o
WILLIAM & MARY
CHARTERED 1693 W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1988

Semantic specification using tree manipulation languages

Randall Paul Meyer
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

6‘ Part of the Computer Sciences Commons

Recommended Citation

Meyer, Randall Paul, "Semantic specification using tree manipulation languages" (1988). Dissertations,
Theses, and Masters Projects. Paper 1539623776.

https://dx.doi.org/doi:10.21220/s2-8amh-np90

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623776&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-8amh-np90
mailto:scholarworks@wm.edu

INFORMATION TO USERS

The most advanced technology has been used to photo-
graph and reproduce this manuscript from the microfilm
master. UMI films the original text directly from the copy
aubmitted. Thus, some dissertation copies are in typewriter
face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these will
be noted. Also, if unauthorized copyrighted material had to
be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re-
produced by secticning the original, beginning at the upper
left-hand corner and continuing from left to right in equal
sections with small overlaps. Each oversize page is available
as one exposure on a standard 35 mm slide or as a 17" x 23"
black and white photographic print for an additional charge.

Photographs included in the original manuscript have been
reproduced xerographically in this copy. 35 mm slides or
6" x 9" black and white photographic prints are available for
any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

s UMI

Accessing the Warld's information sinca 1938

300 North Zeeb Road, Ann Arboe, MEAS106-1346 USA

Order Number 8813504

Semantic specification msing tree manipulation languages

Meyer, Randall Paul, Ph.[}.
The College of William and Mary, 1988

U-M-]

OO N. Zeeb Rd.
Ann Arbor, ME48106

SEMANTIC S5PECIFICATION USING TREE MANIPULATION
LANGUAGES

A Dissertation
Presented to
The Faculty of the Departimnent of Computer Science
The College of William and Mary in Virginia

In Partial Fulfillment
Of the Requirements for the Degree of
Dactor of Philosopliy

by
Randall I*. Meyer
1938

APPROVAL SHEET

This dissertation 18 submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Randall P. Meyer 5

Appraved, May 1588

2 =AY

Robert E. Noonan

S T —

Stefan Feyock -

52%5#‘) Tl
Lir:yﬂﬁﬂornll

William L. Dynum

&l :
K?L/ép; - .%?@ffft-"f{é’ff?g__
Carl W. Vermeulen

Department of Diology

Contents

Acknowledgements L L L0000 o
Listof Figures o0,
Abstract L e e e e e e
1 Introduction
1.1 Gramgpars and Parsing Lo
1.2 Attribute GraminBIBE o v 4t v v e e e e e
1.3 Tree Manipulation Languages
1.4 Related Work e
15 Researcl: Gosls
1.6 Remainder of Thesis,
2 Description of TreeSem
2.1 Attnbute Declaration Section 000
2.2 Grammar Section e e e e e
2.3 Traversal Section e e e e e e e e
231 ControlFlow e
2.3.2 Attnbute Asmignmments 0L L0000 L
2.4 Example Semantic Specifications 0oL
3 Translation Algorithms
3.1 Translation from TreeSemto AG
3.1.1 Grammar, Declarations, and RBeversals
3.12 Traversals e e
3.1.3 Implicit Assignments
314 Catchup Assignments,
3.1.5 Convert Implicit Assignments,
316 Attnbwte Suffixingo oo
3.1.7T ASE Adjustmento Lo oo
3.1.8 Intertraversal Ad Hocery
3.2 Translation from AG to TreeSem

Wwa B -

15

17
17

19
1%
20
21
21
25
30

CONTENTS

4 Proof of Algorithms

5 Conclusion
5.1 SUMIMIMBIY . . .« . . o o e e e e e e e e e e e
5.2 Future Besearch v o e e e e e e e e e e e e

A TreeSem Syntnx
B Iimplementation Statistics

C Example Specification and Translations
C.1 TreeSemn Semantics for Pam L.
C.2 AG Translationof Section C.1.
C.3 TreeSecm Translation of Section C.2 .,
Bibliography e

ii

70

88
88
90

a2

ACKNOWLEDGEMENTS

I express my appreciation to Professor Robert E. Noonan who served as my
disseration advisor. [thank Professor Larry J. Morell for countless hours of
discussion and critical review of this manuscript. Professors William Bynum,
Stephan Feyock, and Carl Vermeulen, and Louis Slothouber and Fred Stevens
deserve recognition for their comments, ideas, and support.

iii

List of Figures

g —

T2 b

WM

W G b =t g

Automated Compiler Genegation,,, 4
An Expmple Attribute Grammar L. L, 6
Graphs of DDP(p) for AG of Figure 1.2 9
Parse Tree and D'T(S) for the string “uut” using the grammar of

Figure 1.2. e e e e e 10
Upward Remote Reference Notation, 29
Downward Remote Reference Notation 31
Downward Reference Anomaly 54
Downward Catchup Assignments for Figure 3.1,, 56
Upward Reference Anomaly . - L. 57
Upward Catchup Assignments for Figure 3.3. 59

v

ABSTRACT

Software tools are used to generate compilers automatically from formal de-
scriptions of languages. Methods for specifying the syntax of languages are well-
estahlished and well-undemstood; however, methods for formal semantic specifi-
cation are not. The method most commonly used for semantic apecification is
an attribute grammar.

Thie thesis examines an alternative method of semantic specification, TreeSem
is defined as a Tree Manipulation Language applicable to semantic specification.
A TreeSem program is easier to read and to write than a corresponding attnbute
grammar specification.

Algorithms for translation of a TreeSem program into an equivalent attribute
grammar specification, and for translation of an attribute grammar specification
into an equivalent TreeSem program are presented. Fmo% of correctness of the
algorithms ia discussed. The dual transiations show the theoretical “specification

ower” of TreeSem to be the same as that of attribute grammars. Also, since

oth translations are provided, the compiler writer is free to choose the semantic
specification method he wishes to use. The appropriate translation can be ap-
plied to implement the compiler using the more efficiently interpreted method,
as research cantinues to improve the executable efficiency of either method.

Semantic Specification Using Tree
Manipulation Languages

Chapter 1

Introduction

A compiler trauslates a program from its original source language into an equiv-
alent program in another target language. The overall translation task is com-
plicated, so it is custemary to divide the compiler into phases, each of which
performs a small portion of the overall translation process. The lexical anal-
ysis and syntax analysis phases (the front end) read the source program text
and ronvert it into an internal representation. They are concerned primarily
with the syntactic structure of the input program. The semantic analyzer and
intermediate code genemator {the middle end) extract the meaning of the pro-
gram {rom its internel representation and select statements from an intermediate
language that have the same effect as this determined meaning. The code opti-
mizer and code generator { the back end) perform the task of writing an efficient
representation of the intermediate code in the target langunge.!

Automatic compiler construction is the process of generating a compiler (in-
terpreter) for n language from a formal specification of its syntax atd semantics,
The availability of tools to aid in automatic compiler constmiction varies widely
depending on the phase of compilation being considered. Whereas techniques

for parsing and lexicsl analysis are well-understood and in common use, cur-

'Aho, Sethi, and Ullman, page 20.

1.1. GRAMMARS AND PARSING 2

rent methods for semantic processing and code generation and optimization are
generally inadequate or inefficient. This research is concerned with defining a
formnalism for semantic specification that will be more expressive than exiating
methods while remaining transformable into an efficient semantic processor for

the language.

1.1 Grammars and Parsing

The syntax of a language is specified using a Context Free Grammar® {CFG),
which is s four-tuple (N, T, S5, P). T is the set of terminal symbols in the
languege. N is a set of nonterminal symbols employed in the grammar, such
that NNT = @. V = TUON is the vocabulary of the grammar. One nonterminal
symbal is distinguished as the start symhol S, P i1s a set of productions of the
forin Xp - X, X;...X,, where Xy € Nand X,... X, € V. For a given CFG
G, strings in the langunge described by the CFG, L(}, are generated from the
start symbol by replacing nonterminals in a working string with right hand sides
of productions whose left hand sides match the symbol being replaced. These
replacements are done unti! only terininal sytnbols remain in the working string,.
The sequence of replacements of nonterminals by right hand sides of productions
is referred to as a derivation of the terminal string. In a leftimost derivation,
the leftmaost nonternminal is always chosen for replacement; and similarly in a
rightinost derivation the rightmost nonterminal symbol is replaced.

Parsers determine whetlier a given string is an element of a particular lan-
guage. Many parsing methods exist. LR parsers attempt to find a rightinost
derivation of the jnput string, based on n grammar deseribing the language.

LL and recursive descent parsers attempt a lefimost derivation of the input

?Slanted type will be used throughout this dissertation whenever a new term is being intzo-
duced. Subsequent nses of Lhe term will appear in normal type.

1.1. GRAMMARS AND PARSING 3

string.® PParticular forms of grammars can be translated into parsers by hand in
a straightforward manner, but for large grammars, this translation is tiresome
and error-prone.

An alternative to hand-coded parsers is & pamser generator, aeveral of which
are in widespread use (YACC,* PARGEN"). A pamer generator automatically
translates s grammatical description of a language into a parser that recognizes
strings it that language. Although the resulting parsers are sufficiently fast and
compact in size as to be practically useful, research continues in an attempt to
optimize both the parser generators and the resulting parsers.

Whereas the syntactic analysis of s language can currently be handled by
automatically generated parsers, the semantic phase of translation ia usually
hand-coded. The compiler writer utilizing a parser generator specifies the se-
mantics of particular strings in the language by mssociating semantic actions
with productions in the gminmar. Depending on the particular parser geners-
tor, these semantic actions arc written in one of several common programming
langunages. The effects of these semantic actiona {particularly with respect to the
scope of allowable assignments and referencea) are unrestricted. As productions
are recoghnized {or reduced) during parsing of the input string, the associated
semAantic action is executed. The compiler writer must fully understand the
parsing strategy in order to effectively supply the correct semantic actions. Fig-

ure 1.1 illustrates the use of & parser generator in automatic compiler generation.

Scveral fortnalisms for describing language semantics have been developed,

including denotational semantics, axiomatic semantics, and attribute grammars.®

A ho, Sethi, and Ullman, pages 4648,
A The UNIXT™ Sysiem User’s Manual.
ENoonan and Coltins.

EPagnn.

i.2. ATTRIBUTE GRAMMARS 4

Programmer Source
Semnantics Program
. Object
C iler J
Parser
Generator

Figure 1.1; Automated Compiler Generation

Of these, attribuie grammars (AG) are currently the most popular mechanism
for describing the semautics in such 2 way that an evaluator for the language can
be automatically genernted from the deseription, The systems HLP,” GAG,"
and LINGUIST-867 all employ attribute grammmars as their method of seman-

tic specification.

1.2 Attribute Grammars

Attribute grammears were originally developed by Knuth,'® who extended earlier
work by Irons.!! An atiribute grammar is a reduced CFG augmented with
attributes associated with the symbeols of the gramnmar and functions {semantic

rules or evaluation rules} which assign values to these attributes, An AG is

"Raiha and Saarinen.

8K aatens, Hutl, and Zimniermann.
Farrow and Yellin.

WE nuih, 1§68,

Hlrane, 1961 and [rons, 1963,

1.2. ATTRIBUTE GRAMMARS 5

a seven-tuple (N, T, S, P, A, R, C). N, T, S, and P are defined as for
a CI’'G. We assume the underlying CFG is reduced, i.e., it contains no useleas
productions. A is a finite set of attribute symbols or names and associated types
or set of values they may take on. R is the aet of semantic rules, These will
ke defined below. € is a set of semantic conditions the attribute values must
satisfy in a syntactically correct sentence of the language. For our purposes
it will suffice to note that such conditions can be replaced by a distinguished
Boclean attribute symbol associated with each nonterminal symbol, and they
will not be further discnssed. The AG of Figure 1.2'? will be used to illustrate

attribute grammar terminology.

The {ollowing definitions are introduced in order facilitate the definition of
R. define With respect to a grammar symbol X € V, A(X) denotes the set
of attribute syinbols associated with the symbol X. (Some authors prohibit

attributea associated with terminal symbols.) For the AG in Figure 1.2, we

Liave:
AGY = A(w) = A(W) =9
AlY) = {a,b}
A(X) = {cd}

A production p: Xp — X, X;...X. is said to have the attribute occurrence
a(XP)if a € A(X;}). The notation “a{X)"” may also be written as “X.a". The type
of an attribute oconrrence a(X) is the same as that of the associated attribute
symbel A(X). A(p) denotes the set of all attribute occurrences of p, and is simply

the union of all the attribute occurrences of all the symbols in production p.

1 Adapted from Kasiens, figure A,

1.2, ATTRIBUTE GRAMMARS

N = (W)Y, X}
T = {t,u}
V = NUT={W,X, Y, t,u}
5 = W
P = {W-=Y (0)
YSXY (1)
Y —t (2)
X—u} (3)
A = {a,b,ed}
R{iD) = {Y.b «IT7;}
R{1) = {Yia X
Xd +~g(Y,a)
Ya.b Y.}
R{2Z) = {Ye «Y.bh}
R{(3) = {[X.c «X.d;}

Figure 1.2: An Example Attribute Graminar

1.2, ATTRIBUTE GRAMMARS 7

With respect to Figure 1.2, we have the following A{p]:

A(0) = {Y.aY.b
A(1) = {Y.aY..b X.c X.d, Yza, Yab}
A(?Z) = {Y.a Y.b}
A(3) = {X.e Xd)

The set of semantic rules associated with production p is denoted R{p}. These

semantic rules have the form
X,.a —1(X;h,..., X,.c),

where X; and X;... X, are symbols of grammar rule p. Thus the value of an
attribute occurrence X,.a is defined in terms of the values of other attnbute
occurrences in the same production p. The semantic rule that assigns a value to

X;.a for producticn p is denoted by f§, ,. The f3, , for the AG of Figure 1.2 are:

f2, = Y.b+1T; inheriting
. = Yia=Xcg synthesizing
fi, = X.d +—g(Y;za) inheriting
fi,o = YzabeY..b; inheriting
fi, = Y.a+Y.b synthesizing
fi. = Xrc ~Xd; synthesizing

If a semantic function defines the value of an attribute cccurrence Xg.4 of the
production's left hand side symbol, it is a synthesizing function and the at-
tribute “a" is termed a synthesized attribute. Otherwise the function ia an
inkeriting one, and the attribute is an inherited attribute. AT denotes the set
of all inherited attributes and AS denotes the set of all synthesized attributes.

Correspondingly, AI{ X) is the set of inherited attributes of aymbol X and AS{X)

1.2, ATTRIBUTE GRAMMARS 8

the set of synthesized ones. Referring to Figure 1.2;

AS = [a,c]

Al = {b,d}
AS(X)={¢} AS{Y)={a} AS(W)=AS5(t}=AS5{u)=0
AI{X)={d} ALY)}={(b} AI{W)=AI{t)=A{u)=0

A semantic tree {derivation tree) is B pame tree where each node X € V is
annotated with attributes {aja € A(X}}. In general, synthesized attributes
serve to carry information upward from the leaves of a denvation tree towards
the root, and inherited attributes move information towards the leaves. An AG

is termed comiplete iff

1. There is exactly onc semantic rule defining the value of any attribute

HCUITENnCe.

2. Using the nbove method of determining AI{X) and A5{X),
vX e V[{AKX)NASX) =) A (AK{X)U AS(X) = A(X)}.

A complete AG is well-defined iff the values of sll attributes of any derivation
tree S corresponding to a sentence in L{G) are effectively computable. Only well-
defined AGs are useful as specifications to automatic compiler generatora. If an
AG is not well-defined, it is not possible to automatically construct a compiler
that is guaratiteed to terninate and assign the proper values to the attributes of
all syntactically legal semantic trees in the language defined by the AG. To check
this condition formally, we introduce the notion of dependeney. The dependency

set DY, is the set of attribute occurrences used as arguments by ff. .. The D,

1.2. ATTRIBUTE GRAMMARS 9

for Figure 1.2 are;

DY, = @

Dy . = {Xe}
Dka = {Y;a}
D}r;.h = {Y,.b}
D}, = {Y.b)
D}, = ({(Xd}

The set of direct attribute dependencies DDP(p} for a production p is
{(X;.b, X;.a) | X; € pAX;.be DY}

DDP(p) implicitly defines a graph; the nodes in this graph correapond to the
attribute occurrences of symbols in production p, and the edges denote attribute
dependencies. Figure 1.3 shows the DDI*(p) and the graphs of DDP{p) for the
AG of Figure 1.2. An aitnbute grammar is locally acyclic if the graph of DDP(p)
is acyclic for each p € P.

W Y[a]b] Y[a]b] X[c]d]
| » -
y[e[s] X[c[d] v[alb] t u
DDP{0) = {}
DDI{1) = {({X.c,Yr.akh{Ysa, X.d}{Y,.Dh Y;.b)}
DDP{2) = {(Y.b,Y.a)}
DDr{3} = {(X.d,X.0)}

Figure 1.3: Graphs of DDP(p) for AG of Figure 1.2

If S is a derivation tree correspending to a sentence in L{G), DT(5} is defined
as the superimposition of DDP(p) for all applications of any p in 5. An AG is

1.2. ATTRIBUTE GRAMMARS 10

well-defined iff it is complete and the graph D'T(8) is acyelic for each parse tree
corresponding to a sentence of L(G). Cousider the sentence 8 = uut and the AG
of Figure 1.2. The parse tree of S and the {acyclic) graph of DT{(5) are shown in

Figure 1.4, Note how the inherited attributes pass information townrds the root

W
!
N
X Y
N
X Y
|
LN} 1 L

Figure 1.4: Parse Tree and DT(S) for the string “uut™ using the grammar of
Figure 1.2.

of the tree, while the synthesized ones move information towards the leaves.
Knuth' developed an algorithm which tests whether the graphs of all DT(5)
are acyclic for m particular AG. Jazayeri'*!® has shown that Knuth’s algorithm
has exponential time complexity with respect to the size of the AG being ana-
lyzed, and further that the problem of determining whether all parse trees are
acyclie (the circularity test) is inherently exponential. The proof of this com-
plexity iuvolves siinulating a linear bounded automaton (lba} using attribute
grammars, and thus reducing the circularity test to the 1ba membership prob-

lem, which is known to be exponential.

13K puth, 1968 and Knuth, 1971
4Jazayeri, Ogden, and Hounda.
B Jazayeri.

1.2 ATTRIBUTE GRAMMARS 11

If it i3 known that an AG is well-defined, then a simple non-deterministic
evaluation algorithm (evaluator) can be used to assign values to all of the at-
tributes in the parse tree corresponding to a sentence in the AG. The algorithm
walks the tree in A random fashion. Each time a node is visited, all attributes
of this node whose semantic rules may be evaluated (those whose arguments are
already defined) are assigned values according to the value returned by their
semantic functions. The algorithm terminates wien all attributes in the parse

tree have been defined 14

This method of attribute evaluation has two major drawbacks. Because the
algorithm is non-deterministic, much time can be wasted visiting nodes whose
attributes have all already been defined or whose undefined attributes are atill
not ready to be evaluated. Another serious drawback is that the circularity test
must be applied to the grammar to show that it is well-defined. Since this test
has exponential time complexity with respect to the size of the gratmmar, it
15 impractical for grammars of the size necessary to define most progremming
languages.

Because the non-deterininiatic approaches to atiribute evaluation are so in-
efficient, severnl researchers have proposed deterministic methods for attribute
evaluation.17.18.19.2% Fach of these methods imposes restrictions con the types of
atiributes or the dependencies between attributes in the AG. Even the most
restricted of these methods allows synthesized attributes, Knuth has shown that
*synthesized attributes alone are sufficient to define the meaning associated with

n2i

any derivation tree. His argument is mainly a theoretical one, however, since

Y Heunedy and Warren, pagea 33-34.
17" Bochmann.

8)azayeri and Walier.

1°Kastens.

HKennedy and Warren.

HEnuth, 1968, page 134,

1.2. ATTRIBUTE GRAMMARS 12

it involves synthesizing all the information in the tree up to the root, and then
applying a single funetion which specifies the meaning of the tree. Obviously, an
AG with a single defining function at the root doing all the work is not practieal
as a method of semnntic specification. It does show, though, that it is possible
to define the semantics of any derivation tree using any of the restricted types
of AGs.

Deterministic evaluation techniques for subclassea of AGs may be divided
into those that rely on a predetermined order for visiting nodes in a derivation
tree and those that define s visit sequence uniquely for each AG or each deriva-
tion tree. Naturally, the methods that use a predetermined visit sequence are
more restrictive than those that do not, but the evaluators are also easier to
implement, analyze, and optimize. The most general of these methods is the AL
ternating Semantic Evaluator (ASE).?? For practical problems (including most
programming languages) the restrictions imposed by the ASE do not hinder
the AG writer. This research focuses on ASE attribute grammars. Kastena®
provides a complete characterization of the various classes of AGs.

The Alternating Semantic Evaluator derives its name from the passes it
makes over the sementic tree alternating first from left to right and then from
right to left. Each pass is a modified preorder traversal of the tree, originally de-

scribed by Bochmann.?! The recursive algorithin for a left to right pass performs

the following actions.
1. Determine the production p: Xo —+ X(Xz... X, that applies at the node.

2. For each nede X; : 1 < i1 < n, In sequence, beginning with Xy, if X; 15 a

nonterminal,

FJazayeri and Walter.
2K astens, pages 242-244.
MBochmann.

1.2 ATTRIBUTE GRAMMARS 13

(a) Evaluate a maximal subset of AI{X;) according o the defining fune-

tions for these attributes.

{b) Invoke the algorithm recursively on X;.

3. Evaluate a maximal subset of AS(Xy) according to the defining functions

for these ntiributes.

For a right to left pass, the only difference is that the nodes X, ... X, are treated
in the reverse order, node X, first. Note that each time a node is visited, a
subset of its inherited or aynthesized attributes is evaluated. Which attributes
are evaluated on each pass and the number of passes required for attribute
evaluation (if the AG is ASE at all) are established through examination of the
AG at compiler generation time,

Before describing the ASE membership algorithm, the binary relation on
attributes, 4, must be defined. Consider a production p ;: Xq — X, ... X, and

attribute occurrences a and b € A{p).

* For a € AS{X,),
Fia, bl = b ¢ AS(Xq).

e Forae A(X;),1 i<,

For a left to right pass,
AHa,h) =h ¢ [AS(X) U (LES, A{Xy)).
For right to left pass,

Ba,b) = b ¢ {AS(Xa) U Uiy A(XL)}.

e For n € AI{ X,),
Ala,.b) is not defined.

1.2 ATTRIBUTE GRAMMARS 14

The ASE membership algorithm determines, independent of any particular
parse tree, which attributes can be evaluated during each pass. The first pass
is & left to right pass. For each pass, assume initially that all attributes not
yet assigned to an earlier pass can be evaluated in this pass. Assign this set of
attributes as the value of A, where m is the current pass number., For each
production p : Xg — X, ... X,, for each attribute a € {AS{Xg) U (UL, AI(X,)},
for each b € D§_,, if & was not assigned to an enrlier pass and F{a,d) is false,
delete a from A.. Continue examining ench a € A, until no further deletions
are possible. The attributes remaining in A,, are those that can be evaluated

during the m** pass. The rlgorithm terminates when cither

1. no deletions were made during the test of the last pass, in which case
the AG is evaluable in m alternating passes and the asets A, define which

attributes will be evaluated on cach pass, or
2, Angand A,..) are both emnpty, in which case the AG is not ASE evalusble.
The AG of Figure 1.2 is evaluable in two alternating passes.
A; = {Y.b} and A; = {Y.a, X.c,X.d}.

Knstens?® provides an example of a non-ASE attribute grammar.

Note that once we hiave determined that an AG i1s ASE, we have a determin-
istic method for evaluating the attributes in any semautic tree corresponding
to a string in the language of the AG. The inembership algorithm will detect
circularities in the AG, and does so much more efficiently than the exponential
algorithm of Knuth (although it also rejects some AGs that are non-circular).

The eliminetion of the circularity test and the deterministic nature of the

resulting attribution algorithm, make ASE attribute grammars a useful method

¥ Knslens, pages 242-244.

1.3 TREE MANIPULATION LANGUAGES 15

for automatically including semantics in a compiler. ASE attribute grammars,
however, are often not space efficient and the AG constructa do not always afford
a natural description of the semantics of a language. In particular, the author
of an AG apecification is burdened with the task of introducing attributes and
attribution rules that simply copy an attnbute value from one tree location
to another. Tree Manipulation Languages (TMLs} are introduced in the next

section as a natural alternative to AGs,

1.3 Tree Manipulation Languages

Tree Manipulation Languages are designed to operate on trees, providing oper-
ations to construct, transform, traverse, and annotate them. Current research
involves the use of TMLs in syntax directed editing and as a parser generator
interface. Input to a TML interpreter consists of & TML program, the tree(s)
to be cperated on, and the grammar used to construct the tree. Analysis of the
graminar and TML program allows the TML interpreter to attain a high level
of efficiency. It is able to determine exactly which portions of a tree will be
referenced, and can therefore allocate storage for and visit only critical portions
of the tree, saving both time and space as actual tree manipulations are carried
out. It may also be possibie for the TML interpreter to determine which actions
of the program can be done in parallel. All of these optimizations result from the
constrained domain of TMLs. We will show that in spite of their limited domain,
TMLs are & natural and powerful medium for expressing language semantics.
TMLs are procedural, whereas AfGs are declarative. Programmers are more
accustomed to writing in procedural languages. Therefore, they are likely to find
TMLs more natural to use than AGs. Morell?® notes that “by returning explicit

flow-of-control to the programmer, {a TML ...} enhances verification and ex-

2 Moreli, page 15.

1.4. RELATED WORK 16

pression of the programmer’s intent.” Strict AGs require s single assignment to
each attribute, TMLs allow multiple assignments to the same attnibute. TMLs
also provide notations that allow references to non-local atiributes. Recall that
AGs restrict attribute references to those occurring in the same production as
the attribute occurrence being defined. Common pregramming language seman-
tic actions, such as symbol table construction and typing of expressions become
simpler to specify when multiple assignments and remote references are avail-
able to the writer of the semantic specification. An example showing symbol
table construction using TMLs appears in Chapter 3 after we have described

TreeSem, the particular TML used in this dissertation.

1.4 Related Work

Current research in the area of semantic specification for automatic cempiler
generatora focuses primarily on methods to increase the time and space effi-
cieney of attribute grammars. An obvious strategy used to save apace during
attribute evaluation is to use pointers to large attributes rather than maintein-
ing separate copies of them for each attribute occurrence.?” The systems GAG
and LINGUIST-86G compare the lifetimes of the attributes in order to allocate
storage for themn ns either a global variable or as a global stack.*® Raiha is
able to replace certain chains of local attribute references with upward remote
references, thus eliminating the storage required for the intcrmediate attributes
in the chuin.?® The time required for attribute evaluation can be descreased
by identifying passes or portions of subtrees where no asignificant computation
will be done, and skipping the pass or visit to the subtree. Affix grammars,

which resemble attribute grammars, have also been investigated as & method of

" Hochmann, page G1.

28Farrow and Yellin, page 398.
Y Raiha and Tarhio.

1.5. RESEARCH GOALS 17

semnantic specification. Other formalisms for semantic specification appear more
useful for proving properties of programs.

As mentioned in Section 1.3, current TML research includes the use of TMLs
in syntax directed editing® and as a parmser generator interface. A primary
focus of the latter research is on developing an optimal evaluation strategy for
a TML.?! Tree transformation rules have also been investigated as an extension

to conventional attribute grammars. 3

1.5 Research Goals

Automatic compiler generation tools allow a compiler to be anutomatically gen-
erated from a specification of the language. Although these compilers are said to
be generated “automatically” from the specification, the specification itself must
still be written by hand. Maost of the current research in the area of semantic
specification is concerned with improving the efficiency of the compiler produced,
and does little to address the complexitics of writing 8 scmantic desenption of
a language.

The goal of this resenrch i3 to develop a specification language that retains
the efficiency characteristics and specification power of existing methods, yet 18

casier to use and understand. TMLs appear to be readily adaptable to this task.

1.6 Remainder of Thesis

The remaining chapters of this thesis are devoted to TreeSem, a Tree Manipu-
lation Language designed to be used as a semantic specification language. The

following topics are addressed:

M Nonzeau-Gouge, Huet, Kahn, and Lang
M ptorell.
3 A Iblas.

1.6

REMAINDER OF THESIS 18

. The syntax and semnantica of TreeSem are described in detai).

Examples show how TreeSesm is used to describe language semantics. A
comparison of semantic apecifications wsing conventional attribute gram-

mars and using TreeSem illustrates the advantages of using TreeSem.

Translations from a TreeSem specification into an equivalent ASE attribute
grammar apecification and from an attribute grammar to TreeSem are

presented.

Proof is given that these translations yield equivalent specifications. The
dual translations demonstrate that TreeSem haas the same apecification
power a3 ASE attribute grammars {and by Knuth's argument, all classes
of AGs).

Enhancements to TreeSem and conclusions drawn from this research are

presented.,

Chapter 2

Description of TreeSem

A TreeSem program consists of three main parts: DECLS {attribute type dec-
larations), GRAMMAR and TRAVSEQ (traversal sequence). DECLS contains
the type declarations for the attributes of the input tree. The GRAMMAR
provides the underlying grammar for the derivation tree input to the TreeSem
interpreter. TRAVSEQ specifies the actions to be applied to the derivation
tree. An LR grammar describing the complete syntax of TreeSem is given in

Appendix A, The following sections detail the syntax and semantics of TreeSem.

2.1 Attribute Declaration Section

DECLS —

i attribute types DECL_LIST
DECLLIST — DECL

| DECL_LIST DECL
DECL — {idsym) = (idsymy} ;

The DECLS section consists of the keywords “attribute types” followed by &
sequence of type declarations for the attribute names appearing in the input

derivation tree. Each declaration consists of an attribute name followed by its

19

2.2, GRAMMAR SECTION 20

type. For example,

attribute types
length = integer;
spelling = string;
declares the attribute “length” to be of type integer, and the attribute “spelling”
to be of type string. Some applications of TreeSem may not require 8 DECLS

section, and it may be empty.

2.2 Grammar Section

GCRAMMAR — grammar PRODLIST end_grammar
PRODLIST — PROD

| PRODLIST PROD
I’'ROD — LHS —RHSLIST {end.of line)
LHS —+ {id_sym}
RHSLIST —

| (idsym} RHSLIST

The GRAMMAR section of a TreeSem program is a BNF grammar describing
the syntax underlying the input tree, delimited by the keywords “grammar”
and “end grammar.” This grammar is not constrained to be the actual syntax
of the lenguage being translated. It may describe the abstract syntax of the
language or any other syntax the TreeSem programmer wishes. This feature
will become especially useful when research proceeds to the point that a TML
program can be analyzed to determine what portions of the input are referenced,
thus dirceting parse tree construction accordingly.

Even if the grammar were the actual grammar of the source language, the
GRAMMAR section is still not redundant. In an attribute grammer, rules are

associated with each production in the underlying context free grammar, andd

2.3. TRAVERSAL SECTION 21

each grammatical production must appear in the attribute grammar. As will be
explained in the next section, a TreeSem program does not require all produe-
tions in the underlying grammar to be mentioned explicitly, yet algorithms that
translate or interpret TreeSem programs must be aware of the entire grammar

underlying the tree.

2.3 Traversal Section

The operations that are to be applied to the input tree deacribed by the DECLS
and GRAMMAR sections of a program are specified in the TRAVSEQ portion
of the program. This specification determinea the contrel flow and attribute
assignments that are to occur. Attribute grammars specify only attribute as-

signments, allowing the evaluator to detenmine their order of execution.

2.3.1 Control Flow

The control flow staternents are of two types: those that determine the order
in which the nodes in the input tree are visited and those that specify when an

attribute assignment is executed.

TRAVSEQ — TRAVREV
| TRAVSEQ TRAVREV
TRAVREV — TRAVERSAL
| REVERSAL

These TRAVERSALs and REVERSALs are executed sequentially.

2.3 TRAVERSAL SECTION 22
2.3.1.1 TRAVERSAL

TRAVERSAL — traverse ORDER GUARD LIST end_traverse
ORDER — iporder
| preorder

| postorder

A TRAVERSAL groups the statements that are to be executed during a
single pass over the input tree, in a manner analagous to a beginfend bleck.
ORDER specifies the traversal path to be taken as the program execcutes. OR-

"L

DER may be apecified as either “inorder,” “preorder,” or “postorder,” corre-
sponditg to the usual tree traversals. The only statements currently allowed
ingide a traversal are guarded statements, and these specify exactly when each
assignionent is to be executed, so the three traversal orders are essentially equiv-
alent. This will become evident after guarded statcments have been introduced.

While ORDER currently has no effect, it is included so that statements without

explicit execution-time control may be easily added in the future.

2.3.1.2 REVERSAL

REVERSAL — reverse;

A REVERSAL has the effect of reversing the order in which child nodes are
visited during traversals. Initially, traversals visit the children of a nede in & left
to right order. After a “reverse” statement, traversals will visit the children in
a right to left order, until the next REVERSAL occurs, and the initial order is
resumed. An mlternative way to think of a REVERSAL 18 that it rotates the tree
about its “trunk” 180 degrees. The only problem with this conceptualization is

that guards {explained next) alwuys mateh the onginal orientation of the tree,

2.3. TRAVERSAL SECTION 23

2.3.1.3 GUARD

GUARDLIST — GUARDSTMT

| GUARD _LIST GUARD 5TMT
GUARD.STMT — GUARD = SEM_LIST
GUARD ~» SQUARE.TREE
SQUARE.TREE -+ {IDLIST]

A TreeSem GUARD represents a subtree which is matched against the input
tree to determine which actions te apply. The notation used for trees is similar
te that of LISP. A tree consists of a sequence of identifiers enclosed in square
hraces and separated by commas, {(Examination of the complete syntax for an
IDLIST shows that it is mmore general than this, but TreeSem restricts the form
of an IDLIST that muay be used as a guard.) The root of the tree is the first
element of the list and the remaining elements of the list are the children from
left to right. Each guard in a TreeSein program must correspond to one of the

productions given in the grammar section. For example, the guard

[A, B, C, D] represents the aubtree
B C b

and corresponds to the production A —B C D. During a traversal, as each
nole is visited, the immediate subtree with that node as the root ia compared
with the GUARDs of the GUARD _LIST contained in that traversal. If a match
is found, the SEM_LIST following that guard is applied. If the same guard
appears more than onee in a GUARD _LIST, the effect is the same as if there
were a single guard followed by the concatenation of the SEM_LISTs from each
guard. Thus, a GUARD LIST containing

GUARD, = S5EM.LIST,
GUARD, = SEMLIST;

2.3, TRAVERSAL SECTION 24

is equivalent to the GUARD LIST

GUARD, = SEMLIST,
SEM_LIST,.

The translations and proofs of the following chapters assume {without loss of

generality) that all the guards of a single GUARD_LIST are unique.

2.3.1.4 SEM_LIST

SEM_LIST — WHEN_ASGN

| SEM._LIST WHEN_ASGN
WHEN_ASGN — WHEN ASGN_LIST
WHEN — @ IDSYM_PLUS :
IDSYMPLUS — ({idsym) ({number})

| {idsym)

A SEM_LIST 1s a sequence of WHEN _ASGNs. Each WHEN_ASGN begins with
a WHEN that indicates the exact point, in the traversal of the aubtree deseribed
by the preceding guard, that the assignments in the ASGN_LIST following it
are to be executed. The ID.SYM _PLUS of a WHEN indicates one of the nodes
from the current subtree matched by the preceding guard. The {idsym} of an
ID SYM _PLUS is the name of the node, The {(number} is used to distinguish
multiple occurrences of the same node name appearing in & single guard. Node
names are numbered sequentially, from left to right, beginning witk *1'. If ne
{number) is specified, it is assumned to be *1°.

For a guard cousisting of n components, there are n points in the traversal
of the matched subtree where assigninents may be applied. These points corre-
spond to the arcs in the traversal path that connect the nodes of the subtree.

Upon cneountering the node indicated by ID SYM PLUS, the ASGN.LIST is

2.3. TRAVERSAL SECTION 25

executed, Thus, “@A: B.x — C.y" may be read as “after encountering node A,
execute the assignment B.x +— C.y7.” Consider, ngain, the guard [A, B, C, D]. If
an even number of REVERSAL statements have previously been executed, the

asgignment locations and corresponding WHENs are:

point | WHEN m A @
2 &R B C D
3 ac: AN/
4 &n: 2 ki

If an odd number of REVERSAL statements have previousiy been executed, the

assigninents and WHENs are:

point | WHEN @ A m
1 @A: A\
2 abD: B C D
K| BC: u U
4 @B fa]

2.3.2 Attribute Assignments

Attribute assignments are used to assign or change the values of attribute oc-
currences in the input tree. The value assigned to an attribute is determined
as B function of attribute values occurring in the tree. TreeSem expands the
scope of allowalile references beyond those allowed by attribute grammars. It

also allows roultiple assignments to the same attribute occurrence.

2.3.2.1 Regular Assignmentsa

ASSIGNMENT — DIRTREE «~ TREE ;

2.3. TRAVERSAL SECTION 26

The simplest form of attribute assignment occurs when DIRTREE and TREE
are both attribute occurrences of symbols in the same production; the produe-
tion indicated by the preceding GUARD. The effect of auch an assignment is to
assign the current value of the attribute referenced on the right hand side of the
production as the value of the attribute on the left hand side of the production.
The types of the two attribute occurrences must be compatible. Thus, if the

guard in the current context is [A, B, A, C], the assignment
Al(2).x «—D.y

assigns the value of the y aitribute of the B node as the value of the x attribute
of the second A node, All otler attribute values are unaffected. For purposes
of uniformity, we may assume that an identity function is being applied to the

value of the right hand side attribute.

2.3.2.2 Auxillary Functions

TREE DIRTREE
FN_CALL

fnsym {idsym) OPTARGLIST

l

FN_.CALL —
OPTARGLIST —

{ ARGLIST }
ARGLIST — TREE
| TREE, ARGLIST

A FN_CALL invokes an externally defined function to return an attribute value.
The arguments of a function consist of a possibly empty list of attribute refer-
ences and function calls. These functions are assutned to return A single value
and may not exhibit any side effects on the values of attributes nppearing in

the input tree. They may not reference attributes in the input tree other than

23 TRAVERSAL SECTION A

through their argument list, When 8 FN_CALL appears on the right hand side
of an assignment statement, the curren! values of ite arguments are passed to
the function and the resnlt returned is assigned as the value of the attribute on
the left hand side of the nssignment. The function must return e velue that is

compatible with the type of the left hand side atitnbute occurrence.

2.3.2.3 Reassigniment

TreeSem allows multiple assigniments to the same attribute occurrence. In this
respect, TreeSem attributes behiave in a fashion similar to regular program vari-
ables. Reeall that an attribute grammar requires exactly one assignment to each
attribute occurrence if the grammar i1s to be well-defined. TrecSem is able to
allow multiple assignments because the flow of control is explicitly defined by
the programmer. In an attribute grammar, the flow of control is determined ex-
ternally by the evaluntor. When a reference is made to a TreeSem attribute, the
value returned is the value most recently assigned to that attribute during exe-
cution of the TreeSem program. Consistent with the notion of multiple attribute
assignments, TreeSem assumes thiat each attribute occurrence in the input trec
has been asaigned nn initial value consistent with ita type. This value may be
a useful one, such as the spelling of an identificr determined by a scanner, or
it may simply be s default initialization value, Thus all references to attribute

values during exceution of a TreeSem program will produce a defined reault.

2.3 TRAVERSAL SECTION 28

2.3.2.4 Upward Remote Attributes

DIRTREE - TIDSYMPLUS . {idsym)
| DOWN SPEC
| IDSYM_PLUS . {idaym)
DOWNSPEC — DOWNID < SQUARE_TREELIST >
SQUARE_TREE . {id_sym)

The scope of mllowable attribute references and assignments is not limited to
those of the current production as a traversal proceeds. TreeSem includes no-
tations for attributes occurring either upward or downward from the current
position in the tree. This climinates the need for the programmer to introduce
attributes and attribution rules that simply copy an attribute value from one
tree location to another. An upward attribute is specified using an uparrow (1)
followed by the node name, a pericd, and the name of the attribute. An upward
attribute speeification always refers to the named attribute of the first instance
of the node encountered on a path from the current traversal position to the
root of the tree. Nodes in the current production are not included in this path.
It ia the specifier's responsibility to ensure that the named node always occurs
on a path from the current traversal position to the root. Figure 2.1 illustrates

the notation for upward remote attributes.

2.3.2.5 Downward IRemote Atiributes

The specification of a downward attribute is a bit more complex, a3 there is
usually more than one downward path from the reot node of the current position.
Thus the specification for a downward atiribute definea the path to be taken to

arrive at the desired attrnbute’s node from the current position in the tree,

2.3. TRAVERSAL SECTION

He
s

b
e

)

C

D E
@/I\

x]B C F
G C
Guard | Notation | Local | Attribute Referenced
(B,G,C] B.x * 3
[B.G,C] TB.x 2
[B.G.C] TA.y 1
ID,B,C,F| B.x * 3
[D,B,C,F] 1R.x 2
[D,B,C,F] TA.y 1
(B,D,E) B.x + 2
[B.D,E] 1B.x illegal
[B,D,E] TA.y 1
(A,B,C] B.x * 2
[A.B,C] tB.x illegal
[A,B,C] TA.y illegal

Figure 2.1; Upwnard Remote Reference Notation

20

2.4. EXAMPLE SEMANTIC SPECIFICATIONS 30

The DOWNID is the the name of right hand side (child) symbol of the local
production that occurs in the path to the desired atiribute. The SQUARE. TREE
representations of all of the production applications that will poasibly be encoun-
tered along the path from the current production to the sttribute are contained
in the SQUARE TREE_LIST. Each SQUARE_TREE must contain exactly one
“#" annotation preceding the child symbol that is to be followed {aleng the path)
whenever this production is encountered. The first element of a SQUARE_TREE
is the root element, so it cannot be the annotated one. Any production oecur-
ring in this portion of the specification must occur on sume possible path from
the current traversal position to the desired sttribute at least once. The order
af productions in this list is not haportant. No production may appear more
than once. The final production {the one indicated by the SQUARE_TREE in
the top-level DOWN SPEC expansion) mmst not appesr in this list. The pro-
ductions in the list may be encountered zere or mere times along any parficuler
path. The SQUARE_TREE porticn of the DOWN SPEC describes the produc-
tion containing the actual attribute being referenced. The symbol that owns
the attribute is marked with a “#". The final element of the specification, the
{id _sym)}, contains the name of the attribute beng referenced. As with upward
references, it is the programmer’s reponsibility 1o ensure that the desired at-
tribute will always exist on the indicated path. Examples of downward remote

attribute specifications appear in Figure 2.2,

2.4 Example Semantic Specifications

The following examples are presented to illustrate the use of TreeSem in specify-
ing the semantics of a language. In each case, the corresponding ASE attribute
grammar specification is included, so that the reader already familiar with at-

tribute grammar notation will be able to more easily utderstand the TML nota-

24. EXAMPLE SEMANTIC SPECIFICATIONS

31

A
/\ ®
A
/TB\ E
B C[Z]F
/\ ®
G Clz]

Guard Notation Local | Attribute Ref'd
B.G.C] |Cz R 3
[D.B,CF]|C.z * 2
[D,B,C.F] | #B <> [B,G.#C).2 3
[BDE| |#D <[D#B.CF]> [B,G#C)z 3
[B,D,E] |#D <> [D,B,#C,F|.2 2
[A,B,C] Cez * 1
ABCl |#B <(B#DE]> [DB#CFl2 2
(A.B,C] |#B <[B,#DE|, [D.#B.C.F|> [B,G,#C].z 3
[A,B,Cj #B <[D,#B,CF), [B.#D.E]> [B,G,#C].z 3

Figure 2.2: Downward Remote Reference Notation

24. EXAMPLE SEMANTIC SPECIFICATIONS 3z

tion, and also so that the two specification tnethods can be compared. Some of
the examples were produced automatically using the translation algorithms pre-
sented in the next chapter. The DECLS section is not included in the TreeSem
specifications.

This first example is an AG specification for the declarations of a hlock-

structured language. It is adapted from Rajha.!

attribute types
errcr = boclean:
epelling = atring;
onv % env_type;
upd = env_type;

<program» ::w <block>
rules

<block>.env := empty;
sglur

<block> ::= <declismt> <stmtlist>
rulas
<daclisty.env := <block>.anv;
<atmtllist>.env := <declist>.upd;
galur

<mtmtlimt> ::= <ptmtlist» <stmi>
Tuilas
<atmtliet»*2.envy = <ztmtliat>.env;
<atmt>.env := <ptmtlist>.anv;
aalur

catntlist> ::=m <grmty

rulen
‘atrt>.eny = <atmtlist>.ehv;
malur

<gtmt> :i= <id>
rujes
<atmtr.error = chackuaa{<stmt>.anv, <id>.spalling);

galur

<ptmt?> ::= <block>
Tulas
<block>.anv := <utmt>.env;

'Raiha and Tharhio, page 84.

24. EXAMPLE SEMANTIC SPECIFICATIONS i

aalur

¢daclist?> = <{daclimt> <decl>

rules
cdaclist>»? . anv :w <declist>.env;
“decld.anv = <declist>2. upd;
<decliat>,upd := <decl>.upd;

salur

<declist> ;= <daecl>
rules
<dacl>y.eny = <daclist>.snv;
<declist® .upd := <daecl>.upd;
salur

<decly ::= <id» <block>
rules
<block>.env := procdeci{<decl>.env, <id>.spelling);
<decl>.upd := procdecl{<decl>.anv, <id>.mpelling);
maelur

<decl> ::= (yardacl>
Tulas
<vardecl>.anv = <{decl>.qnv;
<dacl>.upd := <vardecl>.upd;
salur

<yardacl> ::= £id>» <comma> <vardecl>
rulen
<vardecl>.upd := makevardecl(<vardecl>2.upd, <id>,spelling,
<vardecl>»2.mpelling);
<vardecl?.epalling :» <vardecl>2.apalling;
cyardecl»2.env := <vardecl>.anv;
galur

<vardecl» ::m <id> <calon> <typald>

Tules
<vardecl>.spallipng := <typald>.spelling;
¢yardecl? . upd :m pakevardecl{<vardecl>.env, <ld>.spalling,
<typeld».epelling};
salur

This is e straight translation of the sbove AG specification for declarations

of a block-structured language into TreeSem syntax.?

In order for these examples to be used as input 1o the Lranslalion programs that implement.

24. EXAMPLE SEMANTIC SPECIFICATIONS

J4

Erasbiay
vardecl :@ id colon typsid
vardecl = 1d comma vardecl
decl = yardecl
dacl = 14 bleck
declist e decl
declist = daclist decl
atmt 1w block
sttt 1= id
stmt]liat i* atmt
atmtlist 1= atmtlist stmt
block 1= declist atmtlist
program := block

end _grammay

traverss pracrdar
[program, block]} -->
€ program
bBlock.snv != fn empty;

[block, declist, statlist] ==
2 block :
declist.envy := block.anv;
Q4 dacliet :
stmtliet.anv := declist.upd;

[declist, decliet, dacl] ==>
4 daclist ;
declist(2).env := declist.anv;
€ daclist{2) :
docl.env = declist{2).upd;
€ dacl :
declist.upd := dacl.upd;

[declist, decl] -->
€ dacliast :
decl.env := declist.env;
€ dacl :
daclist.upd = decl.upd;

[dacl, id, block] --»
€ id :
block.env := fn procdecl{decl.anv, id.spelling);

¢ black :
dacl.upd := fn procdacl(decl_env, id.spelling};

the algorithms of Chaptler 3, several syntaclic symbola have been replaced with ascii aproxirmna-
ticna: ::= replaces —. := replaces —. —=> replaces =.

24. EXAMPLE SEMANTIC SPECIFICATIONS a5

fdecl, vardecl] -->
€ decl :
vardaec]l.env :®= dacl.anv;
® vardecl :
decl.upd := vardecl.upd;

[vardecl, id, comma, vardecl] --»

¢ comma :
vardacl(2}.env := vardecl.sanv;

€ vardecl(2)
vardecl.upd := fn makevardecl{vardecl{2).upd,
id.spelling, vardecl(2).epelling);

vardecl.spalling := vardacl(2).mpalling;

[(vardecl, 1d, colon, typeid] -->
€ typeid ;
vardecl.upd := fn makaevardecl{vardecl.env,
id.epalling, typeid.spelling);
vardecl.spelling := typeld.epelling;
[atmtliet, atmtlint, stmt] -->
Q stmtlist :
stmtlist(2}.env := stmtlist.env;

0 stmtlisc{2)
stmt.anv = stmtlist.env;

[etmtlist, stmt] =->
8 stmellat :
stmt.any = atmtlliat.anv;

[stnt, 1id} --»
e id :
stmt.error := fn checkusae({mtmt.anv, id.mspelling);

[stmt, block] --»
0 stmt :
block.envy := ptmt.env;

end_traverss

The next example shows how the remote references of TreeSem are used to
climinate the need for copy rules in the specification. Upward references and
assigninents are made to the “env” attribute of block, and the types of varinbles

are obtained through a downward reference.

ETrammar
program t:= hlock

24. EXAMPLE SEMANTIC SPECIFICATIONS 36

stmtliat ::m atmtlint stat
stmtliat ::= ptmt

daciint rm declint dacl
daeclist := decl

dacl e id block

dacl :m wardecl

vardacl e id comma vardecl
vardaecl = jd colon typaid
block :w daclist atntlisat
stmt ;= id

mtmt = block

end_grammar
traverss precrder

[program, block] -->
4 program ;
block.anv :®= fn empty;

[decl, id, block] ==-»
8 decl ;
block.snv := fn procdecl(”block.snv, id.spelling};
“block.s«nv := block.sav;

[vardecl, id, comma, vardecl] --3»
¢ vardecl{2)
“plock.unv := Ifn makevardecl (“block.env, id.spelling,
#vardecl{2)<[vardecl,id, comma, Svardecl{2)]>
[vardecl,id,colan,8typeid].spelling);

[vardecl, id, colon, typeid] -->
ftypaid
“block.snd := fn makevardecl (“block.env, id.spelling,
typeid.apelling};

[tmt, i4] -->»
Qotar :
stot.error := fn chackuse{ block.env, 1d.epelling):

[etmt, block] --»
fntmt :
biock.anv v “block.env;

and_travargaé

The following example is the result of translating the previous TreeSem

specification into an attribute grammar. The attributes decl.blockenv2Z and

2.4. EXAMPLE SEMANTIC SPECIFICATIONS 37

declist.blockenv3 correspond to the decl.upd and declist.upd attributes of the
original AG example. The oddly named “p8n3_p9n3 spellingl” atiribute, as well
as the numerical endings on the attribute names are s result of the translation

process, and will be explained in the next chapter.

attribute types
arroerl = boolean:
pEnd_p9nd_apellingl = string;
spalling0d = string:
anvl = env_typa;
ehv¥2 = snv_type;
blockenvl = env_typa;
tlockenvy2 = snv_type;
blockeny3 = anv_type;

{program> ::= <block>
Tules

<block>.envl := empty;
salur

<blockr» ::= <declistd» <ptmtlimti>

rules
<declistr>.blockenvl := <block>.anvl;
<block>.env2 := <declist*.blockeanv3;
<ptmtlist>.blockenvl := <declist> . blockanv3;

selur

<atmt]li=t> ::» Catmtlimt> <mitmt>
rules
cptntlist>2.blocksnvl = <ptmtlist>.blaockenvi;
atmt>,.blockenvl := <ptmtlist>.blockenvi:
melur

<stmtlist> ::w <{ptmi>
rulas

atmt>, blockenvl = <stmtlist>.blockenvl:
galur

<gtmt> 1= <}id>
Tulea

<atmt>.erraorl := checkuss{<stat>.blockenvi, <id>.apelling0d);
aelur

<atmt> ::= <hlock>
Tulen

tblock?.anvl := <stmt*.blockenvl;
galur

2.4. EXAMPLE SEMANTIC SPECIFICATIONS

<daclimt> ::= <deciist> <decl>»

rules
“declist>»2.blockanv]l = <declist>.blockenvi;
<daclist> . blockenv2 := <declist>2.blockenvd;
“<decl>.blockenvi :w <daclist>2.blockenv3;
<declist>.blockenvd := <decl>,blockenv?;

galur

<declist> ::= <dacl>
rules
<decl>.blockenvl = <declist>_ blockanvl;
<declist>.blockenvy3d := <decl>.blockenvZ;
salur

<decl?» ::= <id> <block>
riles
<block>*.envl (= procdecl(<dacl>.blockenvl, <id>.spelling0);
¢dacl>.blockenv2 := procdecl(<decl>.blockenvl, <ld>.apelling0);:
salur

£decl> ::= <vardacl>

Tulas
<yardecl» . .bleockenvl := <decl>.blockenvl;
“dacl?.plockenv? := <vardecl>.blockenvl;

selur

<vardecl> ::» «£id> <comma> <vardecl>
rulans
<vardecl>2.blockenvl := <yardecl>.blockenvl;
<vardecl> . blockenvZ? :w» «<vardecl>»2.blockenv3;
<yardacl>.blockenvd = makevardecl(<vardecl>Z.blockenv3,
<id>.apelling0,
<vardecl>2.p8n3_ p9nd_spellingl};
<vardecl),pBnd_pInd_spallingl := <vardecl>2.pdn3_pSnd_mpellingi;
selur

<vardacl> ::= €id» <colan?> <typeid»
rules
<yardecly,.blockenvyd := makevardacl{<vardecl>._.blockanvl,
<id>.apellingl, <typeid>.spalling0);
<vardecl>.p8nd_p9n3_spellingl := (typeid>.apalling0;
selur

38

This example is an AG grammnar taken from Waite snd Goos.” The AG

IWaite and Goos, page 206,

2.4. EXAMPLE SEMANTIC SPECIFICATIONS a9

specification is evaluable in & minimum of 2 alternating passes.

attribute typanm
= intager;
integer;
integer;
intager;
integer;
integer;
intager;

M- aan e
nAa NN REB

<Z> :am £X>
rulase

<Z».b 1w 1;
aglur

K> ::m LW» CX>» <Y
Tul oa
>, a = <> d;
<X>.4 = <¥Y>.g;
X*»2.b 1= LX>.b;
W>.d = LX»2.a;
CI>» . f :wm <X>2.8:
aalur

<X> 1:= =8

Tulea
<I>.a :
€X>.a

delur

<X»>.b;
<X>».b;

<W> 1= %
rules

CW>».c = {W>.d;
selur

<Y» r:=m u
rales

<Yr.g := <Y>.f;
ealur

The TrecSem apecification below is a translation of the previous AG exmn-
ple. Note that two traversals result, corresponding to the two passes needed to
evaluate the AG. The use of the reverse statement is also shown. This causes
the secend traversal to proceed from right to left, rather than left to right, as it

visits the ehild nodes of each production.

2.4. EXAMPLE SEMANTIC SPECIFICATIONS

ETWMDAT
2 = X
) 4 = ¥ XY
X =g
W - L
Y .
and grammar
traversa praorder
{Z, X] =-»
2 X :
Z2.b :=2In 1;
[x, ¥, X, Y] --»
2 W :
X{2).b = X.b;
6y :
X.f = (D). 0:
X.0 = Y.g;
[x, a] ==>
- -

X.o := X.b;
{Y, ul -->
& u :
Y.g i=Y.T,;
and_traversa
reverse;

Ltraverao prnorde r

[II W, X, ¥] «=>

aw:
X.a := ¥W.4;
& X(2) :
W.d = Z{2}.a;
[x, 8] -->
48
X.a := X.b;
(W, t] ==>
¢t

W.c := W.d;

24 EXAMPLE SEMANTIC SPECIFICATIONS

sand_traverss

41

Chapter 3

Translation Algorithms

This chapter presents & pair of algorithms that will translate a TreeSem program
to an equivalent ASE attribute grammmar specification, and will translate an
ASE attribute grammar specification inte an equivalent TreeSem program. The
translation algorithms take advantage of the explicitly defined control flow in
the TrecSem program and the known traversal strategy of the ASE evaluator
to determine a mapping between the TreeSem and AG attribute assignments
and references. Statistics on the implementations of these algorithms appear in

Appendix B,

3.1 Translation from TreeSem to AG

This section describes the slgorithm used to translate a TreeSem program into
an equivalent ASE attribute grammar. The algorithim must remove remote at-
tribute specifications and multiple attribute assignments, must assign the proper
values to significant attributes, and it must ensure that the resulting AG speci-

fication satisfies the ASE restrictions.

42

3.1. TRANSLATION FROM TREESEM TO AG 43

3.1.1 Grammar, Declarations, and Reversals

As the grammar section of the TreeSem specification is read, it is stored in such
a way as to facilitate the various types of access required by later portions of the
translation algorithm. Each production in the grammar is numbered, starting
with 0.

A simple list of attribute type declarations is created as these declarations
are read. These stored types are used to determine the types of attributea for
the AG specification.

A bodlean reversed indicates whether an odd number of reverae atatements
have previously heen encountered in the text of the TreeSem program. It is

initinlized to felse and negated by each subsequent reverse statement.

3.1.2 Traversals

The TRAVERSALs of the TreeSem program define the actual assignment nc-
tions that are to be carried out on the input tree. As pointed out in Chapter 2,
all traversal ORDERs are essentially equivalent, so this algorithm assumes the
ORDER is always precorder. As each TRAVERSAL 18 read, the assignmenta
contained in it are stored. At the end of the TRAVERSAL, several steps are
performed to effect the translation of the TreeSemn assignments into AG assign-
nents.

The overall transiation strategy is based on the fact that we can determine,
for each possible attribute occurrence in an input tree, the maximum number of
assigntents to this attribute defore its owning symbol is visited, as it is visited
{in the root position)}, and after it is visited, regardless of the symbol’s derivation.
These assigninent counts are used as the basis for establishing proper attribute

assignments and references in the reaulting AG specification.

3.1. TRANSLATION FROM TREESEM TO AG 44

3.1.2.1 Remote Attribute Translation

Remote attributes of a TreeSem program are translated to local attributes of the
production indicated by the current GUARD. Upward atiributes are changed
to local attributes of the root symbol of the production. Downward attributes
are changed to local attributes of the DOWNID symbol appearing in the down-
ward attribute specification. When remote attributes are changed into loeal
attributes, a new name is constructed for them so they do not conflict with
existing attributes. The type of the local attribute is the same as the type of
thie remote attribute that generated it.

For upward remote sttributes, the new attribute name is constructed as a
concatenation of the original symbol name and attribute name. For example, if
the specification Tx.val appears in the context of the guard [A,B,C], it will be
replaced with A.xval. We will assume that names created in this manner will
not conflict with existing attribute names.

For downward remote attributes, name construction for the new attributes is
maore complicated. The constructed names represent the path from the owning
symbol of the attribute to the actuel goal attribute, the attribute at the terminal

end of the path. To eonstruct an attribute name for & particular owning symbol:

1. Determine all the productions in the SQUARE_TREE_LIST and the fi-
nal SQUARE_TREE of the downward specification that are used in any
path from the symbol to the goal attribute, expanding only the marked
symbol of eacli SQUARE _TREE _LIST production, and never expanding
the fina]l SQUARE_TREE producticn. {Although all productions must be
used in some path from the point where the specification originally occursa,
the translation process creates new assignments and uses the sane down-

ward specification in different contexts, so some productions may not be

3.1. TRANSLATION FROM TREESEM TO AG 45

reachable.)
2. Sort the productions that were uwaed by their associated numbers.

3. The attribute name is made up of & sequence of
p{production number}n{node number}_

constructions. Preduction number refers to the assaciated number for each
production and nede rumber is the position of the marked right hatd side
symbol in the production, where the left hand side symbeol 15 numbered
0. The initial elements of the sequence are derived from the sorted list
obtained in step 2. These are followed by an element derived from the

final production in the downward specification.

4. The name is terminated with the goal attribute name from the downward

specification.

For example, assume the following CFG and the associated production numbers:

Production Numnber | Production
1 B - CU
2 F - G
3 A —+ B
4 C — D
5 D —+ E
6 G —- CV
T C —- DA
3 D —- DA

If the following refercnce were associated with [A,B],

#B < [B, #C, U][C, #D)ID, #D, A|[C, #D, A] > [D, #E].x

3.1. TRANSLATION FROM TREESEM TO AG 48

then the attribute name for the symbol B would be
plnl _p4nl p7nl _p8nl pdnl x,

the atiribute name for the symbal D would be

p8nl _pinl X,
and at E the attribute name is simply

X.

Again, we asaume that names created in this manner wili not conflict with
existing attribute names.

Although the method for constructing downward remote attribute names
is complex, the resulting names have the advantage that, regardless of where
a downward attribute specification initially occurs, the name generated for a
particular attribute of any symbal along the path will be the same. Thia greatly
simplifies the task of determining which downward assignments and references

are affecting the same attribute in the original specification.

3.1.2.2 Explicit Assignments and Counts

Each assignment appearing in the body of a TRAVERSAL is termed an explicit
assignment. For each TRAVERSAL, the explicit assignment list for each sym-
bel of each grammar production is initially empty. Each explicit assignment,
with remote attributes replaced by local ones, is added to the end of explicit
assignment list of the symbol indicated by the moat recent GUARD and WHEN
encountered in the text of the program.

In order to compute the assignment counts mentioned above, it is necessary
to categorize each assignment based on whether it is made before or after the
traversal visits the node indicated by the lhs of the assignment. Thus, for each
assignment, a Boolean BEFORE is determined based en the Jhs of the assign-

ment, the tost recent WHEN, and the production indicated by the most recent

3.1. TRANSLATION FROM TREESEM TO AG 47

GUARD as follows:

1. If the symbol indicated by the WHEN is the Jhs symbol of the production,

BEFORE is false.

2. If WHEN indicates a rhs symbol in the production, let when_dndez be
the number of symbols in the GUARD preceding the aymbol indicated by
the WHEN, and let fhs_inder be the number of symbols in the GUARD

preceding the syinbol indicated by the lhis of the assignment.

ia) If reversed is true, BEFORE = {wheniander < thsander).

(b) If reverased is false, BEFORE = (whensnder > lhsandex).

For each attribute of each symbel of each production, there is a pair of counts,
asdigned_up and assigned_down that indicate the number of assignments mare
to this attribute during this traversal ot an upward path and on a downward
path respectively. These counts are sct to 0 at the beginning of each traversal.
Based on the value BEFORE , each explicit mssignment increments one of these

counts for the atiribute indicated by the lhs of the assignment.

3.1.3 Implicit Assignments

As remote attribute specifications appearing in the explicit assignments are
changed to local ones, it i1s necessary to add imphest gssignments, These as-
signments copy attribute values upward or downward in the iree, linking locally

generated attributes with their corresponding remote attributes.

3.1.3.1 Downward Reference Propagation

For each downward reference occurring in an explicit nssignment, ymplicit down-

ward reference assigntments are introduced to copy the value of the referenced

3.1. TRANSLATION FROM TREESEM TO AG 48

atiribute upward to the point where the explicit assignment is applied. The value
of BEFORE associated with each of these implicit assignments is the same. [t is
determined using the method of Section 3.1.2.2, considering the DOWN SPEC
aymbo] of the downward specification as the lhs assignment symbol. An assign-
ment is generatec for each production included in the SQUARE_TREE _LIST or
the final SQUARE_TREE of the downward attribute specification heing refer-
enced, unless a duplicate implicit downward reference assignment with the same
BEFORE value aiready exists for this TRAVERSAL. The lhs of each assignment
is an attribute with the same downward specification as the remote attribute,
associated with the root symbol of the production. The rha of the assignment
is the same attribute associated with the symbol that was marked for this pro-
duction in the downward specification of the remote attribute. {Note that the
same downward attribute specification will generate different attribute names
when associnted with different symbeols, and that different downward specifica-
tions may generate the same attribute name for a given symbol.) Thus, when
determining whether duplicate assignments exist, it is necessary to compare the
naemes of attributes occurring in the assignments, rather than the specifications
of thiose attributes. Each assignment that is added increments either the as-
signed_up count or assigned_down count of the lhs attribute of the assignment,
depending on the value of BEFORE. For the grammar of Section 3.1.2.1, the

guarded assignment

[A.B] =
QA: By — #B < [B,#C,U)[C, #D][D.#D,A][C,#D. A} > [D, #E].x;

will generate the following implicit downward reference assignments for the pro-

ductions appearing in the downward specification:

BCU

3.1. TRANSLATION FROM TREESEM TO AG 49

B.plnl _p4nl_pTnl_p8al _pinl x — C.pdnl _pTnl_p8anl pinl x;
C—-D
C.p4n1_pTnl_p8nl_pbnl x «+ D.p8nl_pinl _x;
C—=DA
C.pdnl_p7nl_p8nl_pSnl x « D.p8nl.pdnl_x;
D—E
D.p8nl_pbnl x — E.x;
D—-DA
D.p8nl_pSnl_x +— D{2).p8nl_pinl x;

Of course, the explicit assignment will have the remote attribute reference re-

placed with a local one:

A B
B.y — DB.plnl_pdnl _pTnl_p8nl_pSnl_x;

3.1.3.2 Downward Assighment Propagation

Implicit doumward assignrent assignments are added for explicit mssignments
to downward remote attributes in a similar manner to the addition of implicit
downward reference assignments. Since implicit downward assignments must
move information downward in the tree, the left hand sides and right hand aides
of the generated assignments are reversed from those genecrated for downward
references; the lhs of the assignment will he an attribute of the marked symbol
of the production, and the rhs will be an attribute of the root symbol of the pro-
duction. The value of BEFORE associated with each of these implicit assignments
is the BEFORE value computed for the explicit assignment containing the down-
ward attribute specification. Considering again the grammar of Section 3.1.2.1,

the guarded assigniment

3.1. TRANSLATION FROM TREESEM TO AG 50

(A.DB] =
QA: #B < [B, #C, U|[C, #D][D, #D, A][C, #D, A] > [D, #EL.x — B.y;

will generate the following implicit downward assignment assignments for the

productions appearing in the downward specification:

B—=CU
C.pdnl_p7nl_p8ul ponl.x « B.plnl p4nl_pTul _pSnl_pdnl x;
C—-D
D.p8nl_pdul x + C.pdnl_pTnl _p8nl_pbul _x;
C—DA
D.p&nl_pdini x — C.p4nl_p7nl_pSnl_pdnl x;
Do E
E.x + D.p8nl_pinl_x;
DDA
D{2).p8nl pinl x + D.p8nl_pdSnl._x;

And the explicit assignment becomes:

A—B
B.plnl_p4nl_p7nl_p8nl._pdnl x «— B.y; .

3.1.3.3 Upward Reference Propagation

When introducing implicit upward reference assignments, the remote attribute
specification dees not indicate what productions are used in the path from the
explicit nssighment to the desired remote attribute. Thus the first step in gen-
erating implicit upward reference assignmente is to determine all the upward
paths in any possible derivation tree, from the root of the production guarding

the explicit assignment to the owning symbol of the upward referenced atiribute.

3.1. TRANSLATION FROM TREESEM TO AG 51

For each arc in any of these paths, an implicit upward reference nasignment is
added, unless an identical assigninent already exista for this TRAVERSAL. The
node of the ar closest to the root of the tree is termed the reot symbol, and
the other node is the child symbol. The production used to generated the are
i8 referred to as aimply the produciion. It is possible that more than one arc of
a given production could be used in the upward paths. In this case, multiple
assignments are generated.

The ths of the implicit assignment generated for an arc 18 an attribute with
the same specification as the upward remote attnbute, but belonging to the child
symbol. The rhs of the assignment 13 an attribute with the same specification
as the upward remote attribute, belonging to the root node. Name translation
for upward attributes is used to generate the actual names for these attributes.
Note that the root symbol of the uppermost arc in each path is the actual
upward remote attribute symbol, so the attribute name generated is the local
attribute name. The BEFORE value for all implicit upward reference assignmenta
is false, so the assigned_down count for the lhs attribute is incremented for each
assignment generated.

For example, consider the gramnar

A —+ BCB
B —- D

D —- ED
D - E

The guarded comman,

[D.E] =
Gb: E.y — TA.x;

generates the itnplicit upward reference assignments:

3.1. TRANSLATION FROM TREESEM TO AG

A-BCDO

B.ax — A.x;

B(2).ax «— A.x;
B—-D

D.ax ~ B.ax;
D—+ED

D{2).ax + D.ax; .

The explicit assignment is changed to

D E
E.y — D.ax; .

3.1.3.4 Upward Assignment Propagation

a2

Implicit upward assignment assignments are genernted in & similar manner to

implicit upward refercnce assignments. The only difference is that the lhs and rhs

of assignments are reversed. The BEFORE value for all generated assignments is

false, and the aasigned_down counts are incremented. Using the above gramimar,

the guarded assignment,

ID.E] =
abD: TA.y — E.x;

gcncrates the implicit upward assignment assignments:

A—-BCB
Ay «— B.ay;
A.y «— B{2}).ay;
B—D
B.ay + D.ay;

3.1. TRANSLATION FROM TREESEM TO AG 53

D—+ED
D.ay «— D{2).ay; .

The explicit assignment is changed to

D+ E
D.ay «— E.x; .

Notice that the attribute A.y is assigned twice in the first production, a situation

not allowed in AGs. This problem is resolved later in the translation process,

3.1.4 Catchup Assignments

Because of the context-free nature of the graminar underlying a TreeSem input
tree, implicit assignments that are really only applicable to some instances of a
symbol or production must be applied to all of them. The problem that results
fromn this is that an attempt to reference attribute values that are not properly
in place may occur. Examples of this type of problem appear in the following
sections. Tle solution to this preblem is teo identify the attributes that will be
referenced, and to copy the old value of the assigned attribute to the referenced
attribute. That way, when the assignment is made, the value of the attribute
that was not supposed to be changed will remain the same. Since these types
of reference prolilems result fromn upward and downward attribute assigniments,
the assignments added here will be called upward calehup and downward eatehup
asgignimernts.

Another situation that catuses reference problems resulis from an attribute
numbering scheme that will be discussed later. Assignments added te correct

these problems are termed ezplictt calchup assignments.

3.1, TRANSLATION FROM TREESEM TO AG 54

3.1.4.1 Downward Catchups

Downward catchup assignmentis are neceasary when an implicit downward as-
signinent haa been added for an attribute r of a production p, but there is
some production g that derives the root symbol of p, yet makes no assignment,
with the same BEFORE value as that of the implicit downward assignment, to
the r attribute of that symbol. Figure 3.1 shows an example of this situation.

The figure shows the flow of information in the parse tree corresponding to the

AlY
GRAMMAR [p3al panil =B B [p2nl_p3ni=z|
A — BB
B - C |[13nl_z:|c CEﬂﬂl-Z'
ED D[

Figure 3.1: Downward Reference Anomaly

string DD after imnplicit downward assighments have been added for the explicit

assignment

[A,B,B] =
GA: #B(2) < B,#C > [C,#D]z — Aly; ,

using the grammar shown. In thia case, p is the production “B —C" and g is
“A —I B.” The attribute, r, that was added is B.p2n1_pdnl_z. There is no as-
signment to B(1).p2n1 _p3Inl = in production ¢, yet it is referenced in production

.

3.1, TRANSLATION FROM TREESEM TO AG 55

The aclution to this problem is to add an assignment in the context of pro-
duction g that assigns the attribute r the old value of the attribute on the hs
of the original explicit downward assignment. The lhe of this assignment is the
previoualy unassigned attribute. The rha of this assignment is a downward ref-
erence to the attribute indicated by the oniginal explicit downward assignment
, but whose downward path specification originates at the symbol owning the

“unassigned” z in production g. For our exatnple, this adds the assignment
B{1).p2nl _p3nl z — #B(1) < B, #C > [C, #D].z;

in the context of production ¢. The BEFORE value for this assignment ia the
same 85 the BEFORE value for the implicit assignment in production p.

The WHEN syinbol associated with this assignment is determined based on
the current value of reversed and BEFORE . If BEFORE is false, WHEN is the
roat symbol of production ¢. Otherwise, if reversed is irue, WHEN is the first
rhs symbol of p, and if reversed is false, WHEN is the last rha symbol of p.
For the example in Figure 3.1, BEFORE is felse and we will assume reversed is
false, 5o WHEN i3 A. In all cases, the assignment is added to the beginning of
the explicit assignment list for the WHEN symbol, and either assigned_up or
assigned_down is incremented as appropriate.

The ndded assignment contains a downward reference. This assignment is
subjected to downward name translation and implicit downward relerence as-
signments are added. The AG assignments that result in the case of our example

anre

A—-DDB
B.p2nl pinl z « B.p2nl_pdnl z;
B{2).p2nl_p3nl_z + A.v;

B—-C

3.1. TRANSLATION FROM TREESEM TOQ AG 56

C.p3nl_z + B.p2nl _pinl_z;

B.p2nl _p3nl_z + C.p3nl_z;
C—-D

D.z « C.pinl_z;

C.pd3nl =z «— D.z;

and the flow of attribute values is shown in Figure 3.2. Solid arrows show

2
N
[p2nl _p3nl z|B B\[;ﬂul p3nl z|
|
C|p3nl 2
7
D

[

pdnl z|C

b

Figure 3.2: Downward Catchup Assignments for Figure 3.1.

assignments resulting from downward catchup analysis. Note that the AG ua-
signmenta are not in their finsl form. In particular, we have the assignment

. p2nl_p3nl_z — B p2nl _pdnl_z, which is clearly not allowed in an AG.

3.1.4.2 Upward Catchups

Upward catchup assignments are necessary when an implicit upward assignment
has been ndded for a rhs atiribute R.x of a production p, but there is some
production ¢ with root symbol R that makes no assignment to R.z. Figure 3.3

shows an example of this situation. The figure shows the flow of information in

3.1. TRANSLATION FROM TREESEM TG AG 57

GRAMMAR
A — BB
B —- C
C —- D
C —- E

Figure 3.3: Upward Reference Anomaly

the parse tree corresponding to the string D F after implicit upward assignments

have been added for the explicit assignment

[C,D] =
aD: t Ay — D.z; ,

using the grammar shown. In this case, p is the production *B —C" and g is “C
—FE." The attnbute, r, that was added js ay. There s no assignment to C.ay
in production ¢, yet it is referenced in production p.

The solution to this problem is to add an assignment in the context of pro-
duction g, that assigns the atiribute occurrence R.x the old value of the attribute
en the ths of the original explicit upward assignment. For our example, this adds
the assigniment

Cay — T Ay

in the context of production ¢. The BEFORE value for the added assigniment is
true. The WHEN symbol associated with this assignment is the root symbal, 1,

of production q. The assignment is added to the end of the explicit assignment

3.1. TRANSLATION FROM TREESEM TO AG 58

list for the WHEN symbol, and aassgned_up for H.r is incremented.
The added assignment contains an upward reference. This assignment is
subjected to upward name translation and implicit upward reference assignments

are added. The AG assignmenta that result in the case of our example are

A—-BB
B.ay — A.y;
A.y — B.ay;
B(2}.ay + B.ay;
A.y — B{2).ay;
B—-C
C.ay — DB.ay;
B.ay + C.ay;
C—-D
C.ay «— D.z;
C—E
C.ay + C.ay;

and the flow of attnbute values ia shown in Figure 3.4, Solid arrows show
assignments reaulting from upward catchup analysis. Note once again that the
AG assignments are not 1n theie final form.

Anather situation that causes reference problems results from an attnbute
numbering scheme that will be discussed later. Assignments added to correct

these problems are termed exphictt catchup mssignments.

3.1.4.3 Explicit Catchups

An attribute numbering scheme that will be described in full in & later section

requires explicit catchup sssignments to be added, Explicit catchup assignments

3.1. TRANSLATION FROM TREESEM TO AG 59

Figure 3.4: Upward Catchup Assignments for Figure 3.3.

are added after implicit assignments are changed to explicit ones, and mazimum
countis are determined. These two processes are described in the next two sec-
tions, but addition of explicit eatchup assignmenta is discussed here because they
relate to downward and upward catchup assignments, Explicit assigniments are
added in three different cases, related to the max_root, maz_before, and maz_ofier

counts, which are described in Section 3.1.6.1.

1. For each attribute oceurretice L.x, where L is the lhs symbol of produetion
p. an explicit catchup assignment is added if there is no assignment made to
L.z in the context of p (assngned_up and assigned_down arc both zero), but
the maz_root count for this attribute is greater than zero. The assignment
“L.r v L.x" v added to the end of the explicit assigtinent list for the root
syinbol of p. REFORE 1s arbitranly chosen to be false for this assignment,

and easigned_down for this attnbute is incremented (to 1}.

2. For each attribmte oceurrence fi.x, where ¥ is a rhs aymbol of some pro-

duction p, an explicit catchup assignment is added if the assigned_down

3.1, TRANSLATION FROM TREESEM TO AG 60

count for R.7 ia zero, but the maz_before count for this attribute is grentes
than zero., The assignment “R.xr — R.2" ia added to the end of the ex-
plicit assignment list for the root symbol of p. BEFORE is false for this

assignment, and assigned_down for this attribute is incremented.

3. For each attribute occurrence R.x, where R is a rhs symbol of some pro-
duction p, an explicit eatehup sssignment is added if the assigned_up count
for .z is zero, but the mez_afler count for this ettribute s greater than
zero, The assignment “R.z «— R.x" ia added to the end of the explicit
assignment list for the symhbol R in p. BEFORE 18 frue for this assignment,

and assigned_up for this attribute is incremented.

3.1.5 Convert Implicit Assignments

After all the implicit assignmenis have been generated, the majority of them
arc added to explicit assignment lists. Implicit downward references with false
BEFORE values, and implicit downward assignments with true SEFORE values
meve inforination against the normal How of a traversal. All other implicit
assignments move information in a direction compatible with the normal flow of
a traversal, so they are able to be considered as explicit assignments.

For each attribute = of each symnbol § of each production p, implicit assign-

ments are converted as follows:

1. If there is an implicit downward assignment to S.x, with a false BE-
FORE value, it 18 added to the beginning of the explicit assigniment list for
the Lhs syiabol of production p. This reflecta the fact that the original ex-
plicit downward assigmment generating this implicit assignment occurred
at a point upward in the tree, and since BEFCHE is false, the downward as-
signinent has already been spplied. Therefore, the effect of the downward

assipnment should teke place before any other assignments in the context

J.1.

TRANSLATION FROM TREESEM TO AG 81

of production p. Recall that assigninents asaociated with the root symbol
of & production are always the first to be applied as a traversal visita the

production.

. If there is an implicit upward assignment referencing 5.z, the implicit

assigninent is added to the beginning of the explicit assignment list for the
sytnbol §. The remote upward assignment must occur at a paint below
S in the tree, so it is applied during the aubtree visit to 5. The effect of
the explicit remote assignment should be realized as scon as the traversal
returns from ihe subtree visit. Explicit assignments associnted with &
symbaol are always executed immediately after the traversal returns from

the subtree below that node.

If there is an implicit downward reference assignment that references
S.r, with a true BEFORE valie, it ia added to the end of the explicit
assigninent list of the last node to be visited in p during this traversal. If
reversed, this node is the first node on the rhs of p, and otherwise it is
the last rlis node of p. The explicit assignment containing the downward
reference that generated this implicit assigniment occurs upward in the tree
from p. Since it has a {rue BEFORE value, it has not yet been executed. The
mosi recent value assigned to the downward attribute is propagated upwanrd
to the point of reference by executing the downward reference assignment
just before the traversal leaves p. Dy making it the last assignment applied
in the context of p, any assignments made to the actual remote attribute

(which may be local to p) are reflected in the value that is passed upward.

If there is an implicit upward reference assignment to S.z, it is added
to the end of the explicit assignment list for the symbol in preduction p

that is visited just before 5 is visited.

3.1. TRANSLATION FROM TREESEM TO AG 82

s If reversed, this is the symbol following 5 in the textual representation
of p, unless S 1s the last rhs symbel of p, in which case the symbol is

the lhs symbol of p.

o If reversed is false, this is the symbel preceding $§ in the textual
representation of p, unless § is the first symbol on the rha of p, in

which case the symbuol is the lhs symbol of p.

The remote upward reference that generated the implicit assignment oc-
curs in the subtree rooted at §. By executing the implicit assignment just
before visiting 5, the value most recently assigned to the upward attribute

is passed downward to the point of the original upward reference. ¢

3.1.6 Attribute SuflHxing

TreeSem allows multiple explicit assignments to the same attribute and implicit
assignmentis may gencrate assignminents in whiclh attributes reference themselves.
Both of these situations arc not allowed in an AG specification. To solve this
problem, attribute names are given an integer suffix, therefore creating new
unique attributes. These suffixes reflect the order in which assignments are
made to attributes in the TreeSem program. They are assigned in such a way
that attribute velues referenced in the original TreeSem program are the ones
that are referenced in the AG translation, even though the attribute narmes are
different. A “ci" associated with each atinbute occurrence is used to determine
the attribute suffixes. Initially, all cts are assigned to be the maz_old value for the
attribute, which is the maximum number of assignments that could have been
made to the attribute during a previous traversal. At the start of translation,
mazx_old is “0" for all attributes, and it 13 updated after translation of each

traversal.

3.1, TRANSLATION FROM TREESEM TO AG 63

3.1.6.1 Maximum Assignment Counta

The strategy used to assign sttribute suffixes is based on the fact that it is pos-
sible to determine, for each attnbute occurrence, the maximum poasible number
of assignments made to this stiribute before, during, and afier the visit to the
owning symbol of the atirnbute during a traversal. These counts are the same
for all instances of a particular attribute occurrence. The term attrigroup will
refer to the collection of al] instances of a particular attribute occurrence across
all productions. The maximum counts are computed for each attrigroup, and
each memmber of the attrigroup references the same count. For an attrigroup

with elements R.x,

1. maz_before is the maxitnum esasgned_down count associated with R.x any-

where I appears as a rlis nade of a production.

2. mazxr_gfter is the maximum assigned_up count associated with 1.z anywhere

R appears as a rhs node of a production.

3. mazx_root is the maximum of the sum of the arsigned_down and assighied_up
counts associated with B.x for each instunce of A as a lhs node of & pro-

duction.

3.1.6.2 Downward Applied Downward Reference Suffixes

Explicit assignments containing remote downward references, with false BEFORE
values, generate implicit downward reference rssignments with felse BEFORE val-
ues. Since the explicit assignment has a false BEFORE value, the node containing
the downward referenced mtiribute has not yet been visited when the explicit
assignment is applied. Therefore, inplicit downward reference assignments are

considered to be evaluated on a separate pass over the input tree, prior to the

3.1. TRANSLATION FROM TREESEM TO AG 64

actual traversal. For each implicit downward reference nssignment with a felse

BEFORE value,

1. The ¢t associated with the attribute on the lhs of the sssignment ia incre-

mented, and the resulting value is assigned as the suffix of that attribute.

2. The ct asrocinted witly the attribute on the rhs of the assignment is in-
cremented, unless the attribute is the actusl downward attribute being
referenced (this can be determined from the downward name specifica-
tion). The resulting cf ie nssigned as the attribute suffix. The reason the
¢t 18 not incremented for the actual downward attribute is that no assign-
ment will be made to it between the end of the previous traversal and the
time it is referenced. The right hand sides of all other assignments will
have been the left hand sides of previously executed assignments. Recall
that no duplicate implicit assignments are allowed, so exactly one resign-
ment is made to each attribute occurring on the lhs of A downward applied

downward reference assignment.

For each attrigroup, K.z, if an attribute occurrence R.r appears on the ths of
a downward applied downward reference (dadr) mssignment, the corresponding
maz.reet value is decremented, and the corresponding maz_defore value is incre-
mented. A dadr assignment contributed to the mazx_root count but it should now
contribute to the maz_before count, since dadr assignments are applied during
A separate pass bdefere the actual pass. The maz_root and maz_before values for
any attrigroup are only adjusted once.

For each attribute occurrence appearing on the lhs of a dadr assigniment, the
¢t values for all members of its attrigroup are updated to the ct value of that

attribute ocecurrence.

3.1. TRANSLATION FROM TREESEM TO AG 85

3.1.6.3 Explicit Assignment Suffixes

Suffixes are added to attributes oceurring in explicit assignment statements in
such a way that the Jast masignment inade to eacli member of an attrigroup
defore the attribute’s node is visited, afier it is visited, and when it occurs as
the reot node of a production will have the same suffix. For each production,
the assignments corresponding to each sywmbol of the production are considered
in the order in which they appear in the explicit assignment list for that symbol.
Suffixes are computed for the assignments of the root symbol of a production
first, and theu for the rhs sytobols in the order indicated by the current value
of reversed.

For each attribute of a lhs node of a production, the corresponding et is
assigned the the sum of the maz before and maz_old values for its attrigroup.
All assignments made to the llis node of a production before the node is visited
have already taken place when the node appeared on the rhs of some other
production.

Immediately belore determining the suffixes for the assignments associated
with » rhe symbol, the et values for all attributes of that symbol are assigned
the sum of the corresponding mez_old, mez_before, and maz_reet counts. The
assignments associsted with & rhs are those that are applied immediately after
the traversal retumms frotn the subtree vigit to that symbol, so all defore and root
assignments made to this symbol's attributes have already taken place.

For each assignment, the suffixes for all attributes appearing on the rhs of
thie assignment are assigned their current ¢f values. Then the et for the attribute
on the s of the assignment is modified in one of the following ways, using the

counts appropriate {or this attnbute:

1. If the attribute’s owning symbol is the lhs symbol of the production, and

3.1. TRANSLATION FROM TREESEM TO AG 66

ite ci equals “maz_old + maz_before + assigned_up + assigned_down - 17,
then ¢t becomes “mez_old + maz_before + mez_rool.” This is the case
when this assigninent is the last one made to this root attribute in the

context of this production.

2. If the attribute’s owning syinbol is a rhs symbol of the production, and
its ef equals “maez_old + assigned _dewn - 1," then et becomes “maz_old +
maz_befare.” In this situation, the assignment is the last one made to this

attribute before the owning symbol is visited,

3. If the attribute’s owning symbol is a rhs symbol of the production, and
ita ¢t equals “maz_ald + maez before + maz_root + assigned_up - 1,7 then
el becomes “maz_old + maz_before + mex.roet + maz_gfler,” In this
situation, the assignment is the last one made to the rhs symbol's attribute

in the context of this production.

4. If none of the above cases apply, ¢t is incremented. This assignment is not

eritical to the rest of the numbering scheme,

The suffix for the attribute on the Ihs of the assignment is the resulting value of

the corresponding ct.

3.1.6.4 Upward Applied Downward Assignment Suflixes

As with downward applied downward reference assignments, upward applied
downward mssignment {uada) assignments are considered to take place on a
separate pass over the tree. This extra pass takes place after the main traversal.

Siuce all implicit assignments are unique, and since all other mssignments
have already taken place at the time uada assignments are applied, suffixes for
attributes occurring in these assignments are easily determined. The ¢t values

for the attributes on the lhs and the rhs of all uada assignments are assigned

3.1. TRANSLATION FROM TREESEM TO AG 67

aa the sum of the corresponding maz_old, maz_root, maz before, and maz_afler
counts. The suffixes for the attributes are the resulting ¢ values.

Note that at this point, the ¢! for mny element of an attrigroup is the sum
of maxr_old, maz_rool, maz_before, and max_afler for that atirigroup, These ct
values will become the basis for computing the atiribute suffixes for the next

traversal.

3.1.7 ASE Adjustment

After attribute suffixes have been added to climinate multiple assignments to
the same attribute, there is one more translation step that must be performed
to ensure that the generated AG will satisfy the conditions for Alternating Se-
mantic Evaluation. It is possible that seme assighment statements may contain
references to attributes that were nssigned to eatlier in this pass, but after their
owning symbols were visited or they have not yet been visited. This type of
reference would cause the assignment to be delayed in the ASE. To remove
this problem, a very simple form of symbolic execution is performed on the
assignments contained in the explicit assignment lists for each symbol of each
production. Note that the dadr and uada assignments are considered to occur
during scparate passes from the explicit assignments, and therefore do not have
to be considered during this aymbolic execution process.

For each production, the explicit assignmenta associated with symbols of that
production are ordered in the order they will be applied during the traversal of
that production. A simple concatenation of the explicit assignment list for the
root symbel, followed by those of all the rhs symbols in the production, either
from left to right if reversed is false or right to left if reversed is {rue, provides
this ordering. For each assignment, in the order determined above, each of the

attribute references on the rhs of the assignment is analyzed. If there is an

3.2. TRANSLATION FROM AG TQ TREESEM G8

earlier assignment to this sttribute, the reference to this attribute is replaced
with the rlis of the earlier assignment. If there is no earlier assignment to this

attribute, the reference is left unchanged.

3.1.8 Intertraversal Ad Hocery

For cach attrigroup, the maz_old count becomes the sum of the mazx_old, maz_before,
mazx_rant, and maz_agfler counts. Then the maz_before, maz_root, and maxz_afier
counts are all set to zero,

For each production, all of the assignments in the explicit assignment lists for
the symbuols of that production are added to an initislly empty list of assigniments
for that production. The explicit assigrunent lists are then cleared. For each
attnbute of cach symbol, any dadr or uada esssignments are added to the list of
assignments for the production. The assigned up and gssigned_down counta for
each attribute are set to zero.

After translation of all TRAVERSALS, the assignments associated with each
production are the defining functions for the attributes of symbels in that pro-

ducticn.

3.2 Translation from AG to TreeSem

The mapping of au ASE attribute grammar specification into an equivalent
TreeSetn specification is achieved by constructing a sequence of TreeSem TRAVER-
SALs corresponding to the passes executed by the Alternating Semantic Eval-
uator. The GUARDs and WHENs of TreeSem are introduced to mimic ASE
control How in the TreeSem program. This method of translation from an AG
to a TreeSem program was developed simply to show thai such a translation is

possible.

3.2. TRANSLATION FROM AG TO TREESEM 69

The ASE membership algorithm (see page 14) is used to determine the num-
ber of passcs, m, required for evaluntion of the attribute grammar, and which
attributes are evaluated during each pass. Each of the m passes generates a
TreeSem TRAVERSAL whose ORDER is preorder. The TRAVERSALSs appear
in the order of their corresponding passes. A reverse statement is generated
after every TRAVERSAL, except the last aone.

The body of the TRAVERSAL corresponding to a particular pass, k, contains
an assighinent statement for every attribute oecurrence, R.r, that s evaluated
on pass k. The GUARD for each assignment is the prodnction, g, with which
the attribute occurrence is associated. If ki3 even, the WHEN corresponding to
the assignment is the symbol following R in p, or the root symbol of pif R is
the last aymbol of p. If & is odd, the WHEN corresponding to the assignment is
the symbol preceding / in p, or the last symbol of p if R is the root symbol of
p. The reason for choosing the WHENS in this way is that evaluation of each
assignment i3 postponed to exactly the point in the traversal that it would be

evaluated by the Alternating Semantic Evaluator.

Chapter 4

Proof of Algorithms

This chapter provides proof that TreeSem and ASE attribute grammars are
equivalent in termns of their power to express the semantics of programming lan-
guages. The equivalence is much more of a2 “natural” equivalence than that dis-
cussed by Knuth, when he demonstrates that all attribute grammar subclasses
have the same power by synthesizing all information to the root of the deriva-
tion tree and applying a single function to achieve the meaning of the tree. The
equivalence of expressive power between ASE attribute grammars and TreeSem
is shown by proving that the two translations of Chapter 3 produce specifications
that are evaluable in their target languages, and have the same meaning as the
original specifications, Neither of these translations requires new functions to
be created. Once the expressive equivalence of these two specification methods

has been established, readablity and efficiency determine which should be used.

Theorem 1 Translation of ¢ TreeSem program using the algorithm of section 3.1
resuits in an iltribule grammar thal safisfies the conditiona for ASE member-

ship.

Proof of this theorem follows directly from the following Lemma, which places

an upper bound on the number of passes required for evaluation of the generated

' Knuth, 1968,

70

7l

AG.

Lemma 1 The ativibuie gratnmar resulting from translation of ¢ TreeSem pro-

gram cantgining & traveraals i ASE evaluable in ol meosl k * 4 passes.

Proof of Letina T is by induction on &, the number of traversals in the TreeSem
progranm.

Dasis Step. For k = 0, there are no assigiunent statements in the TreeSem
program, since assignments can ouly occur inside traversals. Assignments in
the AG program eitlier (1) corresponnd directly to TreeSetn assiguments, (2) are
generated by remote attrnibute specifications oecurring in TreeSem assignments,
or {3} are added as catehup assignineits when some memnber of an attrigroup is
assigned to more times than others. Since there are no TreeSem assignments,
{1) the corresponding nunibier of AG nssigmnents is 0, (2) there are no remote
epecifications to generate AG assigninients, and {3) all attribute cccurrences are
assigned to an equal number (zere) of tunes, so no eatchup assigniments are
generated. Therefore, the AG contains uo attnibute assigniments, and is trivially
eviluable in 0 = 0 x 4 = & * 4 passes.

Jruduction Hypothesis. For & » 0, assume that the AG program resulting
from trapslation of a TreeSein progrum containing & — 1 traversals 13 evaluable
in (k—1}#4 alternating passcs. Then the AG program resulting from translation
of o TreeSem program with & traversals is evaluable in b * 4 alternating passes.

Induction Step. Dowuward apphed downward reference assignments result-
ing from translation of traversal & are evaluable on & single pass. A single
downward refercnce specification generates a chisin of n assighment sthtements,
each of the form lhs, — rhs,, evahanted in the context of n unique productions.
As a result of the naming convenrions for downward attributes and the require-

ment that no duplicate implicit nssignments are allowed, no downward applied

72

downward reference assignment occurs in more than one of these chains. For
assignment s, t € {1,...,n}, {hs; is & syuthesized attribute of the lhs symbol of
production i, and rhs; is an attribute of one of the rhs symbols of production 1.
For s € {1,...,n— 1}, rhs, = lhs,y,. Since these are the first assignments being
applied on this traversal, rfis, must have liecn assigned on a previous traver-
sal and, by the induction hypothesis, have heen evaluated by the end of pass
{k—1)*4, so lhs, can be evaluated. For ¢ € {1,...,n—1}, we can evaluate lha;
if rhs; has previously been evaluated. Dut since rfis; = ths;;; and synthesized
attributes of iths syinbols of a production sre evaluated after the child nodes of
that production have heen visited, rfs, will have be evaluated before it is time
to evaluate lhs,, so lhs; can e cvaluated. Thus, at the end of pass {k —1)%d 41,

all downward applied downward reference assignments will have been evaluated,

All upward reference assignments, downward applied downward assignment
assignipents, explicit assignments, upward applied downward reference assign-
ments, and upward assignment assigimnents resulting from translation of traver-
sal k are evaluable in a single puss of the Alternating Semantic Evaluator. The
direction of this pass must be left to right if reversed is false for this traversal,
and right to left otherwise. Either pass (A —1)+4 4+ 2 or pass [k ~ 1)+ 4+ 3 will
be in the direction required for traversul & We assume now that the proper pass
is chosen, and show that all of the above mentioned assignments are evaluable
during this pass.

The ASE membership algoritlun eliminates an attribute from the set of at-
tributes evaluable on the current piss only when it references an attribute that
was not assigned on an earlier pass and results in a false @ value. Recall that
cach assignment to an attribute ovecurrence generates a new attribute name,
and therefore a new attribute occwrence in the resulting AG. By the inductive

hypothiesia, those attributes thoat resulted from assigminents oceurring in ear-

T3

lier traversals have been assigned to on a previous pass, Attributes resulting
from downward applied downward reference assignments have been previously
assigned on pass {k — 1}« 4 + 1. The only attribute references that could elimi-
nate an attribute from the set of attributes evaluahle on this pass, are references
made to attributes that resulted fromn assignments oceurring in thia traversal;
in particular, synthesized attributes of the lhs 2ymbol of the production and
atiributes of rhs symbols that do not occur before the symhbol of the attribute
being defined. Since How of control is explicitly defined in TreeSem, all at-
tributes must have been previously assigned when they are referenced. This
prohibits references to syntliesized attributes of rhis symbols that are not vis-
ited befare the symbol owning the attribute being defined, in the path of the
traversal. The ASE Adjustment algorithm successively {in the direction of the
traversal) replaces all references to attributes that were assigned in the context
of this production, prior to this assignment, with their definitions. Thus, no
references to inherited attrihutes of rhis symbols or synthesized attributes of the
lhs symbol, that were assignetdl during this traversal, remnain. Therefore, J will

always return frue, so no attributes will he eliminated.

At the end of pass (X — 1) + 4 + 3, the only attributes generated as a result
of traversal k, that are not yet assigned, are attributes occurring on the Jhs of
upward applicd downward assigniment assignments. These can all be assigned on
a single pass of the Alternating Semantic Evaluator, As with dowaward applied
downward references, each downwared assigtiment specification generates a chain
of n assignments, each of the form {hs,, «— rhs,. For assignment i, ¢ € {1,...,n},
ths; is an inherited attribute of o rhs svmbel of preduction i, and rhs; is an
inherited attribute of the root symbol of production :. Rhs, cccurs as the lhs
of the originnl erplicil TreeSem assignment statement, nnd therefore has been

assigned to by the end of puss (& — 1) «4 4+ 3, Thus Ihs; ean be assigned. For

T4

t € {2,...,n}, we note that, since [As, is an inherited attribute of a rhs symbol
and rha; 17 8 synthesized attnbute of the root symbal, A1k, rhs;) always yields
irue, so [hs; can be assigned during this pass. Adding this additional pass, all
attributes resulting from nssigniuents in traversals 1, ..., k are evaluated by the

end of pass (K —11+#4+3+ 1, ar k4. 0O

Theorem 2 Transiction of an m-pass ASE aliribule grammar using the elgo-

rithm of section 5.2 results in o TreeSem program coniaining m iraversals.

Tins theorem is included for completeness. Its proof should be obvious from
examination of the algoritlim, which states, “each of the m passes generates a
TreeSemn traversal" No other traversals are generated by the sigorithm. O

A significent attribute of an AG resulting from translation of a TreeSem
program is one that corresponds directly to a local attribute in the TreeSem

PIOgTAIL.

Theorem 3 The atiribute gramnmar resslting from translation of a TreeSem
program using the elgorithm of section ¥.1 aasigna all significant aftributes the
same vaiue a8 the value wasigned to the corrcaponding attribule by the TreeSem

program,
In erder to prove this theorem, several Lemmas are introduced.

Lemma 2 At the end of @ TrecSem treveraal, the values easigned to glirtbutes
by douwnward rerote essignnenis arc the same values that are gasigned to these
atiributes when doumward wasignment propagetion {Section 5.1.3.2) has been

wsed 1o replace the remote assignments uwth chains of implies! gasignments.

First consider the case where the BEFORE value of the implicit assignments

is false. The originnl remote nssignment must have been executed before the

75

visit to the subtree containing the goal attribute of the assignment. If no other
downwand remote assignments are mace ta this atiribute before the production
containing the symbol owning the goal nttribute is visited, it is clear that the
immplicit assignment chain assigns the proper value to the goal attribute. If such
an assignment, s, does occur, it must be applied in the context of one of the
productions in the original downward specification. Since implicit downward
assignment assignments are executed as soon as the root symbol of & preduction
18 visited, s must be executed after the implicit assignment, overwnting the
value assigned by the implicit assipument. This new value will be propagated
downward to the goal attribute, which is just what is desired. Of course, if
motre than one of these downward assignments occurs in the context of the
same production, the value assigned by the last one executed will be propagated
downward.

Now consider the case where the HEFORE value of the implicit assignments is
true. The implicit assigninents are executed on the downward pass of a separate
traversal after the main traversal. The upperinost assignment made te a down-
ward attribute will he assigned to the lhs of the first implicit assignment in the
chain of implicit assigmments leading to that attribute. Since these downward
assigninents were applied on the upward pass of the main traversal, this assign-
ment was the last to be exccuted, nnd therefore this is the value that should
Le nssigned to the downward attribute. All other implicit assignments on the
chain will reference the value assigned to the attribute on the lhs of the previous
implicit assigniment in the chain, thus assigning this value to the goal at'ribute.

]

Lemma 3 At the end of ¢ TreeSewm traversal, the valucs assigned to atlrtbutes
by upward remote assignments ave the same values that are assigned fo these

attributes when upward assignment propegation {Section 2.1.5.4) has been used

76

to replace the remole aasignments with chaine of implicil assignments.

Implicit upward assignment assigninents associated with a symbol are ex-
ecuted as soon as the traversal returns from the subtree visit to that symbectl,
If only one upward remote assignment is made to a symbol, it is clear that
the chain of implicit assignments will assign the correct value to the remote at-
tribute. If more than upward assigninent is rnade to the same remote attribute,
the paths of the implicit assigninent chiains penerated by these assignments must
ultimately coincide. ln the production in which these paths coincide, the im-
plicit assignmenta of both paths assign to the same atiribute of the root node of
the production. Consider such a production with root node r and child nodes
el and c#, where ¢! is visited hefare ¢2 in this traversal. The upward remote
assignment occurring in the subtree with root ci is executed before the one in
the subtree with root ¢2. As soon as the visit to ¢ returns, the implicit assign-
ment onn the upward path through ¢f iz executed. When the visit to c2 returns,
the implicit assigmment on the upward path through ¢2 is executed, overwnt-
ing the value assigned by the implicit assigument on the path through c¢f. The
value passed upward is the value sssigned to the upward attribute by the most
recently executed upward remote assignment. If an upward remote assignraent
statement occurring in the context of the same production containing ¢i and <2
were executed after the subtree visit to 2, it would again overwrite the value
of the root attribute, and that value would be passed upward for assignment to

the remote attribute. O

Lemma 4 The value aasigned to the atiribute introduced s the resuit of a douwn-
ward reference apecification 19 the desived value of the goal attribute at the fime

the assignment contasning the reference v erecuted.

T

First consider the case where the implicit assignments gencerated by the down-
ward reference have false BEFORE values. Clearly the chain of assignments as-
signs the value of the goal attnbute at the beginning of the traversal to the
attribute appesritig on the lhs of each assigninent in the chain. In particular,
this value is mssigned to the attribute 7 that replaced the original downward ref-
erence specification. If no downwnard assignments are made to the goal attribute
befute the assigniuent, s, containg the downward reference is executed, this
iz the value desired. If, however, somme downward assignment is made to the
gonl attribute before s is excented, the new value of the gonl attribute is the de-
pired value. Since we are considering nssigumnents with felse BEFORE values, the
DOWN SPEC symbol of the downward specification has not yet been visited.
Since this syrabol has not been visited, neither have any of the productions in
the subtree below it, so any assigmment made to the goal attnibute must have
been made as 6 downward assignment, that generated downward implicit assign-
ments with false BEFORE values. In order to assign to the same goal attribute,
the chain of implicit downward assigrunents must include an assignment to the
attribute z that replaced the original downward reference specification. If the
downward assignment was made in this production, it was an explicit assign-
ment that occurred earlier than s, and the statement was applied before s, If
the assignment occurred in some other production, then the implicit assignment
te z was applied before s, since Lmplicit downward assignment assigntients are
executed before any explicit assigrunents. So in either case, z holds the newly as-
signed walue of the goal attnbute when the statement containing the downward
reference 1s made,

Now consider the case where the implicit assignments generated by the down-
ward reference have trze BEFONE valies. Label the assignments in the chain

generated by the downward specification, ay,. .., a,, where a,, is the assigntment

8

associated with the symnbol owning the goal attribute. Since these assignments
have {rue BEFORE values, all the symbals in the subtree with the DOWN SPEC
symbol of the downward specification as its root, have been visited. This in-
cludes the goal symbol of the downward specification. The implicit upward
applied downward reference nssignments of a production are executed just be-
fore the traversal leaves the production, so the value assigned to the attribute
on the lhs of a, is the value of the goal attribute as the traversal ascends. If
no upward applied downward assignments are madce to the goal attnbute, then
this value will be propagated upwnrd by a,_,,...,a; and correctly referenced.
If such an assignment is made, it nmst occur before the implicit assignment,
since itnplicit downward reference assignments are executed after all other aa-
signments in the context of a given production. The downward assignment will
nsgign to the same attribute that is referenced by the implicit assighment, so
this value will be passed upward. In fact, since the downward assignment to
the attribute referenced liy the implicit assignment cccurs before the unplicit
assignment, the ASE Adjustment algorithm will replace the rhs of the implicit

assignment with the value being assigned to the downward attribute. O

Lemma 5 The value essigned te the oitribute introduced as the resull of an
upward reference specification is the desired velue of the goal atiribute at the

time the asstgnment conteining the reference 19 execuled.

All references to upward attributes must occur in the subtree with the symbol
owning the referenced attribute as its root. Luplicit upward reference assign-
ments generated by assignments occurring in a subtree are executed just before
the root symbol of the subtree is visited. It is abvious then, that if no assign-
ments are made to the upward attribute while the subtree is being visited, the

chain of implicit upward refercnce assignments will propagate the value of the

79

upward remote attribute to the attribute that replaced the upward reference
specification. If, however, some nssignment to the upward attribute is made in
the subtree, at a point i the traversal before the mssignment containing the
upward reference is executed, ths becomes the desired value, If thia nssignment
occurs in the coatext of a production on the path from the reference to the goal
attribute, the rhs of the implicit assignment in that production will be replaced
with the rhs of the assignment to the upward attribute, by the ASE Adjustinent
algorithm, If this assignment occurs in a production not on this path, the chain
of implicit assignments propagating this upward assigned value must ultimately
coincide with the path of the upward reference chain. In the production in which
this path coincides, the unplicit upward assignment is executed as soon as the
traversal returns from visiting the node through which the path passes. This
must be before the traversal descends to the node in this production that is on
the upward path, and thersfore, before the nnplicit upward reference assignment
is executed. The upward assignment sssignment is madc to the attribute that is
referenced by the upward reference assignment. So the ASE Adjustment algo-
rithm will replace the rhs of the implicit upward reference assignment with the
rhs of the upward assigninent assignmeut, whicl contains the newly assigned

value of the upward attribute. O

Lemma 6 The downwoerd catchup assignments added by the method of See-
tion 5.1.4.1 prevent ymplicil essignimenis generaled from dewnward remole at-
tribute gasignments from changing the values of significant aliribules that ere

not the goal aitribules of the assinnmenis,

Downward catchup assignments are added whenever an atiribute is refer-
enced by an implicit assigmuoent in a chain of assignments resulting from a

downward remote assigmneut, but neo implicit or explicit assignment with the

80

same BEFORE value as the implicit assigninent containing the reference has aa-
signed this atiribute a value during this traversal. The lhs of the catchup as-
signment is the attribute being referenced and the rhs of the assignment is a
downward reference to the attribute occurring on the lhs of the downward re-
mote assignment that generated the unplicit assignment. If BEFORE is fabe
for the implicit assigmnent, the catchiup assignment s associated with the lhs
symbo}l of the production containing the implicit assignment, ensuring it will be
executed before the implicit assignment 13 executed. If BEFORE is #rue for the
implicit assignment, the catchnp assignment is associated with the last symbol
of the production to he visited during this traversal, This ensures that no assigu-
ment to the downward attribute cau be made between execution of the eatchup
assignment and execution of the inplicit assignment containing the reference.
{If there were such an assigiuneut, it woukl have to occur in the context of this
production and have a frue BEFORE value, go the catchup assignment would not
have been added.) In either the frue or the false case, the value assigned to
the attribute on the lhs of the catelup assignment is the value of the downward
remote attribute just prior to execution of the implicit assignment. Lemma 4
guarantees that this value will be properly referenced. The chain of implicit
downward assignments will now propagate the old vahie of the remote attribute

as the new value of the downward attribute, thus leaving it unchanged. O

Lemima T The vpwerd calchup assignments added by the method of Section §.1.4.2
prevent tmplicit gastgurnents generated from upward remete allribute assign-
menls from changing the values of significant atirtbules that are nol the goal

atirtbutes of the assignments.

Upward catchup assignments are added whenever an attribute is referenced

Ly an implicit assigmment in a chain of assignments resulting from an upward

81

reinote assignment, but no implicit or explicit assignment has nssigned this at-
tribute a value during this traversal. The lhs of the eatchup sssignment is the
attribute being referenced and the riis of the assignment is an upward reference
to the attribute cccurring on the lhs of the upward remote assignment that gen-
erated the implicit assignment. The catchup assignment is associated with the
lhs symbol of the production contnining the referenced attribute. The value of
the upward attribute can not change between the time the catchup assignment
is executed and the time the implicit assignment containing the reference is
executed, since any upward remote assignment to that attribute would have re-
sulted in an assignment to our *problem” attribute, and the catchup assignment
would not have been added. Lemina 5 guarantees the current value of the up-
ward attribute will be referenced by the catchup assignment and assigned to the
“problem™ attribute. This attribute is then referenced by the implicit upward
assignment assignment and the old value of the remote attribute is propagated

as the new value for this attribute, thus leaving it unchanged. O

Lemma 8 Ezplicit calechup assignments do nol change attribute values.

The proof of this lemma 15 inmnadiately obvious, sinee the lhs and the rhs of an

explicit catchup assignment always refer to the samne local attribute. O

Lemma 9 The effect of a TrecSem program sa unchenged after spplication of
remote altribule tranalation, downward reference propegation, dewnward assign-
menl praopagation, upwerd reference propuguation, upward gassignmeni propaga-
tion, downward catchups, upward catchups, and cxplicil calchups as deseribed in

Chapler §.

This lemma follows directly from Lemmas 2-8, O

82

Lemma 10 Uaing the achkeme of Seclion 3.1.6, the suffiz assigned an atirsbuie
reference s always the same aa the suffic assigned 1o the attribule the laat time
it occurred on the Tha af an cssignment, as assignmenis are considered in the

order in which they are ezeculed in a TreeSem program of the form of Lemma 8.

At the beginning of translation for each traversal, the ¢? for each attribute
reflects the suffix of the last assigninent previously made to that attribute. This
13 nitially true, since all attributes are assumed to have been asrigned some
(either & useful or & default} value, end all attribute suffixes are initinlly 0. At
the end of translation of each traversal, the maximum number of assignments
made to cach atiribute previously, maz_old, is updated, and the cf value for each
attribute is assigned the mez_old value for its attrigroup.

Suffixes for attributes occurring in downward applied downward reference
assignments are assigned first, since these assignments are the first to be avalu-
ated. As mentioned above, the cis hold the suffix of the last assignment made
to each attribute on previous traversals. For each implicit assignment, the suffix
assigned to the attribute on the lhs of the assignment is one more than the ct
for that attribute, since it is being newly assigned. The et for the attribute
is incremented to reflect the new assignment to the attribute. If the rhs of the
usgignment is a reference to a goal atiribute, this reference is suffixed with the ct
for the attribute. All other references are suffixed with the e for the referenced
attribute plus one, because thiey urc assigned once before they are referenced.
The efs for these nttributes are all incremmented, so they still contain the suffix
of the last assigned attribute. The ¢is are updated for all occurrences of these
attributes belonging to rhs symbols of productions, so they still contain the
value of the last suffix assigned to each attribute. Also, since all these assign-
ments are made to attributes of s symbols of productions, they would have

previously contributed to maez_reet counts. Now they have been executed on

83

A previous traversal, so thiey contribute to the maz_before counts and not the
maz_rool counts anymore. The mez_before and mazx_reol counts are updated to
reflect this change.

The strategy used to assign suffixes to attributes occurring in explicit as-

signments distinguishes three types of critical assignments: before, rool, and
after.

1. If the maz_before count fur an attrigroup is non-zero, theu the last assign-
ment made to each rhia attribute oceurrence belonging to this attrigroup
before the symbol owning the attribute is visited, is a critical before assign-
ment. The suflix assigned to the attribute on the lhs of such an assignment

is maz_old + maz defore.

2. Hitle mazx_root count for an attrigroup is non-zero, then the last assignment
made to each {hs attribute oceurrence belonging te this attrnigroup is a
critical root assigninent. The suffix assigned to the attribute on the lhs of

such an assigniuent is maz_eold + maz_before + maxr_root.

3. H the maz_ofier count for an attrigroup is non-zero, then the last assign-
ment made to each rhs attribute occurrence belonging to this attrigroup
efter the symlwol owning the attribute is visited, is a critical after assign-
ment. The suffix assigned to the attribute on the lhs of such an assignment

is mez_old + maz_before + mex_rootl + maez_after.

The method of adding explicit catehup assigiument ensures that, in each of the
three categories, if any member of an attrigronp has an assignment made to
it, all members will have at least one assighment made to them. For each
attribute in an attrigroup, the suffix of the last assignment to this attribute in
each category is the same. This enables the suffixing scheme to consistently

suffix attnbute oceurrences across productions, even though the context-free

84

nature of the underlying grammar makes it impossible to know exactly which
production will be applied to derive a symbe! from above or which production

will be used to expand a symbol below.

The first step in assigning suffixes for attributes occurring in the assignments
of the explicit assigument lists, assigns the cfs of all attnbutes of lhs symbols
maz_old + maz_before, which includes downward reference chain assignments
and the maximum number of assigninents that could have oceurred when this
symbol was on the rhs of & procluction and defore the rhs symbo) was visited.
The last assignment to a rths atiribute before its symbol is visited is always

suffixed with this count.

Rus nttributes could not Linve Lieen assigued earlier in this traversal, except
for in downward reference chains, and they have all been updated, so all dhs and
rha cis contain the maximum mumber of assighunents that could have been made
to any attribute of a production hefare the production is visited, and also the
actual suffix of the last assigiinent made to that attribute before the praoduction
was visited.

Just before the suffixes for attributes occurring i assignments for a symbol
arc assigned, the cis for all of the attributes of this symhol are changed to

mar_mld + maz_before + mez_root. These are the same suffixes assigned to these

rttributes on the left hand sides of eritical root assignments.

For each assigninent in each production, in the order in which they are

executed in the production,

1. the suffix of each attributes on the rhs of the assignment is assigned the
current ¢f for that attribute — these cls are elways the suffixes of the last

assignment made to the attributes.

85

2. the ¢t for the lhs attribute i8 incremented ard the suffix is assigned this
new ct, so the cf still reflects the suffix of the most recent assignment to
this attribute occurrence. If the assignment is a critical one, the ct ia
assigned the critical value and the lhs of the assignment is suffixed with

this ci

In light of the above discussion concerning critical assignmenta, it should be
evident that the schetne used to assign suffixes to attributes ocurring in explicit
assigniments assigns a referenced attribute the same suffix as was assigned to the
attiibuie when the attribute wuas most recently assigned.

Since implicit upward applied downward assignment assignments are unique
and they are applied after all other assigniments have been executed, the suf-
fix of the attributes on hoth the lhs and rhs of these assignments is the sum
of tnaz_old, maz_ before, mez_rost, and mazr_affer for these attributes. The cis
for each of these attributes is updated to the suffix assigned for the attribute,
Thus, after suffixes have bheen assigned for all the attributes occurring in assign-
ments generated from an original TreeSem traversal, the ¢f 5 for all attributes
are maz.old + tnaz before + maz_rool + mozr_after. As mentioned earlier, the
maz_eld counts for each attrigroup are updated to this sum as well, so suffixes
will be consistently applied acroes traversals.

Since the suffix assigned to an attribute reference is always the same as the
suffix assigned to the most recent assignment to that attribute as a TreeSem
program is executed, the value referenced by an AG assignment is always the

same value referenced by the corresponding TreeSem assigniment. O

Lemma 11 The value assigned to an atiribule i3 unchanged as a result of ap-

plying the ASE Adjustment algorithm tn Seclion 5.1.7.

B6

At the point when the ASE Adjustment Algorithun is applied, each attribute is
uniquely assigned. There are no multiple assignmenta to an attribute. The algo-
rithm aimnply replaces some references to attributes with their definitions. There
is only one definition for each attribute, so a reference to either an attribute or
its definition will yield the same value. Thus, the values computed by the right
hand sides of assignments, which are the walues assigned to the attributes on
the left hand sides of assignments, are the same with or without application of
ASE Adjustment. O

Tle proof of Theoremn 3 follows from application of the preceding leminas.
Since by lemma 9 the effect of the program is unchanged belore suffixing is
applied, and by lemmas 10 and 11, suffixing ensures the same values will be
referenced by AG assignments as are references in the corresponding TreeSem
assignments, the value assigned to any significant attribute in an AG specifica-
tion is the same value assigned to the corresponding attribute in the original

TreeSen specification. O

Theorem 4 The values assigned to atiribules in a TreeSem program generaled
Jrom an ASE atiribute grarnmar using the translation of Section 3.2 are the same

values assigned lo these atiribules tn the atirtbuie grammar,

Each attribute is assigned exactly once it the generated TML program, using
the same definition as in the AG specifieation. The only consideration, then, is
that all attributes have been assigned before they are referenced. This is exactly
the saine requirement imposed by the ASE inembership algorithm for assigning
an attribute for evaluation on a particular pass. So by evaluating an attribute
at exactly the same point in a traversal of the tree as it is evaluated by the ASE
interpreter, the TreeSem evaluator is guaranteed that any attributes referenced
will have heen previously assigned. Thus the values assigned to attributes by

the TreeSem program are the saine ones nssigned by the AG specifieation. O

87

Since the effects of both TreeSem programs and ASE attribute grammars are
expressed ms the values assigned to their attributes, and by Theotems 3 and 4,
the values assigned to attributes by either method are the same, the theoretical
specification power of TreeSen 1s the same as that of ASE attribute grammars.
TreeSem, therefore, is sufficiently powerful as to he used as s semantic specifi-

cation language.

Chapter 5

Conclusion

This chapter presents a bricf sumnmary of the purpose of the research presented
in this paper, the results ohtained by this research, and topics related to this

research which may warrant further consideration.

5.1 Summary

This thesis suggests the use of Tree Manipulation Languages for formally spec-
ifying programming language semantics. Semantic specifications of this sort
serve two purposes: (1) They are used by language designers to define language
semantics. {2) They are used a3 input to automatic compiler generation systems,
which, given the language specification, produce a compiler (or some portions
of one) for the described langunge. Compilers parse strings of a language (pro-
grams) and typically represent them internally in the form of a tree. Semantic
analysis and code generation and optimizations are performed utilizing the in-
formation about the program as it is stored in the tree. Since the tree structure
is fundamental te the workings of compilers, it scems natural that a language
designed specifically for describing operations on trees (TML) be employed to
specify the actiens of the compiler as it performs semantic analysis and code

generation and optimization.

88

51 SUMMARY 89

To this end, TreeSem is proposed as a TML for use as a semantic specification
language. The features chosen for inciusion in TreeSem and its syntactic struc-
ture were selected with the two purposes of semantic specification languages,
as stated above, in mind. Firstly, explicit flow of control, multiple attribute
assignments, and remote attribute references ense human understanding of a
specification as it is either written or read, as compared with the effort necessary
to understandd other semantic specifications, notably those based on attnibute
grammars, Sccondly, the features chosen for inclusion in TreeSem provide a
language that is fully eapable of deseribing language semantics, and they are
readily analyzed so that an automatic compiler generator can easily construct a
cotnpiler based on a TreeSein specification.

To show that TreeSem is sufficiently powerful to express programming lan-
guage semantics, algorithms were developed to translate a8 TreeSem program
imto a semantically equivalent ASE attribute grammar, and to translate an ASE
attribute grammar into an equivalent TreeSem specification. The correctness
of the translations provided by these algorithims was shown. The translations
provide knowledge that the semantic specification power of TreeSem and ASE
attnbute grammars are equivalent, Since all subelasses of attribute grammars
are known to be expressively equivalent, and since attnbute graminars are able
to fully express programming language semantics, TreeSem is also fully capable

in its semantic specification power,

An additional result provided by these translation algorithins is that any
gains in the efficiency of translators based on either attribute grammars or
TrecSemn can be taken adwnntage of in interpretation of the other method. Thus
thie writer of a specification to be used for antomatic compiler generation need
not be concerned over whirh method will result in the most efficient compiler.

He iz free to used tlhie method he is most comfartaliie with. The trenslation

5.2, FUTURE RESEARCH 6o

of a TreeSem program into an atinbute grammar also provides a method of

executing TreeSem programs without actually having a TreeSem interpreter.

5.2 Future Research

Future research related to the work described in this dissertation falls into three
arcas: (1) empirical studies, (2) enhancements to TreeSemn, and (3) methods for
interpretation of TreeSem prograis.

It was claimed in the previous section, that TreeSem programs are easier
to read and write than the corresponding attribute grammar specifications., Al-
though this would seem to be the ease, no actual studies have been performed to
support this clnim. Wlhereas ease of use 18 a subjective concept, objective mea-
surements as the time required to write a specification and the number of errors
in & specification could be used as a basis for empirical observations. Additional
statistics need to be deterinined on the comparative titme and space required
for evaluation and storage of serpantic trees based on attribute grammars and
TreeSein.

Althiough TreeSem is fully capable of expressing programming language se-
mantics, enhancements or extensions to the language may make programming
ensier without decreasing the efficiency of the compiler generatar or, more impor-
tantly, the resulting compiler. Recursively called traversals and nested traversals
were considered as TreeSem was being defined; however, the usefulness of these
control flow constructs seemed limited, and they would interfere significantly in
the understanding and analysis of TreeSem programs. Remote references other
than upward and downward remote references {particularly across references),
were &lso considered and found to have little practical application. If applics-
tions were found to significantly benefit from inelusion of any of these or other

language features, TrecSem could be extended.

5.2, FUTURE RESEARCH 91

Ma. ¢ aspects of analysis and interpretation of TreeSem apecifications require
further research and/ar developmnent. The translation algorithms presented in
Chapter 3 were developed primarily for their theoretical resulta. In order to
make use of them in a productive environment, they need to be refined, making
use of available inforination to reduce attribute storage and increase execution
specd. Techniques for determining ihe optimal methods for interpreting tree
manipulation languages in general need to be applied to the implementation of
an actual TrecSetn interpreter. A final research topic in this area is analysis of
TreeSem programs to determine what portions of the input tree could he visited
simultaneously. The traversal structure of TreeSem facilitates identification of

opecations that can be executed in parallel.

Appendix A

TreeSem Syntax

The BNF syntax of TrecSem is presented below. Nonterminal symbols are upp-
percased. The angle-bracketed nouterminal symbols {id_sym), {number}, and
{end of line) are expected to be returned from a scanner when an identifer, num-
ber, or end of line are encountered. All other symbols are tenminals. Chapter 2

explains the syntax and semantics of TreeSem in detail.

PROGRAM — DECLS GRAMMAR TRAVSEQ
DECLS —

| attribute types DECL_LIST
DECL _LIST — DECL

| DECLLIST DECL
DECL — {id sy} = {idsym} ;
GRAMMATR — grammar PRODLIST end_grammar
PRODLIST — PROD

| PRODLIST PROD
PROD — LHS — RHSLIST {end.of linc}
LHS — {id_sym}
RHSLIST —

| {id_sym) RHSLIST

o2

TRAVSEQ

TRAVREV

TRAVERSAL
ORDER

REVERSAL
GUARD LIST

GUARDSTMT
GUARD
SEM._LIST

WHEN_ASGN
WHEN

ASGN_LIST

SQUARE_TREE
IDLIST

OPT DOWNID

DOWNID
ID SYM_PLUS

33

— TRAVREY
| TRAVSEQ TRAVREY
— TRAVERSAL
| REVERSAL
— traverse ORDER GUARD _LIST end_traverse
~+ norder
| precrder
| postorder
— reverse
— GUARD STMT
| GUARD LIST GUARD STMT
— GUARD = SEM_LIST
— SQUARE_TREE
— WHEN _ASGN
| SEM_LIST WHEN _ASGN
— WHEN ASGN_LIST
— @ ID SYM I'LUS :
— ASSIGNMENT
| ASGN LIST ASSIGNMENT
— [IDLIST |
— OPTDOWNID
| OPT_DOWNID , IDLIST
— ID SYM_PLUS
| DOWNID
— # IDSYM TLUS
— (id_sym} ((nunber})

| {id_syin}

94

SQUARE_TREE_LIST —
| SQUARE_.TREE_LIST SQUARE.TREE

DOWN _SPEC — DOWNID «< SQUARE_TREE_LIST >
SQUARE_TREE . {id_sym)

OPTARGLIST —

| { ARGLIST }
ARGLIST — TREE

i TREE , ARGLIST
ASSIGNMENT — DIRTREE « TREE ;
DIRTREE — [IDSYM_PLUS . {idsyn}

| DOWN SPEC

| IDSYM PLUS . (idsym)
TREE — DIRTREE

| FN_.CALL

Appendix B

Implementation Statistics

The translations deseribed in Chapter 3 have heen imnplemented as C programs
and are currently runnning on Sun Workstations under UNIX™. An sttribute
evaluatar was written in Sheffield Pascal and runs on a Prime 9950. The follow-

ing is & tabulation of the files comprising each of the programs.

File Lines | Deoscoption

tiul.l 106 | lex specification for TreeSem translation

tml.procs.c | 1801 | TreeSem translation procedures

tml.types.h 195 | type declarations for TreeSem translation
tinl.y 380 | ynce specification for TreeSem translation
att.] 40 | lex specification for AG translation
att.procs.c 603 | AG translation procedures

att.types.h 101 | type declarations for AG translation
utt.y 253 | yacc specification for AG translation

att.pas 1642 | ASE attribute evaluator

a5

Appendix C

Example Specification and
Translations

The specifications in this appendix illustrate the use of TreeSem features to
specify the semantics of a useful programining language, snd show how the
translations presented in Chapter 3 act on these specifications. The example
is an adaptation of an sttribute grammar specification for translating the pro-
gramming language Pam into a siimple symbolic machine langunge. The original

attribute grammar specification appears in Pagan, pages 02-07,

C.1 TreeSermn Semantics for Pam

grammar
program i= garies
aarlas i®= atatemont
pariam '= zaries momi statement
statement := loput
atatemant i= gutput
atatgment = aapign
statemant ‘= conditional
Btatoment := daof_loop
Atatemant = indef loop
input := road wvar_list
output = write var_llst
var_ligt := variable
var_list = yar_list comma variablae
agsign := variable colon equal expression
conditional ::= if comparison then series fi

9G

C.1. TREESEM SEMANTICS FOR PAM

cenditional ::= if comparison thaen meriss else saries f3i

def_locp i:* to expressicn do seriss and
indef_ loop ::= while comparison do series and
comparison i:= axpression relation sxpramsion
expreesion ::= tarm

axpreamion !:= gYpression weak_op tarn
tarm ti= pglemant

term :i= TeIm Atrong. op element
element i:= conatant

elament 1:= variablae

alomant i:= left expresmion right
conatant rxw digle

conatant (= constant digit

variable t:= lattaer

varlabla i:= variable letter

variable 1:= yarlable digit

relation t:w agual

relaticn i:= pqual less

relation 1:= JodAn

relation ‘= greatar

realation := greatar equal

relation i« lesE greatar

¥eak_op := plua

¥aak_op := minua

Btrong_op != gtar

strong_op i= divida

digit = 0

digit (= 9

lotter HOE

lattor tm z

ond _grammar
travarage precrder

[program, saeries] -->
Q program :
sexrles.temp := fn 0O;
series.lahel := fn 0;
€ sarles
program.code := fn append(series.code, fn HALT);

[eerian, atatement] =-»
Q serias
atatemant.labal := gorierm.labal;
Q atatemsant :
saries.label := gtatament.label:;

[peries, series, seml, atatement] -->»
€ sorlaonm

ar

C.1. TREESEM SEMANTICS FORR PAM 08

seriea(2).temp := seriss.temp;
merieaf(2) .labtel :e series.label;
¢ sories{2)
atatemant.labal := mariem(2}.labal;
Q¢ statemant :
Eeries._label := mtatemant.labal;
serisa.code := I concat{saries(2).cods, ssriam.code);

[statement, conditionall] -->»
¢ statement :
conditional.labal = gtatamant.label:
¢ conditional :
ptatament .label := conditional.label;

[ntatement, def_loop] -->
¢ statement :
def_loop.label := statepent.labal;
€ def_loop :
getatement.labesl := daf_lcop.label;

[atatement, indef_leop] -->
€ mtatamant !
indef_loop.label := atatemsnt.label;
O indaf_loop :
gstatement.label := jndef _loop.label;

[input, read, var.list] ~-=->
e input :
Svar_lint<[var_list, #var_liat{2), comma, variablel>
[var_list, #variablel].cpcode := fn GET;
Q@ war_list :
“paries.code = var_list.codea;

[cutput, write, var_list] --»
e pcutput :
Svar_list<[var_list, #var_liat{2), comma, variablal>
[var_liat, #variablae].cpcoda := fn PUT;
g var_list :
“sarisg.code '= var list.coda;

[var_1iat, wariable] -->
& variable :
var_list.code := fn make_cp{variabla.cpcode, variabla.tag);

[var.list, wvar list, comma, variable] --¥
0 var_liet :
var_list(2).opcode := var_liet.opcoda;
@ variable :
var_list.code := fn append{var.list{2).coda, fn make_op(

C.1. TREESEM SEMANTICS FOIt PAM

gvar_list(Z)<{var_list, #var_list(2), comma, variablel>
[var_list, #variabla).opcode, variable.tag)};

[asajgn, variabla, ceclon, agual, expramsicn] -->
€ assign :
expression.temp = “maries.tenp;
@ expresalon :
“seriem.code = fn appand{expraasion.cods,
fn make_op(fn STD, variable.tag));

[conditional, if, comparison, then, series, fi] -->

0 conditional :
gories.tenp := “geries.temp;
comparigon.labal := fn plum{conditional.labal, fn 1);
garies.label := fn plus(conditiconal.labal, fn 1);

¢ fi ;
conditjonal.labal :w smeriaea.lasbel;
“poriea.code = fn concat(comparisoen.cods, serles.cadn,

n make_op{fn plua{fn label{conditional.label}, fn 1),
fn LAB));

[conditional, if, comparison, then, seriea, elee, mariem, fil] --»
£ conditicnal
gerles.temp := “series.temp;
Beriea(2) . .tomp := “garies.tomp;
compariscn.labal := fn plus{conditicnal.label, fn 1);
series.label := fn plus{conditional.label, fn 2);
£ Beriam
paries(2).labal := meriem.label;
€ f1 :
conditional.labal := series(2).label:
“geriem.code = fn concat(comparison.code, series.code,
fn make_op(fn J,
fn label{fn plua{conditional.label, fn 2)2}),
fo make_cop(fn label(fn plus{conditional.label, fn 1)},
n LAR),
aeTles{2).codea,
fn make_cp(fn label(fn plus(conditicnal.label,
fn 2)), In LAB));

[def_losp, to, expression, do, series, and] -->
€ def_locp :
expresaion.tenp := fn plus(~aeries.temp, fn 1);
series.temp := fn pluas{“series.temp, fn 1);
aeries.labal := fn plus{def_loop.label, fn 2);
€ end :
def_loop.labal := mariea.label;
“series.code := fn concat(expression.code,
fn make_cp(fn STO, fn temporary(

C.1. TREESEM SEMANTICS FOR PAM 100

fn plus(“series.temp, fn 1)},
fn make_op(fn label(fn plus{def_loop.label, fn 1)}, fn LAB),
fn make_op(fn LOAD, fn tamporary(

fn plus(~series.temp, fn 1))),
fn make_op(fn SUB, fa 1),
fn make_op(fn JN, fn label(fn plus(def_loop.ladbel, ¥fn 2))),
fn make_op(fn STQ, fn temporary(

fn plua{“series.temp, fn 1})),
garies.coda,
fn make_op{fn J, fn label(fn plus(def_loop.label, fn 1)}),
tn make_op{fn label(fn plua{def_loop.label, fn 2}),fn LAB));

[indef_loop, whlle, comparimson, deo, smeries, end] -->
@ indef_loop :
saries.tenmp = “series.temp;
comparison.label := fn plua(indaef_loop.labal, fn 2);
maries.label := fn plue{indef_loop.labal, fr 23;
0 end :
indef_loop.label := seriaea.labal;
“merles.coda := fn concat{
o make_op{fn label(fn plua{indef_loop.label, fn 1)),
£n LAB),
comparison.codae,
seriea.code,
fn make_op{fn J, frn label(fn plua(indaf loop.labal, fn 1})),
fn make_op{fn label{fn plus{indef _loop.label, fn 2}),
fn LAB));

[comparison, expression, ralation, aexpresmicn] -->
@ comparison :
expressicn.temp != fn plus(“Beries.temp, fn 1i);
expression(2).temp := fn plus("series.temp, fn 1);
0 expresmsion{2) :
compariscn.code := fn concat(expression.code,
fn make_cp{fn STO, fn temporary(
fn plus{-series.temp, fn 1))),
expreossion{?) .coda,
fn maka_op{fn SUB, In temporary(
fn plus{“series.temp, fn 1})),
fn make_op{comparison.opcode, fn label (compariscn.labal)));

l[expressian, term] --»
@ axpraaszion :
tarm. teap := expression.temp;
0 tera :
exrprassion.code = term.codse;

[expreesion, sxpresmicn, weak_cp, term] -->
€ expresaion :

C.1. TREESEM SEMANTICS FOR PAM 101

sxpression(2) . temp := gxprassion.taemp;
torn.tamp := fn plus(expresaion.temp, fn 2}:
2 termn :
expression.code := fn concat{arpreseion(2).cocda,
fn salectcode(term.code, expression.temp, weak_op.opcodel);

[terz, olament] --»
€ elemant :
tarm.code = glament.coda;
[term, elament] --3»
¢ term !
olement.tomp := tarm.temp;

[(term, term, strong_op, element] --»
€ tarm :
term(2) .tamp = term.temp;
alement.tamp := fn plua{term.temp, fn 2):
€ element :
term.code := fn concat(term(2}.code,
fn selectcodaf{element.code, tarm.temp, etrong_op.opcode)l;

(elemant, conetant] =-->
€ constant :
element.coda := fn make op(fn LOAD, conatant.num);

[elamant, variable] -->
€ variable :
elemant.code := fn make_op(fn LOAD, variablae.tag);

[ealament, left, expression, right] -->
4 elamant :
expression.tenp = element.tenp;
€ right :
elament.coda ;= expresslon.ccde;

{constant, digit] --»
¢ digit :
conatant.num = digit.num;

[conatant, constant, diglt] -->
€ digit :
congtant.num := fn concat{conetant(2).num, digit.num);

[variable, letter] --»
4 loatter :
variable.tag := latter.tiag;

[variable, variable, lettar] -->»
& latter :

.1

variable.tag := fn concat(variable(2}.tag, letter.tag};

[varisble, variable, digit] --»
Q@ digit :

variable.tag := fn concat{variable(2).tag, digit.num);

[relaticn, equal] -->
0 squal :
“comparison.opccde i= fn

[relation, equal, less] -->
@ leea :
“comparison,opcoda = fn

[relation, leas] -->
0 lams :
"comparimon.opcoda = fn

[relation, greater] -->
€ groater :
“comparison.opcode 1w fn

[relation. greater, aqual] --3>
& sgqual :
“comparison.opcode i» fn

[(relation, lees, greatar] -->»
& graater !
“comparison.opcode = Ifn

[weak_op, plus] =->
€ plue :
woak_op.opcode = In ADD;

[wveak_ op, minus) -->
0 minus :
weak _op.opecade := fn SUE;

{strong_op. star] -->
@ =tar :

TREESEM SEMANTICS FOR PAM

JNF;

JN;

JNZ:

JPZ;

JF;

JZ;

gtrong_op.opcodes ;= fn NULT;

[etrong_op, divide] -->
€& divide :

Atrong.op.opcode := fn DIV;

[digit, 0] -->
& D :
digit.num := fn O;

102

C.2, AG TRANSLATION OF SECTION C.1

[digit, 81 -->
09
digit.num := fn 9;

{letter, a] -->
0 a:
latter.tag := fn a;

[lettar, Zz] =--»
&z
latter.tag = In Z;
and_traverse

C.2 AG Translation of Section C.1

attribute types
comparironopcodel = integer;
numl = integer;
tagl = intaeger;
geriescodal = integer;
opcodel = integer;
plianl_pl1Znl_oppcodal = integer;
pi13nl_plZni_ opccdea2 = integer;
caodel » integer;
code2 = integer;
labell = integer;
label2 = integer;
serieetempl » intaeger;
tenpl = integsr;

<latter» ::= <z>
rulens

<letter>l.tagl := I;
salur

flettar> ::m £a>
rules

“letter>l.tagl := &;
salur

<digit» ::w <3>
rules

<digit>1.numl := 9;
selur

103

C.2 AG TRANSLATION OF SECTION C.] 104

<diglt> ::= <0>
Tulen

<digit>1.numl := 0Q;
aslur

<conatant> = <constant> <digit
rulem

<conatant>l.num! ;= concat{<conatant>2.numi, <digit>1i.numi);
malur

<constant> ::= <digit>
rulame

<conetantrl.numl := <diglit>}.pumi;
salur

<prrong.op> !:= {divide>
rules

<astrong.op*l.opcodal = DIV;
gelur

<gtrong_op> ..= <Btar>
rules

<strong_op>l.opcodel := MULT;
gelur

<elament® ::= <left> <expression> <right>
rules
<axpreasion’l,templ := <element>l,.templ;
<element>1.codal := <expresaion>1.codal;
Balur

<alement» ::= <variable>
rules

<olement>i.codel := malke_op{LOAD, <variable>1.tagl):
majur

<alpmant® ::= <conatant>»
Tules

<olemont>l.codal := make_ op(LOAD, <conatant>1.numl);
solur

‘ueak, op> :I:= <minus>
rulea

<waak_op>!.cpcodal := SUB;
aalur

<woak_op> ii= <plua>
Tules
Cwoak_op>l.cpcodel = ADD;

C.2. AG TRANSLATION OF SECTION C.1 105

palur

Ctarm» !:= <Term> <ETrONE.Op» <alemant)
Tulesa
<tearm»2.temp! = <{termri.templ;
<element>1.templ := plus(<term>!.templ, 2);
<term*1l.codal := concat{<termrZ.cedel, malectcodai{<element>1.codel,
<term»1.templ, <strong_op>l.opcodel)}:
galur

<term> ::m <glemant>
rules
<element>].tompl :% <term>1,templ:
<tarm*1.codel = <glement*>1.codal;
pelur

<relation> :i= <leas> <greater?
rulee

<relation>l.comparisonopcode] := [I;
salur

<relation> ::= <greater> <equal>
tulan

<relation*l.comparisonopcodal
aelur

JF:

<ralatlion’® ::» <{graater>
rulag

<relation>l.comparisonopeodel = JPZ;
gelur

{ralation® ::= <less>
rules

<relation>l.conparisoncpeadal !
palur

JHZ:

fralation> ::» {gqual>» <lema}
rulea

<relaticn>i.compariecnopcodel
Balur

JH;

<ralation> ::= <equal>
rulea

<relation>l.comparisoncpecdel = [NP;
selur

<comparimon> ::= <axpregsion> <relaticr> <expresmicn>
rules
<expraeasion>l.templ := plua(<compirimon>1.smeriestampl, 1);

C.2 AG TRANSLATION OF SECTION C.1 106

<expressicn>2.templ := plus{<comparison*l.seriestumpl, 1};
<comparimson>i.opcodei := <ralation>1.comparisonopcodel;
<compariscn>i.codal := concat{<expression>l.codsl,
maka_op{STD, temporary(plus{<compariscn>].sariestampl, 1))},
<erpresaion>2.codal,
make_ cp{SUB, temporary{plus(<compariscn>].sariestampl, 1))},
make_op{<relation>l.comparisonopcodel,
label (<comparison>l.labell)));
selur

<expresalon> ::= {expression> <ueak_op> <tarm>
Tulea
<expresslon>2.tampl = <expression>l.tenpl;
<term>1.templ := plus{<exprassion>l.templ, 2);
“axpreasion*].codal := copcat(<expressicn»2.codel,
selactcodal(cterm>l.codal, <expressicnri.templ,
<woak_op>*l.opcodel));
eslur

<arprasmjon> ::= <{term?»
rulen
<torm>l.temp] := <axprespion>l.templ;
<expression>l.codel = <tarm*l.codel;
salur

“variable* ::= <vyvariable> <diglt>
rules

<variable>1.tagl := concat(<variable>2.tagl, <digit>i.numi};
selur

<variable> ::= <yvariable’* <letter>
rules

<variable>1.tagl := concat{<variable>2.tagl, <letter>1.tagl};
Belur

<yarisble> ::= <latter’»
Tulee

Cyariablae>].tagl := {latter>l.tagl;
salur

<var_ligt> ::» <var_list> <comma> <variable>
Tules
{yar_liat>2.pl3nl_piZ2nl_opcodel = <yvar_limt>1.pl3nl_pi2nl_cpcodel;
<var_list>2.opcodel := <var_liat>1.opcodel;
<var_liat>!.codel := append{<var_list>Z.codal,
make_op{<var_liat>2.p13nl_pl2nl_cpcede2, <variable>l.tagl));
cvar_list*1l.plini_pl2nl_copcodeZ := <var.list>2.pl13nl_plZnl_cpcode2;
salur

C.2. AG TRANSLATION OF SECTION C.1 107

<var_list> ::= <variable>
rulans
<variable>l.opcodal := <var_ list>l.pl3nl_plinl_opcodal;
<var_limt>l.codel := make_op(<var_list>1.pl3ni1_plinl_opcodel,
<variablerl.tagl);
<var.list>1.pi3nl_pl2nl_opcode2 := <var_ list>1.pl3ni_plinl_opcodal;
malur

<indef_loopr ::= <while’> <comparison® <do> <peries> <and>
Tules
Cgaries>l.templ := <indef_loop>l.seriestempl;
<comparison»i.labell := plus(<indef_locp>1.labell, 2);
<seriee>l.labell := plua(<indef_loop>1l.labell, 2);
{comparimonl.serjeatempl :» <indef _loop>l.serlestempl;
<indef_loop>l.label2 := <gariesr1.label2;
<indef_ loop*i.seriencodal :» concat{
make_op(label{plus{<pories>1.1label2, 1)}, LAB},
<comparlaon*l.codel, <periea>l.code2,
make_op(J, labal(plus(<seriea>1.labal2, 13})),
make_op{label (plus{<seriee>1.labal2, 2)), LAR});
aglur

“def_lcop* ::= £to» {expresalicon* <do* <seriea> <and>
TUulae
<expreggion>l.templ := plua{<def_loop>l.periestempl, 1);
<aeries>!.tampl := plua(<def_loop>1.serisstempl, 1);
<series>l.labell := plus{<def_locp>i.labell, 2};
«dgf_locp>l.label2 := <sariaes>»l.lakell;
<def_loop»l.serisscodael := concat{<expresaion>}.codal,
make_op{STD, temporary(plua(<def_loop>1.seriestempl, 1))),
make_op{label{plus{<series>1.label2, 1}), LAB),
make_op(LOAD, temporary(plus{<def_loop>l.merieatempl, 1})),
make_op{SUB, 1), make_op{JN, label(plus{<series>l.label2, 2)]),
make_op{ST0, temporary{plus(<def.loocp>1.seriaatempl, 1)}),
cgeriee>1.code2,
make_op{J, label{plus{<series>1.label2, 1))).
make_op{lebel{plun{<maries>1.labul2, 2}), LAB));
salur

<conditional> ::= <if’ <compariscn» <then> <eerles> <else> <geriesr» <fi>
rulea
<geriea>l.tampl := <conditicpalil.saeriestempl;
“gariesr?. templ := «<conditicnal?»l.serientampl;
<comparison»l.labell := plus{<conditicnal>»i.labaell, 1);
<sarles>1,labell := plua(<conditicnal»1.labell, 2);
<copparison>].sarisatemp] := <conditicnal>l.seriestempl;
*sariea>2.labell := <aariaesx1.label2;
<conditional>»1.label2 := <peries>l.labael2;
<conditicnal>l.saerieacodel :v concat{<compariscon>l.codet,

C.2. AG TRANSLATION OF SECTION C.1

cmariens>i.codel,

make_op{J, label{plus{<series»2.label2, 2))}),

make_op{label{plus(<series>2.1abel2, 1)}, LAB),

<sariaes>2.code2,

maka_op{label{plus{<series>2,label2, 2)), LAB));
aRlur

<conditicnal» ::= <lf> <compariscn> <then> <seriem>®» <fi>
rulesg
<paries>»l.templ := <conditional>l.wariestempl:;
<comparimon>l.labell := plus(<conditional>i.labell, 1);
<series>!.labael] := plus{<conditional>1.labaell, 1};
{comparimon>l.serieatempl := <conditional>l.seriestempl;
fconditional>l.labell = JLparies>].labell;
<conditional»1.serlescodel := concat{<comparison>i.codal,
cgeries>1.codel,
make_op(plus{label{<sariean>1.labal), 1), LAB});
aelur

<asaign® ::= <varlable> <cclon> <equal> <expression>
rules
<axpression>!.tampl := <asmign>l.merlestampl;
<apaign>1.periescodel := append(<expression»1.codel,
make_op(STO, <variable>1.tagl));
aalur

<output> ::= <{orita> <var_limt»
Tules
<var_list>1l.pl3ni_piZnl_opcodael := PUT;
€outputd!.perieacodel := <yar_liat>i.codel;
aslur

<input> ::= <read> <var.list>
Tules
cvar_liset>1.plinil_plinl_opecdel := GET;
<input*}.mariescodal := <var_list»]1.codel;
sslur

<atatement> ::= <indef_locp*

rules
<indaf_loop>1.laball := {atatemant>i.laball;
<indef_looprl.serieatempl := <atatement>l.sariestampl;
<atatoment>1.periescodel = <indef_loop>l.serlescodel;
<atatement>l.labal? := <indaf_loop®l.labaell;

aelur

<atatemant> ::= <daf _loop>
rulas
<def_lcop>1.labell := <atatement>1.labell;

108

C.2. AG TRANSLATION OF SECTION C.1

¢def_loop>1.seriastemp] := <statement>l.ssrliestempl;
<atatementl.mseriescodel i» <def.loop>].serlescodmi;
<gtatesmant>l.label2 :» <daf_loop>l.labell;

oulur

<pratement) :!:= {c-onditiconal>

Tules
<conditional>»l.labell := <statament>l.labalil;

<conditional>l.seriestempl := <ptatamant>].seriqeptampl;
<gtatement>l.searlspcodel = <conditiconal¥l.seTisacodel;
cptatgment>l.label2 = <conditicnal>l.labal?Z;

salur

<statoment’> ::= <sssign’

Tules
<amaign>1.seriestempl := <statament>l.sariestempi;
<atatemant>il.merlencodel := <aapign>i.serivscodel;

salur

<gtatament?> !:!= <autputd
rules
<statementrl.serlescodel :# <{putput>l,.periemcodal;

salur

<atatement» ::= <{input>
rulam

<atatement>l.serisscodel = <ipput>l.sarlaeacodei;
palur

Cmariee?> ::= <mperien> <semi> <ptatement)

rules
¢merien>2. . templ := <series>l.templ:
garies>2.labell := <serias>l.labell;
cptatsment>l.label] := <aerles>2.labelZ;
<statemant>l.seriestempl := <paries>i. templ;
<geries»l.codel := <atatement>].marieacodai;
<sories>i.label? = {atatemant>1.labell;
<geries>l.code2 := concat(<saries>2.code?2,

Catatemant>l.gerieacodel)};
galur

<geriea> ::~ {ptatement>

rulesn
cptatement>l.labell := <guriaea>], labell;
<ptatemant>i.meriestempl := <peries>1.templ;
¢gorias>l.code2 = <ntatesent>i.meriemcodel;
<pprias>l.labtel? :» <atatsment>l.labell;

s¢lur

1G9

C.3. TREESEM TRANSLATION OF SECTION C.2 110

{program» .:= {(marians>
rules
<geriss>l.templ := 0;
<maries>l.labell := O;
cprogram*i.codal = append{<aerliea>l.ccde2, HALT);

salur

C.3 TreeSem Translation of Section C.2

grakhar
latter L 1
lettar = a
digit = 9
digit t= 0
constant i= conatant digit
conatant = digle
Btrong_op i= divide
atrong_cp := atar
elamant := laft expression right
alement = yariable
elenent = congtant
weak_op ;= minus
waak_op := plua
Term = Larm strong.op elamant
turm ti™ glument .
ralation 1i= leas graater
Telation 1w praater equal
relation Ii= greatar
relation 1im lesa
ralation ::= ggqual laas
relation :i= egual
comparigon ::= expresaion relaticn expression
exprosaion :i= axpression wveak_.op tarm
aXpraansion i LeIm
variabla ::= variable diglt
variabla 1= yariable letter
varjakle ti= latter
var_linat t:= yar_ list comma variable
var_list = yariable
indef_loop :i= while comparison do series and
daf_loop :!= to exprassicn do series end
conditicnal ::= if compariecn then saries elzwe seriem fi
conditional ::= if compariscn then series fi
asgipgn s:= yariable coleon equal expraeaion
output ;= write var_limst
input ::= raad var_list
Btatament 1= indef_loop

C.3. TREESEM TRANSLATION OF SECTION C.2 111

BtAToMent = dof_ loop

atatement i= conditional
AtATOmMent := amaign

statament = putput

atatement = input

naries t# agariem semi statement
sarlies = gtatenent

program = mariane

ohd_grammar
traverse preorder

[letter, z] -->
e =(1)
latter(l)}.tagl := fn =z;

[lattar, al) -->»
& afl)
lattar{l}.tagl := fn a;

[digit, 9] -->
¢ 9{1)
digit{i).numi := fn 9;

[digit, 0] -->
¢ o(1)
digit{1).numi := fn O;

fconstant, constant, digit] -->
¢ digit(1)
constant(1).numl := fn concat{conetant(2).numi, digit{1).nunl};

(constant, digit] -->
€ digit{1)
congtant(1).numl := digit(1).numi;

[strong_op, dividae] -->
¢ divide({1)
strong_op{l).opcodel := fn DIV;

(strong_op. star] -->
€ star{l}
atrong_opfl).opcodel := fn MULT;

{element, left, expreasjon, right] --»
€ left(1)
expresgion(l).templ := element{l).templ;
0 right(1)
elament(1).codel := expreseion(l).codel;

C.3. TREESEM TRANSLATION OF SECTION C.2 112

[element, variabla] —-->
0 variable(l)
element{1) .codel := fn make_op{fn LOAD, variabla(i).tagi);

[elament, constant] -->
@ conmtant{1}
elenment(1).codal := fn make_op(fn LOAD, constant{1).numi};

[weak.op, minus] -->
€ minus(1) :
waak_op(1).opcodel := fn SUB;

[weak_op, plus) =-->
© plus(l)
weak_op(1).opcodal := In ADD;

[term, term, atrong_op, slement] -->
€ term(l)
tern{2).templ = term{1).tampi;
0 etrong.aplil)
slemenc{1).templ := fn plus(tarm(i).templ, fn 2};
Q element(l)
term{1}.codel := fn concat{term{2}.codal,
fn melectcoda(element(1).codel, term{i).templ,
strong_op(l).opcocdal));

[term, slemant] -->
¢ tarm(l)
element (1} .templ := term{1).templ;
0 alepent(l)
torm{1).codel := alament{1}.codel;

[raelation, less, greater] -->
€ graatar(1) :
relation{1).comparieoncpcodel := fn JZ;

(relation, greater, egual] -->
€ equal(l)
ralation(i}.comparisonopcodel := fn JF;

[relation, greater] -->
Q@ greater{1} :
relation(1).comparisonopcodal := fn JPZ;

[relation, less] ~=»

€ lasa(l)
ralation{1).comparisonapcodel := fn JNZ;

C.3. TREESEM TRANSLATION OF SECTION C.2 113

[(relation, aqual, lass] -->
0 lasa(1) :
relation(1).comparisonopcodal := fn JN;

[relation, equall -->
0 equal{l}
relation(1).comparisonopcodal := fn JNP;

[comparison, expresgéion, relation, expreasion] -->
@ comparison{l)
expreasion(l) .templ :=
fn plus{ccmparison{(1}.seriestenpl, fn 1);
¢ relation{l)
axpression(2) . templ =
fn plua{comparison(l).saerieatempl, fn 1);
0 expression{2)
comparimon(l).codal := fn concat(expression(l).codel,
fn make_op{fn STO,
fn temporary{fn plus{comparison{l).seriestenpl, fn 1})),
expresslion{2).codel,
fn make_op(fn SUB,
fn temporary{fn plus{comparison{1l).seriestenmpl, fn 1})),
fn make_op{relation(i}.comparisoncpcodel,
fn label{compariscn(1).labell}});
comparison(l}.opcodel != relation{l).comparisonopcodei;

[expression, azpreamion, weak_op, terml -->»
@ oxpression{1)
expreasion(2) .templ := gxprasmion{l).templ;
€ waak_op(i) :
term(l).templ := In plus(expression{(l).templ, fn 2);
€ term{l) :
expression(l).codal := fn concat(expression(Z).codsl,
fn selectcoda{term(l).codel, expraamion(i).templ,
weak_op{l).opcodel));

[expremsion, term] -=->
0 expression(l)
tarm{i).templ := expremsion(l).tampl;
0 term(1) :
exprearicon(l) .codel := term(1).codei;

[variable, variable, digit] =-->
€& digit(1)
variable{i).tagl :« fn concat(variable{2).tagl, digit{1).num1);

{variable, variable, Iettoer] ==>
¢ letter{i)
variable(l).tagl :=

.3 TREESEM TRANSLATION QF SECTION C.2 114

fn concat(variabla(2).tagl, letter(l).tagl):

[variable, latter] -->»
Q@ lattor{l)
varjable{1).tagl := letter(1).tagl;

[var_list, var_list, comma, variable] =-->
0 var_liat{1)
var_1ist{2).opcodel := var_list(1).opcodel;
var_list(2).plinl.pl2nl_opcodal =
var_liat(1).pi3nl_pi2nl_opcodal;
0 variable{(l)
var_list(1).p13nl_pl2ni_opcodeld :=
var_1iat(2).p13nl_piZni_ocpcodez;
var list{l).codel := fn sppendi{var_.limt(2).codel,
fn make_op(var_llst{2).pi3nl_pi2nl_opcode2,
variable(1).tagl));

[var_1imt, variable] --»
¢ var_liet(1l)
variable(1) opcodei := var_list{1).pi13nl_pl2ni_ opcodel;
€ varianlefl)
var_.liat(1).pl3nl_pl2nl_opcodel :=
var_list{1).p13nl_p12nl_cpcodei;
var_list(1l).codal :=
fn make_cp(var_liet(1).pi3nl_piZni_opeodal,
variable(l} . tagll;

findef_locop, whila, comparison, do, series, end] -->
0 while(1)
comparimon(l).laball := fn plus{indef_loop{1}.labell, fn 2);
comparison(l).seriestempl := indef_ lcop{i).marlestempl;
e do(1) :
seriens(l).lebell := fn plus(indef_lacp(i).labeltl, fn 2);
series(1).templ := indef loop(l).serlestempi;
€ aendfl)
indef_loop{l).aaerieacodel := fn concat(
fn make_op(fn label{fn plus(seriss(1}.label2, fn 11),
fn LAR),
compariason{l).cedel,
peries(l).codel,
fn maka_op{fn J, fn label(
fn plus(series{i).label2, fn 1})},
fn make_op(fn label(fn plus(series(1}.label2, fn 2)),
fn LABR});
Indef_loop{l) .label2 := saries{li).label?2;

[daef_locop, to, expression, do, series, end] -->
¢ to(i}

C.3. TREESEM TRANSLATION OF SECTION C.2 115

expramsion(l).tempt :» fn plus{def_loop{i).seriestempl, fn 1);
0 do(1)
series{1).labell := fn plus{def_loop(1).labell, fn 2);
saries(1l).tampl := fn plus(def_loop{l).seriestempi, fn 1);
0 endfl) :
def_loop(1).seriescodel := fn concat{expression(l).codel,
fn maka_op{fn STO,
tn temporary{fn plu:(dtf-luoﬁ?!}.airiiutnmpl, fn 1)),
fn make_op{fn labal(
fn plus{series(i).label2, fn 1)), fn LAB),
fn makae.op{fn LOAD,
fn temporary{fn plus(def_lcop(i).smerisstempl, fn 1})),
fn make_op{fn SUB, fn 1},
fn make_op{fn IN, fn labal{
fn plus{ssries(l).label2, fn 2))),
fn make_op{fn STD,
fn temporary{fn plus(dsf. loop(i).seriestempl, fn 1}}),
sories(1).code2,
fn make_op{fn J, fn label{fn plus(mariea{1).label2, fn 1))),
fn make_op{fn lmbal(fn plus{series{i).labael2, fn 2)),
fn LAB));
det_loop(i).labelZ := msries{1}.label2;

[conditional, if, comparison, then, seriems, welme, series, fi] -->»
€O if{1} :
comparison{l).labell := fn plus(conditional{1l).labell, fn 1);
comparimon{l) .serjestempl := conditional(1).seriemtempl;
0 then{1) :
saries(1).labell := fn plus(conditicnal(i).labell, fn 2);
series(l).tenpl := conditional(i}.serleatempl;
0 elaall)
marien{2).labell := aaries({1}.label2:
sartes(2).templ := conditional{l).seriestempt;
o 71{1)
conditional(1l).serlescedal :» fn concat(
comparison(l) .codal,
serieali}.code2,
fn make_op{fn J, fn label(fn plus(aariea{2).label2, fn 2))).
Tn make_op{fn abel(
fn plus{aariea{2).labeli2, fn 1)), fn LAB),
seriea(2).code?2,
fn make_op{fn labael(
fn plua{series(2).label2, fn 2)), fn LAB)};
conditional(1).labal2 := weries(2).labal?;

[conditional, if, comparison. then, weries, fi] --»
0 11{1)
comparison(1).labaeli := fa plus(conditional(i).labell, fn 1);
comparisceni(1) .aeriestempl :» conditional{1).serlestempl;

C.3. TREESEM TRANSLATION OF SECTION C.2 116

Q than(l)
seriea(1)._laball := fn plus(conditional(1).labell, fn 1);
series(1}.templ := conditicnal(l}.serieatempi;
0 £i{1) :
conditicnal{l) .merlescadsl := fn concat{comparison{l).codel,
seTien(1l) .code?,
fn make_op(fn pius(
fn label(ssries{1).label2}, fn 1), fn LAB));
conditional{1l).1label2 := smeries{l).label2;

[aspign, variabla, colon, equal, axpression] -->
0 equal(l} :
expreasion(1).templ := apsign{1).serlestenpl;
0 oxpresaion{1)
aaelgn(1) _meriescodel := fn append(expressicn(1).codal,
fn make_op{fn STD, variable{1).tagl));

[output, write, var_list] --»
€ writa(l)
var_liat{1).pi13n1_pl2n1_opcodel := fn PUT;
€ var_list(1)
output{1) .serlesccdel := var_list{l).codel;

{input, read, var_liat] -->
¢ read{l) :
var_list(1).pl3ni_pi2n]_opcodel := fn GET;
0 var_list(1) :
input(1).seriescodel := var_.list(l).codel;

[atatement, indef_loop] =--»
© statement{1}
indef_loop(1).labell := statement{l).labell;
indef_loop(i).serlestempl := statement{l).seriestemp!;
€ indaf_ loop{1)
atatensnt(1) .labelZ := indef_loop(l).labal2;
statement(1) .sariescodaet := indef_loop{1).seriescodel;

[statement, def_locp] ==-»
2 statement(l)
def . loop{1).laball := statement(i).labell;
def_loop{l).eeriantempl := statement(1).seriestempi;
¢ def_loop(l)
statapent (1) .1label2 := daf_loop(i).laball;
statenent(1).seriescodei :!= def_loop(l).maeriamcodel;

latatement, conditional] ==>»
€ statement{l)
conditicnal(l).labell := mtatement(1).labell:
conditional(1).seriestempl := statament(1).seriestempl;

C.3. TREESEM TRANSLATION OF SECTION C.2

€ conditionalfl) :
staterant{1).labal? := conditional(l}.labal2;
statement{1).seriescodel := conditional{1l}.serlemcodel;

[etatemant, assign] --»
¢ statement(l) :
agsign(l) .seriestempl := atatement(l).seriestempl;
¢ aasign{i} :
statement(1).eariescodel = aweign(l}.serisscodei;

(etatamant, output] -->
€ ocutput(1)
statement{1)} .seriescodel := output(l}.seriamcodei;

(statement, input) -=->
¢ inpuc{l) :
statement{1).8arisecodel := input{i).sariaescodal;

[(peries, seriea, sami, atatement] -->

¢ perlea(l} :
guries(2).labell := garies(l).labell:
sariea(2).templ := periea(l}.templ;

e somli(i}
atatement{1).meriestempl := garies(l}.templ;
ntatement(l).labell := sarie=(2).laball;

€ Btatement(1) :
maries(l).codel := atatement(l).serimsscodal;
perieafl).code2 := fn concat{meries(2).codel,

statement(1).perispcodel);

gerieafl) . label?2 :w atatemsnt(l).label2;

[Eerier, statament] --»
0 sariesil) :
statement{l).serieatempl := series(l).tanpi;
atatement(i1).label!l :v serieafl).labell;
¢ ntatement(l) :
poriea(l).code? := statemont(i).serlescodel;
Boeries(i).label? := statement{1).labal2;

{program, series] --»
€ program{1) :
eariesaf{l).labell := fn O;
garlea{1).tempi := fn O;
€ series{l)

program(1).codel := fn append{smeries(1).code2, fn HALT);

and_traverea

117

Bibliography

[1] The UNIX™ System User’s Manual, AT< Information Systems, Engle-
wood Cliffs, New Jersey, 1986,

2 T . Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Princi-
Alfred V. Aho, Ravi Sethi d Jeffrey D. Ull c 1l Prina
ples, Technigques, and Tools. Addison-Wesley Publishing Company, Read-

ing, Massachusetts, 1986,

[3} Henk Alblas. One-pass transformations of attributed program trees. Acia

Informetica, 24:299-352, 1987.

[4] G. V. Bochmann. Semantic evaluation from left to right. Communications

of the ACM, 19(2):55-62, 1976,

[5] V.Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang. Programming enviren-
ments based on structured editors: the MENTOR experience. In Interactive

Programming Environments, pages 128-140, McGraw-Hill, 1985.

6] L. Farrow and D. Yellin. A comparison of storage optimizations in
automatically-generated attribute evaluators. Aela Informatica, 23:393-

427, 1086.

[7] E. T. Irons. A syntax-directed compiler for ALGOL 60. Communications
of the ACM, 4(1):51 55, 1961.

118

BIBLIOGRAPHY 119

(8]

[10]

[11)

(12]

[13]

[14]

[15]

E. T. Irons, Towards more versatile mechanical translators. In Ezper:-
mental Arithmetic, High Speed Computing and Mathematics (Proceedings
of Sympesia sn Applied Mathematics 15), pages 41-50, American Mathe-
matice Society, Providence, RI, 1963.

M. Jazayeri. A simpler construction showing the intrinsically exponential
complexity of the circularity problemn for attribute grammars. Journal of

the ACM, 2B(4):7T15-720, 1981.

M. Jazayeri, W. F. Ogden, and W, C. Rounds. On the complexity of the
circularity test for attribute grnmmars. In Conference Record of the Second
ACM Sympastum on Principles of Progremming Languages, pages 119-129,
Association for Computing Machinery, New York, 1975.

M. Jazayeri amd K. G. Walter. Alternating semantic evaluator. In Pro-
ceedings of the ACM National Conference, pages 230-234, Association for
Computing Machinery, New York, 1975,

U. KKastens. Ordered attribute grammars. Acla frnformatics, 13{3):220-256,
1980,

U. Knstens, B. Hutt, and E. Zimmertnann. Gag: & practical compiler
generator. In Leclure Notes in Computer Science, Springer-Verlag, New

York, 1982, Number 141.

K. Kennedy and 5. K. Warren. Automatic generation of efficient evaluators
for attribute grammars. In Canference Record of the Third ACM Sympo-
mum on Principles of Programming Languages, pages 32-49, Association

for Computing Machinery, New York, 1976.

D. E. Knuth. Semantics of context-free languages. Matkernatical Systems

Theory, 2(2):127 146, 1068,

BIBLIOGRAPRY 120

[16]

[17]

[18]

9]

20}

[21)

[22]

D. E. Knuth. Semantics of context-free languages: correction. Methemats-

cal Systems Theory, 5:95-96, 1971.

L. J. Morell, OPTIMAL: A Parser Generator Interface. Technical Report,
College of William and Mary, Willinmsburg, 1985.

Rolwert E. Noonan and W. Robert Collins. The Mysira Sysiem, Veraton
7.%: Parser Generatar User’s Guide. Technical Report, College of William
utud Mary, Williamshurg, Virgima, 1985.

Frank G. Pagan. Formal Spectfication of Programming Languages.
Prentice-Hall, Englewood Cliffs, New Jersey, 1G8].

K. Raiba and M. Saarinen. An optimization of the alternating semantic

evaluator. Information Processing Letters, 6(3):97-100, 1977,

K. Raihe and J. Tarhio. A globalizing transformation for attribute gram-
mars, In Procecdings of the SIGPLAN 86 Sympoaiumn on Compiler Con-
siruction, pages 74 84, Association for Computing Machinery, New York,

19846.

William M. Waite and Gerhard Gous. Compiler Construclion. Springer-

Verlag, New York, 1984

VITA

Randall P. Meyer

Born in Osk Park, Illinois, September 1, 1961. Graduated from Lee-Davis
High School in Mechanicsville, Virginia, June 1979. Enarned B.S. in Biology
from the College of William and Mary in Virginia, December 1982, Completed
M.S. in Computer Science, Williamn and Mary, May 1985. Ph.D. with Computer
Science concentration expected from William and Mary, May 1988,

Current research intereats include techniques for automated compiler gener-

ation, natural language, automatic programming, and neural networks.

123

	Semantic specification using tree manipulation languages
	Recommended Citation

	00001.tif

