
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

1991 

Error flow in computer programs Error flow in computer programs 

Branson Wayne Murrill 
College of William & Mary - Arts & Sciences 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Murrill, Branson Wayne, "Error flow in computer programs" (1991). Dissertations, Theses, and Masters 
Projects. Paper 1539623805. 
https://dx.doi.org/doi:10.21220/s2-d0pc-8q38 

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M 
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized 
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623805&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-d0pc-8q38
mailto:scholarworks@wm.edu


INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 
films the text directly from the original or copy submitted. Thus, some 
thesis and dissertation copies are in typewriter face, while others may 
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note will indicate 
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand corner and 
continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to order.

University Microfilms International 
A Bell & Howell Information C om pany  

3 0 0  North Z eeb  Road, Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6  USA  
3 1 3 /7 6 1 -4 7 0 0  8 0 0 /5 2 1 -0 6 0 0





Order Number 920TT59

Error flow in computer programs

Murrill, Branson W., Ph.D.
The College of William and Mary, 1991

U M I
300 N. Zeeb Rd.
Ann Ait»or, MI 48106





ERROR FLOW IN COMPUTER PROGRAMS

A Dissertation 

Presented to

The Faculty of the Department of Computer Science 

The College of William and Mary in Virginia

In Partial Fulfillment 

Of the Requirements for the Degree of 

Doctor of Philosophy

by

Branson W. Murrill 

1991

Copyright ® 1991 by Branson W. Murrill. All rights reserved.



Approval Sheet

This dissertation is submitted in partial fulfillment of 

the requirements for the degree of

Doctor of Philosophy

u ) .
Author

Approved, July 1991

(Advisor)

Dr. Susan Brilliant 
Virginia Commonwealth University

/y '  Dr. John Drew
Department of Mathematics

Dr. Paul Stockmeyei



DEDICATION

I dedicate this work to my family for their constant love and support throughout this 
long process :

my wife, Linda,

who held the family together, took over many of my duties, and made many 
sacrifices. This achievement would not have been possible without her love, 
help, and perseverance.

my children, Jenny, Kathy, and Sara,

who reluctantly gave me up to my work on many occasions (but sometimes 
insisted on giving me a welcome respite), watched me work with interest and 
excitement, and played quietly while I worked (most of the time). If I have 
not seen as far as I might have, it is because midgets have sat upon my 
shoulders.

my father, Malcolm Murrill,

who introduced me to computers many years ago, and who by his example of 
teaching, scholarship, and service to others encouraged me to pursue a career 
in higher education.

my mother, Betty Murrill,

who has always had faith in my ability to achieve my goals.

my grandmother, Eva Hasher,

who has given me her unconditional love and affection all my life.

my brother, Bill Murrill,

who has followed my progress with interest and encouragement.



TABLE OF CONTENTS

Page

Dedication...............................................................................................................  iii

Acknowledgements..................................................................................................  vi

Abstract......................................................................................................................vii

Chapter 1. Introduction............................................................................................. 2

1.1 Previous research in white box analysis and testing .................7

1.1.1 Data flow analysis..........................................................8

1.1.2 Data flow tes ting .......................................................... 10

1.1.3 Error-based and fault-based testing ........................... 14

1.2 Deficiencies in existing white box strategies.............................18

1.3 A new approach - error flow analysis ..................................... 22

1.4 Contributions of this th e s is ....................................................... 26

1.5 Outline of this thesis.................................................................. 28

Chapter 2. Background theory and terminology................................................... 29

2.1 Mathematical functions..............................................................29

2.2 Flow g rap h s............................................................................... 31

2.3 Faults, errors, and coincidental correctness .............................33

Chapter 3. A functional view of programs and e rro rs .......................................... 38

3.1 The von Neumann model of com putation...............................38

3.2 Function implementations, syntactic and semantic distance . 41

3.3 Error sets and error traces ....................................................... 45



3.4 Coincidental correctness and functions computed by paths . .  47

Chapter 4. Experiments in dynamic error flow analysis....................................... 57

4.1 The DEFA system ....................................................................57

4.2 Potential uses for the DEFA system ....................................... 66

4.3 Programs analyzed using the DEFA system ............................ 67

4.3.1 The Triangle program ................................................. 68

4.3.2 The Digitseq program ................................................. 77

4.3.3 The Cancel program ................................................... 85

4.4 Comments on experimental results ......................................... 93

4.5 Comments on dynamic error flow analysis.............................. 97

Chapter 5. Estimating error flow behavior through static analysis.......................99

5.1 Static analysis techniques......................................................... 99

5.2 The threshold model of error flow te s tin g ...........................106

5.3 An example of threshold testing .......................................... 112

5.4 Discussion of the threshold m odel........................................ 118

Chapter 6. Summary and future directions..........................................................121

Appendix...............................................................................................................  125

Bibliography ........................................................................................................... 129

V ita ...........................................................................................................................132

v



ACKNOWLEDGEMENTS

The author wishes to acknowledge the contributions of the following towards 
the completion of this work :

Larry Morell, for his guidance and friendship over the past few years, and for 
going above and beyond the call of duty to help me achieve this goal.

Committee members Sue Brilliant, John Drew, Keith Miller, and Paul 
Stockmeyer, for their service and helpful suggestions.

Chairman Dick Prosl, for accommodating my part-time status, and for 
financial support through the Department during the Spring, 1990 semester.

Dr. Bill Haver, Dr. Reuben Farley, and others at Virginia Commonwealth 
University for their friendship and their support over the past 5 years. The financial 
and release-time support from VCU was crucial to my success.

NASA grant NAG-1-884 for partial support in the summer of 1990 and a 
course reduction in the Fall, 1990 semester.



ABSTRACT

White box program analysis has been applied to program testing for some 
time, but this analysis is primarily grounded in program syntax, while errors arise 
from incorrect program semantics. We introduce a semantically-based technique 
called error flow analysis, which is used to investigate the behavior of a program at 
the level of data state transitions. Error flow analysis is based on a model of program 
execution as a composition of functions that each map a prior data state into a 
subsequent data state. According to the fault/failure model, failure occurs when a 
fault causes an infection in the data state which then propagates to output. A faulty 
program may also produce coincidentally correct output for a given input if the fault 
resists infection, or an infection is cancelled by subsequent computation. We 
investigate this phenomenon using dynamic error flow analysis to track the infection 
and propagation of errors in the data states of programs with seeded faults. This 
information is gathered for a particular fault over many inputs on a path-by-path 
basis to estimate execution, infection, and failure rates as well as characteristics of 
error flow behavior for the fault. Those paths that exhibit high failure rates would 
be more desirable to test for this fault than those with lower failure rates, and we 
look for error flow characteristics that correlate with high failure rate. We present 
the results of dynamic error flow experiments on several programs, and suggest ways 
in which error flow information can be used in program analysis and testing.



ERROR FLOW IN COMPUTER PROGRAMS



1. Introduction

Program verification, the activity of certifying that a program correctly 

implements its intended function, has always been a difficult issue. In fact, if we take 

this definition of verification literally, then we are doomed to disappointment. A 

computation produced by a computer is the end result of a multilevel process of 

abstraction. We say that the transformation of one abstraction into another 

abstraction is semantic-preserving if the meanings of the abstractions under their 

corresponding interpretations are equivalent. It is possible to completely verify that 

the transformations between some of the levels of abstraction are semantic- 

preserving. For example, we may verify that a circuit design correctly implements a 

boolean function, or that a language compiler produces correct machine code for 

statements in a higher-level language. Program verification attempts to show that the 

program implements some specification, and we may attempt formal verification of 

this specification against a higher-level specification. Ultimately, however, we must 

verify some concrete specification against the intent conceived in a human mind, and 

this is not susceptible to formal methods, but rather human beliefs or consensus.

With this caveat, we focus on program verification as the act of certifying that 

a program correctly implements a specification (which we will assume is correct).

2



An oracle is a decision procedure that determines whether or not a program’s output 

is correct for a given input. Unfortunately, oracles rarely exist in practice, but they 

are useful in discussing verification methods.

There are four primary approaches to program verification :

-  proof of correctness

-  exhaustive testing

~ random black box testing 

-- white box testing

Potential problems exist with each of these strategies. Testing strategies require an 

oracle to decide if the output is correct, and this is a common weakness of all testing 

strategies. Most previous non-exhaustive testing strategies also do not help us 

quantify our increased confidence after successful testing1. Let us briefly consider 

each strategy.

Formal proof of correctness [Hoa69] has been used as a verification technique 

for a number of years, mostly on small programs. It is tedious and difficult to apply 

to large, complex programs. Although portions of the process can benefit from 

automation, it relies substantially on the skills of the person(s) doing the proof. As 

in all proofs, correct reasoning applied to incorrect or insufficient assertions can lead

1A statistical model for estimating the probability of failure after successful testing is presented 
in [Mil90]



to erroneous conclusions, so assertions must be carefully chosen. Mistakes in the 

proof can also lead to an erroneous claim of program correctness. Unlike 

mathematical proofs, which are scrutinized by many mathematicians to verify both 

the assertions and the validity of the proof before general acceptance (still no 

guarantee, as history has shown), correctness proofs of programs are rarely 

independently verified by others due to the sheer effort involved, so the proof must 

be verified by other means. One reasonable approach is to test the program after 

doing a proof of correctness, each reinforcing the other. However, a subtle error in 

the proof might still remain unobserved after testing with a particular set of test data.

Exhaustive testing is usually intractable due to the size of the input domain, 

even though all actual input domains are finite due to the discrete representation of 

data in a computer. A simple example illustrates this po in t:

Consider a relatively simple computer program that takes three 32-bit 

integer inputs. There are 8 x 1028 input combinations in this program’s 

input domain. Suppose there was a supercomputer that could execute 

this program in 1 microsecond (beyond current technology). Then if 

that computer began to exhaustively test this program at the instant the 

universe was created (about 15 billion years ago), as of today that 

computer would have tested less than .001% of the program’s input 

domain.

4



There are some cases in which the program’s input domain is sufficiently restricted 

so that exhaustive testing is feasible. It is also possible to partition the input domain 

of some programs into equivalence classes such that the successful test of one 

member from the class demonstrates the correct computation for all members of the 

class. This can only be done by proving certain properties of the program code, 

incurring the same problems associated with proof of correctness.

Random black box testing [Dur84] concentrates on the input/output behavior 

of a program while ignoring the internal code and computation, and attempts to 

imply reliability of a program after random testing of a small part of the program’s 

input domain. The fact that the inputs are randomly chosen prevents a biased choice 

of test data, which can occur when the same mental mistake made in the 

programming also leads to a choice of test data that does not reveal the error. For 

example, a person writing a routine that uses trigonometric functions may have 

designed the program with only first quadrant points in mind and might thus generate 

test data based on first quadrant points, while the specification calls for the program 

to handle points from any quadrant. Another advantage of random testing is that 

random tests are easily chosen for programs with real or integer domains by the 

standard technique of pseudo-random number generation. Disadvantages are that 

after testing a small portion of the input domain and seeing no errors, we may not 

infer much confidence in absolute correctness, and we know nothing about the 

program’s behavior with untested inputs. While we cannot achieve much confidence

5



in absolute correctness using random black box testing unless a large proportion of 

the input domain is successfully tested, we can obtain an estimate of the probability 

of failure after rt successful random tests [Mil90]. Some faults cause program failure 

for many inputs and are thus easily caught by random testing, but some faults cause 

program failure on only a few inputs, and these are difficult to reveal through 

random testing.

White box testing strategies [Hua75, How86] use properties of a program’s 

code to produce test data. This requires white box analysis techniques that discern 

these properties from syntactic and semantic analysis of the code. There is strong 

intuitive appeal for the idea that test data selected on the basis of knowledge of a 

program’s code would be more effective at discovering errors than test data randomly 

selected. Indeed, this is exactly the way most programmers informally test their 

programs, by choosing data that will exercise different parts or aspects of their code. 

Most white box strategies are coverage-oriented, i.e., they attempt to cover some 

structural aspect of the program’s code. The primary problem with most white box 

strategies is that they concentrate on syntactic aspects of the code rather than 

semantic aspects. Because coverage of syntactic aspects of a program does not 

incorporate possible semantic differences within the same syntactic aspect, the 

program may fail on untested inputs even though all syntactic aspects have been 

covered. White box analysis and testing strategies are a promising method of program 

verification and are discussed in more detail in the next section.

6



1.1 Previous research in white box analysis and testing

A number of program testing methods [Mil74] are based on the principle that 

unless certain aspects of the program’s structure or code have been tested, testing is 

incomplete. These aspects are specified through structural coverage criteria. A 

coverage-based testing criterion is covered when the program is executed with test 

data that exercises (a minimum of once) each aspect of the program as described by 

the criterion. Structural testing essentially involves executing a subset of paths from 

the potentially infinite set of all possible execution paths. For example, the (control 

flow) criterion of statement coverage says that test data must be selected that will 

cause execution of every program statement, since we would have very little 

confidence in the correctness of a statement that had never been executed. A fault 

is a portion of program code (or lack thereof) that causes erroneous output for some 

input. A particular execution path is error-revealing if its execution will always detect 

an error if one is present. A testing criterion is reliable [Goo75] if it always selects 

test data that results in the execution of at least one error-revealing path. Some paths 

that contain faults do not always exhibit an error when executed, an example of a 

phenomenon called coincidental correctness2. Laski and Korel [Las83] call such paths 

error-sensitive and define a viable testing criterion as one that always selects test data 

that results in the execution of at least one error-sensitive path. Since a program may

2We use the commonly accepted definition of this term, not the original definition found in 
[Whi80], and discuss this concept in detail in Sections 2.3 and 3.4.

7



contain no error-revealing paths, no universally reliable structural testing criterion 

exists. As an example, consider the program

read (x)

y : = x * 2 { * should have been + }

write (y)

There is only one path in the program and it is not error-revealing since testing with 

an input of 2 produces the correct (according to specification, oracle, etc.) result. 

This disappointing result early in the development of testing theory is discussed by 

Weyuker and Ostrand in [Wey80]. Although structural testing methods can never 

guarantee the absence of errors, they do provide a systematic and sensible framework 

for program testing. Such testing does in practice discover many programming errors.

1.1.1 Data flow analysis

Data flow analysis [Hec77, Fos76] involves finding the relationships between 

the binding of a value to a variable (called a variable definition) and other locations 

in the program that use or reference that particular definition. We say that a 

definition reaches a use along a given path if the path contains no intervening 

redefinition of that variable. Data flow algorithms traverse the control flow graph of

8



a program to determine which definitions reach which uses. This technique was 

originally used by compilers to perform global optimization during code generation. 

Two common optimizations are solutions to the live variable problem and the 

available expression problem. A variable’s definition is live at a particular point in 

the program if there is at least one path continuing from that point that reaches a 

use of that definition. Optimization involves deallocating storage for any variable that 

is not live for the rest of the program, or avoiding an unnecessary assignment when 

the assigned value would never be used. The available expression problem involves 

determining when the previously computed and stored value of an expression can be 

used to save recomputation of the same value when the same expression is 

encountered at a subsequent point in execution. If there is no redefinition of any of 

the expression’s variables after the first occurrence of the expression along all paths 

between the first and a subsequent occurrence, then the expression is available.

Fosdick and Osterweil [Fos76] discuss these problems and the data flow 

algorithms to solve them, and then suggest that data flow techniques using these 

algorithms can be applied to detect certain data flow anomalies that may imply 

programming anomalies. These data flow anomalies are described in terms of 

definitions (,d), references (r), and undefinitions (u) : the ineffective assignment 

anomaly (dd or du) and the uninitialized variable anomaly (ur). Fosdick and 

Osterweil state that this static analysis can be added to a compiler at relatively little 

cost and describe DAVE, a system for performing this analysis on FORTRAN

9



programs. Korel [Kor87] also uses static data flow analysis in combination with 

control flow analysis to identify redundant code (code which has no effect on output) 

and to analyze the relationship between input and output variables.

1.1.2 Data flow testing

Although the above data flow anomalies account for a small portion of 

programming errors, other researchers in the testing community saw the potential for 

data flow analysis in developing coverage criteria for program testing. Laski and 

Korel [Las83] propose two coverage strategies based on a program’s data flow. The 

guiding principle in these strategies is that every use of a variable must be tested with 

each of its live definitions, since an untested definition might be used incorrectly. 

Test data must be selected to execute a set of paths that will ensure coverage of all 

of these definition-use (du) pairs. This brings up the infeasible path problem : some 

du pairs are not possible because the corresponding execution path(s) are not 

executable. Determining in general through static analysis whether or not a path is 

executable is an undecidable problem, since we cannot in general determine if an 

arbitrary predicate guarding a path is ever true or ever false (consider the predicate 

an+bn=c" for n>2). In many cases, however, we can determine that a particular path 

is infeasible. We thus eliminate from consideration any du pair for which we find 

only infeasible paths.

10



Before describing their strategies, Laski and Korel give several definitions. 

The input variables of a statement are those variables whose values are used in the 

computation of the statement. The output variables are those variables defined by the 

statement. The data environment of a statement is the set of all live definitions of the 

statement’s input variables. An elementary data context for a statement is a subset of 

its data environment that contains one live definition for each input variable, as 

defined by a particular execution path from the start of the program. The statement’s 

data context is the set of all its elementary contexts. The two proposed testing 

strategies are then:

1. Cover the data environment of each statement in the program

2. Cover the data context of each statement in the program

Ntafos [Nta84] extends these strategies by observing that data flows along 

chains of definitions and uses, i.e. a definition is used in another definition, and that 

definition is used in another definition, etc. He calls these k-dr interactions3, where 

k  is the number of definitions along the chain, and suggests a family of strategies 

called required k-tuples. When k= 2, this is equivalent to Laski and Korel’s data 

environment coverage. Higher values of k  test for more complex data flow 

interactions and require increasingly more test cases. For comparison, consider the 

following program :

3Some authors use r for reference and others u for use; they are equivalent



read (b) 
if PI then 

a := 1 
else 

a := -1 
b := a * b 
if P2 then 

c := b - 1 
else 

c := b + 1

Test data that drives the paths {PI= true, P2=true}, {PI = true, P2=false}, and 

{PI=false, P2=true} satisfies data context coverage since each use has been tested 

with each of its live definitions. However, a potential chain of data flow, {PI=false, 

P2=false}, has been missed. The required 3-tuples strategy would include this one.

Rapps and Weyuker [Rap85] define a family of data flow testing criteria and 

establish a hierarchy that compares their data flow criteria with each other and with 

some common control flow criteria. They distinguish between a variable used in a 

computation (i.e. assignment or output) and a variable used in a predicate, called a 

c-use and p-use, respectively. The hierarchy of criteria is partially ordered by an 

inclusion relation where Ct strictly includes Q  if a proper subset of the paths chosen 

under Q  also covers Q . Weyuker further examines this hierarchy in [Wey84] and 

derives upper bounds on the number of test cases required for each criterion. This 

hierarchy demonstrates that the data flow criteria nicely fill the gap between the 

control flow criteria of all-edges, which is generally considered inadequate, and all

paths, which is generally unattainable. Zeil [Zei88] examines data flow and control

12



flow as general classes of criteria and compares their selectivity. He defines a criterion 

Cj to be more selective than a criterion Q  for some testing goal G if 1) G is true for 

all test sets chosen by Q  but false for some test sets chosen by Q , or 2) G is always 

true for test sets chosen by both criteria, but Q  never produces more and sometimes 

produces fewer tests than Q . Selectivity can thus be used as a basis for cost 

comparisons. Zeil shows that the class of data flow criteria are more selective than 

control flow criteria for certain testing goals. The hierarchy described by Rapps and 

Weyuker is further extended in [Cla89] to include the data flow criteria of Laski and 

Korel [Las83], and Ntafos [Nta84].

Data flow testing has several important advantages over earlier coverage- 

oriented strategies. First, the coverage criteria are based on intimate knowledge of 

a program’s control structure and the relationship of variable definitions and 

references. Second, the problem of infinitely many possible execution paths due to 

looping is avoided because a loop needs to be iterated only a finite number of times 

(twice for a body of sequential code) to exercise all dr pairs in the loop body. 

Finally, the static analysis portion of data flow testing generally results in smaller test 

sets than those produced by earlier testing methods, making the costly dynamic 

portion of the testing procedure more efficient. There are some disadvantages, 

however. Selecting input to drive particular paths can be non-trivial, and data flow 

testing suffers from the same problem as other coverage-oriented strategies: just

13



because a path has been covered and produces the correct result for a particular 

input doesn’t mean that it is free of faults.

1.1.3 Error-based and fault-based testing

Error-based testing methods [DeM78, Mor81, Mor84, Mor87, Mor88, Mor90, 

Voa90, Wey80] approach testing from a different viewpoint than that of structural 

coverage methods. Rather than attempting to achieve some coverage goal and hoping 

that no more errors exist, error-based criteria attempt to demonstrate that certain 

classes of errors are in fact absent. After demonstrating the problems of finding 

revealing criteria, Weyuker and Ostrand [Wey80] take this approach in trying to 

partition the program input space into subdomains which are revealing for certain 

types of errors. If restricted in this manner, only one input value is required for 

testing, since "revealing" implies that values in the subdomain either all succeed or 

all fail. Finding revealing subdomains can be difficult. Weyuker and Ostrand use a 

combination of the partitions defined by paths and other properties from the 

program specification, algorithm, and data structures in an effort to discover 

revealing subdomains.

All testing methods count on being able to detect the presence of a fault by 

observing erroneous output. Recall that the absence of reliable structural criteria

14



means that two different input values can follow the same execution path, yet one 

produces the correct result and the other produces an incorrect result. This 

coincidental correctness for some input values is a fundamental problem in program 

testing. The problem is acknowledged by most researchers and has been investigated 

in [Mor81] and [Mor88]. Morell and Hamlet [Mor81] investigate a fault/failure 

model of the creation and propagation of errors, and identify three necessary and 

sufficient conditions for a fault to cause an error:

1. Execution - the fault must be executed

2. Infection - execution of the fault must result in the introduction of an

incorrect value into the subsequent data state

3. Propagation - the error in the data state must propagate along the

execution path and be observed as erroneous output

Figure 1 illustrates these conditions with a simple example.

Morell [Mor88, Mor90] uses an approach to error-based testing that he 

classifies as fault-based testing. The difference is that fault-based testing uses a 

syntactic description of certain faults in the code, while error-based testing may 

include other descriptions of faults, as noted above. Using the fault/failure model, 

Morell has developed a testing method called symbolic testing. In this method

15



Figure 1. A simple illustration of a fault and its execution, infection, and 
propagation behavior under different inputs.

read (n) i := 1 sum := o while i <> n do beginsum := sum + i
i J" i * 2 { should be i := i + l >end write (sum)

n
0

1

faultsum

0
1

0
1
3

0
1
3

correct 
i sum

1
2

1
2
3

1
2
3
4

0
1

0
1
3

0
1
3
6

error? effect of fault 
no "E

no

no

yes

E and "I

E and I and 'P

E and I and P

16



symbolic faults are inserted into the code, which is then symbolically executed with real 

and/or symbolic input. Infection occurs when the symbolic fault is executed and 

causes a symbolic error to enter the data state. The ensuing symbolic execution traces 

the effect of the symbolic error as it propagates. The symbolic output and the actual 

output are equated to form a propagation equation, which allows the determination 

of values that, if substituted into the data state at the analysis location, would 

produce coincidental correctness. These values are then used to identify a class of 

faults that would produce the values and hence go undetected by this symbolic 

execution.

Mutation testing [DeM78] is similar in some ways to fault-based testing. 

Mutant programs with single faults are created by perturbing the program syntax 

according to a set of mutation operators, such as an expression value off by one or 

a variable name substitution. The mutants are then executed with test data to see if 

they produce different results from the original program (called "killing the mutant"). 

If any mutants remain after a sufficient amount of testing, an attempt is made to 

show that they are equivalent to the original program; otherwise more executions are 

required to kill them. The goal of mutation testing is to produce a set of test data 

that kills all simple mutant faults from a mutation set. A fundamental assumption of 

mutation testing, called the coupling effect, is that the test data developed in killing 

the simple mutant faults will also detect the presence of more complex faults.

17



Voas [Voa90] has investigated a statistical method for analyzing software that 

he calls fault sensitivity analysis. Using a fixed input distribution, estimates for 

execution, infection, and propagation are produced for each location in a program. 

An execution estimate predicts the probability that the location is reached and is 

obtained by instrumenting the program. Mutation analysis is used to produce an 

infection estimate of the probability that the succeeding data state becomes infected. 

A propagation estimate of the probability that an infected data state will propagate 

to output is produced by randomly perturbing the location’s succeeding data state and 

observing how many such perturbations produce different output. Locations that have 

low execution, infection, and/or propagation estimates are insensitive and indicate 

where hard-to-find faults might be hiding.

12 Deficiencies in existing white box strategies

Only exhaustive testing is guaranteed to discover all faults in a program. 

Random black box testing relies on probabilistic "luck" to reveal faults at the expense 

of a large test set. White box strategies attempt to improve their "luck" with a smaller 

test set by selecting test data based on criteria derived from the program’s code, but 

there is still an element of chance involved with respect to the fault-revealing ability 

of the actual test data selected. Test data selected by even the most simplistic white 

box strategy might reveal an obscure fault, while test data selected to satisfy the most

18



sophisticated white box strategy might not reveal the fault. The techniques of white 

box testing described in the previous section have many positive qualities, but some 

deficiencies as well. These deficiencies and the techniques that exhibit them are 

listed below.

Relv primarily on program syntax

Almost all of the strategies primarily use syntactic aspects of the program to 

drive testing, yet the results of program execution are determined semantically. 

Control flow strategies like statement coverage and path coverage pay no attention 

to the semantics of the computation that takes place along an execution path. Neither 

does the family of data flow testing strategies, although the exercising of dr pairs is 

motivated by an attempt to partially cover some semantic properties of the code. 

Error-based strategies like mutation testing are somewhat more semantically oriented 

since they rely heavily on dynamic analysis, but even fault-based testing and fault 

sensitivity analysis perturb program syntax to drive their testing.

Ignore coincidental correctness

Coincidental correctness is a fundamental problem in program testing, yet it 

has been largely ignored by researchers and plays little part in testing methods. 

Structural coverage techniques, including data flow testing, at best simply cover each 

structural aspect (possibly multiple times) and hope that errors will be revealed if 

they exist. Mutation testers simply continue testing a mutant with different input data

19



until the mutant is killed or they finally decide to attempt to show that the mutant 

is an equivalent form of the original program. Symbolic testing captures the full 

semantics of the computation on a path-by-path basis, but focuses on whether 

coincidental correctness occurs and not how or where. Fault sensitivity analysis 

partially handles coincidental correctness based on input/output relationships and not 

the semantics of the computation sequence.

Computationally intensive

The structural coverage technique of all-paths is in general impossible to 

attain due to the potentially infinite number of program paths. In many programs the 

combinatorial explosion of paths also makes this technique untenable. One advantage 

that data flow testing has is the fact that a finite (and often reasonable) number of 

paths will cover all definition-use combinations. Mutation testing can result in the 

execution of a large number of mutants, possibly many times each. Symbolic testing 

captures the full complexity of the fault/failure model but involves computationally 

expensive symbolic executions. The computational demands of locating insensitive 

code make fault sensitivity analysis costly.

Defensive

We say that a testing technique is defensive if it selects test data not to actively 

locate faults, but rather to ensure that the opportunity for a fault to be revealed was 

not missed. All structural coverage techniques are defensive in nature. The only claim

20



that can be made after successful structural testing with a particular test set is the 

trivial claim that testing was performed with that test set and no faults were found. 

Coincidental correctness also prevents positive statements about the absence of faults 

after applying structural coverage techniques.

Results o f testim are not quantifiable

None of the white box testing techniques described allow quantification of test 

results in terms of probability of failure for the tested program.

Can’t handle missing codefaults

Techniques based on structural coverage make no explicit effort to 

compensate for missing code, so missing code faults may only be revealed fortuitously 

with these techniques.

Can’t handle infeasible or infrequent paths

Infeasible paths cannot in general be identified by static analysis. Testing 

techniques that require coverage of certain paths may choose infeasible paths, which 

could result in wasted testing in an attempt to cover such paths or additional effort 

(often human-intensive) to show their infeasibility. The selection of paths that are 

feasible but infrequently executed can also cause problems for the tester because 

randomly generated test data is unlikely to cover the path and the process of 

selecting input data to cover a specific path can be very difficult. Dynamic testing and

21



analysis methods are based on paths that are actually executed, which obviates the 

infeasible paths problem but leaves these methods susceptible to incomplete analysis 

due to the omission of one or more infrequent paths.

Don’t necessarily make best use o f limited testing resources

Resources that can be devoted to software testing are often limited, so we 

would like to get the maximum value from each test in terms of error-revealing 

power. None of the structural coverage strategies make any distinction among the 

error-revealing power of different paths or test data. Fault-based strategies and fault 

sensitivity analysis make no distinction among the error-revealing power of different 

paths.

1.3 A new approach - error flow analysis

White box analysis techniques provide useful information about the properties 

of programs. This information can be used in many ways including testing, debugging, 

efficiency measures, and complexity measures. We believe that white box analysis 

should be grounded in semantic behavior in addition to syntactic structure. To this 

end, we need a theory of the semantic behavior of errors in programs that will allow 

us to determine the possibilities and limitations of semantic analysis. This position 

is supported by Podgurski [Pod89, Pod90] who has formally characterized the strong

22



and weak syntactic and semantic dependencies in the flowgraph of a program. He 

demonstrates that syntactic dependence is a necessary but not sufficient condition for 

semantic dependence, and suggests that a combination of data flow analysis with 

semantic analysis would be appropriate.

Mathematical functions serve as our semantic model of computation, and we 

analyze the decomposition of a computation into its components along with the 

interaction between these components. We use this model to discuss errors and 

faults, and describe the phenomenon of coincidental correctness as a fundamental 

issue in testing. Coincidental correctness has two components in terms of the 

fault/failure model. The first component, resistance, occurs when a fault is executed 

but the data state is not infected. Cancellation occurs when an infection is nullified 

by the action of a subsequent computation. We examine these phenomena and 

discuss analytic methods that can identify or predict coincidental correctness as well 

as the limitations of such analyses.

We introduce the term error flow analysis to describe the analysis of the 

semantic behavior of a potentially faulty program in terms of data state transitions. 

This includes both dynamic error flow analysis, which studies the actual infection of 

data states and the propagation of errors in a program under given input, and static 

error flow analysis, whose goal is to statically approximate a program’s error flow 

behavior through syntactic and semantic analysis of the program’s code.

23



This research effort differs from previous white box research in several 

important ways, and addresses some of the problems mentioned previously. Perhaps 

most importantly, it is grounded in the semantics of program execution and based on 

a sound mathematical model. The focus is on how potential data state errors are 

handled by the computation rather than the syntactic forms of faults. This allows us 

to address the coincidental correctness problem at the fundamental level of data state 

transitions. The data state orientation of error flow analysis also makes it possible to 

analyze the effect on the data state of some missing code faults. Another advantage 

of our method is that it takes an offensive approach in locating potential faults, in 

that it attempts to use properties of the computation sequences involving the 

potential fault to demonstrate either its presence or absence by testing. We hope this 

will ultimately contribute to quantifiable test results in terms of estimating the 

probability of failure for a program.

Dynamic error flow analysis, like other dynamic methods, is computationally 

intensive and its application to testing requires the use of mutant faults as a basis for 

estimating the behavior of the program in the presence of real faults. Unlike other 

techniques, dynamic error flow analysis captures failure and coincidental correctness 

information on a path-by-path basis, and uses this information to identify paths that 

would be desirable to test. This differentiation among the error-revealing power of 

paths makes dynamic error flow analysis more selective than techniques that do not

24



make the distinction, and potentially saves testing resources that would be devoted 

to output verification.

Static error flow analysis uses analytic techniques based on the program flow 

graph which are similar to those used in data flow analysis and other static methods, 

and suffers from their common weaknesses involving infeasible paths and other issues 

related to undecidability. The goal of static error flow analysis is to approximate the 

error flow behavior that would be observed under dynamic error flow analysis and 

identify paths to be tested, which requires attention to coincidental correctness and 

other semantic issues. Static error flow analysis of a program is less computationally 

intensive than the corresponding dynamic error flow analysis, and is preferable if it 

can achieve a good estimate of the program’s dynamic behavior.

Our approach to the development of testing methods also differs from 

previous research. Other testing schemes have either chosen some program property 

that seems reasonable to cover, or developed a model of some aspect of program 

structure or behavior and then derived the testing strategy from that model. We have 

developed a model of the semantic behavior of programs and used that model to 

investigate properties of program behavior. Our testing strategies are derived from 

these observed properties rather than the model.

25



Error flow analysis has other applications besides testing. Dynamic error flow 

analysis captures the semantic behavior of different program paths under different 

inputs. We can use dynamic error flow analysis of a particular fault as a basis for 

evaluating the effectiveness of testing methods in choosing paths that will reveal the 

fault. This evaluation can also be used to compare the performance of testing 

methods that are not otherwise comparable in the data flow-based subsumption 

hierarchy in [Cla89].

1.4 Contributions of this thesis

This thesis makes the following contributions :

Introduces the technique of error flow analysis, which uses semantic and 

syntactic properties of a program to discover information about its behavior, 

both past and potential.

Describes a formal model of data state errors in computer programs in terms 

of mathematical functions. This model serves as the basis for error flow 

analysis.

26



Describes the DEFA system, a new tool for analyzing the dynamic error flow 

behavior of different execution paths for a given fault in a program.

Demonstrates empirically that different paths through a fault have different 

failure rates and different error flow properties.

Identifies an error flow statistic (average maximum error set size) which for 

particular errors in the programs analyzed corresponds to paths with high 

failure rates.

Presents experimental evidence which suggests that the identification of error 

flow characteristics that correlate with high failure rate paths can result in 

testing techniques that are more selective than existing white box testing 

strategies.

Describes the use of the DEFA system to compare the performance of other 

testing techniques.

27



1.5 Outline of this thesis

Chapter 2 contains some terminology, notation, and background theoiy 

necessary to the remainder of this thesis, including a discussion of faults, errors, and 

coincidental correctness. Chapter 3 presents a semantic model of errors in computer 

programs based on mathematical functions, and discusses the coincidental correctness 

problem in this context. Fundamental concepts in error flow analysis are also 

introduced. Chapter 4 describes empirical studies of the dynamic error flow behavior 

of several programs using a tool constructed for this purpose, and analyzes the 

results. Chapter 5 contains a discussion of the estimation of a program’s dynamic 

error flow behavior through static analysis, and presents a possible technique 

suggested by the empirical study. Chapter 6 presents a summary of this thesis and 

describes ongoing and future research resulting from this work.

28



2. Background theory and terminology

This chapter contains some of the background theory, notation, and 

terminology we use in subsequent chapters. Some of the terms were introduced 

informally in the preceding description of past research. Most of the non- 

mathematical terms presented here are defined in the context of statements and 

variables in a high-level programming language. In chapter 3 we will redefine some 

of these terms in the context of mathematical functions, but it should be clear to the 

reader that the usage is consistent. There is some disagreement within the research 

community on the meaning of certain terms like "fault", "error", and "cancellation". 

We explicitly state the meaning we ascribe to such terms.

2.1 Mathematical functions

We begin with some familiar definitions. The Cartesian product of two sets A 

and B, denoted A x B, is {(a,b) \ a e A and b e B}. A relation R from a domain set 

A to a range set B is a subset of A x B. We write a r b to denote (a,b) e R. The 

inverse relation R is defined as {(b,a) | a r b }. A  function F  from set A to set B is 

a relation that maps an element a e A to a unique b e  B, and we denote the

29



mapping of the function as/: A -*■ B. We will use F  to denote the set of ordered pairs 

that defines the function, and / t o  denote the function operator. An operation on an 

element a of the domain A of function F  that produces element b in the range B of 

F  is written as a fb  or f(a)=b. We use f  to denote a string that implements function 

/under a particular interpretation. If a f b  is defined for all a e A and some b e  B, 

the function is a toted function, otherwise it is a partial function. In a partial function, 

fix) is undefined for each x e A  such that (x,b) £ F  for any b e  B, and we write 

f(x) = x. For/: A -*• B, we define the image lf  to be {b \ b e B and a f b } .  If lf  = B, 

we say /is onto B, otherwise/is into B. Function/is one-to-one iff for each x,y e A, 

x * y  -* f(x) * f(y)• A function that is not one-to-one is many-to-one. A total, 

one-to-one, onto function is called a one-to-one correspondence. For two functions 

/: A -+ B and g: B -*■ C, we define the composition o f functions g°f: A -*• C as gif (a)), 

that is {{a,c) | a e A  and (3 b e B | b = f(a) and g(b) = c)}. For two functions 

/: A -+ C and g: B -*• D, where A n B = 0, we define the union o f functions 

fvg: A u B - C u D a s  (foy) | y=f(x) ory=g(x)}.

Since computers perform transformations between finite domains of input and 

output values, we may map these values into N, the set of natural numbers, and view 

the transformations as functions of the form f: N* -*■ N for finite k. A  major result of 

computability theory tells us that a class of functions of the above form, called partial 

recursive functions, are exactly those functions that can be computed.

30



22  Flow graphs

Static analysis of a program requires a representation of its structure and the 

relationship between various parts of the code. Flow graphs provide a good 

formalism for this purpose. The following standard definitions are adapted from 

[Pod90].

A directed graph G consists of a finite set of vertices, VG and a set of arcs, A G, 

which is a subset of VG x VG - {(v,v) | v e VG}. An arc (u,v) e A G is directed from u 

to v. We say that u is adjacent to v and v is adjacent from u. A predecessor of vertex 

v is a vertex adjacent to v and a successor of v is a vertex adjacent from v. The 

indegree of a vertex is its number of predecessors, and the outdegree of a vertex is its 

number of successors. A path P  in G is a sequence of vertices v1, v 2, ..., v„ such that 

n > 2 and (V,, vu i) e A G for i = 1, 2 ,..., n - 1.

A control flow graph G is a directed graph that satisfies :

1. The maximum outdegree of any node is at most two1.

2. G contains two distinguished vertices : the initial vertex v{ , which has 

indegree 0, and the final vertex vF , which has outdegree 0.

3. Every vertex in G occurs on some path from v7 to vF.

1This restriction is made for simplicity only

31



The vertices of a control flow graph for a program may represent either 

individual statements or basic blocks of statements. A basic block is a group of 

statements that are executed in a fixed sequence without other possible flow of 

control. A predicate is a Boolean-valued expression that guards a possible branch. 

Each predicate occupies its own vertex and has an outdegree of 2. Paths in the 

control flow graph represent a possible sequence in which the program statements 

might be executed.

For a control flow graph G, vertex u e G forward dominates a vertex v e G 

iff evexy path from v to vF contains u. We say that u is a proper forward dominator of 

v iff u forward dominates v and u ** v. The immediate forward dominator of a vertex 

v e (VG - {vF}) is the vertex that is the first proper forward dominator of v to occur 

on every path from v to vF. Informally, the immediate forward dominator of a vertex 

containing a predicate is the earliest point where the paths that split from the 

predicate are rejoined. We use the immediate forward dominator, which we simply 

call the forward dominator, in our execution trace matching algorithm that compares 

the execution of the faulty program with the corresponding correct program. The 

matching algorithm uses forward dominators to re-synchronize the matching process 

when structural differences exist between the programs.

32



2.3 Faults, errors, and coincidental correctness

Consider a high-level procedural programming language in which one uses a 

set of statements to manipulate program variables, each of which has a specified data 

type, to produce a desired output from a given input. A data state is the set of 

variable/value pairs at a given point during program execution. Since it will be 

necessary to know which statement the program is executing, the program counter 

(PC) is considered a variable in the data state. In addition to initial and final data 

states, there is a data state immediately following the execution of each statement 

that represents the effect the statement had on the data state immediately preceding 

its execution; thus each statement computes a function that maps its prior data state 

onto its subsequent data state.

We can view a fault in a program as an incorrect statement which will cause 

the program to produce the wrong output (according to the program’s specification) 

for at least one element of the program’s input domain. A faulty program contains 

one or more faults. Note that a program that meets its specification cannot contain 

faults. We consider only specifications that describe the output values that should be 

produced by a program, and do not consider time/space efficiency, time deadlines, 

or other issues. We also do not consider faults that result in non-termination.

It is not always possible to label a particular statement as a fault, since there

33



may be many ways to change one or more statements to produce a correct program 

from a faulty program. An illustration is the familiar too many/too few loop iteration 

problem, which is usually solved by changing the position of the loop counter 

increment statement, changing the exit condition, or changing the initial or final 

counter value. We are not concerned with the identification of the fault, but rather 

the effect or potential effect the fault might have on program execution. In our 

analysis we consider a potential fault in isolation by comparing the faulty program 

to a correct program that results from fixing the fault. Since we compare the data 

states produced by executing the programs in tandem, we require that the "fix" be 

done in a fashion that minimizes the change to the structure of the faulty program, 

which can often be accomplished by changing only one statement. This is discussed 

in more detail in Section 3.3. We can model the effects of a missing statement fault 

by defining the fault as a null statement at the location where the missing statement 

belongs.

When a fault is executed, it may result in the assignment of an incorrect value 

to a variable in the data state as compared with the corresponding data state of the 

correct program. We say that such a variable is in error or infected. A data state is 

infected if it contains one or more infected variables. Observe that a fault that causes 

the wrong branch to be taken causes the PC to become infected. We use the term 

error to refer to an infected variable, or program output produced from an infected 

variable. An infection may propagate to other variables in subsequent data states in

34



one of two ways :

1. An infected variable is used in an expression that assigns a value to a non

infected variable, and computation of the expression’s value produces an 

incorrect result.

2. A fault in a predicate causes a wrong branch, which then results in one or 

more incorrect assignments to non-infected variables. This can include 

variables on the wrong path being assigned incorrect values as well as 

variables on the correct path not being assigned their correct values.

Propagation also includes the transfer of an infected variable from a data state to its 

subsequent data state without being changed by the intervening statement. A program 

failure occurs when an infection propagates to variables that are then used to produce 

incorrect output. The data flow characteristics of a program determine the potential 

for propagation of infected variables, since the definition/reference pair is the 

mechanism which links the value of one variable to the definition of the value of 

another variable.

We define coincidental correctness as the phenomenon that occurs when a 

faulty program produces the correct output for a given input. There are three ways 

that coincidental correctness can occur ( the complement of failure ) :

35



1. A faulty statement was never executed.

2. The execution of a faulty statement did not result in an infection. We call this 

resistance.

3. All infections of live variables were cancelled by subsequent computation 

before they could propagate to output.

Resistance and cancellation are dynamic events and only occur during program 

execution. We say that a fault at a particular location has the potential for resistance 

if not all executions of the fault will result in infection, and we say that a statement 

has the potential for cancellation if it uses infected variables but will produce the 

correct result for at least one execution of the statement. Some faults have no 

potential for resistance; for example, if the correct assignment statement is a := 1 and 

the corresponding fault assigns some constant other than 1 to a, an infection will 

always result. Other faults have varying potentials for resistance. Consider the fault 

a:=b*c which was supposed to be a:=b*d. Assuming the variables b, c, and d are 

uninfected, a will receive its correct value if 1) b has a value of 0, or 2) c and d are 

equal. A "faulty" statement a:=b+b which should have been a:=2*b is really not a 

fault at all, since both expressions compute the same function. Perhaps predicates 

have the greatest potential for resistance, e.g. a predicate like a < = b that should have 

been a<b rarely causes an incorrect branch (assuming a = b is a rare event).

36



Cancellation can occur in either of two ways : expression cancellation or 

assignment cancellation. In expression cancellation, a correct statement contains an 

expression that involves one or more infected variables, but the evaluation of the 

expression produces the correct result. Using the same example as above, suppose 

a:=b*c is a correct statement, but c is infected. The variable a will still be assigned 

the correct value whenever b=0. Some correct statements have no potential for 

expression cancellation. The statement a := b + l will always infect the variable a if b 

is infected. The second type of cancellation, assignment cancellation, occurs when a 

correct value is assigned to an infected variable. A statement of the form 

a:=f(uninfected variables), where f  is a correct function, will always cancel an 

infection of the variable a. Other assignments to an infected variable that involve 

expressions that reference infected variables may or may not cancel the infection.

37



3. A functional view of programs and errors

Viewing computer programs as mathematical functions is not new. 

Computable functions and abstract machines were in fact the precursors of computer 

programs and computers. We use this solid mathematical foundation to formalize our 

concepts of the infection and propagation of data state errors in the fault/failure 

model, and redefine some of our previous terminology in this context. The properties 

of mathematical functions allow us to prove some theorems about testing and 

coincidental correctness, and provide a formalism for error flow analysis.

We consider here only total functions that map a finite domain onto a finite 

range, since our interest is in faulty programs that terminate with defined, erroneous 

output.

3.1 The von Neumann model of computation

Most computers are based on the von Neumann model o f computation, where 

a processor capable of executing a set of primitive instructions is connected to a 

memory which can hold data values and programs. A program is a string of symbols

38



that, when interpreted by the processor, results in the execution of a sequence of 

zero or more primitive instructions, each of which may read or write zero or more 

data values in memory. The set of values stored in memory together with information 

concerning the current point in the program string where interpretation is taking 

place (the program counter) constitutes the data state at a particular point during 

execution of the program. Each primitive instruction has a prior data state that exists 

immediately before its execution and a subsequent data state that exists immediately 

after its execution. The transformation of a primitive instruction’s prior data state 

into its subsequent data state caused by executing the instruction is called a primitive 

computation. A  computation is a sequence of one or more primitive computations, 

and represents the net effect on the computation’s prior data state of the execution 

of the corresponding sequence of primitive instructions. The set of all possible 

primitive computations for a particular primitive instruction defines the function 

computed by the instruction, and its domain consists of those prior data states of the 

instruction that could possibly be produced from the program’s input domain. We 

equate a primitive computation with an application of the function computed by the 

corresponding primitive instruction to its prior data state, and equate a sequence of 

computations with the application in composition of the corresponding functions. The 

complete sequence of computations for a given input defines the output computed 

by the program for that input, and the set of sequences over all inputs defines the 

function computed by the program. Programs whose instructions manipulate an 

internal data state to compute the program function are called imperative programs.

39



Imperative programs have several properties that make it difficult to infer 

their semantic behavior from a syntactic examination of their code. The entire data 

state serves as both domain and range for each computation in the program. This is 

necessary since a subsequent computation may potentially operate on any variable 

in the data state, even though each computation typically operates on a small subset 

of the data state. Those computations that operate on the same portion of the data 

state may be separated by many other computations during execution, so that the 

sequence of computations may bear little resemblance to the actual function being 

computed. The program statements that specify computations that operate on the 

same part of the data state may also be widely separated in the code, and the lexical 

ordering of statements in the code may not reflect the order of the corresponding 

computations. All of this serves to obfuscate the true function of the program.

In spite of these problems, imperative programming is still the most common 

paradigm, so many techniques have been and will continue to be oriented in its 

direction. Flow graph-theoretic techniques such as data flow analysis have been of 

great assistance in dealing with the aforementioned problems. Podgurski [Pod90] has 

used flow graph theory to formalize the possible syntactic and semantic dependences 

between statements in a program with respect to possible control flow and data flow. 

This is essential to determine how errors might propagate in a program, but a more 

complete characterization of the behavior of a fault as related to program failure 

requires consideration of the semantics of the computations along the path from fault

40



to output.

32  Function implementations, syntactic and semantic distance

A specification of a function is a complete description of the domain to range 

mapping that the function performs. A correct implementation of a function results 

from a semantic-preserving transformation of the specification into a string of 

symbols that has a meaningful interpretation under a predefined calculus. The 

application of this calculus to the implementation with each element of the function’s 

domain must produce the specified element in the function’s range if the 

transformation was semantic-preserving. We will call the application of the calculus 

to the function’s implementation an execution of the implementation. The element 

of the function’s input domain used in the execution is called the input for that 

execution and the corresponding range element produced is called the output. There 

are infinitely many correct implementations of a particular specification, although 

only a small number are realistic alternatives. The syntactic distance between two 

implementations is the number of symbol substitutions performed in transforming 

one string into another string. Symbol substitutions take one of the forms sx -*■ s2, 

Sj -*■ A, or A -> sl5 where s1( s2 are single symbols and A is the empty symbol. We 

require that the set of substitutions result in a syntactically correct string, and do not 

count substitutions that have no semantic significance. When dealing with an actual

41



implementation we must consider the granularity of the symbols in its string. A 

program written in a typical structured high-level language may be viewed, for 

example, as a string of characters, a string of lexical tokens, or a hierarchy of 

statements. We might correspondingly define a "symbol" in this implementation to 

be a single character, a token, or a statement.

An incorrect implementation of a function results from a transformation that 

is not semantic-preserving. Thus there exist one or more elements of the function’s 

domain such that execution of the incorrect implementation with each of these inputs 

will produce an output that is inconsistent with the function’s specification. Such an 

output is called an error. The fault in an incorrect implementation is defined as a set 

of symbol substitutions required to transform the incorrect implementation into a 

correct implementation. Since the implementation is usually composed as a syntactic 

hierarchy of (possibly multisymbol) objects, it makes sense to decompose a fault into 

a set of syntactic faults. Note that this set is not unique -- different people might 

identify different sets of syntactic faults in fixing an incorrect implementation. It is 

this property that makes the identification or counting of faults in computer programs 

a difficult issue.

We define the least syntactic distance between two function implementations 

and f2 as the fewest number of symbol substitutions required to transform f, into 

f2, or vice versa. The set of symbol substitutions made to achieve the least syntactic

42



distance is not necessarily unique. An implementation f2 is syntactically close to an 

implementation f2 if the least syntactic distance between fx and f2 is not greater than 

some arbitrary limit k. The semantic distance between two functions /  and g  with the 

same domain D is defined as the number of domain element to range element 

mappings on which the functions differ, i.e., the size of the set { x | x e D and 

/(x) * g(x) }. Function/is semantically close to function g if the semantic distance 

between /  and g is not greater than some arbitrary limit k. Finally, consider an 

incorrect implementation f' of function/. In the set of correct implementations for 

/  that might realistically be constructed, there is at least one whose least syntactic 

distance from f' is minimal. We presume that such an implementation was the 

intended implementation o f /  as a basis for comparison of the incorrect and correct 

implementations of/.

How are least syntactic distance and semantic distance between two functions 

related? Let’s consider a couple of extreme cases. We will assume that the 

granularity of our implementation views symbols as individual characters. Suppose 

f is a program that implements some function/, which computes a unique value from 

each input, and the first statement in f is a predicate that sends half of the input 

values down one path and half down the other path by using a comparison "<". Now 

transform f to g by replacing "<" with "> =". The least syntactic distance between f 

and g is small (2), but the semantic distance between/and g, the function computed 

by g, is maximal if no input-output pairs match between /  and g.

43



Now consider a function/whose input is a binary tree and whose output is 

the node sequence from a preorder traversal of the tree. Implementation fj is a 

correct implementation of /  using recursion, and implementation f2 is a correct 

implementation of /  using iteration and a stack. Although the syntactic distance 

between f, and f2 is large, the semantic distance is 0.

Can we predict any general relationship between least syntactic distance and 

semantic distance, ignoring pathological cases like the above? One might guess that 

as you increase the least syntactic distance, the semantic distance also increases, 

possibly quickly. While this has an intuitive appeal, there are other factors that must 

be considered. One such factor is the set of syntactic and semantic dependences of 

the changed statement both before and after the change; i.e., a change to the 

definition of a variable that has few data flow chains (a la [Nta84]) would possibly 

have less impact on the semantic distance than a change to the definition of a 

variable that has many data flow chains. Another factor is the proportion of inputs 

that drive the path containing a changed statement. Even major changes to a path 

driven by few inputs would have limited impact on the semantic distance. Finally, the 

impact of the change on the coincidental correctness behavior must be considered 

as well.

44



3.3 Error sets and error traces

There is reason to believe that programs which contain faults compute a 

function with a small semantic distance from the specified function, since a program 

with a larger semantic distance would be revealed as faulty by routine testing in the 

development phase. This view is espoused in [DeM78] as the "competent programmer 

hypothesis". We conjecture that in general these programs also have a small syntactic 

distance. We also believe that programs with a small least syntactic distance usually 

have a similar structure. Our approach in dynamic error flow analysis involves using 

a (presumed) correct program to produce a syntactically close faulty program. 

Because dynamic error flow analysis compares data states produced by the execution 

of program statements, we choose the level of granularity to be symbols that may be 

predicates, assignment statements, or procedures, and define "syntactic closeness" as 

k=2 for our experiments. Since the programs have a similar structure, they can be 

executed in tandem with the same input, and their data states compared to observe 

the change in semantic behavior. This allows us to estimate the semantic distance 

between the correct and faulty programs.

We define an error set as a subset of a data state in a faulty program that 

consists of those variables whose values are incorrect as compared with the variables 

in the corresponding data state of the correct program, given that both programs are 

executed with the same input. An execution trace is the sequence of data states

45



produced by executing a program with a particular input. We note that an execution 

trace corresponds to the sequence of program statements executed and results from 

the composition of the respective functions computed by the statements. An error 

trace is the sequence of error sets generated by comparing corresponding data states 

in the execution traces of both programs under the same input. When the sequences 

of statements executed by both programs are in 1-1 correspondence, both in length 

and respective positions of each statement in the sequences, the term "corresponding 

data state" is clear; when they are not we need to determine which data states will 

be compared. An error set is associated with each data state in the faulty program, 

and any synchronization is done with respect to the sequence of statements executed 

in the faulty program. We synchronize the comparison of data states to the greatest 

degree possible by matching the control flow graphs of both correct and faulty 

programs, since a comparison of data states from different structural parts of the 

program is likely to lead to abnormally large error sets. This is the reason that 

dynamic error flow analysis is based on syntactically close programs. Data state 

comparisons are synchronized when necessary by finding the forward dominator 

common to both flow graphs and "catching up" one or both data state sequences to 

that point. When the faulty program’s data state sequence must catch up with the 

correct program’s data state, an error set is produced for each data state in the faulty 

program by comparing each with the correct program’s data state. When the correct 

program’s data state sequence must catch up with the faulty program’s data state, one 

error set is produced for the faulty program’s data state by comparing it with the last

46



data state in the correct program’s data state sequence. In either case, the data states 

in the corresponding programs are resynchronized at the common forward dominator 

of both control flow graphs, and normal comparison can resume. When both 

sequences follow different paths, some means of comparison must be done until both 

reach the common forward dominator. We choose to compare corresponding states 

in each sequence until one branch runs out, and then perform "catch up" comparison.

An error trace for a given input captures not only the execution, infection, and 

failure semantics for the faulty program with that input, but also the semantics of 

each computation’s effect on its subsequent data state, including any resistance or 

cancellation. The set of error traces over all inputs characterizes the difference in the 

semantic behavior of the correct and faulty programs.

3.4 Coincidental correctness and functions computed by paths

We now come to a fundamental problem of verification through testing : If 

we successfully test less than the entire input domain of a function, we may not claim 

that an implementation is correct with respect to the function’s specification.

47



Theorem (Inadequacy of Testing)

Let /  be a total function that maps a domain D onto a range R, and let 

F = {(x,y)| x e D and y e R and x / y }  be the mapping for/. Let f  be the 

implementation of/, which computes the mapping F' = {(x,z)| x e D and 

xfz}.  Suppose that for some S c D w e  define the restricted mappings 

Fs c F  and F's <= F' by limiting their respective domains to S. Then

(Fs = F 's) does not imply (F - Fs = F' - F 's)

proof

Assume (Fs = F 's) does imply (F - Fs = F' - F 's). Since D - S is non-empty, 

we may choose x e (D - S). For this x and its mapping x f z ,  choose w such 

that x f  w * x f  z. Now change F' to F ' - (x,z) + (x,w). If (Fs = F 's) was 

originally true, it remains true with the new F'; however, now F - Fs *

F' - F 's, a contradiction. □

This theorem simply states what testers have always known - in the absence 

of other information we have no assurance of getting correct output from untested 

inputs.

48



Using the notation from the above theorem, we say that the implementation 

f has a potential for coincidental correctness w.r.t. F iff F ' can be partitioned into two 

non-empty subsets F 'c and F 'E where F 'c = {(x,y) | x e D and (x,y) e F} and 

F'e = {(x,y)| x e D and (x,y) C F}. This effectively partitions D and defines the 

function computed by f  as the union of two functions, one which performs the correct 

mapping and one which performs an incorrect mapping. There is no potential for 

coincidental correctness if F 'C=F' (always correct) or F 'E=F' (always wrong). We 

say that coincidental correctness has occurred when the implementation f  of function 

/h a s  the potential for coincidental correctness and is executed with* e D producing 

y such that x f y .

Can we examine (short of exhaustive testing) a function’s specification and 

implementation to determine the correctness of the implementation? If the 

specification and implementation are described in terms of properties from which the 

mappings may be derived, we can use inductive and deductive logic to show 

equivalence. This is the method of formal proof of correctness. For a function that 

cannot be further decomposed, exhaustive testing and formal proof of correctness are 

our only alternatives. However, for functions that may be decomposed into a 

composition of subfunctions, we may be able to verify the correctness of the 

implementation by first determining some properties of the subfunctions and their 

interaction under composition, and then testing to the extent necessary to verify those 

properties. In particular, we must determine those properties related to coincidental

49



correctness of the subfunctions both in isolation and in composition with other 

subfunctions.

We have mentioned before that coincidental correctness has two components 

in terms of the fault/failure model once the fault has been executed : resistance and 

cancellation. Listed below are the various forms that describe the data state produced 

by the application of either a correct (f) or a faulty (P) implementation of function 

/  to a data state [vx ... vn], where Vj represents a correct variable and v/ represents 

an infected variable. The notation [vt ... vn]i+1 is used to represent the data state 

produced from the previous data state [vx ... vn]j. We assume that the function may 

change no more than one variable in the data state.

1. f([v,... vn]f) = [vx ... vn]i+1 correctness

2. f  ... vn]i) = [Vl... vk' ... V „ ]j+1 

f t f v i ... vn]j) = [va ... vn]i+1

infection

resistance

3. f([vj... vk' ... vn]i) = [vx ... vk' ... vn]i+1

expression cancellation, self propagation, or

propagation by default

propagation by assignment

50



f([vx ... vk' ... V „]j) = [vx ... vk ... vn]i+1

assignment cancellation

4. f([vx ... vk' ... vn]j) = [vx ... vk ... vn]i+1

f([vx ... vk' ... vn]j) = [vx ... vk' ... vn]i+x

f  ([vx ... vk' ... vn]i) = [vx ... v/ ... vk' ... vn]i+x

The potential for infection, resistance, propagation, or cancellation for a given 

function implementation is defined as the existence of at least one element of the 

function’s domain for which the corresponding above form occurs during execution 

of the implementation with that input. We clearly expect form 4, where an incorrect 

implementation is applied to an infected data state, to make things worse instead of 

better. Note that in the first case of form 3, it is impossible to tell whether infected 

variables propagated by default (not referenced by f), self propagated (an already 

infected variable assigned a wrong value), or whether expression cancellation 

occurred unless we know the particular variables defined and/or referenced by f.

Since all of the functions represented by computations have finite domains and 

ranges, we may think of each function as a function of one variable : the data state, 

i.e. g: DS DS. Although DS is the Cartesian product of the set of values for each 

of the program variables, the domains and ranges of each function are usually a 

(sometimes small) proper subset of DS. We note that the position of the function g

51



in a composition of functions h °g ° f  representing the execution sequence f;g;h will 

restrict its domain to lf  c  DS, the image off,  and its range Ig will become the domain 

of h. These restricted domains are crucial in discussing potential resistance and 

cancellation. It is important to observe that the same function may have different 

domains at different points in execution, as would a computation inside a loop. We 

will sometimes describe functions of one or more variables, i.e., /(x,y), in our 

discussion but it is understood that functions which represent computations are 

functions of the data state.

Consider a function g incorrectly implemented as g' in the computation 

f;g';h, where f  and h are correct implementations. What can we say about the 

potential for resistance of g'? First, we must have knowledge of function g  and its 

domain 1̂  but unfortunately such knowledge is not usually available in practice. If 

this knowledge were available we could find the proportion of data states in \f  for 

which g' resists infection :

Rg- = I (x| x e If and g'(x) = g(x)} \ /  \lf \

If the data states produced by f are uniformly distributed over Ip then the probability 

of infection (i.e. infection rate1) is 1 - Rg,. Even if the original input is uniformly

’Definitions for infection rate and propagation rate (p.54) that are based on non-uniform input 
distributions are given in [Voa90].

52



distributed over its domain, this is not necessarily true for the states produced by f. 

Clearly, estimation of the infection rate by other than empirical means is a difficult 

problem.

While any discussion of the potential for cancellation of a function must 

include the distribution of data states in its domain, we can make some observations 

by viewing the function in isolation.

Theorem (Cancellation')

If g is a correct implementation of function g with a domain of data states Dg 

and g computes a one-to-one function, then g has no potential for 

cancellation.

proof

For g to have the potential for cancellation, by definition there exists 

x, x ' e Dg such that jc  ' is the incorrect state that should have been x, and 

g(x) = g(x'). This violates the assumption that g computes a one-to-one 

function. □

53



Corollary

If g is many-to-one, then g has the potential for cancellation iff there exist one 

or more data state pairs (x, x') where x, x ' e Dg such that x ' should have 

been x and g(x) = g(x').

proof

Follows from the proof of the Cancellation Theorem.

It is important to note that a many-to-one function that occurs in a 

composition of functions may not result in the degree of cancellation expected by 

viewing it in isolation. For example, the function/(x) = x div 2 that has the potential 

to cancel the effect of an erroneous odd number that is off by +1 does not have 

potential for cancellation in the composition/(g(x)) if I? contains only positive even 

integers. Notice that /  is one-to-one in this restricted domain.

Informally, the proportion of data states for which the application of g results 

in cancellation, Ĉ , is the ratio of the number of data states which contain infected 

variables but for which no additional variables become infected to the total number 

of data states in the function’s domain. The propagation rate is 1 - Cg. As with the 

determination of infection rate, determination of propagation rate by analytic means 

requires that we know both 1̂  and the frequency distribution of its members in a 

typical execution. We must additionally identify the data state pairs referred to in the

54



above Corollary.

Static analysis of the functions in isolation will not yield the information 

necessary to determine their cancellation behavior in many instances, but can in 

some instances identify correct one-to-one functions that have no potential for 

cancellation. Determining the correctness of individual functions can be difficult 

[How85]. Although the determination of cancellation properties by static analysis 

alone is in general undecidable, the degree to which static analysis can be used to 

accurately estimate the cancellation behavior of functions in composition by using 

information about the original input domain, input distribution, and the properties 

of the functions in the composition is an open question.

Each execution of a program with an input from its domain executes a 

sequence of statements called a path. The function computed by a path is the 

composition of the functions computed by the corresponding program statements. 

Execution of the program over all inputs defines the set of possible program paths, 

each with an associated disjoint subset of the program’s domain, so we may describe 

the program function as a union of the functions computed by the individual paths. 

The control flow graph of the program can thus be viewed as an abstraction that 

collapses the set of paths by merging common subpaths and finding repetitive 

patterns. For a particular path, it should be clear from the above discussion that any 

function in the composition of functions computed by the path can exhibit different

55



properties of infection and cancellation based on the subset of data states that can 

possibly occur as its domain, and this is ultimately a result of the path’s input 

domain. Infection and cancellation rates for a particular function in a path can be 

empirically estimated using a random sample of the path’s input domain and 

observing the action of the function, which is the technique we use in dynamic error 

flow analysis. Since the same function may appear in a number of paths in a 

program, we want to observe its behavior in all such paths. Clearly, the same function 

can exhibit different behavior in different paths in terms of infection and cancellation 

properties. For the purpose of testing the program for correct behavior of this 

function, we want to test the path where the function is most likely to infect and 

propagate. The semantic information necessary to make this choice is missing from 

other techniques. The purpose of error flow analysis is to obtain such information.

56



4.0 Experiments in dynamic error flow analysis

Often the best way to understand a phenomenon is to observe it under 

controlled experimentation. The model presented in the previous chapter provides 

the theoretical framework for describing the infection and propagation of errors in 

a faulty program’s data state as compared with the correct program. The faulty 

program must be syntactically close to the correct program for the comparison to be 

meaningful. We have developed a prototype system, which we call the Dynamic Error 

Flow Analysis system (DEFA), that allows us to investigate the dynamic error flow 

behavior of such programs. This chapter describes the DEFA system and its potential 

uses, and presents the results of using the system to investigate the error flow 

behavior of several programs.

4.1 The DEFA system

Our prototype Dynamic Error Flow Analysis system is implemented in Turbo 

Pascal in an IBM-compatible/Microsoft DOS environment. We chose these vehicles 

based on familiarity, availability, and potential portability to other testing researchers. 

The DEFA system is currently used to analyze programs written in a subset of

57



standard Pascal that restricts data types to simple integer types and restricts control 

flow constructs to while, if-then-else, and procedures. Furthermore, we require unique 

variable names across all scopes and prohibit the use of global variables in 

procedures. All output must take place at the end of the program, and output lists 

may only contain variables.

Most of these restrictions, such as those dealing with control structures and 

data types, were made to expedite the implementation of the prototype system, and 

would be lifted in an enhanced version of DEFA. We currently use a simple hand

generated symbol table; a more elaborate symbol table that would address the scope 

restrictions could be automatically constructed during parsing. We sometimes desire 

to turn off data state tracing in a procedure to cut down on path length and/or 

number of paths. The procedure then is treated as a single multi-assignment 

statement that assigns values to its var parameters, so that only the net effect on 

those variables is recorded. Global variables in the procedure body are prohibited 

because their side effects on the data state would not be recorded if tracing was 

turned off inside the procedure. We note, however, that our restricted language can 

implement any computable function.

Figure 1 shows the basic operation of the DEFA system, with a running 

example in Figure 2. First, we use a correct program to produce a syntactically close 

faulty program (Figure 2a). Note that we may define any arbitrary program as

58



"correct", since our primary interest is in observing the difference in the error flow 

behavior of syntactically close programs. The correct and faulty programs are then 

instrumented so that they output a file that traces the changes in their data state as 

they execute. This instrumentation is accomplished by parsing a program to construct 

its parse tree, then reproducing the source code with trace file output statements 

inserted after every statement that causes a data state change. An output trace record 

consists of the statement number, the level in the program hierarchy for that 

statement, the variable changed by the statement, and the new value of the variable. 

Level numbers are used to capture the program’s structure, so that we may 

determine when execution has gone into or come out of loop or decision bodies. This 

allows us to determine, for example, when a wrong branch has been taken or when 

a forward dominator has been reached.

The sequence of output trace records constitutes the program’s execution trace 

for a particular input. We use the term "input" to refer to the set of values that must 

be supplied for one execution of the program. Both the correct and faulty programs 

are executed with the same input, producing the corresponding outputs and execution 

traces (Figure 2b). The input, correct program’s output, and faulty program’s output 

are saved as artifacts of this execution. The execution traces are then processed by 

a trace matching program to produce a sequence of error sets with respect to the 

execution of the faulty program, called the error trace (Figure 2c)1. Next, the error

1A similar idea from the standpoint of mutation testing is suggested in [W0 0 8 8 ].

59



Figure 1. The Dynamic Error Flow Analysis system

correct fault inserted faulty
program program

instrument
input

generator

instrumented
correctprogram

execute

next
input

instrument

instrumented
faulty
program

correct
execution

trace

execute

faulty
execution

trace
tracematch

symbol
table error

trace

error
tracereport

print
e.t.

1L2_

fault
location

append 
path info execution

pathtable
pathreport

print 
path table

error
stats

statistics
record

append

accumulated
statistics statsummary

statistics
summary
report

60



Figure 2. An example of the operation of the DEFA system

a. Correct and faulty programs
program correct; var a,b,c,d,e,f : integer; 
begin 

l c ;= 0; d := 0;
3 readln (a, b);
4 if a < b then
5 c := b - a 

else begin
6 d := 1;
7 a a * d;
8 while d < 3 do begin
9 c ;= c + b - a;
10 b :■ 2 * b;
11 d d + 1end

end;
12 e :*• c div 20;
13 f := a + b - c - d;14 writeln (e, f) 

end.

program fault;
var a,b,c,d,e,f : integer;
begin

c :•* 0; d :« 0; 
readln (a, b); 
if a < b then c ;= b - a 
else begin

; (fault - missing stmt}a :■ a * d; 
while d < 3 do begin

c c + b - a;
b 2 * b;
d ;«• d + 1

end 
end;
e :« c div 20; 
f : - a + b - c - d ;  
writeln (e, f) 

end.
b. Execution traces for an input of (9,2) c. Error trace

correct fault stmt no. Error set
<1,l,c=o> 
<2,l,d=0> 
<3,1,a=9> 
<3,l,b-2> 
<4,1,=> <6,2,d=l>

<l,l,c-0> 
<2,l,d=0> 
<3,l,a»9> 
<3,l,b=2> 
<4,1,=> 
<6,2,=>

1.0
2.0
3.0
3.0
4.0
6.0 d

<7,2,a“9> <7,2,a=0> 7.0 a d
<8,2,=> <8,2,=> 8.0 a d
<9,3,C=-7> <9,3,C=2> 9.0 a c d
<10,3 ,b=»4> <10,3,b=4> 10.0 a c d
<ll,3,d=2> <ll,3,d=l> 11.0 a c d
<8,2,=> <8,2,=> 8.0 a c d
<9,3,c=-12> <9 , 3 , C = 6 > 9.0 a c d
<10,3,b=8> <10,3,b=8> 10.0 a c d
<ll,3,d»3> <11,3 ,d=*2> 11.0 a c d
<8,2,=> <8,2,=> 8.0 a c d
<12,l,e=0> <9,3,C=14> 9.0 a c d
<13,1,f=26> <10,3,b-16> 10.0 a b c d
<14,l,e»0> <ll,3,d-3> 11.0 a b c
<14,1,f=26> <8,2,=> 8.0 a b C

<12,l,e=»0> 12.0 a b c
<13,1,f=-l> 13.0 a b c f
<14,l,e=0> 14.0 a b C  f
<14,1,f=-l> 14.0 a b C  f

d. Statistics record
9 2 0  26 0 -1 1 24 1 1 1  18 4 3 . 0 4  1

61



trace is processed to produce a statistics record (Figure 2d), and these records are 

accumulated over all tested inputs. Each different execution path encountered is 

recorded in the execution path table, and a count is kept for each path of the number 

of inputs that drove the path during an experiment. Since we are only interested in 

paths that execute the fault, we need to know the statement number of the fault. This 

allows the determination of the execution rate during the experiment, and saves 

space in the path table by eliminating uninteresting paths. The DEFA system can 

produce several reports, including the error trace for a single input, a description of 

paths and execution counts, and a summary by paths of the accumulated statistics.

The statistics record produced by processing an error trace contains the 

following information:

The input for this execution

The correct program’s output for this input

The faulty program’s output for this input

The path number, which is the index of this path in the path table

The length of the path, i.e., the number of statements executed. Note that

each variable input or output counts as one statement executed, as does the

predicate in if or while.

Whether or not the fault was executed

Whether or not execution of the fault resulted in an infection

62



Whether or not the program failed

The distance from the infection point to either output or total cancellation of 

the infection. Distance is measured as the difference between the ordinal 

positions in the execution sequence of the two events.

The maximum size over all error sets

The average size of the error sets, produced by summing error set sizes 

starting at the infection point across the above distance, then dividing by 

distance+1

The size of the final error set

The number of assignment cancellations that occur, i.e. those that remove an 

infected variable from the preceding error set. Expression cancellation can be 

measured by using temporary variables to decompose the expression.

The algorithm to match correct and faulty program execution traces is given 

in Figure 3. This algorithm attempts to synchronize the program traces as much as 

possible to avoid the artificial fluctuations in error sets that could be produced by an 

unsynchronized comparison of data states. As an extreme example, suppose two 

identical execution traces were matched by comparing all data states in one trace to 

the initial data state of the other trace, and then comparing the final state of the first 

trace to subsequent states of the other trace. Although the final error set would be 

empty, the error trace would have a large average error set size when that average 

size should be zero.

63



Figure 3. Execution trace matching algorithm

In the following algorithm, C and F refer to the correct and faulty execution 
traces, respectively. The operation match compares the data states for C and F, 
adding variables to the error set when their C and F  values are not equal, and 
removing (if necessary) variables from the error set when their C and F values are 
equal. Implicit in match is the fetching of trace records as needed and the output of 
the error set for each statement in F.

while more trace records in both C and F do 
beginif Flevel => Clevel and Fstmtnum =* Cstmtnum then 

match
else if extra stmt(s) in F thenmatch each extra stmt in F with current stmt in C
else if Flevel > Clevel thencatch up with C by matching each stmt in F with current 

stmt in c until Fstmtnum - Cstmtnum
else if Flevel < Clevel thencatch up with F by accumulating C's state changes 

until Fstmtnum ■ Cstmtnum
else if Flevel =■ clevel and Fstmtnum <> Cstmtnum then catch both traces up to their common forward dominator, matching stmts in C and F pairwise until one branch 

runs out if C branch runs out first thenmatch rest of F stmts with last C stmt 
if F branch runs out first then accumulate C's state changes

end
if more trace records in F thenmatch rest of F with C's final state
if more trace records in C thenaccumulate rest of C's state changes 

match with F's final state

64



Our algorithm uses the faulty program’s execution trace as the basis for the 

comparison and requires a correspondence between statement numbers in the correct 

and faulty programs. A missing statement in the faulty program is represented as a 

null statement. An extra statement in the faulty program has a fractional part added 

to the line number of the statement preceding the extra statement(s), i.e., statement

5.1 would be an extra statement inserted between statements 5 and 6. One error 

trace record consisting of the statement number and the error set is produced for 

each statement in the faulty trace. When the faulty trace must "catch up" with the 

correct trace, e.g., when the faulty trace has too many iterations of a loop, error trace 

records are produced by matching each state in the faulty trace with the current state 

in the correct trace until the traces are resynchronized. When the correct trace must 

catch up with the faulty trace, changes in the data state for the correct trace are 

accumulated until resynchronization but no error trace records are produced. The 

biggest problem in synchronization arises when the correct and faulty traces follow 

different branches from a decision statement. We have chosen to match the states 

along each branch pairwise between the branches until one branch runs out, and then 

process any remaining states along a branch as above. An alternative would be to 

accumulate state changes along both branches and then match the resulting states, 

but that is inconsistent with our notion of matching each state in the faulty trace with 

a state in the correct trace.

65



42  Potential uses for the DEFA system

The DEFA system is a tool for investigating the semantic behavior of errors 

in programs at the level of data state transitions. Some of the information produced, 

such as overall execution rate of a fault and program failure rate, is also produced 

by other tools, but to our knowledge no other tool produces a breakdown of infection 

and failure rates by path, or any kind of error set information. We believe this 

information will be valuable in discovering properties of individual programs and 

properties found to be common to many programs. Potential uses include :

Investigating the properties of paths that result in different infection rates for 

a fault.

Investigating the properties of paths with different failure rates.

Investigating the properties of paths that always fail or that never fail.

Investigating the effects of cancellation along different paths once an infection 

has occurred.

Comparing the performance of various testing techniques using the paths 

selected by the techniques and path infection/failure estimates produced by



the DEFA system.

Discovering anomalies in programs that may not be obvious from an 

examination of the code, based on observations such as a "fault" that never 

infects, or an infection that never results in failure.

4.3 Programs analyzed using the DEFA system

A number of different single faults in three programs have been analyzed 

using DEFA. Each program and its faults are described in the following subsections. 

The programs were constructed to conform to the restrictions of the DEFA system 

and, except for program Cancel, compute some useful function. An attempt was 

made to construct programs in which faults could be inserted that would result in 

different failure rates, but the programs were not contrived to produce any other 

behavior. The faults themselves are mostly simple mutation faults, such as a variable 

substitution, an operator substitution, or an expression off by one. Some faults were 

chosen without bias, others were chosen as mistakes a programmer might actually 

make, and still others were chosen as faults that would have low infection or failure 

rates. This was done in an attempt to observe some interesting semantic behavior -- 

we make no claims that these faults are typical or representative of any group of 

faults.

67



The experiments were performed on 286-based, IBM-compatible PC’s using 

a test harness designed to automate execution of the different parts of the DEFA 

system. The time required to perform one experiment involving one fault using 

20,000 inputs varied from 15 to 30 hours, depending on the program and the fault.

4.3.1 The Triangle program

The program in Figure 4 accepts three integer inputs and determines whether 

or not they could be the lengths of the sides of a triangle. If so, the triangle is 

classified by properties of its angles and sides. Figure 5a shows the different faults 

tested for this program. Each experiment involved a different fault run with 10,000 

or 20,000 randomly generated inputs, with each input consisting of 3 integers in the 

range -2 .. 50. Overall results for execution rate, infection rate, and failure rate are 

presented in Figure 5b. A breakdown for each fault of the number of paths that have 

certain properties is given in Figure 5c.

There are several insights about this program that are prompted by an 

examination of the experimental results. The most striking observation about Figure 

5b is that (except for fault T l) 100% of the infections result in failure. An 

examination of the program shows why : the path selected determines the value of 

each output variable independently and exclusively (except for the two paths that

68



Figure 4. Triangle program

Triangle program
Takes 3 integer inputs and determines if they can be the lengths 
of the sides of a triangle. If so, classifies the triangle's properties as (scalene, isosceles, or equilateral) and (obtuse, 
right, or acute), output consists of a bit string with l's 
indicating the properties in the following order :error scalene isosceles equilateral obtuse right acute

program triangle; 
const

true ” 1; false =■ 0;
vara,b,c ; integer;

err, sea, iso, rig, obt, acu, equ : integer;
pr, po, pa : 0. .1;

begin
1 err ;= false;
2 sea : = false; iso := false; equ := false;
5 obt := false; rig := false; acu : = false;
8 readln (a,b,c);
9 if (a <= 0) or (b <= 0 ) or (c <=» 0) then
10 err ;= true11 else if (a + b <= c) or (a + c <= b) or (b + c <» a) then
12 err := true

else13 err := false;
14 if err = false then

begin
15 if (a - b) and (b = c) then
16 equ := true
17 else if (a =* b) or (b = c) or (a = c) then
18 iso : = true
19 else if (a <> b) and (b <> c) and (a <> c) then
20 sea := true;
21 pr := ord ((a*a+b*b=c*c) or (a*a+c*c=b*b) or (b*b+c*c=a*a));
22 pa ;= ord ((a*a+b*b>c*c) and (a*a+c*c>b*b) and (b*b+c*c>a*a));
23 po := ord ((a*a+b*b<c*c) or (a*a+c*c<b*b) or (b*b+c*c<a*a));
24 if pr - 1 then
25 rig ;= true
26 else if pa » 1 then
27 acu :=» true
28 else if po » 1 then
29 obt := true;

end;
31 writeln (err, sea, iso, equ, obt, rig, acu)

end.

69



Figure 5. Results of experiments with Triangle program

a. Triangle program faults
fault stmtid no. fault description
T1 9 change all <= to <
T2 11 omits or (b + c <=■ a)
T3 11 change to (b + c < a)
T4 14 add: or err => trueT5 15 change and to or
T6 19 omit: and (a <> c)
T7 21 omit: or (a*a+c*c=b*b) or (b*b+c*c=a*a)
T8 22 change all and to or
T9 23 change (a*a+b*b<=c*c)
T10 21 change all or to and
Til 21 omit: or (b*b+c*c=»a*a)
T12 21 change (a*a+c*c=>b*b) to (a*a+c*c«b)
T13 21 change (a*a+b*b=c*c) to (a*b+b*b=c*c)

i/erall execution, infection, and failure statistics
no. of tests

failure rate% wrtfault exec caused caused exec infect --------------------------
id total fault infect fail rate% rate% total exec inf
T1 20000 20000 1017 0 100.0 5.1 0 0 0
T2 10000 8454 1487 1487 84.5 17.6 14.9 17.6 100.0
T3 10000 8398 76 76 84.0 .9 .76 .9 100.0T4 20000 20000 11569 11569 100.0 57.8 57.8 57.8 100.0
T5 20000 8469 .495 495 42.3 5.8 2.5 5.8 100.0
T6 20000 7724 0 0 38.6 0 0 0 ----
T7 20000 8398 13 13 42.0 .16 .065 .16 100.0
T8 10000 4162 2305 2305 41.6 55.4 23.1 55.4 100.0
T9 20000 8439 0 0 42.2 0 0 0 --
T10 10000 4200 7 7 42.0 .17 .07 .17 100.0
Til 10000 4195 0 0 42.0 0 0 0 ----
T12 10000 4162 5 5 41.6 .12 .05 .12 100.0T13 10000 4115 2 2 .41.2 .05 .02 .05 100.0

c. Path properties
Properties of individual paths

if infected, then
fault total sometimes always never sometimes always neverid num infect infect infect fail fail fail
T1 8 1 0 7 0 0 1
T2 7 2 0 5 0 2 0
T3 7 2 0 5 0 2 0
T4 13 0 7 6 0 7 0
T5 8 0 2 6 0 2 0
T6 3 0 0 3 0 0 0
T7 7 0 1 6 0 1 0
T8 6 0 2 4 0 2 0
T9 6 ~ 0 0 6 0 0 0
T10 6 0 1 5 0 1 0
Til 6 0 0 6 0 0 0
T12 7 0 1 6 0 1 0
T13 8 0 2 6 0 2 0

70



assign err:=true, discussed shortly). The selection of the right path gives its variable 

the correct value, and the selection of the wrong path gives its variable a wrong value 

and does not assign the correct value to the variable on the right path. Since a 

variable is never reassigned another value along any subsequent path, infection of a 

live variable must necessarily cause failure. Notice that the only assignments to non

output variables are to pr, pa, and po. Due to a limit on expression length in the 

DEFA system, the predicate expressions that would normally appear in the 

subsequent if-else if statement were computed and stored in these variables. This 

subtle change in the program changes the semantic behavior so that it is possible for 

pa or po to become infected due to a fault, but not cause failure if a previous 

predicate in the if-else if statement is true, since the infected variable is now dead. 

This possibility did not occur during the testing of fault T9.

Let’s look at the one exception where err:= true occurs on either of two paths. 

Notice that fault T1 had a 5.1% infection rate with no failures. When we investigated 

the fact that this fault had no effect although it seemed like sides of length 0 could 

slip through and cause a failure, we found that the predicate in line 11 implies the 

predicate in line 9, making the line 9 predicate redundant. Since the fault inserted 

in line 9 never sets err to true when it should have been false, no failure can occur. 

This was not noticed when the program was written.

The reason that fault T6 resulted in no infection and no failure is a little

71



clearer. The omitted condition (a< >c) is redundant since it is implied by the falsity 

of (a=c) in statement 17. In fact, the entire predicate in statement 19 is redundant, 

i.e. a triangle that is not a right triangle and not an acute triangle must be an obtuse 

triangle. The advantage of the redundant predicate versus the "catch-all" else is that 

a fault in one of the predicates in the if-else if structure might result in no 

assignment, which would make the output easier to identify as erroneous because one 

of the assignments must be made.

One problem with testing this program for the specified faults is that some of 

the faults have a very low infection rate. The usual structural coverage testing 

methods are little help in this situation, since they spread the testing effort among 

many paths while focused testing on a particular path is required to reveal the fault. 

Figure 6 contains the error statistics summary and path table for fault T7, which had 

the lowest infection and failure rate. The fault had an overall failure rate of 0.16% 

with respect to executions of the fault despite an execution rate for the fault of 42%, 

and only one of the 7 paths executed resulted in failure. A closer examination of the 

fault and its path explains the low failure rate and the fact that only one path caused 

the failure. Fault T7 omitted the other two conditions required to recognize a right 

triangle, so that roughly two thirds of right triangles were not recognized as such. 

There are very few of the over 1 million inputs that can be the integer sides of a 

right triangle, hence the low infection rate. As for the single path, only scalene right 

triangles can have integer sides, so the faulty path recognized the triangle as scalene,

72



Figure 6. Error statistics summary and path table for fault T7

Error Set Statistics for Paths

Infected or failed
Infection Failure Error set size

Path # of avg avg avg avg# avg avg
no. execs no. rate(%) 1 1 p

 
1 0
 

1 • rate(%) max max avg last canc dist c/d
1 4509 0 0 . 0 0 0 0 0 . 0 0 0 0 0.0 0.0 0.0 0.0 0 0 . 0 0 0
2 3127 0 0 . 0 0 0 0 0 . 0 0 0 0 0.0 0.0 0.0 0.0 0 0 .0 0 0
3 637 0 0 . 0 0 0 0 0 . 0 0 0 0 0.0 0.0 0.0 0.0 0 0 .0 0 0
4 13 13 100.000 13 100.000 1 1.0 1.0 1.0 0.0 9 0 .0 0 0
5 98 0 0 . 0 0 0 0 0 . 0 0 0 0 0.0 0.0 0.0 0.0 0 0 .0 0 0
6 8 0 0 . 0 0 0 0 0 . 0 0 0 0 0.0 0.0 0.0 0.0 0 0 .0 0 0
7 6 0 0 . 0 0 0 0 0 . 0 0 0 0 0.0 0.0 0.0 0.0 0 0 .0 0 0

tot 8398 13 0.155 13 0.155

Execution Paths
Pathno.

Total
execs

Fault
hit? statement execution sequence

1 4509 yes 1 2 3 4 5 6 7 8 8 8 9 11 13 14 15 17 19 20 21 22 23
24 26 28 29 30 31 31 31 31 31 31 31

2 3127 yes 1 2 3 4 5 6 7 8 8 8 9 11 13 14 15 17 19 20 21 22 23
24 26 27 30 31 31 31 31 31 31 31

3 637 yes 1 2 3 4 5 6 7 8 8 8 9 11 13 14 15 17 18 21 22 23 24
26 27 30 31 31 31 31 31 31 31

4 13 yes 1 2 3 4 5 6 7 8 8 8 9 11 13 14 15 17 19 20 21 22 23
24 26 28 30 31 31 31 31 31 31 31

5 98 yes 1 2 3 4 5 6 7 8 8 8 9 11 13 14 15 17 18 21 22 23 24
26 28 29 30 31 31 31 31 31 31 31

6 8 yes 1 2 3 4 5 6 7 8 8 8 9 11 13 14 15 17 19 20 21 22 23
24 25 30 31 31 31 31 31 31 317 6 yes 1 2 3 4 5 6 7 8 8 8 9 11 13 14 15 16 21 22 23 24 26
27 30 31 31 31 31 31 31 31

Of 7 different paths found during testing, 7 caused execution of the fault
Total executions over all paths : 8398Total executions of a path containing the fault : 8398
Execution rate for fault : 100.00%

73



but due to the omitted conditions, did not recognize it as a right triangle.

Clearly, we should concentrate testing on path 4 for this fault at this location. 

Is this a good path to test for any fault at this location? This question can never be 

answered in general because we cannot characterize all possible faults, but it seems 

reasonable to experiment with different faults at a location to see if there are one 

or two paths that occur frequently and that have relatively high failure rates w.r.t 

infection. This was done for statement 21 by testing faults T10-T13. Figure 7 

summarizes the results of these experiments. Since each experiment was run on a 

different machine, with paths entered into their respective path tables in arbitrary 

order, the path numbers for paths with non-zero infection rates have been converted 

to correspond to the path numbers for T7. Fault T il  never resulted in infection 

because none of the relatively few inputs that could cause infection for this 

experiment were randomly generated; therefore, path 4, which always causes a failure 

by not selecting any angle property for the triangle, was never traversed. Path 4 

would definitely be preferred in testing statement 21 for this set of faults, and 

possibly many other faults as well.

There is one additional observation concerning the maximum error set sizes 

for fault T13. Path 4 has a maximum error set size of 1, indicating that one variable 

(rig) did not get its correct value. The maximum error set size of 2 for path 6 implies 

that a triangle was mislabeled as a right triangle and not labeled as the appropriate

74



Figure 7, Experiments with various faults in statement 21

Error Set Statistics for Paths

Infection Failure
Infected or failed 

Error set size
Path # of avg avg avg avg# avg avg
no. execs • 1

0 
1  

C 
1 1 rate(%) • • 

O 
1  

C 
1  1 rate(%) max max avg last canc dist c/d

T10 2281 0 0 .0 0 0 0 0 .0 0 0 0 0.0 0.0 0.0 0.0 0 0 . 0 0 0
1547 0 0 .0 0 0 0 0 . 0 0 0 0 0.0 0.0 0.0 0.0 0 0 .0 0 0
302 0 0 .0 0 0 0 0 . 0 0 0 0 0.0 0.0 0.0 0.0 0 0 . 0 0 0
60 0 0 . 0 0 0 0 0 . 0 0 0 0 0.0 0.0 0.0 0.0 0 0 . 0 0 0

4 7 7 100.000 7 100.000 1 1.0 1.0 1.0 0.0 9 0 . 0 0 0
3 0 0 .0 0 0 0 0 . 0 0 0 0 0.0 0.0 0.0 0.0 0 0 . 0 0 0

tot 4200 7 0.167

1 p*111 0.167
Til 2228 0 0.000 0 0.000 0 0.0 0.0 0.0 0.0 0 0.000

1573 0 0.000 0 0.000 0 0.0 0.0 0.0 0.0 0 0.000
331 0 0.000 0 0.000 0 0.0 0.0 0.0 0.0 0 0.000
56 0 0.000 0 0.000 0 0.0 0.0 0.0 0.0 0 0.000
5 0 0.000 0 0.000 0 0.0 0.0 0.0 0.0 0 0.000
2 0 0.000 0 0.000 0 0.0 0.0 0.0 0.0 0 0.000

4195 0 0.000 0 0.000
T12 2297 0 0 .0 0 0 0 0 . 0 0 0 0 0.0 0.0 0.0 0.0 0 0 . 0 0 0

296 0 0 .0 0 0 0 0 . 0 0 0 0 0.0 0.0 0.0 0.0 0 0 . 0 0 0
1503 0 0 .0 0 0 0 0 . 0 0 0 0 0.0 0.0 0.0 0.0 0 0 . 0 0 0
51 0 0 . 0 0 0 0 0 . 0 0 0 0 0.0 0.0 0.0 0.0 0 0 . 0 0 0
7 0 0 . 0 0 0 0 0 . 0 0 0 0 0.0 0.0 0.0 0.0 0 0 .0 0 0
5 5 100.000 5 100.000 .1 1.0 1.0 1.0 0.0 9 0.000
3 0 0 .0 0 0 0 0 . 0 0 0 0 0.0 0.0 0.0 0.0 0 0 . 0 0 0

4162 5 0.120 5 0.120
T13 2251 0 0.000 0 0.000 0 0.0 0.0 0.0 0.0 0 0.000

1499 0 0.000 0 0.000 0 0.0 0.0 0.0 0.0 0 0.000
295 0 0.000 0 0.000 0 0.0 0.0 0.0 0.0 0 0.000
6 0 0.000 0 0.000 0 0.0 0.0 0.0 0.0 0 0.000
55 0 0.000 0 0.000 0 0.0 0.0 0.0 0.0 0 0.000
7 0 0.000 0 0.000 0 0.0 0.0 0.0 0.0 0 0.000

6 1 1 100.000 1 100.000 2 2.0 1.9 2.0 0.0 9 0.000
4 1 1 100.000 1 100.000 1 1.0 1.0 1.0 0.0 9 0.000

tot 4115 2 0.049 2 0.049

75



kind of triangle.

We previously noted that structural coverage techniques would perform poorly 

in identifying low infection rate faults in this program, in particular with respect to 

a fault in statement 21, where only one path seems to have much chance of revealing 

an error. Consider the strongest coverage criterion, all-paths, and the strongest data 

flow coverage criterion, all-du-paths. The control flow graph for the Triangle program 

has 51 possible paths, of which only 8 are feasible (equilateral triangles must be 

acute, right triangles with integer sides must be scalene). Of the 51 possible paths, 

48 include statement 21, and 6 of the 8 feasible paths include statement 21. Both all

paths and all-du-paths require coverage of all 48 paths to test this statement, and 

must deal with the large number of infeasible paths in this problem. Even if the 

infeasible paths are eliminated, these techniques have no reason to prefer any of the 

6 feasible paths, and so, assuming equal coverage of the paths, would require roughly 

6 times as much testing to reveal an error for a fault in statement 21 as compared 

with a technique that selects path 4 as the best path to test.

Little attention has been paid so far to the error set information gained in 

these experiments. Most of the error set statistics for paths with respect to a 

particular fault were very similar due to the fact that infections caused failure 100% 

of the time. The error set activity in the programs of the next sections is more 

interesting. However, dynamic error flow analysis of the Triangle program has yielded

76



some valuable insights into the semantics of the program and demonstrated that for 

a particular fault some paths are better to test than others.

4.32 The Digitseq program

The program in Figure 8 processes a 24-digit positive integer and returns the 

length of the longest sequence of even digits if the integer is even, and the length of 

the longest sequence of odd digits if the integer is odd. Leading zeroes are not 

counted as part of the integer. The integer is input as three unsigned 8-digit values 

stored in three long integer variables. Each experiment involved a different fault run 

with 20,000 randomly generated inputs, with each input consisting of 3 integers in the 

range 0 .. 99999999.

This program has a large number of paths (around 1019), so when first tested 

the same path never appeared twice before the path table was filled, and all 

remaining paths were grouped together. To address this problem, various parts of the 

program were written as procedures so the trace could be turned off for the 

procedure body and only the net effect of the procedure on the data state recorded 

upon return from the procedure.

The location of the fault determines how such modularization is done. Clearly,

77



Figure 8. Digitseq program

DigitSequence program
Implements the following specification t
The program processes an unsigned integer of up to 24 digits.
If the integer is even, the program finds the length of the longest consecutive sequence of even digits within the integer, 
and if the integer is odd, the program finds the length of the 
longest consecutive sequence of odd digits within the integer.
The program may only use simple integer (longint) variables.
Input will consist of 3 positive integers of no more than 
8 digits each representing, respectively, the high-ordar 8 digits, 
middle-order 8 digits, and low-order 8 digits of the 24-digit 
unsigned integer. Output will be an integer in the range 1-24 
as determined above.

program Digitseq;
var

d t longint; 
s t longint; 
p : longint; 
x : longint; 
n t longint; 
z t longint; 
L t longint; w : longint; 
i : longint;

a, b, c : longint; { holds 24-digit integer > 
{ done flag } 

{ flag : 1 - odd, 0 - even }
{ current part of number : 0 - low, 1 - mid, 2 - high }

{ holds current part of number } 
{ holds current digit } 

{ length of seq. of zeroes } 
( length of longest sequence }{ length of current sequence }

78



Figure 8. (cont.)

begin1 d :■ 0; p :* 0; w :■ 0; L :■ 0; z :« 0;
6 read (a); read (b); read (c);
9 if (c mod 2) = 0 then { determine even or odd }
10 s s= 0else
1 1  a  t -  1 ;

12 while d <> 1 dobegin
13 if p = 0 then begin { get next 8-digit portion }
14 x :« c; p :* p + 1; end
17 else if p = 1 then begin
18 x b? p := p + 1; end
21 else if p = 2 then begin
22 x :■ a; p := p + 1; end;
25 for i :> 1 to 8 do t search current portion >begin
26 n t* x mod 10;
27 x :■ x div 10;
28 if (n mod 2) ■ s then { start counting sequence }
29 w t* w + 1

else
begin

30 if w > L then { new longest sequence }
31 L := w;
32 w t- 0 end;
33 if n = 0 then {' length of sequence of zeroes }
34 z s* z + 1else
35 z :* 0;end;
37 if p > 2 then { done }
38 d :« 1;end;
40 if (s » 0) and (w > L) and (n =* 0) then { adjust for leading 0's }41 w w - z;
42 if w > L then { last sequence was longest }
43 It w;44 writeln (L) 

end.

79



we want to avoid putting the fault in a module, along with any code directly affected 

by the fault. When the fault occurs near the end of the program, the code that is 

executed prior to the fault and not executed again is a good candidate for 

modularization. In some cases it is desirable to "collapse" part of a path containing 

a decision, especially if that part of the path is not expected to use infected variables. 

The presence of decisions within loops is the main source of the combinatorial 

explosion of paths, and sometimes loops can be modularized with a great reduction 

in the number of paths. All of these methods were used in the modularization of 

Digitseq.

The disadvantage of modularization is that it loses some error flow 

information. Error set activity that takes place inside a module is only summarized, 

and distance-related measures can be affected. Further investigation is necessary to 

determine the impact of modularization on error flow information and to develop 

appropriate guidelines for doing modularization. However, judicious use of this 

technique can reduce the number of paths to a manageable level.

The Appendix contains the listings for the modularized versions of Digitseq. 

The experimental results in Figure 9 are based on these versions. Figure 9a shows 

the different faults tested for this program, Figure 9b gives the overall results for 

execution rate, infection rate, and failure rate, and Figure 9c gives a breakdown of 

path properties.

80



Figure 9. Results of experiments with Digitseq program

a. Digitseq program faults
fault stmt proc
id no. fault description version
T1 40 change to (s “ 1) 1
T2 40 change to (w > 1) 1
T3 40 change to (n ” 1) 1
T4 41 change to w - 2 1
T5 37 change to p >« 2 1
T6 27 change to x div 100 4
T7 26 change to x mod 9 4
T8 26 change to x mod 5 4
T9 27 change to x div 5 4
T10 27 change to x div 2 4
Til 9 change to (c mod 2) ■ l 4
T12 2 change to p :■ l 4
T13 3 change to w 1 4
T14 22 change to x :« b 5

b. Overall execution, infection, and failure statistics

fault
no. of tests 
exec caused caused exec infect failurei rate% wrt

id total fault infect fail rate% rate% total exec inf
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —  -— — — — — — — —
T1 20000 20000 117 117 100.0 .59 .59 .59 100.0
T2 20000 20000 382 0 100.0 1.9 0 0 0
T3 20000 20000 114 114 100.0 .57 .57 .57 100.0
T4 20000 105 83 41 .53 79.0 .21 39.0 49.4
TS 20000 20000 20000 5718 100. o 100.0 28.6 28.6 28.6
T6 20000 20000 20000 17500 100.0 100.0 87.5 87.5 87.5
T7 20000 20000 20000 16322 100.0 100.0 81.6 81.6 81.6
T8 20000 20000 20000 16338 100.0 100.0 81.7 81.7 81.7
T9 20000 20000 20000 16480 100.0 100.0 82.4 82.4 82.4
T10 20000 20000 20000 15853 100.0 100.0 79.3 79.3 79.3
Til 20000 20000 20000 16301 100.0 100.0 81.5 81.5 81.5
T12 20000 20000 20000 6405 100.0 100.0 32.0 32.0 32.0
T13 20000 20000 20000 4588 100.0 100.0 22.9 22.9 22.9
T14 20000 20000 20000 6590 100.0 100.0 33.0 33.0 33.0

c. Path properties
Properties of individual paths

if infected, then
fault total sometimes always never sometimes always never
id num infect infect infect fail fail fail
T1 4 1 0 3 0 1 0
T2 6 1 0 5 0 0 1
T3 4 1 0 3 0 1 0
T4 2 2 0 0 1 1 0
T5 6 0 6 0 4 2 0
T6 4 0 4 0 4 0 0
T7 6 0 6 0 6 0 0
T8 6 0 6 0 6 0 0T9 6 0 6 0 6 0 0T10 5 0 5 0 5 0 0Til 6 0 6 0 6 0 0T12 6 0 6 0 6 0 0T13 6 0 6 0 3 0 3T14 5 0 5 0 2 3 0

81



Unlike the Triangle program, the Digitseq program exhibits different path 

failure rates with respect to infection for a number of faults. Figure 10 contains the 

results for a few such faults. Note that in most of the experiments (D5-D14) there 

were faults that had paths with 100% execution and infection rates, yet their failure 

rates varied from 23% to 88%. This indicates that cancellation is indeed a problem 

for testing these faults. Different paths through the same fault can have a wide 

variation in cancellation activity, as shown in Figure 10. This indicates that some 

paths through a fault may be better for testing than others. There is also a difference 

in the maximum average error set size statistic for different paths through the same 

fault in many cases. The general trend in these experiments was that for a given fault 

this statistic was higher for paths with higher failure rates, as demonstrated in Figure 

10a.

Another statistic of interest in Figure 10 is "average cancellation per unit
K

distance". This statistic is obtained by averaging the ratio for each test of the number 

of cancellations to distance, where distance has been defined in section 4.1, in an 

attempt to give a normalized measure of cancellation activity. Normalization is 

necessary in order to compare paths that have a few cancellations over a short 

distance with paths that may have a number of cancellations over a long distance. It 

is intuitive that a path with a lower failure rate w.r.t. infection should exhibit more 

cancellation activity than one with a higher failure rate. The experimental results 

support this intuition.

82



Figure 10a. Digitseq experimental results

Error set Statistics for Paths

Infected or failed 
Infection Failure Error set size

Path #  O f avg avg avg avg# avg avg
no. execs no. rate(%) • 

1
O 

1  
C 

11 rate(%) max max avg last canc dist c/d
D41 78 62 79.487 20 25.641 2 1.3 1.1 1.3 0.0 2 0 .0 0 0
2 27 21 77.778 21 77.778 2 2.0 1.5 2.0 0.0 3 0 .0 0 0

tot 105 83 79.048 41 39.048
051 9053 9053 100.000 2360 26.069 5 3.0 2.2 3.0 0.0 4 0 . 0 0 0
2 9328 9328 100.000 2395 25.675 5 3.0 2.2 3.0 0.0 4 0 .0 0 0
3 790 790 100.000 428 54.177 5 4.0 2.8 3.5 0.5 5 0.092
4 673 673 100.000 379 56.315 5 4.0 2.8 3.5 0.4 5 0.087
5 76 76 100.000 76 100.000 5 4.8 3.7 4.8 0.1 6 0.013
6 80 80 100.000 80 100.000 5 4.8 3.5 4.7 0.1 5 0.023

tot 20000 20000 100.000 5718 28.590

1 580 580 100.000 497 85.690 4 3.9 2.3 1.9 11.8 109 0.137
2 9065 9065 100.000 7576 83.574 4 3.9 2.3 1.5 12.0 110 0.173
3 9502 9502 100.000 7550 79.457 4 3.9 2.2 1.3 12.6 104 0.219
4 577 577 100.000 473 81.976 4 3.9 2.3 1.8 12.1 107 0.139
5 135 135 100.000 109 80.741 4 3.9 2.3 2.8 12.0 107 0.157
6 141 141 100.000 117 82.979 4 4.0 2.4 2.9 11.7 115 0.123

tot 20000 20000 100.000 16322 81.610

1 9608 9608 100.000 7629 79.403 • 4 3.8 2.1 2.0 12.8 90 0.314
2 9176 9176 100.000 7676 83.653 4 3.8 2.2 2.1 11.3 98 0.220
3 554 554 100.000 491 88.628 4 3.8 2.2 2.4 11.2 99 0.159
4 421 421 100.000 329 78.147 4 3.8 2.1 2.2 12.6 94 0.202
5 127 127 100.000 120 94.488 4 3.9 2.3 3.2 11.1 98 0.156
6 114 114 100.000 93 81.579 4 3.8 2.3 2.8 11.1 98 0.164

tot 20000 20000 100.000 16338 81.690
D121 9055 9055 100.000 3013 33.274
2 9136 9136 100.000 3011 32.958
3 927 927 100.000 187 20.1734 704 704 100.000 126 17.8985 86 86 100.000 24 27.907
6 92 92 100.000 44 47.826

-------- — ---------—— — —— ---------———— — —— ---------————

tot 20000 20000 100.000 6405 32.025

6 5.7 3.8 0.3 9.5 100 0.096
6 5.8 3.8 0.3 9.7 100 0.097
6 5.7 3.8 0.2 9.6 100 0.096
6 5.7 3.7 0.2 9.7 100 0.097
6 5.8 3.8 0.5 9.5 101 0.094
6 5.9 3.8 0.9 9.4 100 0.094

83



Figure 10b. Digitseq experimental results

Error Set Statistics - Detail

Infected, no failure Infected and failed
Error set size Error set size

Path avg avg avg avg# avg avg avg avg avg avg# avg avg
no. max max avg last canc dist c/d max max avg last canc dist c/d
D4
1 1 1.0 1.0 1.0 0.0 2 0.000 2 2.0 1.3 2.0 0.0 2 0.000
2 0 0.0 0.0 0.0 0.0 0 0.000 2 2.0 1.5 2.0 0.0 3 0.000

total no. - 42 rate % - 40.000 no. - 41 rate % - 39.048
D51 4 2.7 2.0 2.7 0.0 4 0.000 5 3.8 2.6 3.8 0.0 4 0.000
2 4 2.7 2.0 2.7 0.0 4 0.000 5 3.8 2.6 3.8 0.0 4 0.000
3 5 4.0 2.7 3.0 1.0 5 0.200 5 3.9 3.0 3.9 0.0 5 0.000
4 5 4.0 2.7 3.0 1.0 5 0.200 5 4.0 3.0 4.0 0.0 5 0.000
5 0 0.0 0.0 0.0 0.0 0 0.000 5 4.8 3.7 4.8 0.1 6 0.013
6 0 0.0 0.0 0.0 0.0 0 0.000 5 4.8 3.5 4.7 0.1 5 0.023

total no. - 14282 rate % - 71.410 no. - 5718 rate % - 28.590
D7
1 4 3.9 2.3 1.0 12.5 117 0.118 4 3.9 2.3 2.0 11.7 108 0.141
2 4 3.8 2.0 0.6 12.8 69 0.397 4 3.9 2.4 1.6 11.8 118 0.129
3 4 3.7 1.9 0.6 13.5 62 0.492 4 3.9 2.3 1.6 12.4 115 0.148
4 4 3.9 2.3 0.9 13.3 115 0.132 4 3.9 2.3 2.0 11.8 106 0.140
5 4 3.8 2.0 1.8 14.0 58 0.365 4 4.0 2.4 3.1 11.5 119 0.107
6 4 4.0 2.4 2.1 13.6 120 0.132 4 3.9 2.4 3.1 11.3 114 0.121

total no. - 3678 rate % - 18.390 no. - 16322 rate « - 81.610
D81 4 3.6 1.8 1.3 13.4 35 0.861 4 3.9 2.2 2.2 12.7 104 0.172
2 4 3.7 1.9 1.3 12.0 43 0.650 4 3.9 2.2 2.3 11.2 109 0.136
3 4 3.8 2.2 1.4 11.9 108 0.165 4 3.8 2.2 2.5 11.1 97 0.159
4 4 3.8 2.2 1.5 12.9 104 0.163 4 3.8 2.1 2.4 12.5 92 0.212
5 4 4.0 2.2 2.1 13.1 105 0.150 4 3.9 2.3 3.2 11.0 98 0.156
6 4 3.4 2.1 2.2 11.0 53 0.342 4 3.9 2.3 3.0 11.1 108 0.123

total no. - 3662 rate % - 18.310 no. - 16338 rate % - 81.690
D121 6 5.7 3.7 0.0 9.8 99 0.099 6 5.8 3.9 1.0 9.1 101 0.090
2 6 5.8 3.7 0.0 9.9 99 0.100 6 5.8 3.9 1.0 9.2 101 0.091
3 6 5.7 3.7 0.0 9.9 100 0.099 6 5.8 3.9 1.0 8.8 102 0.086
4 6 5.7 3.7 0.0 9.9 100 0.099 6 5.8 3.8 1.0 9.0 102 0.088
5 6 5.8 3.7 0.0 9.9 100 0.098 6 6.0 3.9 2.0 8.5 103 0.083
6 6 5.8 3.7 0.0 10.1 99 0.102 6 6.0 3.9 2.0 8.7 102 0.085

total no. - 13595 rate % - 67.975 no. - 6405 rate % - 32.025

84



Figure 10b shows a detailed breakdown of error set statistics for those tests 

that infected but did not fail versus those that infected and failed. We observe that 

for a particular path the group of tests that ultimately failed generally show a higher 

average maximum error set size than those that resulted in coincidental correctness. 

Also, the same group showed a lower average c/d than the coincidentally correct 

group, indicating that the lower cancellation activity allowed more errors to 

propagate to failure.

4.3.3 The Cancel program

The program in Figure 11 accepts 3 integer inputs and computes an arbitrary 

function. This program uses a number of arithmetic operations that exhibit expression 

cancellation, such as integer division, modulus, absolute value, squaring, and potential 

multiplication by zero. Each experiment involved a different fault run with 20,000 

randomly generated inputs, with each input consisting of 3 integers in the range -50 

.. 50. Figure 12a shows the different faults tested for this program, Figure 12b gives 

the overall results for execution rate, infection rate, and failure rate, and Figure 12c 

gives a breakdown of path properties.

The trends observed in the Digitseq experiments relating the average 

maximum error set size to a path’s failure rate still hold in the Cancel experiments,

85



Figure 11. Cancel program

Cancel program
Takes 3 Integer inputs and computes an arbitrary function using 
statements with different potentials for resistance and 
cancellation.

program cancel; 
var

a, b, c, d, e, f, g, h, x, y, z : longint; 
begin1 readln (a, b, c);2 d :* 0; e 0; f ;=» 0; g 0; h :» 0;

7 if a > c then
begin8 d c*c - a*a;

9 e b * (abs(a) - abs(c));
10 if d + e > 0 then
11 f trunc(sqrt(d+e))

else12 f :«■ trunc(sqrt(abs(d+e)));
13 g :■ a - c;
14 h :* abs(g div 5) + l;
15 while g > 0 do

begin
16 d d + e mod h;
17 g :« g - h

end;
18 if d div (abs(b)+l) > c*c then19 d (d - c) * a

end
else
begin20 d (c-a) * (b-a) * (b-c) * (b-10);

21 if d > 0 then
begin

22 e :■ b * d + (b - a*a) * c;
23 if d + e <> 0 then
24 f :■ d * e div (d + e); - .
25 g l;26 while g <■ 5 do

begin
27 g :■ g + 1;
28 c c + 2;
29 a :■ a - c

end;
30 h :■» (c + a) div 2 

end
else
begin

31 e abs(b * d - a*a);
32 f :» e * (a + b + c);
33 if abs(f - e) < a*a then
34 h :« (d + a) div 10 

else
35 h :■ (d + b) div 10

end
end;36 x b * (g - h);

37 y :« abs(f * (g - a));
38 z :■ (e * h) div (abs(c)+l);
39 writeln (x, y, z)

end.
86



Figure 12. Results of experiments with Cancel program

a. Cancel program faults
fault stmt
id no. fault description
Cl 8 change to a+a
C2 9 change to b * (a - c)
C3 15 change to g >= 0
C4 19 change to (d - b) * a
C5 24 change to e div d + e
C6 26 change to g < 5
C7 29 missing stmt
C8 32 change to (a + b - c)
C9 34 change to div 100

b. Overall execution, infection, and failure statistics
no. of tests — ----- — ________----  failure rate% wrt

fault exec caused caused exec infect — ----------------------------------------------

id total fault infect fail rate% rate% total exec inf
Cl 20000 9908 9822 8962 49.5 99.1 44.8 90.5 91.2
C2 20000 9872 7287 7261 49.4 73.8 36.3 73.6 99.6
C3 20000 9994 1655 1655 50.0 16.6 8.3 16.6 100.0
C4 20000 0 0 0 0 --------- 0 — _ ---------

C5 20000 4839 4839 4827 24.2 100. 0 24.1 99.8 99.8
C6 20000 4809 4809 4808 24.0 100.0 24.0 99.98 99.98
C7 20000 4832 4832 4778 24.2 100.0 23.9 98.9 98.9
C8 20000 5421 5380 5258 27.1 99.2 26.3 97.0 97.7
C9 20000 32 30 30 .16 93.8 .15 93.8 100.0

c. Path properties
Properties of individual paths

if infected, then
fault total sometimes always never sometimes always never
id num infect infect infect fail fail fail
Cl 11 10 1 0 10 1 0
C2 10 10 0 0 10 0 0
C3 8 6 2 0 6 2 0
C4 0 0 0 0 0 0 0
C5 1 0 1 0 1 0 0
C6 1 0 1 0 1 0 0
C7 1 0 1 0 1 0 0
C8 2 1 1 0 1 1 0
C9 1 1 0 0 1 0 0

87



Figure 13. Fault C2 in Cancel program

Error Set Statistics for Paths

Infected or failed
Infection Failure Error set size

------- — ——— -----------------------------------------------

Path # of avg avg avg avg# avg avg
no. execs no. rate(%) no. rate(%) nax stax avg last canc dist c/d
1 797 730 91.593 723 90.715 5 4.3 2.5 4.3 0.0 24 0 . 0 0 0
2 3626 3494 96.360 3494 96.360 5 4.8 2.8 4.8 0.0 27 0 .0 0 0
3 809 167 20.643 167 20.643 5 4.3 2.5 4.3 0.0 24 0 .0 0 0
4 3719 2403 64.614 2403 64.614 5 4.7 2.8 4.7 0.0 27 0 . 0 0 0
5 279 251 89.964 241 86.380 5 3.9 2.3 3.9 0.0 21 0 .0 0 0
6 83 73 87.952 72 86.747 4 3.7 2.3 3.7 0.0 18 0 .0 0 0
7 101 90 89.109 82 81.188 4 3.1 2.1 3.1 0.0 15 0 . 0 0 0
8 101 15 14.851 15 14.851 4: 3.5 2.1 3.5 0.0 15 0 . 0 0 0
9 273 54 19.780 54 19.780 5 4.1 2.4 4.1 0.0 21 0 . 0 0 0
10 84 10 11.905 10 11.905 4 3.9 2.4 3.9 0.0 18 0 .0 0 0

tot 9872 7287 73.815 7261 73.551

Execution Paths
Path Total Fault
no. execs hit? statement execution sequence1 1 1

H 
1

797 yes 1 1 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 15 16 1715 16 17 15 16 17 15 18 36 37 38 39 39 39
2 3626 yes 1 1 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 15 16 1715 16 17 15 16 17 15 16 17 15 18 36 37 38 39 39 39
3 809 yes 1 1 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 15 16 17

15 16 17 15 16 17 15 18 :36 37 38 :39 39 39
4 3719 yes 1 1 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 15 16 17

15 16 17 15 16 17 15 16 17 15 18 :36 37 38 39 39 39
5 279 yes 1 1 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 15 16 1715 16 17 15 18 36 37 38 39 39 39
6 83 yes 1 1 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 15 16 17

15 18 36 37 38 39 39 39
7 101 yes 1 1 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 15 18 36

37 38 39 39 39
8 101 yes 1 1 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 15 18 36

37 38 39 39 39
9 273 yes 1 1 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 15 16 17

15 16 17 15 18 36 37 38 39 39 39
10 84 yes 1 1 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 15 16 17

15 18 36 37 38 39 39 39

88



although not as clearly since several of the experiments only traversed one path. The 

average c/d statistic is usually zero in most of the experiments, but this is probably 

due to the fact that it only measures assignment cancellation and not expression 

cancellation.

We will use these experiments to show the utility of dynamic error flow 

analysis in discovering new testing methods by comparing the performance of 

coverage-based testing techniques against a technique that selects paths for testing 

using error set information. We will also demonstrate its usefulness in comparing 

other testing methods against each other. For both demonstrations we will use fault 

C2. Figure 13 gives the breakdown by paths for the statistics from this experiment 

and a description of the paths.

Our proposed testing technique, which we will refer to as ESI, selects for 

testing the path(s) with the largest observed average maximum error set size. We will 

compare its performance in detecting this fault with that of all-paths and all-du-paths. 

We proceed as follows :

1) Identify the paths to test according to all-paths, all-du-paths, and ESI with 

respect to the given fault by presuming we know or suspect the fault is at the 

analyzed location.

89



2) For the purpose of comparing the testing techniques, we assume that we have 

a way to randomly select input data that drives a particular path. We must 

then also assume away the infeasible paths problem for all-paths and all-du- 

paths, which is a source of additional cost in these techniques.

3) Determine how many tests we need to run using each technique in order to 

achieve 99.999% confidence of observing erroneous output if the fault is 

present.

The Cancel program has a total of 28 possible paths, of which 24 contain the 

fault location, statement 9. The loop at statement 15 can be shown to execute 

between 0 and 5 times. The all-du-paths strategy identifies 10 paths, since the loop 

at statement 15 will only be executed 0, 1, or 2 times and the assignment at 

statement 19 is a dead assignment. The loop at statement 26 is really one path since 

it is always executed 5 times. Of the 10 all-du-paths, 6 contain the fault location. 

Using the path table in Figure 13, we find the path number for each path under 

consideration in each testing strategy, with the following results :

90



all-paths -  Of the 24 paths :

4 are infeasible since the loop at statement 15 cannot execute 0 times 

10 paths (found in the path table, Figure 13) are feasible.

10 are semantically equivalent to the previous 10 paths since the value 

assigned to d in statement 19 has no effect on output

all-du-paths -  Of the 6 paths :

2 are infeasible, as above 

4 are feasible - paths 6,7,8,and 10

ESI -- An examination of Figure 13 shows that path 2 has the highest average 

maximum error set size.

We begin the testing by choosing a random input that drives a path selected 

by the testing method under consideration. For testing methods that choose multiple 

paths, we presume there is no reason to prefer any path over another, so we stipulate 

that the tests must be distributed among all paths so that no path has ever currently 

been tested more than one additional time as compared with all other paths in the 

group. Our testing procedure assures this by ordering the paths in the group as a 

cycle with the first path following the last path, and testing each path in turn. The 

testing process stops whenever an error is observed or the desired confidence level

91



has been attained. Of course, any testing method can get lucky and observe an error 

early in the process, but from a probabilistic standpoint will reveal errors based on 

the actual probability of failure for the path driven.

The above testing procedure is performed, and (assuming no errors are 

observed) the estimated failure rates for each path (Figure 13) are used to compute 

a 99.999% confidence that the fault is not present by

Pc = (1-Pi)*(l-P2>* -  *(1-P„)*(l-Pi)* until Pc < .00001, 

where P; is the estimated probability of failure for path i, n is the number of paths 

in the group, and Pc is the probability that correct output was observed on every test.

The results of this comparison for fault C2 are given in Figure 14. Note that 

the ordering of the paths can cause a wide variation in the number of tests required 

by all-paths. Testing strategy ESI is the clear favorite, which is not surprising since 

the path with the largest average maximum error set size also had the highest failure 

rate in this instance. While this is not universally true, it has occurred enough in our 

limited experimentation to make this error flow characteristic a strong candidate for 

use in a testing technique. We have performed the above comparison for all faults 

in the Cancel program whose experiments identified more than one path. The results 

are summarized in Figure 14. Observe that all-du-paths performed the best for fault 

C3. For this fault, ESI could not distinguish any subset of the paths. It is interesting

92



to note that all paths for C3 had 100% failure w.r.t. infection. As in the Triangle 

program, this situation did not lead to significantly different error set activity.

We can also use this technique to compare the performance of other existing 

testing methods, many of which are not comparable by other means. The outcome 

of the comparison is dependent on the programs and faults chosen, so this method 

cannot definitively pronounce one technique superior to another. However, 

consistently favorable outcomes for one technique over another using a wide variety 

of programs and faults gives an empirical basis for preferring the former. We may 

also investigate the marginal performance of a superior but more costly technique 

against other techniques.

The results in Figure 14 that were used to evaluate ESI also allow us to 

compare the performance of all-paths versus all-du-paths. The results of the 

comparison are mixed -- all-paths performed better in the best case but worse in the 

worst case. The techniques were fairly even otherwise in this very limited comparison.

4.4 Comments on experimental results

The experimental results described above show the utility of dynamic error 

flow information in analyzing programs and execution paths, and comparing the

93



Figure 14. Comparison of testing techniques for fault C2

all-paths all-du-paths ESI

path# best worst path# best worst path# best worst
£ault paths order case case paths order case case paths order case case
Cl 1-11 5 1 7 5,11 5 5 6 9,10 1 1 2

C2 1-12 7 6 12 6,7, 10 10 12 2 4 4 4
8,10

C3 1-8 6 1 7 6,8 1 1 1  1-8 6 1 7

C8 1,2 2 1 2  1,2 2 1 2  2 1 1 1

94



performance of other testing methods. As we have seen in the above examples, we 

can learn much about a program by examining the tables of error flow statistics for 

various faults. A path where an infection never causes failure is indicative of a 

redundant computation that could be removed. Infrequently executed paths may not 

give statistics representative of their behavior and should be investigated more 

thoroughly. Paths that always infect are good candidates for testing, especially if 

accompanied by a reasonable failure rate. Those paths that sometimes infect and 

sometimes fail are indicative of complex semantics involving resistance and 

cancellation. Error set statistics also provide useful insight into a program’s behavior. 

The maximum error set size achieved in any test for a path is a good indication of 

the number of variables that are the target of assignments in a chain of data flow 

along the path. The average maximum error set size, which we have associated with 

failure rate in our experiments, gives an idea of the typical degree to which an 

infected variable propagates to other variables. The distance statistic gives a feel for 

the execution distance from fault to output, which might not be easy to discern from 

the program’s code. Finally, the average cancellation per unit distance indicates the 

degree of assignment cancellation activity along the path.

The error flow statistics presented show apparent correlation with path failure 

rate in several instances, and we would clearly prefer to test paths through a 

potential fault that have high failure rates rather than those with low failure rates. 

Unfortunately, we cannot make many statistical claims as a result of this

95



experimentation, for a variety of reasons [Joh91]. The primary problem is that of 

having a representative sample on which statistical claims can be built. We can only 

write an infinitesimal number of the programs (i.e. computable functions) that can 

be written, so it is impossible to ever claim that a set of programs constitutes a 

representative sample. The same is true of faults in programs. With respect to a 

given fault in a given program, we can claim that the execution, infection, and failure 

rates observed experimentally for each path closely estimate the actual rates for the 

input domain from which the random samples were drawn, provided each path is 

executed a sufficient number of times. The statistics for average maximum error set 

size, average final error set size, and average number of cancellations are reliable 

estimates within a path, but comparing these measures between paths raises complex 

statistical issues that we have not yet addressed. It is not even clear that distance- 

related measures within the same path are statistically meaningful, since the 

underlying distribution of distances with respect to a path is not known.

At present we only report the results of these experiments and observe some 

intuitively appealing trends that we think bear further investigation. We believe, 

however, that error flow statistics, such as average maximum error set size, will 

continue to show a relationship to failure rate and provide a basis for the 

development of a family of error flow testing methods.

96



4.5 Comments on dynamic error flow analysis

Experiments in dynamic error flow analysis measure the effect on a program’s 

behavior of known faults. Software testing attempts to reveal unknown faults, so the 

application of error flow analysis to testing must address this issue. One possible 

testing technique based on dynamic error flow analysis would be to create several 

mutants for each program statement and perform the analysis on each mutant. This 

approach is similar to fault sensitivity analysis, but the product of the analysis would 

be an optimal set of code-covering paths to be tested, rather than the location 

sensitivity information produced by fault sensitivity analysis.

A central issue in all testing methods that use the mutation technique is the 

degree to which mutant faults mimic the effect of actual faults on program behavior, 

and in practice they have proven effective in this respect [DeM78, Off89]. We believe 

that error flow characteristics derived from mutant faults will generally reflect the 

error flow characteristics of any faults actually present, making dynamic error flow 

analysis an effective tool for investigating program behavior.

Due to the cost of dynamic analysis, it would be very desirable to develop 

static error flow analysis strategies that give a close approximation of the error flow 

characteristics of a program. Static analysis raises undecidability issues that limit its 

ability to determine semantic behavior in the general case, although in many

97



instances useful semantic information can be derived statically. One limitation of 

static analysis mentioned in Chapter 1 involves the infeasible path problem. Clearly, 

static analysis can identify as infeasible a path through unreachable code, i.e. an 

unlabeled FORTRAN statement preceded immediately by a GOTO. More 

sophisticated analysis could possibly determine that the preceding predicates along 

a path force a subsequent predicate to be always true or always false. Other 

information from the program specification or from assertions in the code might 

allow a similar logical deduction.

Perhaps the greatest limitation of static error flow analysis concerns the 

determination of coincidental correctness properties. As discussed in Section 3.4, 

complete characterization of coincidental correctness requires knowledge of the 

distribution of possible data states at each location in the code, which is generally 

unattainable by static analysis. The degree to which statically derived information can 

approximate coincidental correctness properties remains an open question in the 

development of static error flow analysis. As an alternative to pure static analysis, a 

hybrid static/dynamic technique might be developed that allows dynamically derived 

estimates to be used to compensate for insufficient statically derived information.

98



5.0 Estimating error flow behavior through static analysis

Static error flow analysis attempts to estimate a program’s error flow behavior 

through syntactic and semantic analysis of the program’s code. Static analysis is much 

less costly than dynamic analysis, and is preferable if it can produce reasonable 

estimates of the actual behavior. This chapter presents the underlying concepts of 

static error flow analysis, and presents some preliminary exploration into one possible 

static error flow testing m odel: the threshold model.

5.1 Static analysis techniques

Standard flow graph-theoretic techniques, such as data flow analysis, form the 

basis of our static analysis. These are augmented with semantic information that is 

used to capture potential data state characteristics. Our model of static error flow 

analysis estimates the actual error sets a program might produce with static error sets, 

which we will simply refer to as error sets in this chapter. The error degree at a given 

point in the program is the size of the corresponding error set. To facilitate 

construction of the error sets we will represent the program as a control/data (CD) 

flowgraph. A CD flowgraph is a standard program control flowgraph augmented with

99



directed arcs to indicate data flow. Nodes contain executable statements, or their 

statement numbers. Unlabeled arcs represent control flow paths between statements. 

An arc labeled with a variable v represents a data flow path from the definition of 

v to a reference to v that uses that definition. For two nodes a and b in graph G, a 

dominates b in G iff every path that reaches b must first go through a.

Our strategy in error flow testing is to presume that a particular statement 

contains a fault that infects the succeeding data state, and then track the spread of 

the infection via data flow analysis along various paths in the program. Data flow 

analysis is particularly appropriate here because the dr pair is the mechanism by 

which an infection propagates from one variable to another. As we follow a 

particular path, the error degree may increase through propagation, decrease through 

cancellation, or remain the same. If we can find a set of paths that are very likely to 

propagate the error to output, then testing one or more of those paths and observing 

correct output gives us confidence that the original statement is correct. This 

conclusion may be false if we have overestimated the error degree because the path 

would be less likely than expected to propagate an error, which could result in 

coincidentally correct output. Execution with different input might in fact reveal the 

error. We may achieve confidence in the entire program by applying the above 

strategy to each statement in the program. Figure 1 shows a hypothetical error flow 

testing system.

100



test
data

* CD Flowgraphprogram

Error flow graphs 
Path Patterns

Interpreter

Error Flow 
Analyzer

CD Flowgraph 
Generator

coverage report

Figure 1.

Let’s examine the static approximation of error sets in more detail. For the 

moment we will ignore the cancellation issue. A variable is placed in an error set 

when it is assigned an incorrect value and removed when its value is no longer 

incorrect. A statement inherits an error set from its executional predecessor and 

possibly modifies it by adding or deleting a variable. We could determine error sets 

for paths strictly through control flow analysis, but this might involve passing the 

error set through many statements or along many paths that leave it unchanged. 

Since data flow is the model for propagation of an infection, it would seem more 

efficient to simply follow data flow arcs from the infection and add the newly infected 

variables to the corresponding error sets. We advocate this approach, but observe 

that data flow alone is not sufficient to correctly determine an error set. The reason 

is simple : assignments that could result in addition or deletion of variables in the



error set may lie along a control path between the definition of an error and a 

subsequent reference. Of course, we need not worry that the variable defined as an 

error will leave the error set of the associated reference due to an intervening 

assignment. That is prohibited because the paths selected to test this dr pair must be 

definition-clear for that variable. Other variables, however, could be affected, as 

demonstrated by the following example. Error sets are enclosed in [].

Stmt
[a]

1 b := a + 1
[a,b]

2 c :=  b *2
[a,b,c]

3 a := 10
[b,c]

4 d := b + 5
[b,c,d]

It is clear that the error set [b,c,d] after statement 4 is the correct one. If we 

had followed data flow alone, we would have the reference to b in statement 4 

inherit the error set of the definition of b in statement 1, and add the target variable 

d in statement 4, giving the error set after statement 4 as [a,b,d].

Predicates are a particular problem in determining error sets. A different error 

set may result from taking a different path, and the path taken can only be known 

upon execution. We certainly want to follow and create error sets for all dr pairs that 

propagate an error along different paths, but what about predicates that lie along the

102



path between d and r ? Suppose we replace statement 3 in the previous example with

3.1 if P then
3.2 a := 10 

else
3.3 a := a + 1

Depending on the path taken, a will either be present or absent in the error set 

following statement 4. If we create error sets for all possible paths, we gain accuracy 

in our estimation of the error sets at the expense of efficiency. Clearly, we desire 

some tradeoff that will give us an efficient way of obtaining reasonably accurate error 

sets.

Cancellation is perhaps the biggest problem we face in constructing error sets. 

We must consider the possibility that an assignment statement whose expression 

involves variables in error may still produce the correct result due to this 

phenomenon, causing the target variable to be removed (or not added) to the 

subsequent error set. We must take cancellation into account to avoid overestimating 

error sets, which might lead us to incorrect conclusions about error flow behavior. 

Cancellation in predicates is worst of all, and very common since predicates map a 

potentially n-dimensional input space to [false, true]. Again, we don’t know until 

execution which branch is taken, and whether or not it is the correct branch. Note 

that a predicate may manifest an error in two ways : a fault in the predicate 

expression or a correct predicate evaluated with at least one erroneous argument. 

Let’s examine the consequences of executing a predicate under either of these

103



circumstances. Sometimes the correct branch may be taken due to cancellation, i.e. 

the incorrect expression produces the same result as the correct expression or the 

effects of the infected variables are cancelled by the expression. In this case no 

additional variables become infected or uninfected due to the problem with the 

predicate since it has no detrimental effect on the subsequent execution path. The 

above method of determining error sets through data flow and/or control flow still 

works. However, suppose the wrong branch is taken. Now the program counter is 

corrupted and things can get bad rather quickly. Any assignments made along the 

wrong path are not supposed to be made, and any assignments on the correct path 

are not being made when they should. This situation should result in rapid growth 

of the error sets along either path. The problems are how to statically estimate the 

proportion of the time the wrong path is taken in order to decide which error sets 

apply, and how to construct the resulting error sets by comparing the execution of 

two separate paths.

Error flow testing has several important characteristics that make it an 

attractive testing strategy:

Static computation o f propagation paths

The CD flowgraph can be created using relatively efficient data flow 

algorithms, and then used to construct error sets that determine the set of paths that 

have the highest degree of error propagation for a particular infection point.

104



Automatable

Since all of this computation is driven by the original program structure, it can 

be automated to deliver an optimal set of test paths to the tester. Other portions of 

the procedure, such as matching the paths actually tested against those required, are 

also amenable to automation.

Errors in the data state are easy to describe and track

Syntactic descriptions of faults, such as those in fault-based testing, can be 

difficult to classify or describe. The manifestation of a fault as an error in the data 

state is a simple binary description : right or wrong.

Some missing code faults can be analyzed

We can analyze the effect of a missing assignment statement at any point in 

the program by doing an error flow analysis for each variable in the corresponding 

data state. Although this adds considerably to the expense of testing, it gives a 

capability not possible in most testing methods. Analysis of missing predicates, 

however, seems intractable due to the combinatorics of the possible paths.

We have described the general strategy of error flow testing and discussed 

some of the problems. Recall that the goals of error flow testing are to approximate 

the actual error sets that would be observed during program execution, to do so with

105



static analysis to the extent possible, and to use the resulting error sets to make 

positive statements about program correctness. Implementation of an error flow 

testing strategy requires the formulation of a model that is consistent with these 

goals. Many models may be developed that achieve these goals with varying degrees 

of effectiveness. Some considerations in constructing an error flow model include the 

representation chosen for error sets, the amount of path analysis to be undertaken, 

any simplifying assumptions and their impact, how to handle cancellation, and the 

manner in which test results are interpreted. The next section describes a particular 

model for error flow testing called the threshold model.

5.2 The threshold model of error flow testing

The error flow testing procedure we will describe is based on the fundamental 

assumption that once the error degree has reached some threshold, it is very unlikely 

that the infection would be cancelled by the remaining computation. This is 

consistent with our experimental results involving tesis based on the average 

maximum error set size (ESI). We apply our error flow analysis procedure to each 

statement in the program by postulating an infection at that point. In the simple 

language used in our examples we only have two types of statements to consider : 

assignments and predicates. The predicates for if and while are treated similarly and 

we assume input/output statements are correct.

106



If the infection point is an assignment statement, we put the target variable 

in the error set and follow the data flow to all references, considering each dr pair 

in turn (Figure 2a). In the interest of preventing the overestimation of error sets, we 

will assume that any predicates lying on a path between a definition d and a 

reference r result in the correct branch being taken regardless of whether the 

predicate contains a fault or references infected variables. Furthermore, we will 

disregard the effect on an error set of any statements guarded by such predicates. We 

will, however, consider the impact on an error set of any assignment statement 

guaranteed to be executed between d and r (Figure 2b). These statements are 

(control) dominators of r in the subgraph with start node d and final node r. Ordering 

these statements by the dominance relation gives the control sequence in which we 

use the statements to produce successive error sets between d  and r. The resulting 

error set that precedes r is then modified by the action of r. If r is an assignment 

statement, we add its target variable to the error set and follow the data flow to all 

references to that variable, repeating the above procedure. If r is a predicate, we 

assume the correct branch is taken and terminate that particular chain of data flow.

If the infection point is a predicate statement, treating it the same as 

predicates in the above case would essentially ignore the statement, since all error 

sets would remain null. We therefore assume that the wrong branch is taken and add 

to the error set the target variable of every unguarded assignment statement in the 

scope of the predicate until we reach the threshold or leave the scope of the

107



predicate. For if-else statements this means both branches. As above, we choose to 

ignore nested predicates. If we arrive at the end of the predicate’s scope and the 

resulting error set has not reached the threshold, we handle each variable in the 

error set as an infected assignment and apply the previous procedure.

A trace of the above construction of error sets defines an error flow graph for 

an infection at a particular statement. This procedure is formally specified by the 

algorithms in Figure 2. Nodes in the error flow graph consist of a statement and its 

succeeding error set. The graph is essentially tree-structured with some arcs looping 

back when a previously encountered node is produced. Some arcs are labeled m to 

prohibit a path through node m which would redefine the variable defined by a 

particular dr pair. Terminal nodes either satisfy the error threshold or have no 

subsequent data flow. We use this graph to find a path pattern for each error set that 

satisfies the error threshold. A path pattern is a regular expression that matches one 

or more execution paths. We will augment the usual regular expression notation with 

the following :

a — > b means a path from a to b that does not include b

X

a — ► b means a path from a to b that does not include b or x



For example, the path pattern

10

3 --*■ 8  > ( 5 | 15 )
would match the execution paths 1 2 3 5 6 8 3 6 8 5  and 2 3 8 9 15

but not 2 3 6 8 10 11 15 or 2 3 8 10 5 8 9 5.

Identification of input data that will drive a particular path is undecidable in 

general. Path patterns are thus of limited help in identifying input test data. 

However, they could be used to determine how many patterns have been matched 

by execution of a particular set of input data, and this could be automated. Only 

output produced by executing the desired paths would be subjected to the expensive 

task of output verification.

There are some improvements that can be made in the algorithm in Figure 

2. It is possible to represent the CD flowgraph nodes as basic blocks rather than 

individual statements. This could avoid some of the time spent looking for control 

dominators and chasing arcs. Also, our algorithm considers each reference reached 

by data flow individually, when in fact one of them may dominate another. This 

results in producing overlapping path patterns at additional expense. We could also 

reduce the path patterns to a minimum form since they are regular expressions.

109



Figure 2.
In the following, ErrorSetj denotes the error set after the execution of stmtj. 
EFG is the error flow graph under construction. These algorithms assume that 
the CD flowgraph contains null-action end-of-predicate nodes.

2(a). Algorithm to propagate infection through assignment

procedure Propagate ( CDFlow, Current EFG node <c, ErrorSetCurrent> )

if c is an assignment v:=e then 
Refs := set of nodes in CDFlow reached by a data flow arc from c 
for each node n in Refs do

Create node New in EFG with an arc from Current 
Label the arc with m for any other node m that has a 

definition for v that reaches n 
ModifyES ( CDFlow, v, ErrorSetCurren„ n, ErrorSetNew )
New EFG node := <n, ErrorSetNew> 
if New EFG node has previously appeared then 

Redirect its arc to previously appearing node 
Remove new EFG node 

else if size ( ErrorSetNew ) < threshold then 
Propagate ( New EFG node )

else
null

2(bl. Algorithm to modify error set along a dr path

procedure ModifyES ( CDFlow, S, ESin, F, ESout)

DomList: = all assignment stmts (excluding S) that dominate F
in the control flow subgraph of CDFlow with start node S 
and final node F, ordered from most dominating to 
least dominating 

ESout := ESin
for successive elements v:=e of DomList do 

if e contains at least one variable in ESout then 
ESout: = ESout u [v]

else
ESout := ESout - [v] 

if F is an assignment v:=e then 
ESout: = ESout u [v]

110



2(c\ Algorithm to construct an error flow graph

procedure Errorflow (i)

Select stmtj (node i in the CD Flowgraph) as the infection point

if stmtj is an assignment v:=e then 
ErrorSetj := [v]
Root of EFG := < stmtj, ErrorSetj >
Propagate ( EFG ro o t)

else if stmtj is a predicate then 
stmte : = end-of-predicate node for stmtj

for each control arc leaving stmtj do
P : = subgraph of CDFlow defined by all control paths that follow 

this control arc from stmtj to stmte

for each node n in P that dominates stmte do 
if n is an assignment v:=e then 

ErrorSetj := ErrorSetj u [v] 
exit if size(ErrorSetj) > = threshold

exit if size(ErrorSetj) > = threshold

root of EFG := < stmtj, ErrorSetj > 
if size(ErrorSetj) < threshold then

for each v in ErrorSetj do 
Find node n such that n defines v and there exist data flow 

arcs from n that reach beyond the scope of stmtj 
A : = all assignment stmt nodes outside the scope of stmtj 

reached by the definition in n

for each a in A do 
Create node New in EFG with an arc from root of EFG 
ModifyES ( CDFlow, stmte, ErrorSetj, a, ErrorSetNew)
New EFG node := <a, ErrorSetNew> 
if size(ErrorSetNew) < threshold then 

Propagate ( New EFG node )

else
null

111



53  An example of threshold testing

The sorting program in Figure 3 is taken from [Las83]. The sorting algorithm 

is basically an ascending selection sort. The fault is a missing assignment to r3 at 

statement 7, which should reset r3 to point to the first element in the unsorted 

subarray. An error may occur if the inner while does not result in an assignment to 

r3, which happens if the first element of the unsorted subarray is already the 

smallest. The value of r3 is that from a previous iteration and causes the (unsaved) 

array element it references to be overwritten. Note that cancellation may occur in 

two ways. First, if the unsorted subarray is the entire array, and the first element is 

already smallest, then r3 has the proper value (0) due to the initialization in 

statement 2. Second, if the array elements are not unique, the error is cancelled if 

a[rl] = a[r3], since a[r3] is overwritten with the same value.

Figure 4 shows the CD flowgraph for the program. The program contains no 

output statement, so we assume that the sorted array is output prior to halt. An array 

variable presents a particular problem for data flow analysis. Each element may act 

like an individual variable in terms of definition or reference. However, since 

subscripts may not be known until run-time, we cannot statically identify the elements 

involved. For example, an assignment to A[j] may or may not cancel a previous 

infection of A[i] depending on whether or not i=j. We will assume that the entire 

array is infected if one element becomes infected, and that the infection cannot be

112



cancelled by assignment to an array element. Figure 5 shows the error flow graph for 

an infection of rO at statement 5 for an arbitrary threshold of 3 errors. The resulting 

path pattern tells us that we must avoid executing statement 10 before reaching 

statement 14. After that, any path will reveal the error. This is consistent with our 

intuition about the crucial way variable rO is used in the program. Note that 

cancellation could occur if we did go through statement 10 first since this assignment 

to rO would cancel the previous infection. This would require the predicate in 

statement 9 to take the correct branch even though it referenced an infected variable.

The actual fault in the program is a missing code fault, the missing assignment 

of r3 at statement 7. We first assume the presence of this statement as the infection 

point, and must compute the new data flow for this new statement. In this case, the 

arc in the CD flowgraph from 2 to 15 labeled r3 is deleted and replaced with an arc 

from 7 to 15 labeled r3. Notice that there is now no reference to the value of r3 

defined in statement 2, so statement 2 may be deleted (if included, it does no harm 

but is a dd anomaly). Figure 6 shows the resulting error flow graph and the path 

pattern generated. Inspection of the program will convince the reader that any path 

matching this path pattern will indeed reveal the error, except under the 

aforementioned cancellation circumstances.

Now consider a path along which the infection of r3 at statement 7 does not

113



reach the threshold (Figure 7). Since the infection is cancelled by a subsequent 

assignment before it can spread, this path will not reveal the error. This path does 

not appear in Figure 6 because our error flow graph construction algorithm 

specifically avoids this situation.

Figure 3. Sorting program

stmt #
1 input (n,a)
2 r3 := 0 a - array[0..n]
3 rl := 0 rO - hold smallest
4 while rl < n do element on this
5 rO := a[rl] iteration
6 r2 := rl + 1 rl - marks start of

*7 {r3 := rl) unsorted subarray
8 while r2 <= n do r2 - subscript of
9 if a[r2] < rO then successive el.in

10 r 0 : = a [ r2 ] unsorted subarray
11 r3 := r2 starting at rl+1

endif r3 - points to
12 r2 := r2 + 1 smallest element

endwhile found in unsorted
13 r2 := a[rl] subarray
14 a[rl] := rO r2 - reused as temp
15
16

a[r3] := r2 
rl := rl + 1

for swapping
endwhile
halt

114



Figure 4. Matrix representation of CD flowgraph for Sorting program.
Each entry (xy) represents a data flow arc from x  to y  for that variable. 
A control flow arc is indicated by an asterisk (*).

x 2 5 8 9 113 4 14 15 16 17

r3
rl rl rl

ro rO

ro rO10

r311

12

15
rl* rl rl rl rl rl16

17

115



Figure 5. Error flow graph for infection of rO at stmt 5

Path pattern : 5 - *° ■> 14---- » ( 10  > 14 J 13 )

116



Figure 6. Error flow graph for infection of r3 at stmt 7

©[r3]

[a,r3]

[a,r0,r3] [a,r0,r3] [a,r0,r3] [a,r0,r3]

Path pattern : 7 — -— > 15 -----> (5 j 9 j 10 j 13)

Figure 7. Path for infection at stmt 7 that does not reach threshold



5.4 Discussion of the threshold model

The threshold model has all of the advantages of error flow testing previously 

mentioned. Issues that need to be considered in further development of the model 

include :

Arbitrary error threshold

The choice of the error threshold is a very subjective one. Choosing an error 

threshold that is too low does not allow us to do enough analysis to find the most 

likely error-revealing paths. By setting a high error threshold, the error flow analysis 

takes longer and may result in finding no paths that reach the threshold for some 

statements. The set of variables in most programs is partitioned into disjoint sets of 

variables which influence each other. If one of these sets is small, an infection of 

one of the variables might never spread beyond the threshold. In this case, we choose 

the path(s) that contain an error set of the greatest error degree encountered.

Infeasible or infrequently executed path patterns

Since this method relies on static analysis, it may generate path patterns for 

infeasible or infrequently executed paths. Identifying infeasible paths through static 

analysis is undecidable, so this method suffers equally with other static methods. 

Lack of knowledge about execution frequencies of paths does mean testing time 

might be spent on infrequently executed paths, although some might argue that these

118



are the hiding places of the most insidious program bugs and that time testing them 

is well spent.

No quantitative measure o f confidence

Although we can say that we have tested for an infection of every statement 

in the program, and for each statement we tested all paths that exceeded a certain 

threshold, this does not lead us to a quantitative measure of confidence.

Overestimation o f some error sets

The algorithm used to construct error sets may overestimate the size of some 

error sets by including variables that are often coincidentally correct. When an 

overestimated error set exceeds the threshold, the path selected will be more likely 

than expected to produce correct output in the presence of a fault, thus we may 

misinterpret correct (error cancelled) output as an indication that the tested 

statement is correct when it is actually incorrect. We have tested predicate statements 

by assuming they always take the wrong branch. This is clearly not the case because 

of cancellation, but our representation of error sets does not let us record facts like 

"takes the wrong branch half the time".

Handles cancellation implicitly rather than explicitly

This model does not explicitly deal with cancellation problems, but rather 

relies on the "hope" that if enough different paths are executed enough times each

119



to show the correctness of a given statement, that an error, if present, would 

eventually slip through uncancelled. This is not an unreasonable approach for 

software that needs only be moderately reliable. However, for highly reliable software 

we would like to deal with the cancellation problem in a much stronger way.

Although the threshold model does not explicitly handle the issue of 

cancellation, we can envision other models that would. One model we are currently 

investigating is a probabilistic model of error flow testing that would allow us to 

make quantifiable statements about the probable correctness of a program. This 

model would represent error sets as fuzzy sets, where each element is associated with 

its probability of being a member of the set. Test paths would be chosen for those 

error sets with the highest overall probability of revealing an error.

120



6.0 Summary and future directions

We have introduced error flow analysis as a new method of program analysis 

that investigates the semantic behavior of a program at the level of data state 

transitions. Error flow analysis addresses some of the deficiencies of past 

syntactically-based methods of program analysis. In particular, error flow analysis 

distinguishes not only various program paths, but also properties of those paths as 

they relate to program failure. The phenomena of resistance and cancellation along 

paths and their relationship to the fault/failure model have been described and 

investigated as central issues in error flow analysis, although these phenomena have 

been mostly ignored by past coverage-oriented methods. We have described two 

types of error flow analysis : dynamic error flow analysis and static error flow 

analysis. Dynamic error flow analysis is used to analyze the execution behavior of a 

program that contains injected faults as compared to the execution behavior of a 

correct program using the same input. Static error flow analysis attempts to 

approximate the actual error flow behavior of a program through an analysis of its 

code.

A formal model of error flow in computer programs has been developed 

based on mathematical functions and the fault/failure model. This model views

121



program statements as functions that map a prior data state into a subsequent data 

state, and it is used to examine the conditions that lead to infection and propagation 

of data state errors. We have defined and discussed syntactic closeness and semantic 

closeness as a means of comparing a faulty program with a correct program, and 

introduced error sets for tracking their data state differences. We also discussed 

coincidental correctness in the context of functions and described the difficulty of 

determining this behavior for functions in composition due to a lack of knowledge 

about their domains.

Experiments in dynamic error flow analysis were performed on several 

programs using a system constructed for this purpose : the DEFA system. This 

prototype system, which analyzes programs written in a subset of Pascal, compares 

the execution traces of syntactically close correct and faulty programs over many 

inputs, accumulating statistics on error flow behavior as well as execution, infection, 

and failure rates. The preliminary experiments suggest one statistic, the average 

maximum error set size, as a likely candidate for selecting paths with high failure 

rates. The performance of test data selected on this basis was compared with the 

performance of test data selected by the all-paths and all-du-paths criteria, and found 

to be superior in revealing selected errors by requiring fewer tests than the other 

strategies.

Static error flow analysis is based on traditional flow graph-theoretic

122



techniques, such as data flow analysis, augmented with semantic analysis to the extent 

possible, and is appealing because it may significantly reduce the cost of testing. Like 

other static methods, it suffers from problems such as the determination of infeasible 

paths and the possibility of coincidental correctness. The extent to which coincidental 

correctness properties can be estimated by static methods is an open question, and 

we are continuing our research on this subject. We have suggested one possible static 

testing method, called the threshold model of testing, which is based on the average 

maximum error set size statistic of the dynamic experiment. This model, which 

attempts to identify a promising set of test paths in a program, constructs error sets 

on the basis of data flow and makes no explicit attempt to handle coincidental 

correctness. We plan to experiment with this model and compare its performance 

against existing structural coverage testing methods. We also plan to investigate other 

models that incorporate any coincidental correctness properties that can be 

determined through static or static/dynamic analysis. The investigation of static error 

flow analysis is just beginning, and more experience and experimentation are 

necessary to find ways to overcome its inherent problems.

Although our primary emphasis in developing error flow analysis has been on 

the development of testing techniques, error flow analysis has other potential 

applications. We have demonstrated its potential use as a method of comparing the 

performance of existing testing techniques. We have also demonstrated its use as an 

investigative tool in understanding the subtleties in existing programs by making small

123



changes to a program and observing the effect. Other potential applications include 

its use as a measure of program complexity based on error flow characteristics rather 

than traditional syntactic measures, and its potential use as a debugging tool.

This research has suggested a new technique in program analysis and testing, 

with many possible directions for future research. In addition to those mentioned 

above, one topic to be immediately addressed is the enhancement of the DEFA 

system. This system is a significant product of our research, and a fully functional 

version might be useful to other researchers. It would also allow us to investigate a 

wider variety of programs. More experiments of the type performed in our research 

are necessary to gain a deeper understanding of the behavior of programs and errors. 

We expect our experience with the DEFA system to suggest characteristics of error 

flow behavior that will serve as a basis for a family of error flow testing strategies.

124



APPENDIX

program DigitSeq; var
a, b, c : longint;
d
B
P
X
n
zL
w
i

longint; 
longint; 
longint; longint; 
longint; longint; 
longint; 
longint; 
longint;

{ current part of number
t

procedure next ( var p, x : longint ); 
begin
traceoff;if p ■ 0 then begin

x «« c; 
else if p s 

x t- b; else if p : x :■ a; 
traceon 

end;

p :■ p + 1 end
1 then beginp :« p + 1 end
2 then beginp p + 1 end;

( holda 24-digit integer } 
{ done flag } { flag : 1 - odd, 0 - even > s 0 - low, 1 - mid, 2 - high } 

holds current part of number } 
{ holds current digit } { length of seq. of zeroes } 

{ length of longest sequence } 
{ length of current sequence >

{ get next 8-digit portion }

procedure search ( var n, x, w, L, z 
begintraceoff;for i :“ 1 to 8 do 

beginn *■ x mod 10; 
x *» x div 10; if (n mod 2) ■ s then 
w «■ w + 1 else beginif w > L then L s- w; 

w »■ 0 
end;

if n > 0 then 
z z + 1 else 
z :*• 0

end;traceon
end;

procedure count ( var w, L : longint ); 
begin
traceoff;if (n mod 2) * s then 

w «■ w + 1 
else 
beginif w > L then L j* w; 

w »■ 0 
end; traceon 

end;

longint );

{ search current portion }

( start counting sequence }

{ new longest sequence }

{ length of sequence of zeroes }

{ start counting sequence }

{ new longest sequence }

1 2 5



procedure zero ( var z : longint ); 
begintraceoff;

if n * 0 then [ length of sequence of zeroes }
z :• z + 1 else z i“ 0; 

traceon 
end;

Version 1
begin { main }d :« 0; p :■ 0; w :■ 0; L := 0; z :■ 0; read (a); read (b); read (c);

if (c mod 2) » 0 then { determine even or odd }
s »■ 0 

else s i "  1 ;

while d <> 1 do begin
next (p, x);
search (n, x, w, L, z);
if p > 2 then { done }
d t- 1

end;
if (s - 0) and (w > L) and (n » 0) then { adjust for leading 0's }
w «■ w - z;if w > L then ( last sequence was longest }
L w; 

writeln (L) 
end.

Version 2
begin { main }d ;■ 0; p :» 0; w :■ 0; L :» 0; z s* 0; 

read (a); read (b); read (c);
if (c mod 2) » 0 then { determine even or odd }
s :« 0 

else s :» 1;
while d <> 1 do 
beginnext (p, x);for i :• 1 to 8 do { search current portion }

begin
n >■ x mod 10; x i“ x div 10;
count (w, L);
if n ■ 0 then { length of sequence of zeroes }
z s« z + 1 

else 
z 0

end;

1 2 6



if p > 2 then 
d 1end;

if (s * 0) and (w > L) and (n ■ 0) then w *■ w - z; if w > L then 
L s“ w; writeln (L) 

end.

[ done >

{ adjust for leading 0'a } 
{ last sequence was longest >

Version 3
begin { main }d !■ 0; p s" 0; w :•* 0; L := 0; z : = 

read (a); read (b); read (c);
if (c mod 2) ■ 0 then 
s *■ 0 else s s“ 1;

while d <> 1 do beginnext (p, x);
for i :» 1 to 8 do 
begin

n t« x mod 10; 
x t* x div 10;
if (n mod 2) a s then w :* w + 1 
else begin

if w > L then L :■ w; 
w t m 0 end;

zero (z); end;
if p > 2 then 
d s- 1end;

if (s “ 0) and (w > L) and (n =* 0) then w *■ w - z; 
if w > L then L i" w; 
writeln (L) 

end.

0;

{ determine even or odd }

( search current portion >

( start counting sequence }

{ new longest sequence }

{ done }

{ adjust for leading 0's } 
{ last sequence was longest }

Version 4
begin { main }
d »■ 0; p :“ 0; w :■ 0; L :■ 0; z :• 0; read (a); read (b); read (c);
if (c mod 2) » 0 then 

s 0 else 
s s» 1;

{ determine even or odd }

1 2 7



while d <> 1 do 
beginnext <p, x);

for i :» 1 to 8 do 
beginn x mod 10; 

x :■ x div 10;
count (w, L); zero (z) 

end;
if p > 2 then d :* 1

end;
if (s » 0) and (w > L) and (n » 0) then w w - z; 
if w > L then 
L s* w; 

writeln (L) end.

{ search current portion }

{ done }

{ adjust for leading 0's } 
{ last sequence was longest }

Version S
begin { main }d :* 0; p :“ 0; w :■ 0; L :« 0; z :«  

read (a); read (b); read (c);
if (c mod 2) * 0 then

0;

{ determine even or odd }8 *» 0
elses i» 1;
while d <> 1 do

begin
if p » 0 then beginx :» c; p :■ p + 1 end
else if p = 1 then begin

x b; p ;* p + 1 end
else if p =* 2 then beginx :■ a; p :* p + 1 end;
for i i* 1 to 8 do

{ get next 8-digit portion }

beginn ;* x mod 10; 
x ;■> x div 10;
count (w, L); zero (z) 

end;
if p > 2 then d s- 1

end;
if (s - 0) and (w > L) and (n - 0) then w *■ w - z; 
if w > L then 
L i m w; 

writeln (L) 
end.

{ search current portion }

{ done }

{ adjust for leading 0's ) 
{ last sequence was longest }

1 2 8



BIBLIOGRAPHY

[Cla89]

[DeM78]

[Dur84]

[Fos76]

[Goo75]

[Hec77]

[Hoa69]

[How85]

[How86]

[Hua75]

[Joh91]

[Kor87]

Lori Clarke, Andy Podgurski, Debra Richardson, and Steven Zeil, "A 
Formal Evaluation of Data Flow Path Selection Criteria", IEEE 
Transactions on Software Engineering (November 1989), pp. 1318-1332.

R. DeMillo, R. J. Lipton, and F. G. Sayward, "Hints on Test Data 
Selection: Help for the Practicing Programmer", Computer (April 
1978), pp. 34-41.

J. W. Duran and S. Ntafos, "An Evaluation of Random Testing", IEEE 
Transactions on Software Engineering (July 1984), pp. 179-183.

L.D. Fosdick and L.J. Osterweil, "Data Flow Analysis in Software 
Reliability", ACM Computing Surveys (September 1976), pp. 305-330.

John B. Goodenough and Susan Gerhart, "Toward a Theory of Test 
Data Selection", IEEE Transactions on Software Engineering (June 
1975), pp. 156-173.

Matthew S. Hecht, Flow Analysis o f Computer Programs, Elsevier 
North-Holland (1977).

C.A.R. Hoare, "An Axiomatic Basis for Computer Programming", 
Communications o f the ACM  (October 1969), pp. 576-585.

W. E. Howden, "The Theory and Practice of Functional Testing", IEEE 
Software (September 1985), pp. 6-18.

W. E. Howden, "A Functional Approach to Program Testing and 
Analysis", IEEE Transactions on Software Engineering (October 1986), 
pp. 997-1005.

J. C. Huang, "An Approach to Program Testing", ACM Computing 
Surveys (Sept. 1975), pp. 113-128.

Robert Johnson, Sharon Navard, James Davenport. Division of 
Statistics, Department of Mathematical Sciences, Virginia 
Commonwealth University. Personal communication.

Bogdan Korel, "The Program Dependence Graph in Static Program 
Testing", Information Processing Letters (January 1987), pp. 103-108.

129



[Las83]

[Mil74]

[Mil90]

[Mor81]

[Mor84]

[Mor87]

[Mor88]

[Mor90]

[Nta84]

[Off89]

[Pod89]

J. W. Laski and B. Korel, "A Data Flow Oriented Program Testing 
Strategy", IEEE Transactions on Software Engineering (May 1983), pp. 
347-354.

E. Miller, M. Paige, J. Benson, and W. Wisehart, "Structural 
Techniques of Program Validation", Digest o f Papers COMPCON 74 
(Spring 1974), pp. 161-164.

K. Miller, L. Morell, R. Noonan, S. Park, D. Nicol, B. Murrill, and J. 
Voas, "Estimating the Probability of Failure When Testing Reveals No 
Failures", IEEE Transactions on Software Engineering (to appear).

L. J. Morell and R. G. Hamlet, Error Propagation and Elimination in 
Computer Programs, University of Maryland TR-1065, Department of 
Computer Science (July, 1981).

L. J. Morell, A Theory o f Error-Based Testing, University of Maryland 
TR-1395, Department of Computer Science (August, 1984). PhD 
Thesis.

L. J. Morell, "A Model for Code-Based Testing Schemes", Proceedings 
o f the Fifth Annual Pacific Northwest Software Quality Conference, 
(October 1987), pp. 309-326.

L. J. Morell, "Theoretical Insights into Fault-Based Testing", 
Proceedings o f the Second Workshop on Software Testing Verification, 
and Analysis (TAV2) (July 19-21, 1988), pp. 45-62.

L. J. Morell, "A Theory of Fault-Based Testing", IEEE Transactions on 
Software Engineering (August 1990), pp. 844-857.

S. Ntafos, "On Required Element Testing", IEEE Transactions on 
Software Engineering (November 1984), pp. 795-803.

A  Jefferson Offutt, "The Coupling Effect: Fact or Fiction", Proceedings 
o f the Third Symposium on Software Testing Analysis, and Verification 
(TAV3) (Dec. 13-15, 1989), pp. 131-140.

A. Podgurski and L. A  Clarke, "The Implications of Program 
Dependences for Software Testing, Debugging, and Maintenance", 
Proceedings o f the Third Symposium on Software Testing Analysis, and 
Verification (TAV3) (Dec. 13-15, 1989), pp. 168-178.

130



[Pod90]

[Rap85]

[Voa90]

[Wey80]

[Wey84]

[Whi80]

[W0088]

[Zei88]

A. Podgurski and L. Clarke, "A Formal Model of Program 
Dependences and Its Implications for Software Testing, Debugging, 
and Maintenance", IEEE Transactions on Software Engineering 
(September 1990), pp. 965-979.

S. Rapps and E. Weyuker, "Selecting Software Test Data Using Data 
Flow Information", IEEE Transactions on Software Engineering (April 
1985), pp. 367-375.

J. Voas, A Dynamic Failure Model for Performing Propagation and 
Infection Analysis on Computer Programs, College of William and Mary, 
Department of Computer Science (May 1990). PhD Thesis.

Elaine J. Weyuker and Thomas J. Ostrand, "Theories of Program 
Testing and the Application of Revealing Subdomains", IEEE 
Transactions on Software Engineering (May 1980), pp. 236-246.

E. J. Weyuker, "The Complexity of Data Flow Criteria for Test Data 
Selection", Information Processing Letters (August 1984), pp. 103-109.

L. J. White and E. I Cohen, "A Domain Strategy for Computer 
Program Testing", IEEE Transactions on Software Engineering (May 
1980), pp. 247-257.

M. R. Woodward and K. Halewood, "From Weak to Strong, Dead or 
Alive? An Analysis of Some Mutation Testing Issues", Second 
Workshop on Software Testing Verification, and Analysis (TAV2) (July 
1988), Banff, Alberta, Canada, pp. 152-158.

Steven Zeil, "Selectivity of Data-Flow and Control-Flow Path Criteria", 
Second Workshop on Software Testing Verification, and Analysis (TAV2) 
(July 1988), Banff, Alberta, Canada, pp. 216-222.

131



VITA

Branson (Buz! Wavne Murrill

Bom in Richmond, Virginia, February 20,1952. Graduated from the College 

of William and Mary in June, 1974 with a B.S. in Mathematics/Computer Science. 

Earned a Master of Computer Science degree from the University of Virginia in 

December, 1977.

Dr. Murrill has held several positions in industry and government as a 

computer professional, and is currently an Assistant Professor of Computer Science 

in the Department of Mathematical Sciences at Virginia Commonwealth University, 

where he has worked for the past 7 years.

He lives in Mechanicsville, Va. with his wife, Linda, and their daughters 

Jenny, Kathy, and Sara.

132


	Error flow in computer programs
	Recommended Citation

	00001.tif

