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ABSTRACT

The constrained decimation scheme (CDS) is applied to a turbulence 
model. The CDS is a statistical turbulence theory formulated in 1985 by 
Robert Kraichnan; it seeks to correctly describe the statistical 
behavior of a system using only a small sample of the actual dynamics. 
The full set of dynamical quantities is partitioned into groups, within 
each of which the statistical properties must be uniform. Each
statistical symmetry group is then decimated down to a small sample set 
of explicit dynamics. The statistical effects of the implicit dynamics 
outside the sample set are modelled by stochastic forces.

These forces are not totally random; they must satisfy statistical
constraints in the following way: Full-system statistical moments are
calculated by interpolation among sample-set moments; the stochastic 
forces are adjusted by an iterative process until decimated-system 
moments match these calculated full-system moments. Formally, the 
entire infinite heirarchy of moments describing the system statistics 
should be constrained. In practice, a small number of low-order moment 
constraints are enforced; these moments are chosen on the basis of 
physical insights and known properties of the system.

The system studied in this work is the Betchov model — a large set
of coupled, quadratically nonlinear ordinary differential equations with 
random coupling coefficients. This turbulence model was originally 
devised to study another statistical theory, the direct interaction 
approximation (DIA). By design of the Betchov system, the DIA solution 
for statistical autocorrelation is easy to obtain numerically. This 
permits comparison of CDS results with DIA results for Betchov systems 
too large to be solved in full.

The Betchov system is decimated and solved under two sets of 
statistical constraints. Under the first set, basic statistical 
properties of the full Betchov system are reproduced for modest 
decimation strengths (ratios of full-system size to decimated-system 
size); however, problems arise at stronger decimation. These problems 
are solved by the second set of constraints. The second constraint set 
is intimately related to the DIA; that relationship is shown, and 
results from the CDS under those constraints are shown to approach the 
DIA results as the decimation strength increases.
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I. MOTIVATION: STATISTICAL TURBULENCE THEORY

A. Strong homogeneous turbulence 2
1. Fourier modes 3
2. Statistical moment hierarchy 4
3. Statistical approaches to the problem o f strong turbulence 4
(a) Cumulant-discard {quasinormal) approximation 4
(b) Renormalization group methods 5
(c) Direct interaction approximation 6

A. Strong homogeneous turbulence

The ideas behind this dissertation come from the field of 

statistical turbulence theory. Work in this field has concentrated on 

finding a simple description of the average properties of turbulent 

flows, specifically strongly turbulent flows. Strong turbulence is 

characterized by very complicated flow patterns involving many degrees 

of freedom.

A common measure of the strength of the turbulence is the Reynolds 

number, Re, which is the ratio of inertial (nonlinear) to viscous 

(linear) forces.1 When the inertial forces on fluid elements are 

sufficient to overcome the tendency of the viscosity to "stick" their 

motion to neighboring elements, the flow changes from laminar flow to 

turbulent flow. The transition to turbulence commonly occurs at a 

Reynolds number which is highly system-dependent; for example, water 

flowing in a straight pipe becomes turbulent around Re = 2000. 

Atmospheric turbulence typically has a much higher Reynolds number than 

water turbulence because of the much lower viscosity of air. In strong 

turbulence, Re is well above the transition value.
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The equations most commonly used to describe fluid flows are the

Navier-Stokes equations, which are nonlinear partial differential

equations involving the flow velocity field, the pressure field, and the

equation of state. There is an unpleasant lack of knowledge about

general solutions for these equations, as is the case for most nonlinear

partial differential equations. Much of the current study of flows

using these equations is done with numerical solution methods.

Unfortunately, for common methods, the number of numerical operations

required to resolve all the important aspects of a flow scales like 
3  3Re . The number of degrees of freedom (amount of computer storage) 

required scales like Re^4. 4 Direct numerical solution becomes 

impossible long before the regime of strong turbulence.

A direct numerical approach to solving for turbulent flows favored 

by statistical turbulence theorists involves spectral decomposition of 

the flow velocity field. The fluid flow velocity field u(x,/) is 

expressed as an infinite series of Fourier modes

The sum is over all wave vectors k, and the u(k,r) are the mode 

amplitudes. Higher | k | corresponds to smaller spatial scales; the 

complicated spatial evolution of strongly turbulent flows requires a 

large contribution from high-k modes.

Substitute this series for u(x,f) into the Navier-Stokes equations; 

the PDE’s become an infinite set of coupled, quadratically nonlinear

1. Fourier modes

k



4

ODE’s. This set of equations can be truncated and solved numerically as 

a finite set of coupled ODE’s.

In order to resolve the important scales in a turbulent flow with 

Reynolds number Re, the Fourier-mode ODE formulation of the 

Navier-Stokes equations must be truncated not lower than a wavenumber 

level of 0(Re91̂ ). 5 For strongly turbulent flows with Re ~ 105-108, 

this yields an intractably large set of equations. The largest claimed

Reynolds numbers for this and other direct numerical solution methods 

are O(IC)2) for three-dimensional flows (see references 5 and 6).

2. Statistical approaches to the problem o f strong turbulence

(a) Cumulant-discard (quasinormal) approximation 

Like many statistical turbulence theories, this one begins by taking 

statistical moments of the basic equations (i.e., the Navier-Stokes

equations). Formally, the complete equations can be expressed as an 

infinite hierarchy of moment equations of increasing order. The

equations are not closed because each moment equation contains

higher-order moments in it. It is generally true that statistical 

theories seek to truncate the moment hierarchy by making some

approximation which closes the system at a finite level.

The quasinormal approximation assumes that fourth-order statistical 

moments can be replaced by products of second-order moments. A

Gaussian, or normal, distribution has this property; this approximation

assumes that the distribution of flow-variable moments is "quasinormal." 

When applied to Navier-Stokes flows, this approximation has been shown 

to predict unphysical results such as the development of negative values
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for positive-definite physical quantities.7

(b) Renormalization group methods
lo g  IQ | |  yy

These methods ’ ’ ’ ’ ’ have had some success in calculating

some basic generally-accepted statistical properties of turbulent flows, 

but they are not without serious drawbacks (as are all existing

statistical turbulence theories, with the possible exception of the CDS, 

which has yet to calculate any flows at all). A typical 

renormalization-group approach begins by splitting the Fourier-mode

k-space into those modes above and below the cutoff for

explicitly-followed modes. These two sets of modes are called, 

respectively, the subgrid and supergrid modes.

Beginning with some final high-Ar cutoff (such as the maximum k

needed to describe the desired Reynolds number flow), peel away shells 

of wave vectors and calculate their effect on the remaining modes in the 

Navier-Stokes equations. This is done using some approximation 

equivalent to a moment-hierarchy closure approximation to incorporate 

the effects of "peeled-off" subgrid shell as a renormalized eddy

viscosity and extra nonlinear terms.

Iterate this procedure until all the modes between the maximum 

cutoff and the boundary of the supergrid modes to be explicitly solved 

for are eliminated. The final renormalized equations are solved

explicitly with some numerical method. The RNG theories have trouble

with closure which are not resolved either in the £-expansion
lo g

method, * ’ which requires setting the "small" parameter e = 4 to 

recover accepted physical properties or in the recursion method10,11.
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(c) Direct interaction approximation 

The direct interaction approximation (DIA) was invented in the late 

1950’s by Robert Kraichnan.13,14,15,16 As the name implies, this method 

treats as dominant the direct interactions of the modes—that is, the

interactions of modes directly coupled in the differential equations. 

For each mode, these direct interactions are treated independently as a 

continuous train of perturbations on a solution in which the direct 

interactions are absent.

The effects of each "perturbing" direct interaction on a mode are

modelled using the regression function. The regression function is

defined as the future effects of perturbing one mode with an impulse in 

its amplitude at some time; the function describes how the system 

regresses back to its unperturbed statistical properties after it loses

memory of the impulse. It is vital for the validity of this theory that

the regression function decays rapidly with time after the perturbation.

This decay is vital because it allows the fundamental statistical

approximation of the DIA: Quadruple moments are replaced by products of

double moments in the regression-function-weighted integral expression 

relating triple moments and quadruple moments. This is the same closure 

approximation made in the quasinormal approximation; but here, the 

approximation need only hold valid for short time displacements because 

of the rapid decay of the regression function which weights the moment 

integrands. A description of the application of the DIA to the model 

system of this dissertation is given in Appendix B.
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n .  THE CONSTRAINED DECIMATION SCHEME (CDS)

7
7
8

A. Statistical similarity 

Experimental data has demonstrated small-scale isotropy in turbulent 

flows. Theoretical considerations also give reason to believe that 

modes having approximately equal wave number magnitudes have similar 

contributions to the flow. Modes in a group are dynamically simitar if 

their couplings to other modes can be interchanged without changing the 

flow. Modes in a group are statistically similar if their average

contributions to the flow are the same; this means that their couplings 

to other modes can be interchanged without changing the average flow. 

Here "average flow" means an average over an ensemble of flows evolved 

from different initial conditions but with the same boundary conditions 

and Reynolds number.

B. Decimation

If one is interested in calculating only statistical properties of

turbulent flows, statistically similar modes are redundant. One could 

replace a whole group of statistically similar modes with a small,

representative sample set of modes whose contribution to the flow is the 

average contribution of the entire group. This reduction of the number

of explicitly-followed modes is called decimation.

A. Statistical similarity
B. Decimation
C. Constrained stochastic forces
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C. Constrained stochastic forces 

In order to mimic the couplings to modes which are lost in this 

decimation, the sample-set modes are driven with random forces which 

have the same statistical properties as the lost couplings. Because the 

sample-set modes and couplings are statistically similar to the lost 

modes, the observed statistical properties of the sample-set-mode 

couplings could then be interpolated, scaled, and used to dynamically 

construct the random force as the ensemble of systems evolves.

This is the basis of the constrained decimation scheme (CDS),17 

which aims to reduce a large set of dynamical equations to a much 

smaller set which has the same statistical properties. With this 

method, one could study the statistical properties of strongly turbulent 

flows using a tractably small set of equations. It is the statistical 

properties of such flows which can best be quantitatively compared with 

experimental results.

An important requirement of the CDS is that the entire ensemble of

these systems must be solved simultaneously. The realizations cannot be

solved individually because statistical constraints on the ensemble of 

systems determine the time dependence of the stochastic forces. Various 

full-system, ensemble-average, moments are calculated via statistical

interpolation among the evolving sample-set variables; the 

decimated-system moments are constrained to match these by adjusting the 

ensemble of stochastic forces.

This dissertation presents an application of the CDS to a model 

system of equations designed to mimic some properties of the Fourier

mode equations derived from the Navier-Stokes equations. This work 

demonstrates an achievement of the formal goal of the CDS — the
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reproduction of key statistical properties of a large system of

equations by a much smaller system driven by constrained stochastic 

forces.
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m .  APPLICATION OF THE CDS TO A SYSTEM OF ODE’S

A. Generic system 10
B. The ensemble 10
C. Decimated system 12
1. Sample set 12
2. Stochastic forces 13
(a) Statistical interpolation: q* 13
D. Statistical constraints IS
1. Formulation o f constraints 15
2. Choice o f constraints 16
3. Enforcing the constraints 17
(a) Stochastic Newton-Raphson procedure 17
(b) Algebraic reduction to a determined matrix problem 19
E. Strong decimation limit 21
F. Outline of numerical procedure 21

A. Generic system 

Consider a system of N  coupled, quadratically-nonlinear ODE’s:

d x , (t)
—  2  ̂ Cijk xk® ; 1 = » D 0 )

d t j , k = 1

The C.jk are constant coupling coefficients. The dynamics of this 

system are determined by integrating from the initial condition 

{x.(0) | ;=1 ,2 ,...,//} to solve for {x.(t) | *=1,2 ,...^}.

B. The ensemble

Now consider an ensemble made up of R realizations of the system 

integrated from R different initial conditions
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{{*<u>(0) | i= l,2,...,N } j 0=1,2,...,/?}. It is important to understand that 

the realizations differ only in their initial conditions; each 

realization is a system of N  ODE’s for N  variables obeying Eq. (1), and 

all realizations have the same set of constant coupling coefficients.

Statistical properties of the system are calculated from simple 

ensemble averages of the form

where f  is any function of the system variables. The notation < > 

denotes the ensemble average. For example, the mean (ensemble average) 

of variable x . is

If two variables are statistically similar, all of their statistical 

properties are the same. This implies an infinite hierarchy of moment 

equalities:

R

0 = 1

This relationship is denoted as follows:

x, x
* J
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If one is only interested in calculating statistical (reproducible) 

properties of the system (and not dynamical properties), the two

variables x. and jr .̂are redundant. The purpose of the CDS is to exploit 

that redundancy in calculating the statistical properties of the system.

The first step in applying the CDS is the decimation of the system. 

The full set of variables {jtf | i= l,2 ,...,N ]  is replaced by a much smaller 

sample set of selected variables {x. | i= l,2 ,...S ) (where S « N). For the 

sake of simplicity, suppose that all variables in the full system are 

statistically similar. Then the choice of sample set . variables is 

completely arbitrary.

The next step is the modification of the system of ODE’s to reflect 

its reduction from a set of N  equations to a set of S equations. The 

original full-system ODE’s (Eq. (1)) are replaced by the 

decimated-system equations

C. Decimated system

1. Sample set

S

dt j , k=  1

The stochastic force qft)  in each equation is there to replace the 

statistical effects of the couplings to the variables outside the sample 

set (the variables lost in the decimation).
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2. Stochastic forces 

The stochastic forces must be statistically similar to the terms in 

the sum in Eq. (1) which are missing in Eq. (2). That is,

N

qf f )  «"> ]T c ijk Xj(t) xk(t) ,
J ,k

where E ' denotes the summation over all terms in which j  and/or k  is 

outside the sample set.

(a) Statistical interpolation: q*

Clearly if {Ar5+1^ +2,.. .^ Ar} have been decimated,

N

Y . c ijt xj (,) xt (,) (3>
J .k

cannot be computed directly. For the purpose of statistical

calculations, however, the exact value of the sum in Eq. (3) is not

needed; only its statistical properties are needed. Now the statistical 

similarity of the sample-set variables with those lost in the decimation

is exploited to calculate the statistical properties of Eq. (3).

Because

x. Xj for i — 1,2,..„S  and j  — S+ 1 ,...^ / ,

one knows that



where w. is a weighting factor to account for the different number of 

terms in the two sums in Eq. (4). This process of describing

full-system statistics using combinations of decimated-system statistics 

is called statistical interpolation; {w. | are weights for

that interpolation. A useful quantity to define is the righthand side 

of Eq. (4); denote this by q*(t):

For systems with more than one group of statistically similar modes, 

such as the Fourier-decomposed Navier-Stokes equations, the statistical

interpolation among the modes in a statistically-similar group, but also 

the modes in other groups which have different statistics. In this case

s
(5)

interpolation is more complicated. One must consider not only

there are sample-set modes from each group of statistically-similar 

modes. This is discussed briefly in §VIIA.

D. Statistical constraints

1, Formulation o f constraints 

Each stochastic force must be statistically similar to Eq. (S). 

That is, denoting statistical similarity by the symbol <-»,



15

To insure statistical similarity, all possible moments of q^t) must be

equal to the corresponding moments of the righthand side of Eq. (6).

That is,

(« ,© )

«/<-))

<?,«) * /< o )

In the CDS, this infinite hierarchy of equations is viewed as a set of

statistical constraints on the random forces.

All statistical constraints can be written in the form of a function 

whose ensemble average is zero,

 qs(t),qs(t')fxl(t)fxl(t,)>..^s(t),...i  ̂ =  0 ; (8)

F  is a general function of all the variables and all the forces at some 

set of time values {t,t' ,t” For  example, the first equation in

Eq. (7):

* 1 ^ (0  ] = <7,(0 - qliO

=  « ,« )  - H-i £  Cv l  X j®  Xt (t)

l

=  («JC0) (7)

-  < «fw >

= (« ;«) ? ;« ') )

=  («*(() * .« '))
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The central assumption of the CDS is that the system given by Eq. (2) 

will have the same average properties as the original system given by

Eq. (1) if the stochastic forces satisfy the full hierarchy of 

constraints.

2. Choice o f constraints 

The next step of the CDS is to replace the infinite set of

constraints in the full hierarchy with a small subset of chosen 

constraints. This subset determines the time dependence of the

stochastic forces, which are generated randomly then forced to satisfy 

the statistical constraints as the ensemble of systems is integrated.

Choosing an appropriate set of statistical constraints is the key to 

the success of the CDS. No definite heuristics are known for choosing 

all the appropriate constraints for an arbitrary problem, although there 

are fundamental reasons to expect that constraints expressible as

moments of at most 0(x\) should be sufficient18’* [i.e., at most

0(q.)]. Also, the number of constraints must be kept small enough to 

implement numerically. One can at least partially test a set of

constraints by decimating a full system which is small enough to solve

exactly, and comparing the solutions of the full and decimated systems.

If the decimated-system solution reproduces some desired statistical 

properties of the known full-system solution, it is plausible that a 

decimated-system solution with the same set of constraints will predict 

desired statistical properties of a full-system solution that is too 

large to find directly. One can also compare large-// results with any

* This is to cause the solution of the mean square of the Navier-Stokes 
equations.
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existing theories which are exact in the limit N  — > oo.

The choice of certain constraints is suggested by the statistical 

and dynamical properties of the system to be decimated. Every known 

constant of the motion in the full system should suggest a constraint in 

the decimated system.

3. Enforcing the constraints

(a) Stochastic Newton-Raphson procedure 

Each of the constraints can be written in the form of Eq. (8); that

is,

(F(«)) = 0 for ot = 1,2,...,C , (9)

where C is the number of statistical constraints to be applied. In 

general F  is a function of the explicit variables and stochastic forces 

with any combination of time arguments; for clarity, only the stochastic

forces being determined by Eq. (9) I *=1,2..... 5} | u = l,2,...,/?}

will be indicated as arguments for F in subsequent algebra.

The constraints are enforced by the use of a stochastic
17Newton-Raphson iterative procedure. This procedure seeks an ensemble 

of stochastic forces {$^(/)|*= l,2 ,...,S} |u«l,2 ,...^?} which solves the 

C equations in Eq. (9). That is,

 %(*)]) = 0 •

(See Appendix D for a general description of multidimensional 

Newton-Raphson procedures.) For qi near q., a Taylor series expansion
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of about q. yields

S Qp

 ]}+ (Y. [*«■ «p ~Yf]) m  ]> ■
*=i o q i

a t 0 .

From an initial guess ensemble of stochastic forcing values

{ { ^ q) |/= 1 ,2 ,.„ ,5 } |u= 1,2..... /?}, the procedure iterates through a

sequence of ensembles {{{^(J) I *=1,2,...,5} | t>=l,2,...,/?} | n=l,2,3,4,...} 

toward a solution ensemble. In each iteration, the next member in the 

sequence is found by solving

( f («)[? l ( n ) ,?2{n) ^ (n ) ]  )  +

S Qp

(  ^  { [ fy n + 1 )  '  ^/(n)] =  0  for a = 1 >2..... C  • (1 ° )
f =  l  * /(n )

If the iterates converge to the solution, every difference 

t^i(n+l) “ decreases in absolute value as approaches

S(o)qi *
To solve Eq. (10), it is useful to express it as a matrix equation. 

The partial derivatives {{dF^/3^"^ |*= l,2 ,...,5} | 0=1,2,...,/?} form 

the elements of an S R x C  matrix M :

M
dF L U \ S +  I )  <j\s  + I) ] 
" ( a ) [ * l < n )  2(n)  J

. f \ S  + 1)
q(J mod S)(n)

where j\S  denotes the integer part of the quotient j/S . The SR
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^-differences UfafjJ+i) " ^ )]|*=l,2 ,...,S} |o=l,2 ,...^e} form the 

components of an <SK-dimensional vectors Q:

O rn [ > s  + 1) .  -CAS + 1) ]
r /  [q(j mod S)(n+1) q(J mod S)(n)J *

The dot product of these vectors, divided by R, is the second term of 

Eq. (10). The C ensemble averages {<F(,^> |a= l,2 ,...,C } form the 

components of a C-dimensional vector F;

Fct m ( F(«)[^l(n)^2(n)'-^5(n)] )  *

Equation (10) can now be reexpressed as

j f  • Q = - F . (11)

Since there are far fewer than SR constraints (C < < SR), Eq. (11) is an

underdetermined system.

(b) algebraic reduction to a determined matrix problem 

One must choose some means of selecting a single £R-dimensional 

solution vector Q for Eq. (11), such as requiring a least-squares

minimization on the SR ^-differences which are the components of Q. A

convenient way to do this is to express Q as a linear combination of the 

rows of J f ,

qj  -  i * .  m *
a = l  03
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Next construct a C x C  matrix denoted by £ whose elements are dot products 

of the rows of A if,

[6w  -  i
Finally, arrange the expansion coefficients {Aa \a = l,2 ,...tC} into a

C-dimensional column vector A. Now Eq. (11) can be expressed as the

determined matrix problem

G • A *  - F  . (12)

At every iteration in the Newton-Raphson procedure, this equation is 

solved for A; A is used to construct Q, which yields 

{ { q ^ +1) l /= l ,2, . . . < S } | u = l , 2 , . W h e n  the righthand side of Eq. (12) 

converges to the zero-vector, the iteration is halted and the last 

iterate of A is used to construct l,2 ,...,C }|o=l,2,...,/?}.
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E. Strong decimation limit

In the limit of strong decimation (N/S —» oo), S/N can be used as a
18small parameter for perturbation analysis. An example of results from 

the strong decimation limit is the relationship between the DIA and the 

CDS derived in §VI.

F. Outline of numerical procedure 

An ensemble of decimated systems is solved numerically from an

ensemble of initial conditions {{x^(0)|i*=l,2..... 5}|d=1,2 ......R}. The

same set of coupling coefficients is used for each realization in the 

ensemble. At every timestep, the ensemble of stochastic forces 

{{q^(r)|i= l,2 ,...,S } |o—1,2,...,J?} is initialized at random then 

modified iteratively until all the statistical constraints are 

satisfied. The modified forces are then applied to the ensemble of 

systems of ODE’s to step forward in time. This algorithm is summarized 

in the following block diagram for one timestep:



Initial random guess at stochastic forces: q),L(t)

Modify guess iteratively u n t i l  all the applied 

cons t ra ints  are satisfied. This yields .

Step ODE’s forward using force q
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A. The system

1. ODE’s

The Betchov system19,20 is a large set of coupled, quadratically 

nonlinear ordinary differential equations (ODE’s):

dXj r-’
—  = )  Cgk Xj xk for i= l,2 ,...,V  . (13)
d t J,k=  1

The Cyk's are constants. The variables {jf.(f)|*=l,2,...,iV} are like 

the mode amplitudes in the Fourier-analyzed form of the in viscid, 

incompressible Navier-Stokes equations; those mode amplitudes are 

coupled quadratically to each other in a way similar to the way in which 

the variables are coupled in Eq. (13).

The coupling coefficients {C ^ |i,j,k—1,2,...^V} in Eq. (13) are 

generated at random, with certain restrictions. This is one of the



significant differences between the Betchov system and the Navier-Stokes 

mode equations, whose couplings are nonrandom. The Betchov coefficients 

are chosen from a Gaussian distribution with zero mean and unit 

variance; this choice of all the coupling coefficients from the same 

distribution models the nonpreferential couplings within a given 

k-magnitude shell in isotropic turbulent flows.

The restrictions on the Betchov coupling coefficients are all 

designed to mimic some aspect of the Navier-Stokes mode coupling 

coefficients. The first restriction is that the coefficients satisfy a 

cyclic identity,

This insures that the energy E  is a constant of the motion, where

constant
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with the use of Eq. (14).

The second restriction is that only 0(N^) of the possible N3 

couplings are nonzero. This models the requirement that the coupled 

Navier-Stokes modes satisfy the wavenumber triangle equality.7 In this 

paper, following the procedure of Betchov19 there are 4JV2/3 nonzero 

couplings.

The third restriction prevents variables from coupling to 

themselves: C.jk =  0 if any two or more of the indices {ij.Jfc} are

equal. This also models the structure of the Fourier-decomposed 

Navier-Stokes equations.7

2. Statistical properties

All of the statistical properties described in this paper are based 

on ensemble averages. A Betchov system with a single set of coupling 

coefficients is integrated from an ensemble of initial conditions 

{{jr^(0)|i= l,2 ,...,W }|o= l,2 ,...,/?} to determine an ensemble of time 

evolutions {{*^(f)|i= l,2 ,...,N } |u= l,2 ,...,/J} ; R is the number of 

realizations in the ensemble. The initial conditions are chosen at 

random from a Gaussian ensemble with

(*/<>)) =  0 

and 0 )\ — 1 for ,

and normalized to yield a microcanonical ensemble in which each member 

has the same energy. Specifically,
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The Betchov system has three important statistical properties which 

result from the way that the coupling coefficients and initial 

conditions are generated. First, all o f the variables in the Betchov 

system are statistically similar. At steady-state, no variable 

dominates any other, and there is no exchange of energy between the 

variables beyond the level of statistical fluctuations. Thus, the 

system is "isotropic."

Second, the Betchov system is "turbulent" in the sense that the 

variables have only a short memory of their previous values as time 

increases. The autocorrelation functions of the variables,

H j j ;*) -  (x.it) xf t+T)^

for a fixed t, decay rapidly as functions of r  to small fluctuations 

about =  0. Because of the statistical similarity of all

variables in the system, H.(t; r) is independent of i. A global

indicator of the loss of memory of the variables is therefore the 

system-averaged autocorrelation function

N

m i  Y m t ; T) .
N  A  'i= 1

Third, because the initial conditions are an equilibrium ensemble, 

the Betchov system is time stationary; in particular, the 

autocorrelation functions {H .(t;t)\i= l,2,...,N} are independent of t. 

Hereafter r;t) and H(t;t) will often be written as H^z) and H(t).
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3, Numerical solution 

The full Betchov system is solved numerically using a simple ODE 

algorithm. First, the coupling coefficients are generated:19 Triplets 

of integers {*V\k} are generated at random from a uniform distribution 

between 1 and N  until a set of 4N2/9 unique triplets allowing no 

self-couplings is determined. For each triplet three coupling

coefficients are generated; they are

Cijk J 6 @*1 " a2 - a3) *

Ckij =  J "g ^ 2  " a 3 “ a l )  ’

and Cjki =  FF <2a3 ■ “ i ■ °2> -

where <*j, a2, and a3 are generated at random from a Gaussian 

distribution with zero mean and unit variance. The set of 4N2/3 

coupling coefficients generated this way complies with the three 

restrictions previously described. Second, the initial conditions 

{*j(0)|i=l,2,...»W} are chosen at random from a Gaussian distribution 

and the system is integrated numerically to solve for 

{Xj(f)|i=l»2,...,JV}. The ODE algorithm used is a second-order
Of

Runge-Kutta scheme:

xff+ h)  =  x f i)  + M ku + fcy] +  0(A3) , (15)
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where k.li
dxXt) 

h  —

and k,2i

dt

dxAt+h) 
h   -------- { ^ = ^ (0 + ^ 1  i= 1,2 S} *

In Eq. (15), h is the numerical timestep.

B. Reasons to choose this system for CDS analysis

The Navier-Stokes equations, even in simplified forms 

(incompressible, inviscid, two-dimensional, etc.) were not chosen to 

study this method in spite the method's arising from the field of fluid 

dynamics. Because of the wide range of important modes inherent to

turbulence, one would have to choose a reasonable number of distinct 

statistical-symmetry groups; modes near in k-magnitude will be 

statistically similar, but their statistics will be different than those

of modes far removed in k-magnitude.

The complications of the interactions of these statistical-symmetry

groups, added to the complicated vector mode-coupling structure of the 

Navier-Stokes equations, would make it difficult to determine whether

properties arose because of the physics of the system or artificial

effects of the decimation procedure. Of particular importance is the 

exchange of energy between the statistical-symmetry groups. The Betchov 

system shares some important properties with the Navier-Stokes

equations, and it lacks some properties which could lead to diagnostic

difficulties; it was chosen for study for five basic reasons:

First, the Betchov system is "turbulent" in the sense that its 

variables exhibit nonperiodic fluctuating time evolution (dynamics). 

Because of the nature of the couplings (C„^ = 0 for repeated indices),
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the flow is divergence-free in its phase space (satisfies a Liouville 

property); this means that the system will move ergodically on the

energy surface and never settle down onto an attractor in its phase 

space. Another dynamical indicator of the "turbulence" of the system is 

sensitive dependence on initial conditions. A statistical indicator of 

the "turbulence" is the loss of memory of the variables as evidenced by 

the decay of time correlations; a global measure of this is the 

system-averaged autocorrelation function H(x). The time for this 

function to decay to zero is characteristic of the size of the Betchov 

system (i.e., it depends on N). Since there is only this one inherent

time scale in the Betchov system, reproducing it is an important test 

for the CDS.

Second, the Betchov system has many degrees of freedom. The most 

commonly studied full Betchov system in this dissertation has 96

variables. Kraichnan originally tested the CDS on a system of 5
17variables decimated to 3 variables. However, that system had several 

previously undiscovered conserved quantities which made it a less

suitable model than the Betchov system. The work which led to this 

dissertation is the first application of the CDS to a many-variable 

system.

Third, the Betchov system has many similarities to the Fourier-mode 

form of the Navier-Stokes equations. The restriction to only 0(N2) of 

the possible 0 ( N ) couplings is similar to the results of the 

requirement that the coupled Navier-Stokes modes satisfy the wavenumber 

triangle equality. The lack of self-couplings is also seen in the 

Navier-Stokes equations.7 The constant E can be compared to the 

constant energy density in the inviscid form of the Navier-Stokes
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Fourier mode equations.

Fourth, the Betchov system is highly statistically symmetric; all of 

the variables in the system are statistically similar. This feature

eliminates dealing with separate statistical groups whose stochastic 

forces have different statistics. The interactions among these groups 

might obfuscate the results of the decimation. Eventually, the

interaction of different statistical groups must be attacked using the 

CDS if the Navier-Stokes equations are to be solved; but for now, this 

system with one kind of statistics serves to test the fundamental 

workability of the CDS.

Fifth, a relatively simple DIA solution for the Betchov system 

exists. The Betchov system was originally designed to test the DIA; the 

integro-differential equation for J?d ia(t) is simple to solve numerically 

for any N. (See Appendix B for derivation of the equation and an 

algorithm for solving it.) Furthermore, Kraichnan has shown that DIA

solutions of systems with random couplings such as the Betchov system
22become exact as the size of the system (N) approaches infinity. These 

easily-obtained and accurate solutions for # DIAC0 can be compared with 

CDS results from decimation of systems too large to be solved 

computationally (N = 103 to 106).

C. Results from solving the full Betchov system

1. General parameters in the numerical studies 

A system of N  =  96 variables was chosen, with 4N2/3 = 12288 nonzero 

coupling coefficients. There were R = 128 realizations in the ensemble. 

The timestep was chosen sufficiently small so that there were at least
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2. General results

As an indicator of the "turbulent" nature o f . the dynamics of the 

variables in the system, Fig. la shows a typical variable’s time 

evolution in a typical realization of the system. Figure lb shows the 

time evolution of a single variable from a Betchov system integrated 

from several different initial conditions.

Figure 2 and Fig. 3 illustrate the statistical symmetry and time 

stationarity of the system. They show that the mean and variance of a 

typical variable do not change beyond the level of statistical 

fluctuations as t increases. The linearity of Fig. 3b is expected for a 

fixed-timestep numerical integration scheme which has constant local 

truncation error.
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Figure 1
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Figure 1. (a) A single variable , Xy from a single realization of an 
N  — 96 Betchov system. (b) A single variable, Xy  from four different 
realizations of an N = 96 Betchov system; note the different initial
conditions.
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Figure 2
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Figure 2. (a) The means of four different variables — OCj>, Ct20>,
Or40>, Cc60> — from an ensemble of Betchov systems with N -  96. Note
that no variable dominates any other, (b) The system-averaged mean of 
all the variables of an N  = 96 Betchov system. For both (a) and (b), 
R =  128.
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Figure 3
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Figure 3. (a) The mean squares of four different variables — C O ,

2 2 2<x2q>> <^4q>> Cr6Q> — from an ensemble of Betchov systems with N  — 96.
Note that no variable dominates any other, (b) The system-averaged mean 
square of all the variables of an N = 96 Betchov system. For both
plots, R = 128.
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An important statistical property of the system is the

autocorrelation function, H(t;t), where t is a fixed time. Figure 4

shows that the system is "turbulent" in the sense that the variables

decorrelate with themselves after a finite time. Because the equations

have no explicit time dependence and the initial conditions are an 

equilibrium ensemble, H  should be independent of t. Figure 5 

demonstrates this with computations of H(x) for several values of t.

3. Estimate of statistical fluctuations 

The biggest source of fluctuations is the finite size of the system, 

N, since the nonzero couplings are chosen at random among the N 

variables. Figure 6 shows calculations of H(t) and its fluctuations for 

5 different sets of 12288 random couplings, all for a 128-realization 

ensemble of a 96-variable system.

The fluctuations caused by the finite ensemble size are smaller. 

Figure 7 shows H(r) and its fluctuations for 5 512-realization ensembles 

of 96-variable systems using the same 5 different sets of 12288 random 

couplings as for the R = 128 case. If the finite ensemble size were the 

primary cause of fluctuations in H, one would expect a the fluctuation 

levels for 512 realizations to be 0([128/512]1/2) =  1/2 times the 

fluctuations for R — 128; Figures 6 and 7 show the ratio of fluctuation 

levels to be 0(0.89).
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Figure 4
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Figure 4, The autocorrelation function for an ensemble of 128 Betchov 
systems with N  = 96.
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Figure 5
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Figure 5. H(t;r) with t =  {0,.2,.4,.6} 
of R — 128 Betchov systems. This 
system.

for an N  -  96 with an ensemble 
shows the time-stationarity of the
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Figure 6

(a)

f

»

»

B 'J . j j  " H  W M W B S:

r

(b)

I

T

Figure 6. (a) J?(t) for five different ensembles (R =  128 for each) of
an N  =  96 Betchov system; each ensemble used a different set of random
coupling coefficients. (But, as always, each realization within the 
ensembles used the same couplings.) (b) The fluctuations of the five
curves in (a) about the average of those five curves,
TKrJ.
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Figure 7
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Figure 7. (a) H(x) for five different ensembles (R = 512 for each) of 
an N  = 96 Betchov system; each ensemble used a different set of random 
coupling coefficients. (But, as always, each realization within the 
ensembles used the same couplings.) (b) The fluctuations of the five 
curves in (a) about the average of those five curves, 
H(x). Compared with Fig. 6b, these fluctuation levels indicate that the 
primary source of fluctuations is finite-AT rather than finite-/!.
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4. Estimate o f numerical operations 

The algorithm used for this dissertation stores only the nonzero

coupling coefficients and calculates only the nonzero terms in the

differential equations. Evaluation of the full-system time derivatives 

for an ensemble of R realizations requires 0(16/W2/3 + 4RN) numerical 

operations each timestep (using a second-order Runge-Kutta method).
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A. The decimated system

7. Sample set

First, decimate the system: Replace the full set of variables

{xi | i'= l,2,...,//} with a much smaller sample set of variables
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{Xj | i= l,2,...S} (where S < N). Because all the variables in the full 

Betchov system are statistically similar, the choice of sample set 

variables is completely arbitrary. Further, because of the random 

couplings in the Betchov system, it suffices to generate an independent

couplings. Studies also indicated that S must be at least 0(20) to 

prevent spurious effects from fluctuations in random couplings.

Second, modify the system of ODE’s to reflect its reduction from a 

set of N  equations to a set of S  equations. The original fiill-system

ODE’s [Eq. (024)] are replaced by the decimated-system equations

Each realization in the ensemble of decimated Betchov systems is one of 

these generalized-Langevin-like S-variable systems.

Each stochastic force q. represents the statistical effects of

couplings of variable x. to variables outside the sample set,

specifically

set of 4S2/9 couplings. Numerical studies have showed no statistical

difference between generating 4S1/9 independent couplings and extracting 

the sample-set couplings from a previously-generated full set of 4N2I9

(16)

2. Stochastic forces

N
(17)

j , k

the symbol 2 '  indicates a sum over all j and k such that at least one of
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the two indices is greater than S. Since there are AN1 19 coupling

coefficients in the full system whose first indices are chosen at

random, each variable couples to 0(N) others. The exact number of

variables that any one couples to varies because N  is finite.

(a) Statistical interpolation: q*

The sum in Eq. (17) is statistically similar to the following sum of

sample set variables:

, 1/2

F j - T  I  ^  •

The factor [(N-S)/S]l/2 is the weighting in the statistical

interpolation; it gives each term in Eq. (18) the same weight as the

corresponding 0(N/S) terms in Eq. (17). Specifically, it makes the mean

squares of Eq. (18) and Eq. (17) equal, as will be shown:

Assume C ^ , x., xk are independent unit Gaussian random variables

for all Then

j , k = 1

”  a N-S ’

where aN S  is the number of terms in the Z '  summation. Similarly,

<qf>  =  w] o s  <cfJt> <xb <x\>
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where <ts  is the number of terms in the summation and is the

statistical interpolation weighting.

For the (full) Betchov system, each variable has N  terms in the 

summation in its time derivative (within fluctuations caused by

finite AO* Therefore <*N_S = (Af-S) and as  = S. Thus

As an example of a statistical constraint, consider the conservation 

of mean energy. Since E  is conserved in the full Betchov system, so is 

<E>. It is desirable, then, that a similarly-defined <2?CDS> should be 

conserved in the decimated system. This quantity <i?CDS> can be made 

constant by employing a statistical constraint:

N

<q*i > ]T Cijk Xk ^  
j . k

W

3. Statistical constraints

0

J i / I E  V S , )  =
d t  ' 2  S  f s ,  '
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S  S

(f Z h (Z cv*xjx* + ̂ )]) = 0 • (19)/= i / , * = i

The factor N/S in the definition of allows direct numerical

comparison with E. By the construction of the Betchov coupling 

coefficients, the double sum in Eq. (19) is zero; this leaves

s
( ^  * .(f) qft) )  = 0 . (20)

i = 1

(a) Constraint set I
{

In constraint set I, four types of constraints are enforced. The

first type constrains the system-averaged mean of the forces:

■ (21)° /=1 ° 1

where q*(t) is defined by Eq. (18). The second type constrains the

system-averaged variance of the forces;

< 5 i - W >  -  < i  i [«J» - <«?*»]) <22>
15 /= i °  l

The third type constrains the two-time moments of the stochastic forces. 

Specifically, it constrains the system-averaged product of the current



forces with the forces at other times:
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S  S

=  ( $ E  4 *( ,)  4 *( n  >  (2 3 )
i®l i=»l

Because the numerical integration algorithm is primarily explicit (see 

§XVA3 for details), and for t* > t are unknown. In

general, somewhere between 2 and 10 t '  points are used; these 

time-history points are spread out to span backwards at least one 

decorrelation time for most runs. Details are discussed in the results 

section (§VB),

These first three constraint-types constrain moments of the 

stochastic forces. The three system-averaged constraints were found to 

serve as well as similar constraints on the moments of the individual 

stochastic forces [e.g., = <q*(t)>, etc.]; this reduced the

number of constraints to apply by a factor of S. Off-diagonal 

constraints (moments of variables with unequal indices) were found to 

have little effect. [For example, — <<?*<?*>, etc.]

The fourth type of constraint is based on conservation of mean, 

decimated-system energy. Rather than the constraint derived in 

Eq. (19), a constraint based specifically on the finite 

time-differencing in the numerical ODE solution algorithm is used. The 

reason for this modification is that Eq. (19) allows a drift in the 

energy which is N/S times the error in the finite differencing; at 

strong decimation (N/S > 1), this error becomes significant. The 

modified constraint is formally expressed as
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(24)

h is the numerical timestep. Eq. (24) and Eq. (15), together with the 

definition of £ CDS> yield the energy constraint:

In this and other expressions in this paper, all time arguments are t 

unless otherwise noted. The time derivatives in kJf and k^. are 

evaluated using the decimated system equations, Eq. (16), to yield

a j

+ I St { b + *(Z + «/«]] X
I ,m= 1 

S

I ,TO= 1

i2
qfi+h) - x , > " 0 • (25)

In Eq. (25), {<fy(f)|i=l,2,...,$} is assumed to be known, and

{^(f+A)! i= l,2 ,...,5}  is to be adjusted to satisfy this constraint. 

This is also true for the other constraints.
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(b) Constraint set II

la  constraint set II, two types of constraints are enforced. The 

first type constrains the system-averaged mean of the forces:

where q*(t) is defined by Eq. (18). This is the same as Eq. (21).

The second type constrains the stochastic forces against the system 

variables:

For t =  t ' , the righthand side of Eq. (27) is zero because of the 

construction of the Betchov coupling coefficients (buried in the

definition of q*, which involves a sum over couplings). In this case, 

this constraint is just the time-derivative-based <E> conservation

constraint described at the beginning of the section [Eq. (20)]. As in 

constraint set I, system-averaged constraints rather than constraints on 

individual forces are used. Again as in constraint set I, only time 

history constraints for which t* < t  are enforced. In general,

somewhere between 4 and 20 t '  points are used; these time-history points 

are spread out to span backwards at least one decorrelation time for 

most runs. Details are discussed in the results section (§YC).

s s
(26)

S  S

(27)

(c) General remarks about sets o f constraints 

The effect of the constraints is not simply the sum of their
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individual effects. Constraints have synergistic effects when used in 

combination. Furthermore, it is possible to design sets of constraints

which are mutually incompatible. For example, if the partial 

derivatives of two constraint functions with respect to the stochastic

forces are the same, the matrix procedure to enforce the constraints 

(see §HID3) will produce a singular matrix. Table 1 lists constraint 

sets I and II for the reader’s reference.

4. General parameters in numerical studies 

In all of the results in this dissertation, the full Betchov system 

to be studied (specified by its size, N) is decimated to a system of 

5 = 32 variables, with 0(452/3) = 1365 nonzero coupling coefficients. 

As in the full-system solution described in §IVC, there were R = 128 

realizations of the system in the ensemble. If the full system was

decimated to a system with significantly fewer than 32 variables, the 

fluctuations in the random couplings in the decimated system produced

significant errors. (Note that the system-averaged constraints specified 

in §IHC1 rely on every variable coupling to approximately S others. If 

S is too small, this approximation is bad.) As in the full-system 

solution, the timestep in the Runge-Kutta algorithm was chosen so that 

there were at least 0(30) steps in the decorrelation time interval. 

Unless otherwise stated, the times constrained against each other in the 

two-time constraints were spaced out by a sufficient number of timesteps 

so that the maximum of the time interval 11 - t* | roughly spanned the 

decorrelation time.



50

5. Estimate o f statistical fluctuations

Even more than in the full system, the biggest source of 

fluctuations is the finite size of the decimated system, S, for the same 

reason mentioned concerning the full system. Figure 8 shows 

calculations of H ^ ^ t )  and its fluctuations for five different sets of 

1365 random couplings, all for a 128-realization ensemble of a 

32-variable decimated system. The autocorrelation function is defined 

as
S

wc d s (z) “  i y ( * i w  )  ’
a f= i

where t is a fixed time.

Again, the fluctuations caused by the finite ensemble size are 

smaller. Figure 9 shows H(f) and its fluctuations for five

512-realization ensembles of 32-variable decimated systems using the 

same five different sets of 1365 random couplings as in the

128-realization case. Again the ratio of these fluctuations to those 

for the 128-realization case indicates that finite S, not finite R, is 

the primary cause of fluctuations.

6. Estimate o f numerical operations

Evaluation of the decimated-system time derivatives requires 

0(16RS*I3 + 9RS) operations (the additional 5RS operations over the 

number for a full system of size S are for adding the stochastic forces 

to the ODE’s). Each timestep, the stochastic Newton-Raphson procedure

requires 0(11 RS1 + 41RSC +  2RSC? +  C3) numerical operations for each

iteration: OillRS1) to calculate q*, 0(41RSC) to compute F and F,
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OilSC2) to set up G, and 0 (0 *) to solve the 6-matrix equation (see 

§m Difl and §D3D5ft), Generally the procedure converges in less than 

five iterations, and it almost always converges in less than ten 

iterations. For most of the cases discussed in this dissertation C was 

around ten, R was 128, and S was 32.

Assume N1 * N, S2, » S, C < S, C « R, and that 10 iterations of the 

Newton-Raphson procedure per timestep are needed; then the full and 

decimated systems require 0(16ftN2/3) and 0(Y15RS^) numerical operations 

per timestep, respectively. As long as N^/S2, > 175x16/3 (i.e.,

N/S > 31), the decimated system requires fewer operations than the full 

system. It is easy to see that for any reasonable relative values of N, 

S, and C, the decimated system requires fewer operations to solve than 

the full system. (Recall that the goal is to make N/S as high as 

possible.)
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Table I

CONSTRAINT SETS AND SOME NOTED EFFECTS OF CONSTRAINTS 

Set If

la. I  £  [,,M  - ,?(» ]
° i = 1 

lb. E(t+h) - E(t)
S 2 2 

IC* S E {M  " <4«(0>] ' [*T(l) “ <«*<*»] }
f =  1

w. i  Y  [«,(») «,(/') -9f«) «*«')]
i ~ 1

Set II
s

na. i  £  [,,(,) - «*(,)]
°  i= i 

S

i E h(,) ̂  ■ «?w *">]

Constraint Noted effects

la Prevents slow increase in <qf> and <q*> at N/S =  100.
lb Prevents <^CDS> blowup.
Ic Keeps variance of q. from blowing up or collapsing.
Id Gives correct H(r) timescale. System sensitivity to 

exact number and spacing of t '  points.

na Slows <£’cds> decay at strong decimation.
nb For t =  t ' , forces approximate <i?CDS> conservation.

For t & t ' ,  gives correct H(r) timescale. System 
insensitivity to exact number and spacing of t '  points.

The quantity displayed here, when ensemble averaged and set equal to 
zero, defines the constraint
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Figure 8. (a) i/CDS(r) for five different ensembles (jR = 128 for each)
of an S = 32 system (decimated from N  = 96) Betchov system; each 
ensemble used a different set of random coupling coefficients. (But, as 
always, each realization within the ensembles used the same couplings.)
(b) The fluctuations of the five curves in (a) about the average of 
those five curves, # CDS(t).
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■ X
Figure 9. (a) fl'r n _(T ) for five different ensembles (R =  512 for each)
of an S — 32 system (decimated from N  ~  96) Betchov system under 
constraint set I ; each ensemble used, a different set of random coupling 
coefficients. (b) The fluctuations of the five curves in (a) about the 
average of those five curves, /fCDS(r). Comparison with Fig. 8b
indicates that the primary source of fluctuations is finite-S rather 
than finite-/?. Comparison with Figures 6 and 7 shows that the S ~  32 
size of the decimated yields higher fluctuations in random couplings 
than the N = 96 size of the full systems, both for R — 128 and R — 512.
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B. Results using constraint set I

Constraint set 1 is listed in Table I. Some of the results from the

following sections are also summarized in that table.

1. General results

As an indicator that the "turbulent* nature of the dynamics of the 

variables is not destroyed by the decimation, Fig. 10 shows a typical

variable's time evolution in a typical realization of the decimated 

system. Of course, the exact dynamics of the full system are lost 

because many variables have been removed; this is no drawback since the 

primary interest is in the calculation of statistical properties of the 

system.

The isotropy of the Betchov system is not destroyed by the 

decimation; no variables in the decimated system become artificially 

dominant over any others. Figure 11 and Fig. 12 show <x.> and <x̂ > for 

several i; none are different from the others outside the level of

statistical fluctuations. These plots also indicate the time 

stationarity of the decimated system; they show that the mean and 

variance of the variables do not change beyond the level of statistical 

fluctuations as t  increases.
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Figure 10

t

Figure 10. A single variable, x^t from a single realization of an
S = 32 decimated Betchov system (decimated from N  — 96) under constraint 
set 1. There were 100 timesteps in the run, with 4 unequal-time 
constraints spaced out by 8 timesteps.
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Figure 11
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Figure 11. (a) The means of four different variables — <*j>, <*g>,
<*10>, <*24> — ftom an ensemble of S = 32, N  — 96 decimated Betchov
system under constraint set I . Note that no variable dominates any 
other. (b) The system-averaged mean of all the variables of that same 
realization of the decimated system. For both plots, R  = 128; there 
were 100 timesteps in the run, with 4 unequal-time constraints spaced 
out by 8 timesteps.
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Figure 12. (a) The mean squares of four different variables — <*?>, 
2 2 2Ocg>, Cc16>, <jCj4> — from an ensemble of S = 32, N  =  96 decimated

Betchov system under constraint set I . Note that no variable dominates 
any other. (b) The system-averaged mean square of all the variables. 
For both plots, R  =  128; there were 100 timesteps in the run, with 4 
unequal-time constraints spaced out by 8 timesteps.
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A test of the decimated system’s ability to reproduce important 

statistical properties of the full system is the calculation of the 

autocorrelation function. Figures 13 through 16 show autocorrelation

functions for decimated systems under constraint set I at various 

decimation strengths from N/S = 33/32 to N/S — 100. The DIA results are 

plotted for comparison of decorrelation time scales* ; the full-system 

results are plotted for the values of N  for which the full Betchov 

system was small enough to solve (affordably) numerically. The weaker 

decimation results are promising; the autocorrelation curves from the 

CDS, DIA, and full system are within statistical fluctuations of each 

other.

The striking problem with these results is the development of 

oscillations in HCJ)S(t) as N/S becomes large. These oscillations are 

visible in all decimated systems with these constraints with 

N/S s  (7(10). Their maximum amplitude saturates at strong decimation, and 

they always damp out as r  increases. Furthermore, the half-period of 

the oscillations always matches the decorrelation time (as known from 

the DIA results). However, this phenomenon is definitely unacceptable 

and is certainly an artifice of the decimation scheme. It is the reason 

that constraint set n  was developed; constraint set n  eliminates the 

problem of the oscillations in

+ Replacing r  in the equation for ffnTA(T) [Eq. (B28)] with
I f* UlA

t '  = [3Mr/N] shows that the timescale for flLTA(T) scales with
1 /2  -UlA

[1/N] , while the shape of the curve remains the same for
all N.
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Figure 13
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Figure 13. ^cdsCO for an 5 =  32, N  — 33 decimated Betchov system under
constraint set I (solid curve); # DIA(r) for N  => 33 (dashed curve); H(x)
for a full N  =  33 Betchov system (dot-dashed curve).
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Figure 14
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Figure 14. # CDS(T) for an £ = 32, N  = 96 decimated Betchov system under
constraint set I (solid curve); ^ DIA(r) for N  = 96 (dashed curve); H{x)
for a full N  = 96 Betchov system (dot-dashed curve).
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Figure 15
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Figure 15. # cd s(t) for an S  = 32, N  =  320 decimated Betchov system
under constraint set I (solid curve); i /DIA(f) for N  = 320 (dashed
curve).



63

Figure 16

0

. 5

0 .

5

0 . . 0 5  . 10  . 1 5
r

Figure 16. i /CDS(?) for an S  = 32, N  =  3200 decimated Betchov system
under constraint set I (solid curve); HDIA(r) for N  =  3200 (dashed
curve).
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The cause of these oscillations is unknown, though seems likely that 

the unequal-time constraints are the culprits. It is virtually

impossible to carefully study the role of these constraints in the

oscillations, however, because of a second problem with the decimated 

system under constraint set I at strong decimation: The system fails to

converge when too many unequal-time constraints are enforced. At

N/S  — 100, at most 3 unequal-time constraints can be successfully

enforced; the Newton-Raphson procedure eventually fails to converge

before enough time has elapsed to plot an adequately-long

autocorrelation function curve.

2. Effects o f the constraints

(a) Mean stochastic force constraint 

The mean of q. and q* are zero within statistical fluctuations.

This constraint [Eq. (21)] forces the two means to be equal, but not

necessarily zero. At moderate decimation levels, such as N/S = 3, the 

effects of removing this constraint are unmeasurable. At stronger

decimation, such as N/S — 3200, the effects are measurable (as a slow 

monotonic decrease in the system average of <qf>, for example); but the 

means of q. and q* do not wander significantly from zero. It was 

believed that this constraint would play an important role at much

stronger decimation, so it was left in the program. Much stronger

decimation never worked with constraint set I, though, so that could not 

be tested.

/
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(b) Mean energy constraint 

The mean energy constraint [Eq. (25)], as expected, causes exact

conservation of <^CDS>- With N  =  96 , S = 32, h =  0.01 (numerical

timestep), and 4 unequal-time constraints [Eq. (23)], removal of the 

mean energy constraint allows <^CDS> to increase by a factor of 6.8 in 

the span of 6  timesteps. The constraints cannot be satisfied at the 

seventh timestep (the Newton-Raphson procedure fails to converge), at 

which point the numerical solution stops. In contrast, the full-system 

N  — 96 run with the same timestep conserved <E> within 1.25 percent for 

the entire run of 100 steps.

With N  — 3200, S = 32, and h = 7.5 x  10”4, removal of the mean energy 

constraint allows <^CDS> to increase by a factor of 5 in one timestep. 

The constraints cannot be successfully enforced at the second timestep. 

Note that this h would allow 67 timesteps in the decorrelation interval, 

while the h from the previously-mentioned N  =  96, S =  32 run allows only 

30 timesteps in that system’s decorrelation interval. It is clear that 

the mean energy constraint is more important for strong decimation with

constraint set I. This is reasonable, since the stochastic forces play

a bigger role in the ODE’s as N/S increases.

(c) Force variance constraint 

The system-average stochastic force variance constraint [Eq. (22)] 

not only forces the system average of the variances of q, and q* to be 

equal, but also keeps the variance of qf from blowing up or collapsing. 

With N  — 96 , 5 =  32, h — 0.01, and 4 unequal-time constraints 

[Eq. (23)], removal of the variance constraint allows the system 

average ^-variance
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°  1 - 1

to increase by a factor of 50 in the span of 9 timesteps. The system 

fails to converge at the tenth timestep.

With N  =  3200, S = 32, and h = 7.5 x 10"*, removal of the variance 

constraint causes the system-average ^-variance to plunge to zero in one 

timestep. The system fails to converge at the second timestep. Since 

this A is a smaller fraction of the decorrelation interval than was h in 

the N = 96 run and this run failed in fewer timesteps, it is clear that 

the variance constraint plays a bigger role for strong decimation with 

constraint set I.

(d) Unequal-time constraints 

With no unequal-time constraints [Eq. (23)], the decay of the 

autocorrelation function # cds(t) is radically altered. The function 

decays in a decorrelation interval closer to that of an undecimated 

Betchov system of size S than a Betchov system decimated from some N > S 

to a system of size S. Figures 17 and 18 show this effect for N/S =  3 

and N/S =  100.
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Figure 17
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Figure 17. # cds(t) for an S =  32, N  — 96 decimated Betchov system under
constraint set I with the unequal-time constraints switched off at 
t =  0.1 (solid curve); # d ia(t) for N = 96 (dashed curve); H(j) for a
full N = 32 Betchov system (dot-dashed curve).
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Figure 18
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Figure 18. f/CDS(r) for an S  = 32, N =  3200 decimated Betchov system
under constraint set I with the unequal-time constraints switched off at 
t =  0.015 (solid curve); # DIA(*) f°r AT =  3200 (dashed curve); H(z) for a
full N  =  32 Betchov system (dot-dashed curve).
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The effects of changing the (nonzero) number and spacing between the 

unequal-time constraints are not entirely understood. Nonetheless, 

there are some comments worth making concerning the effect of the

spacing between the unequal-time points constrained against

and the length of the maximal window 11 - / '  J .
First, consider the effects of adding additional unequal-time 

constraints to a system to extend the window while keeping the spacing 

between the unequal-time points the same. For N/S — 3 and for 

N/S =  100, this produces no noticeable effects, except for the earlier 

convergence failure at N/S — 100 mentioned in §VBf.

Second, consider the effects of adding additional unequal-time 

constraints to a system but decreasing the spacing between the 

unequal-time points to keep the size of the window unchanged. For 

N/S =  3, this causes a noticeable loss of time stationarity of the

system. This can be seen in Fig. 19, which superimposes autocorrelation 

functions calculated from different base times in the run; for an

exactly time stationary system, the curves would all overlap within

statistical fluctuations. For N/S =  100, the only observable effect of 

this change of constraints was the aforementioned convergence failure

problems. (But early convergence- failure prevents making a plot like 

Fig. 19, so it is unknown whether this constraint change effects the

time stationarity of the N/S — 100 system.)

Third, consider the behavior of a system whose window spans only a 

small fraction of the decorrelation interval. For N/S = 3, with the 

window spanning 25 percent of the decorrelation interval, there is a 

noticeable lack of time stationarity, as Fig. 20 shows; there is an

indication of the development of oscillations in the autocorrelation
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functions in Fig. 20, but this has not been studied enough to definitely 

conclude that.
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Figure 19
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Figure 19. HCDS(t;f) for t = {0,.2,.4,.6} with S = 32, N  = 96 ,R =* 128,
100 timesteps, and with 8 unequal-time constraints (constraint set I) 
spaced out by 4 timesteps. This is a modification of the parameters 
used to generate Fig. 13, which had 4 unequal-time constraints spaced 
out by 8 timesteps.



72

Figure 20
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Figure 20. Hcds(*;t) for t  = {0,.2,.4,.6} with S = 32, N  = 96 ,R = 128,
100 timesteps, and with 8 unequal-time constraints (constraint set I)
spaced out by 8 timesteps. This is a modification of the parameters
used to generate Fig. 13, which had 4 unequal-time constraints spaced
out by 8 timesteps.
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C. Results using constraint set II

Again, the reader is referred to Table I for a list the constraint 

set n . Some of the results from the following sections are summarized 

in that table.

I. General results

As with constraint set I, the "turbulence," isotropy, and 

time-stationarity of the Betchov system are not destroyed by decimation 

under constraint set n. These conclusions are supported by Fig. 21 

Fig. 22, and Fig. 23.

Because constraint set n  has no exact mean energy constraint like 

Eq. (25), the mean energy <Ĵ CDS> does wander a bit as time evolves 

because of discretization errors. (Example; <i?CDS> varies by 1 percent 

for N  = 96, S = 32, h = .002, 10 unequal-time constraints.) As

mentioned before, the equal-time case of Eq. (27) is equivalent to the 

time-derivative-based energy constraint Eq. (20). With constraint set 

n, this wandering is always downward; the mean energy of the system 

decays as time evolves. This decay becomes more pronounced as N/S 

increases, and it is necessary to use increasingly small timesteps 

(relative to the decorrelation interval) to maintain desired <^CDS> 

conservation. The Newton-Raphson procedure fails to converge if the 

equal-time case of Eq. (27) is replaced or supplemented by the exact 

energy conservation constraint from constraint set I [Eq. (25)].
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Figure 21
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Figure 21. A single variable, jCj, from a single realization of an
S — 32 decimated Betchov system (decimated from N  = 96) under constraint 
set n. There were 500 timesteps in the run, with 10 unequal-time 
constraints spaced out by 14 timesteps.
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Figure 22
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Figure 22. (a) The means of four different variables — <*j>, <*8>,
<Xj6>, Cr24> — from an ensemble of S = 32, N  — 96 decimated Betchov
system under constraint set n  . Note that no variable dominates any 
other. (b) The system-averaged mean of all the variables of that same 
realization of the decimated system. For both plots, R = 128; there 
were 500 timesteps in the run, with 10 unequal-time constraints spaced 
out by 14 timesteps.
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Figure 23
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Figure 23. (a) The mean squares of four different variables — <*i>»
<x\>, — from an ensemble of S = 32, N  = 96 decimated
Betchov system under constraint set 1 . Note that no variable dominates
any other. (b) The system-averaged mean square of all the variables.
For both plots, R =  128; there were 500 timesteps in the run, with 10
unequal-time constraints spaced out by 14 timesteps.
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Figures 24 through 28 show autocorrelation functions for decimated 

systems under constraint set n  at various decimation strengths from 

N/S — 33/32 to N/S =  106. The DIA results (and full-system results, 

where possible)are plotted for comparison of decorrelation time scales. 

The clear success of constraint set II is at strong decimation. The 

oscillations in # CDS produced by constraint set I are noticeably absent 

in these results. The only problem with the results from constraint set 

n  is the deviation of #££§ from # DIA and H  for intermediate decimation 

strength, such as N/S = 3 (Fig. 23). This deviation is slight, but just 

outside the level of statistical fluctuations.

The i?CDS curve for N/S — 3 can be brought within fluctuations of the 

full-system and DIA curves with the addition of a variance constraint of 

the form of Eq. (22). However, this causes convergence failure of the 

Newton-Raphson procedure at stronger decimation levels. Perhaps it is 

not surprising that the properties of a single constraint set as simple 

as set II vary a bit through the wide decimation-level range 

investigated. In any case, one of the more interesting conclusions to 

be drawn from constraint set II concerns the strong decimation limit and 

its relationship with the DIA; this will be discussed later in the 

dissertation (§VI).
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Figure 24
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Figure 24. # cds(t) for an S  = 32, JV = 33 decimated Betchov system under
constraint set II (solid curve); # DIA(i) for N  — 33 (dashed curve); H(z)
for a full N  = 33 Betchov system (dot-dashed curve).
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Figure 25
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Figure 25. /^CDS(r) for an S  =  32, N = 96 decimated Betchov system under
constraint set II (solid curve); ffDIA(t) for N  = 96 (dashed curve); H(j)
for a full N  =  96 Betchov system (dot-dashed curve).
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Figure 26
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Figure 26. /fCDS(r) for an S  «  32, W = 320 decimated Betchov system
under constraint set n  (solid curve); for AT =  320 (dashed
curve).
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Figure 27
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Figure 27. # C£)S(f) for an 5 =  32, JV ~  3200 decimated Betchov system
under constraint set II (solid curve); # DIA(t) for N  = 3200 (dashed
curve).
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Figure 28
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Figure 28. # cds(t) for an S  =  32, N  =  32 x 106 decimated Betchov system
under constraint set n  (solid curve); # d ia (t) f°r  N  — 32 x  10  ̂ (dashed
curve).



83

Sometimes, particularly at strong decimation, the mean energy is 

observed to suddenly depart from its slow decay and plunge to smaller 

and smaller values. This usually coincides with an obvious disruption 

in the autocorrelation function, following which the curve fluctuates 

strongly. Figure 29 shows these two effects on an N/S = 100 run. At 

very strong decimation, such as N/S = 106, the breakup of is

sometimes observed when <-^DS> bas not yet noticeably plunged. 

Nonetheless, it is concluded that the two phenomena are linked; the 

instability is stronger as N/S increases. The instability can always be 

avoided by choosing smaller timesteps and appropriate unequal-time 

constraints (including constraint over a longer time-history). Study of 

this instability is the goal of possible future analysis.

2, Effects of the constraints

(a) Mean stochastic force constraint 

At moderate decimation levels, such as N/S — 3, the effects of 

removing this constraint [Eq. (26)] are unmeasurable. At stronger 

decimation, such as N/S = 3200, the effects are measurable as a slight 

slowing in the decay rate of <£CDS> (by 3 percent in the most extreme 

case observed) or even a temporary increase in <^CDS> (onc percent in 

the most extreme case observed).
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Figure 29

1 . 0
(a)

. 8  

. 6  

*  - 4  

. 2  
0 .

0 .  . 0 5  T . 1 0  . 1 5
1 6 0 0

<b) 1 4 0 0

1 2 0 0

~  1 0 0 0c/i

<£ 8 0 0  

6 0 0  

4 0 0

0 .  . 0 5  . 1 0  . 1 5

Figure 29. (a) ffCDS(?=.015;T) for an S =  32, N  =  3200 decimated Betchov
system under constraint set n  (solid curve) with 100 timesteps and 4
unequal-time constraints spaced out by 8 timesteps. Note the disruption 
in the curve around t  = .06; this corresponds to /  =  .075 in the
system’s time evolution. The dashed curve is A(r) for N  — 3200.
(b) <^CDS>for the same decimated system. Note the drastic drop in
<^CDS> t = -®75 corresponding to the disruption in the # CDS

curve.
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(b) Equal-time force-variable constraint 

This constraint [Eq. (27) with t '  — /], as explained before, causes 

approximate <^CDS> conservation. Systems run without it fail after a 

few timesteps; they run longer if A is decreased, since the unequal-time 

force-variable constraints approach this one if the spacing between 

unequal-time points is also small. For N/S = 3, a typical system

without this constraint failed to converge at the third timestep, before

which <2?cd s> had increased by 3 percent. For N/S =  100, a typical

system failed with numerical overflow errors at the third timestep, 

before which <2?CDS> had only increased 0.0009 percent; however, the

overflow error suggests that <^CDS> is skyrocketing during the attempt 

to apply the constraints at the third timestep.

(c) Unqual-time force-variable constraints 

With no unequal-time constraints [Eq. (046) with t '  < r], as with

constraint set I, the decay of the autocorrelation function 7/cds(t) is 

radically altered toward that of an undecimated Betchov system of size 

S. Figures 30 and 31 show this effect for N/S = 3 and N/S — 100.

The effects of changing the number and spacing between the 

unequal-time constraints are subtler, but more consistent than the

effects observed under constraint set I. Again, consider the effect of

the spacing between the unequal-time points {* ',/"..... } constrained

against and the length of the maximal window 11 - t '  | .

First, add more constraints to a system to extend the window while 

keeping the spacing between the unequal-time points the same. For 

N/S =  3 and for N/S = 100, this produces no noticeable effects, except

for a slight improvement in <^CDS> conservation: For N/S = 3, the total
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percentage decrease in <^CDS> goes from 11 percent to 4.5 percent — a 

change in percentage drop of 6.5 percent [with N  = 96, S — 32, 

h =  0.003, (a) 7 unequal-time constraints spaced by 10 timesteps, and

(b) 16 unequal-time constraints spaced by 10 timesteps]. For N/S =  100 

with' these same two sets of parameters (except now h — 0.0005) the 

energy-related instability sets in after about two decorrelation times, 

before which <Z?CDS> decays only one percent in each case. The 

subsequent plunging of <^CDS> is lessened by 1 percent in the second 

case (at three decorrelation times).

Second, add more constraints to the system but decrease the spacing 

between the unequal-time points to keep the size of the window 

unchanged. For N/S — 3 and N/S = 100, the major noticeable effect is 

improved <-ECDS> conservation: For N/S = 3, the change in percentage

drop in <2?CDS> is 10.8 percent [with N  — 96, S =  32, h = 0.003, (a) 7 

unequal-time constraints spaced by 10 timesteps, and (b) 16 unequal-time 

constraints spaced by 5 timesteps]. For N/S — 100 with the same 

parameters (except now h = 0.0005) the onset of the instability is not 

observed during the entire three decorrelation times of the run, and 

<1?Cds  ̂ decays less than 1 percent.

Third, use a window spanning only a small fraction of the 

decorrelation time. For N/S — 3 and N/S =  100, with the window spanning 

20 percent of the decorrelation interval, <^CDS> decays by less than 0.1 

percent and no instability occurs (with 9 unequal-time constraints and h 

giving 100 timesteps in the decorrelation time; the runs go out to 3 

decorrelation times). For the same parameters, but with the 

unequal-time constraints spanning the entire decorrelation time, the 

instability sets in after two decorrelation times; <£CDS> decays by 11
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percent for N/S =  3 and 21 percent forN/S =  100. However, for the same 

timesteps but with only one unequal-time constraint, the instability 

sets in before one decorrelation time; <i?CDS> decays by 83 percent for 

N/S = 3 and 60 percent for N/S = 100. This behavior is complicated, but 

it need not be understood in detail since the main interest is a stable 

solution that conserves <i?CDS>; any parameters which yield such a 

solution are acceptable. For consistency, the unequal-time constraints 

always span one decorrelation time in the results presented here (where 

possible).
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Figure 30
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Figure 30. # c d S(t) for an S — 32, N  — 96 decimated Betchov system under
constraint set n  with the unequal-time constraints switched off at 
t = 0.1 (solid curve); # d i a ( t)  for N  =  96 (dashed curve); H(r) for a
full N  = 32 Betchov system (dot-dashed curve).
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Figure 31
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Figure 31. # CDS(T) for an S = 32, N  = 3200 decimated Betchov system
under constraint set I with the unequal-time constraints switched off at 
t =  0.01 (solid curve); / /d ia(t) for N  -  3200 (dashed curve); H(x) for a
full N  = 32 Betchov system (dot-dashed curve).
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A. DIA via CDS
B. Constraint set II as "DIA constraints"
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A. DIA via CDS

Recent work of Robert Kraichnan17,18,23 has suggested that the CDS

under constraint set n  is related to the DIA in the limit as N  —> oo.

There is no rigorous proof for this claim, but plausible support for it

is lent by the following:

First, note that the DIA can be recovered beginning with the

following intuitive leap: instead of the full-system Betchov equations

[Eq. (13)], consider

where the kernel A ^s ts* 10,f) is the inverse of the autocorrelation

for *=1,2,...,# (28)

where b^t) is a random function satisfying

<bXt)xXt')> =  0 (29)

for all t and t ' . The function R.(t,s) is defined by

Rfi,s) m /  Y c tJk x}(l) *t (I) \  | 0,t) ds‘ , (30)
■*0 j ,k ~ l
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function; that is,

f M.(s,s’ | 0,0 <xt{ n  x.(s)> ds =  S it'-s ')  . 
J A

Note that ^  is statistically sharp (<^>  = «^). With the use of the 

expressions for R. and «3i£, Eq. (28) becomes

dx
—  = *,«) +  J i  ^d t

r# fr ' *
K  ]T  Cyk Xj(t) xk(t) x.(s') ^  a£ (j,j ' I 0,0 ds' 

J0 = l
x.(s) ds 

for i= l ,2  S . (30)

The reasons for setting up this equation will become clear in the end. 

One justification for it is that Eq. (28) follows the pattern of 

Orszag’s derivation of the DIA,7 which begins by replacing differential 

equations of the form

dy
7 T  "  I A<*y/ y* - vi y>

j , k

with integro-differential equations of the form

dy\
d t ■ f . nfi,s) y|C0 ds - vi y'i ,
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where tj. is a nonrandom eddy-damping factor. In Eq. (28), plays the 

same conceptual role as 7] . .

At this point, if both sides of Eq. (30) were multiplied by x ft+ f)  

and averaged and the DIA moment expressions from Appendix B employed, 

the same expression for # DIA(T) as derived in Appendix B would result. 

This is another justification for replacing the Betchov system with this 

new integro-differential system — they have the same DIA solution.

In preparation for decimation of system of N  equations to a system 

of S equations, split the summation in Eq. (30) into two parts:

S

(Y c» */'> xts"> >
j ,k  = 1

N

+ (Y >j , k

where Z r is the sum over all j and k such that at least one of the two 

indices is greater than S. Next, replace

N

{ J C'1k )
j , k

with

<q*(t) x.(s')> .

N

(Y % z/° x*w ) =
j ,k  = 1

As always in this dissertation, q*(t) is defined as
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N

<1 J(0 ■ ^  C.jk X j(t)  JĈ CO .

i , k

The decimated- system equations are then

= bff)  +  f f (q*(t) * ,(* ')) s ' | 0,0 ds'
J A J/\'0 J0 

.f J  s

x t(s) ds +

I I ( Z! CVk I °'r)"*0 (̂ o y,*=i
x.(s) ds

for j= l ,2 ......£  . (31)

Now introduce a new quantity Q. and rewrite Eq. (31) as

dx
“  = Y ^CiJk + fOT I = 1’2’*’” 5’ (32)

/ , * = !

where

ft
0 / 0  “  * /0  +  j  j  ^ * (0  x fo ') )  'XftyS' | 0,0 ds'

'0 "0 

f-f s

x.(s) ds +

f [ (  ^  CVk XJ® X̂  Xf s '^ ) ^ £ s’s ' I °*0 ds'

E c #* */*> **w - •
j ,k = l

x.(s) ds

(33)

The transformation from Eq. (31) to Eq. (32) is a formal one, whose
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purpose will become clear at the next step in the argument.

Next, take the moment of Q /0 with x^t'); after interchanging the 

order of the integrations over s and s '  and taking averaged quantities 

outside the new moment brackets,

< 0 / 0  * / * ' ) >  =  <bft)xft ' )> +

< * /» )  x.(t')> dCfas' | 0 , 0  ds (q*(t) x .(s')\ ds'
Jn Jn

r r
I \<xfi) X.(t‘)> X t(s,s' | 0,0 ds
J n  J n ( Y . c #  * /»  **(,) * '

< i s *  v 0 x*w */»*>)

= 0  +  * ,( , ') )  ds'
J0

< 0 /0  x f t ' ) >  -  <?*(') */*')> •

i

(34)

Finally, identify 0 /0  with the stochastic force q.(t) in the

decimated Betchov system equations Eq. (16). Now Eq. (32) is identical

with Eq. (16), and the force-variable constraints in constraint set n

[Eq. (26)] are system-averaged versions of Eq. (34). The
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least-squares-minimization qft)  determined by the Newton-Raphson 

procedure in the implementation of the CDS discussed in §IID3 and 

Appendix D is intimately related to the Q.(t) defined in Eq. (33). The 

remainder of this section is dedicated to clarifying that relationship.

In the numerical determination of q.(t) under constraint set n  only

a finite set of discrete time values t £  t '  are used in the

force-variable constraints:

S  S

£%«,(/) X ft‘)> = £< ,*(<) xfn> . (35)
i = 1 / = 1

For simplicity, assume that every timestep is constrained against, so 

that t '  takes the values {0,h,2h,3h,4h,...,Lh}; L is defined so that

t =  Lh. Now the time integrals in the preceding equations in this 

section become discrete sums over the t ’ values. That is, Eq. (33) 

becomes

L  L

QfLh) *a b.(Lh) + ^  x.(mh) <qJ(Lh) x.(nh)> CfC£jn,n | L)
m = 0 n=0  

L L  S

+ Z  Y .x‘(mh) ( Z c#* x/ £A) z t (Lh) 1 L)
m= 0 n = 0  =  1

S
- £  CtJk Xj(Lh) xk(Lh) , (36)
) . * = !

where
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Y  <xfinh) x f i f y y \  L) =
j  =0

96

(37)

Next, define the (£.+l)-dimensional matrices xf and K̂:

H *  -  -  < * < « * / « > .

k l  = 'XAmJ | L) . (38)
L -W

It is straightforward to show that — x '1. Now define the 

(Ir+l)-dimensional vectors xf and Q*:

k l  “  xXmh)
*■ -*BI

[q j]  o  <q*(Lh) xXmh)> . (39)

Using these definitions, the second term in the righthand side of

Eq. (36) can be expressed compactly:

L L

Y  Y Xî mh) <q*(Lh) x i(nh')> JC.(m,n | L) = .
m=0 n=0

Using Eq. (36), calculate the moment <Q.(Lh) x.(ph)>:
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<Q£Lh) xfoh)}  =  <b.{Lh) xfph)>

L L

+ ( J Y  ^  xfinh) <q*(Lh) x.(nh)> JC.(m,n \ L) x.(ph)^ 
m-0  7i=0

L  L  S+ <Z X*̂  (Y. cm Xj(Lh) xk(Lh) xfidify-aCfinji | L) xfoh)}
771=0 71=0 j  , jfc= 1

s- <X c v iX ji w , x km x f p h ) )  .
j , k =  1

This expression can simplified by switching orders of summation and 

using Eq. (29), Eq. (37), Eq. (38), and Eq. (39); the result is

L

<QiiLh) x.(ph)> = Y  [x •x:1] [q*1 .
n = 0  Pn n

Thus, using Eq. (066),

<Qi(Lh) xt> =

=  QJ

<Qt(Lh) xf> -  <q*.(Lh) x.> .

Next consider the q^Lh) calculated using the Newton-Raphson 

technique in the CDS as described in §IID3 and Appendix D. The 

Newton-Raphson process iteratively modifies an initial guess q®\lJt) 

until it satisfies constraints of the form Eq. (35). This is equivalent 

to modifying q^(Lh) only once with a dq.(Lh) which is equal to the sum
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of all the small changes from the sequence of iterations. That is, an 

initial q^{LK) is guessed for which in general

< qf\lK ) V  *  <«*(£*) x(> .

This is modified by dq.(Lh), so that

<lqf>(lh) +  SqfLh)} Xj> =  <q‘(Lh) I.> .

Express Sq.(Lh) as a linear combination of the components of 

that this is exactly the procedure described in §1ILD5(£)]:

SqfLh) =  Am x i(mh)
m=0

The nth component of <Sq.(Lh) x̂ > is then

*4

<SqfLh) xf«h)> = ^  Am [»J
m-0 ™

Here [A]^ = Am . Now Eq. (40) is

[V a ]  =  [q»] - <qf\LK) xfnh)>

-  [Q?] - [Q<°>] •
L Jn L Jn

(40)

[note

Generalizing,
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Y Ai == Q? - Qii0)

A, - - O

Thus

4/ I f t )  =  q f\lJ i)  +  ^ ( U , )

=  q(°}(Lh) + x.-A.

= «f>(IA) +  ^ . ( Q .  - Q<°>] . (41)

Now this can be compared with Q^Lh) derived earlier. Comparison of

Eq. (41) with Eq. (36) shows that

q , m  - Q f m  =  [qf\Lh) - *i-x;1'Q ‘0)] - [*,(£»)

L L S

+ Z  Y .x‘(mh) ( Z c »  xi iLh) x*(fJi> x‘(nh))  •*i(m'n 1 L)
m= 0 n=0 j  , k = \

S

- Z s*  xj (Lh) •
j , k = l

Both terms in parentheses satisfy <(...)x;> = 0, so

((« ,(£*)- G jW ]* ,)  =  0 .

Thus the difference q^Lh) - Q-(Lh) contributes nothing to the moments 

in the constraints being discussed and is irrelevant to the formalism of 

the CDS.
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B. Constraint set n  as "DIA constraints*

Based on the argument from the previous section, it was suspected 

that constraint set II might give results comparable with the DIA 

results for the Betchov system. The observed convergence of 

under constraint set II toward ^ dea(t) as N/S —> oo (and consequently 

N  —» oo, since S  is finite) supports that suspicion. It may be that 

sim ilar "DIA constraints* can be configured for other systems to be 

studied with the CDS. This would be a valuable tool for two reasons; 

(1) CDS results could be compared with existing DIA results for systems 

whose DIA solutions have been calculated, and (2) it would provide a 

relatively simple way to generate DIA results for systems not previously 

solved with the DIA (solution of arbitrary systems with the DIA is a 

notoriously Herculean algebraic and computational task).
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A. Works with one symmetry group

The machinery of the CDS has been shown to function when applied to 

a many-variable system with one statistical symmetry group. The basic 

statistical character of the system is not altered by the decimation and 

constrained forcing. The isotropy and time-stationarity of the Betchov 

system are preserved in the decimated system. With constraint set n  

the autocorrelation function, a key statistical property of the Betchov 

system, is found to agree qualitatively and approximately over a range 

of decimation levels from N/S — 33/32 to N/S — 106. The agreement is 

quantitatively within statistical fluctuation levels both for very weak 

decimation [N/S = 0(1)] and strong decimation [N/S = 0(100) and higher], 

with the results becoming better as N/S becomes larger. While it is 

possible that as yet untried additional constraints could improve

quantitative agreement over the entire decimation range, it is also 

possible that it is simply unreasonable to expect a single formulation 

to work over the entire range.

Since the goal of the CDS is the reduction of very large systems, it

is good enough that the scheme works best at strong decimation. More

important than further refining results on decimation of the simple

Betchov system is the application of the CDS to more complicated 

systems. Specifically, the CDS should next be applied to a system with
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more than one statistical symmetry group. The interactions between

groups of variables with different statistical properties must be 

studied. The CDS must be shown to preserve the average interactions 

between the groups. Work has begun on two more complicated systems.

The first system is a modified Betchov system' which has two variable 

types. The two sets of variables in the modified Betchov system form 

two statistical symmetry groups; the variables within the sets are 

statistically similar, but the two groups have different statistics.

The modified Betchov system is based on one used by Kraichnan in a 

recent paper.24 The system equations are the same as the regular 

Betchov system:

dx. N
—i = A.jk Xj xk for .

1 M - l

The variables fall into the groups {x{ 11 = 1 ,2 ,...^ }  and

{x. | i=Nl + l,2,...,N 2}, where IVj + =  N. The magnitude of the coupling

coefficient depends on which group variable x. belongs to.

Specifically,

Am

where

The 6yk are chosen at random from a uniform distribution on the 

interval (-1,1), and the are constant weights which determine the
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f 1 for / s  Nt

i 1 9 for Jifj < < s l f  ' (n.b.: N  - Nt «  N J  .

As in this dissertation, tractable foil modified Betchov systems will be 

solved then decimated for direct comparison. Particular attention will 

be paid to the exchange of energy between the two variable groups. 

Perhaps the depression of nonlinearity observed by Kraichnan in 

numerical studies of the full modified Betchov system24 can be 

reproduced by decimated systems.

The second system under investigation is the 2D, inviscid, 

incompressible Navier-Stokes equations. Preliminary work on this system

has begun, starting from the scalar vorticity formulation of the
25equations. The Fourier mode formulation of these equations is

p(k,r) = V W .p ) p(r,f) p(p,0 , 
p + r=  1c

where p(k,t) is a Fourier mode amplitude for the mode-series 

representation of the scalar vorticity (the magnitude of the curl of 

the two-dimensional flow velocity field; the direction of the curl is 

everywhere perpendicular to the 2D flow field) and

M(r,p) = - |  (r x p) [ ]

are the mode coupling coefficients. This set of ODE’s is of the generic 

form specified in Eq. (1), and the same decimation approach applies (now
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with many groups of statistically similar modes). A preliminary 

computer code for a simple formulation with constraints based on 

conservation of energy density and enstrophy density (two conserved 

quantities in the full equations) has been constructed. Plans are to 

study the modified Betchov system to verify that the CDS can reproduce 

statistical-symmetry-group interactions faithfully, then advance this 2D 

Navier-Stokes calculation.

The eventual goal for neutral fluid turbulence study, of course, is 

the decimation of the full 3D Navier-Stokes equations with viscosity and 

compressibility. The addition of viscosity presents no difficulties for 

CDS solution; in fact, the inviscid equations (and the energy-conserving 

Betchov equations) may well be a more demanding numerical test of the 

CDS because there is no damping which could moderate spurious effects. 

There is also no reason that the CDS cannot be applied to the MHD 

equations to study plasma turbulence, which is the ostensible reason 

that the research leading to this dissertation took place.

B. Ideas behind derivation of DIA via CDS supported
17 18 25Kraichnan’s discussions ’ ’ about the link between the DIA and 

CDS have been supported. Kraichnan’s discussions claim that the DIA can 

be recovered as a special case of the CDS. In particular, constraint 

set n  in this dissertation is a system-averaged finite subset of the 

DIA constraints proposed by Kraichnan.17,18,23

If the CDS works only as a means of finding DIA solutions, it is 

still a valuable tool. The application of the DIA to the Navier-Stokes 

and other physical equations equations is extremely difficult, both 

algebraically and numerically. A glance at DIA
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literature26,27,28,29,e‘g* shows the magnitude of that difficulty,

which can be both algebraic and numerical.

C. Works where cumulant-discard approximation fails 

Finally, it should be noted that this application of the CDS to the

Betchov system — particularly under constraint set n  — has succeeded 

in calculating H(j) where the cumulant-discard approximation fails. 

Certainly the DIA solution for H(r) is a success for the Betchov system; 

but this is not a surprise, since the system was designed as a model for

illustrating the DIA. Indeed, the DIA solution is much simpler to

attain for the Betchov system than the CDS solution. However, as

mentioned before, the DIA solution of more complicated systems is 

arduous, and the CDS holds promise for them. The research leading to 

this dissertation has been a first step (or perhaps a half-step), but a 

sensible one for studying a new method before applying it to a difficult 

problem about which little is known — strong fluid turbulence.
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APPENDIX A: CUMULANT-DISCARD APPROXIMATION SOLUTIONS OF

THE BETCHOV SYSTEM

The cumulant-discard approximation is a closure approximation for 

the moment hierarchy. It approximates quadruple moments with products 

of double moments. For Gaussian (normal) variables, quadruple moments 

are exactly equal to products of double moments; for this reason, this 

approximation is also called the quasinormal approximation. This 

appendix presents two different applications of the approximation to the 

problem of solving for the autocorrelation function of the Betchov 

system.

The first application begins with the Betchov system ODE’s:

J ,K= 1

Multiply each ODE by x-(#+t), sum over i, divide by N, and take the 

ensemble average of both sides of the resulting single equation:

The lefthand side of Eq. (A2) is equal to -dff(r)/dr, as can be seen by 

explicitly calculating dH(j)/dr:

N

N
(Al)
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N dxt {t+x)

d x  dx

= £  f  [ 5 7  ^  X'(,+T)> * <X'('+T) ^  > ] (A3)

The second term on the righthand side of Eq. (A3) comes from the chain 

rule, followed by a trivial change of variable:

d  / f o M  \  /  dxA t+ x) v
—  OcXO xXt+x)> =  (  — -—  * ,( /+ t) \ +  (xXt) —!-------- )
d t 1 '  dt 1 /  \  1 A  /

, <&,(/) v . dx.(t+ x) *
=  < ^ r x'(,+T)> + >•

The first term on the righthand side of Eq. (A3) is zero because the 

statistics of the Betchov system are time-stationary; with that term 

removed, Eq. (A3) yields -

dH  _  I V "  
d x  &. -i—.i =*i

* & ,( /)
=  i  r  / t  ( /+ T) ^ )  .

N  dt '

From Eq. (A2), then,

N

LdH
dx

n

= Y. cfit xi{,+z) xi(,) x*w) • (A4)

It is useful now to introduce the shorthand notation
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and

x fi)

x fi+ x)  .

Now take the r-derivative of both sides of Eq. (A4), make a trivial 

variable change, and use the ODE’s again:

d2H
d r 2 - - * <  t" i,y,*= 1 aT

N

' It (  Y. [ C«* XS * k  Z °<P1 xP * i ] )
i , j , k  =  l  p , q * * l

iv

-  - 1  y
N

i f J  * k , P  1 9 s1 1

C, C  Cc x. x* x'> . U * (P? J * P  9

Now make the cumulant-discard approximation on the quadruple moment 

* * * ; x ? :

d2Ht N
CD _

d r ‘ - i . l C i j k  C ipq  
i »j  , k , p , q * * l

<x. x .X x ' x'>  +  Of. x 'X x .  x'>  +J k  p  q  J P  k  q

(A5)

Now make use of the statistical independence of the variables in the 

Betchov system, which implies Of, xj> = 0 if i *  j :
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d2H.CD
dx '

f
- -  V  C . . .  C . \  d ,,S < x 2><x/2> + S. S .< x x '  JJ i j k  ipql jk  p q  j  p  j p  kq j  j

(A6)

A further consequence of the isotropy of the Betchov system is that 

H{ = Hj = H  ViJ. Using this, and <x2> = 1, yields

d2H. N
CD

dx
= .i y

N  , 4 - C i j k  C ipq
i>j ,k ,p ,q = 1

V m  +  V /c d " >  + (A7)

Next, note that since = 0 the first term in the righthand side of 

Eq. (A7) is zero, and either the second or third term in braces is zero 

for all terms in the summation. This simplifies Eq. (A7) to

d2H.CD _
d x '

1
N C ijk Cijk H:CD (A8)

In the large-iV limit, the quantity in braces in Eq. (A8) becomes 3M  

(where M  is the number of coupling triplets) because of the random 

Gaussian coupling coefficients. Eq. (A8) becomes

j2 j?CD _  3AT ej2 
d x 2 N  *

This equation can now be solved for H ^ ix )  with the initial condition 

Hcd(0) = 1. A numerical solution is plotted in Fig. A1 (solid curve);
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it has the proper behavior near x = 0, then plummets to -oo as x 

increases. This is clearly not a valid approximation for the true

autocorrelation function, which goes to zero as x becomes large.



I l l

Figure A1
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Figure A l. Two cumulant-discard approximations to the autocorrelation 
function for the Betchov system. The solid curve is the solution to the 
equation immediately following Eq. (A8); this function goes to -oo. The 
dashed curve is the solution to the equation immediately following 
Eq. (A12), which is a cosine function. For both curves, N = 96 and
M  = AN219.
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A second approach using the cumulant-discard approximation begins by 

time-differentiating both sides of Eq. (Al), then multiplying by 

xt(t+ t), summing over i, and ensemble averaging as before:

LNi j § )  - < - >

The lefthand side of Eq. (A9) is equal to eP'H(x)fdt2', as can be seen by 

explicit calculation; using the chain rule twice, trivial variable 

changes, and twice using the time-stationarity of the Betchov system,

i f  / . j A v  _ i f / A \ x . ‘̂ y . ‘h d̂ ± \
N  d t^  1 d t J d t d t /

i =i

N  f  j 2 /

*  d2x '

d2H
d x2

From Eq. (A9), then,



113

Using the ODE’s, this becomes

~ N  N
c r H  _  1

i f  E C m  E { C *PQ Xj  XP  *« +  CJP9 X* Xp X< l } )d x 2  __  __
a T  1 p , q ~  1

JV JV

E CM  E { C*P1 XJ XP  V +  CJP9 Xk xp xq> }
i , j , k  =  1 p , q  =  1

Now make the cumulant-discard approximation on the quadruple moments

<x' x . x x  > and <x'. x , * x  >: i  j  p  q  i k p  q

^  h cd

d x 2
N  N

j ,  I  c »  I  ( U w +  +

2
Now use the isotropy of the Betchov system and <x{ > = 1 (as was done 

before with Eq. (A5) and Eq. (A6» to yield

d 2H  N  N— cd  =  i  r  c  y  rc  \8 $  H  +  s  s  »  +  s .  s .  h _ 1
d x 2  N  Z - L # w  CD tp j q  CD iq Jp CDJ

i , j , k = * l  p ,q e *  1
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+  C]pq\^ikSpqHCD + SipSkqHCD +SiqSkpHCQ ^  * (A10)

Next, note that since =  0 the first term in each pair of square 

brackets contributes zero to the total sum, and either the second or 

third term in each pair of brackets contributes zero for all terms in 

the total sum. This simplifies Eq. (A10) to

d ^ n  ^
d 2 =  «  ^  Cijk +  CkjflcD  +  C]uPcD  +  Cjk f lCd}

" N  H™ {T) ( I c y* [c *  + c m  +  c/*  + CA } <A11>

In the large-iV limit, the quantity in braces in Eq. (A ll) can be 

simplified by using several relations which arise because of the 

independent random Gaussian coupling coefficients:

N  N

Z  Cijk Cjki = 0 =  Z  Cm  Cm
i , j , k  = 1 = 1

and

N

I Cijk Ck\j 1 m

1
ijk Cjki 
1

(A12)

Using these in Eq. (A ll) yields
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d2H;

dxr = Y. cut [cw+ sJ J
-  j ,  " a ,  H

 CD _  _ 3Af
J t 2 N

H.CD *

This equation can now be solved for (r). The solution (with 

Hcd(0) = 1) is

(r) = cos|v 3MIN x\ Z u m T  r] ,

which is plotted in Fig. A1 (dashed curve). This is also clearly not a 

valid approximation for the true autocorrelation function.
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APPENDIX B: DIA SOLUTION OF THE BETCHOV SYSTEM

A. Derivation of i/DIA(r)
B. Numerical solution: code

116
137

A. Derivation of ^ dia(t)

The DIA calculation of the autocorrelation function begins with the

Now take the r  derivative of both sides, as done at the beginning of 

Appendix A. The result is

N

The DIA is a way to approximate the triple correlations on the righthand 

side of Eq. (Bl) using a response function. Basically, it expresses the 

triple moments in terms of quadruple moments (the next stage in the 

moment hierarchy), then replaces the quadruple moments by 

response-function weighted products of double moments.

The cumulant discard approximation (Appendix A) made the same kind 

of moment-hierarchy truncation and yielded results for H(r) that were 

good for small r, then diverged from the correct form. The DIA is a

definition:

N

(Bl)
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means to remove the high-T errors resulting from the hierarchy 

truncation. It does so by the introduction of a decaying response 

function called the regression function.

To define the regression function, consider the effect of perturbing 

one variable in a Betchov system with a small impulse at a fixed time 

tp. For a specific example, imagine that variable x5 perturbed by an 

amount e at time * . This perturbation changes the time evolution of x$ 

from its unperturbed path; because of the turbulence of the system, the 

perturbed x£(f) eventually deviates strongly from the unperturbed 

Define the difference between these two evolutions as Axs:

The general shape of this function Axs is shown in Fig. Bl. If 

different realizations of the Betchov system were perturbed at variable 

xs in the same way, their Ax$ functions would deviate strongly from each 

other at long times; this is depicted by the curves in Fig. B2. The 

curves would average to zero, however. Define the regression function 

for variable 5 as

"regression" of their distribution back to Gaussian. The energy e of 

the impulse is redistributed among all variables in each realization.

Axs(t) m 3?s(t) - x“(0 . (B2)

T
P

This function is depicted in Fig. B3.

The ensemble of x^’s is perturbed at time tp from a Gaussian 

probability distribution. The regression function describes the
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Figure B l

Sy*X
, 0 2

, 0 4 - i

6 1 .00 . 2 84* «

/

Figure Bl. The function A x^i)  calculated numerically for a single
realization of a Betchov system with JV = 96; in the perturbed system,
variable x5 was perturbed by £ = 0.01 at time t — 0.2. The long-time
growth of this function indicates how the perturbed system deviates
strongly from the unperturbed system.
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Figure B2

. 0 6

. 0 4

0 . 2 4 86 1 . 0«

t

Figure B2. The function calculated numerically for five
realizations of a Betchov system with N  = 96; in the perturbed systems, 
variable was perturbed by s -  0.01 at time t  -  0.2. The way the3 p
curves spread out from each other (and average to zero at long times) 
indicates the sensitive dependence of the system to initial conditions.
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Figure B3

8*
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0 .

0 . 2 4 6 8* »

x

Figure B3. The single-variable regression function G5(t) calculated
numerically for an ensemble of 128 Betchov systems with N  =  96; in the
perturbed systems variable x5 was perturbed by € = 0.01 at time
t =  0.2, which corresponds to x =  0. Note the decay of the function to
zero, followed by fluctuations about zero.
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Now imagine that x$ is perturbed by a continuous perturbing function 

fit)  instead of just pulsed at tp. That is

In a nonlinear system, #£(r) is "closely related" 19 to it

contains the effects of the initial conditions and the unpredictable 

effects of fit) (unpredictable in the sense that the same fit) yields 

radically different effects when applied to systems with different 

initial conditions). The integral contains the effects of /  that can be 

predicted via the regression function.

Consider now the ensemble averaged effect of /:

<fit+r) x$(t)> -  <fit+r) #£(r)> + G5(t-s) <fit+r) fis)> ds . (B5)

(B3)

Formally, one can solve this equation for x5(t):

-00

(B4)

In a linear system, #£(*) would be ^ ( 0  and Gs(t) a Green’s function.

-oo

The first term on the righthand side of Eq. (B5) is assumed to be zero 

because an average over unpredictable (fluctuating) effects is zero for 

the Betchov system. Then
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x5(t)> =  |  G$(t-s) <f(t+r) M >  ds
-C O

t
(B6)

-00

where

hCt) rn m /C t+ T )>

(In Eq. (B6) t — s and t+ f  = t+ t.)

So far, these manipulations are purely formal. In preparation for 

developing the approximations of the DIA, consider now a specific single 

triple moment of Betchov-system variables: <*6(t+r) x2(t) *9(/)>. The

first assumption of the DIA is that this moment is zero i f  {6,2,9} is 

not a triplet o f coupled variable indices (that is, if 

Cg^ = C296 =  C^ 2 — 0) .This causes neglect of indirect effects by 

keeping only the direct effects of triplet interactions. Betchov
19argues that even with the worst possible choice of random couplings, 

the ratio of indirect-interaction (i.e., indirect-coupling with 

C$29 = ^  contributions to this triple moment to the direct-interaction 

triplet moment is 0(11N).

To calculate the effects of the direct interactions, imagine first 

that {2,9,6} is not a coupled triplet. In this case, the moment 

<x6(/+ t) x2(t) x9(t)> is zero. Now "switch on" only the coupling 

coefficient C296, leaving =  0 = C629; this adds one term to the 

righthand side of the ODE for *2, namely ^ 29€X9X6 :
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(B7)

Here 2 "  indicates summation over all couplings to x2 except C ^ .  This 

single term plays the role that fit)  played in Eq. (B3) for x$ 

Replacing fit) with this term and replacing *5 with x2 in Eq. (B4) 

yields

So

<x6it+r) x2it) x9(t)> =  <x6(t+r) #r2(t) xgit)> +

[ G2it-s) C296 <x9(t) x9is) x 6it+x) x 6(s)> ds . (B8)

If SC^t) is equal to the "unperturbed" x“(t) (the solution in which C296

is not "switched o n /  then the first term on the righthand side of

Eq. (B8) is zero. Since SC^t) is a fluctuating quantity closely related

to the DIA assumes that the first term on the righthand side of

Eq. (B8) is zero. Then

<x6it+r) x2it) x9it)> -  G2it-s) C296 <x9it) x9(s) x6(t+ t )  x$(s)> ds .

x2(t) — &r2(t) + G^t-s) Cjjg Xgfs) ds ,

-oo

-CO

(B9)
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The second major assumption of the DIA is that the quadruple moment 

in Eq. (B9) can be replaced with a product of two double moments:

<x9(t) x 9(s) x 6( t + r )  x 6(s)>  =  <x9(t)  x 9(s)>  <x6( t + r )  x 6(s)>  .

Why is this legitimate here when it failed in the cumulant-discard 

approximation in Appendix A? The reason is that the quadruple moment in 

Eq. (B9) is multiplied by a regression function which decays to zero as 

its argument becomes large. Since the cumulant-discard approximation 

fails at large time separations, where the regression function is zero, 

it is acceptable for use in Eq. (B9). So

<xg ( r+ r )  x 2 (t)  x 9(t)>  =  |  G 2(t-s) C296 <x9(t) x 9(s)>  <*6(* + t)  x 6(s)>  ds

-  c 296 f  G 2(f“5> H 9{t~s )  H6(t+X-S) d s  . (B IO )
-oo

Next, switch off the coupling C296 and switch on the coupling Cg29. 

This adds one term to the righthand side of the ODE for x& namely

W z V

p-f*
—  ---------- =  2 ^  C 6jk Xj ( t + X )  V r+ T ) +  C629 V ,+ T ) »

where Z ” is defined as in Eq. (B7). Following the previous example, 

then,
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f ' +T<x6(t+T) x2(t) x9(t)> =  G2(t+T-s) C629 <x2(t) x2(s) x9(t) x9(s)> ds
-00

mt  + T

=  j  a 2(t+r-s) C629 <*2(») *2(,)> <I9(») x9(s)> ds
- OO

.*+T

~  i
-00

Next, switch off the coupling C^29 and switch on the coupling C ^ .  

This adds one te rn  to the righthand side of the ODB for x9, namely

C962*6*2:

dxt N
9 ^  C 9jk X j(t)  x f i )  +  ^ 2  x 6(?) X2V> »

where 2 "  is defined as in Eq. (B7). Following the previous two 

examples, then,

<x6(/+ t) x2(t) x9(f)> = f G9(t-s) C%2 <x6(f+r) x6(s) x j fy  x2(s)> ds
-  00

,t
-5) C%2 <x6( r + r )  * 6(j »  a 2(/> x2(j )>  &

-00

= C%2 f G9(t~s) H6(t+r-s) H2(t-s) ds . (B12)
-  OO

= [ G9(t-5
j  _ AA
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Now invoke the isotropy of the Betchov system:

N
1 V "  TTHfx)  =  H(T) -  Vi

N  j=  1
(B13)

and

N

(B14)G.(t) =  G(r) -  I  Vg,(t) Vi .
* N  J

y = t

With the use of these, Equations (BIO), (Bll), and (B12) become

<x6(f+r) x2(t) x9(f)> =  C296 f G(ta) ff(f-j) H(t+r-s) ds , (B15)
-  00

(r+ r
G(t+x-s) H2(t-s) ds , (B16)

-O O

and

<x6(t+r) x2(t) xg(t)> = C%2 f G(t-s) H(t+t-s) H(t-s) ds . (B17)
-O O

These three expressions are the values of <x6(*+t) x2(t) xg(t)> which 

come from the three independent direct interactions C29g, C629, and

C962*

Now make the third major assumption of the DIA (a "linearity"
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assumption); With the triplet {6,2,9} in the system,

Oc6(r+r) x2(t) x9(t)> is the sum of the expressions in Eq. (B15), 

Eq. (B16), and Eq. (B17). This is simple, and any calculation without 

this assumption is terribly complicated. Because of the 

time-stationarity of the Betchov system the lefthand sides of Eq. (B15), 

Eq. (B16), and Eq. (B17) are ^-independent. Therefore one is free to 

choose t — 0 on the righthand sides. Doing this, and adding the three 

righthand sides yields

<x6(#+t) x2(t) x9(t)> -  C629 |  G(t-s) r?(-s) ds
-OO

.0
+ [c296 + C ^2] f G(-i) H(x-s) H(-s) ds . (B18)

-  OO

Now use the cyclic property of the coupling coefficients,

C2%  +  C962 +  C629 0 ’

19 1*and the symmetry of the autocorrelation function, ’

Hirx) =  J?(r) .

Using these and splitting the first integral in Eq. (B18) into two parts 

yields

+ The symmetry of H  is required because of statistical stationarity.
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=  C,629

,0
G(t-j )

-00

jf{ s )  ds + f G(t-j) 
■* 0

- c.629 [ 0(-s)
-oo

=  C629 f
Jo

f0
+ C629 ff(j) [g<t-j) ff(j) - G(-s) ff(r-s)] ds

Now, following the pattern set for Ct6(f+r) *2(f) *9(*)>> make the 

same approximation for <x.(t+x) x^it) xk(t)> for all triplets {*V,Jfc} in 

the system. Now plug the results of this into Eq. (Bl), then use the 

properties of the coupling coefficients [refer to Appendix A, 

Eq. (A12)]:

d H(x) 
dx

' ■»I t  ?*] { *w  *
f°

H(s) [ g ( t - j )  H (s) - G(-s) //(T -J )j ds 
-00

= - J. (3M) I f  G(r-j) lf(s)ds  +
» Uo

[ « » [ -  
-  oo

G(t-j) H(s) - G(-s) H(t-s)-j)] . (B19)
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This is an integro-differential equation for # dia(t) which can be solved

if the regression function G(r) is known.

The second part of the DIA is the derivation of an equation for G

which forms with Eq. (B19) a closed set of equations for ffDIA and G. To

begin this derivation, consider once again pulsing x$ in a Betchov

system with a pulse of strength e at time t . As before [Eq. (B2)], A x.
P  5

is the change in x$(t) resulting from the perturbation. Now consider

also the changes in all other variables Sxy (j =£ 5) resulting from

direct and indirect interactions with x$. An important assumption is

that the changes 8x. are smaller than Ax$.

A long time after t , 8x. and A x. both become large. Energy
P  J  ^

conservation forces the system to stay on the surface of an 

N-dimensional sphere19, but dXj and Axs both eventually become of the 

order of the radius of that sphere. A measure of the divergence of the 

perturbed solutions A xf is the function K:

Note that calculation of K(j) requires running the ensemble of Betchov 

systems N  times, perturbing a different variable x. each run. The

observed behavior is that K  grows exponentially, but follows G for a 

short time; it follows G for longer times as N  increases. This is seen 

in Fig. B4.

N  1/2

m I T *  t  ■ (
P
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Figure B4

»

N =  24

N =  48

N s  96

Figure B4. The functions K(x) and G(t) for three Betchov systems with 
increasing N; the x axes are scaled so that the curves can be compared 
easily. Note that K(x) follows G(r) for an increasing fraction of the 
decay time of G  as N  is increased. This figure is from a paper by
Betchov.20
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Now proceed with the derivation of the equation for G by 

the solution of the Betchov system about the unperturbed solution.

•*?(*) = xuAt) + A xJt)

and

Xj(t) =  x"(t) + dXj{t) for j  *  5 ,

the linearized equations are derived as follows:

“  [x5 +  A xs\ =  Y  + dxj \  K  + ***]]
j .k

= Y  X* + XJ 3x* +  Sxi  x*
j ,k

f t Axs =  Y  * * + 6xi  **]
j , k

and

d [x"i +  Sxj] =  Z  Clps[[x''p + *p](i*S +  * * ] ]d t
P

+ I CA,|K + [*5 + AXs}\

+  L  cj p X ^  +  +  A x t ) \
P  >$=*5

linearizing

With

(B20)

+ SXj Sxk 

(B21)

; VyV5
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Z CJP5 [*/> Xs + X5 SXP +  XP + 8XP Axs[ 
P

+  Z CP i ] l %  X4  +  X5 5 x <l +  A x s  Xq +  A x 5 dXq]
q

+ V" c  [*“ xu + x“ Sx +  8x x u + Sx Ax  1 Z_ JpqL p <1 p  q p  q p  q\
p >q*5

Vjr'̂ 5

Z Cjp$[X5 Sxp  + Axs xp \ +  Z Ĉ q \^ 6xq + Axs *£]
p q

+  Z  CJpq[xUp Sxq + 6xp x% ; v'* 5 -W > 
p  , q * s

In this derivation, any double-small terms of the form SxAx^ or Sx.SXj 

have been neglected. Next, neglect the terms

V  C._, Sx and V  C., x “ 8xjps 5 p Z_ f iq  5 q
p q

because | Ax$ | » \ 8Xj\ and because the terms in these sums tend to cancel 

each other out. Also neglect

Y  c .  \xu 8x +  8x xu]
L^ JpqlP  q p  q\

p , q *  5

purely because its terms tend to cancel each other out.19 (Because 

there are many more terms in this sum than in the previous two neglected 

sums, this is plausible.) With these terms removed, Eq. (B22) becomes

i SXi  “ I  CJPS *; + I  <75, A*S ™ * k • OB?)
p  p
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Now use the regression function to approximate SXj in Eq. (B23);

S x f t ) = Y , CjpS Ax5&  XpW  *  +

G(t-s) Ax$(s) x“(s) ds .

Plug this result for 8x. (and the corresponding one for 5x£  into 

Eq. (B21):

d t  5 -  I v { ( Z
j , k  <• p

'kpS Git~s) x“(0 Jjc5(j) *£($) ds

♦  T c

P

J

kSq Git-s) xu.(t) A x 5{s)  xupis) ds ]

+  [ £ c jpS Git-s) xuk(t) Axs(s) x% ) ds

Y . Cj4  ̂  X“tif) AX̂S) XP(S) * ]

Because of the sum over j  and k ,  the two terms in square brackets can be 

combined into one:
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d t
A x. = I  CS*f2[ X CiPS f  ^  4X5(S) Xp« *

■/»* L P '

+  I C
G(»-i) *“(t) Ax5(.s) *“(j) ds 1 • (B24)

Now divide both sides of Eq. (B24) by e, ensemble average, and simplify:

d7 = 2 I c* (  H s * + s j  /<**» <*2 ^  #*>} *} 
/ ,*  ,  i ,p

j , k  p
X*»«> *>>) *} •

(B25)

It is legitimate to bring <Ax^{s)!e> outside the triple moment because 

it can always be expressed as the sum of a fluctuating, zero-mean part 

plus a nonzero-mean part; the triple moment of the fluctuating part

with and x u(s) (which are also fluctuating, zero-mean quantities)K p
is zero. The nonzero mean part of Axs(s)le is just Gs(s).

Using the definition of G5(s) and the isotropy of the Betchov system 

as manifested in Eq. (B13) and

<x, x  > — H, d. =  H 5, ,k p k kp *p

Eq. (B39) simplifies to
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37  G5(‘> -  2 Y .C5J>{[CJ<* + Ci5p) °& >  /W “ > ^  * }  •
a t  j  ,k  J t

Now let t  *  / - t ; the equation for C?5(r) is

yT °5w = 2 Z sfc + cj»] f ̂  4  •
j  t h 0

Next, repeat the procedure begun at Eq. (B20) to construct equations for 

G.(t)  for all i&5. Add the resulting equations and divide by JV; also 

use the symmetry relation Eq. (B14) and the properties of the couplings:

ii i  °<(t)=ji f f  + cm) w  *]
J=1 j , k  J 0

2
N

_T

- -  -  M  +  0  
IV 2

/ J , *

, T

G (t-s)  G (s)  H m A (T-s) d s

G (t-s) G (s)  B d i a (t -s)  d s

0

—  G(T) = 
d t

r 1. M  [
AT L

G(r-j) GOO H d 1a (t-s) d s (B26)

This equation, together with Eq. (B19), form a closed set of 

equations for G(r) and # DIA(T)> to be solved with the initial conditions 

^DLA.(0) = 1 “  If one chooses G(r) = tfmA(T) and uses theDIA'

knowledge that # DIA(r) = HniA(-t) , the second integral in Eq. (B19)DIA
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vanishes, leaving

d% ffDIAW ^  |  ^ D IA ^ V ^ D IA ^  *

f0

(with s '  m r  - s ; ds* = -<£y)

-  •  “  K » ( w '> ,& K v '  * ’

“  ’  ^  » S lA «  *  • <®27)

Now Eq. (B26) has become

£  » D I A «  =  f  % * < « > % » «  ^ u < « »  *

rT
=  ~  J h dia<™> < a < * >  *  • < & * )

This is identical to Eq. (B27) The result of the choice G = H  is this

single integro-differential equation for T̂d ia(t). Certainly the 

solution for this is a solution for /? d i a ( t) ,  and it is almost certainly

the unique solution.19



B. Numerical solution: code

c DIABET "DIA solution to model of BETchov" (10/6/87) 
c Written by Oeorge Vahala.

dimension h(0:3000) 
call dropfile(O)
call link(*unit6«tty,unit7=(autoc,create,text)//*)

c ntot is the number of timesteps. 
ntot «  3000
write(6, *) 'Enter the value of N and the value of tmax:' 
read(6,*) xn,tmax

c xi3m is the number of couplings. 
xi3m = xn**2/2.25 
tscale = 1.0/(sqrt((3.0*xi3m)/(1.0*xn))) 

c del is the scaled timestep:
del a  tmax/(ntot*tscale)

c Initial value for autocorrelation function, h; 
h(0) -  1.

del3 = 3./(deI*del) 
del8 = 8.*del3/9. 
del3p =» 1. +  del3 
del8p = 1 .4 -  de!8

al =  (1. +  2.*del3/3.)**2 + 3.*del8 
h(l) = .5*(sqrt(al) - (1. + 2.*del3/3.))

a2 =  deI3p**2 - 4.*(4.*h(l)*h(l) - del3)*h(l) 
h(2) -  ,5*(sqrt(a2) - del3p)

do 4 m=3,ntot
if (mod(m,2).eq.0) go to 1
sumo=0.
do 5 i= l,m -l

sumo= sumo+3. *h(m-i)*h(i) *h(i)
5 continue

do 6 ii=3,m-3,3
sumo=sumo-h(m-ii)*h(ii)*h(ii)

6 continue
a5 = del8p**2 - 4.*(sumo -del8*h(m-l)) 
h(m) = .5*(sqrt(a5) - delBp) 
go to 4 

1 sume=0.
do 8 j= l,(m -l),2

sume=sumc +4.*h(m-j)*h(j)*h(j)
8 continue

do 9 jj=2,(m-2),2



138

sume=sume + 2. *h(m-jj)*h(jj)*h(jj)
9 continue

a6 = del3p**2 - 4.*(sumc - dcl3*h(m-l)) 
h(m) = .5*(sqit(a6) - del3p)

4 continue

c Output at most 101 time-values for h to file autoc; output 
c at most 30 values to the screen: 

idum 13 101 
write(7,*) idum
write(6,10) (m*del*tscale,h(m),m=0,ntot, 100) 
write(7,10) (m*del*tscale,h(m),m=0,ntot,30)

10 format(2fl4.6) 
call exit 
end
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APPENDIX C: CODE FOR CDS SOLUTION OF THE BETCHOV SYSTEM

c DSBC1 ("Decimation-Scheme Betchov solver using Constraint set 1") 
c (CDS/full Betchov solver) (11/5/88)

real t,tO,tfinal,tdel,ttemp
integer itime,cmax,nsteps,shstep,ntniax
real h
integer r,s,n,c 
common/parms/b,r,s,n,c
real xx(32,36,512),xsav(32,512),kl(32,512),k2(32,512),xx0(32,512)
common/vars/xx,xsav,kl,k2,xx0
real q(36,16384),qstar(36,16384),qmean(32),qsmean(32)
cammon/forces/q,qstar,qmean,qsmean

call dropfile(0)
call link(’unit6= tty,unit5= (parms.text),

$ unit69=(htau,create, text),
$ unit77=(dout,create,text),unit66=(dsplot,create,text),
$ unit67= (qplot,create,text) ,unit68= (qsplot,create,text)//’)

c Initialize the constants and variables (and print initial output): 
call initia(nsteps,cmax,tO,tfmal,sbstep,tdel,ttemp) 
c -  3

c (Maximum total number of constraints is equal to cmax)

c The time-loop:
do 5 itime=l,nsteps 

t = tO + itime*h 
write(6,*) ’t ’,t,’ c = \ c

c Save xl,x2,.... from being overwritten during the Runge-Kutta: 
do 43 i» l ,s  

do 45 j - I ,r
xsav(i,j) =  xx(i,l,j)

45 continue
43 continue

c The actual Runge-Kutta process: 
c First stage:

call diffeq(kl) 
do 7 i= l ,s  

do 8 j= l,r
xx(i,l,j) -  xsav(i,j) +  kl(i,j)

8 continue
7 continue

c Evaluate q(t+h):
if (n .ne. s) call stforc(itime)

c Second stage:



call diffeq(k2) 
do 9 1=1,8 

do 10 j a l , i
xx(i,l,j) =  xsav(i,j) +  0.5*(kl(i,j) +  k2(i,j))

10 continue
9 continue

Output:
if (amod(t,ttemp) .It. l.e-6) call out2(t,tdel,cmax,t0)

Update time-history stored: 
if  (n ,ne. s) then 

call stintp
if ((mod(itime,shstep) .eq. 0).or.(itime.lt.4» then 

ntmax = c - 3 + 4 
do 2 k=ntmax,2,-l 

do 4 i= l ,s  
do 6 j= l,r

q(k,(j+r*(i-l)» = q((k-l),(j+r*(i-l))) 
qstar(k,(j+r*(i-l))) =< qstar((k-l),(j+r*(i-l))) 
xx(i,k,j) = xx(i,(k-l),j)

6 continue
4 continue
2 continue

Update the number of constraints to enforce: 
if (c .It. cmax) c =  c +  1 

endif 
endif 

5 continue

call exit 
end

DIFFEQ ("DIFFerential EQuations")
This subroutine contains the information in the set of ordinary 
differential equations. It evalutes the time derivatives of all 
realizations of the set of dynamical variables.
Note: hdxdt(i,j) is h*(time derivative of jth realization of xi).

subroutine diffeq(hdxdt) 
real hdxdt(32,512) 
real h
integer r,s,n,c 
common/parms/h,r,s,n,c
real xx(32,36,512),xsav(32,512),kl(32,512),k2(32,S12),xx0(32,512)
common/vars/xx,xsav,kl,k2,xx0
real q(36,16384),qstar(36,16384),qmean(32),qsmean(32)
common/forces/q,qstar,qmean,qsmean
real cof(5462),wt
integer index(5462),m,m2
common/couple/cof,index,wt,m,m2

Initialize
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do 1 i= l ,s  
do 4 j=»l,r

bdxdt(i,j) =  0.0
4 continue
1 continue

c h times the deterministic part of the derivatives: 
do 2 k*='l,(3*m)

mm «  index(k)/m2 + 1 
kk ■» (indexQc) - (mm-l)*m2)/m + 1 
jj «  index(k) - (mm-l)*m2 - (kk-l)*m 
do 5 j==l,r

hdxdt(jj,j) «  hdxdt(if,j) +  h*cof(k)*xx(mm,l,j)*xx(kk,l,j)
5 continue
2 continue

c For DAS, apply h times the stochastic forcing, q: 
if (n .ne. s) then 

do 3 i= l ,s  
do 6 ja l ,r

hdxdt(i,j) =  hdxdt(i,j) + h*q(l,(j+(i-l)*r))
6 continue
3 continue 

endif

return
end

c INITIA ("INITIAlizations")
c This subroutine initializes the variables and constants.

subroutine initia(nsteps,cmax,tO,tfinal,shstep,tdel,ttemp) 
real tO,tfinal,rnorm,qvar(32),qnorm(32),tdel,ttemp 
integer cmax,nsteps,shstep,outstp,seed 
real h
integer r,s,n,c 
common/parms/h,r,s,n,c
real xx(32,36,512),xsav(32,512),kl(32,512),k2(32,512),xx0(32,512)
common/vars/xx, xsav, k 1 ,k2,xx0
real q(36,16384),qstar(36,16384),qmean(32),qsmean(32)
common/forces/q,qstar,qmean,qsmean
real cof(5462),wt
integer index(5462),m,m2
common/couple/cof,index,wt,m,m2

c Read in the relevant parameters:
read(5,*) n,s,cmax,r,nsteps,tO,tfinal,shstep,seed

c Generate the coupling coefficients: 
call coefic(seed)

c Calculate the stepsize from tO, tfinal, and nsteps: 
h a  (tfinal - t0)/(1.0*nsteps)
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c The weighting for the statistical interpolation: 
wt -  sqrt(1.0*(n - s)/(1.0*s))

c Initialize xx by choosing random values from a Gaussian 
c distribution with zero mean and unit variance. Use the Slatec 
c function RGAUSS (see Document writeup Slatecv3). 

do 2 i^ ljr  
do 3 j= l ,s ,l

xx(j,l,i) =* rgauss(0.0,1.0)
3 continue 
2 continue

c Normalize xx so that every realiz. initially has e = 0.5n**2/s**2: 
do 4 j= l,r  

raorm = 0.0 
do 5 k = l,s

morm =» rnorm + xx(k,l,j)**2
5 continue

do 6 k = l,s
*x(k,l,j) =  sqrt(1.0*s/morm)*xx(k,l,j)

6 continue
4 continue

c For CDS, initialize stochastic farces for 1st Runge-Kutta stage of 
c first timestep:

if (n .ne. s) then
c Initialize q at random from a Gaussian distribution, and normalize so 
c that <q**2> *  <qstar**2>: 
c Initial random q:

do 13 i» l,r*s
q(l,i) =  rgauss(0.0,1.0)

13 continue
c Calculate qstar and its variance; calculate norm of q: 

call stintp 
do 9 i= l ,s  

qvar(i) =  0.0 
qnorm(i) = 0.0 
do 7 j~(r*(i-l)+l),(r*i),l

qvar(i) «  qvar(i) + qstar(l,j)**2/(r*1.0) 
qnorm(i) =* qnorm(i) +  q(l,j)**2/(r*1.0)

7 continue
9 continue

c Normalize q accordingly: 
do 11 i = l,s

do 8 j=>(r*(i-l)+l),(r*i),l
q(l»j) "  q(l,j)*sqrt(qvar(i))/sqrt(qnorm(i))

8 continue
11 continue

c Store initial x, q, and q* values for later use in unequal-t 
c constraints:

do 14 i» l ,s  
do 15 j= l,r

xx(i,2,j) =» xx(i,l,j)
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q(2,(j+(i-l)*r)) =  q(l,(j+(i-l)*r)) 
qstar(2,(j+ (i-l)*r)) -  qstar(l,(j+(i-l)*r))

15 continue 
14 continue

endif

c Store initial x values in xxO for computing autocorrelation: 
do 16 i=*l,s 

do 17 j=*l,r 
xx0(i,j) -  xx(i,l,j)

17 continue
16 continue

c Print the chosen parameter values and the header for the summary 
c output table to be printed as the program runs:

c Print the important parameters:
write(77,*) ’n — ’,n,’ s = *,s,’ r ** ’,r,’ cmnx = ’,cmax 
write(77,*) ’tO =» \t0 ,’ tfinal =  tfinal,’ h = ’,h 
write(77,*) 'shstep = *,shstep,* m = ’,m,’ seed = \seed 
write(77,*)

c Print the header for the main output table: 
write(77,104)

104 format(3x,’t’,6x,’ < E >  ’,7x,’ qm’^ x /q v’.Sx.’t-l qq’,7x,
$ ’t-2 qq’,6x,’t-3 qq’)

write(77,105)
105 fonnatC ’,lx,6(’__________ ’,lx))

c Write the number of points to be plotted (outstp), r, s, n, s, cmax, 
c tO, tfinal, and h to the plot data file(s): 

if (nsteps .gt. 100) then 
outstp = 101 

else
outstp = nsteps +  1 

endif
write(69,*) outstp 
write(66,167) outstp,r,s,n,s,cmax 
write(66,173) tO,tfinal,h 
if (n .ne. s) then

write(67,167) outstp,r,s,n,s,cmax 
write(68,167) outstp,r,s,n,s,cmax 
write(67,173) tO,tfinal,h 
write(68,173) tO,tfinal,h 

endif 
167 format(6i7)
173 format(3e!2.4) 

c Spacings for outputs and shiftings: 
tdel =■ (tfinal - t0)/20.0 
if (nsteps .gt. 100) then 

ttemp «  (tfinal - t0)/100.0 
else

ttemp =» h 
endif

c Write the t=t0 data to the summary and plot files:
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call out2(0.0,tdcl,cmax,t0,xx0)

return
end

c COEFIC ('coupling COEFflCients')
c Generates s**2/2.25 coupling coeficient triplets for Betchov system 
c of s variables, (For full-system run, N=S).

subroutine coefic(sccd)
integer jj,kk,mm,icount,spl,jjO,kkO,mmO,seed
real sqrt6m,ra,rb,rc
logical uniq3
real h
integer r,s,n,c 
common/parm5/htr,s,n,c 
real cof(5462),wt 
integer index(5462),m,m2 
common/couple/cof, index,wt,m, m2

c Constants and initilizations: 
m = s**2/2,25
mO. ss m * * 2
spl ■ s + 1
sqrt6m = 1.0/sqrt(6.0) 
icount = 0

c Peform a specified number of calls to random number generators 
c before beginning coefficient generation. This provides for running 
c the same system with different sets of random couplings: 

do 9 i= l,seed,l
dummy 1 = rand(O.O) 
dummy2 83 rgauss(0.0,1.0)

9 continue

c Keep looping (up to one million times) until a complete set of unique 
c couplings is found:

do 1 i»  1,1000000 
uniq3 »  .true, 
jj =  spl*rand(0.0) 
if (Qj .ne. 0) .and. (jj .le. s» then 

kk = spl*rand(0.0)
if ((kk .ne. 0) .and. (kk .le. s) .and. (kk .ne. jj)) then 

mm = spl*rand(0.0) 
if ((mm .ne. 0) .and. (mm .le. s) .and.

$ (mm .ne. kk) .and. (mm .ne. jj)) then
c Test for uniqueness of triplet just generated: 

do 2 j =1,icount, 1
mmO = index(j)/m2 + 1 
kkO = (index(j)-(mm0-l)*m2)/m + 1 
jjO = (index(j)-(mm0-l)*m2-(kk0-l)*m) 
if ((mm.eq.mm0).or.(mm.eq.kk0).or.(mm.eq.jj0)) then 

if ((kk.eq.mmO).or.(kk.eq.kkO).or.(kk.eq.jjO)) then 
if ((jj.eq.mm0).or.(jj.eq.kk0).or.(jj.eq.jj0)) then



uniq3 a  .false, 
endif 

endif 
endif

2 continue
c If unique, set up coupling coefficients: 

if (uniq3) then
index(icount4*l) =  jj +  (kk-l)*m + (mm-l)*m2 
index(icount+2) = kk + (mm-l)*m + (jj-l)*m2 
index(icount+3) = mm + (jj-l)*m + (kk-l)*m2 
ra =  rgauss(0.0,1.0) 
rb = rgauss(0.0,1.0) 
rc = rgauss(0.0,1.0) 
cof(icount+l) (2.0*ra-rb-rc)*sqrt6m 
cof(icount+2) =  (2.0*rb-rc-ra)*sqrt6m 
cof(icount+3) =  (2.0 *rc-ra-rb) *sqrt6m 
icount <=> icount +  3 

c If m triplets generated, return:
if ((icount/3) .ge. m) return 

endif 
endif 

endif 
endif 

1 continue

write(77,*) 'Could not get unique set of coefics, million tries.' 
call exit

return
end

c OUT2 ("OUTput of 2 types: summary and detailed") 
c This subroutine writes out the variables (and q and qstar for CDS) 
c for all realizations at all chosen timesteps (at most 100 times 
c outputted). It also writes out summary information at a few 
c spaced-out, timesteps.

subroutine out2(t,tdel,cmax,t0) 
real t,tdel,t0,e(S12),qq(36),energy 
integer cmax,ntimes 
real h
integer r,s,n,c 
common/parms/h,r,s,n,c
real xx(32,36,512),xsav(32,512),kl(32,512),k2(32,512),xx0(32,512)
common/vars/xx,xsav,kl,k2,xx0
real q(36,16384),qstar(36,16384),qmean(32),qsmean(32)
common/forces/q, qstar, qmean,qsmean

c Evaluate the energy; output all realizations of all variables: 
c Also calculate newest qstar; output q(l) & qstar(l) for CDS runs: 

sr = 1.0*s*r 
c Energy:

do 1 i= l ,r



146

e(i) - 0 . 0  
do 2 j« l ,s

e(i) = e(i) +  0.5*(1.0*n/(1.0*s))*xx(j,l,i)**2
2 continue 
1 continue

c Output; format allows two extra numbers-use e(j): 
do 3 j=»l,r 

write(66,100) (xx(i,l,j),i=l,s),e(j),e(j)
3 continue 

c For CDS runs:
if (n .ne. s) then 

c Get newest qstar: 
call stintp 
do 5 j - l , r

write(67,100) (q(l,(j+<M)*r)),i=l)S),e(j),e(j) 
write(68,100) (qstai(l,(j+(i-l)+r)),i=ljs),e(j).e0 

5 continue 
endif 

100 format(5el2.4) 
c Calculate system-averaged autocorrelation function and output it: 

htau =* 0.0 
do 19 i= l,s  

do 20 j= l,r
htau = htau + xx(i,l,j)*xx0(i,j)/sr 

20 continue
19 continue

write(69,*) t,htau

c At spaced-out timesteps, check constraints and output summary 
c information to the file ’dout’:

if (amod(t,tdel) .It. l.e-6) then 
c Evaluate <E >; check < q > ,<(q-< q>)**2>  and <qq’> constraints: 

energy = 0.0 
do 12 j=»l,r

energy => energy + e(j)/(1.0*r)
12 continue

c For CDS, check the <q> and <(q-<q>)**2> constraints: 
if (n .ne. s) then 

qq(l) =  0.0 
qq(2) = 0.0 
do 11 i=*l,s 

do 4 j**l,r
qq(l) -  qq(l) + <q(l,(j+(i-l)*r» - qstar(l,G+(i-l)*r)))/« 
qq(2) = qq(2) + ((q(l,(j+(i-l)*r» - qmean(i))**2 - 

$ (qstar(l,(j+(i-l)*r)) - qsmean(i))**2)/sr
4 continue 

11 continue 
c Check the <q(t)*q(t’)>  constraints: 

ntimes = c - 3 
do 6 k=l,ntimcs,l 

qq(k+2) *» 0.0 
do 7 j=l,r*s

qq(k+2) =  qq(k+2) +



$ (q(l,j)*q((k+l),j) - qstar(I,j)*qstar((k+ l),j))/sr
7 continue 
€ continue 

endif
c Output the summary information and constraint checks:

write(77,lll) t,energy ,qq(l),qq(2),qq(3),qq(4),qq(5)
111 format(f6.3,lx,6(ell.3,lx)) 

endif

return
end

c STFORC ("STochastic FORCe evaluation") 
c This subroutine evaluates q at time t by solving for q iteratively 
c via the iterative stochastic Newton-Raphson constraint-equation 
c method of section 5 of Kraichnan’s chapter in the book:

subroutine stforc(idme) 
real cnvchk,alpha(36),dqnpl(16384),wksl(36) 
integer itime,ia,ifail,iterat 
real h
integer r,s,n,c 
common/parms/h,r,s,n,c
real xx(32,36,512),xsav(32,512),kl(32,512),k2(32,512),xx0(32,512)
common/vars/xx,xsav,kl,k2,xx0
real q(36,16384) ,qstar(36,16384),qmean(32),qsmean(32)
common/forces/q,qstar,qmean.qsmean
real fmat(36,16384),v(36,36),f(36)
common/mats/fxnat,v,f
data ia/36/

c Choose the initial random qn to start the iteration: 
do 11 i=l,r*s

q(l,i) = rgauss(0.0,1.0)
11 continue

c Initializations:
nitera =■ 45

c The iterative loop:
do 1 iterate 1,nitera

c Evaluate qstar(t+h), based on current iterate of q(t+h): 
call tplush

c Set up the righthand side of the matrix problem, identical to the 
c righthand side of equation 5.2 in Kraichnan’s paper: 

call fsetup 
c Set up the f-matrix: 

call fmset
c Use the f-matrix to generate the v-matrix: 

call vsetup
c Solve the least-squares problem for the current iteration; i.e.,



c solve the v-matrix problem v * alpha = f  using NAG routine F04ATF: 
ifail =  1
call f04arf(v,ia,f,c,alpha,wksl,ifail) 
if (ifail .ne. 0) then

write(6,*) 'matsol F04ATF ended with IFAIL = ’, ifail 
write(77,*) ’matsol F04ATF ended with IFAIL = ’,ifail 

endif
c Update q and set up convergence check: 

cnvchk = 0.0 
do 7 i«*l,s 

do 8 j=*l,r
dqnpl(j+(i-I)*r) = 0.0 
do 9 k = l,c

dqnpl(j+(i-l)*r) => dqnpl(j+(i-l)*r) +
$ alpha(k)*fmat(k,(j+(i-l)*r))

9 continue
q(l,(j+(i-l)*r)) *= q(l,(j+(i-l)*r)) +  dqnpl(j+(i-l)*r) 
cnvchk = cnvchk + abs(dqnpl(j+(i-l)*r))

8 continue
7 continue

c Test for convergence:
if (cnvchk .le. (r*s*1.0e-8)) then 

c Warn about possible zero solution:
if (cnvchk .eq. 0.0) write(77,*) ’cnvchk = 0.0’ 

c If converged, wind up and return to main routine:
c Restore the proper value of xx for use in getting k2 in main:

do 4 i= l ,s  
do 6 j=»l,r

xx(i,l,j) =  xsav(i,j) +  kl(i,j)
6 continue
4 continue

return 
endif 

1 continue

c Convergence not achieved for q:
write(77,*) *q nonconvergence at itime = ’,itime
write(6,*) ’q nonconvergence at itime = ’,itime
call exit

return
end

c TPLUSH ("T PLUS H")
c This subroutine calculates xx(t+h) using the ODE’s and the current 
c iterate of q(t+h). Then sdntp is called to calculate qstar(t+h) 
c using these xx(t+h) values.

subroutine tplusb 
real h
integer r,s,n,c 
common/parms/h,r,s,n,c



real xx(32,36,512),xsav(32,5l2),kl(32,512),k2(32,512),xx0(32,512)
common/vars/xx,xsav,kl,k2,xxO
real q(36,16384),qstar(36,16384),qmean(32),qsmean(32)
common/forccs/q,qstar,qmean,qsmcan

c Initialize xx =  xx(end of 1st Runge-Kutta stage) 
do 1 i - l , s  

do 2 j - I ,r
xx(i,l,j) =  xsav(i,j) +  kl(i,j)

2 continue 
1 continue

c Using ODE’s, evaluate xx(t+h) based on current iterate of q: 
call diffeq(lc2) 
do 3 i= l ,s  

do 4 j= l,r
xx(i,l,j) -  xsav(i,j) +  0.5*(kl(i,j) + k2(i,j))

4 continue
3 continue

c Now evaluate qstar(t+h) using these new xx(t+h) values 
call stintp

return
end

c FSETUP ("F SETUP")
c This subroutine sets up the righthand side of the matrix problem, 
c which is identical to the righthand side of equation (12) in 
c the dissertation.

subroutine fsetup 
integer ntimes 
real b
integer r,s,n,c 
common/parms/h,r,s,n,c
real xx(32,36,512),xsav(32,512),kl(32,512),k2(32,512),xx0(32,512)
common/vars/xx,xsav,kl,k2,xx0
real q(36,16384),qstar(36,16384),qmean(32),qsmean(32)
common7forces/q, qstar, qmean,qsmean
real fmat(36,16384),v(36,36),f(36)
common/mats/fmat,v,f

c Initialize:
do 1 i= l ,c  

f(i) «  0.0 
1 continue

c The constraints are coded explicitly here: 
do 2 j= l,r  

do 3 i= l ,s  
c The <E > constraint:

f(l) =  f(l) - (xx(i,l,j)**2 - xsav(i,j)**2)



c The <q - qstar> constraint (force mean):
f(2) -  f<2) - (q(l,(j+(»-l)*r)) - qstar(l,(j+(i-l)*r))) 

c The <(q-<q>)**2 - (qstar-< qstar>)**2> constraint (force variance): 
f(3) -  f(3) - ((q(l,(j+(i-I)*r)) - qmean(i))**2 - 

$ (qstar(l,(j+(i-l)*r)) - qsmean(i))**2)
3 continue 
2 continue

c The ntimes <q*q(t’) - qstar *qstar(t’)>  constraints: 
c (ntimes is the # of unequal dines to constrain against) 

ntimes =  c - 3 
do 4 k= 1,ntimes, 1 

do 5 i= l,s  
do 6 j's l.r

f(3+k) = f(3+k) - 
$ (q(l,(i+(i-l)*r))*q((k+l),(j+(i-l)*r)) -
$ qstar(l,(j+(i-l)*r))*qstar((k+l),(j+(i-l)*r)))

6 continue 
5 continue
4 continue

return
end

c FMSET ("FMat SETup*)
c This subroutine sets up the s*rxc fprime matrix, whose c rows are 
c the q-derivadves of the c constraint functions at all r qn-values 
c for each of the s q’s.

subroutine fmset 
integer ntimes 
real h
integer r,s,n,c 
common/parms/h,r,s,n,c
real xx(32,36,512),xsav(32,512),kl(32,512),k2(32,512),xx0(32,512)
common/vars/xx,xsav,kl,k2,xx0
real q(36,16384),qstar(36,16384),qmean(32),qsmean(32)
common/forces/q,qstar,qmean,qsmean
real fmat(36,16384),v(36,36),f(36)
common/mats/fmat,v,f

c Initialize:
do 1 i= l ,c  

do 2 j=l,r*s 
fmat(i,j) -  0.0 

2 continue 
1 continue

c The partial derivatives of the constraints with respect to the unknown 
c (here qn(t)) are coded explicitely here: 

do 3 i=*l,s 
do 4 j= l,r  

c Row 1: the <E > constraint:



fmat(l,(j+(i-l)*r» -  h*xx(i,l,j) 
c Row 2: c The <q - qstar> constraint (force mean): 

finat(2,(J+(i-l)*t)) = 1.0 
c Row 3: the variance constraint:

fmat(3,(j+(i-l)*r)) -  2.0*(q(l,(j+(i-l)*r)) - qmean(i))
4 continue 
3 continue

c Rows 4 through 4 + ntimes: the <qn*q(t’) - qstar*qstar(t')> 
c constraints (ntimes is the # of unequal times to constrain against): 

ntimes = c - 3 
do 5 k = 1, ntimes, 1 

do 6 i= l ,s  
do 7 j - I ,r

fmat((3+k),(j+(i-l)*r)) -  q((k+l),(J+(i-l)*r))
7 continue 
6 continue
5 continue

return
end

c VSETUP ("V SETUP")
c This subroutine sets up the v-matrix. It is a square (c x c) 
c matrix whose elements are the dot products of the rows of the finat 
c matrix. The matrix problem v * alpha = f yields the least squares 
c solution of the underdetermined problem fmat * dqn =» f. (alpha is 
c a c dimensional vector, dqn is r-dimensional, and f  is the c 
c dimensional righthand side of the matrix problem, found in fsetup:

subroutine vsetup 
real h
integer r,s,n,c
common/parms/h,r,s,n,c
real fmat(36,16384),v(36,36),f(36)
common/mats/fmat,v,f

c Initialize:
do 1 i= l,c  

do 2 j^ltC  
v(i,j) =  0.0

2 continue 
1 continue

c Calculate the dot products of finat’s rows; note that v is symmetric: 
do 3 i=*l,c 

do 4 j= i,c  
do 5 k=l,r*s

v(i,j) -  v(i,j) +  £mat(i,k)*fmat(j,k)
5 continue

v(j,i) -  v(i,j)
4 continue
3 continue



return
end

STTNTP ("STatistical INTerPolation*)
Calculate the summation to which q should be stastically similar 
(called qstar).

subroutine stintp 
integer mm,kk,jj 
real h
integer r,s,n,c 
common/parms/h,r,s,n,c
real xx(32,36,512),xsav(32,512),kl(32,512),k2(32,512),xx0(32,512)
common/vars/xx,xsav,kl,k2,xx0
real q(36,16384),qstar(36,16384),qmean(32),qsmean(32)
common/forces/q, qstar, qmean,qsmean
real cof(5462),wt
integer index(5462),m,m2
common/couple/cof,index,wt,m,m2

Initialize:
do 1 j=l,r*s 

qstar(l,j)«0.0 
1 continue

Calculate qstar:
do 4 k=l,(3*m)

mm = index(k)/m2 + 1 
kk = (index(k) - (mm-l)*m2)/m + 1 
jj = index(k) - (mm-l)*m2 - (lck-l)*m 
do 5 j= l,r

qstar(l,(j+(jj-l)*r)) =  qstar(l,(j+(jjj-l)*r)) +
$ cof(k)*xx(mm, l,j)*xx(kk, 1 ,j)

5 continue 
4 continue

Weight qstar appropriately (statistical inteipolation weighting).
Also calculate means of q’s and qstars now. 

do 6 i= l ,s
qmean(i) =  0.0 
qsmean(i) =■ 0.0 
do 7 j - l , r  

qstar(l,(j+(i-l)*r)) =» wt*qstar(l,(j+(i-l)*r)) 
qmean(i) =• qmean(i) + q(l,(j+(i-l)*r)) 
qsmean(i) =* qsmean(i) +  qstar(l,(j+(i-l)*r))

7 continue
qmean(i) =  qmean(i)/(1.0*r) 
qsmean(i) = qsmean(i)/(1.0*r)

6 continue

return
end
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APPENDIX D: MULTIDIMENSIONAL NEWTON-RAPHSON PROCEDURE

For a function of N  variables m-ffa) which has a

zero at z (f(z) = 0), a first-degree Taylor polynomial expanded about a 

guess x0 is

f(x) = -

[(«-*]•*]*%>+ j  I  h  • \ l  3- ^ i r -  • <D1)■5 /ryml OXt OXj

Here £(x) is a point in JV-space such that the //-dimensional distance 

between x and z is less than the the distance between £ and z> provided 

that (x - Xq) points toward the (N  - l)-dimensional surface of zeroes of 

/  on which z lies. Neglecting the third term in the righthand side of 

Eq. (Dl) and setting x = z yields

o -  + [[z -
N

»  A*o> + E i ( v * „ J  • <D2>

This is an underdetermined equation for

Equation (D2) is enough to determine one component of z, such as Zj, 

in terms of the other (N-l) components (z2,z3,...,z^). A determined set 

of N  equations can be constructed by requiring, in addition to Eq. (D2), 

that the square of the magnitude of (z - Xq) be minimized with respect 

to variations in xQ.
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N  2
—  { Y  U} - * J  } =  o for i= 2 ,3 ,...^  .
^O i j - i

This suggests a sequence of sets of equations for increasingly accurate 

approximations to a value of x which satisfies fix )  =  0:

N

0 ■ + Z  h i - xo/) t i - a v

and
„ J f  2d r -x2

N

0 = * I > + [ ( ' 2 i - , J M )
i = l »

and
N  2

T~~ { ^  (x#  ‘ x l J  } =  0 for j =2’3’—’N  >
dxli  /=1

N

( - 1  bxi
and

N a
dx { H  [^(n+l)/ “ xnj\ } 0 for j —2,3,.„ ,N  . (D3)dx . - , , ni j=* 1

This yields a point xn which satisfies f i x j  — 0 to any desired 

accuracy; the procedure is stopped when | xn+1 - xn | is as small as

desired. This procedure has no control over where on the
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(iV-l)-dimensional surface on which f(x) = 0 the xr ’s  converge.

An entirely equivalent way to formulate this least-jquares solution 

procedure is to require at each iteration that (xb+ j - xR) is parallel

{(X j - x()),(x2 - X j)......(xr + 1  -  xr ) }  moves along the gradient from the

initial guess xQ toward the surface on which fix )  =  0. (This assumes 

that V/ is monotonic in magnitude between the initial guess x Q and the 

surface on which z lies.) That this is equivalent to the least-squares 

minimization conditions can be seen as follows:

Denote the difference (Xj - Xq) by tfXj. This vector can be resolved 

into components perpendicular and parallel to Vft

is arbitrary, and d x ^  is determined by the first line of 

Eq. (D04). Since

The same reasoning applies to all iterates in the sequence in Eq. (D04), 

using

to the gradient of /  at The sequence

l

2
the minimization of (<5Xj) implies that

(<5x| ± )2 =  0
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