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ABSTRACT

Three types of acoustic nonlinearity parameters for 
solids are discussed. The results of measurements of these 
parameters for three polymers— polymethyl methacrylate, 
Polystyrene, and polysulfone— are presented.

The author has developed a new technique, using piezo
electric transducers directly bonded to the specimens, which 
allows the measurements of fundamental and second harmonics 
generated in the solids, and thereby the determination of 
nonlinearity parameter p3, which is the ratio of a linear 
combination of second- and third-order elastic coefficients 
to the second-order elastic coefficient.

The second nonlinearity parameter, B/A can be determined 
from the temperature and pressure derivatives of the sound 
velocity. We derive its exact relationship for the case of 
solids. The results from the two techniques are shown to be 
consistent.

The pressure derivative of the sound velocity is also 
related to the Griineisen parameter, which can be used to 
describe the anharmonicity of interactions in polymer mole
cules, especially of interchain vibrations. The interchain 
specific heat for these polymers is then calculated from the 
Griineisen parameters: and t h e .characterization of polymers 
by using these thermoacoustic parameters is discussed.



NONLINEARITY PARAMETERS 
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I. INTRODUCTION

A consideration of nonlinearity is essential for d e 
scribing many important physical phenomena and processes in 
solids. The phenomena which are dominated by the nonlinear 
contributions can be sorted into two groups [Ashcroft 1976] . 
First, equilibrium properties: thermal expansion, the most 
important one; the temperature and pressure dependence of 
elastic constants; and the difference between adiabatic and 
isothermal elastic constants (or other thermal constants). 
Secondly, transport properties: the finiteness of the
thermal conductivity of a solid (a purely harmonic theory 
would lead to an infinite thermal conductivity); also, the 
processes by which, for example, the lattice vibrations 
transmit energy.

Since nonlinearity accounts for various physical phe
nomena, there are, as well, various “nonlinearity p ara
meters," defined according to their specific relationships 
with physical quantities in their respective conditions. For 
example, the Griineisen constants, originally from the theory 
of Debye solids; the temperature and pressure coefficients
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I. Introduction 3

of elastic constants; the nonlinearity parameter from 
harmonic generation. These nonlinearity parameters represent 
different aspects of nonlinear properties of solids; and of 
course, can be related to each other.

The nonlinearity parameter from harmonic generation, 
denoted P3 here, is a well-known and widely used physical 
constant for characterizing the nonlinear properties of 
solids [Wallace 1970]. When a longitudinal, sinusoidal 
acoustic wave of a given fundamental frequency is traveling 
through a medium, its second and higher harmonics are 
generated. The amplitude of the second harmonic is propor
tional to both the nonlinearity parameter and the squared 
amplitude of the fundamental. Measurements of the amplitudes 
of the fundamental and the second harmonic are used to 
obtain p3, which is actually the ratio of a linear combi
nation of second- and third-order elastic constants to the 
second-order elastic constant. Conventionally, a capacitive 
detector is used to measure the absolute displacements of 
the fundamental and the harmonic [Gauster 1966] .

In this research we use a new technique to measure the 
nonlinearity parameter. Recently Wu and Winfree [1987] have 
developed a physical model of piezoelectric measurement 
system, which allows the measurements of the fundamental and 
the second harmonic displacement. The primary application of
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this technique is for measuring the nonlinearity of polymers 
which is the focus of this research.

Polymers, as crystals or glasses, are distinguished from 
other solids in two respects. First, they contain long- 
chains of molecules, in which the repeating unit generally 
still consists of several atoms. Second, the molecular 
interaction in a polymer is strongly anisotropic, that is, 
the basic units are combined by strong covalent bonds along 
the chain axis, while by relatively weak van der Waals 
forces perpendicular to the chain.

Concerning the molecular motions of polymers, let us 
ignore the less important intra-unit vibrations and discuss 
mainly the skeleton or chain vibrations. [Wada 1969] The 
skeleton vibrations consists two types: interchain (chain- 
to-chain) vibrations which are essentially governed by van 
der Waals forces between the chains: and intrachain (within- 
a-chain) vibrations governed by covalent forces. Obviously 
the covalent bond has a force constant much larger than the 
van der Waals bond; therefore, as far as the high frequency 
(typically higher than 1012 Hz [Barker 1967] ) or short 
wavelength modes of vibrations are concerned, the intrachain 
vibrations dominate and the interchain potential can be 
ignored to a good approximation. Therefore, one can model 
the polymer as an assembly of isolated one dimensional
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chains. As for low frequency vibrations, the contribution of 
interchain potential becomes comparable to, or even larger 
than, that of the intrachain potential. Apparently, there is 
no clear frequency band that sorts out the two classes of 
vibrations; modes wax and wane continuously as the frequency 
changes.

Nevertheless, the nonlinear properties of polymers are 
closely related to the interchain potential. It is of 
interest that the interchain vibrations exhibit great anhar- 
monicity while the intrachain vibrations show much less, or 
none. [Swan, 1962] The measurement of nonlinearity para
meter, therefore, may be only sensitive to the interchain 
vibrations. As a result, it is possible to determine the 
contribution of the interchain interactions to some physical 
quantities. For example, there are two types of Griineisen 
parameters, as described in section 2.3. [Slater 1939] One 
is calculated from thermal expansion, bulk modulus, and 
specific heat. This is the macroscopic, or thermodynamic, 
Griineisen parameter which is a result of an average over all 
modes of vibrations. The other one is determined by using 
the pressure dependence of the ultrasonic velocity. Only the 
interchain vibrations contribute to this acoustic Griineisen 
parameter. By comparing the values of two different 
Griineisen parameters, the heat capacity from the interchain 
vibrations then can be estimated.
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The purpose of this research is the following: (1) To
develop a new technique for measuring p3 . The author has 
developed a physical model of piezoelectric measurement 
system, allowing the determination of fundamental and second 
harmonic absolute amplitudes and therefore P3 . This tech
nique has made possible the first acoustic measurement of 
the nonlinearity of polymers. (2) To derive an exact rela
tionship for determining the second nonlinearity parameter, 
B/A, from the temperature and pressure dependence of the 
ultrasonic velocity. B/A is widely used for characterizing 
fluids. However, for the case of solids, A relationship 
between B/A and the acoustic measurable quantities was not 
available. This has led to some confusion in the literature. 
We derive an exact relationship which, combined with 
acoustic measurements, gives results consistent with those 
from the first technique, thus resolving the confusion. (3) 
To relate the ultrasonic nonlinearity parameters of polymers 
to their thermodynamic properties. (4) To relate the 
pressure derivative of the sound velocity to the Griineisen 
parameter, which is used to described the anharmonicity of 
the interchain interactions in polymers.

In chapter II we start from the nonlinear wave equation 
to describe the harmonic generation and show how p3 can be 
obtained. Then we discuss B/A and derive its exact rela
tionship with the temperature and pressure coefficients of 
ultrasonic velocities for solids. We also show how the
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pressure coefficient of the ultrasonic velocity can be used 
to calculate the Griineisen parameter; and compare the latter 
with the thermodynamic Griineisen parameter. Chapter III 
focuses on a description of the basic ultrasonic techniques 
and equipment used in this research. Also the general 
properties and preparation processes of three investigated 
polymers— polymethyl methacrylate, polystyrene, and polysul
fone— are described. Chapter IV is a demonstration of a 
physical model of piezoelectric transducers and a new 
technique for measuring the acoustic displacement by using 
this model. To test the model, the fundamental displacement 
measurements for several metals are presented. In Chapter V, 
we describe the experimental procedures of measuring (33 for 
polymers using the technique mentioned above; and discuss 
the attenuation correction for the calculation of p3 . In 
addition, we discuss the measurements of temperature and 
pressure dependence of ultrasonic velocity and show how the 
velocity is obtained from measurements of the ultrasonic 
transit time. In Chapter VI the experimental results are 
analyzed and the values of various nonlinearity parameters 
for three polymers are presented. Also calculated are the 
Griineisen parameters and interchain specific heat for these 
polymers. Finally, we discuss using these nonlinearity para
meters for the characterization of interchain interactions 
in polymers.



II. NONLINEAR THEORY OF SOLIDS

2.1 The Nonlinear Equation of Motion
and the Nonlinearity Parameter P3

The general equation of motion for a longitudinal wave 
propagating in a nonlinear elastic solid can be written as 
[Thurston 1967, Wallace 1970]

Pou i = dk^lUj (Mikji + dqUpMlkjlpq +•••), (2.1.1)

where Ui are the displacement components, 9k = 9/3xk , xk 
denote the Lagrangian coordinates; and

Mikjl ~  cikjl,

^ikjlpq —  c ±kjlpq ^jpciklq ^ijcklpq **" ^ipckjlq'

where Cikji and Cikjipq are second- and third-order adiabatic 
(isentropic) elastic constants respectively. (Note that the 
Einstein summation convention is adopted; a repeated suffix 
denotes a summation over the values 1 to 3.)

8



II. Nonlinear Theory of Solids 9

For one-dimensional motion in an isotropic solid, the 
equation can be reduced to the form

n2 d u
Pou  2dx2 “ 2 + “ 3 I t + '"] , (2 .1.2)

where x is the coordinate in the direction of propagation, 
M 2 a linear combination of second-order elastic coeffi
cients, and M 3 a linear combination of second- and third- 
order coefficients. In the literature M 3 is sometimes ex
pressed as

M 3 = K3 + 3K2,

where K 2 = M2 and K3 the third order elastic constant.

Assume a steady driving term such that, for a semi
infinite solid at x a 0, u = Aog(t), where g(t) is typically 
a tone burst, defined to have a maximum amplitude of 1 , and 
A 0t the displacement, is very small compared to the wave
length X. With this assumption a method of iteration, i.e., 
successive approximations for solutions to the fundamental 
and harmonic waves can be used to solve (2.1.2). [Thompson 
1977]
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For the first order approximation the Eq. (2.1.2) can be 
rewritten as

_ 22 d u 2 0U  - C ---  =  C^ 2  9x h .
2 tax (2.1.3)

where c is the infinitesimal amplitude sound velocity with 
c2 = M 2/pQ and the nonlinearity of the solid is charac
terized by P3, which is defined by

p3 s M3/M2. (2.1.4)

Obviously the zeroth order solution has the form of a 
traveling wave, uo(x.t) = A0g(t - x/c). By substituting this 
zeroth order solution into the quadratic term on the right- 
hand side of Eq. (2.1.3), the first order solution can be 
obtained as

1 2u^x.t) = A 0g(t - x/c) + — xp3A 0

The first term in the solution has the same form as the 
traveling wave and is referred to as the fundamental. The 
second term, which is the result of the nonlinearity of the 
solid (characterized by P3) . is generated by the fundamental 
and increases linearly as the wave propagates through the

3g(t :/c)
3x (2.1.5)



II, Nonlinear Theory of Solids 11

solid.

The measurement of the acoustic wave is made at a single 
plane in the solid and evaluated as a function of time. It 
is convenient to convert the derivative in Eq. (2.1.5) into 
a time derivative for applying the equation to a real meas
urement. For any propagating function g(t - x/c), 9g/9x = 
- (l/c) (9g/3t). The solution (2.1.5), therefore, can be 
expressed as

(with subscript 1 , which denotes the first order solution, 
dropped). The shape of the wave recorded as a function of 
time can be used then to infer the magnitude of the non- 
linearity .

For a continuous sinusoidal excitation, g(t - x/c) in 

(2 .1 .6) is replaced by cos (cot - x/c), then

2
u(x.t) = A 0g(t - x/c) +

4c (2 .1 .6 )

[9cos(C0t - kx)/dt]2 — (02sin2(cot - kx)

— Y CO2 [1 - cos2(d)t - kx)]
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The nonlinear term of (2.1.6) can be written as

(xP3A02k2/8) (1 - cos2 (GJt - kx)],

where the first term is the static displacement and the 
second term is the second harmonic. To determine the 
nonlinearity parameter, measurements are made by comparing 
either the static displacement [Li, 1984] or the second 
harmonic amplitude to the amplitude of the fundamental, This 
research concentrates on the latter.

2.2 Another Nonlinearity Parameter B/A

In the previous section, we have described the non- 
linearity for longitudinal waves propagating in solids. It 
is of interest to note that nondissipative fluids are 
governed by an equation of motion which has the same form as 
that for solids. A considerable amount of work for the non- 
linearity of fluids has been done [Beyer 1965]. The analysis 
of some cases can apply directly to the solids with an 
appropriate choice of the parameters.

Let x^ denote the Cartesian coordinates of a particle in 
the unstressed reference configuration and yiCx^.t) the co
ordinates of the same particle in an arbitrary configu-
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ration. For a nondissipative solid, the stress is T ^ ,  the 
general equation of motion has the form

piij = d 1 1^ / d y i , (2 .2 .1)

which can be expressed as

piij =  Ox-j/dyj) O T ^ . / S x .̂ ) . (2.2.2)

It is convenient to define a Jacobian J to indicate the
geometry of strain:

J = det [dy^/dxj] = Po/p- (2.2.3)

By substituting (2.2.3) into (2.2.2), the equation of motion 
is transformed to

p0iij = J Oxj/dyj ) O T ±j/3x±) . (2.2.4)

For one-dimensional, purely longitudinal motion in the
direction along the coordinate x, the Jacobian becomes

J = p0/P “ c)y/3x = 1 + Ou/3x) , (2.2,5)

with all subscripts dropped: and let
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Pi = "T;xx ■ (2 .2 .6)

parameterize the longitudinal stress. By using Eqs. (2.2.4) 
and (2.2.5), a one-dimensional equation of motion can be 
written as

p0u = - (dp^/dx) . (2.2.7)

By assuming the longitudinal stress is a function of the 
density such that

dpI dPi dp
dx dp dx

p dPl d 
Po dP 3x

Po
P

p dPl d 2u 
Po dP d x \  (2 .2 .8)

Eq. (2.2.7) is then expressed as

/

u = - p dPl

Po dp

\

/

d 2u
d x 2

(2.2.9)

The coefficient of the second derivative on the right-hand 
side of Eq. (2.2.9) is corresponding to that of E q . (2.1.1).

The relation between pj and p can be described by using 
the Taylor expansion
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Pi = po + A£ + ~  B$2 +••• (2.2.10)

where

% =  (P -  P o ) / P o  — J ” 1 - 1 =* - J ^ O u / a x ) ,  ( 2 . 2 . 1 1 )

A  — p0Opi/3p)S( p=pq* (2. 2 . 12)
and

b = p02o 2Pi/ap2)S, P=Po ■ (2.2.13)

With this notation, the factor inside the brackets of Eq. 
(2.2.9) can be written as

By applying the binomial theorem to each negative power of 
J, (2.2.14) can be expanded as a power series in au/3x. The 
equation of motion thereby becomes

u
Po 3 x 2 (2.2.15)

and B/A defines the nonlinearity of the solid. A comparison 
of this expression and the equation of motion (2 .1 .2 ) in 
section 2.1 gives the relationship between this and the pre-
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viously defined nonlinearity parameter as

P 3= = - (2 +
M 2 ' i (2.2.16)

For the case of zero shear modulus, i.e., fluids, B/A is 
simply the pressure derivative of the bulk modulus, and can 
be calculated from the pressure derivative of the ultrasonic 
velocity. However, for the case of solids, B/A is no longer 
simply the pressure derivative of the bulk modulus. This has 
led to some confusion in the literature. In the following, 
we derive the exact relationship between B/A and thermo- 
acoustic properties for solids.

In general, the stress tensor can be expressed in terms 
of the strain tensor for an isotropic body [Landau 1959] as

^ik Bsujj^ik 2p.(Uik - 3 Ujj^ik) , (2.2.17)

where T ^  is the stress tensor, u ^  the strain tensor, 
the unit tensor (5^ = 3 ) ,  Bs the adiabatic bulk modulus, Jl 
the shear modulus. Therefore, for one-dimensional, purely 
longitudinal motion, the stress is expressed as

4
^xx — ^ 3_M,̂ uxx — ^ 2uxx “ “Pi • (2.2.18)
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For small deformations, uxx (the only relative volume 
change) and pj are small quantities, the ratio uxx/pj of the 
relative volume change to the longitudinal stress can be 
written in the differential form (1 /V) Ov/dpj) g . Thus the 
expression (2 .2 .12) becomes

A - -v0 - m 2M a v / s . V - V o  2. (2.2.19)

Since the expression (2.2.13) can be also written as B = 
Vo2 0 2pj/3V2) s ,v=V0 • h Y  using (2.2.19), the nonlinearity 
parameter B/A can be expressed as

B_
A

v 0/S,V = V 0
M,

= _ h  f ^ 2] £p 1
m2 Wp Is \<?v]s.v = v0 (2 .2.20)

Note that in (2.2.20) there is a change in variable from 
volume V to isotropic pressure p for the derivative. Thereby 
the nonlinearity parameter B/A is related to the pressure 
dependence of the longitudinal modulus. For the bulk modulus 
Bs « -VOp/dV)s, Eq. (2.2.20) becomes
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For the case of fluids (Bs = M 2) , this reduce to B/A = 
O B s/dp) s .

A value for B/A can he obtained by various methods, 
including ultrasonic measurement by using (2.2.21). Through 
a thermodynamic transformation and substitution of cj2/V for 
M 2, the isentropic derivative in (2.2.21) can be written as

p M 2\ 
lap It

aVT

2cj /aincj
2

2c j aT /aincjl
+ ~ V 3T- j (2.2.22)

where cj is the longitudinal velocity, Cp the specific heat 
at constant pressure, and a = OlnV/9T)p, the volume coeffi
cient of expansion. The relative changes of the ultrasonic 
velocity with respect to pressure and temperature are:

^  ^ ^dlncj^ i (dlnc_ĵ
Kt “ \ 3lnV )t r [ ap )t

(2.2.23)

and

(dine i (dlncj\
K p s " (si^rjp= ' -  l~ar"jE (2.2.24)
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where Pt = l/BT = -OlnV/SpJ^* is the isothermal compressi
bility. Then (2.2.22) becomes

p M 2\ 
lap Is =  2M2

2
OC VT 

Pt^t - — z— Kp
(2.2.25)

Using this expression and the well known thermodynamics 
relations

Cp - Cv = <x2VT/pT (2.2.26)

and

7 S  Cp/Cy = Bg/BT = PT/Ps- (2.2.27)

expression (2 .2 .21) becomes

B sPt^T “ B sP t
rCn - c. K r

= 2[7Kx - (7 - l)Kp]
- 2[Kt + (y - 1) (Kt - K p)] (2.2.28)

Therefore the nonlinearity parameter B/A for a solid is de
rivable from measurements of the pressure and the tempera
ture coefficients of the acoustic velocity, and some thermal 
constants. Since 7 is approximately equal to 1 and KT is of
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the same order as Kp , (7 - 1) (KT - Kp) in (2.2.28) is then
relatively small; therefore, B/A = 2KT , and to the first 
order the pressure coefficient of the acoustic velocity is 
all that is required for determining the nonlinearity para
meter .

2.3 Griineisen Parameters and Interchain Interactions

The Griineisen parameter is the third nonlinearity para
meter, classically used to characterize the nonlinear 
properties of solids. Its original definition is based on 
the Debye model of phonon spectrum. Although, Debye model is 
a rough approximation, it is nevertheless an effective ap
proach for investigating some nonlinear properties, such as 
thermal expansion, of solids. According to Debye's theory, 
the frequency spectrum is characterized by the limiting 
frequency G»max, and if this frequency changes, all other 
oscillations change their frequencies in the same ratio. 
[Slater 1939] This frequency is sometimes called Debye 
frequency and can be expressed as

CDq = cs (6t2N/V)I/3. (2.3.1)

where N is the number of oscillators per unit mass and cs 
the effective, or average sound velocity for the Debye
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solid, defined by the relation [Reif 1965]

1_
3

(2.3.2)

The form of the weighted average comes from the fact that, 
in general, a sound wave includes the longitudinal mode with 
single component and the shear mode with two components.

A Griineisen parameter for each oscillator with frequency 
<% is defined as

In the Debye model, all the normal-mode frequencies scale 
linearly with the cutoff frequency 0)D ; therefore, it implies 
the Griineisen's assumption that is the same for all 
frequencies and equals to an overall Griineisen parameter.

dlnct^
dlnV (2.3.3)

r =
din © D
dlnV (2.3.4)

From Eq. (2.3.1) it can be shown
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lncoD = lncs - y  InV + const. (2.3.5)

and therefore

r _ _ dlncs + i
dlnV 3. (2.3.6)

Eq. (2.3.6) means that one can find the Griineisen parameter 
from measurable acoustical quantities. For a isothermal pro
cess, (2.3.6) becomes

(2.3.6a)

or

I I dine,

(2.3.6b)

From the same (Griineisen' s) assumption, by relating the 
heat capacity and the thermal expansion, an expression for T 
in terms of the thermodynamic properties of the solid is 
given as [Slater 1939]
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This is sometimes seen as a thermodynamic definition of the 
Griineisen parameter, and is an average over all the vibra
tional modes. Thus, besides using expression (2.3.6), one 
can also use measured values of thermal expansion, compress
ibility, specific heat, and volume to determine empirical 
values of T.

In general the results from the two methods (Eq.(2.3.6b) 
and Eq. (2.3.7)) of finding T  are not necessarily the same. 
For most metals and ionic crystals, the agreement between 
the two methods is within an order of magnitude (T = rT) , 
with the values between 1 and 3, typically on the order of 
2. However, for polymers the difference becomes signifi
cantly large, with Tt 5 to 10 times the value of T  [Warfield 
1974, Hartmann 1976]. As we mentioned in Chapter I, the 
molecular interaction in a polymer is highly anisotropic. 
Interchain vibrations, which involve van der Waals forces, 
are low frequency and anharmonic, and have high Griineisen 
values; while intrachain vibrations, which involve covalent 
bonds, are high frequency and harmonic, and have very low 
Griineisen values. T is determined by various dynamic tech
niques and is a result of an average over all modes of the 
vibrations. In contrast, by using acoustic techniques, Df is 
dominated by interchain vibrations since all the ultrasonic 
waves are relatively low-frequency.
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An important assumption is that only interchain 
vibrations of polymer solids exhibit anharmonicity. It has 
been shown [Swan 1962] that the thermal expansion of polymer 
crystals is much smaller along the chain axis than in the 
plane perpendicular to the axis. Therefore, for polymers, 
only the portion of the specific heat due to the interchain 
vibrations, CV(i should be include in (2.3.7) [Wada 1969], 
resulting in a definition for CVi£,

av
'V, i “   ----

Pt^T (2.3.8)

Therefore, using ultrasonics with thermodynamic measure
ments, one is able to separate the contributions of inter- 
and intra-chain interactions to the heat capacity.



III. EQUIPMENT AND SAMPLES

3.1 The Basic Equipment for the Velocity Measurement

The measurement of sound velocity is the basis of the 
acoustical investigation of materials. Many different me
thods with different degrees of accuracy have been de
veloped. The basic pulse-echo method is a generally used 
technique. A gated rf signal of a given frequency is applied 
to a piezoelectric transducer and thereby converted into a 
pulsed ultrasonic wave of the same frequency. The pulsed 
wave travels through the specimen and is reflected between 
two end surfaces of the specimen until it decays away. The 
ultrasonic wave velocity propagating in the specimen can 
then be determined by measuring the transit time between the 
echoes and the corresponding propagation distance.

A straightforward method to measure velocities is to 
pick any pair of echoes and measure the time interval 
between corresponding wave reference points such as their 
leading edges. However, each time the pulse hits the bonded 
end, the specimen-bond-transducer interface introduces a

25
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phase shift to the reflected wave. These phase shifts make 
the determination of reference points difficult and limit 
the accuracy of the method. To resolve this problem, many 
other methods [Papadakis, 1976; Breazeale, 1981] have been 
developed: pulse superposition, double-pulse, echo-overlap, 
and so forth. All of them involve sophisticated electronic 
circuitry and have a common feature: matching full range of 
echoes and then removing the phase shift so that a more 
accurate transit time can be obtained.

Modern digitizers can digitize signals and transfer them 
to computers for off-line processing and analysis. For 
example, cycle-for-cycle matching of the echoes can then be 
done by curve-fitting the digitized wave forms with a 
computer program. This technique reaches similar accuracy 
and precision as those refined pulse-echo methods with re
duced human interaction and interpretation.

A block-diagram of the experimental setup used in this 
study is shown in Fig. 3.1.

A Pulse/Function Generator is used to generate the gated 
rf bursts. A suitable length of the output sinusoidal wave, 
counted by cycles, can be chosen to meet the various meas
urement conditions of the specimens.
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A solid state 40W amplifier (with a linear gain in the 
range of 20kHz to lOMhz) is used to amplify the rf burst. To 
protect the input amplifier of the digitizer during the 
drive pulse and decouple the output noise of the amplifier 
from the receiver, a diode box couples the amplifier, the 
transducer, and the digitizer.

The resulting waveforms from the output of the trans
ducer are recorded by a digitizer with a bandwidth from DC 
to 125MHz at 50£2. To increase the signal to noise ratio, the 
waveforms are averaged in the digitizer before being trans
ferred to a computer to be post-processed and archived.

To obtain a pulse-echo pattern, one transducer is bonded 
to the specimen. When the attenuation of the specimen is too 
high, two transducers are used and through-transmission 
(sometimes, called pitch-catch) measurements are taken. This 
method is especially suitable for measuring relative changes 
of velocity.
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Function
Generator
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Transducer ,

l ^ L
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Fig. 3.1 Block diagram of the velocity measurement.
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3.2 The Temperature Controller and the Pressure System

For measuring the temperature dependence of the ultra
sonic velocity or keeping the specimen in an isothermal con
dition, a high precision temperature controller was built. 
This has an insulated box containing an interior aluminum 
chamber with a resistor of about 50f2 as a heater, which is 
driven by the output of a computer-controlled function 
generator. A thermocouple attached to the specimen deter
mines the temperature, which is recorded by a computer. The 
computer also determines the power output to the resistor 
required to maintain a constant temperature. The power is 
adjusted about every half minute. This system controls the 
temperature to within ±0.02°C for a range from room tempera
ture to 70°C. A block diagram of the apparatus and arrange
ment is shown in Fig. 3.2.

For measuring the pressure dependence of velocities, the 
pressure system shown schematically in Fig. 3.3 is used. The 
specimen is inserted in a brass chamber surrounded by a 
heater. The chamber is placed in the pressure vessel, which 
receives a gas-intake of 0-250psi. A bourdon gauge and a 
digital pressure gauge are used to monitor the pressure to 
0.1 psi. The temperature was isothermally controlled by a 
commercial temperature controller with fluctuation less than 
0.05°C.
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M ultim eter

Themocouple
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Computer Terminal

Heater

Power
Amp

Function
Generator

Fig. 3.2 Block diagram of the temperature controller for 
measuring the temperature coefficient of ultrasonic 
velocity.
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Fig. 3.3 Block diagram of the pressure system for measuring 
the pressure coefficient of ultrasonic velocity.
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3.3 Samples and Sample preparation

Three amorphous polymers, polymethyl methacrylate 
(PMMA), polystyrene (PS), and polysulfone (PSF) are used for 
specimens in this work. PMMA and polystyrene are the most 
extensively studied polymeric materials [Asay 1969, 
Lamberson 1972]. Polysulfone is a widely used and studied 
polymer for its high rigidity and strength, and, especially 
its high temperature thermoplastic properties [Phillips 
1977, Allen 1971] .

The molecular structures of these polymers are shown in 
Table 3.1 The samples were obtained from commercial products 
as a form of cast rod (PMMA and Polystyrene) or beads (PSF, 
Udel-1700).

The glass transition temperature for each of these poly
mers was determined by using an ultrasonic technique [Parker 
1986]. The results are given in Table 3.2.

The specimens for all measurements were molded into 
disks, 3.8cm in diameter and of various thicknesses at a 
temperature about 30-40°C above Tg and a pressure of about 
4000 psi for each polymer. The samples were left in the 
molder and cooled slowly to release thermal stress. After 
cooling off, the samples were then lapped until they
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exhibited flatness on the order of ljjLm and parallelism of 
less than 10 sec of arc.

The density of each material was obtained by weighing 
the specimens and measuring their physical dimensions. The 
average density of each polymer is shown in Table 3.2.

A thin aluminum layer of about 1000A thickness was then 
deposited on one or both flat sides of each finished 
specimen for the different demands of various measurements.
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TABLE 3.1
The Molecular Structures of Three Investigated Polymers

Polymethyl methacrylate (PMMA)
CH3
I

—  CH 2—  C —

C =  0
I
o g h 3

  n

Polystyrene (PS)

—  CH2—  CH —

n

Polysulfone (PSF)
CH3

ch3

II
S
II
0

0 0—

n
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TABLE 3.2
The Density and Glass Transition Temperature 

of Three Polymers

PMMA PS PSF

p (kg/m3) 1186 1050 1236

Tg (°C) * 105 100 183

*The determination of Tg is at a heating rate of 2°C/min.



IV. ABSOLUTE DISPLACEMENT MEASUREMENTS 
WITH PIEZOELECTRIC TRANSDUCERS

Absolute displacement measurements are required for 
measurements of ultrasonic nonlinearity in a solid, to 
determine amplitudes of the fundamental and harmonic waves. 
Typically such measurements are made by a parallel plate 
capacitive detector with narrow gap spacing [Gauster 1966] 
between an external electrode and one side of the specimen. 
By measuring the capacitance of the gap and the bias voltage 
on the electrode, it is possible to calculate the absolute 
displacement of the surface of the sample as a function of 
time from the output signal of the capacitive detector [Li, 
1984] .

For appreciable signals from the capacitive transducer, 
the area of the surfaces forming the capacitor must be a p 
proximately 1 cm2 and the gap spacing less than 10 Jim. This 
requires the sample to be flat to within 0.5 (im over a 1 cm2 
area. These restrictions require considerable sample prepa
ration for absolute displacement measurements. In contrast, 
a contact piezoelectric transducer requires the surface

36
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roughness only be considerably less than a wave length in 
the material. For aluminum at 5 MHz, 10 (1m of surface 
roughness is still less than 0.01 of a wave length* 
Therefore, the sample preparation required is considerably 
less, with greater sensitivity. In addition to the general 
problems of making measurements with capacitive transducers, 
when the specimen is a non-conducting material (like 
polymers), the static charge built on the surface makes the 
measurements of the capacitance ineffective, if not impos
sible, and invalidates the conversion of measured signals to 
absolute displacements

It is possible to use a contact transducer for the dis
placement measurements if a model can be used to convert the 
output voltage of the transducer to the absolute 
displacement in the specimen. This requires a physical model 
which accounts for the electromechanical interaction of the 
transducer with an applied electric field, as well as the 
acoustic response of any intermediate layers.

Much work has been done [Berlincourt 1964, Sittig 1969, 
Leedom 1971, Desilets 1978] to develop models principally 
for the design of transducer systems with special perform
ance characteristics. Little work has been done to quantita
tively compare the results of the models with experimental 
results, to determine the applicability of these models to
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help deconvolve the transducer response to determine the 
amplitudes of acoustic waves. If accurate, a model could be 
used in a variety of applications from nonlinear characteri
zation of materials to deconvolving the temperature response 
of the transducers from thermal derivative measurement. In 
this chapter we describe a physical model of a transducer 
bonded to a solid for the absolute displacement measurements 
of both the fundamental and the harmonic ultrasonic waves. 
To test the model, some results of the fundamental d is
placement measurements of some metals are also presented.

4.1 Physical model

To construct such a model, Mason's equivalent circuit 
[Berlincourt 1964] and Sittig's model for transducers in a 
layered system [Sittig 1967 and 1969] are used. Following 
Sittig, the acoustic, dielectric and piezoelectric p r o 
perties of the transducer, bond, and solid are considered. 
From these properties, the time domain response of the 
system is modeled and the input and output voltages are 
related to the amplitude of the ultrasonic wave.

A typical thickness-mode piezoelectric transducer has 
lateral dimensions of many wavelengths of sound and negli
gible attenuation up to hundreds of MHz. Therefore, we 
consider a plane wave propagating in the lossless transducer
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followed by a intermediate layer of bond and then a semi- 
infinite transmission medium. A separate correction due to 
attenuation and diffraction in the transmission medium is 
considered for amplitudes of the received signals.

Fig. 4.1 shows a typical arrangement of a piezoelectric 
transducer bonded to a transmission medium. Each layer is 
characterized by a cross-sectional area S  and an individual 
density pn , thickness In, and acoustic velocity cn . In addi
tion, a permittivity en characterizes the dielectric prop
erty of a dielectric bond or piezoelectric layer; and an 
electromechanical coupling factor kg is also for the piezo
electric layer, (n = 0 for a piezoelectric layer and n = 1 
for a bond.) By analyzing Mason’s equivalent circuits for 
all layers, the transformation matrix coupling the input 
voltage E  and current i to the force F  and particle veloc
ity v of a transducer bonded to a solid can be written as

'e a b ' 'f
i CD V (4.1.1)

with

A B' = J _
2 ,T| j0  /C0C0 Cosy0 jZ0Siny0

C D d&Q jtDC0 0 jSiny/Zo 2(Cosy0 - 1)

Cosyx jZ1Siny1 
jSinYi/Zi Cosyj^

(4.1.2)
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where

Zn “ Pncn*̂
fn = cn/2In or (Dn = 7tcn/in 

7n = "f/fn
Cn *= £nS / l n 
<I>2 = a>0C0Z0k02/fl;
Q = cosYo - 1.

and

rj = 1 for conducting bonds
T| = 1 f C Q /C± for dielectric bonds

Expressions (4.1.2.a)-(4.1.2.g) are represented schemati
cally in the equivalent circuit of Fig. 4.2. Using the 
transformation matrix, the particle velocity, v(co) , is 
related to the source voltage, E s by

v(C0) = E j  [AZt+B+Zs (CZt+D)] , (4.1.3)

where Zs is the source impedance and Zt (= pcS) the 
acoustical impedance of the transmission medium.

(4.1.2a) 
(4.1.2b) 
(4.1.2c) 
(4.1.2d) 
(4.1.2e) 
(4 .1. 2f)

(4.1.2g)
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T r a n s
m ission
Medium

Bond

Fig. 4.1 Configuration of a piezoelectric transducer bonded 
to a solid. The dotted line represents the case for a 
dielectric bond.
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-C- -jZ^/Sinro jZoTanOfa/2)

H h
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P iezoe lectr ic
T ransducer

[A]

(a)

JZt Tan(Tj 12) jZ1 T a n ^  12)

-JZj/Slnl!

(b)

Fig. 4.2 (a) Mason's equivalent circuit for a transducer
bonded to a solid of impedance Zt . [A] represents the
Transformation matrix (4.1.2). (b) Equivalent circuit for
an intermediate layer (bond).
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Input 
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v---- 1/--✓✓
1/1/ t/ i/ i/ i/ i/ t/*/\/✓
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T ransm ission
Medium

Output 
T ransducer

Fig. 4.3 Equivalent circuit for a typical ultrasonic delay 
line. The shadow on the center represents that the model can 
be either transmission with two transducers or reflection 
with one transducer as input and output.
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Eq. (4.1.3) gives the relationship between the source 
voltage and the generated particle velocity in the solid as
suming a single frequency excitation. The particle dis
placement for this type of excitation can be found from the 
particle velocity using the expression

To determine the output voltage of the piezoelectric 
transducer, the equivalent circuit shown in Fig. 4.3 is 
used. For an input pulse shorter than the twice the 
transient time in the transmission medium, there is no 
interference between the input and output transducers. A 
pulse-echo response can be modeled by making the receiving 
transducer identical to the transmitting one. but operated 
in reverse. Therefore, the transformation matrix for the 
receiving transducer can be obtained by exchanging A and D 
of (4.1.1). The resulting voltage transfer ratio between the 
source and the load is given by

u(tt>) = -jv(0))/03. (4.1.4)

El
[AZt+B+Zs(CZt+D)] [AZt+B+Zi(CZt+D) ] _

2ZtR!

where Ri is the resistive part of the load impedance, Zlt 
Eq. (4.1.5) gives the relationship at a single frequency. To 
obtain theoretically the impulse response, the Fourier



IV. Absolute Displacement Measurements 45

transform of Eq. (4.1.5) is taken. For a response to an 
arbitrary input signal, the input is convolved with the 
impulse response to calculate the time dependence of the 
output of the transducer. A similar process can be used to 
obtain the time dependence of the displacement u(t).

In (4.1.3), v(co) is expressed in terms of the source 
voltage. By substituting (4.1.5) into (4.1.3) and using
(4.1.4), the relation between the displacement and the 
output voltage of the receiving transducer is obtained as

. . [AZ-t+B+Zi(CZt+D) ]
u(to) « -jJSi  r

2“ ZtR l . (4.1.6)

By evaluating the transformation matrix elements and the 
impedances, in other words, making a calibration for the 
measuring system, the amplitude of the fundamental and the 
second harmonic, and hence the nonlinearity parameter P3 can 
be calculated.

4.2 Model Results

To test the model, a lithium niobate— 36° Y-cut crystal 
was chosen as the longitudinal transducer, lithium niobate 
transducers are widely used in ultrasonic devices because of
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their large electromechanical coupling constant and high 
Curie temperature ( ~1200° C ). The elastic, piezoelectric, 
and dielectric constants of Lithium Niobate and their 
temperature dependence have been measured by several authors 
[Warner 1967, Smith 1971]. For our calculation, the values 
are taken from Smith et al [Smith 1971]. Using these values, 
the capacitance of the transducers were calculated and found 
to be within 0.5% of the measured values. The capacitance of 
the bond was determined by measuring the total capacitance 
of the bond and the transducer in series. Also the acoustic 
impedances (the density and the sound velocity) of the bond 
and the specimen were measured. All the results were used to 
determine the transformation elements and the impedances for 
the model.

The model was used to calculate the response of a 
lithium niobate transducer bonded to several different 
materials. A typical response of the output transducer is 
shown in Fig. 4.4, where a lithium niobate transducer is 
modeled to be bonded to aluminum with phenyl salicylate. For 
thin bonds, the thickness of the bond has a greater effect 
on the response decay than on its amplitude. A measured re
sponse is shown with the modeled response in Fig. 4.4. The 
modeled response has been corrected for diffraction losses 
using Khimumin's tables [Khimunin 1972]. As can be seen from 
Fig. 4.4, the agreement between the model and the measure-
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Fig. 4.4 Comparison of the measured and the modeled response 
of a lithium niobate transducer bonded to A16061 with phenyl 
salicylate. The effective bond thickness about 6 |lm is taken 
for the model. The input signal, shown in the upper-left cor
ner, is a 5MHz-2cycle sine wave.
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ment is excellent. Such agreement suggests that the 
transformation matrix should be well-defined and it be 
possible to calculated the absolute displacements directly 
from either the input drive or the output received signal. 
The next section discusses a comparison of this calculation 
to an independent measurement with a capacitive transducer.

4.3 Accuracy of Absolute Displacement Measurements 
with Contact Transducers

To determine the accuracy of the technique, measurements 
with a capacitive detector were made on aluminum, brass and 
steel samples. For each drive voltage applied to the lithium 
niobate, the sample was rotated five times and a measurement 
taken at each orientation. The measurements for different 
rotations were averaged and the standard deviation found to 
be 2%, which is typical for the capacitive detector. The 
amplitude of the ultrasonic wave generated in aluminum for 
different drive voltages is shown in Fig. 4.5. Also plotted 
in Fig. 4.5 is the amplitude of the ultrasonic wave 
calculated from the model as a function of drive voltage. 
The figure indicates the excellent agreement between the 
data and the model. The ratios of amplitude to drive voltage 
as found from the experiment and model for several different 
samples are given in Table 4.1. The measurements in brass
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Fig. 4.5 Comparison of the calculated displacements in A1 
6061 from the model and measured from the capacitive 
detector. The error bar represents the error of ±2% for the 
modeled displacements.
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TABLE 4.1

Comparison of the Modeled and the Measured Displacements
for Various Samples

Sample
Displacement/Drive-voltage (A/V)

Modeled Capacitive Detector

A1 6061 0.199 ± 0.004 0.198 ± 0.005

Brass 0.091 ± 0.003 0.092 ± 0.003

Steel 0.084 ± 0.003 0.085 ± 0.003



IV. Absolute Displacement Measurements 51

and steel were corrected for attenuation, as well as 
diffraction. As can be seen from the table the excellent 
agreement between the model and the measurements is true for 
materials with a wide range of acoustic properties.

The model presented in this chapter predicts quanti
tatively the response of piezoelectric transducers, which is 
very useful for deconvolution of the transducer response in 
ultrasonic measurements.

We have also shown that the model predicts the absolute 
amplitudes of ultrasonic waves generated in solids to within 
2% of that measured by a capacitive detector. Therefore, 
with this model, it is possible to measure the absolute 
amplitudes of ultrasonic waves in solids with Lithium 
Niobate transducers. The model therefore offers an attrac
tive alternative to the capacitive transducer for these 
measurements.

In the next two chapters we conduct an investigation 
using this model to determine the nonlinear properties of 
polymers, for which the displacement measurements of the 
fundamental and second harmonic waves are required.



V. EXPERIMENT AND ANALYSIS

5.1 The Measurements of P3

As shown in Chapter IV, the measurement of the nonlin
earity parameter P3 can be accomplished using contact piezo
electric transducers. In this section we describe the d e 
tails of using lithium niobate transducers to measure the 
fundamental and second harmonic displacements for polymers.

The experimental apparatus used to measure the funda
mental and second harmonic is shown in the block diagram of 
Fig. 5.1. A function generator was used to generate the 
gated rf bursts Any spurious high frequency content of the 
amplified rf burst is reduced through filtering with an ana
log low pass filter before being used to drive the trans
ducer. A 5MHz lithium niobate longitudinal transducer was 
bonded to one side of the specimen, as a transmitter, and a 
10MHz transducer to the other side, as a receiver of both 
the fundamental and the harmonic waves. For the measurement 
of the harmonic, the output of the 10MHz transducer was 
filtered through an analog high pass filter before being

52
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Function Low -
PassGenerator

power 
amp Sample

Piezoelectric Transducer 1 Piezoelectric Transducer 2

Computer D igitizer

H igh-Pass

Fig. 5.1 Block diagram of the measurement system with piezo
electric transducers for harmonic generation.
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digitized, then transferred to the minicomputer for off-line 
processing and storage. For the fundamental, signals were 
digitized without the filter. The measurement was repeated 
with several different drive amplitudes for each specimen.

After finishing each set of measurements, the load 
impedance of the receiver (Z-̂  as described in section 4.1) 
was determined for frequencies over the range of interest by 
using a impedance analyzer. Each set of impedances was 
recorded for use in later analysis.

The fundamental and second harmonic displacements are 
required for calculating the nonlinearity parameter P3. The 
measured signal is a convolution of the ultrasonic wave with 
the impulse response of the detection system. The impulse 
response can be calculated by calibrating the transducer 
(evaluating the transformation matrix elements), measuring 
the load impedance, and using the formalism as described in 
section 4.1. By deconvolving the impulse response of the 
system from the measured electric signal, the absolute dis
placement of the ultrasonic wave can be calculated. For 
illustrating this process, it is convenient to rewrite
(4.1.6) as

u(C0) = Ex (oo) /L(o>) , (5.1.1)
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where

L (go) “ 2jCt)ZtF!/ [AZt+B+ZiCCZt+D)] (5.1.2)

the Fourier transform of the impulse response of the r e 
ceiver, with all the quantities defined in section 4,1. The 
Fourier transform Fi(co) of the measured signal is decon
volved and the Fourier transform u(co) of the absolute 
amplitude of the ultrasonic wave is then obtained. Since the 
right hand side of the Eq. (5.1.1) has a pole for the 
frequency equal to zero, the Fourier transform is evaluated 
only over the frequency range of interest. The inverse 
transform of this result, u(t) is a time record of the 
ultrasonic displacement in the specimen.

In Fig. 5.2 a typical recorded signal, Ei(t), from poly- 
sulfone is displayed. The fundamental and the second h a r 
monic signals are superimposed in the output of the trans
ducer; the asymmetry about zero of the signal indicates the 
contribution from the harmonic is appreciable. The Fourier 
transform of the signal, Ei (©), is shown in Fig. 5.3. The 
larger amplitude signal indicates the main frequency of the 
fundamental; the signal at twice the frequency is its second 
harmonic. After the signal is deconvolved, the inverse 
Fourier transforms of the fundamental and the harmonic are 
taken, which are shown in Figs. 5.4 and 5.5 respectively.
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Fig. 5.2 The typical recorded signal from the output of the 
transducer for the harmonic generation of polysulfone. The 
fundamental and the second harmonic signals are superimposed.
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Fig. 5.3. The Fourier transform of the signal shown in Fig.
5.2.
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Fig. 5.4 The fundamental displacement deconvolved from the 
recorded signal.
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Fig. 5.5 The second harmonic displacement deconvolved from 
the recorded signal.

0733
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(The digitized signals are recorded as a time step of 10ns 
per point. The Fourier transform of the signal is a result 
of a numerical 2048-point-Fast-Fourier-Transformation. The 
frequency resolution is about 0.05MHz per point. The result 
shown in Fig. 5.3 is the FFT of the signal in Fig. 5.2 for 
the width of 10jis.)

5.2 The Attenuation Correction
for the Harmonic Generation

In section 2.1 the medium is assumed to be nondissi- 
pative, in which the fundamental wave travels and the second 
harmonic is generated. In a practical situation the material 
is somewhat dissipative and the attenuation is frequency 
dependent as well; therefore, a correct calculation of the 
nonlinearity parameter requires a correction for the effects 
of attenuation.

We limit our consideration to materials where the 
attenuation is small enough so that the plane wave solutions 
are not critically damped. This condition can be expressed 
as aX « 1 , where a is the attenuation coefficient and X the 
wavelength, which is true at ultrasonic frequencies even for 
relatively highly attenuating polymers. For example, at room 
temperature, the value of aX  is only about 0.046 for PSF
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with a attenuation coefficient of about INp/cm (8 .686db/cm) 
at 5MHz, the highest attenuation of the three investigated 
polymers. We also assume the fundamental and the generated 
harmonic are independently attenuated.

The amplitude of an attenuated fundamental wave can be 
expressed as

A x = A0 exp(-a.il), (5.2.1)

where is the attenuation coefficient of the fundamental 
wave and A0 the wave amplitude at 1 = 0 . At any point, 1, 
the second harmonic is being generated by the fundamental as 
well as being dissipated by loss mechanisms. As a result the 
amplitude is given by

dA2/dl = wAx2 - a 2A2, (5.2.2)

where w = J P 3 | k 2 /8 , a constant proportional to the 
nonlinearity parameter and a2 is the attenuation coefficient 
of the second harmonic. The solution of (5.2.2) can be 
expressed as

A 2(1) = wAq e 1 - e -{2a! - a 2)I
2a x - a 2

(5.2.3)
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For a nondissipative solid the ratio of A 2 to h ± 2 is 
given by the expression

for a dissipative solid, according to (5.2.3) the ratio 
becomes

where 5 = 20^ - 0C2 . Therefore, the attenuation correction 
factor required for determining the nonlinearity parameter, 
in a dissipative solid, is S i / [exp(81) - 1]. It is inter
esting to note that for an attenuation coefficient linearly 
proportional to frequency, f (2<Xi = (X2) . expression (5.2.5) 
becomes |A2/A12 | = w 1 with 5 = 0, which has the same form as 
for a nondissipative solid.

The ultrasonic attenuation of polymers typically has a 
linear dependence on frequency [Hartman 1972], expressed as

|A2/A12j = w  1 (5.2.4)

|A2/Ai2 | = wlexp(5l) [1 - exp(-81)]/(51) 
= wl[exp(5l) - 1] / (51) , (5.2.5)

a = a +  bf (5.2.6)

where a and b are constants, and f is the frequency, over 
the frequency range from 10° to 107 Hz at room temperature.
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For this functional dependence of attenuation 5, the size of 
the attenuation correction is given by

5 = a. (5.2.7)

Near room temperature and in the frequency range of low MHz, 
the attenuation of all the investigated polymers is domi
nated by the linearly-frequency-dependent component; there
fore 5 is small. For PMMA 5 is about 0.5 db/cm or 0.058/cm 
at room temperature [Hartmann 1972, Asay 1969], which 
results in an approximately 3% per cm correction. For PS and 
PSF the value is even smaller. [Phillips 1977] Hence, the 
nonlinearity parameter, to a good approximation, can be 
evaluated directly from the attenuated amplitudes of the 
fundamental and the second harmonic for these polymers.

5.3 The Measurement of Temperature and Pressure 
Dependence of Ultrasonic Velocity

As described in Sec. 2.2, the nonlinearity parameter can 
also be calculated from the pressure and temperature 
coefficients of acoustic velocity with various thermal 
constants. For comparison with the results from harmonic 
generation, the acoustic data required was obtained from the 
literature when available, or from measurements. While only
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the longitudinal velocities are necessary for calculating 
acoustic nonlinearity parameters, we also measured the shear 
velocities as functions of temperature and/or pressure for 
calculating the Griineisen parameters as described in section 
2.3.

For measuring temperature dependence of the velocity, 
the specimen was put in the temperature controller, 
described in section 3.2. About 100 min was allowed for each 
setting of temperature to ensure that the specimen had 
reached thermal equilibrium to within ±0.02°C before 
measurements were taken. The initial transit time at room 
temperature and atmospheric pressure was measured first; and 
then the transit time measurements were taken over the 
temperature range of 22°-40°C.

A pitch-catch method was used to measure the change of 
velocity with temperature. Each side of the specimen was 
bonded to an identical 5MHz lithium niobate transducer (36° 
Y-cut for the longitudinal and 41° X-cut for the shear) .

For measuring the pressure dependence of velocities, the 
pressure system shown in section 3.2 was used. To reduce the 
number of leads and keep the structure of the chamber 
simple, a pulse-echo method was used to measure the velocity 
change with pressure. The temperature was isothermally 
controlled at 25°C. After each setting of pressure a period



V. Experiment and Analysis 65

of about 100 min was allowed for thermal equilibrium of the 
system and the specimen. Measurements were made over the 
pressure range of 0-1.7 MPa (0-250 psi).

Since, in ultrasonic measurements the parameter measured 
directly is the transit time, it is convenient to define a 
pressure coefficient of the transit time,

where is transit time at p = p0 for the longitudinal
wave. Similarly for the shear wave.

(5.3.1)

3lni:t
3p /T.p=p0 (5.3.2)

Also for the temperature dependence of ultrasonic velocity, 
the temperature coefficients of the transit time are defined 
as,
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TliCTo) = '9lnXj
9t jp, t =t q (5.3.3)

and

Tlt(T0) =
91nx1 
3T fp,T=T q (5.3.4)

From the relationship of the ultrasonic velocity and the 
transit time, the expression

Inc = In 1 - lnx. (5.3.5)

can be obtained. Hence, the pressure coefficient of the lon
gitudinal velocity can be related to the pressure coeffi
cient of the transit time as

+T \ OP IT

(5.3.6)

where Olnl/5p)T = 1/3 OlnV/dp)T ~ "Pt /3. Similarly, the 
temperature coefficient of the longitudinal velocity,
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31nc j
- - Tl, H- i a3t p

(5.3.7)

By substituting (5.3.6) and (5.3.7) into (2.2.23) and 
(2.2.24) respectively, the constants KT and Kp , which are

According to these expressions we can calculate KT and K p , 
and thereafter nonlinearity parameter B/A, from the measured 
coefficients Kj and T|j.

To calculate the Gruneisen parameter, both the longi
tudinal and shear transit time coefficients are needed. 
According to Eq.(2.3.6b)

are related to the nonlinearity parameter B/A, become

(5.3.8)

and

(5.3.9)

1 /dlncs
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the pressure coefficient of the the average sound velocity 
is required. Since

1 / -3 -3\ -1/3 1 1 3 o 31"- j ( c  1 + 2 c t ) =  1 J  (X1 + 2xt]

- 1 / 3

one obtains

^)lnc
r w i -

2 d x ,  2 d Xj .
X2 + 2Xt

dp pp j
3 3

%1 + 2Tt
+

3 3
Xj Kj + 2 X t K t

3  3
%1 + 2Tt

9lnl
3p

(5.3.10)

It is convenient to define an average pressure coefficient 
of the transit time:

3 3 3
%1 K 2 + 2 x t  K t k 2 + 2C K tK =s 3

X1 + 2xt 1 + 2^ (5.3.11)

where
C s x t/x2 = cj/ct; (5.3.12)

such that Eq. (5.3.10) becomes - Olnc/3lnV)i> = Ks/pT - 1/3, 
similar to Eq. (5.3.8) with K s replacing K2 .
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The Gruneisen parameter is then given by

T-p = Ks/p3>, (5.3.13)

that is, the Gruneisen parameter can be calculated from the 
average pressure coefficient of the transit time and the 
isothermal compressibility. It is interesting to note that 
the expression (5.3.13) retains the simplicity of the origi
nal definition of the Gruneisen parameter, as expression
(2.3.4) (the relative change of Debye frequency C0D corre
sponding to the pressure coefficient of the transit time, 
Ks : and the relative change of the volume corresponding to 
the compressibility PT) .



VI. RESULTS AND DISCUSSION

6.1 The Calculation of P3

The nonlinearity parameter is calculated from the ampli
tudes of the fundamental and second harmonic waves "by using 
Eq. (2.1.5). The measured shape of the fundamental is used 
for f(t), giving the theoretical wave form of the second 
harmonic h(t) as

h(t) = (lp3/4c2) [3f (t)/3t] 2, (6.1.1)

with the parameter p3 undetermined. The time derivative of 
the fundamental is calculated by taking the Fourier 
transform of the signal, multiplying by the frequency and 
applying the inverse transform. This process eliminates the 
low frequency parts. However it does not affect the magni
tude of the Fourier transform of h(t) in the frequency range 
of interest.

To determine the nonlinearity parameter, one can simply 
fit the Fourier transform of the measured second harmonic

70
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■waveform by the Fourier transform of h(t) (in the frequency 
domain instead of the time domain) with the nonlinearity 
parameter as the only independent variable.

As described in section 5.2, there is a correction for 
attenuation which is given by Eq. (5.2.5). Therefore, when 
the measured (attenuated) fundamental wave form is used to 
generate the theoretical second harmonic, the corrected 
value for the nonlinearity parameter is given by

|P3 | = (81/ [exp(81) - 1 ] } | P 3 ' | ,  ( 6 . 1 . 2 )

where |p3’ | is the magnitude of the nonlinearity parameter 
calculated directly from the measured waveforms.

For PMMA 8 is 0.0288/cm; 81 is much less than 1 for 
samples of interest. Therefore, the correction factor is 
reduced to 1 - 81/2. The resulting p3 for PMMA from three 
samples with different thickness are shown in Table 6.1. For 
PS and PSF, 5 is nearly zero so the correction factor is 1.

After correcting for attenuation, the corrections for 
diffraction are considered as well. For the fundamental, the 
correction factor Cj is from Khimunin's tables, as mentioned 
in section 3.2. For the second harmonic the diffraction is 
much more complicated; nevertheless, the case is similar to
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that of attenuation: the second harmonic is generated by the 
fundamental wave traveling through the medium and is 
diffracted as it continues to propagate. Neglecting its own 
diffraction, the second harmonic has an identical transverse 
spatial dependence as the fundamental wave. Therefore, Cj is 
taken as the correction factor for both the fundamental and 
the second harmonic. The uncorrected p3 needs to be multi
plied by a factor of C i . All the reported P3 ’s have been 
corrected in this way. Table 6.1 gives values of directly 
calculated P3 for PMMA, then the values after the attenua
tion and diffraction corrections, to indicate the relative 
size of these corrections.

The nonlinearity parameters from the averaged results of 
all samples measured for three polymers are shown in Table
6.2. Also reported in Fig. 6.1 is the nonlinearity parameter 
as a function of temperature in the range of 25°-36°C for 
polysulfone. As can be seen from that figure, the tempera
ture dependence of the nonlinearity parameter is relatively 
weak, which is typical for most solids well above their 
Debye temperatures
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TABLE 6 .1
The Correction of Attenuation and Diffraction for P3 of PMMA

Sample
Thickness (cm)

1
1.877

2
1.325

3
1.095

Uncorrected -15.2 ± 0.3 -14.9 ± 0.2 -14.8 ± 0.3

Corrected for 
attenuation*

-14.8 ± 0.6 -14.7 ± 0.5 -14.6 ± 0.6

Corrected for 
diffraction*

-13.2 ± 0.7 -13.4 ± 0.6 -13.3 ± 0.7

Average -13.3 ± 0.7

*The values in this row are obtained from those above 
multiplied by (1 + 51/2). 

tThe values in this row are obtained from those above 
multiplied by Cj_.
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TABLE 6 .2
The Nonlinearity Parameter p3 for Three Polymers 

at 25°C and Atmospheric Pressure

Polymer Pa

Polymethyl methacrylate (PMMA) -13.3 ± 0.7

Polystyrene (PS) -11.1 ± 0.8

Polysulfone (PSF) -10.9 ± 0.6
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Fig. 6.1 The nonlinearity parameter |33 as a function of 
temperature for polysulfone.
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6.2 The Temperature and Pressure Coefficients of
Ultrasonic Velocities

The ultrasonic velocities for three polymers were first 
measured at room temperature and atmospheric pressure. The 
results of both longitudinal and shear velocities at 5 MHz 
are shown in Table 6.3. Compared with the results in the 
literature for PMMA and polystyrene [Asay 1969, Lamberson 
1972], the agreement is within 0.2%. Also listed in Table
6.3 are the velocity ratio £ and Poisson’s ratio <5. Among 
the three polymers, polysulfone has the largest values of 
both ratios.

To determine the temperature coefficient of the transit 
time for polysulfone at room temperature, the relative 
change of the transit time is obtained by determining the 
time shift necessary to curve-fit each recorded waveform 
with the reference one. The results for longitudinal and 
shear waves in polysulfone are shown in Fig. 6.2 and 6.3 
respectively. Data in those figures represent the relative 
change of the transit time (x/tq —  l) as a function of 
temperature. The slopes calculated from linear least-square- 
fits of these data are the temperature coefficients of the 
relative transit time, T\j and Tlt at 25°C. The temperature 
coefficients of the velocity are then calculated from tem
perature coefficients of the transit time using literature
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values of the thermal expansion coefficient in Eq. (5.3.7). 
The values obtained are shown in Table 6.4.

The pressure coefficient of the relative transit time 
for polysulfone is determined in a similar manner to that 
for the temperature coefficient. Each recorded waveform is 
fitted to the reference one, and the relative change of the 
transit time (1 - x/xQ ) for a given pressure is obtained. The 
results for the longitudinal and the shear waves are shown 
in Fig. 6.4 and Fig. 6.5 respectively. The values of the 
pressure coefficients Kj and K t are also listed in Table 
6.4, To determine the pressure coefficient of the velocity 
or the constant , one needs to know the isothermal com
pressibility (5t , which can be calculated from the adiabatic 
bulk modulus as Px = "where y is obtained from the e x 
pression, y = 1 + a 2VTBs/Cp . by using (2.2.26) and (2.2.27).

By using Eqs. (5.3.8) and (5.3.9) the constants and 
Kp are calculated from coefficients Kj and Tlj respectively. 
Then, by using Eq. (2.2.28), the nonlinearity parameter B/A 
is calculated. The values of B/A for three polymers are 
listed in Table 6.4. In Table 6.5, the two nonlinearity 
parameters, P 3 and B/A are compared. As shown in Eq. 
(2.2.16), theoretically p3 is equal to -(B/A + 2). The 
results from the two methods agree with each other within 
the experimental uncertainty.
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TABLE 6 .3 
The Longitudinal and Shear Velocity 

at 5MHz, 25°C, and Atmospheric Pressure for Three Polymers

PMMA Polystyrene Polysulfone

cj (m/sec) 2748.7 ± 0.6 2308.5 ± 0.7 2268.3 ± 0.8

ct (m/sec) 1396.0 ± 1.1 1143.1 ± 1.9 945.7 ± 1.8

c* 1.969 2.020 2.399

at 0.326 0.338 0.395

* £ = Cj/Ct, Eq . (5.3.12).
t Poisson’s ratio a = (£2/2 - 1)/(C2 - 1)
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□ Longitudinal (PSF)
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Fig. 6.2 The relative change in the longitudinal transit 
time, (x/Xq - 1) as a function of temperature for polysulfone 
at atmospheric pressure and 5 MHz.
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2

□ Shear (PSF)
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o

-1
30 3 525 4020

Temperature (°C)

Fig. 6.3. The relative change in the shear transit time, 
(t/Tq ■- 1) as a function of temperature for polysulfone at 
atmospheric pressure and 5 MHz.
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Fig. 6 .A. The relative change in the longitudinal transit 
time, (1 - X/Xq ) as a function of pressure at 5MHz for 
polysulfone.
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Fig. 6.5. The relative change in the shear transit time,
(1 - T/T0) as a function of pressure at 5MHz for polysulfone.
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TABLE 6.4
Acoustic and Thermal Constants of Three Polymers

PMMA PS PSF

Tlj (10-4/°C) 8.497
rit (10-4/°C) 9.571
a (10- 4/°c) [i] 2.16 2.10 1.67
dlncj/3T (10-4/°C) -9.628 t2] -7.387 [3] -7.939
3lnct/3T (10“4/°C) -8.942 [2^ -5 .460 E3] -9.013

4.46. 3,52 00r-.

K2 (10-10/Pa) 9.652 11.10 10.98
Kt (10“10/Pa) 7.642 6.127 4.809
Bs (109Pa) 5 .881 3.764 4.884
Ps (10-10/Pa) 1.700 2.657 2.048
Cp (J/kg°C) 1420 ̂ 1225 W 1 1 3 0 ^

Y-l 0.0486 0.0385 0.0292
PT (10"10/Pa) 1.783 2.759 2.107
K t .14.6,9. 4,88
B/A 10,2 7,4 9,8

[Plastics 1980] 
[Asay 1969]

[3] [Lamberson 1972]
[4] [Domalski 1984]
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Table 6.5
Comparison of Nonlinearity Parameters P3 and B/A

for Three Polymers

PMMA PS PSP

-P3

B/A + 2

13.3±0.7 

12.2±1.1 *

11.1+0.8 

9.4±1.0 f

10.9±0.6 

11.8±1.1#

‘Calculated from the data in [Asay 1969]. 
tCalculated from the data in [Lamberson 1972]. 
#This work.
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6.3 The Griineisen parameters
and the Interchain Specific Heat

The pressure coefficients of the transit time are used 
to calculate the acoustic Gruneisen parameter by using Eq. 
(5.3.13). First the average pressure coefficient, Ks , is 
calculated from the longitudinal and shear pressure 
coefficients. The acoustic Griineisen parameter, rT , is then 
determined* For comparison, the thermodynamic Gruneisen 
parameter, T, is calculated from coefficient of thermal 
expansion, compressibility and specific heat by using Eq. 
(2.3.8). We find that rT is about 4 to 6 times of T, as 
described in Section 2.3, which is typical for polymers. By 
using Eq. (2.3.8), the interchain specific heat for three 
polymers is then calculated and listed in Table 6 .6 .
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Table 6.6
Gruneisen Parameters and 

of Three
Interchain
Polymers

Specific Heat

PMMA PS PSF

Ks (10"10/Pa) 7.766 6.412 5.025

rT 4.36 2.32 2.38

r 0.754 0.615 0.584

r/rT 0.173 0.265 0.245

Cv,i (J/kg°C) 258 336 285
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6.4 Discussion

We have related three types of nonlinearity parameters 
to each other. The parameter p3 from harmonic generation and 
B/A from a stressed specimen are based on similar nonlinear 
equations. Similarly to B/A, the Griineisen parameter, rT, is 
determined from the pressured dependence of sound velocity; 
although the latter includes the contributions both from the 
longitudinal and shear modes. For polymers, all the non- 
linearity parameters show larger values than those found for 
metals or ionic solids. (The three investigated polymers 
have values of p3 which are greater than 10; while typical 
values for metals are in the neighborhood of 5.) The higher 
nonlinearity for polymers reflects the nature of the weaker 
interaction between the molecules. Moreover from a com
parison of Griineisen parameters, we find that the acoustic 
nonlinearity parameters for polymers seem to be dominated by 
the interchain interactions.

Some researchers have tried to construct a physical 
model which describes the relationship of the Griineisen 
parameter to the intermolecular potential, based on the 
Lennard- Jones expression of the form U *= ar'n - br-m, 
converted from particle-particle potential into chain-chain 
potential [Barker 1967]. However, it is found that rT is 
very sensitive to the asymmetries in U and to the details of



VI. Results and Discussion 88

its shape. The nonlinearity depends on the structure of the 
chains. For example, the existence of chain folds can affect 
the local potential and therefore the nonlinearity. The pro
bability of the chain-fold formation at glass transition is 
significantly different for various polymers. It is strongly 
dependent on the polymer structure above the glass tran
sition temperature T .O

For amorphous polymers, a rubbery state exists above Tg. 
In the rubbery state, individual units, atomic group and 
segments undergo intensive thermal motion; but the rapid 
movement of the macromolecules as separate kinetic units is 
still impossible. Some of polymers in this state are capable 
of undergoing enormous recoverable deformation, which 
sometimes amount to several hundred percent [Perepechko 
1978]. This phenomenon can be seen as the folded flexible 
long chains straighten out under applied stress and return 
to their original shape after the stress is removed, as a 
result of thermal motion. According to the kinetic theory of 
rubber elasticity, a polymer is not regarded as an assembly 
of individual chains, but rather as a sparse network 
[Treloar 1958]. The main characteristic of the network can 
be described by a parameter M c , which is the average 
molecular mass of the chain element between two neighboring 
entanglement points of the network. According to this 
theory, the characteristic molecular mass M c can be
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estimated as M c = 3pRT/E = pRT/G, where R is the universal 
gas constant, E the Y o u n g ’s modulus, and G the shear 
modulus. If Mq denotes the molecular mass of the repeating 
unit then N c s Mc / M q is the number of units between two 
entanglement points [Porter 1966] . Obviously the charac
teristic number Nc indicates to an extent the rigidity of 
the skeleton structure of the network. The smaller the value 
of Nc , the stiffer the system is. For example, according to 
Perepechko’s data [Perepechko 1976], the stiffest one among 
the three investigated polymers is polysulfone with a Nc = 
2.4; while N c = 33 for polystyrene, and Nc = 52 for PMMA. 
The data also show that polysulfone has the shear modulus G0 
of about 5MPa in the rubber-elastic plateau, whereas PMMA 
has only about IMPa.

It is reasonable to expect that, for amorphous polymers, 
the larger the number N c , the higher the probability of 
forming chain folds on the transition from a rubbery to a 
glassy state. A polymer with a smaller modulus in the 
rubbery plateau state tends to form, in the glassy state, 
ordered regions consisting of chain folds. In contrast, a 
rigider and denser entanglement network will prevent the 
polymer chains from being tightly packed in the glassy 
state. The result is the shear modulus of a polymer in the 
glassy state will typically decrease as the density of the 
entanglement network increases. This trend can be seen in



VI. Results and Discussion 90

our room temperature ultrasonic data, with PSF having the 
smallest and PMMA the largest modulus.

Based on this supposition, it is naturally to relate the 
nonlinearity parameters to the chain structure. As shown in 
our results, PMMA has larger values of nonlinearity 
parameters, compared to the other two. A more tightly packed 
system with more chain folds might be more sensitive to the 
change of the spacing caused by external stimuli, such as 
applied stress, and therefore has greater nonlinearity. 
However, as considering the intermolecular potential, the 
real form of the potential should be even more complicated 
based on the foregoing assumption. The correlation between 
the nonlinearity parameter and the potential is not 
straightforward.

It is obvious that all the acoustic nonlinearity para
meters for polymers are dominated by interchain inter
actions. While the details of the interaction are still 
obscure, these nonlinearity parameters may be basic tools 
for improving our understanding of the interactions in poly
meric and other solids. This would be enhanced by measure
ments of these nonlinearity parameters in a more extensive 
range of temperature; particularly in the regions of tran
sitions and other structure relaxation processes. Two 
methods for determining nonlinearity parameters are intro
duced in this work, one using contact transducers to measure
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harmonic generation, the other measuring the pressure (or 
strain) dependence of sound velocity. They can be 
complementary for various experimental conditions; and, if 
coupled to thermal expansion and heat capacity measurements, 
the nonlinearity measurements will provide useful infor
mation for the understanding of various phenomena and 
properties of polymers.

In summary, in this research we have uncovered relation
ships between various types of nonlinearity parameters for 
solids. In addition, we have developed a new technique for 
quantitative measurements of nonlinearity of solids using 
contact transducers. The improvement to the conventional 
technique in sensitivity is significant. This new technique 
offers an attractive alternative. Moreover, the measurement 
of the nonlinearity provides a means of characterizing 
interchain interactions in polymer materials.



APPENDIX

LIST OE SYMBOLS

Bs adiabatic bulk modulus
Bt isothermal bulk modulus
B/A nonlinearity parameter, ratio of B and A that is

defined by Eqs. (2.2.12) and (2.2.13) 
c ultrasonic velocity
cijkl adiabatic (isentropic) second-order elastic stiffness 

coefficients
cs average sound velocity for a Debye solid, see Eq.

(2.3.2)
C capacitance
Gp specific heat at constant pressure
Cv specific heat at constant volume
E  voltage
E Young’s modulus
F  stress
f frequency
G shear modulus, G *=* 1̂
i electric current

3
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Jacobian, J = det [3y.j/8x.j] 
electromechanical coupling constant
the relative change of the ultrasonic velocity with 
respect to the volume change at constant pressure, 
defined by Eq. (2.2.24)
the relative change of the ultrasonic velocity with 
respect to the volume change at constant temperature, 
defined by Eq. (2.2.23) 
length, thickness
subscript indicates the quantity associated with the 
longitudinal wave
linear combination of elastic coefficients of ith- and
the lower order
pressure
longitudinal stress, see Eq. (2.3.3) 
entropy
cross-sectional area 
time
subscript indicates the quantity associated with the
shear wave
temperature
stress tensor
particle displacement
strain tensor
particle velocity
volume, specific volume
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Xi Lagrangian coordinate
position of a particle in an arbitrary configuration, 
y± = x± + u±

Z impedance
a volume coefficient of thermal expansion
a.i attenuation coefficient of the fundamental wave
a 2 attenuation coefficient of the second harmonic
Ps adiabatic compressibility
pT isothermal compressibility
P3 nonlinearity parameter, P3 = M 3/M2
y ratio of Cp/Cy
r thermodynamic Griineisen parameter, defined by Eq.

(2.3.7)
rx acoustic Griineisen parameter, defined by Eq. (2.3.6b)
8 difference of two attenuation coefficients,

5 = 2a ! - a 2 
5ij unit tensor
e electric permittivity
TJ temperature coefficient of ultrasonic transit time,

see Eqs. (5.3.3) and (5.3.4)
K pressure coefficient of the transit time, see Eqs.

(5.3.1) and (5.3.2) 
k s average pressure coefficient of the transit time, see

Eq. (5.3.11)
X  wavelength
jl one of Lame constants; j1 -  G, shear modulus
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p density
cy Poisson's ratio
x ultrasonic transit time, X = I f c
CO angular frequency
COq Debye frequency
£ the condensation, i; = (p - Po)/po» (2 .2 .11)
C ratio of the longitudinal velocity to the shear

velocity, £ = cj/ct
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