 0.5 are considered 
acceptable. The data shows that ks3 and ks4 are functionally connected (II = 1.0).
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Table 4.11 B2  Interdependence Values: II
Knowledge

Source

Table 4.12 contains the serialization values for each pair of each knowledge 
sources. The high serialization value, £<ksi ks2> = 1.0, shows that this design 
produces a system with a serial component. Ks2 ’s only input variable is an output 
from ksi, so ks2  can’t execute until ksi executes.

Table 4.12 B2  Serialization Values: £
Knowledge

Source
ksi

0.5 0.33k si

0.50.0 0.33
0.0 0.330.0

0.0 0.0 0.0

d2

KSI KS 3

KS2 KS 4

Figure 4.4 Connectivity Graph for B2

The connectivity graph analysis detects no cycles in the design of blackboard 
system B2 . The redesign of Bi did not address the knowledge source interdependence 
and serialization problems. As a result, the redesigned system still has unacceptable
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knowledge source interdependence values and serialization values. Further redesign is 
required to correct these problems. The application of the redesign techniques used in 
this example solves only part of the problems in the design of B i. This approach was 
used to simplify the example and is not recommended. The designer must address 
both connectivity and interdependence problems during all phases of the design and 
analysis process. Using the design and analysis techniques, B2 can be redesigned.
Two examples of redesigning B2 follow. The system designs, B3 and B4 , address 
both the feedback loop problems and the knowledge source interdependence problems. 
The specifications and analysis of B3 and B4  are included in Appendix B. The 
redesigned systems redistribute the functionality of the knowledge sources to achieve 
better design characteristics. Each of the designs is functionally equivalent at the 
system level.

The design specification for B3 moves the computation of dg, Is the Weapons 
Solution Improving?, from the Positional Assessment knowledge source to the 
Weapons Data Preprocessor knowledge source. The serial link between the Positional 
Assessment knowledge source and the Weapons Control Knowledge source is broken, 
and the two knowledge sources can execute concurrently.

The design specification for B4 combines the functionality of the Positional 
Assessment knowledge source with the functionality of the Weapons Data 
Preprocessor knowledge source. This design has acceptable specialization and 
interdependence, but the serialization values show that the knowledge sources are 
serially linked and will execute in a pipeline fashion.

4.3.3 Blackboard System B3  Analysis Results

The complete results of the connectivity analysis of B3 are included in Appendix B. 
Table 4.13 contains the basic connectivity analysis results for each knowledge source in 
B3. The data shows that no direct loops exist in the design.
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Table 4.13 B3 Connectivity Analysis Results
Knowledge

Source
ksi kS2 kss kS4

(di d2> (ds) (d4 dfi) (ds d7 ds)
d»: (ds d4  ds dfi) (d7) m (d9)

Predecessors: ♦ (ksi) (ksi) (ksi ks2  ks^)

Successors: (kS2 kS3 kS4> (kS4) (kS4) 4>
Cardinality YF: 2 1 2 3

Cardinality <b: 4 1 1 1

Table 4.14 contains the Output Overlap sets (D  for each knowledge source in B3 .
r  = <}> for all of the knowledge sources.

Table 4.14 B3  Output Overlaps: T
Knowledge

Source
kS4ksi

k s i

kS4

Table 4.15 contains the Specialization Values (£2) for each knowledge source. 
Since there is no output overlap (T = <|> for all of the knowledge sources) the 
specialization values are 0.0. The knowledge sources are highly specialized in relation 
to each other.

Table 4.15 B3 Specialization Values: Q
Knowledge

Source
kS4kS2ksi

0.00.00.0
0.0 0.00.0kS2

0.00.00.0
0.00.0 0.0

Table 4.16 contains the Output to Input Connectivity sets (A) for pair of each
knowledge sources.
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Table 4.16 B3 Output to Input Connectivity: A
Knowledge

Source

ftUdfil

Table 4.17 contains the Interdependence Values (II) for each pair of knowledge 
sources. For this design, interdependence values of 0.0 to 0.5 are considered 
acceptable. The data shows that ks2 and ks4 are functionally connected (II = 1.0) and 
ks3 and ks4 are functionally connected (II = 1.0).

Table 4.17 B3 Interdependence Values: n
Knowledge

Source k si

0.250.25 0.5k s i

0.00.0
1 .00.00.0

0.00.0 0.0kS4

Table 4.17 contains the Serialization Values (2) for each pair of knowledge sources. 
For this design, serialization values of 0.0 to 0.5 are considered acceptable. The data 
shows that ksj and ks2 are tightly connected ( 2  = 1.0 ) and ksi and ks3 are tightly 
connected (2 = 1.0). The high serialization values show that this design produces a 
system with two serial components. Ks2 ’s only input variable is an output from ksi, 
so ks2 can’t execute until ksi executes. Ks3 ’s input variables are outputs from ksi, so 
ks3 can’t execute until ksi executes.

Table 4.18 B3 Serialization Values: 2
Knowledge

Source kS3k s i

0.33k s i

0.330.00.0kS2

0.0 0.330.0kS3

0.00.00.0kS4
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K SI

KS 4

Figure 4.5 Connectivity Graph for B3

4.3.3 Blackboard System B4  Analysis Results

The complete results of the connectivity analysis of B4 are included in Appendix B. 
Table 4.19 contains the basic connectivity analysis results for each knowledge source in 
B4. No direct loops exist in the design.

Knowledge Source k s i kS2 kS3

¥ : (di d2) (cUcte) (d^ ds ds)
O : (d^ d4 d.s d*;) (ds) (dg)

Predecessors: 0 (ksi) (ksi ks2)
Successors: (ks2 kss) (kss) *

Cardinality XP: 2 2 3
Cardinality $: 4 1 1

Table 4.20 contains the Output Overlap sets (T) for each knowledge source in B4 . 
T = <|) for all of the knowledge sources.

Table 4.20 B4  Output Overlap: T
Knowledge Source
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Table 4.21 contains the Specialization Values (£2) for each knowledge source. 
Since there is no output overlap (F = <]> for all of the knowledge sources) the 
specialization values are 0 .0 .

Table 4.21 B4 Specialization Values: £2
Knowledge Source

Table 4.22 contains the Output to Input Connectivity sets (A) for pair of each 
knowledge sources.

Table 4.22 B4 Output to Input Connectivity: A 
Knowledge Source

Table 4.23 contains the Interdependence Values (II) for each pair of knowledge 
sources. For this design, interdependence values of 0.0 to 0.5 are considered 
acceptable. The data shows that ks2 and ks3 are functionally connected (II = 1.0). 

Table 4.23 B4 Interdependence Values: II
Knowledge Source

Table 4.24 contains the Serialization Values (Z) for each pair of knowledge sources. 
For this design, serialization values of 0.0 to 0.5 are considered acceptable. The data 
shows that ksi and ks2 are tightly connected (Z = 1.0) and ksi and ks3 are tightly 
connected (Z = 0.67). The high serialization values show that this design produces a 
system with two serial components. Ks2 ’s input variables are outputs from ksi, so ks2 

can’t execute until ksi executes. Ks3’s input variables are outputs of ksi, so ks3 can’t 
execute until ksi executes.
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Table 4.24 B4  Serialization Values: Z

70

Knowledge Source

KS 2K SI Id6

KS3

Figure 4.6 Connectivity Graph for B4

4.4 Conclusions

These examples show the correct application of the design and analysis techniques. 
They also point out some of the tradeoffs a designer must make. All four of the 
systems discussed in this chapter are functionally equivalent, but each has its own set 
o f performance characteristics. The designer must analyze each of the designs and 
determine which tradeoffs will allow them to meet their specific performance 
requirements.

System Bi has feedback loop problems that make the design unacceptable. B2 has 
no feedback loop problems, but it doesn't allow concurrent knowledge source 
execution. All of the knowledge sources are serially connected. B3 has worse 
interdependence and serialization values for some knowledge sources, but it allows ks2
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and ks3 to execute concurrently. B4 has better interdependence and serialization values 
for some knowledge sources, but like Bi and B2 it does not allow concurrent 
knowledge source execution.

The example problems used here were chosen for their simplicity. Each of the 
examples was designed to show specific features of the design and analysis techniques 
on small, tractable problems. The design and analysis tools recognize the simplicity of 
the system and recommend collapsing the system into a single knowledge source. The 
power and effectiveness of the techniques will become clear in Chapter Eight, when the 
techniques are applied to more realistic problems.

The knowledge source connectivity analysis produces a measure of the 
interdependence between knowledge sources and a measure of the data transfers across 
the blackboard and through the communications network. From this analysis the 
designer can determine if the knowledge sources have been partitioned correctly and if 
the expected level of knowledge source specialization has been achieved. This type of 
analysis has been done by hand while developing several blackboard systems 8>9*10*
11

Using these techniques a blackboard system design can be modified to gain the 
desired knowledge source size and specialization and the desired knowledge source 
output to input connectivity. These techniques are designed to function for generic 
blackboard systems expressed using the formal model for blackboard systems, and are 
not application dependent.
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Chapter 5 
A Simulation Model for Blackboard Systems

A formal Blackboard System Simulation model, based on the formal model for 
blackboard systems, was developed to evaluate proposed blackboard system designs 
before they are implemented. The Blackboard System Simulation Model is a serial, 
discrete event simulation. The simulation model is generic, and can be used to model 
any blackboard system that can be expressed using the formal blackboard system 
model.

5.1 Blackboard System Simulation Model

The Blackboard System Simulation Model uses the formal definition of a 
blackboard system as a basis. Unless specifically redefined in this section, all terms 
used in this chapter refer to the terms defined for the formal model. We can now 
define the components of the Blackboard System Simulation Model in further detail:

Definition 5-1: Blackboard System Simulation Clock

A blackboard system simulation clock, A, is an monotonically increasing
integer variable.

+

The blackboard system simulation clock contains the current simulation time.

Definition 5-2: Blackboard System Simulation Event Queue

A blackboard system simulation event queue. A, is an ordered queue that is
used to store the currently executing knowledge sources.

*

Elements in the event queue are ordered (smallest to largest) by completion time.

The blackboard system simulation model uses the three types of knowledge 
sources defined in the formal model with the addition of several features required to 
support the simulation model:

73
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Definition 5-3: Blackboard System Simulation Knowledge Source

A blackboard system simulation knowledge source, ksj, adds the following 
features: an Execution Delay, XD, and a Completion Time, CT.

*

A knowledge source’s execution delay is a constant or a discrete random variable 
representing the amount of time a knowledge source takes to execute. The knowledge 
source’s completion time is the time (in relation to the global clock) at which the 
knowledge source will complete execution and update its output variables on the 
blackboard.

Definition 5-4: Blackboard System Simulation Sensor

A blackboard system simulation sensor, ksi, is a specialized type of knowledge 
source that handles inputs from external sources. Each sensor includes an 
update interval, UR, and an activation time, AT.

A

A sensor’s update interval is a constant or a discrete random variable that represents 
how often the sensor’s input variables are updated. A sensor is activated only when all 
o f its input conditionals are true and the global clock is equal to the sensor’s activation 
time. When activated, a sensor performs a read operation to copy all o f its input data 
objects to its local input variables, computes an execution delay, XD, and adds that to 
the activation time, AT, to compute a completion time, CT.

CT = AT + XD (5.1)

If  an instance of the sensor is not currently executing, the sensor is placed in the event 
queue. If there is an instance of the sensor on the event queue, the sensor’s completion 
time is computed as:

CT = CT (last instance on the queue) + XD (5.1.1)

and the sensor is placed in the event queue.
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At execution a sensor performs its computation, places its updated output variables 
on the blackboard, and computes its next activation time by calculating a new update 
interval and adding it to the current clock value.

AT = A + UR (5.2)

The accuracy of the description of the sensor’s computation and the accuracy of the 
execution delay variable directly affect the fidelity of the blackboard system simulation. 
Increasing the accuracy of these variables increases the accuracy of the simulation 
model.

Definition 5-5: Blackboard System Simulation Actuator

A blackboard system simulation actuator, ksi, is a specialized type of 
knowledge source that uses blackboard data objects as inputs. Actuators do not 
update data objects on the blackboard, so OV = <(>.

*

An actuator’s execution delay is a constant or a discrete random variable. An 
actuator is activated only when all of its input conditionals are TRUE and all of its 
preconditions are TRUE. When activated the actuator performs a read operation to 
copy all of its input data objects to its local input variables, computes an execution 
delay, XD, and computes its completion time.

CT = A + XD (5.3)

If an instance of the actuator is not currently executing, the actuator is placed in the 
event queue. If there is an instance of the actuator on the event queue, the actuator’s 
completion time is computed as:

CT = CT (last instance on the queue) + XD (5.3.1)

and actuator is placed in the event queue.

When executed an actuator performs its computation and updates its internal state
variables. As with the sensors, the accuracy of the description of the computation
performed by the actuator, and the accuracy of the execution delay variable directly
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affect the fidelity of the blackboard system simulation. Increasing the accuracy of these 
variables increases the accuracy of the simulation model.

Definition 5-6: Blackboard System Simulation Knowledge Processor

A knowledge processor, ksi, is a specialized type of knowledge source.

*

A knowledge processor’s execution delay is a constant or a discrete random 
variable. A blackboard system simulation knowledge processor is activated only when 
all of its input conditionals are TRUE and all of its preconditions are TRUE. When 
activated, the knowledge processor performs a read operation to copy all of its input 
data objects to tits local input variables, computes an execution delay, XD, and 
computes its completion time.

CT = A + XD (5.4)

If an instance of the knowledge processor is not currently executing, the knowledge 
processor is placed in the event queue. If there is an instance of the knowledge 
processor on the event queue, the knowledge processor’s completion time is computed 
as:

CT = CT (last instance on the queue) + XD (5.4.1)

and knowledge processor is placed in the event queue.

When executed, a knowledge processor performs its computation and places its 
updated output variables on the blackboard. As with the sensors and actuators, the 
accuracy of the description of the computation performed by the knowledge processor 
and the accuracy of the execution delay variable directly affect the fidelity of the 
blackboard system simulation. Increasing the accuracy of these variables increases the 
accuracy of the simulation model.

If multiple knowledge sources are hosted on a single processor, a First-Come- 
First-Served protocol is used to order knowledge source execution at the processor 
level. Each knowledge source must include a processor identification tag that identifies 
which processor the knowledge source requires for execution. A Processor Utilization 
table is built to track the availability of each of the processors. For each processor in
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the system, the Processor Utilization table contains the time at which the processor will 
become free and can accept a new task. All values in the Processor Utilization table are 
set to zero at system initialization. If the value in the Processor Utilization table is less 
than or equal to the global clock, the processor is available for use (“free”). When 
activated, a knowledge source checks the table to see if the required processor is free.
If the processor is free, the knowledge source performs a read operation to copy all of 
its inputs to the local input variables, computes an execution delay, XD, computes its 
completion time, and updates the Processor Utilization table with its completion time.

CT = A + XD (5.5)

Table value = C T + 1  (5.5.1)

If the processor is not free, the knowledge source performs a read operation to copy 
all o f its inputs to the local input variables, computes an execution delay, XD, computes 
its completion time using equation 5.6, and updates the Processor Utilization table with 
its completion time.

CT = Table value + XD (5.6)

Table value = CT + 1 (5.6.1)

Multiple instances of a knowledge source executing concurrently are also treated 
differently. The input data for the knowledge source is not queued waiting for the 
currently executing instance of the knowledge source to complete execution. Instead, 
another instance of the knowledge source is created and activated. When activated, the 
new instance of the knowledge source performs a read operation to copy all of its 
inputs to the local input variables, computes an execution delay, XD, and computes its 
completion time.

CT = A + XD (5.7)

The effects of concurrently executing multiple instances of a knowledge source were 
presented in detail at the end of Chapter Three.
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Definition 5-7: Blackboard System Simulation Knowledge Source Activation

A blackboard system simulation knowledge source is activated when all of the 
knowledge source’s activation conditions have been met.

When a  knowledge source is activated, the knowledge source performs a read 
operation to copy all o f its input data objects from the blackboard to its local input 
variables, computes its completion time, CT, and is placed on the event queue.

+

Definition 5-8: Blackboard System Simulation Knowledge Source Execution

A blackboard system simulation knowledge source is executed when the global 
clock, A, is equal to the knowledge source’s completion time.

*

"When a knowledge source is executed, the knowledge source performs its 
computation and updates its output variables and places them on the blackboard. If 
several knowledge sources have the same completion time they are executed in the 
order they appear in the event queue.

Definition 5-9: Blackboard System Simulation Model

A blackboard system simulation, £, is a tuple {A, X, P, (3, Is, A)
• A is a global clock.

• X is a set o f blackboard data objects,
X = {di,...,di};

• P is the set o f blackboard data object states: 
p = Vi x V2 x ... x Vj
where Vq is a set of all valid values for blackboard data object dq 
andq = 1.. i;

• (1 is the set o f knowledge sources. (3 = {ksi,..., ksj); each knowledge
source's domain is a subset of P, and its range is a subset of P;
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• Is is an i-vector describing the i initial values of the blackboard data 
objects, so Is e  P;

• A is an ordered queue of all knowledge sources that are currently 
marked as executable.

+

5.2 Description of the Simulation Model

The simulation system (Figure 5.1) executes an initialization process when it is 
activated:

• The blackboard clock is initialized to zero and the blackboard data 
objects are set to their initial states.

• All of the sensors are evaluated. If a sensor is ready to be activated 
its execution delay and completion time are computed and the sensor is 
placed on the event queue.

• Each knowledge source’s input conditionals and preconditions are 
evaluated. If the knowledge source is ready to be activated its execution 
delay and completion time are computed, and the knowledge source is 
placed on the event queue.

• For each sensor in fi, if the sensors IC’s are TRUE, and Equation 
5.8 is TRUE, the sensor computes a CT value, new values for UR and 
AT, and the sensor is placed on the event queue.

AT <= CT Head(Evcnt queue) 
and

AT >= A (5.8)

The first clause of Equation 5.6 tests to see if the activation time of the 
sensor is less than the next value of A (CTnead(Event queue) is used to 
set the next value of A). The second clause tests to insure that the 
sensor should fire after the current time. The result of the calculation is 
to activate sensors that have an AT between the current value of A an the 
next value of A.
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The initialization process computes the initial activation times for all of the sensors. All 
knowledge sources that are ready to run are placed on the event queue. If the event 
queue is empty the sensor with the earliest activation time is activated. The global clock 
is updated to the sensor’s activation time and the sensor is placed on the event queue. 
All of the sensors are tested to insure that none should be activated before the first 
element of the event queue is executed. Any sensors that need to be activated are 
activated in increasing order of activation time, and the global clock is updated to their 
activation time.

Perform Initialization process 
Evaluate all Sensors 
Evaluate all Knowledge Sources 
Evaluate all Sensors

Loop
Update A to CT head(Event queue)

Repeat
Process Head(Event queue)

Until (CT head(Event queue) * • A)

Evaluate all Sensors 
Until Terminal Condition

Figure 5.1 Simulation Execution Structure.

The simulation then enters the operate loop:

• The global clock is updated to the completion time of the first element in 
the event queue.

• The first knowledge source is removed from the event queue and 
executed. This step is repeated until all knowledge sources that should 
execute at this time have been processed.

• As described in the discussion of a knowledge processor, knowledge 
processors are placed on the event queue automatically when all of their 
IC’s are TRUE.

• All sensors are tested to see if they are ready to be activated. For each 
sensor in B, if all of the sensors IC’s are TRUE, and Equation 5.8 is
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TRUE, the sensor computes a CT value, new values for UR and AT, 
and the sensor is placed on the event queue.

The simulation system then loops back as shown in Figure 5.2. This loop is 
repeated until a “terminal condition” is signaled. The “Loop... Until” construct is used 
to test for a terminal condition at the bottom of the loop. The “terminal condition” may 
be as simple as the event queue being empty or the clock reaching a predefined end 
time, or as complex a logical function as the specific application requires.

5.3 Conclusions

An example of the simulation of the blackboard system B2 is included in Appendix 
B. The example shows each step on the simulation for the first execution cycle of the 
blackboard system. The blackboard system simulation model is a valid simulation of 
any blackboard system expressed using the formal model for blackboard systems. 
Appendix B discusses the unique conditions that may occur during the simulation of a 
blackboard system and how the simulation model addresses these special conditions.

The Simulation Model allows the blackboard systems designer to close the 
Design —> Simulate —> Analyze —> Implement loop. The Formal Model, the 
Blackboard System Design and Analysis Techniques, and the Simulation Model 
provide the blackboard system designer with a complete set of techniques for 
concurrent blackboard systems. Chapter Six present one of the many ways of 
implementing a set of tools that support the techniques described in Chapters Three, 
Four, and Five. These tools use the concepts developed in the past three chapters to 
develop a set of interactive tools for the design, simulation, and analysis of concurrent 
blackboard systems.
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Chapter 6
The Concurrent Object-Oriented Blackboard 
System.

The Concurrent Object-Oriented Blackboard System (COBS) system is an 
implementation o f the techniques developed in Chapters Three through Five The basic 
premise of COBS is that a concurrent blackboard system will achieve the potential of 
the blackboard model of problem solving and outperform a conventionally designed 
serial blackboard system. COBS is a method for implementing concurrent blackboard 
system utilizing o f a set of highly independent, highly specialized knowledge sources 
that cooperate using a shared object-oriented blackboard. COBS was developed using 
the formal model for blackboard systems presented in Chapter Three as a guideline, 
and is supported by a set of design and analysis tools, a simulation model, and a code 
generator. The design tools are implemented using the techniques described in Chapter 
Four, and the simulation model is implemented using the simulation model described 
in Chapter Five.

The use of a centralized control modules is one of the major bottlenecks in existing 
concurrent blackboard systems. Several systems1-2-3-4-5 have proposed 
decentralizing the blackboard system’s control module, or in some cases completely 
removing the control module, but no system has completely eliminated the serial, 
centralized control module. COBS removes the centralized control module, utilizing an 
object-oriented approach to implement the blackboard data objects. Daemons are 
attached to the blackboard data object slots and used to trigger the activation of the 
knowledge sources when the slot values are updated. This approach removes the need 
for a centralized control module. The transfer of data objects across the blackboard 
activates the knowledge sources.

6.1 Description of The COBS Architecture

COBS consists of the following elements: an object-oriented blackboard data 
structure, a set of highly specialized, highly independent knowledge sources, a set of 
blackboard handlers, and a daemon driven control structure. Blackboard control and 
knowledge source selection is achieved using daemons attached to the blackboard data 
objects. The daemons activate the blackboard handlers when data elements on the 
blackboard are updated. This daemon-driven control structure removes the need for a

83
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centralized blackboard control mechanism and allows concurrent knowledge source 
execution. The blackboard handlers control knowledge source activation and provide 
the knowledge sources read/write access to the blackboard.

COBS is designed to execute on a heterogeneous computer network with a 
centralized shared memory parallel processor hosting the blackboard data structure.
The blackboard data structure is a hierarchical object-oriented data structure. A set of 
daemon driven blackboard handlers are used to manage the blackboard data objects and 
the data transfers to and from the knowledge sources. Hosting the object-oriented 
blackboard and the blackboard handlers on the shared memory parallel processor 
removes the need for the centralized control structure found in most existing 
blackboard systems. The blackboard handlers have direct access to the blackboard data 
structure and can directly monitor the status of the blackboard data objects. Removing 
the centralized blackboard controller removes a major serial bottleneck in the 
blackboard system and results in increased system performance.

Specialized shared memory processors that can support the blackboard data 
structure are provided by several hardware vendors. Unfortunately I did not have such 
a machine available for my research. Since a shared memory machine was not 
available to test the COBS system, the blackboard handlers were multi-tasked on a 
single LISP machine with direct access to the object-oriented blackboard. Simulation 
models of the system executing on a shared memory system and on the LISP machine 
were built and used to predict the performance improvement that could be achieved if a 
shared memory machine was available.

An n-readers/one-writer protocol is used by the knowledge sources and blackboard 
handlers to guarantee blackboard consistency. All blackboard handlers use a two-phase 
locking protocol to guarantee knowledge source serializability. Knowledge sources that 
communicate directly with “child” processes use read/write synchronization to 
guarantee internal serializability. Direct operating system support is used to implement 
the required data object locking and queuing mechanisms. The operating system 
provides the software constructs required to define atomic operations and implement 
atomic blackboard read/write operations for the blackboard handlers. Primary deadlock 
detection is provided by the operating system.
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6.1.1 The Object-Oriented Blackboard Data Structure

The blackboard supports a user defined set of blackboard data object types, and 
each data object type has a corresponding blackboard daemon type. The blackboard 
data structure consists o f a dynamic set o f  blackboard data objects. The blackboard is a 
hierarchically partitioned, object-oriented data structure. Each blackboard data element 
has a static data object type, a dynamic value, and a dynamic activation identifier.

Each data element in the blackboard has a daemon attached to it  Each daemon has 
a fixed daemon type, a notification function, and a static list of knowledge sources to 
notify when the data object is updated. These daemons are used to signal the 
blackboard handlers when a blackboard data object has been updated. When a 
blackboard data object is updated, the associated daemon is activated. The daemon 
sends a message to each blackboard handler that monitors the blackboard data object. 
This message causes the input conditional associated with the blackboard data object to 
be updated to TRUE and all knowledge source preconditions that use the blackboard 
data object as input to be evaluated.

6.1.2 Blackboard Handlers

COBS implements a  unique blackboard handler for each type of knowledge source. 
The blackboard handler acts as an interface between the knowledge source and the 
blackboard. A blackboard handler consists of a static input set describing the specific 
data objects or types of objects used as input by the blackboard handler’s knowledge 
source, a static set of input conditionals, a static set describing the data objects or types 
of data objects output by the blackboard handler’s knowledge source, a dynamic set of 
preconditions, a dynamic set of postconditions, and a queue used to store input 
variables. The following constraints are applied to the blackboard handlers:

1) All access of the blackboard is done using a two-phase locking protocol.

2) A n-readers/one-writer protocol is used to allow concurrent read operations.

The blackboard handlers reside on a  single processor with direct memory access to 
the blackboard, in effect creating a shared blackboard data object similar to the 
blackboard implementation used in a shared memory blackboard system. When 
activated, the blackboard handler performs an atomic read operation to create the 
message to be sent to it’s knowledge source. At knowledge source completion, the
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handler tests the knowledge source’s postconditions and if they hold, performs an 
atomic write operation to update the blackboard data objects.

Since this system provides a blackboard handler for each knowledge source instead 
of a blackboard server for a specific region on the blackboard, blackboard handler 
overloading should not occur. By separating the blackboard handlers from the 
knowledge sources, the cost of using atomic read/write operations has been reduced. 
The blackboard handlers are halted by the atomic operations, but the knowledge 
sources that are executing on the distributed network continue execution.

6.1.3 Knowledge Sources

COBS is designed to use a set of highly specialized, highly independent knowledge 
sources. Each knowledge source consists of a set of inputs, a set of outputs, a set of 
input conditionals, a set of preconditions, a set of postconditions, and the function 
performed by the knowledge source. Each knowledge source has a blackboard handler 
associated with it to handle all blackboard input and output operations. The knowledge 
source's input conditionals, preconditions and post conditions are handled by the 
knowledge source’s blackboard handler. Knowledge sources execute as 
uninterruptable processes, they cannot be interrupted once they have been activated by 
the blackboard handlers.

The use of atomic read/write operations and the use of local knowledge source 
memory removes the requirement of locking blackboard objects or regions during 
knowledge source execution. Since all of the knowledge sources run as uninterruptable 
processes on distributed hardware, no context switching overhead is incurred.

Knowledge sources can dynamically create new generic blackboard data objects. 
The new generic data objects must be of a predefined blackboard data object type. The 
knowledge source creates the blackboard data object, initializes the object, and places 
the object on the blackboard. The data object inherits the proper type of daemon for its 
data object type, and all knowledge sources that use this type of generic data object can 
access the data object.. The creation of a new data object is an atomic operation.

A knowledge source’s input conditionals are used to determine when a knowledge 
source’s input data objects or input data types have been updated. The knowledge 
source’s preconditions are used to place restrictions on when a knowledge source can 
be activated. A knowledge source cannot be activated until all of the knowledge
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source’s input conditionals are TRUE, and all of the knowledge source’s preconditions 
are TRUE.

The use of postconditions allows a knowledge source to make sure the results of its 
computation are still valid, or that they are still required. The postconditions can also be 
used to keep conflicting results from being posted on the blackboard. For example, a 
knowledge source designed to determine the current tactical situation in a one-on-one 
air combat engagement posts on the blackboard that the current mode is evasive. This 
mode update causes the defensive systems knowledge source to activate. Before the 
defensive systems knowledge source completes execution, the situation assessment 
module receives new information and updates the mode to aggressive, activating the 
offensive systems knowledge source. When the defensive systems knowledge source 
is ready to post its results, it sees the mode has been updated to aggressive and 
terminates execution without updating the blackboard.

6.1.4 Knowledge Source Activation

The activation of a knowledge source is an atomic operation. The blackboard 
handlers for each type of knowledge source monitor the status of the input conditionals 
and preconditions for that type of knowledge source. When all of the input 
conditionals and preconditions are TRUE the knowledge source is activated. The 
following steps occur during a knowledge source activation:

1) Upon activation, the blackboard handler for a knowledge source performs an 
atomic read operation to build a local copy of all data required from the 
blackboard.

2) The blackboard handler resets all of the knowledge source’s input conditionals 
to FALSE.

3) If the knowledge source is waiting, the blackboard handler constructs a data 
packet of the local data and sends the packet to the knowledge source. If the 
knowledge source is executing, the blackboard handler queues the data packet 
and waits until the knowledge source completes execution before sending the 
packet to the knowledge source.



CHAPTER 6. The Concurrent Object-Oriented Blackboard System 88

6.1.5 Knowledge Source Execution

The execution of a knowledge source is an atomic operation. The knowledge 
source executes its computation, constructs a data packet containing its outputs, and 
sends the packet to the blackboard handler.

6.1.6 Knowledge Source Completion

The completion of a knowledge source is an atomic operation. Upon knowledge 
source completion, the blackboard handler for a knowledge source tests the knowledge 
source’s postcondition. If the postconditions holds, the blackboard handler updates the 
blackboard data objects with the outputs of the knowledge source. If the postcondition 
fails the blackboard handler discards the knowledge source’s outputs. If the handler 
has a data packet queued for the knowledge source, it is sent to the knowledge source.

6.2 Description of The COBS Design and Analysis Tools

The COBS design and analysis tools implement the techniques described in 
Chapter Four. The experience that I have gained developing Concurrent CLAWS, the 
Mode Control Panel6 program, and the original Tactical Decision Generator systems 
7,8,9 greatly influenced the design of the Knowledge Source Connectivity Analyzer. 
Using the design and analysis tools a concurrent object-oriented blackboard system that 
is faster, more efficient, and more powerful than existing systems can be developed. 
The use of the design and analysis tools provide the highly specialized, highly 
independent knowledge sources required for my concurrent blackboard systems to 
achieve their design goals. The Knowledge Source Connectivity Analyzer was 
developed using Common LISP to run on a Symbolics™ workstation. A listing of the 
Knowledge Source Connectivity Analyzer software is included in Appendix C.

6.2.1 Features of the Knowledge Source Analyzer

The Knowledge Source Connectivity Analyzer implements all of the features 
discussed in Chapter Four and produces a Blackboard System Specification File and a 
file containing the results of the connectivity analysis. The Blackboard System 
Specification File contains all of the information required to analyze the blackboard 
system design, the inputs required for the COBS Simulation System, and the inputs 
required for the Blackboard System Code Generator.
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The knowledge source analyzer supports the following functions:

1) Add a Knowledge Source. This function adds a knowledge 
source to the blackboard system specification. The user is 
prompted for the type of the knowledge source, the list of input 
variables and the list of output variables. The system checks each 
input and output variable. If the variable has not been defined, the 
system prompts the user for the type and initial value and defines 
the blackboard data object. The knowledge source connectivity 
graph and adjacency lists are updated.

2) Gear the Blackboard Specification. This function clears the 
specification and resets the analyzer to its initial state.

3) Compute Circuits. This function uses the connectivity graph and 
an implementation of Taijan’s cycle detection algorithm to detect 
all feedback loops in the design.

4) Delete A Knowledge Source. This command prompts the user 
for the name of a knowledge source and deletes it from the current 
system specification. The knowledge source connectivity graph 
and adjacency lists are updated.

5) Edit a Blackboard Data Object. This command prompts the use 
for the name of a blackboard data object and then allows the user 
to modify the name, type and initial value of the data object.

6) Edit a Knowledge Source. This command prompts the use for 
the name of a knowledge source and then allows the user to 
modify the current attributes of the knowledge source. The user 
can modify the input and output variables of the knowledge 
source, change the knowledge source’s preconditions and 
postconditions, and set the knowledge source’s execution delay 
and update rate. The knowledge source connectivity graph and 
adjacency lists are updated.

7) Generate a Blackboard System Specification File. This command 
prompts the user for a file name to store the current blackboard
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system specification. The list of knowledge sources and 
blackboard data objects is written to the file. A sample blackboard 
system specification file is included in Appendix C.

8) Generate a Blackboard System Analysis Output File. This 
command prompts the user for a file name to write the analysis of 
the current blackboard system specification. The list of 
knowledge sources and blackboard data objects is written to the 
file. The values of A, 'P, Q, II and E for each knowledge source 
are also written to the file. A sample blackboard system output 
analysis file is included in Appendix C.

9) Load a Blackboard System Specification File. This command 
prompts the user for a blackboard system specification file name 
and loads the specification file. This overwrites the current state of 
the connectivity analyzer.

10) Quit. This command exits the connectivity analyzer. The current 
state of the connectivity analyzer is not saved.

11) Show Adjacency Lists. This command displays the adjacency list 
for each knowledge source in the system specification.

12) View a Blackboard Data Object. This command prompts the user 
for the name of a blackboard data object and displays the current 
values of the attributes of the selected data object.

13) View Knowledge Source. This command prompts the user for 
the name of a knowledge source and displays the current values of 
the attributes of the selected knowledge source.

14) View A. This command displays the output to input connectivity 
set for each pair of knowledge sources in the system specification.

15) View F. This command displays the output overlap set for each 
pair of knowledge sources in the system specification.

16) View Q. This command displays the specialization values for 
each pair of knowledge sources in the system specification.



CHAPTER 6. The Concurrent Object-Oriented Blackboard System 91

17) View IL This command displays the interdependence values for 
each pair of knowledge sources in the system specification.

18) View E. This command displays the serialization values for each 
pair of knowledge sources in the system specification.

The results of the analysis of blackboard system specification Bi and its blackboard 
system specification file are included at the end of Appendix C

6.3 Description of The COBS Simulation Model

A Blackboard System Simulation Model and a set of blackboard evaluation metrics 
have been developed to analyze the performance of blackboard systems. Verification 
and was performed using example blackboard system design specifications. The 
verification process will be presented later in the chapter The simulation model was 
refined using the example problems until the simulation system generated the proper 
simulation software and results. A copy of the simulation code generated for the 
example blackboard systems, and the results of the simulation runs are included in 
Appendix D. The blackboard simulation model was validated against the performance 
of several types of blackboard systems executing on a Intel ISPC16 processor 
HyperCube™, a Symbolics 3650 workstation™, and a network of VAX™ and 
Symbolics workstations.

The COBS blackboard system simulation model is implemented according to the 
formal Blackboard System Simulation Model. The COBS Blackboard System 
Simulation Model was verified by comparing the software generated by the simulation 
system to the blackboard system specifications of several example systems. During 
initial system verification, discrepancies between a test system’s specification and the 
generated software were used to refine the blackboard simulation system. The 
refinement process was iterated until the specifications and the software generated by 
the system converged.

The COBS Blackboard System Simulation Model was validated by comparing the 
performance predicted by the simulation model to the actual performance of several 
existing systems. Discrepancies between a system’s predicted and actual performance 
were used to refine the blackboard simulation model, or if required, the blackboard 
system implementation. The refinement process was iterated until the predicted and 
actual performance values converged.
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6.3.1 COBS Blackboard System Simulation System

The COBS Blackboard System Simulation System is a tool for generating 
simulations of blackboard systems. The simulations consist of three types of elements: 
the blackboard data structure, a set of knowledge source modules, and a ordered 
knowledge source event queue. The blackboard data structure contains the initial values 
of the blackboard data objects, the blackboard handlers and data object locks, and the 
global clock.

The simulation system uses a COBS Blackboard System Specification File as 
input. Based on the specification file, the system generates all software required for the 
simulation,except for the models of the knowledge source functionality. This includes: 
defining all required variables; defining all required flavors and methods for blackboard 
data objects; defining all of the blackboard handlers and the supporting functions for 
handling input conditionals, preconditions, and postconditions; defining all required 
blackboard data object locks; building and initializing all blackboard data objects; 
generating all code required by the blackboard system evaluation metrics. The code 
generated by the simulation system is, except for the code required for the evaluation 
metrics, identical to the code generated by the Blackboard System Code Generator.
The simulation model uses the same blackboard data objects and locking procedures as 
the final version of the code, increasing the fidelity of the simulation model and 
increasing the reliability of its results.

The Blackboard System Simulation System supports the following functions:

1) Clear the Blackboard Specification. This function clears the 
specification and resets the analyzer to its initial state.

2) Generate Blackboard Simulation System. This function generates 
the software required for the blackboard simulation system.

3) Load a Blackboard System Specification File. This command 
prompts the user for a blackboard system specification file name 
and loads the specification file. This overwrites the current state of 
the connectivity analyzer.

4) Quit. This command exits the connectivity analyzer. Thecunent 
state of the connectivity analyzer is not saved.
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5) View a Blackboard Data Object This command prompts the user 
for the name of a blackboard data object and displays the current 
values of the attributes of the data object

6) View Knowledge Source. This command prompts the user for 
the name of a knowledge source and displays the current values of 
the attributes of the knowledge source.

The COBS Blackboard System Simulator is implemented in Common Lisp on a 
Symbolics™ workstation according to the simulation model for blackboard systems 
described in Chapter Five. A listing of the Lisp code for the Blackboard System 
Simulator is included in Appendix D.

6.3.2 Blackboard System Evaluation Metrics

Since no metrics for the evaluation of blackboard systems exist in the literature, I 
have developed several that are helpful in analyzing blackboard system performance. 
These metrics are automatically measured by the blackboard system simulation model.

1) The number of times a knowledge source is activated.

2) The number of shared data objects on the blackboard and the number of 
knowledge sources that access each data object

3) Knowledge source output to input connectivity.

4) Execution time of the blackboard system.

5) Number of times data objects are locked and unlocked.

6) Number of times a process had to wait for locked data objects

The metrics measure knowledge source connectivity, knowledge source execution 
time, the number of shared data objects, data object locking, and other relevant 
performance data. These metrics are used to evaluate the system’s measured 
performance against the performance predicted by the blackboard system simulation 
model of the system.
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6.4 Description of The COBS Code Generator

The COBS Blackboard System Code Generator is a tool for generating all of the 
low level support software for concurrent blackboard systems. The code generator 
uses a COBS Blackboard System Specification File as input Based on the 
specification file the system generates all software required for blackboard system, 
excluding the code for the knowledge sources. This includes: defining all required 
variables; defining all required flavors and methods for blackboard data objects; 
defining all o f the blackboard handlers and the supporting functions for handling input 
conditionals, preconditions, and postconditions; defining all required blackboard data 
object locks, and building and initializing all blackboard data objects. The user provides 
the code for the knowledge sources. The code generator sets up a generic interface 
between the blackboard handlers and the knowledge sources and provides the user with 
a communication specification for each knowledge source.

The blackboard system code generator supports the following functions:

1) Clear the Blackboard Specification. This function clears the 
specification and resets the analyzer to its initial state.

2) Generate Blackboard System Code. This function generates the 
software required for the blackboard system.

3) Load a Blackboard System Specification File. This command 
prompts the user for a blackboard system specification tile name 
and loads the specification tile. This overwrites the current state of 
the connectivity analyzer.

4) Quit. This command exits the connectivity analyzer. The current 
state of the connectivity analyzer is not saved.

5) View a Blackboard Data Object. This command prompts the user 
for the name of a blackboard data object and displays the current 
values of the attributes of the data object.

6) View Knowledge Source. This command prompts the user for 
the name of a knowledge source and displays the current values of 
the attributes of the knowledge source.
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The COBS Blackboard System Code Generator is implemented in Common Lisp 
on a Symbolics™ workstation. A listing of the Lisp code for the code generator and a 
copy of the code generated for blackboard system B2  is included in Appendix E.

The COBS Blackboard System Code Generator currently produces software in 
Common Lisp using the Common Lisp Object System and the Common Lisp 
Interface Manager. The software produced is portable to any computer that supports 
the Common Lisp Standard. The Daemon-driven control structure has been tested a 
Symbolics 3560 ™ workstation and a Symbolics Maclvory™ workstation. On the 
Symbolics workstations the daemons execute serially, using operating system support 
to guarantee atomic operation. This is not a function of the code generator, but of the 
target architecture. The daemon specific code is concurrent by design and would 
require no modifications to execute concurrently. The concurrent execution of the 
daemons was simulated using the COBS simulation system, and a slight performance 
increase was detected. There are plans to test the daemon-driven control structure on an 
associative memory processor in the future. The proposed associative memory 
architecture will allow concurrent daemon execution. The move to a new target 
architecture may require minor changes to the code generator.
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Chapter 7 
The Paladin Tactical Decision Generation System

Testing the COBS system required a target application that was challenging and 
could provide existing performance data. Paladin, a Tactical Decision Generator for 
real-time air-to-air combat was selected The Paladin system is an ongoing research 
project, and the system’s designs and performance characteristics were used to evaluate 
the COBS system. Paladin provided a challenging set of design constraints and tested 
all of the Features of COBS. Two approaches to developing Paladin are presented in 
this chapter. The first approach implements Paladin using a heterogeneous computer 
network, implementing each knowledge source on the class of processor but suited to 
it. The second approach implemented a subset of Paladin on a 16 processor iPSC/2 
HyperCube™.

Paladin is a real-time tactical decision generator for air combat engagements. 
Paladin uses specialized knowledge-based systems and other AI programming 
techniques to address the modem air combat environment and agile aircraft in a clear 
and concise manner. Paladin is designed to provide insight into both the tactical 
benefits and the costs of enhanced agility. The system was developed using the Lisp 
programming language on a specialized AI workstation. Paladin utilizes a set of air 
combat rules, an active throttle controller, and a situation assessment module that have 
been implemented as a set of highly specialized knowledge-based systems. The 
situation assessment module was developed to determine the tactical mode of operation 
(aggressive, defensive, neutral, evasive, or disengagement) used by Paladin at each 
decision point in the air combat engagement. Paladin uses situadonally dependent 
modes of operation to more accurately represent the complex decision-making process 
of human pilots. This allows Paladin to adapt its tactics to the current situation and 
improves system performance.

7.1 The Tactical Guidance Research and Evaluation System

Modem air combat simulations require an intelligent system, called a Tactical 
Decision Generator (TDG), to select the combat maneuvers to perform throughout an 
air combat engagement. The simulation system must also have the ability to model 
agile aircraft. The system should have a modular software structure so that new 
weapons systems or aircraft subsystems (e.g., sensors or propulsion systems),

97
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modifications to aircraft control systems, or changes to the aircraft configuration can be 
easily incorporated. In support of the study of superagile aircraft at NASA Langley 
Research Center (LaRC), a Tactical Guidance Research and Evaluation System 
(TiGRES) is being developed. The design and development of TiGRES as well as its 
relationship to other current air combat simulation systems is described in detail in 
references1* 2>3.

The TiGRES system is designed to allow researchers to develop and evaluate 
aircraft systems in a tactical environment The three main components of TiGRES are 
a TDG, the Tactical Maneuver Simulator (TMS), and the Differential Maneuvering 
Simulator (DMS). Both the TMS and the DMS use a TDG as the automated intelligent 
opponent

7.2 TiGRES Components

The TMS4*5 provides a high-fidelity batch air combat simulation environment for 
the development and testing of various guidance and control strategies. The researcher 
defines the initial conditions of the air combat engagement and the TMS then controls 
the trajectories and attitudes of the aircraft using simple trajectory commands, or 
through a tactical decision generation system. The main elements of the TMS are a 
high-fidelity, nonlinear six degree-of-ffeedom (d.o.f.) rigid-body aircraft dynamic 
model, including the control system; a TDG; and a user interface.

The DMS consists of two 40' diameter domes and one 20' diameter dome. The 
facility is intended for the real-time simulation of air combat engagements between 
piloted aircraft. By using a TDG to control one of the airplanes, it is possible to test a 
TDG against a human opponent. This feature allows the guidance logic to be evaluated 
against one or more unpredictable and adaptive human opponents.

7.3 The Paladin Software

Paladin is a knowledge-based TDG designed to provide insight into both the 
tactical benefits and the costs of superagility. The development of Paladin has been a 
multi-stage process using a baseline version of the Adaptive Maneuvering Logic6 
(AML) program as the starting point Paladin uses the trial maneuver generation and 
evaluation concept outlined in the AML program7 with several extensions. The 
original set of five to nine aircraft trial maneuvers used by AML has been replaced with 
four sets o f positionally dependent trial maneuvers. Past research8’9 has shown that
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the use of the positionally dependent sets of trial maneuvers improves overall system 
performance, allows Paladin to perform target acquisition and tracking more 
effectively, and improves Paladin’s defensive and evasive maneuvering performance. 
Paladin uses an object-oriented programming approach to represent each aircraft in the 
simulation. Each aircraft object includes information on the current state of the 
aircraft’s offensive systems (e.g., guns, missile systems, fire control radars, etc.), 
defensive systems (e.g., electronic counter-measures, chaff, etc.), and propulsion 
system. This state information is used to help guide Paladin's reasoning process.

Paladin utilizes modular software subroutines and specialized computer hardware. 
The separation of the aircraft simulation and decision logic components, and the use of 
highly specialized knowledge sources, allows each module or knowledge source to be 
designed and implemented using the hardware and programming techniques 
specifically suited for its function. The use of highly specialized and independent 
knowledge sources also provides for modular protection, confining the effect of an 
error occurring in a module at run-time to that module, or to a small set of neighboring 
modules in the program. The confining effect of the modular protection was used to 
aid in the design and debugging process. Each knowledge source was developed and 
tested independently before it was incorporated into Paladin.

The independence of the knowledge sources also increases the efficiency of Paladin 
by allowing knowledge sources to be distributed across a network of several 
heterogeneous processors. The network currently consists of a Symbolics 3650™ 
workstation, a Symbolics Maclvory™ workstation, and four Vax 3200™ class 
workstations. Communication between the distributed knowledge sources is achieved 
using customized DECNet-based Client/Server software developed in-house for 
TiGRES. This software allows for synchronization, communications, and data sharing 
between heterogeneous computers running the DECNet™ communications protocol. 
Each knowledge source requests all of the data required to perform its computation 
from the blackboard at the start of its execution cycle, and posts its results to the 
blackboard at the end of its execution cycle.

7.3.1 The Paladin Blackboard Control Structure.

The current implementation of Paladin uses a prototype version of the 
daemon-driven control structure. This control structure will be replaced with the
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COBS daemon-driven control structure in later versions of Paladin. The move to the 
Final COBS system should not affect system performance.

7.3.2 The Paladin Inference Engine.

The Paladin knowledge sources use a custom inference engine that was designed to 
support real-time execution of knowledge-based systems. The inference engine uses a 
depth-first evaluation strategy to search the active rule-bases. Rule-bases can be 
partitioned, and the partitions are linked using meta-rules (rules used to guide the 
activation of rule-bases). Rule-bases are expressed in two formats: interpreted lists of 
condition action pairs used during the design stage, and compiled lists of in-line 
function definitions used in the final, real-time version of the system. The interpreted 
lists are used to develop and debug the initial versions of the rule-base. Most existing 
rule-based systems implement interpreted rule-bases. The use of the interpreted rules 
severely limits the execution performance of the inference engine, and restricts the real­
time application of this type of system. To overcome this problem and allow real-time 
execution, the rule-base is “compiled” into a list of in-line function definitions. The 
compiled rule-bases execute approximately 90 to 100 times faster than the interpreted 
rules. The inference engine executes a representative test rule-base consisting of 40 
rules in the interpreted format in 170 milliseconds. The inference engine executes the 
same rule-base in the compiled format in 1.9 milliseconds.

There is a trade-off between the length of the longest execution path in a rule-base 
and the execution time of a knowledge source. The shorter the execution path is, the 
faster the execution time. The rule-bases used by Paladin have been partitioned to 
increase system performance by grouping related rules into small partitions and using 
meta-rules to link the partitions. This partitioning decreases the number of rules that 
are active, and decreases the length of the worst-case execution path through the rule- 
base. The rule-base partitioning allows the designer to calculate the longest and 
shortest path through the rule-base and compute both a maximum and minimum 
knowledge source execution time. The knowledge source’s maximum execution time 
can be used to insure that the system will meet real-time execution requirements. If the 
maximum execution time exceeds the allocated execution time, the designer may be 
able to repartition the rule-base until real-time execution requirements are achieved.

7.3.3 The Paladin Rule-Bases.
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Paladin uses two rule-bases: a mode selection rule-base used by the Situation 
Assessment knowledge source, and a throttle control rule-base used by the Active 
Throttle Controller. The mode selection and throttle control rule-bases are discussed in 
detail in10. The mode selection rule-base consists of four partitions and contains 
nineteen rules. The shortest execution path in this rule-base results in a single rule 
being fired; the longest path results in twelve rules being fired. The throttle control 
rule-base consists of ten partitions and contains forty rules. The shortest execution 
path in this rule-base results in a two rules being fired; the longest path results in 
thirteen rules being fired.

7.4 KBS Modules of Paladin

The development of the TDG has been a multi-stage process. The current version 
of the TDG, Paladin, is a blackboard-based system written in LISP and FORTRAN 
that uses an object-oriented programming approach to represent the aircraft states and 
subsystems. Paladin uses objects to represent each aircraft in the simulation and the 
current state of the aircraft's offensive systems, defensive systems, and engines. This 
information is used by Paladin's knowledge sources to help guide the reasoning 
process.

7.4.1 Situation Assessment Module

Six modes of operation, shown in Table 7.1, have been incorporated in Paladin. As 
shown in Figure 7.1, the Situation Assessment knowledge source is executed before 
the maneuver scoring module. The Situation Assessment knowledge source uses the 
mode selection rule-base to determine the system’s current mode of operation. This 
knowledge source is used to model a pilot’s situational awareness and changing 
problem-solving strategies. Just as a pilot will recognize the difference between an 
aggressive situation and a evasive situation and react accordingly, the Situation 
Assessment knowledge source provides information allowing Paladin to adapt its 
problem-solving strategy based on the current situation. The determination of the 
current mode o f operation is based on the aircraft's current mission, the current state of 
the aircraft's systems, the relative geometry between the aircraft and its opponent, and 
the opponent's instantaneous-intent (defined later). Each of the six modes of operations 
has a unique vector of scoring weights and a unique decision interval (shown in Table 
7,1). The scoring weights for each mode o f operation have been adjusted during the 
design and testing process to maximize Paladin's performance in that mode of
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Figure 7.1. Schematic Of Paladin

operation. The testing procedures used to evaluate Paladin’s performance are described 
in detail later in this chapter.

Table 7.1. Modes of Operation

Mode Decision Interval

Aggressive 0.25 sec

Defensive 0.5 sec
Evasive 0.25 sec

Ground Avoidance 0.125 sec

Neutral 1.0 sec

Disengage 0.5 sec

The situation assessment knowledge source also determines the opponents 
instantaneous-intent. The opponent's instantaneous-intent is defined to be an estimation 
of the opponent's mode of operation at the current point in time based on Paladin’s 
available sensor, positional, and geometric data. Currently, there is no attempt to use a 
history of instantaneous-intent to derive a long-term opponent intent.
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To perform situation assessment, information on aircraft relative geometry and 
Paladin’s system status is required. This informadon is available in the form of 
participant-specific data maintained by Paladin. All data relating to the Paladin aircraft 
as well as Paladin sensor data (e.g. the opponent’s x, y, z position) are assumed to be 
known exactly. Other data required about the opponent must be estimated.

Paladin’s current throtde position and altitude are parameters taken directly from the 
current state. Range is the magnitude of a vector connecting the centers of gravity of 
the aircraft. The Line-Of-Sight (LOS) angle is defined as the angle between the LOS 
vector and the ownship body x-axis (Figure 7.2); the deviation angle is defined as the 
angle between the LOS vector and the ownship velocity vector; and the LOS angle off 
is defined as the angle between the LOS vector and the opponent's body x-axis. The 
data used by the situation assessment module is shown in figure 7.2, and discussed in 
detail i n 11

LOS >  
VECTOR

OPPONENT
VELOCITY
VECTOR
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VELOCITY
VECTOR

y j l  OWNSHIP

Figure 7.2. Angle Definitions

7.4.3 Active Throttle Controller

A rule-based Active Throttle Controller was developed to adjust the throttle setting 
based on the current mode of operation. The throttle controller is called at the start of
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each decision interval and can set the throttle to any position between idle and full 
afterburner [0.0 = flight idle, ..1.0 = military power, ..2.0 = full afterburner]. The 
throttle controller uses the throttle control rule-base, the current mode of operation, and 
the relative geometry information to select either a target acquisition mode, a fine 
tracking mode, or a target or missile avoidance mode. Each mode has a set of specific 
throttle control rules that are used to maximize system performance in that mode.

7.4.4 Scoring Module

The Paladin Maneuver Scoring Module knowledge source is a FORTRAN 
subroutine. The scoring module uses a set of fuzzy logic questions12 with responses 
ranging from [-1.0 = Negative, ..0.0 = Neutral, ..1.0 = Positive] and the mode-specific 
scoring weight vector selected by the situation assessment module to score each of the 
trial maneuvers. For each trial maneuver evaluated the predicted positions for both the 
opponent and the Paladin aircraft are computed. The position of the opponent is 
extrapolated using a quadratic curve fit based on the time history of the opponent 
aircraft's trajectory. The future position of the Paladin aircraft is determined by 
predicting the result of executing the control commands for each candidate trial 
maneuver.

Once the relative geometry between the future positions of the two aircraft is 
calculated, the score for the maneuver is determined by computing the responses to the 
fuzzy logic questions, applying the selected scoring weight vector, and then summing 
the results to generate a single numeric score. After all of the trial maneuvers have 
been evaluated, the highest scoring maneuver is selected and the associated control 
commands are executed.

7.5 Paladin Testing Procedures

Paladin is currently being tested in the TMS and the DMS.

7.5.1 TMS Testing

Paladin is currently being tested in the TMS using six d.o.f. aircraft dynamics.
TMS testing is done in a non-real-time, batch mode environment against a baseline 
TDG. Each group of test conditions consists of 32 sets of initial aircraft conditions. 
The initial altitudes, airspeeds, and the separations between the two aircraft are adjusted 
to provide representative coverage of the within-visual-range air combat arena. The
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largest initial aircraft separation currently being tested (5 nm) places the aircraft at the 
transition point between beyond-visual-range and within-visual-range air combat.

Four scoring metrics are currently used to evaluate each engagement. All metrics 
are computed at the aircraft simulation update rate of 32 times per second. The first 
metric computes the total time that each airplane has its weapons locked on the 
opponent, the probability that any weapons fired will hit the opponent, the distance 
between the opponents, the angle-off, and the deviation angle. The results are printed in 
a table format at the completion of each run. The scoring metrics are described in detail 
in 13.

These statistics are reviewed after each set of test runs and the data are used to tune 
the mode specific scoring weights and test the completeness of the knowledge bases. 
Although the statistics are helpful, no single statistic has been developed that can 
accurately measure the performance of an aircraft in the engagement All engagements 
are ended when the PS for either aircraft is less than 0.30.

7.5.2 DMS Testing

A baseline version of Paladin is currently being tested in the DMS using a 5 d.o.f. 
aircraft model. The aircraft model lacks both the extra degree of freedom (lateral 
motion in body axes) as well as an accurate representation of the aircraft’s rotational 
dynamics throughout the complete flight envelope. The baseline Paladin system, the 
Computerized Logic for Air Warfare Simulation (CLAWS) contains the situation 
assessment module, the active throttle controller, and a set of situationally dependent 
trial maneuvers. The simplified aircraft model is used to insure real-time performance 
in the DMS.

The development of CLAWS has made it possible to evaluate the tactical decision 
generation software against human pilots in the DMS in a realistic air combat 
environment. This capability has allowed experienced pilots to interact with the system 
and comment on its performance and suggest improvements. The pilots' comments 
and suggestions are the basis for changing the TMS experimental version of Paladin. 
These changes are tested and refined in the TMS before being included in the baseline 
system.
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A concurrent version of the Paladin software, Cube_CLAWS, was developed as a 
distributed blackboard system in C14*15. The use o f parallel distributed processing 
techniques allows the development of larger and more complete simulations than is 
currently possible using serial hardware and programming techniques. The 
independence of the Cube_CLAWS knowledge sources increases the efficiency of the 
system by allowing knowledge sources to be distributed across the hypercube. The 
knowledge sources communicate with the blackboard using a daemon-driven message 
passing system.

Cube_CLAWS is a distributed blackboard system designed to execute on a 16 
processor iPSC/2 HyperCube™. Cube_CLAWS consists of a set of knowledge 
sources for each aircraft in the simulation. The set includes: a main knowledge source 
that contains the blackboard support software and aircraft model; a relative geometry 
knowledge source; a situation assessment knowledge source; and a maneuver 
evaluation knowledge source used to evaluate a set of eight prospective aircraft 
maneuvers. The daemon-driven control structure used for activating knowledge 
sources is embedded in the knowledge sources. The blackboard elements are passed as 
messages between the distributed knowledge sources and the blackboard data structure. 
Read/write synchronization is used to ensure blackboard consistency.

7.6.1 Software Description

The Cube_CLAWS software consists of six basic elements16. The host program 
initiates the blackboard system by passing the initial aircraft states to the two instances 
of the main knowledge source. The host program then goes into a loop to receive 
messages containing the updated aircraft states and writes them to the console.

The main knowledge source contains the aircraft modeling software and the 
required blackboard control elements. The main knowledge source is the "controlling" 
module for both aircraft in the engagement. The main knowledge source receives the 
initial aircraft state for the aircraft it will be controlling and initializes the variables used 
for inter-knowledge source communication. The main knowledge source then swaps 
aircraft state information with each main knowledge source for the other aircraft so that 
at the start of each time step all main knowledge sources know the position and 
appropriate state variables for all other aircraft in the engagement.
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The relative geometry knowledge source is activated to compute the relative 
geometry between the two aircraft and then the situation assessment knowledge source 
is activated to determine the aircraft's current mode of operation. The maneuver 
evaluation knowledge source (Eval) then evaluates prospective aircraft maneuvers and 
returns the control commands for the highest rated maneuver to the main knowledge 
source. The maneuver is executed and the next cycle of the engagement begins.

The relative geometry knowledge source uses the current state of the aggressor and 
target aircraft stored on the blackboard. The LOS angle between the aggressor and the 
target, the closing rate, the range, and the angle-off are computed. The weapons 
solutions are computed, and if a gun or missile lock is achieved, the weapons systems 
are activated and the weapons lock times are incremented. The updated blackboard 
values are returned to the main knowledge source at the completion of the knowledge 
source execution.

The situation assessment knowledge source uses both the relative geometry data 
and aggressor’s aircraft state data to compute the current tactical situation and update 
the aggressor’s mode of operation. A set of eight tactical evaluation metrics are used to 
define the situation space. The situation assessment knowledge source uses a fuzzy 
logic based scoring scheme to evaluate the metrics and map the current situation into 
one of the modes of operation shown in Table 7.1. The situation assessment 
knowledge source also computes the opponents instantaneous-intent. The mode of 
operation is used to select a set of scoring weights that are used to generate a numeric 
"score" for the current maneuver. The score o f a maneuver represents the computed 
tactical worth of the position being evaluated. The updated blackboard data elements 
are returned to the main knowledge source at completion of the knowledge source 
execution.

The evaluation knowledge source is used to evaluate the tactical value of candidate 
maneuvers. The knowledge source uses the current state of the aggressor and target 
aircraft from the blackboard. The Eval routine first predicts the future position of the 
opponent based on his last known position, flight path angle, speed, and heading. Eval 
then generates a set of eight candidate maneuvers based on the current mode of 
operation and generates the new position for the aggressor aircraft. These new 
positions and the projected position of the opponent are placed in blackboard data 
elements and the relative geometry knowledge source is activated to compute the 
relative geometry between the candidate positions and the predicted position of the
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opponent The results are placed in blackboard elements and the situation assessment 
knowledge source is activated to compute the mode of operation for each of the 
maneuvers and a tactical score for each position. The situation assessment results are 
placed in blackboard data elements. Eval selects the highest scoring maneuver and the 
required control commands are placed on the blackboard to be used by the main 
knowledge source.
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Figure 7.3. CLAWS Schematic 

7.6.2 Cube_CLAWS Software Structure

Figure 7.3 shows a schematic of the "optimal serial" version of the Cube_CLAWS 
program. The optimal serial version is a highly optimized serial version of the 
CLAWS software. The main knowledge source is called for both aircraft, followed by 
a call to compute the relative geometry between the two aircraft and a call to perform 
the situation assessment. The move evaluation subroutine is then called and it calls an 
instance of the relative geometry and the situation assessment once for each prospective 
maneuver to be evaluated. This cycle is executed once for each second in the simulated 
engagement Cube_CLAWS exploits the natural parallelism of the engagement by 
creating separate parallel execution paths for both aircraft in the engagement. The main 
knowledge sources of each of the aircraft synchronize at the start of each time step in 
the engagement to swap aircraft state data and then proceed down parallel execution 
paths.

The evaluation of trial maneuvers is also done in parallel. Multiple versions of the 
situation assessment and relative geometry knowledge sources are loaded onto 
processors of the HyperCube and are used to evaluate the candidate maneuvers. The 
Eval module generates the prospective maneuvers and then sends one maneuver to 
each available relative geometry knowledge source. When all of the maneuvers have 
been distributed and processed, the results are placed on the blackboard and the 
positions are distributed to the available situation assessment knowledge sources. The
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positions are then evaluated and the set of control commands for the highest scoring 
maneuver is placed on the blackboard for the main knowledge source to execute.

It is important to note that although multiple versions of the relative geometry 
modules and the situation assessment modules are being executed in parallel, there is 
still an inherent serialization or pipelining between the relative geometry and the 
situation assessment modules. The relative geometry must be computed for a 
maneuver before the situation assessment module can begin execution. Figure 7.4 is a 
schematic of the current Cube_CLAWS software configuration.
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Figure 7.4. Cube CLAWS Schematic 

7.7 Evaluation of Cube_CLAWS Performance

A total of six test cases were used to evaluate the performance of Cube_CLAWS. 
The baseline case was the optimal serial version of Cube_CLAWS run on a single 
processor. The Cube_CLAWS software was then run in the configurations described 
in table 7.2, with the table entries representing the HyperCube processor executing the 
software. Configuration one (Cl) loaded all of the processor software for both aircraft 
on a single processor. Configuration two (C2) loaded the software for aircraft one 
(A l) on processor 0 and the processor software for aircraft two (A2) on processor 1, 
creating parallel execution paths for the two aircraft. Configurations three through five 
(C3, C4, C5) loaded the processor software as described for configuration two, with
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the addition of loading multiple versions of the situation assessment and relative 
geometry software.

Table 7.2. Software Test Configuration Processor Assignments
Test

Version
Aircraft

Identifier
Main

Subroutine
Relative

Geometry
Situation

Assessment
Maneuver
Evaluation

Cl A1 0 0 0 0
A2 0 0 0 0

C2 A1 0 0 0 0
A2 1 1 1 1

C3 A1 0 0,2,3 0,2,3 0
A2 1 1,8,9 1,8,9 1

C4 A1 0 0,2,3,4,5 0,2,3,4,5 0
A2 1 1,8,9,10,11 1,8,9,10,11 1

C5 A1 0 0,2,3,4,5,6,7,8, 
9

0,2,3,4,5,6,7,8, 
9

0

A2 1 1,8,9,10,11,12,
13,14,15

1,8,9,10,11,1
2,13,14,15

1

Speedup and efficiency computations were performed for the evaluation module 
and per second of the engagement. Speedup is a measure of how much faster a 
problem P is solved using N processors than when solved serially. The efficiency of a 
parallel algorithm is defined to be the speedup divided by the number of processors 
used.

Due to the size of the problem it was not possible to run the eight processor 
versions of Cube_CLAWS and evaluate all eight potential maneuvers without having 
some processors executing more than one task (processor overlap). In these cases the 
speedup without processor overlap was computed using the average execution speed of 
the nonoverlapping processors.

Figure 7.5 plots the expected speedup per second of simulated engagement (in the 
case of processor overlap) and the speedup actually achieved. Configuration one is 
used as the base case for these speedup calculations. These calculations measure the 
effect of splitting the task into separate execution paths for each aircraft. Note that the 
optimal serial implementation took approximately 23 percent less time to execute than 
configuration one. The speedup gained by splitting into separate paths for each aircraft 
is found by comparing the configuration one and the configuration two data. In this 
case the speedup achieved is almost linear, approximately 97 percent. There is a



CHAPTER 7. The Paladin Tactical Decision Generation System 111

distinct leveling off in speedup between configuration four and configuration five. 
Configuration five achieves much better speedup when no process overlap occurs.

Figure 7.6 shows that processor efficiency for the simulation decreases as 
additional processors are added. Much of the loss of speedup is due to the serial nature 
of the main knowledge source and the need for all main knowledge sources to 
synchronize at the start of each iteration. The additional processors used to compute the 
situation assessment and relative geometry are only assigned work by the maneuver 
evaluation knowledge source and do not speed up the execution of the aircraft models. 
The additional processors are idle except when evaluating trial maneuvers.

The computed speedups for the maneuver evaluation knowledge source (without 
processor overlap) are shown in figure 7.7. These calculations measure the effect of 
adding additional processors for the relative geometry and situation assessment 
knowledge sources on the execution of the Eval knowledge source. The speedup is 
close to linear for all cases except configuration five, the eight processor case. This data 
shows that adding additional processors has a large effect on the execution time of the 
maneuver evaluation subroutines.

The maneuver evaluation processor efficiency, shown in figure 7.8, is greater than 
65 percent in all configurations tested. Configuration 5 shows significant improvement 
in both speedup and processor efficiency. The computed efficiency for configuration 
five is approximately 67.5 percent.

The sequential relationship between the situation assessment knowledge source and 
the relative geometry knowledge source reduces the benefit of adding additional 
processors in the current software configuration, and increases the number of messages 
that must be passed. The cost of passing these messages, both in time and operating 
system overhead, can be very large. The sequential relationship implies that the system 
may perform better if the two separate knowledge sources are combined to form a 
single knowledge source.
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7.8 Results
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The speedup and efficiency data for the evaluation knowledge source are very 
promising and the overall speedup and efficiency data for the main knowledge source 
show that there is a clear advantage to splitting the problem into parallel execution paths 
for each aircraft. The data also highlighted some inefficiencies that may be corrected by 
redesigning parts of the system. Much of the loss of efficiency in the evaluation 
subroutine can be attributed to the serial link between the relative geometry knowledge 
source and the situation assessment knowledge source; and to the ratio of execution 
time for these relatively small knowledge sources to the time they required to send and 
receive messages. These knowledge sources can be combined into a single specialized 
knowledge source. This will reduce the evaluation knowledge sources message passing 
time, cut the number o f messages required, and remove the synchronization 
requirement between the two separate relative geometry and situation assessment 
knowledge sources.

Cube_CLAWS provides a useful testbed to evaluate the development of a 
distributed blackboard system. This research shows that the complexity of developing 
specialized software on a distributed, message-passing architecture is not 
overwhelming, and reasonable speedups and processor efficiency can be achieved by a 
distributed blackboard system. The project highlights some of the costs of using a 
distributed approach to designing a blackboard system. Message passing costs, 
synchronization costs, and the cost of having multiple processes executing on a 
processor must be recognized during the system design phase so that their effect on the 
systems performance can be minimalized.

7.9 Conclusions

Paladin, a computerized air combat tactical decision generator, has been developed 
to study within-visual-range air combat engagements. The system incorporates 
modem airplane simulation techniques, sensors, and weapons systems. Paladin uses 
knowledge-based systems and Artificial Intelligence (AI) programming techniques to 
address air-to-air combat and agile aircraft in a clear and concise manner.

Paladin models aspects of the decision-making processes used by human pilots 
through the use of the Situation Assessment knowledge-based system and multiple
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modes of operation. The use of distinct modes of operation allows Paladin to perform 
complex air-to-air combat tasks and generate sound tactical decisions in real-time.

Paladin presents an excellent opportunity to evaluate the use of AI programming 
techniques and knowledge-based systems in a real-time environment. Paladin clearly 
shows that the existing maneuver selection and scoring techniques cannot perform well 
in the modem tactical environment and are not well suited for evaluating agile aircraft 
The use of the blackboard problem-solving model has allowed a complex tactical 
decision generation system to be developed that addresses the modem combat 
environment and agile aircraft The ability to integrate Paladin into the DMS offers a 
unique opportunity to evaluate the performance of the Al-based Paladin software in a 
real-time tactical environment against human pilots.
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Chapter 8 
Validation of the COBS Simulation Model.

Two existing concurrent distributed blackboard systems were used to validate the 
performance of COBS. One system was selected to validate the performance of a 
message passing distributed processor implementation of COBS. The other system 
was selected to validate a shared memory implementation of COBS. The existing 
systems were developed using prototypes of the COBS daemon driven control 
structure. The functionality and performance of each of the systems is described in 
Chapter Seven. The existing systems were used to generate formal blackboard system 
design specifications. Each design specification was evaluated using the COBS design 
and analysis tools. The performance analysis metrics were used to measure the 
performance of the existing systems and the results were compared with the 
performance predicted by the COBS simulation model. The results of these tests were 
used to validate the performance of COBS simulation system. The analysis of the 
validation of the Cube_CLAWS system and the prototype Paladin system are 
presented in detail in this chapter.

8.1 Simulation of Cube_CLAWS

The Cube_CLAWS distributed message passing blackboard system software was 
used to develop a COBS design specification. Several minor modifications to the 
original design were made. The Maneuver Evaluation knowledge source in 
Cube_CLAWS was modified so that it included the functionality required from the 
Relative Geometry and Situation Assessment knowledge sources. The original 
analysis1 of the Cube_CLAWS system determined that the functionality required from 
these knowledge sources should be combined to increase system performance and 
reduce network traffic. Four versions of the Cube_CLAWS system were developed 
and evaluated:

• Cube has a single copy of the Maneuver Evaluation knowledge source.
The knowledge source evaluates all eight trial maneuvers and returns the 
score and input commands of the highest scoring maneuver.

117
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• Cube2 has two copies o f the Maneuver Evaluation knowledge source.
The knowledge source evaluates four unique trial maneuvers and 
returns the score and input commands of the highest scoring maneuver.

■ Cube4 has four copies o f the Maneuver Evaluation knowledge source.
Each knowledge source evaluates two unique trial maneuvers and 
returns the score and input commands of the highest scoring maneuver.

• Cube8 has eight copies o f the Maneuver Evaluation knowledge source.
Each knowledge source evaluates a unique trial maneuver and returns 
the score and input commands of that maneuver.

The knowledge source execution delays for each of the configurations tested are 
shown in Table 8.1 The execution delay values used were determined by timing the 
execution o f the knowledge sources of Cube_CLAWS on a 16 processor HyperCube2.

Table 8.1 Cube CLAWS Knowledge Source Execution Times (msec.)

Knowledge Source Cube Cube2 Cube4 Cube8

Synchronize 1 1 1 1

Relative Geometry 1 0 1 0 1 0 1 0

Situation Assessment 3 3 3 3
Maneuver Evaluation 254 130 73 52

Dynamics 47 47 47 47

Total Execution Time 315 191 134 113

8.2 Validating Cube_CLAWS Simulation Results

Each of the four design specifications was simulated using the COBS simulation 
system. The results of the simulation runs have been condensed and are included in 
Appendix F. The results of all o f the simulation runs outlined in the following sections 
show that the COBS produced software executed correctly and produced the expected 
results. The simulation results are then used to validate the COBS implementation of 
the formal model for blackboard systems
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8.2.1 Analysis of the Cube Simulation Results
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The simulation of the Cube design specifications produced results that match the 
performance the Cube_CLAWS system used to produce the CUBE specifications. All 
of the knowledge sources were activated and completed at the correct clock times, and 
the knowledge sources executed in the correct order. No unexpected knowledge source 
blocking or other anomalies in the daemon-driven control structure occured. Each of 
the blackboard data objects was accessed (both read and write access) the correct 
number of times.

The Maneuver Evaluation knowledge source speedup and processor efficiency 
values, Figures 8.1 and 8.2, are comparable to those produced by the baseline 
Cube_CLAWS software3. Figure 8.1 compares the Maneuver Evaluation knowledge 
source speedup results of the COBS Simulation with the “Achieved” HyperCube 
speedup values and the “Best” HyperCube speedup. The “Achieved” HyperCube 
speedup value was computed using the average of the actual execution times for all of 
the Maneuver Evaluation knowledge sources. The “Best” HyperCube value was 
computed using the minimum execution time for the Maneuver Evaluation knowledge 
source. As discussed in Chapter Seven, in the Cube8 design some processors had 
more than one knowledge source executing on the processor. The Maneuver 
Evaluation knowledge sources executing on “overlapped” processors had higher 
execution times.

The COBS simulation used the average execution time of the non-overlapping 
Maneuver Evaluation knowledge sources. The average execution delay was used in 
place of a random execution delay due to the small standard deviation of the execution 
delays. For all knowledge sources in the Cube_CLAWS system, the standard 
deviation of the execution delays was less than or equal to one millisecond. Since a one 
millisecond clock was used to measure the execution delays and the standard deviation 
is smaller than the resolution of the timing device, the average execution delay values 
are considered acceptable.

The simulation model correctly models all of the features found in the execution of 
the actual Cube_CLAWS system. The total execution times for the Cube simulations 
are comparable to those of the actual Cube_CLAWS system. The simulation results 
show that knowledge source speedup is close to linear and the processor efficiency is
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high (97.5%) for the Cube2 design and the Cube4 design (86.5%). 
the actual results of the Cube CLAWS system.
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8.2.2 Conclusion

The simulation of the Cube design specifications produced results that validate the 
performance the COBS Cube design simulations. In each of the designs tested, the 
knowledge sources were activated and completed at the correct clock times, and the 
order of knowledge source execution matched the Cube_CLAWS execution order. No 
anomalies in the daemon-driven control structure occured, and each of the blackboard 
data objects was accessed the expected number of times, in the expected order. The 
integrity of the Blackboard data structure and system serializability was maintained. 
The Maneuver Evaluation knowledge source speedup and processor efficiency values 
produced by the COBS simulation are comparable to those produced by the baseline 
Cube_CLAWS software.



CHAPTER 8. Validation of the COBS Simulation Model 122

Table 8.2 Cube CLAWS System Execution Times (msec.)

Nodes Cube “Achieved” Cube “Best” COBS Cube

1 315 296 315
2 191 169 191
4 134 113 134

8 114 92 113

The simulation model correctly modeled all of the features found in the execution 
of the actual Cube_CLAWS system. The total execution times for the COBS 
simulations are comparable to those of the actual Cube_CLAWS system (Table 8.2). 
The system speedup and processor efficiency values for each of the simulation runs are 
comparable to those produced by the baseline Cube_CLAWS software. All 
differences in the overall system execution time, system speedup, and processor 
efficiency values are a result of using the average execution delays instead of the 
achieved execution delay values. These differences only occur in the Cube8 design 
where “non-overlapping” knowledge source average execution delays are used. If the 
“achieved” execution delay values are used the simulation results directly match the 
Cube_CLAWS analysis results.

8.3 Simulation of Paladin

The Paladin distributed blackboard system software was used to develop a COBS 
design specification. Paladin is implemented using a shared memory daemon-driven 
control structure. The size and complexity of the current Paladin specification make it 
impractical to present the full analysis of the Paladin design. The current 
implementation of Paladin contains twenty knowledge sources. The design analysis 
results file is over one hundred and twenty pages long, and the simulation software is 
over one hundred pages long. The results of the analysis of a simpler prototype 
containing ten knowledge sources are presented in this section. The prototype contains 
all of the functionality of the current Paladin system, but uses coarser grained 
knowledge sources. The functionality of each knowledge source in the COBS Paladin 
design is listed below:
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• Dynamics is a full six degree of freedom simulation model of a modem 
high performance fighter aircraft. The model is implemented in the 
Advanced Continuous Simulation Language (ACSL)

• Main contains the software used to: extrapolate the position of the 
opponent at some future time; compute the relative geometry between 
the aircraft; and score the weapons solutions.

• Situation Assessment determines the current mode of operation and the 
opponent’s instantaneous Intent.

• Throttle Control determines the required throttle position

• Maneuver Selection generates and evaluates the mode dependent sets of 
trial maneuvers. The highest scoring maneuver's input commands are 
translated and posted for the Dynamics knowledge source.

8.4 Validating the Paladin Simulation Results

Two Paladin design specifications were simulated using the COBS simulation 
system. The results of the simulation runs have been simplified and are included in 
Appendix F. The first design, COBS I, uses a single knowledge source to perform 
situation assessment and throttle control. The second design, COBS II, splits the 
functionality of the throttle controller and situation assessment into two separate 
knowledge sources. In both designs the Throttle Control and Situation Assessment 
knowledge sources are executing on a Symbolics™ 3650 workstation. All other 
knowledge sources are executing on Vax 3200™ workstations

The Paladin knowledge sources were executed 100,000 times on a Vax 3200™ 
workstation to determine an average execution delay. The Main, Throttle Control, 
Situation Assessment and Maneuver Evaluation knowledge sources were modified to 
execute their longest execution path, resulting in worst case execution delays. The use 
of worst case execution times ensures that the results, shown in Table 8.3, are 
conservative estimates.

The COBS simulation used the average execution time for all of Paladin’s 
knowledge sources. The average execution delay was used in place of a random 
execution delay due to the small standard deviation of the execution delays. For all
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knowledge sources in the Cube_CLAWS system, the standard deviation of the 
execution delays was less than twenty milliseconds. Since a ten millisecond clock was 
used to measure the execution delays and the standard deviation is almost equal to the 
resolution of the timing device, the average execution delay values are considered 
acceptable.

Table 8.3 Paladin Knowledge Source Execution Times (msec.)

Knowledge Source COBS I c o b s  n

Dynamics 180 180
Main 35 35

Throttle Control 26 16

Situation Assessment 0* 14**
Maneuver Evaluation 22* 22

Total Execution Time 263 253
"Implemented as a single Knowledge Source 

**Executed concurrently with Throttle Control

The simulation of the Paladin design specifications produced results that match the 
performance the existing Paladin system used to produce the specifications. All of the 
knowledge sources were activated and completed at the correct clock times, and the 
knowledge sources executed in the correct order. No unexpected knowledge source 
blocking or other anomalies in the daemon-driven control structure occured. Each of 
the blackboard data objects was accessed (both read and write access) the correct 
number of times.

Table 8.4 Paladin System Execution Times (msec.)

Achieved COBS I COBS II

263 263 253

The simulation model correctly models all of the features found in the execution of 
the prototype Paladin system. The total execution times for the COBS simulations are 
equal to those of the actual Paladin system (Table 8.4).



CHAPTER 8. Validation of the COBS Simulation Model

8.4.2 Simulation Results

125

The simulation of the Paladin design specifications produced results that validate 
the performance the COBS Paladin design simulations. In each of the designs tested 
the knowledge sources were activated and completed at the correct clock times, and the 
order of knowledge sources execution matched the order of the knowledge sources in 
the prototype Paladin system. No anomalies in the daemon-driven control structure 
occured, and each of the blackboard data objects was accessed the expected number of 
times, and in the expected order. The integrity of the Blackboard data structure and 
serializability were maintained. The system speedup and processor efficiency values 
produced by the COBS simulation are equal to those produced by the baseline Paladin 
software.

The simulation model correctly modeled all of the features found in the execution 
of the actual Paladin system. The total execution times for the COBS simulations are 
comparable to those of the actual Paladin system. The system speedup and processor 
efficiency values for each of the simulation runs are comparable to those produced by 
the prototype Paladin software.

8.5 Conclusions

The analysis of the Cube_CLAWS and the prototype Paladin system validate the 
performance of the COBS simulation system. The simulations of both systems 
computed the expected results and accurately modeled the performance of the systems.

The COBS simulation system models the interaction between the knowledge 
sources, collisions and hotspots on the shared blackboard data object, and data 
transactions between the knowledge sources and the blackboard. The analysis provides 
important information on a design’s expected performance, and how the performance 
can be improved. The validated simulation model allows the system designer to 
perform trade-off analysis using a low cost, high fidelity simulation system.
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Endnotes for Chapter Eight

1 McManus, 1989.

2  Ibid.

3 Ibid.



Chapter 9
Utilizing the Concurrent Object-Oriented 
Blackboard System.

Two existing concurrent distributed blackboard systems were used to evaluate the 
performance of the COBS design, simulation, and analysis techniques. The analysis of 
the Cube_CLAWS system and the prototype Paladin system are presented in detail in 
this chapter. Each of the blackboard system designs analyzed has a unique set of 
characteristics and performance constraints. Based on the characteristics and 
performance constraints for each of the applications, a unique set of specialization, 
serialization, and interdependence values that are considered “acceptable” and “high” 
for that specific application are determined.

9.1 Analysis of the Cube_CLAWS Design Specifications

Each of the four design specifications presented in Chapter Eight were evaluated 
using the COBS design and analysis tools. The resulting analysis output files ranged in 
length from sixteen to eighty-four pages. The analysis files have been condensed and 
are included in Appendix F. The output overlap, output to input connectivity sets; and 
all cases where the specialization values, interdependence values, or serialization values 
are equal to zero have been dropped. Specialization values and serialization values that 
are greater that 0.5 are considered “high” for the Cube designs, values that are less that 
or equal to 0.5 are considered “acceptable”. High interdependence values are expected 
for some knowledge sources due to the cooperative nature of the task the system is 
solving. The analysis of the Cube design specifications points out the importance of 
computing both the knowledge source interdependence value and knowledge source 
serialization value. The importance of trading-off functional connectivity versus serial 
connectivity is discused at the end of this section.

9.1.1 Analysis of the Cube Design Specification

The analysis of the Cube design specification shows that the system has no 
knowledge source pairs with high specialization values, twenty-six knowledge source 
pairs with high interdependence values (II > 0.5), and no knowledge source pairs with 
high serialization values. The interdependence values show that eight sets of 
knowledge sources have direct functional connectivity (II = 1.0). This is not
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considered unacceptable since all of the functionally connected knowledge source pairs 
have acceptable (Z < 0.50) serialization values. The Maneuver Evaluation knowledge 
source and Dynamics knowledge source are functionally connected in this design 
(TI = 0.75) but the serialization values are low (Z = 0.10). If a single knowledge source 
is going to be used to evaluate trial maneuvers, the Maneuver Evaluation knowledge 
source and Dynamics knowledge source should be combined to decrease the functional 
connectivity values and network traffic and increase system efficiency.

9.1.2 Analysis of the Cube2 Design Specification

The analysis of the Cube2 design specification shows that the system has thirty 
knowledge source pairs with high interdependence values and two knowledge source 
pairs with high serialization values (Z = 0.67). Sixteen sets of knowledge sources have 
direct functional connectivity. The increase in functionally connected processors is a 
result of adding knowledge sources to perform maneuver evaluation. None of the 
functionally connected knowledge source pairs have high serialization values. The 
Maneuver Evaluation knowledge source and Dynamics knowledge source are still 
functionally connected in this design (II = 0.85), but the serialization values are staying 
low (Z = 0.19) as additional maneuver evaluation knowledge sources are added. The 
benefits of combining the Maneuver Evaluation knowledge sources and Dynamics 
knowledge sources are decreasing due to the increased opportunity for concurrent 
Maneuver Evaluation knowledge source execution and system speedup.

9.1.3 Analysis of the Cube4 Design Specification

The analysis of the Cube4 design specification shows that the system has forty-six 
knowledge source pairs with high interdependence values and two knowledge source 
pairs with high serialization values. Twenty sets of knowledge sources have direct 
functional connectivity (II = 1.0). This is not considered unacceptable since none of the 
functionally connected knowledge sources have high serialization values. The 
Maneuver Evaluation knowledge source and Dynamics knowledge source are still 
functionally connected in this design (II = 0.85), but the serialization values are still low 
(Z = 0.19). The benefits of combining the Maneuver Evaluation knowledge sources 
and Dynamics knowledge sources continue to decrease as concurrent Maneuver 
Evaluation knowledge source execution and the opportunity for improved system 
speedup increases.
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9.1.4 Analysis of the Cube8 Design Specification
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The analysis of the Cube8 design specification shows that the system has ninety 
knowledge source pairs with high interdependence values and two knowledge source 
pairs with high serialization values. The interdependence values show that thirty-six 
sets of knowledge sources have direct functional connectivity (JI = 1.0). This is not 
considered unacceptable since none of the functionally connected knowledge sources 
have high serialization values. The Maneuver Evaluation knowledge source and 
Dynamics knowledge source are still serially connected in this system (E = 0.85) but 
the serialization values are staying low (E = 0.19) as additional maneuver evaluation 
knowledge sources are added.

The benefits of combining the Maneuver Evaluation knowledge sources and 
Dynamics knowledge sources have decreased to the point that it may not be a good 
trade-off to combine the knowledge sources. The system speedup gained by the 
concurrent execution of the Maneuver Evaluation knowledge sources may outweigh 
the benefit of the decrease in functional connectivity and message passing that results 
from merging the two knowledge sources.

9.1.5 Design Specification Analysis Conclusions

The analysis of the four Cube design specifications shows some of the difficulties 
facing the concurrent blackboard system designer. Each design has a unique balance 
between knowledge source interdependence and serialization that will result in the 
“acceptable” system performance. As the complexity of the design specification 
analysis grows, evaluating the affect of design trade-offs is harder to determine.

The Cube examples point out some of the trade-offs facing the concurrent 
blackboard system designer. In the smaller Cube designs the benefits of combining the 
Maneuver Evaluation knowledge sources and Dynamics knowledge sources are clear. 
The combined knowledge source has better functional connectivity and serialization 
values, and the design reduces traffic on the blackboard and the communications 
network. These reductions result in reduced system execution times and increased 
system performance.

Adding Maneuver Evaluation knowledge sources to the Cube designs increases the 
opportunities for concurrent knowledge source execution. This increase in concurrent 
knowledge source execution must be balanced against the increased traffic on the
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blackboard and the communications network. If the knowledge source execution times 
become smaller then the overhead required to pass data to and from the knowledge 
source, the design is not efficiently utilizing the available processors, is generating 
unproductive message passing overhead, and is generating unnecessary traffic on the 
communications network.

9.2 Analysis of the Cube Simulation Results

The Maneuver Evaluation knowledge source speedup and processor efficiency 
values, Figures 9.1 and 9.2, are comparable to those produced by the baseline 
Cube_CLAWS software1. Figure 9.1 compares the Maneuver Evaluation knowledge 
source speedup results of the COBS Simulation with the “Achieved” HyperCube 
speedup values and the “Best” HyperCube speedup. The simulation results show that 
knowledge source speedup is close to linear and the processor efficiency is high 
(97.5%) for the Cube2 design and the Cube4 design (86.5%). These values match the 
actual results of the Cube CLAWS system.



CHAPTER 9. Utilizing COBS 131

10.00 T.

S
p
e
e
d
u
P

1.00
4 821

Knowledge Sources

 h  Linear B-----Achieved © "Best" Value © COBS
Speedup Value Cube Cube Simulation

Figure 9.1. Maneuver Evaluation Knowledge Source Speedup

Knowledge source speedup and processor efficiency drop off sharply in the Cube8 
configuration. The CubeS design speedup is only 4.88 and processor efficiency has 
dropped to 61.0%. The drop-offs in speedup and efficiency are due to the way the 
knowledge sources evolve as Maneuver Evaluation knowledge sources are added to the 
design. Each Maneuver Evaluation knowledge source evaluates fewer maneuvers and 
becomes smaller as more are added to the system. This reduces the time each instance 
of the knowledge source requires to perform its computation, but the knowledge 
source’s communication costs stay relatively constant. The Cube8 design approaches 
the point where the communications costs are greater than the time required to compute 
the knowledge source’s function.
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Figure 9.2. Knowledge Source Processor Efficiency

The speedup and processor efficiency values for each of the Cube designs, Figures
9.3 and 9.4, are comparable to those produced by the baseline Cube_CLAWS 
software2. The simulation results show that system speedup is acceptable and the 
processor efficiency is high (82.5%) for the Cube2 design and the Cube4 design 
(58.8%). Knowledge source speedup and processor efficiency drop off sharply in the 
Cube8 configuration. The Cube8 design speedup is only 2.79 and processor efficiency 
has dropped to 34.8%.
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This drop-off is due to the way the problem evolves as Maneuver Evaluation 
processors are added to the design. Table 8.1 shows that as maneuver evaluation 
knowledge sources are added to the system, the time required to compute the next 
maneuver decreases. As the maneuver selection time decreases the total system 
execution time decreases; but more importantly, the percentage of the total execution 
time spent performing maneuver evaluation decreases. The effect of speeding up the 
maneuver evaluation knowledge source on the systems total execution time decreases 
as the other knowledge sources in the design become a larger percentage of the 
system’s execution time.

9.3 Analysis of the Paladin Design Specifications

The prototype Paladin design specification was evaluated using the COBS design 
and analysis tools. The condensed analysis file is included in Appendix F. The output 
overlap, output to input connectivity sets; and all cases where the specialization values, 
interdependence values, or serialization values are equal to zero have been dropped. 
Specialization values and serialization values that are greater that 0.75 are considered 
“high” for these examples, specialization values and serialization values that are less 
than or equal to 0.75 are considered “acceptable”. High interdependence and 
serialization values are expected for some of the knowledge sources due to the 
cooperative nature of the task the system is solving. Paladin is designed to allow 
knowledge-based systems to cooperate with a high fidelity aircraft simulation model. 
The problem was decomposed on a processor/task level, and the prototype utilizes 
large grain knowledge sources. As the prototype evolves, smaller more specialized 
knowledge sources are developed. The later designs have better functional connectivity 
and serialization values. » *

The analysis of the Paladin design specification shows that the system has no 
knowledge source pairs with high specialization values, twelve knowledge source pairs 
with high interdependence values, and ten knowledge source pairs with high 
serialization values. The interdependence values show that eight sets of knowledge 
sources have direct functional connectivity (II = 1.0). As stated above, this is not 
considered unacceptable due to the design goals and strict design constraints. The 
knowledge source serialization values show that eight sets of knowledge sources have 
direct serial connectivity (Z = 1.0 ).
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The Paladin design specification points out several of the difficulties facing the 
concurrent blackboard system designer. The Paladin system has a strict set of design 
constraints. The Dynamic knowledge source is a large ACSL model and cannot be 
decomposed. The Situation Assessment and Throttle Control knowledge sources are 
implemented in LISP for real-time execution on specialized workstations. The 
designer must work within these constraints to develop the best system possible.

9.4 Evaluation of Paladin Simulation Results

Figure 9.5 compares the speedup results of the two COBS Paladin designs 
described in Chapter Eight. Figure 9.5 compares the processor efficiency values for 
the two Paladin designs The simulation results show that design speedup and 
processor efficiency are unacceptable for the COBS I and COBS II designs. The 
additional processors are not being applied to the most time consuming task in the 
process. The Dynamics knowledge source requires approximately 70% of the 
execution time in both designs. The most effective way to improve system speedup 
and processor efficiency is to reduce the execution time of the Dynamics knowledge 
source.
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Figure 9.5 Paladin Speedup
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9.5 Evaluation of Alternative Hardware Configurations

COBS provides the designer the ability to simulate a design specification utilizing 
the performance characteristics of a heterogeneous computer network. The simulation 
of the Cube design specifications described above used the characteristics of a 16 
processor HyperCube3. A blackboard system design specification can be evaluated 
using the characteristics of any set of processors by modifying the execution delays of 
the knowledge sources to match the performance expected on the target processors. 
This allows the designer to evaluate a design’s performance on a heterogeneous 
computer networks that may not be available.

9.5.1 Evaluation of Cube_CLAWS

Without simulating the proposed Cube designs it is hard to determine the trade-offs 
involved in combining the knowledge sources and what the potential payoffs are. The 
Cube design analysis points out that each of the proposed designs has a unique set of 
strengths and weaknesses. The Cube design has the best functional connectivity and 
serialization values. Each of the other Cube design provides an increasing level of 
concurrent knowledge source execution and potential for system speedup.
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The designer must use the results of the design analysis, the simulation runs, and 
their knowledge of the specific problem being solved to determine which system best 
meets the design and performance constraints for the Cube system.

The Cube_CLAWS knowledge sources were executed across a set of processors to 
determine knowledge source execution delays. Each knowledge source was executed 
1 0 0 ,0 0 0  times on each processor to determine an average execution delay on that 
processor. The knowledge sources were modified to execute their longest execution 
path, resulting in worst case execution delays. The use of worst case execution times 
ensures that the results, shown in Table 9.1, are conservative estimates. The cost of 
shipping a data packet between the Blackboard handler and a remote knowledge source 
was computed by shipping 20,000 varying sized packets across the EtherNet network 
used to connect the knowledge sources with the blackboard. The average time to build 
a packet, and send it to the remote knowledge source is 7 milliseconds.

Table 9.1 Processor Evaluation (msec.)

Processor Synch. Relative
Geometry

Situation Evaluation Dynamics

HyperCube™ 1.0 10 .0 3.0 254.0 47.0

Vax II™ 1.2 13.94 4.63 234.75 66.76

Vax 3200™ 0.5 4.56 1.52 76.86 2 1 .8 6

Sparc SLC™ 0.3 3.10 1.03 52.14 14.83

Sparc IT™ 0.1 1.23 0.41 20.77 5.91

DS5000™ 0.062 0.62 0 .2 0 10.39 2.95

The processor evaluation data was used to evaluate the effect of placing the 
Dynamics knowledge source on different processors, and holding the performance of 
the other knowledge sources constant. The execution delay for the Dynamics 
knowledge sources was modified using the results of the processor evaluation tests and 
the simulations were run using the new execution delay data.

Evaluating alternative hardware systems allows the designer to measure the effect 
of moving knowledge sources to other processors in the heterogeneous computing 
network. The results of moving the Dynamics knowledge source are shown in figures 
9.7 and 9.8. Figure 9.7 shows the projected speedup values for each design as the 
Dynamics knowledge source is moved to faster processors. Figure 9.8 shows the
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projected processor efficiency values for each design as the Dynamics knowledge 
source is moved to faster processors. Moving the Dynamics knowledge source to the 
fastest available processor increases the Cube8 system speedup value and processor 
efficiency by 40.8%. The designer can use this type of “What I f ’ simulation analysis 
to study the combined effects of changing the distribution of knowledge sources across 
the available processors and adding knowledge sources to the design.
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9.5.2 Evaluation of Paladin

Speedup and processor efficiency for the Paladin designs can be improved by 
moving the Dynamics knowledge source to a faster processor. The execution time of 
the Dynamics knowledge source across a set of available processors are shown in 
Table 9.2. The results of the knowledge source timings presented in Table 8.2 were 
used to scale the execution times to the faster processors.

Table 9.2 Dynamics Knowledge Source Execution Times (msec.)

Processor COBS I COBS II

Vax 3200™ 180 180
Sun Sparc SLC™ 121 121

Sun Sparc 11™ 47 47

DEC DS5000™ 23 23

Figures 9.9 and 9.10 show the effect of moving the Dynamics knowledge source to 
faster processors. The speedup values for both designs rise to acceptable levels. Using 
the DS5000 processor to host the Dynamics knowledge source, COBS I achieves a
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speedup of 4.95 and COBS II achieves a speedup of 5.46. COBS Ps processor 
efficiency rises to 82.6% and COBS II achieves a processor efficiency of 68.3%.
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This example shows effective use of a heterogeneous computing network and 
cooperation between knowledge-based software and conventional software. The use of 
the heterogeneous computing network allows each of the knowledge sources to execute 
on the most favorable processor. Moving the Dynamics knowledge source to a faster 
processor increases Paladin’s speedup and efficiency values without requiring changes 
to the systems design.

The Paladin design makes effective use of the available resources, speeding up the 
“slower” knowledge sources without applying the “overkill syndrome” of running the 
whole system on the fastest available processors, regardless of the efficiency of the 
implementation or speedup achieved. Overkill syndrome can result in inefficient 
system implementations where many of the processors are idle a for large periods of 
time. Moving all of the knowledge sources to faster processors would increase the 
systems speedup when compared to the original implementation. This would 
reintroduce the processor efficiency problems of the original design, since all of the 
knowledge source would be executing proportionally faster. The designer needs to find 
the proper balance between system speedup and processor efficiency that meets the 
needs of their specific application.

9.6 Conclusions

The Cube system forces the designer to decide what performance versus processor 
efficiency trade-offs to make. The constraints on the design are very simple, and all of 
the knowledge sources can run on any of the available processors. The decision to 
move the Dynamics knowledge source to the DS5000™ is clear cut. The move 
increases design speedup and processor efficiency for all of the proposed designs. The 
decision of how many Maneuver Evaluation knowledge sources to implement is more 
difficult. The researcher must include real-time execution requirements and processor 
availability in the decision. The Cube4 design has good processor efficiency results, 
but may not meet the designers real-time requirements. If Cube4 doesn’t meet the 
designers real-time execution requirements the faster, but less efficient, Cube8 design 
must be used.

The Paladin design has tighter constraints placed on it. The knowledge-based 
systems achieve their best performance executing on the specialized workstations, and 
the Dynamics knowledge source cannot be reduced into smaller components. The 
decision to split the Situation Assessment and Throttle Control knowledge sources is
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complex. The researcher must include real-time execution requirements and processor 
availability in the decision. When the DS5000™ is used to host the Dynamics 
knowledge source, both COBS designs have good processor efficiency results. The 
slower COBS I design may not meet the systems real-time requirements. If COBS I 
doesn’t meet the real-time execution requirements the faster, but less efficient, COBS II 
design must be used.
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Chapter 10 
Summary

Blackboard systems can be viewed as a set of independent knowledge sources 
working to solve a common problem. Each knowledge source independently monitors 
the global blackboard data structure and determines when it can advance the current 
solution of the problem. Concurrent blackboard systems show great promise for 
increasing the power of the blackboard problem-solving model. The blackboard 
problem-solving model has several inherent features that can be exploited to create 
efficient concurrent systems.

10.1 The Formal Model for Blackboard Systems

I have developed Formal Model for blackboard systems and a set of design and 
analysis techniques for concurrent blackboard systems that support the formal model. 
The Formal Model for Blackboard Systems provides the designer with a formal 
“Design -> Simulate -> Analyze -> Implement” process to develop concurrent 
blackboard systems. The formal model specifies the features and components a design 
must include to be considered a valid blackboard system design. The formal model 
requires a description of the blackboard data structure, the function computed by each 
knowledge source, and the knowledge source’s input and output variables. The formal 
model for blackboard systems and the design and analysis techniques described in this 
dissertation are unique. This is the first use of a formal model and a set of structured 
design and analysis techniques for blackboard systems found in the literature. The 
formal model and the design, analysis, and simulation techniques provide blackboard 
system designers with the tools required to develop systems that realize the full power 
of the blackboard system problem-solving model. The design and analysis techniques 
I have developed for concurrent blackboard systems are generic, and can be applied to 
any concurrent processing problem.

10.1.1 Blackboard System Design and Analysis Techniques

Knowledge source connectivity analysis is a method for evaluating formal 
blackboard system design specifications. Connectivity analysis determines the data 
transfers between the knowledge sources and data migration across the blackboard. 
Knowledge source specialization, serialization, and knowledge source interdependence
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values are calculated, and feedback loops in the blackboard system design are detected. 
These techniques evaluate a design specification before the blackboard system is 
developed. This allows the designer to address knowledge source interdependence 
problems, connectivity problems, and design feedback loops during the initial design 
process.

Knowledge source connectivity analysis produces a measure of the interdependence 
between knowledge sources and a measure of the data transfers across the blackboard 
and through the communications network. From this analysis the designer can 
determine if the knowledge sources have been partitioned correctly and if the required 
level of knowledge source specialization has been achieved. The design and analysis 
techniques are generic and are not application dependent.

10.1.2 Blackboard System Simulation Modeling

The validated Blackboard System Simulation model is used to evaluate proposed 
blackboard system designs before they are implemented. The simulation model is 
generic, and can be used to model any blackboard system that can be expressed using 
the formal blackboard system model. The simulation system has been applied to 
concurrent message-passing distributed blackboard systems, and concurrent shared 
memory blackboard systems.

The simulation system models the interaction between the knowledge sources, 
collisions and hotspots on the shared blackboard, and data transactions between the 
knowledge sources and the blackboard. The analysis provides important information 
on a designs expected performance, and how the performance can be improved. This 
allows the system designer to perform trade-off analysis using a low cost, high fidelity 
simulation system.

10.1.3 The Concurrent Object-Oriented Blackboard System

The Concurrent Object-Oriented Blackboard System (COBS) system is an 
implementation of the formal blackboard model and the blackboard system design, 
analysis, and simulation techniques. COBS is a method for implementing concurrent 
blackboard systems utilizing of a set of highly independent, highly specialized 
knowledge sources that cooperate using a shared object-oriented blackboard. COBS 
removes the centralized control module, instead implementing a set of object-oriented 
blackboard data objects. Blackboard control and knowledge source selection is
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achieved using daemons attached to the blackboard data objects. The daemons activate 
the blackboard handlers when data elements on the blackboard are updated. The 
blackboard handlers control knowledge source activation and provide the knowledge 
sources read/write access to the blackboard.

COBS is designed to execute on a heterogeneous computer network with a 
centralized shared memory parallel processor hosting the blackboard data structure. 
Daemon driven blackboard handlers manage the blackboard data objects and the data 
transfers to and from the knowledge sources. The object-oriented blackboard and the 
knowledge source specific blackboard handlers remove the need for the centralized 
control structure. The blackboard handlers have direct access to the blackboard data 
structure and can directly monitor the status of the blackboard data objects. COBS uses 
an n-readers/one-writer protocol to guarantee blackboard consistency. All blackboard 
handlers use a two-phase locking protocol or read/write serialization to guarantee 
knowledge source serializability.

10.1.4 Validation of COBS

Two existing concurrent distributed blackboard systems were used to evaluate the 
performance of COBS. Formal blackboard system design specifications were 
developed using the existing systems. Each design specification was evaluated using 
the COBS design, analysis, and simulation tools, and the results were compared to the 
performance of the existing systems. The results of these tests were used to validate 
the performance of COBS. The simulations of both systems computed the correct 
results and accurately modeled the performance of the systems.

10.2 Future Research

Several interesting opportunities for continuing the refinement of the formal model 
and design, simulation and analysis techniques for concurrent blackboard systems 
exist. COBS will be used to develop the final version of the Paladin system. The final 
version of Paladin is more complex that the existing blackboard systems. This 
research will provide the information required to refine the formal model and the 
blackboard system design and analysis techniques.

Two other research projects currently plan to utilize the formal model to develop 
real-time concurrent blackboard systems:
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The first project is a Autoland Progress Monitor (APM) system being developed at 
NASA Langley Research Center for testing in the Transport Systems Research Vehicle 
(TSRV). TSRV is a research B737 aircraft operated by the Advanced Transport 
Operating Systems (ATOPS) program. The autoland progress monitor is an 
knowledge-based control mode switching logic for the flight control system, and will 
provide feedback to the pilot as needed. This system requires redesigning portions of 
the the existing flight control system and integrating knowledge-based processing into 
system.

The second project is the Rotocraft Pilot’s Associate Program. This project is an 
Army Aviation project managed by the Aviation Applied Technology Directorate at Ft. 
Eustis, Virginia. Discussion is underway to provide a version of the COBS system to 
be used to evaluate proposed Rotocraft Pilots Associate systems. The Rotocraft Pilot’s 
Associate program is larger and more complex that any currently implemented 
blackboard systems, and has tight real-time execution constraints. The design and 
development of a system this size (approximately 1 0 0  knowledge sources) without a 
formal model and an automated set of design and analysis techniques is infeasible. The 
sheer size of the system and the complexity of the knowledge source interactions make 
hand analysis of this system impossible. COBS will be used to evaluate proposed 
software design specifications and proposed hardware architectures.

Discussions are also underway to implement the formal model and the 
daemon-driven control structure on a associative memory hardware configuration. The 
associative memory based implementation would be used for real-time embedded 
avionics systems applications. This research will apply the formal model to a third 
hardware architecture. Currently the formal model has been tested on a message 
passing distributed processor system and a shared memory distributed processing 
system.

The formal model and the design and analysis techniques provide concurrent 
blackboard systems designers with a unified design technique and a consistent set of 
design, simulation, and analysis tools. The power and usefulness of the the formal 
model and design and analysis techniques have been recognized by the blackboard 
systems community and are now being applied to a wide range of independent 
applications and hardware environments.
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Blackboard Model

The blackboard model consists of three major components

Knowledge Sources.

The knowledge needed to solve the problem is partitioned into separate and 
independent knowledge sources.

The blackboard data structure.

The problem solving state data are kept in a global database, the blackboard. 
Knowledge sources produce changes to the Blackboard that lead incrementally 
to a solution to the problem. The knowledge sources communicate and interact 
solely through the blackboard.

Control.

The knowledge sources respond opportunistically to changes to the blackboard. 
There is no control component specified in the blackboard model.

Blackboard Simulation Model

The blackboard simulation model is used to predict the performance of 
blackboard systems. The knowledge source distribution information and the 
results of the knowledge source connectivity analysis to build a simulation 
model of the system.

Expert System

Expert systems are computing systems that embody organized knowledge 
concerning some specific area of human expertise, sufficient to perform as a 
skillful and cost effective consultant The rules and/or knowledge incorporated 
in the system have been extracted by consulting with an “expert” in the 
problem domain.

Explicit Input Variables

Explicit input variables specify a explicit blackboard data object that is used as 
the input variable to the knowledge source. The knowledge source can only use 
the specified blackboard data object as the input variable.

Explicit Knowledge Sources

Explicit Knowledge Sources have only explicit input variables.
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'Functionally Accurate* refers to the generation of acceptably accurate solutions 
without the requirement that all shared intermediate results be correct and 
consistent (semantically consistent). 'Cooperative* refers to the iterative, 
coroutine style of knowledge source interaction in the blackboard system. The 
hope of this approach is that much less communication is required to exchange 
the tentative results then the communication of all the raw data and processing 
results. Blocking and synchronization overhead can be reduced or eliminated 
resulting in increased parallelism and opportunistic problem solving.

Generic Input Variables

Generic input variables specify a class or type of blackboard data object that 
can be used as the input variable to a knowledge source. The use of generic 
input variables allows development of knowledge sources that function on a 
class of blackboard data objects.

Generic Knowledge Sources

Generic knowledge sources have only generic input variables.

Knowledge-Based System

These programs use a large amount of information about the domain under 
discussion to help understand the problem being solved. The knowledge is 
usually stored within the program using some knowledge representation 
scheme like logic, procedural semantics, semantic networks, frames, or objects.

Knowledge Source Connectivity Analyzer

The knowledge source connectivity analyzer is a tool used during the 
blackboard system design phase. The knowledge source connectivity analyzer 
uses the knowledge source distribution and the input and outputs of each 
knowledge source to develop a knowledge source connectivity graph between 
the knowledge sources. The connectivity data is used to determine knowledge 
source connectivity and knowledge source specialization.

Knowledge Source Organizer

The knowledge source organizer is a tool used during the blackboard system 
design phase. The knowledge source organizer is used to decompose the 
problem into its component parts and to aid in the initial selection of knowledge 
sources and the blackboard data structure.

Mixed Knowledge Sources

Mixed Knowledge Sources have both explicit and generic input variables.
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Production Systems

A production system repeatedly looks for production rules whose left-hand 
sides (LHS) matches working memory (WM). A LHS matches WM if there 
is an assignment of values to its variables such that the patterns match. A 
production system has three main components: a working memory, a 
production memory, and a rule interpreter.

The working memory (WM) is a set of dat structures that represent the 
current state of the system.

The production memory (PM) is a set of rules, each consisting of a left-hand 
side (LHS) and a right-hand side (RHS).

The LHS is the condition side of each production rule. If the condition matches 
WM then the condition is satisfied and the rule is fired.

The RHS consists of a set of actions that are executed if the rule is fired.

The rule interpreter.

The rule interpreter applies the rules to the working memory. A PS interpreter 
works in a “recognize-act” cycle. The interpreter finds the appropriate 
production, "recognition”, and then executes the RHS, taking “action.”

Conflict Resolution.

A conflict resolution strategy is incorporated in the rule interpreter to choose 
which rule to fire if more that one rule can be fired in a cycle.

Rule-Based Systems

A rule-based system repeatedly looks for rules whose left-hand sides (LHS), 
or condition, evaluates to true. A rule-based system has three main 
components: a working memory, a rule-base, and a inference engine.

The working memory (WM) is a set of dat structures that represent the 
current state of the system.

The rule-base is a set of rules, each consisting of a left-hand side (LHS) and a 
right-hand side (RHS).

The LHS is the condition side of each production rule. If the condition 
evaluates to true then the condition is satisfied and the rule is fired.

The RHS consists of a set of actions that are executed if the rule is fired.

The inference engine applies the rules to the working memory. The inference 
engine works in a “recognize-act” cycle. The interpreter finds the appropriate 
production, "recognition”, and then executes the RHS, taking "action.”
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A conflict resolution strategy is incorporated in the rule interpreter to choose 
which rule to fire if more that one rule can be fired in a cycle.

Semantic Consistency

Semantic consistency requires that the data read in by a knowledge source 
does not change during the time in which the knowledge source performs its 
problem-solving activities and places its results onto the blackboard.

Serialization.

The Serialization Principle is the requirement that concurrent execution of 
multiple operations have the same effect as some serial execution of the 
operations. An execution that satisfies this principle is called serializable.
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A .l Blackboard System Specifications

Specification of the blackboard system Bi:

X = {di, d2, d3, d4, ds, d6, d7, d8, d9};

P= (Vix V2XV3X V4X V5X Vex V7x Vgx V9);
V i , V g =  {{U }u  91} U = Undefined, = the set of real numbers

p = {ksi,ks2, ks3 ,k s4 }; 
ksi = {IV = {di,d2},

IC = (ici, ic2 ),
F = {d3 = max(di, d2), 64 = (dj * d2), ds = (dj /  d2) )
OV = {d3, d4 ,d 5},

PR =
PT = <])}.

ks2 = {IV = {d3,d9h 
IC =  {ic3 ,ic9 },
F = {dfi = (d3 /4.10), d7 = (d9 * 0.41))
O V = {d 6 ,d 7},
PR = {pri = (d4 *  7), pr2 = (ds * pi)),
PT = <)>}.

ks3 = {IV = {d4.de),
IC = {ic4 ,ice),
F = {d8 = max(d4 ,de)),
O V = {d8),
PR = {pr2 = (ds *  pi), pr3 = (d9 *  13.6)),
PT={pti = (d5*U)}.
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ks4 = {IV ={d5,d7,d8},
IC= {ic5 ,ic 7 , icg},
F = (d9 = (max(d5 , d7, ds) /  min(d5, d7, ds))}
O V = {d9},
PR = {pr3 = (d9 *  13.6), pr4 = (d2  *  0.0), prs = (ds *  0.0)},
PT = <}).

Is = (di = 1, d2 = 1, d3 -  U, d4 = U, d5 = U, d6 = U, d7 = U, d8 = U, 
d9 = U}

0  ={<ksi, ks2>, <ksi, ks3>, <ksi, ks4>, (ks2, ks3), <ks2, ks4>, (ks3, ks4>, 
<ks4, ks2)}

d2

KS 3KS1

KS4KS 2

d7
Figure A .l Unsafe Knowledge Source Activation G raph

The blackboard system Bj has two cycles. A direct loop, or closed path of length 
two, exists between ks2 and ks4 . A closed path of length three exists between ks2 , ks3, 
and ks4 .
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X = (di, d2, d3 , d4 , ds, de, d7, ds, dg};

p = {V! x V2  x V3  x V4  x V5 x Ve x V7  x Vsx V9 } ;
Vi = {{U} u<R)
V2 ={{U} u 9 t )
V3 ={{U} u f t )
V4 ={{U) u t t )
V5  = { {U} u  91}
V6 ={{U} u9?}
V7 = {{U) u9?)
V8  = {{U) uSR)
V9 = {{U) u<R)

P = {ksi, ks2 , ks3 ,ks4 }; 
ksi = {IV = {di,d2},

IC =  {ici, ic2 ),
F = {d3 = max(di, d2), d4  = (di * d2), ds = (di /  d2)] 
OV = {d3, d4 ,d 5},
PR = (J),

PT = <H.

ks2 = { IV = { d 3},
IC =  fic3},
F = {de = (d3 /4.10), d7 = (d3 * 0.41)) 
O V = { d 6 ,d 7),
P R = { p ri = (d4 ^ 7 )},
PT = ())}.

ks3 = {IV = (d4,d6),
IC =  {ic4 , ice),
F = {ds = max(d4 ,de)),
O V = { d 8),
PR = {pr2 = (d8 pi), pr3 -  (d9 *  13.6)},
P T = { p ti = (d5 *U )}.
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ks4 = {IV ={d5,d7,d8},
IC =  {1C5, ic7,ics),
F  = {d9 = (max(d5 , d7, ds) / min(d5 , d7, ds))}
OV = {d9},
PR = {pr3 = (d9 *  13.6), pr4 = (d2 *  0.0), prs = (ds *  0.0)},
PT = <|>.

Is = {di = l , d 2 = l , d 3 = U ,d 4  = U ,d 5 = U ,d 6  = U ,d 7 =sU ,d 8 =U , 
d9 = U}

0  ={(ksi, ks2>, (ksi, kS3>, (ksi, ks4>, (ks2 , ks3>, (ks2, ks4>, <ks3, ks4»

KSI KS3

KS 2 KS4

Figure A.2 Safe Knowledge Source Activation Graph

A.2 Blackboard System Execution Traces

The blackboard system Bi is unsafe, and due to the initial values of the blackboard 
data objects specified in Is, the system will deadlock after the execution of ksi. The 
blackboard system B2 is safe and will not deadlock. A trace of the blackboard system 
execution shows the state of the Bi from system initialization to deadlock.

At initialization:

I s={d i  = l , d 2E:l ,d3 = U,d4 = U,d5 = U, d6 = U ,d7 = U, d8 = U,  
d9 = U}
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IC = {ici = T, ic2 = T, ic3 -  F, ic4 = F, ics = F, ic6 = F, ic7 = F, ics = F, 
ic9  = F}

PR = {pri = T, pr2 = T, pr3 = T, pr4 = T, prs = T)

PT = {pti = F)

After execution of ksi:

Is = { d i  = l , d 2 = l , d 3 = l , d 4 = l , d 5 = l , d 6 = U ,d 7 = U , d 8 = U, 
d9 =!U}

IC = {ici - F, ic2 = F, iC3 -  T, ic4 = T, ics = T, ic6 = F, ic7 = F, ics = F, 
ic9 = F}

PR = {pr i=T,pr2 = T, pr3 = T, pr4 ==T,pr5 = T}

P T = { p t i  = T}

Bi is now deadlocked. Ks2 cannot be activated until ks4  is activated and computes 
a  value for d9 and sets ic9 to TRUE. KS3 cannot be activated until ks2 is activated and 
computes a value for de and sets ic6 to TRUE. KS4 cannot be activated until kS2 is 
activated and computes a value for d7 and sets ic7 to TRUE, and ks3 is activated and 
computes a value for ds and sets ics to TRUE. Ks2  is waiting for ks4 , ks3 is waiting 
for ks2 , and ks4 is waiting for ks2 and ks3 .

By changing the initial values of the blackboard data objects specified in Is we can 
show that fact that a system is unsafe does not imply that the system will deadlock. A 
trace of the blackboard system execution shows the state o f the blackboard system Bi 
from system initialization through the completion of the first execution cycle.

At initialization:

Is = {di = 1, d2 = 1, d3 = U, d4 = U, ds = U, d6 = U, d7 -  U, ds = U, 
d9 = 9.774)

• IC = {ici - T, ic2 = T, ic3 = F, ic4 = F, ics = F, ice = F, ic7 = F, ics » F, 
ic9 = T)

PR = {pri -  T, pr2 = T, pr3 = T, pr4 = T, prs = T)
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PT={p t i  = F}

After execution of ksi:

• Is = {di = 1, d2 = 1, d3 = 1, d4 = 1, d s -  1, de = U, d7 =U, d8 = U, 
d9 = 9.774}

IC = {ici = F» ic2 = F, ic3 = T, iC4 = T, ics = T, ic6 = F, icy = F, ics = F, 
ic9 = T}

PR = {pri = T, pr2 = T, pr3 _ T, pr4 = T, prs = T}

PT = {pti = T)

Blackboard state after ks2 is executed:

• Is = {di = 1, d2 = 1, d3 -  1, d4 s  1 , d5 = 1, de = 0.24, d7 -  0.41, ds = U, 
d9 = 9.774}

IC = (ici = F, ic2 -  F, ic3 = F, ic4  = T, ics = T, ic6 = T, ic7 = T, ics = F, 
ic9 = T}

PR = (pri = T, pr2 = T, pr3 = T, pr4 = T, prs = T}

PT = {pti = T}

Blackboard state after ks3 is executed:

• Is = {di = 1, d2 = 1, d3 = 1, d4 = 1, ds = 1, d6 = 0.24, d7 = 0.41, ds = 1, 
d9 = 9.774}

IC = {icj = F, ic2 = F, ic3 = F, ic4 = F, ics = T, ic6 = F, ic7 = T, ics = T, 
ic9 = T}

PR = {pri = T, pr2 = T, pr3 = T, pr4 = T, prs = T}

PT = {pti = T}
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Is = (di = 1, d2 = 1 , d3 = 1, d4 = 1 , d5 = 1 , d6  = 0.24, d7 = 0.41, d8 = 1 , 
d9 = 2.439}

IC = {ici = F, ic2 = F, ic3 = F, ic4  = F, ics = F, iC6 = F, ic7 = F, ic8 = F, 
ic9 = T}

PR = {pri _ T, pr2 = T, pr3 - T, pr4 = T, prs = T}

PT = {pti = T}

Bi has completed the first path through the execution cycle and has not deadlocked. 
The system will continue to execute safely as long as data arrives at the sensor, ksi. It 
is important to realize that it is the initial state of the blackboard data objects that can 
cause an unsafe system to deadlock. An unsafe system design does not insure that a 
system will deadlock, the initial state of the blackboard data elements may or may not 
cause deadlock.

A trace o f the blackboard system execution shows the state of the blackboard 
system B2  from system initialization through the completion of the first execution 
cycle. B2  is a safe blackboard system and does not deadlock.

At initialization:

Is ={di  = l , d 2 = l , d 3 = U ,d 4  = U ,d 5 = U ,d 6 = U ,d 7 = U ,d 8 = U, 
d9 = U}

IC = {ici = T, ic2 = T, ic3 -  F, ic4 = F, ics = F, ic6 = F, ic7 = F, ic8 = F, 
ic9 = F}

PR = {pri _ T, pr2  = T, pr3 = T, pr4  - T, prs _ T}

PT = {pti = F}

After execution of ksi:

Is = {di= 1, d2 = 1 , d3= 1, d4 = 1, d5 = 1, d6  = U, d7 = U, d8 = U, 
d9 = U)
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IC = {ici -  F, ic2 = F, ic3 = T, ic4 = T, ics = T, ice -  F, ic7 = F, ics = F, 
ic9 =F)

PR = {pri = T, pr2 = T, pr3 = T, pr4 _ T, prs _ T}

PT={pti  = T}

Blackboard state after ks2 is executed:

Is = [di = 1, d2 = 1, d3 = 1, d4 = 1, d5 = 1, de = 0.24, d7 = 0.41, dg = U, 
d9 = U}

IC = {ici -  F, ic2 = F, ic3 -  F, ic4 = T, ics = T, ice = T, ic7 = T, ics = F, 
icg = F}

PR = {pri=T, pr2 = T ,p r3 =T,pr4 = T ,prs = T}

PT={pt i=T}

Blackboard state after ks3 is executed:

• Is = {dt = 1, d2 = 1, d3 = 1, d4 = 1, ds = 1, de = 0.24, d7 = 0.41, ds = 1, 
d9 = U}

IC = {ici = F, ic2 = F, ic3 = F, ic4 = F, ics = T, ic6 = F, ic7 = T, ics = T, 
ic9 = F}

PR = {pri = T, pr2 = T, pr3 = T, pr4 -  T, prs = T}

PT = {pti =T)

Blackboard state after ks4 is executed:

Is = {di = 1, d2 = 1, d3 = 1, d4 = 1, d5 = 1, d6 = 0.24, d7 = 0.41, d8 = 1, 
d9 = 2.439}

IC = {ici = F, iC2 = F, iC3 = F, iC4 = F, ics = F, ice = F, ic7 = F, ics = F, 
ic9 = T}

PR = {pri = T, pr2 = T, pr3 = T, pr4 = T, prs = T}
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PT={pt i=T}

B2  has completed the first loop through the execution cycle and has not deadlocked. 
The system will continue to execute safely as long as data arrives at the sensor, ksi.
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B .l Examples of Connectivity Analysis

This section demonstrates the application of the connectivity analysis techniques 
using the blackboard systems defined in Chapter Three as examples.

B.1.1 Blackboard System B i Analysis Results
Knowledge source; K S1 

Type: SENSOR 
¥: p i  D2)
O: P 3  D4 D5)
Input conditionals: (KS1-D2 KS1-D1) 
Preconditions: $
Postconditions: $
Depth: 0 
Predecessors: <>
Successors: (KS4 KS3 KS2)
Execution time: 5 
Cardinality of V: 2 
Cardinality of <J>: 3

Output Overlap
r< K S iK S 4><t>
r<KSiKS3><t>
r< K S iK S 2>(j)

Specialization Values 
0 <KSiKS4> 0.0 
Q<KS iKS3> 0.0 
a< K SiK S2> 0.0

Output to Input Connectivity 
A<KSiKS4> p 5 )
A<KSiKS3> p 4 )
A<KSiKS2> P 3 )

Interdependence Values 
n<KSiKS4> 0.33333334 
n<KSiKS3> 0.33333334 
n<KSiKS2> 0.33333334

Serialization Value
2<KSiKS4> 0.33333334 
S<KSjKS3> 0.5
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Z<KSiKS2> 0.5

Knowledge source: KS2 
Type: PROCESSOR 
v:  (D3 D9) 
o: (D6D7)
Input conditionals: (KS2-D9 KS2-D3) 
Preconditions: ((D4 7)

(D8  *  PI)) 
Postconditions: 4>
Depth: 1
Predecessors: (KS4 KS1)
Successors: (KS4 KS3)
Execution time: 4 
Cardinality of T: 2 
Cardinality of <t>: 2

Output Overlap 
T<KS2KS4>
T<KS2KS3> <|> 
r<KS2KSi>())

Specialization Values 
Q<KS2KS4> 0.0 
£2<KS2KS3> 0.0 
H<KS2KSi> 0.0

Output to Input Connectivity 
A<KS2KS4> (D7)
A<KS2KS3> (D6 )
A<KS2KSi> ((>

Interdependence Values 
n<KS2KS4> 0.5 
n<KS2KS3> 0.5 
n<KS2KSi> 0.0

Serialization Value
E<KS2KS4> 0.33333334 
Z<KS2KS3> 0.5 
E<KS2KSi> 0.0

Knowledge source: KS3 
Type: PROCESSOR 
V: (D4D6)
<b: (D8 )
Input conditionals: (KS3-D6 KS3-D4) 
Preconditions: ((D8  *  PI)

(D9 *  13.6)) 
Postconditions: ((D5 & UNDEFINED))
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Depth: 2
Predecessors: (KS2 KS1) 
Successors: (KS4)
Execution time: 6  
Cardinality of'P: 2 
Cardinality of 4>: 1

Output Overlap
r<K S3KS4> <t> 
T<KS3KS2> 0 
r<K S3KSi><t>

Specialization Values 
Q<KS3KS4> 0 .0  
£2<KS3KS2> 0.0 
£2<KS3KSi> 0.0

Output to Input Connectivity 
A<KS3KS4> (D8 ) 
A<KS3KS2> <]) 
A<KS3KSi><|>

Interdependence Values
n<KS3KS4> 1.0 
n<KS3KS2> 0.0 
n<KS3KSi> 0.0

Serialization Value
S<KS3KS4> 0.33333334 
2<KS3KS2> 0.0 
Z<KS3KSi> 0.0

Knowledge source: KS4 
Type: PROCESSOR 
¥ : (D5 D7 D8)
O: (D9)
Input conditionals: (KS4-D8 KS4-D7 KS4-D5) 
Preconditions: ((D9 ^  13.6)

(D2 *  0.0)
(D8  *  0.0))

Postconditions: <|i 
Depth: 3
Predecessors: (KS3 KS2 KS1)
Successors: (KS2)
Execution time: 8 
Cardinality of'P: 3 
Cardinality of 4>: 1

Output Overlap 
r<KS4KS3> <(>
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T<KS4KS2> 4» 
r< K S 4KSi><()

Specialization Values 
fi<KS4KS3> 0.0 
a<K S4KS2> 0 .0  
Q<KS4KSi> 0.0

Output to Input Connectivity 
A<KS4 KS3> <|>
A<KS4KS2> (D9)
A<KS4 KSi>(()

Interdependence Values 
n<KS4KS3> 0.0 
n<KS4KS2> 1.0 
n<KS4KSi> 0.0

Serialization Value 
Z<KS4KS3> 0.0 
Z<KS4KS2> 0.5 
Z<KS4KSi> 0.0

The blackboard system Bi has two cycles. A direct loop, or closed path of length 
two, exists between ks2 and ks4 . A closed path of length three exists between ks2, ks3, 
and ks4 .

Figure B .l Connectivity Graph for Bi

B.1.2 Blackboard System B2  Analysis Results 

Knowledge source: KS1
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Type: SENSOR 
T: (D1 D2)
<&: (D3 D4D5)
Input condidonals: (KS1-D2 KS1-D1) 
Preconditions: <J>
Postconditions: $
Depth: 0 
Predecessors: <j>
Successors: (KS4 KS3 KS2) 
Execution time: 5 
Cardinality of T: 2 
Cardinality of 4>: 3

Output Overlap 
T<KSiKS2> 4» 
r<KSiKS3><j) 
r<KSiKS4><])

Specialization Values 
0<K SiK S2> 0 .0  
fl<KSiKS3> 0.0 
£2<KSiKS4> 0.0

Output to Input Connectivity 
A<KS1KS2> (D3)
A<KS1KS3> (D4)
A<KS1KS4> (D5)

Interdependence Values 
n<KSiKS2> 0.33333334 
n<KSjKS3> 0.33333334 
n<KSiKS4> 0.33333334

Serialization Value 
Z<KSiKS2> 1.0 
Z<KSiKS3> 0.5 
E<KS]KS4> 0.33333334

Knowledge source: KS2 
Type: PROCESSOR 
T: (D3)
<D: (D6  D7)
Input conditionals: (KS2-D9 KS2-D3) 
Preconditions: (D4 *  7)

(D8 *  PI)) 
Postconditions: <j>
Depth: 1
Predecessors: (KS4 KS1)
Successors: (KS4 KS3)
Execution time: 4
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Cardinality of Y: 1 
Cardinality of tf>: 2

Output Overlap 
r<K S2KSi><}) 
r<K S2KS3> 4 
T<KS2KS4> 4

Specialization Values 
£2<KS2KSi> 0.0 
Q<KS2 KS3> 0.0 
£2<KS2 KS4> 0.0

Output to Input Connectivity 
A<KS2KS1> 4 
A<KS2KS3> (D6 )
A<KS2KS4> (D7)

Interdependence Values 
n< K S 2KSi> 0.0 
n<K S2KS3> 0.5 
n < K S 2KS4> 0.5

Serialization Value 
Z<KS2KSi> 0.0 
£<KS2KS3> 0.5 
S<KS2KS4> 0.33333334

Knowledge source: KS3 
Type: PROCESSOR 
V: (D4 D 6 )
4>: (D8 )
Input conditionals: (KS3-D6 KS3-D4) 
Preconditions: (D8 PI)

(D9 *  13.6)) 
Postconditions: (D5 ^  UNDEFINED))) 
Depth: 2
Predecessors: (KS2 KS1)
Successors: (KS4)
Execution time: 6  
Cardinality of 2 
Cardinality of o: 1

Output Overlap 
r< K S 3KSi> 4 
T<KS3KS2> <j)
T<KS3KS4> <t>

Specialization Values 
D<KS3KSi> 0.0
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Q<KS3KS2> 0.0 
0<K S 3KS4> 0.0

Output to Input Connectivity 
A<KS3KS1> 4 
A<KS3KS2> 4 
A<KS3KS4> (D8 )

Interdependence Values 
n<KS3KSi> 0.0 
n<KS3KS2> 0.0 
n < K S 3KS4> 1.0

Serialization Value 
Z<KS3K Si>0.0 
Z<KS3KS2> 0.0 
E<KS3KS4> 0.33333334

Knowledge source: KS4 
Type: PROCESSOR 
Y: (D5 D7 D 8)
<6 : (D9)
Input conditionals: (KS4-D8 KS4-D7 KS4-D5) 
Preconditions: (D9 ^  13.6)

(D2*0.0)
(D8  *  0.0))

Postconditions: 4  
Depth: 3
Predecessors: (KS3 KS2 KS1)
Successors: (KS2)
Execution time: 8 
Cardinality of ¥: 3 
Cardinality of <l>: 1

Output Overlap 
T<KS4K S i> 4  
T<KS4KS2> 4 
T<KS4KS3> 4

Output to Input Connectivity 
A<KS4KS1> 4 
A<KS4KS2> 4 
A<KS4KS3> 4

Specialization Values 
Q<KS4KSi> 0.0 
Q<KS4KS2> 0.0 
fl<KS4KS3> 0.0

Interdependence Values
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n<KS4KSi> 0 .0  
n<KS4KS2> o.o 
n<KS4KS3> 0.0

Serialization Value 
£<KS4KSi> 0.0 
S<KS4KS2> 0.0 
S<KS4KS3> 0.0

KS 3KS1

KS2 KS4

Figure B.2 Connectivity Graph for B2

B.1.3 Blackboard System B3  Analysis Results

Knowledge source: ksl 
Type:sensor 

(D1 D2)
<6 : (D3 D4 D5 D6 )
Input conditionals: (ksl-D 2ksl-D l) 
Preconditions: <|>
Postconditions: <t>
Depth: 0 
Predecessors: <|>
Successors: (ks2 ks3 ks4)
Execution time: 4 
Cardinality o f T: 2 
Cardinality of <£•: 4

Output Overlap 
r<ksiks2> 4* 
r<ksiks3>  (j> 
r< k sik s4> ()>

Specialization Values
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£2<ksiks2 > 0 .0  
£2<ksiks3> 0.0 
£2<ksiks4> 0.0

Output to Input Connectivity 
A<ksiks2> (D3) 
A<ksiks3> (D4 D6 ) 
A<ksiks4> (D5)

Interdependence Values 
n<ksiks2> 0.25 
II<ksiks3> 0.5 
Il<ksiks4> 0.25

Serialization Value 
Z<ksiks2> 1 .0  
E<ksiks3> 1.0 
Z<ksiks4> 0.33333334

Knowledge source: ks2 
Type: processor 

(D3)
<&: (D7)
Input conditionals: (ks2-D3) 
Preconditions: ((D4 *  7)) 
Postconditions: <|>
Depth: 1
Predecessors: (ksl) 
Successors: (ks4)
Execution time: 3 
Cardinality of *F: 1 
Cardinality of 0 : 1

Output Overlap 
r<ks2ksi>  (|» 
r<ks2ks3> (|) 
r< k s 2ks4>

Specialization Values 
Q<ks2ksi> 0 .0  
Q<ks2ks3> 0 .0  
Q<ks2ks4> 0 .0

Output to Input Connectivity 
A<ks2ksi> § 
A<ks2ks3> <j> 
A<ks2ks4> (D7)

Interdependence Values 
n < k s2ksi>  0.0
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Il<ks2ks3> 0.0 
II<ks2ks4> 1.0

Serialization Value 
Z<ks2ksi> 0 .0  
Z<ks2ks3> 0.0 
Z<ks2ks4> 0.33333334

Knowledge source: ks3 
Type: processor 

(D4 D6)
O: 008)
Input conditionals: (ks3-D6 ks3-D4) 
Preconditions: ((D8  ^P I)

(D9 #  13.6)) 
Postconditions: ((D5 UNDEFINED)) 
Depth: 2
Predecessors: (ksl)
Successors: (ks4)
Execution time: 5 
Cardinality o f 'F: 2 
Cardinality of 4>: 1

Output Overlap 
r<ks3ksi> 4> 
r<ks3ks2> <(> 
r<ks3ks4> <|>

Specialization Values 
£2<ks3ksi> 0.0 
n<ks3ks2> 0.0 
fi<ks3ks4> 0.0

Output to Input Connectivity 
A<ks3ksi> <]>
A<ks3ks2> <|>
A<ks3ks4> (D8)

Interdependence Values 
II<ks3ksi> 0.0 
n<ks3ks2> 0.0 
n<ks3ks4> 1.0

Serialization Value 
Z<ks3ksi> 0.0 
Z<ks3ks2> 0.0 
Z<ks3ks4> 0.33333334

Knowledge source: ks4
Type: processor
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'P: (D5 D7 D 8 )
<&: (D9)
Input conditionals: (ks4-D8 ks4-D7 ks4-D5) 
Preconditions: ((D9 * 13.6)

(D2*0.0)
(D8 * 0 .0 ))

Postconditions: f  
Depth: 3
Predecessors: (ksl ks2 ks3)
Successors: 4>
Execution time: 3 
Cardinality o f ¥ : 3 
Cardinality o f «D: 1

Output Overlap 
r<ks4ksi>  <j> 
r<ks4ks2><|> 
r<ks4ks3>  ^

Specialization Values 
£2<ks4ksi>  0 .0  
D<ks4ks2> 0 .0  
12<ks4ks3> 0 .0

Output to Input Connectivity 
A<ks4k si>  4>
A<ks4k s2>
A<ks4ks3> <j>

Interdependence Values 
Il<ks4ksi>  0.0 
Il<ks4ks2> 0 .0  
II<ks4ks3> 0.0

Serialization Value 
£<ks4ksi>  0 .0
Z<ks4ks2>  0.0
Z<ks4ks3> 0 .0
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d4

KS1

KS 4

Figure B.3 Connectivity G raph for B3

B.1.4 Blackboard System B4 Analysis Results

Knowledge source: ksl 
Type: sensor 
¥: (D1 D2)
4>: (D3 D4 D5 D6 )
Input conditionals: (ksl-D 2ksl-D l) 
Preconditions: <|>
Postconditions: <|>
Depth: 0 
Predecessors: <|>
Successors: (ks2 ks3)
Execution time: 4 
Cardinality o f 'J': 2 
Cardinality o f <&: 4

Output Overlap 
r< k sik s2> $ 
r< k sik s3> <j>

Specialization Values 
i2<ksiks2> 0.0 
n<ksiks3> 0.0

Output to Input Connectivity 
A<ksiks2> (D4 D6 )
A<ksiks3> (D3 D5)

Interdependence Values 
II<ksiks2> 0.5
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n<ksiks3> 0.5

Serialization Value 
E<kslks2> 1 .0  
Z<kslks3> 0.6666667

Knowledge source: ks2 
Type: processor 
V: (D4 D 6 )
O: (D8 )
Input conditionals: (ks2-D6 ks2-D4)
Preconditions: ((D8 *  PI)

(D9 & 13.6))
Postconditions: ((D5 *  UNDEFINED))
Depth: 1
Predecessors: (ksl)
Successors: (ks3)
Execution time: 4 
Cardinality o f ¥: 2 
Cardinality of <6 : 1

Output Overlap 
r<ks2ksi>  cj) 
r<ks2ks3> (j)

Specialization Values 
f2<ks2ksi> 0.0 
Q<ks2ks3> 0.0

Output to Input Connectivity 
A<ks2ksi> <j>
A<ks2ks3> (D8 )

Interdependence Values 
II<ks2ksi> 0.0 
II<ks2ks3> 1.0

Serialization Value 
2 <ks2 ksi> 0 .0  
Z<ks2ks3> 0.33333334

Knowledge source: ks3
Type: processor 
¥ : (D3 D5 D 8 )
<D: (D9)
Input conditionals: (ks3-D8 ks3-D5 ks3-D3)
Preconditions: ((D4 *  7)

(D2 *  0.0)
(D8  *  0.0)
(D 9* 13.6))
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Postconditions: (j)
Depth: 2
Predecessors: (ksl ks2) 
Successors: <t>
Execution time: 6  
Cardinality of *F: 3 
Cardinality of C>: 1

Output Overlap 
r< k s 3ksi> <|) 
r<ks3ks2>

Specialization Values 
£2<ks3ksj> 0.0
£2<ks3ks2> 0.0

Output to Input Connectivity 
A<ks3ksi> <j> 
A<ks3ks2> <j>

Interdependence Values 
II<ks3ksi> 0.0 
II<ks3ks2> 0.0

Serialization Value 
2<ks3ksi> 0.0 
E<ks3 ks2> 0 .0

d2

K S 1

K S 4

Figure B.4 Connectivity G raph for B4
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B.2 Example of a Simulation Run
175

The safe blackboard system B2 , described in Chapter Three, is used as an example.

B.2.1 Blackboard System Specification

Specification of the blackboard system B2 . :
1  =

* X {dj, d2, d3, d4 , ds, d̂ j, dy, dj, d9},

p = {Vi x V2x V3 x V4 x V5 x V6 x V7 x Vgx V9J;
Vi =
v 2 =
V3 =
v 4 =
V5 = 
V6 = 
V7 =
v 8 =
V9 =

{U}
{U} u91} 
{U} u  91} 
{U}
{U} uSRJ 
{U} uSR) 
{U} u 9 i}  
{U} uSR) 
{U} uSR}

p = {ksi,ks2 , ks3, ks4}; 
ksj = {IV ={di,d2},

IC =  {ici,ic2 ),
UR = { 5 ... 135),
AT = UR,
XD = {5 ... 75},
CT = 0,
F -  {d3 = max(di, d2), = (di * d2), ds = (di /  d2)}
OV = {d3, d4, ds),
PR = <J>,
PT =
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ks2 = { IV = { d 3},
IC = {ic3},
XD = {15 ...31},
CT = 0,
F  = {d6 = (d3 /4.10), d7 = (d3 * 0.41)}
O V = {d 6 ,d 7},
P R =  (pri = (d4?t7)},
PT = <)>}.

ks3 = {IV ={d4,d6},
IC =  {ic4,ic6},
XD = {25 ... 35},
CT = 0,
F = {ds = max(d4 ,d6)},
O V = {d 8},
PR = {pr2 = (d8 *  pi), pr3 = (d9 #  13.6)},
P T = { p ti = (d5 *U)}.

ks4 = {IV = {ds ,d7 ,d8},
IC =  {ics, ic7, ic8},
XD = {5 ... 55},
CT = 0,
F = {d9 = (max(d5, d7, d8) /  min(ds, d7, d8))}
O V = {d9},
PR = {pr3 = (d9 *  13.6), pr4 = (d2 *  0.0), prs = (d8 *  0.0)},
PT = <[>.

Is = {di = l , d 2 = l , d 3 = U,d4 = U ,d 5 = U,d6 = UJ d7 = U , d 8 = U, 
d9 = U}

B.2.2 Blackboard System Simulation 

At Initialization:

All sensors are evaluated. Sensor ksi is ready to execute (ici = TRUE, 
ic2  = TRUE). An execution delay and a completion time are computed for ksi.

XD = 62
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CT = A + XD, CT = 23 + 62, CT = 85

177
(B .l)

Ksi performs a read operation to read its input variables and is pushed onto the 
queue of executable knowledge sources. A is updated to the activation time of ksi, 
K si’s input conditionals are reset to false, A new update rate and activation time are 
computed for sensor ksi.

UR = 23
AT = UR + A (A = 0) = 23 (B.2)

All knowledge sources are checked and none are ready to be activated.

A = 23

ksi = {IV ={di = l ,d2 =l} ,
IC = {ici = FALSE, ic2 = FALSE},
UR = {23},
AT = 23,
XD = {62},
CT = 85,
F = {d3 = max(di, d2), d4 = (di * d2), ds = (di /  d2)}
OV = {d3, d4,d5},
PR = <j>,
PT = <|>}.

ks2 ={IV  = {d3 = U},
IC=  {ic3 = FALSE},
XD = {15 ...31},
CT = 0,
F = {de = (d3 /4 .10), d7 = (d3 * 0.41)}
OV = {dg, d7},
PR = {pn = (d4 ^ 7 )},
PT = (},}.



Appendix B 178

ks3 = {IV ={d4  = U>d6 =5U}>
IC » [ic4 = FALSE, ic6  = FALSE},
XD = {25 ... 35},
CT = 0,
F = {d8 = max(d4 ,d6)},
O V = { d 8},
PR = {pr2 = (d8 *  pi), pr3 = (d.9 * 13.6)},
PT = {p t i  = (d5 *U)}.

ks4 = {IV = {d5 =U, d7 = U, d8 = U},
IC = {ics = FALSE, ic7= FALSE, ic8= FALSE},
XD = {5 ... 55},
CT = 0,
F = {dg = (max(d5, d7, d8) /  min(d5, d7, d8))}
O V = { d 9},
PR = {pr3 = (d9 *■ 13.6), pr4 = (d2 * 0.0), prs = (d8 *  0.0)},
PT = <j).

X =  {di = l , d 2 = l , d 3 = U ,d 4  = U ,d 5 = U ,d 6 = U ,d 7 = U , d 8 = U, 
d9 = U}

A = {ksi}

First Simulation Loop:

Ksi is removed from the event queue, A is set to the completion time of ksi and 
the function F is computed. K si’s output variables are updated on the blackboard.

Ks2’s input conditionals and preconditions are TRUE, so ks2 is activated. Ks2 

computes an execution delay and a completion time.

XD = 22
CT = A + XD, CT = 85 + 22, CT = 107 (B.3)

Ks2 performs a read operation to read its input variables and the input conditionals are 
reset to FALSE. Ks2 is placed on the event queue.

Since ksi is a sensor new values for UR and AT are computed.
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UR =133 
AT = UR + A (A = 85) = 218

179

(B.4)

All sensors are tested and none will be activated before the completion of ks2. 

A = 85
ksi = {IV = { d i  = l,d2 = l ) ,

IC = (ic i = FALSE, ic2  = FALSE},
UR= {133},
AT = 218,
XD = {0},
CT = 0,
F = {d3 = max(di, d2), <U = (dj * d2>, ds = (di /d 2)} 
O V = { d 3, = l d 4 = l , d 5 =l},
PR = <}>,
PT = <J>}.

ks2 = {IV = {d3 = 1),
IC= {ic3 = FALSE},
XD = {22},
CT = 107,
F = {d6  = (d3 /4.10), d7 = (d3 * 0.41)}
O V = { d 6,d7},
P R = { p n  = (d4 ^ 7 )},
PT = <|)}.

ks3 = {IV = {d 4 = l ,d 6 = U},
IC = {ic4 = TRUE, ice = FALSE},
XD = {25 ... 35},
CT = 0,
F = {d8 = max(d4 ,d6)},
O V = { d 8},
PR = {pr2 = (d8 * pi), pr3 = (dg * 13.6)},
P T = { p t i  = (d5 *U)}.
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ks4 = {IV  ={d5 = l , d 7 = UJ d8 = U},
IC = {ic5 = TRUE, ic7= FALSE, ic8= FALSE},
XD = {5 ... 55},
CT = 0,
F  = {d9 = (max(ds, d7, d8) /  min(ds, d7, d8))}

OV = {d9},
PR = {pr3  = (d9 *  13.6), pr4  = (d2 * 0.0), prs = (d8 *  0.0)},
PT = <{>.

X =  {di = l, d2 = l ,  d3 a l , d 4 -  1, d5 = 1, d6 = U, d7 = U, d8 = U, 
d9 = U}

• A = {ks2]

Second Simulation Loop:

Ks2  is removed from the event queue. A is set to the completion time of ks2 and 
the function F is computed. Ks2 ’s output variables are updated on the blackboard.

Ks3 ’s input conditionals and preconditions are TRUE, so kS3 is activated. Ks3 

computes an execution delay and a completion time.

XD = 27
CT = A + XD, CT = 107 + 27, CT = 134 (B.5)

KS3 performs a read operation to read its input variables and the input conditionals 
are reset to FALSE. Ks3 is placed on the event queue. All sensors are tested and none 
will be activated before the completion of ks3.

A = 107
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ksi = (IV = {di = l,d2 =l} ,
IC = {ici = FALSE, ic2 = FALSE],
U R =  {23},
AT = 23,
XD = {62},
CT = 85,
F = {d3 = max(di, d2>, d4  = (di * d2), ds = (di /  d2>} 
O V = { d 3, = ld 4  = l , d 5 = l},
PR = <|),
PT = <()}.

ks2 = { I V = { d 3 = l},
IC = {ic3 = FALSE},
XD = {22},
CT = 107,
F = {de = (d3 /4.10), d7 = (d3 * 0.41)}
O V = {de = 2.43, d7 = 0.41},
P R = { p r i  = (d4 ^ 7 )},
PT = (()}.

ks3 = {IV = {d4  = l ,d 6  = 2.43},
IC = {ic4 = FALSE, ic6 = FALSE},
XD = {27},
CT = 134,
F = {ds = max(d4 ,d6)},
O V = { d 8},
PR = {pr2 = (d8 *  pi), pr3 = (dg *  13.6) ],
P T = { p t i  = (d5 *U)}.

ks4 = {IV = {d5 = 1, d7 = 0.41, d8 = U},
IC = {ics = TRUE, ic7= TRUE, ic8= FALSE},
XD = {5 ... 55},
CT = 0,
F = {d9 = (max(ds, d7, d8) /  min(d5 , d7, d8))}
OV = {d9},
PR = {pr3 = (d9 *  13.6), pr4 = (d2 *  0.0), prs = (d8 *  0.0)}, 
PT = (J).
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X = {di = l , d 2= l , d 3 = l , d 4 = l , d 5 = l ,  de = 2.43, d7 = 0.41, d8 = U, 
d9 = U}
A = {ks3 }

Third Simulation Loop:

Ks3 is removed from the event queue. A is set to the completion time of ks3 and 
the function F is computed. Ks3’s output variables are updated on the blackboard.

Ks4 *s input conditionals and preconditions are TRUE, so ks4 is activated. Ks4 

computes an execution delay and a completion time.

XD = 52
CT = A + XD, CT = 134 + 52, CT = 186 (B.6 )

KS4 performs a read operation to read its input variables and the input conditionals 
are reset to FALSE. Ks4  is placed on the event queue. All sensors are tested and none 
will be activated before the completion of ks4.

A =134
ksi = {IV ={di = l ,d2 =l} ,

IC = {ici = FALSE, ic2 = FALSE),
UR = {133},
AT = 218,
XD = {62],
CT = 85,
F  = (d3 = max(di, d2), <U = (di * d2), ds = (di /  d2)} 
O V = { d 3,= l d 4  = l , d 5 =l} ,
PR = 0,
PT = <J>).
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ks2 = { I V = { d 3 =l},
I C =  {ic3 = FALSE},
XD = {22},
CT = 107,
F => {dg = (d3 /4.10), d7  = (d3 * 0.41)}
OV = {dg = 2.43, d7  = 0.41},
P R = { p r i  = (d4 ^ 7 )},
PT = <}>}.

ks3 = {IV ={d4 = l ,do=2.43},
IC = {iC4 = FALSE, ic6 = FALSE),
XD = {27},
CT = 134,
F = {d8 =max(d4,dg)},
OV = {d8 = l) ,
PR = {pr2 = (d8 *  pi), pr3 = (d9 ^  13.6)},
P T = { p t i  = (dS*U)}.

ks4 = {IV = {d5 = 1, d 7 = 0.41, d8 = 1},
IC = {ic5 = FALSE, ic7= FALSE, ic8= FALSE},
XD = {52},
CT = 186,
F = {d9 = (max(ds, d7, d8) /  min(ds, d7, d8))}
OV = {d9},
PR = {pr3 = (dg *  13.6), pty = (d2 *  0.0), prs = (d8 *  0.0)},
PT = <J).

X = {di = 1, d2= 1, d3 = 1, d4  = 1, d5 = 1, dg = 2.43, d7 = 0.41, d8 = 1, 
d9 = U}

• A = {ks4 }

Fourth Simulation Loop:

KS4  is removed from the event queue. A is set to the completion time of ks4  and 
the function F is computed. Ks4*s output variables are updated on the blackboard.

All sensors are tested and none will be activated before the completion of ks4 .
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A =186
ksi = {IV = {di = l,d2 = l},

IC = {ici = FALSE, ic2 = FALSE},
UR = {133},
AT = 218,
XD = {62},
CT = 85,
F = {d3 = max(di, d2), d4  = (di * d2), ds = (dj /  d2>} 
O V = { d 3,= l d 4 = l , d 5 = l} ,
PR = 4>,
PT = <».

ks2 = {IV = {d3 = 1},
IC = {ic3 = FALSE},
XD = {22},
CT = 107,
F = {d6 = (d3 /4.10), d7 = (d3 * 0.41)}
OV ={ de = 2.43, d7 = 0.41},
PR = {pri = (d4*7)},
PT = ({.}.

ks3 = {IV = {d4 = l ,d6  = 2.43},
IC = {ic4 = FALSE, ic6 = FALSE],
XD = {27},
CT= 134,
F = {d8 =max(d4 ,d6)},
OV = {d8 = 1},
PR = {pr2 = (d8 *  pi), pr3 = (d9 *  13.6)},
PT={p t i  = (d5 *U)}.
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ks4 = {IV = {d5 = l , d 7 = 0.41,d8= l} ,
IC = tics = FALSE, ic7= FALSE, ic8= FALSE},
XD = {52},
CT = 186,
F = {dg = (max(d5, d7, d8) /  min(ds, d7, d8))}
O V = {d9 = 2.43},
PR = {pr3 = (d9 #  13.6), pr4 = (d2* 0.0), prs -  (d8 *  0.0)},
PT = <j).

• X = {di = 1, d2= 1, d3= 1, d4= 1, d5= 1, d6 = 2.43, d7 -0 .41 , d8 = 1, 
d9 =2.43}
A = {<}>}

At this time the event queue is empty. The sensor ksi is ready to be activated at 
A = 218. Data arrives at the sensor, ksi's input conditionals are set to TRUE, and the 
global clock is set to ksi's activation time

Sensor ksi is ready to execute (ici = TRUE, ic2 = TRUE). An execution delay and 
a completion time are computed for ksi.

XD = 71
CT = A + XD, CT = 218 + 71 CT = 289 (B.7)

Ksi performs a read operation to read its input variables, is pushed onto the queue 
of executable knowledge sources, and ksi’s input conditionals are reset to false.

A = 218
ksi = {IV = {di = 7,d2 = 4},

IC = {ici -  FALSE, ic2 = FALSE},
UR = {133},
AT = 218,
XD = {41},
CT = 289,
F = {d3 = max(di, d2), (U = (di * d2), ds = (di /  d2)} 
O V = { d 3,= ld 4  = l , d 5 = l} ,
PR = <j),
PT = <})}.
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ks2 = { I V = { d 3 = l} ,
IC = {ic3ss FALSE},
XD = {22},
CT = 107,
F = {d6 = (d3 /4.10), d7 = (d3 * 0.41)}
OV = { de = 2.43, d7 = 0.41},
PR={pr i  = (d4^7)},
PT = c|>}.

ks3 = {IV ={d4 = l,d6=:2.43},
IC »  {ic4 = FALSE, ic6 = FALSE),
XD = {27},
CT= 134,
F = {d8 = max(d4,de)},
OV = {d8 = l} ,
PR = (pr2 = (d8 *  pi), pr3 = (d9 *  13.6)},
PT = {pti = (d5 ^  U)}.

ks4 = { IV  = {d5 = l , d 7 = 0.41,d8 = l},
IC = {ic5 = FALSE, ic7= FALSE, ic8= FALSE},
XD = {52},
CT = 186,
F  -  {d9 » (max(d5 , d7, d8) /  min(ds, d7, d8))}
OV = {d9 = 2.43},
PR = {pr3 = (d9 *  13.6), pr4 -  (d2 *  0.0), prs = (d8 *  0.0)},
PT = <]).

X  = (di = 7, d2 = 4, d3 = 1, <k = 1, d5 = 1, de = 2.43, d7 = 0.41, d8 = 1, 
d9 =2.43}
A = {ksi}

The simulation has completed its first execution loop through the blackboard 
system. This loop will continue until data containing a shutdown message arrives at 
the sensor ksi o rk si processes all of the inputs in its data stream.
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This appendix contains a listing of the Knowledge Source Organizer LISP code and 
the Knowledge Source Connectivity Analysis Lisp Code.

;;; Mode: LISP; Syntax: Common-lisp; Package: kstools; Base: 10
^ ̂  ̂  *  *  *  Jje $  *  s#e $  sfe $  $  *  $  %  *  sfc sfe *  *  $  $  *  *  *  *  *  %  sfe ♦  $ $  %  $  %  %  $  *  $  %  *  $  *  jfc*  *  *  *  %  $  $  ifcsfc *  *  %  &  $ if:$  *  *  *  &  *  *  %  *  

*
;;; Program: Blackboard System Design Tools
;;; Knowledge Source Input/Output Connectivity Analyzer
>»»
m
;;; define the program framework *

* * * * * * * * * * * * * * *  * * * * * * * * * *

(DW:DEFINE-PROGRAM-FRAMEWORK BLACKBOARD

 ̂̂ * * * * * * * * * * * * * * * * * * * * * * *

;;; define the top level *
;;; program framework *
JJt ***********************

:top-level (my-top-Ievel)

^ * *  * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * *

;;; define the program selection key *
j h * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

:SELECT-KEY
INt

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;;; define the program framework *
» » » * * * * * * * * *  * * * * * * * * * * * * * * * * * * * *

:COMMAND-DEFINER
T

^ ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;;; define the program command table *
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

:COMMAND-TABLE
(:INHERIT-FROM
'("accept-values-pane" "colon full command" "standard arguments"

"input editor compatibility" "standard scrolling")
:KBD-ACCELERATOR-P ’T)

187
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; define the program state variables *
; and their initial values *
« *  % + %  $  $  %  %  $  %  9fc jJc s fc  %  £  a |c  s j c r f c %  sfc $  %  %  s |c  *  *  $ $  $  rfc  9fe $  $  %  j fc  a(e

rSTATE-VARIABLES
0

; define the program windows *
. ifc * * * 4c * * >|c 4c * $ ift ait+)(t * $ * * * * $ 9)c * $ $

:PANES
((PANE-1 :TTTLE :REDISPLAY-STRING "Blackboard System Design Tools" 

rHEIGHT-IN-LINES 1 
:REDISPLAY-AFTER-COMMANDS NIL)

(PANE-4 :display
rmargin-components '((dwrmargin-borders)

(dw:margin-label :string "Graphic Display Window"
:margin :top 
:box :inside 
:box-thickness 2 
:style (:fix :bold :large)
:centered-p t)

(dw:margin-white-borders :thickness 4) 
(dwrmargin-scroll-bar)))

(PANE-3 listener
:HEIGHT-IN-LINES 35 
:margin-components '((dw:margin-borders)

(dw:margin-white-borders :thickness 4)
(dw:margin-Iabel :string "Listener Window" 

rmargin :top 
:box :inside 
: box-thickness 2 
:style (:fix :bold rlarge)
:centered-p t)

(dw:margin-scroll-bar)))
(PANE-6 rdisplay

rmargin-components '((dw:margin-borders)
(dw:margin-white-boiders rthickness 4)
(dw:margin-label :string "List of Knowledge Sources" 

rmargin :top 
:box rinside 
:box-thickness 2 
:centered-p t 
rstyle (:fix :bold rlarge))

(dwrmargin-scroil-bar)))
(PANE-5 :COMMAND-MENU
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:CENTER-P T
:MENU-LEVEL
:TOP-LEVEL
:margin-components '((dw:margin-borders)

(dw:margin-white-boiders :thickness 4) 
(dw:margin-label :string "Commands" 

:margin :top 
:box :inside 
:box-thickness 2 
:style (:fix :bold :large) 
:centered-p t)))

)

;;; define the window layout configuration *

:CONFIGURATIONS
'((DW::MAIN

(:LAYOUT (DW::MAIN :COLUMN PANE-1 PANE-4 ROW-1) 
(ROW-1 :ROW PANE-3 PANE-6 PANE-5))

(:SIZES (DW:;MAIN (PANE-1 1 :LINES)
:THEN (PANE-4 :EVEN) (ROW-1 :EVEN))

(ROW-1 (PANE-3 30 :LINES) (PANE-6 20 :LINES)
(PANE-5 :ASK-WINDOW SELF

:SIZE-FOR-PANE PANE-5) :THEN)))))

^ *Je sfcjfcjfs)|esfc)(e Jf: %  He J j t%  $fe %  ifc %  sfc % %  >M %  *|e >k %

; define any needed variables *
^ sfc %  ♦  Jjf ♦  % %  Jfc ♦  *fs % + ♦  ♦  %  s(t if* ifr ♦  %  %  ♦  %  % %

(defvar *data-out* nil) ;;; Output Data File
(defvar *data-in* nil) ;;; Input Data File
(defvar beta ’()) ;;; List Of Knowledge Sources
(defvar ks-list'()) ;;; List Of Knowledge Source Names
(defvar data-object-list'()) ;;; List Of Blackboard Data Object Names
(defvar d/o-list ’0) ;;; List Of Blackboard Data Object(s)
(defvar ks-in '0) ;;; Knowledge Source selected from menu
(defvar do-in'()) ;;; Blackboard Data object selected from menu
(defvar ks-name-in ’())
(defvar ks-edit ’0)
(defvar do-edit'())
(defvar data-inl'())
(defvar gamma-list'())
(defvar lambda-ks-list'())
(defvar omega-list'())
(defvar pie-list'0)
(defvar sigma-list *0)
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(defvar ks_count 0)
(defvar sensor_count 0)
(defvar undefined '"undefined")

(defvar data-in)
(defvar temp)
(defvar ix)
(defvar in-psi)
(defvar in-phi)
(defvar in-pre)
(defvar in-post)
(defvar in-exec)
(defvar in-urate)
(defvar in-name)
(defvar in-value)
(defvar in-type)
(defvar in-in_list)
(defvar in-out_list)

(defvar pointstack'())
(defvar markstack ’())
(defvar m ark'())
(defvar adj-list'())
(defvar flag nil)
(defvar u)
(defvar connected nil)
(defvar *ks-spec* nil)
(defvar *do-spec* nil)

(defvar *panel*)
(defvar *pane3*)
(defvar *pane4*)
(defvar *pane5*)
(defvar *pane6*)

4*4 ^  ^  ^  ^1*1
;;; define the variables required to build a *
;;; pop up window to select knowledge sources *

kt* »!■ »L il# til all all aL |L«L«L ■ 11 at* all *1 a I la all al> aL aia aL aL .la ̂  J , af# ^  ̂  tL aL ai a -la J . -I a -I- at a a I - -La at-

991

(defvar geometry-list (list 2))

(defvar *ks-menu* (tv:make-window *tv:pop-up-menu
’:label '(:string "select a knowledge source" 

:character-style (rswiss :italic :normal)) 
;; 'rgeometry geometry-list

'rborders 4))
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(defvar *do-menu* (tvrmake-window 'tv:pop-up-menu

':label '(string "select a Blackboard Data Object" 
:character-style (:swiss :italic :normal)) 

’:borders 4))

;;; define any needed presentation types. *

(define-presentation-type ks-type 0  
:abbreviation-for 'string)

(define-presentation-type output-file-name 0 
:abbreviation-for 'string)

(define-presentation-type input-file-name 0  
:abbreviation-for 'string)

(define-presentation-type input-conditional-list ()
:abbreviation-for 'list)

(define-presentation-type precondition-list ()
:abbreviation-for 'list)

(define-presentation-type postcondition-list ()
:abbreviation-for 'list)

(define-presentation-type input-variable-list ()
:abbreviation-for 'list)

(define-presentation-type output-variable-list ()
:abbreviation-for 'list)

(define-presentation-type rotation-about-y-axis-in-degrees ((limit)) 
:abbreviation-for '((integer 0,limit)))

(define-presentation-type ks-name (())
:no-deftype t
rprinter ((ks-name stream)

(format stream " knowledge source ~a" ks-name)) 
rparser ((stream)

(accept 'string: stream stream
:prompt "enter a Knowledge Source name")))

^  ^  ^  j f c  $  3fe s (c  sfc  J fc s fc  )fc  afe 4 c  ♦  ★  + s k  afe a jc  a fc  $  afc $  a fc  sfc  ★  ★  ♦  ♦  ★  a | f  s(c s f r  s jc  afe  : f c  afc afe jJ«  s (e a fe  afc afe j ( f  j ( c  a |e  afc  sfc afi

;;; define area for instances for specialized GC. *
^  ^  ^  j | c  afc afc s ic  *  a f c *  afc a f t  *  *  afc afc sfc afc afc *  $  afc  %  %  a fc  %  sfc %  %  afc *  *  a fc a fc * %  afc afc *  *  *  *  $  afc afc a fc  %  afc afc a fc  afc

(defvar *instance-area*
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(make-area :name ’*instance-area*

:gc ’:dynamic))

^  ^  ̂  sfcafc *  *  ★  ★  4c $  $  afe a f o f t  %  sfc *  J#e *  #  %  J)t ♦  %  *  %  4 c  * * % *  * * 4 * * *  *  *  *

;;;define Flavor for a Knowledge Source *
^  ̂  $  ♦  ♦  ♦  ♦  ★  ♦  $  afc *  ifi 3ft $  3ft 3ft 3ft J M *  3ft %  *& *  *  *  *  *  *  ^  ^

(defflavor base_ks ((name " " ’ks-name)
(type " " 'ks-type)
(input-conditionals ’0  ’input-conditional-list)
(preconditions ’0  ’precondition-list)
(postconditions ’() ’postcondition-list)
(psi ’() ’input-variable-list)
(phi ’0  ’output-variable-ist)
(execution_time 0.0 ’number)
(depth 0 ’number)
(successor_list ’() ’list)
(predecessorJist ’0  ’list)
(update_rate 0.0 ’number)
(psi_card 0 ’integer)
(phi_card 0 ’integer))

0
(:conc-name get-)
:initable-instance-variables
:writable-instance-variables)

(define-presentation-type base_ks (0)
:no-deftype t
:printer ((base_ks stream)

(format stream " knowledge source: ~a ~ 
knowledge source type: ~a ~

~& input variables: ~a ~ 
output variables: ~a ~ 
input conditionals: ~d ~ 
preconditions: ~d ~ 
postconditions: ~d ~ 
depth: ~d ~ 
predecessors: ~d ~ 
successors: ~d ~

knowledge source execution time: ~d ~ 
cardinality of input variable set: ~d ~

~& cardinality of output variable set: ~d 
(get-name base_ks) (get-type base_ks)
(get-psi basejcs) (get-phi base_ks) 
(get-input-conditionals basejcs)
(get-preconditions base_ks) (get-postconditions base_ks) 
(get-depth basejcs) (get-predecessorjist base_ks) 
(get-successorjist base_ks)
(get-execution_time basejcs)
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(get-psi_card basejcs) (get-phi_card base_ks))) )

m
;"define methods for a  knowledge source *

(defmethod (show base_ks)
0

(format *data-out* " knowledge source: ~a ~ 
knowledge source type: ~a ~ 
input variables: ~a ~ 
output variables: ~a ~

~& input conditionals: ~d ~ 
preconditions: ~d ~ 
postconditions: ~d ~ 
depth: ~d ~ 
predecessors: ~d ~ 
successors: ~d ~

knowledge source execution time: ~d ~ 
cardinality of input variable set: ~d ~

~& cardinality of output variable set: ~d 
name type psi phi input-conditionals preconditions postconditions 
depth prcdecessorjist successor_list executionjime 
psi_card phi_card)

)

(defmethod (display base_ks)
0
(format *data-out* " ~a ~

~a ~
~a ~
«a ~
~d ~
~d ~
~d ~
~d ~

*"& ~d "
~d ~
~d ~
~d ~
~d ~%"

name type psi phi input-condidonals preconditions postconditions 
depth predecessorJist successor J i s t  execution_time 
psi_card phi_card))

(defmethod (compute„cardinality basejcs)
0
(setf psi_card (length psi) 

phi_card Gength phi)))
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
> 91

;;;Define flavor for a Blackboard Data Object *
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor blackboard_data_object ((name nil)
(type " '"  ’string)
(value ’undefined)
(ic_list '() ’list)
(lock '() ’list)
(input_list ’0  ’list)
(output_list '0  'list))

0
(:conc-name get-)
:initable-instance-variables
:writable-instance-variables)

(define-presentation-type blackboard_data_object (()) 
:no-deftype t
:printer ((blackboard_data_object stream)

(format stream Blackboard Data Object Name: 
~& Data Object Type: ~a ~

Data Object Value: ~a ~
Data Object Lock: ~a ~
Used as an Input by: ~a ~
Input Conditionals: ~a -  
Output by: ~a 

(get-name blackboard_data_object)
(get-type blackboard_data_object)
(get-value blackboard_data_object)
(get-Iock blackboard_data_object) 
(get-input_listblackboard_data_object) 
(get-ic_list blackboard_data_object) 
(get-output_list blackboard_data_object))) )

(defmethod (display blackboard_data_object)
0
(format *data-out* " ~a ~

~a ~
~& ~a ~

~a ~
~a ~
~a ~
~a

name type value lock input_list ic_list outputjist))

^******* ******************
;;;define flavor for a Gamma-List *
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(defflavor gamma ((name nil)
(type '"gamma")
(cardinality 0)
(value'()))

0
(:conc-name get-)
:initable-instance-variables
:writable-instance-variables)

(define-presentation-type gamma (())
:no-deftype t 
:printer ((gamma stream)

(format stream "gamma<~a> ~a ~t cardinality = ~d
(get-name gamma) (get-value gamma) (get-cardinality gamma))))

;;;define functions and methods for a gamma-list *

(defun create_gamma (ksj ksk)
(pushnew (make-instance 'gamma 

:area *instance-area*
:name (build_name ksj ksk)
:value'()) 

gamma-list)
(pushnew (make-instance 'omega 

:area *instance-area*
:name (build_name ksj ksk)
:value'()) 

omega-list)

(make_omega (car omega-list)
(make_gamma (car gamma-list) (get-phi ksj) (get-phi ksk)) 
(get-phi„card ksj) (get-phi_card ksk)))

(defmethod (make_gamma gamma)
(phij phik)
(setf value (intersection phij phik) 

cardinality (length value)))

(defmethod (display gamma)
0
(cond

(value (format *data-out* "gamma<~a> ~a ~T cardinality = ~d 
name value cardinality))

(tt))
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^  ̂  ̂  $  *  $  a |e  $  4 c  %  %  *  *  *  %  *  $  *  $  *  *  *  %  %  %  *  *  £  afc *  %  afc $

;;;define Flavor for Lambda-ks-list *
^̂9jc$%)tc]ic$3jc)|c3fcjl0jc3fta|c3jc)|c3tc3f<)fe4|c3|t>ic)fc3fe3{c)ic3tc3fc3fc4c

(defflavor lambda-ks ((name nil)
(type ’"lambda-ks")
(cardinality 0)
(value'()))

0
(:conc-name get-)
:initable-instance-variables
:writable-instance-variables)

(define-presentation-type lambda-ks (0)
:no-deflype t
:printer ((lambda-ks stream)

(format stream "lambda<~a> -a  ~t cardinality = ~d
(get-name lambda-ks) (get-value lambda-ks) (get-cardinality lambda-ks)))

)

;;;define functions and methods for a lambda-ks-list *
^  ^  ̂  jfc %  Jfc > k  4 c  Jfc Jfe sf« sR  ★  ♦ + %  %  ifc  ♦  %  %  %  sfc %  %  ^  ^  %  *  sfc %  ★  sfc :fe  $ i f e $  sje $

(defun create_lambda-ks (ksj ksk)
(pushnew (make-instance 'lambda-ks 

:area *instance-area* 
rname (build_name ksj ksk)
:value'()) 

lambda-ks-list)
(pushnew (make-instance 'pie

:area *instance-area*
:name (build_name ksj ksk) 
rvalue'())

pie-list)
(maike_pi (car pie-list)

(make_lambda-ks (car lambda-ks-list) (get-phi ksj) (get-psi ksk))
(get-phi_card ksj))

(pushnew (make-instance 'sigma 
rarea *instance-area*
:name (build_name ksj ksk) 
rvalue'()) 

sigma-list)
(make_sigma (car sigma-list)

(get-cardinality (car lambda-ks-list)) (get-psi_card ksk)))

(defmethod (make_lambda-ks lambda-ks)
(phij psik)
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(setf value (intersection phij psik) 

cardinality (length value)))

(defmethod (display lambda-ks)
0
(cond
(value (format *data-out* "lambda<~a> -a  ~T cardinality = 

name value cardinality))
(tt))

)

 ̂̂  ̂  *  *  *  *  *  *  *  *  *  *  *  *  ̂ * *  *  *  *  * *  * * *  *  *■♦ *  ♦  *  * *

;;;define Flavor for a omega-list *
^ * * * *  * * * * * * * * * * * * *  * * * * * * * * * * * *  * * *

(defflavor omega ((name nil)
(type '"omega")
(value 0))

0
(:conc-name get-)
: initable-in stance-variables 
rwritable-instance-variables)

(define-presentation-type omega (())
:no-deftype t 
{printer ((omega stream)

(format stream "omega<~a> ~f
(get-name omega) (get-value omega))))

^ * * * *  * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

;;;define functions and methods for a omega-list *
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(deftnethod (make_omega omega)
(cardinality__gamma caid_phij card_phik)
(let ((min_value (min card_phij card_phik)))
(cond

((= min_value 0) (setf value 0))
((= cardinality_gamma 0) (setf value 0))
(t (setf value (J cardinality_gamma min_value))))))

(defmethod (display omega)
0
(cond
((= value 0) t)
(t (format *data-out* "omega<~a> ~f 

name value)))
)
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********************************
;;;define Flavor for a Pi-list * 
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor pie ((name nil)
(type -phi’1)
(value 0))

0
(:conc-name get-)
:initable-instance-variables
:writable-instance-variables)

(define-presentation-type pie (0)
:no-deftype t 
{printer ((pie stream)

(format stream "pi<~a> ~f ~%"
(get-name pie) (get-value pie))))

^ ^ * * * * * * * * * * * * * *  * *  *  *

;;;define functions and methods for a Pi-list *
j ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defmethod (make_pi pie)
(cardinality_lambda-ks card_phij)

(cond
((= card_phij 0) (setf value 0))
((= cardinality_lambda-ks 0) (setf value 0))
(t (setf value (J caidinality_lambda-ks card_phij)))))

(defmethod (display pie)
0
(cond

((= value 0) t)
(t (format *data-out* "pi<~a> ~f 

name value)))
)

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;;; Define Flavor for a Sigma-list *
^^*********************************

(defflavor sigma ((name nil)
(type '"sigma")
(value 0))

0
(:conc-name get-)
:initable-instance-variables
:writable-instance-variables)
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(define-presentation-type sigma (())

;no-deftype t 
:printer ((sigma stream)

(format stream "sigma<~a> ~f
(get-name sigma) (get-value sigma))))

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;;;* Define functions and methods *
;;;* for a Sigma-list *
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defmethod (make_sigma sigma)
(cardinality_lambda-ks card_psik)

(cond
((= card_psik 0) (setf value 0))
((= cardinality_lambda-ks 0) (setf value 0))
(t (setf value (/ caidinality_lambda-ks card_psik))))

)

(defmethod (display sigma)
0

(cond
((= value 0) t)
(t (format *data-out* "sigma<~a> ~f 

name value)))
)

^ ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

;;;define functions to build component names from KS names. *
^ ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defun build_name (ksj ksk)
(string-append (get-name ksj) (get-name ksk)))

(defun build_ks_name ()
(setf ks_count (1+ ks_count))
(string-append "ks" (princ-to-string ks_count)))

(defun display-ks-list ()
(send *pane6* :clear-window)
(present "Current List of Knowledge Sources" 'string :stream *pane6*) 
(loop for x in ks-list

do (present x 'ks-name :stream *pane6*)))

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *m
;;; define blackboard commands *
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;;; Delete a KS Command *
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(define-blackboard-command (delete_ks :menu-accelerator
"Delete a Knowledge Source" 
:keyboard-accelerator #d)

0
(setf ks-in nil)
(select-ks-name)

(setf ks-list (remove ks-in ks-list))

(loop for x in beta
when (equal ks-in (get-name x)) 

do (setf beta (remove x beta)))

(send *pane6* :clear-window)
(display-ks-list)

)

^ * * * * * * * * * * * * * * * * * * * *

;;; View a KS Command *
^^ * * * * * * * * * * * * * * * * * * * *

(define-blackboard-command (display_ks :menu-accelerator
"View a Knowledge Source" 
:keyboaid-accelerator #\v)

0
(setf ks-in nil)
(select-ks-name)

(send *pane4* :clear-window)
(loop for x in beta

when (equal ks-in (get-name x)) 
do (present x 'base_ks : stream *pane4*)

)
)

» ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;;; View a BB data object Command *
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(define-blackboard-command (display_do :menu-accelerator
"View a Blackboard Data Object" 
:keyboard-accelerator #\5)

0
(setf data-in nil)
(select-data-object-name)

(send *pane4* :clear-window)
(loop for x in d/o-list
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when (equal data-in 1 (get-name x)) 

do (present x 'blackboard_data_object :stream *pane4*))
)

•  * * sjc jJc sfc s |c  sjc s)c 3§e sfc sjc sfc s)c sfc sfc s |c  j | s sfc ifc j)c ?fc jfc )Jc i)c )fc

;;; Show Adjacency List Command *
^  ̂  ̂  3 |c  $  $ + $  afe jfe  afe afc afcafcafc afc afc $ afcafc afc afc afc afc a fc ifc  afc afc afc afc %  ♦  afc

(define-blackboard-command (show_adj :menu-accelerator
"Show Adjacency List"
:keyboard-accelerator #\s)

0
(send *pane4* :clear-window)
(format *pane4* 11 Adjacency List 
(dodmes (i ks_count)

(get-adj i (aref adj-list i)))
)

(defun get-adj (i adj-list)
(cond

((NOT adj-list) t)
(t (format *pane4* "Knowledge Source: ~a, Adjacency List: ~a 

(get-name (nth i (reverse beta)))
(get-name (nth (car adj-list) (reverse beta))))

(get-adj i (cdr adj-list))))
)

« << afcafcafcafcafcafcjftafcafcafofcafcafcafcafcafcafc* >>
;;; Add KS Command *
^  ^  ̂  afc afc afc afc *  afc afc afc 4 c  sfe sN  afc %  %  %  afc

(define-blackboard-command (add_ks :menu-accelerator "Add a Knowledge Source" 
:keyboard-accelerator #Sa)

0
(pushnew (make-instance 'basejcs 

:area *instance-area*
:depth ks_count 
:name (build_ks_name)
:type (accept 'ks-type)
:psi (accept ’input-variable-list)
:phi (accept ’output-variable-list))

beta)

(pushnew (get-name (car beta)) ks-list)
(update-blackboard-data-objects (car beta))
(setf (get-psLcard (car beta)) (length (get-psi (car beta)))

(get-phi_card (car beta)) (length (get-phi (car beta))))
(buildjc (car beta) (get-psi (car beta)))
(send *pane6* :clear-window)
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(display-ks-list)
)

(defun buildjc (ks-in bb-data-list)
(cond
((NOT bb-data-list) t)
(t (pushnew (build_ic-name (get-name ks-in) (car bb-data-list)) 

(get-input-conditionals ks-in))
(buildjc ks-in (cdr bb-data-list))))

)

(defun buildjc-name (ks-name bb-data)
(string-append ks-name bb-data))

^  ̂  ^  &  %  ♦  *  *  ★  ♦  #  + : + *  £  $  *  ♦  %  *  *  ♦ + ♦  *  %  sf: sfc s |e  ★  >fe

;;;Function to update the set *
;;;of blackboard data objects *
^  ^  ̂  sfe 4 c  sfc *  s fe i f t  5fc * $ 4 c  %  *  *  *  *  9 k  sfc  *  %  *  &  %  *  $  $  s*e aft

(defun update-blackboard-data-objects (ks-in)
(let ((ks-name-in (get-name ks-in)))

(mapcar 'test-blackboard-in-data-objects (get-psi ks-in))
(mapcar rtest-blackboard-out-data-objects (get-phi ks-in))))

(defun test-blackboard-in-data-objects (data-in)
(cond
((member data-in data-object-list) (update-inputs data-in))
(t (add-bbdata-object data-in)

(pushnew (string-append ks-name-in (get-name (car d/o-list))) 
(get-icjist (car d/o-list)))

(setf data-object-list (union (list data-in) data-object-list))
(setf (get-inputjist (car d/o-list)) (union (list ks-name-in)

(get-input J i s t  (car d/o-list))))))
)

(defun test-blackboard-out-data-objects (data-in)
(cond

((member data-in data-object-list) (update-outputs data-in))
(t (add-bbdata-object data-in)

(setf data-object-list (union (list data-in) data-object-list))
(setf (get-outputJist (car d/o-list)) (union (list ks-name-in)

(get-outputjist (car d/o-list))))))
)

(defun update-inputs (data-in)

(loop for x in d/o-list
when (equal data-in (get-name x)) 

do (setf do-edit x))
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(setf (get-input_list do-edit) (union (list ks-name-in)
(get-input_list do-edit)))

(pushnew (string-append ks-name-in (get-name do-edit)) (get-ic_list do-edit)) 
(setf (get-ic_list do-edit) (remove-duplicates (get-ic_list do-edit) :test ̂ string-equal)) 
)

(defun update-outputs (data-in)

(loop for x in d/o-list
when (equal data-in (get-name x)) 

do (setf do-edit x))

(setf (get-output_list do-edit) (union (list ks-name-in)
(get-output_list do-edit)))

)

^  ̂  ̂  >fe afc Jfc jfe  $  *  Jfc sfc *  *  i f :  $  ifc  »fr $  %  sfc %  %  if f

;;; Edit a KS Command *

(define-blackboard-command (edit__ks :menu-accelerator "Edit a Knowledge Source" 
rkeyboard-accelerator #Se)

0
(setf ks-in nil)
(select-ks-name)

(loop for x in beta
when (equal ks-in (get-name x)) 

do (setf ks-editx))

(setf in-psi (get-psi ks-edit) 
in-phi (get-phi ks-edit) 
in-pre (get-preconditions ks-edit) 
in-post (get-postconditions ks-edit) 
in-exec (get-execution_time ks-edit) 
in-urate (get-update_rate ks-edit)
)

(tv:choose-variable-values 
’((in-psi "Input Variables" expression)

(in-phi "Output Variables" expression)
(in-pre "Preconditions" expression)
(in-post "Postconditions" expression)
(in-exec "Execution Rate" expression)
(in-urate "Update Rate" expression))

':label "Knowledge Source Editor")

(setf (get-psi ks-edit) in-psi
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(get-phi ks-edit) in-phi 
(get-preconditions ks-edit) in-pre 
(get-postconditions ks-edit) in-post 
(get-execution_time ks-edit) in-exec 
(get-update_rate ks-edit) in-urate 
(get-psi_card ks-edit) (length in-psi)
(get-phi_card ks-edit) (length in-phi))

(update-blackboard-data-objects ks-edit)
(setf (get-psLcard ks-edit) (length (get-psi ks-edit)) 

(get-phi_card ks-edit) (length (get-phi ks-edit))) 
(setf (get-input-conditionals ks-edit) ’0)
(build_ic ks-edit (get-psi ks-edit))
(send *pane6* :cIear-window)
(display-ks-list)

)
• ♦ & ^ |̂c s|c ^ ̂  t|^

;;;Function to add a blackboard data object *

(defun add-bbdata-object (name)
(pushnew (make-instance 'blackboard_data_object 

:area *instance-area*
:name name
:value 'undefined
dock (string-append name "-lock")
:type nil
:ic_list '()
:input_list '()
:output_list'())

d/o-list)

(setf in-name (get-name (car d/o-list)) 
in-type (get-type (car d/o-list)) 
in-value (get-value (car d/o-list)))

(tv:choose-variable-values 
'((in-name "Data Object Name" ^expression)

(in-type "Data Object Type" :expression)
(in-value "Data Object Value" :expression))

':label "Knowledge Source Editor")

(setf (get-name (car d/o-list)) in-name 
(get-type (car d/o-list)) in-type 
(get-value (car d/o-list)) in-value)

)
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;;; Load a BB Specification *
, ..afc*************************
»»»

(define-blackboard-command (load_spec :menu-accelerator
"Load a Blackboard Specification" 
:keyboard-accelerator #M)

0
;;; open the specification file

(setf *data-in* (open (fs:merge-pathnames (accept 'input-file-name)) 
:direction :input))

;;; Read in the Number of Knowledge Sources in the Specification file 

(init_system)
(setf *ks-spec* (read *data-in*))

(dotimes (i *ks-spec*)
(pushnew (make-instance ’base_ks

:name (read *data-in*)
:type (read *data-in*)
:psi (read *data-in*)
:phi (read *data-in*)
:input-conditionals (read *data-in*)
:preconditions (read *data-in*) 
postconditions (read *data-in*)
:depth (read *data-in*)
:predecessor_list (read *data-in*)
:successor_list (read *data-in*)
:execution_time (read *data-in*)
:psi_card (read *data-in*)
:phi_card (read *data-in*))

beta)

(pushnew (get-name (car beta)) ks-list)
)

(setf *do-spec* (read *data-in*))

(dotimes (i *do-spec*)
(pushnew (make-instance 'blackboard_data_object

rarea *instance-area*
:name (read *data-in*)
:type (read *data-in*)
rvalue (read *data-in*)
dock (read *data-in*)
:input_list (read *data-in*)
:ic_list (read *data-in*)
:output_list (read *data-in*))
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d/o-list)

(pushnew (get-name (car d/o-list)) data-object-list)
)

;;; close the specification file

(setf ks_count *ks-spec*)
(close *data-in*)
(send *pane6* :clear-window)
(display-ks-list)
)

• « •»»
;;; Quit Command *

(define-blackboard-command (quit_bb :menu-accelerator
"Quit"
rkeyboard-accelerator #sq)

0
(send *panel* xlear-window)
(send *pane3* xlear-window)
(send *pane4* ;clear-window)
(send *pane5* xlear-window)
(send *pane6* xlear-window)
(send dw:*program-ffame* xlear-window)
(send *panel* :bury)
(send *pane3* :bury)
(send *pane4* :bury)
(send *pane5* :bury)
(send *pane6* :bury)
(send dw:*program-frame* :bury)
(process-abort *current-piocess* :all t))

^ ^ ^  $  %  sfe $  %  %  afc sfe s|fi aK afc sft 4 c  J k  ♦  J k  ♦  afe %  J |e + a f t afc afc afe

;;; Generate Output Command *
^ ^  ̂  $  afc afc afc a(e afc afc ale afc af: af: afcafs a|c afc afc afe afeafs %  jfe afc afc 4 c  afc afc

(define-blackboard-command (generate_output :menu-accelerator
"Generate System Output File" 
:keyboard-accelerator #\g)

0
(setf *data-out* (open (fs:merge-pathnames (accept 'output-file-name)) 

:direction :output 
:if-exists :new-version))

(format *data-out* "Set of Knowledge Sources~%")
(mapcar 'show beta)
(format *data-out* "~%Gamma~%")
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(mapcar 'display gamma-list)
(format *data-out* "~%Lambda-ks~%")
(mapcar 'display lambda-ks-list)
(format *data-out* "~%Omega~%")
(mapcar 'display omega-list)
(format *data-out* "~%Pi~%")
(mapcar 'display pie-list)
(format *data-out* "~%Sigma~%")
(mapcar 'display sigma-list)
(close *data-out*)
(format t "-%"))

^  * afc * s(c iff ifolesfofc+ift+Jlcifc if; jfcjff
;;; Generate Data File Command *
r « )|C9|ojC9|o|C)|C9fCJjC9iC9|ofcjIC3iCSfC9|C3|c9|cm

(define-blackboard-command (generate_bb_spec :menu-accelerator
"Generate BlackBoard Specification" 
rkeyboard-accelerator #\4)

0
(setf *data-out* (open (fs:merge-pathnames (accept ’output-file-name)) 

rdirection :output 
:if-exists :new-version))

(format *data-out* ~d" (length beta))
(mapcar 'display beta)
(format *data-out* ~d" (length d/o-list))
(mapcar 'display d/o-list)
(close *data-out*)
(format t "-%"))

******* ******* if; *********
;;; Compute Circuit Command *
• •4* * * * * * * * * * * * * * * * * * * * * * * * * *
9 9 9

(define-blackboard-command (Compute_circuit :menu-accelerator
"Compute Circuit(s)" 
:keyboard-accelerator frc)

0
(setf flag nil 

pointstack '0  
markstack'())

(send *pane4* :clear-window)
(dotimes (i ks jcount)
(backtrack i i)
(print (list "mark" markstack))
(loop until (NOT markstack) 

do (setf u (pop markstack)
(aref mark u) nil)

(print u))
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)
(format t "-%"))

 ̂̂ ̂ % % $ $ % % $ % % % sji % %++ 3k ♦ “f* ♦ ♦ sf* ♦ ♦ ♦ ♦ ♦ ̂  ̂  ♦ ♦ ♦ % ♦ ♦ ̂
;;;define functions to compute circuits *
>»»

(defun backtrack (s k)
(setf flag nil)
(pushnew k pointstack)
(setf (aref mark k) t)
(pushnew k markstack)
(setf temp (aref adj-list k))

(loop until (NOT temp) 
do (cond 

; ((< (car temp) s)
; (pop temp))

((= (car temp) s)
(setf flag t)
(show-circuit s k pointstack))

((NOT (aref mark (car temp)))
(backtrack s (car temp))
(setf flag (or flag nil))))

(pop temp))

(cond (flag (setf ix (pop markstack)
(aref mark ix) nil)

(loop until (= ix k)
do (setf ix (pop markstack)

(aref mark ix) nil)))
(tt»

(setf ix (pop pointstack))
)

^ ^  ̂  *  $ $ $ $ $  %  afc * *  s |e $  afc * * * * * * $ * * * * * * *  $  $  9fe $  *  $  *  $  *  *  *  $  $  *

;;; define function to display elementiy circuits *
.  ♦ .  sfj $  $  *  *  afc sfe$  ajc s f t £  sfe sfc j*c + aje if f  aft *  $  %  a|< afc %  $  *  sfc+ %  afe 4 c  %  *  afc fcs |e a fc  4 c  *  $  %  *  £  #  s|c j | c

(defun show-circuit (s k pstack)
(print (list "popstack "pstack))
(loop until (or (equal (car pstack) s) (NOT pstack)) 

do (pop pstack))

(format *pane4* "Elementry Circuit ~&")
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(loop until (or (equal (car pstack) k) (NOT pstack))

do (format *pane4* "~ a" (get-name (nth (car pstack) (reverse beta))))
(pop pstack))

(format *pane4* "~a (get-name (nth k  (reverse beta))))
)

;;; Build Connectivity Graph *
...jit**************************

(define-blackboard-command (build_graph :menu-accelerator
"Build Connectivity Graph" 
rkeyboard-accelerator #\b)

0
• • ♦ afe ^ ^ ^  ̂  ̂  ̂  ̂  ̂  ^  ^  ̂  t|̂  ^

;;; Clear connectivity lists *

(setf gamma-list'() 
lambda-ks-list'() 
omega-list'() 
pie-list'() 
sigma-list '0  
pointstack'() 
markstack'() 
connected t)

(setf adj-list (make-array ks_count 
:initial-element ’0))

(setf mark (make-array ks_count
rinitial-element nil))

;;; Build connectivity Graph *

(build_connect beta beta)
)

;;; define functions to build connectivity sets and adjacency list. *

(defun build_connect (ks-list beta-Iist)
(cond 

((NOT ks-list) t)
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(t (build_item (car ks-list) (remove (car ks-list) beta-list)) 

(build_connect (cdr ks-list) beta-list))) )

(defun build_item (ksj ks-in)
(cond

((NOT ks-in) t)
(t (create_gamma ksj (nth 0 ks-in))

(create_lambda-ks ksj (nth 0 ks-in))
(create_successor ksj (nth 0 ks-in))
(create_adjlist ksj (nth 0 ks-in))
(create_predecessorksj (nth 0 ks-in))
(build_item ksj (cdr ks-in)))))

» f*
;;; function to compute the adjacency list of a KS *

(defun create_adjlist (ksj ksk)
(cond ((intersection (get-phi ksj) (get-psi ksk))

(sort (pushnew (get-depth ksk) (aref adj-list (get-depth ksj))) '<)) 
<tt))

)

^ ^  ̂  %  sic s |e  >|c a|e afc j |e  s f j 3|e %  sfesjc $  afc 3(e >|c $  s{c sfc sfc sfc $s $  sjc sjc sjc He sjc sfc %  sjc %  sjc %  $  sjc sjc sjc sjc $  sjc

;;; function to compute the sucessors of a KS *
»»? ♦ sfe Sfc ♦ ♦ sic %si*slt3j< + +

(defun create_predecessor (ksj ksk)
(cond ((intersection (get-psi ksj) (get-phi ksk))

(pushnew (get-name ksk) (get-predecessor_list ksj)))
(tt))

)

;;; function to compute the sucessors of a KS *
^ ^  ^ s jc + sfc s k  ♦  sjc sjc sjc sjc % sjcsjc sjc a ft %  sjc  sje s k  s k  5k  s k  ̂  ̂  *k  *k  * k  * k  *k  *k * k  ̂  *k  * k  %  * k  *k  *k % %  5 k  * k  %  %  *k

(defun create_successor (ksj ksk)
(cond ((intersection (get-phi ksj) (get-psi ksk))

(pushnew (get-name ksk) (get-successor_list ksj)))
(tt))

)

;;; View Gamma Command *
 ̂̂  ̂ sk sk $ % % sk % sk % % sk »fc sk sk % sk sk 4c sk ★

(define-blackboard-command (display_gamma :menu-accelerator
"View Gamma")

210
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0
(send *pane4* :clear-window)

(loop for x in gamma-list
do (present x 'gamma :stream *pane4*))

)

 ̂̂  ̂ tii sk $ }fc Sfc $ sfc % Sjc Jje sjc $ sjc ?k s|t 4* *k *k Sk jfc Sjc 9k 5k Sk sk
;;; View Lambda-ks Command *
*«• sk sk sk♦ sk* sk sk »k sk * * sksk *k * sk>k ♦ sk*k ♦ sk * sk5SS

(define-blackboard-command (display_lambda :menu-accelerator
"View Lambda")

0
(send *pane4* :clear-window)

(loop for x in lambda-ks-list
do (present x 'lambda-ks : stream *pane4*))

)

ŝksksksksksksksksksksksksksksksksksksksksk
;;; View Omega Command *
 ̂̂ ̂ sk sk ̂  sk sk sk sk sk sk sk sk sk sk sk sk >k sk >k sk sk sk

(define-blackboard-command (display_omega :menu-accelerator "View Omega")
0

(send *pane4* :clear-window)

Goop for x in omega-list
do (present x 'omega: stream *pane4*))

)

 ̂̂  ̂ # sk sk sk sk sk sk sk sk sk =k sk sk sk sk sk sk sk
;;; View Pi Command *
^ ̂ ik ak 4c ak sk sk sk sk sk sk sk sk sk sk sk sk

(define-blackboard-command (display_pi :menu-accelerator
"View Pi")

0
(send *pane4* :clear-window)

Goop for x in pie-list
do (present x 'pie :stream *pane4*))

)

 ̂̂  ̂ sksk sk sk sk sk sk sk sk sk sk sk sksk sk >k sk sk sk sk sk
;;; View Sigma Command *
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(define-blackboard-command (displayjsigma :menu-accelerator

"View Sigma")
0

(send *pane4* :clear-window)

(loop for x in sigma-list
do (present x 'sigma:stream *pane4*))

)
 ̂̂  ̂ 4c 4< 4c s|t 4c 4* % sk 4c sk 4c 4* 4* 4* 4< sk % 4* 4* 4*4* 4c 4c *k 4* sk ♦ 4c 4c 4* 4* 4* 4* sksk sk 4c sk sk 4c
;;; Edit a Blackboard Data Object Command *
 ̂̂  ̂ % sk sfc 4c % sk sk sk % % 4c sksk 4tsk sk sk sk sksksk sk sk sk sk sk sk sk sk sk sk 4c sk 4s sk sk sk sk sk sk

(define-blackboard-command (edit_bb-do :menu-accelerator
"Edit a Blackboard Data Object" 
:keyboard-accelerator #S2)

0
(setf data-in nil)
(select-data-object-name)

(loop for x in d/o-list
when (equal data-in 1 (get-name x)) 

do (setf do-edit x))

(setf in-name (get-name do-edit) 
in-type (get-type do-edit) 
in-value (get-value do-edit) 
in-in_list (get-input_list do-edit) 
in-out_list (get-output_list do-edit))

(tv:choose-variable-values 
'((in-name "Data Object Name" expression)

(in-type "Data Object Type" expression)
(in-value "Data Object Value" expression)
(in-in_list "Data Object Used as Input By" expression) 
(in-out_list "Data Object Updated as Output By" expression)) 

':label "Knowledge Source Editor")

(setf (get-name do-edit) in-name 
(get-type do-edit) in-type 
(get-value do-edit) in-value 
(get-input„list do-edit) in-in_list 
(get-output_list do-edit) in-out_list)

)

 ̂̂  ̂ 4« sk sk 4< 4c sk % 4c 4c4c sk sk 4c 4« sk sk sk sksk 4< 4c 4« 4< sk 4c 4c 4c 4c sk 4c 4< 4c 4c sk 4c 4c 4c
;;; Clear the Blackboard Specification *
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(define-blackboard-command (dear_bb-do :menu-accelerator

"Clear the Blackboard Specification" 
:keyboard-accelerator #^))

0
(send *pane3* :clear-window)
(send *pane4* xlear-window)
(send *pane6* :clear-window)
(init_system)
)

•»»4c4c4csk4c4c 4c4csksksk4csk4csk4csksk4csk
;;; initialize system *
• •»sksk4csk4csk4c4csksksksksk4csk4c4c4c4csk
9 9 9

(defun my-top-level (program)
(init_system)
(pop-panes)
(dw:default-command-top-level program))

(defun init_system 0  
(setf beta 'O

data-object-list'() 
d/o-list'() 
gamma-list'() 
lambda-ks-list'() 
omega-list '0  
ks-list'() 
pie-list'() 
sigma-list'() 
ks_count 0 
sensor_count 0 
connected nil)

)

(defun pop-panes 0
(setf *panel* (dw:get-program-pane 'pane-1)

*pane3* (dw:get-program-pane 'pane-3)
*pane4* (dw:get-program-pane 'pane-4)
*pane5* (dw:get-program-pane 'pane-5)
*pane6* (dw:get-program-pane 'pane-6))

)
 ̂̂  ̂ sk 4c 4c 4c 4c 4c 4« 4* sk 4c sk 4e 4c 4« sk sk 4« 4* 4< sk4* 4csk sk sk sk sk 4c sk4< 4* 4f *k4« 4« 4c 4c sk sk sk 4c 4e *k 4c
;;; define a function to pop a menu to allow *
;;; the user to select a knowledge source *
 ̂̂  ̂ sk 4c 4c 4c 4c 4c sk sk sk sk sk sk sk sk sk sk 4c sk sk sksk 4csk sk sk sk sk sk 4c 4c sk 4c 4csk 4c sk sk sk sk sk sk 4c sk 4c

(defun select-ks-name ()
(send *ks-menu* ':set-item-list ks-list)
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(send *ks-menu* ':expose-near’(:mouse))
(setq ks-in (send *ks-menu* r:choose))
(send *ks-menu* '.‘deactivate) t)

(defun select-data-object-name ()
(send *do-menu* ':set-itein-list data-object-list) 
(send *do-menu* *:expose-near '(:mouse)) 
(setq data-inl (send *do-menu* ’rchoose)) 
(send *do-menu* 'rdeactivate) t)



Appendix D Concurrent Blackboard Simulation 
System Verification Results and COBS 

Simulation System Software.

This appendix contains the software and simulation runs used to verify that the 
COBS Simulation System performed according to specifications. The COBS 
Simulation System software is included at the end of this appendix.

D .l Simulation Software and Results for Bi

This section contains the B l software generated by the COBS simulation tool and 
simulation runs for B l

D.1.1 COBS Simulation Software for B l

;;; Syntax: Common-Lisp; Package: COMMON-LISP-USER; Base: 10; Mode: 
LISP

* *»k 4® 4® 4® 4c 4c 4c 4c 4® 4c 4c 4c 4c 4c 4c 4® 4c 4® 4c 4c 4c 4® 4c1 >»
;;;* Load the Simulation *
;;;* Support Functions *
 ̂̂  ̂ 4® 4® 4® 4® 4® 4* 4* 4* 4* 4c 4*4* 4c 4c 4c 4c 4c 4c 4c 4® 4c 4* 4®

(si:load "m:>john>sim-base")

• • • 4t 4e 4c 4® 4® 4® 4® 4c 4c4® 4t 4e 4e 4e4e 4c 4e 4e 4e 4c999
;;;* Define Variables *
919* 4c4c4c4®4®4c 4®

(defvar d/o-list'())

(defvar k/s-list *0)

(defvar ks-list '(KS4 KS3 KS2 KS1))

(defvar undefined '"undefined")
(defvar D8-LOCK'())
(defvar D8 '0)
(defvar KS4-D8'())
(defvar D7-LOCK'())
(defvar D 7 '0)
(defvar KS4-D7'())
(defvar D6-LOCK'())
(defvar D 6 '())
(defvar KS3-D6'())

215
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(defvar D9-LOCK'())
(defvar D9 '0)
(defvar KS2-D9'())
(defvar D l-LO CK ’())
(defvar D1 ’0)
(defvar KS1-D1 ’())
(defvar D2-LOCK’())
(defvar D2'())
(defvar KS1-D2'())
(defvar D3-LOCK’())
(defvar D3 '0)
(defvar KS2-D3'())
(defvar D4-LOCK’())
(defvar D4 '0)
(defvar KS3-D4’())
(defvar D5-LOCK'())
(defvar D 5 '())
(defvar KS4-D5'())

(defvar KS4D5-list’())
(defvar KS4D7-list'())
(defvar KS4D8-list '0)
(defvar KS3D4-list'())
(defvar KS3D6-list'())
(defvar KS2D3-list ’())
(defvar KS2D9-list ’0)

;;;* Define Blackboard Data Object Locks *
a|eskJfei|c!ic)ie>fes|c!|e5(c>|i sjcf:!#:

(Setf D5-LOCK (process:make-lock "D5-LOCK" :type rmultiple-reader-single-writer 
recursive t))
(Setf D4-LOCK (process:make-lock "D4-LOCK" :type rmultiple-reader-single-writer 
recursive t))
(Setf D3-LOCK (process:make-lock "D3-LOCK" :type :multiple-reader-single-writer 
:recursive t))
(Setf D2-LOCK (process:make-lock "D2-LOCK" :type rmultiple-reader-single-writer 
rrecursive t))
(Setf Dl-LOCK (process:make-lock "Dl-LOCK" :type rmultiple-reader-single-writer 
recursive t))
(Setf D9-LOCK (process:make-lock "D9-LOCK" :type rmultiple-reader-single-writer 
rrecursive t))
(Setf D6-LOCK (processrmake-lock "D6-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))
(Setf D7-LOCK (processrmake-lock "D7-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))
(Setf D8-LOCK (processrmake-lock "D8-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))
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^  ̂  ^  )fc $  a |e  %  )|c  $ ♦  ♦  sfrsfc ♦  % $ J f t *  * * * * * *  *  *  *  * *  *  sk  * 4 c  *  *  * *

;;;* Build Knowledge Source Objects *
 ̂̂  ̂  * * *  * * * * ** * *  afc *  * * ** ** * * **  * %* * 4c 4c * $ % % *

(defun build-ks-list 0

(setf k/s-list ’0 )

(setf KS1 (make-instance 'base_ks
:name "KSl" 
rtype "SENSOR" 
rinit-function '(KSl-verify) 
ract-function '(KSl-activation) 
rexec-function’(KSl-func) 
rexecution-delay 5 
rupdate-interval 0.0 
rcompletion-time 0 
ractivation-time 0))

(push KSl k/s-list)

(setf KS2 (make-instance 'base_ks
rname "KS2" 
rtype "PROCESSOR" 
rinit-function '(KS2-verify) 
ract-function '(KS2-activation) 
rexec-function '(KS2-func) 
rexecution-delay 4 
rupdate-interval 0.0 
rcompletion-time 0 
ractivation-time 0))

(push KS2 k/s-list)

(setf KS3 (make-instance 'base_ks
rname "KS3" 
rtype "PROCESSOR" 
rinit-function '(KS3-verify) 
ract-function '(KS3-activation) 
rexec-function '(KS3-func) 
rexecution-delay 6 
rupdate-interval 0.0 
rcompletion-time 0 
ractivation-time 0))

(push KS3 k/s-list)

(setf KS4 (make-instance 'base_ks
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rname "KS4" 
rtype "PROCESSOR" 
rinit-function '(KS4-verify) 
ract-function ’(KS4-activation) 
rexec-function '(KS4-func) 
rexecution-delay 8 
rupdate-interval 0.0 
rcompletion-time 0 
ractivation-time 0))

(push KS4 k/s-list)

)
•  •  « *  * * * * * * *  * * * * * * *  * * * * * * * *  * * * * * * * * * * * *  * * *999
;;;* Define Knowledge Source Processess *
♦ • ♦ sfdji ̂9̂ ̂9̂ ̂9̂ ̂9̂ *9̂ 9̂̂ ̂9̂ ̂9̂ ̂9̂ ̂9̂̂9̂ ̂9̂ ̂9̂ ̂9̂ ̂9̂ ̂9̂ ̂9̂ ̂9̂ ̂9̂ ̂9̂ ̂9̂ ̂9̂ ̂9̂ ̂9̂ ̂9̂ ̂9̂ ̂9̂ ̂9̂ *9̂

(defun KS4-activation 0  
(setf KS4D5-list (push (fetch D5) KS4D5-list))
(setf KS4D7-list (push (fetch D7) KS4D7-list))
(setf KS4D8-list (push (fetch D8) KS4D8-list))
(setf KS4D5-temp (pop ks4D5-list))
(setf KS4D7-temp (pop ks4D7-list))
(setf KS4D8-temp (pop ks4D8-list))
(cond

((NOT ks4d5-list) (setfKS4-D8'())
(setf KS4-D7 ’())
(setf KS4-D5 ’()))

(tt))
)

(defun KS4-verify ()
(and KS4-D8 KS4-D7 KS4-D5 (NOT (= (GET-VALUE D9) 13.6))

(NOT (= (GET-VALUE D2) 0.0)) (NOT (= (GET-VALUE D8) 0.0))))

(defun KS4-func ()
(print "call to knowledge source handler")
(ks4-exec)
(update D9 KS4D9-temp)

)

(defun ks4-exec ()
(setf KS4D9-temp (max KS4D5-temp KS4D7-temp KS4D8-temp))
)

(defun KS3-activation 0  
(setf KS3D4-list (push (fetch D4) KS3D4-list))
(setf KS3D6-list (push (fetch D6) KS3D6-list))
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(setf KS3D4-temp (pop ks3d4-list))
(setf KS3D6-temp (pop ks3d6-list))
(cond

((NOT ks3d4-list) (setf KS3-D6'())
(setf KS3-D4'()))

(tt))
)

(defun KS3-verify ()
(and KS3-D6 KS3-D4 (NOT (= (GET-VALUE D8) PI)) (NOT (= (GET-VALUE 

D9) 13.6))))

(defun KS3-func ()
(print "call to knowledge source handler")
(ks3-exec)
(update D8 KS3D8-temp)
)

(defun ks3-exec ()
(setf KS3D3-temp (max KS3D4-temp KS3D6-temp))
)

(defun KS2-activation 0  
(setf KS2D3-list (push (fetch D3) KS2D3-list))
(setf KS2D9-list (push (fetch D9) KS2D9-list))
(setf KS2D3-temp (pop ks2d3-list))
(setf KS2D9-temp (pop ks2d9-list))
(cond

((NOT ks2d3-list) (setf KS2-D9'())
(setf KS2-D3'()))

(tt))
)

(defun KS2-verify ()
(and KS2-D9 KS2-D3 (NOT (= (GET-VALUE D4) 7)) (NOT (= (GET-VALUE 

D8) PI))))

(defun KS2-func ()
(print "call to knowledge source handler")
(ks2-exec)
(update D6 KS2D6-temp)
(update D7 KS2D7-temp)
)

(defun ks2-exec 0  
(setf KS2D6-temp (max KS3D3-temp 4.10))
(setf KS2D7-temp (* KS2D9-temp 0.41))
)
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(defun KS 1-activation 0  

(setf KSlDl-temp (fetch D l))
(setf KSlD2-temp (fetch D2))
(setfKSl-D2*0)
(setf KS1-D1 *0)

(KSl-update)
)

(defun KSl-verify ()
(and KS1-D2 KS1-D1))

(defun KSl-func ()
(print "call to knowledge source handler")
(ksl-exec)
(update D3 KSlD3-temp)
(update D4 KS lD4-temp)
(update D5 KSlD5-temp)
)

(defun ksl-exec ()
(setf KS1D3-temp (max KSlDl-temp KSlD2-temp))
(setf KSlD4-temp (* KSlDl-temp KSlD2-temp))
(setf KSlD5-temp (/ KSlDl-temp KSlD2-temp))
)

^ ^
;;;* Build Blackboard Data Objects *

(defun build-do-list ()

(setf d/o-list'())

(setf D5 (make-instance 'bIackboard_data_object 
:name "D5"
:type "REAL" 
rvalue UNDEFINED 
rlock D5-LOCK 
rread-lock 0 
rwrite-lock 0 
:input_list’(KS4)
:ic_list '(KS4-D5)
:output_list '(KSl)))

(push D5 d/o-list)

(setf D4 (make-instance 'blackboard_data_object 
rname "D4"
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rtype "REAL" 
rvalue UNDEFINED 
rlock D4-LOCK 
rread-lock 0 
rwrite-lock 0 
rinput_list '(KS3) 
ric jist '(KS3-D4)
:outputJist'(KSl)))

(push D4 d/o-list)

(setf D3 (make-instance ’blackboard_data_object 
rname "D3" 
rtype "REAL" 
rvalue UNDEFINED 
dock D3-LOCK 
rread-lock 0 
rwrite-lock 0 
:input_list '(KS2) 
dc_list '(KS2-D3)
:output_list '(KSl)))

(push D3 d/o-list)

(setf D2 (make-instance 'blackboard_data_object 
rname "D2" 
rtype "REAL" 
rvalue 1.8 
dock D2-LOCK 
rread-lock 0 
rwrite-lock 0 
:input_list '(KSl) 
ric jist '(KS1-D2) 
routputJist ’NIL))

(push D2 d/o-list)

(setf D1 (make-instance 'blackboard_data_object 
rname "Dl" 
rtype "REAL" 
rvalue 2.2 
dock Dl-LOCK 
rread-lock 0 
rwrite-lock 0 
rinput list'(KSl) 
ric jist '(KS1-D1) 
routputjist ’NIL))

(pushDl d/o-list)
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(setf D9 (make-instance 'blackboard_data_object 
:name "D9"
:type "REAL" 
rvalue UNDEFINED 
rlock D9-LOCK 
rread-lock 0 
rwrite-lock 0 
rinput J is t  '(KS2) 
r ic jis t '(KS2-D9) 
routput_list '(KS4)))

(push D9 d/o-list)

(setf D6 (make-instance ’blackboard_data_object 
rname "D6" 
rtype "REAL" 
rvalue UNDEFINED 
rlock D6-LOCK 
rread-lock 0 
rwrite-lock 0 
rinputJist '(KS3) 
ricjist'(KS3-D6) 
routputjist '(KS2)))

(push D6 d/o-list)

(setf D7 (make-instance *blackboard_data_object 
rname "D7" 
rtype "REAL" 
rvalue UNDEFINED 
rlock D7-LOCK 
rread-lock 0 
rwrite-lock 0 
rinput J is t  '(KS4) 
ricjist'(KS4-D7) 
routputjist '(KS2)))

(push D7 d/o-list)

(setf D8 (make-instance 'blackboard_data_object 
rname "D8" 
rtype "REAL" 
rvalue UNDEFINED 
rlock D8-LOCK 
rread-lock 0 
rwrite-lock 0 
rinputjist '(KS4) 
r ic jis t’(KS4-D8)
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routputjist '(KS3)))

(push D8 d/o-list)
)

D.1.1 Simulation Results for B l

List of Knowledge sources:

Knowledge Source: KS4
Type: PROCESSOR
Verify Function (KS4-VERIFY)
Activation Function (KS4-ACTIVATION)
Execution Function (KS4-FUNC)
Execution Delay: 8
Update Interval: 0.0

Knowledge Source: KS3
Type: PROCESSOR
Verify Function (KS3-VERIFY)
Activation Function (KS3-ACTIVATION)
Execution Function (KS3-FUNC)
Execution Delay: 6
Update Interval: 0.0

Knowledge Source: KS2
Type: PROCESSOR
Verify Function (KS2-VERIFY)
Activation Function (KS2-ACTIVATION)
Execution Function (KS2-FUNC)
Execution Delay; 4
Update Interval: 0.0

Knowledge Source: KSl 
Type: SENSOR
Verify Function (KS1-VERIFY) 
Activation Function (KSl-ACTIVATION) 
Execution Function (KS1-FUNC) 
Execution Delay: 5 
Update Interval: 12

Bi Execution:

KS KSl executed at S 
Sensor KSl activated at 12 
KS KSl executed at 17 
Sensor KS 1 activated at 24 
KS KSl executed at 29 
Sensor KSl activated at 36
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KS K Sl executed at 41 
Sensor KSl activated at 48 
KS K Sl executed at 53 
Sensor KSl activated at 60 
KS K Sl executed at 65 
Sensor KSl activated at 72 
KS K Sl executed at 77 
Sensor KSl activated at 84 
KS K Sl executed at 89 
Sensor KSl activated at 96 
KS KSl executed at 101 
Sensor KSl activated at 108 
KS K Sl executed at 113 
Sensor KSl activated at 120 
KS K Sl executed at 125 
Sensor KSl activated at 132 
KS K Sl executed at 137 
Sensor KSl activated at 144 
KS K Sl executed at 149 
Sensor KSl activated at 156 
KS KSl executed at 161 
Data Object: D8  
Type: REAL 
Value undefined 
Times Read Locked 0 
Time Write Locked 0

Bi Results:

Data Object: D7 
Type: REAL 
Value undefined 
Times Read Locked 0 
Time Write Locked 0

Data Object: D6  
Type: REAL 
Value undefined 
Times Read Locked 0 
Time Write Locked 0

Data Object: D9 
Type: REAL 
Value undefined 
Times Read Locked 0 
Time Write Locked 0

Data Object: D1 
Type: REAL 
Value 13
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Times Read Locked 14 
Time Write Locked 13

Data Object: D2 
Type: REAL 
Value 13
Times Read Locked 14 
Time Write Locked 13

Data Object: D3 
Type: REAL 
Value 13
Times Read Locked 0 
Time Write Locked 14

Data Object: D4 
Type: REAL 
Value 169
Times Read Locked 0 
Time Write Locked 14

Data Object: D5 
Type: REAL 
Value 1
Times Read Locked 0 
Time Write Locked 14

The simulation results show that Bi livelocked due to the two feedback loops. 
Sensor ksi executed and read all ot its input stream. When the input stream was 
empty Bi stopped execution. The simulation results are the same as the results 
acheived by hand executing system Bi, and the COBS generated software matched the 
design specification.

D.2 Simulation Software and Results for 62

This section contains the B2  software generated by the COBS simulation tool and 
simulation runs for B2

D.2.1 COBS Simulation Software for B2

;;; Syntax: Common-Lisp; Package: COMMON-LISP-USER; Base: 10; Mode: 
LISP

^  ^  ̂  *  a|e *  )fc * *  sjc ijc  *  sfc  *  *  *  *  s f o f t  $ $  s fe $  Jfe

;;;* Load the Simulation *
;;;* Support Functions *
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(si:load "m:>john>sim-base")

^  ^  ̂  %  *  *  % *  %  %  *  $  $  *  *  %  9ft *  *  $  *  *  *

;;;* Define Variables *

(defvar d/o-list'())

(defvar k/s-list ’0 )

(defvarks-list '(KS4 KS3 KS2 KSl))

(defvar undefined '"undefined")
(defvar D8-LOCK'())
(defvar D8 '())
(defvar KS4-D8'())
(defvar D7-LOCK'())
(defvar D 7 '())
(defvar KS4-D7'())
(defvar D6-LOCK'())
(defvar D6  '0)
(defvar KS3-D6 ’())
(defvar D9-LOCK'())
(defvar D9'())
(defvar KS2-D9'())
(defvar Dl-LOCK ’())
(defvar D 1 '())
(defvar KS1-D1'())
(defvar D2-LOCK'())
(defvar D 2’0)
(defvar KS1-D2'())
(defvar D3-LOCK'())
(defvar D3 *0)
(defvar KS2-D3'())
(defvar D4-LOCK'())
(defvar D4'())
(defvar KS3-D4'())
(defvar D5-LOCK'())
(defvar D5 ’0)
(defvar KS4-D5'())

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;;;* Define Blackboard Data Object Locks *
^ ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(Setf D5-LOCK (processrmake-lock "D5-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))
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(Setf D4-LOCK (process:make-lock "D4-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))
(Setf D3-LOCK (processrmake-lock "D3-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))
(Setf D2-LOCK (processrmake-lock "D2-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))
(Setf Dl-LOCK (processrmake-lock "Dl-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))
(Setf D9-LOCK (processrmake-lock "D9-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))
(Setf D6 -LOCK (processrmake-lock "D6 -LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))
(Setf D7-LOCK (processrmake-lock "D7-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t»
(Setf D8 -LOCK (processrmake-lock "D8 -LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))

»»»
;;;* Build Knowledge Source Objects *
* ************************************

(defun build-ks-list ()

(setf k/s-list'())

(setf KSl (make-instance 'base_ks 
rname "KSl" 
rtype "SENSOR" 
rinit-function ’(KSl-verify) 
ract-function '(KS 1-activation) 
rexec-function ’(KSl-func) 
rexecution-delay 5 
rupdate-interval 0 .0  
rcompletion-time 0  
ractivation-time 0 ))

(push KSl k/s-list)

(setf KS2 (make-instance 'base_ks 
rname "KS2" 
rtype "PROCESSOR" 
rinit-function '(KS2-verify) 
ract-function '(KS2-activation) 
rexec-function '(KS2-func) 
rexecution-delay 4 
rupdate-interval 0 .0  
rcompletion-time 0  
ractivation-time 0 ))
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(push KS2 k/s-list)

(setf KS3 (make-instance 'base_ks 
rname "KS3"
:type "PROCESSOR"
:init-function '(KS3-verify)
:act-function ’(KS3-activation)
:exec-funcdon '(KS3-func)
:execution-delay 6  
rupdate-interval 0 .0  
:completion-time 0  
:activation-time 0  ))

(push KS3 k/s-list)

(setf KS4 (make-instance 'base_ks 
rname "KS4"
:type "PROCESSOR"
:init-function ’(KS4-verify) 
ract-function '(KS4-activation) 
rexec-function '(KS4-func) 
rexecution-delay 8 
rupdate-interval 0 .0  
rcompletion-time 0  
ractivation-time 0 ))

(push KS4 k/s-list)

)
^  ^  ̂  *  *  aft $  a f e $  $  *  sfc $  ♦  ♦  ♦  ★  %  jfe $  %  *  *  $  r f c f c  ♦  ♦ * + ♦  ♦  ♦  ★  sfc ♦  ♦  rfcsft

;;;* Define Knowledge Source Processess *
 ̂̂  $$$?!(&$$$$ 4c $a|c 4c

(defun KS4-activation 0  
(setf KS4D5-temp (fetch D5))
(setf KS4D7-temp (fetch D7))
(setf KS4D8-temp (fetch D 8))
(setf KS4-D8 ’0)
(setf KS4-D7'())
(setf KS4-D5'())

)

(defun KS4-verify ()
(and KS4-D8 KS4-D7 KS4-D5 (NOT (= (GET-VALUE D9) 13.6)) (NOT (

(GET-VALUE D2) 0.0)) (NOT (= (GET-VALUE D8 ) 0.0))))

(defun KS4-func ()
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(print "call to knowledge source handler")
(ks4-exec)
(update D9 KS4D9-temp)

(defun KS3-activation 0  
(setf KS3D4-temp (fetch D4))
(setf KS3D6-temp (fetch D 6))
(setf KS3-D6 ’())
(setf KS3-D4 '())

)

(defun KS3-verify ()
(and KS3-D6 KS3-D4 (NOT (= (GET-VALUE D 8 ) PI)) (NOT (= (GET-VALUE 

D9) 13.6))))

(defun KS3-func ()
(print "call to knowledge source handler")
(ks3-exec)
(update D 8 KS3D8-temp)

(defun KS2-activation ()
(setf KS2D3-temp (fetch D3))
(setf KS2-D9 ’())
(setf KS2-D3 ’())

)

(defun KS2-verify ()
(and KS2-D3 (NOT (= (GET-VALUE D4) 7)) (NOT (= (GET-VALUE D8) 

PI))))

(defun KS2-func ()
(print "call to knowledge source handler")
(ks2 -exec)
(update D6  KS2D6-temp)
(update D7 KS2D7-temp)

(defun KSl-activation 0  
(setf KSlDl-temp (fetch Dl)) 
(setf KSlD2-temp (fetch D2)) 
(setf KSl-D2 ’0)
(setf KS1-D1 ’())

(KSl-update)
)
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{defun KSl-verify ()
(and KS1-D2 KS1-D1))

(defun KSl-func ()
(print "call to knowledge source handler") 
(ksl-exec)
(update D3 KSlD3-temp)
(update D4 KSlD4-temp)
(update D5 KSlD5-temp)

^  ̂  ̂  *  $  *  %  sfc  $  * 4 c  % s k  * $ s f t $  % # ♦ Jfc % sfe sfc %  sfc s je  % $ sfe %  %

;;;* Build Blackboard Data Objects *

(defun build-do-list ()

(setf d/o-list'())

(setf D5 (make-instance 'blackboard_data_object 
rname "D5" 
rtype "REAL" 
rvalue UNDEFINED 
rlock D5-LOCK 
rread-lock 0  
rwrite-lock 0  
:input_list ’(KS4) 
ric jist '(KS4-D5)
:output_list '(KSl)))

(push D5 d/o-list)

(setf D4 (make-instance 'blackboard_data_object 
rname "D4" 
rtype "REAL" 
rvalue UNDEFINED 
rlock D4-LOCK 
rread-lock 0  
rwrite-lock 0  
rinput J is t  '(KS3) 
ricjist'(KS3-D4) 
routputjist ’(KSl)))

(push D4 d/o-list)

(setf D3 (make-instance 'blackboard_data_object 
rname "D3" 
rtype "REAL"
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rvalue UNDEFINED 
rlock D3-LOCK 
rread-lock 0  
rwrite-lock 0  
rinputjist ’(KS2) 
r ic jis t’(KS2-D3) 
routputjist '(KSl)))

(push D3 d/o-list)

(setf D2 (make-instance ’blackboard_data_object 
rname "D2" 
rtype "REAL" 
rvalue 1.8  
rlock D2-LOCK 
rread-lock 0  
rwrite-lock 0  
rinputjist '(KSl) 
ricjist'(KS1-D2) 
routputjist ’NIL))

(push D2 d/o-list)

(setf D1 (make-instance ’blackboard_data_object 
rname "Dl" 
rtype "REAL" 
rvalue 2 .2  
rlock Dl-LOCK 
rread-lock 0  
rwrite-lock 0  
rinputjist '(KSl) 
ric jist '(KS1-D1) 
routputjist ’NIL))

(pushDl d/o-list)

(setf D9 (make-instance 'blackboard_data_object 
rname "D9" 
rtype "REAL" 
rvalue undefined 
rlock D9-LOCK 
rread-lock 0  
rwrite-lock 0  
rinputjist 'NIL 
ricjist'(KS2-D9) 
routputjist '(KS4)))

(push D9 d/o-list)
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(setf D6  (make-instance 'blackboard_data_object 

rname MD6 "
:type "REAL"
:value UNDEFINED 
rlock D 6 -LOCK 
rread-lock 0  
rwrite-lock 0  
rinputjist'(KS3) 
r ic jis t '(KS3-D6) 
routputjist '(KS2)))

(push D6  d/o-list)

(setf D7 (make-instance 'blackboard_data_object 
rname "D7” 
rtype "REAL" 
rvalue UNDEFINED 
rlock D7-LOCK 
rread-lock 0  
rwrite-lock 0  
rinputjist ’(KS4) 
r ic j is t ’(KS4-D7) 
routputjist’(KS2)))

(push D7 d/o-list)

(setf D8  (make-instance 'blackboard_data_object 
rname "D8 " 
rtype "REAL" 
rvalue UNDEFINED 
rlock D 8 -LOCK 
rread-lock 0  
rwrite-lock 0  
rinputjist '(KS4) 
ric jis t '(KS4-D8)
:output_list '(KS3)))

(push D 8  d/o-list)

)

(defun ks4-exec 0  
(setf KS4D9-temp (max KS4D5-temp KS4D7-temp KS4D8-temp))
)
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(defun ks3-exec 0  
(setf KS3D8-temp (max KS3D4-temp KS3D6-temp))
)
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(defun ks2 -exec 0  
(setf KS2D6-temp (max KS2D3-temp 4.10))
(setf KS2D7-temp (* KS2D3-temp 0.41))
)

(defun ksl-exec ()
(setf KSlD3-temp (max KSlDl-temp KSlD2-temp))
(setf KSlD4-temp (* KSlDl-temp KSlD2-temp))
(setf KS IDS-temp (/KSlDl-temp KSlD2-temp))
)

D.2.2 COBS Simulation Software for B2

List of Knowledge Sources:

Knowledge Source: KS4
Type: PROCESSOR
Verify Function (KS4-VERIFY)
Activation Function (KS4-ACTIVATION)
Execution Function (KS4-FUNC)
Execution Delay: 8
Update Interval: 0.0

Knowledge Source: KS3
Type: PROCESSOR
Verify Function (KS3-VERIFY)
Activation Function (KS3-ACTIVATION)
Execution Function (KS3-FUNC)
Execution Delay: 6
Update Interval: 0.0

Knowledge Source: KS2
Type: PROCESSOR
Verify Function (KS2-VERIFY)
Activation Function (KS2-ACTIVATION)
Execution Function (KS2-FUNC)
Execution Delay: 4
Update Interval: 0.0

Knowledge Source: KSl 
Type: SENSOR
Verify Function (KS1-VERIFY)
Activation Function (KS 1-ACTIVATION) 
Execution Function (KS1-FUNC) 
Execution Delay: 5 
Update Interval: 12
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B2 Execution:

Sensor KS1 activated at 0 
Event queue (KS1)
KS1 executed at 5 
Event queue (KS2)
KS2 executed at 9 
Sensor KS1 activated at 12 
Event queue (KS1 KS3)
KS3 executed at 15 
Event queue (KS1 KS4)
KS1 executed at 17 
Event queue (KS4 KS2)
KS2 executed at 21 
Event queue (KS4 KS3)
KS4 executed at 23 
Sensor KS1 activated at 24 
Event queue (KS1 KS3)
KS3 executed at 27 
Event queue (KS1 KS4)
KS1 executed at 29 
Event queue (KS4 KS2)
KS2 executed at 33 
Event queue (KS4 KS3)
KS4 executed at 35 
Sensor KS1 activated at 36 
Event queue (KS1 KS3)
KS3 executed at 39 
Event queue (KS1 KS4)
KS1 executed at 41 
Event queue (KS4 KS2)
KS2 executed at 45 
Event queue (KS4 KS3)
KS4 executed at 47 
Sensor KS 1 activated at 48 
Event queue (KS1 KS3)
KS3 executed at 51 
Event queue (KS1 KS4)
KS1 executed at 53 
Event queue (KS4 KS2)
KS2 executed at 57 
Event queue (KS4 KS3)
KS4 executed at 59 
Sensor KS1 activated at 60 
Event queue (KS1 KS3)
KS3 executed at 63 
Event queue (KS1 KS4)
KS1 executed at 65 
Event queue (KS4 KS2)
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KS2 executed at 69 
Event queue (KS4 KS3)
KS4 executed at 71 
Sensor KS1 activated at 72 
Event queue (KS1 KS3)
KS3 executed at 75 
Event queue (KS1 KS4)
KS1 executed at 77 
Event queue (KS4 KS2)
KS2 executed at 81 
Event queue (KS4 KS3)
KS4 executed at 83 
Sensor KS1 activated at 84 
Event queue (KS1 KS3)
KS3 executed at 87 
Event queue (KS1 KS4)
KS1 executed at 89 
Event queue (KS4 KS2)
KS2 executed at 93 
Event queue (KS4 KS3)
KS4 executed at 95 
Sensor KS 1 activated at 96 
Event queue (KS1 KS3)
KS3 executed at 99 
Event queue (KS1 KS4)
KS1 executed at 101 
Event queue (KS4 KS2)
KS2 executed at 105 
Event queue (KS4 KS3)
KS4 executed at 107 
Sensor KS1 activated at 108 
Event queue (KS1 KS3)
KS3 executed at 111 
Event queue (KS1 KS4)
KS1 executed at 113 
Event queue (KS4 KS2)
KS2 executed at 117 
Event queue (KS4 KS3)
KS4 executed at 119 
Sensor KS1 activated at 120 
Event queue (KS1 KS3)
KS3 executed at 123 
Event queue (KS1 KS4)
KS1 executed at 125 
Event queue (KS4 KS2)
KS2 executed at 129 
Event queue (KS4 KS3)
KS4 executed at 131 
Sensor KS1 activated at 132
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Event queue (KS1 KS3)
KS3 executed at 135 
Event queue (KS1 KS4)
KS1 executed at 137 
Event queue (KS4 KS2)
KS2 executed at 141 
Event queue (KS4 KS3)
KS4 executed at 143 
Sensor KS1 activated at 144 
Event queue (KS1 KS3)
KS3 executed at 147 
Event queue (KS1 KS4)
KS1 executed at 149 
Event queue (KS4 KS2)
KS2 executed at 153 
Event queue (KS4 KS3)
KS4 executed at 155 
Sensor KS1 activated at 156 
Event queue (KS1 KS3)
KS3 executed at 159 
Event queue (KS1 KS4)
KS1 executed at 161 
Event queue (KS4 KS2)
KS2 executed at 165 
Event queue (KS4 KS3)
KS4 executed at 167 
Event queue (KS3)
KS3 executed at 171 
Event queue (KS4)
KS4 executed at 179

B2  Results:

Data Object: D8 
Type: REAL 
Value 169
Times Read Locked 14 
Time Write Locked 14

Data Object: D7 
Type: REAL 
Value 5.33
Times Read Locked 14 
Time Write Locked 14

Data Object: D6  
Type: REAL 
Value 13
Times Read Locked 14 
Time Write Locked 14
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Data Object: D9 
Type: REAL 
Value 169
Times Read Locked 0 
Time Write Locked 14

Data Object: D1 
Type: REAL 
Value 13
Times Read Locked 14 
Time Write Locked 13

Data Object: D2 
Type: REAL 
Value 13
Times Read Locked 14 
Time Write Locked 13

Data Object: D3 
Type: REAL 
Value 13
Times Read Locked 14 
Time Write Locked 14

Data Object: D4 
Type: REAL 
Value 169
Times Read Locked 14 
Time Write Locked 14

Data Object: D5 
Type: REAL 
Value 1
Times Read Locked 14 
Time Write Locked 14

The simulation results show that B2  executed to completion. Sensor ksi executed 
and read all ot its input stream. When the input stream was empty B2 stopped 
execution. The simulation results are the same as the results acheived by hand 
executing system B2, and the COBS generated software matched the design 
specification.

D.3 Simulation Software and Results for B3

This section contains the B3 software generated by the COBS simulation tool and 
simulation runs for B3
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D.3.1 COBS Simulation Software for B3

;;; Syntax: Common-Lisp; Package: COMMON-LISP-USER; Base: 10; Mode: 
LISP

t))
;;;* Load the Simulation *
;;;* Support Functions *

(si:load "m:>john>sim-base")

t))
;;;* Detine Variables *

(defvar d/o-list'())

(defvar k/s-list'())

(defvar ks-list '(KSl KS2 KS3 KS4))

(defvar undefined '"undefined") 
(defvar D l-LO C K ’O)
(defvar D1 ’0)
(defvar KS1-D1'())
(defvar D2-LOCK'())
(defvar D 2 '())
(defvar KS1-D2'())
(defvar D3-LOCK'())
(defvar D 3 '())
(defvar KS2-D3'())
(defvar D4-LOCK'())
(defvar D4'())
(defvar KS3-D4'())
(defvar D5-LOCK'())
(defvar D 5 '())
(defvar KS4-D5'())
(defvar D6-LOCK'())
(defvar D 6 '())
(defvar KS3-D6 ’())
(defvar D7-LOCK ’())
(defvar D 7’())
(defvar KS4-D7’())
(defvar D8-LOCK'())
(defvar D8 ’0)
(defvar KS4-D8'())
(defvar D9-LOCK'())
(defvar D9 ’())
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. , ,  * * * * ** * * ** * * * * * s|e * * ** ** 3k * * * * % % * % ** * * * * % *»»
;;;* Define Blackboard Data Object Locks *
***

(Setf D9-LOCK (process:make-lock "D9-LOCK" :type :multiple-reader-single-writer 
rrecursive t))
(Setf D8-LOCK (process:make-lock "D8-LOCK" :type imultiple-reader-single-writer 
rrecursive t))
(Setf D7-LOCK (processrmake-lock "D7-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))
(Setf D6-LOCK (processrmake-lock "D6-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))
(Setf D5-LOCK (processrmake-lock "D5-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))
(Setf D4-LOCK (processrmake-lock "D4-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))
(Setf D3-LOCK (processrmake-lock "D3-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))
(Setf D2-LOCK (processrmake-lock "D2-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))
(Setf Dl-LOCK (processrmake-lock "Dl-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))

® ® • jf( ^ ^ ^ ^ ^ ^»»
;;;* Build Knowledge Source Objects *
Ml

(defun build-ks-list ()

(setf k/s-list'())

(setf KS4 (make-instance ’base_ks 
rname "KS4" 
rtype "PROCESSOR" 
rinit-function '(KS4-verify) 
ract-function '(KS4-activation) 
rexec-function '(KS4-func) 
rexecution-delay 3 
rupdate-interval 0.0 
rcompletion-time 0 
ractivation-time 0))

(push KS4 k/s-list)

(setf KS3 (make-instance 'base_ks 
rname "KS3" 
rtype "PROCESSOR" 
rinit-function '(KS3-verify)
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:act-function '(KS3-activation)
:exec-function '(KS3-func)
:execution-delay 5 
:update-interval 0.0 
:completion-time 0 
:activation-time 0))

(push KS3 k/s-list)

(setf KS2 (make-instance 'base_ks 
:name "KS2"
:type "PROCESSOR"
:init-function '(KS2-verify)
:act-function '(KS2-activation)
:exec-function ’(KS2-func)
:execution-delay 3 
:update-interval 0.0 
:completion-time 0 
:activation-time 0))

(push KS2 k/s-list)

(setf KS1 (make-instance'base_ks 
:name "KSl"
:type "SENSOR"
:init-function '(KSl-verify)
:act-function '(KS 1-activation)
:exec-function '(KSl-func)
:execution-delay 4 
:update-interval 0.0 
:completion-time 0 
:activation-time 0 ))

(push KSl k/s-list)

)

;;;* Define Knowledge Source Processess *
 ̂̂  ̂  $  ♦  Jfc % %% *  % ifrsi* % tit *  ★ ♦  *  *  *  *  #  *  *  *  *  sfe Jfe & *  *  *  *  sfc Jfc *  *  *

(defun KS 1-activation ()
(setf KS ID 1-temp (fetch Dl))
(setf KSlD2-temp (fetch D2))
(setf KS1-D2'())
(setf KS1-D1'())
(KSl-update)
)
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(defun KSl-verify ()

(and KS1-D2 KS1-D1))

(defun KSl-func ()
(print "call to knowledge source handler")
(ksl-exec)
(update D3 KSlD3-temp)
(update D4 KSlD4-temp)
(update D5 KSlD5-temp)
(update D6 KSlD6-temp)

)

(defun KS2-activation 0 
(setf KS2D3-temp (fetch D3))
(setf KS2-D3 ’0)
)

(defun KS2-verify ()
(and KS2-D3 (NOT (= (GET-VALUE D4) 7))))

(defun KS2-func ()
(print "call to knowledge source handler")
(ks2-exec)
(update D7 KS2D7-temp)

)

(defun KS3-activation ()
(setf KS3D4-temp (fetch D4))
(setf KS3D6-temp (fetch D6))
(setf KS3-D6'())
(setf KS3-D4'())
)

(defun KS3-verify ()
(and KS3-D6 KS3-D4 (NOT (= (GET-VALUE D8) PI))

(NOT (= (GET-VALUE D9) 13.6))))

(defun KS3-func ()
(print "call to knowledge source handler")
(ks3-exec)
(update D8 KS3D8-temp)

)

(defun KS4-activation 0  
(setf KS4D5-temp (fetch D5))
(setf KS4D7-temp (fetch D7))
(setf KS4D8-temp (fetch D8))
(setf KS4-D8 ’())
(setf KS4-D7 ’())
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(setf KS4-D5'())
)

(defun KS4-verify ()
(and KS4-D8 KS4-D7 KS4-D5 (NOT (= (GET-VALUE D9) 13.6))

(NOT (= (GET-VALUE D2) 0.0)) (NOT (= (GET-VALUE D8) 0.0))))

(defun KS4-func ()
(print "call to knowledge source handler")
(ks4-exec)
(update D9 KS4D9-temp)

)

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;;;* Build Blackboard Data Objects *
^ > » * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defun build-do-Iist ()

(setf d/o-list'())

(setf D9 (make-instance 'blackboard_data_object 
:name "D9" 
rtype "NIL" 
rvalue undefined 
rlock D9-LOCK 
rread-lock 0 
rwrite-lock 0 
:input_list 'NIL 
:ic_list 'NIL 
:output_list'(KS4)))

(push D9 d/o-Iist)

(setf D8 (make-instance 'blackboard_data_object 
rname "D8" 
rtype "NIL" 
rvalue undefined 
rlock D8-LOCK 
rread-lock 0 
rwrite-lock 0 
:input_list '(KS4)
:ic_list '(KS4-D8)
:output_Iist '(KS3)))

(push D8 d/o-list)

(setf D7 (make-instance 'blackboard_data_object 
rname "D7"
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rtype "NIL" 
rvalue undefined 
rlock D7-LOCK 
rread-lock 0 
rwrite-lock 0 
rinputjist '(KS4) 
ric_list '(KS4-D7) 
routput_list '(KS2)))

(push D7 d/o-list)

(setf D6 (make-instance 'blackboard_data_object 
rname "D6" 
rtype "NIL" 
rvalue undefined 
rlock D6-LOCK 
rread-lock 0 
rwrite-lock 0 
rinputjist '(KS3) 
ric jis t '(KS3-D6) 
routputjist '(KSl)))

(push D6 d/o-list)

(setf D5 (make-instance ’blackboard_data_object 
rname "D5" 
rtype "NIL" 
rvalue undefined 
rlock D5-LOCK 
rread-lock 0 
rwrite-lock 0 
rinputjist '(KS4) 
r ic jis t ’(KS4-D5)
:output_list '(KSl)))

(push D5 d/o-list)

(setf D4 (make-instance 'blackboard_data_object 
rname "D4" 
rtype "NIL" 
rvalue undefined 
rlock D4-LOCK 
rread-lock 0 
rwrite-lock 0 
rinputjist '(KS3) 
ric jis t '(KS3-D4) 
routput_list '(KSl)))

(push D4 d/o-list)
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(setf D3 (make-instance 'blackboard_data_object 
rname "D3"
:type "NIL” 
rvalue undefined 
dock D3-LOCK 
:read-lock 0 
:write-lock 0 
:input_list '(KS2) 
ricjist'(KS2-D3) 
routputjist'(KSl)))

(push D3 d/o-list)

(setf D2 (make-instance 'blackboard_data_object 
rname "D2" 
rtype "REAL" 
rvalue 14.0 
rlock D2-LOCK 
rread-lock 0 
rwrite-lock 0 
rinputjist '(KSl) 
r ic jis t’(KS1-D2) 
routputjist ’NIL))

(push D2 d/o-list)

(setf D1 (make-instance 'blackboard_data_object 
rname "Dl" 
rtype "REAL" 
rvalue 12 
rlock Dl-LOCK 
rread-lock 0 
rwrite-lock 0 
rinputjist '(KSl) 
ricjist'(KS1-D1) 
routputjist 'NIL))

(push D l d/o-list)

)

»»»
;;;* Add User Defined Execution *
;;;* Functions *
797

(defun ks4-exec 0 
(setf KS4D9-temp (max KS4D5-temp KS4D7-temp KS4D8-temp))
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)

(defun ks3-exec 0  
(setf KS3D8-temp (max KS3D4-temp KS3D6-temp))
)

(defun ks2-exec 0
(setf KS2D7-temp (* KS2D3-temp 0.41))
)

(defun ksl-exec 0  
(setf KSlD3-temp (max KS ID 1-temp KSlD2-temp))
(setf KSlD4-temp (* KSlDl-temp KSlD2-temp))
(setf KSlD5-temp (J KSlDl-temp KSlD2-temp))
(setf KSlD6-temp (max KSlD3-temp 4.10))
)

This section contains the B1 software generated by the COBS simulation tool and 
simulation runs for B1

D.3.2 COBS Simulation Software for B3  

List of Knowledge Sources:

Knowledge Source: KSl 
Type: SENSOR
Verify Function (KSl-VERIFY)
Activation Function (KSl-ACTIVATION)
Execution Function (KS1-FUNC)
Execution Delay: 4 
Update Interval: 12

Knowledge Source: KS2 
Type: PROCESSOR 
Verify Function (KS2-VERIFY)
Activation Function (KS2-ACTTVATION)
Execution Function (KS2-FUNC)
Execution Delay: 3 
Update Interval: 0.0

Knowledge Source: KS3
Type: PROCESSOR
Verify Function (KS3-VERIFY)
Activation Function (KS3-ACTIVATION)
Execution Function (KS3-FUNC)
Execution Delay: 5 
Update Interval: 0.0
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Knowledge Source: KS4 
Type: PROCESSOR 
Verify Function (KS4-VERIFY)
Activation Function (KS4-ACTIVATION)
Execution Function (KS4-FUNC)
Execution Delay: 3 
Update Interval: 0.0

B3  Execution:

Event queue (KSl)
KSl executed at 4 
Event queue (KS2 KS3) 
KS2 executed at 7 
Event queue (KS3)
KS3 executed at 9 
Sensor KSl activated at 12 
Event queue (KSl KS4) 
KS4 executed at 12 
Event queue (KSl)
KSl executed at 16 
Event queue (KS2 KS3) 
KS2 executed at 19 
Event queue (KS3)
KS3 executed at 21 
Sensor KSl activated at 24 
Event queue (KSl KS4) 
KS4 executed at 24 
Event queue (KSl)
KSl executed at 28 
Event queue (KS2 KS3) 
KS2 executed at 31 
Event queue (KS3)
KS3 executed at 33 
Sensor KSl activated at 36 
Event queue (KSl KS4) 
KS4 executed at 36 
Event queue (KSl)
KSl executed at 40 
Event queue (KS2 KS3) 
KS2 executed at 43 
Event queue (KS3)
KS3 executed at 45 
Sensor KSl activated at 48 
Event queue (KSl KS4) 
KS4 executed at 48 
Event queue (KSl)
KSl executed at 52 
Event queue (KS2 KS3)
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KS2 executed at 55 
Event queue (KS3)
KS3 executed at 57 
Sensor KSl activated at 60 
Event queue (KSl KS4)
KS4 executed at 60 
Event queue (KSl)
KSl executed at 64 
Event queue (KS2 KS3)
KS2 executed at 67 
Event queue (KS3)
KS3 executed at 69 
Sensor KS 1 activated at 72 
Event queue (KSl KS4)
KS4 executed at 72 
Event queue (KSl)
KSl executed at 76 
Event queue (KS2 KS3)
KS2 executed at 79 
Event queue (KS3)
KS3 executed at 81 
Sensor KSl activated at 84 
Event queue (KSl KS4)
KS4 executed at 84 
Event queue (KSl)
KSl executed at 88 
Event queue (KS2 KS3)
KS2 executed at 91 
Event queue (KS3)
KS3 executed at 93 
Sensor KS 1 activated at 96 
Event queue (KSl KS4)
KS4 executed at 96 
Event queue (KSl)
KSl executed at 100 
Event queue (KS2 KS3)
KS2 executed at 103 
Event queue (KS3)
KS3 executed at 105 
Sensor KSl activated at 108 
Event queue (KSl KS4)
KS4 executed at 108 
Event queue (KSl)
KSl executed at 112 
Event queue (KS2 KS3)
KS2 executed at 115 
Event queue (KS3)
KS3 executed at 117 
Sensor KSl activated at 120
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Event queue (KSl KS4)
KS4 executed at 120 
Event queue (KSl)
KSl executed at 124 
Event queue (KS2 KS3)
KS2 executed at 127 
Event queue (KS3)
KS3 executed at 129 
Sensor KSl activated at 132 
Event queue (KSl KS4)
KS4 executed at 132 
Event queue (KSl)
KSl executed at 136 
Event queue (KS2 KS3)
KS2 executed at 139 
Event queue (KS3)
KS3 executed at 141 
Sensor KSl activated at 144 
Event queue (KSl KS4)
KS4 executed at 144 
Event queue (KSl)
KSl executed at 148 
Event queue (KS2 KS3)
KS2 executed at 151 
Event queue (KS3)
KS3 executed at 153 
Sensor KSl activated at 156 
Event queue (KSl KS4)
KS4 executed at 156 
Event queue (KSl)
KSl executed at 160 
Event queue (KS2 KS3)
KS2 executed at 163 
Event queue (KS3)
KS3 executed at 165 
Event queue (KS4)
KS4 executed at 168

B3  Results:

Data Object: Dl 
Type: REAL 
Value 13
Times Read Locked 14 
Time Write Locked 13

Data Object: D2 
Type: REAL 
Value 13
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Times Read Locked 14 
Time Write Locked 13

Data Object: D3 
Type: NIL 
Value 13
Times Read Locked 14 
Time Write Locked 14

Data Object: D4 
Type: NIL 
Value 169
Times Read Locked 14 
Time Write Locked 14

Data Object: D5 
Type: NIL 
Value 1
Times Read Locked 14 
Time Write Locked 14

Data Object: D6  
Type: NIL 
Value 13
Times Read Locked 14 
Time Write Locked 14

Data Object: D7 
Type: NIL 
Value 5.33
Times Read Locked 14 
Time Write Locked 14

Data Object: D8 
Type: NIL 
Value 169
Times Read Locked 14 
Time Write Locked 14

Data Object: D9 
Type: NIL 
Value 169
Times Read Locked 0 
Time Write Locked 14

The simulation results show that B3 executed to completion. Sensor ksi executed 
and read all ot its input stream. When the input stream was empty B3 stopped 
execution. The simulation results are the same as the results acheived by hand
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executing system B3, and the COBS generated software matched the design 
specification.

D.4 Simulation Software and Results for B4

This section contains the B3 software generated by the COBS simulation tool and 
simulation runs for B3

D.4.1 COBS Simulation Software for B4

;;; Syntax: Common-Lisp; Package: COMMON-LISP-USER; Base: 10; Mode: 
LISP -*-

;;;* Load the Simulation *
;;;* Support Functions *
^  * * * * * *  He He He H e *  He He He He He He He He He He He He

(skload "m:>john>sim-base")

^ ^* * * * * * * * * * * * * * * * * * * *

;;;* Define Variables *
^ ^ * * * * * * * * * * * * * * * * * * * *

(defvar d/o-list'())

(defvar k/s-list'())

(defvar ks-list ’(KSl KS2KS3))

(defvar undefined '"undefined")
(defvar D 1-LOCK'())
(defvar D l '())
(defvar KS1-D1'())
(defvar D2-LOCK'())
(defvar D 2 ’())
(defvar KS1-D2'())
(defvar D3-LOCK'())
(defvar D 3 '())
(defvar KS3-D3'())
(defvar D4-LOCK'())
(defvar D 4 '0 )
(defvar KS2-D4'())
(defvar D5-LOCK'())
(defvar D 5 '())
(defvar KS3-D5'())
(defvar D6-LOCK'())
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(defvar D 6 '())
(defvar KS2-D6 ’())
(defvar D8-LOCK ’())
(defvar D8 ’())
(defvar KS3-D8'())
(defvar D9-LOCK'())
(defvar D 9 ’0)

;;;* Define Blackboard Data Object Locks *
...I***************************************
ny

(Setf D9-LOCK (process:make-lock "D9-LOCK" :type :multiple-reader-single-writer 
:recursive t))
(Setf D8-LOCK (process:make-lock "D8-LOCK" :type :multiple-reader-single-writer 
:recursive t))
(Setf D6-LOCK (process:make-lock "D6-LOCK" :type :multiple-reader-single-writer 
:recursive t))
(Setf D5-LOCK (process:make-lock "D5-LOCK" :type :multiple-reader-single-writer 
recursive t))
(Setf D4-LOCK (process:make-lock "D4-LOCK" :type :multiple-reader-single-writer 
rrecursive t))
(Setf D3-LOCK (process:make-lock "D3-LOCK" :type rmultiple-reader-single-writer 
rrecursive t))
(Setf D2-LOCK (processrmake-lock "D2-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))
(Setf Dl-LOCK (processrmake-lock "Dl-LOCK" rtype rmultiple-reader-single-writer 
rrecursive t))

«•. ftft* ft ft ft ft ft ft ft ft ft * ftftft ft ft ft ft ft ft ft ft ftftft* ft ft % % ft

;;;* Build Knowledge Source Objects *
4 4 4 ^  ^  ^  ^  ^  ̂  ^  l|^

(defun build-ks-list ()

(setf k/s-list'())

(setf KS3 (make-instance 'base_ks 
rname "KS3" 
rtype "PROCESSOR" 
rinit-function '(ICS3-verify) 
ract-fimction '(KS3-activation) 
rexec-function '(KS3-func) 
rexecution-delay 6 
rupdate-interval 0.0 
rcompletion-time 0 
ractivation-time 0))

(push KS3 k/s-list)
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(setf KS2 (make-instance 'basejks 
rname "KS2" 
rtype “PROCESSOR" 
rinit-function '(KS2-verify) 
ract-function '(KS2-activation) 
rexec-function '(KS2-func) 
rexecution-delay 4 
rupdate-interval 0.0 
rcompletion-time 0 
ractivation-time 0))

(push KS2 k/s-list)

(setf KSl (make-instance'base ks 
rname “KSl" 
rtype "SENSOR" 
rinit-function '(KSl-verify) 
ract-function '(KSl-activation) 
rexec-function '(KSl-func) 
rexecution-delay 4 
rupdate-interval 0.0 
rcompletion-time 0 
ractivation-time 0))

(push KSl k/s-list)

)

 ̂̂  ̂  j(t jfcsfc$  Jfc ★ sfc )fe ijc + %  Jfe ifc % 9(t %)((% }fc % jfc He

;;;* Define Knowledge Source Processess *
^  $ >fe $ % $ $ $ $ $ $ $ $ % $ $ $ $ $ $ 4* £ $ $ $ $

(defun KS 1-activation ()
(setf KSlDl-temp (fetch Dl))
(setf KSlD2-temp (fetch D2))
(setf K S l-D 2’0)
(setf KS1-D1'())
(KSl-update)
)

(defun KSl-verify ()
(andKSl-D2 KS1-D1))

(defun KSl-func ()
(print "call to knowledge source handler")
(ksl-exec)
(update D3 KSlD3-temp)
(update D4 KSlD4-temp)
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(update D5 KSlD5-temp)
(update D6 KSlD6-temp)

)

;;;* Add User Defined Execution *
;;;* Functions *
• • I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *»*»

(defun ksl-exec 0  
(setf KSlD3-temp (max KSlDl-temp KSlD2-temp))
(setf KSlD3-temp (* KSlD3-temp 0.41))
(setf KSlD4-temp (* KSlDl-temp KSlD2-temp))
(setf KSlD5-temp (/K SlD l-tem p KSlD2-temp))
(setf KSlD6-temp (max KSlD3-temp 4.10))
)

 ̂̂  ̂  * * * * * * * 3fc * * % * $ ** * * * *** ** * * * ***

(defun KS2-activation 0  
(setf KS2D4-temp (fetch D4))
(setf KS2D6-temp (fetch D6))
(setf KS2-D6 ’0)
(setf KS2-D4 ’0)
)

(defun KS2-verify ()
(and KS2-D6 KS2-D4 (NOT (= (GET-VALUE D8) PI)) (NOT (= (GET-VALUE 

D9) 13.6))))

(defun KS2-func ()
(print "call to knowledge source handler")
(ks2-exec)
(update D8 KS2D8-temp)

)
 ̂̂  ̂ * jfe *  *  * * % *  *  *  *  % 9ft * *  *  *  s#t* * * * *  *  % *  *  % * *

;;;* Add User Defined Execution *
;;;* Functions *
 ̂̂  ̂  *  *  *  *  *  *  * *  *  * *  % *  * *  *  * *  *  *  *  *  *  *  * *  ̂

(defun ks2-exec 0  
(setf KS2D8-temp (max KS2D4-temp KS2D6-temp))
)

(defun KS3-activation 0
(setf KS3D3-temp (fetch D3))
(setf KS3D5-temp (fetch D5))
(setf KS3D8-temp (fetch D8))
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(setf KS3-D8 ’())
(setf KS3-D5 '())
(setf KS3-D3 *0)
)

(defun KS3-verify ()
(and KS3-D8 KS3-D5 KS3-D3 (NOT (= (GET-VALUE D4) 7)) (NOT (= (GET-

VALUE D2) 0.0)) (NOT (= (GET-VALUE D8) 0.0)) (NOT (= (GET-VALUE D9)
13.6))))

(defun KS3-func ()
(print "call to knowledge source handler")
(ks3-exec)
(update D9 KS3D9-temp)

)

 ̂̂  ̂ ife +$+% % $ % * % ♦ ♦ ♦ ♦ ♦ * ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦
;;;* Add User Defined Execution *
;;;* Functions *
 ̂̂  ̂ sfc sk s f e Ms  Jfc ★ % ♦ % % % % % H* % % ̂  ^ ^ ^

(defun ks3-exec 0  
(setf KS3D9-temp (max KS3D5-temp KS3D3-temp KS3D8-temp))
)

^  ^ ̂ j fe s fc  4 c  ★  ♦  ★ + ♦  ★  ♦  % + ★  ♦  ♦  ♦  ★ + ♦ + ♦ + jfc j ) t  >|e 3fs sf:

;;;* Build Blackboard Data Objects *
^  ^ ̂  Jfe *  ife $  *  % * sfc$ jfc  %  *  ♦  4 c  %  $  %  ? k $ %  %  >H %  %  %  : ( f *  sfe s(e $ >fe

(defun build-do-list ()

(setf d/o-list'())

(setf D9 (make-instance 'blackboard_data_object 
:name "D9"
:type "NIL" 
rvalue undefined 
rlock D9-LOCK 
rread-lock 0  
rwrite-lock 0  
rinputjist 'NIL 
ric jist 'NIL 
routputjist '(KS3)))

(push D9 d/o-list)

(setf D8 (make-instance 'blackboard_data_object 
rname "D8 " 
rtype "NIL"
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rvalue undefined 
rlock D8 -LOCK 
rread-lock 0  
rwrite-lock 0  
rinputjist *(KS3) 
ric jist '(KS3-D8) 
routputjist '(KS2)))

(push D8 d/o-list)

(setf D6  (make-instance 'blackboard_data_object 
rname "D6 " 
rtype "NIL" 
rvalue undefined 
rlock D6 -LOCK 
rread-lock 0  
rwrite-lock 0  
rinputjist '(KS2) 
ricjist'(KS2-D6) 
routputjist '(KSl)))

(push D6  d/o-list)

(setf D5 (make-instance ’blackboard_data_object 
rname "D5" 
rtype "NIL" 
rvalue undefined 
rlock D5-LOCK 
rread-lock 0  
rwrite-lock 0  
rinputjist '(KS3) 
r ic jis t’(KS3-D5) 
routputjist '(KSl)))

(push D5 d/o-list)

(setf D4 (make-instance 'blackboard_data_object 
rname "D4-" 
rtype "NIL" 
rvalue undefined 
rlock D4-LOCK 
rread-lock 0  
rwrite-lock 0  
rinputjist '(KS2) 
ricjist'(KS2-D4) 
routputjist '(KSl)))

(push D4 d/o-list)
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(setf D3 (make-instance 'blackboard_data_object 

:name "D3"
:type "NIL" 
rvalue undefined 
dock D3-LOCK 
:read-lock 0  
:write-lock 0  
rinputjist '(KS3) 
ricjist'(KS3-D3)
:output_list '(KSl)))

(push D3 d/o-list)

(setf D2 (make-instance 'blackboard data_object 
rname "D2" 
rtype "REAL" 
rvalue 14 
rlock D2-LOCK 
rread-lock 0  
rwrite-lock 0  
rinput list '(KSl) 
r ic jis t’(KS1-D2) 
routputjist ’NIL))

(push D2 d/o-list)

(setf D l (make-instance 'bIackboard_data_object 
rname "Dl" 
rtype "REAL" 
rvalue 12  
rlock Dl-LOCK 
rread-lock 0  
rwrite-lock 0  
rinputjist '(KSl) 
ricjist'(KS1-D1) 
routputjist ’NIL))

(push D l d/o-list)

)

This section contains the B1 software generated by the COBS simulation tool and
simulation runs for B1

D.1.1 COBS Simulation Software for B i

List of Knowledge Sources:

Knowledge Source: KSl
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Type: SENSOR
Verify Function (KS1-VERIFY)
Activation Function (KSl-ACTIVATION)
Execution Function (KS1-FUNC)
Execution Delay: 4 
Update Interval: 12

Knowledge Source: KS2 
Type: PROCESSOR 
Verify Function (KS2-VERIFY)
Activation Function (KS2-ACTIVATION)
Execution Function (KS2-FUNC)
Execution Delay: 4 
Update Interval: 0.0

Knowledge Source: KS3 
Type: PROCESSOR 
Verify Function (KS3-VERIFY)
Activation Function (KS3-ACTIV ATION)
Execution Function (KS3-FUNC)
Execution Delay: 6  
Update Interval: 0.0

B4  Execution:

Event queue (KSl)
KSl executed at 4 
Event queue (KS2)
KS2 executed at 8 
Sensor KSl activated at 12 
Event queue (KSl KS3)
KS3 executed at 14 
Event queue (KSl)
KSl executed at 16 
Event queue (KS2)
KS2 executed at 20 
Sensor KS 1 activated at 24 
Event queue (KSl KS3)
KS3 executed at 26 
Event queue (KSl)
KSl executed at 28 
Event queue (KS2)
KS2 executed at 32 
Sensor KSl activated at 36 
Event queue (KSl KS3)
KS3 executed at 38 
Event queue (KSl)
KSl executed at 40 
Event queue (KS2)
KS2 executed at 44
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Sensor KS 1 activated at 48 
Event queue (KSl KS3)
KS3 executed at 50 
Event queue (KSl)
KSl executed at 52 
Event queue (KS2)
KS2 executed at 56 
Sensor KSl activated at 60 
Event queue (KSl KS3)
KS3 executed at 62 
Event queue (KSl)
KSl executed at 64 
Event queue (KS2)
KS2 executed at 68  
Sensor KSl activated at 72 
Event queue (KSl KS3)
KS3 executed at 74 
Event queue (KSl)
KSl executed at 76 
Event queue (KS2)
KS2 executed at 80 
Sensor KSl activated at 84 
Event queue (KSl KS3)
KS3 executed at 8 6  
Event queue (KSl)
KSl executed at 8 8  
Event queue (KS2)
KS2 executed at 92 
Sensor KSl activated at 96 
Event queue (KSl KS3)
KS3 executed at 98 
Event queue (KSl)
KSl executed at 100 
Event queue (KS2)
KS2 executed at 104 
Sensor KSl activated at 108 
Event queue (KSl KS3)
KS3 executed at 110 
Event queue (KSl)
KSl executed at 112 
Event queue (KS2)
KS2 executed at 116 
Sensor KSl activated at 120 
Event queue (KSl KS3)
KS3 executed at 122 
Event queue (KSl)
KSl executed at 124 
Event queue (KS2)
KS2 executed at 128
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Sensor KS1 activated at 132 
Event queue (KS1KS3)
KS3 executed at 134 
Event queue (KS1)
KS1 executed at 136 
Event queue (KS2)
KS2 executed at 140 
Sensor KS1 activated at 144 
Event queue (KS1 KS3)
KS3 executed at 146 
Event queue (KS1)
KS1 executed at 148 
Event queue (KS2)
KS2 executed at 152 
Sensor KS1 activated at 156 
Event queue (KS1 KS3)
KS3 executed at 158 
Event queue (KS1)
KS1 executed at 160 
Event queue (KS2)
KS2 executed at 164 
Event queue (KS3)
KS3 executed at 170

B4  Results:

Data Object: D1 
Type: REAL 
Value 13
Times Read Locked 14 
Time Write Locked 13

Data Object: D2 
Type: REAL 
Value 13
Times Read Locked 14 
Time Write Locked 13

Data Object: D3 
Type: NIL 
Value 5.33
Times Read Locked 14 
Time Write Locked 14

Data Object: D4 
Type: NIL 
Value 169
Times Read Locked 14 
Time Write Locked 14
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Data Object: D5 
Type: NIL 
Value 1
Times Read Locked 14 
Time Write Locked 14

Data Object: D6  
Type: NIL 
Value 5.33
Times Read Locked 14 
Time Write Locked 14

Data Object: D8 
Type: NIL 
Value 169
Times Read Locked 14 
Time Write Locked 14

Data Object: D9 
Type: NIL 
Value 169
Times Read Locked 0 
Time Write Locked 14

The simulation results show that B4  executed to completion. Sensor ksi executed 
and read all ot its input stream. When the input stream was empty B4 stopped 
execution. The simulation results are the same as the results acheived by hand 
executing system B4 , and the COBS generated software matched the design 
specification.

D.5 Simulation Support Software

This section contains the COBS Simulation System support software. This file 
contains all the support function and data structure definitions. This file is 
automatically loaded by all simulation systems generated by COBS.

;;; Syntax: Common-Lisp; Package: COMMON-LISP-USER; Base: 10; Mode: 
LISP

;;;* File Sim-Base.lisp Last Update 2/8/92 *
. *
;;;* Sim-base.lisp contains the support functions for the *
;;;* Blackboard System Simulation System. *

;;;* Define Variables *
^  ^  ̂  a ft $  9ft $  aft *  $  %  * * *  »fe %  sfc %  %  $
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(defvar *execution-queue* ’0 )
(defvar *activation-queue* ’0 )
(defvar *sensor-list* ’0 )
(defvar *kp-list*'())
(defvar *simulation-clock* 0 )
(defvar *ready-list*'())
(defvar *min* 1 0 0 0 0 0 0 )
(defvar *head-execution-queue* 1 0 0 0 0 0 0 )
(defvar *data-out*'())

(define-presentation-type output-file-name ()
:abbreviation-for 'string)

(define-presentation-type update-interval 0  
:abbreviation-for 'integer)

(define-presentation-type execution-delay ()
:abbreviation-for 'integer)

.  .  .  %  *  *  *  %  *  *  * %  9fc *  *  *  *  *  *  #  *  *  %  i |c  *  9fC %  *  * * *  # * * *

;;;* Define Knowledge Source Flavor *
•I.**********************************

(defflavor base_ks ((name nil)
(type " ’string)
(init-function nil)
(act-function nil)
(exec-function nil)
(execution-delay 0 )
(update-interval 0 )
(completion-time 0 )
(activation-time 0 ))

0
(:conc-name get-)
:initable-instance-variables
:writable-instance-variables)

...*******************************
;;;* Define a Methods to Display *
;;;* a Knowledge Source * 
...*******************************

(defmethod (show base_ks)
0

(format *data-out*" Knowledge Source: - a  -  
Type: ~a ~
Verify Function ~a ~
Activation Function ~a ~
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Execution Function ~a ~
Execution Delay: ~d ~
Update Interval: ~d 

name type init-function act-function exec-function 
execution-delay update-interval)

)
3 jc s (e ^ e ^ e ) |t) |c %  sft j | c $

;;;* Define Blackboard Data Object Flavor *
^  ̂  ̂  :Je+ :  3|e sfc * * %  4 c  sfc JN sfc ★  ♦  %  >k %  %  sfc ♦  % %  ifc %  >k st* ^  % ♦ % % %  %

(defflavor blackboard_data_object ((name nil)
(type ” ’string)
(value nil)
(lock string)
(read-lock 0 )
(write-lock 0)
(input_list '0  'list)
(ic_list ’() list)
(outputjist'() 'list))

0
(xonc-name get-)
rinitable-instance-variables
:writable-instance-variables)

^ ^  ̂  *  $  afe aft $ $ afc $  Jfc $  *  afe aft $  afe aft *  sfc j f t  *  ifc jfe ?fe $

* Define a Methods to *
;;;* Display a Data Object *
. . .  *  *  *  %  * *  *  i|c  *  j(c $  *  %  sfc $  j c  t  $  $  $  sfc $  %  *

(defmethod (show blackboard_data_object)
0

(format *data-out* " Data Object: - a  ~ 
Type: ~a ~
Value ~a ~
Times Read Locked ~a ~ 
Time Write Locked ~a 

name type value read-lock write-lock)
)

* * * 3(c 3ff )jt 3ft jjf  9fc)fc 3jtf 9|c Sfc 3|c 3f( S(c 3ft 3|c }{c Jft 9fC j(f 3fC 3f( S(t tfc  Sfc 3fc Sjf j | f  !(C 3|C 3|C Sft 3|e 
9 9 9

;;;* Define a Method to Initialize *
;;;* the Knowledge Sources *

(defmethod (init-sim base_ks)
0

(cond
((equal type "SENSOR”) (init-sensor self))
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(t (init-kp self)))

)

;;;* Define a Method to *
;;;* Initialize the Sensors *
♦ I.********** Jft***************>>9

(defmethod (init-sensor basejcs)
0

(cond
((= 0 update-interval) (setf update-interval (accept'update-interval)))
(tt))

(cond
((= 0 execution-delay) (setf execution-delay (accept ’execution-delay)))
(tt))

(push self *sensor-list*)
(show self)
(cond
((and (eval init-function) (= activation-time *simu!ation-clock*))
(format *data-out* Sensor ~a activated at ~a" name *simulation-clock*) 
(eval act-function)
(setf completion-time (+ activation-time execution-delay))
(setf activation-time (+ activation-time update-interval))
(push self *execution-queue*))
(tt))

)

;;;* Define a Method to Initialize *
;;;* the Knowledge Processors *

(defmethod (init-kp base_ks)
0

(cond
((= 0  execution-delay) (setf execution-delay (accept ’execution-delay)))
(tt))

(push self *kp-list*)
(show self)
(cond
((eval init-function) (eval act-function)
(setf completion-time (+ *simulation-clock* execution-delay))
(push self *execution-queue*))
(tt))

)
****************************** ***************:(<

;;;* Define Function to Initialized the Blackboard *
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^  ̂  ^ sfc sfe sfe sfe a f ts fe s |e  sfe sfe *  sfc sfe %  sfesfe sfc *  *  sfe *  $  4 c  sic *  $  sfe sfc 4 c  *  *  sfc £  sfe sfc sfe sfe sfc sfe %  sfe sfe %  sfe sfe s fesf:sfe  ^  ♦  &

(defun run-simuladon ()
(setf *execution-queue* '0 

♦activation-queue* '0 
*sensor-list*'()
*kp-list*'()
♦simulation-clock* 0 
*ready-list* ’0)

(setf *data-out* (open (fs:merge-pathnames (accept ’output-file-name)) 
idirection :output 
:if-exists :new-version»

(build-ks-list)
(build-do-list)
(inidalize-blackboaid)
(mapcar 'init-sim k/s-list)
(execute-ready)
(main-loop)
(mapcar ’show d/o-list)
(close * data-out*)
)

* * •  sfe sfe sfc sfe sfe sfe sfe sfe sfc sfe sfe sfc sfe sjc sfe sfe sfe sjc sfe sfe sfc sfesfe sfe sfe sfc sfe sfe sfe sfe sfc ̂ fc sfesfe !fe sfe sfe sfe sfe sfe sfe sfe sfe sjc sf^ sfe

;;;* Define Function to Wakeup a Blackboard Handler *
* * •  sfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfesfe sfe sfe sfe sfe sfe sfe sfe sfe sfesfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfesfe sfesfe jfc  sfe sfe sfe
9 91

(defun wake-them-up (*in*)
(cond

((equal (get-type (symbol-value *in*)) "SENSOR") nil)
(t (cond

((eval (get-init-function (symbol-value *in*)))
(eval (get-act-function (symbol-value *in*)))
(setf (get-completion-time (symbol-value *in*))

(+ *simulation-clock* (get-execution-delay (symbol-value *in*)))) 
(push (symbol-value *in*) *execution-queue*))

(tt))))
)

______ ̂  il* J f  ^  a #  d*  ̂  X  X  «LiL^ ̂  i L ^ U j• ■ m *p *p *p —T- <|* ip ip ip ip ip ip ip *p Ip ̂  Ip ip ip ip *p ip p  ip ip ip ip  T* ip Ip ip ip Ip Ip ̂ 1 ip  p  «p ip p  p  Ip ip ip ip  ql ip qH
9 9 9

;;;* Define Function to Initialized the Blackboard *
•  • •  sfesfe sfe sfe sfe sfe sfc sfe sfe sfe sfe sfesfe sfe sfe sfe sfe sfc sfe sfe sfe sf: sfe sfe sfesfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfesfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfe sfe 
9 9 9

(defun initialize-blackboard ()
(start-them-up d/o-list)
)

(defun start-them-up (*in*)
(mapcar ’init-stuff *in*)
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)

^ ^  ̂  a f t %  sfe sfc +  aft %  afe sfe sfe sfe afrsfe sfc sfe sfc sfc sfc a f t afe sfc sfc *  afe afe afe *  sjc sfe sfc sfc

;;;* Define Method to Initialize *
;;;* the Blackboard Data Objects *
•  * «  sfc sfc sfe sfc sfc sfc sfe sfc sfe sfc sfc sfe sfe sfc s |e  sfe sfe sfc sfe sfe sfe sfe sfc sfe sfe sfe sfc sfe s|e  sfe sfe 
» »»

(defmethod (init-stuff blackboaid_data_object)
0

(mapcar 'reset-input-conditionals ic_Hst)
(cond

((or (NOT type) (equal value "undefined")))
(t (mapcar'set-input-conditionals ic_list))
)

)

^  ̂  ^  sfe sfe sfc sfe sfe sfesfe sfe sfe sfe s f :  sfe sfesfe sfc sfc sfe sfc sfe sfe sfe sfe sfe sfe sfe sfe sfe sfc

;;;* Define Methods to Update *
;;;* Blackboard Data Objects *
^ ̂  ̂  sfe sfc sfe sfc sfe sfesfe sfe sfc sfe a f t sfc sfesfe sfc sfc sfe sfe sfe sfe sfe sfe sfe sfe sfc sfe sfe sfe

(defmethod (update blackboard_data_object)
(*value-in*)

(incf write-lock)
(process:with-lock (lock :mode :write)
(setf value *value-in*))
(mapcar 'set-input-conditionals ic_list)
(mapcar 'wake-them-up input_list)

)

•  •  •  sfe sfc sfc sfc sfc sfe sfe sfc sfc sfc sfc sfc sfc sfc sfc sfc sfc sfc sfc sfesfe sfc sfC sfc sfc sfc sfc

;;;* Define Methods to Fetch *
;;;* Blackboard Data Objects *
^ ^ s f e a f e a f e  s fes fes fc^ sfcsfesfesfcsfcsfcsfcsfesfesfesfcsjcsfesfesfcsfesfcsfesfe

(defmethod (fetch blackboard_data_object)
0

(incf read-lock)
(process:with-lock (lock :mode :read)

(mapcar 'reset-input-conditionals ic_list)) 
value 

)

^  ̂  ̂  sfe sfc sfc sfe sfe sfc sfe sfc sfc sf: sfc sfc sfe sfe sfc sfc sfe sfc sfe sfe sfe sfc sfc sfe sfc sfc sfc s|c sfe sfc sfc sfc sfc sfe sfc sfe sfc sfe sfc sfc sfe sfc sfc

;;;* Define Functions to Set and Reset *
;;;* a Knowledge Source's Input Conditionals *
^  ̂  ̂  sfe sfc afeafesfr sfc sfc sfc afe sfe sfe sfc sfe sfe sfe sfc sfe sfc sfe sfc sfc sfe sfc sfc sfc sfc sfc sfe sfe sfc sfc sfc sfc sfc sfc sfe sfe sfe sfc sfc sfc sfc sfc

(defun set-input-conditionals (*in*)
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(set *in* t)
)

(defun reset-input-conditionals (*in*)
(set *in* nil)
)

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;;;* Define Functions to Manage the Event queue, *
;;;* Find the first element in the queue, and *
;;;* Execute the knowledge sources on the Ready List *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *m

(defun main-loop 0  
(execute-ready)
(eval-sensors)
(cond

((NOT *execution-queue*) nil)
(t (main-loop)))

)

(defun execute-ready 0
(format *data-out* Event queue ~a" (mapcar 'get-name *execution-queue*)) 
(cond

((NOT *execution-queue*) t)
((= (length *execution-queue*) 1)
Get ((temp (car *execution-queue*)))

(process-ks (car *execution-queue*))
(setf *execution-queue* (remove temp *execution-queue*))))

(t (process-queue)))
)

(defun process-queue ()
(setf *ready-list*'())
(setf *min* 1000000)
(mapcar 'find-head-queue *execution-queue*)
(mapcar 'get-list *execution-queue*)
(mapcar 'process-ks *ready-list*)
)

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;;;* Define a Method Execute the Knowledge *
;;;* Sources on the Ready-list *
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defmethod (process-ks basejcs)
0

(setf *simulation-clock* completion-time)
(eval exec-function)
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(setf *execution-queue* (get-it-out self))
(format *data-out* "~% ~a executed at ~a" name *simulation-clock*)
)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
9 1 *

;;;* Define a Method Finds the Completion *
;;;* Time of the Knowledge Sources at *
;;;* the Head of the Event queue *
• I .* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
9 > *

(defmethod (find-head-queue base_ks)
0

; (format *data-out* name= ~a *min* = ~a completion-time = ~a"
; name *min* completion-time)

(cond
((> *min* completion-time) (setf *min* completion-time))
(tt))

)

• tv****************************************
1 * 9

;;;* Define a Method Finds the Knowledge *
;;;* Sources that should Execute Next and *
;;;* pushs them on the Ready List * 
^^^****************************%***********

(defmethod (get-list base_ks)
0

(cond
((= *min* completion-time)
(setf *execution-queue* (get-it-out self))
(push self *ready-list*))

(tt))
)

• *****************************************
* 99

;;;* Define a Method to Remove Knowledge *
;;;* Sources from the Event queue *
^***************************************

(defmethod (get-it-out base_ks)
0

(setf *temp*'())
(loop for x in *execution-queue*

when (and (NOT (equal name (get-name x)))
(NOT (equal completion-time (get-completion-time x)))) 

do (push x *temp*)
)

*temp*
)
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^***********************************
;;;* Define Functions and Methods *
;;;* to Evaluate and process Sensors *
^^***********************************

(defun eval-sensors ()
; (print (mapcar 'get-name *execution-queue*))

(cond
((NOT *sensor-list*) t)
((= (length *sensor-list*) 1) (process-sensor (car *sensor-list*)))
(t (process-sensor-list)))

)

(defun process-sensor-list ()
(setf *ready-list*'())
(setf *min* 1000000)
(setf *head-execution-queue* 1000000)
(mapcar 'Find-head-queue *execution-queue*)
(setf *head-execution-queue* *min*)
(order-list *sensor-list*)
(mapcar 'process-sensor *ready-list*)
)

^^****** ********************** ************
;;;* Define a Method Finds the Knowledge *
;;;* Sources that should Execute Next and *
;;;* pushs them on the Ready List * 
^****************************************

(defmethod (order-list base_ks)
(*in-list*)

(cond
((NOT *in-list*) (setf *ready-list* (reverse *ready-list*)))
((= (length *in-Hst*) 1) (setf *ready-list* *in-list*))
(t (setf *min* 1000000)

(mapcar Tind-head-queue ♦in-list*)
(cond

((= *min* completion-time)
(setf *in-list* (remove self *in-Iist*))
(push self *ready-Iist*))

(tt))))
)

^^********* *************************
;;;* Define a Method to Process the *
;;;* Sensors on the Ready-list *
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(defmethod (process-sensor base_ks)

0
(setf *min* 1000000)
(setf *head-execution-queue* 1000000)
(mapcar ’Find-head-queue *execution-queue*)
(setf *head-execution-queue* *min*)

; (format *data-out* ~a name *head-x-q* - a  Activation time ~a"
; name *head-execution-queue* activation-time)

(cond
((and (eval init-function) ( activation-time *head-execution-queue*))
(eval act-function)
(setf completion-time (+ activation-time execution-delay))
(setf *simulation-clock* activation-time)
(format *data-out* Sensor-a activated at ~a" name *simulation-clock*)
(setf activation-time (+ activation-time update-interval))
(push self *execution-queue*))

(tt))
)

* *******************************
> 9 9

;;;* Define a Function to View *
;;;* the Input Conditionals *
^^********** ******************

(defun look 0  
(print (list "ksl-d2" ksl-d2))
(print (list "ksl-dl" ksl-dl))
(print Gist ,,ks2-d3" ks2-d3))
(print (list "ks3-d6" ks3-d6))
(print Gist "ks3-d4" ks3-d4))
(print (list "ks4-d5" ks4-d5))
(print Gist "ks4-d7" ks4-d7))
(print (list "ks4-d8" ks4-d8)) t )

^^^************ *******************
;;;* Example Functions to Manage *
;;;* Sensor input queues *
^^*******************************

(defun ks 1-update ()
(cond

((> (length dl-list) 0) (update D1 (pop dl-list))
(update D2 (pop d2-list)))

(t (print "data all gone")))
)

(defun init-input ()
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(setf dl-list '(1 2 3 4 5 6 7 8 9 10 11 12 13))
(setf d2-list '(1 2 3 4 5 6 7 8 9 10 11 12 13))
)

D.6 COBS Simulation System Software

This section contains a listing of the LISP code for the COBS Simulation Tool.

;;; Mode: LISP; Syntax: Common-lisp; Package: simtools; Base: 10
^ * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  s f c *  * * * * * * * *  

*
;;; Program: Concurrent Blackboard System 
;;; Simulation Code Generator
999

9 9 9

;;; define the program framework *
^^*******************************

(DW.’DEFINE-PROGRAM-FRAMEWORK simulation

9 9 ? * * * * * * * * * * * * * * * * * * * * *

;;; define the top level *
;;; program framework *
i t i  * * * * * * * *  ***************
9 9 9

:top-level (my-top-level)

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;;; define the program selection key *
^***********************************

:SELECT-KEY
#Ss

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
9 9 9

;;; define the program framework *
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

:COMMAND-DEFINER
T

^^***********************************
;;; define the program command table *
^^***********************************

:COMMAND-TABLE
(:INHERIT-FROM
'("accept-values-pane" "colon full command" "standard arguments"



Appendix D. Concurrent Blackboard Simulation System V&V Results 271
"input editor compatibility" "standard scrolling")

:KBD-ACCELERATOR-P ’T)

^  ;( r  >fe if t  j | c Jfc Jfc iff *  rfe s f c *  sfc * + *

;;; define the program state variables *
;;; and their initial values *
4̂jlC3|cJiC3|CJiC3fe3iC)K3fC)fC)|t$s|t)|t)fĉ4c»fc*fc$$>|c>l')fc>k>k$3Ec3fc Jfc* $

:STATE-VARIABLES
0

;;; define the program windows *
» •  * jjcsfc ) | (  9|c $fc sfc 3fc s|c )fc ifc rfcifc 5fc sfc sfc sfc jfcsfcsfc rfo fc rf t »>

:PANES
((PANE-1 :T1TLE :REDISPLAY-STRING "Concurrent Object Oriented Blackboard 

System"
:HEIGHT-IN-LINES 1
:REDISPLAY-AFTER-COMMANDS NIL)

(PANE-4 :display
:margin-components’((dw:margin-borders)

(dw:margin-label rstring "Graphic Display Window" 
margin :top 
:box :inside 
:box-thickness 2 
rstyle (:fix :bold:large)
:centered-p t)

(dw:margin-white-borders:thickness 4)
(dwrmargin-scroll-bar)))

(PANE-3 rlistener
:HEIGHT-IN-LINES 35 
rmargin-components ’((dwrmargin-borders)

(dw:margin-white-borders :thickness 4)
(dw:margin-Iabel :string "Listener Window" 

margin :top 
:box rinside 
:box-thickness 2 
rstyle (:fix :bold :large)
:centered-p t)

(dw:margin-scroll-bar)))
(PANE-6 :display

rmargin-components '((dwrmargin-borders)
(dwrmargin-white-borders rthickness 4)
(dwrmargin-label rstring "List o f Knowledge Sources" 

margin rtop 
rbox rinside 
rbox-thickness 2 
rcentered-p t
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:style (:fix :bold rlarge)) 

(dwrmargin-scroll-bar)))
(PANE-5 :COMMAND-MENU 

:CENTER-P T 
:MENU-LEVEL 
:TOP-LEVEL
rmargin-components '((dwrmargin-borders)

(dwrmargin-white-borders rthickness 4) 
(dwrmargin-label rstring "Commands" 

rmargin rtop 
rbox rinside 
rbox-thickness 2 
rstyle (rfix rbold rlarge)
:centered-p t)))

;;; define the window layout configuration *
** * * * * *

rCONFIGURATIONS
’((DWrrMAIN

(rLAYOUT (DWrrMAIN rCOLUMN PANE-1 PANE-4 ROW-1) 
(ROW-1 :ROW PANE-3 PANE-6 PANE-5))

(rSIZES (DWrrMAIN (PANE-1 1 rLINES)
rTHEN (PANE-4 rEVEN) (ROW-1 rEVEN))

(ROW-1 (PANE-3 30 rLINES) (PANE-6 20 rLINES)
(PANE-5 rASK-WINDOW SELF

:SIZE-FOR-PANE PANE-5) rTHEN)))))

^  ̂  ^  i f :  *  sfe *  *  £  * *  jfc *  *  *  * sfe sfe sfe sfesfe sfe sjc sfe sfesfe sfe sfe sfe sfe sfesfesfe

;;; define any needed variables *
^ s f e s f e  sfe sfe sfe sfe s f e *  sfe sfe sfe sfe sfe sfe sfe sfe sfe sfc sfe sfe sfe sfe sfe sfe sfe sfe sfc sfe sfe sfe

(defvar *data-out* nil) ;;; Output Data File
(defvar *data-in* nil) ;;; Input Data File
(defvar beta ’()) ;;; List Of Knowledge Sources
(defvar ks-list'()) ;;; List Of Knowledge Source Names
(defvar data-object-list'()) ;;; List Of Blackboard Data Object Names
(defvar d/o-list'()) ;;; List Of Blackboard Data Object(s)
(defvar k/s-list’()) ;;;
(defvar ks-in '0) ;;; Knowledge Source selected from menu
(defvar do-in'()) ;;; Blackboard Data object selected from menu
(defvar ks-name-in'())
(defvar *defvar-list*'()) ;;; List of Input-conditionals to be DEFVAR[ed]
(defvar *defvar-lock-list*'());;; List of Locks to be DEFVAR[ed]
(defvar *name*'()) ;;; Name of Data Object to be Updated
(defvar ks-edit '0)
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(defvar do-edit *0)
(defVar data-inl '0)
(defvar ks_count 0)
(defvar sensor_count 0)

(defvar connected nil)
(defvar data-in nil)
(defvar *ks-spec* nil)
(defvar *do-spec* nil)

(defvar *panel*)
(defvar *pane3*)
(defvar *pane4*)
(defvar *pane5*)
(defvar *pane6*)

•  • « a|e s |c sfc sfc afe sjc $  afe sfc *  ♦  *  sjc *  sjc ♦  ♦  sjc ♦  afeafe s jc  s f : sf: sfc sfc sjc sfe sje sfe aft sfc sfc sfc sfe >|e sjc sfe *  sfe $
> 9 »

;;; define the variables required to build a *
;;; pop up window to select knowledge sources *
* « 's f c s |c s jc s f e s |e s f e s lc s |e s |c 9 jc s j t s |t s |c s |c s |e s |c  sfc sjcsfe sjc Sjc sjc sfe sfe s jc  s jcsfc  sfe sfe sfe sfc sfc sfc sfesfe sjc s fe s fe  sfe sjcsfesjesfesfesje
> 9 9

(defvar geometry-list Gist 2))

(defvar *ks-menu* (tv:make-window 'tv:pop-up-menu
’:label '(:string "Select a Knowledge Source" 

:character-style (rswiss :italic rnormal))
;; ':geometry geometry-list

'rborders 4))

(defvar *do-menu* (tv:make-window 'tv:pop-up-menu
’:label '(string "Select a Blackboard Data Object" 

:character-style (:swiss :italic rnormal)) 
'rborders 4))

•  •  •  sfc sfe sjc sfc sfc sfc sfc ?jf ?ff t j f  ?fc sjc ?fc ?ft j f t  ij f  ?ft ? |f sf t s f r f̂ t  j j f  ?f t ?je ?ff ?ff sfe ^jtSftSftSjcSjCSjcSfc^ff 3fcSjC»jC«jC
> 9 >

;;; define any needed presentation types. *
•  •  •  sjc sjc sjc sjc sjc sjc sjc sfc sfc sjcsjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sfc sjc sjc sjc s jc  s jc  sjc sfc sjc sfc sjc sjc sjc sjc s jc  sjc s jc  s jc  s jc  sjc
f  9>

(define-presentation-type ks-type 0  
:abbreviation-for 'string)

(define-presentation-type output-file-name ()
:abbreviation-for 'string)

(define-presentation-type input-file-name ()
:abbreviation-for 'string)

(define-presentation-type input-conditional-list ()
:abbreviation-for 'list)

273
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(define-presentation-type precondition-list ()
:abbreviation-for 'list)

(define-presentation-type postcondition-list ()
:abbreviation-for 'list)

(define-presentation-type input-variable-list ()
:abbreviation-for 'list)

(define-presentation-type output-variable-list 0  
:abbreviation-for 'list)

(define-presentation-type rotation-about-y-axis-in-degrees ((limit)) 
:abbreviation-for '((integer 0,limit)))

(define-presentation-type ks-name (())
:no-deftype t
:printer ((ks-name stream)

(format stream " knowledge source ~a" ks-name)) 
:parser ((stream)

(accept 'string rstream stream
:prompt "enter a Knowledge Source name")))

^  ^  ^  *  sfe *  *  4 c  *  *  *  *  * * *  %  *  * *  *  *  *  *  * *  %  *  *  *  *  * * * *  %  *  *  * *  %  *  *  *  %  *  %  %  *  *  sfc sf*

;;; define area for instances for specialized GC. *
^^************************************************

(defvar *instance-anea*
(make-area :name '*instance-area*

:gc ’:dynamic))

************************
; "define Flavor for a Knowledge Source *
^^******* ******************** ***********

(defflavor base_ks ((name " " ’ks-name)
(type " " 'ks-type)
(input-conditionals'() ’input-conditional-list)
(preconditions '0  'precondition-list)
(postconditions'() 'postcondition-list)
(psi'() 'input-variable-list)
(phi '0  'output-variable-ist)
(execution_time 0.0 'number)
(depth 0 'number)
(successorjist'() ’list)
(predecessorjist'() 'list)
(update_rate 0.0 'number)
(psi_card 0 'integer)
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(phi_card 0  ’integer))

0
(:conc-name get-)
:initable-instance-variables
:writable-instance-variables)

(define-presentation-type base_ks (0)
:no-deftype t
:printer ((base_ks stream)

(format stream " knowledge source: - a  ~ 
knowledge source type: - a  ~ 
input variables: ~a ~ 
output variables: ~a ~ 
input conditionals: ~d ~ 
preconditions: ~d ~ 
postconditions: ~d ~ 
depth: ~d ~ 
predecessors: ~d ~ 
successors: ~d ~
knowledge source execution time: ~d ~ 
cardinality of input variable set: ~d ~ 
cardinality of output variable set: ~d 

(get-name base_ks) (get-type base_ks)
(get-psi base_ks) (get-phi base_ks) 
(get-input-conditionals base_ks)
(get-preconditions base_ks) (get-postconditions base_ks) 
(get-depth base_ks) (get-predecessor_list base_ks) 
(get-successor_list base_ks)
(get-execution_time base_ks)
(get-psi_card base_ks) (get-phi_card base_ks))))

» 1 1 ̂  ̂  ̂  ̂  ^  ̂  ^  ^  ̂  ̂  ^  ̂  ^  ^  ̂ ^  ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂

;;;define methods for a knowledge source *
•  i i  sjc %  $  s j t  sjc ^  sfc sjc sjc sjc sjc sfc ) | t  s | t  sfc sfc sjc sjc sfc sfc sfc sfc sfc sfc sjc sfc sfc sfc sjc sfc sfc sjc sfc sfc sjc sfc sfc91?

(defmethod (show base_ks)
0

(format *data-out* " knowledge source: ~a ~ 
knowledge source type: ~a ~ 
input variables: ~a ~ 
output variables: ~a ~ 
input conditionals: ~d ~ 
preconditions: ~d ~ 
postconditions: ~d ~ 
depth: ~d ~

~& predecessors: ~d ~ 
successors: ~d ~

~& knowledge source execution time: ~d ~ 
cardinality of input variable set: ~d ~
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cardinality of output variable set: ~d 

name type psi phi input-conditionals preconditions postconditions 
depth predecessor_Iist successor_list execution_time 
psi_caid phi_cand)

(defmethod (display base_ks)
0
(format *data-out* " ~% ~a ~

~a~
~a ~
~a ~
~d ~
~d ~
~d ~
~d ~
~d ~
~d —
~d ~
~d~
~d

name type psi phi input-conditionals preconditions postconditions 
depth predecessor_list successor_list execution_time 
psi_card phi_caid))

(defmethod (build_process base_ks)
0
(format *data-out* "~%(defun ~a ()" (String-append name "-activation")) 
(setq *name* name)
(mapcar 'gen-fetch psi)
(mapcar 'gen-rcsets input-conditionals)
(cond

((string-equal type "SENSOR") (format *data-out* "~%~t (~a)M
(String-append name "-update")))

( t t ) )
(format *data-out* ~T)~%")

(format *data-out* ”~% (defun ~a ()~
~t (and"

(String-append name "-verify"))
(mapcar ’dump-inits (append input-conditionals preconditions))
(format *data-out* ")) )

(format *data-out* "~%(defun ~a ()" (string-append name "-func")) 
(format *data-out* ~t (print ~Vquoted-string\\)

"call to knowledge source handler")
(mapcar’gen-update phi)
(format *data-out* ") )
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)

(defun dump-inits (*in*)
(format ♦data-out* " ~a" *in*)
)

(defun gen-fetch (*in*)
(format *data-out* "~&~t (setf ~a~a-temp (fetch -a))~%" *name* *in* *in*)
)

(defun gen-resets (*in*)
(format *data-out* "~&~t (setf ~a'())~%" *in*)
)

(defun gen-update (*in*)
(format *data-out* "~& ~t (update ~a ~a~a-temp)~%" *in* *name* *in*)
)

 ̂̂  ̂ **Jfc * % # Me+ He * % % % % % %+* * * * sfe * * * * * * * * * # * £
;;;Define flavor for a Blackboard Data Object *
^ ^ ^  s |e  ) ie  %  9fe $  $  *  %  if r  aft J/tf $  $  $  $  $  s ff  %  *  *  %  afe ̂  *  *  sfe *  #  #  $  J(e *  :fe  *  *  #  ?ff ;fc  &  #  #  ?fe #

(defflavor blackboard_data_object ((name nil)
( t y p e " ’string)
(value nil)
(lock string)
(read-lock 0 ’integer)
(write-lock 0 ’integer)
(input_list'() ’list)
(ic_list '0  ’list)
(output_list '0  ’list))

0
(:conc-name get-)
:initable-instance-variables
:writable-instance-variables)

(define-presentation-type blackboard_data_object (())
:no-deftype t
:printer ((blackboard_data_object stream)

(format stream Blackboard Data Object Name: ~a -  
Data Object Type: ~a -  
Data Object Value: ~a ~

-&  Data Object Lock: ~a ~
Data Object Read Lock Count: ~a ~
Data Object Write Lock Count: ~a ~
Input Conditionals: ~a ~
Used as an Input by: ~a ~
Output by: ~a 

(get-name blackboard_data„object)
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(get-type blackboard_data_object)
(get-value blackboard_data_object)
(get-lock blackboaid_data_object)
(get-read-lock blackboand_data_object)
(get-write-lock blackboard_data_object)
(get-ic_list blackboard_data„object)
(get-input_list blackboard_data_object)
(get-output_list blackboard_data_object))) )

(defmethod (display blackboard_data_object)
0
(format *data-out* " ~a ~

~a~
—a ~
~a ~
~a ~

~ & ~ a ~
~a ~

~ & ~ a ~
~a

name type value lock read-lock write-lock input_list ic_list output_list))

(defmethod (build_lock blackboard_data_object)
0
(format *data-out* M~%(Setf ~a (processrmake-lock ~\\quoted-string\v :type ~ 

:multiple-reader-single-writer: recursive t))" 
lock lock)

)

(defmethod (build_data_instance blackboard_data_object)
0
(format *data-out* "~%(setf ~a (make-instance 'blackboard_data_object ~

~t :name~\\quoted-string\\~
~t :type A\quoted-string\\ ~
~t rvalue ~a ~
~t rlock ~a ~

~% ~t rread-lock ~a ~
~ t :write-lock ~a ~
~t rinputjist ~a ~

~% ~t :ic_list '~a ~
~% ~t :output_list -a)) 

name name type value lock read-lock write-lock input_list ic_list outputjist) 
(format *data-out* "~%(push ~a d/o-list) name)
)

(defmethod (build_ks_instance base„ks)
0
(format *data-out* "~%(setf ~a (make-instance 'base_ks ~

~t rname A\}uoted-string\\ ~
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~t :type ~\^uoted-string\\ ~
~t :init-function '(~a) ~
~t :act-function '(-a) -  
~t :exec-function ’(~a) ~

-%  - t  :execution-delay ~a ~
~% ~t rupdate-interval ~a ~

~t :completion-time ~a ~
~t :activation-time ~ a )) 

name name type (string-append name "-verify")(string-append name 
activation")

(string-append name "-func") execution_time update_rate 0 0) 
(format *data-out* "~%(push ~a k/s-list) name)
)

(defun build-ks-flavor ()
(format *data-out* "~%(defflavor base_ks ((name nil) ~

-T  (type '~\\quoted-string\\'string) ~
~T (function nil) ~
~T (execution-delay 0) ~
~T (update-interval 0) ~
~T (completion-time 0) ~
~T (activation-time 0)) ~

-T() ~
~T(:conc-name get-) ~

-&  ~T :initable-instance-variables ~
-&  ~T :writable-instance-variables) " ")
)

************************************* ******* 
;;;define functions to build component names from KS names. *
^  ̂  ̂  ^ % * * * * ^  * * * * * * * *  *  * * *  *  stesf:sfc5#c% * * * *  s fe * * % * * *  * *  *  sfc * *  * * *  *  sfe *

(defun display-ks-list ()
(send *pane6* :clear-window)
(present "Current List of Knowledge Sources" 'string :stream *pane6*)
Goop for x in ks-list

do (present x 'ks-name :stream *pane6*)))

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;;; define blackboard commands *
^*********** ****** *******
;;; View a KS Command *
^ * * * * * * * * * * * * * * * * * * * *

(define-simulation-command (display_ks :menu-accelerator
"View a Knowledge Source" 
:keyboard-accelerator #w)

0
(setf ks-in nil)
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(select-ks-name)

(send *pane4* :clear-window)
(loop for x in beta

when (equal ks-in (get-name x)) 
do (present x 'basejcs rstream *pane4*)

)
)

I . . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;;; View a BB data object Command *
,„******* ***********************

(define-simulation-command (display_do :menu-accelerator
"View a Blackboard Data Object" 
rkeyboard-accelerator #d)

0
(setf data-in nil)
(select-data-object-name)

(send *pane4* :clear-window)
(loop for x in d/o-list

when (equal data-in 1 (get-name x)) 
do (present x 'blackboard_data_object: stream *pane4*))

)

;;; Load a BB Specification *
 ̂̂  ̂  * * *  *  * * * * * *  *  *  * * *  *  *  * * * * *  * *  *  *

(define-simulation-command (load_spec :menu-accelerator
"Load a Blackboard Specification" 
:keyboard-accelerator #M)

0
;;; open the specification file

(setf *data-in* (open (fs:merge-pathnames (accept ’input-file-name)) 
:direction :input))

;;; Read in the Number of Knowledge Sources in the Specification file

(init_system)
(setf *ks-spec* (read *data-in*))

(dotimes (i *ks-spec*)
(pushnew (make-instance 'base_ks

:name (read *data-in*)
:type (read *data-in*)
:psi (read *data-in*)
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:phi (read *data-in*)
:input-conditionals (read *data-in*) 
preconditions (read *data-in*) 
postconditions (read ♦data-in*)
:depth (read *data-in*) 
predecessor_list (read *data-in*)
:successor_list (read *data-in*)
:execution_time (read *data-in*) 
psi_card (read *data-in*) 
phi_card (read *data-in*»

beta)

(pushnew (get-name (car beta)) ks-list)
)

(setf *do-spec* (read *data-in*))

(dotimes (i *do-spec*)
(pushnew (make-instance *blackboard_data_object

:area *instance-area*
:name (read *data-in*)
:type (read *data-in*)
:value (read *data-in*)
dock (read *data-in*)
:read-lock 0 
:write-lock 0
:input_Jist (read *data-in*)
:ic_list (read *data-in*)
:output_Iist (read *data-in*))

d/o-list)
(pushnew (get-name (car d/o-list)) data-object-list)

)

;;; close the specification file

(setf ks_count *ks-spec*)
(close *data-in*)
(send *pane6* :clear-window)
(display-ks-list)
)

•  •  •• ) |c  3|c ^  ^  ̂m
;;; Quit Command *
^  ^  ̂  s |e $ $  a ft J f r + %  $  $  %  %  %

(define-simulation-command (quit„bb :menu-accelerator
"Quit"
:keyboard-accelerator &q)
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0
(send *panel* rclear-window)
(send *pane3* rclear-window)
(send *pane4* :clear-window)
(send *pane5* rclear-window)
(send *pane6* rclear-window)
(send dw:*program-frame* :clear-window)
(send *panel* :bury)
(send *pane3* :bury)
(send *pane4* :bury)
(send *pane5* rbury)
(send *pane6* :buiy)
(send dw:*program-frame* :bury)
(process-abort *current-process* rail t))

sJc jfea te jJcsfts lcsje  %

;;; Clear the Blackboard Specification *
^ ^ ^ $  )f r  ifc *  sfc ♦  #  ♦  afe $  s jcsft 4 c  sje sfesfe ife  jfc %  *  aft jJc $  % %  %  He $ $ $  s f : $

(define-simulation-command (clear_sim rmenu-accelerator
"Clear the Blackboard Specification" 
rkeyboard-accelerator #\c)

0
(send *pane3* rclear-window)
(send *pane4* rclear-window)
(send *pane6* rclear-window)
(init_system)
)

^  ^ ^  afe #  s f : s f : sfc sfc s f : * sfesfc s f t  sfe sfe sfc *  sfc %  % s |rs f c  He %  s f; sf* $  H* $  sff sfc

;;; Generate Blackboard System *
^  ^ ^  sfc H* sfc sfcsfcH e H* %  H< H< ♦  %  H< H< H« H* H«H*H« H* %  %  H**  H* H * ^  *  H*

(define-simulation-command (generate_bb_code rmenu-accelerator
"Generate BlackBoard System Simulation

Code"
rkeyboard-accelerator 4N3)

0
(setf *data-out* (open (fsrmerge-pathnames (accept 'output-file-name)) 

rdirection routput 
rif-exists rnew-version))

(format *data-out*
-*- Syntax: Common-Lisp; Package: COMMON-LISP-USER; Baser 10;

Mode: LISP -*- ~%")
(format *data-out*
(format *data-out* Load the Simulation *")
(format * data-out* Support Functions *")
(format *data-out* ~%")
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(format *data-out* "~%(si:load ~\\quoted-string\\) "m:>john>sim-base") 
(format *data-out*
(format *data-out* Define Variables *")
(format *data-out* ~%")
(format *data-out* "~%(defvar d/o-list *0)
(format *data-out* "~%(defvar k/s-list'()) -*%”)
(format *data-out* (defvar ks-list ~a) ks-list)
(format *data-out* "~%(defvar undefined 'ANquoted-stringW) "undefined")
(build-variable-defvars)
(format *data-out* "
(format *data-out* Define Blackboard Data Object Locks *")
(format *data-out* "»-%” •*****#*********************************
(mapcar 'build_lock (reverse d/o-list))
(format *data-out*
(format *data-out* Build Knowledge Source Objects *")
(format *data-out*
(format ♦data-out* "~%(defun build-ks-list () ~%")
(format *data-out* "~%(setf k/s-list ’0 ) ~%")
(mapcar 'build_ks_instance (reverse beta))
(format *data-out* ,l~% ~ t ) ~%")
(format *data-out*
(format *data-out* Define Knowledge Source Processess *")
(format *data-out* ~%")
(mapcar 'build_process beta)
(format *data-out*
(format *data-out* Build Blackboard Data Objects *")
(format *data-out*
(format *data-out* "~%(defun build-do-list () ~%")
(format *data-out* "~%(setf d/o-list ’())
(mapcar 'build_data_instance (reverse d/o-list))
(format * d a t a - o u t * ~ t ) ~%")
(close *data-out*)
(format t "-%"))

< •  •  SjcSjc s jc  s fc  S jd jC  i j t  ̂  Jfc j | f  Sjc Sj( f j (  SjC Sjc S j(  SjC SjC 9jC S jt  S j( ijC Sjt Sjc j j t  Sjc 9 j (  ijC  Sjc
999

;;; Functions Used to Generate Code *
* * * <|c jfc jfc  sjc  sjc  Ŝ C $|c ^  ̂  ^  ̂  ^  ̂  ^
999

(defun build-variable-defvars ()
(setf *defvar-list* '0)
(get-defvars d/o-list)
(mapcar 'defvar-form (reverse *defvar-list*))
)

(defun get-defvars (*in-list*)
(cond
((NOT *in-list*) t)
(t (make-defvar-list (append (list (get-lock (car *in-list*)))

(list (get-name (car *in-list*)))
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(get-ic_list (car *in-list*))))

(get-defvars (cdr *in-list*))))
)

(defun make-defvar-list (*in-ic*)
(cond

((NOT *in-ic*) t)
(t (pushnew (car *in-ic*) *defvar-list*)

(make-defvar-list (cdr *10-10*))))
)

(defun defvar-form (*ic-in*)
(format *data-out* "(defvar ~a '0) *ic-in*)
)

;;; initialize system *
 ̂̂  ̂  sfr$ j|c $  3ft j|s sf< s|e sfe 9fc $  4c % }ft H c$ 4* 4*4* 4*

(defun my-top-level (program)
(init_system)
(pop-panes)
(dw:default-command-top-level program))

(defun init_system 0 
(setfbeta'O

data-object-list'() 
d/o-list'O 
ks-list'() 
ks_count 0 
sensor_count 0 
connected nil)

)

(defun pop-panes ()
(setf *panel* (dw:get-program-pane 'pane-1)

*pane3* (dw:get-program-pane ’pane-3)
*pane4* (dw:get-program-pane ’pane-4)
*pane5* (dw:get-program-pane ’pane-5)
*pane6* (dw:get-program-pane ’pane-6))

)

;;; define a function to pop a menu to allow *
;;; the user to select a knowledge source *
 ̂  ̂̂  4* $ 4 * 4c 4* s)e 4<4t4c *  jfe aft 4* 4* 4 * +  4* 4* 4c 4* 4* 4*4* 4* 4* 4*4c4c4* 4* 4c 4c 4* 4*4*4c 4* 4*4* 4* 4* 4* 4*

(defun select-ks-name ()
(send *ks-menu* ':set-item-list ks-list)
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(send *ks-menu* ':expose-near '(:mouse))
(setq ks-in (send *ks-menu* ’:choose))
(send *ks-menu* ’:deactivate) t)

(defun select-data-object-name ()
(send *do-menu* *:set-item-listdata-object-list)
(send *do-menu* ':expose-near '(rmouse))
(setq data-in 1 (send *do-menu* ':choose))
(send *do-menu* ’:deactivate) t)



Appendix E The COBS Code Generator

This appendix contaion a listing of the COBS Code Generator and a listing of the 
code generated for example system B2

E .l Listing of the COBS Code Generator

;;; Mode: LISP; Syntax: Common-lisp; Package: buildtools; Base: 10 

*

;;; Program: Concurrent Blackboard System 
;;; Code Generator

;;; define the program framework *

(DW:DEFINE-PROGRAM-FRAMEWORK build-code

;;; define the top level *
;;; program framework *

:top-level (my-top-level)

^***********************************
;;; define the program selection key *

:SELECT-KEY

•  •  •  s jf  s|c s|c t | t  j j t  sfc t j t s jc  s^c 3f» i | t  t |c  j |< )|c  sjc sft sjc sjc a|c 3jc j(c j | c s |c  s |c  sfc
» > »

;;; define the program framework *

:COMMAND-DEFINER
T

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;;; define the program command table *

:COMMAND-TABLE
OINHERIT-FROM
’("accept-values-pane" "colon full command" "standard arguments"

286
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"input editor compatibility" "standard scrolling")

:KBD-ACCELERATOR-P ’T)

;;; define the program state variables *
;;; and their initial values *

^  ^  ^  ^  3fc 3 |( 9fc )|c  ^  9̂ C3̂ C 9f( 3fC 3jC 3|(

:STATE-VARIABLES 
0

« » •  s jt  ifc 9|( ) |(  sftsfc 3|c 9|c 9|( d|C 9|( }fc 9f( JfC i | t  i |c  dfC-Ŝ C 9 |t }|6 )|6  Ŝ C 5|C 
9 9 9

;;; define the program windows *

:PANES
((PANE-1 :TITLE :REDISPLAY-STRING "Concurrent Object Oriented Blackboard 

System"
:HEIGHT-IN-LINES 1 
:REDISPLAY-AFIER-COMMANDS NIL)

(PANE-4 :display
rmargin-components '((dw:margin-borders)

(dw:margin-label :string "Graphic Display Window" 
margin :top 
:box rinside 
:box-thickness 2 
:style (:fix :bold :large)
:centered-p t)

(dw:margin-white-borders rthickness 4)
(dw:margin-scroll-bar)))

(PANE-3 ."listener
:HEIGHT-IN-LINES 35 
:margin-components '((dw:margin-borders)

(dw:margin-white-borders :thickness 4)
(dw:margin-label :string "Listener Window" 

margin :top 
:box rinside 
:box-thickness 2 
rstyle (:fix :bold :large)
:centered-p t)

(dw:margin-scroll-bar)))
(PANE-6 :display

margin-components '((dwmargin-borders)
(dwmargin-white-botders :thickness 4)
(dwmargin-Iabel :string "List of Knowledge Sources" 

margin :top 
:box :inside 
:box-thickness 2 
:centered-p t
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:style (:fix :bold :large)) 

(dw:margin-scroll-bar)))
(PANE-5 :COMMAND-MENU 

:CENTER-P T 
:MENU-LEVEL 
:TOP-LEVEL
:margin-components '((dw:margin-borders)

(dw:margin-white-borders :thickness 4) 
(dw:margin-label :string "Commands" 

:margin :top 
:box :inside 
:box-thickness 2 
:style (:fix :bold tlarge) 
:centered-p t ) ) )

)

•  • • J0C)jC3({S|(3|C3|c Jjc 9|$ jJCSjf 3jC5|t 3fCj|CS|C9$C3|CS{c J jtsjc sjc jfC9|C
J > )

;;; define the window layout configuration *

: CONFIGURATIONS 
'((DW::MAIN

(rLAYOUT (DW::MAIN :COLUMN PANE-1 PANE-4 ROW-1) 
(ROW-1 :ROW PANE-3 PANE-6 PANE-5))

(:SIZES (DW::MAIN (PANE-1 1 :LINES)
:THEN (PANE-4 :EVEN) (ROW-1 :EVEN))

(ROW-1 (PANE-3 30 :LINES) (PANE-6 20 :LINES)
(PANE-5 :ASK-WINDOW SELF

:SIZE-FOR-PANE PANE-5) :THEN)))))

?jc Hi $  aft Jje ★  Jfc J k  J N f c  #  ?|« J ( t $  $  $  s f t sfc $  s fo fe  %  aft *  %  sfc %

;;; define any needed variables *
^  ̂  ̂  $  Jfc $  +  3ft i j e * J(f jJ c 4 s  % J |s ♦  J(e At%  %  ★  %  sfc *N %  %  ♦  %  %  >k

(defvar *data-out* nil) ;;; Output Data File
(defvar *data-in* nil) ;;; Input Data File
(defvar beta '()) ;;; List Of Knowledge Sources
(defvar ks-list'()) ;;; List Of Knowledge Source Names
(defvar data-object-list'()) »; List Of Blackboard Data Object Names
(defvar d/o-list'()) ;;; List Of Blackboard Data Object(s)
(defvar ks-in *0) ;;; Knowledge Source selected from menu
(defvar do-in ’0) ;;; Blackboard Data object selected from menu
(defvar ks-name-in'())
(defvar *defvar-list*'()) ;;; List of Input-conditionals to be DEFVAR[ed]
(defvar *defvar-lock-list* '());;; List of Locks to be DEFVAR[ed]
(defvar *name*'()) ;;; Name of Data Object to be Updated
(defvar ks-edit'O)
(defvar do-edit'())
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(defvar data-in 1 '0)
(defvar ks_count 0)
(defvar sensor_count 0)

(defvar connected nil)
(defvar data-in nil)
(defvar *ks-spec* nil)
(defvar *do-spec* nil)

(defvar *panel*)
(defvar *pane3*)
(defvar *pane4*)
(defvar *pane5*)
(defvar *pane6*)

♦ •  •  } |( ^  ^  ^  ^  ^  ^  | |^  ^  ^
99 9

;;; define the variables required to build a *
;;; pop up window to select knowledge sources *

(defvar geometry-list (list 2))

(defvar *ks-menu* (tv:make-window 'tv:pop-up-menu
':label '(string "Select a Knowledge Source" 

:character-style (:swiss :italic :normal))
;; ’:geometry geometry-list

':borders 4))

(defvar *do-menu* (tv:make-window 'tv:pop-up-menu
':label '(string "Select a Blackboard Data Object" 

:character-style (rswiss :italic :normal)) 
’rborders 4))

* *  ♦ *  *  s to le  £  $  *  %  3je *  *  $  *  *  %  aft *  *  *  *  afc $  $  *  *  aft $  *  afe sfe 3fc 3ft *  $  $  a|c He *  *  4 c
99 9

;;; define any needed presentation types. *
♦ ..a****************************************
999

(define-presentation-type ks-type ()
:abbreviation-for 'string)

(define-presentation-type output-file-name ()
:abbreviation-for 'string)

(define-presentation-type input-file-name ()
:abbreviation-for 'string)

(define-presentation-type input-conditional-list ()
:abbreviation-for 'list)
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(define-presentation-type precondition-list ()

:abbreviation-for “list)

(define-presentation-type postcondition-list ()
:abbreviation-for 'list)

(define-presentation-type input-variable-list 0  
:abbreviation-for 'list)

(define-presentation-type output-variable-list ()
:abbreviation-for 'list)

(define-presentation-type rotation-about-y-axis-in-degrees ((limit)) 
:abbreviation-for '((integer 0,limit)))

(define-presentation-type ks-name (0)
:no-deftype t
rprinter ((ks-name stream)

(format stream " knowledge source ~a" ks-name)) 
:parser ((stream)

(accept 'string :stream stream
:prompt "enter a Knowledge Source name”) ) )

^  % ifcsfc $  Jfofe $ $  >|c jfc $ $  $  $  3}c sfc $  ?fc4c $ $ $  N< $  %

;;; define area for instances for specialized GC. *
 ̂̂  ̂  ^  % Sff ^  ^  *

(defvar *instance-area*
(make-area :name '*instance-area*

:gc ’:dynamic))

;;;define Flavor for a Knowledge Source *
^  $  if: $  sfc sfc >fc &  $  $  $  $  $  He $  $  % $  $  $  $  $  % % % $  $

(defflavor base_ks ((name " " 'ks-name)
(type"" 'ks-type)
(input-conditionals '0  ’input-conditional-list) 
(preconditions '0  ’precondition-list)
(postconditions'() 'postcondition-list)
(psi'() 'input-variable-list)
(phi '0  ’output-variable-ist)
(execution_time 0.0 'number)
(depth 0 'number)
(successorjist ’() ’list)
(predecessor_list '0  ’list)
(update_rate 0.0 'number)
(psLcard 0 'integer)
(phi_card 0 ’integer))
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0
(:conc-name get-)
:initable-instance-variables
iwritable-instance-variables)

(define-presentation-type base_ks (0)
:no-deftype t
.•printer ((basejcs stream)

(format stream " knowledge source: ~a ~ 
knowledge source type: ~a ~ 
input variables: ~a ~ 
output variables: ~a ~ 
input conditionals: ~d ~ 
preconditions: ~d ~ 
postconditions: ~d ~ 
depth: ~d ~ 
predecessors: ~d ~

~& successors: ~d ~
knowledge source execution time: ~d ~ 
cardinality of input variable set: ~d ~ 
cardinality of output variable set: ~d ~%"

(get-name basejcs) (get-type base_ks)
(get-psi base_ks) (get-phi base_ks) 
(get-input-conditionals basejcs)
(get-preconditions basejcs) (get-postconditions basejcs) 
(get-depth base_ks) (get-predecessorjist base_ks) 
(get-successorjist basejcs)
(get-execution_time base_ks)
(get-psi_card basejcs) (get-phi_card base_ks))) )

^ ^  ̂ $ J frsfe  $  afesfc$  aft i f r  jj s  sfe s | r 4 c  ★  sfc ★  ★  ♦  >(e sfc sjc jfc *  %  sjc %  $ + $  sfc % $ %  %  $  %

;;;define methods for a knowledge source *

(defmethod (show basejcs)
0

(format *data-out* " knowledge source: ~a ~
knowledge source type: ~a ~ 
input variables: ~a ~

~& output variables: ~a ~
~& input conditionals: ~d ~ 

preconditions: ~d ~ 
postconditions: ~d ~ 
depth: ~d ~ 
predecessors: ~d ~ 
successors: ~d ~

knowledge source execution time: ~d ~ 
cardinality of input variable set: ~d ~ 

~& cardinality of output variable set: ~d
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name type psi phi input-conditionals preconditions postconditions 
depth predecessorjist successorJist execution_time 
psi_caid phi_card)

(defmethod (display base_ks)
0
(format *data-out* " ~a ~

~<Sc ~a ~
~a ~

~& ~a ~
~d ~

~& ~d~
~d ~

~& ~d ~
"& ~d ~

~d —
~d ~

~& ~d~
~&~d~% "

name type psi phi input-conditionals preconditions postconditions 
depth predecessorjist successorjist executionJime 
psi_card phi_card) )

(defmethod (compute_cardinality basejcs)
0
(setf psi_card (length psi) 

phi_card (length ph i)))

(defmethod (build_process base_ks)
0
(format *data-out* (defun ~a ()"

(String-append name "-init"))

(setq *name* name)
(mapcar 'gen-fetch psi)
(mapcar 'gen-resets input-conditionals)

(format *data-out* ~t (print ~\quoted-string\\)
"replace this with call to knowledge source handler")

(mapcar’gen-update phi)
(format *data-out*

(format *data-out* "~%(defun ~a ()- 
~&~t (and"
(String-append name "-verify"))

(mapcar 'dump-inits (append input-conditionals preconditions)) 
(format *data-out* ")) )
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(format *data-out* "~%(Setf ~a (process:make-process ~\\quoted-string\\ ~
-T  rinitial-function *~a ~
~T :verify-function ’~a ~
~T :top-level-whostate ~\'quoted-string\\~
~T :simple-p t))

name name (string-append name "-init") (string-append name "-verify") name)
)

(defiin dump-inits (*in*)
(format * data-out* " ~a" *in*)
)

(defun gen-fetch (*in*)
(format *data-out* "~&~t (setf ~a~a-temp (fetch ~a))~%" *name* *in* *in*)
)

(defun gen-resets (*in*)
(format *data-out* "~&~t (setf ~a'())~%" *in*)
)

(defun gen-update (*in*)
(format *data-out* ~t (update ~a ~a~a-temp)~%" *in* *name* *in*)
)

;;;Define flavor for a Blackboard Data Object *
Jfc5lcsffJf*)iesicJ|cJ|c sfofc 3fc&3fc3fc:it3je:fc:je3jc3jc3jc3fc3fe3icjjc3fc3jeije9fe:(<;|e strife

(defflavor blackboard_data_object ((name nil)
(type string)
(value nil)
(lock "•" ’string)
(inputJist’O 'list)
(icJist'O 'list)
(output_list'() ’list))

0
(:conc-name get-)
:initable-instance-variables
rwritable-instance-variables)

(define-presentation-type blackboard_data_object (())
:no-deftype t
:printer ((blackboard_data_object stream)

(format stream Blackboard Data Object Name: ~a ~
Data Object Type: ~a ~
Data Object Value: ~a ~
Data Object Lock: - a  ~

-&  Input Conditionals: ~a ~
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Used as an Input by: ~a ~
Output by: ~a 

(get-name blackboard_data_object)
(get-type blackboard_data_object)
(get-value blackboard_data_object)
(get-lock blackboard_data_object)
(get-ic_Iist blackboard_data_object) 
(get-input_listblackboard_data_object)
(get-output_list blackboard_data_object))) )

(defmethod (display blackboard_data_object)
0
(format *data-out* " ~a ~

~a ~
~& ~a ~

~a ~
~& ~a ~

~a ~
~a

name type value lock input_list ic_list outputjist))

(defmethod (buildjock blackboard_data_object)
0
(format *data-out* "~%(Setf ~a (process:make-lock Aquoted-stringW :type ~ 

:multiple-reader-single-writer :recursive t))" 
lock lock)

)

(defmethod (build_data_instance blackboard_data_object)
0
(format *data-out* "'-%(setf ~a (make-instance 'blackboard_data_object ~

~t :name A\quoted-string\\ ~
~t :type ANquoted-stringW ~
~t :value ~a -  
~t dock ~a ~
~t :input_list *~a ~

~% ~t :ic_list ~a ~
~t :output_list ’~a)) 

name name type value lock input_list ic_list outputjist)
(format *data-out* "~%(push - a  d/o-list) name)
)

(defun dump-methods-update ()
(format *data-out*

"~% (defmethod (update blackboard_data_object) -  
~t(*value-in*)~
~t(process:with-lock (lock :mode :write)~
~t (setf value *value-in*)~
~t (mapcar 'set-input-conditionals ic_list)~
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~t (mapcar 'wake-them-up input_list))~
~t )~% ")

)

(defun dump-methods-fetch ()
(format *data-out*
(format *data-out*

"~%(defmethod (fetch blackboard data_object) ~
~t ()~
~t (process:with-lock (lock :mode :read)~
~t (mapcar 'reset-input-conditionals ic_list))~
~t value ~

~ & ~ t)~ % ")
)

(defun dump-set-input-cond ()
(format *data-out*

"~%(defun set-input-conditionals (*in*)~
-& ~ t (set*in*t)~

~t )~% ")

(format *data-out*
"~%(defun reset-input-conditionals (*in*)~

~t (set *in* nil)~
~t )~% ")

)

(defun dump-wake-em-up ()
(format *data-out*

"~%(defun wake-them-up (*in*)~
~& ~t (process:wakeup (symbol-value *in*))~

~t)~% ")
)

(defun dump-start-em-up ()
(format *data-out*

"~%(defun start-them-up (*in*)~
~t (mapcar 'init-them *in*))~
~t)~% ")

)

 ̂̂  *  $  sfc )fc % % $  4* *  *  ★ *  *  4«4« *  4< 4s 4s 4s 4c *  ★ + *  4s 4c 4c 4c 4c 4c *  >ie 4c 4c 4c 4* *  4e *  4c % 4f 4c % if! sfe 4c 4c 4c % % 4e 4« 4« % 4*

; ;;define functions to build component names from KS names. *
^ 4 *  4* 4* 4< 4* 4< 4c 4s 4c 4< 4c 4c 4c 4c 4t 4c 4c 4c 4s 4< 4< 4c 4c 4c 4c 4* 4? 4c 4< 4s 4c 4< 4c 4< 4c 4c 4c 4s 4* 4* 4* 4c 4c 4*4? 4<4< 4s 4* 4* 4* 4* 4s 4* 4* 4* 4* 4*

(defun display-ks-list 0  
(send *pane6* :clear-window)
(present "Current List of Knowledge Sources" ’string :stream *pane6*) 
(loop for x in ks-list
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do (present x 'ks-name :stream *pane6*)))

(defun build-data-flavor 0  
(format *data-out* "-%(defflavor blackboard_data_object ((name nil) ~ 

~34T (type '~\\quoted-string\\ 'string) ~
~34T (value nil) ~
~34T (lock 'ANquoted-stringW ’string) ~
~34T (input list'() ’list) -

~& ~34T (ic list '0  ’list) ~
~34T (output_list'() ’list)) -

~T() ~
~T(:conc-name get-) ~
~T :initable-instance-variables -  
~T :writable-instance-variables) " ")

)

(defun build-init-flavor ()
(format *data-out* "~%(defmethod (init-them blackboard_data_object) ~ 
~ & ~ T ()~

~T (cond ~
~& ~T ((NOT type) t)~

~T (t (update self value))) ~
~ &  ~ T )")
)

* * • 4 t  4< a|c % 4c 4c 4* 4* *  4* 4c 4c 4c 4c 4* 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4s *>»»
;;; define blackboard commands *
% 14 dfc 4« 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c ̂ fc 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c »«
;;; View a KS Command *
• •  • 4c 4c 4c 4c 4c 4c 4c 4c 4c4c4c 4c 4c 4c 4c 4c 4c 4c 4s 4c »>»

(define-build-code-command (display_ks :menu-accelerator
"View a Knowledge Source" 
:keyboard-accelerator #\v)

0
(setf ks-in nil)
(select-ks-name)

(send *pane4* :clear-window)
(loop for x in beta

when (equal ks-in (get-name x)) 
do (present x 'base_ks : stream *pane4*)

)
)

A## 4c 4e 4c 4c 4s 4s 4c 4c 4c 4c 4c 4s 4c 4c 4c 4c 4c 4c 4c 4c 4c 4S 4S 4c 4c 4c 4c 4c 4c 4c 4c 4c »»
;;; View a BB data object Command *
^ ^ 4 c4 c 4< 4s 4 s 4c 4c 4c 4c 4c 4 c 4c 4c 4c 4c 4c 4s 4s 4s 4c 4* 4f 4c 4c 4 c 4 s



Appendix E
(define-build-code-command (display_do :menu-accelerator

"View a Blackboard Data Object" 
ikeyboard-accelerator #\5)

0
(setf data-in nil)
(select-data-object-name)

(send *pane4* :clear-window)
(loop for x in d/o-list

when (equal data-inl (get-name x)) 
do (present x ,blackboard_data_object :stream *pane4*))

)

;;; Load a BB Specification *

(define-build-code-command (load_spec :menu-accelerator
"Load a Blackboard Specification" 
:keyboaid-accelerator #4)

0
;;; open the specification file

(setf *data-in* (open (fs:merge-pathnames (accept ’input-file-name)) 
:dircction rinput))

;;; Read in the Number of Knowledge Sources in the Specification file 

(init_system)
(setf *ks-spec* (read *data-in*))

(dotimes (i *ks-spec*)
(pushnew (make-instance 'base_ks

:name (read *data-in*)
:type (read *data-in*)
:psi (read *data-in*)
:phi (read *data-in*)
:input-conditionals (read *data-in*)
:preconditions (read *data-in*)
:postconditions (read *data-in*) 
rdepth (read *data-in*)
:predecessor_Iist (read *data-in*)
:successor_list (read *data-in*)
:execution_time (read *data-in*)
:psi_card (read *data-in*)
:phi_card (read *data-in*))

beta)

(pushnew (get-name (car beta)) ks-list)
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)

(setf *do-spec* (read *data-in*))

(dotimes (i *do-spec*)
(pushnew (make-instance 'blackboard_data_object

:area *instance-area*
:name (read *data-in*)
:type (read *data-in*)
:value (read *data-in*)
dock (read *data-in*)
:input_list (read *data-in*) 
:ic_list (read *data-in*)
:output_list (read *data-in*))

d/o-list)
(pushnew (get-name (car d/o-list)) data-object-list)

)

;;; close the specification file

(setf ks_count *ks-spec*) 
(close *data-in*)
(send *pane6* :clear-window) 
(display-ks-list)
)

 ̂̂  ̂  $  % ifc sfe jfe+ 9(e $  s|c sfe 9fi :je %

;;; Quit Command *
® ^  ^  ^

(define-build-code-command (quit_bb :menu-accelerator
"Quit"
rkeyboard-accelerator #^q)

0
(send *panel* rclear-window)
(send *pane3* xlear-window)
(send *pane4* xlear-window)
(send *pane5* xlear-window)
(send *pane6* xlear-window)
(send dw:*program-frame* xlear-window)
(send *panel* :bury)
(send *pane3* :bury)
(send *pane4* :bury)
(send *pane5* :bury)
(send *pane6* :bury)
(send dw:*program-frame* :bury)
(process-abort *current-process* :all t))
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 ̂̂ ̂ * sff ak * ♦ ★+>k tfc ★ ♦ ♦ ♦ * ♦ * ♦ ★ *►+>k ♦ % ★ %
;;; Generate Blackboard System *
 ̂̂ ̂ % ♦ *+* ★ ★ ★+★ ★ j(* ♦ >1* ★ >1* % ♦ ★ *f* ♦ % ♦ % % ♦

(define-build-code-command (generate_bb_code :menu-accelerator
"Generate BlackBoard System Code" 
rkeyboard-accelerator #\G)

0
(setf *data-out* (open (fs:merge-pathnames (accept 'output-file-name)) 

rdirection :output 
:if-exists :new-version))

(format *data-out*
";;; -*- Syntax: Common-Lisp; Package: COMMON-LISP-USER; Base: 10; 

Mode: LISP -*- 
(format *data-out*
(format *data-out* Define Variables *")
(format *data-out*
(format *data-out* "~%(defvar d/o-list'())
(build-variable-defvars)
(format *data-out*
(format ’•'data-out* Define Blackboard Data Object Flavor *")
(format *data-out* ~%n)
(build-data-flavor)
(format *data-out* j*j*t5*es*e**!*e*5*c*j*e3*e,,e,,e>*esie>*cJie*;*c*5*e:+:s*e:*ci*e*5*4s,e4*i!*esie***s*e5*4!*e*s**
(format *data-out* "~%;;;* Define Blackboard Data Object Methods *")
(format *data-out* "»-%” ;**************************************** 
(build-init-flavor)
(format *data-out*
(format *data-out*

" ~ % * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * " )

(format *data-out* "~%;;;* Define Function to Wakeup a Blackboard Handler *") 
(format *data-out*

" ~ % ; ; ; * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  ~%") 
(dump-wake-em-up)
(format *data-out*

1 • ' • * * ♦ ♦ * # * ♦ * ♦♦ * * * * * * * * * * * * * * * * * * * * * ** * ♦ * * + * sfc * * * * * * ♦ *< J
(format *data-out* "~%;;;* Define Function to Initialized the Blackboard *") 
(format *data-out*

lit**** ********* Jit*** if:***
(dump-start-em-up)
(format *data-out* "—•Jfej”****************************")
(format *data-out* "-%;;;* Define Methods to Update *")
(format *data-out* "~%;;;* Blackboard Data Objects *")
(format *data-out* "*«%;"*****************#********** 
(dump-methods-update)
(format *data-out*
(format *data-out* "~%;;;* Define Methods to Fetch *")
(format *data-out* "~%;;;* Blackboard Data Objects *")
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(format *data-out*
(dump-methods-fetch)
(format *data-out*
(format *data-out* Define Functions to Set and Reset *")
(format *data-out* a Knowledge Source's Input Conditionals *")
(format *data-out* "--%;” ******************************************* 

~%")
(dump-set-input-cond)
(format *data-out*
(format *data-out* Define Blackboard Data Object Locks *")
(format *data-out* ~%")
(mapcar 'buildjock (reverse d/o-list))
(format *data-out*
(format *data-out* Define Knowledge Source Processess *")
(format *data-out* "«%";**************************#***********
(mapcar'build_process beta)
(format *data-out*
(format *data-out* Build Blackboard Data Objects *")
(format *data-out* "'-%;” ********************************* ~%")
(mapcar 'build_data_instance (reverse d/o-list))
(close *data-out*)
(format t "-%"))

♦ * .  $  sfc $  aft £  $  aft a|e *  *  a|e a k  ak  ★  %  4 c  *  ★  sfc *  £  $  *  *  a|c a|ca#c $  *  9ft sfe *  *  $
?> >

;;; Functions Used to Generate Code *

(defun build-variable-defvars ()
(setf *defvar-list* '0)
(get-defvars d/o-list)
(mapcar 'defvar-form (reverse *defvar-list*))
)

(defun get-defvars (*in-Iist*)
(cond

((NOT *in-list*) t)
(t (make-defvar-list (append (list (get-lock (car *in-list*)))

(list (get-name (car *in-list*)))
(get-ic_list (car *in-list*»))

(get-defvars (cdr *in-list*))))
)

(defun make-defvar-list (*in-ic*)
(cond

((NOT *in-ic*) t)
(t (pushnew (car *in-ic*) *defvar-list*)

(make-defvar-list (cdr *in-ic*))))
)
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(defun defvar-form (*ic-in*)

(format *data-out* "(defvar ~a ’0) *ic-in*)
)

^  ^ ̂  sfe *  *  a f t *  *  %  *  *  *  *  *  *  *  *  * * *

;;; initialize system *
^ * * * * * * * * * * * * * * * * * * * *

(defun my-top-level (program)
(init_system)
(pop-panes)
(dw:default-command-top-level program))

(defun init_system ()
(setf beta '()

data-object-list '0  
d/o-list'() 
ks-list '0  
ks_count 0 
sensor_count 0 
connected nil)

)

(defun pop-panes 0
(setf *panel* (dw:get-program-pane 'pane-1)

*pane3* (dw:get-program-pane 'pane-3)
*pane4* (dw:get-program-pane ’pane-4)
*pane5* (dw:get-program-pane 'pane-5)
*pane6* (dw:get-program-pane 'pane-6))

)

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

;;; define a function to pop a menu to allow *
;;; the user to select a knowledge source * 
^************************************ *** * *

(defun select-ks-name ()
(send *ks-menu* ':set-item-list ks-list)
(send *ks-menu* ':expose-near '(:mouse))
(setq ks-in (send *ks-menu* ':choose))
(send *ks-menu* ':deactivate) t)

(defun select-data-object-name ()
(send *do-menu* ':set-item-list data-object-list)
(send *do-menu* ':expose-near '(:mouse))
(setq data-in 1 (send *do-menu* ’rchoose))
(send *do-menu* *:deactivate) t)

E.2 COBS Generated B2 Code



Appendix E 302
;;; Syntax: Common-Lisp; Package: COMMON-LISP-USER; Base: 10; Mode: 
LISP

. .. if:*******************
;;;* Define Variables *
• . .  j |e  *  afc $  4 e  9|c  $  *  *  *  aft *  afc %  %  afc $  afc afc *  
i n

(defvar d/o-list'())
(defvar D8-LOCK’())
(defvar D8 *0)
(defvar KS4-D8 ’())
(defvar D7-LOCKX))
(defvar D 7'0)
(defvar KS4-D7’0)
(defvar D6-LOCK’())
(defvar D 6 '())
(defvar KS3-D6 ’())
(defvar D9-LOCK'())
(defvar D9 ’0)
(defvar KS2-D9’0)
(defvar Dl-LOCK'O)
(defvar D1 '0)
(defvar KS1-D1'())
(defvar D2-LOCK’(» 
(defvar D2'()) 
(defvar KS1-D2'())
(defvar D3-LOCK ’())
(defvar D3 ’())
(defvar KS2-D3 ’())
(defvar D4-LOCK ’())
(defvar D 4’0)
(defvar KS3-D4'())
(defvar D5-LOCK'())
(defvar D5 '0)
(defvar KS4-D5'())

;;;* Define Blackboard Data Object Flavor *
^ ^  ^ j |c  a(c afe afc afc afc afe afeafcafc afea|e afc %  ife  ♦  sf« a ft ♦  %  Jfe %  %  afc afc afc afc afc afc ♦ + *f*% %

(defflavor blackboard_data_object ((name nil)
(type m 11 ’string)
(value nil)
(lock"’ " ’string)
(input_list ’0  ’list)
(ic_list ’() ’list)
(outputjist ’0  ’list))

0
(:conc-name get-)
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:initable-instance-variables 
:writable-instance-variables)

...I****************************************
;;;* Define Blackboard Data Object Methods *
^  ̂  ̂  afc afeafcaft afc+ aft afc aft *  %  ♦  %  sfe %  *  %  %  %  ★  #  %  ♦  ♦  af< %  ♦  s f e *  %  *  *  *  %  %  *  *  %  %  *

(defmethod (init-them blackboard_data_object)
0
(cond

((NOT type) t)
(t (update self value)))

)

j t j  >|e aft aft afe

;;;* Define Function to Wakeup a Blackboard Handler *
^  ̂  ^ aft afc afc afc aft aft aft afc aft afe afe afe aft afe aft aft ife afe aft aft afe afe aft 9ft * a f c  9ft afc afc afc *  >|e afe afe afe afc aft afc aft afe afe afe afe aft afe Jfc *  afc aft afe

(defun wake-them-up (*in*)
(processrwakeup (symbol-value *in*))

)

IT* ^
;;;* Define Function to Initialized the Blackboard *
^ ^  ^  afc afe afc afe afe afc aft afe afe afe afe afe afc afc a|e afc afc afe aft afc afc afe afc afe aft afe afe afc aft afe afc afc afe afc afe afe ife afe afe afc afe afc afe afe afc afc afe afe afc afe

(defun start-them-up (*in*)
(mapcar'init-them *in*)

)

;;;* Define Methods to Update *
;;;* Blackboard Data Objects *
•  • •  afc afc afc afc aft afe afc afc aft afe afc afc a|c afc afc afe afc afc afe afc afc jfc  afc 4c afe afc afe afc 
» * *

(defmethod (update blackboard_data_object)
(*value-in*)
(process:with-lock (lock :mode :write)

(setf value *value-in*)
(mapcar 'set-input-condidonals ic_list)
(mapcar 'wake-them-up inputjist))
)

afc afe afc afc afc afe afc afe afe afe afc afc afc a|c afc aft afc a|c afe afc a|e afe afe afe afe afc afc

;;;* Define Methods to Fetch *
;;;* Blackboard Data Objects *

(defmethod (fetch blackboard_data_object)
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0
(process:with-lock (lock :mode :read) 

value)
)

afc afc afc *  afc afc aft afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc ^  ^  ̂  ̂D)
;;;* Define Functions to Set and Reset *
;;;* a Knowledge Source's Input Conditionals *

afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc***

(defun set-input-conditionals (*in*)
(set *in* t)
)

(defun reset-input-conditionals (*in*)
(set *in* nil)
)

^  * * * * * *  * * * * * *  afc * * * * * * *  afc a f c *

;;;* Define Blackboard Data Object Locks *
•  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  afe afc 
a a a

(Setf D5-LOCK (processrmake-lock "D5-LOCK''
:type :multiple-reader-single-writer :recursive t)) 

(Setf D4-LOCK (processrmake-lock "D4-LOCK"
:type :multiple-reader-single-writer :recursive t)) 

(Setf D3-LOCK (processrmake-lock "D3-LOCK"
:type :multiple-reader-single-writer :recursive t)) 

(Setf D2-LOCK (processrmake-lock "D2-LOCK"
:type rmultiple-reader-single-writer :recursive t)) 

(Setf Dl-LOCK (processrmake-lock "Dl-LOCK"
:type :multiple-reader-single-writer :rccursive t)) 

(Setf D9-LOCK (processrmake-lock "D9-LOCK"
:type rmultiple-reader-single-writer: recursive t)) 

(Setf D6-LOCK (processrmake-lock "D6-LOCK"
:type rmultiple-reader-single-writer rrccursive t)) 

(Setf D7-LOCK (processrmake-lock "D7-LOCK"
rtype rmultiple-reader-single-writer rrccursive t)) 

(Setf D8-LOCK (processrmake-lock "D8-LOCK"
rtype rmultiple-reader-single-writer rrccursive t))

199**
;;;* Define Knowledge Source Processess *
•  • a * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defun KS4-init ()
(setf KS4D5-temp (fetch D5))
(setf KS4D7-temp (fetch D7))
(setf KS4D8-temp (fetch D8))
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(setf KS4-D8 ’0)
(setf KS4-D7 ’0)
(setf KS4-D5 ’0)
(print "replace this with call to knowledge source handler")
(update D9 KS4D9-temp)

)

(defun KS4-verify ()
(and KS4-D8 KS4-D7 KS4-D5 (NOT ( -  (GET-VALUE D9) 13.6))

(GET-VALUE D2) 0.0))
(NOT (= (GET-VALUE D8) 0.0))))

(Setf KS4 (process:make-process "KS4"
:initia!-function 'KS4-init 
:verify-function 'KS4-verify 
:top-level-whostate "KS4"
:simple-p t))

(defun KS3-init ()
(setf KS3D4-temp (fetch D4))
(setf KS3D6-temp (fetch D6))
(setf KS3-D6'())
(setfKS3-D4'0)
(print "replace this with call to knowledge source handler")
(update D8 KS3D8-temp)

)

(defun KS3-verify ()
(and KS3-D6 KS3-D4 (NOT (= (GET-VALUE D8) PI))

(NOT (= (GET-VALUE D9) 13.6))))

(Setf KS3 (processrmake-process "KS3"
:initial-function 'KS3-init 
rverify-function 'KS3-verify 
:top-level-whostate "KS3"
:simple-p t))

(defun KS2-init()
(setf KS2D3-temp (fetch D3))
(setf KS2-D9 ’0)
(setf KS2-D3 ’0)
(print "replace this with call to knowledge source handler")
(update D6 KS2D6-temp)
(update D7 KS2D7-temp)

(defun KS2-verify ()
(and KS2-D9 KS2-D3 (NOT (= (GET-VALUE D4) 7)) 

(NOT (= (GET-VALUE D8) PI))))
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(Setf KS2 (processtmake-process "KS2"
:initial-function 'KS2-init 
:verify-function ’KS2-verify 
:top-level-whostate "KS2"
:simple-p t))

(defun KSl-init()
(setf KSlDl-temp (fetch D l))
(setf KSlD2-temp (fetch D2))
(setf KS1-D2'0)
(setf KS1-D1 ’0)
(print "replace this with call to knowledge source handler") 
(update D3 KSlD3-temp)
(update D4 KSlD4-temp)
(update D5 KSlD5-temp)

)

(defun KS1-verify ()
(andKSl-D2 KS1-D1))

(Setf KS1 (process :make-process "KSl"
:initial-function 'KSl-init 
:verify-function 'KSl-verify 
:top-level-whostate "KSl"
:simple-p t))

;;;* Build Blackboard Data Objects *

(setf D5 (make-instance 'blackboard_data_object 
:name "D5"
:type "REAL"
:value UNDEFINED 
rlock D5-LOCK 
:input_list '(KS4)
:ic_list ’(KS4-D5)
:output_list '(KSl)))

(push D5 d/o-list)

(setf D4 (make-instance 'blackboard_data_object 
:name "D4"
:type "REAL"
.’value UNDEFINED 
dock D4-LOCK 
dnput_list '(KS3) 
dc_list '(KS3-D4)
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:output_list '(KSl)))

(push D4 d/o-list)

(setf D3 (make-instance 'blackboard_data_object 
:name "D3"
:type "REAL"
:value UNDEFINED 
:lockD3-LOCK 
:input_Iist ’(KS2)
:ic_list '(KS2-D3) 
routputjist '(KSl)))

(push D3 d/o-list)

(setf D2 (make-instance 'blackboard_data_object 
:name "D2”
:type "REAL" 
rvalue 1.8 
dock D2-L0CK 
dnput_list '(KSl) 
dc_list '(KS1-D2)
:output_list ’NIL))

(push D2 d/o-list)

(setf D1 (make-instance 'blackboard_data_object 
:name "Dl"
:type "REAL" 
rvalue 2.2 
dock Dl-LOCK 
dnput_list’(KSl) 
d c J is t’(KSl-Dl)
:output_list ’NIL))

(pushDl d/o-list)

(setf D9 (make-instance 'blackboard_data_object 
:name "D9"
:type "REAL" 
rvalue 12.22 
dock D9-LOCK 
rinput_list 'NIL 
ric jis t ’(KS2-D9) 
routputjist '(KS4)))

(push D9 d/o-list)

(setf D6 (make-instance 'blackboard_data_object
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:name "D6" 
rtype "REAL" 
rvalue UNDEFINED 
rlock D6-LOCK 
:input_list ’(KS3) 
ric jist '(KS3-D6)
:output_list '(KS2)))

(push D6 d/o-list)

(setf D7 (make-instance ’bIackboard_data_object 
rname "D7" 
rtype "REAL" 
rvalue UNDEFINED 
:lockD7-LOCK 
:input_list '(KS4) 
ric jist '(KS4-D7)
:output_list ’(KS2)))

(push D7 d/o-list)

(setf D8 (make-instance 'blackboard_data_object 
rname "D8" 
rtype "REAL" 
rvalue UNDEFINED 
dock D8-LOCK 
:input_Iist '(KS4) 
ricjist'(KS4-D8)
:output_list ’(KS3)))

(push D8 d/o-list)



Appendix F COBS Verification and Validation 
Results

This appendix contains the COBS blackboard system design analysis results for 
each of the four version of Cube_CLAWS and the two Paladin designs. The results of 
the COBS simulation runs for each system are included at the end of the appendix.

F.l Cube Design Analysis 
Results:

Specialization Values:

Interdependence Values:

n<ks5ks4> 0.75 
n<ks5ksl> 1.0 
n<ks5ks2> 0.75 
n<ks5ks9> 0.75 
n<ks4ks5> 1.0 
n<ks4ksl> 0.75 
IKks4ks2> 0.75 
n<ks4ks9> 0.75 
n<kslks7> 1.0 
IKks2ks4> 0.7692308 
n<ks2ksl> 0.7692308 
IKks2ks3> 0.23076923 
n<ks2ks8> 0.23076923 
n<ks2ks9> 0.23076923 
n<ks3ks4> 1.0 
n<ks3ksl> 0.8333333 
n<ks6ks2> 1.0 
n<ks7ks4> 0.23076923 
n<ks7ks3> 0.23076923 
n<ks7ks6> 0.7692308 
n<ks7ks8> 0.23076923 
Xl<ks7ks9> 0.7692308 
IKks8ks6> 0.8333333 
IKks8ks9> 1.0 
n<ks9ks4> 0.75 
n<ks9ks6> 0.75 
n<ks9ks7> 0.75 
n<ks9ksl0> 1.0 
n<ksl0ks4> 0.75 
n<ksl0ks6> 1.0 
n<ksl0ks7> 0.75 
n<ksl0ks9> 0.75

Serialization Values:

Z<ks5ks4> 0.09677419 
Z<ks5ksl> 0.18181819 
Z<ks5ks2> 0.33333334 
Z<ks5ks9> 0.09677419 
Z<ks4ks5> 0.5 
Z<ks4ksl> 0.13636364 
Z<ks4ks2> 0.33333334 
Z<ks4ks9> 0.09677419 
Z<kslks7> 0.33333334 
Z<ks2ks4> 0.32258064 
Z<ks2ksl> 0.45454547 
Z<ks2ks3> 0.5 
Z<ks2ks8> 0.5 
Z<ks2ks9> 0.09677419 
Z<ks3ks4> 0.19354838 
Z<ks3ksl> 0.22727273 
Z<ks6ks2> 0.33333334 
Z<ks7ks4> 0.09677419 
Z<ks7ks3> 0.5 
Z<ks7ks6> 0.45454547 
Z<ks7ks8> 0.5 
Z<ks7ks9> 0.32258064 
Z<ks8ks6> 0.22727273 
Z<ks8ks9> 0.19354838 
Z<ks9ks4> 0.09677419 
Z<ks9ks6> 0.13636364 
Z<ks9ks7> 0.33333334 
Z<ks9ksl0> 0.5 
Z<ksl0ks4> 0.09677419 
Z<ksl0ks6> 0.18181819 
Z<ksl0ks7> 0.33333334 
Z<ksl0ks9> 0.09677419

F.2 Cube2 Design Analysis 
Results:

Specialization Values:
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Interdependence Values:

n<ks5ks4> 0.85714287 
n<ks5ksl> 1.0 
n<ks5ks2> 0.85714287 
n<ks5ks9> 0.85714287 
n<ks5ksll> 0.85714287 
n<ks5ksl2> 0.85714287 
n<ks4ks5> 1.0 
n<kslks7> 1.0 
IT<ks2ks4> 0.7692308 
n<ks2ksl> 0.7692308 
n<ks2ks3> 0.23076923 
n<ks2ks8> 0.23076923 
n<ks2ks9> 0.23076923 
IT<ks2ksll> 0.23076923 
n<ks2ksl2> 0.7692308 
n<ks3ks4> 1.0 
n<ks3ksl> 0.8333333 
n<ks3ksl2> 1.0 
n<ks6ks2> 1.0 
n<ks7ks4> 0.23076923 
n<ks7ks3> 0.23076923 
n<ks7ks6> 0.7692308 
n<ks7ks8> 0.23076923 
n<ks7ks9> 0.7692308 
n<ks7ksll> 0.7692308 
IKks7ksl2> 0.23076923 
n<ks8ks6> 0.8333333 
n<ks8ks9> 1.0 
n<ks8ksll> 1.0 
n<ks9ksl0> 1.0 
n<ksl0ks4> 0.85714287 
n<ksl0ks6> 1.0 
n<ksl0ks7> 0.85714287 
n<ksl0ks9> 0.85714287 
n<kslOksll> 0.85714287 
n<ksl0ksl2> 0.85714287 
n<ksllksl0> 1.0 
n<ksl2ks5> 1.0

Serialization Values:

Z<ks5ks4> 0.19354838 
Z<ks5ksl> 0.3181818 
Z<ks5ks2> 0.6666667 
Z<ks5ks9> 0.19354838 
Z<ks5ksll> 0.19354838 
Z<ks5ksl2> 0.19354838

Z<ks4ks5> 0.33333334 
Z<kslks7> 0.33333334 
Z<ks2ks4> 0.32258064 
Z<ks2ksl> 0.45454547 
Z<ks2ks3> 0.5 
Z<ks2ks8> 0.5 
Z<ks2ks9> 0.09677419 
Z<ks2ksll> 0.09677419 
Z<ks2ksl2> 0.32258064 
Z<ks3ks4> 0.19354838 
Z<ks3ksl> 0.22727273 
Z<ks3ksl2> 0.19354838 
Z<ks6ks2> 0.33333334 
Z<ks7ks4> 0.09677419 
Z<ks7ks3> 0.5 
Z<ks7ks6> 0.45454547 
Z<ks7ks8> 0.5 
Z<ks7ks9> 0.32258064 
Z<ks7ksll> 0.32258064 
Z<ks7ksl2> 0.09677419 
Z<ks8ks6> 0.22727273 
Z<ks8ks9> 0.19354838 
Z<ks8ksll> 0.19354838 
Z<ks9ksl0> 0.33333334 
Z<ksl0ks4> 0.19354838 
Z<ksl0ks6> 0.3181818 
Z<ksl0ks7> 0.6666667 
Z<ksl0ks9> 0.19354838 
Z<kslOksll> 0.19354838 
Z<ksl0ksl2> 0.19354838 
Z<ksllksl0> 0.33333334 
Z<ksl2ks5> 0.33333334

F.3 Cube4 Design Analysis 
Results:

Specialization Values:

Interdependence Values:

n<ksl6ks5> 1.0 
n<ksl5ks5> 1.0 
n<ksl4ksl0> 0.25 
n<ksl3ksl0> 0.25 
n<ksl2ks5> 1.0 
n<ksllkslO> 0.25 
n<ksl0ksl6> 0.85714287 
n<ksl0ksl5> 0.85714287 
n<ksl0ksl4> 0.85714287
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n<ksl0ksl3> 0.85714287 
n<ksl0ksl2> 0.85714287 
n<ksl0ksll> 0.85714287 
n<ksl0ks9> 0.85714287 
n<ksl0ks7> 0.85714287 
n<ksl0ks6> 1.0 
n<ksl0ks4> 0.85714287 
n<ks9ksl0> 0.25 
n<ks8ksl4> 1.0 
n<ks8ksl3> 1.0 
n<ks8ksll> 1.0 
IKks8ks9> 1.0 
n<ks8ks6> 0.8333333 
n<ks7ksl6> 0.23076923 
n<ks7ksl5> 0.23076923 
n<ks7ksl4> 0.7692308 
n<ks7ksl3> 0.7692308 
n<ks7ksl2> 0.23076923 
n<ks7ksll> 0.7692308 
n<ks7ks9> 0.7692308 
n<ks7ks8> 0.23076923 
n<ks7ks6> 0.7692308 
IT<ks7ks3> 0.23076923 
n<ks7ks4> 0.23076923 
n<ks6ks2> 1.0 
n<ks3ksl6> 1,0 
n<ks3ksl5> 1.0 
n<ks3ksl2> 1.0 
n<ks3ksl> 0.8333333 
n<ks3ks4> 1.0 
n<ks2ksl6> 0.7692308 
n<ks2ksl5> 0.7692308 
Il<ks2ksl4> 0.23076923 
n<ks2ksl3> 0.23076923 
n<ks2ksl2> 0.7692308 
n<ks2ksll> 0.23076923 
n<ks2ks9> 0.23076923 
n<ks2ks8> 0.23076923 
n<ks2ks3> 0.23076923 
n<ks2ksl> 0.7692308 
n<ks2ks4> 0.7692308 
n<kslks7> 1.0 
n<ks4ks5> 1.0 
n<ks5ksl6> 0.85714287 
n<ks5ksl5> 0.85714287 
n<ks5ksl4> 0.85714287 
n<ks5ksl3> 0.85714287 
n<ks5ksl2> 0.85714287 
n<ks5ksll> 0.85714287

n<ks5ks9> 0.85714287 
IKks5ks2> 0.71428573 
n<ks5ksl> 1.0 
n<ks5ks4> 0.85714287

Serialization Values:

Z<ksl6ks5> 0.21052632 
Z<ksl5ks5> 0.21052632 
Z<ksl4ksl0> 0.09090909 
Z<ksl3ksl0> 0.09090909 
Z<ksl2ks5> 0.21052632 
Z<ksllkslO> 0.09090909 
Z<ksl0ksl6> 0.19354838 
Z<ksl0ksl5> 0.19354838 
Z<ksl0ksl4> 0.19354838 
Z<ksl0ksl3> 0.19354838 
Z<ksl0ksl2> 0.19354838 
Z<kslOksll> 0.19354838 
Z<ksl0ks9> 0.19354838 
Z<ksl0ks7> 0.6666667 
Z<ksl0ks6> 0.3181818 
Z<ksl0ks4> 0.19354838 
Z<ks9ksl0> 0.09090909 
Z<ks8ksl4> 0.19354838 
Z<ks8ksl3> 0.19354838 
Z<ks8ksll> 0.19354838 
Z<ks8ks9> 0.19354838 
Z<ks8ks6> 0.22727273 
Z<ks7ksl6> 0.09677419 
Z<ks7ksl5> 0.09677419 
Z<ks7ksl4> 0.32258064 
Z<ks7ksl3> 0.32258064 
Z<ks7ksl2> 0.09677419 
Z<ks7ksll> 0.32258064 
Z<ks7ks9> 0.32258064 
Z<ks7ks8> 0.5 
Z<ks7ks6> 0.45454547 
Z<ks7ks3> 0.5 
Z<ks7ks4> 0.09677419 
Z<ks6ks2> 0.33333334 
Z<ks3ksl6> 0.19354838 
Z<ks3ksl5> 0.19354838 
Z<ks3ksl2> 0.19354838 
Z<ks3ksl> 0.22727273 
Z<ks3ks4> 0.19354838 
Z<ks2ksl6> 0.32258064 
Z<ks2ksl5> 0.32258064 
Z<ks2ksl4> 0.09677419 
Z<ks2ksl3> 0.09677419
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S<ks2ksl2> 0.32258064 
L<ks2ksll> 0.09677419 
Z<ks2ks9> 0.09677419 
£<ks2ks8> 0.5 
£<ks2ks3> 0.5 
Z<ks2ksl> 0.45454547 
£<ks2ks4> 0.32258064 
Z<kslks7> 0.33333334 
Z<ks4ks5> 0.21052632 
Z<ks5ksl6> 0.19354838 
S<ks5ksl5> 0.19354838 
L<ks5ksl4> 0.19354838 
Z<ks5ksl3> 0.19354838 
L<ks5ksl2> 0.19354838 
Z<ks5ksll> 0.19354838 
2<ks5ks9> 0.19354838 
Z<ks5ks2> 0.6666667 
Z<ks5ksl> 0.3181818 
E<ks5ks4> 0.19354838

F .4 CubeS Design Analysis 
Results:

Specialization Values:

Interdependence Values:

n<ks5ks4> 0.85714287 
n<ks5ksl> 1.0 
n<ks5ks2> 0.85714287 
n<ks5ks9> 0.85714287 
IT<ks5ksll> 0.85714287 
n<ks5ksl2> 0.85714287 
n<ks5ksl3> 0.85714287 
n<ks5ksl4> 0.85714287 
n<ks5ksl5> 0.85714287 
n<ks5ksl6> 0.85714287 
n<ks5ksl7> 0.85714287 
n<ks5ksl8> 0.85714287 
n<ks5ksl9> 0.85714287 
n<ks5ks20> 0.85714287 
n<ks5ks21> 0.85714287 
n<ks5ks22> 0.85714287 
n<ks5ks23> 0.85714287 
n<ks5ks24> 0.85714287 
n<ks4ks5> 1.0 
Il<kslks7> 1.0 
n<ks2ks4> 0.7692308 
n<ks2ksl> 0.7692308

IT<ks2ks3> 0.23076923 
n<ks2ks8> 0.23076923 
n<ks2ks9> 0.23076923 
n<ks2ksll> 0.23076923 
n<ks2ksl2> 0.7692308 
n<ks2ksl3> 0.23076923 
IT<ks2ksl4> 0.23076923 
n<ks2ksl5> 0.7692308 
n<ks2ksl6> 0.7692308 
n<ks2ksl7> 0.23076923 
IKks2ksl8> 0.23076923 
n<ks2ksl9> 0.23076923 
n<ks2ks20> 0.23076923 
n<ks2ks21> 0.7692308 
n<ks2ks22> 0.7692308 
n<ks2ks23> 0.7692308 
n<ks2ks24> 0.7692308 
IKks3ks4> 1.0 
n<ks3ksl> 0.8333333 
n<ks3ksl2> 1.0 
IKks3ksl5> 1.0 
n<ks3ksl6> 1.0 
n<ks3ks21> 1.0 
IT<ks3ks22> 1.0 
n<ks3ks23> 1.0 
n<ks3ks24> 1.0 
n<ks6ks2> 1.0 
n<ks7ks4> 0.23076923 
n<ks7ks3> 0.23076923 
n<ks7ks6> 0.7692308 
n<ks7ks8> 0.23076923 
n<ks7ks9> 0.7692308 
n<ks7ksll> 0.7692308 
n<ks7ksl2> 0.23076923 
n<ks7ksl3> 0.7692308 
n<ks7ksl4> 0.7692308 
n<ks7ksl5> 0.23076923 
n<ks7ksl6> 0.23076923 
n<ks7ksl7> 0.7692308 
n<ks7ksl8> 0.7692308 
n<ks7ksl9> 0.7692308 
n<ks7ks20> 0.7692308 
Il<ks7ks21> 0.23076923 
n<ks7ks22> 0.23076923 
n<ks7ks23> 0.23076923 
n<ks7ks24> 0.23076923 
n<ks8ks6> 0.8333333 
IT<ks8ks9> 1.0 
n<ks8ksll> 1.0
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Il<ks8ksl3> 1.0 
n<ks8ksl4> 1.0 
IKks8ksl7> 1.0 
n<ks8ksl8> 1.0 
n<ks8ksl9> 1.0 
n<ks8ks20> 1.0 
n<ks9ksl0> 1.0 
n<ksl0ks4> 0.85714287 
n<ksl0ks6> 1.0 
n<ksl0ks7> 0.85714287 
n<ksl0ks9> 0.85714287 
n<kslOksll> 0.85714287 
n<ksl0ksl2> 0.85714287 
n<ksl0ksl3> 0.85714287 
n<ksl0ksl4> 0.85714287 
n<ksl0ksl5> 0.85714287 
n<ksl0ksl6> 0.85714287 
n<ksl0ksl7> 0.85714287 
IKksl0ksl8> 0.85714287 
n<ksl0ksl9> 0.85714287 
IKksl0ks20> 0.85714287 
n<ksl0ks21> 0.85714287 
n<ksl0ks22> 0.85714287 
Il<ksl0ks23> 0.85714287 
n<ksl0ks24> 0.85714287 
n<ksllkslO> 1.0 
n<ksl2ks5> 1.0 
n<ksl3ksl0> 1.0 
n<ksl4ksl0> 1.0 
n<ksl5ks5> 1.0 
n<ksl6ks5> 1.0 
n<ksl7ksl0> 1.0 
II<ksl8ksl0> 1.0 
IT<ksl9ksl0> 1.0 
II<ks20ksl0> 1.0 
n<ks21ks5> 1.0 
n<ks22ks5> 1.0 
n<ks23ks5> 1.0 
IT<ks24ks5> 1.0

Serialization Values:

Z<ks5ks4> 0.19354838 
Z<ks5ksl> 0.3181818 
Z<ks5ks2> 0.6666667 
Z<ks5ks9> 0.19354838 
Z<ks5ksll> 0.19354838 
Z<ks5ksl2> 0.19354838 
Z<ks5ksl3> 0.19354838 
Z<ks5ksl4> 0.19354838

Z<ks5ksl5> 0.19354838 
Z<ks5ksl6> 0.19354838 
Z<ks5ksl7> 0.19354838 
Z<ks5ksl8> 0.19354838 
Z<ks5ksl9> 0.19354838 
Z<ks5ks20> 0.19354838 
Z<ks5ks21> 0.19354838 
Z<ks5ks22> 0.19354838 
Z<ks5ks23> 0.19354838 
Z<ks5ks24> 0.19354838 
Z<ks4ks5> 0.11111111 
Z<kslks7> 0.33333334 
Z<ks2ks4> 0.32258064 
Z<ks2ksl> 0.45454547 
Z<ks2ks3> 0.5 
E<ks2ks8> 0.5 
Z<ks2ks9> 0.09677419 
Z<ks2ksll> 0.09677419 
Z<ks2ksl2> 0.32258064 
Z<ks2ksl3> 0.09677419 
Z<ks2ksl4> 0.09677419 
Z<ks2ksl5> 0.32258064 
Z<ks2ksl6> 0.32258064 
Z<ks2ksl7> 0.09677419 
Z<ks2ksl8> 0.09677419 
Z<ks2ksl9> 0.09677419 
Z<ks2ks20> 0.09677419 
Z<ks2ks21> 0.32258064 
Z<ks2ks22> 0.32258064 
Z<ks2ks23> 0.32258064 
Z<ks2ks24> 0.32258064 
Z<ks3ks4> 0.19354838 
Z<ks3ksl> 0.22727273 
Z<ks3ksl2> 0.19354838 
Z<ks3ksl5> 0.19354838 
Z<ks3ksl6> 0.19354838 
Z<ks3ks21> 0.19354838 
Z<ks3ks22> 0.19354838 
Z<ks3ks23> 0.19354838 
Z<ks3ks24> 0.19354838 
Z<ks6ks2> 0.33333334 
Z<ks7ks4> 0.09677419 
Z<ks7ks3> 0.5 
Z<ks7ks6> 0.45454547 
Z<ks7ks8> 0.5 
Z<ks7ks9> 0.32258064 
Z<ks7ksll> 0.32258064 
Z<ks7ksl2> 0.09677419 
Z<ks7ksl3> 0.32258064
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Z<ks7ksl4> 0.32258064 
Z<ks7ksl5> 0.09677419 
Z<ks7ksl6> 0.09677419 
Z<ks7ksl7> 0.32258064 
Z<ks7ksl8> 0.32258064 
Z<ks7ksl9> 0.32258064 
Z<ks7ks20> 0.32258064 
Z<ks7ks21> 0.09677419 
Z<ks7ks22> 0.09677419 
Z<ks7ks23> 0.09677419 
Z<ks7ks24> 0.09677419 
Z<ks8ks6> 0.22727273 
Z<ks8ks9> 0.19354838 
Z<ks8ksll> 0.19354838 
Z<ks8ksl3> 0.19354838 
Z<ks8ksl4> 0.19354838 
Z<ks8ksl7> 0.19354838 
Z<ks8ksl8> 0.19354838 
Z<ks8ksl9> 0.19354838 
Z<ks8ks20> 0.19354838 
Z<ks9ksl0> 0.11111111 
Z<ksl0ks4> 0.19354838 
Z<ksl0ks6> 0.3181818 
Z<ksl0ks7> 0.6666667 
Z<ksl0ks9> 0.19354838 
Z<ksl0ksll> 0.19354838 
Z<ksl0ksl2> 0.19354838 
Z<ksl0ksl3> 0.19354838 
Z<ksl0ksl4> 0.19354838 
Z<ksl0ksl5> 0.19354838 
Z<ksl0ksl6> 0.19354838 
Z<ksl0ksl7> 0.19354838 
Z<ksl0ksl8> 0.19354838 
Z<ksl0ksl9> 0.19354838 
Z<ksl0ks20> 0.19354838 
Z<ksl0ks21> 0.19354838 
Z<ksl0ks22> 0.19354838 
Z<ksl0ks23> 0.19354838 
Z<ksl0ks24> 0.19354838 
Z<ksllksl0> 0.11111111 
Z<ksl2ks5> 0.11111111 
Z<ksl3ksl0> 0.11111111 
Z<ksl4ksl0> 0.11111111 
Z<ksl5ks5> 0.11111111 
Z<ksl6ks5> 0.11111111 
Z<ksl7ksl0> 0.11111111 
Z<ksl8ksl0> 0.11111111 
Z<ksl9ksl0> 0.11111111 
Z<ks20ksl0> 0.11 111 111

Z<ks21ks5> 0.11111111 
Z<ks22ks5> 0.11111111 
Z<ks23ks5> 0.11111111 
Z<ks24ks5> 0.11111111
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F.5 Cube Simulation Results

Knowledge Sources:

Knowledge Source: t_calc 
Type: PROCESSOR 
Execution Delay: 47

Knowledge Source: t_eval-move 
Type: PROCESSOR 
Execution Delay: 254

Knowledge Source: t„sit-check 
Type: PROCESSOR 
Execution Delay: 3

Knowledge Source: tjrelgn 
Type: PROCESSOR 
Execution Delay: 10

Knowledge Source: t_display 
Type: PROCESSOR 
Execution Delay: 1

Knowledge Source: a_sit-check 
Type: PROCESSOR 
Execution Delay: 3

Knowledge Source: a_relgn 
Type: PROCESSOR 
Execution Delay: 10

Knowledge Source: a display 
Type: PROCESSOR 
Execution Delay: 1

Knowledge Source: a_eval-move 
Type: PROCESSOR 
Execution Delay: 254

Knowledge Source: a_calc 
Type: PROCESSOR 
Execution Delay: 47

Results of Simulation run:

Event queue (a_display t_display) 
t_display executed at 1 
a_display executed at 1

315
Event queue (a_relgn t_relgn)
t_relgn executed at 11
a_relgn executed at 11
Event queue (a_sit-check t_sit-check)
t_sit-check executed at 14
a_sit-check executed at 14
Event queue (t_eval-move a_eval-move)
a_eval-move executed at 268
t_eval-move executed at 268
Event queue (a_calc tjcalc)
t_calc executed at 315
a_calc executed at 315
Event queue (t_display a_display)
a_display executed at 316
t_display executed at 316
Event queue (t_relgn ajrelgn)
a_relgn executed at 326
t_relgn executed at 326
Event queue (t_sit-check a_sit-check)
a„sit-check executed at 329
t_sit-check executed at 329
Event queue (a_eval-move t_eval-move)
t_eval-move executed at 583
a_eval-move executed at 583
Event queue (t_calc a_calc)
a_calc executed at 630
t_calc executed at 630
Event queue (a_display t„display)
t_display executed at 631
ajlisplay executed at 631
Event queue (ajrelgn tjrelgn)
t_relgn executed at 641
a_relgn executed at 641
Event queue (a_sit-check t_sit-check)
t_sit-check executed at 644
a„sit-check executed at 644
Event queue (t_eval-move a_eval-move)
a_eval-move executed at 898
t_eval-move executed at 898
Event queue (a_calc t_calc)
t_calc executed at 945
a_calc executed at 945
Event queue (tjdisplay a_display)
a_display executed at 946
tjdisplay executed at 946
Event queue (t_relgn ajrelgn)
a je lgn  executed at 956
tje lg n  executed at 956
Event queue (t_sit-check a_sit-check)
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a_sit-check executed at 959
t_sit-check executed at 959
Event queue (a_eval-move t_eval-move)
t_eval-move executed at 1213
a_eval-move executed at 1213
Event queue (t_calc a_calc)
a_calc executed at 1260
t_calc executed at 1260
Event queue (a_display t_display)
t_display executed at 1261
a_display executed at 1261
Event queue (a_relgn t_relgn)
t_rclgn executed at 1271
a_relgn executed at 1271
Event queue (a_sit-check t_sit-check)
t_sit-check executed at 1274
a_sit-check executed at 1274
Event queue (t„eval-move a_eval~move)
a_eval-move executed at 1528
t_eval-move executed at 1528
Event queue (a_calc t_calc)
t_calc executed at 1575
a_calc executed at 1575
Event queue (t_display a_display)
a_jdisplay executed at 1576
tjdisplay executed at 1576
Event queue (t_rclgn a_relgn)
a_relgn executed at 1586
t_relgn executed at 1586
Event queue (t_sit-check a_sit-check)
a_sit-check executed at 1589
t_sit-check executed at 1589
Event queue (a_eval-move t_eval-move)
t_eval-move executed at 1843
a_eval-move executed at 1843
Event queue (t_calc a_calc)
a_calc executed at 1890
t_calc executed at 1890
Event queue (a„display t__display)
t_display executed at 1891
ajdisplay executed at 1891
Event queue (a_relgn t_relgn)
t_relgn executed at 1901
a_relgn executed at 1901
Event queue (a_sit-check t_sit-check)
t_sit-check executed at 1904
a_sit-check executed at 1904
Event queue (t_eval-move a_eval-move)
a_eval-move executed at 2158

t_eval-move executed at 2158 
Event queue (a_calc t_calc)
Ucalc executed at 2205
a_calc executed at 2205
Event queue (t_display a_display)
a_display executed at 2206
t_display executed at 2206
Event queue (t_relgn a_relgn)
a_relgn executed at 2216
t_relgn executed at 2216
Event queue (t_sit-check a_sit-check)
a_sit-check executed at 2219
t_sit-check executed at 2219
Event queue (a_eval-move tjeval-move)
t_eval-move executed at 2473
a_eval-move executed at 2473
Event queue (t_calc a_calc)
a_calc executed at 2520
t_calc executed at 2520
Event queue (a_display t_display)
t_display executed at 2521
a_display executed at 2521
Event queue (a_relgn t_relgn)
t_relgn executed at 2531
a_relgn executed at 2531
Event queue (a_sit-check t_sit-check)
t_sit-check executed at 2534
a_sit-check executed at 2534
Event queue (t_eval-move a_eval-move)
a_eval-move executed at 2788
t_eval-move executed at 2788
Event queue (a_calc t_calc)
t_calc executed at 2835
a_calc executed at 2835
Event queue (t_display a_display)
a_display executed at 2836
t_display executed at 2836
Event queue (tjrelgn a_relgn)
a_relgn executed at 2846
Lrelgn executed at 2846
Event queue (t_sit-check a_sit-check)
a_sit-check executed at 2849
t_sit-check executed at 2849
Event queue (a_eval-move t_eval-move)
t_eval-move executed at 3103
a_eval-move executed at 3103
Event queue (t_calc a_calc)
a_calc executed at 3150
t„calc executed at 3150
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F.6 Cube2 Simulation
Results

Knowledge Source: a_eval-2 
Type: PROCESSOR 
Execution Delay: 130

Knowledge Source: t_eval-2 
Type: PROCESSOR 
Execution Delay: 130

Knowledge Source: t_calc 
Type: PROCESSOR 
Execution Delay: 47

Knowledge Source: t_eval-l 
Type: PROCESSOR 
Execution Delay: 130

Knowledge Source: t_sit 
Type: PROCESSOR 
Execution Delay: 3

Knowledge Source: tje lg n  
Type: PROCESSOR 
Execution Delay: 10

Knowledge Source: t_sync 
Type: PROCESSOR 
Execution Delay: 1

Knowledge Source: a_sit 
Type: PROCESSOR 
Execution Delay: 3

Knowledge Source: a_relgn 
Type: PROCESSOR 
Execution Delay: 10

Knowledge Source: a_sync 
Type: PROCESSOR 
Execution Delay: 1

Knowledge Source: a_eval-l 
Type: PROCESSOR 
Execution Delay: 130

Knowledge Source: a_calc
Type: PROCESSOR

317
Execution Delay: 47

Results of Simulation run:

Event queue (a_sync t_sync) 
t_sync executed at 1 
a_sync executed at 1 
Event queue (ajrelgn tjrelgn) 
t je lg n  executed at 11 
a je lg n  executed at 11 
Event queue (a_sit t_sit) 
t_sit executed at 14 
a_sit executed at 14
Event queue (t_eval-2 t_eval-l a_eval-l 

a_eval-2) 
a_eval-2 executed at 144 
a_eval-l executed at 144 
t_eval-l executed at 144 
t_eval-2 executed at 144 
Event queue (a_calc t_calc) 
t_calc executed at 191 
a_calc executed at 191 
Event queue (t_sync a_sync) 
a_sync executed at 192 
t_sync executed at 192 
Event queue (tje lg n  ajelgn) 
a je lg n  executed at 202 
t je lg n  executed at 202 
Event queue (t_sit a_sit) 
a_sit executed at 205 
t_sit executed at 205 
Event queue (a_eval-2 a_eval-l t_eval-l 

t_eval-2) 
t_eval-2 executed at 335 
t_eval-l executed at 335 
a_eval-l executed at 335 
a_eval-2 executed at 335 
Event queue (t_calc a_calc) 
a_calc executed at 382 
t_calc executed at 382 
Event queue (a_sync t_sync) 
t_sync executed at 383 
a_sync executed at 383 
Event queue (ajrelgn tjelgn) 
tjrelgn executed at 393 
a je lg n  executed at 393 
Event queue (a_sit t_sit) 
t_sit executed at 396 
a_sit executed at 396
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Event queue (t_eval-2 t_eval-l a_eval-l 

a_eval-2) 
a_eval-2 executed at 526 
a_eval-l executed at 526 
t_eval-l executed at 526 
t_eval-2 executed at 526 
Event queue (a_calc t_calc) 
t_calc executed at 573 
a_calc executed at 573 
Event queue (t_sync a_sync) 
a_sync executed at 574 
t_sync executed at 574 
Event queue (tjrelgn ajelgn) 
a je lg n  executed at 584 
tje lg n  executed at 584 
Event queue (t_sit a_sit) 
a_sit executed at 587 
t_sit executed at 587 
Event queue (a_eval-2 a_eval-l t_eval-l 

t_eval-2) 
t_eval-2 executed at 717 
t_eval-l executed at 717 
a_eval-l executed at 717 
a_eval-2 executed at 717 
Event queue (t_calc a_calc) 
a_calc executed at 764 
t_calc executed at 764 
Event queue (a_sync t_sync) 
t_sync executed at 765 
a_sync executed at 765 
Event queue (aje lgn  tje lgn) 
tje lg n  executed at 775 
a je lg n  executed at 775 
Event queue (a_sit t_sit) 
t_sit executed at 778 
a_sit executed at 778 
Event queue (t_eval-2 t_eval-l a_eval-l 

a_eval-2) 
a_eval-2 executed at 908 
a_eval-l executed at 908 
t_eval-l executed at 908 
t_eval-2 executed at 908 
Event queue (a_calc t_calc) 
tjcalc executed at 955 
a_calc executed at 955 
Event queue (t_sync a_sync) 
a_sync executed at 956 
t_sync executed at 956 
Event queue (tje lgn  ajrelgn)

a je lg n  executed at 966 
tje lg n  executed at 966 
Event queue (t_sit a_sit) 
a_sit executed at 969 
t j i t  executed at 969 
Event queue (a_eval-2 a_eval-l 

t_eval-2) 
t_eval-2 executed at 1099 
t_eval-l executed at 1099 
a_eval-l executed at 1099 
a_eval-2 executed at 1099 
Event queue (tjcalc a_calc) 
a ja lc  executed at 1146 
t_calc executed at 1146 
Event queue (a_sync t_sync) 
t_sync executed at 1147 
a_sync executed at 1147 
Event queue (a je lgn  tjelgn) 
tje lg n  executed at 1157 
a je lg n  executed at 1157 
Event queue (a_sit t_sit) 
t_sit executed at 1160 
a_sit executed at 1160 
Event queue (t_eval-2 t_eval-l i 

a_eval-2) 
a_eval-2 executed at 1290 
a_eval-l executed at 1290 
L.eval-1 executed at 1290 
t_evaI-2 executed at 1290 
Event queue (a_calc tjcalc) 
t j a lc  executed at 1337 
a_calc executed at 1337 
Event queue (t_sync a_sync) 
a_sync executed at 1338 
t_sync executed at 1338 
Event queue (tje lg n  ajelgn) 
a je lg n  executed at 1348 
tje lg n  executed at 1348 
Event queue (t_sit a_sit) 
a_sit executed at 1351 
t_sit executed at 1351 
Event queue (a_eval-2 a_eval-l 

t_eval-2) 
t_eval-2 executed at 1481 
t_eval-l executed at 1481 
a_eval-l executed at 1481 
a_eval-2 executed at 1481 
Event queue (tjcalc a_calc) 
a_calc executed at 1528
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t_calc executed at 1528 
Event queue (a_sync t_sync) 
t_sync executed at 1529 
a_sync executed at 1529 
Event queue (ajelgn  tjelgn) 
tje lg n  executed at 1539 
a je lgn  executed at 1539 
Event queue (a_sit t_sit) 
t_sit executed at 1542 
a_sit executed at 1542 
Event queue (t„eval-2 t_eval-l a_eval-l 

a_eval-2) 
a_eval-2 executed at 1672 
a_eval-l executed at 1672 
t_eval-l executed at 1672 
t_eval-2 executed at 1672 
Event queue (a_calc t_calc) 
tjcalc executed at 1719 
a_calc executed at 1719 
Event queue (t_sync a_sync) 
a_sync executed at 1720 
t_sync executed at 1720 
Event queue (tjelgn  ajelgn) 
a je lgn  executed at 1730 
tje lg n  executed at 1730 
Event queue (t_sit a_sit) 
a_sit executed at 1733 
t_sit executed at 1733 
Event queue (a_eval-2 a_eval-l t_eval-l 

t_eval-2) 
t_eval-2 executed at 1863 
t_eval-l executed at 1863 
a_eval-l executed at 1863 
a_eval-2 executed at 1863 
Event queue (t_calc a_calc) 
a_calc executed at 1910 
t_calc executed at 1910

F.3 Cube4 Simulation 
Results

Knowledge Source: a_eval-4 
Type: PROCESSOR 
Execution Delay: 73

Knowledge Source: a_eval-3 
Type: PROCESSOR 
Execution Delay: 73

Knowledge Source: t_eval-4 
Type: PROCESSOR 
Execution Delay: 73

Knowledge Source: t_eval-3 
Type: PROCESSOR 
Execution Delay: 73

Knowledge Source: a_eval-2 
Type: PROCESSOR 
Execution Delay: 73

Knowledge Source: t_eval-2 
Type: PROCESSOR 
Execution Delay: 73

Knowledge Source: t_calc 
Type: PROCESSOR 
Execution Delay: 47

Knowledge Source: t_eval-l 
Type: PROCESSOR 
Execution Delay: 73

Knowledge Source: t_sit 
Type: PROCESSOR 
Execution Delay: 3

Knowledge Source: tje lg n  
Type: PROCESSOR 
Execution Delay: 10

Knowledge Source: t_sync 
Type: PROCESSOR 
Execution Delay: 1

Knowledge Source: a_sit 
Type: PROCESSOR 
Execution Delay: 3

Knowledge Source: a je lgn  
Type: PROCESSOR 
Execution Delay: 10

Knowledge Source: a_sync 
Type: PROCESSOR 
Execution Delay: 1

Knowledge Source: a_eval-l
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Type: PROCESSOR 
Execution Delay: 73

Knowledge Source: a_calc 
Type: PROCESSOR 
Execution Delay: 47

Simulation Results:

Event queue (a_sync t_sync) 
t_sync executed at 1 
a_sync executed at 1 
Event queue (ajelgn  tje lgn) 
tje lg n  executed at 11 
a je lgn  executed at 11 
Event queue (a j i t  t j i t )  
t j i t  executed at 14 
a j i t  executed at 14
Event queue (t_eval-4 t_eval-2 t_eval-l 

t_eval-3 a_eval-3 a_eval-l a_eval-2 
a_eval-4) 

a_eval-4 executed at 87 
a_eval-2 executed at 87 
a_eval-l executed at 87 
a_eval-3 executed at 87 
t_eval-3 executed at 87 
t_eval-l executed at 87 
t_eval-2 executed at 87 
t_eval-4 executed at 87 
Event queue (a_calc t_calc) 
t_calc executed at 134 
a_calc executed at 134 
Event queue (t j y n c  a jy n c )  
a jy n c  executed at 135 
t jy n c  executed at 135 
Event queue (tje lgn  ajelgn) 
a je lg n  executed at 145 
tje lg n  executed at 145 
Event queue ( t j i t  a j i t )  
a j i t  executed at 148 
t j i t  executed at 148
Event queue (a„eval-4 a_eval-2 a_eval-l 

a_eval-3 t_eval-3 t_eval-l t_eval-2 
t_eval-4) 

t_eval-4 executed at 221 
t_eval-2 executed at 221 
t_eval-l executed at 221 
t_eval-3 executed at 221 
a_eval-3 executed at 221 
a_eval-l executed at 221

a_eval-2 executed at 221 
a_eval-4 executed at 221 
Event queue (t_calc a ja lc )  
a_calc executed at 268 
t_calc executed at 268 
Event queue (a jy n c  tjy n c ) 
t jy n c  executed at 269 
a jy n c  executed at 269 
Event queue (ajelgn tje lgn) 
tje lg n  executed at 279 
a je lgn  executed at 279 
Event queue ( a j i t  t j i t )  
t j i t  executed at 282 
a j i t  executed at 282 
Event queue (t_eval-4 t_eval-2 t_eval-l 

t_eval-3 a_eval-3 a_eval-l a jv a l-2  
a_eval-4) 

a_eval-4 executed at 355 
a_eval-2 executed at 355 
a_eval-l executed at 355 
a_eval-3 executed at 355 
t_eval-3 executed at 355 
t_eval-l executed at 355 
t_eval-2 executed at 355 
t_eval-4 executed at 355 
Event queue (a_calc t_calc) 
t_calc executed at 402 
a_calc executed at 402 
Event queue (tjy n c  a jy n c) 
a jy n c  executed at 403 
t jy n c  executed at 403 
Event queue (tjelgn  ajelgn) 
a je lgn  executed at 413 
tje lgn  executed at 413 
Event queue ( t j i t  a ji t)  
a j i t  executed at 416 
t j i t  executed at 416 
Event queue (a_eval-4 a_eval-2 a_eval-l 

a_eval-3 t_eval-3 tjval-1  t_eval-2 
t_eval-4) 

t_eval-4 executed at 489 
t_eval-2 executed at 489 
t_eval-l executed at 489 
t_eval-3 executed at 489 
a_eval-3 executed at 489 
a_eval-l executed at 489 
a_eval-2 executed at 489 
a_eval-4 executed at 489 
Event queue (t_calc a_calc)
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a_calc executed at 536 
t_calc executed at 536 
Event queue (a_sync t_sync) 
tjy n c  executed at 537 
a_sync executed at 537 
Event queue (ajelgn tje lg n ) 
t_relgn executed at 547 
ajelgn executed at 547 
Event queue (a_sit t_sit) 
t_sit executed at 550 
a_sit executed at 550 
Event queue (t_eval-4 tjeval-2 t_eval-l 

t_eval-3 a_eval-3 a_eval-l a_eval-2 
a_eval-4) 

a_eval-4 executed at 623 
a_eval-2 executed at 623 
a_eval-l executed at 623 
a_eval-3 executed at 623 
t_eval-3 executed at 623 
t_eval-l executed at 623 
t_eval-2 executed at 623 
t_eval-4 executed at 623 
Event queue (a_calc t ja lc )  
t_calc executed at 670 
a_calc executed at 670 
Event queue (tjy n c  a_sync) 
a_sync executed at 671 
t_sync executed at 671 
Event queue (tjelgn a je lgn ) 
ajelgn  executed at 681 
tje lgn  executed at 681 
Event queue (t_sit a_sit) 
a_sit executed at 684 
t_sit executed at 684 
Event queue (a„eval-4 a_eval-2 a_eval-l 

a_eval-3 t_eval-3 t_eval-l t_eval-2 
t_eval-4) 

t_eval-4 executed at 757 
t_eval-2 executed at 757 
t_eval-l executed at 757 
t_eval-3 executed at 757 
a_eval-3 executed at 757 
ajval-1  executed at 757 
a_eval-2 executed at 757 
a_eval-4 executed at 757 
Event queue (t_calc a_calc) 
a_calc executed at 804 
Lcalc executed at 804 
Event queue (a_sync t_sync)

t_sync executed at 805 
a__sync executed at 805 
Event queue (a je lg n  tje lgn) 
tje lg n  executed at 815 
a je lgn  executed at 815 
Event queue (a_sit t_sit) 
t_sit executed at 818 
a j i t  executed at 818 
Event queue (t_eval-4 t_eval-2 t_eval-l 

t_eval-3 a_eval-3 a_eval-l a_eval-2 
a_eval-4) 

a_eval-4 executed at 891 
a_eval-2 executed at 891 
a_eval-l executed at 891 
a_eval-3 executed at 891 
t_eval-3 executed at 891 
t_eval-l executed at 891 
t__eval-2 executed at 891 
t_eval-4 executed at 891 
Event queue (a_calc tjcalc) 
t_calc executed at 938 
a_calc executed at 938 
Event queue ( tjy n c  a jy n c) 
a jy n c  executed at 939 
tjy n c  executed at 939 
Event queue (tje lg n  ajelgn) 
ajelgn  executed at 949 
tje lg n  executed at 949 
Event queue ( t j i t  a j i t )  
a j i t  executed at 952 
t j i t  executed at 952 
Event queue (a_eval-4 a_eval-2 a_eval-l 

a jval-3  t_eval-3 t_eval-l t_eval-2 
t_eval-4) 

t_eval-4 executed at 1025 
t_eval-2 executed at 1025 
t_eval-l executed at 1025 
t_eval-3 executed at 1025 
a_eval-3 executed at 1025 
a_eval-l executed at 1025 
a_eval-2 executed at 1025 
a_eval-4 executed at 1025 
Event queue (t_calc a_calc) 
aj:alc executed at 1072 
t_calc executed at 1072 
Event queue (a jy n c  tjy n c ) 
t jy n c  executed at 1073 
a jy n c  executed at 1073 
Event queue (a je lgn  tjelgn)
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tje lg n  executed at 1083 
a je lgn  executed at 1083 
Event queue (a_sit t_sit) 
t_sit executed at 1086 
a_sit executed at 1086 
Event queue (t_evaI-4 t_eval-2 t_eval-l 

t_eval-3 a_eval-3 a_eval-l a_eval-2 
a_eval-4) 

a_eval-4 executed at 1159 
a_eval-2 executed at 1159 
a_eval-l executed at 1159 
a_eval-3 executed at 1159 
t_eval-3 executed at 1159 
t_eval-l executed at 1159 
t_eval-2 executed at 1159 
t_eval-4 executed at 1159 
Event queue (a_calc t_calc) 
t_calc executed at 1206 
a_calc executed at 1206 
Event queue (t_sync a_sync) 
a_sync executed at 1207 
t_sync executed at 1207 
Event queue (tje lgn  ajelgn) 
a je lg n  executed at 1217 
tje lg n  executed at 1217 
Event queue (t_sit a_sit) 
a j i t  executed at 1220 
t j i t  executed at 1220 
Event queue (a_eval-4 a_eval-2 a_eval-l 

a_eval-3 tjeval-3 t_eval-l t_eval-2 
t_eval-4) 

t_eval-4 executed at 1293 
t_eval-2 executed at 1293 
t_eval-l executed at 1293 
t_eval-3 executed at 1293 
a_eval-3 executed at 1293 
a_eval-l executed at 1293 
a„eval-2 executed at 1293 
a_eval-4 executed at 1293 
Event queue (t_calc a_calc) 
a ja lc  executed at 1340 
t_calc executed at 1340

F.8 CubeS Simulation 
Results

Knowledge Source: a_eval-8 
Type: PROCESSOR 
Execution Delay: 52

Knowledge Source: a_eval-7 
Type: PROCESSOR 
Execution Delay: 52

Knowledge Source: a eval-6 
Type: PROCESSOR 
Execution Delay: 52

Knowledge Source: a_eval-5 
Type: PROCESSOR 
Execution Delay: 52

Knowledge Source: t_evaI-8 
Type: PROCESSOR 
Execution Delay: 52

Knowledge Source: t_eval-7 
Type: PROCESSOR 
Execution Delay: 52

Knowledge Source: t_eval-6 
Type: PROCESSOR 
Execution Delay: 52

Knowledge Source: t_eval-5 
Type: PROCESSOR 
Execution Delay: 52

Knowledge Source: a_eval-4 
Type: PROCESSOR 
Execution Delay: 52

Knowledge Source: a_eval-3 
Type: PROCESSOR 
Execution Delay: 52

Knowledge Source: t eval-4 
Type: PROCESSOR 
Execution Delay: 52

Knowledge Source: t_eval-3 
Type: PROCESSOR 
Execution Delay: 52

Knowledge Source: a_eval-2 
Type: PROCESSOR 
Execution Delay: 52
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Knowledge Source: t_eval-2 
Type: PROCESSOR 
Execution Delay: 52

Knowledge Source: t_calc 
Type: PROCESSOR 
Execution Delay: 47

Knowledge Source: t_eval-l 
Type: PROCESSOR 
Execution Delay: 52

Knowledge Source: t j i t  
Type: PROCESSOR 
Execution Delay: 3

Knowledge Source: t je lg n  
Type: PROCESSOR 
Execution Delay: 10

Knowledge Source: t jy n c  
Type: PROCESSOR 
Execution Delay: 1

Knowledge Source: a j i t  
Type: PROCESSOR 
Execution Delay: 3

Knowledge Source: a je lg n  
Type: PROCESSOR 
Execution Delay: 10

Knowledge Source: a jy n c  
Type: PROCESSOR 
Execution Delay: 1

Knowledge Source: a_eval-l 
Type: PROCESSOR 
Execution Delay: 52

Knowledge Source: a_calc 
Type: PROCESSOR 
Execution Delay: 47

Results of Simulation run:

Event queue (a jy n c  t jy n c )  
t jy n c  executed at 1 
a jy n c  executed at 1 
Event queue (ajelgn tje lg n )
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tjelgn executed at 11 
ajelgn executed at 11 
Event queue ( a ji t  t j i t )  
t j i t  executed at 14 
a j i t  executed at 14
Event queue (t_eval-8 t_eval-6 t_eval-4 

t_eval-l t_eval-2 t_eval-3 t_eval-5 
t_eval-7 a_eval-7 a_eval-5 a_eval-3 
a_eval-l ajeval-2 a_eval-4 a_eval-6 
a_eval-8) 

ajval-8  executed at 66 
a_eval-6 executed at 66 
a_eval-4 executed at 66 
a jval-2  executed at 66 
a_eval-l executed at 66 
a_eval-3 executed at 66 
a_eval-5 executed at 66 
a_eval-7 executed at 66 
t_eval-7 executed at 66 
t_eval-5 executed at 66 
t_eval-3 executed at 66 
t_eval-2 executed at 66 
t_evabl executed at 66 
t_eval-4 executed at 66 
t_eval~6 executed at 66 
t_eval-8 executed at 66 
Event queue (aja lc  t_calc) 
t_calc executed at 113 
a_calc executed at 113 
Event queue (tjync a jy n c )  
ajync executed at 114 
tjync  executed at 114 
Event queue (tjelgn a je lg n ) 
ajelgn executed at 124 
tjelgn executed at 124 
Event queue ( t j i t  a j i t )  
a j i t  executed at 127 
t j i t  executed at 127
Event queue (ajval-8 a_eval-6 a_eval-4 

a_eval-2 ajval-1 a_eval-3 a„eval-5 
a_eval-7 t_eval-7 t_eval-5 t_eval-3 
t_eval-2 tjval-1 t jv a l -4  t_eval-6 
t_eval-8) 

t_eval-8 executed at 179 
t„eval-6 executed at 179 
t_eval-4 executed at 179 
tjeval-1 executed at 179 
t_eval-2 executed at 179 
t_eval-3 executed at 179
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t_eval-5 executed at 179 
t_eval-7 executed at 179 
a_eval-7 executed at 179 
a_eval-5 executed at 179 
a_eval-3 executed at 179 
a_eval-l executed at 179 
a_eval-2 executed at 179 
a_evaI-4 executed at 179 
a_evaI-6 executed at 179 
a_eval-8 executed at 179 
Event queue (t_calc a_calc) 
a_calc executed at 226 
t_calc executed at 226 
Event queue (a_sync t_sync) 
t_sync executed at 227 
a„sync executed at 227 
Event queue (ajelgn tje lgn) 
tje lgn  executed at 237 
ajelgn  executed at 237 
Event queue ( a j i t  t j i t )  
t j i t  executed at 240 
a j i t  executed at 240 
Event queue (t_eval-8 t_eval-6 t_eval-4 

t_eval-l t_eval-2 t_eval-3 t_eval-5 
t_eval-7 a_eval-7 a_eval-5 a_eval-3 
a_eval-l a_eval-2 a_eval-4 a_eval-6 
ajval-8 ) 

a_eval-8 executed at 292 
a_eval-6 executed at 292 
a_eval-4 executed at 292 
a_eval-2 executed at 292 
a_eval-l executed at 292 
a_eval-3 executed at 292 
a_eval-5 executed at 292 
a_eval-7 executed at 292 
t_eval-7 executed at 292 
t_eval-5 executed at 292 
t_eval-3 executed at 292 
t_eval-2 executed at 292 
t_eval-l executed at 292 
t_eval-4 executed at 292 
t_eval-6 executed at 292 
t_eval-8 executed at 292 
Event queue (a_calc t_calc) 
t_calc executed at 339 
a_calc executed at 339 
Event queue ( tjy n c  a jy n c )  
a jy n c  executed at 340 
tjy n c  executed at 340
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Event queue (tje lg n  ajelgn) 
a je lgn  executed at 350 
tje lg n  executed at 350 
Event queue ( t j i t  a j i t )  
a j i t  executed at 353 
t j i t  executed at 353
Event queue (a_eval-8 a_eval-6 a_eval-4 

a_eval-2 a_eval-l a_evaI-3 a_eval-5 
a_eval-7 t_eval-7 t_eval-5 t_eval-3 
t_eval-2t_eval-l t_eval-4 t_eval-6 
t_eval-8) 

tjv a l-8  executed at 405 
t_eval-6 executed at 405 
t_eval-4 executed at 405 
t_eval-l executed at 405 
t_eval-2 executed at 405 
t_eval-3 executed at 405 
t_eval-5 executed at 405 
t_eval-7 executed at 405 
a_eval-7 executed at 405 
a_eval-5 executed at 405 
a_eval-3 executed at 405 
a_eval-l executed at 405 
a„eval-2 executed at 405 
a_eval-4 executed at 405 
a_eval-6 executed at 405 
a_eval-8 executed at 405 
Event queue (t_calc a_calc) 
a_calc executed at 452 
t_calc executed at 452 
Event queue (a jy n c  tjy n c ) 
t jy n c  executed at 453 
a jy n c  executed at 453 
Event queue (ajelgn  tjelgn) 
tje lg n  executed at 463 
a je lgn  executed at 463 
Event queue ( a j i t  t j i t )  
t j i t  executed at 466 
a j i t  executed at 466 
Event queue (t_eval-8 t_eval-6 t_eval-4 

t_eval-l t_eval-2 t_eval-3 t_eval-5 
t_eval-7 a_eval-7 a_eval-5 a_eval-3 
a_eval-l a_eval-2 a_eval-4 a_eval-6 
a_eval-8) 

a_eval-8 executed at 518 
a_eval-6 executed at 518 
a_eval-4 executed at 518 
a_eval-2 executed at 518 
a_eval-l executed at 518
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a_eval-3 executed at 518 
a_eval-5 executed at 518 
a_eval-7 executed at 518 
t_eval-7 executed at 518 
t_eval-5 executed at 518 
t_eval-3 executed at 518 
t_eval-2 executed at 518 
t_eval-l executed at 518 
t_eval-4 executed at 518 
t_eval-6 executed at 518 
t_eval-8 executed at 518 
Event queue (a_calc t_calc) 
t_calc executed at 565 
a_calc executed at 565 
Event queue (t_sync a_sync) 
a__sync executed at 566 
t_sync executed at 566 
Event queue (t_relgn ajelgn) 
a_rclgn executed at 576 
t_relgn executed at 576 
Event queue (t_sit a_sit) 
a_sit executed at 579 
t_sit executed at 579 
Event queue (a„eval-8 a_eval~6 a_eval-4 

a_eval-2 a_eval-l a_eval-3 a_eval-5 
a_eval-7 t_eval-7 t_eval-5 t_eval-3 
t_eval-2 t_eval-l t„eval-4 t_eval-6 
t_eval-8) 

t_eval-8 executed at 631 
t_eval-6 executed at 631 
t_eval-4 executed at 631 
t_eval-l executed at 631 
t_eval“2 executed at 631 
t_eval-3 executed at 631 
t_eval-5 executed at 631 
t_eval-7 executed at 631 
a_eval-7 executed at 631 
a_eval-5 executed at 631 
a_eval-3 executed at 631 
a_eval-l executed at 631 
a_eval-2 executed at 631 
a_eval-4 executed at 631 
a_eval-6 executed at 631 
a_eval-8 executed at 631 
Event queue (t_calc a_calc) 
a_calc executed at 678 
t_calc executed at 678 
Event queue (a_sync t_sync) 
t_sync executed at 679
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a_sync executed at 679 
Event queue (ajelgn  tjrelgn) 
tjrelgn executed at 689 
a_relgn executed at 689 
Event queue (a_sit t_sit) 
t_sit executed at 692 
a_sit executed at 692 
Event queue (t_eval-8 t_eval-6 t_eval-4 

t_eval-l t_eval-2 t_eval-3 t_eval-5 
t_eval-7 a_eval-7 a_eval-5 a_eval-3 
a_eval-l a_eval-2 a_eval-4 a_eval-6 
a„eval-8) 

a_eval-8 executed at 744 
a_eval-6 executed at 744 
a_eval-4 executed at 744 
a_eval-2 executed at 744 
a_eval-l executed at 744 
a_eval-3 executed at 744 
a_eval-5 executed at 744 
a_eval-7 executed at 744 
t_eval-7 executed at 744 
t_eval-5 executed at 744 
t_eval-3 executed at 744 
t_eval-2 executed at 744 
t_eval-l executed at 744 
t_eval-4 executed at 744 
t_eval-6 executed at 744 
t_eval-8 executed at 744 
Event queue (a_calc t_calc) 
t_calc executed at 791 
a_calc executed at 791 
Event queue (t_sync a_sync) 
a_sync executed at 792 
tjy n c  executed at 792 
Event queue (tjelgn  aje lgn) 
ajrelgn executed at 802 
tje lgn  executed at 802 
Event queue (t_sit a_sit) 
a_sit executed at 805 
t_sit executed at 805
Event queue (a_eval-8 a__eval-6 a_eval-4 

a_eval-2 a_eval-l a_eval-3 a_evaI-5 
a_eval-7 t_eval-7 t_eval-5 t_eval-3 
t_eval-2 t_eval-l t_eval-4 t_eval-6 
t_eval-8) 

t_eval-8 executed at 857 
t_eval-6 executed at 857 
t_eval-4 executed at 857 
t_eval-l executed at 857
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t_eval-2 executed at 857 
t_eval-3 executed at 857 
t_eval-5 executed at 857 
t_eval-7 executed at 857 
a_eval-7 executed at 857 
a_eval-5 executed at 857 
a_eval-3 executed at 857 
a_eval-l executed at 857 
a_eval-2 executed at 857 
a_eval-4 executed at 857 
a_eval-6 executed at 857 
a_eval-8 executed at 857 
Event queue (t_calc a_calc) 
a__calc executed at 904 
t_calc executed at 904 
Event queue (a_sync t_sync) 
t_sync executed at 905 
a_sync executed at 905 
Event queue (a_relgn t_relgn) 
t_relgn executed at 915 
a je lg n  executed at 915 
Event queue (a_sit t_sit) 
t_sit executed at 918 
a_sit executed at 918 
Event queue (t_eval-8 t_eval-6 t_eval-4 

t_eval-l t_eval-2 t_eval-3 t_eval-5 
t_eval-7 a_eval-7 a_eval-5 a_eval-3 
a_eval-l a_eval-2 a_eval-4 a_eval-6 
a_evaI-8) 

a_eval-8 executed at 970 
a_eval-6 executed at 970 
a_eval-4 executed at 970 
a_eval-2 executed at 970 
a_eval-l executed at 970 
a_eval-3 executed at 970 
a_eval-5 executed at 970 
a_eval-7 executed at 970 
t_eval-7 executed at 970 
t_eval-5 executed at 970 
t_eval-3 executed at 970 
t_eval-2 executed at 970 
t_eval-l executed at 970 
t_eval-4 executed at 970 
t_eval-6 executed at 970 
t_eval-8 executed at 970 
Event queue (a_calc t_calc) 
t_calc executed at 1017 
a_calc executed at 1017 
Event queue (t_sync a_sync)

a_sync executed at 1018 
t_sync executed at 1018 
Event queue (t_relgn a_relgn) 
ajelgn  executed at 1028 
tje lgn  executed at 1028 
Event queue (t_sit a_sit) 
a j i t  executed at 1031 
t_sit executed at 1031 
Event queue (a_eval-8 a_eval-6 a_eval-4 

a_eval-2 a_eval-l a_eval-3 a_eval-5 
a_eval-7 t_eval-7 t_eval-5 t_eval-3 
t„eval-2 t_eval-l t_eval-4 t_eval-6 
t_eval-8) 

t_eval-8 executed at 1083 
t_eval-6 executed at 1083 
t_eval-4 executed at 1083 
t_eval-l executed at 1083 
t_eval-2 executed at 1083 
t_eval-3 executed at 1083 
tjeval-5 executed at 1083 
t_eval-7 executed at 1083 
a_eval-7 executed at 1083 
a_eval-5 executed at 1083 
a_eval-3 executed at 1083 
ajeval-1 executed at 1083 
a_eval-2 executed at 1083 
a_eval-4 executed at 1083 
a_eval-6 executed at 1083 
a_eval-8 executed at 1083 
Event queue (t_calc a_calc) 
a_calc executed at 1130 
t_calc executed at 1130
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F.9 Paladin Design Analysis
Results:

Specialization Values:

ft<KS8KS7> 0.25 
£KKS7KS8> 0.25

Interdependence Values:

n<KS10KS5> 1.0 
n<KS9KS6> 1.0 
n<KS8KS4> 0.25 
n<KS8KS3> 0.75 
n<KS8KS2> 0.125 
n<KS8KSl> 0.875 
n<KS7KS4> 0.75 
n<KS7KS3> 0.25 
n<KS7KS2> 0.875 
n<KS7KSl> 0.125 
n<KS6KS7> 1.0 
n<KS5KS8> 1.0 
IT<KS4KS9> 1.0 
n<KS3KS10> 1.0 
n<KS2KS9> 1.0 
n<KSlKS10> 1.0

Serialization Values:

Z<KS10KS5> 1.0 
£<KS9KS6> 1.0 
Z<KS8KS4> 0.33333334 
s<KS8KS3> 1.0 
£<KS8KS2> 0.14285715 
£<KS8KS1> 1.0 
Z<KS7KS4> 1.0 
L<KS7KS3> 0.33333334 
Z<KS7KS2> 1.0 
L<KS7KS1> 0.14285715 
Z<KS6KS7> 1.0 
Z<KS5KS8> 1.0 
2<KS4KS9> 0.33333334 
Z<KS3KS10> 0.33333334 
£<KS2KS9> 0.6666667 
Z<KS1KS10> 0.6666667

F.10 Paladin Simulation 
Results

Knowledge Sources:

Knowledge Source: Maneuver_A 
Type: PROCESSOR 
Execution Delay: 22

Knowledge Source: Maneuver_T 
Type: PROCESSOR 
Execution Delay: 22

Knowledge Source: Main_A 
Type: PROCESSOR 
Execution Delay: 35

Knowledge Source: Main_T 
Type: PROCESSOR 
Execution Delay: 35

Knowledge Source: Dynamics_T 
Type: PROCESSOR 
Execution Delay: 180

Knowledge Source: Dynamics_A 
Type: PROCESSOR 
Execution Delay: 180

Knowledge Source: Throttle_T 
Type: PROCESSOR 
Execution Delay: 16

Knowledge Source: Throttle_A 
Type: PROCESSOR 
Execution Delay: 16

Knowledge Source: Sit_T 
Type: PROCESSOR 
Execution Delay: 14

Knowledge Source: Sit__A 
Type: PROCESSOR 
Execution Delay: 14

Results of Simulation run:

Event queue (Dynamics_A 
Dynamics_T)
Dynamics_T executed at 180 
Dynamics_A executed at 180 
Event queue (Main_T Main_A)
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Main_A executed at 215 
Main_T executed at 215 
Event queue (Throttle_A Sit_A Sit_T 
ThrottleJT)
Sit_T executed at 229
Sit_A executed at 229
Event queue (Throttle_A Throttle_T)
Throttle_T executed at 231
Throttle_A executed at 231
Event queue (Maneuver_T Maneuver_A)
Maneuver_A executed at 253
Maneuver_T executed at 253
Event queue (Dynamic s_A

Dynamics_T)
Dynamics„T executed at 433 
Dynamics_A executed at 433 
Event queue (Main_T Main_A)
Main_A executed at 468 
Main_T executed at 468 
Event queue (Throttle_A Sit_A Sit_T 
Throttle_T)
Sit_T executed at 482
Sit_A executed at 482
Event queue (Throttle_A Throttle_T)
Throttle_T executed at 484
Throttle_A executed at 484
Event queue (Maneuver_T Maneuver_A)
Maneuver_A executed at 506
Maneuver_T executed at 506
Event queue (Dynamics_A

Dynamics_T)
Dynamics_T executed at 686 
Dynamics_A executed at 686 
Event queue (Main_T Main_A)
Main_A executed at 721 
Main_T executed at 721 
Event queue (Throttle_A Sit_A Sit_T 
Throttle_T)
Sit_T executed at 735
Sit_A executed at 735
Event queue (Throttle_A ThrottIe_T)
Throttle_T executed at 737
Throttle_A executed at 737
Event queue (Maneuver_T Maneuver_A)
Maneuver_A executed at 759
Maneuver_T executed at 759
Event queue (Dynamics_A

Dynamics_T)
Dynamics_T executed at 939
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Dynamics_A executed at 939 
Event queue (Main_T Main_A)
Main_A executed at 974 
Main_T executed at 974 
Event queue (Throttle„A Sit_A Sit_T 
Throttle_T)
Sit_T executed at 988
Sit_A executed at 988
Event queue (Throttle_A ThrottIe_T)
Throttle_T executed at 990
Throttle_A executed at 990
Event queue (Maneuver_T Maneuver_A)
Maneuver_A executed at 1012
Maneuver_T executed at 1012
Event queue (Dynamics_A

Dynamics_T)
Dynamics_T executed at 1192 
Dynamics_A executed at 1192 
Event queue (Main_T Main_A)
Main_A executed at 1227 
Main_T executed at 1227 
Event queue (Throttle_A Sit_A Sit_T 

Throttle_T)
Sit_T executed at 1241 
Sit_A executed at 1241 
Event queue (Throttle_A Throttle_T) 
Throttle_T executed at 1243 
Throttle_A executed at 1243 
Event queue (Maneuver_T Maneuver_A) 
Maneuver_A executed at 1265 
Maneuver_T executed at 1265 
Event queue (Dynamics_A 

Dynamics_T)
Dynamics_T executed at 1445 
Dynamics_A executed at 1445 
Event queue (Main_T Main_A)
Main_A executed at 1480 
Main_T executed at 1480 
Event queue (Throttle_A Sit_A Sit_T 
Throttle_T)
Sit_T executed at 1494 
Sit_A executed at 1494 
Event queue (Throttle_A Throttle_T) 
ThrottIe_T executed at 1496 
ThrottIe_A executed at 1496 
Event queue (Maneuver_T Maneuver_A) 
Maneuver_A executed at 1518 
Maneuver_T executed at 1518



Appendix G
Event queue (Dynamics_A 

Dynamics_T)
Dynamics_T executed at 1698 
Dynamics_A executed at 1698 
Event queue (Main_T Main_A)
Main_A executed at 1733 
Main_T executed at 1733 
Event queue (Throttle_A Sit_A Sit_T 
Throttle„T)
Sit_T executed at 1747
Sit_A executed at 1747
Event queue (ThrottIe_A Throttle_T)
Throttle_T executed at 1749
Throttle_A executed at 1749
Event queue (Maneuver_T Maneuver„A)
Maneuver_A executed at 1771
Maneuver_T executed at 1771
Event queue (Dynamics_A

Dynamics_T)
Dynamics_T executed at 1951 
Dynamics_A executed at 1951 
Event queue (Main_T Main_A)
Main_A executed at 1986 
Main_T executed at 1986 
Event queue (Throttle_A Sit_A Sit_T 
Throttle_T)
Sit_T executed at 2000 
Sit_A executed at 2000 
Event queue (ThrottIe_A ThrottIe_T) 
Throttle_T executed at 2002 
Throttle_A executed at 2002 
Event queue (Maneuver_T Maneuver_A) 
Maneuver_A executed at 2024 
Maneuver_T executed at 2024 
Event queue (Dynamics_A 

Dynamics_T)
Dynamics_T executed at 2204 
Dynamics_A executed at 2204 
Event queue (Main_T Main_A)
Main_A executed at 2239 
Main_T executed at 2239 
Event queue (Throttle_A Sit_A Sit_T 
Throtde_T)
Sit_T executed at 2253
Sit_A executed at 2253
Event queue (Throttle_A Throttle_T)
Throttle_T executed at 2255
Throttle_A executed at 2255
Event queue (Maneuver_T Maneuver_A)
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Maneuver_A executed at 2277 
Maneuver_T executed at 2277 
Event queue (Dynamics_A 

Dynamics_T)
Dynamics_T executed at 2457 
Dynamics_A executed at 2457 
Event queue (Main_T Main_A)
Main_A executed at 2492 
Main_T executed at 2492 
Event queue (Throttle_A Sit_A Sit_T 
Throttle_T)
Sit_T executed at 2506 
Sit_A executed at 2506 
Event queue (Throttle_A Throttle_T) 
Throttle_T executed at 2508 
Throttle_A executed at 2508 
Event queue (Maneuver_T Maneuver_A) 
Maneuver_A executed at 2530 
Maneuver_T executed at 2530
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