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ABSTRACT

A sample of 87 events of the GIM suppressed decay Kl->|x+|J.“ were 
observed in an experiment performed in 1988 at the Brookhaven 
N ational Laboratory. Concurrently, 8,887 examples of the CP- 
violating decay K l—»7e+jit were also seen. The apparatus consisted of a 
double-magnet spectrometer as well as electromagnetic and muon 
detector systems. From the previously measured branching ratio for 
K l —> t z + k ~  and the different instrumental acceptances of the detector 
for the two decays, the data sample was normalized to the effective 
number of K l decays observed. A value for the ratio (Kl->|x+P- )/
(K l-^  anything) of (5.7+/-0.6(stat.)+/-0.3(syst.))xl0 ‘ 9  was obtained.
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CHAPTER I 

INTRODUCTION

During the 1960's and 1970's, three landmark discoveries were 

made at the Alternating Gradient Synchrotron of the Brookhaven 

National Laboratory. In the first experiment the existence of distinct 

neutrino species was dem onstrated . 1 This helped establish the 

concept of multiple generations of fermions. The second of these 

e x p e rim e n ts 2  involved the observation of the rare decay K l—»7c+7f .  

This provided the first evidence that nature did not respect the 

combined symmetries of charge-conjugation and space-inversion 

(i.e. CP). The last of the three experiments3  found the charmed quark 

in 1974. This discovery validated the explanation of Glashow, 

Iliopoulos, and M aiani (GIM ) 4  for the absence of strangeness- 

changing neutral currents and completed the second generation of 

fermion doublets.

Based on the empirical knowledge gained in these and other 

experiments, the SU(3)c x SU(2)l x  U(1)y gauge theory of nature was 

f o r m e d . 5  This model has been sufficiently successful in its 

representation of experimental data, that it is now generally known 

as the Standard Model. Although able to accommodate all the 

currently available experimental inform ation, the Standard Model 

does not furnish adequate explanations of several features, the most 

glaring of which is the clear structure in the fermion sector. Three 

generations of fermions are known to exist with the last two being
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sim ilar to the firs t . 6  These three generations differ only in the 

masses of the fermions. No predictive account of the origin of mass 

exists within the Standard Model. While CP-violation can occur in the 

six-quark theory, it seems to "just happen." We don't know why the 

probability of a long-lived neutral kaon decaying into a pair of pions, 

and thus violating CP-invariance, is 0.002 instead of the infinity of 

other possible values.

In addition to the above short-comings, there are many 

param eters of the model which have not been measured very 

precisely, if at all. There is strong evidence for the existence of three 

com plete generations, but the top quark, which is the heaviest 

member of the third generation, has not yet been seen. The mass and 

couplings of the top quark are therefore unknown. Evidence7, arising 

from preliminary width measurements of the Z°, suggests that there 

are only three fermion generations, but a fourth generation could 

still exist. In the Standard Model, particle masses result through 

interactions with the Higgs field. This necessitates the existence of at 

least one physical Higgs boson. Whether there are more than one 

Higgs particle and what their masses and couplings are remain 

unknown. Gravity has not been incorporated into the Standard Model 

and quantum chromodynamics has not been unified with the 

electroweak interactions. Many new theories have been proposed in 

order to resolve these problems.

To discern which of these new models most correctly describes 

the universe, requires more empirical inform ation. The seven- 

hundred-and-ninety-first experiment accepted to be performed at 

the Alternating Gradient Synchrotron (i.e. E791) addresses several of
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these questions and helps to differentiate among the various 

theoretical answers . 8  The primary goal of the experiment is to search 

for the decay KL-»pe at a sensitivity as great as possible; the original 

goal was a sensitivity of 10-12. This decay violates the conservation 

of separate lepton generation number and is forbidden in the 

Standard M odel. Since transform ations between the d istinct 

generations of leptons occur in such a reaction, the experiment is a 

sensitive probe of new interactions and can help to elucidate the 

reason for multiple fermion generations and their mass structure . 9

There are three secondary objectives of E791: to measure the 

branching fraction of Kl -»M.+M.’, to search for KL-»e+e_, and to search 

for KL->rc°e+e \  A measurement of the longitudinal polarization of the 

positive muons in decay at a sensitivity of 15% was also an

original goal; if seen, this would indicate a new source of CP-violation. 

The observation of KL->rc°e+e- at a rate above that expected in the 

Standard Model would be evidence of direct CP-violation through a 

mechanism other than K l-K s mixing . 1 0

Measuring the branching fraction for Kl ->|i +(i _ is the topic of this 

dissertation. During the 1960’s the low upper limits on the branching 

fraction of this decay provided part of the evidence motivating 

developm ent of the GIM mechanism for the suppression of 

strangeness-changing neutral current processes. Since the decay is 

only mediated by higher-order electroweak mechanisms, this allows 

a sensitive test of the predictive accuracy of the Standard Model. One 

can use the value of this decay rate to place limits on the masses and 

mixing angles associated with undiscovered heavy quarks. Bounds 

can also be derived on the masses and couplings of particles which
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mediate new interactions. The decay Kl -> e+e-involves the same 

processes as In addition to the GIM mechanism the decay

into a pair of electrons is also further suppressed by helicity 

constraints. This leads to an expected branching fraction of 2.3x10 - 1 2  

in the Standard Model. New physics might manifest itself through a 

greater branching fraction for this process.

Five experiments11, in addition to E791, have previously observed 

the decay These results are listed in Table I.

Table I 

Past results for B(Kl-»|i +|J.-)

Year Authors Machine #Events B(KL->p+|a-)
1973 Carithers et al. AGS 6 1 2  x 1 0 - 9

1976 Fukushima et al. AGS 3 8 . 8  x 1 0 ' 9

1979 Shochet et al. ZGS 16 8 . 1  x 1 0 - 9

1988 Greenlee et al. AGS 2 9.2 x lO* 9

1988 Inagaki et al. KEK 7 14 x 10- 9

1988 Cousins et al.(791) AGS 2 1 0  x 1 0 - 9

In 1971 Clark et al . 1 2  set an upper limit on this reaction of 1.8 x 10*9. 

Much theoretical interest was generated by this since it appeared to 

violate the lower bound determined from the Standard Model. 

Carithers et al. later observed the decay at the 10 ' 8  level, thus 

resolving the contradiction. At the start of the present experiment 

only 25 examples of K l-» h +p -  had been observed and the branching 

fraction was known only to within 21%. Preliminary results, listed as 

1988 in Table I, from this and two other experiments provided little 

improvement in this situation.
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To achieve the above objectives, a neutral beamline and a 

detector system were constructed at the Brookhaven AGS. A high 

intensity beam of 24.1 GeV/c protons from the AGS were directed 

onto a copper target. Decay products, from kaons which decayed in 

an evacuated volume downstream of the target, were examined. The 

momentum of charged daughter particles was measured with a pair 

of magnets and a set of precision drift chambers. Muons and 

electrons were separately identified by two distinct sets of detectors 

for each species. Determining a track's momentum and particle type 

by two independent methods was used to isolate rare kaon decay 

channels from the background resulting from the high intensity 

beam .

The body of this paper is organized into six chapters. Why the 

particular decay KL-»|i.+p.- is of scientific interest is examined in the 

next chapter. The third chapter details the beamline and detectors. 

The trigger and data acquisition systems are described in Chapter IV. 

The data analysis technique is covered in Chapter V. In the last 

chapter the results of the experiment are discussed. A compendium 

of the decay modes of the long-lived neutral kaon is provided in 

Appendix A . 1 3
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CHAPTER II 

THEORETICAL CONSIDERATIONS

II. 1 GIM  M echanism

As noted in the introduction, one of the puzzles confronting 

physicists during the 1960's was the absence of strangeness- 

changing neutral currents. If a neutral gauge boson, with fermion- 

couplings similar to those of the charged gauge bosons, exists, the 

decay Kl-» p.+|I" should occur as a first order weak process, as shown 

in F ig .la . One would expect to proceed at a rate similar to

that of K+-»p+Vn. The latter involves the exchange of a W-boson, 

depicted in F ig .lc , in place of a Z°. At the time, experiments had 

placed an upper limit on the ratio of r(KL-»|J.+|i“) / r (K +-» |iv )< 1 0 '5. No 

other neutral current reactions had then been observed. However, 

the Weinberg-Salam electroweak model, along with other models of 

the weak interactions, required the existence of neutral gauge 

bosons. For these models to remain viable, some mechanism for 

suppressing strangeness-changing neutral current processes had to 

be found.

In 1970 Glashow, Iliopoulos, and Maiani (GIM) proposed such a 

m e c h a n is m 4. In the 1960's, a single quark doublet and a pair of 

lepton doublets were known:
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f “ \ rv-\ r'lvdcos 6e + s sin 0e/  \ e  /  ) (2.1)

The GIM paper suggested incorporating a second doublet of quarks 

(  C  1\ s c o s 8 c -  d sin OJ  ^  2 )

This second quark doublet contained a new flavor of quark, the 

charmed quark. A second diagram, Fig.lb, involving exchange of a Z°, 

m ust now be included in the calculation of the Kp.^ rate. The 

contribution, to the ZO exchange decay amplitude, of this second 

doublet exactly cancels the contribution of the original doublet. 1 4  

However, other processes can mediate the decay Kl*-»P+}J.‘.

The box diagram in Fig. 2a involves the exchange of a pair of W- 

bosons. This is a second order weak process. All of the quarks, with a 

charge of (2/3 )e, can be involved in the interm ediate states 

contributing to this process. If they exist, this includes the top quark 

as well as a possible fourth generation quark with a weak isospin 

projection of + 1 /2 . For now we will only consider diagrams 

containing the up and charm quarks . 1 5  Since this is a low energy 

reaction, the transferred momentum is small compared to the W- 

mass; and so the boson propagator can be approximated by 1/Mw2. 

In the limit M w->°°» the amplitude, to order (mf2 /M w 4), for the 

diagram in Fig. 2a is

A = g / * f d D£
cos 0C sin 6C cos 8C sin 6e

[ ( £ -  p,'+ p ) 2-  mu2 ( i - P j '  + p ,)2-  m 2 * V j
(2.3)
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where gw is the weak coupling constant, 0 C is the Cabibbo angle, mf is 

the mass of the exchanged quark, and F is a function, depending on k, 

P i', and p 2 , which represents the weak current-current operator. The 

sin 0 ccos 6 c factor accounts for the weak mass mixing and leads to the 

up and charm quarks coupling to the strange quark with opposite 

strength. If the up and charm quarks possessed the same mass, their 

propagators would be equal and the amplitude would vanish. Taking 

m u --»0, Eq. (2.3) can be rewritten as

2

A - g wA * cos 0csin0f  --------   , * f  ■■ F 1

(2.4)

The integral in Eq. (2.4) contains a logarithmic singularity which is 

cancelled by contributions from other diagram s. W ith these 

approximations the rates for the diagrams in Fig. 3 are proportional 

to mc4. Therefore, to the extent mc differs from mu, the GIM 

cancellation is inexact for second order weak processes. Using the 

limit on the branching fraction of K l-»H +p-, together with constraints 

from Kl-*YY and the K s -K l mass difference, Gaillard and Lee1 5  

predicted the mass of the charm quark to be 1.5 GeV/c2. This 

prediction was made before the experimental observation of the ¥  

meson and compares well with the measured mass.
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II.2 U nitaritv L im it

As we have shown, the GIM mechanism suppresses or eliminates 

the contribution of diagrams involving only first or second order 

weak interactions to the rate. This allows processes

containing both first order weak and second order electromagnetic 

couplings to be the prevalent terms in the decay amplitude.

Figure 3a pictures such a process: the two-photon intermediate state. 

One can estimate the contribution of this diagram to the K l-» p +|1 ‘ rate 

by considering the decay Kl-»YY- This reaction has been observed in 

many ex p erim en ts 1 3  and found to have a branching fraction of 

5 .7 0 + /-0 .2 3 x l0 '4. Taking the two additional electromagnetic vertices 

into account, leads one to expect KHM. to proceed at a rate about a 

factor of a 2  slower than Kl->YY-

With certain assumptions1 6  it is possible to set a lower limit on 

B(Kl->M-+M-')/B(Kl-»yy)* Two of these postulates, CPT-invariance and 

unitarity of the scattering matrix, are quite well established and 

unlikely to be false. Use is also made of CP invariance, even though 

this symmetry is known to be violated at a low level. The absorptive 

part of the amplitude is assumed to be mostly due to the

two-photon intermediate process. The Kl -»yY amplitude is taken to be 

real. These la s t two statem ents are thought to be good 

approxim ations.

Employing these five assumptions, Martin, Rafael, and Smith1 7  

arrived at the following inequality for the decay rate
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(4*1i
r ( « 2 ->»U) „  2 '

8  M k  M k  a r r

1/2

(2.5)

where p(i= (l-4n iji 2 /MK2) 1̂ 2, T2  is the rate for K2 -* all states except yy, 

CT2  is the total cross section for (|i+|i ')  in the iSo state annihilating into 

all states except yy at a center of mass energy of 497.7 MeV/c2, and 

Oyy is the cross section for yy-^ all states with J=0 and odd parity. The 

unitarity bound is usually obtained by neglecting the pair of terms 

containing Oyy and 0 2  and dividing by T(KL->yy), yielding

Evaluating this expression for R, one finds that the decay rate 

should be at least 1 .2 x 1 0 * 5 times the Kn  decay rate.

Several studies have been done on ways in which this limit could 

be modified. Martin et al . 1 7  estimate that the term containing C y y  in 

Eq. (2.5) could lower the bound by 20%, to 0.96x10*5 relative to Kyy. 

R adiative co rrections 1 8  may increase R by as much as 17%. It is 

calculated that other intermediate states, such as 3rc0, t c +j e -t e 0, 2icy, and

(2.6)
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3 Tty, contribute between 10-4 and 10-5 iess than the yy intermediate 

s ta te .19 CP violation can lead to interference effects in the absorptive 

portions of the and KYy am plitudes. H ow ever, m odels

incorporating CP violation are limited by experimental restrictions on 

the decays Ks-»yy and K s-»p+p-, as well as by other observations.16

Multiplying the branching fraction for KL-»yy by R, suggests that 

the process Kl ->p.+jx- should have a branching fraction greater than 

6 .8 4 + /-0 .2 8 x l0 ’9. It should be kept in mind that the measured value 

of the Kyy branching fraction has increased by 16% during the last 

four years.

One would naively expect KL-»yy also to be GIM suppressed in the 

same manner as the box diagram. However, the structure of the two 

diagrams is different. This difference allows low momentum one- 

particle intermediate resonances to dominate the amplitude. Ma 

and Pramudita2 0  have calculated F ( K l —>yy) using a phenomenological 

model. They included the contributions from the 7c ° ,r |,  and tj ' 

intermediate states, as in Fig. 3b. Their result is 20% lower than the 

observed rate.

The process K L-»e+e- can proceed via the same electroweak 

interactions as Kl-»|J.+|i-. The unitarity limit can then be used to set a 

lower bound for the branching fraction of Kee decays. Since the V-A 

theory only couples to left-handed leptons and right-handed anti- 

leptons, both the and Kee decays are helicity suppressed . 2 1  This 

follows because, to respect CP, the lepton pair must be in a final 

state but, due to the V-A nature of the interaction, the leptons will 

tend to have their spins aligned. Both reactions are therefore 

helicity-suppressed by a factor of (1-v/c). Combining the relative
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helicity-suppression factor and the unitarity limit for decays

leads to a lower bound of about 2.3x1 O' 1 2  for the branching fraction 

for KL-»e+e-. Observation of Kee decays, at a rate significantly higher 

than helicity-suppression of the measured K l- » h +P." rate predicts, 

would indicate the presence of interactions outside of the Standard 

Model.
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II.3 W hat Can W e Learn?

By comparing the experimentally observed decay rate for 

Kl->M.+11- with the rate predicted by the unitarity limit, bounds can be 

placed on the partial decay rates due to other processes. In this way 

knowledge regarding higher order electroweak modes as well as 

more exotic mechanisms can be gained from examining the decay 

From unitarity we know that

r0„ , ( * « ) = ru * , d -  r« ,( *„2)
(2.7)

If the contribution from Kl~»yY dominates the absorptive decay rate, 

then the decay rate due to any other process must be of the order of 

rDispCK^). This assumes there are no fortuitous cancellations among 

terms in the dispersive portion of the scattering matrix.

Processes proportional to G f 2  are probably dominated by 

contributions involving the top quark. Three diagrams containing 

second-order weak interactions are given in  Fig. 2. One can derive 

bounds on Vdt, Vst, and mt from the dispersive part of the decay 

rate. The amplitudes for all three processes are similar to Eq. (2.4). 

Calculations show that the short-distance QCD corrections to the free 

quark amplitudes are negligible . 2 2  Nasrallah and Schilcher2 3  find that 

the long-distance QCD effects generate corrections of the same size as 

the terms proportional to the square of the mass of the exchanged 

quarks. Table II shows the dependence of VdtVst on the mass of the 

top quark. This includes the contributions from all the diagrams in 

Fig. 2.
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Table II

KM-matrix mixing elements as a function of the top quark mass

Mass of top (GeV/c2) Real(Vts*Vtd)
25.6 0 .0 1 4
36.2 0 . 0 2 1

44.4 0 .0 3 4
51.2 0 .0 5 2
57.3 0 . 1 0

62.7 0 .89
67.8 0 . 1 1

Assuming a top quark mass o f 60 GeV/c2  and comparing the decay 

K l-» |J.+H" to K+->|i+v^, Inami and Lim2 4  find the magnitudes of S2  and 

S3  to vary as in Fig. 4. They used the following definitions:

^= sign (t2 t3 C5 C r 1), ti=tan0i, Si=sin0j, ci=cos0i, where 0i are the three

Kobayashi-M askawa mixing angles and 5 is the phase. The same

authors also use the bound on the dispersive part of the K l-» |i+|1 ‘ ra te  

to estimate the branching fraction for the decay K+->tc+vv. The ratio of 

the branching fractions for the two decays is shown in Fig. 5 as a 

function of the top quark mass. Shrock and Voloshin2 5  arrive at the 

in eq u ality

k (  -  V a c s )  m c 2 +  s i (  -  Va c s )  < 5 7  G e V / t *

(2 .8)

This inequality leads to an upper lim it on IS2 I as a function of IS3 I 

very similar to that obtained by Inami and Lim.

Alternatively, bounds can be placed on the masses of charge 

(+2/3)e heavy quarks using the available limits on the mixing angles.
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B u ra s 2 6  considers the K l- K j  mass difference and the branching 

fraction of KL-»|X+p .'to  estimate an upper bound on the top quark 

mass. He calculates the value of the matrix element <K°I[Yu(1 -Y5 )]2 IK°> 

in various models: MIT bag model, QCD, and the free quark 

approximation. The top quark mass is thus estimated to lie within 

the range of 30 to 50 GeV/c2. This would seem to contradict recent 

preliminary results of the CDF experiment27, which indicate a lower 

bound of 75 GeV/c2. Presently, there is evidence for three 

generations of fermion doublets. If a fourth generation exists, its 

quarks would likely be quite massive. The decay rate of KL-»n+p.-is 

sensitive to the mixing angles and masses of a fourth generation2 4  in 

an analogous manner to those of the third generation. Involving a 

charm quark instead of a strange quark, the decay rate of D °-» |i+p.- is 

highly sensitive to the presence of a fourth quark doublet. Babu et 

a l . 2 8  estimate the branching fraction of D °->p+(i‘ to be 10'16 and 10-9 

with three and four generations, respectively. Although it provides 

an opportunity to make a definitive test for a fourth generation, the 

observation of D ^  decays is considerably more challenging than 

observation of K^p. decays. A precision measurement of the branching 

fraction for K l-» P +P" provides a test of higher-order electroweak 

processes and helps to constrain some parameters of the Standard 

Model.

In attempts to explain some of the arbitrary features of the 

Standard Model, new interactions, involving the exchange of exotic 

particles, have been proposed. The masses of some of these new 

particles can be limited by the branching fraction of the decay 

Several of these new models are reviewed in an article by
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S hanker . 2 9  The simplest model reviewed is the Standard Model with 

two Higgs doublets, instead of one . 3 0  This results in five physical 

Higgs states. The fermions acquire mass from the vacuum 

expectation values of the Higgs fields. In this model the Higgs 

particles are allowed to change quark flavor. Assuming the Higgs- 

fermion coupling is proportional to the average of the fermion 

masses of a given type of fermion (i.e. mb and mx), Shanker derives 

the following relationship

If the Higgs contribution to the decay rate does not exceed the 

dispersive part, the mass of the Higgs particles must exceed 6.1 

T e V /c 2. Shanker next considers an extended technicolor theory. In 

the model considered , 3 1  pseudoscalar leptoquarks can mediate 

flavor-changing processes. These leptoquarks are composite particles 

consisting of a technifermion-antitechnifermion pair. Since these 

interactions must occur between quarks and leptons, the rates of 

reactions involving only quarks or leptons are not affected by this 

theory. Limiting the rate of the pseudoscalar Ieptoquark process via 

the dispersive part of the K l-> p +P" rate leads to a lower bound of 4.5 

T e v /c 2  on the masses of the leptoquarks. In a similar type of 

theory , 3 2  one involving vector bosons which mediate flavor changing 

reactions such as proton decay, Shanker uses the branching ratio

to limit the masses of such vector leptoquarks to greater than 62 

T eV /c2. Thus, in conjunction with other observations, Kl-» p +jj.- can
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restrict parameters in a variety of theoretical models . 3 3  Other 

measurements, for instance Ki^M -e and nucleon decay, often place 

more stringent limits on these and other exotic new theories. 

Nevertheless, the precise measurement of this branching fraction 

furnishes extremely useful information.
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II.4 Muon Polarization in Kl-»P.+JI'

In addition to the branching fraction of the decay Kl->M.+P.', one 

can also measure the longitudinal polarization of the resulting 

positive muon, which offers a probe of new physics . 3 4  This involves 

determining the component of the muon's spin in the direction of the 

muon's momentum. Due to the V-A nature of the weak interaction, 

the positron, produced in the reaction p +-» e +veVn, is predominantly 

emitted parallel to the muon's spin vector . 3 5  By recording the 

directions of emission of the decay positrons, one can determine the 

polarization of the parent muon sample. The longitudinal polarization 

is defined as:

j . _
1 l  M +  N

L R (2 . 10)

where N l and N r are the observed number of left-handed and right-

handed muons, respectively. The muon pair resulting from the decay

can be produced in two possible states: the CP-conserving !So state

and the P- and CP-violating 3Po state. Parity is violated, if both the

muons from kaon decay preferentially have their spins aligned with

their momentum. An observation of parity violation in this decay

would imply that the muon pair was created in the CP-violating 3Po

state .

Since the K l state contains a small component of the CP-even Kj 

state, one would expect some polarization of muons in Kl->M-+p." decay. 

H erczeg 3 6  obtains a value for the polarization due to this mechanism 

of about 0.001. Therefore, the Standard Model of electroweak
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interactions predicts a small, but nonzero polarization. Clearly, the 

detection of polarization significantly greater than 0 . 0 0 1  would 

evince the existence of a new interaction. Following Herczeg, the 

effective Hamiltonian for the K2  component of K l decaying into a pair 

of muons can be written as:

M ( K 2^  f t /r) = af i  (p-)y5v (p+) + ib2u (p_)v( p+) (2 11)

where a2  corresponds to the CP-conserving mode and b2  represents 

the CP-violating mode. From this one can derive the following 

relation  between the decay am plitudes and the longitudinal 

polarization:

where r=(l-4m Ix2 /mK2) 1̂ 2. When CP-conserving processes dominate, 

this equation can be approximated by PL~b2 /a 2 . A measurement of 

polarization at the 1 % level would indicate the presence of a 

mechanism outside of the Standard Model contributing a partial 

decay rate about 1 0 4  times smaller than that due to electroweak 

processes. Given the theoretical uncertainty in the calculation of the 

K l- » P +M-' branching fraction, a polarization measurement is a more 

sensitive probe of new phenomena than a determination of the 

branching fraction.

The value of b2  has been calculated in several models containing 

CP-violating mechanisms. Within an extension of the Standard Model, 

with four fermion generations, the exchange of neutral scalar Higgs 

bosons, as depicted in Fig. 6 a, can induce a nonzero polarization. For a

P -
(2 . 12)
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Higg's mass below 11 GeV, Botella and Lim3 7  have calculated a muon 

polarization as high as 0.96. In left-right-sym m etric models 

incorporating processes such as the one shown in Fig. 6 c, a muon 

polarization a factor of ten above that expected from the K l-K s mass 

m ix in g 3 8 *3 9  could result. In a supersymmetric extension of the 

Standard M odel, Kurim oto 4 0  estimates that gauge interactions 

involving gauge fermions, Higgs bosons, squarks, and sleptons, such 

as the process represented in Fig. 6 b, result in muon polarizations no 

greater than 10-3. E 8  x E 8  superstring models are expected to 

generate neglig ib le muon po larization . 4 1  If CP is violated by 

leptoquark-fermion interactions as diagrammed in Fig. 6 d, a muon 

polarization as great as unity might occur. 4 2  A measurement of the 

longitudinal polarization in the decay KL->ji+|a" would help to restrict 

the present range of theories which incorporate CP-violation.
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CHAPTER m  

BEAMLINE AND DETECTORS

Common to all the physically interesting decay modes searched 

for in this experiment (i.e. K L -*p .e , K l - » | i +|i - ,  K L -» e +e - , K l —»Jt°e+e-) is 

the presence of two charged daughter particles. Additionally, we 

need to observe the decay K l - » j c  + j i-  in order to ascertain the 

sensitivity of our search. With the exception of KL-»Jc°e+e-, we are 

interested in two-body decays. One hundred million tim es more 

frequent than the only observed rare two-body mode (i.e. K l —» |i+|X') 

are the three-body decays (see Appendix A), which also generally 

contain two charged tracks. The goal of this experiment is to conduct 

as sensitive a search as possible for the rare or forbidden decay 

modes. This goal dictates recording as many kaon decays as possible, 

which leads to the use of a high intensity proton beam. With this 

high intensity beam, backgrounds from other reactions and the 

prim ary beam dum p are a potential lim iting factor. Accurate 

determination of the momentum vectors of the observed charged 

tracks is one method of separating the two-body decays from the 

three-body decays and other backgrounds. A second method is based 

upon establishing the types of the particles observed. To prevent the 

data acquisition system from being overwhelmed by the number of 

tracks traversing the detectors, a multi-level trigger is implemented.

This experiment is performed in the B5 line of the Brookhaven 

National Laboratory's Alternating Gradient Synchrotron (AGS). A plan
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view of the experiment is depicted in Figure 7. The design and 

construction of the proton and neutral beamlines are crucial to the 

success of the experiment. Protons with a momentum of 24 GeV/c 

are continuously extracted from the AGS main ring over a period of

1.4 seconds. It takes an additional 1.8 seconds to refill the AGS main 

ring with protons, making the complete cycle time 3.2 seconds. This 

is known as the slow-extraction mode of AGS operation. The slow- 

extraction mode provides a high duty cycle and minimizes the 

instantaneous intensity.

Protons from the AGS impinge on the B5 production target at an 

angle of 2.75° from the horizontal as shown in Fig. 8 . The copper 

target, similarly tilted, has dimensions of 0.318 cm x 0.318 cm x 20.3 

cm. An assortment of baryons, mesons, and photons is created as 

protons in the beam interact with the target nuclei. Immediately 

downstream of the target is a sweeping dipole magnet, which 

deflects positively charged particles downward. Located underneath 

the beam is a recessed beam dump into which most of the remaining 

beam protons and like charged secondaries are bent. A set of lead 

foils is positioned within the first sweeping magnet . The purpose of 

these foils is to convert high energy photons in the neutral beam. The 

resulting electrons and positrons can then be removed by the 

sweeping dipoles.

Rectangular collimators, located upstream of the second sweeping 

magnet, restrict the paths of particles in the neutral beam. Relative 

to the target, the collimated neutral beam illuminates, at full-width- 

at-half maximum, an x by y solid angle of 4 milliradians by 15 

milliradians. After passing through the second sweeping magnet,
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which sweeps away any charged particles produced in the

collimators and lead foils, the neutral beam enters a 8 . 0  meter long 

vacuum region. Only events with a reconstructed vertex located

within this vacuum region are accepted as possible kaon decays. The

downstream end of the vacuum region is sealed with a thin endcap

containing a Mylar window for the neutral beam and separate 

rectangular windows for the kaon decay products on either side of 

the neutral beam. These thin windows minimize multiple scattering 

and hadronic interactions of particles crossing through them.

Completely encapsulating the proton beam dump, sweeping 

magnets, and decay region, is material selected to absorb extraneous 

particles. These unwanted particles originate in the proton beam 

dump and B5 target. Abutting the neutral beam are plates of iron, 

lead, and assorted heavy metals to attenuate charged particles, 

photons, and relativistic hadrons. About the metal shielding are 

arranged blocks of hydrogen-rich concrete and cans of Borax. These 

compounds are effective at moderating and capturing nonrelativistic 

neutrons. Without this extensive and carefully selected shielding, our 

detectors might be unable to distinguish kaon decay products against 

an overwhelming background.

In order to measure a track's momentum, the deflection of the 

track in a magnetic field is measured. To reduce the uncertainty 

associated with the momentum measurement, the trajectory of a 

track is observed in two independent magnets. The upstream magnet 

has a gap with x, y, and z dimensions of 122 cm x 94 cm x 122 cm. 

The gap of the second magnet measures 244 cm x 112 cm x 102 cm. 

As an aid to the pattern recognition and triggering, the magnets are
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designed to impart transverse momentum kicks of equal magnitude, 

but opposite in direction. The second kick, therefore, restores the 

track to its original direction. Each magnet bestows a momentum kick 

equal to approximately 300 MeV/c to particles traversing its volume. 

The field was measured with Hall probes in and about the two 

magnets in a three-dimensional 5 cm grid. Both magnets generate 

peak fields of about 0.7 Tesla. Permanent Hall probes, positioned 

within each magnet, continuously monitor the fields throughout the 

data-taking period.

Precision drift chambers (e.g. DC1 through DC5) record the 

position of tracks upstream, between, and downstream of the two 

spectrometer magnets. The kinematics of an event are reconstructed 

based on information from the drift chambers. Uncertainty in the 

momentum measurement arises from four main sources: the intrinsic 

resolution of the drift chambers, knowledge of the positions of the 

chambers, multiple scattering, and the magnetic field map. Multiple 

scattering, as well as hadronic interactions, are reduced by filling the 

volume about all the detectors with helium. The initial trigger uses 

information from a set of scintillation hodoscopes (e.g. TSC1 and 

TSC2) downstream of the drift chambers. Together with the 

upstream pair of drift-chamber modules, the scintillation hodoscopes 

indicate the presence of a charged track on each side of the beam.

Multicell Cerenkov counters furnish the electron trigger. The 

Cerenkov distinguishes electrons from other species of particles, but 

provides no knowledge regarding a track's momentum. A leadglass 

array, following the Cerenkov counters, serves as an electromagnetic 

calorim eter. This leadglass system further distinguishes between
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electrons and other particles, and additionally measures an electron's 

or photon's energy. A set of scintillators, located within the leadglass 

array, is used to trigger on converted photons.

Identification of muons is performed by two systems: the muon 

scintillation hodoscope and the rangefinder. Behind the leadglass is 

situated a block wall of iron 91 cm in depth along the beam axis. 

Muons are the only type of particle likely to penetrate this amount of 

material. The muon trigger uses the muon hodoscope to select muons. 

With its good time resolution, the muon hodoscope is quite effective 

at elim inating accidental tracks downstream of the iron. The

rangefinder consists of plates of absorber material interspersed with 

planes of proportional tubes. The energy of a muon is determined by 

the depth to which a track penetrated into the rangefinder.

In order to handle the high flux of particles through the detector 

systems, a three-level triggering scheme is used. An event is 

initiated by the presence of charged tracks in the trigger scintillation 

hodoscope and the drift chambers. Based on data from the particle 

identification detectors, the trigger system labels events as being 

candidates for the various decay modes of the long-lived kaon.

Interesting events are read out and written to tape for further

analysis offline. Details regarding the detectors are given in the 

rem ainder of this chapter and the data acquisition system is

described in the following chapter.
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H U  D rift C ham bers

Central to the success of this experiment is the ability to measure 

accurately the trajectory of charged particles passing through the 

pair of spectrometer magnets. This is a necessary prerequisite to 

determination of the momenta of the tracks. Given the momenta and 

trajectories of the kaon daughter products, the decay vertex and the 

initial invariant mass can be calculated. A difference between the 

mass of the kaon and the reconstructed mass indicates the presence 

of neutral daughter particles, unobserved decay products, or an 

incorrect mass assignm ent to a track based on faulty particle 

identification. A quantity known as the collinearity is defined as the 

angle between the unit vector from the target to the reconstructed 

vertex and the unit vector of the total reconstructed momentum. This 

is presented visually in Figure 9. A large collinearity indicates 

missing transverse momentum. Both the mass and collinearity are 

crucial in differentiating two-body decays from the more abundant 

three-body decays. A set of five drift chambers together with the 

two spectrom eter magnets allow a particle 's momentum to be 

independently measured twice.

There are five drift-chamber modules located symmetrically on 

each side of the beam. Each module contains two planes of horizontal 

sense wires and two planes of vertical sense wires. Two planes in 

each dimension permit the left-right ambiguity to be resolved for 

every module. In addition to the sense wires, there are also field and 

guard wires, which help shape the electric field surrounding the 

sense wires. A drawing of a unit cell is shown in Figure 10. Field



28

wires are nominally held at -2,500 volts relative to the grounded 

sense wires. Wires are soldered under tension in precisely positioned 

holes in a printed circuit board. The printed circuit board is secured 

in a prestressed aluminum frame. Alum inized M ylar skins are 

stretched across the frame forming sealed walls. The skins are 

grounded and help to electromagnetically shield the wires.

Shielded cables carry the signals from the sense wires to nearby 

am plifier boards. The amplifiers use LeCroy Hil440 chips as their 

ac tiv e  e lem ents. Fo llow ing  am p lifica tio n , the signals are 

discrim inated with a minimum threshold of about 0.3 p,A. The 

discrim inators produce differential ECL logic signals, which are 

transm itted over 131-meter long custom flat Ansley cables, each 

containing 97 copper traces imbedded in polyethylene.

A 6 -bit linear4 3  TDC accepts the 32 channels associated with each 

cable. These TDC's have a fullscale count of 160 nanoseconds with a 

channel representing 2.5 ns. The root-mean-square time resolution 

of the TDC system is 0.8 ns. Both the leading and trailing edges of a 

100 MHz clock are employed. To decrease further the effective cycle 

time, the clock is phase delayed one quarter cycle and both phase 

signals are employed. A Gray code scheme is used instead of simple 

binary to count the cycles. Only the first hit on each channel is 

recorded. As with the other digitizing modules in this experiment, 

the digitized inform ation is double buffered and flip-flops are 

employed to indicate which channels are hit. The pipelining reduces 

the deadtime to an acceptable level and the flip-flops implement a 

sparse data scan.
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A gas mixture consisting of 49% argon, 49% ethane, and 2% 

ethanol fills the volume formed by the skins and frame. A mass flow 

controller determines the mixing ratio of the argon and ethane. The 

gas is then bubbled through refrigerated ethanol. Charged particles 

traversing the gas ionize some of its constituent molecules, mostly 

the argon. As the resulting electrons and cations move in the electric 

field, they further ionize the gas. Free electrons move at a known 

velocity in a specified electric field. An electron drift-time can thus 

be translated into a position. A typical drift speed is 50 (im/ns. The 

spatial r.m.s. resolution of the drift-chamber system is 1 2 0  microns. 

This resolution, combined with uncertainties in the values of the 

spectrom eter m agnets' fields and m ultiple scattering, results in 

reconstructed mass and collinearity d istributions with standard 

deviations of 1.5 MeV/c2  and 0.3 m illiradians, respectively, for 

Kl-»ic+tc- decays.
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The trigger scintillators are primarily used in the experimental 

trigger during data taking. There are two complete banks on each 

side of the beam: one upstream and one downstream of the Cerenkov 

counters. Since one bank of the scintillators is located upstream of 

the Cerenkov counters, it is important to keep its thickness to a 

minimum in order to reduce the number of knock-on electrons 

produced by particles traversing it. An expanded drawing of the 

upstream beam right hodoscope is shown in Fig. 11. The mechanical 

properties and the perform ance of the trigger scintillators are 

described in the rest of this section.

Each of the four two-dimensional banks contains 64 x-measuring 

and 64 y-measuring strips of scintillant. Kyowa glass, a brand of 

doped polystyrene, is used as the scintillating material. X-measuring 

counters and y-measuring counters are 1.80 meters and 1.28 meters 

in length, respectively. The width of the x-measuring counters is 

0.02014 meters, while the y-measuring counters are slightly wider 

at 0.02814 meters. Since the downstream hodoscope banks are 

located after the Cerenkov counters and close to the leadglass array, 

constraints on the amount of material in the counters are less 

stringent, allowing the back counters to be 1 .0 -cm thick, whereas the 

upstream counters are half as thick. To reflect scintillation photons 

which exit the sides of the counters back into a counter, the 

scintillators are wrapped in aluminized Mylar. In order to keep 

external light from striking the system, each two-dimensional bank 

is enclosed in a light-tight box.
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One-inch diameter Hamamatsu R1398 photomultiplier tubes are 

used to sense the scintillation light from the counters. Tubes are 

bonded to the scintillators using an organic adhesive with the same 

refractive index as the counters. Each y-m easuring counter is 

attached to a single phototube at the end farthest from the neutral 

beam. A phototube is attached to both ends of each x-measuring slat. 

Each x-phototube is bonded to two neighboring x-slats due to space 

lim itations and to reduce the number of channels. The upper and 

low er tubes are o ffse t by one sla t allow ing unam biguous 

determination of which slat is struck. This topology allows n tubes to 

provide double-ended sensing of n counters. Since no lightguides are 

used, each x-slat has to be twisted so that two contiguous slats can 

abut a single phototube face.

Analog signals from the base of each photomultiplier tube are 

carried over RG 8  cables to the counting house, where the signals are 

discriminated. Outputs from all discriminators are fed into the same 

type of TDC's used for the drift chambers. Discriminated signals from 

x-slats are sent to meantimers as well as to the TDC's. The results 

from the meantimers are used in the Level 0 trigger. An OR of all the 

y-slat discriminator outputs from a given bank is generated for the 

Level 0 trigger.

During the offline analysis, the efficiency of the trigger 

scintillators for registering the passage of a charged track was 

determined to be 0.998. The efficiency of each tube is included in the 

offline software and thus taken into account when using the Monte 

Carlo code to calculate the relative acceptances for the different 

decay m odes. A fter correcting offline for event tim e-zeroes,
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individual time-offsets, and the propagation time of light along a slat, 

the r.m.s time resolution of the system is 1.7 ns. The effective full- 

width time resolution of the system, as used in the Level 0 trigger, is 

14 ns due to varying cable lengths and other channel-to-channel 

differences. The doped polystyrene scintillating material has an 

attenuation length of 1.3 meters and light propagates at a speed of 

0.138 meters per ns in the counters.
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in.3 Cerenkov C ounter

The Cerenkov counter is employed to distinguish electrons from 

slower particles . 4 4  The principle of operation of the detector is the 

observation of Cerenkov radiation emitted by charged particles 

travelling faster than the group velocity of light in a medium. Given 

the momentum distribution of electrons from kaon decays in the 

E791 beamline, all of the relevant electrons are moving fast enough 

to generate Cerenkov photons. Due to their larger masses, muons, 

pions, and protons must have considerably more momentum than 

electrons to fire the Cerenkov detector. Inform ation from the 

Cerenkov detectors is used in both the trigger and the offline data 

analysis.

Several objectives determine the design of the detector: high 

efficiency for electrons, low efficiency for other particle types, and a 

minimum amount of material through which tracks must pass. A 

drawing of the Cerenkov detector is shown in Figure 12. To minimize 

the number of radiation lengths through which particles pass, the 

detector is constructed as a rectangular aluminum box, three meters 

in length, with the front and back sides being 0.076 cm thick. This 

configuration reduces the probabilities for high-energy photon 

conversion and of knock-on electrons from charged tracks. A mixture 

of N2  and He in the ratio of 6  to 4 fills the interior of the aluminum 

boxes. This mixture has an index of refraction of 1.000140, which is 

selected in order to optimize the separation of electrons from pions 

in the momentum range of 1 to 10 GeV/c, appropriate to this 

experiment. Through the use of an interferometry technique, the
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refractive index is regulated to a precision of 4 ppm. An 

overpressure of approximately one inch of water is maintained 

within the Cerenkov volume.

Photons radiated within the gaseous volume are reflected by eight 

spherical mirrors located at the downstream end of each of the two 

aluminum boxes. These mirrors focus the Cerenkov photons onto 

eight RCA 8854 Quantacon 5" phototubes. Each phototube's glass 

window is covered by a film  of p-terphenyl as a waveshifter. A 

continuous flow of dry N2  gas is maintained around the phototubes to 

prevent damage from helium diffusion into the tubes. Signals from 

each of the 16 phototubes are transmitted over RG8  coaxial cables to 

the counting house. Upon arrival at the counting house a signal is 

split in two. Fractions of the pulse are sent to flash analog-to-digital 

converters (ADC) and discriminators in the ratio of eight to two, 

respectively .

Level 1 uses the output of the discriminators to determine if  the 

Level 0 trigger contains any electrons. Any track generating a pulse 

above the discriminator’s threshold is treated as an electron in the 

trigger. After a 300 ns delay, the other portion of the split signal is 

fed into a charge-integrating bilinear flash ADC . 4 5  The ADC is built 

around the 8 -bit Sony CX20052A 20 MHz chip and requires 200 ns to 

digitize a signal. Full scale corresponds to a charge of 100 pC. The 

first 64 channel linear region has a conversion factor of 150 

fC/channel and the remaining 192 channel linear region has a 

conversion factor of 470 fC/channel. A signal from Level 1 starts the 

gate during which charge is integrated. If the integrated charge is 

greater than a set value, a flip-flop is set indicating the presence of a
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hit channel. There are two pipelined sets of buffers and associated 

flip-flops which can each hold the information for a hit until the 

Readout Supervisor is ready to transfer the data to 3081/E 

processors. Readout requires 100 ns.

Using the formula P T h r e s h o i d = l / n ,  where n is the index of 

refraction, the Cerenkov momentum thresholds for pions and muons 

are found to be 8.34 GeV/c and 6.31 GeV/c, respectively. Based on 

the performance of the Cerenkov for actual particles, the momentum 

at which the efficiency starts to increase quickly is 8.62+/-0.12 for 

pions and 6.37+/-0.12 for muons. For momenta below these 

thresholds, 1.5% of the pions and muons fire the Cerenkov. At the 

beam intensities at which data were taken, about half of these low- 

momentum signals are from accidentals and the remainder are due 

to knock-on electrons from the upstream trigger scintillators. The cell 

hit rate averaged over the eight phototubes on one side of the beam 

is 1.6 MHz. The efficiency for electrons from KL-»rcev was 0.935+/- 

0.004 for the first part of the data taking. This efficiency improved to 

0.953+/-0.006 after an adjustment of the mirrors performed midway 

through the run. For the dimuon analysis the Cerenkov data are 

primarily used offline to isolate pure samples of a specific particle 

type .
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III.4 E lectrom agnetic Calorim eter

For the observation of the KL-»it°e+e-, KL-»e+e-, and KL-»pe decay 

modes it is necessary to identify electrons and photons and record 

their energies. A system containing two layers of leadglass separated 

by a scintillation hodoscope, and known as the finger counters, 

serves as the electrom agnetic calorim etry system  for this 

e x p e r im e n t . 4 6  The upstream layer of leadglass, representing 3.3 

radiation lengths, converts the majority of photons and electrons into 

electromagnetic showers; hence its designation as the converter 

blocks. The presence of multiple hits in the finger counters indicates 

that a particle has initiated an electromagnetic shower in the 

converter blocks. Level 3 uses information from the finger counters 

to identify possible decays. In the downstream leadglass

array, known as the back blocks, the particles created in an 

electromagnetic shower are ranged out. With an index of refraction 

of 1.62, almost all charged tracks produce Cerenkov radiation in the 

leadglass. This radiation is sensed with photom ultiplier tubes 

attached to the blocks. An exploded view of the calorimetry system 

is depicted in Fig. 13.

There are a total of 52 converter blocks arranged in arrays of two 

by 13 blocks on each side of the beam. All the converter blocks have 

x and y dimensions of 0.109 and 0.90 meters, respectively, and are 

0.10 meters in depth. Since the flux of incident particles decreases 

with distance from the center of the beamline, phototubes with 

different time responses are matched to blocks, based on their hit
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rates. Fast Amperex 3462 phototubes are glued to the blocks nearest 

the beam, while slower EMI 953 l r  phototubes are used for the 

blocks farther away from the beam.

The finger scintillation hodoscope consists of a set of x and y- 

measuring counters located between the converter and back blocks 

on both sides of the beam. There are 36 y-measuring slats and 27 x- 

measuring slats on either side. All the slats are 1.5 cm deep and 5.1 

cm wide. The x- and y-measuring counters are 1.861 and 1.394 

meters in length, respectively. As for the trigger scintillation 

hodoscope, Kyowa Glass is used as the scintillation material for the 

finger counters. The effective speed of light in the scintillator is 

0.122 m/ns and the attenuation length of scintillation photons is 1.3 

meters. Y-measuring slats have a single XP2230 phototube attached 

to the end away from the beam. X-measuring counters have an 

Amperex 56AVP phototube appended to the top end and an 

EMI9902 phototube affixed to the bottom. On either side of the 

beam, behind the finger hodoscope, are located the back blocks, a 9 

by 12 array of leadglass blocks. Each block has a square cross section 

15.3 cm on a side and is 32.2 cm in depth. For the back blocks EMI 

9618r phototubes are used on blocks away from the beam and a 

mixture of Amperex 58 A VP and 58DVP tubes are attached to blocks 

with a high singles rate. The leadglass has a nuclear interaction 

length of 35 cm and a radiation length of 3.06 cm.

A wooden hut is constructed around the electromagnetic 

calorimetry system to keep out light. RG58 coaxial cables carry the 

analog signals from the phototube bases to patch panels in the hut 

walls. RG8  cables transmit the signals from the patch panels to the
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counting house where the signals are split. The finger hodoscope 

signals are first discriminated and then used either in the trigger or 

sent to TDC's. A gate 35 ns wide is used for the finger counters in the 

trigger logic. A typical singles rate for a slat is 0.5 MHz. The finger 

counters' efficiency for detecting muons is 95%. Signals from the 

leadglass are discriminated and sent to TDC's or are input to ADC's. 

Two ratios, derived from the leadglass, are used to select electrons 

and photons: 1) the total energy deposited in the leadglass over the 

momentum determined by the spectrometer, and 2) the energy 

deposited in the converter blocks over the total energy deposited in 

the leadglass. The energy resolution of the leadglass system varies, 

due to the use of different phototubes, from o /e  = 2% + 1 5 % I 4/  e  near 

the beam to a/E  = 2% + 7% /-/ e  at the outside edge, where E is the 

energy in GeV/c2. The reconstructed mass resolution is 5 MeV/c2 and 

11 MeV/c2 for the decays KL->Jt°Jt+7r and jt°-yyY, respectively.
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III.5 Muon H odoscope

Located on either side of the beam immediately downstream of 

the hut which houses the leadglass array are two walls of block iron. 

Each wall is 0.91 meters in depth along the z-axis. This amount of 

iron represents 52 radiation lengths and 8.7 nuclear interaction 

lengths. It is referred to as the muon filter, since few hadrons, 

electrons, or photons can pass through the iron. Just behind the 

downstream face of the iron is the muon hodoscope.47 This 

scintillator-based system indicates the presence of a charged particle 

downstream of the iron. The fast time response of the hodoscope 

allows it to be used as a muon trigger in Level 1 and to be used to 

reject out-of-time accidentals in the offline analysis.

The muon hodoscope is composed of two sets of vertical and 

horizontal slats of Bicron BC408 plastic scintillator. Figure 14 shows 

an exploded view of the beamleft part of the hodoscope and iron 

system. All the slats are 2.54 cm thick and 18.8 cm wide. On each 

side of the beam there are eleven 2.69 meter-long x-measuring 

counters and fourteen 2.29-meter long y-measuring counters. In 

order to prevent external light from entering the scintillator, each 

slat is individually wrapped with an opaque sheet. This sheet 

contains three laminar layers, which from the scintillator side 

outward are: eight pm of aluminum, 13 p.m of Mylar, and 150 |im of 

polyethylene. Scintillation photons from a slat are sensed by 5-cm 

diameter Amperex XP2230 photomultiplier tubes attached to the 

tapered counter ends. Every x-measuring slat has a phototube
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attached at both the top and bottom, whereas a y-measuring slat has 

a phototube only on the end away from the beam. The phototubes 

are bonded directly to the scintillant with Double Bubble Hardman's 

Epoxy. Analog signals from the phototube bases are transmitted to 

the counting house over RG8 cables.

In the counting house, signals from the phototubes are 

discriminated with a threshold of approximately one fifth of the level 

caused by a minimum ionizing particle. For use in the Level 1 trigger, 

discriminator outputs for the y-measuring counters from each side of 

the beam are separately OR'd together. The discriminated x-counter 

signals from each end of a slat are meantimed and then OR'd for the 

Level 1. TDC's, receiving the discriminated output from each 

phototube, determine the time of all hits in the muon hodoscope.

A few variables serve to parameterize the performance of the 

muon hodoscope system. After various offline corrections the time 

distribution of hits for the system has a full width of 4 ns. Averaging 

over all the phototubes in the hodoscope, a typical phototube has a 

singles rate of about 0.45 KHz at a beam intensity of 3x l012 protons 

per AGS pulse on the B5 target. Although less than one pion in 103 is 

expected to pass through the iron without suffering any hadronic 

collisions, a few percent of the pions entering the iron produce 

secondary charged tracks in the muon hodoscope. A further 3% of the 

pions decay into a muon and a muon-type neutrino between the fifth 

drift-chamber module and the leadglass. Based on the fraction of 

early hits and a calculation using the singles rates, several electrons 

in a thousand are expected to mimic a muon in the hodoscope due to 

an accidental hit from a neutron interaction or a coincidental muon
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track. The efficiency of the muon hodoscope for registering the 

passage of a muon from Kl -» |i +m-~ is 0.973+/-0.003. M uons of 

momentum less than 1.4 GeV/c are generally stopped before exiting 

the downstream face of the iron due to electromagnetic scattering in 

the leadglass and iron.
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III.6 Muon Rangefinder

Since differentiation between the various types of particles is 

crucial to rejecting backgrounds due to semileptonic decays and 

other processes, two independent detector systems are used to 

identify both muons and electrons. In addition to the muon 

hodoscope the muon rangefinder was constructed, jointly by the 

College of William and Mary and the Los Alamos National Laboratory, 

to further distinguish muons from other particles.48 The rangefinder 

is based on the same principle as the muon hodoscope: muons are the 

only charged particles which can penetrate substantial amounts of 

matter. Most particles in the detector volume are mesons or baryons, 

which interact strongly with atomic nuclei and therefore quickly lose 

energy both through elastic processes and by the creation of 

secondary particles. Only the three species of charged leptons are not 

subject to the hadronic force and lose energy predominantly through 

electrom agnetic interactions. Their greater acceleration causes 

electrons to radiate energy more rapidly than muons. Tau leptons are 

too short-lived to produce tracks in the detectors. Thus muons are 

the only charged particles capable of leaving long tracks in the 

rangefinder with appreciable probability.

Muons lose energy in an effectively continuous manner as they 

move through the rangefinder. With a Monte Carlo simulation one 

can calculate the distribution of the depths to which muons with a 

given momentum will penetrate. For an actual track the penetration 

depth is the quantity measured by the detector. Employing a
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correlation matrix this depth is converted into a momentum for the 

track. This momentum is then compared to the momentum measured 

by the drift-chamber spectrometer system. I f  the rangefinder and 

drift-cham ber momenta agree w ithin a set lim it, the track is 

considered a muon. The pattem-recognition algorithm, used to find 

tracks in the rangefinder, considers only that area of the rangefinder 

which is spatially compatible with the particle's projected trajectory 

as determined by the drift chambers.

There are four possible sources of false muon tracks downstream 

of the iron: muons from the decay 7c->pv, leak through of charged 

secondaries from pion interactions in the iron, accidental muons from 

coincidental kaon or pion decays not associated with the primary 

kaon decay, and interactions of particles in the neutral beam with 

the iron or rangefinder. Considering the tight time and spatial 

restrictions imposed by the muon hodoscope as well as the range 

requirement, accidental muons and neutral beam interactions should 

be correlated with less than 0.5% of the non-muon tracks. Although 

up to a few percent of pions will generate secondaries from hadronic 

interactions in the iron, very few of these secondaries can penetrate 

fa r into the rangefinder. Since the probability of pion leak through 

increases sharply with momentum and the rangefinder is quite 

effective for high momentum tracks, pion leak through should result 

in a pion mimicking a muon about one percent of the time. Muons 

from  pions decaying downstream of the fifth drift chamber have 

momentum vectors which are essentially  indistinguishable from  

those of primary muons. About 3% of the pions from kaon decay
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themselves decay into muons in the back of the detector system and 

therefore represent the most serious background.

Besides its use in the offline identification of muons, the 

rangefinder was originally intended to provide a part of the Level 2 

trigger and a measurement of the polarization of positive muons 

from the decay Electronics to implement a crude track-

finding algorithm, which would provide a range measurement for 

muons to the Level 2 trigger in less than a ps, were designed. Due to 

other factors which limited the maximum beam intensity which the 

detector system could accept, the Level 2 rangefinder electronics

were unnecessary  and never m anufactured. A lthough not 

implemented, the intended use of the rangefinder in the Level 2 

trigger necessitated a quick response from the proportional tubes. To 

minimize the electron drift-times in the proportional tubes, two

wires were strung in each tube and the use of gas mixtures with fast

drift-times was explored. In case the rangefinder is later expanded 

into a full-scale polarimeter, the system is built with the ability to 

read out every tube. This can be done to localize the muon's stopping 

position and the decay positron's trajectory as finely as possible.49 

The feasibility of using proportional tubes to measure a muon's 

polarization was tested at the Los Alamos Meson Physics Facility,

with promising results.50 A polarimeter must be built with absorber 

plates which do not depolarize stopping muons.

The requirement that the absorber plates retain a muon’s 

polarization led to the selection of Carrara marble and 6063-T6 

aluminum alloy for the bulk of the rangefinder. The thickness and 

transverse dimensions of the absorber slabs are determined with a
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well as the fraction and energy distribution of the positrons from the 

decay p+ -»e+vv escaping from the absorber, results in a design with 

7.62-cm thick absorber plates with x and y dimensions of 2.2S and

3.05 meters, respectively. Each slab is constructed from four separate 

plates of marble bonded together with 3M  2216 B/A adhesive. A 

steel band is also affixed to the outside edge of every slab to improve 

its structural integrity  and provide a means o f lifting it. An 

aluminum stand is used to position the slabs relative to each other 

and the beam. With one slab having a mass of 1455 Kg, the complete 

set of 200 represents a total mass of 2.91 x 10s Kg. Aluminum is 

three times as expensive as marble and possesses a cross section of 

0.23 barns for thermal neutron capture. During neutron capture, a 7 

MeV y r^y is radiated; the resulting nucleus then decays with a 

lifetime of 144 seconds by emitting a p particle and a 1.7 MeV

gamma ray. Brookhaven provided 50 slabs of Aluminum; the

remaining 150 absorber slabs are made of marble. To reduce the 

singles rates in the proportional tubes the slabs located immediately 

on either side of a detector plane are always of marble. The 100 

slabs on each side of the beam results in 99 5.08-cm deep gaps into 

which detector planes can be placed.

There are 13 pairs of x- and y-measuring planes of proportional 

tubes on each side of the beam. The spacing of the 13 instrumented

gaps is selected to yield momentum measurements with a relative

precision of 10% (see Fig. 15). Table III gives the range of momenta 

for muons which stop in a particular gap.
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Table III

Range of momenta associated with each rangefinder gap

Gap Number Lower momentum Upper momentum
1 1.93 2 .06
2 2 .06 2 .29
3 2 .29 2 .5 4
4 2 .54 2 .79
5 2 .79 3.05
6 3 .05 3 .35
7 3.35 3 .70
8 3 .70 4 .05
9 4.05 4.48

10 4.48 4 .98
11 4 .98 5 .45
12 5 .45 6 .1 4
13 6 .14 -

A plane is comprised of individual extruded aluminum sections. An 

e x t ru s io n 51 cross section is shown in Fig. 16. Two gold-plated 

tungsten wires with diameters of 75 +/- 3 pm  are strung in every 

tube. Two wires, separated by 1.06 cm, are used in a tube in order to 

reduce the electron collection time, allowing narrower time gates. All 

wires are cleaned with propanol and visually inspected before being 

drawn into an extrusion. Each wire is inserted into a stainless steel 

minitube with an inner diameter of 125 pm . The minitubes are held 

in plastic Noryl holders, which in turn are positioned in the Lexan 

en d cap s.52 Bondmaster 666 epoxy is used to hold the endcaps in the 

ends of the extrusions and to provide a gas seal. There are four 

distinct types of molded endcaps characterized by their control of gas 

flow: electronics end on beam right, non-instrumented end-on beam 

right, electronics end-on beam left, and non-instrumented end-on
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beam left. A Starrett Cut Nipper tool is used to crimp the wire within 

the minitube at the non-instrumented end of the extrusion.

After tensioning the wire by suspending a 500 gram weight from 

it over a pulley, the minitube at the electronics end is crimped. Two 

potential problems, slippage of the wire and breaking of the wire, 

can be caused by too loose or tight a crimp as well as too high a 

tension. Tests were performed by crimping wires under various 

tensions and crim ping methods to determ ine conditions which 

optim ized the re liab ility  o f the system  and kept the w ires 

sufficiently straight in the presence of electrostatic and gravitational 

forces. These studies revealed a plateau structure as a function of the 

amount of crimping. The wires have a nominal elastic limit of 925 

grams, but given the 3% variation in diameters, a conservative limit

would be around 850 grams. Given this information it was decided to

crush the minitubes to an outer thickness of 500 pm  from their 

original diameter of 1000 pm . This value is in the middle of the

plateau. The gain and high voltage at which a trip occurred depended

sensitively on the wire-to-wall separation. A typical distance from 

the wire to the wall of the extrusions is 5 mm with the wire held at 

positive high voltage and the wall at ground. To improve the gas seal 

of the extrusions, the last mm of all the minitubes is crimped closed 

and dabbed with epoxy.

For quality control, the extrusions were tested at William and 

Mary, generally on the day they were manufactured. This allowed us 

to discover problems in the assembly process and correct them 

quickly. The resistance between the two wires within a single tube is 

checked to determine if the wires are crossed. The tension of every
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wire is measured by a magnetic induction technique.53 A magnetic 

field of about 7,000 Gauss is imposed on the central portion of a wire 

and an oscillating electric current is passed through the wire and the 

extrusion. This current drives the wire into oscillation. Motion of the 

wire in the magnetic field induces a voltage on the wire. This induced 

voltage is small except when the wire is driven at a multiple of its 

fundamental frequency. At resonance an out-of-phase voltage of 

several millivolts is observed with the visual aid of a Lissajous figure 

on an oscilloscope. The tension is related to the measured frequency 

by the formula: Tension = 4pL2f2 , where p is the linear mass density, 

L is the effective free length of the wire, and f  is the observed 

fundamental frequency. If the tension is less than a set limit the wire 

is restrung.

Extensive evaluation of the performance of the detectors was 

perform ed in a Faraday  cage using the pream plifier and 

discrim inator employed in the experiment. A 50/50 mixture of 

argon/ethane gas was flowed through the extrusion and a crude leak 

test performed with rotameters. After several volume exchanges the 

singles rate and current drawn were recorded as a function of high 

voltage. Employing scintillators positioned above and below the 

detector, a high voltage versus efficiency plateau curve was taken on 

cosmic-ray muons. The voltage at which an extrusion trips the 

voltage supply was also noted. Individual tubes were then irradiated 

with a Strontium-90 beta source and the rate recorded. This test 

procedure revealed defects in individual tubes and problem s 

involving the entire extrusion. All detectors were color coded, 

indicating their beamside and orientation, and numbered.
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The finished detectors were packaged in styrofoam and 

transported to Brookhaven. The wires were tension-tested again at 

Brookhaven. None of the wires lost a significant amount of tension 

during this journey. Since the rangefinder is filled with ethane, a 

flammable gas, extensive leak chasing was done on extrusions prior 

to their assembly into complete detector planes. A combustible-gas 

leak detector, which is also sensitive to hydrocarbons to a level of 50 

ppm, was employed to test every joint in the system (of which there 

are about 70,000).

After leak testing, the extrusions were edge bonded into planes 

with Loctite Depend, an anaerobic adhesive. The x- and y-measuring 

planes contain 12 and 16 extrusions, respectively (see Figs. 17 and 

18). To avoid introducing any curvature in the finished plane, which 

could reduce the maximum high voltage attainable, the table on 

which the bonding was done was carefully constructed from marble 

blocks so as to be flat to 250 pm. Polyethylene tubing manufactured 

by PolyFlo with an outer diameter of 0.64 cm carries the gas mixture 

between the extrusions within a plane. Since polyethylene is 

notoriously difficult to bond, the tubing's outer diameter was first 

roughened with a die to prepare the surface and then bonded into 

the endcap input/output ports with Bondmaster 666 epoxy.

Aluminum sheets, 0.16 cm in thickness, were bonded across the 

edge-bonded extrusions with Loctite adhesive and a silver-based 

conductive epoxy. Copper tape was also laid down so as to overlap all 

extrusions in a plane and the aluminum sheets. These sheets provide 

structural strength and connect the separate extrusions electrically. 

The steel minitubes at the non-instrumented end of the plane are
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cleaned and covered with insulating electrical tape to prevent arcing 

to the aluminum. Near the top of each plane aluminum pieces, 

termed "ears", were bonded to the outer edges. These ears support 

the weight of a plane as it hangs from the aluminum stand in the 

experimental cave. The completed planes are lifted using eye-bolts 

threaded into brass nuts imbedded in the aluminum ears. Hall cranes 

lift the planes into and out of a Unistrut transfer fixture, which can 

hold as many as ten finished planes. A large fork-lift carries a full 

transfer fixture from the building in which the detectors are 

assembled to the AGS experimental area. Once the detectors are 

installed in the B5 beamline, the electronics and gas distribution 

system are connections are made.

The interior of a proportional tube contains an electric field with 

intensities as high as several KV/cm. As a charged particle traverses 

the gas surrounding a wire, molecules in the gas are ionized. 

E lectrons drift toward the wire anode and cations toward the 

aluminum walls. Drifting electrons suffer repeated collisions with 

m olecules of the gas resulting in further ionization. This process 

causes the initial number of electron-ion pairs to be multiplied by a 

factor of 105. The time response of the detector is determined by 

how long electrons take to drift to the wire. A highly active chemical 

environment exists about a wire in which large molecules could form 

deposits on the wire surface. Such local deposits increase the 

diameter of a wire and therefore decrease the local electric field. 

Fibers can also grow outward from a wire and can result in arcing to 

the tube walls. These processes are referred to as aging of 

proportional wire detectors. Due to these processes it is imperative
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that the gas mixture be free of contaminants. Some researchers 

report that wire aging decreases with an increased flow of gas 

through the system. Minimization of this wire aging dictates many 

parameters of the system.

The gas mixture used in the rangefinder consists of 49.2% ethane, 

49.2% argon, and 1.6% ethyl alcohol. This is an established mixture 

which is known to result in a long wire life. Contamination due to 

simple hydrocarbons represents about 0.5%. Drawings of the gas 

distribution system are shown in Figures 19 and 20. Equal flows of 

argon and ethane into a mixing volume are obtained using two 

channels of a mass flow controller. The resulting gas mixture is then 

bubbled through a gas washer bottle containing ethanol at a constant 

tem perature of 1° C. Evaporation of the ethanol into the 

argon/ethane gas flow determ ines the relative concentrations. 

Following the addition of the ethanol, the gas enters two 13 meter 

long, 10-cm diameter polyethylene pipes located on each side of the 

beam. From the pipes, PolyFlo tubing distributes the gas to sets of 

extrusions. Extrusions subject to the highest particle flux are grouped 

in sets of four, whereas other extrusions are arranged in groups of 8. 

Gas flow within an extrusion proceeds serially from tube to tube. It 

requires between 7 and 20 hours to exchange the gas volume in an 

extrusion. Gas flows into the rangefinder at a rate of eight liters per 

minute. Exhaust gas from the proportional tubes is collected in 

another pair of polyethylene pipes and is then expelled into the 

atmosphere. A third channel of the mass flow controller measures 

the exhaust flow rate to provide evidence of leaks.
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A small (30 cm long) proportional chamber extrusion located 

outside of the experimental cave is used to monitor the quality of the 

inflowing and exhaust gases. The aluminum wall above a single tube 

was replaced with a thin beryllium window. An 55Fe x-ray source 

irradiates the gas beneath the window. The gas gain of the 

proportional tube is monitored by observing the position and width 

of the x-ray peak on a multichannel analyzer.

To establish the electric field within a proportional tube, the wires 

are kept at a potential of +2,650 volts, while holding the aluminum 

extrusion at ground. High voltage is supplied by a multichannel 

Bertan unit. The Bertan unit is remotely controlled using a DEC GIGI 

computer. A program resident on the GIGI continuously monitors the 

current and voltage on each channel and trips a visual and audible 

alarm if certain limits are violated. SHV cables carry the high voltage 

from the supply to amplifier boards attached to the planes. The HV is 

fanned out from the am plifier boards54 to every wire. The 

amplifying circuitry is isolated from the high voltage by 2200 pF 

capacitors and input protection is provided by a pair of diodes.

Proportional tube pulses are AC coupled to a three-stage ECL 

10116 line-receiver. The two wires in a tube are connected together 

and treated as a single channel. Only a single differential input is 

used in the first and last amplification stages, while the middle stage 

employs both differential inputs. The total gain is 128. To suppress 

high-frequency noise the am plifier boards are grounded to the 

aluminum planes along their entire length. Each amplifier board 

receives signals from the 16 tubes in two contiguous extrusions.
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A 46-cm long, 17-pair twist-n-flat ribbon cable carries the 

enhanced signals from the amplifier board to the discriminator

board. Sixteen of the pairs transm it analog signals, while the 

seventeenth pair furnishes DC power to the amplifier board. A set of 

78 linear power supplies provides DC power to the amplifier and

discriminator boards. The amplified pulses are input to a TL810 

voltage comparator. If the pulses exceed a specified threshold, the 

com parator fires a 74LS123 monostable multivibrator. Threshold 

levels for each plane are set with a dedicated unit located outside of 

the cave. The width of output pulses from the multivibrator is set to 

160 ns. Although not used, discriminated ECL outputs are available 

for each tube separately, as would be necessary for a polarimeter.

Discriminated signals from all eight tubes in an extrusion are

logically OR'd together to form the basic hit channel.

This OR signal is transmitted over twisted pair cables to a simple 

printed-circuit adapter card, from which the signals are further 

propagated over 91 meters of Ansley cables to Fasterbus latches.

Whether a latch channel fires is determined by the overlap of the 

leading edge of a strobe signal with the discriminated ECL signal 

from the detectors. Each Ansley cable carries the 28 signals from the 

x-y pair of planes in a single gap. A latch board accepts up to three 

Ansley cables. A distinct strobe signal is used for each x-y pair of 

planes. Unlike the other digitizing modules, no sparse data scan is 

implemented by the latches; instead a switch on the board selects the

number of words to be read out.

A set of ECL Output Register CAMAC modules is used to test the

complete rangefinder electronics system. A pulse can be sent to the
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portion of a discrim inator board associated with a particular 

extrusion. An ECL-to-TTL converter on the discriminator board sends 

a signal to the amplifier board. The pulse is capacitively coupled to 

the amplifier inputs through a trace located on the boards. This 

system facilitates finding dead channels.

No deterioration in the performance of the rangefinder has been 

observed during the first two years of data taking. The integrated 

charge collected by a typical wire is estimated to range from lO-3 to 

10-5 Coulombs/cm. Following the initial turn-on period, very few 

channels are found to have failed. The efficiency of a typical 

rangefinder plane for registering the passage of a muon was 

established to be about 93%. This efficiency was determined to be 

independent of beam intensity up to a flux of 8 x 1012 protons per 

pulse on the target. Apparently, this low efficiency was partially due 

to improper timing of the latch strobes relative to the detector 

signals in the 1988 running period.55 In the second year of operation, 

better timing improved the single-plane efficiency to 96%.
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CHAPTER IV 

DATA ACQUISITION

During every AGS pulse the detector systems in this experiment 

register the passage of tens of millions of particles. If all the 

information generated by these particles in the detectors is digitized, 

the system would generate more than a Gigabyte of data per second. 

Since the tape drives are only capable of recording approximately 

250 Kilobytes per second, the majority of this information has to be 

selectively rejected. This is accomplished by implementing a three 

level triggering system. Each successive level of the triggering 

system is more restrictive than the preceding level, thus reducing 

the number of events the next level has to examine. This progressive 

reduction in the number of events allows succeeding trigger levels an 

increasing amount of time to process each event. Due to this 

triggering scheme the experiment is not lim ited by tape writing 

speed.

Another problem associated with the high intensity of the 

beamline is the possibility of deadtime in the data acquisition 

system. Deadtime in the readout process is minimized through the 

use of a three-stage pipeline for each channel as well as the 

im plem entation of a highly parallel data-transfer mechanism. 

Information can be transmitted from the front end crates to the third 

level trigger processors at rates of up to 0.4 Gigabytes per second.
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The overall readout system as well as the several levels of triggering 

are explained in detail in the following sections.
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IV.l Level 1 Trigger

Implemented with fast electronics, the Level 0 and Level 1 

triggers perform  several functions.56 Their primary purpose is to 

indicate the presence of the products of a kaon decay in the detector 

system. The occurrence of a Level 1 trigger prompts the TDC’s, ADC's, 

and latches to sense the state of every channel in the detector. Based 

on the status of the particle identification systems, events are 

determined to be possible examples of distinct kaon decay modes.

Signals from the trigger scintillation hodoscope are used to form 

the Level 0 trigger. All the scintillators are examined, with the 

exception of the upstream y-measuring banks. Pulses from the two 

phototubes attached to a given x-measuring scintillator are input into 

meantimers. All the upstream x-meantimer signals are OR’d together 

to form a single logical signal for each side of the beamline. The 

downstream x-meantimer outputs from each side of the beam are 

subdivided into four groups, where each group consists of 16 

contiguous counters, and are used as inputs into four logical OR gates. 

These four OR gate outputs are individually timed in with the OR of 

all the downstream y-measuring signals from the same side of the 

beam. The signals from the left upstream, left downstream, right 

upstream and right downstream trigger scintillator banks are input 

to a LeCroy 4508 programmable logic unit (PLU). If all four banks 

register an in-time hit, the PLU enables the Level 0 strobe, indicating 

the presence of one or more charged particles on each side of the 

beamline. A schematic of the Level 0 logic is shown in Fig. 21.
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Table IV

Typical rates for some of the detectors and triggers

Type of Detector Typical Rate(MHz)
1st Drift Chamber(Total) 2 .9
Trigger Counter 4 .2
Cerenkov 5.0
Muon Hodoscope 5.3
Muon Rangefinder 4.0
Level 0 0.6
Level 1 0.006
Level 3 0 .0002

When the Level 0 strobe is enabled a second PLU examines 

signals from  the drift chambers, Cerenkov counters, the finger 

hodoscope, and the muon hodoscope. Average rates in several 

detector systems are listed in Table IV. To satisfy the requirements 

of the Level 1 trigger, information from the upstream drift chambers 

has to indicate the passage of a charged particle on both sides of the 

spectrom eter. Logic diagrams for the d rift chambers, particle 

identification, and photon systems are depicted in Figures 22, 23, and 

24, respectively. Events follow three possible paths out of the PLU. 

As diagrammed in Fig. 25, all events satisfying the Level 0 and drift- 

chamber logic, regardless of the particle identification, are labelled as 

"minimum bias" events and follow path SC I. The minimum bias 

events are then prescaled by an initial factor of 1,000, which was 

later increased to 2,000. If, in addition to the minimum bias criteria, 

there are no hits in the Cerenkov and muon hodoscope counters, an 

event is considered a "prescaled T z + n ~ "  trigger. Prescaled tc+jt triggers
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follow the SC2 path and are prescaled by a factor of 500. The third 

class of triggers is comprised of events satisfying one of four dilepton 

topologies (i.e. p e , ep , p p , and ee) in the particle identification 

systems. The dilepton triggers are not prescaled. Logic for each of the 

possible triggers is shown in Table V. All of the logically compatible 

triggers are non-exclusive. As an example, an event could be written 

to tape by following both the minimum bias and dilepton trigger 

paths. A separate PLU, using logic identical to the primary Level 1 

PLU, also determ ines which of the possible Level 1 trigger 

requirements an event passed. The output of this secondary PLU sets 

bits in a trigger latch module (TLM). These bits are known as the 

trigger bits and are written to tape along with the rest of the event 

inform ation, if  the rem aining trigger selection mechanisms are 

satisfied .

Table V

Defining logic for Level 1 trigger bits

Level 1 Event Type Logic Definition
pe Triggers L0*DC12*pL*eR
ep Triggers L0*DC12*pr*cl

pp Triggers L0*DC1 2*pl*pr

ee Triggers L0*DC12*eL*eR
Minimum Bias L0*DC 12*Prescalel
Prescaled n n L0*DC12*eL*5R*PL*PR*Prescale2
eeyy Triggers L0*DC12*eL*eR*2 Clusters
PPYY Triggers L0*DC12*pl*Pr*2 Clusters

A Temple University 8702 logic box receives the outputs of the 

primary Level 1 PLU along with signals from the Readout Supervisor,
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the AGS beam gate, and the calibration logic. Physics events are 

vetoed if  the Readout Supervisor indicates the system is busy 

processing a previous trigger or if a calibration trigger is occurring. If 

the readout system is not engaged in processing another trigger, the 

final Level 1 logic signal is sent to the front-end crates in order to 

commence the reading out of the event. This Level 1 pulse provides 

the start for the TDC's, gates for the ADC's, and strobes for the 

latches. The Level 1 output is also sent to the Readout Supervisor.
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IV.2 Level 2 Trigger

If Level 1 indicates the presence of a charged particle on each 

side of the beam, information from the trigger scintillation hodoscope 

is used by the Level 2 trigger to filter out events not associated with 

a Kl decay.57 Signals from the trigger scintillators are sent into LANL 

latch modules after passing through repeater boxes. The output of 

the latches is read into a set of custom priority encoders. The priority 

encoders are capable of encoding up to two hits in each scintillator 

bank. If there are more than a pair of hits in a given bank, only hits 

in the counters located closest to and farthest from the beam are 

encoded. The pattern of extreme hits is then sent to a set of 43 

configurable memory lookup units (CMLU).

A decision to reject or keep an event is made by the CMLU's in

less than 1 ps following a Level 1 trigger and a strobe signal sent to 

the Readout Supervisor. For a hit in a particular upstream scintillator, 

only hits in a small set of downstream counters are compatible with 

a track resulting from a Kl decay within the acceptance volume of 

the spectrometer. Tests are done independently for x- and y-views 

and separately for each track to determine whether the upstream 

and downstream hits are consistent with a Kl decay. From the

location of the hits in the x-view, the momentum of a track could be 

determined to 20%. An invariant mass can be calculated using the 

track momentum as determined by Level 2. To summarize, Level 2 

can cut an event based on the following: upstream and downstream 

hit correlations, divergence o f the tracks, and the reconstructed

invariant mass. At a beam intensity of 4 x 1012 protons per pulse,
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the Level 2 correlation cut alone rejects one third of the raw events, 

while losing 15% of the good two-body decays. Due to the limited 

beam intensity available during the 1988 data taking, the Level 2 

filter was not used to actively select events.
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IV.3 Level 2.Tripper

A fast track finding algorithm is applied to all events read into 

the 3081/E processors58 and loose cuts are made on the calculated 

kinematics of the event. A typical event requires 2 ms of 3081/E CPU 

time for the Level 3 calculation. About 50% of the 3.2 second beam 

spill is available for the calculation with the remainder of the spill 

taken up with the readout of the data into the turbo-memory and 

the uploading of the data to the (xVAX. With eight processors running, 

a rough upper lim it on the average number of events which could be 

examined per beam spill is about 6,400. About 95% of the Level 1 

triggers fail the Level 3 cut. No cut is made on the minimum bias 

even ts.

The Level 3 software code59 uses information from the three 

upstream  x-m easuring drift-cham ber modules and the two most 

upstream y-measuring drift-chamber modules. The initial stage of 

the algorithm searches for pairs of adjacent hit wires within a 

module which form a good time-sum. Up to four good time-sum hit 

pairs per plane are allowed. If no good time-sums are located in a 

plane, a single bad timesum hit pair is used if  present. At a 

prelim inary stage, events are rejected in which one of the 10 

relevant planes possesses less than two struck wires.

The set of selected hit pairs is then examined for possible tracks 

on each side of the spectrometer in the two upstream pairs of x- and 

y-planes. Initially the two sides of the beam and the x- and y-views 

are considered separately. Hit pairs in the first and second set of 

chambers are checked for consistency with a kaon decay track by
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looking up the hit pattern in a correlation matrix. The elements of 

the correlation matrix are determined from actual data.

X-view tracks on one side of the beam are then combined with x-

view tracks on the opposite side of the beam and the divergence of

the resulting pair of tracks is checked for compatibility with the 

divergence expected from a kaon decay. Y-view tracks on opposite 

sides of the beam are similarly combined and are required to project 

through the most downstream drift chamber. The z-position of the 

vertex formed by the x-view tracks is then compared to the z- 

position of the vertex formed by the y-view tracks. The z-positions 

of the x- and y-vertices are required to be within 5 cm of each other. 

If the set of wire hits does not satisfy the vertex cut, other hits are 

tried. The third x-measuring drift-chamber plane is examined for

hits in a lim ited region com patible with the bending of the

previously selected x tracks in the first two planes.

The last step is to calculate the momentum of each track based on 

its deflection in the field of the 48D48 magnet. To minimize the time 

necessary for the momentum calculation, a table consisting only of 

the y component of the magnetic field in a 5.08-cm grid is used 

instead of the full field map. The field is integrated along a simplified 

trajectory which consists of a straight-line projection from hits in 

the firs t two planes to the center of the magnet and the line

connecting this center position to the hit in the third plane. This field

integral determines the transverse momentum kick imparted to the 

particle. This momentum kick is then divided by the angular

deflection undergone by the particle to determ ine the track's 

momentum. A small angle approximation is employed to calculate
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the track's deflection by taking the difference between the tangent of 

the track upstream of the magnet's center and downstream of the 

magnet’s center.

From the calculated track momenta, the collinearity angle of the 

kaon decay is calculated. In order to reject decays with missing 

momentum, primarily three-body decays containing an unobserved 

neutral daughter, a cut is then imposed which only accepts events 

with a Level 3 collinearity below 20 milliradians. If an event is found 

to satisfy the Level 3 collinearity cut, invariant masses are then 

calculated using all the particle type hypotheses indicated by the set 

Level 1 trigger bits. All the reconstructed masses for an event are 

checked to see if they are within a predetermined mass range. The 

accepted mass range is from 0.460 GeV/c2 to 0.550 GeV/c2. No cuts 

are made on minimum bias events by the third Level 3 algorithm.
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IV.4 Readout of the D ata

Information from the detectors follows a path from the front end 

electronics to the output tape drive under the control of the Readout 

Supervisor. The Readout Supervisor (RS) is a set of twelve custom- 

built CAMAC modules which reside in a single crate. Communication 

between the RS and the online p. VAX II is carried out via the CAMAC 

dataway. All other signals to or from the RS are transmitted over 

dedicated cables. The readout architecture60 is shown schematically 

in Fig. 26 and is elaborated on in the rest of this section.

Signals from some of the detectors are amplified and/or

discriminated by fast electronics located within the experimental 

cave, while the pulses from other detectors are sent directly to the 

digitizing modules. As discussed in the previous chapter, there are 

three distinct types of digitizing units: analog-to-digital converters, 

time-to-digital converters, and leading-edge strobe latches. All three 

types of units digitize signals only upon receipt of a Level 1 signal. 

Digitization requires less than 200 ns. The results of the digitization 

are then stored in the Stage 1 latch. If there is no event in the Stage 

2 Latch, the RS instructs the modules, via the Crate Scanners, to 

transfer the event information into the Stage 2 Latch. The RS disables

the Level 1 trigger while an event is present in the Stage 1 latches.

Since all events are treated as having passed the Level 2 trigger,

events contained in the Stage 2 latches are immediately transferred 

to the 3081/E turbo-memories. This transfer is initiated by the RS by 

sending signals to the Crate Scanners. A Crate Scanner reads the data 

from each module installed within its crate, one module at a time.
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Only channels which contain hit information for the current event 

are read out using a sparse data scan technique. Pairs of crates are 

connected as master and slave with the readout of the slave crate’s 

modules proceeding via its Crate Scanner and the master crate's 

Crate Scanner. Every master Crate Scanner is separately connected to 

all eight 3081/E turbo-memories using eight 17 twisted-pair cables.

The RS keeps a record of which 3081/E processors are currently 

available to accept raw data. When the memory of a 3081/E is full, 

the RS initiates the Level 3 algorithm and marks the processor as 

busy, redirecting new events to another third level trigger processor, 

if one is available. A processor indicates to the pVAX II when it has 

examined all the events in its memory. The p. VAX II then uploads the 

events, which have passed the Level 3 trigger, from the finished 

processor. Uploading of the data from the 3081/E's is done with a 

DR11W parallel interface. Upon completing the uploading of all the 

events from a third level trigger processor, the pVAX II informs the 

RS that the processor is available to accept more events.

Resident on the pVAX II is the online data acquisition program. 

The online program consists of several interacting processes. As 

events are uploaded from the 3081/E 's, the inform ation  is 

temporarily stored in a buffer. When this buffer is full, the contents 

of the buffer are written to one of the two 6250 BPI tape drives. 

Upon reaching the end of an output tape, the p.VAX II automatically 

switches to the other tape drive and starts the next data run. Runs 

can also be started and stopped manually by an operator. With few 

exceptions an individual run corresponds to an entire tape. As events 

are uploaded to the p.VAX II, one of the online processes samples a
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fraction of them. Information from sample events can be displayed 

graphically. This visual display provides information on the status of 

the various detector systems as well as on the data acquisition 

system. Any anomalies in the performance of the experimental 

apparatus can thus be recognized. A precompiled Level 3 code is 

downloaded to the 3081/E's from the p. VAX II during the 

initialization of the system. An operator can also run diagnostic tests 

on the 3081/E's from the p,VAX II. In general the online p.VAX II 

provides the human interface to the experiment.
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CHAPTER V 

ANALYSIS OF THE DATA

In order to measure the branching fraction, the number

of events in the dimuon sample and the number of KL-^Jt+7C"

events in the minimum bias sample m ust be established. The 

branching fraction of the decay which is well determined by

other experim ents , 1 3  is then used to normalize the event sample to 

the absolute number of kaon decays observed. The relative number 

of K l—»|i+p.-  and KL->7c+re- events must be corrected for any differences 

in geometric acceptance as well as possible unequal effects of the 

analysis cuts for the two decay modes. In order to minimize these 

corrections, the analyses for the two decay modes are identical 

except for the requirement of muon identification for the fi+(i’ events. 

No particle identification is employed in the selection of the dipion 

normalization sample.

Rejection of background events is a central goal of the analysis. 

For the decay K l“-»|J.+11- , the major sources of background are expected 

to be the two semileptonic decay modes, in which the daughter pion 

decays in flight to a muon and a neutrino. Restrictions on the 

collinearity eliminate these two decays unless the neutrino is emitted 

with low energy. The requirement of a good vertex and continuous 

tracks through the spectrom eter can reject the majority of pion 

decays in flight. However, if a pion decays in flight after the most 

dow nstream  drift cham ber there is no effective means o f
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distinguishing it from a primary decay muon. For the decay Kl ->ti|iv , 

where these events have an invariant mass less than 489

M e V /c 2, assuming zero mass resolution. If  the electron from the 

decay KL~>7tev is misidentified as a muon, due to an accidental muon 

or to a neutron interaction downstream of the iron filter, there is no 

mechanism to distinguish this class of event from an actual K l-» p +p _ 

decay.

The data analyzed in this work were recorded during the winter 

and spring of 1988. During 815 hours of active data taking, 180 

million events were written onto 2,134 magnetic tapes at a density 

o f 6250 BPI. This represents approxim ately 340 Gigabytes of 

information. The distribution of these events by Level 1 trigger bit is 

shown in Table VI. From the table it is evident that events containing 

a y  comprise a considerable fraction of all events.

Table VI

Distribution of raw non-exclusive Level 1 trigger bits

Level 1 Event Type Fraction of Uncut Data With Bit Set
pe Triggers 0.1262
ep Triggers 0.1270
pp Triggers 0.2163
ee Triggers 0.4576
Minimum Bias 0.1427
Prescaled k k 0.1143
t c k  Triggers 0.0556
eeyy Triggers 0.4416
ppyy Triggers 0.1095
Calibration Triggers 0.0552
Pedestal Triggers 0.0150
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Since events associated with a neutral particle are not relevant to 

this analysis, these events must be removed from the data sample. 

In the first stage of the analysis, loose cuts are made on the Level 3 

invariant mass and collinearity in order to reject decays containing 

neutral particles. The mass is required to be between 460 MeV/c2  

and 550 M eV /c2  and the collinearity has to be less than 10 

milliradians. These cuts eliminate 89% of the dilepton and k k  triggers. 

A flowchart of the offline data analysis is depicted in Figure 27. To 

keep the minimum bias events from numerically overwhelming the 

physics events, minimum bias events are further prescaled by a 

factor of either 3 or 6 , in addition to the online prescale of 2,000 or 

1 ,0 0 0 , in order to maintain a constant total prescale factor of 6 ,0 0 0 .

A pattern recognition algorithm is then applied to the events 

surviving the Level 3 cuts. This algorithm searches the set of hits in 

the drift chambers for a good pair of tracks. These tracks are 

required to reconstruct to a vertex and to satisfy loose chi-square 

requirem ents on the particle orbits through the magnetic fields. 

Applying the offline Level 3 cuts and the pattern recognition 

algorithm to 2,134 raw tapes used approximately 100 hours of CPU 

time on Brookhaven National Laboratory's IBM 3090 computer. This 

pass of the data analysis reduced the raw data tapes to 229 Pass 1 

output tapes which contained all the original information about the 

accepted events as well as the pattern recognition results.

The consistency of the data and the analysis over time is 

important. In Fig. 28 the fraction of events on a tape which are 

identified as minimum bias Kl - mc+tc-  candidates is shown. The 

reconstruction efficiencies for prescaled dipion events and for
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dilepton events is histogrammed in Figures 29 and 30 for all the data 

tapes used as input for pass 1 of the analysis. All three of these plots 

are quite flat throughout the run.

Table VII

Tapes resulting from stage 2 of the analysis

Tape Number of Events Level 1 Trigger Bit
1 48371 KL-»|A+li-
2 38303
3 54081 Kl

4 44357 Kl-»M+1T
5 51111
6 42648 KL-»li+lt-
7 31424 Kl->M-+M''
8 55672 KL-»ne
9 55799 KL->lie
1 0 55365 KL-»ne
1 1 47667 KL->)ie
1 2 41659 KL-»|ie
13 43313 Kl—»e+e-
14 28511 KL-»e+e-
15 45851 Prescaled KL-»7r+7t-
16 47446 Prescaled KL->rc+Jt-
17 59182 Prescaled Kl-^ jc+jt

18 53564 Prescaled KL-*rc+rc'
19 42334 Prescaled KL-»rc+7t-
2 0 14793 Prescaled Kl-^ ji+jc’
2 1 48246 Minimum Bias
2 2 37294 Minimum Bias

In the second pass of the analysis, events are selected on the 

basis of the pattern recognition results. The collinearity, as calculated
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by the pattern recognition algorithm, is required to be less than 

0.003 radians. Minimum bias and dimuon event types are rejected if 

their reconstructed invariant mass is less than 450 MeV/c2  and 475 

M eV /c2, respectively. Similar invariant mass restrictions are applied 

to the other event types. The tracks identified by the pattern 

recognition algorithm have their orbits through the magnetic fields 

calculated using a table of the integrated magnetic field. The final 

orbit calculation employs the full set of magnetic field measurements 

and steps the particles through the field  using the Runge-Kutta 

technique, which provides more accurate trajectories. This second 

analysis pass takes about the same amount of computer time as the 

initial pass and reduces the data to 22 data summary tapes. These 

summary tapes are sorted according to Level 1 trigger bit. The 

number of tapes and events for each event class is given in Table 

V II.

A set of constraints is then imposed on the kinematic parameters, 

as determined by the iterative calculation, of each recorded event. 

Identical kinematic constraints are applied to both the dimuon and 

minimum bias samples. This set of cuts selects events on the basis of 

the quality of the vertex, the location of the vertex, the continuity of 

the particle orbits, and the volume through which the particles 

passed. These cuts help to further eliminate three-body decays and 

events in which a pion decays. A specific cut is imposed to reject 

lambda decays. The muon hodoscope and the muon rangefinder 

signals are examined to insure that both particles in each dimuon 

event are indeed muons. The number o f background events in the 

m ass-collinearity region for both decay modes is then estim ated
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from the Monte Carlo, and the number of events corrected 

accordingly. In the following sections, a description of the analysis 

cuts, the relative correction factors, and the background estimation 

for the two decay modes is given.

The equation determining the branching fraction of Kl—>|i +p-  is :

B ( K  i i f u r ) -  A *** B ** *  SxKp ) -  N ^ t p S m * A m * e m  ( 5  1}

In Eq. (5.1) is the number of dimuon events remaining after

background is subtracted and Nnn is the number of dipion events in 

the minimum bias sample remaining following subtraction of the 

background. and k n n  are the geometric acceptances of and 

events, respectively, is the correction factor for events lost due 

to mechanisms which do not affect KnJt decays, and enn is the 

correction factor for events which are lost due to mechanisms 

which do not affect decays. PSmb is the product of the online and 

offline prescale factors for minimum bias events. is the

established branching fraction of K^n decays. The final branching 

fraction calculation is presented in the last chapter.
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V.l Pattern R ecognition

In the first pass of the offline analysis, following the cuts on the 

Level 3 mass and collinearity, a pattern recognition algorithm is 

applied to the surviving events. This set of routines takes all the wire 

hits in the drift chambers and searches for combinations of these hits 

which form tracks. All combinations of the found tracks are then 

examined to determ ine which pair form the best vertex. The

momentum of each track is then calculated along with the invariant

mass formed by the two tracks. Cuts are made on the mass and 

collinearity as determined by the pattern recognition routines in the

second analysis pass prior to the final event fitting. The results of the

pattern recognition are used as initial guesses in the event fitting.

Initially, the pattern recognition algorithm searches for sets of 

good wire hits. Most charged tracks will fire a pair of neighboring 

wires in every chamber. Occasionally, only a single wire will fire or 

three wires will fire due to a delta ray or the track passing near a 

cell edge. The drift times, as registered by the TDC's, for pairs and 

trios of wires are examined. Only those sets o f wires whose

combinations of drift times are compatible with a physical hit are 

kept. Single h it wires are matched with neighboring unhit wires to 

form pseudo pairs. Only one wire, out of ten possible wires, in each

view on a side is allowed to be missing a hit. If more than seven wire

planes contain greater then 1 0  hits the event is rejected as too noisy.

In the x-view, a search is then made for pairs of hits in the first 

and second chambers and the fourth and fifth chambers which form 

one-dimensional lines, which are compatible with a track from a
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kaon decay. Possible tracks from the upstream and downstream 

portions of the spectrometer are then combined. If the angles 

between the front and back portions of a possible track agree within 

0.07 radians, they are treated as being a single track. The momentum 

of these tracks is then crudely calculated. In this method a track is 

assumed to undergo a 300 MeV/c kick in the center of each magnet. 

Hits in the middle drift chamber are in this way correlated with hits 

in the other planes. A hit in the third chamber is required to lie 

within 4 cm of the projections from the upstream and downstream 

chambers. If there are only nine hits in a view this maximum 

distance is relaxed to 8  cm. Y-view hits in the front and back pair of 

chambers are subjected to a least-squares fit to select complete 

tracks. The allowable difference in position of a hit in the third 

chamber and the front and back projections must be less than 2  cm 

or 4 cm, for 10 and 9 wire hits in a track, respectively. If there are 

too many tracks at this point in the algorithm, the event is dropped.

At this time the left-right ambiguity, for chambers with one or 

three wires hit, is resolved by checking which side yields the best 

track. The wire hits are then transformed into a single hit location. 

Next, the tracks are combined to form 3-dimensional events. A 

second least-squares fit is performed on the front and back portions 

of the tracks. The front and back tracks are then stepped through the 

magnets to the third chamber. The magnetic field is taken from a 

table of B-dl values. A % 2  is formed independently for each view by 

summing the %2's for the front, back, and middle portions of a track. 

The x- and y-x2's are required to be less than 25. The x- and y-%2's 

are compared for muons and pions in Fig. 31. An event vertex is now
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found by considering all the tracks and taking the pair of tracks, on 

opposite sides of the beam, which have the smallest distance of 

closest approach. All other tracks are then deleted. The reasons that 

events fail are shown in Table VIII.

Table VIII

Pattern recognition outcome for minimum bias events

Pattern Recognition Outcome Fraction of events
Pattern recognition finds a good event 0 .442
No hit in a t least 1 plane on left 0.038
No hit in at least 1 plane on right 0 .054
No hit in planes on both left and right 0.005
7 planes have more than 10 hits 0.031
Less than 4 left-x planes have good time pairs 0.017
Less than 4 right-x planes have good time pairs 0 . 0 2 2

Less than 4 left-y planes have good time pairs 0.028
Less than 4 right-y planes have good time pairs 0.050
Too many x-view tracks 0 .044
No x-view track on left 0 .054
No x-view track on right 0 .054
No x-view track on either left or right 0.017
Too manv v-view tracks 0 . 0 0 1

No y-view track on left 0.041
No y-view track on right 0.041
No y-view track on either left or right 0.009
Too many 3 dimensional tracks 0.059
All of left x-tracks have too large % 2 0.004
All of right x-tracks have too large % 2 0.004
All of left y-tracks have too large % 2 0 . 0 0 1

All of right y-tracks have too large x 2 0 . 0 0 1

The largest losses are due to noisy events. Most of the remaining 

failures are due to missing hits or tracks. There is no evidence for a 

dependence of the pattern recognition efficiency on particle type.
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V.2 Final Event F itting

In the second pass of the offline analysis, following reduction of 

the data sample by cuts on the pattern recognition mass and 

collinearity quantities, all the remaining events are fit using an 

iterative approxim ation technique . 6 1  This fitting produces the final 

track trajectories and vertex information for an event. Fitting is 

performed after the size of the data sample is reduced by the Level 3 

and pattern recognition cuts. M ost of the selection criteria, such as 

the final mass and collinearity, are based on the results of this fitting. 

A set of five %2's is used to judge the quality of the fit determination.

The final fitting steps a particle through the magnetic field 

volume between two successive drift chambers. Differences between 

the projected and actual positions in the downstream chambers are 

then used as feedback for the next iteration through the magnetic 

field. This process is repeated until the fit trajectory agrees with the 

h it wire positions within a predeterm ined set o f lim its. The 

magnitude o f the momentum and the positions of the hit wires 

associated w ith the two tracks, as calculated by the pattern 

recognition, are used for the initial iteration. In the y-view the 

particle begins at the hit positions in the first and fourth drift- 

chamber planes, at the angle formed by the hit positions in the 

successive planes, and is stepped through to the second and fifth 

planes. The differences in the projected positions and the actual hit 

locations, in the second and fifth planes, are used to correct the angle 

of the particle 's trajectory at the first and fourth planes. This



procedure is repeated until the projected and actual hit locations in 

the second and fourth planes differ by less than a set value.

A similar routine is employed for the x-view trajectories. For the 

x-view, particles are started at the first and fifth drift-chamber 

modules and stepped toward the third plane. The differences 

between the projected and actual hit locations in the third and 

second or fourth planes is used to correct both the magnitude of the 

momentum and the initial angle at the first and fifth planes.

A x 2  is calculated for the x- and y-view of each track based on 

how well the front and back fit trajectories match. The x 2  f°r x 

depends on the calculated momenta and the angles at the third plane 

as determined by the upstream and downstream fits:

(5.2)

where Pp and Pb are the momenta as measured in the front and back 

portions of the spectrometer and 0 x f  and 0 xb are the track angles at 

the third plane. A Monte Carlo simulation, incorporating multiple 

scattering and the intrinsic position resolution of the drift chambers, 

is employed to find the expected root-mean square deviations, 0 9 * 

and op. The x 2 for the y-view is determined by the following formula 

and depends on the projected position in the third plane as well as 

the angle:
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where Y3 F and Y3 B are the projected hit location in the third plane as 

determined by fits to the upstream and downstream sections of the 

spectrom eter, respectively.

Lastly, the portion of the trajectories relating to the vertex is 

examined. A common vertex, from which both tracks are presumed 

to have originated, is determined by finding the points on each 

trajectory  w here the tracks achieve their d istance of closest 

approach. The vertex is taken to lie on the line segment joining the 

closest points on each trajectory. Since the uncertainty associated 

with each track in the vacuum region is dominated by multiple 

scattering, the distance along the line segment from the vertex to 

each track is inversely proportional to its momentum. The vertex % 2  

is equal to the distance of closest approach of the two tracks 

norm alized by dividing it by the root-m ean-square deviation as 

determined with the Monte Carlo.

These % 2  serve an important purpose in the analysis. A critical 

test as to whether a pair of tracks originate from the same kaon 

decay is the goodness of the vertex % 2 .  In Fig. 32 the vertex % 2  

distribution is shown for K l-» 7C+7C events, with data represented by 

the solid line and Monte Carlo the dashed line. The Monte Carlo and 

data distributions for the track % 2  are depicted in Figures 33 and 34 

for K l-» 7i+je' decays. The Monte Carlo distribution is represented by a 

dashed line and the data by a  solid line. This convention will be 

follow ed throughout the rest o f this work. There is some 

disagreem ent between data and M onte Carlo in the track % 2  

distributions. There is a similar amount of disagreement for muon 

tracks. Basically, the distributions are more smeared for data events,
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possib ly  from uncertain ties in the m agnetic fie ld  map or 

contamination in the data samples. Events are required to have all 

four of their track % 2  be less than 20.0. The systematic uncertainty in 

the dimuon branching fraction associated with the track % 2  anomaly 

is at most 1 .6 % and probably less. 6 2
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V.3 A perture R estrictions

A set of cuts is made to restrict particle trajectories to regions in 

which a track's path can be reliably predicted. This is done to exclude 

particles which pass through solid objects or regions in which the 

magnetic field is unknown. Particles traversing a solid are subject to 

large multiple scattering, hadronic interactions, and other forms of 

energy loss. Trajectories passing within an unknown magnetic field 

maybe bent in an unknown and therefore uncorrectable manner. 

Either of the previously mentioned mechanisms can result in a false 

calculation of the trajectories and thus cause the reconstructed mass 

and other kinematic variables to be incorrect. Since it is not possible 

to include such effects in the Monte Carlo, the calculated relative 

geometric acceptances will also be wrong.

Events with reconstructed vertexes with a z-position of less than 

9.5 meters are cut to eliminate decays occurring within the fringe 

field of the last sweeping magnet. To insure that the kaon path was 

com patible with the divergence of the beam as defined by the 

collim ators, the solid angles, from the target to the prim ary 

reconstructed vertex, are required to satisfy lx/zl<0.0027 and 

Iy/zl<0 .0 1 0 , where x, y, and z are the coordinates of the reconstructed 

vertex. Tracks are cut which pass through the flange of the vacuum 

window located near the most upstream drift chambers. Distributions 

for the vertex z-position, vertex x/z, and vertex y/z are shown in 

Figures 35, 36, and 37, respectively.
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A few percent of the Knn decays produce a daughter particle 

which passes through part of the 48D48 spectrometer magnet. In 

order to determine if a particle's trajectory intersects part of the 

magnet, the track has to be reswum through the magnetic field using 

the Runge-Kutta algorithm. If a track is swum back through one of 

the magnet's mirror plates or the 48D48 coils, the event is dropped 

from the analysis. All--of these aperture restrictions are also imposed 

on events in the Monte Carlo simulation of the geometric acceptances 

of the different decay modes.
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V.4 Calculation of Acceptances

Determining the branching fraction of Kl -»|J.+|J.' entails knowing 

the fraction of kaon decays for which all of the decay products are 

recorded by our apparatus. This fraction is known as the geometric 

acceptance of our detector system. Since the geometric acceptance 

depends on the kinematics of a decay, it is different for the various 

decay modes. In order to properly normalize our event samples, we 

must know the geometric acceptance for Kn7t decays. Similarly, the 

number of events has to be corrected for the acceptance of the 

detectors for this particular decay mode. decays have a lower

acceptance than Knjt decays, primarily because of the muon’s smaller 

mass. The geometric acceptance of each decay mode is calculated 

using the offline Monte Carlo.

Implemented in the Monte Carlo is a model of the detector 

systems, the target, and the collimators. The spectrum of kaons

produced at the target is generated from an experimentally-derived

parameterized distribution .63 The physics of the decays which occur 

in the vacuum decay region is also simulated. This includes the major 

decay modes of lambdas, pions, kaon, neutrons, and muons. The 

kinem atics of each of these reactions is determ ined from 

conservation of energy, momentum, angular momentum, etc. and 

from Dalitz distributions for the more complicated cases. The decays 

of unstable particles which are generated at the target or result from 

the decay of another particle are fully modelled. All the resulting 

particles are then stepped through the detector systems. The
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multiple scattering and continuous energy loss for charged particles, 

in the detectors and other material along their path, is calculated. 

Bremsstrahlung is also calculated for electrons. If a track passes 

through a detector, the effect on the detector is simulated. This hit 

sim ulation includes time and pulse height inform ation in the 

appropriate counters. The efficiency of the individual detector 

elements is incorporated into the software as well. Accidental 

backgrounds are produced through the decay of two or more kaons 

in the same event.

Table IX

Selection requirements for sample

Description of Cut Cut Value
Level 3: collinearity(radians) <0 . 0 1 0

Level 3: invariant mass(GeV/c2) >0.460
Pattern recognition: collinearity(radians) <0.003
Pattern recognition: invariant mass(GeV/c2) >0.475
Iterative fit: collinearitv(radians) <0 . 0 0 1

Iterative fit: invariant mass(GeV/c2) >0.4927
Iterative fit: invariant mass(GeV/c2) <0.5027
Iterative fit: vertex % 2 < 1 0 . 0

Iterative fit: x-track % 2 <2 0 . 0

Iterative fit: y-track % 2 <2 0 . 0

Iterative fit: vertex Ix/zl position <0.0027
Iterative fit: vertex ly/zl position <0 . 0 1 0

Iterative fit: vertex z-position(meters) >9.5
Iterative fit: A° mass, outbend, and IAP/ZPI <0.62
Iterative fit: track momentum(GeV/c) >1.5
Muon hodoscope total confidence level >0 . 0 1

Muon rangefinder (actual gap - expected gap) >-4
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For the acceptance calculation the same cuts are placed on the 

simulated events as are imposed on the data. As for the actual 

analysis, pattern recognition and the iterative fitting are performed 

on the Monte Carlo events. The full set of analysis cuts, as listed in 

Table IX, are used. The exceptions being that the Level 1, the Level 3, 

and muon identification are not simulated. Separate corrections must 

be used for the previous three classes of cuts, as well as for the 

nuclear interactions of the tracks with the material of the apparatus, 

since they are not included in the software. Trajectories of particles 

are required to intercept the trigger hodoscope and the muon 

hodoscope. Acceptances of the different decay modes is given in 

Table X. The acceptance of relative to KnJr is 0.8235 +/- 0.0077. 

The degree of agreement between Monte Carlo and Kj^ data is 

displayed in Figures 38, 39, 40, 41, and 42.

Table X

Geometric acceptances of the various decay modes

Decay Mode A cceptance
K l -»X+7T 0 .0272
Kl — 0.0224
k l — 0.0164
K l —Mtpv 0.0131
KL->7tev 0.0114
K l ~>X+7l-JC° 0.0166
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V.5 Pion H adronic Interactions

One of the major distinctions between muons and pions is that 

pions are hadrons and are therefore subject to strong interactions. As 

pions from Knit decays pass through the spectrometer and other 

detector system s, some of them are hadronically scattered by 

nucleons in the apparatus and the surrounding atmosphere. The 

p lacem en t o f helium  bags throughout the de tec to r system  

significantly reduces the probability of these interactions, since 

helium nuclei have a small hadronic cross section. Pions, which 

scatter within the spectrom eter, are likely to be rejected by 

collinearity or % 2  cuts. A necessary condition for a KL-»7t+rc-  event to 

be included in the normalization sample is that it must have 

generated a level zero trigger by firing the first three drift-chamber 

modules and all the trigger scintillation hodoscope modules. If a pion 

suffers a deflection or undergoes a nuclear interaction in which only 

neutral daughter particles are produced, a Level 0  trigger may not 

result and the event will be lost. A correction to account for this 

missing fraction of Knn events must be factored into the branching 

ratio calculation.

The portion of Kjtn events which are lost because of nuclear 

scattering between the vacuum window and the fifth drift chamber 

is calculated from the total or geometric cross section. It is assumed 

that any hadronic scattering within the spectrometer volume will 

cause a pion track to be discarded. The fraction of dipion decays 

which scatter in the spectrometer is calculated6 4  to be 0.59%.
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In estimating the percentage of pions which fail to fire the trigger 

hodoscope, the measured nuclear absorption cross sections are used. 

Calculations show that 2.87% o f the K l-» 7c+jc-  events have at least one 

track suffer an inelastic scatter in the upstream trigger hodoscope or 

Cerenkov. The GEANT Monte Carlo code is employed to find the 

fraction of these inelastic scatters which fails to produce a charged 

track in the downstream trigger hodoscope. Simulations show that 

71% o f  the inelastically scattered particles generate hits in the 

downstream trigger hodoscope. Combining these factors gives a 

correction for events which are lost due to nuclear interactions of 

1.5%. The probability of a K l “ >jc+te“ event undergoing a hadronic 

interaction in the various elements of the apparatus is given in Table 

XI.

Table XI

Probabilities for a  pion to hadronically interact with the apparatus

A p p ara tu s Total cross section Inelastic Scattering
Vacuum window 0 .0 0 0 9 7 0.00045
Drift chambers 0 .0 0 1 6 0 0.00130
Helium bags 0 .0 0 3 3 7 0.00246
Trigger counters 0 .0 2 1 0 3 0.01560
Cerenkov 0 .0 1 9 5 0 0.01224
Air 0 .0 0 0 5 2 0.00421
Window-DC5 0 .0 0 5 9 4 0.00421
Trigger & Cerenkov 0 .0 4 1 0 5 0.02829
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V . 6  Hadron Decay Backgrounds

An assortment of particle species is generated by the proton 

beam interacting with the copper target. Most varieties are charged 

and are therefore deflected out of the beam by the sweeping 

magnets. Some of the neutrals; e.g., neutrons, neutrinos, and photons, 

only register in the spectrometer if they interact with the vacuum 

window or the drift chambers. Other neutrals such as 7c0  and Z° are 

too short-lived by many orders of magnitude to reach the decay 

region. Three neutral particles are relevant to this analysis: 2 °, A0, 

and Ks in that they can kinematically mimic the decay Kl-»te+7i:“.

Potentially the most difficult background to reject is that which 

results from the decay of Ks-»je+jc“, which is the Ks major decay mode. 

This decay is kinematically identical to the decay K l—»7i+7i- , which is 

used to normalize this experiment. Due to decays, the intensity of Ks 

is reduced relative to that of K l by the beginning of the vacuum 

volume. The smaller number of Ks relative to K l is partia lly  

compensated by the greater probability of a Ks decaying if it reaches 

the vacuum region. Requiring the z-position of the reconstructed 

vertex to be greater than 9.5 meters reduces the number of accepted 

K s to a low level. Demanding that the reconstructed vertex satisfy the 

conditions lx/zl<0.0027 and ly/zl<0.010, as w ell as having a 

collinearity less than 1 milliradian, rejects decaying primary particles 

which were not produced at the target, such as a regenerated Ks. 

However, some high momentum Ks do enter the vacuum region 

before decaying.
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The number of K^n events in our minimum bias normalization 

sample must be corrected for the contamination of Ks decays. There 

are two distinct contributions to this contamination: 1 ) Ks produced 

at the target and decaying into a pair of charged pions and 2 ) 

interference between the K s - > tc +tc -  and K l-> 7 c + ji:-  amplitudes. The 

probability for a K° to decay into a pair of charged pions is found by 

squaring the sum of the K s ^ % + n ~  and Kl^tc+jc- amplitudes:

|(^+7r"|H!/C0(r))| ~ e'**1 + \r}+.\ze ,/tL + 2|7j+_|e ^ /2T*+,/2f^ cos( AmKt / h  -  0+_)

(5 .4)

where A iuk is the Ks - K l mass difference and t l  and ts  are the 

lifetimes of the K l and Ks, respectively. From the Monte Carlo, kaons 

decaying into a pair of charged pions are simulated. Each simulated 

event is weighted by the relative probabilities of the decay having 

resulted from a K l, Ks, or from the interference term. Summing these 

three probabilities over many events and taking the effects of the 

kaon’s momentum and decay position into account, yields the 

percentage of dipion events not resulting from  K l decays. 

C a lcu la tio n s 6 5  show that the fractions of the normalization sample 

coming from Ks and K° interference are 0.0089 and 0.0128, 

respectively .

The A° and the S° have proper lifetimes of 2.6 x 10_1° and 2.9 x 

10’10, respectively. Thus the number of A° and 3 °  is significantly 

reduced in traversing the distance from the target to the upstream 

edge of the decay region. Still, potentially millions of these hyperons 

decay within the vacuum region during data taking. The primary
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decay mode of the neutral cascade hyperonis E°-»A°7tO, producing a 

A 0  in almost every decay. In turn the AO decays into a proton and a 

negative pion 64% of the time. A fraction of the phase space of this 

decay can imitate the decay KL-»rc+rc- , thus causing the dilepton 

branching ratio  to be norm alized im properly. The invariant 

reconstructed masses of the events in the normalization sample are 

shown in Fig. 43, where the positive track has been assigned the 

proton's rest mass and the negative track the pion’s rest mass. The 

invariant mass of these events, using the dipion mass hypothesis, is 

restricted  to the range 492.7 to 502.7 M eV/c2. There is clear 

evidence of A°s at 1.115 GeV/c2  in this plot.

There are several properties of the decay A °-» p  + jc“ which 

distinguish it from KL^rc+7c-. One finds that the ranges of momentum 

asymmetries for KL-»n+rc“ and A °-»p+j r  are 0.00 to 0.83 and 0.51 to 

0.87, respectively. The momentum asymmetry distribution for the 

K l — mi ni mum bias data set is shown in Fig. 44. There is a 

distinct peak in the data plot, which is not present in the M onte Carlo 

plot. The events in the high momentum asymmetry peak are the 

same events with reconstructed masses in the A 0  mass peak in Fig. 

43. The momentum asymmetry of events selected with the proton 

and pion mass hypothesis, which have invariant masses within 25 

M e V /c 2  of the A0  mass, is displayed in Fig. 45. This plot shows that 

the majority of A ° 's  in our minimum bias sample possess a 

momentum asymmetry greater than 0.6. The invariant mass of A° 

events is plotted in Fig. 46, after selecting A°'s with momentum 

asymmetry above 0.6. If not removed, A°’s will introduce an error 

into the estimation of the number of K l—Mt+n;-  events in the minimum
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bias sample. Due to the geometric acceptance of the spectrometer 

only A0  decays with the proton on beam left are capable of causing a 

Level 1 trigger. Events with a positive track on beam left are 

outbend events.

A set of requirements is used to determine if an event is a A° 

decay and to exclude them from the normalization sample. If an 

event satisfies all three of the following criteria then it is rejected: 

outbend topology, momentum asymmetry greater than 0.62, and a 

proton/pion reconstructed mass between 1.090 GeV/c and 1.140 

GeV/c. This cut eliminates 90 events from the final normalization 

sample. All of these events are probably from the decay A°->p+7c-.
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V.7 Norm alization of Sample

To establish the number of kaon decays observed in our 

experiment, we record a sample of events with no cuts. The number 

of K l—>7t +7E_ decays in this minimum bias data set is used to normalize 

the dilepton physics samples. The accepted branching fraction for 

KL-»Jt+Jr, as given in the Particle Data Booklet, in combination with 

the geometric acceptance for the various decays modes, allows us to 

determine the number of kaon decays occurring in our detector.

To the extent possible, identical selection criteria are imposed on 

the and minimum bias Knn samples. This procedure minimizes the 

number of correction factors needed to account for differences in the 

two samples. Since the efficiency of vetoes is difficult to ascertain, no 

particle identification cuts are placed on the events. So that we

could study the Level 3 offline, the Level 3 mass and collinearity

restrictions are not imposed on the minimum bias events. Effects, 

such as nuclear interactions, which are relevant only for pions, must 

also be taken into account. After applying all the cuts listed in Table 

IX, except muon identification and Level 3, a subset of the minimum 

bias sample of events appears in Fig. 47. Clearly a significant 

amount of background is present.

The offline Monte Carlo is employed to estimate the shape of this 

background. We assume that this background is due to the known

decays of the long-lived kaon. The mass spectrum of the minimum 

bias sample with a simulated background due to K^3 a n d K e 3 

superimposed is depicted in Fig. 48. The ratio of the number of
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simulated background events under the Knn peak and in the regions 

to either side of the peak is used to estimate the contamination in the 

mass region of 492.7 to 502.7 MeV/c2. The ratio of the absolute 

number of events to either side of the peak in the data and Monte 

Carlo samples is used to scale the simulated sample to data. After 

subtracting 1,021 background events under the Knitpeak, this method 

yields 8887 +/- 126 Kl-» jc+tu* events in the minimum bias sample.
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V.8 L evel 1 Trigger B it Correction

AH events satisfying the Level 1 trigger have their logic signals 

passed to a second PLU, which classifies each event according to the 

reason it passed the Level 1 (i.e. p p , pe, rcrc, minimum bias, etc.). The 

results from  the PLU are then sent to a latch module. I f  there are 

associated hits in the muon hodoscope or Cerenkov detectors, events 

have a dilepton Level 1 trigger bit set in the trigger latch module 

(TLM). This additional set of logic may cause some dilepton physics 

events to be lost. This is possible because their particle identification 

signals m ay arrive out of time at the trigger bit PLU or because of 

some inefficiency within the PLU itself. This can resu lt in the 

appropriate lepton trigger bit not being set. To establish the fraction 

of dim uon events which fail to satisfy the trigger bit logic, the 

minimum bias data set is examined for events in which both tracks 

are identified as muons. A track was considered a muon, if  it met the 

same requirements as used for the final offline selection of K l-» p +p- : 

the muon hodoscope probability has to be greater than 1 % and the 

track m ust penetrate the rangefinder to within three gaps of the gap 

expected from the momentum measured in the spectrometer. The 

event also  has to satisfy all the aperture, track, and vertex analysis 

cuts as well. The subset of minimum bias events which have two 

muons is then examined to see how many have the K l-» p +P” Level 1 

trigger b it set. Using this technique the Level 1 trigger bit efficiency 

is found to be 0.981+/-0.007 for dimuon events. S tatistically  

equivalent efficiencies were found for the other three dilepton 

triggers.
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V.9 Level 3 Correction

The preliminary stage of the analysis, both online and offline, 

involves the third level trigger calculation which is performed in the 

3081/E emulators. As discussed in the chapter on data acquisition, a 

rough track-finding algorithm is performed online and cuts are made 

on mass and collinearity for all the event types except minimum

bias. Although no cuts are made on the minimum bias sample, Level

3 calculations are performed on these events and the resu lts are

written to tape as they are for all events which pass the Level 3 cuts.

Since some dimuon events are rejected by the Level 3 and no cut is 

made on K L ^ 7t+Jt-  normalization events, a correction must be made to 

account for the inefficiency of the third level trigger algorithm for 

Kl->P-+M-“ decays.

There is no minimum bias K l-» |i+p~ sample with which to  measure 

directly the Level 3 efficiency. Nevertheless, an estimate for the 

Level 3 correction can be obtained by studying minimum bias Knjl 

and Kji. 3  events. Using the same selection requirements as for the 

actual K l-»P .+(x-  analysis along with vetoes on the muon hodoscope 

and Cerenkov counters to reject semileptonic decays, a sam ple of 

good K l-> 7c+ji:- decays are obtained from the minimum bias data set. 

This K„n sample is then subjected to the same Level 3 mass and 

collinearity cuts which are made on the candidates. The ratio of 

the numbers of events before and after the Level 3 cuts gives the 

efficiency of the Level 3 algorithm for KL-»rc+JE" decays as 0.785 +/.
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0.007. A plot of the Level 3 mass versus the mass calculated by the 

iterative fit is shown in Fig. 49.

By examining minimum bias KH 3  events with high mass and small 

collinearity a value of the systematic uncertainty associated with the 

Level 3 correction can be derived. The same aperture, track, vertex, 

and muon identification cuts as employed for the analysis are 

used to select events with collinearity less than 0 . 0 0 1  radians. 

The Level 3 mass and collinearity cuts are then applied to this 

sample with the ratio of the number of events before and after the 

Level 3 cuts giving the efficiency for K^ 3  events. The efficiency of the 

third level trigger for decays is found to be 0.770 +/- 0.013. 

Taking the difference between the Level 3 efficiencies for K^ 3  and KnjI 

to be a lower bound gives 0.015 as the systematic uncertainty to be 

associated with the Level 3 cuts for

This is probably an over-estimate of the Level 3 systematic error. 

Sixty-four percent of the events which fail Level 3 do so due to wire 

inefficiencies in the drift chambers. Studies of the data show the wire 

efficiency to be statistically indistinguishable for muons and pions. 

There is also a slight dependence of the Level 3 efficiency on the 

multiplicity of an event. Events which Level 3 fail to reconstruct 

have an average multiplicity of 35.2, summed over the 10 upstream 

planes, whereas events reconstructed by Level 3 have an average 

multiplicity of 32.6. Since both the Knn normalization and samples 

are collected at the same beam intensities, the rate dependence of 

the Level 3 should be uncorrelated with decay mode. The Level 3 

efficiency for good dipion decays varies during the period of data 

collection. Since the dimuon and minimum bias samples are collected
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simultaneously, this time dependence of the Level 3 efficiency does 

not introduce a relative bias between the two samples.

Studies are also done of the dependence of the Level 3 efficiency 

on the z-vertex position of the decay, the x-view opening angle, the 

y-view opening angle, the x-position of a track at the first drift 

chamber, and the kaon momentum. Distributions for all events and 

also for those passing Level 3 are shown in Figures 50 and 54 for 

each of these kinematic parameters. The distribution of passing 

events is shown as a dashed line. No evidence for a systematic 

dependence of Level 3 on these kinematic parameters is found.
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V.10 Muon Identification

Selecting candidates for the decay K l - > p +|1" requires differentiating 

among muons, pions, electrons, and other particle types present in 

the beam. The muon hodoscope and the muon rangefinder are used 

to identify muons, the basic idea is that muons are more likely to 

pass through the leadglass and iron filter w ithout interacting 

significantly. To use the muon hodoscope and the muon rangefinder 

for particle identification, the behavior of the various particle types 

in these detectors must be understood. Two methods are employed 

to obtain this understanding: the response of the detector to actual 

particles is studied using data and the interactions of particles are 

simulated with the E791 offline and GEANT Monte Carlo codes.

To study the behavior of muons, a sample of K l—»7chv decays is 

culled from six minimum bias tapes with a set of cuts designed to 

eliminate the other major decay modes. A detailed explanation of 

these cuts follows.

Due to the presence of unobserved decay products and the 

ambiguity of assigning various masses to the secondary particles, the 

reconstructed invariant mass will generally differ from that of the 

neutral kaon's rest m ass. The reconstructed invariant mass 

distributions with the pion mass assigned to both tracks, as 

generated with the E791 offline Monte Carlo, of Kl ->7i;+7c- , K l ->7c+7i_k0, 

Kl->JCM-v, KL-> 7cev decays are shown in Figures 55, 56, 57, and 58. 

Assigning the pion rest mass to both charged tracks, the invariant 

kaon mass is required to be between 0.410 GeV/c and 0.460 GeV/c.
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By restricting the invariant mass to the previously mentioned range, 

the and K l - » jc+ic_ jc°  events are effectively eliminated.

The decay Kl-»jcp.v only populates a certain area of the mass- 

collinearity phase space. The mass-collinearity distributions for KM3  

decays were studied for both data and Monte Carlo. The data sample 

of Kji.3 events is found to have an excess of high collinearity events 

relative to the Monte Carlo sample. A cut is therefore made at 16

milliradians to remove these high collinearity events.

The next step is to suppress the KL->rcev decays. To accomplish 

this, one track is designated as the "pion track" and the other as the 

"muon track". If either track has a momentum of less than 6.0 GeV/c 

and there is a hit in one of the Cerenkov tubes associated with that 

track, the event is rejected. The Cerenkov thresholds for muons and 

pions are 6.3 GeV/c and 8.3 GeV/c, respectively. Distributions of the 

energy observed in the lead glass divided by the track momentum 

are shown in Fig. 59 for muons and electrons. To reject electrons, 

both tracks in an event are required to have the ratio of energy to 

momentum be less than 0.30. To establish that the "pion track" is not 

actually a muon, the track's momentum is required to be greater 

than 2.5 GeV/c and the muon hodoscope on the "pion track's" side 

had to be free of hits.

Since the probability of accidental background events depends on

the beam intensity, the data set used for muon studies is selected so

as to have the same average beam intensity as the dilepton data set. 

The average beam intensity is 3.1 x 101 2  protons per AGS pulse.

The sample described above is used to study the muon 

hodoscope. Two parameters of a muon hodoscope hit are used for
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partic le  identification: the phototube tim es and the separation 

between the hit scintillator's center position and the drift-chamber 

track projection. Raw times are adjusted for the propagation time of 

light along the scintillator to the phototube. An event-time zero, 

determ ined from  the trigger scintillator counters and the drift 

chambers, is subtracted from the adjusted time. A time offset for 

each phototube is determined by fitting a distribution of corrected 

hit tim es with a Gaussian and a flat background. The centroid of the 

Gaussian is used as the time offset for each channel. Taking the 

propagation delay, event-time zero, and channel offset into account 

yields the corrected hit time.

All hits in the muon hodoscope have their positions compared 

with the intersection of the trigger tracks with the muon hodoscope. 

The two most downstream drift chambers are used to project the 

tracks back to the muon hodoscope. Residuals are calculated for both 

horizontal and vertical counters by taking the absolute value of the 

difference between a hit's position and the track's projection.

Distributions are made for both the space residuals and times of 

hits for muon tracks in the muon sample. Confidence level arrays are 

calculated from these distributions by integrating the fraction of hits 

which have a tim e or space residual greater than a particular set of 

values. These sets of values define the limits of the bins which 

correspond to the array entries. The space residuals are primarily 

due to multiple Coulomb scattering in the leadglass and iron hadron 

filter and are therefore momentum dependent. To take this into 

account, the space-match confidence levels are divided into five sets, 

where each set contains information for a distinct momentum range.
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Associated with each track are confidence levels for: x-position, y- 

position, two x-phototube times, and a single y-phototube time. 

These individual confidence levels are then converted into a % 2  value. 

It is assum ed for this conversion that th e  confidence level 

distributions are Gaussian and independent of each other. The five 

3C2's are then summed to form a single overall % 2 . This overall x 2 is 

then converted back to an integrated confidence level for the track.

For the dimuon analysis a track is required to have a muon 

hodoscope integrated confidence level of greater than 0.01. Since the 

individual confidence levels are  not independent and their 

distributions are not exactly Gaussian, the efficiency of the integrated

confidence level cut has to be measured. Using muons from the Kp.3

sample, the efficiency of the muon hodoscope cu t is determined to be 

0.974 +/- 0.003. Since this efficiency is momentum dependent, the

efficiency must be integrated over the momentum distribution of

muons from Kl-»p +P'- . The muon hodoscope efficiency is shown in 

Table XII.

Table XII

Muon efficiency versus track momentum

Track Momentum |i-Rangefinder eff. li-Hodoscope eff.
1 .5 -1 0  GeV/c 0 .9936+ /-0 .0013 0.973+/-0.003
1.5 - 2.0 GeV/c 1 .0 0 0 0 +/-0 . 0 0 0 1 0 . 8 6 + /- 0 . 0 2

2.0 - 3.0 GeV/c 0 .9963+ /-0 .0015 0.977+/-0.003
3.0 - 4.0 GeV/c 0 .9928+ /-0 .0023 0.977+/-0.003
4.0 - 5.0 GeV/c 0 .9917+ /-0 .0042 0.977+/-0.003
5.0 - 6.0 GeV/c 0 .966+ /-0 .032 0.977+/-0.003
6.0 - 10 GeV/c 0 .977+ /-0 .013 0.977+/-0.003
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The inefficiency has three causes: cracks between the scintillators, 

out-of-time hits, and large multiple scattering. Since a one percent 

confidence level cut is made, the tails of the time and space residual 

distributions are lost. This loss represents about a 1.2% inefficiency. 

There are more early than late time hits, indicating accidentals 

occasionally fire a phototube before the trigger particle does. Early 

accidentals contribute an inefficiency of about 0.5%. The remaining 

0 .6 % inefficiency is assumed to be due to cracks between the 

sc in tilla to r paddles. This corresponds to inactive gaps of 

approximately 0.05 cm between detectors, assuming the particles are 

normally incident.

A given muon, depending on its momentum, will have a certain 

probability of passing completely through the iron filter. In order to 

correct for the loss of low-momentum muons in the iron, one of these 

probability functions has to be integrated over the muon momentum 

spectrum for decays. This method involves uncertainties

associated with the momentum spectrum generated by the offline 

Monte Carlo and the muon loss probability function from GEANT or 

data. Another method employed is to make a low-momentum cut on 

each track. The momentum cut also involves uncertainties in the 

muon momentum spectrum. Since the muon loss probability function 

is not used, a source of uncertainty is eliminated. To minimize the 

uncertainty, the momentum of a track is required to be greater than 

1.5 GeV/c. This also reduces the number of low-energy electrons, 

from Ke 3  decays.

Additional muon identification is provided by the muon 

rangefinder. Muons of a given momentum will on average penetrate
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a certain distance into the rangefinder. By comparing the observed 

penetration in the rangefinder with the penetration expected from 

the momentum measured with the drift-chamber spectrometer, it is 

possible to reject events involving the leakage of pion interaction 

products through the iron filte r and accidentals in the muon 

identification detectors.

A pattern recognition algorithm is used to find the terminal gap of 

a track in the rangefinder. The first step of the algorithm is to project 

the charged particle track from the downstream drift chambers to 

the first gap of proportional tube planes in the rangefinder. The 

extrusion intersected by the track projection is used as the initial 

guess as to the starting position of the track in the rangefinder. Due 

to multiple Coulomb scattering, some of the actual trajectories do not 

intersect the projected extrusion.

Taking this scattering into account, the single extrusions to either 

side of the projected one, as well as the central extrusion, are 

checked for hits. If one of these three extrusions in the current gap is 

found to have fired, the corresponding extrusion and the single 

extrusions to either side of it in the following downstream plane are 

examined for hits. Furthermore, if none of the three extrusions in the 

current gap are hit, the three corresponding extrusions in the 

following downstream plane are examined for hits. This procedure is 

repeated until two consecutive planes are found with no hits in the 

extrusions associated with the track or until the most downstream 

gap is reached.

The above procedure is carried out independently for the x- and 

y views. The observed terminal gap for a track is taken to be the
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maximum of the x- and y-terminal gaps. Tracks which exit from a 

side of the rangefinder are treated as if the track had stopped at the 

point of exit. If a track penetrates to within at least three gaps 

upstream of the gap expected from the momentum measured in the 

spectrometer, it is considered a muon.

The rangefinder response is simulated by generating kaon decays 

with the E791 offline code and then passing the kinematics of the 

event to the GEANT code. There are no accidentals present in these 

simulated events. Using this software, it is found that multiple 

Coulomb scattering causes 3.3% of the muons to exit the side of the 

rangefinder before stopping. However, only 0.8% of the muons exit 

more than 3 gaps upstream of the expected gap and would thus fail 

the muon identification cu t . 6 6  Again these numbers do not take 

accidentals into account. The stopping distribution of muons from 

KL“ »M-+|r% as calculated with GEANT, is shown in Fig. 60. The stopping 

distribution for the muon data sample is shown in Fig. 61. The 

distribution in Fig. 61 shows that a cut at -4 gaps yields an efficiency 

of 0.9944 +/- 0.0014 for muons from decay.

The attenuation of pions passing through the lead glass array and 

the iron hadron filter is studied with the GEANT Monte Carlo. 

Simulations show that 0.7% of the pions from Knit decays hadronically 

interact in the iron or glass and generate secondary charged particles 

which then fire the muon hodoscope and satisfy the rangefinder 

requirement. Table XIII gives the probability of pion interaction 

products leaking through the iron and the rejection factor resulting 

from our muon selection criteria. About one tenth of the
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Table XIII

Leakage of pions through the iron

it Momentum Leakage Probability Rejection Factor Fake p.
1.5 - 15 G eV /c 0 .1 1 7 0.942 0.007
1.5 - 2.0 GeV/c 0 .0 0 5 0.023 0.000
2.0 - 3.0 GeV/c 0 .0 2 4 0.023 0.023
3.0 - 4.0 GeV/c 0 .0 4 8 0.973 0 . 0 0 1

4.0 - 5.0 GeV/c 0 .0 9 7 1.000 0.000
5.0 - 6.0 GeV/c 0 .1 4 2 1.000 0.000
6.0 - 15 GeV/c 0 .2 2 4 1.000 0.000

pions generate photons which reach the muon hodoscope. The typical 

energy of these photons is less than 10 MeV/c2. Two-thirds of the 

charged secondaries exiting the downstream face of the iron are 

pions which have an average energy of 0.53 GeV/c2. Electrons and 

positrons make up most of the remaining charged tracks. The pions 

are the only one of these which can possibly fire more than a single 

proportional tube module in the rangefinder.

Pions which decay in flight between the last drift chamber and 

the lead glass array produce muons which pass through the iron and 

fire the muon hodoscope. About 3.2% of the pions from Kl —>Jtfxv decay 

in this region. The pion-decay muons possess less momentum than 

the parent pion and are emitted at a slight angle to the pion's original 

trajectory. However, studies indicate that our muon identification 

cuts reject less than one quarter of these muons. The differential gap 

distribution for pions is given in Fig. 62. Notice the peak centered 

about zero from pion decays in flight.

In order to properly incorporate the momentum dependence of 

the muon-selection cuts, decays are simulated with the Monte
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Carlo and events are weighted by their chance of satisfying the muon 

cuts. This probability is determined using a lookup table similar to 

Table XII. The fraction of events passing the muon hodoscope and 

rangefinder requirements is 0.922 +/- 0.005.
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V .ll Number of Kt .->p+p.- Candidates

The last number required to calculate the branching fraction of 

Is the number of events observed. Obtaining this

entails estimating the number of background events within the 

acceptable mass and collinearity  region. Since K l — is 

kinematically similar to K l-> ti+7c‘, candidate events are accepted 

within the same mass and collinearity region. A scatter plot of the 

dimuon data sample, after application of all the cuts in Table IX, is 

shown in Fig. 63. Figures 64 and 65 show the mass and collinearity 

projections of this scatter plot. The mass histogram contains a distinct 

peak centered at 498.0 Mev/c2  w ith a standard deviation of 1.6 

M e V /c 2. There is little  background immediately outside of the 

fiducial area. There are 87 events with collinearity less than 0.001 

radians and an invariant mass between 0.4927 and 0.5027 GeV/c2.

Two possible major sources of background exist: 1) K l—>n:p.v where 

the pion decays as 7t-> pv , 2 ) K a r c e v  where the pion decays and the 

electron is misidentified as a muon. Most of the events with invariant 

mass below 0.489 GeV/c2  are probably due to K l—»7t|iv . The invariant 

mass spectrum for this reaction, assuming the pion is misidentified 

as a muon, has an endpoint of 0.489.3 GeV/c2. Errors in the 

measurement of the tracks' momenta can result in invariant masses 

higher than the Dalitz endpoint. If the pion decays in flight, there will 

be two muons downstream of the iron. It is difficult to distinguish 

this pair of muons from a genuine decay with only the muon 

hodoscope and rangefinder. Pions which decay upstream of the first
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drift chamber are rejected by the collinearity and vertex % 2  cuts. The 

track x 2 s  reject the majority o f pion decays occurring between the 

first and fifth drift chambers.

Ke3 decays can mimic decays, if the pion decays into a muon 

and neutrino and the electron is misidentified as a muon. The muon's 

mass is used to calculate the invariant mass of the two tracks and 

shows that the mass and collinearity fall evenly about the region 

occupied by decays. Collinearity and % 2  cuts help to eliminate this 

source o f background. H ow ever, the muon hodoscope and 

rangefinder requirements are crucial in rejecting K e 3  decays. From 

energy measurements in the leadglass (see Fig. 6 6  showing the 

dimuon sample without muon identification), it is clear that Ke 3  

events are a serious background. Since these events are expected to 

be evenly distributed in mass and collinearity, as opposed to 

decays which should be predominantly at low mass, it is possible to 

distinguish them from events.

Two methods are used to determine the background in the 

fiducial region. The collinearity projection for events with invariant 

masses between 0.4927 and 0.5027 GeV/c2  is the distribution used 

to estimate the number of background events from K e 3  decays. For 

small angles the solid angle is proportional to the square of the 

collinearity. So the number of events per unit of collinearity should 

be constant away from the peak. Using the average number of 

events per 0 . 0 0 0 0 0 1  (radians ) 2  for events with masses within the 

accepted range and collinearities above 0 . 0 0 1  radians, leads to an 

estimate of 0.7 background events. There is a single track in the final
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sample with a leadglass energy indicative of an electron. This 

source of background is probably associated with K<>3 decays.

The second way to estimate the background is to project a fit, to 

the low-mass events, under the peak. This is difficult to do since the 

form of the distribution is not known and there are a limited number 

of events to fit. This calculation involves events from decays. A 

logarithmic function seems to work the best. Use of this method 

yields 86.5 events. Given the uncertainties associated with

the second method, I chose to use the first method and thus find the 

number of events to be 86.3.

Many of the distributions of the kinematic and particle 

identification of the 87 KL-»p.+p.‘ candidates are compared with Monte 

Carlo simulations of the same quantities in Figures 67 through 77. 

The Monte Carlo predicts that 70% of the events should have tracks 

which bend inward in the upstream magnet, this compares well with 

the 6 8 % found in the data. Given the low statistics the data agrees 

quite well with the Monte Carlo simulation.

As a check on the muon identification requirements, the number 

of events is estimated without using any particle type

determination. The invariant mass and collinearity squared for these 

events are displayed in Figures 78 and 79. Use of the form N evcnts=  

1 18.629*(m ass-480  M e V /c 2 ) ( - o .6 7 6 3 ) T leads to 173.9 background

events and 83.1 good events. The collinearity method gives the 

number of background events with collinearity less than 0 . 0 0 1  

radians, as 173.3 +/- 8 . This leaves 83.7 events. Many of these 

background events are clearly from Ke 3  as shown by the peak at 1 . 0  

in the energy measured in the leadglass divided by the momentum
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determined by the drift chamber (see Fig. 6 6 ). This peak at 1.0 

indicates that one of the tracks is an electron.

In addition to all the correction factors previously discussed, the 

number of events where one of the muons decays in flight must be 

considered. Any decays within the decay volume, the drift-chamber 

system, or the rangefinder should be rejected by the selection cuts. 

This effect is accounted for by the Monte Carlo calculation of the 

geometric acceptances or by the efficiency for the rangefinder cut. 

However, if a muon decays after the fifth drift chamber and before 

the muon hodoscope it will not satisfy the muon identification 

requirements and possibly not cause a Level 1 trigger. The lose of 

these events m ust be taken into account. Averaging of the 

momentum spectrum for decays yields a correction factor of

1.0007. In Figures 80 through 83 event displays for two of the final 

87 Kjin events are shown.
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V.12 Measurement of the Ratio T ( K t ^ 7c+7rVr(KT ->TrpV|,l

Most of the methods used to measure the decay rate for K l - » | i +P ‘ 

can be verified by measuring the branching fraction of K l - » jc+ ji: \  This 

calculation involves: kinematic cuts, muon selection, background 

subtraction, and the geometric acceptance, and so is sensitive to 

systematic errors in these quantities. Determining the branching 

fraction of KL-»7tp.Vn serves as an additional test of the data analysis. 

This second check provides a test of the Monte Carlo acceptance 

simulation for all the major decay modes of the K l. Also, background 

from a source other K l decays should result in a discrepancy in the 

branching fraction of KL-ntpVn.. These studies do not test the Level 1 

or the Level 3, since uncut minimum bias events are used in this 

study.

In general all the cuts placed on the dimuon sample and 7c jc 

normalization sample are to select events for this study. However, 

some of the specific cut values are different. All three data samples 

(i.e. KL-»7CM'V(i(KL->rc+rc*, and KL-»all) are chosen using the following 

restrictions: track x %2 <2 0 .0 , track y % 2 < 2 0 . 0 ,  vertex %2 < 1 0 . 0 , 

ix/zl<0.0027, ly/zl<0.010, I(Pl - P r ) / ( P l + P r ) I< 0 .6 2 ,  and P Tr a c k < 1 0 . 0  

GeV/c, where P l  and P r  refer to the left and right side track 

momenta, and x, y, and z are the coordinates of the vertex. All the 

above quantities are the result of the iterative event fitting. Only 

events with invariant mass between 0.493 and 0.503 GeV/c2  and 

collinearity less than 1 mR are counted as Knn decays. The Monte 

Carlo is used to estimate the background in the Knn sample. The
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standard muon selection criteria are employed to identify events. 

That is at least one of the tracks in an event had to possess a muon 

hodoscope confidence level greater than 0 . 0 1  and penetrate into the 

rangefinder to within three gaps or less of the gap expected based on 

the momentum measured by the spectrometer.

After the application o f the above selection criteria, there remain

126 K** events, 9,132 events, and 23,918 total kaon decay events.

The relative decay rates are given by the following two formulae:

^ K k2  ________________________________ 3 g ^ * * 2 __________

^  N Kf, A a i - ccAK'2n J J ^ ) - 2 M K'Sn J - ! ^ - )

where Akh3 , AKe3 , Ar™, Akji3 , and Aaii are the geometric acceptances; 

Fkm.3 > rKe3 » r Knn, TKn3 , and Tail are the decay rates; is the single muon 

efficiency; is a correction for a single pion loss due to nuclear 

interactions; N kh 3 » Nr™, and Nan are the number o f observed events; 

and a  is the fraction of pions decaying after the last drift-chamber. 

The geometric acceptances are determined with the iterative fitting 

method employed in Pass2. The efficiency, 97.4%, for a single muon 

is the same as that derived in section V.7 except that the K R 3  

momentum spectrum is used. Values for the ratios (rK e 3 /rK 7m) and 

(TK n 3 /rKrcn) are taken from  the Particle Data Booklet. I am not 

including a correction for K s—»7C+n’* since the cut at 1 0 . 0  meters on the 

z-position of the vertex removes most of these decays.
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Using the E791 offline Monte Carlo, I find the following geometric 

acceptances: Aan=0.0144, AKnn—0.0422, Akji3=0.0203, AKe3 = 0 .0 1 6 9 , 

Aktc3=0-0290. A correction factor of 1.008 for the loss of events 

from nuclear interactions is used. For Eq.(5.6) I find F ( K l— 

)/r(KL-»Jt|iV}i):=0.00690, which, using 0.271 for the branching fraction 

of K^3, yields a branching fraction of 1.87 +/- 0.25 x 10-3 for K ^. This 

differs with the Particle Data Booklet value of 2.03 x 10-3 by 0.64 

standard deviations. My value for the branching fraction of is 

somewhat low. However, this is not statistically significant. For the 

branching fraction of K l-m ip v ^ I  find 26.0 +/- 2.1%. The accepted 

number is 27.1 +/- 0.4%. My result is only off by half a standard 

deviation. This result, although not statistically significant, suggests I 

may be under-counting dimuon events by as much as 8 % or that the 

minimum bias sample is contaminated at the 4% level. Again my 

results are in good agreement with accepted values.
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CHAPTER VI

CONCLUSIONS

We now possess all the information necessary to compute the 

branching fraction of Kl -» |I+h.'. Equation 6.1 gives the branching 

fraction.

The factors in Eq.(6.1) are explained in Table XIV and their values 

given, assuming the standard set of cuts detailed in Table IX. Using 

the values in Table XIV, the final result is found to be:

Where the first error is statistical only and the second error is the 

uncertainty due to systematic effects.

My result is 15% lower than the unitarity limit derived in Chapter

II. It is also 39% lower than the current world average as listed in 

the 1988 Particle Properties Data Booklet. In addition to these 

numbers, experiment 137 at KEK has released a preliminary result6 7  

of 8.4 x 10- 9  based on the observation of 54 events. These 

comparisons lead one to suspect my number of minimum bias Kn7E 

events and candidates.

B( K l - »  /i~) = N  * P S  * A  * £ * E * £ * £l y  x x  MB W  m  L.3 L I (6 .1 )

B { K l ->  /i+ / r )  =  (5.7 ±  0 .6  ±  0 .3)x  10"9 (6.2)
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Table XIV

Values of factors used in the final branching fraction calculation

F actor D escription V alue
Nwi Number of Kuu candidates 86.3
Not Number of K„n candidates 8887
Ann Geometric acceptance for Kuu 0.0224
Ajm Geometric acceptance for Knn 0.0272
Bot Established branching fraction of Knjt 0.00204
PSmb Prescale factor for minimum bias 6000
£l i Correction for Level 1 trigger bit 0.981
EL3 Correction for Level 3 cuts 0.785
Emu Efficiency of particle identification 0.922
En—»evv Lose due to p.-»evv decays 0.999
EKs Correction for Ks contamination of Knjt 1 . 0 2 1

Elnt. Correction for pion nuclear interactions 0.985

Several checks are performed to validate my result. Perhaps the 

best confirm ation is the m easurem ent of the branching ratios 

B ( K l —>7c+7i')/B (K L -> 7t^ v) and B (K l -> tcPv ) /B (K l —>all) explained in section

V.12. Both of these results agree with the results of previous 

experiments within statistics. Regretfully, this does not check the 

Level 3 or Level 1. The second test of the consistency of my result 

involves calculating the branching fraction using a different set of 

cuts from the one listed in Table IX. To check the muon identification 

the analyzed is performed with no particle selection cuts. The level of 

background in the dimuon sample increases by two orders of 

magnitude, while the minimum bias K nn sample remains unchanged. 

Using the distribution of background as a function of collinearity 

squared to estimate the background under the peak yields 83.7
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events with an additional uncertainty due to the more 

significant amount of background of + / - 8  events. This lowers the 

branching fraction of K l—>H+H‘ to (5.1+/-0.8+/-0.2)x 10-9.
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VI. 1 Prospects for Rare Kaon Experim ents

AGS experiment 791 took data in the winter and spring of 1989. 

Improvements were made in the pattern recognition, Level 1, and 

Level 3 hardware and software for this run. It is hoped that the 

1989 run has recorded 3 times as many K l-» h +p.“ decays as reported 

in this thesis. A run in 1990 is also planned. Experiment 137 at KEK 

is also continuing to take data. The combination of these two 

experiments may observe up to a thousand events.

Factors which limit the sensitivity of rare kaon decay searches 

are: beam intensity, triggering and data acquisition, and the ability of 

the detectors to resolve genuine events against backgrounds and to 

survive in a high flux environment. Advances in RISC computers and 

continuing improvements in electronics should enable physicists to 

implement acquisition and triggering systems capable of handling 

the necessary amount of data. At Brookhaven the construction of the 

stretcher and booster systems will allow beam intensities perhaps an 

order of magnitude greater than those available today. TRIUMF II 

will provide the most intense source of kaons ever. New detector 

designs are required to take advantage of these high flux neutral 

beams. One concept is the use of a solenoidal spectrometer, which 

would have a geometric acceptance perhaps ten times greater than 

present day designs. Use of scintillating fibers or other systems with 

spatial and time resolutions of about 1 0  microns and 1 ns, 

respectively, is also necessary. Hopefully, sufficient K l-> p +|I‘ events



119

w ill be seen by these future experiments to determ ine the 

longitudinal polarization of the muons to better than the 1 0 % level.



0

1 2 0

Appendix A 

Table XV

Branching fractions and upper limits o f the various Kl decay modes

Decay Mode Branching fraction
0.217 +/- 0.007

7C+Jt-7t° 0.1237 +/- 0.0018
J tp V 0.2701 +/. 0.0034
jtev 0.386 +/- 0.004
n + K - (2.04 +/- 0.04) x 10-3
T Z ° K ° (0.909 +/- 0.029) x 10-3
YY (5.70 +/- 0.23) x 10-4
rcev y 0.013 +/- 0.008
3iOjtev (6.2 +/- 2.90) x 10-5
jc+jt-y (4.41 +/- 0.32) x 10-5
e+e-y (1.7 + /- 0.9) x 10-5
p+p-y (2.8 +/- 2.8) x 10-7
(jcp atom)v (1.05 +/- 0.11) x 10-7
p+p- (9.5 +2.4 -1.5) x 10-9

7t0 y y <2.4 x 10-4
pe <7 x 10-9
e+e- <5 x 10-9
ic°e+e- <2.3 x 1 0 - 6

3t°p+p" < 1 . 2  x 1 0 - 6
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