
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1992

Code generation using a backtracking LR parser Code generation using a backtracking LR parser

Laurie Anne Smith King
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
King, Laurie Anne Smith, "Code generation using a backtracking LR parser" (1992). Dissertations, Theses,
and Masters Projects. Paper 1539623820.
https://dx.doi.org/doi:10.21220/s2-qkrj-qd04

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623820&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623820&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-qkrj-qd04
mailto:scholarworks@wm.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The q u a lity of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Inform ation C om pany

300 North Z e e b R oad, A nn Arbor, Ml 48106-1346 USA
313/761-4700 800 /521 -0600

Order Number 9304503

Code generation using a backtracking LR parser

King, Laurie Anne Smith, Ph.D.

The College of William and Mary, 1992

Copyright ©1992 by K ing, Laurie A nne Sm ith. A ll rights reserved.

U M I
300 N, Zeeb Rd.
Ann Aibor, MI 48106

CODE GENERATION USING A BACKTRACKING LR PARSER

A Dissertation

Presented to

The Faculty of the Department of Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the requirements for the Degree of

Doctor of Philosophy

by

Laurie Anne Smith King

1992

Copyright © 1992 by Laurie Anne Smith King, All Rights Reserved

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

. . . . <

Laurie Anne Sinith King

Approved, June 1992

Dr. William L. Bynum

•»

Dr. Keith W. Miller

MdL
Jr. Larry J. Morell

Department of Computer Science, Hampton University

'Q -n r___

Dr. Robert E. Noonan

X 1 ■ C ■

Dr. J. C. Sanwal
Department of Mathematics, The College of William and Mary

In memory of my grandmothers,

Hope Smith Shackson Focht
and

Gretchen Bergetta Smith Smith

Table of Contents
P ag e

A cknowledgem ents V

List of Figures vi

A bstract viii

Chapter 1 Introduction 2

Chapter 2 Blocking Problems in Parsing-based Code
Generators 26

Chapter 3 A Backtracking LR Parser 40

Chapter 4 Backing up over Semantic Actions 62

Chapter 5 Code Generation as Tree Transformations 69

Chapter 6 An Algorithm for Converting Tree
Transformations to an Affix Grammar 84

Chapter 7 Reparse Backup 95

Chapter 8 Conclusion 101

Appendix A Peephole Optimization of the Intermediate
Code 106

Appendix B Computing Usage Counts 111

Appendix C Instruction Selection 114

Appendix D Selected Test Runs 117

Appendix E Reparse Backup Example Revisited 142

Appendix F TTL and a Backtracking LR Parser Produce a
Recognizer for any Recursively Enumerable
Language 145

Bibliography 158

ACKNOWLEDGEMENTS

I wish to express my gratitude to the many people who helped me
finish (finally) this dissertation.

To Bob Noonan, my advisor, for his unending patience and of course
wise guidence. To the rest of my committee, Bill Bynum for his
ability to put negative results in a positive light, Keith Miller for all
those late night discussions, Larry Morell for his perennial flow of
ideas, and JC Sanwal for teaching me all I know about circuit design
and analysis. To Bob Collins who gave me the confidence to get
started and keep going.

To my friends who stuck by me when I was so very hard to get along
with, Tracy Camp for that graduate student comraderie, SueAnne
Kyle Johnson for those long distance phone bills, Pat Meszaros for
loving my daughter, Bob and Debbie Noonan for listening to my
whining and great skiing, Karen and Louis Slothouber for awesome
bridge games and great beach trips, and Glenda White for girl’s night
out.

To my relatives who encouraged me and kept me sane, my sister
Kristen Smith, her fiance Todd Barnett, my cousin Charlie Viles and
his wife Emily West.

To my grandfather, Clyde T. Smith, who was very generous in his
financial support.

To my parents for their love and support, David Wm. Smith who
pushed me to be the best and Beverly Smith who thought I was.

To my daughter, Madison Hope Lucas, who kept everything in
perspective.

And finally to my husband and best friend, Stef Lucas, a true
Renaissance man, without whose help I never would have finished
my PhD.

v

List of Figures
F igu re Page

1.1 Tree-Rewrite Rule for an Addition Instruction 9
1.2 Twig Specification for an Addition Instruction 10
1.3 Backtracking LR Parsing-based Code Generation 2 4

2.1 Intermediate Code Tree for a:= b + c 27
2.2 MD1: A Partial Code Generation Specification 2 8
2.3 M D l-am biguous 29
2.4 MD2: Semantic Information Encoded Syntactically 3 0
2.5 MDl-ambiguous with Semantic Restrictions 3 0
2.6 MD3 with Semantic Restrictions 3 6

3.1 Example Grammar MD4 42
3.2 The Parse Table for Grammar MD4 43
3.3 The Forward Parsing Algorithm 45
3.4 G etN extlnput 46
3.5 DoShift 46
3.6 DoReduce 46
3.7 Parse Trace using Grammar MD4 4 8
3.8 DoBacktrack Algorithm 4 9
3.9 Another Parse Trace using Grammar MD4 5 3
3.10 Grammar MD5 54
3.11 The Parse Table for Grammar MD5 5 4
3.12 Parse Trace using Grammar MD5 6 0

4.1 Grammar MD5 with Semantic Actions 64
4.2 No Semantic Information Changed 65
4.3 Register 1 is Allocated 65
4.4 Register 2 is Allocated 6 6
4.5 The Plus Operation is Performed 6 6
4.6 Trying the Shift Option 67
4.7 Register 2 is Reallocated 6 7
4.8 Block Trying to Apply Increment Instruction 6 7

5.1 Intermediate Code (IC) trees 7 1
5.2 A Machine Code Tree 71
5.3 Recognizing an Expression 7 2
5.4 A Rearrangement Tree Transformation 7 3
5.5 A Replacement Tree Transformation 7 3

vi

5.6 A Conditional Tree Transformation 7 3
5.7 Backtracking LR Parsing-based Code Generation 7 5
5.8 Two Transformations to Machine Instructions

for Addition 8 1
5.9 A Transformation to Generate a Register Copy 8 2
5.10 A Transformation to Machine Code for a Register Load 8 2

6.1 TTL Syntax 8 4
6.2 The Affix Grammar Rule Syntax for the

TTL Rule of Figure 6.1 85
6.3 Tree Construction Procedures 87
6.4 Transformation Construction Algorithm 8 8
6.5 Simple Reduction Transformation 90
6.6 Transformations with Conditions 91
6.7 Transformations with Actions 92
6.8 Rearrangement Transformations 93

7.1 Reparse Backup Algorithm 97
7.2 IC for Assignment Statement 9 8
7.3 A Constant Folding Tree Transformation 9 8
7.4 Parse State before Constant Folding 9 8
7.5 Parse State after Constant Folding 99
7.6 Applying the Deer Tree Transformation 100
7.7 Parse State after Parsing Deer Rewrite 100

E.l Parse State after Incorrect Reparse Backup over
Constant Folding Transformation 143

E.2 Expression Transformations 143
E.3 Parse State after Reduce by Rule 1 144
E.4 Parse State after Reduce by Rule 2 144

F .l Language Generators and Recognizers 145
F.2 Turing Machine Simulation 146
F.3 Turing Machine Simulation Using ID 148

vii

ABTRACT

Although the parsing phase of the modern compiler has been
automated in a machine independent fashion, the diversity of
computer architectures inhibits automating the code generation
phase. During code generation, some intermediate representation of
a source program is transformed into actual machine instructions.
The need for portable compilers has driven research towards the
automatic generation of code generators.

This research investigates the use of a backtracking LR parser that
treats code generation as a series of tree transformations.

Code Generation Using A Backtracking LR Parser

Chapter 1
Introduction

"A compiler's primary function is to compile, organize the
compilation, and go right back to compiling. It compiles basically
only those things that require [sic] to be compiled, ignoring things
that should not be compiled. The main way a compiler compiles, is to
compile the things to be compiled until the compilation is complete."
The definiton of a compiler given by a student in an Introductory
Computer Science course. (1992)

1. Motivation and Goals

For the past two decades, a considerable amount of research has
been devoted towards reducing effort required to construct quality
compilers. The rapid pace with which new machine architectures
become available, and the desire to port compilers to take advantage
of these new architectures has motivated much of the research.

Design and implementation techniques for handcrafting compilers
are ill-suited to the complexity of the complex clerical task
performed by compilers. Despite the careful attention to the
software design principles employed by early compiler writers, even
compilers that had been in production for some time often have
lingering bugs. Even if better techniques for writing compilers by
hand were developed, the speed with which handcrafted compilers
could be produced would be insufficient. Formal methods which
would automate parts of the compiler creation task are required.
Consequently, much research effort has been devoted towards the

2

creation of com piler-com pilers, systems that automatically generate
a compiler or translator from a specification.

Applying a divide-and-conquer strategy, compilers are divided into a
front-end and a back-end. The front-end recognizes and parses a
source language, and ultimately produces intermediate code from a
source program. The back-end translates the intermediate
representation of a source program into object code specific to a
given target machine.

Research of the 1960’s and 1970's, while ignoring the semantic
phase, has for the most part automated the front-end in a machine
independent fashion. Advances in the use of grammars and parsing
has made it possible for parsers to be automatically generated from a
grammar-based description of the programming language. Now a
substantial compiler front-end can be implemented in a one
semester, undergraduate course using a compiler-compiler.

However, the diversity of computer architectures and complexity of
the code generation task has inhibited automating the creation of
code generators. For the most part, the back-end has been created
manually; although high quality code generators can be created this
way, hand generation is tedious and lacks the formalisms required to
easily demonstrate the correctness of an implementation. In short,
the creation of code generators suffers from the same problems that
plagued the creation of compiler front-ends twenty years ago. A goal
of recent research is to create code generators from machine
descriptions or code generator specifications by developing a code-
generator-generator.

Using an algorithm to create code generators from machine
descriptions or specifications is easier and faster. The algorithm can
be implemented and verified once, and thereafter the user's
responsibility consists only in providing an adequate machine
description/specification. A further research goal is the automatic
generation of code generators which produce "good" code, code that
not only takes advantage of special use instructions and machine
idiosyncracies but also which contains no dead code, i.e., code which
has no effect.

3

2. Background

This chapter reviews research on the automatic derivation of code
generators from machine descriptions or code generation
specifications. To date, the approach generally taken has been one of
divide-and-conquer. Code generation has been conceptually carved
into three main tasks: instruction selection, peephole optimization
and register allocation/assignment. Instruction selection is the
translation of intermediate code trees generated by the compiler
front-end into object code, usually either assembler or machine code.
Peephole optimization improves object code by correcting inefficient
code sequences, selecting special case instructions, and eliminating
redundant object code. Register allocation/assignment determines
which values will reside in each register. Compiler back-ends are
usually implemented by dividing these tasks into subphases.

Until recently, attempts to automate code generation have
concentrated on a single task of code generation and so formalisms
have been developed for each task separately. Even though the
division between tasks is not strict, each can be automatically
created as an independent phase that runs sequentially. For
example, research which concentrates on instruction selection must
consider the register allocation/assignment phase and vice versa
because of its impact on optimal instruction selection.

In what follows, instruction selection, peephole optimization, and
register allocation/assignment will be discussed in detail by
reviewing relevant papers from the recent literature. Complexity is
reduced by focusing on an individual phase, which poses sufficient
challenges in itself. However, the phases are naturally
interdependent and there are advantages to allowing all three phases
to operate simultaneously in an integrated code generator. Armed
with a better and more formal understanding of each individual
phase, recent research has attempted to create integrated code
generators from machine descriptions or code generation
specifications. Consequently, we will first describe attempts to
automate each phase as a relatively independent entity and then
discuss the interdependence between the phases and review recent
attempts to integrate the three phases.

4

3. Instruction Selection

Many advances have been made in automating instruction selection.
The instruction selector generators described herein consist of
machine independent instruction selection algorithms which operate
from a machine description or code generation specification.

The research described views instruction selection as a pattern
matching operation. The code generation specification is encoded in
a table and pattern matching algorithms match intermediate code
trees to perform instruction selection. Three implementations of
pattern matched instruction selection are presented: LR parsing
approaches, an A.I. approach, and a dynamic tree-matching
approach.

3.1 Instruction Selection Via Parsing

The first practical automatic generation of a code generator was
made by Glanville and Graham [GlGr78], who use an LR parser as the
machine independent instruction selection algorithm. The grammar
is the code generation specification because it describes how
intermediate code trees are converted into machine instructions.
Descriptive information about the target machine in the form of a
grammar is used to create LR parser tables.

Productions are classified into three kinds [GaFi85]: address mode
productions, instruction selection productions and transfer
productions. Address mode productions map intermediate code
addresses into machine addresses. An instruction selection
production specifies an intermediate code tree pattern on the right
hand side, with the left hand side specifying the result, typically a
data type. T ransfer productions allow the code generator to shift an
operand's storage location, for example to perform data type
conversions.

Grammar rules are ordered to create a table in which the
cheapest/best instruction is tried first, described as a locally greedy
heuristic [Hen84] or as a maximal munch strategy [Cat78], Other
approaches [SpTu87] have attempted to perform cost analysis during
parsing beyond the simple ordering of the productions. Spector and
Turner have implemented a dynamic programming algorithm that
extends cost analysis by considering the actual time or space cost of
selecting each nonterminal available in each state during parsing.

5

Ganapathi and Fischer [GaFi85] extended the application of parsing
techniques to instruction selection. They describe the instruction set
of a target architecture using affix grammars in which attributes
containing semantic information influence the construction of the
parse tree.

The parsing approach for the automatic derivation of code generators
has several advantages. Parsing is fast and provably correct with
respect to the grammar, something ad hoc pattern matching
algorithms cannot boast. A code generator built with this approach
can benefit from any advances in parsing research. Furthermore,
the code generator can be incrementally improved by adding new
productions to the code generation specification. Another advantage
of this approach is that the code generator can be retargeted quickly
by modifying the code generation specification grammar.

Unfortunately, several problems arise from parsing using context-
free grammars. The machine language must be uniform1 [GlGr78] for
the conflict-resolution rules to recognize the whole language. The
code generation specification is usually ambiguous because machines
often have several ways of accomplishing the same task; naturally,
code generation specification grammars reflect this ambiguity.
Secondly, problems of syntactic or semantic blocking result from the
locally greedy heuristic which resolves shift-reduce conflicts in favor
of the shift, details of which are discussed in Chapter 2. Finally, the
Achilles heel of the parsing method is a reliance on the non-trivial
creation of hand-crafted grammars.

3.2 Cattell's Approach

Cattell's code generation algorithm [Cat80], operates directly off an
ISP-style machine description. Heuristic searching and other A.I.
techniques are used in the algorithm which is machine independent
but uses machine dependent tables to select instructions.

Instruction selection is template driven; a new set of templates
generates code for a different machine. The templates are pattern-
matched against intermediate code trees and each template

h n a uniform language, the operands to an operator are valid independent of
context so that if an operand is valid on the left o f a binary operator, it is also
valid on the right of the operator.

6

corresponds to a sequence of machine instructions. Instruction
selection consists of emitting the machine code associated with a
template when a match is found. The instruction selection algorithm
is straightforward; the difficulty lies in creating the template table,
called the MT. At code generator generation time, Cattell's method
automatically selects both the possible templates and the
instruction(s) associated with each template and thus creates the MT.

The code generator generator inputs a machine description and
outputs the MT. An ISP machine description is manually
transformed into a tree production machine description. Instruction
function (such as addition for an ADD) is separated from operand
addressing details (such as whether operands are registers or
memory locations) which reduces the size of the machine description.
The procedures SELECT and SEARCH build the template table, (MT),
from the tree production machine description. SELECT chooses the
special cases, trees, to be included in the MT and SEARCH finds code
sequences that represent these trees. SELECT has a double duty
because it also finds the best code sequence for each tree.

SELECT ensures that every intermediate code tree can be matched by
a template in the MT. First, SELECT creates templates for all subtrees
which map directly into machine instructions so that the MT includes
all subtrees which can be matched by a single instruction. Second,
some additional templates are added to generate more efficient code.
Third, templates are included for subtrees of the form A <- B for
every pair of distinct address modes A and B to enable data transfers
Fourth, templates for every tree production operator are included
and last, templates are included for control operators (e.g. loops and
branches).

SEARCH cannot return all possible code sequences given a goal
subtree, so two techniques are used to reduce the size of the search
space: means-ends analysis and problem reduction. Means-ends
analysis is used to explore nodes which are closer to the goal node
first. Problem reduction decomposes a difficult problem into a set of
smaller problems. SEARCH returns an instruction if the goal tree
matches an instruction assertion exactly, otherwise it applies
decomposition axioms and applies itself recursively to each new goal
tree. If elements in a set of instructions are semantically close1 to

a heuristic measure of similarity, Cattell uses the primary operator of two
trees .

7

the goal tree, then transformation axioms are applied recursively so
that the transformed goal tree may be used as the goal tree.

The MT is used at code generation time by a pattern matching
algorithm which matches templates in the MT against the
intermediate code. The templates in the MT are ordered so that
those which represent the least expensive instructions will be
attempted first. If a template fails to match, the code generation
algorithm continues by attempting a more expensive template. The
code generator handles mismatches between the IC operands and the
template, moving the operands to locations compatible with the
tem plate.

As with the parsing approaches, an advantage of Cattell’s scheme is
that much of the work is done at code generator generation time,
rather than within the resulting code generator itself. SELECT and
SEARCH operate at code generator generation time, when the MT
table is created, but the final code generator just uses the MT. Cattell
offers experimental evidence that his heuristic search for code
sequences tends to find the optimal code sequences. Parsing
approaches have difficulty with semantic blocking and Cattell's
approach avoids semantic blocking because his method can "back
track." Also, the size of the machine description and the number of
instructions on the target machine have little effect on the speed of
the resultant code generator. In comparison, parsing approaches
only pattern match in the abstract sense, by wandering through the
state tables, so they are inherently faster than Cattell's method,
which really does pattern matching.

The translation of an ISP description into the initial tree production
machine description is done manually and takes approximately one
man-week according to Cattell. A drawback to this method is,
SEARCH is not guaranteed to ever find an applicable code sequence
for a given subtree, or even to terminate at all. Finally, Cattell
acknowledges that more research is required to describe machine
data types and other special architectural features like caches.

3.2 A Tree Matching Approach

Another approach [AhGaTj89] to instruction selection views the
intermediate code as an actual, versus a conceptual, tree and
pattern-matches using tree patterns and tree rewrite rules. Central
to this approach are two algorithms: an efficient tree matching

8

algorithm to recognize the intermediate code and a dynamic
programming algorithm to attempt different combinations of tree
matches in search of the one which generates the most efficient
object code. Both algorithms must be fast in order to compete with
LR parsing.

A special language, Twig, was developed for writing code generators.
Efficient tree matching with dynamic programming are embedded as
part of Twig. The compiler writer specifies the code generator by
writing a Twig specification (program). The Twig compiler creates
the desired code generator.

Twig code generator specifications consist of a list of tree-rewrite
rules. Each rule has the form:

replacement <— template { cost } = { action }

where replacem ent is a single node, template is a tree, cost is a code
fragment that computes the cost associated with the rule, and action
is a code fragement. During code generation, templates are pattern
matched against the IC. When a template matches, the IC subtree is
reduced to the associated replacement node and the action part emits
the corresponding machine code. The cost part measures the
efficiency of the emitted code. Both the cost and action parts of the
rule are code fragments supplied by the compiler writer.

For example, Figure 1.1 depicts a rewrite rule for an addition
instruction for a VAX-like target machine. The replacement node
and IC tree template appears on the left, followed by the cost and
and add instruction.

REPLACEMENT TEMPLATE COST ACTION

regi < - / n .
reg* ind 2 J £ 2

+

constc reg..

Figure 1.1 Tree-Rewrite Rule for an Addition Instruction.

9

The Twig specification for the rule in Figure 1.1 appears in Figure 1.2

reg:plus(reg, ind{plus(const, reg)))
{cost = 2 +$%l$Acost + $%3$Acost;}
{ emit(''ADD1 2, 1, 0) ;
return(1);

};

Figure 1.2 Twig Specification for an Addition Instruction.
In the Twig specification, $%n$ denotes the nth labeled leaf, n
denotes the nth child of the root of the template and it is assumed
that the emit routine will convert ind (plus) into the correct machine
addressing mode.

Instruction selection consists of three passes over the IC. The first
pass attempts to pattern match all templates in the Twig
specification, computing the cost associated with each match. The
cost of each template match at a node can be computed independent
of the node's parents so that a minimum cost cover can be computed
in a single bottom up pass. Furthermore, a vector of costs is
computed in which each vector entry corresponds to the cost of a
template match for a given number of available registers. Hence
register availability plays a role in instruction selection. The second
pass performs register allocation based on the cost vector, and the
third and final pass traverses the IC performing actions associated
with each node to actually emit the chosen machine instructions.

Tree-based pattern matching is less formal than LR parsing and, in
the current implementation, the resultant code generators are
slower. Also, Twig does not do common subexpression elimination,
algebraic simplification, or other high level optimizations. But the
authors claim a number of advantages of tree patterns over LR
parsing for instruction selection, most notably a simplified code
generator specification, freedom to write rules in any order without
regard for pattern matching conflicts, and the production of code that
is optimal with respect the cost information provided.

4. Peephole Optimization

Peephole optimization improves object code by correcting inefficient
code sequences, selecting special-case instructions, and eliminating
redundant or dead object code. Inefficient code most often arises as

1 0

compilers generate intermediate code or object code in chunks or
blocks. Peephole optimization allows the code on the edges of the
blocks to be optimized. The classic example is the case of replacing a
jump to another jump with a single jump instruction. An example of a
special-case instruction is the substitution of an increment for an add
by l. Redundant or dead code is illustrated by an if statement
immediately after a while. If the two have opposite conditions,
testing the condition in the i f statement is redundant and the code
can be pruned. Conversely, if the two have the same conditions then
the i f statement is dead code and should be removed.

Peephole optimizations are necessary because often the optimizations
are not apparent until after instruction selection. For example, the
compiler cannot anticipate a priori that a jump will be to another
jump. Secondly, performing peephole optimizations after the code is
created is often more efficient than attempting optimizations during
code emission. Case analysis, for instance, can be used to determine
whether an add can be replaced with an increment, but only at the
cost of complicating and slowing the code emission.

Fraser [Fra79] initially described a peephole optimizer, PO, which
performs general optimizations that are both machine-independent
and are not part of global optimizations performed before instruction
selection. The input to PO, is an assembly language program and a
symbolic machine description. Three passes over the input are
made. The first is a backward scan that determines the effect of the
instructions. Instructions with no effect are removed. The next pass
is a forward pass that replaces pairs of adjacent instructions by a
single instruction when possible. The final pass replaces each
instruction with the cheapest possible equivalent. Besides the
obvious drawback of a narrow optimization window, this
implementation was slow.

Davidson and Fraser [DaFr79] extended this research by further
refining the peephole optimizer, PO. As in the original, PO makes
three passes to optimize the program. The first pass, a backward
scan, generates the effect of register transfer patterns and finds all
dead cells, i.e. variables that are immediately changed without being
used or condition codes that are not tested before they are reset.
The list of dead cells is kept so that useless effects are ignored. When
a branch is encountered, the list of dead cells is cleared because the
list of dead cells depends on the instruction's lexical successor and
the destination of the branch is unknown. The second pass, a

11

forward scan, considers the combined effect of two lexically adjacent
instructions. When possible, PO replaces each variable instance in
the second instruction with variable values from the first. PO can
collapse branch chains by treating a branch and its target as a pair.
PO also removes any unreferenced labels because any instruction
pair with a label on the second instruction cannot be collapsed. The
third and final pass translates register transfers back into assembly
code.

This research suggested that a naive instruction selection phase can
generate good code if used with PO. Sometimes a greater context
than a two or three instruction window is needed, for example PO
cannot collapse an otherwise reducible pair separated by a third,
uncombined instruction. The optimization window is physical and a
logical window is desired.

Davidson and Fraser [DaFr84] continued their research resulting in an
expanded, modified version of PO. This new PO is inserted into a
compiler. The entire compiler is divided into five programs. The
FRONT END produces machine code for an abstract machine with a
small and regular instruction set. The CODE EXPANDER converts
intermediate code to register transfers and also flags cells that are
obviously dead. The CACHER eliminates common subexpressions in
basic blocks. The CACHER also marks the last use of each cell so that
COMBINER can delete instructions which set unused cells. Each
instruction is linked to the first instruction that uses one of its
results, using a counting algorithm described by Frieburghouse
[Fri74]. This allows COMBINER to combine logically adjacent
instructions rather than physically adjacent ones, correcting a
deficiency of earlier research. The ASSIGNER maps an unlimited
number of pseudo registers onto hardware registers, spills1 when
necessary, and translates register transfers into assembly code.

CACHER and COMBINER consider some register allocation details to
ease the burden on ASSIGNER. CACHER records and replaces
references to common subexpressions with simpler register
references. CACHER also calculates use-lists (links from instructions
to particular expressions) for dead variable analysis. When an
instruction is replaced by a cheaper one, the use-list shows if a value

1 An excess demand for registers causes the contents of one or more registers
to be stored in memory (to be reloaded when the value is needed) so that the
register demand can be met.

12

in a register is no longer needed. These use-lists also provide the
information to remove redundant loads from memory. After
peephole optimization, ASSIGNER performs register assignment and
translates the register transfers to assembly code. If a register must
be spilled, CACHER’s use-lists are used once again to determine the
most-distantly-used register in order to minimize the number of
spills.

A shortcoming is that some expressions can be recomputed faster
than they can be spilled and reloaded. Furthermore, some spills and
loads could benefit from further peephole optimization. Davidson
and Fraser state that this problem can be corrected by combining
CACHER, COMBINER and ASSIGNER (originally developed separately
to simplify development and accommodate a small address space).
Once phases are combined, the COMBINER can identify common
subexpressions too small for CACHER to catch, and to optimize the
instructions that ASSIGNER introduces.

5. Register Allocation/Assignment

Register allocation determines which variables are stored in
registers. Register assignment determines which specific registers
will be used to hold a given variable's value. Using registers
effectively is important for the generation of shorter, faster
instructions. Retrieving values from registers is much faster than
getting values from memory, so a good code generator will retain
values in registers as long as possible if the value can be used in
several instructions. Retaining values in registers also shortens the
code somewhat because specifying a register address is shorter than
specifying a memory address. Register allocation/assignment is
complicated by machine idiosyncrasies. Special-case instructions
often require their operands to be in a specific register, like the
accumulator, so assigning a variable to the correct register will allow
the use of such instructions without the overhead of a register swap.
Still other instructions require operands in an even/odd register pair,
which further complicates register allocation/assignment.

Two common problems arise during register allocation/assignment:
the value retention problem and the register demand problem. The
value retention problem occurs because the code generator tries to
hold values in a register to avoid recomputing them, but must also
decide when a value is no longer needed. The register demand
problem occurs when there is an excess demand for registers and the

13

code generator must choose which register to spill and reload. Both
these problems must be addressed by a good register allocator.

5.1 Register Allocation/Assignment Strategies

There are three general strategies for register allocation/assignment
(RAA) which describe when RAA is performed relative to the
instruction selection phase: pre-allocation, on-the-fly allocation, and
post-allocation.

In a pre-allocation strategy, instruction selection is simplified
because the register assignments inherently rule out the use of
certain instructions, thus limiting the choices the instruction selector
must make. Simplification is a double-edged sword: it also constrains
instruction selection. For example, some instructions require their
operands to be in an even/odd pair of registers. If the operands are
not in the register pair, the instruction selector cannot use the
instruction and suboptimal code may result. Furthermore, pre
allocation RAA could over-constrain instruction selection by
eliminating all possible instructions, requiring the instruction selector
to generate needless moves in order to emit code. Pre-allocation
works best when all registers are equivalent (interchangeable within
instructions) which minimizes the constraints on instruction selection
imposed by the RAA.

The concept of pre-allocation is fundamentally flawed because
instruction selection and RAA cannot be cleanly separated. The RAA
needs knowledge of the available instructions to assign registers
intelligently but the knowledge requires doing instruction selection.
On the other hand, intelligent instruction selection requires
knowledge of possible register allocations/assignments.

An on-the-fly RAA strategy allows the instruction selector to make
choices as it generates code. An advantage over pre-allocation is that
the RAA can be chosen to fit the instruction. In the case of an
instruction with operands in an even/odd pair of registers, the
instruction selector can insure that the operands are assigned to the
register pair. When registers are exhausted, a register-spill can be
generated or a different instruction chosen. For instance, a memory-
to-memory instruction will avoid the spill since no registers are
required. The strategy complicates instruction selection by
increasing the choices for the instruction selector. Naturally, register

14

spills are problematic when knowledge of a register's contents will
be needed again is required to make the best register spill.

A post-allocation RAA operates with an instruction selector that
assumes the existence of an infinite number of registers for use
during instruction selection. The RAA’s responsibility is the binding
of the usually infinite number of psuedo registers to a fixed number
of real machine registers. Binding occurs after instruction selection
and/or peephole optimization. Because RAA occurs after instruction
selection, the register allocator's task is simplified. The chosen
instruction determines register assignments, so the allocator makes
few decisions. When a register request cannot be satisfied, the
allocator has no choice but to generate a spill. The generation of
unecessary spills is a disadvantage of a post-allocation strategy.

5.2 Global Versus Local RAA

RAA can be applied with either global or local strategies. Global
register allocations are fixed across one or more basic blocks. Local
register allocations are fixed within basic blocks but may change
from one block to the next. A basic block is a sequential set of
statements which contains no jumps or labels except at the beginning
and/or end of the block.

Global RAA is illustrated best within loops, when the most frequently
used variables within a loop are allocated to registers. In this way,
the most frequently used variables are retrieved from memory only
at the start of the loop and stored in memory only at the loop's end
rather than at each loop iteration. Furthermore, the same variable
might be used frequently in a series of loops. Global RAA would
retrieve the variable from memory at the start of the first loop and
retain the register allocation across the series of basic blocks. The
variable would be stored in memory only at the end of the last loop.

In a local RAA scheme, registers are typically divided into groups for
global and local use. Global registers are used as described above,
whereas local registers are used for expression/address
computations. In a complex expression, for example, intermediate
results can be stored in local registers for later use. Such values are
only stored in memory if enough local registers are not available. A
potential inefficiency of local RAA results because registers are
arbitrarily split into global and local groups before register usage is
known. Too many registers may be devoted to local use when they

15

would be better utilized as global registers and vice-versa. The
optimal division cannot be determined a priori.

Global register allocation can be represented as a graph coloring
problem, whereas local allocation can be done via usage counts. Both
graph-coloring and usage counts are discussed below.

5.3 Local RAA via Usage Counts

Freiburghouse [Fre74] devised a simple and efficient method for
register allocation implementing a local strategy. Glanville and
Graham use this strategy to implement an on-the-fly RAA scheme
within their instruction selector. Freiburghouse's algorithm provides
an optimal solution to the value retention problem for each linear
region. Freiburghouse shows the register demand problem is not
solved by this algorithm, but is better than least recently used or
least recently loaded strategies in terms of the number of loads
generated in 2500 linear region test cases. An optimal solution is not
feasible without lookahead.

In Freiburghouse's algorithm, a usage count is used to track the
number of distinct references to a given value (variable or
computation result) in a program. Algorithms that eliminate
redundant computations calculate this. The usage count represents
the number of times a value will be needed within the program.
Every time a value is used, its usage count is decremented.
Therefore a usage count of zero indicates the value will no longer be
needed within the program. Usage counts are assigned before
register allocation begins.

Registers are allocated to values as needed. When a value's usage
count is zero, the associated register can be released since the value
is no longer needed. If a register is needed and no spares are
available, the register storing the value with the lowest usage count
is released. If the register’s value has not changed since loading
spilling is unnecessary.

5.4 Global RAA via Graph Coloring

Chaitin, et al. [Cha81], discuss register allocation as a graph coloring
problem. The idea of applying graph coloring to solve the register
allocation problem is not new, but Chaitin describes the first attempt
to actually implement this solution. This approach assumes global

16

register allocation. Furthermore, this implementation uses a pre
allocation RAA (i.e. register allocation is performed before the
instruction selection phase).

In their formulation of RAA, colors represent registers and graph
nodes represent variables (names). Since variables are never placed
in the stack frame pointer, it is reserved and is not represented with
a color. A graph-coloring represents a legal register allocation in
which each variable is in a different register. In coloring the graph,
this method tries to keep as many values in registers as possible.

The first step in this register allocation solution is building the
interference graph which describes when two variables cannot be in
the same register (i.e. when two graph nodes cannot have the same
color). Data-flow analysis is performed to determine which names
(nodes in the graph) interfere. Two names interfere if one of them is
live at the definition point of the other. To construct the interference
graph, K edges are added to the graph when a new node (name) is
defined, where K represents the number of live names at that point
in the program. The goal is to put the non-interfering names into the
same register (i.e. paint these graph nodes with the same color).

Next, RAA is performed by attempting to color the graph with N
colors, where N is the number of registers. Nodes with less than N
edges can be removed recursively, because such nodes can always be
colored. If this reduces to an empty graph then the coloring, and
RAA, is trivial. Reduction to an empty graph represents the situation
in which more than enough registers are available. I f an empty
graph does not result, the paper describes an NP-complete algorithm
which attempts to color the graph. If the graph cannot be colored, a
node is removed from the graph. The removal of a node corresponds
to introducing spill code to free a register. The cycle of attempted
coloring and removal repeats until the graph is colored.

Chaitin describes a better method [Cha82] to insert spill code and
eliminates the use of the NP-complete algorithm in a later paper.
The old method, a recursive algorithm, blocks when all nodes have at
least N edges. In the new method, the node with the least cost
estimate is removed from the graph whenever the recursive
algorithm blocks. Spill code for this register must be inserted into
the intermediate code. The graph is then rebuilt and a N-coloring is
again attempted. To get the least cost estimate the graph is
supplemented with a table of cost estimates. This estimate is

17

derived from the cost to spill, which is the increase in execution time
to spill, divided by the degree of the node. The cost to spill is
calculated by adding the number of definition points and the number
of uses where each is weighted by the estimated execution
frequency. Chaitin also uses local knowledge to reload and spill once
for a basic block, instead of many times during the block and
accounts for allowing computations to be redone to avoid spilling and
reloading.

Hennessy and Chow [ChHe84] implemented a post-allocation RAA
based on graph coloring. The coloring process is driven according to
cost and savings estimates computed for each live range or live range
part, as live ranges are sometimes split. Live ranges are similar to
Chaitin’s definition-use chains. Coloring the graph assigns registers
to each live range until all live ranges have registers or until the
register supply is exhausted. Cost/Saving estimates prioritize
variables so that variables which save the most time when in
registers are assigned registers first, increasing the efficiency of the
generated code. Not all registers are reserved for allocation by the
graph-coloring scheme; some are allocated during a local register
allocation phase using usage counts. By performing a local register
allocation phase, the number of global registers (N) is reduced and
the computation time of the NP-complete algorithm is also reduced.

The local allocation phase determines several parameters used to
estimate variable priorities. The parameters are: the cost of moving
a value from register to memory and vice versa, the execution time
saved by referencing a variable in a register versus a variable in
memory, and the execution time saved by each re-definition of a
value in a register compared with a store to memory.

Hennessy and Chow’s method has several advantages. First, the
cost/saving estimates enable an informed choice of which register to
spill. Second, their algorithm does not degrade (in time) when an N-
coloring is unavailable. Third, the loop structure of a program is
taken into account. For example, consider two variables which have
similar occurrence frequencies, as determined by the local phase. If
one variable is used across contiguous code segments, assigning that
variable to the same register (color) across code segments will
minimize register loads and stores. The global allocator can recognize
this situation and make the more efficient allocation. Finally, it is not
always desirable to allocate a register to a variable. A cost/saving
estimate in which cost is greater than savings yields such a low

18

priority that the variable will never be assigned a register, hence this
scheme does not fall prey to overallocation. Although these
cost/saving estimate formulas are good, calculating the estimates
adds extra phases to make the whole algorithm suboptimal [ChHe84].

6. Integrated Approaches To Code Generation

So far instruction selection, peephole optimization, and register
allocation have been discussed as independent tasks ordered
sequentially as subphases. In reality, the tasks are interdependent
and the division into independent phases is undesirable because of
phase ordering problems, so named because often one phase
introduces an inefficiency that can only be corrected by an earlier
phase. For example, performing register allocation after instruction
selection may introduce an inefficiency when creating register spills.
It may be that a spill could be avoided by choosing a different
instruction, or it might be cheaper to recompute a value rather than
spill and reload. Neither alternative is available after instruction
selection is complete. Another example occurs in the way the
peephole optimizer and the register allocator are ordered.
Performing peephole optimization first can reduce the need for
registers by dead-variable analysis and common subexpression
elimination. Allocating registers can introduce loads and stores for
spilling and reloading values. This code should be further optimized
by the peephole optimizer. Requiring the peephole optimizer and the
register allocator to run sequentially can introduce inefficiencies no
matter which goes first.

The phase ordering problem poses the dilemma that no matter how
the phases are ordered, inefficiences result. The dilemma could be
solved if the tasks were integrated into a single phase so that all
three tasks operated cooperatively. For example, suppose an
instruction requires its operands to be in adjacent registers. If the
register allocator operates after instruction selection, it can insure
that the operands for this instruction are placed in adjacent registers
if possible. However, if the register allocator operates before
instruction selection, it could influence the instruction selected. For
the instruction selector to pick the best instruction, it must have
knowledge about whether an instruction will cause a spill or extra
moves to make its decision. Conversely, the register allocator needs
information about the instruction selected to best allocate the
registers. To minimize spills and extra moves the instruction selector

19

and register allocator must make a mutual decision, which is not
possible in phase-ordered code generation.

Other advantages are gained as a natural result of integrated code
generation. An advantage of combining two phases is that one
machine description or code generation specification can be used
rather than two or three. Furthermore, when tasks are separate
phases, each phase often duplicates the efforts of a previous phase
thus making compile-time code generation 10-20% slower than if the
phases were combined [HeGa86], Peephole optimization can be
performed on intermediate code to simplify instruction selection
[TaVSSt82]. For example, additions of one can be replaced by
increments at the intermediate code level. Case analysis during
instruction selection is reduced because the instruction selector no
longer considers this optimization. Both integrated and sequential
code generation can use this form of peephole optimization. However
to take advantage of machine dependencies, some peephole
optimization can only be done after instruction selection. Thus
performing peephole optimization on intermediate code alone is
insufficient.

Because integration of instruction selection, peephole optimization
and register allocation appears promising, some recent research has
attempted the derivation of code generators in which phases are
integrated (i.e. two or more phases are combined). In what follows,
two attempts to extend earlier research to offer more integrated
approaches to code generation are described. One approach, by
Fraser and Wendt, attempts to integrate from the original
perspective of peephole optimization. The second approach, by
Ganapathi and Fischer, attempts to integrate from the original
perspective of parsing-based instruction selection. Each is described
in turn.

6.1 Fraser and Wendt

Fraser and Wendt [FrWe86] describe how instruction selection and
peephole optimization are performed by HOP, a single, general, rule-
based system that matches and replaces register transfer patterns.
One set of rules generates naive code, represented as register
transfers; another set peephole optimizes these register transfers by
combining juxtaposed instructions into a single instruction during
generation; still other rules translate the optimized register transfers
to assembly code.

20

Phase combination is accomplished as follows. When an instruction
selection rule is executed, a register transfer is created instead of
intermediate code so optimization rules can be applied. The register
transfers are recycled through the rules until no more optimizations
apply.

Combining instruction selection and peephole optimization is also
faster because no time is wasted on I/O between phases. (The first
phase no longer has to dismantle and output its structure only to
have the next phase read and create a similar structure.)
Furthermore, many optimization rules are generated at code
generator generation time by PO and loaded into the compile-time
optimizer HOP, thus the overall time for peephole optimizations is
reduced.

Phase-ordering problems are not as likely to occur when instruction
selection and peephole optimization are tightly integrated. The
register allocator is part of the instruction selection phase; an infinite
number of psuedo-registers are n o t used. The register allocator may
naively generate more spills than needed, but as optimizations are
applied unnecessary spills are removed. The spill code is not written
unless it is actually needed (i.e. cannot be optimized away.) A "spill
count" is used for each register to delay spill code emission until all
optimization is complete to see if the code is actually ever needed.
The code produced from this new compiler is not as good as the
original compiler with separate phases but the authors attribute this
to the fact that common subexpression elimination has not yet been
im plem ented.

6.2 Ganapathi and Fischer

Ganapathi and Fischer's framework for integration works with
attributed parsing code generators and builds on their earlier work
on instruction selection [GaFi88], Additional grammar productions
(i.e. productions that describe special purpose instructions) are added
to the instruction selection productions to perform peephole
optimizations. Since attributes maintain contextual information,
peephole optimizations on logically adjacent instructions are also
possible. The structure is largely machine independent.

A peephole optimizing production is composed of the RHS of the
leading logically adjacent instruction, a non-terminal 'V', and the RHS

21

of the trailing logically adjacent instruction. Code that would have
been emitted for the leading and trailing instructions (if they had not
been logically adjacent) is buffered as an attribute of the LHS of the
peephole production. When the peephole production is recognized,
improved code is emitted instead of the original sequences. The code
between the logically adjacent instructions is guaranteed to be
emitted by the LHS attribute of the peephole production. The
productions are ordered so that the peephole optimization
productions come first. Adding peephole optimizing productions
does not make the code generator any more likely to block. (If it did
not block before these productions were added, it will not block
now.) Thus if peephole productions can be applied, they will be.

Nested peephole optimizations are allowed; overlapped windows of
peephole optimizations are not permitted (when two matches
overlap and neither properly contains the other). The authors say
that this restriction can be overcome with multiple buffers that emit
code to different files that are then merged in correct sequence for
final assembly but implementation of this solution may not be
practical. Secondly, with a single-pass implementation it is not
possible to iteratively apply peephole optimizations to improve the
code quality. Here again the authors say that iterative peephole-
optimization opportunities do not appear frequent enough to cause
serious degradation in code quality. A multi-pass attribute
evaluation scheme could solve this problem.

7. Backtracking LR-parsing for Code Generation

The goal of this thesis is to present a formal method of automatically
deriving code generators from a code generation specification. We
present the concept of a backtracking LR-parser, describe its use for
the automatic creation of a code generator using a tree-based
notation as the code generation specification (which is translated into
an affix grammar), and give implementation details.

The backtracking LR parsing code generator described in subsequent
chapters approaches the automatic derivation of code generators
from the perspective of pattern matched instruction selection. This
research is closely related to, and benefits from, earlier work by
Glanville and Graham [GlGr78], Henry [Hen84], and Ganapthi and
Fischer [GaFi85]. However, the introduction of backtracking gives our
approach some of the flavor of Cattell’s approach [Cat80], and our
tree-based notation for machine descriptions has the flavor of Aho,

22

Ganapthi and Tjiang [AhGaTj89]. In this way, our research attempts
to combine the best of our predecessors.

As compared with other parser based methods, a backtracking LR
parsing code generator shares many of the same strengths. Because
our code generator uses attributed grammars, it is more closely
related to the affix grammar driven code generator of Ganapathi and
Fischer [GaFi85] than the Glanville and Graham [GlGr78] and Henry
[Hen84] code generators. Backtracking LR parsing also has the
additional advantage of avoiding syntactic and semantic blocking
problem via backtracking. In this sense backtracking LR parsing
combines the flexibility of CatteU's approach [Cat80] with the
formalism of parsing.

In comparsion with the dynamic tree pattern matching approach
exemplified by Twig [AhGaTj89], backtracking LR parsing code
generators can perform common subexpression elimination and other
high level optimizations which Twig does not. Two advantages Twig
claimed over other parser-based approaches are notational ease and
avoidance of semantic blocking. Neither advantage holds over using
tree transformations with a backtracking LR parser. As stated
previously, the backtracking LR parsing code generator avoids
blocking, and we have developed a new tree-based notation for
writing code generation specifications that is comparable to Twig in
terms of notation.

The effects gained from combining register transfers to perform
peephole optimizations (and instruction selection in the case of
Fraser and Wendt [FrWe86]) a la Davidson and Fraser [DaFr84] and
Fraser and Wendt [FrWe86] can also be performed with a
backtracking LR parser. The reparsing allowed by the backtracking
would allow trees to be combined in much the same way that
registers are combined. Although in this research, instead of
combing two register transfers, two trees are collapsed and the result
reparsed. In this way a logical window is available as well as the
ability to handle overlapped and nested optimizations.

23

Tree Transformations
(TTL)

Code Generation Specification
(Grammar)

Intermediate Code

Parse Tables

Grammar
Generator

Parse r
Generator

Code Generator
(Backtracking LR

Parser)

Object Code

Figure 1.3 Backtracking LR Parsing-based CodeGeneration
Figure 1.3 depicts the use of a backtracking LR parser for the
automatic derivation of a code generator from a TTL specification.
There are four items this thesis discusses in detail:

1) The code generator produced from the code generation
specification, represented by the box on the left of Figure
1.3.

2) The modified parse tables which enable backtracking LR
parser depicted on the lower right of Figure 1.3, and to a
lesser extent the parser generator shown directly above
the parse tables in the figure.

3) The tree-based notation, written in the tree
transformation language (TTL), is used for code
generation specifications, labeled Tree Transformations in
the upper right of Figure 1.3.

4) The grammar generator, shown in the box in the upper
right of Figure 1.3, which transforms TTL code generation
specifications into grammar-based specifications.

The remainder of this thesis is organized as follows. Chapter 2
reviews LR parser-based approaches to the automatic derivation of
code generators with particular attention to the role of semantic
actions for code generation and the problems of syntactic and

2 4

semantic blocking. The context is established which motivatated our
investigation of the use of backtracking LR parsers for the automatic
derivation of code generators. In Chapter 3, the modifications to the
parser generator, to the parse tables, and to the parsing algorithm
which enable backtracking are discussed. The problem of backing up
in the presence of semantic actions performed during parsing is
deferred until Chapter 4. Chapter 4 builds on the foundation
provided in chapters 2 and 3, to discuss gathering, saving and
restoring semantic information during the parse and backup over
semantic actions. In Chapter 5 the concept of a tree transformation
is introduced and a tree transformation language (TTL) for writing
code generation specifications is described. In Chapter 6 an
algorithm for a grammar generator which translates from TTL
machine descriptions to an affix grammar representation is
presented. This algorithm was not implemented for this thesis, but
was executed manually. In Chapter 7 modifications to the code
generator to allow for a specialized form of backup are discussed.
These modifications were primarily caused by the need to reparse
only the changed or new input created by a tree transformation.
Chapter 8 summarizes the research and presents conclusions.

25

Chapter 2
Blocking Problems in Parsing-based

Code Generators

"I went over my furniture and looked at each chair in turn,
wondering whether the trouble lay there fo r it upsets me to see even
one chair not in its usual place ." from White Nights by Dostoyevsky
(1848)

In this chapter, we discuss the problems caused by blocking, i.e.
when the parse is in a state for which no action can be performed.
We outline solutions previous researchers have used to avoid both
syntactic and semantic blocking.

A compiler translates a machine-independent source language into a
machine-dependent target language. Most compilers consist of a
fro n t-en d , which recognizes the source language, and a back-end or
code generator which produces the target machine language.

The front-end translates the source language into an equivalent
representation using an intermediate code or IC. The code generator
translates the IC into an equivalent representation in the target
language.

Use of an intermediate representation has several benefits. A
carefully designed IC permits the same front-end to be used with
different code generators and vice-versa. This allows compilers, for
the same language on different machines or for different languages
on the same machine, to be implemented more easily and with less

26

duplication of effort. Second, the IC is a form of separation of
concerns that simplifies both the front-end and the code generator.
Information specific to the target machine is hidden from the front-
end, and information specific to the source language is hidden from
the code generator.

Glanville and Graham [GlGr78] identified the code generator’s
problem of recognizing the IC as a string pattern matching problem
which can be solved using LR parsing technology. In their method,
the code generator is a modified LR parser which accepts the IC as
input, parses it and transforms it into the target machine language.
This approach is summarized by Henry as follows:

"In the Graham-Glanville approach to code generation, a
code generator is a pattern matcher/replacer built from
pattern-replacement pairs. In our applications, the
pattern models the computation that the instruction
performs, and the replacement models the effect of the
computation." [Hen84, p. 3].

The IC is viewed as a language that can be described by a grammar.
Target machine instructions are associated with grammar
productions to describe how the IC is translated into the target
machine instructions. The association of grammar productions and
target machine instructions forms the pattern-replacement pairs
described by Henry. A Glanville-Graham style code generator is
generated from the code generation specification grammar using an
LR parser generator.

As the code generator parses the IC, target patterns represented by
grammar rules are recognized and associated target machine
instructions are emitted. For example, consider the IC tree in Figure
2.1 for an assignment statement.

Aa +
/ \

b c

Figure 2.1 Intermediate Code Tree for a:= b + c

27

Since parsers pattern match strings and this IC is represented with a
tree, the IC must be linearized to allow parsing based pattern
matching. The IC tree above can be represented in linearized Polish
p re fix form:

:= a + b c
In LR parsing-based code generation, the IC is described with a
grammar. The following grammar will pattern match an IC of the
form shown above:

(1) <assign> —> := <var> <expr>
(2) <var> —> <id>
(3) <expr> —» + <expr> <expr>
(4) <expr> -4 <var>
(5) <expr> -» <no>

Figure 2.2 MD1: A Partial Specification Code G

The grammar MD1 in Figure 2.2 partially describes an assignment
statement. An actual code generation specification would include
many more productions to pattern match the IC. More productions
are required to fully describe possible expressions (< expr>). When a
production matches, an associated action emits machine instructions.

Machines have several possible instructions or sets of instructions to
accomplish the same task, therefore there are many different
translations possible for a given IC code sequence. All code
generation specifications reflect this ambiguity.

An ambiguous grammar results from an inherently ambiguous code
generation specification. Therefore there are a number of possible
parse paths for a given linearized IC tree. For example, consider the
partial code generation specification shown in Figure 2.3.

2 8

(1) <assign> —» : = <id> + <id> <no>
(2) <assign> —> := <var> <expr>
(3) <var> <id>
(4) <expr> —> + <expr> <expr>
(5) <expr> —> <var>
(6) <expr> —> <no>

Figure 2.3 MDl-ambiguous
The first production is an optimizing production designed to generate
an increment instruction. It would require both identifiers to be
identical and a numeric operand with a value of one.

In Figure 2.3, MD1 is ambiguous. Both the first production:
<assign> —»:=<id> + <id> <no>

and the production:
<assign> —» := <var> <expr>

can derive : = a + a X.

This ambiguity results in a shift-reduce conflict during parsing. Once
the input := <id> is on the stack, and the + symbol appears as the
next input token, there is a conflict. Reducing <id> to < v a r> will
eventually result in use of the production (2), while shifting the +
token will eventually result in use of the production (1). Since shift-
reduce conflict resolution occurs before the rest of the input is
known, problems can result.

Grammar productions for target machine instructions also require
semantic information as well as a syntactic description of the IC. For
instance the production that represents an increment, <assign> -» :=
<id> + <id> <no>, cannot be applied on most machines unless the
number, <no>, is 1 and the two identifiers in the production represent
the same location in memory.

Semantic information may be encoded in the grammar syntactically
[GlGr78]. MDl-ambiguous is modified as shown in Figure 2.4.

29

(1) <assign> := <id> + <id> <one>
(2) <assign> -» := <var> <expr>
(3) <var> <id>
(4) <expr> —> + <expr> <expr>
<5) <expr> —> <var>
(6) <expr> <no>
(7) <expr> <one>
(8) <one> —> 1
Figure 2 . 4 MD2: Semantic Information

Syntactically
Productions (7) and (8) are added and production (1) is modified so
only increments by one would be allowed. Furthermore, production
(7) is needed to ensure that l's could be used in other expressions.

An LR parser can also associate one or more semantic attributes
[Knu68] with each terminal or nonterminal symbol. These semantic
attributes may be represented in the form of conditional predicates
[CoNo85]. If the semantic predicate evaluates to true then all
semantic restrictions have been met. In this case production number
one of the grammar MD1 -ambiguous would be modified as shown in
Figure 2.5.

(1) <assign> —>:=<idi> + <id2> <no>
(<idi>.name = < id 2 >.name) AND (<no>.value = 1)

Figure 2.5 MDl-ambiguous with Semantic
Restrictions

The notation uses italics to represent semantic restrictions.
Subscripts are also used to distinguish between identical nonterminal
symbols in the right-hand-side (RHS) of a production. The subscripts
are primarily required for semantic predicates. The semantic
restrictions must distinguish between the two identifiers, <id>, in the
RHS.

The parser checks semantic information during the parse and by
doing so, guides the parse and affects parsing decisions. If the parser
only shifts semantically legal symbols, there is no need for the parser
to check the symbol again during a reduction. Alternatively, if the
parser checks semantic conditions on reduce actions, there is no need

30

to check the symbol when shifting. Thus parsers can check semantic
conditions either on shifts or reduces but need not do both.

A parser that checks semantic information at shift actions is called a
shift-checking parser. If we assume we had an original input of " : =
a + a l" and the parser for the grammar MDl-ambiguous was a
shift-checking parser, then the parser would "shift "shift a"
then the parser would check that the second <id>, "a", matched the
first <id>, "a", before shifting that second <id> onto the parse stack.

A parser which checks semantic conditions at reduce actions is called
a reduce-checking parser. In this case the whole assignment
statement ": = a + a l" would be shifted onto the parse stack before
any semantic information is checked.

Regardless of where the semantic information is checked, at shift or
reduces, all information is checked sooner (in the case of shift
checking-parsers) or later (in the case of reduce-checking parsers).
Checking semantics at both shift and reduce actions is redundant.
Parsers which encode semantic information syntactically are, by
nature, shift-checking parsers. For the remainder of this chapter, we
assume a reduce-checking parser unless stated otherwise.

1. Blocking and Code G eneration

A code generator is correct if it always generates correct code, i.e.
code that produces the expected I/O behavior, for a legal, linearized
IC tree. Blocking occurs when the parser reaches a state for which no
action is possible for the current input symbol. If blocking occurred
only for illegal IC, blocking would not be a major concern. Such IC-
induced blocks are correct and necessary [AiGrHeMcL184, p. 17].
However, blocking is of particular concern because code generators
based on LR parsing can block on legal IC. These m odel-induced
blocks are incorrect and unnecessary [AiGrHeMcL184, p. 17].
Consequently, steps must be taken to detect and correct model-
induced blocks whenever possible. In what follows, references to
blocking imply model-induced blocking unless explicitly stated
otherw ise.

The potential for blocking arises because code generation
specification grammars are usually ambiguous. Blocking occurs
because parsing (code generation) decisions are made before all the
pertinent information is known. More precisely, shift-reduce

31

conflicts are resolved in favor the shift. As a result, an incorrect early
decision causes blocking later in the parse.

Code generation specifications generally consist of a core set of
productions which cover the IC syntactically and parse all legal,
linearized IC trees. This basic, code-generating core is further
refined by the addition of new productions which take advantage of
special-purpose machine instructions. Since the core already covers
the IC syntactically, the new optimization productions make the code
generation specification ambiguous and introduce shift-reduce
conflicts.

Two approaches to detecting and avoiding blocks are described. Both
approaches attempt to detect and avoid blocking at code generator
generation time. Thus both attempt to anticipate where blocks can
occur at parser generation time and generate a parser which avoids
the blocks.

2. Syntactic Blocking

Syntactic blocking occurs when no shift or reduce action is possible.
Traditionally syntactic blocks are identified by an error action in the
parse table. The MDl-ambiguous grammar of Figure 2.3 produces a
parser that will syntactically block on the input := a + a b.
Blocking occurs because the shift-reduce conflict is resolved in favor
of the shift, which will attempt to match the first production

<assign> —» := <id> + <id> <no>.
Shift-reduce conflicts are generally resolved in favor of the shift
[Hen84] under the assumption that this will result in higher quality
code. A syntactic block occurs when the stack contains := <id> +
<id>. The parser cannot shift b onto the stack as an <id> because
only a <no> is legal. If the parser had chosen the alternative parse
path, attempting the production

<assign> —> := <var> <expr>,
no syntactic block would occur. This particular syntactic block could
be avoided by adding an additional production:

<assign> —»:=<id> + <id> <id>
To avoid all syntactic blocks, the following production would be
required:

<assign> —» := <id> + <expr> <expr>

32

3. Glanville, Graham, and Henry Approach to Code
G e n e ra tio n

Glanville, Graham and Henry encode semantic information
syntactically [AiGrHeMcL184], thus introducing the potential for
syntactic blocking. Syntactic blocks are resolved at code generator
generation time (parser generation time) [Hen84] by identifying
those states in which a syntactic block can occur. For each blocking
state, the code generator generator derives a new grammar
production which covers the blocking production.

The cover production is constructed from the blocking production by
creating a derivation tree for the blocking production using simpler
productions. This derivation tree is then transformed into the
covering production which has the same left context as the blocking
production and a new right context that allows the blocking symbol
to shift.

Henry calls the use of cover productions a "specialized form of
limited backtracking" [Hen84, p. 22]. The parser generator
essentially simulates a backtrack and reparse at parser generation
time, and then hardwires the effect of the backup by adding a
covering production with default action. Because the limited
backtrack is simulated at parser generation time, no backup actually
occurs during parsing/code generation.

The default action for the covering production is generated
automatically by synthesizing the simpler productions used to derive
the covering production. This synthesis simulates the code
generator's action to derive the code sequences to be emitted as the
default action. The default action is embedded in the parse tables at
parser generation time. This method also avoids the need to undo
semantic actions when avoiding syntactic blocks. The covering
production has the same left-context as the "blocked" production, so
any semantic actions completed are still valid.

Construction of the derivation tree is possible because semantic
information is represented unambiguously with unique terminal
symbols. This unambiguous representation allows the parser
generator to decide which simple productions are applicable while
constructing the derivation tree.

33

Grammars which include semantic attributes on nonterminals use a
single nonterminal to represent different semantic values. The
representation is ambiguous at parser generation time, although
semantic attributes have unambiguous values during parsing. Thus
the parser generator cannot determine which simple productions are
applicable and is unable to construct the derivation tree. And
without the derivation tree, a covering production cannot be created.

Thus Glanville, Graham and Henry automatically detect and correct
semantically induced syntactic blocks at code generator generation
time for grammars which encode semantics syntactically. More
precisely, they can correct for the resolution of shift-reduce conflicts
in favor of the shift. An important feature of their approach is that
the code to be emitted as a default action is derived automatically
from the compiler writer's code generation specification.

One disadvantage of using syntax for semantics is the size of the code
generation specifications. It has been argued elsewhere [AhGaTj89]
that encoding all semantic information syntactically forces the code
generation specifications to be large and unwieldy, on the order of
1000 productions for a VAX-11/780. The same machine requires
approximately 500 productions [GaFi85] when semantic information
is encoded using attributes.

Another disadvantage is that suboptimal code can result. A dynamic
programming algorithm using cost information associated with each
production usually generates efficient code, but "ambiguities
stemming from complicated addressing modes are incorrectly
resolved by our algorithms, potentially resulting in inefficient code"
[AiGrHeMcL184, p.22].

4. Semantic Blocking

Semantic qualifications are a necessary part of code generation
specification grammars. The potential for semantic blocking arises
when semantic information is encoded using semantic attributes.
These semantic qualifications attached to symbols prevent the
continuation of parsing.

For example, the grammar MDl-ambiguous semantically blocks on
the input := a + a 10. Once again, resolving the shift-reduce
conflict in favor of the shift will eventually attempt to match the first
production. The attributed grammar production shown in Figure 2.5

34

fails because (<no>. v a lu e <> l) . A similar semantic block occurs
on the input := a + b l as the semantic restriction
(< i d i > . n a m e - < i d 2 >.name) would not be met. Either of these two
semantic blocks could be avoided by taking the alternative parse
path .

In addition to semantic blocks which originate from shift-reduce
conflicts, semantic blocks can also occur if the original code
generation specification is incomplete, and all possible reductions are
semantically restricted for a legal IC tree.

5. Ganapathi and Fischer's Approach to Code Generation

Like Glanville and Graham, Ganapathi and Fischer [GaFi85] apply
parsing techniques to instruction selection by using affix grammars
[Wat77] to evaluate semantic attributes to influence the construction
of the parse tree. The affix grammar’s attributes allow the semantic
restrictions of the machine language to be represented adequately, so
that more of the target architecture is described by the grammar and
less buried in hand-coded semantics. A semantic predicate evaluates
the attributes associated with each terminal or nonterminal, the
attributes determine whether or not a rule is applied.

Each symbol in the grammar may have a fixed number of synthetic
(up the tree) or inherited (down the tree) attributes. Inherited
attributes are computed before synthetic ones. Each rule in the
grammar has an associated set of attribute evaluation functions.
Attributes consist of two types of symbols: predicate symbols, which
control parsing, and action symbols, which compute new attribute
values. Predicate symbols provide complex information flow, as well
as selective rejection of inappropriate productions. For example, a
predicate can enforce the restriction that an increment instruction
has the accumulator as its operand.

Two restrictions are necessary to make affix grammars suitable for a
one pass, left-to-right, attributed bottom-up parse. First, action
symbols must appear at the extreme right end of a production.
Action symbols can only inherit information from their left siblings.
Second, all attributes of nonterminals must be synthetic.

Ganapathi and Fischer cannot take advantage of Glanville, Graham
and Henry's approach to resolving semantic blocks because they use

35

affix grammars and attributed parsing [GaFi85]. Ganapathi and
Fischer must resolve both syntactic and semantic blocking.

Syntactic Blocking

Potential syntactic blocks can be "automatically detected when a code
generator is first created. If a State S is entered by shifting an
operator OP and there exists an action for that state and the next
symbol N, then every state entered by shifting OP must have an
action for symbol N." [GaFi85, p. 588] The compiler writer can decide
whether to add grammar productions by hand to the code generation
specification to avoid the syntactic block. Some potential syntactic
blocks are ignored if it can be guaranteed that the blocking cannot
appear in the IC.

Semantic Blocking

Ganapathi and Fischer use a reduce-checking parser. The compiler
writer must identify potential semantic blocks by hand. Semantic
blocking is usually corrected by adding a default production. The
default production is identical to the blocking production but has no
semantic qualifications. The default production will always be
applicable and "consequently, it guarantees no blocking" [GaFi85, p.
589] A single default production is added for a set of semantically
restricted and syntactically identical productions.

For example the code generation specification MDl-ambiguous of
Figure 2.3 has been slightly modified to produce the grammar MD1-
GF shown in Figure 2.6.

(1) <assign> —> := <idi> + <id2> <no>
(<idi>.name = <id 2 >.name) AND (<no>.value ~ 1)

(2) <assign> —> := <idi> + <id2> <no>
(<idi>.name = < id 2 >.name) AND (<no>.value = 2)

(3) <assign> —> : = <var> <expr>
(4) <var> <id>
(S) <expr> —^ + <expr> <expr>
(6) <expr> —» <var>
(7) <expr> —> <no>
Figure 2.6 MD3 with Semantic Restrictions

36

The following semantically unrestricted production, called a default
rule , covers the first two productions:

<assign> -»:=<id> + <id> <no>

The parser will attempt to apply the first two productions. If
semantic restrictions disqualify these productions, the default
production is guaranteed to apply. This will certainly not handle all
potential blocks, but will handle any that match (1) and (2)
syntactically.

Ganapathi and Fischer also resolve semantic blocks with bail out
productions. Bail-out productions are used to resolve semantic
blocks resulting from an optimization-greedy code generation
strategy which selects shifts over reduces. Bail-out productions
usually have semantic restrictions; the burden rests with the
compiler writer to ensure that at least one of the productions will be
satisfied.

The distinction between bail-out productions and default productions
is unclear. Bail-out productions and default productions are identical
in function; the only difference seems to be the condition which
occasioned the rule's inclusion in the code generation specification.
In addition, bail-out productions are used when an attempt at
optimization fails due to semantic restrictions. A bail-out production
attempts to preserve as much of the optimization as possible. Thus,
several bail-out productions are usually added for a single
semantically restricted production whereas a single default
production is added for a set of semantically restricted productions.

Ganapathi and Fischer require the compiler writer to create the
actions for default and bail-out productions manually. As the action
parts of most productions generate machine code sequences, they
suggest that such sequences could be derived automatically by a
technique similar to Glanville, Graham, and Henry. Unlike Glanville,
Graham, and Henry the burden is entirely on the compiler writer to
ensure that default and bail-out productions are correct and have the
proper semantic restrictions.

Limitations and Drawbacks

Ganapathi and Fischer’s approach has drawbacks. First, the approach
relies heavily on the compiler-writer's skills as most blocking
detection and correction is handled manually. In this respect, their

37

approach moves away from the provably correct formalisms which
motivated research into LR parser based code generation in the first
place. Careful attention on the part of the grammar writer is needed
to ensure all the correct default rules and bail-out productions have
been added. Second, the need for default rules and bail-out
productions complicates the code generation specification. Usually
every semantically restricted production will force the addition of
similar, less restricted productions to the code generation
specification. This increases the size of code generation specification
which in turn makes it less manageable.

Finally, their approach can result in suboptimal code. For example,
consider the affix grammar rule:

<instr> -» ■ := <vari> + <var2> <no>
same (<vari>, <var2>) and
(<no>.value <= 32) EMIT "incr"

which describes an optimization that emits an increment rather than
a more costly add instruction. This production can only be applied
after < var2> and <no> have been shifted onto the stack so that the
attributes same (<vari> , <var2>) and (<no>. v a lu e <= 32) can be
evaluated. Semantic blocking will occur if either attribute fails,
unless a default rule to emit an "add" is in place, because failure
occurs after < v a r 2> and <no> have been shifted onto the stack. But
<vari> and < var2> can be arbitrarily complex, for instance:

<var> —> [1 <id> <expr>

Suppose also that the <expr> parts for <vari> and <var2> are the
same. Ideally, the code generator should not emit code to evaluate
the <expr> twice, for c v a r ^ and <var2>, but use the <expr> value just
calculated for <vari> for <var2>. The default rule must emit
suboptimal code for this and similar cases.

A possible solution might be to add more rules for increment to
handle the situation as a special case, but for each such special case, a
corresponding default rule must also be included to avoid semantic
blocking, and the grammar grows nonlinearly quickly becoming
unw ieldly.

38

6. A Backtracking Code Generator

Both syntactic and semantic blocks result from making parsing
decisions before all the information is known. An incorrect decision
results in a block later in the parse when a different decision earlier
would have avoided the block. Shift-reduce conflicts are resolved in
favor of the shift in an attempt to generate better code. In the
example of grammars MD2 and MD3, the code generator attempts to
apply special purpose instructions such as an increment. Efficient
use of special purpose instructions is desirable, so it is reasonable to
continue favoring shifts over reduces. The issue is how to recover
when such decisions prove to be incorrect later in the parse.

Since the basic cause that underlies model-induced blocking is that
parsing decisions are made before all relevant information is known,
a LR parsing code generator with a backup capability could avoid the
syntactic and semantic blocking that results from shift-reduce
conflict resolution in favor of the shift. Backup solves the problem as
follows: when a syntactic or semantic block occurs, simply backup
by taking symbols off the parse stack and placing each back into the
input. As symbols are placed in the input, check each for earlier
shift-reduce conflicts resolved in favor of the shift. At that point an
alternative decision could be made. If a parse exists, it will be found
by exhausting all the alternatives.

Backtracking is automatic and conceptually simple. The selection of
the code sequences to be emitted when recovering from blocks is a
natural result of the backtrack and reparse.

Ideally, the code generation specification for a backtracking code
generator starts with a core set of productions that describe the
machine completely without semantic restrictions. Such a code
generation specification would produce suboptimal code. The quality
of the generated code is improved by adding productions to the code
generation specification to take advantage of special-purpose
instructions such as increment. Optimizing productions can be
incrementally added without fear of blocking, and without need of
adding covering, default or bail-out productions. This is a
conceptually clean approach because it makes incremental inclusion
of optimizations simple. The next chapter discusses the
implementation of a backtracking LR parser.

39

Chapter 3
A Backtracking LR Parser

"Some men a forward motion love, but I by backward steps would
move." from "The Retreat", Silex Scintillans by Henry Vaughan
(1650)

A reduce-checking LR parser generator, Pargen [CoNo85], was
modified to generate LR parsers with backtracking. Changes in the
parser generator necessitated modifying the parsing algorithm. In
this chapter, we focus on the mechanisms which enable syntactic
backup without regard for any semantic actions performed via
reduce actions. The details of gathering semantic information during
the parse and backup over semantic actions are discussed in Chapter
4.

The addition of backtracking to an LR parser was motivated by the
work of Louis Slothouber [Slo89] at the College of William and Mary,
who used an LR parser with limited backtracking for production
system interpretation. Backtracking was simplified in Slothouber’s
work because the parser only backed up over shift actions.
Furthermore, there was no input to Slothouber’s LR parser in the
traditional sense. Working memory was examined to determined
which productions to fire. Thus, his research was by necessity
specialized to production systems and could not be used directly for
our backtracking parser. The research discussed here is not an
application of Slothouber's work but some of his ideas have been
incorporated.

40

This chapter discusses an LR parser which can backup over both shift
and reduce actions. After the work described in this chapter was
completed Wolfgang Keller published an article [Kel91] describing a
backtracking parser used in code generation. Although the research
was done independently, the resulting code generator is conceptually
similar. Keller's depth-first heuristic search parser implementation
cannot be compared to our backtracking scheme because it is not
described. It is clear that only instruction selection is implemented.

1. Modifications to the Parser Generator

A parser generator [CoNo85] was modified to produce new action
tables which encoded the information necessary for backtracking.
Traditional LR parse tables [AhSeU188] contain a single action (either
shift, reduce, error, or accept) for every (state, terminal) pair. This
traditional organization can be extended to resolve reduce-reduce
conflicts [CoNo85]. For each (state, terminal) pair which has a
reduce-reduce conflict, a list of reduce actions appears in the table
rather than a single action entry. Typically, semantic information is
used to choose which reduce action is taken. This extension was used
by Glanville and Graham [GlGr78].

The technique used to resolve reduce-reduce conflicts can be
extended to a more general scheme which allows multiple shift
and/or reduce actions for any (state, terminal) pair. In practice,
more than one shift action for a (state, terminal) pair cannot occur.
However, table entries which contain a single shift action and one or
more reduce actions1 can be used to encode the existence of shift-
reduce conflicts.

As discussed in chapter 2, shift-reduce conflicts are usually resolved
by the parser generator in favor of the shift. For a (state, terminal)
pair with a shift-reduce conflict, traditional parse tables would only
contain the shift action. Our parser generator was modified to
produce parse tables which could contain a shift action and one or
more reduce actions. A similar scheme was used by Slothouber
[Slo89].

t e l l e r [Kel91, p. 112] allows only one shift and one reduce for any (state,
terminal) pair.

41

1.1 Parse Table Example

For example, consider the following grammar, shown in Figure 3.1,
which describes programs in Polish prefix consisting of declarations
and simple assignment statements.

(1)
(2)
(3)
(4)

(5)

<program> —» <s_list> <eof>
<S_list> —» <assign> <S_list>
<S_list> —>
<assign> —> := <id> + <id> <no>

<±di>.name = < id 2 >.name AND
<no>.va lue = 1

<assign> —» := <id> + <id> <no>
<idi>.name — < id 2 >.name AND
<no>.va lue = 2

(6) <assign> -> := <var> A&a>V

(7) <var> —> <id>
(8) <expr> -> + <expr> <expr>
O) <expr> -> <var>
(10) <expr> -> <no>
Figure 3.1 Example Grammar MD4

The grammar rules are annotated with rule numbers, and semantic
restrictions appear in italics. The example grammar is an extension
of the partial machine description MD1 given in Chapter two.

42

Action Goto

States
1

<t«£>
2

<id>
3

<no>
5
+

6 H7
a s s i g n

m
«xpr

N10
s_list

mi
vor

1 r3 34 s3 39 s2 311
2 35 S3 39 s2 a l l
3 r3 34 S3 39 s6 s l l
4 38 s3 s9 37
5 acc . s3 39 32 s l l
6 r2 33 39 s2 s l l
7 313 310 312 s3 39 s2 s l l
8 r7 r7 r7 *14/*7 r7 33 39 s2 311
9 r6 r6 S3 39 s2 s l l
10 rlO rlO rlO rlO rlO S3 39 32 311
11 r9 r9 r9 r9 r9 S3 39 s2 s l l
12 313 slO s l2 S3 315 s2 311
13 r7 r7 r7 r7 r7 S3 39 s2 311
14 s l6 S3 39 s2 311
15 s l3 310 s l2 S3 sl7 32 S ll
16 318 s3 39 s2 311
17 r8 r8 r8 r8 r8 S3 39 s2 s l l
18 r4/r5 r4/rE s3 39 32 S ll

Figure 3.2 The Parse Table for Grammar MD4
The grammar MD4 is ambiguous. There are two possible derivations
for the input : = a + a 1 since both rule (4) and rule (6) apply. The
ambiguity is manifested in the parse tables, shown in Figure 3.2, as a
shift-reduce conflict on the symbol + in state 8. The two action
entries in the table for the + symbol allow the parser to either shift
the + , which leads towards application of ru le (4), or reduce by rule
(7), which leads towards application of rule (6).

Associating lists of shift and reduce actions with (state, terminal)
pairs via the parse table is all the information the backtracking
parsing algorithm requires. The parsing algorithm always attempts
the shift action first, but in the event of a block the algorithm backs
up and can attempt the reduce action(s) also encoded in the table. If
none of the reduce actions apply because of semantic restrictions, the
algorithm attempts to backup to an earlier decision point to try a
different parse path.

2. Modifications to the Parsing Algorithm

The parsing algorithm was modified to take advantage o f the new
tables produced. The backtracking LR parsing algorithm is split into

43

two parts: the forw ard parser and the backtracker. The forward
parser is essentially a traditional LR parsing algorithm, except that
additional backtracking information is saved. The backtracker
actually implements the backup, using the saved information to
quickly find the most recent parse state where an alternative parsing
decision is possible.

2.1 The Forward Parser

The forward parser is essentially a traditional LR parsing algorithm
with two modifications. The symbol on the parse stack along with an
index explained below is maintained as a symbol pair. Additionally,
a save stack which is identical in type to the parse stack is
maintained because parse stack elements, whether they are states or
symbol pairs, must be saved so that the "state of parse" can be
restored when backtracking. The save stack maintains a complete
history of the current parse. (An example illustrating the creation of
the save stack follows the discussion of the forward parsing
algorithm .)

The traditional parse stack is unchanged with the exception of its
symbol element which contains a symbol and an index. The symbol
type defines the kind of index that is included. If the symbol is a
terminal, the index is a marker into the action table which keeps
track of the last alternative tried for a given (state, terminal) pair. If
the symbol is a nonterminal, the index is the production number of
the rule that was applied to produce this nonterminal.

The state and symbol elements of the stack are used to look up
entries in the parse table in the usual way. In the case of terminal
symbols, each entry in the parse table is a list of one or more actions.
The marker indicates which action in the list should be attempted
next. In our implementation, the marker is an index into the list of
actions. The marker is initialized to one, and incremented each time
an action from the associated list is taken. If backtracking occurs,
the same state and symbol pair will be used to index the parse table
again.

Since nonterminal symbols always have a list of one action in the
goto table, no marker is required. Instead the index for the symbol
pair is a production rule number, so that it is known which RHS was
reduced to produce this nonterminal.

44

The forward parsing algorithm uses the next input symbol and the
current state to search the parse table (action table) for the entry
associated with that (state, symbol) pair. As stated previously, the
entry consists of an ordered list of one or more actions. The markers
are initialized so that the first action in the list is always attempted
first. The forward parsing algorithm is outlined in Figure 3.3.

Action is either accept, error, reduce or shift.
ActionMarker is an integer that determines for a given

action table entry which option in the ordered list is
to be tried. It is paired with a terminal,
currentInput to make up a symbol pair.

Currentlnput is the terminal used to determine which
column in the action table to use.

RuleReducedBy is the rule number that was applied to get
the nonterminal in its symbol pair.

State is the current state on the top of the parse stack
and determines which row in the parse tables, action
and goto, to use..

StateOrRule is a state when the action is shift or a
rule number to reduce by when action is reduce.

GetNextInput;
parseStack := empty;
push (InitialState, parseStack);
sa v e S ta c k := em pty ;

while true do
state := top(parseStack);
(action, StateOrRule):= GetAction(state,

(currentInput,Act ionMarker)
) ;case action of

Shift : DoShift;
Reduce : DoReduce;
Error : DoBacktrack;
Accept : Halt (Accept);
endcase;

endwhile;
Figure 3.3 The Forward Parsing Algorithm

Note that the forward parsing algorithm itself only differs from the
traditional LR parsing algorithm by using a marker (actionMarker) to
determine the next action and by calling the backtracker on error
actions. Details of each procedure called by the forward parser
appear in Figures 3.4, 3.5 and 3.6. Differences between the forward

45

parser's procedures and the traditional LR parser procedures have
been italicized for clarity.

currentlnput := Advance (input);
ac t ionM arker : = 1;

Figure 3.4 GetNextInput
The Shift algorithm, shown in Figure 3.5, is essentially the same

as the traditional shift procedure, except that the symbol pushed
onto the stack is a pair.

push ((c u r r e n t ln p u t , ac t ionMarker) , p a r s e S t a c k) ;
push (StateOrRule, parseStack);
GetNextInput;

Figure 3.5 DoShift
When a reduce action is taken by the parser, the stack elements
forming the production’s RHS are popped from the parse stack and
pushed onto the save stack. If the production’s RHS is empty, then
nothing is stored on the save stack. The stack element for the
leftmost symbol is pushed onto the save stack first and the stack
element for the rightmost symbol is pushed last. As in the
traditional Reduce algorithm, a new state is derived from the state on
the top of the parse stack and the left hand side of the production
just applied. Both the new symbol pair consisting of the nonterminal
from the left hand side and the applied production rule number and
the new state are pushed onto the parse stack. The modified
DoReduce algorithm is shown in Figure 3.6.

RHS := length (StateOrRule) * 2;
for i := 1 to RHS do

push (pop (parseStack), t em p S ta c k) ; endfor;
for i ;= 1 t o RHS do

push (pop (tem pStack) , sa veS ta ck) ;
e n d f o r ;
newParseState := GetGOTOTable (LHS(StateOrRule),

top(parseStack));
push ((LHS(StateOrRule), StateOrRule), parseStack);
push (newParseState, parseStack);

Figure 3.6 DoReduce

46

2.2 An Example Parse

The example shown in Figure 3.7 illustrates the forward parsing
algorithm using the example grammar MD4 of Figure 3.1 and
corresponding parse table shown earlier in Figure 3.2. In this
example, no backtracking occurs. The input is the assignment
statement: := a + a 1.

Notice that in this example, the first attempt to resolve the shift-
reduce conflict at state eight in favor of the shift succeeds. Also note
that the save stack does indeed maintain a complete history of the
successful parse.

Notational Conventions. The current input symbol is the
leftmost symbol of the input. The Parse stack is indicated
by P: and the save stack by S: and both stacks are shown top
to bottom.
1 . I n p u t = = > :=

S t a c k s
E.
si

a + a 1 < e o f >

2.

A c t i o n = = > S h i f t t o s t a t e 4

I n p u t = = > a + a 1 < e o f >
S t a c k s

E. &
s 4
<:=, 1)
si

A c t i o n = > S h i f t t o s t a t e

3 . I n p u t = > + a 1 < e o f >
S t a c k s

E. &
s8
« i d > , 1)
s 4
(: = , 1)
si

A c t i o n = = > S h i f t t o s t a t e 14

5 . I n p u t = = > 1 < e o f >
S t a c k s

E. 2.
s l 6
{ < id > , 1)
s l 4
(+ , 1)
1 < i d > , 1)
s 4
(: = , 1)
s i

A c t i o n = = > S h i f t t o s t a t e 18

4 . I n p u t = > a 1 < e o f >
S t a c k s

£ 2.
S14
<+, 1)
s 8
< < id > , 1)
34
< := , 1)
si

A c t i o n = = > S h i f t t o s t a t e 16

6 . I n p u t = = > < e o f >
S t a c k s

E. 2.
s l 8
(< n o > , 1)
s l €
(< i d > , 1)
3 1 4
(+ , 1)
s 8
« i d > , 1)
s 4
(: = , 1)
s i

A c t i o n = = > R e d u c e b y r u l e 4

47

K

I n p u t = > < e o f > I n p u t = = > < e o f >
S t a c k s S t a c k s
E 2. E &
s 3 318 s 6 318
(< a s s i g n > R4) « n o > , 1) (< s l i s t > , R3) (< n o > , 1)
s i a l 6 s 3 316

« i d > , 1) (< a s s i g n > , R4) « i d > , 1)
314 s i 314
(+ , 1) <+, 1)
s8 38
(< i d > , 1) (< i d > , 1)
34 s4
(: = , 1) < := , 1)

A c t i o n —=> R e d u c e b y r u l e 3 A c t i o n = = > R e d u c e b y r u l e

9 . I n p u t = => < e o f > 1 0 . I n p u t = => < e o f >
S t a c k s S t a c k s
E S. E S.
s2 s 6 s 5 s 6
(< s _ l i s t , R2) { < s _ l i s t > , R3] (< e o f > , 1) (< s _ l i s t > , R3)
s i s3 s 2 s 3

(< a s s i g n > , R4) (< s l i s t > , R2) { < a s 3 i g n > , R4)
s l 8 S l 318
(< n o > , 1) (< n o > , 1)
316 316
(< i d > , 1) « i d > , 1)
314 s l 4
(+, 1) (+ , 1)
s8 s 8
« i d > , 1) « i d > , 1)
s4 34
(: = , 1) (: = , 1)

A c t i o n — » S h i f t t o s t a t e 5 A c t i o n = = > A c c e p t

Figure 3.7 Parse Trace using Grammar MD4
2.3 The Backtracker

The backtracker uses the save stack maintained by the forward
parser to attempt a backup. DoBacktrack is invoked for both
syntactic and semantic blocks. In the event of a syntactic block the
symbol that causes the block is never put on the parse stack and
remains in the input. Semantic blocks are discovered by the forward
parser when none of the semantic restrictions for a list of reduce
actions are met.

The backtracking algorithm iterates until an alternative path is found
or until there are no other possible paths to try, i.e. the parse stack is
empty. At each iteration the parse stack pops and discards the state
on top of the stack. Then a symbol pair is popped and examined.

48

If the symbol pair represents a terminal and the marker indicates
there is an alternative path for the terminal, control is returned to
the forward parser with new values for current input and its marker.
If the symbol pair represents a nonterminal the right hand side of
the rule is removed from the save stack and pushed onto the parse
stack, so that it is as if that rule had never been reduced. Each
symbol of the right hand side of the production can now be examined
in turn.

The backtracker algorithm is shown in Figure 3.8.

while not empty (parseStack) do
begin

pop (parseStack);
if top(parseStack) is terminal then

(currentlnput, actionMarker) :=
pop (parseStack);

if there exists an action list in the parse
table for the symbol, currentlnput and the
state, top (parseStack)) and there is an
(actionMarker+1) entry in that list then
actionMarker := actionMarker + 1 ;
Exit DoBacktrack;

endif
else (* top of the parse stack is a nonterminal*)

(nonTerminal, ruleReducedBy) :=
pop (parseStack);

RHS := length (ruleReducedBy) * 2;
for i := 1 to RHS do

push (pop (saveStack), tempStack); endfor;
for i := 1 to RHS do

push (pop (tempStack) , parseStack) ;
endfor;

endif
endwhile;
Halt the parse with an error.
Figure 3.8 DoBacktrack algorithm

2.4 Simple Backtracking Example

The example shown in Figure 3.9 illustrates the backtracking
algorithm using the example grammar MD4 from Figure 3.1 and

49

parse table shown earlier in Figure 3.2. This is a simple example in
which no reduce has occurred when DoBacktrack is called, i.e. all
symbols examined are popped from the parse stack and put back
into the input. The input is : = a + a 5.

In diagram (3), of Figure 3.9, the parser will attempt to and
eventually apply the optimized increment instruction over the more
costly add instruction, so in this shift-reduce conflict the shift to state
14 is chosen over the reduce by rule 7. This leads to a block in
diagram (6). The increment instruction cannot be applied because
the semantic restrictions are not met. DoBacktrack is called to find
an alternative path. The backtracker backs up to state 8 where the
most recent choice is found. This time the parser chooses the reduce
by rule 7 and the parse continues to completion.

1 . I n p u t = => := a + a 5 < e o f >
S t a c k s

E. S.
s i

A c t i o n = = > S h i f t t o s t a t e 4

2 . I n p u t — > a + a 5 < e o f >
S t a c k s

E. 2.
s 4
<:=, 1)
s i

A c t i o n = > S h i f t t o s t a t e 8

3 . I n p u t = > + a 5 < e o f >
S t a c k s

E. S.
s 8
« i d > , 1)
s 4
<:=, 1)
si

A c t i o n = = > S h i f t t o s t a t e 14

4 . I n p u t = > a 5 < e o f >
S t a c k s

E. S.
314
<+, 1)
s 8
« i d > , 1)
s4
<:=, 1)
si

A c t i o n = = > S h i f t t o s t a t e 16

5 . I n p u t = = > 5 < e o f >
S t a c k s

E. £L
s l 6
« i d > , 1)
s l 4
<+, 1)
s 8
(< i d > , 1)
s 4
(:=, 1)
si

A c t i o n = = > S h i f t t o s t a t e 18

6 . I n p u t = = > < e o f >
S t a c k s

EL 2 .
s l 8
(< n o > , 1)
s l 6
{ < id > , 1)
s l 4
(+ r X)
s8
(< i d > , 1)
34
<:=, 1)
si

A c t i o n = = > E r r o r , c a n n o t
r e d u c e b y r u l e 4 o r
r u l e 5 , D o B a c k t r a c k

50

After Backup: Currentlnput is + and actionMarker is 2

11 ,

1 3 ,

I n p u t — > a 5 < e o f > 8 . I n p u t = = > a 5 < e o f >
S t a c k s S t a c k s

E £ E £
38 s 7 38
(< i d > , 1) (< v a r > , R7) « i d > , 1)
34 s 4
< := , 1) (: = , 1)
s i s i

A c t i o n = = > R e d u c e b y r u l e 7 A c t i o n = = > S h i f t t o s t a t e 12

I n p u t = > a 5 < e o f > 1 0 . I n p u t = = > 5 < e o f >
S t a c k s S t a c k s

E £ E £
s l 2 s8 s l 3 s 8
(+ , 2) « i d > , 1) (< i d > , 1) { < id > , 1)
s 7 312
(< v a r > , R 7) (+ , 2)
s 4 s 7
(: = , 1) (< v a r > , R7)
s i s 4

(: = , 1)
s i

A c t i o n = = > S h i f t t o s t a t e 13 A c t i o n = = > R e d u c e b y r u l e 7

I n p u t = > 5 < e o f > 1 2 . I n p u t = = > 5 < e o f >
S t a c k s S t a c k s

E & E £
s l l s l 3 s l 5 s l l
(< v a r > , R7) { < id > , 1) (< e x p r > , R9) (< v a r > R7)
312 s8 s l 2 s l 3
<+, 2) < < id > , 1) (+ , 2) « i d > , 1)
37 s 7 s8
(< v a r > , R7) (<var>, R7) (< i d > , 1)
s 4 s 4
(: = , 1) (: = , 1)
s i s i

A c t i o n = = > R e d u c e b y r u l e 9 i c t i o n = = > S h i f t t o s t a t e 10

I n p u t = = > < e o £ > 1 4 . I n p u t = > < e o f >
S t a c k s S t a c k s
E £ E £
s lO s l l s l 7 s lO
(< n o > , 1) (< v a r > , R7) (< e x p r > , RIO) (< n o > , 1)
s l 5 s l 3 s l S s l l
(< e x p r > , R9) (< i d > , 1) (< e x p r > , R9) « v a r > R7>
s l 2 38 s l 2 s l 3(+, 2) « i d > , 1) {+, 2) « i d > , 1)
s7 s 7 s8
(< v a r > , R7) (< v a r > , R7) « i d > , 1)
s4 s 4
C = , 1) (: = f 1)
S i s i

A c t i o n = = > R e d u c e b y r u l e 10 A c t i o n = = > R e d u c e b y r u l e 8

51

15.

1 7 .

I n p u t : = > < e o f > 1 6 . I n p u t = => < e o f >
S t a c k s S t a c k s
E S. E 2.
s 9 s l 7 s 3 s 9
(< e x p r > , R8) (< e x p r > , RIO) (< a s s i g n > , R6) (< e x p r > , R8)
s 7 s l 5 s i s 7
{ < v a r > , R7) { < e x p r> , R9) (< v a r > , R7)
s 4 312 s 4
(: = , 1) (+ , 2) (: = , 1)
s i s lO s l 7

(<no> , 1) (< e x p r > ,R l O)
s l l s l 5
(< v a r > , R7) (< e x p r > ,R 9)
s l 3 s l 2
« i d > , 1) (+ , 2)
s 8 s lO
« i d > , 1) (< n o > , 1)

s l l
(< v a r > , R7)
s l 3
{ < id > , 1)
s 8
(< i d > , 1)

A c t i o n = = > R e d u c e b y r u l e 6 A c t i o n = = > R e d u c e b y r u l e 3

I n p u t = => < e o f > 1 8 . i n p u t — > < e o f >
S t a c k s S t a c k s

£ £ E E
s 6 s 9 s 2 s 6
« s l i s t > , R3) (< e x p r >, R8) (< s _ l i s t > / R2) (< s _ l i s t > , R 3)
s 3 s7 s i 33
(< a s s i g n > , R6) (< v a r > , R7) (< a s s i g n > , R 6)
s i s4 s 9

(: = , 1) (< e x p r > , R8)
s l 7 s 7
« e x p r > , RIO) (< v a r > , R7)
s l 5 s 4
(< e x p r > , R9) (: = , 1)
312 s ! 7
<+, 2) (< e x p r > ,R l O)
s lO 315
<<no>, 1) (< e x p r > ,R 9)
s l l 312
(< v a r > , R7) (+ , 2)
s l 3 s lO
(< id > , 1) (< n o > , 1)
s8 s l l
« i d > , 1) (< v a r > , R 7)

s l 3
{ < id > , 1)
s 8
(< i d > , 1)

A c t i o n = > R e d u c e b y r u l e 2 A c t i o n = = > S h i f t t o s t a t e 5

52

19. I n p u t = = >
S t a c k s

L
35
(< e o f > , 1)
32
(< s _ l i 3 t > , R2)
si

A c t i o n = = > A c c e p t

S.
s 6
(< s _ l i s t > , R3)
33
(< a s s i g n > , R€)
39
{ < e x p r> , R 8)
s 7
(< v a r > , R7)
s 4
(:=, 1)
s l 7
(< e x p r > ,R 1 0)
s l 5
(< e x p r > ,R 9)
312
<+, 2)
s lO
(<no> , 1)
s l l
(< v a r > , R7)
s l 3
(< id > , 1)
s 8
(< id > , 1)

Figure 3.9 Another Parse Trace using grammar MD4
2.5 Example of Backtracking Over a Reduction

The example in Figure 3.12 illustrates the backtracking algorithm
after several reductions have occurred. Grammar MD5 of Figure 3.10
and the parse table shown in Figure 3.11 are slightly modified
versions of the grammar MD4 and its corresponding parse table.

53

(1) <program>
(2) <S_list>
(3) <S_list>
(4) <assign>

(5) <assign>

(6) <assign>
(7) <var>
(8) <expr>
(9) <expr>
(10) <expr>
Figure 3.10

—» <s_list> <eof>
—> <assign> <S_list>
->
—> := subscript <id> <expr>

+ subscript <id> <expr> <no>
<id i> .nam e = < id 2 >*name AND
< expri> = <expr2> AND <no> .va lue = 1
—» := subscript <id> <expr>

+ subscript <id> <expr> <no>
<id i> .nam e — < id 2 >~name AND
< expri> = <expr2> AND < no> .va lu e = 2
—> := <var> <expr>
—» subscript <id> <expr>
—> + <expr> <expr>
—> <var>
—> <no>

Grammar MD5
Action. Goto

States
1subscript

2
<to£>

3
<id>

5
<no>

6
+

7 K8
ossign

B9
cxpr

Mil
s list

Ml 2
Yor

1 r3 34 s3 39 32 all
2 s5 33 39 s2 sll
3 r3 34 s3 s9 s6 sll
4 38 33 39 32 37
5 acc S3 39 32 311
6 r2 S3 39 32 311
7 313 310 312 S3 s9 s2 Sll
8 314 33 s9 32 311
9 r6 r6 S3 s9 32 sll
10 rlO n o rlO rlO rlO S3 39 s2 311
11 r9 r9 r9 r9 r9 S3 39 32 sll
12 sl3 310 312 S3 315 32 311
13 316 33 39 32 Sll
14 313 slO 312 33 317 32 sll
15 313 slO 312 s3 318 32 311
16 313 slO 312 33 319 32 sll
17 r7 r7 r7 *20/r7 r7 S3 s9 s2 sll
18 r8 r8 r8 r8 r8 S3 s9 3 2 311
19 r7 r7 r7 r7 r7 S3 39 32 sll
20 s21 S3 39 32 311
21 322 S3 39 32 sll
22 313 slO 312 33 323 s2 sll
23 s24 S3 39 32 sll
24 r4/r5 r4/r5 S3 s9 s2 sll

Figure 3.11 The Parse Table for Grammar MD5

54

In the previous example each action was shown in a separate
diagram. In Figure 3.12, each diagram may be a result of several
actions. Given the input

:= subscript a + 2 1 + subscript a + 2 1 5
the parser will attempt to apply the optimized increment instruction
over the more costly add instruction (see diagram (4)). In the shift-
reduce conflict of state 17, the shift to state 20 is chosen over the
reduce by rule 7. This leads to a block in diagram (7). The
increment instruction cannot be applied because the semantic
restrictions are not met. DoBacktrack is called to find an alternative
path. As the backtracker backs up to state 17 where the most recent
choice is found, it must expand nonterminals on the parse stack using
the save stack. This time the parser chooses the reduce by rule 7
and the parse continues to completion.

1 . I n p u t = > := s u b s c r i p t a + 2 1 + s u b s c r i p t a + 2 1 5 < e o f >
S t a c k s

E. £.
s lO
(< n o > , 1)
312
(+, 1)
314
« i d > , 1)
s 8
{ s u b s c r i p t , 1)
s 4
<:=, 1)
s i

A c t i o n s — > S h i f t t o s t a t e 4 , 8 , 1 4 , 1 2 , 1 0 , R e d u c e b y r u l e 10

2 . I n p u t i s = > 1 + s u b s c r i p t a + 2 1 5 < e o f >
S t a c k s

E. S.
s l S s lO
(< e x p r > ,R l O) (< n o > , 1)
s l 2
{+, 1)
s l 4
{ < id > , 1)
s 8
(s u b s c r i p t , 1)
s 4
<:=, 1)
s i

A c t i o n s = = > S h i f t t o s t a t e 1 0 , R e d u c e b y r u l e 10

55

I n p u t = > + s u b s c r i p t a + 2 1 5 < e o f >
S t a c k s

E. S.
s l8 s lO
(< e x p r > ,R 1 0) (< n o > , 1)

s l5 310
(< e x p r > , R l 0) (< n o > , 1)
s l 2
(+ , 1)
314
« i d > , 1)
s 8
(s u b s c r i p t , 1)
s 4
< := , 1)
s i

A c t i o n = = > R e d u c e b y r u l e 8

I n p u t = = > + s u b s c r i p t a + 2 1 5 < e o f >
S t a c k s

E. S.
s l 7 s l 8
(< e x p r > , R8) (< e x p r > ,R I O)
s l 4 s l 5
(< i d > , 1) (< e x p r > ,R I O)
s 8 s l 2
(s u b s c r i p t , 1) (+ , 1)
s 4 s lO
(: = , 1) (< n o > , 1)
s i s lO

(< n o > , 1)
A c t i o n s = > S h i f t t o :s t a t e s 2 0 , 2 1 , 2 2 , l;

I n p u t = = > 1 5 < e o f >
S t a c k s

E. 2.
s lO s l 8
(< n o > , 1) (< e x p r > ,R l O)
s l 2 3 1 5
(+ , 1) (< e x p r > ,R 1 0)
322 s l 2
« i d > , 1) (+ , 1)
s 2 1 s l O
(s u b s c r i p t , 1) « n o > , 1)
s 2 0 s lO
(+ , 1) (< n o > , 1)
S l 7
(< e x p r > , R8)
s l 4
« i d > , 1)
s 8
(s u b s c r i p t , 1)
s 4
(: = , 1)

s i
A c t i o n s ” > R e d u c e b y r u l e 1 0 , S h i f t t o s
10 a n d f i n a l l y r e d u c e b y r u l e 8

56

6 . I n p u t = = > 5 < e o f >
S t a c k s

£.
s l 8
(< e x p r > , RlO)

s 2 3 3 1 5
(< e x p r > , R8) (< e x p r > ,R 1 0)
322 s l 2
« i d > , 1) (+» 1)
S 21 s lO
(s u b s c r i p t , 1) (< n o > , 1)
s 2 0 s lO
(+ , 1) (< n o > , 1)
s l 7 s l S
(< e x p r > , R8) (< e x p r > ,R 1 0)
s l 4 s l 5
(< i d > , 1) (< e x p r > ,R l O)

s 8 s l 2
(s u b s c r i p t , 1) (+ , 1)
34 s l O
(:=■, 1) (< n o > , 1)
3 l s lO

(< n o > , 1)
A c t i o n = = > S h i f t t o s t a t e 24

7 . I n p u t = = > < e o f >
S t a c k s

EL S.
s 2 4 s ! 8
(< n o > , 1) (< e x p r > , RIO)
s 2 3 S l 5
(< e x p r > , R8) (< e x p r > , RlO)
s 2 2 s l 2
« i d > , 1) (+ , 1)
s 2 1 s l O
(s u b s c r i p t , 1) (< n o > , 1)
s 2 0 s lO
<+, 1) (< n o > , 1)
3 1 7 3 1 8
(< e x p r > , R8) (< e x p r > ,R I O)
s l 4 s l 5
« i d > , 1) (< e x p r > , RIO)
s 8 s l 2
(s u b s c r i p t , 1) (+ , 1)
s 4 s lO
(: = , 1) (< n o > , 1)
s i s lO

(< n o > , 1)
A c t i o n = = > E r r o r , c a n n o t r e d u c e b y r u l e 4 o r r u l e 5 , D o B a c k t r a c k

A f t e r B a c k u p : C u r r e n t l n p u t i s + a n d a c t i o n M a r k e r i s 2

57

8.

9 .

I n p u t = > + s u b s c r i p t a + 2 1 5 < e o f >
S t a c k s

E. S.
s l 7 318
(< e x p r > , R8) (< e x p r > ,R I O)
s l 4 315
« i d > , 1) { < e x p r> ,R IO)
s8 s l 2
(s u b s c r i p t , 1) (+ , 1)
s 4 s lO
(: = , 1) (< n o > , 1)
s i s lO

(< n o > , 1)
A c t i o n = = > R e d u c e b y R u l e 7

I n p u t — > + s u b s c r i p t a + 2 1 5 < e o f >
S t a c k s

E. &
s 7 s l 7
(< v a r > ,R 7) (< e x p r > , R8)
s4 s l 4
< := , 1) « i d > , 1)
s i s8

(s u b s c r i p t ,
318
(< e x p r > ,R l O)
s l 5
(< e x p r > ,R 1 0)
312
(+ , 1)
s lO
(< n o > , 1)
s lO
(< n o > , 1)

A c t i o n = = > S h i f t t o s t a t e 12

58

1 0 . I n p u t ==> s u b s c r i p t a + 2 1 5 < e o f >
S t a c k s

E. &
312 s l 7
(+ , 2) (< e x p r > , R8)
s7 314
(< v a r > ,R 7) « i d > , 1)
s 4 s 8
(: = , 1) (s u b s c r i p t , 1)
s i s l 8

(< e x p r > ,R 1 0)
315
(< e x p r > ,R 1 0)
s l 2
(+ , 1)
s lO
(< no> , 1)
s lO
« n o > , 1)

A c t i o n s = = > S h i f t t o s t a t e s 1 3 , 1 6 , 1 2 , 1 0 , R e d u c e b y R u l e 1 0 ,
S h i f t t o s t a t e 1 0 , R e d u c e b y r u l e 1 0 , R e d u c e b y R u l e 8 , R e d u c e b y
R u l e 7 , R e d u c e b y R u le 9, S h i f t t o s t a t e 1 0 , R e d u c e b y R u le 1 0 ,
R e d u c e b y R u l e 8 , R e d u c e b y R u l e 6 , R e d u c e b y R u l e 3 , R e d u c e b y
R u l e 2 , S h i f t t o s t a t e 5

59

1 1 . I n p u t = = >
S t a c k s

2.
s 5
{ < e o f > , 1)
s2
{ < s _ l i s t > , R2)
si

A c t i o n = = > A c c e p t

Figure 3.12 Parse

S.
s6
(< s _ J L i s t> , R 3)
s 3
(< a s s i g n > , R 6)
s 9
(< e x p r > , R8)
s 7
(< v a r > , R7)

s 4
(: = , 1)

s l 8
(< e x p r > ,R I O)
s l 5
(< e x p r > ,R 9)
s l 2
(+ , 2)
s lO
(< n o > , 1)
s l l
(< v a r > , R7)
s l 9
(< e x p r > ,R 8)
s l 6
« i d > , 1)
s l 3
(s u b s c r i p t , 1)
318
(< e x p r > ,R lO)
s l 5
(< e x p r > ,R 1 0)
s l 2
(+ , 1)
s l O
(< n o > , 1)
s lO
(< n o > , 1)
s l 7
(< e x p r > , R8)
s l 4
« i d > , 1)
s 8
(s u b s c r i p t , 1)
s l 8
(< e x p r > ,R I O)
s l 5
(< e x p r > ,R 1 0)
s l 2
(+ , 1)
s l O
(< n o > , 1)
s lO
(< n o > , 1)

Trace using Grammar MD5

60

3. Undoing Semantic Actions during Backtracking

This chapter has presented the algorithms which implement a
backtracking LR parser which can backup over both shift and reduce
actions. The discussion has been limited to syntactic issues without
regard for the semantic actions performed during reduce actions.
Semantic actions must be incorporated if we are to do code
generation with a backtracking parser. When backing up over
reduces, semantic actions must be undone so that the parser can
start on an alternative parse path. The next chapter discusses how
semantic actions are handled during backtracking.

61

Chapter 4
Backing up over Semantic Actions

"Perfection is reached, not when there is no longer anything to add,
but when there is no longer anything to take away" by Antoine de
Saint-Exupery (1900-1944), from The Book of Unusual Quotations
editted by Rudolf Flesch (1957)

The previous chapter presented the modifications required to
implement a backtracking LR parser which can backup over both
shift and reduce actions. To backup from a blocked state, the parser
must perform two operations: restore the input to its previous state
and undo any semantic actions performed between the previous
state and the blocked state. The previous chapter was only
concerned with the syntactic issue of restoring the input. This
chapter describes how backup over semantic actions is implemented.
A similar scheme has been independently proposed by Keller [Kel91],
although the implementation is different from the one proposed
here.

1. Backup over Semantic Actions

Semantic actions are performed during reduce actions in the parser.
The effects of semantic actions are encoded in tables which are then
attached to the left-hand-side symbol as attributes. Conceptually,
this approach saves a snapshot of the semantic state of the parse for
every reduce action. The existing backtracking mechanism for
restoring the input now operates without modification to undo

62

semantic actions as well. The previous semantic state is saved along
with the input, and restored when a backup occurs.

Although this implementation is simple, it has many advantages. It
is elegant, general, and completely integrated with the parser
backtracking mechanism. No assumptions are made 'about the
content of the semantic actions, other than the requirement that the
actions can be encoded as an attribute. Furthermore, the
implementation is consistently integrated within the framework of
attributed parsing. The obvious disadvantage is amount of memory
used in saving the semantic state of the parse.

The remainder of this chapter is devoted to showing an example of
how this mechanism allows backup over semantic actions.

2. Register Allocation via Semantic Attributes

On-the-fly register allocation can be implemented using a register
table. Each register table entry is a record that contains information
about the register type, whether or not the register is free or in use;
if the register is allocated, to which expression it is allocated and
possibly a usage count depending on the register allocation scheme
implemented. Register allocation/deallocation takes place as a
semantic action associated with a parser reduce action. When the
reduce occurs, the semantic action inserts a new table entry
associating the left-hand-side (LHS) symbol with a register into the
register table.

To make backtracking possible, the register table is encoded as a
semantic attribute associated with the symbol. A copy of the register
table attribute is created when each new symbol is added to the
parse stack. In the case of a shift action, a copy of the register table
attribute is inherited from the symbol on top of the parse stack. In
the case of a reduce action, a copy of the register table attribute is
synthesized from the new symbol's RHS and if a register allocation is
performed as part of a semantic action, only the LHS symbol’s copy is
modified. Thus if a previous symbol is restored from the save stack
during a backup, so is the previous register table.

3. Register Allocation Example

The grammar shown in Figure 4.1 is a modified version of the
grammar of Figure 3.10 previously presented in Chapter 3. A new

63

rule and some semantic actions have been added. The parse table
for this modifed grammar would be similar to that of Figure 3.11.

(1)
(2)
(3)
(4)

<program>
<S_list>
<S_list>
<assign>

(5) <assign>

(6)
(7)
(8)

<assign>
<var>
<expr>

(9) <expr>

(10) <expr>

(11) <var>

—> <s_list> <eof>
—> <assign> <S_list>

—» := subscript <id> <expr>
+ subscript <id> <expr> <no>

<id i> .nam e = < id 2 >-name AND
<expr±> — <expr2> AND <no>. va lu e => 1
—> := subscript <id> <expr>

+ subscript <id> <expr> <no>
<idi> .nam e = < ld 2 >^name AND
< exp r i> = <expr2> AND <no> .va lu e = 2
—» := <var> <expr>
—» subscript <id> <expr>
—» + <expri> <expr2>
<expr>.regTable := <expr2>.regTable -

FreeRegister (<expr2>.reg) +
ChangeRegisterBinding

(<exprl>.reg/ <expr>.reg);
—> <var>
<expr>.regTable := <var>.regTable +

GetRegister (<expr>.reg) ;
—> <no>
<expr>.regTable := <no>.regTable +

GetRegister (<expr>.reg);
—> <id>

Figure 4.1 Grammar MD5 with. Semantic Actions
In this example, we consider a parser based on the grammar of
Figure 4.1, and consider its operation for the following input:

:= subscript a + i 1 + subscript b 2 6
The figures that follow depict snapshots of the parse stack and save
stack at various points during the parse. The only attribute shown is
the register table.

Figure 4.2 depicts the parse and save stacks after five input tokens
have been consumed. The register table attribute is indicated by a
bubble on the right of the stack entry. An empty table implies that

64

no registers have been allocated. At every shift action a copy of the
previous table is made and is attached to the new symbol.

subscrip t

o■o
ooo

p a r s e s t a c k s a v e s t a c k

Figure 4.2 No Semantic Information Changed
In Figure 4.2, all five items have been shifted onto the parse stack,
and there are five copies of the empty register table showing that no
registers have been allocated. A method of eliminating unecessary
duplication of the register table is discussed in section 4 of this
chapter.

The i is reduced to <vari> by rule 11 which pushes the i symbol
onto the save stack, and then the <vari> is reduced to <expri>by rule
9 causing the first change to the register table. In a semantic action
associated with rule 9, register 1 is allocated to <expri>. The result is
shown in Figure 4.3.

<expr,>

subscrip t

<R 1 <exprt>)

ooo-o
p a r s e s t a c k

<var,> <Z>o
s a v e s t a c k

Figure 4.3 Register 1 is Allocated
The number 1 is shifted onto the parse stack, synthesizes a copy of
the modifed register table and then is reduced by rule 10 to < e x p r 2>.
The reduction in rule 10 causes the semantic action GetRegister to
allocate register 2 to < e x p r 2>. The resulting parse and save stacks
are shown in Figure 4.4.

65

<exps>
<expty>

subscrip t

<R1 <expri>, R2<expr^>)
-CR1<expn>)

■o -o -o -o
p a r s e s t a c k

1
<var4>

<R1 <expri>>

•o
“O

s a v e s t a c k

Figure 4.4 Register 2 is Allocated
Next the parser reduces by rule 8 which pops the parse stack to
replace the right hand side + <expri><expr2> with <expr 3>. Register
2 is freed; register 1 is transferred to hold the result of the plus
operation. The resulting parse and save stacks are shown in Figure
4.5

<exprg>
a

subscrip t

<R1 <expr^

< 3
0 >
- O

p a r s e s t a c k

<expr;>
<expr,>

1
<var,>

i

■<R1 <expri>, R2<expn>)
<R1 <expri>)
- Q ^
<R1 <expr<>)

<=>
hO

s a v e s t a c k

Figure 4.5 The Plus Operation is Performed
At this point, the parser encounters a shift-reduce conflict on the
next input symbol, +, since the parser has the option to reduce by
rule 7 or shift. The locally greedy heuristic resolves the conflict in
favor of the shift, and + is shifted onto the parse stack. Figure 4.6
shows the stacks after 3 more symbols are shifted onto the parse
stack.

66

2 <R1 <&xprT?»b <R1 <expr*?)
subsc rip t <R1 <exprn?) <expr2>

+ <R1 <expr3$ <expr,>
<exps> <R1 <expr*?) +

a ■o 1
sub sc rip t o <var,>

o i

<R1 <expri>, R2<exprh>)
<R1 <expr<0
O k<R1 <expr<>)
oo

p a r s e s t a c k s a v e s t a c k

Figure 4.6 Trying the Shift Option
Figure 4.7 shows rule 10 applied, reducing the 2, representing an
array index, to < e x p r 4 >, which is allocated to register 2.

p a r s e s t a c k

<expr4> <R1 <expr-<>, R2<exp&>}
b <Ri <expr*5 2 <R1 <expryS)

subsc rip t <R1 <expr,9 <expra> <R1 <expn>. R2<expra>;
+ <R1 <expr*?> <expr,> <R1 <expr<>)

<expr3> <R1 <expr$ + <Z>
a -o 1 <R1 <expriO

subscri pt o <var,> <z>
:= o i O

s a v e s t a c k

Figure 4.7 Register 2 is Reallocated
A semantic block occurs when the next input symbol, 6, is shifted
onto the stack. The situation is shown in Figure 4.8.

<expnt>

subsc rip t

<expr3>
a

subscri pt

<R1 <expr-̂ R2<expiii>)
<R1 <expra>, R2<expti>)
<R1 <exprfrj)
<R1 <exprfrj)
<R1 <expr<>)
<R1 <expr^
o•oo

p a r s e s t a c k

<expra>
<expr,>

1
<var,>

< R 1 <exprrtg>_________
<R1 <expn>. R2<expri?)
<R1 <expri>)
Q _<RKexpri>D
oo

s a v e s t a c k

Figure 4.8 Block Trying to Apply Increment
Instruction

67

The parser attempts to reduce by rule 4 or rule 5, but the semantic
conditions are not met. The parser backups up to the point of the
previous shift/reduce conflict. As symbols are popped off the save
stack to restore the parse state, as explained previously in Chapter 3,
the state of the register table is also restored. The resulting parse
state after backup was shown previously in Figure 4.5. However,
after backup the parse will proceed by attempting to reduce by rule
7, leading to the eventual reduce by rule 6, a general assignment
statem ent.

4. Efficiency Considerations

One concern with the approach outlined above is the amount of space
required to store a copy of the register table, and any other semantic
attributes every time a new symbol is pushed on the parse stack.
The usual space efficient implementation which only creates a new
copy of the register table when the table is modified by a semantic
action was employed.

Instead of storing a copy of the register table with each new symbol,
each new symbol stores a pointer to a register table. If a semantic
action will change the table, then a copy of the table is created, the
modification is made to the copy, and the new symbol has a pointer
to the modified copy. This scheme is well-known, simple and avoids
wasting memory by copying identical tables unnecessarily. It should
be noted that more space efficient shemes are available, one such
scheme records only the changes made to the table.

5 Summary

This chapter has demonstrated that a simple method which allows
bactracking over shift and reduce actions with semantic actions by
storing the effects of semantic actions as attributes. In the next
chapter, we turn our attention away from the mechanism which
enables backtracking to discuss the code generator specification.

68

Chapter 5
Code Generation as Tree

T ransform ations

"Wolfe, who had moved around the desk and into his chair, put up a
palm at him: 'Please, Mr. Hombert. I think it is always advisible to
take a short-cut when it is feasible." from The Rubber Band by Rex
Stout (1936)

In this chapter, we introduce the concept of a tree transformation as
a notation for writing code generation specifications and claim that
tree transformations offer the same benefits as context-free
grammars but have some additional advantages. Since an
automatically generated code generator is only as good as the
specification, improving the quality of the specification, with respect
to the code generated, is desirable.

Code generation specifications for traditional LR parsing code
generators are context free grammars which allow the specification
to be incrementally enhanced with new grammar productions.
Unfortunately, CFG code generation specifications tend to increase
dramatically in size as optimizations that take advantage of efficient
target machine instructions are incorporated into the machine
description [Hen84], As discussed previously in Chapter 2, adding an
optimization rule often necessitates the addition of default rules to
avoid semantic or syntactic blocking. The need for default rules
results in large, unwieldy specifications and also calls into question
the correctness of the code generator because it introduces the
possibility of parse failure.

69

A backtracking LR parsing code generator eliminates the need for
default rules (and thereby simplifying the code generation
specification). When the parser "blocks", it backs up and restarts the
parse.

Context free grammars offer an excellent mechanism for describing
instruction selection but are less well suited for describing other
phases of code generation such as common subexpression elimination
and register allocation. The main difficulty is that such subphases
cannot be expressed easily as grammar rules but must be embedded
in the semantics associated with the rules.

Embedding information in the semantics associated with grammar
rules is a symptom of the limitations of context free grammars for
writing code generation specifications. The semantics portion of the
grammar rule becomes a catch all for anything which cannot be
easily expressed in the rule itself, which in turn reduces the legibility
and formality of the machine description.

1. Tree Transformations

As an alternative to context-free grammars, tree transformations can
be used for writing code generation specifications. A tree
transformation describes how one tree (the source tree) is mapped or
transformed into another tree (the rewrite tree). The use of tree-
based notation arises naturally in the context of code generation
since intermediate code is often conceptually represented as a tree,
as shown in Figure 5.1.

70

Aa +
A

a 1

(a) An Add by 1 IC Tree

incr

a

(b) An Increment by 1 IC Tree
Figure 5.1 Intermediate Code (IC) trees

When viewed from the perspective of tree transformations,
instruction selection consists of transforming intermediate code trees
into machine code trees. For example, the intermediate code trees of
Figure 5.1 above could be translated in the machine code tree shown
in Figure 5.2 .

incrDA

ind

A
a rO

Figure 5.2 A Machine Code Tree
Rather than embedding the result of the transformation in the
grammar rule's semantics, the tree transformation rule explicitly
describes transformations in the rewrite tree. The backtracking
mechanism allows the rewrite to be reparsed. For example, when
intermediate code trees are expanded into machine code during
instruction selection, traditional LR parser-based code generators do
not make the expanded machine code tree available for further
parsing. The machine code tree is emitted as object code.
Backtracking provides a mechanism which makes expanded machine
code trees available for further parsing, since the backtracking LR
parser-based code generator can backup and reparse the expanded
machine code.

7 1

Tree transformations can be classified by their effect on the source
tree: reduction transformations, rearrangement transformations, and
replacement transformations. Each of these is described in turn.

The reduction transformation rules are just grammar rules with a
different syntax. Reduction transformations are captured in a
grammar rule in which the RHS matches the linearized form of the
source tree and the LHS represents a single node. In the context of a
LR parser-based code generator, reduction transformations are
required as part of the process of recognizing legal input. An
example is shown in Figure 5.3.

<EXPR> : := plus <expr> <expr>
(a) A Grammar Rule

<EXpR>; 1(J3

. / \
<expr> <expr>

(b) A Reduction Tree Transformation
Figure 5.3 Recognizing an Expression

The transformation shows the reduction of a tree representing an
addition operation to an expression. The source tree appears on the
left and the rewrite tree, in this case null, on the right. This
convention will be used in subsequent examples of tree
transform ations.

Tree rearrangement and replacement transformations cannot be
expressed explicitly in a context-free grammar rule itself because the
left hand side is a single nonterminal. Greater expressiveness
coupled with a more intuitive representation makes tree
transformations an attractive way to write specifications for code
generation.

A rearrangement transformation reorders the children of a node in
the source tree, but leaves the rest of the source tree unchanged, as
shown in Figure 5.4.

72

< E X P R > : p]U3

/ \ / \
<no> <expr> <expr> <no>

Figure 5.4 A Rearrangement Tree Transformation
The transformation shown reorders the children of the plus tree, so
that <no> becomes the right child and <expr> becomes the left.

Replacement transformations are all other mappings of source tree to
rewrite tree which are neither reduction transformations nor
rearrangement transformations. The source tree is replaced by the
rewrite tree. An example is shown in Figure 5.5.

<EXPR>: .plU9
—» <no>

<no> <no>

Figure 5.5 A Replacement: Tree Transformation
In the transformation above, an addition operation is collapsed to a
single number thereby performing the computation at code
generation time, a common compile time optimization.

Bach class of tree transformations can also be conditioned on
semantic information contained in the source tree. If the semantic
condition does not hold, the tree transformation is not applied. An
example appears in Figure 5.6. Side effects known as actions can also
be included in the mapping, but are not shown in this example.

<ASSIGN>: 8331 gn
in c r

w a r p plus —>

/ \
w ar2> <no>

?sam e (w arl>,war2>)
?equal(<no >4,vel, 1)

Figure 5.6 A Conditional Tree Transformation

wary

73

The transformation of Figure 5.6 is a replacement transformation for
instruction optimization in which an assignment is transformed into
an increment instruction. The source tree on the left represents an
assignment statement and the rewrite tree on the right represents an
increment statement. The transformation is conditional because it
should only be applied if the two variables <varx> and < v a r 2> refer
to the same variable and the value of the <no> is equal to one.

Machine instruction sets for different architectures may have
different requirements for <no>; whereas some have the requirement
shown in the example, others may require <no> to be within a range
such as f 1—16]. Such restrictions are easily included as tree
transformation conditions.

Tree transformations appear to be a more intuitive means of
describing code generation for the following reasons. The
intermediate code is already conceptually represented as a tree.
Tree transformations can be used to map intermediate code trees to
other intermediate code trees, intermediate code trees to machine
code trees, or even machine code trees to other machine code trees.
In this way, the same specification can describe many subphases of
code generation including intermediate code tree optimization,
instruction selection, register assignment and machine code
optimization. These phases require all three kinds of tree
transformations: reduction, rearrangement, and replacement. For
example, replacement transformations are useful in the instruction
selection phase because intermediate code trees typically expand to
larger trees representing machine code as shown previously in part
(b) of Figure 5.1 and Figure 5.2. Replacement transformations are
also useful in collapsing intermediate code trees, a typical operation
needed for intermediate code optimization as shown in Figures 5.5
and 5.6. Rearrangement transformations are used for intermediate
code optimization so all other transformations can assume the
location of a literal in the IC tree. Reduction transformations are
necessary to recognize legal source trees.

The combination of a tree transformer with backtracking offers the
advantage of a unified mechanism for code generation. Furthermore,
the advantage of a unified mechanism is amplified by the convenient
expression of tree transformations.

7 4

2. A Tree Transformation Language for Code Generation
S p ec ifica tio n

A Tree Transformation Language (TTL) has been developed for
writing code generation specifications. A specification written in TTL
is input to a grammar generator. The grammar generator produces
an equivalent specification in the form of an affix grammar with tree
reduction, rearrangement and replacement transformations encoded
as operations associated with a reduce action by the parser. The
specification grammar is passed as input to a parser generator which
produces the parse tables required for a backtracking LR parser.
These parse tables are used by the backtracking LR parser which
inputs intermediate code (IC) and produces object code for the target
machine as output. A complete description of the parse tables and
backtracking parsing algorithm appears in Chapter 3.

Tree Transformations
(TTL)

Code Generation Specification
(Grammar)

Intermediate Code

Parse Tables

Grammar
Generator

Parser
GeneratorCode Generator

(Backtracking LR
Parser)

Object Code

Figure 5.7 Backtracking LR Parsing-based Code
Generation

Each tree transformation takes the form:

LHS : RHS {?condition} {@action} =► rewrite tree

where {} represents 0 or more

The r h s is the source tree. The ?condition specifies semantic
restriction(s) that must be met before the transformation can be
applied, as illustrated in Figure 5.6. The @ act ion contains side
effect(s) of the application of the tree transformation. For example,

75

an addressing transformation which moves an operand from memory
to a register decrements the number of available registers as a side
effect.

For example, the TTL description for the example of Figure 5.6
appears below:

< A S S I G N > : a s s ig n <vari> p lu s < v a r2> <no>Tval
?same (< var1>/ < v a r2>) ? e q u a l (4-val, 1)

=> i n c r < vari>

There are two semantic conditions: the ? s a m e condition is met if the
two variables are the same, and the ? e q u a l condition ensures that
the value of the v a l attribute of < n o > is 1 Attributes are denoted
by vertical arrows as either synthesized or out parameters (T) or
inherited or in parameters (1). The value of the v a l attribute of < n o >
is an output (synthesized) parameter as indicated by the arrow (T)
and then it is used as an in or inherited attribute to the ? e q u a l
condition.

The algorithm for translating a tree transformation specification to a
Pargen affix grammar production is discussed in Chapter 6.
Appendix F shows that TTL and a backtracking LR parser produce a
recognizer for any recursively enumerable language. The rest of this
chaper includes example applications of the tree transformation
techniques for code generation.

3. Applying these ideas to Code Generation

There are three different tasks in code generation, i.e. instruction
selection, optimizations, register allocation, etc. Previous researchers
have developed methodologies for implementing those tasks. One
goal of this thesis was to express a few of these standard algorithms
to verify they could be easily implemented using the tree
transformation mechanism. Three were chosen because we thought
they were representative of typical applications. The first, peephole
optimization of the intermediate code, was chosen because it was
well suited to TTL specifications. The second, common subexpression
elimination using usage counts, illustrates how an algorithm that did
not appear suited to TTL specifications was easily implemente. The
last, instruction selection, is a necessary part of any code generator.

76

A complete listing of each TTL specification described below appears
in Appendices A, B and C respectively.

4. Peephole Optimization of Intermediate Code

The first methodology discussed below is described in the paper
"Using Peephole Optimization on Intermediate Code" by Tanenbaum,
van Staveren and Stevenson [TaStSt82]. Tannenbaum et. al., argue
that the efficient compilation of simple, commonly occurring source
statements is the key to producing good code. They have divided
optimizations into ten subcategories. These subcategories are
constant folding, operator strength reduction, null sequences,
combined moves, commutative law, indirect moves, comparison,
special instructions, DUP instructions, and reordering. Optimizations
in seven of the subcategories have been implemented. Three
categories were not implemented because our target machine could
not take advantage of these classes of optimizations. These included
combined moves, indirect moves and DUP instructions. Combined
moves took advantage of multiword moves. Indirect moves tried to
replace indirect moves with more efficient direct moves. DUP
instructions tries to avoid refetching an operand that is already on
the stack.

4.1 Example

The source code expression
(3 +<<-(- X)) * 2)) + 4

appears as the linearized code tree
plus plus 3 mult Uminus Uminus X 2 4

except numbers actually appear as the terminal symbol <no>.

The subtree Uminus Uminus x is matched against the tree
transformation rule:

<EXPR> : Uminus Uminus <expr> => <expr>

The null sequence, Uminus uminus, would be eliminated from the
intermediate code producing the input

plus plus 3 mult X 2 4

The subtree mult x 2 is matched against the tree transformation
rule:

<EXPR> : mult <expr> <no>Tval
?equal(2,4val) => shiftL <expr>

77

The operator strength reduction on the intermediate code would
cause the elimination of the mult and 2 symbols and an addition of a
new symbol, shiftL, producing the input

plus plus 3 ShiftL X 4

The subtree plus 3 shiftL x i s reordered by applying the tree
transformation rule:

<EXPR> : <binop> <no> <expr>
<binop> < expr> <no>

so the reordering using the commutative law produces the input
plus plus shiftL X 3 4

The final tree transformation rule applied
<EXPR> : <binop!> <binop2> < expr> C n o ^ T v a li <no2> T val2

?same (<binopi>, < b in o p 2>) ? a s s o c (<binopi>)
©compute (<binop!>, >lvali, ' l v a l 2) t v a l 3

=> <binop> < expr> <no3 >'Lval3

which after constant folding produces the final input
plus shiftL X 7

Another example shows the application of a special instruction
optimization. The source code in the assignment statement

x : = x + 1
is represented by the linearized tree below,

assign X plus X 1

This entire subtree is matched by the tree transformation rule:
<ASSIGN> : a s s ig n <vari> p lu s < var2> <no>Tval

?sam e (< v a ri> ,< v a r2>) ? e q u a l (l , 'Iv a l)
=> i n c r < vari>

The application of the transformation produces the final input
incr X

The last optimization example shows the class of comparison
optimizations. The source code expression

not (X = Y)
would appear as the linearized intermediate code tree below,

not EQ X Y

78

This entire subtree is matched by the tree transformation rule:
<EXPR> : n o t < re lo p > T re lo p i <expri> < e x p r2>

@f l i p (« irelopi) t r e l o p 2
=> < re lo p > J 're lo p 2 < expri> < ex p r2>

The flip action returns the negation of the relational operator it is
passed, i.e. a GT (greater than) passed to flip would return the
operator LE (less than or equal). The n o t terminal symbol would be
eliminated by negating the relational operator, EQ, making it NE,
producing the final input

ne x y

As is true with all effective optimizations, the resulting tree requires
less machine code calculation than the original tree.

5. Common Subexpression Elimination

Common subexpression elimination was implemented using an
algorithm described in the paper "Register Allocation via Usage
Counts" by Freiburghouse [Fre74], The purpose of this subphase is to
recognize duplicates whether they are duplicate variables, constants
or whole expressions. Common subexpressions are found by first
replacing operand references, then possibly the whole expression.
Usage counts tell how many references there are to a particular
expression after all the references are fixed. The input, a forest of
trees, is converted into a directed acyclic graph. When a common
variable/number is detected, the duplicated node reference is
changed to point/refer to an original node. This in turn leads to the
detection of common subexpressions in a bottom-up approach: if an
operation is identical to an earlier operation and their operands are
the same, the second operation can be replaced with a reference to
the original operation. Each time an expression is referred to by
another pointer, its usage count is incremented.

This algorithm was originally implemented in our system as a
preprocessor. We did not think the implementation would be a
simple matter because the output of the algorithm is not a tree. The
implementation using tree transformations turned out to be almost
trivial. The grammar for this subphase is simple and short because
of the bottom-up nature of LR parsers. Only two types of production
rules are needed: one that finds duplicate operands and one that
finds duplicate operations after the operands have been checked.
Identifiers (variable or constant) and literals are "replaced" as

79

duplicates are found. It is then a trivial matter to test whether or
not an operation is identical to a previous operation because the
operands have already been "replaced".

A replacement is simply an adjustment of the pointer to a operand or
operation to refer to an operand/operation in a previous tree or in a
lefthand sibling of the current tree. In effect this changes the forest
of intermediate code trees into a directed acyclic graph. In addition
to changing the reference to a duplicated operand/operation, the
original operand/operation’s usage count must be incremented by
one. In this way the number of references to an expression is known
by its usage count,

5.1 Example

The assignments
x:= a + b; w++; y := a + b;

form a forest of trees. A preorder walk of the trees yields the
following input in linearized polish prefix notation.

assign x plus a b incr w assign y plus a b

The subtree a in the tree assign y plus a b is matched by the tree
transformation rule:

<EXPR> : <var>
QfindSame (<var>) Tlink => dupl'llink

The findsame action checks all previous trees/left siblings within a
linear region [Fr74] when trying to find a duplicate
operand/operation. It searches back through the forest of trees to
find an identical expression. It stops searching when it finds a
reference to the contained subexpression, or when it finds a tree that
affects an element of the expression.

If findSame is successful in its search, a reference to the expression is
returned so that the new symbol, dupl, has an attribute identifying
which subtree it is referring to, i.e., what it is a duplicate of. Dupl is
used as a temporary place holder so that it can in turn make the
appropriate reference.

The same rule would be applied a second time on the subtree b in
the same tree assign y plus a b, producing:

assign x plus a b incr w assign y plus dupl dupl

80

The subtree plus dupl dupl matches the tree transformation rule:
<EXPR> : <binop>Troot dupl dupl

Qf indsam e (»lroot) T l in k => d u p lJ- lin k

Intermediate code would be eliminated and a new symbol added
producing the input

assign x plus a b incr w assign y dupl

6. Instruction Selection

As our last example we show instruction selection (IS) was
performed on the intermediate code tree. This involved
straightforward transformations of traditional IC to machine code
[GlGr78] [GaFi85].

During the instruction selection phase, tree transformations now
provides an elegant solution to a problem created when common
subexpressions have been eliminated in a two address machine
architecture. In an architecture of this type the contents of the
destination operand are destroyed when a binary operation is
performed. This causes problems because some values need to be
reused and therefore should not be destoyed by the operation.

If this two address restriction applies, the tree transformation rules
shown below is appropriate.

<EXPR> : plus <expri>TuseCount <var> ?EqOne (4'UseCount) =>
addDA <expri> <var>

<EXPR> : plus <expri>TuseCount <expr2> ?EqOne (4'UseCount)
=> addR <exprj> <expr2>

Figure 5.8 Two transformations to machine
instructions for addition

Figure 5.8 shows two possible addressing modes for addition in a
code generation specification, in which a machine tree representing
the addition operation can only be created if the destination
register’s, < e x p r i> , usage count is one. It can only be destroyed if the
value in the register is not needed again. If the condition fails,
backup occurs to the point where the transformation shown in Figure
5.9 can be applied, i.e. the source operand is put back into the input.

81

<EXPR> : <binop> <expri>TuseCount ?GtOne (i-useCount)
=» <binop> copy <exprj>

Figure 5.9 A transformation to generate a
register copy

The transformation in Figure 5.9 creates a copy expression. A copy
tree is handled differently then other rewrite trees that are treated
as an in place substitution. All references to < e x p r 2> remain intact,
instead of referring to the copy <expri> tree. Only the reference of
the most recent parent, <binop>, of the <expri> tree is modified to
point to the copy operation.

<EXPR> : copy <expr> QgetRegister(Tr)
=> loadR regXr <expr>

Figure 5.10 A transformation to machine code for
a register load

The transformation in Figure 5.10 transforms a copy expression into
a register transfer operation. The action, get Register, gets a free
register that is an attribute of the register symbol. The register’s
usage count is automatically set to one. Another transformation
reduces the register symbol to the nonterminal <expr> so that one of
the transformations in Figure 5.8 can be applied. Although the
register transfer costs a move, it is a worthwhile move if the < e x p r>
represents a large expression that would otherwise have to be
recalculated.

7. Summary

In this chapter, we introduced a tree transformation language, TTL,
as an alternative to context free grammars for writing code generator
specifications. Tree transformations were used to specify peephole
optimizations on intermediate code, common subexpression
elimination, and instruction selection, demonstrating the applicability
of tree transformations for code generation. Tree transformations
offer a unified mechanism in which a variety of code generation
operations can be expressed in a single code generator specification.

In our scheme, a grammar generator translates a TTL code generator
specification into an equivalent context free grammar specification

82

for use by the backtracking LR parsing code generator,
describes the translation algorithm in greater detail.

Chapter

83

Chapter 6
Algorithm for Converting Tree

Transformations to an Affix Grammar

"The word 'algorithm ' itself is quite interesting; at first glance it may
look as though someone intended to write 'logarithm ' but jumbled up
the first four letters" from The Art of Computer Programming. V. I.,
by D.E. Knuth (1968)

This chapter describes the algorithm used to translate machine
descriptions written in TTL into an equivalent affix grammar
representation suitable for a parser generator. The algorithm is used
by the grammar generator, shown previously in Figure 5.8. The
algorithm was not automated for this thesis, so the translations were
done manually. As shown below, the automation will be
straightforw ard .

1. The Tree Transformation to Affix Grammar Algorithm

As described in Chapter 5, the language for expressing tree
transformations takes the general form:

LHS : RHS {?condition} {Saction} => rewrite tree
Figure 6.1 TTL Syntax

A machine description consists of a series of these tree
transformation rules. The grammar generator translates each tree
transformation rule into an affix grammar rule shown in Figure 6.2.

84

LHS ::= RHS
/apply := (conditioni) and

begin
action;
construct the r e w r i t e T r e e .
reparse := true;
Newlnput := rewriteTree

end;
Figure 6.2 The Affix Grammar Rule Syntax for the

TTL Rule of Figure 6.1
The affix grammar rule of Figure 6.2 is used as a template by the
grammar generator. The translation algorithm examines each TTL
rule and generates a corresponding affix grammar rule by
instantiating the template shown in Figure 6.2 with specific values
from the TTL rule. The exact syntax of the affix grammar rule
template was chosen to match the parser generator system, Pargen.
[CoNo85]

The translation from the TTL Figure of 6.1 to the affix grammar rule
of Figure 6.2 is straightforward. The RHS and LHS are copied exactly
into the template of Figure 6.2 to form the grammar rule itself.

If there are no ?condition's in the TTL rule then the corresponding
grammar rule is unconditional, i.e. semantic conditions are not
considered before the rule is applied. Otherwise if ?condition's exist
in the TTL rule, they are used to form the condition set in the affix
grammar rule template of Figure 6.2. The list of ?condition's is
changed into a sequence of Pascal boolean function calls, one function
per ?condition. The function calls are joined with the Pascal boolean
and construct which allows for the conditional application of
grammar rules. The boolean functions themselves are supplied by
the user as part of the code generator. Before a grammar rule is
applied in Pargen, i.e. at a reduce action in the parser, the boolean
condition is evaluated. The condition is true if the semantic
attributes associated with the grammar symbols contain certain
values described by the boolean function. If any condition in the
conjunction does not hold, the reduce action is prevented and backup
occurs.

The 0 a c t io n 's in the TTL rule are Pascal procedure calls which are
copied into the affix grammar rule template as a sequence of
semicolon-separated procedure calls. The Pascal action procedures

85

are part of the semantics associated with the grammar, and are
executed when the grammar rule is applied at a reduce action in the
parser. Many of the TTL rule's have no @ act io n 's , therefore no
Pascal action procedure calls are copied into the grammar semantics.
The Pascal action procedures themselves are supplied by the user as
part of the code generator.

The only real conversion of ?condition's and Gaction's to Pascal
subprograms occurs in the parameters. Since the parameters from
either the ?condition or the Gaction of the TTL specification also
correspond to the attributes for the grammar symbols, the
parameters are replaced by the appropriate attribute references.
The I indicates information passed to the subprogram and T indicates
information returned from the subprogram.

The remaining part of the template affix grammar rule is
instantiated to perform the tree transformation. There are two cases
to consider, a non-null rewrite tree and a null rewrite tree.

If the rewriteTree in the TTL is null, the TTL rule describes a tree
reduction transformation which is modeled exactly by an affix
grammar rule. The following portions of the template

construct the rewriteTree;
reparse := true;
Newlnput := rewriteTree;

are omitted by the grammar generator.

If the rewriteTree in the TTL is non-null, the rule describes a tree
rearrangement or tree replacement transformation which requires
the transformation operation, the "construct the rewriteTree"
portion of the template, to be encoded in the semantics of the
grammar rule. The grammar generator also inserts the Pascal
sta tem en ts

reparse := true;
Newlnput := rewriteTree;

Setting reparse forces a backup in the LR parser which is limited to
only backing up one symbol before the the current grammar rule.
The input is then reparsed, but the input has changed because the
input has been rewritten as specified by the rewriteTree. The
replacement of the source tree by the rewrite tree is effected by
inserting the statement: "Newlnput := rewriteTree." Any and all
references to the root of the r h s now reference the root of the
rewriteTree, and all other references remain intact.

86

The grammar generator creates Pascal code to perform the
rearrangement or replacement transformation by using the set of
Pascal procedures shown in Figure 6.3. These tree construction
procedures are included as part of the library routines for the parser
and are assumed to be available during code generation.

MakeNewNode (newTerminal, nodePtr);
Creates a terminal symbol.

MakeStackNode (oldSymbol, nodePtr);
Grabs a node out of the old tree (terminal or
nonterminal.

MakeUnary (child, parent);
MakeBinary (IChild, rChild, parent);

Attaches node(s) to a root node forming a
tree.

Figure 6.3 Tree Construction Procedures
The algorithm in Figure 6.4 specifies in general terms how tree
transfomations are constructed with implementation level details
omitted for clarity. Also we stress that the purpose of this algorithm
is to create Pascal statements which will actually perform the
transformation during code generation. In Figure 6.4, the generation
of a Pascal statement is indicated by a call to EmitSemantics.

The tree transformation construction algorithm scans the linearized
TTL rewrite tree from right to left examining each symbol in turn.
Conceptually, the algorithm proceeds in two stages. First, Pascal code
is generated to create a tree node for the current symbol. Second,
Pascal code is generated to merge the newly created tree node into
the partially constructed tree. The two stages are indicated by
comments in Figure 6.4 and explained below.

87

S <— emptyStack

for each syra in reverse(rewriteTree) do
begin
(* 1) Generate Make Tree Node *)

if TTLleftmost(sym) then
symName "rewriteTree"

else
symName <— GenName(sym)

if (sym in RHS) then
EmitSemantics("makeStackNode (sym, symName)”)

else
EmitSemant ics {"makeNewNode (sym, symName)")

S.push (symName)
(*2) Generate Tree Construction Code *)

if Binop (sym) then
begin

root <— S .pop
Ichild <— S.pop
rchild <— S.pop

EmitSemantics ("M akeBinary(Ichild , r c h i l d , roo t)")
S.Push{ root)

end (* have binary operator *)
else if Unaryop (sym) then
begin

root <— S.pop
child <— S.pop

EmitSemantics ("MakeUnary(child, r o o t) ”)
S.push(root)

end (* have unary operator *)
end (* for each symbol *)

Figure 6.4 Transformation Construction Algorithm

88

Creating Tree Nodes

Pascal procedures to create tree nodes are predefined as part of the
code generator. The tree construction algorithm simply emits Pascal
procedure calls to these predefined routines. There are two types of
tree nodes: tree nodes for symbols which already appear in the RHS
and tree nodes for other symbols. If a tree node for a RHS symbol is
to be reused, code to generate a new node is not necessarily needed
and the construction algorithm could save the symbol reference on
its stack. This would work in all instances.

There was a time when the implementation required a new node to
be created for an old symbol, but this is no longer true. The
algorithm shows the emission of code to generate new references for
old symbols by inserting the call to the MakeStackNode procedure
even though it is currently unnecessary. Otherwise if the symbol
does not appear in the RHS, a tree node for the symbol is created by
inserting a call to MakeNewNode.

Both MakeStackNode and MakeNewNode are generated to create a tree
node or create a new reference to an existing tree node respectively.
A generated variable name, symName, for this reference is required.
Variable names are created by the GenName function in Figure 6.4. By
default, the variable name for the root (leftmost symbol) of the TTL
rewrite tree is rewriteTree. The construction algorithm saves the
variable name associated with each tree node on a stack for later use
to generate Pascal code which will, when executed, merge the tree
nodes to assemble the rewrite tree.

Making Trees from Existing Nodes

Pascal code is generated to create trees whenever an operator
symbol is encountered in the right to left scan of the TTL rewrite
tree. The grammar generator simply emits a procedure call to the
appropriate Pascal routine: makeunary or makeBinary, each of which
has child node(s) and parent node parameters. The generated
variable names for the parent node references are saved on the stack
maintained by the construction algorithm and are popped as needed.

2. TTL to Affix Grammar Examples

The remainder of this chapter gives several examples of TTL to affix
grammar conversions.

89

Reduction Transformation Example

Reduction transformations are the simplest case, since no
rewriteTree is needed. Figure 6.5 shows the TTL rule for a reduction
transformation, and its corresponding grammar rule.

<EXPR>: QddDA
/ \

<expr> <var>
<PdecrUseCt(<expr>J,r)

(a) A picture of the transformation
specification.

<EXPR> : addDA <expr>Tr <var> ©decrUseCt {4-r) =>

(b) TTL specification
<EXPR> ::= addDA <expr> <var>
begin

decrUseCt (<expr>.r);
end;
(c) Corresponding affix grammar rule
Figure 6.5 Simple Reduction Transformation

The attribute, r, is the register associated with the expression,
<expr>. The parser generator system used in this thesis, Pargen,
accepts the notation <nonterminal>.attribute to access attributes, as
shown by the use of <expr>.r in part (c) of Figure 5.6. This notation
is merely for convenience of the user, and Pargen automatically
converts this notation to reference the appropriate attribute record
on the parse stack

The transformation of part (b) of Figure 6.5 contains one action,
0decrUseCt that is converted to a Pascal procedure call. The Pascal
procedure is written by the user and supplied as part of the code
generator.

Conditional Transformation Example

The pictorial representation of an optimization transformation
appears in part (a) of Figure 6.6.

90

<ASSIGN>: assign

inc r

<varv plus
/ \

<var2> <no>

?same(<var1>, <var2>)
?equal(<no>4'Val, 1)

(a) A picture of the transformation
specification.

<ASSIGN> : assign <vari> plus <var2> <no>Tval
?same (<vari>,<var2>) ?equal (Ival, 1)

=> incr <vari>

(b) TTL specification.
<ASSIGN> : := assign <varx> plus <var2> <no>
/apply := same (<varx>, <var2>) and (equal (<no>.val, 1)) ;
begin

makeStackNode (<varx>, APtr);
makeNewNode (incr, rewriteTree);
MakeUnary (APtr, rewriteTree);
reparse := true;
Newlnput := rewriteTree;

end;
(c) Corresponding affix grammar rule
Figure 6.6 Transformations with Conditions

The transformation of Figure 6.6 shows the replacement of an
assignment statement by an increment instruction. The selection of
an increment instruction is conditional. The ?same and ? equal
conditions have the obvious meaning. The TTL rule for this
transformation is shown in part (b) of Figure 6.6.

The TTL rule in part (b) of 6.6 is converted into the affix grammar
rule shown in part (c) of Figure 6.6. The LHS and RHS, are copied
directly to form the grammar rule. The condition conjunction is
formed by Pascal functions which test each condition.

91

The construction algorithm of Figure 6.4 is used to construct the
rewrite tree, which generates the Pascal code:

makeStackNode (<vari>, APtr);
makeNewNode (incr, rewriteTree) ;
MakeUnary (APtr, rewriteTree);

in part (a) of Figure 6.6. The generated variable names APtr and
rewriteTree are generated by the construction algorithm. In this
case, the construction algorithm operates as follows. The first symbol
encountered in a right-left scan of the TTL rewrite tree is c v a r ^ . As
<vari> appears in the RHS, a call to makeStackNode is emitted and
APtr is pushed on the tree translator stack. Next, the incr symbol is
scanned. A call to makeNewNode is emitted and rewriteTree is pushed
on the stack. Since incr is an unary operator, the stack is popped to
get the parameters for the emitted call to MakeUnary.

Action Transformation Example

The example in Figure 6.7 shows a tree transformation which
transforms a copy expression into a register transfer operation. This
transformation was discussed previously in Chapter 5.

< E X P R > : COp y l o a (j R

I - * / \
<expr> reg <expr>

^getRegister (regTr)

(a) A picture of the transformation
specification.

<EXPR> : copy <expr> figetRegister(Tr) =>
loadR reg4r <expr>

(b) TTL specification
<EXPR> ::= copy <expr>
begin

getRegister (reg.r);
makeStackNode (<expr>, APtr);
makeNewNode(reg, BPtr);
makeNewNode (loadR, rewriteTree);
MakeBinary (BPtr, APtr, rewriteTree);
reparse := true;
Nev/Input := rewriteTree;

end;
(c) Corresponding affix grammar rule
Figure 6.7 Transformations with Actions

92

This conversion is analogous to the last one, except this
transformation includes an action, namely a call to the register
allocator for a new register. The grammar generator converts the
parameters of the action and copies the Pascal procedure call (with a
slight syntax change): getRegister, into the grammar semantics.
The in/out parameters (designated by T and i) in the TTL rule are
used by the grammar generator to determine the appropriate
attribute reference. In this case, the returned register is the "r"
attribute of the r e g symbol.

Rearrangement Transformation Example

Figure 6.8 specifies a reordering of the children of the RHS.

<EXPR>: pi U3 plu3

/ \ / \
<no> <expr> <expr> <no>

(a) A picture of the transformation
specification.

<EXPR> : plus <no> <expr> => plus <expr> <no>

(b) TTL specification
<EXPR> ::= plus <no> <expr>
begin

makeStackNode (<no>, APtr);
makeStackNode (<expr>, BPtr);
makeStackNode (plus, rewriteTree);
MakeBinary (APtr, Bptr, rewriteTree);
reparse := true;
Newlnput := rewriteTree;

end;
(c) Corresponding affix grammar rule
Figure 6.8 Rearrangement Transformation

The transformation is unconditional and involves no actions. Since
the transformation just reorders the RHS, no calls the makeNewNode
are generated by the grammar generator, and all attributes stored
with the RHS are preserved.

93

3. Summary

This chapter presents a transformation construction algorithm which
converts machine descriptions written in TTL into an equivalent affix
grammar representation suitable for a parser generator. Four
examples illustrate the algorithm for the following kinds of
transformations: a reduction transformation, a replacement
transformation with semantic conditions, a replacement
transformation with semantic actions, and a rearrangement
transform ation.

94

Chapter 7
Reparse Backup

"And now I see with eye serene, the very pulse of the machine"
from "She was a phantom of delight", Poems in Two Volumes by
William Wordsworth (1807)

A tree transformation is more than a pattern recognizer because the
transformation can also produce a rewrite tree. In the context of
code generation, it is desirable to have the new pattern produced by
the tree transformation available for further transformations. For
example, the results of IC peephole optimizations should be made
available for instruction selection transformations. In this way, tree
transformations can be viewed as creating new input for the code
generator in the form of a rewrite tree.

We have implemented tree transformations using LR parsing to
perform the pattern recognition, semantic actions to perform any
tree transformation, and backtracking to make the new input
available for further transformations, i.e. reparsing. When the new
input is generated, the parse state must be adjusted to allow parsing
to continue with the new input. A similiar situation arises in the
context of syntactic error recovery [BuFi87]: when a syntax error
occurs it is not sufficient to simply add, delete, or replace a token; the
parse state must also be adjusted.

In Chapter 5 we described the use of tree transformations for code
generator specifications, and in Chapter 6 we showed how tree
transformation rules are translated to an affix grammar

95

representation. In this chapter, we describe the implementation
used to support reparsing as the result of a tree transformation.
First the differences between backups for semantic blocking and
backups for tree transformations are described, then the
implementation details are given, and finally the chapter concludes
with an example illustrating "reparse backup".

1. Reparse Backups

Previously, backup only occurred in the case of blocking. Another
backup allows for reparsing the rewrite tree produced by a tree
transformation. These transformation induced backups are different
from backups induced by blocking in several respects. First,
transformation induced backup is much more limited as we need
only backup over the source tree, represented by the RHS of the
current grammar rule. Second, transformation induced backup
differs in the recovery of the input for the backup. Some symbols in
the source tree are used in rewrite tree, and can be retrieved from
either the parse stack or the save stack and placed back in the input,
just as in blocking. But new symbols that appear in the rewrite tree
are not on the save stack. However since new symbols in the rewrite
tree are always terminals, these can be put directly into the input.

It is not obvious that the scope of a transformation induced backup is
limited; how far must we backup to restore the parse state such that
the parser can continue? The answer comes from Burke and Fischer
who have shown that backing up one nonterminal past the root of
the source tree is sufficient [BuFi87]. This result arises in the context
of syntactic error recovery, but is equally applicable here. The
source tree is considered as the syntactic error, and the rewrite tree
as the correct syntax.

2. Reparse Backup Implementation

The algorithm used to implement a reparse backup appears in Figure
7.1. The algorithm has three parts, denoted by comments in the
algorithm. First, generate the new input from the rewrite tree and
place it into the input; next, backup by adjusting the parse and save
stacks; and finally, if the symbol directly to the left of the source tree
root is a nonterminal, backup one more nonterminal past the root of
the source tree.

96

(* Generate new input from rewrite tree *)
for sym in RightLeftRootTraversal(rewrite tree)

if Terminal(sym) THEN
concat(sym, input)

else
unwind(sym);

(* Backup by adjusting parse and save stacks *)
parseTop := adjustTop(ParseStack, sourceTree .root);
saveTop := adjustTop(SaveStack, sourceTree.root);
(* Backup one NonTerminal past root of source tree,*)
(* concatenating terminals into the input *)
if nonTerminal(topSym(parseStack)) then
begin

sym := pop(parseStack);
unwind(sym);
saveTop := adjustTop(SaveStack, sym.root),

end;

Procedure Unwind (sym);
begin

for i := sym.Rindex downto sym.Lindex
if terminal(saveStack[i].sym) then

concat(sym, input)
else

unwind{saveStack[i].sym);
end; (* unwind *)

Figure 7.1: Reparse Backup Algorithm
To generate the new input, the rewrite tree is traversed and each
symbol is concatenated to the front of the input buffer. Terminal
symbols are placed directly into the input, but nonterminals which
are part of the source tree can also appear in the rewrite tree. The
terminal symbols which derived a nonterminal are recovered from
the save stack and placed into the input by procedure unwind.

To backup, the adjustTop procedure shifts the parse and save stacks
to remove the source tree. Since state as well as symbol information
is stored on the stacks, adjusting the stacks reorients the parser.
Finally, we backup one non-terminal past the root of the source tree,
calling unwind to recover terminals into the input buffer.

97

3. Reparse Backup Example

The following example illustrates the algorithm for reparse backups.
The input considered is intermediate code representing an
assignment statement, shown in Figure 7.2.

a s s ig n x m inus x p lu s 1 0

Figure 7.2: IC for Assignment Statement
First, a tree transformation which performs constant folding is
applied to fold p lu s l 0 which causes a reparse backup. Next, an IC
optimization transformation is applied which produces the IC d e e r x.
The relevant tree transformation for constant folding is shown in
Figure 7.3.

<expr> : p lu s < no i> T vali <no2 >T val2

@ compute(minus, -J-vali, >tval2) T v a l 3

<no3>'lval3

Figure 7.3: A Constant Folding Tree
Transformation

The affix grammar rule representing the constant folding
transformation is applied when the p lu s 1 0 intermediate code tree
is recognized by the parser. The state of the parse and save stacks at
this point are shown in Figure 7.4.

state 59
<no>

state 32
<no>

state 34
plus

state 31
<expr>
state 17
minus
state 14
<var>
state 7

a s s ig n
state 1

parse stack

state 30
<var>
state 11
<id>

state 11
<id>

save stack
Figure 7.4: Parse State before Constant Folding

98

The effect of applying the constant fold transformation should be the
same as if the original input were:

assign x minus x 1

The compute action determines the value of the constant fold, l ,
which becomes the new input, replacing plus l 0. The reparse
backup pops the parse stack and corresponding symbols on the save
stack, one nonterminal past the source tree. The resulting parse
state is shown in Figure 7.5, and parsing continues with the
remaining input as: x 1, the x being placed in the input by popping
<expr> off the parse stack and retrieving the <id> from the save
stack.

17
minus
stat« n
<var>
stat« 7

a s s ig n
state 1

state 11
<id>

parse stack
Figure 7.5:

save stack
Parse State after Constant Folding'

Parsing continues until the parse state shown in part (a) of Figure 7.6
is reached which allows the instruction selection transformation of
part (b) of Figure 7.6 to be applied, generating the macine instruction
deer x.

99

state 57
< H O >

state 30
<var>
state 17
minus
state 14
<var>
state 7
assign
state 1

state 11
<id>

state 11
<id>

parse stack save stack

(a) Parse State before Deer Transformation
<ass±gn> : a s s ig n < vari> m inus < v a r 2 > <no>Tval

?same (< v a ri> ,< v a r 2 >) ? e q u a l (1, ^Ival)
=» d e e r < v a ri>

(b) Deer Instruction Tree Transformation
Figure 7.6 Applying the Deer Tree Transformation

Application of the instruction selection itself results in a reparse
backup with d e e r x as the new input, eventually producing the parse
state shown in Figure 7.7.

stott 12
<var>
state 5
deer
state l

parse stack

state 11
<id>

save stack

Figure 7.7: Parse State after Parsing Deer
Rewrite

The constant folding transformation also illustrates why backup over
the source tree alone is sometimes insufficient. Backup must
continue one nonterminal to the left of the root of the source tree if
the symbol directly to the left of the source tree is a nonterminal.
An example of the resulting parse if the "nonterminal backup" rule is
not followed is shown in Appendix E.

100

Chapter 8
C onclusions

"1 don’t want to achieve immortality through my work, I want to
achieve it through not dying." by Woody Allen (1935-) from
Woodv Allen. A Biography by Eric Lax (1991)

This chapter summarizes the research results presented in the
previous seven chapters of this thesis. In addition, directions for
future research are identified.

1. Summary

The creation of a code generator is a substantial undertaking. Past
research has aimed towards formal methods of automatically
deriving code generators from target machine descriptions. This
thesis makes two contributions towards the goal of targeting a code
generator automatically from a specification:

1) We developed a backtracking LR parser and described its use for
automatically deriving code generators from a code generation
specification. The backtracking LR parsing code generator described
was developed independently but is similar to the approach taken by
Keller [Kel91].

2) We developed a tree-based notation, the Tree Transformation
Language (TTL), for code generator specifications, and demonstrate
TTL by implementing a number of standard code generation
algorithms from the literature.

101

One advantage of a backtracking LR parser for code generation over
previous methods is the simplification of blocking avoidance.
Blocking which arises from locally greedy conflict resolution is
avoided automatically by backtracking, eliminating the need for
default rules.

The primary advantage of TTL for code generator specifications is
that TTL offers a unified mechanism for describing the many
different kinds of tasks performed by the code generator. To
demonstrate its versatility, TTL was used to describe peephole
optimizations on intermediate code, common subexpression
elimination, and instruction selection. The strength of TTL is that the
same notation was used to specify all of these code generator tasks.

TTL code generator specifications are translated into affix grammars
for input into the parser generator which produces a backtracking LR
parser. In this way, the convenience of a tree-based notation is
combined with the formality and power of parsing. In addition,
backtracking makes the results of a transformation available for
further parsing.

In this thesis, we implemented three standard code generation
algorithms in TTL: IC peephole optimizations, instruction selection
and common subexpression elimination via usage counts. We
expected TTL to be well suited for IC peephole optimization and
instruction selection. We chose to implement common subexpression
elimination via usage counts because TTL did not seem to be suited
to the task, and we thought it was a good test of TTL's capabilities.
Furthermore, common subexpression elimination often gets buried in
the semantic actions which are difficult to trace and debug. TTL
expressed common subexpression elimination at a higher conceptual
level, as part of the code generator specification, which simplified the
im plem entation.

The decision to use three separate code generator specifications
instead of one was dictated by hardware limitations of the
development system. The Apple Macintosh Plus computer used
lacked the memory required for large code generator specifications.
On a larger memory machine, one specification would have been
possible.

102

The appendices contain samples of TTL code generator specifications,
and test runs of the resulting code generator. Appendix A contains
the IC peephole optimization specification, Appendix B contains the
common subexpression elimination specification, and Appendix C
contains the instruction selection specification. Appendix D contains
a selection of test runs documenting the operation of the code
generator. Appendix E illustrates what happens if "reparse backups"
do not backup up one nonterminal past the source tree. Appendix F
shows that TTL and a backtracking LR parser produce a recognizer
for any recursively enumerable language.

2. Directions for Future Work

There are a number of straightforward extensions to the current
system which would increase its utility.

1. Currently, the translation from TTL to the affix grammar
representation is done manually following the algorithm in
Chapter 6. This algorithm can be implemented.

2. W e implemented three standard code generation algorithms
in TTL: IC peephole optimizations, common subexpression
elimination via usage counts and instruction selection.
Consequently, we would like to implement some more
challenging algorithms, some of which are discussed below.

A number of architectures implement conditional jumps
based on a set of condition codes which indicate whether the
last value computed or compared is negative, zero, or positive.
On such machines, a common optimization is to avoid
unnecessary comparisons if the condition code is already set.
For example1 in the code:

x := y + z
i f x < 0 g o to z

The comparison x < 0 can be avoided since the statement x : =
y + z sets the condition code for the value of x as a side effect.
If implemented TTL would have to maintain the required
condition code information.

Data flow analysis collects information, such as live/dead
variable information, which is required for a number of

iThis example is due to [AhScUI88], p. 541.

103

common optimizations, such as dead code elimination and
register allocation via graph coloring. It would be interesting
to use TTL to specify data flow analysis algorithms. After
completing a TTL implementation, the next step would be to
implement some algorithms which require data flow analysis
inform ation.

The dynamic programming code generation algorithm
[AhSeU188] can be used to generate code for expressions on any
machine with R interchangeable registers. The dynamic
programming algorithm progresses in three phases. In the first
phase a cost vector, c [l . . R], is computed bottom-up for each
node, N, in the expression tree where c [i] represents the
optimal cost of computing the subtree rooted at N when i
registers are available. In the second phase, the expression
tree is traversed again using the cost vector to determine
which subtrees must be computed into memory. The third
phase traverses the annotated expression tree and actually
generates machine code.

Another possibility would be to attempt an
implementation of the dynamic programming code generation
algorithm using TTL and backtracking, using the following
method. LR parsing operates bottom-up, and the cost vectors
can be maintained as attributes. The three phases could be
implemented using three types of TTL transformation rules
such that phase 1 rules produce rewrite trees attributed with
cost vectors, phase 2 rules produce rewrite trees in which
operands are designated as residing in memory or in registers,
and phase 3 rules perform instruction selection. Backtracking
allows the output of phase 1 rules to be available for phase 2,
and phase 2 output to be made available for phase 3.

3. We have implemented the backend of a complete compiler,
and we would like to match this backend with a front-end for C
or Pascal.

In addition, work remains to better evaluate the capabilities of the
current system:

1. Code generator specifications should be done for different
target architectures, such as a one address instructions set or
three address instruction set.

104

2. A number of performance evaluations should be conducted
to yield more empirical measure of a backtracking LR parser
for code generation including:

i. A comparison of the size of the code generator
specifications can be compared to machine descriptions
required for other methods.

ii. The execution time required by the resulting code
generator to generate machine code can be compared to
other schemes for the same target machine.

iii. The efficiency of the machine code generated by the
code generator can be compared to other schemes.

105

Appendix A
Peephole Optimization of the

Intermediate Code

The following tree transformations describe peephole optimizations
on the intermediate code, a method which was described by
Tannenbaum [TaStSt82], Of the ten classes of IC peephole
optimizations described by Tannenbaum, seven are represented in
the tree transformations below namely: constant folding, operator
strength reduction, null sequences, commutative law, comparison,
special instructions and reordering. The classes of combined moves,
indirect moves, and DUP instructions were not represented because
the target machine code could not take advantage of these classes of
optim izations.

<program>: <slist> <eof>

<slist>: <assign> <slist>
=>

<slist>:
=s>

<expr> : plus <noi>Tvali <no2> tvah
@compute(plus, iv a li, <lval2) tv a l3

=$ <no3>ival3

<expr> : minus <noi>Tvali <no2>Tval2
@compute(minus, ■J-vali, v lvab jtvab

=s> <no3>ival3

<expi> : plus <expr> <no>Tval
?equal(ival, 0)

=> <expr>

106

<expr> : multiply <expr> <noi>Tvali
?equal(i-vali, 0)

=> <no2>4'0

<expr> : multiply <expr> <noi>tvali
?eq u a l(iv a li, 1)

=> <expr>

<expr> : Uminus <noi>tvali
<5>compute(minus, 0, iva li)T val2

=> <no2>4'Val2

<expr> : Uminus Uminus <expr>
=> <cxpr>

<expr> : not <lit>T true
=> <lit>Xfalse

<expr> : not <lit>Tfalse
=> <lit>itrue

<expr> : plus plus <expr> <noi>tvali <no2> tval2

@compute(plus, 4-vali, i v a ^ t v a l s
=> plus <expr> <no3> ival3

<expr> : minus <expri> <expr2>
?same(<expri>, <expr2>)

=> <no> *10

<expi> : multiply <expr> <no>Tval
?equal(<Lval, 2)

=> shiftL <expr>

<expr> : plus <expri> <expr2>
?same(<expri>, <expr2>)

=» shiftL <expri>

107

<expr> : eq <expr> <lit>Tval
?equal(ival, false)

=> not <expr>

<expr> : eq <expr> <lit>Tval
?equal(iva l, true)

=> <expi>

<expr> : ge <expri> <expr2>
=> le <expr2> <expri>

<expr> : gt <expri> <expr2>
=> It <expr2> <expri>

<expr> : not <relop>Trelopi <expri> <expr2>
@ flip('lrelopi)trelop2

=> <relop>irelop2 <expri> <expr2>

<assign> : assign <vari> plus <var2> <no>tval
?(same(<vari>, <var2 >)) ?equal(ival, 1)

=> incr <vari>

<assign> : assign <vari> minus <var2> <no>Tval
?(same(<vari>, <var2 >)) ?equal('tval, 1)

=» deer <vari>

<assign> : <assign> <vari> <no>Tval
?equal(ival, 0)

=> zero <vari>

<expr> : plus <no> <expr>
=> plus <expr> <no>

<expr> : multiply <no> <expr>
=> multiply <expr> <no>

<expr> : eq <lit> <expr
=> eq <expr> <lit>

108

<expr> : ne <lit> <expr>
=> ne <expr> <lit>

<assign> : assign <var> <expr>
=>

<assign> : incr <var>

<assign> : deer <var>
=>

<assign> : zero <var>
=>

<expr> : Uminus <expr>

<expr> : not <expr>

<expr> : Lshift <expr>

<expr> : plus <expr> <expr>
=>

<expi> : minus <expr> <expr>

<expr> : multiply <expr> <expr>

<expr> : <relop> <expi> <expr>
=3>

<relop> : eq

<relop> : le

109

<relop> : It

<relop> : ne

<expr>: <lit>

<expr>: <no>

<expr> : <var>

<var>: <i<±>

Appendix B
Computing Usage Counts

The tree transformations below implement common subexpression
elimination using the usage count algorithm developed by
Freiburghouse [Fre74]. There is only one action used, findSame,
which checks all previous trees/left siblings within a linear region
when trying to find a duplicate ooccurrence in which all the operands
are still live. If findSame is successful in its search a link to the
expression is returned so that the new symbol, dupl, has an attribute
identifying which subtree it is refering to, i.e., what it is a duplicate
of. Dupl is used as a place holder so that links to it can in turn trace
where they refer to.

<program> : <slist> <eof>
=>

<slist>: <assign> <slist>

<slist>:
=>

<expr>: <no>
?findSame (<no>)Tlink

=> duplllinlc

<expr>: <lit>
?findSame (<lit>)Tlink

=* duplilink

<expr>: <var>
?findSame (<var>)tlink

=> dupUlink

111

<expr>: <expr>
?findSame (<expr>)Tlink

=> duplilink

<expr> : <binop>troot dupl dupl>
?findSame (4-root)tlink

=> duplilink

<expr> : <unaryop>Troot dupl
?findSame (iroot)T link

=> duplilink

<assign> : assign <var> <expr>

<assign> : incr <vai>

<assign> : deer <var>

<assign> : zero <var>
=>

<unaryop> : Uminus
=>

<unaryop> : not
=>

<unaryop> : Lshift
=>

<binop> : plus
=>

<binop> : minus

112

<binop> : multiply
=>

<binop> : eq

<binop> : le

<binop> : It

<binop> : ne

<expr> : <unaryop> <expr>
=>

<expr> : <binop> <expr> <expr>
=>

<expr>: <lit>

<expi>: <no>
=>

<expi> : <var>
=>

<var>: <id>

<expr> : dupl

113

Appendix C
Instruction Selection

The tree transformations below describe instruction selection
transformations which convert intermediate code into target machine
code, similar to Ganapathi and Fischer [GaFi85]. The two address
target machine language used is similar to the Zilog Z8000, which has
a regular register set. The actions, insertidSymTab and
insertArraySymTab, insert the declared variables into the symbol
table. If the intermediate code had been created by a compiler front
end, the symbol table would have already existed. The getRegister
action allocates a free psuedo register from the register table. The
decrUseCt action decrements the usage count associated with an
expression, i.e. a register, and frees the register if the usage count is
zero.

<program> : <dlist> <slist> <eof>

<dlist>: <decl> <dlist>

<dlist>:

<decl> : decl <no> <id>
@insert!dSymTab(<id>)

<decl>: decl <no> <id> <no>
@insertArraySymTab(<id>)

<slist> : <assign> <slist>

<slist>:

114

<assign> : assign <var> <expi>
=> store <var> <expr>

<expr> : copy <expi>
(S)getRegister(Tr)

=> loadR <reg>4-r <expr>

<expr> : plus <expr>TuseCount
?gtOne(iuseCount)

=> plus copy <expr>

<expr> : plus <expr>TuseCount <var>
?eqOne(iuseCount)

=» addDA <expr> <var>

<expr> : plus <expri>TuseCount <expr2>
?eqOne('luseCount)

=> addR <expri> <expr2>

<expi>: <no>
@ getRegister(T r)

=» loadIM regir <no>

<expr>: <var>
@getRegister(Tr)

=> loadDA regir <var>

<van>: <id>
=> ind <id> <reg>irO

<var> : subscript <id> <expi>
=>

<assign> : store <var> <expr>tr
@decrUseCt(4r, <expr>Tr)

<expr> : addDA <expr>Tr <var>
@decrUseCt(irf <expr>Tr)

115

<expr> : addR <expri>Tri <expr2>1r2
@ decrUseCt(iri, t r i) @ decrUseCt(ir2 , Tr2)

<expr> : loadDA <expr> <var>
=>

<expr> : loadIM <expr> <var>

<expi> : loadR <expri> <expr2> tr2

@ decrUseCt(ir2 , t r 2 >

<var> : ind <id> reg

<expr> : reg

116

Appendix D
Selected Test Runs

In the examples shown below, the format is essentially the same.
Each example starts with a prompt line asking for the name of the
test case, followed by the user’s response. The content of the test file
is echoed along with the number of triples read. Each time the input,
i.e. the triple table, is altered the triples are output after the "After
Rewrite" message. Each row of output contains the triple number
followed by either an operand and its value or an operation with two
triple numbers representing its left and right operands respectively.
Notice the format for echoing the input is different from displaying
the new input after each rewrite. This is due to the fact that
different print routines were called.

1. An Intermediate Code Optimization

The following example shows three classes of transformations,
constant folding, comparison, and reordering performed on the input.
If the source code expression was orginally

v := not false = b;
then the following transformations, one per line, would be
perform ed:

v := true = b;
v := b = true;

until the final intput is of the form:
v := b;

The triple table is shown after each rewrite.

Enter the source filename: M4RPtrip.src
1 : id b
2 : lit false
3 : not 2
4 : eq 3, 1
5 : id v
6 : assign 5, 4

6 triples read.

117

After Rewrite
1 id b
2
3 lit TRUE
4 eq 3 1
5 id V
6 assign 5 4

After Rewrite
1 id b
2
3 lit TRUE
4 eq 1 3
5 id V
6 assign 5 4

After Rewrite
1
2
3
4 id b
5 id V
6 assign 5 4

2. Another Intermediate Code Optimization

This example performs constant folding, null sequence elimination
and the use of specialized instructions. If the source code expression
was orginally

z : = 5 + (a - a) ; y := c - b ; x : = x - (1 + <d * 0)) ;
then the following transformations, one per line, would be
perform ed:

z := 5 + 0; y := c - b; X := x - (1 + (d
z := 5; y := c - b; X := x - (1 +
z 5; y := c - b; X := x - (1 +
z := 5; y := c - b; X x - 1 ;

until the final input is of the form:
z := 5; y c - b; deer x;

The output on the next page shows the execution of the above
exam ple.

118

Enter the source filename: BRPtrip.src
1 id a
2 minus 1, 1
3 no 5
4 plus 3/ 2
5 id z
6 assign 5, 4
7 id b
8 id c
9 minus 8, 7

10 id y
11 assign 10, 9
12 no 0
13 id d
14 multiply 13, 12
15 no 1
16 plus 15, 14
17 id x
18 minus 17, 16
19 assign 17, 18
19 triples read.

After Rewrite
1
2 no 0
3 no 5
4 plus 3 2
5 id z
6 assign 5 4
7 id b
8 id c
9 minus 8 7

10 id Y11 assign 10 9
12 no 0
13 id d
14 multiply 13 12
15 no 1
16 plus 15 14
17 id X
18 minus 17 16
19 assign 17 18

119

After Rewrite
1
2
3
4 no 5
5 id z
6 assign 5 4
7 id b
8 id c
9 minus 8 7

10 id y11 assign 10 9
12 no 0
13 id d
14 multiply 13 12
15 no 1
16 plus 15 14
17 id X
18 minus 17 16
19 assign 17 18

After Rewrite
1
2
3
4 no 5
5 id z
6 assign 5 4
7 id b
8 id c
9 minus 8 7

10 id y11 assign 10 9
12
13
14 no 0
15 no 1
16 plus 15 14
17 id X
18 minus 17 16
19 assign 17 18

After Rewrite
1
2
3
4 no 5
5 id z
6 a s s ig n 5 4
7 id b
8 id c
9 m inus 8 7

10 id y
11 a s s ig n 10 9
12
13
14
15
16 no 1
17 id X
18 m inus 17 16
19 a s s ig n 17 18

After Rewrite
1
2
3
4 no 5
5 id z
6 a s s ig n 5 4
7 id b
8 id c
9 m inus 8 7

10 id y
11 a s s ig n 10 9
12
13
14
15
16
17 id X
18
19 d e e r 17

3. A Usage Count Rewrite

The following example eliminates the common subexpression
a + b

from the source code expressions:
x := a + b; incr x; y := a + b;

121

The output generated is in the same format as for the two previous
examples with the following exception: when a duplicate expression
is found, the triple table, i.e. the input, is printed in two stages. The
first stage shows where the duplicate expression is. The second stage
after the transformation is complete. This is n o t two
transformations, it is simply extra output halfway through the single
transform ation.

Enter the source filename: UCcsetrip.src
1 id a
2 id b
3 plus 1, 2
4 id x
5 assign 4, 3
6 id w
7 incr 6
a id a
9 id b

10 plus 8, 9
11 id y
12 assign 11, 10

12 triples read.

After Rewrite
1st Stage:
1 id a
2 id b
3 plus 1 2
4 id X
5 assign 4 3
6 id w
7 incr 6
8 dupl 1
9 id b

10 plus 8 9
11 id y
12 assign 11 10

122

2nd Stage:
1 id a
2 id b
3 plus 1 2
4 id X
5 assign 4 3
6 id w
7 incr 6
8
9 id b

10 plus 1 9
11 id y12 assign 11 10

After Rewrite
1st Stage:
1 id a
2 id b
3 plus 1 2
4 id X
5 assign 4 3
6 id w
7 incr 6
8
9 dupl 2

10 plus 1 9
11 id y12 assign 11 10

2nd Stage:
1 id a
2 id b
3 plus 1 2
4 id X
5 assign 4 3
6 id w
7 incr 6
8
9

10 plus 1 2
11 id y12 assign 11 10

1 2 3

After Rewrite
1st Stage:
1 id a
2 id b
3 plus 1 2
4 id X
5 assign 4 3
6 id w
7 incr 6
8
9

10 dupl 3
11 id y12 assign 11 10

2nd Stage:
1 id a
2 id b
3 plus 1 2
4 id X
5 assign 4 3
6 id w
7 incr 6
8
9

10
11 id y12 assign 11 3

4. A n o t h e r U sa g e C o u n t R e w r i t e

The following example eliminates the common subexpression
b

from the original input
x := a + b; incr a; y := a + b;

Note that in this example the intervening instruction incr a affects
the value of a + b so it would no longer have the same value as
when it was assigned to x. In this case b is the only common
subexpression.

1 2 4

Enter the source filename: UCncsetrip.src
1 id a
2 id b
3 plus 1, 2
4 id x
5 assign 4, 3
6 id a
7 incr 6
8 id a
9 id b

10 plus 8, 9
11 id y
12 assign 11, 10

12 triples read.

After Rewrite
1st Stage:
1 id a
2 id b
3 plus 1 2
4 id X
5 assign 4 3
6 dupl 1
7 incr 6
8 id a
9 id b

10 plus 8 9
11 id y12 assign 11 10

2nd Stage:
1 id a
2 id b
3 plus 1 2
4 id X
5 assign 4 3
6
7 incr 1
8 id a
9 id b

10 plus 8 9
11 id y12 assign 11 10

1 2 5

After Rewrite
1st Stage:
1 id a
2 id b
3 plus 1 2
4 id X
5 assign 4 3
6
7 incr 1
8 id a
9 dupl 2

10 plus 8 9
11 id y12 assign 11 10

2nd Stage :
1 id a
2 id b
3 plus 1 2
4 id X
5 assign 4 3
6
7 incr 1
8 id a
9

10 plus 8 2
11 id y12 assign 11 10

5. An Instruction Selection Rewrite

The initial input in the instruction selection phase is slightly modified
from earlier phases. A usage count is "passed" forward from the
previous phase. Since three separate grammars were used this usage
count was added by hand. Therefore the usage count appears as the
last number in the column. It does not appear in subsequent
rewrites by function of the routine that displays the input.

The following example transforms the source code instructions:
z : = b + a ; w := c ; x := (com m on s u b e x p r e s s i o n a + b)

into their equivalent machine code representation. The register used
to hold the b + a is reused in the assignment to x.

1 2 6

Enter the source filename: cg2atrip.src
1 decl int 1 a
2 decl int 1 b
3 decl int 1 c
4 decl int 1 w
5 decl int 1 X
6 decl int 1 z
7 id a 1
8 id b 1
9 plus 8, 7 2

10 id z 1
11 assign 10, 9 0
12 id c 1
13 id w 1
14 assign 13, 12 0
15 id x 1
16 assign 15, 9 0
16 triples read.

After Rewrite
1 decl a
2 decl b
3 decl c
4 decl w
5 decl X
6 decl z
7 id a
8 id b
9 plus 8 7

10 ind 17 IS
11 assign 10 9
12 id c
13 id w
14 assign 13 12
15 id X
16 assign 15 9
17 id z
18 reg 0

127

After Rewrite
1 decl a
2 decl b
3 decl c
4 decl w
5 decl X
6 decl z
7 id a
8 ind 19 20
9 plus 8 7

10 ind 17 18
11 assign 10 9
12 id c
13 id w
14 assign 13 12
15 id X
16 assign 15 9
17 id z
18 reg 0
19 id b
20 reg 0

After Rewrite
1 decl a
2 decl b
3 decl c
4 decl w
5 decl X
6 decl z
7 id a
8 loadDA 22 21
9 plus 8 7

10 ind 17 18
11 assign 10 9
12 id c
13 id w
14 assign 13 12
15 id X
16 assign 15 9
17 id z
18 reg 0
19 id b
20 reg 0
21 ind 19 20
22 reg 14

128

After Rewrite
1 decl a
2 decl b
3 decl c
4 decl w
5 decl X
6 decl z
7 ind 23 24
8 loadDA 22 21
9 plus 8 7

10 ind 17 18
11 assign 10 9
12 id c
13 id w
14 assign 13 12
15 id X
16 assign 15 9
17 id z
18 reg 0
19 id b
20 reg 0
21 ind 19 20
22 reg 14
23 id a
24 reg 0

After Rewrite
1 decl a
2 decl b
3 decl c
4 decl w
5 decl X
6 decl z
7 ind 23 24
8 loadDA 22 21
9 addDA 8 7

10 ind 17 18
11 assign 10 9
12 id c
13 id w
14 assign 13 12
15 id X
16 assign 15 9
17 id z
18 reg 0
19 id b
20 reg 0
21 ind 19 20
22 reg 14
23 id a
24 reg 0

129

After Rewrite
1 decl a
2 decl b
3 decl c
4 decl w
5 decl X
6 decl z
7 ind 23 24
8 loadDA 22 21
9 addDA 8 7

10 ind 17 18
11 store 10 9
12 id c
13 id w
14 assign 13 12
15 id X
16 assign 15 9
17 id z
18 reg 0
19 id b
20 reg 0
21 ind 19 20
22 reg 14
23 id a
24 reg 0

130

After Rewrite
1 decl a
2 decl b
3 decl c
4 decl w
5 decl X
6 decl z
7 ind 23 24
8 loadDA 22 21
9 addDA 8 7

10 ind 17 18
11 store 10 9
12 id c
13 ind 25 26
14 assign 13 12
15 id X
16 assign 15 9
17 id z
18 reg 0
19 id b
20 reg 0
2 1 ind 19 20
22 reg 14
23 id a
24 reg 0
25 id w
26 reg 0

131

After Rewrite
1 decl a
2 decl b
3 decl c
4 decl w
5 decl X
6 decl z
7 ind 23 24
8 loadDA 22 21
9 addDA 8 7

10 ind 17 18
11 store 10 9
12 ind 27 28
13 ind 25 26
14 assign 13 12
15 id X
16 assign 15 9
17 id z
18 reg 0
19 id b
20 reg 0
21 ind 19 20
22 reg 14
23 id a
24 reg 0
25 id w
26 reg 0
27 id c
28 reg 0

132

After Rewrite
1 decl
2 decl
3 decl
4 decl
5 decl
6 decl
7 ind 23
8 loadDA 22
9 addDA 8

10 ind 17
11 store 10
12 loadDA 30
13 ind 25
14 assign 13
15 id
16 assign 15
17 id
18 reg
19 id
20 reg
21 ind 19
22 reg
23 id
24 reg
25 id
26 reg
27 id
28 reg
29 ind 27
30 reg

a
b
c
w
X
z

24
21
7
18
9

29
26
12
x
9
z
0
b
0

20
14
a
0
w
0
c
0

28
13

133

After Rewrite
1 decl
2 decl
3 decl
4 decl
5 decl
6 decl
7 ind 23
8 loadDA 22
9 addDA 8

10 ind 17
11 store 10
12 loadDA 30
13 ind 25
14 store 13
15 id
16 assign 15
17 id
18 reg
19 id
20 reg
21 ind 19
22 reg
23 id
24 reg
25 id
26 reg
27 id
28 reg
29 ind 27
30 reg

a
b
c
w
X
z

24
21
7
18
9

29
26
12
x
9
z
0
b
0

20
14
a
0
w
0
c
0

28
13

134

After Rewrite
1 decl
2 decl
3 decl
4 decl
5 decl
6 decl
7 ind 23
8 loadDA 22
9 addDA 8

10 ind 17
11 store 10
12 loadDA 30
13 ind 25
14 store 13
15 ind 31
16 assign 15
17 id
18 reg
19 id
20 reg
21 ind 19
22 reg
23 id
24 reg
25 id
26 reg
27 id
28 reg
29 ind 27
30 reg
31 id
32 reg

a
b
c
w
X
z

24
21
7

18
9

29
26
12
32
9
z
0
b
0

20
14
a
0
w
0
c
0

28
13
x
0

135

After Rewrite
1 decl a
2 decl b
3 decl c
4 decl w
5 decl X
6 decl z
7 ind 23 24
8 loadDA 22 21
9 addDA 8 7

10 ind 17 18
11 store 10 9
12 loadDA 30 29
13 ind 25 26
14 store 13 12
15 ind 31 32
16 store 15 9
17 id z
18 reg 0
19 id b
20 reg 0
21 ind 19 20
22 reg 14
23 id a
24 reg 0
25 id w
26 reg 0
27 id c
28 reg 0
29 ind 27 28
30 reg 13
31 id X
32 reg 0

6. Another Instruction Selection Rewrite

The following example transforms the source code instructions
z := b + a ; x : = (common subexpression b)

into their equivalent machine code representation. The register used
to hold the id b must be copied to be reused in the assignment to x,
otherwise it would be corrupted by the addition operation. The last
number in the column is the usage count passed from an earlier
transform ation.

136

Enter the source filename: cg2btrip.src
1 : decl int 1 a
2 : decl int 1 b
3 : decl int 1 z
4 : decl int 1 X
5 : id a 1
6 : id b 2
7 : plus 6, 5 1
8 : id z 1
9 : assign 8, 7 0

10 : id x 1
11 : assign 10, 6 0
11 triples read.

After Rewrite
1 decl a
2 decl b
3 decl z
4 decl X
5 id a
6 id b
7 plus 6 5
8 ind 25 26
9 assign 8 7

10 id X
11 assign 10 6
12 id z
13 reg 0

After Rewrite
1 decl a
2 decl b
3 decl z
4 decl X
5 id a
6 ind 14 15
7 plus 6 5
8 ind 25 26
9 assign 8 7

10 id X
11 assign 10 6
12 id z
13 reg 0
14 id b
15 reg 0

137

After Rewrite
1 decl a
2 decl b
3 decl z
4 decl X
5 id a
6 loadDA 17 16
7 plus 6 5
8 ind 25 26
9 assign 8 7

10 id X
11 assign 10 6
12 id z
13 reg 0
14 id b
15 reg 0
16 ind 14 15
17 reg 14

After Rewrite
1 decl a
2 decl b
3 decl z
4 decl X
5 ind 18 19
6 loadDA 17 16
7 plus 6 5
8 ind 25 26
9 assign 8 7

10 id X
11 assign 10 6
12 id z
13 reg 0
14 id b
15 reg 0
16 ind 14 15
17 reg 14
18 id a
19 reg 0

138

After Rewrite
1 decl a
2 decl b
3 decl z
4 decl X
5 ind 18 19
6 loadDA 17 16
7 plus 20 5
8 ind 25 26
9 assign 8 7

10 id X
11 assign 10 6
12 id z
13 reg 0
14 id b
15 reg 0
16 ind 14 15
17 reg 14
18 id a
19 reg 0
20 copy 6

After Rewrite
1 decl a
2 decl b
3 decl z
4 decl X
5 ind 18 19
6 loadDA 17 16
7 plus 20 5
8 ind 25 26
9 assign 8 7

10 id X
11 assign 10 6
12 id z
13 reg 0
14 id b
15 reg 0
16 ind 14 15
17 reg 14
18 id a
19 reg 0
20 loadR 21 6
21 reg 13

After Rewrite
1 decl a
2 decl b
3 decl z
4 decl X
5 ind 18 19
6 loadDA 17 16
7 addDA 20 5
8 ind 25 26
9 assign 8 7

10 id X
11 assign 10 6
12 id z
13 reg 0
14 id b
15 reg 0
16 ind 14 15
17 reg 14
18 id a
19 reg 0
20 loadR 21, 6
21 reg 13

After Rewrite
1 decl a
2 decl b
3 decl z
4 decl X
5 ind 18 19
6 loadDA 17 16
7 addDA 20 5
8 ind 25 26
9 store 8 7

10 id X
11 assign 10 6
12 id z
13 reg 0
14 id b
15 reg 0
16 ind 14 15
17 reg 14
18 id a
19 reg 0
20 loadR 21 6
21 reg 13

After Rewrite
1 decl a
2 decl b
3 decl z
4 decl X
5 ind 18 19
6 loadDA 17 16
7 addDA 20 5
8 ind 25 26
9 store 8 7

10 ind 22 23
11 assign 10 6
12 id z
13 reg 0
14 id b
15 reg 0
16 ind 14 15
17 reg 14
18 id a
19 reg 0
20 loadR 21. 6
21 reg 13
22 id X
23 reg 0

After Rewrite
1 decl a
2 decl b
3 decl z
4 decl X
5 ind 18 19
6 loadDA 17 167 addDA 20 5
8 ind 25 26
9 store 8 7

10 ind 22 23
11 store 10 6
12 id z
13 reg 0
14 id b
15 reg 0
16 ind 14 15
17 reg 14
18 id a
19 reg 0
20 loadR 21 6
21 reg 13
22 id X
23 reg 0

1 4 1

Appendix E
Reparse Backup Example Revisited

In this appendix, we show by example why reparse backup
continues one nonterminal past the root of the source tree. This
appendix continues the reparse backup example of section 3, Chapter
7 and is not a self-contained appendix. This appendix considers what
happens in the section 3 example if the "nonterminal backup" rule is
not followed. Our discussion begins in the middle of the section 3
example,with the parse state shown in Figure 7.4 of Chapter 7. The
reader is advised to read section 3, Chapter 7 up to that point, and
then continue with this appendix.

Consider the tree transformation for the decrement instruction,

<ASSIGN> : assign <vari> minus <var2> <no>Tval
?same(<vari>,<var2>) ?equal(4val, 1)

=* deer <vari>

shown previously in part (b) of Figure 7.6, the original input, before
constant folding

assign x minus x plus 1 0

and the parse state before constant folding shown in Figure 7.4.

Notice that in Figure 7.4 the second x in the original input has been
reduced to <expr>. This reduction took place on the basis of the plus
symbol in the input and the reduction rules out the application of the
decrement instruction transformation, which requires a <var> where
we now have an <expr>. However, the constant folding
transformation removes the p lu s from the input as if it never
existed, in effect treating it as a syntactic error. But if we do not
backup one nonterminal past the root of the source tree, the parse
state in Figure E .l results.

1 4 2

state 31
<expr>
state 17
minus state 30
state 14 <var>
<var> state 11
state 7 <id>
assign state 11
state L <id>

parse stack save stack

Figure E.l: Parse State after Incorrect ReparseBackup over Constant Folding Transformation
This parse state is bad in three respects. First, it does not represent
the state that would result on the input assign x minus x l because
the reduction of x to < e x p r> remains in force. Secondly, this parse
state results in suboptimal code as the tree transformation for the
decrement instruction will not apply. Finally, the end result of such
an incongruous parse state can be disastrous, as the code generator
could fail with parsing errors.

In the case shown in Figure E .l, chance has thrown the parser into a
state from which it can recover, using the transformations shown in
Figure E.2, but suboptimal code results.

1) <EXPR> : <no>=>
2) <EXPR> : minus <expri> <expr2>

?same{<expri>, <expr2>)
3) <EXPR> : minus <expri> <expr2> =>
4) <ASSIGN> : assign <var> <expr>

<no>lo

Figure E.2: Expression Transformations
The input produced by the constant fold transformation is l . The
input is recognized as a <no> and subsequently reduced to an <e x p r >
by rule 1 of Figure E.2, which results in the parse state shown below
in Figure E.3

143

state 58
<expr>
state 31
<expr>
state 17
minus
state 14
<var>
state 7

a s s i g n ,
state 1

parse stack save stack

Figure E.3: Parse State after Reduce by Rule 1
In the parse state of Figure E.3, there is a possibility of reducing by
rule 2 or rule 3, but since the expressions are not the same the
semantic conditions of rule 2 are not met, and we reduce by rule 3
which results in the parse state shown in Figure E.4.

state 58
<expr>
state 31
<expr>
state 17
minus
state 41

state IS <tio>
<expr> state 30
state 14 <var>
<var> state 11
state 7 <id>
assign state 11
state 1 <id>

parse stack save stack

Figure E.4: Parse State after Reduce by Rule 2
The parse state of Figure E.4 allows application of rule 4 which will
reduce the parse stack to <assign>. This is not the desired result of
deer x. Subsequent instruction selection transformations on the IC
will not produce a decrement instruction, but will produce machine
code to compute the subtraction and store the result in x.

state 41
<1XQ>

state 30
<var>
state 11
<id>

state 11
<id>

144

Appendix F
TTL and a Backtracking LR Parser

Produce a Recognizer for any
Recursively Enumerable Language

In this appendix, we show that a TTL specification for a backtracking
LR parser produces a recognizer for any recursively enumerable
language.

1. Approach and Notation

Languages can be defined two ways: by specifying a generator for
the language, or by defining a recognizer for the language. For
example, a grammar is a language generator whereas a push-down
automaton is a recognizer. The following table defines the Chomsky
hierarchy of languages by generator and by recognizer [AhU172, p.
96]:

G e n e r a t o r Recognizer

Right-Linear Grammar automaton one-way deterministic finite

Context-Free Grammar one-way nondeterministic pushdown automaton.
Context-sensitive Grammar
bounded

two-way nondeterministic linear
automaton.

Unrestricted Grammar a Turing machine.

Figure F . 1: Language Generators and Recognizers
A language L is recursively enumerable if L is generated by an
unrestricted grammar or if L is recognized by a Turing Machine.

The approach taken in this appendix is based on the observation that
the question, "can a TTL specification and a backtracking LR parser
define a recognizer for any recursively enumerable (unrestricted)
language?" is equivalent to the question "can a TTL specification and

1 4 5

a backtracking LR parser simulate a Turing machine?" The point
being that if a TTL specification and a backtracking LR parser can
simulate any Turing machine, then it can recognize any recursively
enumerable language by simulating the Turing machine that
recognizes the language.

To answer the question "can a TTL specification and a backtracking
LR parser simulate a Turing machine", we give a general algorithm
which translates a Turing machine into a TTL specification, as shown
in Figure F.2.

■Input Tape

(TTL)
I

Grammar
Generator

Algorithm $— */
Turing

Machi ne

Ha' t3

Code Generator
(Backtracking LR

P arse r)
5

Halt3

(Grammar)
I

Parser
Generator

 1 -------
Parse Tables

Figure F.2: Turing Machine Simulation

146

A Turing machine is formally denoted by [HoU179]:

M = (Q, 2 , T, 8, q0, B, F),

w here

Q is the finite set of states,
r is the finite set of allowable tape symbols,
B, a symbol of T, is the blank,
2 , a subset of T not including B, is the set of input symbols,
8 is the next move function, a mapping from Q x T to Q x T x {L,R}

(8 may be undefined for some arguments),
q0 in Q is the start state,
F is a subset of Q is the set of final states.

The Turing machine operates with a tape head that scans one symbol
on the input tape at a time. On each scan, the Turing machine
changes state, prints a new symbol on the tape to replace the
scanned symbol, and moves its tape head left or right. The next
move function, 8, defines the new state, new symbol, and tape head
movement based on the scanned symbol and the current state.

An instantaneous description (ID) of a Turing machine is a
representation of the current state of the machine as a ̂ 0 4 where
q4 is the current state of M, a 1 is the contents of the tape up to the
symbol to the left of the tape head, and a 2 is the contents of the tape
from the tape head to the right. The leftmost symbol in a 2 is the
symbol currently scanned by the tape head.

We simulate a Turing machine by parsing the instantaneous
description of the Turing machine and simulating the effect of the
Turing machine's next move function on the instantaneous
description. Consequently, Figure F.2 is slightly misleading in that
the input tape to the Turing machine is not passed directly to the
backtracking LR parser, rather the input tape is converted into an
instantaneous description of the initial state of the Turing machine
which is passed to the backtracking LR parser as shown in Figure F.3.

147

Input Tape

1Tree Transformations Algorithm *— Turi ng
MachineConvert to

Instantaneous Description (ID)
(TTL)

X

(ID)

Grammar
Generator

 X-------
Code Generation Specification

(G rammar)
X

Ha ts

Code Generator
(Backtracking LR

P a rse r)
 x ----------

Halts

Parse r
Generator

 X—

Parse Tables

Figure F.3: Turing Machine Simulation Using ID
The remainder of this appendix describes first an example simulation
of a Turing machine and then a general algorithm which converts a
Turing machine into a TTL specification for a backtracking LR parser.

2. T uring M achine to TTL Specification Algorithm

The TTL specification of the example in Section 3 has a very regular
structure, and in what follows we give a general algorithm for
translating a Turing machine into a TTL specification for a
backtracking LR parser that will simulate the Turing machine.

The most important aspect of simulating a Turing machine is
representing the next move function 5. For each possible Turing
machine move in 8 , the following TTL rules are generated:

8 (q, x) = (q1, x1, R) <move>: qx -» x'q'

5(q, y) = (q', y \ L) <move>: qy ay’
and

Va: a e T, generate the rule:
<move>: aO -> q’a

where o is a unique symbol

148

Thus moving the tape head to the right generates a single TTL rule,
whereas moving the tape head to the left generates i n + 1 TTL rules.

Several additional TTL rules are also required to complete the TTL
specification such that the parser generator system used will create a
backtracking LR parser that halts when the Turing machine
simulation ends in a halt state. These are as follows:

<Halt> : <final> <eof> -»

an d Va: a e r , generate the two rules:
<final>: a<final> —> <final>
<final>: <final>a —> <final>

The latter pairs of rules enable the parser to clear the parse stack
which is a requirement for the parser to halt. Rules are also required
which specify the final states as follows:

Vq: q e F, generate the rule:
<final>: q

Finally, Turing machines require an input tape which is infinite to
the right and initially filled with blanks. Although we might require
that the initial instantaneous description input to the parser be
padded on the right with a sufficient number of blanks to enable the
Turing machine to operate (for the given input string), an infinite
tape can be simulated by including the TTL rules:

Vq: q e Q, generate the rule:
<move>: q<eof> qB<eof>

The preceding algorithm is general as it makes no assumptions about
the Turing machine converted to TTL or the language the Turing
machine recognizes. Consequently, the algorithm can be used to
convert any Turing machine into a TTL specification for a
backtracking LR parser that simulates the Turing machine.

149

3. Turing Machine Simulation Example

This example illustrates how a Turing machine recognizing the
language L, L= anbncn, can be simulated using a TTL specification and
a backtracking LR parser. A Turing machine recognizing L = anbncn is
given below:

M = (Q, £ , T, 8 , q0, B, F),

w here:

Q = {qo» qi» q2 , q3» q4 * qs. qe Q7. qs. q9»»qio. qn» qi2 l
r = {B, a, b, c, d]
Z = {a, b, c, d}
F = {qi2 l

8 (qo, a) = (qi, B, R)

S(qi, a) = (qi, a, R)
5(qi, b) = (q2> b, R)
S(q2 , b) = (q2» b, R)

5(q2, c) = (q3, c, L)
5(q2, d) = (q3, d, L)
8 (q3, b) = (q4, d, L)

S(q4 , b) = (q4, b, L)
S(q4, a) = (qs, a, L)
S(q5 , a) = (q5, a, L)

8 (q5, B) = (q0, B, R)

S(q4> B) = (qe» B, R)

S(q6, d) = (q7, B, R)

S(q7, d) = (q7, d, R)
8 (q7, c) = (q8, c, R)
5(q8, c) = (q8, c, R)

(* Erase a *)

(* Find matching b *)

(* Erase b and write d *)

(* Back to start *)

(* Begin again *)

(* Must match b’s(now d's)
and c’s*)

(* Erase d *)

(* Find matching c *)

150

5(q8, B) = (q9> B, L) (* Erase c *)
8 (q9, c) = (qio. B, L)

S(qio» c) = (qio, c, L) (* Back to start of "be"
S(qio* d) = (qn , d, L) match*)
8 (qn» d) = fa ll, d, L)

5(qn, B) = (q6, B, R) (* Begin again *)

5(qio. B) = (qi2 , B, R) (* Halt *)

This Turing machine matches a’s and b’s, replacing a’s with blanks
and the matching b's with d's, then matches the d’s and c's replacing
the d's with blanks and the matching c's with blanks as well. The
Turing machine's operation on a sample input is shown below using
the instantaneous description notation.

Example Operation:

BqoaabbccBBBBBBB.....
BBqiabbccB BBaqibbccB
BBabq3bccB
BBqoabdccB
BBq4BddccB
BBBBdcqscB
BBBBqiodcBB
BBBBBcqgBB

BBaq4bdccB
BBBqibdccB
BBBqgddccB
BBBBdccqsB
BBBqnBdcBB
BBBBBq9cBB

BBabq2bccB
BBq4abdccB
BBBbqjdccB
BBBBq7dccB
BBBBdcqgcB
BBBBqgdcBB
BBBBqioBBBB

BBabbq2CC
BqsBabdccB
BBBq3bdccB
BBBBdq7CcB
BBBBdqiocBB
BBBBBq7cBB
BBBBBq^BBB.

To simulate the Turing machine, we write a TTL description which
parses the instantaneous description, using rewrite trees to model
how the Turing machine's next move function affects the
instantaneous description. For example, we model

5(q0, a) = (qi, B, R)
with the TTL rule,

<move>: qoa - » Bqi
so that when the parser pattern matches input of the form qoa, the
parser substitutes input of the form Bqi using the TTL rule. The
complete TTL rules for the Turing machine recognizing L = anbncn
follow:

151

Equivalent TTL:

<Halt> : <final> <eof>

<move>: qoa -> Bqi
<move>: qia -> aqi
<move>: qib bq2

<move>: q2b -» bq2

<move>: q2C a ic
<move>: aai -> q3a
<move>: boi -> q3b
<move>: co i q3C
<move>: doi -» q3d
<move>: Boi -» q3B

<move>: q2d -> c?2d
<move>: ao2 -> q3a
<move>: b©2 -> q3b
<move>: ca2 -> q3C
<move>: d©2 —> qsd
<move>: B02 q3B

<move>: q3b 03d
<move>: ac3 —> q4a
<move>: bo3 q4b
<move>: 0 0 3 -> q3C
<move>: dG3 -» q3d
<move>: B0 3 -» q4B

<move>: q4b -» 04b
<move>: a<J4 -» q4a
<move>: ba4 -» q4b
<move>: 004 —> q4C
<move>: d<74 —» q4d
<move>: B04 -> q4B

<move>: q4a - » 05a
<move>: aos -> qsa

<move>: bos —» qsb
<move>: cas -> q$c
<move>: das Qsd
<move>: B as -> qsB

<move>: qsa -» aga
<move>: aa6 -> qsa
<move>: bag qsb
<move>: cag -> qgc
<move>: dag -> qsd
<move>: Bag -> qsB

<move>: qsB -» Bqo

<move>: q4B - » Bqg

<move>: qgd -> Bq7
<move>: qyd -» dq7
<move>: q?c -» cq8
<move>: q8c -> cq8

<move>: q8B -> 07B
<move>: aa7 -4 q9a
<move>: ba7 -> q9b
<move>: ca7 -» q9c
<move>: da? -4 q9d
<move>: Ba7 -4 q9B

<move>: q9c -» a8B
<move>: aa8 -4 qioa
<move>: b a8 -> qtob
<move>: c a8 qioc
<move>: d a8 -> qiod
<move>: B a8 -4 qioB

<move>: qioc -*• a9c
<move>: aa9 -4 qioa
<move>: b a9 -» qiob

<move>: cag -4 qioc
<move>: do 9 -4 qiod
<move>: BCT9 -> qioB

<move>: qiod - 4 aiod
<move>: aaio - 4 qua
<move>: baio - 4 qnb
<move>: cctio -> Qnc
<move>: daio - 4 qnd
<move>: Baio -> qnB

<move>: q n d - 4 a n d
<move>: acn - 4 qua
<move>: b a n - 4 qnb
<move>: c a n *-> q n c
<move>: d an - 4 qnd
<move>: B an qnB

<move>: qnB -4 Bq6

<m ove>: q ^ B -4 B q i2

<final> : q i2 -4

< fin a l> : a < f in a l> -4

< fin a l> : < f in a l> a -4

< f in a l> : b < f in a l> ->

< f in a l> : < f in a l> b -4

< fin a l> : c < f in a l> -4

< f in a l> : < f in a l> c -4

< f in a l> : d < fm a l> - 4

< fin a l> : < f in a l> d - 4

< fin a l> : B < fin a l> - 4

< fin a l> : < f in a l> B - 4

The parse trace that follows shows action of the backtracking LR
parser that results from the preceding TTL specification. The input
to the parser is the instantaneous description for the initial state of
the Turing machine for the string aabbcc.

154

Parse Trace:

S tack (Bottom to Top)

Bq0a
B
BBqia
BB
BBaqib
BBa
BBabq2b
BBab
BBabbq2 C
BBabb
BBabbai
BBab
BBabqsb
BBab
BBaba3
BBa
BBaq4b
BBa
BBaa4
BB
BBq4a
BB
BB05
B
BqsB
B
BBqoa
BB
BBBqib
BBB
BBBbq2d
BBBb
BBBba2
BBB
BBBqsb
BBB

Input
B qoaabbccB <eof>
abbccB<eof>
B q 1 abbccB <eof>
bbccB<eof>
aqibbccB<eof>
bccB<eof>
bq2bccB<eof>
ccB<eof>
bq2ccB<eof>
cB<eofi>
aiCcB<eof>
ccB<eof>
q3bccB<eof>
ccB<eof>
03dccB<eof>
dccB<eof>
q4bdccB<eof>
dccB<eof>
C4bdccB<eof>
bdccB<eof>
q4abdccB<eof>
bdccB<eof>
0 5 abdccB<eof>
abdceB<eof>
q5BabdccB<eof>
abdccB<eof>
BqoabdccB<eof>
bdccB<eof>
BqibdccB<eof>
dccB<eof>
bq2dccB<eof>
ccB<eof>
o2dccB<eof>
dccB<eof>
q3bdccB<eof>
dccB<eof>
G3ddccB<eof>

155

BBBct3
BB
BBq4B
BB
BBBqgd
BBB
BBBBq7d
BBBB
BBBBdq7C
BBBBd
BBBBdcqgc
BBBBdc
BBBBdccqsB
BBBBdcc
BBBBdcco?
BBBBdc
BBBBdcqpc
BBBBdc
BBBBdcog
BBBBd
BBBBdqioc
BBBBd
BBBBda9
BBBB
BBBBqiod
BBBB
BBBBctio
BBB
BBBqnB
BBB
BBBBqed
BBBB
BBBBBq7C
BBBBB
BBBBBcqgB
BBBBBc
BBBBBCO7
BBBBB
BBBBBqgc
BBBBB
BBBBBog

ddccB<eof>
q4BddccB<eof>
ddccB<eof>
B qgddccB <eof>
dccB<eof>
Bq7dccB<eof>
ccB<eof>
dq7CcB<eof>
cB<eof>
cqscB<eof>
B<eof>
cq8B<eof>
<eof>
G7B<eof>
B<eo£>
qgcB<eof>
B<eof>
C8BB<eo£>
BB<eof>
qiocBB<eof>
BB<eof>
C9cBB<eof>
cBB<eo£>
qiodcB B <eof>
cBB<eo£>
aiodcBB<eof>
dcBB<eof>
qnB dcB B < eof>
dcBB<eof>
BqgdcBB<eof>
cBB<eof>
Bq7cBB<eof>
BB<eof>
cqsBB<eof>
B<eof>
CT7BB<eof>
BB<eof>
qgcBB<eof>
BB<eof>
cgBBB<eof>
BBB<eo£>

156

BBBB
BBBBqioB
BBBB
BBBBBqi2
BBBBB<final>

qioBBBB<eof>
BBB<eof>
Bqi2BBB<eof>
BBB<eo£>
BBB<eofi>

<finalxeof>
<Halt>

The parse can be viewed as operating in two phases. The first phase
simulates the Turing machine until a final state is reached, and the
second phase clears the parse stack and the input so that the parser
will halt.

157

Bibliography

Aho, A.V. and M. Ganapathi, "Efficient Tree Pattern Matching: An Aid
to Code Generation," Proceedings 12th POPL Conference, ACM,
1985, Pages 334-340.

Aho, A.V. , M. Ganapathi and Steven Tjiang, "Code Generation Using
Tree Matching and Dynamic Programming", ACM TOPLAS, Vol.
11, No. 4, October 1989, Pages 491-516.

Aho, A.V. and S.C. Johnson, "Optimal Code Generation for Expression
Trees," Journal of the ACM, vol. 23, No. 3, 1976, Pages 488-501.
Also in Proceedings of ACM symposium on Theory of
Computing, 1975, Pages. 207-217.

Aho, A.V., S.C. Johnson and J.D. Ullman, "Code Generation for Machines
with Multiregister Operations," Proceedings of the 4th ACM
Symposium on Principles of Programming Languages, January
1977, Pages 21-28.

Aho, A.V., R. Sethi and J.D. Ullman, 1986b. Compilers. Principles.
Techniques and Tools. Addison-Wesley, Reading, Mass.
(especially,Chapter 10 Data Flow Analysis)

Aho, A.V., and J.D. Ullman, 1972. The Theory of Parsing. Translation,
and Compiling Volume I:Parsing. Prentice-Hall, Inc, Englewood
Cliffs, N.J.

Aigrain, P., S.L. Graham, R.R. Henry, M.K. McKusick and E. Pelegri-
Llopart, "Experience with a Graham-Glanville Style Code
Generator", Proceedings of the ACM SIGPLAN '84 Symposium
on Compiler Construction, SIGPLAN Notices, Vol. 19, No. 6 , June
1984, Pages 13-24.

Burke, M.G., and Gerald Fisher, "A Practical Method for LR and LL
Syntactic Error Diagnosis," ACM TOPLAS, Vol. 9, No. 2, April
1987, Pages 164-197.

158

Carter, J.L., "A Case Study of a New Code Generation Technique for
Compilers,” Communications of the ACM, Vol. 20, No. 12,
December 1977, Pages 914-920.

Cattell, R.G.G., "Automatic Derivation of Code Generators from
Machine Descriptions," ACM TOPLAS, Vol. 2, No. 2, April 1980,
Pages 173-190.

Cattell, R.G.G., "Formalization and Automatic Derivation of Code
Generators", PhD Dissertation, Carnegie Mellon University,
1978.

Chaitin, G.J., et al., "Register Allocation Via Coloring," Computer
Languages, Vol. 6,1981, Pages 47-57.

Chaitin, G.J., "Register Allocation & Spilling Via Graph Coloring," ACM
(Proc. Spec. Interest Group Program. Lang. Symp. Compiler
Constr., Boston, Mass., as part of Auslander and Hopkins "An
Overview of the PL .8 Compiler") , 1982, Pages 98-105.

Chow, F. and J. Hennessy, "Register Allocation by Priority-based
Coloring," Proceedings of the ACM SIGPLAN '84 Symposium on
Compiler Construction, SIGPLAN Notices, Vol. 19, No. 6 , June
1984,.

Collins, W.R. and R.E. Noonan, "The Mystro System: a comprehensive
translator toolkit," Department of Computer Science, College of
William and Mary, Final Report, 1985, Langley Research Center
Grant NASG-1435.

Davidson, J.W. and C.W. Fraser, "Code Selection through Object Code
Optimization," ACM TOPLAS, Vol. 6 , No. 4, October 1984, Pages
505-526 .

Davidson, J.W. and C.W. Fraser, "The Design and Application of a
Retargetable Peephole Optimizer," ACM TOPLAS, Vol. 2, No. 2,
April 1980, Pages 191-202.

Davidson, J.W. and C.W. Fraser, "Register Allocation and Exhaustive
Peephole Optimization," Software Practice and Experience, Vol.
14, No. 9, September 1984, Pages 857-865.

159

Davis, R. and J. King, 1976, "An Overview of Production Systems,"
Machine Intelligence. Vol. 8 (Elcock, E.W. and Michie, D. eds.),
Pages 300-332. Wiley & Sons, New York.

Dhamdhere, D.M. and J.S. Keith, "Characterization of Program Loops in
Code Optimization," Computer Languages, Vol. 8 , No. 2,

1983, Pages 69-76.

Fraser, C.W. and A. Wendt, "Integrating Code Generation and
Optimization," Proceedings Symposium on Compiler
Construction, ACM, Palo Alto, California, June 1986.

Fraser, C.W., "A Compact, Machine-Independent Peephole Optimizer,"
Conference Record of the 6 th Annual Symposium on Principles
of Programming Languages, January 1979, Pages 1-6.

Fraser, C.W., "Automatic Generation of Code Generators", PhD
Dissertation, Yale University, 1977.

Freiburghouse, R.A., "Register Allocation Via Usage Counts,"
Communication of the ACM, Vol. 17, No. 11, November 1974,
Pages 638-642.

Ganapathi, M., "Retargetable Code Generation and Optimization Using
Attribute Grammars", PhD Dissertation, University of
Wisconsin-Madison, 1980.

Ganapathi, M. and C.N. Fischer, "Integrating Code Generation and
Peephole Optimization," Acta Informatica, Vol. 25, No. 1,
January 1988, Pages 85-109.

Ganapathi, M. and C.N. Fischer, "Affix Grammar Driven Code
Generation," ACM TOPLAS, Vol. 7, No. 4, October 1985, Pages
560-599.

Giegerich, Robert, "A Formal Framework for the Derivation of
Machine-Specific Optimizers," ACM TOPLAS, Vol. 5, No. 3, July
1983, Pages 478-498.

Glanville, R.S. and S.L. Graham, "A New Method for Compiler Code
Generation," Conference Record of the 5th Annual Symposium
on Principles of Programming Languages, January 1978, Pages
231-240.

160

Grasmeder, C.A., "Jonathon: Automatic Code Generation Based on a
Machine Description," Computer Science Honors Thesis, The
College of William and Mary, Department of Math and
Computer Science, 1982.

Graham, S.L., R.R. Henry and R.A. Schulman, "An Experiment in Table
Driven Code Generation", ACM Sigplan Notices, Vol. 17, No. 6 ,
June 1982, Pages 32-43.

Harrison, W., "A New Strategy for Code Generation-the General
Purpose Optimizing Compiler," Technical Report RC 6283
(#26968) 11/10/76, Computer Science, 10 pages.

Hennessy, J. and M. Ganapathi, "Advances in Compiler Technology,"
Annual Review of Computer Science., Vol. 1, 1986, Pages 83-
106.

Hennessy, J. and T. Gross, "Postpass Code Optimization of Pipeline
Constraints", ACM TOPLAS, Vol. 5, No. 3, July 1983, Pages 422-
448.

Henry, R.R., "Graham-Glanville Code Generators", PhD Dissertation,
Computer Science Division, EECS, University of California,
Berkeley, CA, May 1984.

Hopcroft, J.E., and J.D. Ullman, 1979. Introduction to Automata
Theory. Languages, and Computation. Addison-Wesley, Reading,
Mass.

Horspool, R.N., "An Alternative to the Graham-Glanville Code-
Generation Method", IEEE Software, Vol. 4, No. 3, May 1987,
Pages 33-40.

Horspool, R.N. and M. Whitney, "Even Faster LR Parsing" Software-
Practice and Experience, Vol. 20, No. 6 , June 1990, Pages 515-
535.

Horwitz, S., A. Demers, and T. Teitelbaum, "An Efficient General
Iterative Algorithm for Dataflow Analysis," Acta Informatica,
24, 1987, Pages 679-694.

161

Keller, Wolfgang, "Automated Generation of Code Using Backtracking
Parsers for Attributed Grammars", SIGPLAN Notices,Vol. 26, No.
2, February 1991.

Knuth, Donald E., "Semantics of Context-Free Languages",
Mathematical Systems Theory, Vol. 2, No. 2, Pages 127-145,
Springer-Verlag New York, 1968.

Rohrich, Johannes, "Methods for the Automatic Construction of Error
Correcting Parsers", Acta Informatica, Vol. 15, 1980, Pages 115-
139.

Sethi, R. and J.D. Ullman, "The Generation of Optimal Code for
Arithmetic Expressions", Journal of the ACM, vol. 17, No. 4,
October 1970, Pages 715-728. Reprinted as pp. 229-247 in
Compiler Techniques, ed. B.W. Pollack, Auerbach, Princeton, NJ
(1972).

Slothouber, Louis P., "Adaptation of LR Parsing to Production System
Interpretation", PhD Dissertation, College of William and Mary,
1989.

Spector, D. and P.K. Turner, "Limitations of Graham-Glanville Style
Code Generation", SIGPLAN Notices, Vol. 22, No. 2, February
1987.

Tanenbaum, A., van Staveren, H., and Stevenson, J., "Using Peephole
Optimization on Intermediate Code", ACM TOPLAS, Vol. 4, No.
1, January 1982, Pages 21-36.

Waterman, D.A. and F. Hayes-Roth, 1978, "An Overview of Pattern-
Directed Inference Systems", Pattern-Directed Inference
Systems.. Academic Press, London, Pages 3-22.

Watt, D.A., "The Parsing Problem for Affix Grammars", Acta
Informatica, Vol. 8 , 1977, Pages 1-20.

162

VITA

Laurie Anne Smith King

Born in Atlantic, Iowa, 1 November 1958. Graduated from
Blacksburg High School in Blacksburg, Virginia, June 1976, B.A.
Virginia Polytechnic Institute and State University, June 1980, M.S.,
The College of William and Mary in Virginia, May 1983. Ph.D.
candidate in Computer Science, The College of William and Mary in
Virginia. The acceptance of this dissertation, Code Generation Using
Backtracking LR Parser, will complete the requirements for this
degree.

The author was a fulltime instructor for The College of William and
Mary in Virginia from Fall 1983 until Summer 1988 and will be an
assistant professor of computer science at Ithaca College in Ithaca,
N.Y. beginning Fall 1992.

	Code generation using a backtracking LR parser
	Recommended Citation

	00001.tif

