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FOREWORD

Last summer about 1his li1me 1 asked myaeif to do a
serious study which would lead 10 a degree. But was
there an interesting enough projecl aroupd? Al t hat
time [ wss abaorbing many new 1dess. I atarled to
learn mbout the vomplexity within classical mechanics
that 1a born cut of regular and irregular potions; I
alstr began to learn the bhenuty, simplicity and power of
semi-lassical mechanios. A recurring guestion based on
the carrespondence principle 1s; How will quanptum
mclion be affected by the vari1ety of ¢lasaical motiaons”
Te Lry ta answer this, should [ just Jo another
ralvulation on a model system which can not bhe directiy
measured? Apparentiy this wouild not ke a very good
thing to do. Near the end of the supmer [ was
impressed by a Yew paperzs in which the near threshold
gpecirum of Hydrogen aioma in a strong magnetic field
waE meraured. I knew that claseical mation near the
threahold i1a chaotio, But the authors claimed that
somehow, unsteble, iscolated periadic orbits were
related to the quantum spectrum; however they were
upahle to explain why' ! sopan found cut that the
hizstory of thi1a subject went back to 196%, byt over the
vears the theory on the subject hae been 1n a very

unsatisfartory state. HNow it seemed that developing s



theory for the near threshold aspectrus of B Hydrogen

atom in a satrong muagnetic field would make 8 good Ph.D

theais, On one hand 1t has ronnection with fundmental
quesaliaons of "quentum chaws", and onr the other hand it
ism a syatem that can he teated experimentally.

In the fall before leaving Williameburg for
Bpulder for 8 oner ¥Year visit 1 vaguely agreed to tahe
this praoject after 1alking with Br. J. B. Delos. I was
not sure then that anything could come out acon. After
arriving in Roulder 3 began to read some papers on
periodic orbkit theory which were believed to have
something 1o do with the subject. 1t took me many
woehas hrfore 1 understood most of the materials in the
papers. Once they were understoeod, & clear picture of
this theory emerged.

The theory presented in {hi1s thesais is a result of
many disacussions, many houra sitting in froenmt of

computers anbd many days of quiel thinking.

M.L.D

June 1987
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ABSTHRACT

The purpose ol 1his study 18 to understand the
absorpti1on spectrum of an atom 1n & magneti1c fi1eld; the
specific trapnpsityons nvalved are from the low levels
1o atates with enetgies vlose to the 1onization
threshold. This 15 an example of a system that 15
riassi1cally chaotic, 50 thia work advances our
untderstunding of the quantum behagviour of classically
rhanticr systems.

A quant ittt ive quanium meds hanienal theory ol Lhe
provess 1a developed. A sitmple phvaleal piroture
Associated wilh the theory enables us to establish the
cronnertion between o loaed orhita existing 10 the systemnm
and vseaallations 1in the spectrum.

A sample theaoretical computation for transilion
P~ ms 0 aprees very well with the measurcment, Thus
this theory provides us a vomplete understanding of the
nsrillatory apectrum which has remained a avsiery eve:

slhce Lts firat digvovery an [9HbY.



THE EFFECT OF CLOSED CLASSICAL
ORBITS ON QUANTUM SPECTRA:

ionization of atoms in a magnetic field
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AN 1INTRGDUCTION

ln this very f(i1rst chapter, | present a simplifi1ed
overview o0of this thesis. The purpose of doing this 1s
clear: for those who want to know the prcecblem and the
result in just a few words, reading the following few
pages 18 ennough;, for those who ask the why and how
fypen of guestiopa, thi1s chapter will merve as a map of
the logical thinking, 50 the danger of getting losl 1n
the mathematical detaila of later chapters will be
miniwized.

A. A Miny: Version of the Thealnl

The relationship between clapsaical mechanics and
quentum mechahics ie rather well understood for
Integrable aystiems. Such asyatems admit s set of
congerved claasical aciion variables, and the rpergy
eigenvalues correapond cioseiy to trajectoriea having
appropriately quantized valueas of these action
varjuables. For systems in which the classical motaon 13
irreguelar or chaoefic, on the other hand, 1he guantum
behaviour ia poorly underateood, and the whoele [ield of
?

"quantum cheos”™ is marked by confusion and controversy.

1t im easi1er to identify properties which chaotic



systems iack (e. g. conaervation lawa)} than the
properties they possess.

There 1ia evidence that in seuch syntems, when the
denaity of atates getsa very high, eiLgenfunctions and
eigenvalues become very unsiable under amall changems in
the Hami1ltonian, and ailsao unatable under amall changes
in the calculalonal nethndF Thies would mean that
these most fundamental quantities may be exceedingly
difficult to calculate and to measure, If thia is
carrect, then the major problem isa to identify
properties which cabh be calcuinted and measured, and
which in this senme constitute stable attributes of the
ay¥stem.

Importuant i1nsi1ght comes from experimentml
measurements of the abeorption epectrum of atoma near
the Lonizetion threshold, 1{f the atcm im 1n field- free
apace, then the obhserved vsascillator strength i1s a
smoath and slowly varying function of photon energy.
going continuously from a finite value above ilhreahold
tn the saeme average value below threahold. Almoat
twepnty years ago, Garton and 'I'-:]nlni-tlnﬂ.‘[J showed that if
the atom is placed in o magnelic field, then the
absorption spectrum ahowa an ©scillation superimposed
an this smooth background. Hdnnnds5 poinied out that
thisa omcillation ias correlated with a pericdic orbit
in the syptem.

Hecently the near -threshold spectrum of Hydrogen

atoms in maeghetlc fields has been measured with much



v

impreved resglution! 1t was found that the ocbaerved
ogcillator atrength 18 in fact B superposition of many
si1nusoidal wecillations. Furthermore, the “wavelength”
tor peak to peak energy spacingd AF, | of each
vacillation correspenda to the period T, of a
classical periodic orbit of the system through the
relationship 4F, = 23;:Th'

Computational evidence indicates that these
systema are cvlassically chactic, with conly ismclated,
unstable pericdic orbita. Why do these orbite produce
such phenulenu?s

Many years ago Gutzwiller proved thet periodic
claseical orbits produce carcillationy in the denaity of
atutes of B8 gquantum sysiem. However, spectral
measurementa do nut directly ocbserve Lhe atate density,
but rather 1Lhe aversage oscillwtor strength densily: the
transi1tion dipole moment sveresged over the amall range

. . e
ol energy corresponging tv 1he experisental resulutlun.f

Tag 2y T 1. _ v -
D?{‘EJ__' ( ;qz) / IR AT T L 'fz'”'ftf)jﬂff f}kuf T

4

Thia thes:s describes the development of B
guaniitative theory which shows Lhe relationship
between cloased orbits and the cobserved oacillationa 1n
the spectrum.

The theory end calculations Aare based upon two
BRpproxipations. (1) €lose to the nuecleus {(r<bHf0as ), the

effect of the magnetic fireld 12 neglected, and the



electron wave functiion correspondes to zero-—energy
acattering in a Coulcmb field. (2) Far from the
nucleua (r>*50an} a8 semicleasical approximation is used,.
These aspproximatione lead to B simple phyaicel picture.

When the atom mbsorbes a photon, the electron goes
Into a near-zero ehergy Coulomb outgoing wave. This
wave propageten away from the nucleus to learge
distances. For r>50 ac the cutgoing wave-fronts
propaghte according t{o¢ semiclasmsical mecheanice, and
they are carrelated with outgoing classical
tragectories. Eventually the trajectories and wave
fronts are turned back by the magnetic fieid; nome cf
the orbits return to the nucleus, and the sasocirated
waves (now 1ncoming) interfere with the outgoing waves
to produce the ocbserved ocscilleliions.

From these idess, and with thease approximations,
we show that the observed oacillator atrength can be
written as B smcoth, mlowly varving background term

plus A sum of sibusodial oscillatione:
. .- _ F

The background term Dfe(E) is preciraely the
osclliator strength density that would be obtainped in
the absence of an external field.

Each vscillatory term corresponds to B cloased
orbit of the electron in the combined Coulomb and

magnelic Tields. Each closed orbit begins and ends at



the matomic nucleuaf; Tn(E) ig the tranait time for the
electron on this orbit; 1t 18 8 slowly varying functian
af ¥ [(in most cvasesa esaentinily conatant ocver the
relevant range of EI. If the apectrum is measured at
low resoiution, then wunly the orbita of shortest
duratien contribute te this aum; crhits of longer
duration produce rapidly cacillating terms that averagre
te zero. With 1nocreasing reacluticon, Bore and more
terms become sigbhificant, and the spectrupm is found to
oascillate wildly.

The amplitudes of the oscilletions, Anf{E}, depend
upon: i1y the ini1tial state of the avatem; (2} the
polarization of the absorbed light; t3d] the 1nit:ial
and final directiona of the orbit, as it leaves and
returns te the nucleus; and {(4) the relative stabi]lity
of the cicsed orbit, 1.e. the divergence of adjacent
trajectories from the central «losed orbit.

The phase conatent-{; for each ocascillatory term 1s
alge related to 1he initial state, lighl polarization
and initial and final directions; 1h addityon 1t is
related to the o lassical action lntegralfﬁ¢;£. on the
orbit at zero energy, and 1t contains Masmlov phase
corrections associated wilh caustics or focal points
throwgh which the orbit passaes,

A complete set of formulas for these quantiiies
and the derivatyon of theae formulas 183 presented I1n

Chapier LT through Chapter ¥I1. Here we show some of



our results that can be compared with experiment.
Because the spectrum itaelf is wildly oacillatory, a
direct comperison beiween theoretical eand experimentel
cacillator atrength is unhelpful. More appropriate for
comparison 18 lhe Fourier transform of the spectrum,
whivh was obtained i1n Hef. 7h. We show their reaylt
compared to our ¢caloulated Aawplitudes in Fig. 0.1,

YVery pleasing sgreement 18 obtained for the short-
peritud orbits (T/T- 4.6},

To conclude, we show 1n thia theaia that stable
and ordetly properties of 8 quantum ayestem are
asgociated wilh closed classycal orbite of the syatem.
In the present vase, the spectrum shows orderly
patterns correinted with the aorderly hehaviour of the

claasical trajgectories for restricied periods of time,

B. What 13 in Other ChApters”

Chapter I ia devoted tov a brief review of regular
and 1rregular classical motions and the:ir effect on
quanium properties.

Chapter Il describes the spectrum of atoms 1n &
megnet1c field, apecifically the diamagnetic effect.
Froblems which are the research subject of this thesis

18 alao 1dentified.

'n Chapter 111, the svperimental ity measurahble
]

Sp=ctrum widl e el ateed oo bl Ui ert gl et e

ascillator strength densi1ty, which will be calculat e
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in later chapters. The cacillator-atrength denmity ia
ahown to be related to meatrix elementa of the Green's
function.

In Chapter !V, T study 1he behavior eof the

Eydrogen atom wave functions close to the nucleus.

There the diamagnetlic field can be neglected. In
Chapter vV , | exapine semiclamaical propagaticon of
WAVESR . Thie semiciassical approximation deacribes the

waves when they are far from the oucleus.

In Chapter ¥1 different approximations in
different regions are put together, end the final
formula for the spectrun is derived. A procedure for
computing the spectrum 13 elsn presented.

Finally in Chapter VII, s compulation is
presented. The result 15 compared with the beasat

aval batile experioent ul measurements. lmplications and

predict ions of the lheory are also discussed,



CHAPTER 1

1n the early days of queantum mechanice, Behr's
correaspondence principle waw used to find the quantum
properties of n syatem from Knowledge of the
coerreaponding clasmical lrlte-?qﬁﬂnce the carrect
guantum mechanics furmalise waes establimhed and shown
toc bhe muccesnful in interpreting and predicting new
phenomena, it might seem that the connection between
gquantum meachanics and classical mechanica can be
forgetten, and one should puraue s pure quantum view of
the world., 1t ia a fact that many times only the
quantum theory can patisfactorily explain m phenomenon;
it is mlesce & fact that many times a parallel claasical
theary exiats bepide the quantum one. In such casesn
our upderstanding im alwaym deepened by comparing the
two theories.

Juantum equaeiiopaii.e. the S5chroedinger equaticon)
are obtained from clamaical mechanics by well-defined
prescriptions{"write the Hamiltonian in Cartesian

-3

15
coordinates and substitute P,-2 ;tyﬁ"]. However, it ia
74

4

Schroedinger eyuation are related to the molutions of

clammical equations of motion. Nevertheleas the



correspondepce principle tells us that the clasnsice!l
properties should he reflected, under proper conditicns,
in the quantum propertien.

Modern atudies af classical ayetems have changed our
picture of claasical lntionﬁ_ﬂhe how know that simple
clnasical mystems can exhibit regular, orderly moction
ilike that of A two-dimensional harmenic oscillator)
and irregular, chastic motion{like that of a molecule
in & gae). If we believe the correapondence principis,
it would mean that quantum motions corresponding to
these two different tvypes of classical wmotions must be
very different’s

Exactly how they differ is mtill an mctive
rasearch arensm. In this firat chapter I shall try to
aummarize the major point we have learned and at the

sampe time point cout the problems we mtill have on the

aub ject .
A. Orderfiy and Chaotic Motions in Clamsical Mechanics

Motion ip claseical mechanpics meana the evolution
of trajectories in ronfiguration space eor in phase
space.

Clanmsical wmotion of a Hamiltonian system is
governed by Hamilton's equetione(in the diacusasicn
belew we restrict ourselves to syntemn with time-
independent Hu-iltoniansﬁ? There Bare AUBRAFCUSR

Haxmiltoniana, but basicrlly two kinds of mcticn exist.

10
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On ope hand is regulmar mation. This is the type
that is most familar to us. Almost all of the examples
and exercieses in traditional cleasical mechanice
textbooks represent regular -ution{? Typical syatienn
which rapresent thie type of moticon are the pendulum,
harmonic oacillator and the planets. With a pendulum,
the motion iw repeated after s period. A harmonic
motion is perfectly described by m sine function. The
orbit of a planet is a ellipwe. These motions are
stable under small changes ip the Hamiltoniap or io the
initinl conditions, and they are models of
predictability in classical mechanice.

On the other hand im irregular motion, This type
of moeotion im exhibited by a molecule in a gans.

Altheugh the motion is atill governed by Hawilton’s
equations, the complete arbit of such a molecule is not
calculable in principle{‘F The reascen is that i1f the
initimal position or momentum are known tc within a
small error, then this error grows exponehtimally with
the number of cellisions. Thia motion is therefore
unntable, apd it illustrates long term unpredictebility
in mechanics.

There are alsc potions with proeperties that are
intermediate between the extrese examplea given above.

We shall find more in the following pages.

1. integrable Syatens
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Integrable svatemm are the simplest among regular
sydptens and their orbita al]l have a simple structure in

phase l|;un:ﬂ!"f—"""F

For an N-dimensional integrable systeam there exiat
N independent conatants of motion, (%, P) f<?ep
Thus the phase space motion of the syetem will be on an
N-dimensional murface & . Further, it can be proved #'¢
by constructing proper vector fields out of theme N
constants of motion (%fg;f)thnt the surface :E takes on
s Aapecial form---Bn N-torus.
For a particle moving in a one-dimensaiconal
potential well, energy conservation is encugh to make
the system integrable. Any N-dimensional meparable
system can be reduced to N one-dimensiconel systems, eo
all such aystems are integreble. But there also exisat
integreble syatema which are bot aepurable?Db
For integrable aystema, it ism posmible to
transfora to action angle variables, in which the
motion is described in a very mimple way.
The actions are defined as integrala arcund

i i?
certein distinct paths *. in phaae apace:

]i.?ffi,—;.-#}i P i (1-1)
The action variables are functicons of the constants of
the motion f:ﬂi,ﬁ). and therefore they are conmstant
themselvens, The actiona can be regarded sm canonical
momenta, and the Hamiltonian can be written ms a

function of the actions enly. Therefore the time-



dependence of actions and anglea are simply

Ii T (e ¥ar
& =) o + 8 {1-2)

where ﬁﬁ{f}nnd yf are conatants, depending on the
initial condition but not upon time.
A two-dimensional torum corresponding to
ege. (1-2) can be drawn as in Fig. I.1l. The variablen
5% and 6& move ON the smaller and lager circle
independently. The trajectary C%f{)}ﬁiﬁ}) then winds
around the torus.

A canonlical transformation betweenfg:f) and fIé}

exiats,
(1. F) = (71 8)

send the old variables f’g f) can bhe written in the action

and angle variables as A Fourier smeries,

316)=2 Tu3)e? "
;:EL —

Pif8)="5 Py e
= {1-3)
ki

It follows thet the time-dependence of qft) and pit}

can be written in the form
- PR NPl 771
3&)—% L 1) e 7t +8)

=~ S FITIE IR IW13
Be) =2 Full)e (1-4)
L]
Theae are cailed multiply-periodic function: the

Fourier amerieam contain N fundwental] frequencies, and

all harmopices and copbinationa of these fregquencies.

13
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Fig.

1.1
the amaller and larger circ¢le Lndependently, E‘Lhen
winds around the torue.

A two dimenstional torus.

5, and §; move

14



In general the N frequenciss ({/; are not
commensurable, and the orbit filles in the torus densely
if time im dlong enpough. But when N integerninct mll of
them zero) exist msuch that

A

S

LMY
3 {1-5)

-

/y
the smotion is periodic. For all regular syatems there

are such periodic trajectoriesa.{There are also some
systems with high aysmetry in which all orbits have
compensurable frequenciea seatiafying (1-5}. Familar
exapples of auch ayetema are the N-dimensional
uncoupled harvonic oscilllator with cozmmensurable
fregquencies, and the Coulomb petential. For these
ayatems ml) the trajectories are closed regardless of
the initiml conditicns and the valuea of actions. We

call these exceptional systems over-integrable. )
2., Irregular Systems

In »n genern]l Hamiltopnian syatem there are ne other
global]l constantes of astion but the energy. The
trajectories CcBn in principle explore the ZN-1
dimennional energy aurface ino phaae nlpu:u:-.e.z'i

One important clase of irregular myptems is the
set of so called ergodic syatems. In auch a system any

phame mpace function averaged along almost any

trajectory is equal to the ensemble average of the

15
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function in phame space{"almoat any” trajectory mennws
all but a tero-measure wet of trajectories}). Such
ergodicity is cloaely connecied with the fundmental
principle of statiatical lGCh!niCl?i

Because Any one dimensaional system im alwaywm
integreble{as wuas pointed out enrlier), irregulsr
systlems pumt have at least two degrees of freedom.

In fact, even very simple two-dimensicnel systems
can be irregular. It was proved by Sinnfjthnt the
motion of a particle in a sqguare with a circular
reflecting obstacle im ergodic. Another ergodic system
is u particle moving in a "atadium™, which is formed
from two Eemicirclesa connected by two straight lines.
Ergodicity in these tws systems follows from rapid
divergence of neighboring trajectories.

Each trejectory in an ergodic aysatem comes
arbitrarily close to almosat every point on the energy
shell if it mllowed to run for a sufficient fige.
Fig.l.2{a) shows one trajectery in the "ai.ai:l'iu-"?h'f We pate
that at apy point the trajectory may pass through io
any direction. We alap note such aystem possess closed
orbits{isclated or in groups). The conseguences of
these observetiones will be explained later.

Typical Hamiltonian aystems have motion that are
intermediate between ergodic motion and regular motion.
An intereating example is the Henon-Heiles uyute-%g At
low energiea, moat of the trajectories are mutilply-

periedic, like the trajectories of integrable systems.



Fig. 1.2 One "chaotic”
A group of periedic orbite (L 1n &

trajectory

(&)

"stadius”.

aud
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At higher epergiea each trajectory occupies a8 large
portion of the energy ahell,.

The different degrees of irregularity shown by
Hampiltonian systems complicate the study, but they are
also responsible for the rich behavioura in the

Hamiltoniean world.
1. Paeude-Integrable Syatens

A paeudo integrable system atil]l] posmens N
conatantes of motion. But unlike an integrable ayatem,
conslruction of analytic vertor fields is neot pnnnib]e?a
Coneequently the trajecteriea in phease space do not
necessariiy occupy an N-torus. In fact their
struiturea gre usually more exctic,

26

Richens and Berry have studied some pseudo-
tntegrable syetems. One example of thia type of syatenm
is obtained by replacing the circular obatacle in
Sinai's billiard by B mgquare. Ghuiuuulytéé'and Ugi Bre

conservied separately then. The trajectory in phase space

wans found to occupy a five handled sphere.
4., Quaail-Integrable Systems
Guasi-integrable ayatema Are neither integrable

nor ergedic. They have anintegrable Hamiltonian pius na

amailil generic perturbation,

18



HG.0)= H.(2.p) + € H(z, p)

{E-6)

For E':ﬂﬂ; fﬁ{g{p} is integrable. 80 the trajectories

occupy tori in phase space. If & #() what ia the

atructura of the trajectories? The answer i8 given by

2
the KAM theorem.” With perturbation, most tor: survive,

but they are distorted. However, there im slways a finite

measure of tori that are destroyed. Furthermore, The

number of destroyed tori grows with ¢

Overal]l the structure can be very complicated
because the surviving and destreoyed tori intertwine

each other.

5. Mappings

1o
A mapping is a procedure according to which the
values of the varinbles at {n+l)*h atep can be obtained

from those nat the pth ptep. For example a 2-0 wmapping

can be represented by twe functions,

M: Do = er’.'—'-r'-r'{ Ea, P,,,j
B =B/ (En P) (1-7)

A mapping can be conaidered as an abstract
dynamical sayvatem, teking discrete time atep instend of
continuous one. But in many instances meppinga are
derived from dynamical systems.

Consider a 2-0 Hamiltonian syatenm

19



H=HG .y, 8, )
{1-8)
Becaumse energy is conserved, the value of fourth
veriable is detlermined from the valuens of any three
variables, Now let ua select a plane in phase espace,
for example, x-D. A trajectory will intersect this
plape in sequence as mhowp in Fig. 1.3. This sequence

implies & mEpping:

Iy )

s Py ) (1-9)
This methoed of obtaining the mapping above is called the
surface of mection method.

A a second example let us conaider s one

dimensional Hamiltopian with periodic time dependence,

FE P =HiE P oev T (1 10}

Suppuse we are given g P i1nitially, then from

Hamilion's equalions we can coppule the values of y, p

TP AP, .

This im senother mapping!

From the way the mappings are deduced we conclude
that the properties of the coriginal dynamical systenm
end those of the resulting meapping are closely

conpected. For example, if the mapping cof nli

20



Fig. 1.3 The "surface of mection’

intermects with the x=0 plane and 8 mapping

y
oY

. A trmjectory

1s produced.

21
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trajectorinas from the surfmce of saction method form
smooth curves, then the original systen is &ither

integrable ar quasi-integrable.
B. Wave Functions

So far we have seen regular and irregular
cliasmice] motions. We know that quantum properties of
a ayntem are closely associnted with classical
properties of the svatem. 50 the quewstion isa again:
how will the different types of clamsical motion be
maopifested in quantum mechanice?

In quantum mechanics the moat important quantities
of a ayatem are the epargy apectrum, and the wave
function of energy eigenstate. We shail msee that they
are profounpdly different when the underlying classicnal

motione are different.

l1. Semiclansical Wavefuncticons and Family of

Trajectories

The relationship between weves and trejectories
was realized by Hu-ilthﬁ light travels along classical
trajectoriea when the wave length ia small compared to
the acale ¢f objects in the apace, Latear, whepn i1t wan
realized that all particles have wave properties
described by Schroedinger's equation, much effert

was devotsed to the study of the connection between
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waves and trajectories.
Given a family of trajectories, forming & surface
in phase aspace, localiy a8 wave can be asmociated with

the surface "> by means of two functions S{q) end A{q),

)= iy !
f1-12)

If A{q} and 5{q) are now chosen in a8 particular way,
then y¢ﬁ) will mntisfy the Schroedinger equation to
first order in Plmnck's conetant £ .22

Alq) represents the probebility smplitude, and sc
ite square im reguired to be proportional to the
density of particles 8t position g. S{q} represents
the phase of the wave and 18 required to be the

increase of action aof particles along the trajectories.

Further detmniled formulas aAre given elsewhere.
2, Eigenfunctiona in A Regular Systewm

When the motien of a system im regular, then there
is m mystematic way to conmtruct eigenfuncticos from
trnJecturieu.z?

As pointed out ip the diacumaion of integrable
eyetems, the phaae space surface ;z is an N-torua,. If
this phase space murface 1s projected pn to the g
coordinate, we will get the momentum i; as A multivalued

functian of B 1
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Fi=pirg)
{1-13)

and at every instant, the trajectory will lie on one of
these branchesn.

Dut of these functiona F¥§) an eigenfunction can
be constructed in the following way:

Amsaciate to each branch s weave function of the

form
i _— . Voo y
' = MY : {5 (tlg _ SET
Y3y = BYE) expf 4y % )]
{1-14)

where .

> ¥E)= | B 7
and 7' is the so cslled Maslov index en emch branch,

and H#f}i- a denaity function which can be computed
from the trajectorien.

To make the spum of the pbove branch-wavefunctions
#%3)into an eigenfunction, one requires that the
brench functions be joined together. The reault is
that the mction change ﬂj&i around closed path

have to te gquantized.

x'_| ) = . xp’“ll
E’J: {Alyy + ;—,J A ; hlfl' =0, }. 7
{1-15}
where '&ﬁ,la a constant for each path.
Therefore each eigenfunction im related te one
gquantized torus, which is someiimes called an

eigentrajectory.ao



Esch wavefunction oaccuples primarily the region af
configuration epace occupied by its eigentrajectory;
typically the eigenfuncticn has anp orderly oscillntory
atructure, and it is largest near the boundary of the

eigentrajectory.

2. Eigenfunctionm in an lrregular System

Inlike the regular cane, little is known about the
precise connection between the eigenfunction and its
underlying irregular classical motion.

However from the correspondence principle we can
point cut some facts. In the regular camse the motion
is confined teo tori. In coordinate space there are
only m limited number of directions at each point along
which the wave propagates. The resulting wave has
mimple patterns. On the other hand, if the motien is
irregular, trejectory mnd wave could in principle be
propagating in any direction. The resulting wave
formed by such n puperpasition mumt be very
complicated,

A few obhmservations have been made on the
eigenfunctions aangocimated with irregular classical
motion. Firast mince clamsical motion explores the

whole energy surface, contrary to the reguiar case,

the 1rregulur wave function ahould occcupy the entire

energetically allowed region, and the wave function 1a

25



expacted to be swall at the boundary. Baerry has called
thim boundary an "nnticnultic".ffJTujz

Ancther curious observation is that perioedic
orbits of the syesienm pay have some interesting effects
on the uiienfunctiun:.’aj It was noted that in some of
the sigenfunctions, the intensity of the wave mlong a
periodic orbit is very high. But we do not know
periodic orhits exist st all epergies, bhut apparently
net all ei1genfunctions are affected by such orbita.
all eigenfunction are affected by auch orbite.

Finally although the exact esigenfunction might ba
extremely complicated, an "averaged” wave function
could be si-plerfqﬂ%hiu average can be an avarage of
the exact wave function in a small mares or it can be an
average in energy. Both eliminate the fine acale
Btructure.

In thia thesis 2cme connections between average
quantitiesa and closed orbite will bhe developed. It
will be mhown if an energy spectrum is examined mt low
resolution, averaging over levels in a given range of

energy, thim averaged spectrum will show oscillations

which are correlated with clasaical closed orbits.
C. Spectra
flaving discusmsed the consegquences of different

types of motion on the wave fupction, it 1e time now to

discuss the spectra of different tvpes of motion.

27



In quentum mechenice when we compute the =nergy
lavels, the wave function is usually expanded in =
suiteble basis, and from Schrvedinger’s squativn a set of
algebraic equations 18 obtained. The energy levels are
then determined by zercs of a determinant.

This formal provedure treats all sayatems the aame
way. However it does not help us in underatanding the
structure of the spectrunm, And in some cases energy
levels become so denme that this procedure may be
extremely difficult or evean impossible to upplr.;?

A spectrum, if resclved in its finest scale, gives
the location of esach individual eigenvalue. Calculating
each 1ndividusl eigenvalue can be an ambitious and
costly programs which may not always he needed. Then
the structure of spectrum in large ascale might be more
intereating. The large scale structure includes the
averaged energy wpectrum, statistics of energy levels

and clustering of snergy leveln?F These will be

discumsed in the following sectons.
l. Individual Energy Levels

Semiclasaical quantization of energy levels began

3
with S5ommerfield-Wilson's rule, Later many peopla have
made contributions to the uubjnctﬁé

A we explained earlier, semiclassical gquantization

im eapily reslized for B reguler system. For surh &

Z8



nystems thers are N independent action varisbles

and the snergy can be sxpressed as a function of these
action veariables. For the allowed energy levels, the
sction is qQuantized accerding to eq. (1-15}.

To use this quantization formula the actione at
di fferent energies have to be determined. Practicel
methods for thia, including the use of surface of
tectiﬁn?aulgebruic trnulforilttou”tnd others bave besn
deve]uped?

When the m~tion is irregular there is no general
semiclasasical quantization formulam to give the spergy
levels{for example theres are no action variables in the
irregular case). BSuch a formuls may not exist at mall.

However PercivalShul predicted some generwl
properties of irregular spectra. He argued that,
unlike the regular case there is no unambiguocus
aesignment af a set of quantum pnumbers to m gquantum
state; a atate under weak perturbation is coupled to =
large nuaber of smiates having similar energy: the
statens in the irregular spectrum mre more sensitive to
external perturbation then those in the regular

apectrum.
2. Small-Scale Struycture of Spectrum
Can we say anything ambout the relaticonship between

neighboring energy levels? Yes, as we shall see,

regular and irregular apectra behave very differently



a0

in thias reinrdfg

For a regular spectrum energy levels are given by
the torus gquantizatiocn condition. Suppose the
Hamiltonian depends upon N actione epd alemo upon ane
parameter, A: }f:}ﬁ;fjﬁ) , then the quantized energy
ievels can be regarded asa the intersection of apn (N- 1}
dimenmional surface f>ﬁﬁTﬁ+§}ﬁﬁ4) with the lattice point
fd_—-,{ﬁ‘;é_‘)ﬁ ; On changing A and holding B fTixed, the
surface wili evolve in a amooth way and there will be
valus of A* at which the surface intersectw with tweo
different ﬁf 'a. That im, mt A*, the energiea are
degenerate. Therefore if the energy apectrum is plotted
againet the parameter A, typically there will be many
crossinges of levelsn.

On the other hand for a general one parameter
Hamiltonien, avoided crossinges are typical. The
argusent goes as follousJJ

Suppome we heve a Hamiltonian ﬁ' having two

erthogonal atates [i{> end /i) with the same energy E*,

or
R* =%y | %50 = €9 dies> =0
(1-16}

A
Now consider }fzzf)‘+ﬂff , where AMH i1a a small
perturbation. The wavefunction of the new Hamiitonian

cap mtil} be approximated by a combination of [d> and [}

YD - tol X fuad+ N XD (1-17)



When the Schroedinger's equation

4

HIE = E fy> (1-1B)
18 projected on to states [li) and ffy ., we obtain a
aeculnar equation and the ecigenvaluens

E = F At My # 0Hy o+ BE S s

where
Ay = <td{Brtfe) | AH,, = e 1)
ﬂ = ﬂHﬂH _rﬂf'fyy

[ = Cidlomi>
f1-19)

For a general perturbation, the quantity under the
squatre root will not be zero, because typically /A nand
. will not wanish simultanicusly. Therafore the
perturhed energy levels avoid croesing.{(Only if the
genernl Hamiltonian has two or more parameters, then
crossings typically uccuf?}

The crossing apd avoided creoesesing profoundly
waffect the nearest neighbor nt&tintic;;j?Let us define
the nesrest neighbor level distribution as PfaAf)
where

the number of levels having energy

PfﬂE}Jg]E* diffarence in the range (Af - ddE f_IF+c‘MF

to its neighbor =
{1- 207

For regular spectra a Pgoisson dimatribution

PUE)= X o -Pe

i1-211

11

]
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will be found. In contrast, irregular spectrum often

pomsens a Wigner distribution,

: _ X A\%e)2

Piag)-- gx AE 7 J
(1-22}

The reascons can be partimlly understood from the above

arguments.
3. Large-Scale Structure of Spectrum

Loceating the individual epnergy levala and finding
the pneareat neighboring statistics are two ways of
studying a spectrum. A third way is to study the large
acale astructure. By that 1 mean the spectrum when
megaured or viewed with a finite resclution, so that
within the resclution width there may be many
individual epergy levels. The large scale mtructure
i® believed to be connected to some simple properties
of a dynamical systew.

The idea is best illustrated with a simple
exu-plafaﬂ%uppﬂlﬂ the spectrum is a 5—functinn at aach

integer n. Froms Fourier analyasis the following

expansion can be ecamily obtained,

o= L)
T SE-ny =]+ 2D codirméE
N==ro g (1-23}

The sharp peaks on the ieft are saxpressed na a sum of &
conmtant plus oscillatory terms; the frequencies of
the omcillatory terms increase from J 77 to infinity.

Now if we mre able to msee only the low frequency



terms, after dropping off the higher frequency terms,

we gat an approximmate representation,

- M
D S(En) = [+2 L LS AN mE
Nz oo m=y (1-24)

If more terma are kept, this representaticn will become
more accutate,

Does thim example have any mnimilarity with a real
gpectrum? Suppome we know the enpergy levels E; in &
syantem; then the density of statea function d(E) cean be

written as

JALE) e
iy T 3 L E
CJIE' j:.,f "?)

{1- 26}
where N(E} is the number of atates with energy helow E.
If we compare d{E) with the simple example above, we
find that they are reslly aimilar, only that the
locations of the A -function differ. Therefore it is
reasconable to think that s similer expanaion in
vecillatoery terme can be umed to described o spectrum.
A beautiful formwula of this type for the density
of states was developed by Gutzwille;% and by Balien and
Bloc;ﬁ starting from B semiclessical appreach. The
resuwlit im that d(E) can still be represented as mn
asmooth average term plusa coacillatory terms,
d(E)= dE) + Céfc (£)
{1-261%

Mcat important, the cacillatory terms are connected

33
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with periodic orbits of the pysten.
The result could be explained by the Green's
function. It isa pot difficult to show that’g
J{'E.}:"_—{L??/JJ s o
7 ¢ oL e £’ (1-27)
where (37 is the outgoing energy-dependent Green's

functiorn, matisfying

(¢ +ie -H(Z, kg )] otd 1 £)=AER) (e
Phymically the Green’s function g* represantes the
wave at the point g that is preduced by a point mource
Bt 9q°. A memiclassical approximation for the Greep's
function can be made bmased on the above observation. In
this approximation, the Green's function is & mum of
terms which represent waves propagating along different
pathse from i"' to ‘g "EFI

The direct path contributes te the smooth

background d(B). It has beep mshown that 'V

d €)= fﬂj/ﬁﬁJP’&ferﬂh) 1-29)
nn(if]il related to the phase space volume scceamlble
to the particle,

The coptributions from all other paths to the

I

Green's function can be written as
C A, . __,L_ W i o L
éfff/i:f,x f) T oy ;“ J'T)'f z 3_1'{)&'?(.}%'%?#‘5") {1-30)

To find dowec (B}, we must l&t f:g’ , and integrate
— —a Y
over ml]l space. wWhen gcrgf. then only orbits from 7 to



el
B contribute, This includes periodic orbite and other

orbite which return to the initial pﬂuition_i with g
different momentum. One can mhow, however, that only
pertodic orbite contribute significantly.

The argument goes mam follows: usually when ﬁ
changes, 5 will change and so G* oscillates wildly.
Only when 5§ is ataticnery under smmll]l change of g can a
significant contribution result. Thin requires

GO = RS £) 0p S 18,50 8))

- b

527’

._i-.I __‘ (g‘f}
by )

(1-313
a0 the initiael and final momentum have to be the mame.
In ancther words, the orhita muat be periodic.

The oacillatory term dosc{E] turns out to be a sum

over all periodic erbite

do V=2 A5e€) Sin( D 4 )
) T / {1-32)
where the amplitude A; (E) depends on the properties of
the particular orbit{matable or unatable, isolated er
nonimolated); $; is the action sround the orbit and q}
in associated with the number of focal points on the
Grbit?
The formula expreawming the density of states as @
sum over periodic orbits is universal in that it

appliea to both regular and irregular systemn.(The only

pignificant difference between the two cases appears in
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the formulas Ffor the amplitudes A3;{E).) Berry and
Tabor have applied this approach to regular systems.
They mhowed tLthat the torua gquantizgation condition could
be tranaformed into a sum over periodic ocrbita. Aw
increasingly more osciliestory terms were included in
the sum, 5 functions at each energy level emerged.

It is unclear whether this formulation ims =
practical meana to obteain individual energy levels.

The problem is that the number of periodic arbite with
long periods is very large. Nevertheless if one is
interented in the "low reasslution" energy spectrum,
only a few orbits may give the demired informmtion.

We will use this periodic orbit formulation to
atudy the mspectrum of atoms in magnetic fields, We
will show that in this case the formulation must be
modified in two ways. First, because of the Coulamb
aingularity in i1hes potential the Green's function can
nat be approximated semiclassically everywhere, and an
appropriate guantum approximaticon must be used in the
mingular region. Secopnd, we are pot interested in the
denaity of mtateas(which is not what is measured
experiwmently! but the absarption rate. 5Such quantities
can be calculated from the Green's function weighted by
the initial quaptum etate., In such case the argument
leading to periodic orbitm is modified, and we find
that closed orbita, pot just periodic ones, will

deneraslly be impartant.



These jissues are fully discumssed and treated from

chapter III to chapter VYII.
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CHAPTER I1

e ==

ATOMS IN A MAGNETIC FIELD

It hes been recognized mince the beginoning of
atomic physice that matomm interacting with external
fielda could have radically different behaviour from
free atulnf1|l The familar Zeewan and Stark effects are
Just two exsmples aspociated with atoms in magnetic and
electric fields rempm:tiv.l'el:.r:'m|L

Undoubtedly the study ¢f atoms i1ntermacting with
external fieldms has been very ilmpoertant throughout the
development of atomic phyaics. However, 1t 18 only recent
thaet we can engage 1n this kind of atudy under more
desired conditiona. This is for one reason due to the
advances in technology. Lusers make it possible to
prepare an atom in almost mny state; auperconducting
materialm can easily generate a high magnetic field;
higher and higher resolution spectrometers are now
avilubleﬁﬁ

Recently there has been increaaing intereat in the
properties of Ryderberg atome interacting with strong
field-f6 This arisers from the reaslization that a highly
excited atom has many properties that an atom in lower
stntes does not have. For example, a highly excited
atom has a long life time, eand o lorge size; its binding
energy is small, mso any externnl field could have =

large effect. The i1nteraclion of the outer electran
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with the core of the ostom, which usually sakes tha
dynamice more complicated, can often be ignored wince
the electron spends moat of ils time far away from the
core.

Atcms in magnetic fields are particular importent.
In the early days "spatiaml quantization” was
demonatrated by the Stern-Qerlach experiment; now atome
in magnetic fields provide wuwe snother chance to
understand aomething new. Ih this Chapter 1 shall try
to preaent the rich phenomena displayed by an atom in a
magnetic field due to the dismagnetic interaction only.
Firat our current underetanding ia dencribed; then pew
problems are identified, which ere the subject of this

theais.
A. Hamiltopnian of the System

Let um consider an electron moving in a potentiaml
field Ui{¥) and a uni1fors magnetic field BX . The
Hamiltonian for the motion of electron ins

“h .

] =~ S s =
——{ P+%
H (P+EA)T 0T (2-1)

If the magnetic field i3 in the 2z direction and the

Coulomb geuge {PAJ:O 1 im used, we could choome

Ceulomb g}au!e LPAJ:O
=3 Bxr (2-2)



After expanding (2-1} and inserting {2-2), we obtain

. s 2 —~—
H:mj- + WP} + ;%—BE ?‘A{P*f‘g‘i‘gf—z‘ ( Bx7)*

—_ p? o 153 2,
= +irh+ B8 L, 4 (;fclr $m28

{2-3)
In the above derivation the electron spin iw ignored.

To include the electron spin and the puclear spin, we

would have to add & few spin-dependent terms. However,

such #ffects have been extensively :tudied?vnnd We

ignare them here. We shall ba concerned mainly with

the dionmagnetic term (the last term in {(2-3}}) which in

proportional to the aquare of B. In our following

discuseipn we mshall conmider an electron of Hydrogen in

B uniform magnetic field repreaented by the Hamiltonian,

v PT @ pep elg? .

e bl S, e8 0 B 2

= me = 7 ml B g F50
{2-43
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It ia copnvenient to use atomic unite, in Hhicﬁlhk=€=t:+J

¢=137.29 and B{a.u.)-5_H85x10-* B{Tealn!. The distance

isa then measured in Bohre{0.53x10 ® cm) and the energy

ia in Hartreew(27.07ev). With such convention in

unita, the Hmwiltonian inp (2-4) i1s rewritten ns

S_ Pt 2 .8 By oy,
A=t st 20+ £ 15 ym B

{2-5}

The firet two terms are just the Hydrogen atom withaout
field; the third term is the paramagnetic term; and the

fourth and last term is called the dismagnetic term or



quadratic Zeeman tars.

We consider states with the sape magnetic gquantum
number (ls=m% }, then the paramagnetic term only adds n
conatant to the energy. Therefore thim tera is not
intereating and can be drnpped??

After ail these simplifications, we finally arrive

at the Hamiltonian we will be using throughout this

themis,

3 - _Ei{_ R Y I S

{2-8)

On examining (26}, one finds that the parity, the
wagnetic quantum puwber, as well as the totnal energy of
the aystem Are conaerved quantities. However, this
simple looking Hamiltenian is not meparsble in any
known coordinate syatem, S50 despite its mimplicity in
appearence, Lhere seemz to be no generml molution to
quantum or classical equationa. It has been argued
that thies is "the principal remsaining probles in the
elementary quantum mechanics of ope-electron ato.n".gmq?f
As we Bhall gee, the rich behaviour displeyed by (2 -6)
is really astonishing.

Mow it is helpful to get an idea on the size of
the Coulomb term and the diamagnetic term in different
atatea and for varving field atrengthe.

Let us crudely esiimate these gquantities on the

besis of Hydrogen atom in atmate Lﬂibﬂ- We have

Ccocul omb ter-rtf‘fmf%fﬂj?m}m-;?{i t2-71)
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but

Diamagnetic term= < 71 4 n'r}l}ll‘r ‘r}c—sjl!’tfm L@fﬂf’“.}

!
§' (5)1 AP SN N I Ry I

! 8 e
g (S nY
{2-B)
therefore the ratioc of the two terms in
Diamagnetic term /
------------------ av —-ﬁijlyjb {2-9}

Coulombk term ¥ ¢

Which for highly excited states (n large) and/or high
field can be larger thap 1. For example if B:=06 Teala,
we would get

Dl?f?f?ffif_ffr!_ ~ IG—J'E‘ ?‘lé' (2-10}

Coulomb terms

Therafore when n v 30 the diamegnetic term is comparable
with the Coulomb ternm. We expect something interenting
te happen under much conditions!

dne can coopute clansical trajectoriesa from the
Hamiltoniaon {2-6) fer various energy and field
strength. The result of this will tell us the
clammice]l mation of the myptem. Such calculations have
been done?? It wam found that both regular and
irregular sctionw eximt in the sysiem and the parameter
region for each different type of motian has been

identified.



We sre here concerned with the gquantum properties
of this eystem. Particularly we want to understand
what ia the nature of the spectrum under diffarent
ctonditions. Specifically in the following discusmion we
shall confine curmelves to magnetic field strengthe of
about 8 few Tesala where most of the experiments are

done,

B. Different Typea of Spectrum

Let us examine the experimsental spectrum. Filg 2.1
is» & typical absorption spectrum, which was ohtained by
menauring the absorption rate for transitions from
ground state of Ba to highly excited states>C

Look at the bettom pane]l first, where the magnetic
field B ia zero. The epergy levels are the familar
Rydberg series. The formula for the energy im
similar to the Hydrogen atom except a quantum defect
correction is needed becnuse of the core interaction.
On the right-hand eide the energy levels are well
separated. As we move Lo the left the spacinog of
neighboring levels becomes sxaller and ameller.
Eventually the apacing is ac small that the
ppectrometer with a finite remolution can not resolve
the individual levelsa. As & rasult a smcoth ensrgy
spectrum near the ionization threshold ia obtained.

Now lock at the second panel from the bottom. On

the right aide we msee that the diacrete levels are



44

‘nNIIT] OTl12udERUW
e utr s91a3s fedtouiid I B

9yl Jo mnaijdads uectidaesqy (7 JTENHIZ

DAALLDLIT L —
ﬂgﬁé.gﬂ?_.. . —
T LT TTTT VT
j,w_ﬂ4_ g%ﬁé?ﬂ ; ?... ..5£

R e

a 4?3553,2%3

T DLy

1ed

+— HOILJUOSEY



shifted wlightly; more iwportently each individuasl line
has beren split into a family of linem. This part of
the spectrum iw called laow field spectrum. Aw wWe mNOve
to the left, neighboring grcupm of lines atart to
overlap, and the apectrus bhecomes very¥ complicated.
This complicated region of the spectrum is called the
inptermediate field apectrum, Further as we approsch
the iopization thresheld, we ses 5 gimple oscillation
imposed on the smooth background. The spectrum in this
region im calied the icpnization thresheld spectrum.

The above-described behaviour continues for every
higher magnetic field, only that the intermediate field
region becomes wider,

Recently the three regions of the spectrum using
Hydrogen atom have been studied experimentally with
high resolution. Existing theoretical interpretations
can sccount for most of the features in the low field
and intermediate field regions. But the seemingly
simple spectrum nenar the ionization threshold has upntil

now been m BYBtery.

1. Low Field Spectrum

The mpectrum in this region cen be understood
through perturbaticn theory.
¥When the field im low, or more precimely when the

diamagnetic term is mmwall compared with the Couloab
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tarm,

Diawmnagnetic terw g ;16 . B
<e f (2-11}
Coulomb term
the diamagnetic term can be considerad am a
perturbation to the Hydrogen atom.

Let us recall that for a Hydrogen atom, states
with given principal number n but with different
orbital gquantum number £ [f=ﬂ,1. v+.y n-1) and megnetic
quantum number m are degenperate, The lowest order
effect of the perturbation im to remcve this
degeneracy, To obtain the perturbed anergy levels

and eigenfunctiocns, one needs to eveluate the matrix

alements of Haiwmnenetic bBetween the degenerate states,

on f ”1‘;"-{5-5"-—?!’1":; !}lﬁr»;b

== ”‘rfi SIRES P T RIN RRY

LB = ot dmppt, . 21—} (2-12)
By diagenalizing the (n-}n{) by {n-/~}) matrix, the

shifted epergy levels and 2igenfunctions can be

nbtuinedﬁ’
More inaight can be gained by using classical
47 30,52
perturbatiaon theory. We know the slectron in a Coulomb

field moves on an ellipse which isa fixed in space. The
ashape of the ellipse depends on the anergy and angular
momentum of the electron. Now if the amall diamagnetic

term i turned op the ellipse will move and change itm



shape 1lp time. We sxpect the change of the ellipse to
be much slower than the electron motion on the
inetantaneous ellipse. Becauss of the different time
acale of the two motiops, an adiabatic spproximetion
can be used to separate these two types of motions.
The result of auch separation is that the effective
equation of motion have only one degree-of-freedonm.
The motion in this one dimeoasional problem is & little
more complicated than that for a pendulum. Therefore
it is not difficult to understand the motion of the
aystem and to obtain the shifted energy levels by
semiclaenical quantizmtion method.

The results of the above simple descriptions Ffully
account foer the spectrum observed experimentally in the

low field region.
2. Intermediate Field Spectrums

As we Move to higher n atates from the low field
spectrum, the energy difference between different n

manifclda bacomes amai)l as

1
AF ~ 5 [2-13)

When this difference im comparable to the energy

shifta introduced by the diamagnetic terms

CHIY ~ 5 ¢
2% m('i') {2-14;

then the interacticons betweepn different manifolds
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become ipportant {the matrix elasmenis between
different n'"s can not be ignored any morel. We thus

obtain the condition for this intermsediate region,

(&) n7 2
{2-15)

Classical trajectory calculations bhave shown 8
tranpaition from regular motion to irreguler motiaon
taking place in this intermedinte re[ionf?JFur expmple,
at Tield strength B=B Tealn, trajectories at E=-100cm ?
and belaw are regular, but trajectories above E--20cm- 1 are
completely chactic. Trajectories with epergiess betwean
E=-100cm ' and E=-20ce ? are partially regular and
partially chaotic.

The regular and irreguiar potions displaved by
such 8 ayatem are cpne of the major reascnom that the
Hydrogen atom in m magnetic field is a fascinating
eyatem to atudy. Unlike mocat of the chaotic systems
amtudied aa far, thies systen is experimentally
obaervable!

The gquantum spectrum in the intermediate region
has not been explained with a simple theory. However,
with much effort one can expand the wave functiops of
the bound states in a8 carefully chosen bamis, thep
diagonalization of a huge matrix will give the spectrum.
Thia has been done. The computed sapectrum is in full

53
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3. Spectrum Near the Jlonizetiono Thresheld

Sc far we have discuszed the discrete apactrum of
the system. Near and mbove the ionizetion thresheold,
the anergy levels become continuous or gQuasi-
copntinuoua. A finite resolution messurement of the
mpectirum in this region can not fully resclve
individual energy levels.

The oarillation in the spectrum shown in Fig., 2.1
was first found experimentally in IEEBfF Furthermore it
woaa found that the energy apacingi{penak to peak) in the
sapectrum is about 1.5 times that of the energy level
spacing tcyclotron frequency) for an electron moving in
the aame mBgnetic fireld only.

This pprcing was soon correlated with the motion of
the electron perpendicular to the magnetic field.
Curiously, the energy apacing is connected with the
period of an electron arbit which goes from the pucleus
and returna to the nucleus oo the z-0 plane,

pE - ATE

T (2 18)
Varioums arguments were given to explaion why this
relationship tn;r-]-:ht.ﬁt However, a8 gquantitetive
deacription of the oscillation heas pDever been obtained,
A pore complete theory is needed.

Not leng ago higher resolution experiments on the
Hydrogen atom were conducted in thie nesr threshold

region! The wimple oscillation disappeared and the
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cheerved spectrum becomes extremely oscillatory (It is
ahown in Fig. 7.4 (f)--page 176)' Wwhen a Fourier
traneform was performed on the spectrum, converting
from energy to time as the independent variable,
distinct peakes nppeared mt distinct times. Many of
theae timea were found to correspond to the pericde of
periodic clasaical truJuctortu-.Tb

The present theory is developed in view of both
the theoretical and experimentml situation. The

purpose 1is to understesnd the ocscillatery apecirum nenar

the (unization threshold and to make quant itative
calculations of the apectrum. It is aleso hoped that
this study will lemd to better understanding of
irregular spectra in general.

Here let me deacribe the phyaical picture
underlying the theory of the apectrun.l

When s laser is applied to ap atom in the initial
loecalized state, the mntom may absorb a phoitan., When it
doea so, the slectron goesa to & near-zerc energy
Coulomb ocutgoing wave. Thisa wave propagates away from
the nucleus to large distances. At large distances
fr>50mc), the outgoing wave-fronts propagate according
to semiclassicel mechanice, and the wave travels along
rlaamical trajectories. Eventually the trajectories
and the wave frontas are turned back by the magnetic
field; some of the orbite return to the nucleus, and

the associated waves (now incoming} interfere with the

outgoeing wave to produce the obmerved oscillations.
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Since tha trajectories mre chaotic in this range
of energy, the closed orbits that begin and end at the
nucleus are isclated. For each clomed orbit, i, when
the energy changes, the phase difference between the
cutgoing and incaoming waves changes accordinog to

Tl'.. dF
R [2-17)

f_‘zpiuea. =

With this it is essy to understand the empiricpgj
formulm (2-16).

The mbove picture can be mpade complete and
quantitative. It is developed in deteil with rigorous
mathematical formulas ip the following Chapters. The
reasultas of calculations with this new theory gmre
presented end compared with experimental results in

Chapter ¥II.



In thia chapter, 1 shal]l define the theoretical
quantitiea correaponding to the measured abaorption
spectrum of an matom. Theae guentities are osciileator
strength and trapaition rate. Their calculation im the
geal of thim study. The results of this calculation
will be compared with experimental observatiocna ih
later chapters.

Iin section A, the relevant gquantities will be
defined, and then in mection B, these quantities will
be related to matrix elementa of propagaters and
Green's functiona. The phyaical meaning of the

resulting formulas will mleo be discusaed.
A. Photon Absorption and Oscillator Strength Density

Suppose we are given a collection of stems in an
initial quentum state HK_, and we apply a radiat.ion
field to theae atoms; a8t what rete will the ptoms make
treansiticna to cther quantum states? The rate of
absorption of photons, or the rate of production of
atomas in excited states is proporticnal to the
intensity of the radiation field [{t)) and to the

number of atoma in the initial stste.hﬁ
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.g:’gf—=ﬂﬁ-hf.',-1fw) (3-1)

Here.Iﬂq)dhlls the energy flux denmity{energy per
utiit mres per unit time) in the freguency ranie:ﬁﬂ It
i sasumed that the range of energies in the photon
beap i=® large compared to the pnatursl linewidth for the
tranaition. ). In many textbookas on quantum mechanice.

it is shown that K, is wiven by

Bﬁ=%§_./<#;b;ﬁ>]2 (3-2)

I 15 called the dipole operateor, and ia the
projection of the electronic coordinate ﬁi in the
polarization direction of the field; vi ond H& are the
initial and final quantum estates of atom; £ 1s the
charge of electron; ( ia the apeed of light; f[ia the
Planck's constant aver 177 .

The formulas above are derived by using

A classical description of the slectromagnetic field and

a dipole approximaticon to the transition matrix
element. The clasepival treatment of the field 18 8 good
approximation when the photon denaity is large. The
dipole approximation is accurate if the s12ze of the
initial or firal atomic wave functicp is much smaller
than the wave length of the electromegnetic field. Both
of these copditione are matiafied in the present case.

While the quaniities defined above are closely
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related to experimental measurement, theoretical
calculationt most often focum upon the oscillator
sirength. The reascns are manhifold: the caci1llator
strength ia dimensionless; it typically has values
close to unity; it 18 the analogue of a clamsical
quantity; and finally the oacillateor strength obheys »
well-known sum rule. The ocscillator atrength 19 defined

£ = 2Me (Br £5) lc‘ﬁ;,’l}!‘ﬁ?’/z 3-3)

Where ?TL isa the mams of the electron; E} and f}
are the energiles of the initial and final zstates. Thusa
the transitiop rate and the oacillator strength are
proporticnal to each other.

The eacillator ostrength is apprepriate for
trangl1tionn from one diecrete quantum state to another.
However when the finel quantum atate lies in the
continuum, 1he transitjon does hat go to a particular
final atate, but to a group of final mtates in the
contipuum with energy clomse to E} . Similarly, when
transitions occur to bound statem close to the
ionization threshold, the denaity of states 18 very
high, and the energdy spacing between the satates is leas
than the uncertainily in the photon energy. Agailn,
theraefore, trensitione occur to a group of final
states. [t is therefore appropriale to define the

gascillator strength denaity(the wesrcillater strength per

unit energy! I?(E%) Bl



Dy (Ep) = Jm_hiff_fil /‘#/.DHE)’Z‘P(E}‘) (3-4)

In eq.{3-4), Fﬂ%ﬁs the density of finnl states{ Number
of dietinct gquantum stpates per unit energy).

For diacrete, well-resaived transitions, the
denmity of fina| statem is Rff)zé(ff—fﬂ) , and the
integral ¢f Lhe aecillator-strength-denaity over a

harrow range of enerdy is equal to the oescillataor

strength:
Enté
( J’F{EFJ"‘-T,Ef"?Cﬁ {35)

Exte .4:

[ 2piee) Ao =i

For a

En-€
threshold, the sscillator atrength goes to zero 35}1_3;

f fields, near the ichization

cn the cther hand, the density of states goes to
infinity nas ?13 . The product of these two, that is,
the osciliator strength density, has a finite limit,.
Foer all these reamscns, therefore, the opcillatoer
atrength denpsity im the proper quantity ta puraue. Thin
defipition of omcillator strength deneity in {(3-4) inm
the beginning of our story. In ithe next secltion,
alternative formulas for the oscillator atrength
denaity will be derived, and connections among thenm
will be explored. Later we will find that these
ajternative formulas lead to natu-al approximations

whirch provide a meana of computing I}f{EF) .
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B. Formal Expremsiconm of the Oacilletor Strength

Denwity and Their Helationship

The definition of oscillater strength density inm

given by (3-4} in last eection. From the definition, it
that

in cleaiﬂff the initia)l and Finaml wave-functicns qi and
‘+¥ are known, it is then posasible to compute the
gecl]llator etrength denaitybf . For simpler systems
thap the present one, thia procedure can be carried
out: for exmmple, the wave-functionm could be computed
by expanaion in 8 basi1s, or by a semiclaamical
spproximalicon. In the present cese, neither of these
methode can be uaed, Nemr the ionizmtion thremhold, the
density of mtates geoes to 1nfinity, sc no finite bapsls
can fully represent the staten. Even if expansiocn 1n a
basis could be used, it would provide little
inaight{and it wouldn't be much fun). Ip eddition,
since the claesicel motion is irregular, we do not know
any formula for the clamsical limit of the wnve-
functiunn\{;, and we do not even know whether a
claasaical limit ex1ate at all. Therefore in the present
crase we are forced to seek aliernative foroulas and
methods fer calculating the oscillataor strength
density. This search will lead to new ideas and
understanding of the quantua behavior of claasically
irregular eyestems.

In thig section, ] mhell write the cscillatar

strength density in two forme. One is in tersme of the
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fime-dependent preopagator ki and the other is in terms

of the Green'sa functinnG"'.
1. pefinition of Time-Dependent Propagator K

Suppese A gquantum mechanical Hamjiltonian Hop{'fﬁ'xg)

im given; then the time dependent propagator K(Eftjﬁlf)

15 defined am the solutiaon to the S5chroedinger equation

it (FGEABTD) - Hopl vy, 1) K EE=0

{3-6a}
with the initial condition
lim K(&2%84)=8(2-¢) (3-6b)
+"x!

[t 184 clear that because eq. (31-6ma)] 1m n Firet
order differential equaticen in ", with the initial
cendition in {3-6b), the prupagatnrk’_(ijt'}z}')t})i!
uniquely defined.

All sclutionm to the time dependent Schroedinger
egquation cen be found from the propagator. IfT l}*’{g;tjis
the wave function at time ¥’/ , then the wave functien at

any time % is

F(Eh )= |43l Kages g) HEit) o)

This is esaily checked from {3-6).
A particular result of eq. (3-7) ia the group

property of the propagator. Taking in (3 T]Wg’jtj asg
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K(g;t‘: g‘r) {Where ?J - appear as parameters on both

a1dea of eq. {3-7}}, thep we get

K(git;8.¢) =ﬁﬂ‘ KLU KB 8t) e

Eq. {1-8} a1mply siates the {fact thest a wave
propagating from | to ! is equivalent to the wave
propagating from T to anpy intermediate time T/ and then
from t' to 4,

If at]l the eigenfunctions of the Hamiltoenian Hq‘

are known, the propagator f can be expanded aa

K(eres =t vy ¥iie) e eI hye
13-9}

Each term im {31-9) satiafies the Schroedinger eq. [(3-
6a). The completeness relation of the eigenfunction
givea the right initial condition feor K , the ag., {1-

Bb ).

z. Befinition of Time Independent Outgoing Green's

Function G.+

If 1the Heamiiltonian H‘P doea not depend an time,

then define the outgoing Green's function
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GHen g E)= Ia‘t KRt %, 0) explEE]

{3-107%
where E=E+ &1 and & —s#{y,

The ewsgquation satisiied by f;* 18 jumt the time-

independent Schroedinger equation with a point sBource

[E ~Heopl- %55, 8°) | G (5" 8% E)

A

/df ap[ L] E-itg ] K(25t,850)
L4 oni) entgts o
- L {5z oplLE8] + exp/El] 2K ]
e Rk ey

# i \ : =
o ki(g,f;?iil}&xpfigr /

~ j ot | E~Hopl-1285,8)] K(37¢;8, 0y LEL ]

1

= K{%"0,%. 0
~ §(2-%)

{3-11"

The ei1genfuncticn expansion of the Green's

function is well known,

GH T E)= ;ﬁ‘frfs"’)s&,(g) Plen e

t3-121
E-g!

Eq. {3-12} can te verified by combining eq. [(3-9}



and e&q. (3-10}), or by using the differential equation

for G in (3-11).

3. The Qacillator Stirength Density in Termm of the

Propagator kI

The ascillatoer astrength density ie related to

matrix slementa of the propageator by the formula

_2mEE) 1 [Ty, >ot¥E
DHe)= AT E) L [ <idik D> 0 %K

{3-13)

Ta prove this, we recall the definition of the
vacillator strength denmity in (3 4} and compare it

with (3-13). Then all ] need tc prove ia the following

relation,

< 1215 P = 2k [ “hdik pus et t

(3-147

Ta prove {3-14), we assune the Hamiltopian ims time-
independent, so the eigenfunction expsnaion of the

propagator K(%ZthLO) cen be used. Further theié -

function relation is valid,

iy

E#Lﬂexp[”‘fﬁ%’]dt“é‘(ff_f) (3-15)

Now atart from the right hand eide of eq. (3 14,

use the pgigenfunctiopn expansilon of ﬁ: , and integrate



6l

over tf first, and then over & *

| (™ kDI KR, T0) /Dy >e  FE 4t
b [ hPIRE,2,0)[D%

o g o L 2804 JE [ Dy X5 Vot
=k meiﬁrwﬁ@) frele

= (DI} Y (2) K8 PE) §(§-E)JE [
= R DYl 8 Yep(8) ) (D%

= DI X b PEY)
iR FED

d.-E.D

(3-1i6)

Eq. §{3-13) involves integration over time from

minus infinity to plus infinity. A simpler farm can be

cbitnined by umsing the time-reversal symmetry of the

propagator k: .

I will firast prove the time-reversal relaticn on

Ko
K2t ¢,0)=K (8%, 850)

(3-17)

We use a slightly unconventional hut very clear
nctation:

CHDIKIDYD Note lso
=hPKERE, 8,0 DD

=CRDRY (¢, 8, 0) [ DHi(I>
= I8 (8) D7) K(8'E, 8,0) () D8)

(D] =R D)



Thim can be Aaccomplished by examining the

eigenfunction expansion 13-9},
K(3%-¢, 8.,0)
=3 (&) (2) Pe) et e
=[J hit) i) pe) e F e J*
= K’Cgﬂ'@ 3%0)

9.E.D

From this symmetry, I¥(ﬁd can be written as nman

integration over positive time only:

[ gD IKAE 8 0) D (8)> @15 A

— oy

— 0 nH 1) - -7
wag)mﬂgffj 210/ D¥siz)> e F VA o

)y SHEIDIKEI-T 300 DYute) e Ty

~[{ k@i, o) capel S ]

(31-18)
With the help of {3-18),
Df (£ ) X (E7-6) | -
) 2}71:{1 : ATE [L“+jo }
— (& -£2 g
T TtE:{ Rej:f‘)‘s;befbwé’l&tAdt
(3-19)

To Bee the meaning of eq. (319}, consider the
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action of the propagmator on the function I)??{%) :

H(Et)= [dg KIgL;8,0) D¥a(3!) (3-20)

So ?ﬁ?;ﬁ)iu g sclution to the time-dependent
Schroedinger equation with the initial conditian
(8, 00— D¥4(%)

{3-21)
These formulas (3 19)-13-21) esuggeat a procedure for
computing the oascillator atrength depmity: for the
given initial wave function end polarizetien of light,
solve the time-dependent Schroedinger equation for the
wave function ?{ﬁt}with initial condition D?ﬂg); then
compute the "correlation function” c;}%j)f\ff?)t);,.
finally do the half Fourier transforsation of this
"correlation functien”™. The result will be the desired
cacillater strength density.

It is clear from this procedure that the ipitial
wave packet]}%i propagates and evolves in space. Those
parts of the wave Y which come back and overlap with D¥;
at a later time will contribute to the ceacillator
atrength denmity.

As mentioned above.Ir{E” ism & half Fourier
trenaform of the cerrelation function, and it principle
the integration should invelve an infinite range of T .
If the integratioen isa cut off at some finite upper
limit, 7, the effect is that an averaged or smoothed

oaciilator atrength density is computed. In Appendix A
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it i’s ahown that the resulting averaged oacillator
strength densityr¥%$}is equal to the exact cmcillator
atrength denaity averaged with a weighting function

over a range of energies of width fﬁ?d

br ()= | DRE) -G (5, -e1) !

The measured mpectrym involves just such an

{31-22)}

average: the width in energy of the photoen beam is
large compared to the spacing between the states, It
follows that we can account for the observations using
ma carrelation function defined only aver finite times,
if the experimentnl resolution isa AF , then the
required upper time limit | Ffor computing the
correiatioen function 18 Approximately ?QﬂjE_

However, following the evolution of a time-
dependent wave pachket is not easy, and in general it ims
impossible to do thia in s satisfactory way. Weve packets
spread and become very complicated in a short time.

in the next pection, a time-independent
formulation based on the Green's function ia derived.
It will be mmen that much of the physical meaning of
the t1me-dependent formulaes is retained. But the time:
independent formulalbion ia clearer, more copplete, more
in accord with the experimental aituaticn, and much

eamnier to use.
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4. The Qacillatar Strength Denmaity in Termm of the

Gresn’s Function &7

At this peint, it takes no e«ffort to find the
deaired Jreen's fubction formula. In fact, combining

eq. (3 10} end eq. (3 1%) givesn um the result:

DHE)= — 27U D 3 L D1t D)

Tl

{3-23)

Te understand egq. (3-231), ope peeds to understand
the weaning of Green’s Function @Jfgﬂzﬂf%) in
canfiguraticon space. It can be nhoun42 that
GN3"3.Fr) represents the probability amplitude of
finding the particle at £/ fer a particle launched at Z'
in all directions with energy E? .

Thim interpertation becowes much more clear if the
armiclagssical approximation for é;* is umed. In thi=s
approximation, each clamsical trajectory of energy

connecting zf to £% contributes a term

Bl 2} exp[25(348)/% ] (3-24)

to the Green's function( § is the classical action for
the trajectory and 8 is an AEplitude that will be
defined later}.
Mow ‘%-in B wave fTunction localized arocund the
L
pucleua, 30 let us 1magine the extreme case in Hhichlhé LS

very localized and can be regared nm a éﬂ-functiun.



then from (3-23}) we have

Ix{Qﬁlf\f{}ﬁﬂ?,[}jff)

{3-25)

The osciliator strength density in this extremg
case wauld be the probability amplitude that the
electron isa emitted from the nucleus, travels along a
classical trajectory, Bnd submequently returnps to the
nucleus.

More generajly, we may regard 'Iﬂi as a "source”
of waves., The Green'a function C%* propagates those
waves forward et fixed energy: in the semiclassical
approximeation, the waves propagate along clessical
trajectories. Some of those trejectories submequently
return, with their apscciated waves, to the vicinity of
the nucleus, snhd they overlap with the mource., Eg. (3-
231 tells us that the omcillater atrength density E¥%ﬁg
im proportional to the overlap of the source with these
propagated waves. In particular the observed
ofcillations in the spectrum result from interference
of cutgoing wavep of the source with returning waveas
propagated by C}f.

More detnjled Formulas Bnd explepnation will be

diven later.
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C. Summary

l. The observed abaorption spectrum(rate of mbaorption
of photonme, or rate of production of the excited atomn
or ions} is propoertional to the oscilletor strength
denaity'l¥{@)defined in eq. {3-4).

Iy, )~ ﬂ’%@fﬁ [<wINDPE)

2. The oscillator strength density is related to the
initial state of the system 4, , to the projection of
the dipocle opersator cnte the direction of polarization
of light, J> , and to the Green's function (}f of the

syatew, through eq. {3 23]

{3-23}
The work in the next two chapters will be oriented
toward calculation of the matrix element in eq. (3-23;.
First it im necesaary to study the Hydrogen atem in the
abrence of magonetlc fields; second, we need te lemarn
some semiclassical mechanics to construct (Gt . These

will be the topics of chapterm 1V and V.
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HYUROGEN ATOM WITROUT FIELDS

In chapter IIIl, I have related the experimentally
measured spectrum to the wscilletor strength density, mnd
further 1 have expressed the oacillator strength
denelty in terms of the time- Independent Green'ns
Functiop. My task in thias chapter and the next one is
1o construct the Green's funttion for the particular
system,.

Te make Furlher progreas, appropriate approximaticns
have to be considered. As I have msaid in section 0.A4. ,
the renptral idea 15 the division of space 1nto two
reglons: ciose to the puclewus the magnetic field can be
neglected, and the wave-functiona are those asanciated
with 8 pure Coulcab field; far from the pucleus, the
wavelength is short compared to the range over which
the potential energy changes, and 8 memiclasajical
appraoximation to the wave functions can be used.

In this chapter, [ will discuse the fi1rst of
these two approximations. The justifiration of the
approximation i1s Jdiscussed firsl; then partial wave
analysi1s and scattering in a Coulomb field follow; and

finally, B summary 1s gLven.

GHE



A. Justification for the Neglect of Magnetic Field

Close ta Kucleus

In general the affects of magnetic field and these
of the Coulomb field are comparable, and in the

Hamiltonian

2
H= L =5+ 5 (B vy
(4-11

neither term ran be neglected. But if the contribution

of each term is examined mere carefully, we Tind that
the Coulomb field dominateas the magnet|c field cloae to
the nucleua. For examplie, if the magnetic field is 6
Tesla, and if the electron stays within 100 Bohra of

the nucleus, then the ratio of magnetic terma toc the

Coulomh term would be
{ /8,2 ;
7 (&) xy)
L
N 'n
B3
§(2
L ge)® /00°

3 1372

diamagnetic term

Coulomb term

.

~ K7 th#

M

(4-21

{which is much smalier than 1.) Therefore we think the

neglect oef the diamagnetic term close to the nucleus s

3
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well justified. (Of course, the ultimete justification
resta upon the umpariaochn between experimental
measurements and thecoretical predictions. We will make
these comparisons in the last two chaptera.?}.

In the rest of this chapter, the discussionas will
rongider the Hydroden atom io the absence of fields. In
particular we need formulas for the wave-function of =&
near-zero energy electron e it eacapes and later

returns to the nucleus,

B. Initial wWave Function and Coulombh Green's Function

Near the Jonization Thresahold

In this section B, molutions of the Hydrogen atom,
bhoth bound and near the i1onization threshold, are
found. From them the 1nitial quantum wave function
and the Green's function in a Coulomb field at the

1onization threshold are constructed.
1. Bound S5tate 3olutions: Ipitial Quantum Wave Function
The full Hamillienian 1n (4-1), after dropping the

diamagnetic term, 1% the Hamiltonian of a Hydrogen

aliom, denoted }{C .

. =2
H£==:2‘P _'% ta 3
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The solutionm to the eigenvalue egqguation

H;:C#:E#b

(d-47
are discuased in detail] 1n standerd Quantum Mechanice
textbooks 55 . The eigenfunctions can be written am a
product of m radial wave functicn and & apherical

harmonic fupnction

Bt = Ronil?) Yoml6.F)

The definitions and phasme conventiops we usme for thease
funvtiona Aare the ones given by Bethe and Salpeterfﬁ
For convenience, some of them are listed explicitly in
Appendin B.

As discuased in chapter 11I, the Hydrogen atom is
excited with a leser beam from initial state 4& to
stules nerr the iomnization threshold. What are these
stales ﬁ% ? They are preciaely these bound quantum
stale 4§umin {4-5) (in atomic beam, essentially all of
the Mydrogen mlumg are in the groupd state q%ﬂo . The
atops Are excited with one lazer from the ground state
to a low excited stute, such as 2P, | then with m
second luser, they are excited to stetes near the
tontzalion threshold, It ig the low excited state that
we call the “"initial" uiﬂte‘41 i

One point to menticon here ia a restrjction on

these 1nitial ataten. We know that for quanium siate



(inim' the average radius of the electroen is nt., To
have conmistency with the neglect of the magnetic field
cloae to nucleusa, }1 :an nat be too large (n<lG).

Since we are really 1ntereasted in those first few
quantum siatea as the inittial state . , the

restriction 18 not a problenm,
2. Solution Near l[onization Threahold

Im grneral the radial wave functions £5fﬁﬂin eq.
{4 5) can be written in terms of confluent hypergeometric
functiions. However, the solution near the icnizaticen
threshold is much aimpler.

We shall show that the zero-energy radial wave

funrtlions are given by the simpple formula,

@jr&jﬂ?’): j;ﬁﬁ(ﬁ?:)/ﬂﬁ (4-68)

KEJ ;mﬁ('r): h;.gi’ [Jm/jg;? {4-6b)

Proof of this 18 given below, thuse who accept the

result can skip to section IV.B.3

The radiml wave function ﬁ%f gatiafiesn



When E is met to zere, and the derivatives are

written out in eq. (4-7), we cbtain
pdt £in) 0
(St 5 - 57+ ] R =0
{d-H}
To find solutiona for eq., (4 H), we make & change
of varirables: let
O,
Eﬁfh}z b}
L (4-9a)
and
o= [vr (4-9b )

The following relations on derivatives mare not

difficult 1o fipnd from (4 9

f_j}-(ﬂ 5 [l?)’__ BJD(')J

{4-10a:

A 2R G(7) 6 3¢
i = {5 [ s s

vq-10k)
Combining eqa. (4-B) and (4-10), we have the

differential egquation for the functioen ﬁfﬁ):

123’_&91 + X C‘:fgﬂ + (X2—p2) Bpli)=0

(4 1la:

73



with

V=214+ (4-11b)

Eq. {4-1la) 18 the atandard equation of Bessel
functions?? . The solutions for fﬂﬂﬂare the regular
Besmel function :Eﬁiﬁﬂ-"d the irregular function such

Foentd

as ¢ (x) {called the Hankel function}. Transforming

2H
back to variable ), the polutiona to {4 B) are (4-6).

3. Estimate of Accuracy for E &0

Eq. (4 6% are exact at E-D . We will use these

formulas me approximations alao for other E pemar zero.

As we ahall ahow below, for energy not too different from

zero, the error made by replacing the exact wave
function at energy E with the wave funrtion at zero-
energy is guite small.

Our formulees will involve A dipole matrix element
between the regular Beasel functiocn and the initial
radial functian. Therefore we are concerned about the

. . , £
difference between the exact regular wave tunction Ejﬁﬂ
. L
and the zero-energy regular wave function kJ@ﬂfﬂr
rern=nt=4.

From the asvymptotic formula for the Beasel]

funation :EAIJ'

I,(x}—w/% o9 (X — E—JT‘* g)

T I
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0
we obtain the asymptotic formule for g;(T),

we obtain the auy-ptotzc formsule for g;zyjh_gg)
- LI r i o .
/
——— ¥
VIR T @5 { 7 pretr — Lé*‘_ZLW;}()

(4 13a)

when F 40, the phase of £54) would differ from that of

Rj{'ﬂ . by

aphag = |15 pr)dr

o —
- ! E _ﬁ - _le-
fo ("‘"wl 1"}‘*“ v )dr {4-13b}

1f ro 18 taken as 5 @au, then expanding the integrand
in powers of energy E, the phase difference is

eatimated As

ﬂf*@f Y %?—?‘%:_E

o

A SR E

4 13
For ,‘If["—:— fﬁz}(jm—"‘; , for example, the phase difference
would pe smaller than Z2.4x10 7. Thia numbher gives ua
an absolute error eatimate for the dipole matrix
element . These matrix elemenis heve magnitudes between
1 and 20 (atomic unita), and therefore the relative
errar in the matrix elements should be no more than a

few tenths of B percent-
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4. Coulowb Green’s Function G{ﬁﬁ:rﬂ Near the Ionization

Threshold

The Green's function in a2 Coulomb field at the

ionpizetion threshold Gg&i#ﬂiu important in conatructing

the general Green's function for the atom in Aatrong
maghetic field as we shall aee inp chapter ¥I. In thins
section, GE@*?{] will be found explicitly.

Hecall the differential equaticn {3-11) that a
Green's function sati1efies. If the Hamiltonian is

chosen as Hr in (4-3: and the energy E is set to zero,

4,
we have the equation for Lﬁ:{:’:?i)*

_HCGj(”E Fil=58(77) (4 14}

Again berause of the rotational symmetry in H ,
the Ureen's functlun(i?(f}ﬂ)can be decompused into

angular functions and radial functions,

G~ 615) - Gl Yoo

(4 15a)
In this summation, g1 (c,r"} s 8 function of the radial
variahles r and r', but not of the apgular variebles;
it depends upon the angular momeptum 1, but not on m.

1 shal]l show that giir.r'"} is given by

TE



T7

Gy () — 2171 S LFTE) Hity (F75)
W

(4 15b)

Te prove thia, write the S ~-fupction in polar

voordinate ¥, &, (P.

§F ) == §trr) S(ash-wose) §(9-9)

{d-16}

and use the orthoganality relation fer the apherical

harmcni c5$3 ’

- % b
2 o (B8] Yo (6.9) == § (co38-089") $(5-5")
Y
{4-17}
We can cbtain en equation for glfr,r'] from (4-14}. On

the left side,
—He CT:('?"-*,F')
:'%1 TEJ:(‘SL?U [“_HL]'%?(T, r') )’th@(f”)

-+Z Yenl6'F) Y89 [ 455+ TJ”“ S+ F /()

Ara

{4-18)

and on the right a;de,



(77 =302 § 1os0- ) S(7p)
(3{?

P 08 F)

(4-19;
Since each &Eﬂ 182 1ndependent of every other, the
coefficients of YLM in {4 1B and {4 19} must! be g))

equal . Hent¢e we have equatiovn for g fr,c'},

=L | )
[257+ 7 ~ 22 4% 1 G = HTE

yat’

{d4- 203
This 18 the radial! Schroedinger equation with a point
source At r’., Mow let me show that the solutions to
(4-20) can be found from the solutions of the radial
Schreedinger equation (4 B},

17 {gzhis required to be an outgoing Green's

function, then gi1{r,r’} must be an outgoing function.

Further giir,r'l is required to be finite everywhere,

ft 18 not difficult te see that

Kty r)= A Tt (1) Higy ().
iy ST V8V

(4 21
15 a4 possihle anlution. In i(4-211,
— i
o =M (7, (4-22a)
?-:} :}T?M(T/ PI)
(4 22h;

and A 18 a constant.

T8
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wWhen '}’:.:'r', then the right hand side af eq.

(4-20) im zera, 80 the expremsion in (4-2]) eatiafiea

{4 ?0) since \Z:fﬂ/r% ﬂndHﬁ{% are 8clutions of (4 B},
Also ]ﬁﬂf(-ﬂ_%,’ is regular at mmall distancea and Hﬂﬁ%

haa outgoing behavior Bt large distancesn. Now the
congtant A has to be determined. To do that, Eg.
{3 20y is integrated fram r’-0 to r’+9.

The right hand side integration yields

EH\S_' f’?‘}" (4-23a)

More work is required to integrete the left hand

aide. Because gi1(r,r'' 19 conrtinucus, oniy the mecond

derivative survives:

Lt [e I I y 17
LHS —[, XE ?L'r* r ,1,;;, 4“&]91(73-’)

— L (r o0 770
+5 % )T

“0
{4-23b}
From {4 21, after a minute of caiculus, we get
LHy = A W (/7]
LfW >
14 23
where y
_ o Hiky () ) of Faa ()
M X) ]Eﬂﬁlﬁ-)“-gx‘_—* H (r) o
{q-23d;

o 57
Te find A, we uase the msavmptotic form of Zfﬂand

HPF&J :



| U L
7;.(1')”‘-“/“3?_&:1 ::.ab{_li—'z"_af) (4-24a)

M JE expli(x- $7-4))

{4-24b)
and
o -2 - L
.}_L;{{I.)’\:?ﬁ jxrlfl“gﬁr_g)
(4-24c¢)
/ . f s &2 i
HYx) 2 7 expli(C5r-41]
{4-244)

Combining (4-23) and (4 24) and equating left and right
aides, we find
};t: —Jé;TTi,
(4 25}

S0 we arrive at {(4-15b}.
5. The ODverlap Radiul [ntegrals

When the omcillator satrength density is computed in
the pexi few chapters, or to be more specific, when
Cﬁﬂéfﬂbf‘i)iu being evaluated, & special type of
overlap integral arises frequently. I discuss then
here.

The integrﬂls(?ﬁlmﬁuﬂﬁi>invalve. besides the
angular overlap integral, the cverlap of the radiel

wave funciion of the 1nitial state ﬁh;&jwith the zero-

energy radial energy wave function-gawﬂﬁ’j . Sa let me
i

define
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I;;i ::jo Raglr) »3 7_.2__“1’72;:___.3 (/37) Ay

{4 26)
. _ *
An 18 whown 1n Appendix (. I;‘ can be expreased as an
analytic function of n and 1 . Detmils are given in
. . 1]
Appendix C. Here 1n table 4.1, the first fEH_]}; are

listed.
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C. Scattering in a Coulocmb Field

As 1 have said befnre, our picture of the
ionization of atoms 1n 8B sirond magnetic field is that
the laser acts on the Lhitial state 4%_. producing =

source which generates outgoing waves "ﬂglunb

pr8dicTng
field; these ocutgoilng waves travel 1n apace, and some
of them are turned back by the magnetic field and
return to the location of initial astete ?1 ., in the
vicihity of the nucleus. The everlap or interference
of these returning waves with the initial state
gdives rise the oncillatirans 1n the obaerved spectrum.
The process im repreaented in Fig. 4.1, where the
1nitial outgoing wavem are called stage !, the
prepagation of these waves 1n the combined fields are
tralled stade 2, Band the scattering from the Cuoulomb
field near the nucleus are called stage 3.

in sections A and B of this chapter, the Green's
function ééqﬁ%f?}in 8 Coulomb field near i1onization
thresheld was found, With this Green's function, the
vutgoing waves from the 1nili1al state Qi van he found
vasilyistage 1}. This will be explained 1n cvhapter VI,
when all the neceasary toolas are ready. The
sepiclassiacal propugation of these wavem At large
digstances from the pucleusistage 2} 18 the aubject of
the next chapter.

Hevye [ will discuss the final stage of the

physical proceas---what happens when the waves come

B3
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as

back from large dimtances to the vicinity of the
nucleus. Clearly this procesa is a scattering of waves
in a Coulomwmb field.

Jur process 18 a little more cowplicated than the
Tigure auggests. Firat, the true waves are three
dimensional . However hecsuse aof the cylipdrical
syemetry of the problem, the magnetic guantus pubber =m
15 conserved when the wave 18 propageted. This must be
taken into account., Seconpd, the waves can return from
any direction, as againat {he usuml situation that the
wave comes in from the negative z axis. Third,
lhe wuves possSead NEdrly zero energy; thie in fact
simplifies the formalism,

In the following discuseion, 1 shall briefly
review the already sclved case, in which the electron
romes Lh Along the negative z axia. From that, the
solution for the electron coming from an arbitrary
direction 18 obtained. Ther finally, cylindraical
waves with given wmagnetic guantum number are
ronatrurted, In rl] the cases, the wave function 1s
written as a partinl wave expansion, end 1ts asymptotic
farm is expressed compacily. Later .1n chepler Y1,
the asymptotic form will be joined to the seramiclassical
incomling waves at large distunces, and the resulting
partial wave expansion will be uaed 1o ralrulate the

cverlap with the initial state.
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1. Incident Electron from Negative Z Axis with Zero-

Energy

Scattering of electrone from a Couvlomh field is
well understood. Although the leng range Coulomb
intersction needs some special attention, the asolution
is atil]l analytic. Tn thi1is section, the general
formula for the wave function is el1Eplified by
conaldering the zero epergy limit.

Imagine 8 proton sitting at the ovrigin of the
roardinate syatem, and an electron at nfinile distance
approachingd along the negaliive z axies with veloucity v,
The +omplete solution of the wave equation i1ncluding

the 1ncoming wave and the scattered wave can be written®s

ot -, '
Wz o Fl=tn , 1, 1£%) (4 27a)
r(f+z;ru = dp(2e#0) @ Fttiin 1007 - 21t flcse)
(4 27b
in (4 27b}, ;

dg-':- (2tt4 204
,(Z/Q/%: N

nik TR

%j:?‘_% and 1s one of the parabolic variables.
F:is the confluent hypergeometric function,

The sclutiton 1n {4 27) i1s particulerly i1ntereating



toc um when the velocity v jor collision energy E) goes
tao zero.

To find the salution i1n this limit, an expadbaiono
formula for the vonfluent hypergeometric function 1n
terme of Bezael functions 18 usefuls?

_Fl{l,ll £)

ris)
- ™ Z:" C_:'{—u]“"""JHu{?#'{ -“}}
u

whare
C-l‘]- C|’=-M". GI- _i(n“lh'*'““‘*l“':

(R4 110 = ({1 —2A}n —&IC.
101 — 2h)a—AA— 1){3 42— 1)3Cuq
—AGh—t)aCay (A rel)

Fta, §, 3= 2 Culo, B L.(1)
- (4-28)

Using this expansion 1n 14-271, it s
straight forward to prove that as vall, the wave

function %’turna ta

Vo T (2/€)

i1-298.
=5 (24) Tow BF)
o T Rless) E
7 7z JF
t4-29bj

Not surpriasingly, the partial wave expansion
tnvaives the regulear zero-energy radial function

ﬁﬁi(ﬁﬁ found earlier in thie chapter.
7

BT



2. Incident Electron Coming from an Arbiltrary Direction

The above describtes the complete zerc energy
Coulomb wave function for the electron coming froms
infinite negative z. Now we need the aclutien for the
electron comping 1o from any arbitraey direction.

As long as the sclution for electron coming from
one direction is known, the molution for mn electron
coming from any other direction is cbteained by a praper
rotation.

let 2 bbe the unit vevtor representing the
direction of motiun of the 1ncoming electron long

before the collision. Then eqa. (4 29} s5till describe

_ _ - . . o - SN
parabelic coordinate, and @ beromes the angle between *

— g 1 ad
and the electron poesition vector ', Bo CQS&—_**?/T ‘2\

Egqa. 14 !Y9) now become

and the electron position ve(:h”-¥ . Bo m=i%

Ega. 14 !Y9) now become

'Zfzqr—iﬁ) :4 30a)
S () o AP TawlEF)
G PAT) Tl

i -40b
To write 4 -30} explicatly 1n terma of the spherical

. ; e ; LY
pelar coordinates of T, the following relation is

uaed. Let two vectore have directions defined by palar

angles {9‘, ’¢J’ and S;Jd)l , and leta) be the angle between

the two vectors, then
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Rt =355 2 Yp(6,4) §,,(62.8)

14 31
{This relationship is independent of the phase
convent ions for H&ﬂ? ‘a.
ls1ng (4 311, ifékj¢k dencte the aphericel polar
Bangles of i , and § & 7 denote the apherical
coordinates of Tt then the solution in {4-30) can be

whitten as

To (27T =058k sl — 388556 (oS (P He)) )

5% 2L E:(@{,@) )’E”(Q¢) Tm(«ﬁz) (4-32m)

= B L = L M""'JIJ’ —"-___r
im 1!?*
(4-32b)

3. Cylindrical Coulecmb Wave

Because of the cylindrical symmetry in the
syatem, Lz'mt_ is conmerved at every satage of the
process, and the waves depend upon the azimuthal angle
aa QiﬂKP

Now let ua i1magine what happens 1f the two
dimensilonal family of trajectoriem in Fi1g. 4.! 13
rotated about the z axi1a to produce 8 three dimensional
famwily. Ther at mederate distances from the nucleus
ir A ap) electrons approasch the nucleua from
direction specified by a fixed palar angieé*_. but from

all aziputhal angles 1{ {(ﬁiq% <2 ). What js the
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wave—-function corresponding to thia situation?
We already know the wave function for an electron

coming 1tn from a definite directian (Qfﬁ¢£rﬁfit is the

Besael function given 1n eq. (4 32al, or the partial-
waAve tXpansiovn . F dlb, We aleo know that the
superpoaition prainuiple applies to waves, S50 the total

wave for electrons coming in frum all directicone i8 1he

superpoaition of the waves [or electren coming fros

egch particular direction. Therefore thim cylindrical
wAVE j4
£
4 33a)

which is mlsc erqual to {from 4 3idb)

[ /E ol 58) Yo 6,9) M

i1 33b)

Before launching into the evaluation of the
cylindrical wave in (4 331, I peint out that these
WBAVES AFEe waves wilh zero magnetic quentum pumpber, thal
is m 0 iThey are obviously i1ndependent uf(#

We would iike to have a cylindrical wave
associgted with o glven magnetic gquentum number m,
Rewembering that the magnetic quantum number m
represents a rotational moti1opn ebout the 7 axi1s, with

rorresponding wave function elﬂmﬁ, then a minor



g1

modificaticn te (4-33) will give us the right anawer,
We meraly have to add the wave coherently, with the

factor Q‘W

axis. Let usa <all those waves H&f’. then

, to reflect this rotation about the z

A ! . . e
ggogggmﬂyxﬂﬂﬁﬁﬂﬁrﬂwﬁ%@ﬁm

{4-34a>

which 18 equal to
| Jm ’ IM\ Fl ﬁ .-
1R T ) Yo p) T GDED
' ra

o+ * .
iﬁ%%%@@@@@%ﬂ
{4 34b>

Eq. {4-34b1 is exaect. That this a wave with given
maghetic quantum number m i8 clemar, since only those
spherical harmonicswith the given m appear in the sum.
Taoa find a vompact closed form from {(4-34a}! is more
difficult, We ahall find the aaymptotic form for the
incoming part only, using the staticonary phase method
[aee Appendix D) and use the asyaptotic ferm for 1he

Bessel function
7;&),;]% (oS /w’:‘—-z—’%wr-i)

t4-35}

ag lhe incoming part aof ygﬂis
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G a4

L !
[2 STttt =5, 84550 K ldy4) Po

Cupli (-2 rE archind <igs b wiide b)) + ¥]

(4- 36}
Thera are two ataticnary points for this integral,

namely
H-P=0 wud b —bp=77 (4-37)

For the incoming wave, only the aecond f#&—n(#)—?]"
vontributes{Remember that égjﬁk is the polar angle of

the incowming velocity, which ias on the opposite side

from the position of elecvtron, 3o ?,{xaif—?’ and &€ \ 7-© 1.

Using the stationary phase formuls, the result is

mo o am2E L
LC%L {_.}‘J EZ 2& ?T _f.fﬂ

o2 TS (604 o

N>y

For future use, 't is more convenient to write

tq 3R]

bolh (4-34b) mnd (4 3B} in terms of the 1ncoming

electron positionn Qfﬁ'frr‘ﬁ‘ ,

m_ 4T K=m  _» (F¥)
=5 Z 7 v ,0) Yo L

tq 39

92
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VF 548 g 40

From (41 -39, usind the asymptatic form fnr]&#jm?J, e

glso have

- . ;
ey 27 S entr -._,;_;—e Tn(%.0) Y, (64)

2 rE
. 2 fi(‘@?"-fﬁ‘?r-.tjrr)
7%

Eqs. (4-40) and {4-4]) are twi aaymptolic expressions

(4-41)

for the desired vylindrical Couleombt zero-energy wave
with given maghetic quapnium number m. The first is an
asymptotic form of a8 compact expression, and the second
is the corresponding partial wave expression, These
twa formulee will enable us to find the parlial wave
coefficvients close to the nucleus once the 1ncowing

wave 18 Known far from the pucleus.
D. Summary

1. The i1ni1tial quantum wave functions %2 are the
eigenfunctions of the Hydrogen atom i&fﬁﬂ Ji“@ﬂ, Some
of them are listed in Appendix B,

Y. The Green's function for the Hydrogen atom at the

iopizntion threshold E O é;é' 158 found 10 eq. 4 151:

GLF )= 7 T (828 Gol7,0) Y, 18.4)

iHam:
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5&(79r9==':2111
J7<

{4-15b}
L i)
where mla the Bessel function and wa i5 the Hankel
function.
3. Dacillator strepgth computed 1n 8 later chapter will
involve ap cverlap i1ntegral between the initi:ml atate

and the zero energy Covlomb radial wave function:

(" b Toi02)yi ST
oy Lfmf’f)?‘ 2 ;%}*” odr (a-28)

The ones needed are listed in Table 4.1.

4. Excitation by the laser producesa cutgeing wavea,
which propagate in the cosbined Coulomb apd magnetic
Fielda, and which later return to the vicinity of

the nucleun. These returning waves can be described
i1n a geod approximationt as a superpoairtion of zero-
energy Coulomb weves approching from polar angle&; with
all azimuthal engles. The asymptotic torm of the

incoming part of lhese waves 18 given in vompact form by

: X !
Zac. }zc,m: €™’z _23';:»;# NAPN:
['§ Loy 'J_

12Tt o8i6-8)) Eié"'#)
VI Sam
(4 441

und 1n parti1al wave expansiocn by



95

»o Fs
T = 280 T K 0 o )

EP () BF) Exp(dibed s,

4 41

In this chapter, we have gathered everything we
need to deacribe the vutgoing wave function {stage 1}
and returning wave fupction (stage 3} nesr the nucleun.
In the next chapter, a different subject 13 taken up:
the semirlassical propagation of wavea inp stage 2 will

be disvusesed.



CHAPTER ¥

PHOPAGATTON OF WAVES IN SEMICLASSICAL MECHANICS

After the pulgoing wavem are produred by the jaser
frem the 1n1ti1al =state H% . theae wavea propagate
forward 1n the combined Coulomb and magRret 1o frelds.
The aonly presently availahle way of propagating the
waves 1s the semiclassical method. This semiclassical
method 18 a generalization of the familar WKPR melhod,
and 1t 183 a gcod approximation 1n the present case,

The method i3 easy ta use, and 1t also provides an
itntultive physjiecal plroture.

Thys chapter i=s entirely dewvotrd ta the diacussion
of the semicvlassical methond of prophrgation of waves,

I shall show how to use the formulas of the

semid lassical method primarily, explain the)r meanings
and Justify their wvalidily on physical groupds (A

praof of one 1mportant result is given 1n Appendix ELo0,

The plans for this chapter are the follawing:
firat 1 discuss the role of semiclassical mechanios on
general; then the ronditions for the aemic|assical
formulas to be vaiid lallow;, after these, Ihe general
formulas are ntroduoced and discussed; }inﬂlly these
grneral formulas are sipplified using the cylindrical
aymeretry of the gsyaten.

Thuse whe are interested in semivlassical mechanies,

96
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and thome who want more mathematical rigor should

28,29

consult some excellepnt references

A. Semiclassical Mechanics

One time when [ tulked sbout semiclassical
mechanics, [ was ashed why should there be
semiclasmical mechanica at all? The permon ashed this
gquestlon because he thought that quantum mechanics 1m
the anly rorrect mechaniva needed to describe the
microwor }d. 1t 15 true that gquentum mechanics has been
proven ta be the right mechanics to describe atoms,
molecules, even the motion of the earth around the
aun. But ag we know, the meoetion of the earth is omuch
more simply and very acocurately described by classival
mechanics .

The rannertion hetween quenium mechanics and
classical mechanics is atated inp Bahr's correspondencve
principle: when the guantum numbers of the systen
become large, the svater becenes more like a classical
system - A aystem governed by elassical mechanics.

S0 what is the role of semiclassical mechantics”
In essence, semiciAsaical merhanice serves 85 8 braidge
between gquantum and clasaical mechanics, It attempts
te get guanhtum quantities, such as epergy levels anpd
wave functinpns, fTrum the classical guantaities, of
course thi1a can only be an approximation, but this

approximation :n many cases pot only greatly simplifien
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the romputation, hut aleo captures the essence of Lhe
phyaical problem. In some ceaaecs {]Jike the one we have
now! the gemivclassical method may be the only avairlable
way to aolve the problem, since we do not yvet know how
te vuae a full quantum formalism.

We tegard asemiclasasical mechanics as an
approximation to guantum mechapics which combines
clasasical mechanics together with the superponition
principle, 1t therefore gives an approximate
description of distinetively guantum phenomona, such as
interference, and in 1ts most general forme, 1t can
also be uaed to describe tunneling and diffraction, [
shual]l use semiclassical mechanics to propagate the
autgoing wavea forward under the influence of Coulomb

and magnetic fields.
B. Conditiona for Semiclassical Mechanios

In order to get sensible reaults from
semiclasmical approximaticons, the ayatem has to satisfy
some conditionse.

Nsually the semiclassival approximsation 15 deraived
by assuming 1hat the wave function HP can he written as

a product of ampliitude and phase,

G~ e

¢h- 1

Then, inserting this particular form of wave funclion



into the Schroedinger equation, and dropping termm of
ardert{ and higher, one obtaina separate equations for
A and & . Necesgary condition for the validity of
the gemiclasaical epproximation im that the teras
neglected must be smaller than the terms Kept.

Take the familar one dimensiopnal WHKB sapproximaetion
ae an example. Going through the above procedure, one
finde that the WKB approximation is good when the
fractional change in k - %;E . M iB the de Broglie
wave length! in the distance )kiﬁ is sgall compared to

5

anity:

gm0 Gx

Zl J I {Lht“é

t6-21

If the potential energy of the system is [Fix),
conditioen (5 2 ¢an ke transfiormed inte

Avo) | jf’-Jm E-V ¥y
r. - / ‘hﬁf—P_-( ) B30

Thi1ia requlres that the potential energy be very flat,
or that the state under cunsideration 1s & highly
excited state. In either of the two vrases, the wave
function behaves |[ike a plane wave locelly, so the
approximation to the wave functien in (5-1) meakes
BENSe. Discussion of wultidimensionu! semiclagsical
approximat ions are mare involved, Rut the reaults are
similer to the one dimension result.

In cur problem, the effective polential epnergy 1s

23
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{5 43

For simplicity, we discuass the condition only for_P

motion. Set z-0 inm (5 4, then
. ! { [ Z
quj’x - =+ &Y fj
r 5' ¢ P (5 5

The potential rn {5 5 and Lopization energy are ahown
in Fig. 5.1. Semiclunseical approximation i8 umed in
region I and region I[{. But the reasons for the
validity of semiclassicnl approximation in the tweoe
regiong are different.

In regien i, the Coulowmlk term ina sti1ll greater

than the magnetic term, so we have

] 5 : L2 2
- x> = { =)
¥ S’(L v (5-6a)

which gives us an upperlimit of regiom 1,
L 3é 3
: < .
fraw v 2 U5 7 0T e (5 Bb]

When the magnet1c term 13 neglected,

!
VP~ —'F

i5 Fal
dw“f)w ’
’LT—F f (5-7h}

Uaipg (H-F) 1o (5 31, we find that the conditien for
the validity of the semivlassical approximalion

f > *312( 4o

(5 Hi
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Fig. 5.)] Semiclamsice)l approximation is ueed
in region 1 and 11 which are away from the pucleus.
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What is heappening here is the following: “‘dP
increases, F -)/f} gets amall and the de Broglie wave
length gets large. Thia saeems 'o Buggest thet the
semiclasaical approximation should fail. Howewver,

L%ﬁfﬁ decrenses even more rapidly than £ -Wf) ;
therefore the fracticonal change of k In B wave length
geta smaller as fJ tncreasens,

In region 11, ronditiop (5 3] is violated, mince
the region 1a 1n the neighborhoed of w turning poiot
(E-¥— {} 1. Nevetthelieas the semiclassical
approximation can st1l] give good results, because the
approximat:1on can be made 1n momentum space instead of
tn vonfiguration space. By meane of a long analynissrIII
fwhich ia not preamented here}) one can shew that a

condition for validity of the mopentum apace

seaiclaasical approximAation 1 s

/f_ijﬁ]g _(?g/u_ !
_gig_f (5-9:

At the turning point, QQ{?P , 50 the condition is
certpinly asatiafied. At ? wI1000s:, the left hand aide
turne out to be 1/30. Therefore the momentum space
form of the semiclassical approximaftion is8 valid in
regron II.

Sinve the configurstion space form of the
semliclassical approximation im valid io regiaon [, and
the mopentum space form of it is valid in region [I, we

coniclude that the approximation is valid everywhere



except close to the pucleus {(There we uyase the Coulomb

approximation deacribed in Chapter 1T11.;.
. The Method for Fropageting Semiclasasical Wavea

Even this narrow title demands many pages to
answer ail the relevant queptions. I mhall be content
ta explain the pnecessary sieps in carrying outl the
procedure. A partial proof of the validity of this
provedure 13 given 1in Appendix E. Any perancn who 1is
intereated 1n more complete and detmiled proofa is

urged to read Refs.2¥ .
1. Proredure

First we atete as briefly as possible the
procedure for propagation of waves; then we diacuss the
meaninga of the guantiti1es that enter the formulas.

Suppose B Hamiltontian H{ﬂgjis given (g is the set
of coordinates xyz'. Then in quantum mechanics the

wave functiunﬁﬁﬁ}satlsfjes the Scheonedinger equation,

JIE_'H(_ItJ%;%)]HKS)ZD t5-107

We auppose that the wave functianUﬁ)ls known on e

two dimensiconal initi1al surface

{ = 8°()

(5.1l

as
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{5-12)
J{ representa the coordinates parameterizing the
initial surface. Then 1n semiclaseical spproximation
the wave can be obtained in the follaowing way:

tal Compute classical trajectories eccoerding 1o

%:—% (5-13a)

with initial posi1tions on the surface

it =o) = 99(x)

{5-13b}

{5-13c}
The initial momentum is taken such that the components

tangent to the initial surface are eqgual to

AS¢ g}
Pit=0)em P4) = L___}—%Lcﬁ ) {5-13d)

The component of P normal! 1o the surface 15 determined
by the energy condition
HPE-E=0
(5-13et}
Integration of the family of trajertories from the
initial surface determines s function qut,of ),
ib) Compute the applitude Ffactor A[q:}

The ampliiude factor A{q) is

- Tt=e )
Aﬁ&f"{”‘—i/ ;’-ﬁ;x) {5-14a;

and Jit,of )- /Je{( ifiﬂ)/ L5 14b)
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(¢} Compute the phase increase S{(q}) along each trajectary

jzsz;x))—;[j Pdifp ot
s

{6-156)
(<) Compute the Maslov index )Q along each trajectory

The complete definittiroen of the Maslov index jl jg
given in refag. 28 . In the preaent case, it appeara
that the Maslov lndex 15 egqual to the number of

caualicea through which the trajectory passeas.

Then the wave function at polnt q 18 equal to

W= wi) Ay € O Ik

A
i5-16)
where q is the point at time t evolved from g9 at time
t 0. The sum 15 over 8l1 trajectories which arrive at the
point q from different points on the 1nitial surface,
This procedure is not hard to implement. Some

explanat 10h helps to clarify the procedure,

2. Discumslon

ia} The Amplitude Factor Aig)

d= i) 1 A solution of a firat order tranaport
#quation. 1t representas & clessical probability of
finding the particle near the point q.
are distributed

Imagine a system in which particlen

aver the 1nitial surface q-qUia 1 with a denaity
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f¥g@. Those particles will move according to
clasaical mechanica along trejectories (5 -131%. If
neighboring trajectories sepesrate as they move, the
denpsity of particles will decrease Bnd virce versa,
A“fq) given in eq. (5-14% measuresa the relative denaity
of particiey along the trajectory if the initial denaity
Ls unity. Therrfnremzllg} is the absciute depsity of
particles, accounting for the inpitial density.

ity Classical Action S1q)

1t would be a terrible approximation to the
quantum wave function 1f enly the ciassicnl probebility
ﬁ%q] were uased, sipce the (pterferencea of waves would
nat be correcly desicribed. Interference 15 1mportant
when different trajectories lead to the same final
point. The combination of terms 1n eq, (5 16) gives
interference.

The action 5{(q} along a classival trajeciory s
the phase accumulated while the wave 18 propagating
forward.

(¢) Caustics

Caustics are those singular polnts where AiqQl goes
to 1nfini1ty, becaune Jiq!) goes to zera. Some raustics
are envelopesonr boupdaries of the family of
trajectories, and othera are focal points of the
family.

When going through either type of cvaustic, the

wiuve lose a phase ofdgi ; Two methods can be used 10
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Tfind the cauntic. The first one monitores the aign of
Jit, o) along the trajactories. Every time &

trajectory pasesea threugh & cauatic the aign of J

changes. Another method #xaminea the family of
trajectories, A&t the caustic, neighboring trajectories
croag over each other. One can prove that these two

methoda are 1n fai:t the same.
. Stmplified Formulas under Cylindrical Syemetry

The discussions and the furpulas given above for
the propagation of waves forward in memiclassica!l
approximation are quite general. These formulas can be
ainplified for a myatem possessing svmmetry.

In this section, | shall write down the formulas
For ¥ and J that apply upnder cylindrical symmetiry. it
is natural to describe the system in cylindrical
coordinates ¢ P{ﬁ/ 3.

The z component uf the anguler momentum L: -mhk is
conserved in such a case. The wave function depends upon
the angular variable as ch# . tiven the magnet e
quaptum number m, the rlassical motion ufqﬁ 15
completely determined hy the motion 1n Pﬂnd z.

If a trajectory of given energy is launched from a
sphere with initia) polar angle &, and azimuthal angle
qﬁa, the time development of p and z depend upon the

initial polar sngle & ., but not upon the :nitial

azimuthal angle <Po' and C,t{'f) can be calculated fr-nmﬁf,]hy



integration

P= Pt 0.)
g =4t ,60)

t5-17a)

| | ) (5-17hH)
Pt a) sp,= | —,é%ﬁdt + &,

(5 17c:

The relationship hetween Cartesian coordinate (x,y,2z1

and c¢ylindrical tvoordinates lfidj L 2) s

X = )Qu:’:'¢ i5-18a)
Yy = Pong (5-18b)
R

¢S5 1Bc}

The momenta in the two roordinate aystems are related

by
*’?Ffﬁiﬁ 4—-jzj¢? 5 1ea)
Fy = pesi + &
y = Pesnd ! ?5 (& 19h
fi=F) o

We want to evajuate

? s:@*
7= gg % A4,

1n vylindrical coordinates. FLrat we need to express
all the derivatives 1n t5% 201 1n terms of cvlindrical

variables., Eq. (5 19} 18 one set of such relation.
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Othere are obtained from (5-17) and (5-18}%. They are

%"’%“’#"f%%% (5-21a)
5_&:_;,%5’*‘?{‘ +f@£¢§a (5-21h)

Cl S 7 (5 2ic)
6o Ao
and
l . . (5 -22a!
n_J f¥$”¢
—% Ffﬂgqb (5-22b)
ﬁ (s 22c;
Combining (5 20:, & 191, '5-21 and ¢85 22}, after

about one page of straightforward algebra, we find

T-p [ &

.7

{5 -23%)
o]

So the amplitude factor Afig) is independent of C#
By n aimilar calculation, I ~an be expressed in

spherical coordinatles, which are more ronvenient for

joining the Bemiclussica] wave to the Coulomb wave near

the nucleus. The result 1s

- 92 5 32
J = 7948 /ﬁ, ﬁﬁo (624

Now let us discuss the phase, firat the actian

5. In Cartesian coordinatens {(x,y¥,2 ),

Ay '—'-*ff’xr.f)f#f’ﬂdj +Fdp (5 25a:

i09
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Using {5-16) Aand (5-171, this can be written as
s=[ftp + Bl + e
= it [$€) o))+ [ Bdps pdy

i5-28b)

The initial wave functionj/2°) depends upnn:ﬁo as

thfémﬁJ; therefore the contribution to the full wave
function from the q} motion 15E9Tﬁié][aa is eXperted). e

then juat have to compute a reduced Bction

Sy = [ Bedp + 2y

15-25¢c)
or, in (¥ ki i variables
S-r:/)p;rd?’ T Pod® . 5-25d]
Next lel us consider the caustica for
cylindrically symmetric system. [n our calculations,

we have seen two type of crustics, shown achematically
n Fig. 5.2,

The causti1c at large fj repreaents a very common
type: the trajectories curve back over each other,
leaving a boundary between a classically allowed and &
classically forbidden region. { The forbidden region :is
not energetically 1naccesaiblie;, the trajectories may
have enough energy to go ibto thias region, but much of
this energy is assoriated with z metion, sc the
motion is limited. This 19 the simplest 1ype of

&
craustic, and it has been extenaively atudied. It is
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Caustic

Focus

¥

Fig. 5.2 A schemeptic family of trajectories
showing the caustic ond focus.



known as a "fold”, It haa been proved that when =
trajectary panses threugh such a caustic, then the
Muslov index increases by 1, and the wave undergoes a
phase losa of IR

<,

Near f;'ﬂ there 18 another type of singular
regLan. For m=0, trajectories can converge onto the =z
axis from all directions, forming a kind of focus. 1In
Cartesian coordinates, x{t) aod ¥{t} pasa linearly
through zero; in cylindrical coordinates, P{t] goem to
zeroc and L”Ejt changes mign discontinuously. It is
poasible te prove that thia type of focus aleo produces

a phaae lnas of 7?2‘ [Appendin F).

If m ia not zero, the focug becomes an ordinary
"fold" caustic, with the forbidden regicon et amall P .
The same phase loss of Ei is produced,

Therefore, in the present case, to calculale the
Maaloy index, we only have 1o count the number of

caustics and foci through which the trajectory passes.

E. SummBary

For a cylindricelly asyometric systewm, suppose the
wave function is given on a sphere as ﬁﬂﬁg}é}¢b. Then
to propagaete this wave outwards, use the follewing
procedure,

1% At enoch &_ . assign an initirl momentum
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R;=;C3t=nqﬁ
b= - L ) jgf %i
Pe= J2(F-viry ;fl)]

p=0
{5-26

2! Compute trajeciories ymsing Hamilton's equaticons,

and on each trojecrtory compute a reduced action

--C)’r_:jfordfff@aa&

(8 277
{3) Compute Jacobian
& F
22 3é% FE
- }V‘-"SH”{{;
2L 2
AGo 7B, t5 2B)
and an amplitude factar
- : _ -J
4~ /_7&@) Z
Jit
jz ) (5 29)
In computing the derivatives 1n eq. (5-2H}), r and &
are regatrded as functions of t and G, - In eq. {5 29) A

is mosti easily expressed as a function of t and §, , but
it should be regarded as & function of r and g .

(4) Calculate the Maslov i1ndex ff by counting the number
of caustica and foci through which the trajectory
passes,

{1 Then the semiclassical wave function i1a giwven by

Fir e dj— tfimé

{5 301
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S5ince the initisl intreduction of our phyaical
idens mbout the iopization procesess of atoms in a
strong magnetic field, many pages have besn apent just
to prepare the mathematical tocols so that we can
describe the processes 1n 8 mabre preacise way. By
deriving forsulas related to the processes, we should
be able to make comparisona between theoretical resulta
and experimental measurements. This constitutes the
ma jor part of the theory.

When 1 derive the formula for the smpectra in a
moment [ shall assume that the aumsaries are well
understood. Almost everything that is needed for this
chapter ia contained in the summeries of Chapter ITT,
1V and V,

In the folloewing, 1 will firast recall our physical
picture of the ionization proceamesa, and then conatruct
the Green'ms function from the closed orbits of the
aystem. From the Green's function, [ shall derive the
oscillatory formule for the apectra which we have been
seeking. General discussions of this farmula are given
afterwards. The formula will be illustrated with

computations in the next chapter.
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A. The Phywical FPicture of the lonization Frocesmen

Let us recall]l the physical picture of the
ionization processes for atoms in & strong magnetic
field, which 1 have given earlier and which has guided
us through all the mathemstics.

When e laser is applied to apn atom ip A magnetic
field, the atom may abmorb & photon. When the stom
abaorbes & pheton, the electron goes into m pnear-zerao
energy Coulomb outgoiog wave{ws are considering
ionization near threshold ). This wave then
propagotes away from the nucleum to large distmances.
At large distancesi{not toe clowe to the nucleus) the
wave propagates according to semiclaasical mechanica,
and they are correlated with classicel trajectories.
The wave frontm are perpendicular to the trajectoriea
and the waves propagate along the trajectories.
Eventually the trajectories and the wave frontes are
turned back by the maghetic field, some cof the orbits
return to the vicinity af the nucleus, and the
asscociated waves({now incoming) interfere with the
cutgoing waves to produce the cbaesrved pecillationrs in

the abscrption mpectrum.

A. The Green's Functioon in the Presence of a Magnetic

Field

Let um begin by recalling formula (3  23), which



relates the oscillntor strength dennity D{{EJ) to the
CGreen' function
7 . £y
Ditegy - APt £0) L, <~ fDIGT DY
TH2
R m it oy . .

Here the Green'’a functiun(.r(?,r) im multiplied by the
initinl state 'ﬁ times the dipole operastor ) and
integrated. Since the initial stete im localized arcund
the nucleus, it follows that we need @'?f}f"l) only for ;_r-"

=i
and 7' both amall.

The outgeing Sreen’s fupnction near the ionization
threshold for a Coulowbh potential G—; was fTound in
eq.{4-15). The Tull Green's Tunction in the combined
fields can be constructed with the help aof 6’3

Let us write the full Green's function ams the
outgoing Coulomb Green's function plues en mdditional

functian CTIB N

te (o 5 o F
GT ’Gc; f‘:cg {6-11
. ¥

The physical meaning of Gr;g comes from the
following considerationms.

In the memiclasmical approximation, the Green'a
function ima correleted with trajectoriea({such that esch
trajectory of energy E going from F7 to f-"' given a

. i - —~
contribution like ﬁ(ffjﬁ;@j}ﬁ{fr’j/t} ton{’:r}fT-’) 1,
Gcf{‘,r’;}"ﬂrepreuentn the amplitude for finding the
—

-
electron at 7 , assuming that it atarted from 7/ and

— -
propagated on the most direct path to }F . Since 7 and
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:?;nre both amall, in this case the electron goes fromF/
tU'Ffuithuut sver going far from the nucleus. The
propagation time from f” to i£ can therefore be no mere
than a few atomic units of time. In contrast, Gg;(f:fy
represents contributions to i}f in which the electron
travelm far from the nucleus, Aand then is returned
back. The propagation time on such & path is about 10%
atomic time units when the magnetic field is a few
Teala. The clear separation of time scales for theae
two processes providea a clear distinction hetween(%;
and Gﬁ;

¥ o,
We ahall now construct (}hﬁéﬁ;ijﬂ for E close to

Zero.
1. Green'a Function and Clased Orbitm

For convenience we write {;E tn &qg. [(4-15] here,

(7‘:*(’%’,}"-‘)-%'1 H(&jﬁ) ?ﬂ(’/?’) En{&ﬁ (6-2a)

%G r)=-2md M (6-2b)
Vrri
A careful axamination of (hf shows that it
representa an outgoing wave. To saee thias, conmider the
prime variablea as representing the position of the
source of waves({close to the nucleum). Then for large

ivJ
distences r, we use the asymptotic form of fﬂ;wﬂEE%



- expld (/57 -,%OM)TF-—-IJ]

H (87) ~ L
B € ); T A7)

(6-3)

we then obtain the asymptotic form fnr;;E
y )63

rig

GIERI~ —i 7 2% €

[2 V20l Y, 16.4) TsaeEF) o AT
£, T (8) J 1oy S L T |
{6-4)

Eq' FES _ AN [ 3 I - # b ¥ ;I‘df - - e A e o Tha =mhrniras
Eq. (6-4}) tellsa us that Gz is outgoing. The above
outgoing wave can also be regerded ams a superposition

of cylindrical outgoing waves,

G T 71 k% Up(6.7; 59! ) 7P (6-5a)

ol - T
Unl® 7, 8¢ )= 1 f7 2% %ﬁrw) h‘-;‘f}__;@’ Y (84 -

3 ) 4
o Mﬂ&ﬁr.g——,— (6-5b)
r3%

This Green's function Gﬂf does not include the effecta
of the magnetic field. We now wish to centioue thins
wave into the region where B cannot be peglected,

To de this, the space is divided ipte two regions:
the inner region r<ro, and the outer region, r>te,
where ro im a radius large enough that the

semiclapwical spproximation ie valid but swall encugh

it8



that the diemagnetic ters can be naglected. As was

shown in Chapter I¥, for B wa few Teala, any distance
between 30 and 100ms is mccepted {(we Look re=50). For

iﬁ on this aphere, with ih'uithin the domain of the initial
ltate(’}’<4an}, :tﬁfﬁ}il given by w8q.{6-5), We Bay pow
regard each cylindrical compaonent um@,?j; ?-;lgié‘)eimﬁd'
{with 7'G'¢®’ fixed) as an “initial wave" on the murface
r-re; the semiclassical method desacribed in Chapter ¥

ie a procedure for propagating this wave outward.

The wave will go cutward initielly, and later the
magnetic field will turn the wave back., Slnce ths
cacillator strength dennity invoelves the overlap of
this wave with the initial state Yy localized sround the
nucleus, non-zero caontribution to the sapectrum will
come aoniy if the waves roturn to the vicinity of the
nucieus. Am we paid, the waves travel along classical
trajectoriesn. To have waves return to the nucleus,
there murt be trajecteries come back to the nucleus.

We further eargue that if a family of trajectories
returna to the vicinity of the nucleua, then (for m=0)
there will be a trajectory in the center of the family
that comes exactly back to the nucleus. Similarly if
there ism 8 closed orbit coming back exactly to the
nucleun, then there in a family of pearby orbita that
come clowe the nucleua. Thus we Bee the close
cannection between closed orbits going Trom the nucleus
te the nucleus and the spectrua.

{For lf*(h ne clamsicel orbit pemees through the



nucleus; however Ffor every femily of corbits that begins
and ends 1io the vicinity of the npucleua, we can selert
a particular orbit which comes closest to the nucleus.
Those orbits play the asme role for l:*ﬂ as do the
closed orbites when m-9Q. For convenience, we shall also

refer these central orbits as closed orbits.)

Next I mhall deecribe this connection gquantitatively,

2. Contribution from Each Closed Orbit to the Green's

Function

Let we reiternate the sbove ideas am follows. For
A given magnetic quantum number m, muppome a cloaad
orbit going ocut with initial polar angle Eg? snd

returning with final angle E%Z'ia knowni{msee Fig. 6.1,

Now if the initial polar angle&] is knownisee Fig. 6.1).

trajectoriea are computed, a family of trajectories,
for which the rlosed ope is in the center, will be
found. If the cylindrical wave in {6-5a) is conmjidered
as the initiml wave opn the saurface r=ro, then the wave
associated with this family of trajectories can be
faund by uming the semiclammical method of propagation
along the trajecteries. Am the wave propagates
following the trajectories, it will later come bachk
rlose to the nucleus.

To compute the omcillator strength density, the

resutting wave, in the vicinity of the nhucleua, must be
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Fig. 6.1 If a closed orbit comes back to the circle
ro., then the neighboring trasjecteries and the asmociated
waves come back to the vicipity of the nucleus.
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calculated, for the overlap of this wave with the
initial localized state ?% gives the oscillator strength
density. But on the other hand, we know that the
semiclamgical method will breeak down if the wave is
propagated too closes to the nucleus., Therefore we
mha!l instead fiod a partial- wave expansion formula for
the returning wave close to the pucleus from the
incoming memiclassical wave at moderate distance.
et A (871567, %) and S, (6] 7,87, %) be the
applitude factor end action in the wemiclasmical
preopagation formauliam for the closed orbit freom initial
angle @tﬁon # aphere with radius 731 ta a final angle @’F‘&f"‘
on & sphere T! , and let ﬂ(%’l?&i-&ﬂ)ﬁ)be the Maslov
index on the same orbit. Then the returning wave in

the direction Q;'on the sphere ?f im

= A or w) € KOO0 e S 6P )

Un(Q7 7 B4 r)en?
{B-6)

We now make pur leat mpproximation. We assume that the
returning wave in (6-6) is approximetely a cylindrical
Coulomb wave of the type described in section 1V.C.3,
and given quantitatively by egq. (4-40;. In thim
approximation, eq.{6-6) is equal to a constant times
eg.{4-40}). Thim conatant can be found by evaluating

both formulas at the chasen radiums ﬁ?;. The same



constant multiplies the partisal-wave expansion (4-39),
giving the partinl wave expansion of the returning

wave close to the nucleuns,

L

and . £ ~1¥ d
Ay, == 72 23 ( 1;4)2 sy 1) e 2 S 7;:(%"’0)

AL, 62 ) VE 60 Wl —F M )

)]
-u%aﬂTﬂng£¢;T9
U&7, 5,80 ¢ '?’")

{B-7b)

It is hard to see how accurate the approximation
isn when (6 7} is derived in this way. We can only
Judge that the procedure is reasonable on physical
ground. Of course, we would like to have a better
eatimate of error for such approximation. In Appendix
G, I shall show that this approximation is accurate to
about three percent.

In the ebove derivation, the memiclasaical wave in
the outer region ia joined to a Coulomb wave in the
inner region; the Jjoining radii ure"ﬁifor the outgoing
wave, and H}fur the returning wave. A Qquestion
naturally arises; will the reault be the same Hhen'ﬁi
and 7,fare changed? This question is studied in detail
in Appendix H. It ia ahown there that within the

approximations made, as lopg as these two radii are
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small encugh that the magnetic field is neglibla and
Ilnarge enough that the saemiclessical mpproxisation and
the aaymptotic form of j;;_,w andf'igﬁ can be used, the
reault will be independent of the valuyues ofjai and ﬁ? .
Hence the theory is internelly consistent. The result
in Appendix G show that the appreximaticn of the
returning wave hy a Coulomb wave is mccursts to about
3%, and numerical tests show that the coefficients
very by a few percent when the joining radiue is varied
betwaen 30 and 100a:. Because of this, from pow on, we
can let ?;z'—?"}::}; {=5ﬂ=n). wso the forsulas can be

simplified msomewhat.

3. The Green’'s Function--Centributions from ALl Cloaed

Orbite

Let (#] ,K,) label the f*% closed orbit in the
subepace of a fixed magnetic quantum number m, sand
let A{f%:‘m: S;:%': rr \i(_gw; @;Lﬁ‘,ﬁ) and i{ J'(:'Q;h: }—5)
be the pmplitude fector, mction and Maslov index for
the closed orbit from the initial aphere}éwith initial
angle @E‘“to the final sphere 7 with final angle ;9;“*.
Each returning orbit producenm 8 contribution to the
Green's function given by (6-7), and the Green'e
function im the sum of contributions from each such
orbit, Using the expresmion feor the initial wave in

(6-5b} and summing yﬂf# in (6 6) over all w's and over



all closed orbitas Ke for saach m, we then ocbtain the
returning part of the QGreen's function in the inner

region

A3 3 Tpee JudD
CH=2 3 gy ey Jum BT
Pk Bdp=tml 1 r JF{E 8

ol -8a)

5-(

where

‘; L " ﬂf{rﬁf

= )" ‘2“’%‘ ygﬁ ?;‘4;.,5%@;&

VD el 0) A

é?l

{6-Bb)

Clearly we have expresased the magnetic field depsndent
part of the Green'm function in termsm of the properties
of all the closed orbites going from the nucleus and
returning back to the nucleus. From {(6-B) it ies mlmo
clear that different s's avre pot connected, they are
merely summed up. The contribution from one m does not
affect in any way the contribution from
different m. This fact i1# consimtent with the Tact
that the magnetic quantum number m is conmerved in thie
svatenm,

The Green's functien calculated ubnve¢{§* é&;fé}

£

reprenents the Green’s function for ?° and :rf in the

T o 22537 ef[‘i(%%}gﬁ?s ( *.:2["“(‘5{ s g:h:‘: ?EJ}
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inner region amly. Constructing a Green’'s function for
arbitrary values af'F and ?:fuould involve much more
work. However, our Green's function will be
multiplied by and integrated with the initial state, ac
only its value in the inner region is needed.

A complete Green'w function is sysmetric in the

—
two arguments > and ?f .iqg(fJfU im certminly

symmetric iny and 7/. In deriving (%:CF:?Q , Wwe have
regarded ?ﬁ as the source point and ﬁf the fiesld point.
In the repult obtained in this way svmmetric? The
anawer is yes. ©Only o little thought is necessary to
prove thutéﬁi is symmetric. In fact when 59and jinre

exchanged in (6-8), we find only that &;“‘and &J}‘t"need

to be exchanged to make ﬁii symmetric. This is certainly

not a problem. Just resmember that since all the clased
orbite are included in {(6-B), and in claesical
mechanics for each orbit there will be a time reveraed
orbit, which is equavlent to exchﬂngin[tfghhnd EF“Z
From the relationship between a closed orbit snd ita

+ .
time reversed orbit, we conclude GIE 18 mymametric.

C. An Oacillatory Oesciliator Strength Density Formula

Uning the Green's functien in {(6-1), we can eamily
compute the coscillator strength density fraon the

formula {3 233,

We now show that the oacillator strength density
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is given by w smooth "beckground” term Df ff) plus n sum
of osciillatory terma, each of which is associated with

5 closed orbit K, in the m subspace:

DHE) = D)+ 5 Ay (£) Sin[ X @]
17 Lo,
{6-9}

The meaning of all of theme gquantities will be
diacunsed aftesr the derivation.
Assume the initial stmate is & Hydrogenic

eigenfunction,

¥ =Ry ) ¥, 00)

{6-10)

A general dipale operstor can be written in the form
— + ' '
D= aAat(xtiy) + A7(X-2y) Fd°4
=T (atsi8e*®+ a-sn0e 4 avisg)
{6-11}
where {7, (&~ and A® are constants related to the
pelarization of the radiatien field.

Using the relation on spherical harmonica{see

Appendix B), we can write
Dy = rRpg(1).

ar] [EmdEm v [
{ [ (%) 3g #3) }’i"‘ﬁ*’ (204120~} ) Z:IMH]

bt [ Eme) 22 "/@b}l
2 l (2241) (2043 ZI"‘LW*H 7 (2807 }(2 8—) ?;"J""‘f ?



+ Qe _J[%LWM Jm
281X 2243} »?. (obr)(20-y) fﬂ’/h]

(6-12)
For convenience, lat 5;%) denote the ceefficients in thiwe

expression, and writa_}#i as

Nlﬂ% éﬂzi“)ﬁm] 7Kg (6-13)

Now we colculate Q]}‘f"-l/&‘fiéi /}9'11};

putting eq. {6-13) together with the formuls [(4-]15) fer
Gl and (6-8) for G,

j%g&jil the contribution from the direct part of
the Green's function 6&*. That is

| — __ A E-Ep)
%{Ej "‘“ﬂi—““ L,,(E’%/Gfm‘ﬂ> {6-14)

At Zero anergy

()= — 4””‘-’5 >k GIow g

L'm
{6-15)
whern
':'O -
GI(??J;J?"#[ L g(7) M 73 /9
o Jr (6-16)

As in eq.({6-10) the labels n 1 identify the ipnitial
state, and 1° is that set of 1'ma that are connected to

the initiesl atate by the dipole operator, ms in {6-13}.

Similarly, the indirect contribution, from Gé: , im
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He)=— 2BELELL 7 ok 162 e

(6-17)}
From eqme. (6-13; and (6- §), atreightforward algebrna

given

_ E-£:)
Jg,fa)—%znjﬂ e i b by S0 8 Yl 4,)

{6-18B)
We define the qumentity io curly hrncketuJ } to be
Awl.'ﬁd{-_f‘zac”&fdu1th i‘qu,.,,@ real mpd positive. Then eq.
(6-9) follows immediately,

As in eq. (6 15), the sum over m, 1; lz
in {6-18) includes those values that are connected to
the i1pitial state ﬁ%-by the dipole operatar. k;Tlnbeln
the closed orbite in the m subspace.

Let us now diascuss the measning of this equation
and some of the approximations.

When we write the Green's function G—"{——'érgffti , We
derived an explicit form for {}: only at zero energy.
However when the energy is close to zero, the zere
ensrgy é%f can #till be used. That is to say, @;f ~the
direct part of the Green's functien depends on the
energy weakly. On the other hand, Q&E dependa oo the
energy very strongly. Ap 8 conmequence of these two
different dependences on energy, the spectra will have

two very different type of contributions.



How will 6!; change if the energy B is chapged?
To find the anawer to this question, we use the formula
(6-8} fortﬁd; expreased in termes of the contributions
fropn all the closed orbits. Apn equivalent question
would obviously be: how unll d;; change when the
enargy E is changed? Now Ap is related to a closed
arbit, and & clomed orbit ism alsoc related to nmn
propagation of waves along the closed orbit., Lat ue
change the energy mlowly sod msee how ench closed orbit
aod the wave associated with it change. Generally the
initial and final angle &%gﬂ {th‘depund on the
energy, mo each clomed orbit will change to a nearby
closed orbit. This change of path will also introduce
a sapall change in the amplitude fuctarﬂ(@" é’ ?{,)
The Mamlov index i1# & topological property of the orbit
aod it will net change for a little change of energy.
Compared to the above relatively weak dependence on
energy, the mction Syalond m closed orbit changem very
rapidly. In Appendix I, it is proved that the action

along a closed orbit satiafies

S E
ﬁ—):ﬂ.ﬁ)

(6-19}
where T{E) im the time to go along the closed orbit.

We can therefore write the oscillator strength density

around E={ ams

PHEV=TAE) + 2 A, () sl / Al + Sy (£0)]

(6-20)
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Since DJQ{E)- ﬂﬁﬁ:’)and Z’;&ﬁ‘) are neearly conatant over a

swall range of energy, we have

DE)= Yooy +2 A4, ST &9 E4 T K lfo))

Brda, (B-21)

Now we clesrly see that the mpectrum in {6-21} ims
a smooth background and a superposition of oecillatory
terms. The background is from &', the direct
contribution to the epectrum. This background Bf, is
the name e if there were no magnetic field. On the
other hand, the oscillatory terms are indirect
contributions to the spectrum. They are the results of
the co-exiastence of Coulomb and wagnetic fields. ERach
term repreaenls the nmplitude for the electron
being emitted from initiel state yi near the nucleus,

and being returned at time later near the

o,
nucleum by the fields.

The aspectra foermulas in (6-%), (B-20} and {(6-21}
may be 8 surpriaing result at first glance. But if we
recall our physiceal picture, we will see that these
formulas are the natural conseguences of it. To make
this point clear, in fig. 6.2 T show mchematically how
a wave lllBEi!ted with a closed orbit induces an
oscillation in energy. A4 end B rapresent the nucleus
{they ahould be at one position, but for clarity, they
mre peparated). Waves riding along a closed orbit from
A to B at various energiems mare drawn. Now the phass of

the wave at A is fixed. Recnuse the path of the orbit

fwhich is the path followed by thea wave) and the wave
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length change in a continuous way as the energy changes,
the phase at B changes in s contiouous way too, IT we
look at the magnitude of the wave(imaginary part of =

wave like qugLE?% } at differept energy, we should

get » fimura like the nne an the rieht. The mavnitudas
wave like ot S } at differept energy, we should
at B am 8 function of epergy ascillates, The wWave

length of this oscillation ie determioed by the theorem
in {(6-19}. To have the phame change by 27 , the
energy should change by

AE = 275

T (6-22)

The abeve explanation ahows how the oscilletiens in
the spectrum arise io a very natural way. These
resulta mare expresaed more precisely in {6-9).

From {6 9), (6-20) and (6-21) the energy mpacing
of each oscillation is given by {(6-22). Thia
relationahip between the ppergy spacing and the
claamical period of a closed orbit in the system was

firmt pointed out by Edwmonds for cone particular caneg

Recently thie relationsbhip haa been further confirmed tor

many new closed orbite’ . However this reletionship
has been Iilinterprutadi:?nd exactly how to derive it
wage nat clear until this study. In particular, in some
of the early work, the oscillationa were referrad to as
“"resonancea”, and it was thought that they were

asscocinted with quasibound ststes, which would be

aeMiclamesically assmsociated with trajectories having
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quantized values of action vnrinhle-%'ln fact, action
varimbles do pnot exiast for thie system., The total
ection along the orbit is not qumnitized either (there 1a
no such need in erder to produce owscillations, but
umerous articlem on this problem have been talking
ubout the quantized action mlong the orbits for wany
years). Actuslly the phenomenon is easily understood as
an interference effect, with oscillations caused by the
changing phame of the wave along each closed orbit.

It ahould be pointed out that the absolute
pomition of each oecillaetion ia related not only to the

wuven:;é:ﬂs?;n:hgfo ?;i. but also to thes phase ﬂxhbjb)ut ZeTo
enetrgy, for example. This phase involves the partial
wave expansiona of gy%i and of the zero energy Coulomb
wave at small r. In thia region, the semiclaasical
approximestion is not relieble, so it appeare that the
asbsolute phame of the oscillatioos contains guantum
effecta as well aa semiclaseica]l effects(we can predict
the abaolute position of ench owmcillation in this
theory. However even the misused WER wethod. which
quaptizes the action mlong e#ach clomed orbit, cnun only
give the right value of energy apacing!)

Becaumse of the relation (6-19),.a longer orbit will
produce a small energy spacing. As & result of thie, m
finite resolution mepasurement{all]l mensurements have a
finite resclution) can only obtain information about =

finite number of closed orbits in the aystem.



Given the resclution ﬂEﬂEi" & experiment,

cecillations from any orbit with period T longer than

A7 K

T = A E e (6-23)
will be averaged to zerc in the spectrum. 50 when we

do a computation, we 4o not have to find the entire set

of cloeed orbits, but only those with periad
e
7r :ﬁﬁnx {6-24)

In fect we know more about the impertance of each
aorbit than just the requirement by (6-24). Ipn general
the importance of emach orbit or the cscillation ip the
specirum associated with thism closed orbit are
determined by aeverai factora! firsat, the energy
spacing given by (6-22), mo a sahort period orbit ims
motre importmnt than a longer ones; secand, the
menaitivity of each osciilation to the magnetic field.
We khow in practice the magnetic field can pot be
perfect]ly uniforme end atable., Apother question then
arises: what happenm to the oscillations when the
magnetic field ie changed? By using arguments similar
to these umed to obtain (6-21) from (&-20}, we know the
aup]itude,A#£L af each oacillation will not change
much. Agmain the phese change is most important. In
Appendix J, 1 prove that the change of action for each
closed orbit with respect to the change of magnetic

field ia related to the integrel mlong the closed orbit
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{6-28)
Tvypical valuens for g%— near the jionization

threshould mt a few Tesla are abeout lqj%f. This

requires that the magnetic field haw to be mccurate to
within leas than cne percent if the oscillations in the
spectrum is to be vimible, From (6-25) longar period
orbits will have n more sensitive dependence on the
magnetic field. Agmin only smhert period orbits have to

be included in (6 20Y and (H-21). Given the accuracy

of the magnetic field 4B , we can find an upper limit

far gg—. and any orkit with an value of g% larger than this
will averaged to zoaro in the ocbmerved spectrum.

Third, perhaps the most important quantity which
determineas the importmnce of each oscillation in (6-20)
and {6-21) im the amplitude Amah_af each oscilletion.
Of cause, larger amaplitude oacillalions are more
important and easier to messure in experiments then
seall mmplitude oscillations. Without actually doing
any calculation we can only draw some geheral
conclusians mbout the size of awplitudes. Clearly the
amplitude of oscillations in (6 20C) and (6-21) are
related to C#;Ehin {6-Bb). If we exsmine cﬂ;rilore
carefully, we maee the value Gﬁﬁéﬂdependl upan two very
different kind of factors. The first type, which

reflects the angular distribution of the initial wave
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hki , are those sphericeal harmonice and sine functionws
nvaluated at ocuting or returning angle. The second
type, which isn » measure of the divergence of the
family of trajactories along mach closed orbit, is the
amplitude factor ,4(%""‘/ [{.];":“1}3) . This is & classical
effect, We know the system is claasically chaotic, mso
neighbouring trajectories nlways separatm. In the wave
picture, the wave spreads to o larger and larger area
and the intensity of the wave becomes weaksar and
weaher. Therefore the amplitude factor will generally
be amaller for longer orbits.

Foer orbita having aimilar periods, and miwmilar
clasmical ampiitude factors, then quantum effectes
bas a decisive role. I1f, for example, the claasical
orbit goeama out or returns right at the node of a
spherical harmonic in {6-8Bb), then the amplitude of the
correspohding oscillation in the spectrum will be
nearly zera. This phenomeon ia clearly seen in
experiments.

In rencluaion, the three factors-- the energy
apacing, the menaitivity of the phase to the megnetic
field and the amplitude of oscilation consistently
tell us that shorter period orbit are more important than

longer ones.



. Summary

1. The Green's function for comsputing the ionization
spectrum of atoms in a mtrong magnetic field is found
to be equal to a sum aof the Green’s funpction without

magnetic field [%f and a wmaghetic field dependent

part (37

Iy S ¥
Lr [“F(_ ?L ('F"‘-ﬂ {6_1}

{af was found ip Chapter 1V explicitly. (ﬁj im
expressned in termm of the progerties of mll the
ciosed orbits in the ayatem in (G-H}.
2. The major result of this study, which is proved by
using the aboeve Green's function, is that the
ionizatien apectrum can be written am & smooth
beckground plus a superposition of oscillations. Esch
oscillation is closely connected with a closed crbit
in the mystem and from the properties of the closed
orbit the spectrum can be completely determined.
3. If the initiml state and lmaer polarizxation are
apecified, then the absorption spectruas near the
ionization threshould can be calculated by the
fallowing procedure:
L
{i}) Evalumte the expansion coefficients &T&1'l for Dy
--the product of dipole operator D ahd the initiel
state ?i accerding te (6-10), (6-11}), {6-12)and

{6 13}).
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{ii} Cmlculats the radial overlap 1ntu¢rnl{3}6ﬂj&ft}

rur,fiﬂﬁg ohly as in (6-18). Some of these

integrala are listed in Tuble 4.1.

{iiilCalculete the amocoith backgroupnd of the spectrums

fiv)

v}

(vi)

with oq. (6-15]).
Find all the clomaed orbite with periocod T less than
a desired value Taax in enach subspace of m that
sppears in the expansion of D?% in (6-13). For any
m., an orbit ie sasid to be closed if it begine
radinlly outward on the ipherej?:?; , mnd ends radially
inward on the same sphere,. For each auch closed orbit, -
compute the smplitude factor A, sction S5 Maslov index [
and period T.

i
Calculnte th from (G6-8}.

*

From (6-18), evaluate the oscillation amplitude fwak

and phase ‘J{ni.._ .

{vii}The mpectrum near the ionization threshould is

then given by (6-21).

Obvious modificationms of this procedure can be

made to obtain m spectrum arcund an energy E: other

than

the threshould.



CHAPTER ¥1]

SPECTRUM FOR TRANSITION 2P;-»mf =0

In the previous chapters, in particulear in chapter
VI, our original phyaical ideas 'picture; of the
ionization procespea of an atow ip A mtrong megnetic
field have been turned into qumantitative mathematical
formulas. It isa boped that with theae formulas, for
example, the mpectrum formulm in (6-9), we can explain
the already existing experimental data. And we would
alao like to predict what would happen 1f future new
experiments are done. I have particularly in mind the
mont recent measurewments of Hydrogen atom in 5.96 Tesla
maghetic field for transiticn from 2P: to final mr=0
states near the ijonization threshold’ . These
megadrementa were disacusased in chapter I1.

It ia also my hope that in this chapter 1 can
illuatrate the theory described so far by emplovying it
step by step in a resal! computation. By the end of this
chaptar, I wish to convince the reader that the theory
is easy to implement, emsy toe understand, and it
provides ua an framework for underatandiong the
complicaeted ppectrum of an atom in a strong magnetic

field.
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A. Theoreatical Spectrum for Treosition 2Fy;—3mr =0

Our calculation in this section will be for the
trapsiticn fraom the 2Py, initisl state to final states
near the ionization threshold with m¢-0 in a magnetic

field B-5.96 Tealn.
1. The Background Specirums

Giveno the initial state 2Py, the wave functiop for
such a state is
M=Kz Yo
(7-11
For trapsitions ta finnl atatas with the same magnetic
gquanhtum number mr=w;=0, the light must be polarized

with electric Field nlong the z-mxis, BmoO

D=3,

{T-2)
and, comparing (7T 2} with (6-11), we find
Lllj-——";_j_,-_ :D
=
(7 3

Following {E—lE},;DgE now can be writteo as

Pﬁ=mﬂ-[ L)y fareiia) ;{;GJ

S0k 20T i 1)

=¥V K3y [\/%LD +E)’E;D}

(7T 4



Comparing {7-4) with (6-13), we find in the expmnsion

P Y R e s

521'9:\/% / é{.i :\/:%_ (7-5)

and all other &} are zern,
"

The energy of the initial state iwm

£i=— S
3

2 7z {(7-6)

From (6-156), the background spectrum is (in Atomic

Unit):

PE)= 4| H612 0% Larz 1oy ]

{7-T}
Now we look up Table 4.1, and we find
GL(2,02)= T =5 4147
(2 4.0V 7 —

Putting (7-B) into (7-7}, finally we obtain the

background spectrum

H(£20)=42/35 Wactrees e

This is the oscillator streogth density at the
ionization threshold in the absence of wagnetic field,
and this copatant value also representa the asmooth

background spectrum near E=0 in the presence of a
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magnetic field.

2. Trajectories and Closed Orbita in the Subspace of

m=0

To compute the oscillationsa io the spectrum we
have to study the cleassical trajactories of this
ayatem, Because only m=0 harmonice appemr ino the
expansion uf:Dfi in {T-5), it is enough to restrict
cyrseives to the m'0 subspace.

For the magnetic quantum number m being zero, snd
the magnetic field strength B=5.96 Tesla, we cabh write

the Hamiltonian ip either c¥lindrical cocrdinntasij].z}

K 2 Ty _ i 596 2 2
H 2 {Pf f}’;) IP2e32)e é. (E 35a/0 5) -F

I

(7-10a)
or in spherical cocrdinates{r, Q.(ﬁ}
1
— ML(‘;)Z -ﬂ& J J_ .9
H‘" v T —— A
2 74.% r ¥ 2351 f) > 5mP
{T-10b}
Trajectaries can now be obtained by cheoosing an
initial condition end integreting Hamilton's equation
for {(7-10}.
We need to find thoae trajectories which go out

from the nucleus anpd later return to the pucleus.
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Therafore we choowe the following initial cutgoing

candition on a circle ro=50mo

Fr=y2 (- (.zi;iof)l 755,

Fo =0

=

&=8,

{7-111}

&, is the polar angle from the r axis. In principls
all the &, fros 0° to ]1HO® should be chosen. But
becaupe the Hamiltoniaean in (7-10) has a symmetry in
2, ipamely i1 1s unchenged when z —% -2z3, therefore Lthe
trejectory going out at angle & can be obtained by =
teflection aboeut the F}:ﬂ axia from the trajectory
going out at angle Tr_ga. Therefore we only need
to launch trajectories with initial condition as given
in (7-11) for 0°c&, <%p°.

The time unit in this problem is conveniently

teken to e the cycletron period

o = LT7C
€R

:-—'é.DXfD_"z Jeo

(7-12}
The availsble experimental spectrum correspopnds to
trajectories which return to the nucleus within a time
T<c10Tc., We shall find those closed orbits.

To see the general nature of clamssical orbite in
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this system, in Fig. 7.1 1 have plotted 91 orbite
starting with 5, at each degree from 0° to 90%. O(ne
can sen from Fig. 7.1 that the trajecltories starting
with initia]l angle lesa than 259 can not come back
close to the pucleus within T<10T:. So there im no
cloeed orbit in this range of angles.

One nlso seenm the chaotic nature of the
trajectories. Neighboring trejectories starting out
with initial mngles differing by only 1 degree remain
clome to each other only for a very short period of
time (of the order of Tc). When they separatea, their
subsequent behaviours have no similarity.

In principle, if orbits begin sufficiently close
together, then fer any finite time T they remain close
toegether. Hence if we wet a fFixed upper limit to the
Lime T...Jthan in principle we could choose ﬂg%
sufficiently small]l that neighboring trajectories will
be cloae together for all T<Taax. Thus we could lemrn
the behavier of all of the orbite for thim time T<Tmax.
However, one of the characterimtics of chaotic
classice]l aystems i3 that trajectories diverge from
their peighbore exponentially in time. Therefore as
Tuax gets large, the initial conditions must be taken
extremely close together. {(for Teex wi0T:, we estimate
thet the continuous relaticnship between finanl asnd
initial conditions would be visible if wa compuled

107 orbite with initial spacing s 10" * degree. )}
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orbites of the system with feawer trajectories. Each
closed orbit{which returns exactly to the pnucleus) 1is
surrounded by peighbors which return to the vicinity of
the nucleus. The important closed orbite Bre those
with large ampliitude factors in eq. (5-29), and the
amplitudes are inversely relnted to the rate of
_diverience of neighbors from the centi;l clomed orbit.
In other wards, the important clu:e%jsglsthe ones from
which the neighbora diverge relatively slowly. Wea find
these an followns, Trajectories are launched from the
initial circle r=re in ml!l directions between (% and
90° with initial angle specing 4f, for neighboring
trajectoriea; then the trajectoriss are computed and
the coordinates (r, 34} and moments { Py .Ih ! mare
monitored. A trajectory returning to the vicinity of
the nucleus c¢rosses the circle r=rn. On this circle

theae condiltions must be satisfied:
=T
Pr‘-CJ

{713}
If Af_ is smmel]l, we usually find families of neighboring
trajectories that cross the circle. The number of such
trajectorisea in a family isa a measure of the divergence
0of thim family of trajectories. The grenter the
pumbher, the more atable this family. I mhall c¢call this
number the importance number for this family and denote

by N.. In emch family of trajectoriem, there will ba a
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central orbit which satisfies (7-13}) and in addition
antinfies
Po=0

(7-14}
oo the circle. We call this central orbit the clesed
orbit esmociated with the family of trajectories ( for
m=0 this orbit returns exsctly to the pnucleus.). This
closed orbit cap easily be found by an 1teration procedure
once Iwp trajectories in a feawily crossing the circle are
known. Thies closed orbit charecterizea the family of
trajectories. More importantly, all our formulas are
expressd in terss propertiea of such cleosed orbit.

In Table 7.1, 65 closed orbits wre listed. They
were found by launching 6501 trajectories from 25° to
90° { A§,=D0.01°}. These 65 orbita ml]l have the
importance number Ny greater than or equal to 3. Other
clomsed orbits having ¥ lean than 3 were nlso found but
discarded. The mirror imeges of these 65 orbits about
the P axis are another set of 65 orbita (except for the
one goes exactly mlong the  ax1s). Therefore we have
hera 129 closed orbits in the m=0 subspace. The G5
cloeed orbite are malso shown in Fig.7.2. We shall
calcuiate the sacillationas in the mpectrum sssociated
with each of these orbits in & poment.

But firmt, to asee ints the pature of the family of
trajectories asscciated with a clomed orbit, I plot in

Fig. 7.3 the family of trajectories amsociated with ¢ losed
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Tabhle 7.1 65 closed orbite of the elactron ip
a Hydrogen atom in 5,96 magnetic field at zero ensrgy
in m=o subspace

No.* N, © eic Qfl
1 404 90.0000 90. Q000
2 244 53.8B315 63.8315
3 121 42 . 096 42. 80496
] 75 6£3.649] 116,.3509
5 GA 37.3112 37.3112
5 54 Bl1.6769 128. 2460
7 53 51.7T540 9g.3231
2] 49 33.83549 33.8359
9 38 31. 3650 31.3650
10 i8 6G7.49562 133.3209
11 37 46.6791 112.5048
12 3z 41.5414 100.8B56
13 31 29.4816 29.4816
14 28 T2.3793 147 . 3385
15 28 T6.0617 L46.9510
16 28 79.1145 138.4586
17 26 39.6015 110.5060
18 26 69.48940 140. 3985
19 26 27.97484 27.9784
20 24 36.3T739 102. 4857
21 24 60.2704 60.2704
22 24 77.5143 143.6261
23 23 7T0.9628 144.5354
24 23 26.7390 26.7390
25 23 3.1415 T3.1415
26 23 75.2766 T2.8452
27 23 i15.4646 109.0372
28 23 33.0490 103.9383
29 23 32.6615 107.68207
KEH 20 25.691L" 25.6917
31 19 T5.5122 T5.5122
iz 19 64. 1900 H83.7954
33 19 831.79564 64,1900
34 17 72.9452 TH.2766
as 12 Bi.1921 Bl. 1921
36 | B 66. 1890 B6.18940
ar 11 76.84141] 71.3130
38 11 71.54979 T1.5979
39 10 71.3130 76.8441
40 10 45 . 2669 59.2104



Table 7.1 (continued)

£9.8278
68.6640
B].3044
7TEB.T631
78.2444
65.6207
50.1847
47.49562
60 .0954
G4.9144
85.1381
40.7258
ag. 7169
46.887%
§8.7307%
B2.05214
40.1877
39.7369

»The orbite Bre ordered mccording the value of the

importance number Ni.

LN,

‘The initiml cutgeing polar mnogle(in degree) of the

orbitm.

ia the

importance number.

dThe fioal returning polar englel(in degree} of the

orbitme.

r‘'n r'n=50an

in the calculation.
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(b} Magnified region close to the nucleus.
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{c) Further magnified region of the nucleus.
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orbit NO. 2. The family of trajectories h;: two
caustice, each close to n maximum of P . apd it passes
through a focus at P =0, (The focum would only be
vimible if the three dimensional femily of trajectories
were plotted. ) When the trajectories returp to the
vicinity of the nucleus they are scattered by the

Coulomb field, mand each orbit is locally a paraboln.

3. The Spectrum from the Closed Orbits

From the closed orbits found above, the action S5y
aelong each clowed orbit can be computed from eq. {(6-256c)
or {5-25d) by doing an iptegrmation. The semiclassical
amplitude factor A can be calculated from ege. (5-28)
and (5-29) in principle, but in practicre mome
manipulation of these two equations may be useful.

Thim point is further discussed in Appendix X where
practical formsulas for camlculating A are also given.
The Maslcv index for each orbit is found by summing the
number of extrema in f3 direction and the number of
croasings of f}=ﬂ (the £ axis). Then usinog =»q. (6-18},
we caen easily find the amplitude and phase of the
cacillation in the absorption mpectrum associated with
each closed orbit. The period T of each closed orbit
is mlmo computed, Themse reaults are al] listed in
Table 7.2

Examining thim table, we potice that the msgquare of
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the iwportance number ias approximstely proportionasl to
the memiclassical amplitude factor A. Thim i# neo
surprise, becaue both the importapce number N; and the
amplitude factor A measure the divergence of the family
of trmjectoriss maround each closed orbdbit. The
importance number iea more iptuitive and less rigorous,
while on the other hand the amplitude factor A is a
well defined gquantity mnd it enters into the formulna
for the spectrus.

We almo note a loomse connection betwesen the period
of the closed arbit and the value of the semiclassical
factor A. Laonger, more complicated orbits usually have a
smaller value ¢f A. We pote alwe the shorteet, most
stable and most important orbit is the one that goes
along the f axim; its effect on the spectrum is wost
prominent and of course was the firet to be
recognized.

Finajly we nee that there are pairs of

orbiteiNo.32 and No. 33, for exmmple) having identical

action and period (and A?rﬂ-%%)}i 1. In fact
the two orbits mre related by time-reversal. More
generally any corbit, its time reversed orbit, itm
mirror image about the E>aniu and the time revearsed
orbit of the mirror image all contribute the sams
oacillation to the spectrum. We anhall sum their
contributions.

By summing such corresponding terms and

rearranging the oscillations in deacending order of the



Table 7.2 {a)

amplitude facter,
65 closed orbits

[
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Maslov index,

Semiclassical
action and period calculated for

727.41
T27.10
636.565
641.14
641.14
590.75
686G. 26
652.89
6E6. 26
687 .84
617.39
961.22
961.15
687.88
T27.10
727.41
642.02
961.05
742.55
T42.55
961.15
8lz.12
761 .84
923.17
924.04
923.14
T3z, 37
828.09
822.41
922.00
732.37
108D0.1
822.41
Ba1.19

LI N )
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Table 7.2
No iL‘
48 i3
49 11
50 9
Al 13
52 13
53 11
54 11
55 11
56 11
57 11
5B 13
59 17
60 11
61 11
62 i1
53 i1
B4 17
65 13

{a} {(continued)

H49. 38
BB7.27
1060.0
788.65
828.09
788.65
897.04
1060.0
BBT .27

aThe Maslov index associmted with each closed
orbit. 1t ie equal to the number of extremes in
direction plua the number of crossing of
®*The asplitude factors sre computed from circle

re to re. These numbers should be mutilplied by 10-2,

axis.

cThe actions are computed from circle ro to ru.

“The period T

is in Tc.
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Table 7.2

phases,

magnetic field for 65 cloeed orbits.

6.64x10-1
4.}4x1D- 2
2.02x10~1
T.96x10- 2
2.51xl10-1
&.68x10" 2
6. 6Ax10-2
2.59x10-!
2.53x101
4. 14x10-2
4. 14xl10- 2
9, 7TIlxl0-2
2.42ul0-1
9,39x10- 2
1.16x10-!
G, 71IxlD-2
5.89x10 2
5.89ulD-2
2.31x10-:
1.00x10-1
2.31x10-8
1.00x10-1
7.1Bx10-12
2.20x10-1
5.89x10-2
6.06xl10-2
7.16x10-2
1.11x10Q-2
9,39x10-2
2.08x10-1
B.31Tx10-2
2.07Tx10-=
2. 0Txi0}-2
6.05x10-2
5.89x10-2
T.96x10-2
2.02x10- 2
2.39x10-2
3.02x10-2
3.1Bx10-3
q4.46x10-2
2.39x10-2
4. 14x10-2
3.18x10-3
T.32x10-2
2.39x]0-2
1.75x10-2

DO NN O e T WS NI O — S 0O Wm0 0 S WE A WS L WMt O RN

NN ONOONODE OS2 RNOoO~ 0P -T1O oo w—F—0 ULl @m—=4=0800

(b} Calculmted oacillation ampltudes,
and derivatives of phases with respect to the
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44 2.55x10-2 3.42 51.4
49 1.27x10-2 1.65% 48.6
50 3.34x10-+ 0.81 47.7
51 4.30x10"2 5.93 51.2
52 2.55x10-2 J.42 51.4
53 l.11x10D-2 D.9%4 49.8
54 T.96x10-2 5.81 49.7
55 L.1IxlD-2 0.94 49 .8
56 Z.45x10" 4 a.07 52.4
57 T.96x10-2 5.81 49.7
58 5.73x10-2 2.87 51.9
59 5.73x10-2 2.856 6l1.5
60 4. 7Tx10-2 4,77 46 .3
61 4.46x10- 2 1.37 48. 6
62 4.77x10- 3 4,77 46.3
63 1.75x10" 4 .21 52.4
64 5.73x10-2 2.85 6l.5
65 5,73ax10-2 2.87 51.9

ssmplitudes of the closed orbits.

"Phasens of the closed orbits,

chperivativey of the phosea with respect to the
magoetic fiesld in Tewla !,
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pariod T, Table 7.3 is obtained. Thess are the
theoretical spectrum (osmcilllationa in (6-21)}. We

next compare them to the exparimental resulta.

4. Comparisones Between Thecretical and Experimental

Spectrum

If the spectrum ngfj i plotted according to
{6-21), taking the oscillations from Table 7.3 and the
background in {(7-9), we get the spectrum ipn Fig. 7.4.
For comparison I alsoc show the saxperimental spectrum.
Both thepretical and experimental spectra are so wildly
oscillatory that it sesms to be impossible to compare
them directly. The comparison between theory and
experiment has to be made inh a different way.

One method 1o compare them is to choose a "window”
function with proper width, and average the
experimental spectrum locally. In doing so the small-
acale oscillations ih the spectrusm will be averaged to
zero. What is left over is the large-ascale
oaclllations. In Fig. 7.4 () is ap experimentnl
spectrum(meapured nt somewhat lower resoiution than
that in Fig. 7.4 (f) and the result obtained by
smocthing that spectrum——-1ight line: epectrum; heavy
line: smoaothed spectrum)!,. This smocothed absorption
spectrum is directly comparable to our thecoretical

aspactrum including only the lowsat T ocscillation
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Table 7.3 The oacillatory spectrum for traoaition
2Fs to mr=0 near threshold of & Hydrogeno atom in 5.95
Tepln magnetic Ffield.

2.3613
2.57H4
2.B693
2.8B825
J.oalB
3.1824Q
J.4586
3.5407
31.5826
i.5889
3.6349
3.7428
J.8605
3.8B724
3.9B0B
4.0582
4.3674
4.4066
4,4365
4.540D7
4.5962
4.6645
4.8526
4.8838
4.8231
5.3156
5.5282
5.6015%
5.6270
5.8533
5.8920
6.1913
€6.6054
6.7235
6.8979
6. 9254
7.0086
7.0196
7.6084
B.6106
9.6121

6.54x10-
8.28x10

1.59x%10-
2.6Tx10-
4.04x10-
8.28x10-
4.62x10-
1.66xL0-
1.18x10-
3.BBx10-

1
2
2
1
)
2
L3
1
1
1

6.
1.
5.
LBOx10-"
.TBxr10-1
.Z2Tx10-¢2
S55x10- 2
.36x10-!
HO9x10- 2
.59x10-2
.46x10D-2
.5Ax10-2
.D1lx10-!
.189x10° ¢
.29x10-1
-91lxl0-2
.D2x10-!
.BEx1Q0-1?
.50x1D-#
.2Bx1l0-2
.06x10-1?
BHx D!
.TEx1D-!
21x1D-1
T Tx10-2
.B4x10}
2Tx10- 1
.42x10-1
L29x10-1%
.46x10°1?

i

1

1

1

B g e e P B e b D e G0 B OO0 B D e BOOOA e B e (D e N e e

Thia table in

secillations

GHx10-*
59x10-2
03x10-1

. 18x10-
.62x10-
.39x10-
- 1Txlo-

.02
. B5

%©

obtained by summing up the sanmne

in Table 7.2 and the same

cacillationps from the mirror images of 65 orbits.
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Table 7.3*The omcillatory spectrum ns in Table 7.3
from the first and sacond harmonice of No. 1 orbit.

—Ex., ﬂgkﬂ, o‘;.eo M
1.3318 3.25x10- 1 3.51 3 e
1.9977 1. 6Bx10-1 1.74 7 JF
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SIGNAL {arb. units)

SIGNAL (arb. units)

30 -20 -0 E,0 E, +00 <20 <30
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(e)
i1i ;I ] . !
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FIG. 7.4 Theoretical spectrum {(a), (b}, (c) and
{d) ere from eg. {6-21} with background from {7-9) and
oscillations taken from Table 7.3 mand 7.3* with only
T<1.0T¢, T<2.0Tc, T<4.0T: and T<10.0Tc terms
respectively. Lower and higher resolution experimental
spactrum (e) and (f} are from Ref. and respectively.



{Fig. 7.4 (a)). I call the reader's attention to a few
fucte from Fig. 7.4 (mn) and Fig. 7.4 {e}. The theory
predictm: First, the magnitude of the lowest
ascillation compared to the beckground; second, the
anergy-spacing of the oscillation; third, the absolute
phase of the owcillation(I mark zZeroc anpergy with an
arrow and depote by Bp). These predictions all seem to
afgree with sxperiment very well.

A batter method of comparing theory with
sxperiment, which ensbies us to mske gquantitatiive

comparison for many oscillations, ia the Fourier

transformation., Suppose ékf} represents the spectrum in

[EL<E<Ez]. We make a Fourier transformation to

change energy variable E to time variable T,
Tom b Y TE
D == - .
F fi‘r/} A %{E) & AE (7-15)

now we use (6-21) to substitute for By} in (7-15) and

do the integrml. The result is

) o) @ TEE) | S Z(EaE)
i

2.
aag N
+Z —4___-"3 LTl EE) ot B4
22 (T-Ta)y
—5 ﬁ»&e__, oV RRIEH) o) (i )E s

21 {'Tflhg)/'

(7-16}

We shall restrict ourseives to positive T, Then the

second sums can be neglected and we obtaipn

177



178

F-ﬁf(_fj:"mo) e-—‘zi:(&ffz) E.%(EL“E,-)
b7

LY e et or The)Ear)

2 ST, H&&E

Py 22 < "_F??g%%%r‘“kg‘
. /{é
{T-17)

Now if fﬁﬁﬁT)fz against T im plotted mnd if gﬁ;_ are well
separated, we should ses peaks at e“Ch‘Ik;_' Further
more the height of each peak is proportional to the

aquare of the proper oscillation amplitude ;LKN'

In Fig. 7.5 I plot the wsquare of the Fourier
transformation of spectrum in Fig. 7.4 {(f) in dashed
line and the square of the oscillation mmplitudes fron

agerinst
theory in wolid line{this picture di-cri-inatutN}he
smaller oacillations in the spectrum). Bacause the
experimental spectrum is in arbitrary unit, the
experimental spectrum is normalized ao that the highest
peak{at T=0.66T: ) matches the corresponding theoretical
one,

Let me explain this Fig., 7.5 a little maore, These
orbits asscciated with the peaks wmarked hy(D thruuahQ}?
and &F are alsoc marked in Table 7.3 and Table 7.3*.
From Table 7.3, 7.3*, 7.2 and 7.1 we can find the
properties of these orbite {(initial angle, final angle,
period, etc.}. The oerbit smsocimted with the penh@} im

an orbit that goes mlong the }Jnxil. Thie orbit has
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baen koown to be correlated with the largest
omciliation in the observed apectrum since 1970 =

The orbite mesocinted with the Peaks @}throu:h(@ ware
found more recently? . All other clased orbits
presented heare are new ones.

There are mome interesting features in Figure 7.5
which should be pointed out. The orbits lablled { und
Gﬁ are the most stable and the next moat stable orbits
of the system '8stability 1ms measured by the value af the
amplitude Tactor A. A more sitable orbit has u larger
value of A--look in Table 7.2). Their values of
amplitude factors differ by only a factor of 2
howevar, their oscillation amplitudes ﬁﬂf differ by
aimost an order of magnitude. Why is (i, the highest
peak mnd (i e0 smell?

To understand this, we must “'Efi“duﬁ%?E?Uﬁ?ﬁ?ﬁﬂﬁ
outgoing Green's function Gli7¢)to find-ﬁ%TE?Uﬁyﬂ?ﬁiFf.
The mbove integral represepts the outgoing wave caused
by the absorption of a photan in state ZPa. If we do
the integral, we would find that it is an outgoing wave
having an apgular amplitude distribution. Thin
diatribution is a linear combination of an 5 wave mnd a
D wave. The 0 wave dominates the 5 wave(D wave
applitude ia about 4 times of the s wave amplitude).

By examining the initial outgoing angle of nrhitﬂ}and(}
we find that the initial angle of (Z) is close to the
ncde of the I wave and C) is on the peak of the D wave.

Therefore the waves propagated ocuitward in these two
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different directions have very different intensity.
their contributions to the spectrum are thus very
different. Similarly returning angle also mnkes 8
great difference for the contribution of eny closed
orbit to the spectrum. Tha effacte of initisl and
final ungles wmay amplify each other and thus produce n
drawatic contrast in the apactrum like @ and @ .

As ] have just mentioned, () is the orbit going
along the [’ axis and returning to the puclieus. What
would be the contribution to the spectrum if the orbit
repenis itself a few tiwea? The orbits marked by 1*
and 1** are the contributions of repeated arbite of () .
1* goeas out from the pucleus along the fjuuin.

returning to the nucleus, #0ing out again and returning

back to the npucleum. 1"* just ropents one more time
than 1*. The contributions of (), 1* end 1'* in =
decreasing order may be eamily understood. We know

that the propagating waves nalways spread in thias syastem
and am they do sa, their amplitude becomes wsmasller. 5¢
when the waves travel one wmore time over the path, the
resulting centribution to the spectrum will be smaller.
This consideration also auggeete n relationahip among
the heights of (|} , 1* and 1**---the ratio of height of
C)ngainat 1* is approximately equal to the ratio of
height of 1* to 1**. The numbers smhown in Table 7.3
and 7.3% confirm thim.

The peaks marked by (&) and 6* might be more
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interesting. We see the axperimental peak thare ia
rather small. Now from theory we found two much higher
Penks contributed by two very different orbits. In
fact @ﬂia from ma periodic orbit, but 6" is from & closed
one, How can we explain this apparent parmdox? Well,
it turna out that the pheses of the oscillations from
theae two orbite differ nlmost by 77 . The theory
actually agrees with experiment thers,

Overall the agreemsnt between theory and
experiment up to 6T: is impressive. Above G6Tc the
theory has predicted scome very distinct peakas. The
experimeninl deatea doems not match these peaken. We have
no reason to believe that the theory is less accurate
for the longer-pericd orbites, se we tentatively mscribe
this discrepancy to problems of expearimental
reaolution: longer period orbits produce very small-
scale fluctuations in the sapectrum, which would be
difficult to measure accurately,

1 have a0 far made comparisons with only available
experimental data. The theory predicts resulis of
experiments that have not yet beep done. From [7-17)

we can cobtein the phase of each oscillatian
- A a2
Jé’k 7O T ) —}r (7-18)

S¢ if we do the Fourier transformation of the spectrusm,
and find the argument of the resulting complex number

at the peeaks , we waould get the phawes of the



oscilletions. This information cun be calculated
directly from the sxperiwental data, but such
calculations have not been reported. The ramson is
largely due to the lack of m complete theoty in the
past. No theory in the past has been sble to predict
the amplitude and phase of the cecillatiooe in the
spectrum. Thome scattered, very incomplete thecries
bave found the correct relationship between the mpacing
of each owcillation and the pericd of some kiad of
orbit. Exmctly what kind orbit and the reletionship
betwean peank mpacing and pericd of orbit can only now

be understood carrectly!

B. Hemnarke on Closed Orbite

In the mabove compariascns betwesen the Fourier
transformed experimental specirum ahd the computed
amplitude of oscillations, I have used the theoretical
values at zero energy only. This is = reasaonable
simplification, becasuse we know if the range of
energy Tor the sxperimental specrum is pot too large,
the ampliitude and period of each cacillation can be
regarded am conastants. More precise calculations could
be made if we repeat the computmtions at different
ehergies to obtain the mmplitudes, phases and periods
of orbitas am functions of energy {seem pq. (G-9)).
Another interesting phenomenuvn then arimes. ln general

any particular clossad orbit exisated only in & cartain
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range of epergy. 30 when we change energy, wea find
moat of the time aorbita just change their shapes, but
somae orbiis way vanish auddenly. If this happens, tha

contributions from these vahished orbite to the

spectrum also vanish. Conversmly pew orbits may be
born at certain epoergies. In this ¢case, we would add
their coptribution to the spectrum. Fig. 7.6

illustrates this point very clearly,

From this, we obtpin a unified picture for the
atom in A& strong magoetic field. Suppose we start from
any energy. auch as Ez0). There we have a set of closed
arbite which represent a superposition of omcillations
in the aspectrum. Now we lower the snergy. Most closed
orbits evolve coptinuously with epergy. Scme will
disappear and some others may mppear. This process can be
repeated feor mpy desired range of energy, apnd we would
obtaio = spectrum for the whole range aof energy. At
various energiem we will have different set of closed
orbitas contributing to the spectrum, but we retain the
view thet the closed orbite produce omcillations in

the apectrum.

. What Has BReen Learned

In this atudy I have extepnded the idess of

Gutzwiller, Berry and Tabor, who showed thet periodic

orbits produce fluctumtions in the density of states.
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Tfh. E; Tﬁs
FIG. 7.8 A schematic picture aof orbits over a
range of energy. T and R are the period and snergy of
clowed orbites respmrctively. Orbit | eximts only
between E: and Bz. Similarly other arbits exist in
different ranges. At snergy Ey we have orbite 1, 2 and

4. When we increase the energy we will see orbit 2
vanishes at HBe, orbit 3 appears at By nnd orbit 1
disappears at Bz, while orbit 4 only changej its shape,
When the energy reachess Ev orbits 3 and 4 have replaced

the orbite 1, 2 and 4 at Ra.
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I have shown that clowed orbits produce omcillations in
the abesorption spectrum.

Quantitative formulas were established for m
particular class of problems---atome in externmal
maghnetic fields.

Computations were done for the tranmition ZPi-—Smr.
Theoretical results agree well with the available
experimental data. New predictiona have been made, and
it im bhoped that improved experiwent will confirm thess
predictioos in the future.

This study satarted with the desire to understand
the quantum spectrum of a cleaeaical chactic system.

Now it cen be conpciuded theat through the connection
beiween omcillatione in the specirum and the closed
orbits in the system the gquantum spectrum of s chaotic
syatem poussessens order. But it ies another kind of order.
The eyes would have a hard time to find such oredr by
lecoking st the high rescolution spectrum--- it becomes
more chaotic when the resclution is ibocreasad. This ise

contrary to the behaviour of regular systems.

D. What Mcre Can He [Dene

The ideas here cmn be used for many other ayatems.
In particular for atomm in strong magonetic fiald,

different initial stetes>); , polarizations D and field

strengths can he chasen; computations for each case can

eanily be done, Also ataomse 1n electric fields ar 1n



parallel]l electric snd meagnetic fielde can be studied
with po modification of the formulas.

Then if the Green's fupction (hf im modified a
little, one could study the abhove mystemns over a wide
range of energy.

These and others will be the subjects of future

regearch.
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An energy-averaged Green's functiop ia reblated to

the finite time propagator. To see thin, let us define
. [ K880 120
K(‘g:tii.ﬂo)_

Thus eq.(3- 10} is written ae
I f )
GUEE) = ‘é-?fff FELE ) Spigt)
=47 Gt K3y exp(igt)
{A-2)

Let ua misc define in general
63%{2/ %;- E) =(7 ﬁ)‘f[:f(ﬁfj‘ﬂ; gj o) 5&) .Qﬁp(%—'—t_)dt_

{A-3)
~ .
where ?&Jis B general cut-off function. We define‘?&}
s
to be symmatric in time, so 3{-%)';3'{’{).
We shall now prove that é;* ia ah energy-averaged

Green’sa function, specifically,
P '
G‘;(f/gﬁg)—.:f(—;"f%_, 8,E) Y(EE£)JE’
{A-%)

where
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?‘f)“—’*fﬁ f-% o) e 775 o

)
j Ju) Cad { Eth) dt

{A-5)
Froof:
From {A-2}), the inverse Fourier transforms gives
Y 1 -+ —2‘
ket po= 4 [ e gE)e % 4,
[A-B)

substituting this formula for K7¥ into eq. {A-31, we

ashtain
G (2,3 £k | EXB2)0) 50) xp(irts )de
=il Graese)e Yy )51
RXP(IETA ) ot

in the above the order of integraticn was changed.
The apecific form of the convelutiaon function

dependm on the ferm chomen for 3#&) . For example, if EHU

gives a mudden cutaff,

qu) = | it <T
=0 el >T

{A Tal

then



| sin] (E€Y T/%)
YEEI =7 (E-€)

~ {A-Tb)
If Bﬁjia exponential or Gaussianr, then Larentzian

or Gauasian coenvolution functions are obtained,

~ -y
Jer=exp| it/ | Jie€)=L F%Jfﬁ—f’f-f’)z

{A-Tc)
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Jte = expl-tyar2) @ J(e €)= L expl-(£€) T H42]

a7k
(A-Td)

Alwaya the relatienship between the time and energy

window is retained, T AE ~A2TWK

An energy-averged oaciilator-strength denmity is
related to the finete time propagator and to the
energy-averaged Green's function. If the prepagator
E&{;DJis calculated for only a Finite time interval
Dsfjg‘r', then an averaged oacillator-strength denaity
ia determined, and the spectrum can be caliulated to a
corrveapending resclution. The aame "low-resocluticn”
spectrum can be cealculated from the energy-averaged
Green's function.

Let us define
ﬁ%(ﬁ)ﬁ (Eff)/(f’-ﬁ)" Df(E’) -3(E-E’Jm’ff
{A-Ba)

When the width 01“9[{{‘)1}- much ammller than !E—Et‘}', then

Dhy(e)= [ pH(e) geeE) !

{ A Bb)
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that is, i;;{f)in just an average of Dﬁt}.

It im emmy to prove that

Dhg(E)=— "—}_@%—ﬂ Im <p¥of 618 D>

(A-9)
and that )
7, (£) = 20 (EED o Fm IEt0) D% Tte) ¢ K 4
T3 .
{A- 10}
Proof:

Eq.{A-9) follows triviaily from (A-B), {(3-23) and

[A-q}. Then eq. [(A-10) follows from {(A-9) and (A-1).

Ideally we mshould take a(ftfj in {A-B) in the same
form as that for the lamer profile. Howevear, while the
reaulting thecretical averaged -oscillator-strength
denasity should depend upon the width AF of the
convolution function, i! should not be senesitive to the
detailed form of this function. Therefore we consider
the special case that §¥t) correaponda to o sharp cutoff,
as in eq. {(A-Taj. In this case we use only a finite-
time propagator, EEﬁJﬂ for D&ffffr , and the reaulting
oacillator-strength-density is averamged over energy with
the convolution function [(A-Fbh}. In this wayY, we
obtain a thecretically averaged ocacillator-strength-
density, i?;ﬁmgé) . This quantity will be compared to
the experimentally averaged measurements i;;xPjE).

We take the width {(in energy) of the theoretical

copvolution functon ?ﬂfbr(ﬁ?‘f) comparable to the
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evergy width of the laser beam, which is contained in
C?Ew.(fo’_'f) . Equivaelently, we evaluate the
propagator up to a maximum time T which is comparable

to .Z.?T'k/{gxpgr[.gni_al energy resaluton).



The ei1genfunction of Hydrogen Btoms is the product
of a radial functiion Ant and a apherical harmonic.
Some lower order such functions are listed here. Fhase
copventlions are these of ref. 56. Although all observable
quantities are independent of the choice of phase
convention, i1t is important to use ope interpally
consistent convention throughout the calculation.
The functions and relationa listed here are the onens

used in the calculaticens 1n this thesin.

Tmble B-1 Lower Order Kadial Functions

Ro=2e~7

Ro=ge ¥ (i-Ln

Ru= Vg % . r

Esa=%g e~ (I1-K r+ 9:1’—‘,- r2)
R3) =445 =73 r2

Ry = % = @ 73 13

Ruo=M e 7% (1= 3% + 7 - 7%4,)
Ru= T e » (1% 4 7o)
Kee=llgs €™ 72 (1= 773)

Ra3 = 15055 e % 73

I

193



194

Table B- 2 Lower Qrder Spherical Harmonics

T&o—_"!ﬁﬁ
Tio =P (058
Yii =J%n sngetf

Tzo::% (3_3-{.4:::&*38---%)

Yor = /%, I8 wse e*F

Yoz = *Jg 5.2 eﬂ‘f

Vso=JF (§ % — 2 wsp)

Yar =4 J25 50 (Swsie-1) e*f

Ve =7 [F sh wse @

Vi3 =% JSam shde < 3T

Teo = /37 (—33?-@5*9-—%505&9+§§J
T4 2%‘/% (7 tosip — 30a38) 5,08 €°F
Yiz=F (& S5%6 (7oste —1) o2F

Yay =2 B35 5.7 wse e 37

T = F S St T

To abtain the other half of apherical harmenic
functiona {(m negative) , relation
. i

is used.

1

For evaluating dipole metrix elements, the

following relaticns are helpful:



(L s ﬁLﬁJ— )/’
aﬁﬁmi.%}?ﬁ? R T
. Trwr o) Jmet ) @ Y;
$i0@ ¥ ﬁmﬂ,% Yo~ gLy A
. ) f o ,l?-«m.’.
sibe i < T Tux 2+ R ﬁ%
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THE FORMULA FOR INTEGRAL I,,p

Here we shall]l derive a general formule for

integral

G(n, png)r_[:i?nj(}) y3. @%Wiar

(C-1)
+
Then 1'}11 ia the special case of G‘(ﬂ,f)f']when F"‘ﬂi’.

Since the radial function Rﬂghj is a product of
— L
n

{1 and a polynomial of order i(n-1},
7
4
an(?‘)ﬁe 7 ; a* ?ﬂ.lg
-_-_D.
(C-27
integreal Gin,1,1") is m linear combination of integral
Fat =" 5 r& Tanl/) 4,
0 /7
i
[
for k going grom 3 toc (n+23,
71+2
G(ﬂ)})fu:% a{'jF(?ffﬁx {'”)
{C-47

To evaluate Fin,kh,1'}), we first make o change of

variable x= {8y in the integral, then

f _p &
F(?f,éj*')——*m /:Q g g2k Jagty (x)AX

(c 53
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Now we use formula 11.4.28 of Ref. 57,
Joem % cu ) H
ravedm (3 2)"

28 Clp+)

1y, 2
MY+ 4, V4, -;ﬁ;)

(Re( 440} >0 , Fe @* >0 )

mwhere the notation M{ia,b,z) stands for the confluent

hypergeometric function, which has s Taylor expansaion

M{a b2y |+ 2% yrab2® (2, 2"

o " {b), 21 TSRCEY
where .
(A= A(a)(atD) . (A+n-1), [a) = |
The result for Fin,k,1'") 1m
! £4’ £+ 1H r
Fon, 0y=2 18 2 LISl s, 22,279

LC-8)



STATIONARY PHASE APPROXIMATION

For real functions ?(’I) ,Cf':‘!.r) , under atationary

phase Bpproximation

m /d’x 7)) xprp(x)
(-1}

where § labels the stationary pointa ofd’(l) -—-the pointn

where ¢‘()fi)=o .
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Here for completeneas T shmli give & short proof
thet the memiclamssical approximation umed in thims
theaim for the wave function is ssymptotically accurate

to orderﬂk '

We write the wave function in the form

H2)= Al8) exp| 1%’@]

(E- -1}
and further we assume that A{gq) can be expanded in

power of t '
A= A1 A+ 12 A
(B-2)
This expanaion {(E-1) and (E-2} are substituted into the

Schroedinger equation,

3 2
[ —‘-%——if‘:—t-—,t vig) —E |yi3)=0

(E- 3}
and we demand that the quantities of different order of

i; to be zero,

PS4 __
e H(vs, 2)= W+W€)_E =0 (R-4a)

e o {0
(:-*2}5%_) *2[7’4”5‘5 + (P5) A }:O (R -4b}
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ik
{ m

{E-4c|
Thus we obtain the Hamilton-Jacobi equation
(E 4a), & "tranesport equation” {(E-4b} and a set of
differential equations defining A!j} ino termna Dfﬁﬂjﬁ}fﬂr

Jgl-

From the above equations we nlsc note

25/%) L
(1) 4%y 7T = (3 p2Al]
{E-5)
therefore if'AIq,and its derivatives are bounded by a

conatant, K, then the right hand side of (E-5} im lesns

1
than -—E— K. . When ﬁ[ goes to zero this upper bound
Ah |
AIEIEM&

also goea to zZero as til. We sBY that is a
"formal asymptotic approximation” for the aolution of

the Schroedinger egquatien.

Now write VS/8)/ = [7¢3) in tE-4b) and think of via)

as A velocity field, then

2T vAR L (v By plel =

(E Gal}

o 2
multiply {E Ga} by A! ! and set‘PtzﬂﬁH ., 1t becomes

(T 0P+ (PE)P =0 o

-—_j —l
v(fFl=o0
{E-Bc)
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Thim is the time-independent form of the equetion
of continuity,
—i
S F C(PF) =0
{E-B4d}
or
4L 1P Te)=0
{E-Be)
The sclutions of {E-4a) and (E-4b}) are
copmtructed in a pracedure deacribed in more detmil in
Chapter V. Briefly we begin by mpecifying an initial
surface of (n-l)-dimenmsion in the n dimensiocnal
configuration space. Let pointe on this initial
surface be apecified by coordidinates 30 - For each
initial point %ﬂ ., we require that the momentus
setiefies the rpergy equation,
HIP°%%)  2°)~£ =0
{E-T)

and the eguation

dSO=PYE) AE =7 Pig)) 487
L

{E B}

then starting from each point §° on the initial surface

and usin:'PTgﬂ)ﬂn the initial momeptum, trajectories are

computed by integrating Hamilton'm egquatiocn. Let
w, (i=1l,...,n-1} be the ceoordinates of the initial
surface, we have functiena
4
=2 (t,w) (§-9a)
-1 —a
P =P, ) (E-9b)
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then the msolutions of (E-94a) and (E-4b) are

S{e) = 518%(%)) +[‘Pf@ - “Jm” ot

(E-10)
and
_pe ;[o w)
Po=F1w) S0
(E lla)
where
28, W)
J_{-t)m):‘ 3&);_})
(E Ilb)

and S)WLUJ isa an arbitrary "initiel"” density function.

We now show that if a soluticn to (E-4a) exinete
and it is equal to S9%°) on the 1nitial surface, then
that solution is given by (E-10}), Let 5{q) be &
molution to (E-4a) in a given domrin, including the
initial surface, on which S{q}=STE°J .

and define the function Pyf@) as

Py — asSie)
L AL (E~12)

Differentiating (E d4a) with reaspect to i, we have
oH 23 -+ o =
%: ‘ng ) & (E 13}

Now mtarting from a paerticular point g° on the

tnitial purface, define s peth q(t} such that

o8 _ ng_‘P )
ot

/jn 5%5 iz=l,....,n

(E-14)
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Here we differentimste Hiq,p} with respect to p.,

then substitute p=ﬂ;ﬁ"@) , 8¢ that the right-hsand aide
isa a fupction of only g, end (E-14}) iw a clomed set of A

equations determining the path q{t) from the initial

point q°©. Now coneider the function
I5(3)
Ritd=Rlte) = _73‘237/.?.:3&)
{E-15)
Thise satisfies
dfp s P d% _~ IS oM
#3355 F=I%m %
T 0%
{E 16

where we have uaed (E-12) and (E-13})., Egys.(E-15} and
{E-16) are Hamilton's equations, which therefore
provide an alterpative way of specifying the path

defiped by {(£-14). ©Opn this path., let us define

5{({:}:5{,@&]_} i it followm that
s g5 98 J& 4%
=535 a¢ ~ L miw) 57 =Pk ¢
T
P E LT

Thia iz a differential form for which the integral
1e (E-10}.

Ta prove that (%) defined in (E-11) is & solution
of the transpart equatien (E-be), which 18 equivaient

to (E-4b}, we need first to show that for any non-

aingular HxN pgatrix, with elementas J,,, then



Ll et T) =T [ (FE) T ]

(E-18)
To prove this, conaider the gatrix of cofactorns

Cys, each of which is equal to (-1)'*) timewm the

determinbant of the matrix obtmined by mtriking out the

ith row and jith celumn of J. From well -known thecremn

in linear algebrws,

Jet T=3 Tiz Cos

a8

furthermore

(77)y = Cod fdet T

therefore

%{df’é]')=z _l d.?af? =;_; Cis T)

=§/d€f 7) (7 _{J?'z' 7;) -—(cfeé]jT,.g-ff)

Now let the patha glit) be generated acceording to

{E-14}, which we write in the form

d‘&
F=f;08)
tE-19)
we will need the matrix
-
lj 33; (E- 20)

Let the solutiones g{t} be regarded aa & functiaon
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of the n variables “S’J- ={t,w}, with w being the n-1
variables that apecify a poinot on the initim] surface.

Consider the matrix J having alements

%)
Tiy = 5%
4 o5 (E 21}

its time derivative is given by
d 1. _of 9B JeL
Z% == 7% *ﬁjm =58 #:(8)

: 9Bk .

o

(E-22)
furthermore, according to eq. {(E-11b},
Jit, wi-det .| (E-23}

from (E lla} we find
dfly _ _ PTW) Tlow) STt w)
dt THt, )2 a4t

uaing (E-23), (E-18) and (E 22), we abtain

AP8) P2 Tlo, w)
dt T, W) T F

and frem (E-20), {E-19) and the Hamiltonian
(H-p2/2m + vig)),

d9(8) _ _prqy Ffl®)
FJ }jr} (E-24)

sc the function fygjdefined in (E-11}) matiafies the

continuity equation {(E-6].



PHASE LOS5S THRQUGH A FOCUS

For mND the F'ﬂ' line ism & potential barrier {lzf’Pl
in the effactive potentiall!., The familiy of trajectories
1a turned back when moving toward the barrier. A B
remuit the atructure in the phaase apace for this
family of trajectories forws an ordinary fuld, and a
phaae Jlaoma of IE is produced when the wave passrs

through thia region.

Far m- 3, the P G Jline is & focus 1nastead. WEB
approximation for the wave function in thie reglon i=s
rFoorly understocd. However, simple physical argument
suggesta that the wave functiop is like B Besse]
functian in fj direction and s phase loses ie alaso JE

Fecall the S5chroedinger equation for a Hydrogen
atom in & magnetic field when m-0 in cylindrical

coordinate can be written as

g2 2
[ e (50 + 5 ) HVIR3) JHEL) =EHES)

{F 1)

where

- 18
ViF.3) W—i- 3 (E)Z ©2

in 1ihe region far gway frowm the origin bul close

{F-2)

to -0 line, we make o WKB like approximaticn for the

2086
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z-depapndence of the wave-function

Ry = expl[BiP3)d3% 1 $if,3)

Then the equation matisfied by dﬂ}i}Jin approximately

y I b
[ 22567 * B3F) 4 VI3~ B0, 3)4m, — £]$(£3)=0

where we have neglected derivetives of 45 with reapect

to z. Defining

RUp3)= (£ - ving) - _sLQi’E*_ij

it is easy to show that an expanmion of *hj)ln powers

of P containa oo linear term. Dropping the quaedratic

term, we repl&cefsz}” hyi?ﬂﬂ). Now the eguation
satisfied by #ﬁj]is

4 2
[;;}:'}‘f%;F +4(0,3) [$ =0

where we have auppressed the dependenrce of ﬁl upon P .

Thim is Bemsel's equation, and the solution i=s

P=T.(%F)

The lowest order approximation tae (F !} in the focus

region is therefore
L ok
lpa)=cC € DALY

By meana of & long derivation [(which is npot
preaented here) it is posmible to show that eq.{F-3]
representa the first term in a formal ssymptotic
expenaion for HL in powers of ﬁ:.

Now use the asymptotic fors of the Besse]
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functieon,

oo~ [ s ix-F)

clearly from (F'3) and (F-4} a phase lomsa of %E is

produced for a wave going through the focuna.



APPENDIX G

THE APFROXIMATION OF RETURNING WAVES

Iln oredr to ahow 1that the returning wave in (B &)
is well approximated by the formula in (4 40) we
numerically compute the returning wave pssociated with
the trajectories around the second closed orbit ip
Chapter VII, which 1a shown in Fig. 7.1.

The compariaon 18 made both in the radial and
anguler directjons. In Fig. G-1 the real and imaginary
part of the wave obp a circite re-508s but at different
final angles are shown; in Fig. G-2 the real and
imaginary part of the wave at the Fiwxed inceming engle
E%:Tﬁﬂ.ﬂﬂlﬁ“ but at different final] redius r¢ is shown.
The squares and circlem are the wave computed
numerically uaing the sesmiclaspicel approximation 1n
the outer region. The mclid lines are the analytic
apprexiyeation {cylindrically modified-zero energy
Coulowb-mscerttering wavel. The agreement between the
two im very good.

Another way of checking the accuracy of the
approximation is to compuie the expansion coefficient
Biw 10 (6-T7) and see if itsg value 18 independent of the
redium of the final circle where the asemiclaasical
appruoximation is joined to the apalytic approximation.

For the same case, ajp is computed at different final
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.
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L T
.0 .0 w.a m.q

FINAL RADIUS

]
=
s
(=1
£
[=]

Fig. G-1 Comparimone between the numerically
computed returning wave snd the analytic expression.
See text for exploinations.



radii rr (Table G-11. We find when rr changes froms

30ao to 100ac, the magnitude of ai1oc veries by about 3%,

and the phase chenges inmignificently.

Table G-} Expansion Coefficient eio

rr amp. of a:1vu
 30.00me  1.723
" 35.008  1.729
40.0080  1.734
 45.00a0  1.739
50.00m0  1.744
 55.00a0 1.748
 60.008s  1.753
65.00mc  1.757
70.0080  1.761
 75.0080  1.765
'80.0080  1.769
85.00m0 1,773
 90.0080  1.776
 95.00m 1.780

phase of Bmi10

344 794

344 T95

344,795

344 TBﬁ

3d4.?gﬁ

344, 795

d44.796

344,796

344 THE

344 T96
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THE RESULTS ARE INDEPENDENT OF THE JOINING RADI]

in Appendix G, 1 showed numerically that the value
of Lthe coefficient a1e defined 1n eq. (H-7) 18
independent of the final joinipg redius rr. Here I
shall establish that the results are independent of
both the initial send final radii analytically. I[f
either the (nitial]l or final radius r‘s or ris are
rhanged in A proper rvange the expanaionr coefficient aia
in (% 7) remains unchanged. Therefore the formula for
the apectral coacillaticons {6 20) is indepepdent of the
Jolning radil.

The range of r is such that the Coulopb term
dominates other terms [(magnetic term and the term franl#
moition) 1n the effective potentinl. Sg the cleaesaical
meotion of the electron in the region 18 governed by the

fwr: dimenasional Hamiltoniaen

Het ~ ot
=7 " FEra

tH- 11

Now lel us assule

1 z/
—_—
% =7
wWe nllow ?Ilftc be Bny value 1n the range 30ac to
100an . In this region, the radislly ocutgeing

trajectories keep radially outgoing, so the outgoing

angle of each trajectory does not change.
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The Maslov index does not change pince the region
under consideration has no contribution to t{

According to eq. (6 6b)

Uy =3 Uy {82} o (5 —f5TF )

and from eqg. {5-271
Sr—>S,— (JEri! = f3rd )

Combinin@ egq8. (5-28) and (5 29}, since initially

?'“

the trajectories are going outward radially, we find
2 L
/T
S—Esﬁﬂer-sf‘

therefore
A ()%
As A result aia i8 unchanged: the change in the
initial value of the wave function oo the boundary in
cancelled by the change in the aemicleasriral wave

propagator
. Lt
Um A e™E _yl 4 et rie

80 ais i® unchanged.
Similarly when r v changes,
!
i/

we have

(e > ()% (—%f)é
&



! ‘ﬁ;ia

o o7 IQW#W]J

Sy =5y — | JanF — [oF ]
pos

under the approximation that the incoming trajectorien

are the mame aas 1f the electron comes in From infinity,

we have the equation aof Botion

£ =i+ wse

from which we get

!
o
L. < 7=
and from the energy equation we alsoc get
o A=
Tgir J;:
therefore
y2
14 (1)4

and agmain a s is invariant under such changes.

Oppr, — A,
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AFPENDLIX 1

We now prove a theorem which relates the action to
time Blong & trajectory.

Conalder a trajectory with energy E: going frnm-zj
to-é? . When the energy is chenged from B to energy
Ez which im close to
E;, the trajectory

s

going fTrom z!to 3‘ will

follow a different but

nearby path. How are the

actionms alnng the two peths relataed”?

Thecorem:

{%g) f:i" =T (E)

. , ! =i
where T!E) is the time needed to go from % to g

¢ 13

This theorem says that the difference of action for
two nearby trajectutries having the same ends 18 equal

to energy change times lhe tranei1t time.

FProof:

=y =y

The trajectory geipg from % to % at epnergy E
~wil be written anm

- "

3:%{-{;}&‘) g: fsr)

- ——t

?3==?§ff)ff,?g; gf) t1-2
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The action mlong thi trajectory ia defined as
sftzfﬂf)[ PH.ET F)IEH E T R")
%

B.6,8' 8"
=k — A -+
! ¥ il B
i ?DféJﬂ> g,-g J 1& ¢}6
r 7
(T 3)

where in (I 31, t* apnd t'' Aare the timesn that the

. , = - , . .
particle arrives st ¥ Bnd T, . Taking derivatives of

(I_E}r

B i
f/;%%*f*?a @t ]

% 5

a partial jntegration of the aecond term gives us
QF 35 3% 3P

= B"}'Tt"r 'J%de:

—*a‘b agc)t/t

/,+1> 5 3El€! s

c?E

in the expression of {I-5) the derivative is taken as

-3 -
if the two end points 2 and B were free. If the two

end points ?:J and _g” are fixed, we have twe squaticns
E;L‘tf, EJEZ :g#.):' -g;f
= — ot
TRLE T )= (16
taking derivatives in (I 6) and keeping in mind that

= Zy
the endpoints &' and “ are fixed, we find

_ﬁi. BJ
€+ 35!
te be zero st t' and t'’'. Therefnre we have

e 15 -8 F1



using Bamilton’a equation in (I-7),

i =
d = IP IH H 3%
fﬁg) gfz’ﬁ g{ 3E ﬁ +.§—g- ;ETS'
_ i i}j
Y aF df:
£
=[x
&’
=T(E)
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When a8 Hamiltoniapn containa A parameter such an
the magnetic fireld B, we would like to know how the
action depend on the parameter?

Let us assume,

H=H(.§JT;))\) fJ-17

. Y . g ¥
and a trajectory going from z at t to at t'',

_g_: ?é.f%z)‘vf,;—éi, E") {J-2a}

— -4 4, &
_—'—T t/)\,f #
P { - )g/5 ) (I-2b3

If X is changed to /\"HDL. there wi1ll be & nearby
trajectory cloae to the original one at the sape enerdy
= it . .
going from § tnz . How are the actions associated

with the two trajectories related to each other?

Theorem:

o
(SN ez 3™ _y o 4

/
1 a7

Proof:

Take the dEﬂlUEtl?E of 5
S=[, P
with respect t“'/x,' holding E. ‘S i’, fixed,
. — 27 E‘_E 5
(e 27+ ‘"[; [ #+7 5 ] ‘H:
5 of ot
. tf

AN
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{J-4}
where in the maecond step, 8 parti1al integration has
bheen performed. The terms outside of the integral
mign in {(J 4} exactly cancel. This ¢an be meen by

taking derivatives of the two constrains,

zg&’z’)\"E"?;‘{') (J-5a)
TE;”—TZ:(“&’;)\, £, fi ‘g") (J-5b)

therefore a
3%

%)Eﬁ" Azf}f"é’_{ :;E

WL

]t

q.;'m
¥ohy

fJ-61)

Now use Hamilton’s equalion,

we obtain Y
N

F%i)ra-w L/&A'Za_;—:"'*f' asla‘f

f""'{ cfwf?’ EA)

}cH:

=

aince E=R(} ? M) is held fixed, we have

’

23
'LBT\JE,EE'" = d[t_; () H¢ (1-7)

[n the present came, we want to know haw the

action changes as the magnetic field changeasa. Since
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{J-8}
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APPENDIX K

When computing the semicliassical wave amplitude &
as 10 (5-28) and {5-29) the derivativesa of r and & with

reapect to the initial asurface at &8 Fixed time
2p, (|22
&t “55)»&

are needed. HKowever, becauae usual]ly we do not use a
upiform time step ﬂt==£ﬂmﬁ in cur npumerical integration,
we do noet have the data for neitghbouring trajectories

at the same t1ime.

In cur case wWe lesunch a family of trajectories at
t=0 from the initial circle and each of these
trajecturies isa propagated with a varied time step slze
according to the location of the eiectron. Trajectories
are stopped right on the fTinal circie r+ conetant.
Apparently trajectories 1o this femily do not arrive
at the final circle at the same time.

Let us express the desired guantities in terms of
cther quentilies which are readily obtained.

From running the trajectoriea, we cculd, in

principle, obtain tws fupctions,

r=T(t 9") (K lm}
91;‘9({'-!9”) (K lb)
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We have from the first ope,

dr—(8F), 6. + [2F)g, 4 .

on the final circle r is8 a constant, we OobtmAin

2 2f Jt
{—3"51;:)!‘: = "(3_*5)(90(550}?‘ (K 31

This is ohe of the relation.

Frowm (K 1b} we have

46 =(2)y & +(25)e 46

{E-4)
which, on the final circle, 18
(22) _(29) —(28) (2%)
ATt apo?‘ A 8, c}@c, r (K -5)
This is enother relation.
Eqe. (K 31} and (X 5} are the ones used in our

calculation of A. Te evaluate the right hand aide of
egs. (K 31 and (K-5) we need the momwenta of each
trajertory and the time of two neighbouring
trajectories marriving at the final circle, These are
the informations obtmined whenp Hamilton'as egquation are

intagrated.
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