William $\overbrace{}^{\circ}$ Mary

# Fourth order mass splitting in the bag model 

Timothy John Havens

College of William \& Mary - Arts \& Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd
Part of the Physics Commons

## Recommended Citation

Havens, Timothy John, "Fourth order mass splitting in the bag model" (1985). Dissertations, Theses, and Masters Projects. Paper 1539623756.
https://dx.doi.org/doi:10.21220/s2-3hbt-2b41

This Dissertation is brought to you for free and open access by the Theses, Dissertations, \& Master Projects at W\&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W\&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

## INFORMATION TO USERS



 quality of the mate rial submitterd.
 notallunts whicl maty aprar on this reproduction.

1. The seg ar "target" for pages apparenty lackeng frem the dowment photogtaphed is "Missing Pagetsp". If it was possible tor abtain the missing

 has assure complete suntimuty.




 He indatiat frame.
2. Whell a map, drawing or chart. ctes is part of the material being photogriphed. a detiate melhod of "sectioning" the material has been followed. It is sustumary to begin liaming at the upper le thand corner of a large shet and to comtimue from left to tight in trial sections with small overlaps. If necessary. sichoring is concinued igath beginning below the lirst fow and continuing on until complete.

 into your weregraplite eopy. These prints are avalable upon request trom the Dissertations fughomer Serites Deparment.



Hawens, Timothy John

FOUATH GRDEF MASS SPLItTING IN THE GAG MODEL

The College of Wimiam and Mary in Virginia
PH.D. 1985

## University Microfilms <br> International 300 N . Zeeb Ragad Ann Ambor, Mistios

## PLEASE NOTE:

In all cases this maierial hes been filmed in the beta posalble way from the evailable copyProblems encountered with this document heve been identified hore with a check mark $\qquad$ $\gamma$ -

1. Glossy photographs or pagea $\qquad$
2. Colored illustrations, paper or print $\qquad$
3. Photopraphs with dark background $\qquad$
4. Illustrations are poor copy $\qquad$
5. Pages with black marks, not original copy $\qquad$
6. Print showt through as there is text on both sides of page $\qquad$
7. Ingistincl, broken of small print on soveral pages $\qquad$
B. Print excoeds margin requirements $\qquad$
8. Tiphtly bound copy with print lost in spine $\qquad$
9. Computer printout pages with indistinct print $\qquad$
10. Pape(s) $\qquad$ lacking when material received, and not evailable Irom school or author.
11. Page(s) __ 69 _ seam to be missing in numbering only as text follows.
12. Two pages numbered _36. Text fallows.
13. Curing and writikled pages $\qquad$
14. Diasertalion contains pagas with print at a siant, filmed as recaived $\qquad$
15. Other $\qquad$
$\qquad$
$\qquad$
University
Microfilms International

# Fourth Order Mass Splitting in The Bag Model 

A dissertathon<br>Presented to<br>The Faculty of the Department of Physics<br>The College of Wildam and Mary in Virginia

# In Partial Fulfiliment <br> Of the Requirements for the Degree of <br> Doctor of Philosophy 

by
Timothy J. Hawens
August 1985

APPROVAL SHEET

This dissection is submitted in partial fulfilment of the requirements for the degree of


Approved, August 1985


Hans C. vo Baeyer


## Dedication

To my parents Harold and Luanne Havens,
my wonderful wife Janine,
and
our son Garrett

## CONTENTS

Dedication ..... iil
Acknowledgements ..... v
List of Tables ..... vi
List of Figures ..... vii
Abstract ..... vi
Chapter
1 Inlroduction. ..... 2
Il Estracting the Energy Shilt ..... 9
III Gauge Invariance ..... 20
V The Calculation ..... 25
$\checkmark \quad$ Fesults ..... 46
Apperndix
A Feyrman Rules in a static spherical cavity ..... 51
E Three-j, six-j, and nine-j relations ..... 59
© The wick rotation ..... 62
D Derivation of the coulomb gluon vertex function ..... 65

## ACKNOWLEDGEMENTS

I am particularly indebted to the following people for their heip and companionship during my stay at William and Mary:

Dr. Carl E. Carlson. my advisor, for his guidance throughout my work with him.

Drs. Robert Siegel, Robert Welsh, John Kane, and Morton Ecknause for their guidance throughout my work with the High Energy Group.

Drs. Carl Carlson, Hans von Baeyer, Robert Welsh, Edward Remier, and Richard Prosil for reading this thesis.

And last, but certainty not least, my friends and colleagues who made my stay at william and Mary a pleasure. especialiy the Lunch Bunch: Gene Tracy, Saiful Hug, and the lovely Jennifer Poor.

# L.IST OF TABLES 

Table
5) Fourth order mass splittings 49
Figure ..... Page
1a, An Anihilation diagrams ..... 51.c-k Diagrams in the perturbativeexpansion6
2.a Lowest order diagram ..... il
2. Second order diagram ..... 13
2.c Fourth order box diagram ..... 16
3a, Coulomb-coulomb box dlagrams ..... 21
3c-e Mixed coulomb-transverse diagrams ..... 22
4.a-e Calculated fourth order diagrams ..... 25
4.f.g Labeling convention for diagrams ..... 27
4.1 Contour cholce for wick rotation ..... 33
A. 1 Transverse gluon vertex function ..... 55
A. 2 Coulomb gluen vertex function ..... 57
C. 1 Contour cholce for the wick rotation ..... 62
D. 1 Free field vertex function ..... 66

## ABSTRACt

The fourth order diagrams in the perturbative expanslon of the hadron mass are calculated using the static spherical cavity approximation to the MIT bag model and Quantum Chromodynamics (OCD). Only terms whth color matrix structure different than that of the second order dtagrams are retalned.
The fourth order mass spittting is found to be smaller than the second order splitting by a factor of three or more

## FOURTH ORDER MASS SPLITTING IN THE BAG MODEL

## CHAPTER

Introduction

During the 1960's it was round that the large number of newly discovered hadrons could be explained as composites of three elementary particles, the up. down, and strange quarks'. The possibility of color charge was pointed out by O. W. Greenoerg ${ }^{2}$ in 1964, and bu 1973 Quantum Chromodynamics ${ }^{3}$, the nypothesized non-abelian interaction between colored quarks, was in fuh bloom. This was due largely to the newly round property of asymptotic freedom ${ }^{4}$. Asymptotic freedom is the result that the coupling constant asymptotically approaches a small value for large $\mathrm{Q}^{2}$. The QCD running coupling parameter can be expressed as.

$$
\alpha\left(Q^{2}\right)=12 \pi /\left[\left(33-2 N_{f}\right) \ln \left(Q^{2} / \Lambda^{2}\right)\right]
$$

where $\mathrm{N}_{\mathrm{f}}$ is the number of quark llawors, and A is a parameter that must be determined eyperimentally.

While asymptotic fregdom makes perturbative calculations possible at high momentum transfer (small distances), it cannot tell us how the rorce behaves at small momentum transfer (large distances). The fact
that no colored objects are found in nature indicates that in fact the force is large at large distances, and therefore non-perturbative.

While asymptotic freedom cannot guarantee that the coupling constant is small enough to do perturbative caiculations of the hadron mass splitings, the fact that the mass splittings are usually small for a given family of particles indicate that the mass spiltings may arise from perturbative aspects of $O C D$ even though the confinement mechanism is non-perturbative.

This was the hope of the group of people at MIT who introduced the bag model ${ }^{5}$. In the MiT bag model the quarks are confined to color singlet hadrons via an infinite square well potential. Inside the hadron they are assumed almost free, the interactions between quarks being those of perturbative OCO.

We consider the static spherical cavity approximation to the MIT bag model. While it is wetl known that this approximation does not satisfy Lorentz invariance, it is expected that the static hadron properties such as their masses, magnetic moments, and charge radii can be calculated with a considerable degree of confidence. These choices mean the quarks inside the bag are governed by the Dirac equation

$$
(i q-m) \psi(x)=0
$$

for a free particle. The confining potential can be translated into the following boundary condition at the surface of the bag:

$$
-\hat{f} \cdot \vec{\gamma} \psi(x)=\left.\psi(x)\right|_{x=F}
$$

Using the above model the masses of the hadrons have been calculated ${ }^{6}$ to second order in $g_{C}$ where $g_{C}{ }^{2}=4 \pi \alpha_{C}$. The result for massless quarks is,

$$
M(R)=(4 / 3) \pi B R^{3}-Z_{0} R^{-1}+N \omega_{0}-.700 \alpha_{c}\left(T_{1} \cdot T_{2}\right) \sum_{i<j}\left(S_{i} \cdot S_{j}\right) R^{-1}
$$

where: $\quad B=$ energy density in the bag, $\mathrm{B}^{1 / 4} \approx 145 \mathrm{GDV}$
$R=$ radius of $\mathrm{bag} \approx .6$ to 11 fermi for various hadrons
$\alpha_{c}=g_{c}{ }^{2 / 4 \pi} \approx 2.2$
$Z_{0}=$ zero point energy in the bag $\approx 1.84$
$\mathrm{N}=$ number of quarks in the hadron
$\omega_{0}=$ energy of quark in is state
$T_{1} \cdot T_{2}=$ color matrices $=-2 / 3$ for baryons
$=-4 / 3$ for mesons
6, R, $Z_{o}$ and $\alpha_{c}$ were treated as free parameters and fiked by fitting the above mass formula to the four states $N, \Delta, \rho$, and $\Omega$. The results for the rest of the spectrum are remarkably good when flavor SU(3) is broken, as can be seen in reference 6 . However, there are two main problems with the results. The first problem is that the coupling constant is large. However, since the elfective expansion parameter
is $\approx \infty_{C} / \pi$, there is still the possibility that the higher order corrections are small.

A second problem concerns the $\eta(958)-\eta(550)-\pi(139)$ mass differences. The mass splitting is partly due to the difference between the strange and the up or down quark masses. However, working only to second order, there will be some inear combination of the $\eta$ and $\eta^{\prime}$ which is degenerate with the $\pi$ meson. However to fourth order. the isoscalar mesons $\eta$ and $\eta$ ' nave their masses split by the fourth order diagrams shown in Ffgures ta and t b .


It had long been observed that if the intermediate states of these diagrams are saturateo by the gluonic resonances (gluebalis), the sign of Figures la and lob is determined and makes the $\eta^{\prime}$ lighter than the $\eta$. The sign arguement does not work for a full calculation manly due to the possibility of exchanging coulomb gluons. The diagrams were calculated in the coulomb gauge in 1983 by Donahue and Gomm? They found that the sign was right and, with a reasonable $\alpha_{\mathrm{c}}$ the magnitude was right to account for the $\eta-\eta$ mass splitting. This has its disturbing side also. however. The splitting due to these diagrams is
large. This, which is of course connected with the large coupling constant, seriously ralses the question of the size of the other fourth order diagrams in the perturbative expansion.

A partial answer to this question is the guest of this thesis. A subset of the diagrams that contribute to the masses of the hadrons are shown in Figures ic through 1 k .


Figures I-c to 1-k
Some of the diagrams that appear in the perturbative expansion of the four paint Green function

A quick glance at the Feynman rules in Appendix A indicate that only diagrams with two givons exchanged between two quarks have different color matrix structure than that of the second order diagrams. Calculating the rourth order diagrams that have the same color matrix structure as the lower order diagrams would renormalize $\alpha_{C}$ but would not change the splitting pattern except
under very unusyal circumstances. For example, adding the second and rourth order results together we would find an expression like,

$$
\Delta E=\alpha_{c}\left(N_{2}+\alpha_{c} N_{4}\right) T_{1} \cdot T_{2}+\alpha_{c}^{2} N_{4}\left(T_{1} \cdot T_{2}\right)^{2}
$$

where $\mathrm{N}_{2}$ indicates the size of the second order contribution to the energy shifts, $N_{4}$ indicates the size of the fourth order contribution with the same color matrix structure. and $\mathrm{N}_{4}$ indicates the $\mathrm{s}[\mathrm{ze}$ of the fourth order contribution with different color matrix structure. One can see that the $\mathrm{N}_{4}$ term will not change the splitting pattern at all, although it can change the fitted value of $\alpha_{c}$. Only in the unusual situation that $N_{4}$ is much larger than $N_{4}$ witl it give a more interesting result than $\mathrm{N}_{4}$ since the latter could qualitatively affect the splitting pattern as well as modify $\alpha_{C}$ Thus this thesis concerns itsetf only with those diagrams that have two gluons exchanged between the two quarks.

The calculation proceeds by a perturbative calculation of the four point Green function. By extracting the pole in the Green function one obtains a perturbative exparsion of the mass of the meson. The technique used for doing this is described in Chapter II. A naive calculation of the fourth order diagrams leats to a pinch singularity during the $\omega$ integration for parts of the diagram. This problem is also dealt with in Chapter II.

Since we are not calculating the entire set of fourth order
diagrams we must show that the subset we have calculated is gauge invariant by itself. This is discussed in Chapter HI. In Chapter IV the relevant diagrams are calculated, and in chapter $\mathbf{v}$ our results are presented.

ApDendix A presents the Feymman rules ${ }^{8,9}$ ror catculating S -matrix amplitudes. ApDendix 6 lists a number of useful relations between CleDsch-Gordon coefficients ${ }^{10}$. three-j symbols, six-j symbols and nine-j symbols.

If the $\omega$ integrations associated with the loops in the bok and crossed box diagrams were done in the normal way, the residues due to the poles in the propagators would be summed leading to the usual mode sum expressions. Instead, we follow hansson and Jaffe ${ }^{9}$ and perform the integrals after wick rotation. To do this we must show that the contributions to the contour integral from the quarter-circles at infinity are zero. This is done in Appendix $\mathbf{C}$.

Finally, to give some feeling of where the Feymman rules of Appendix A came from, the vertes function for the coulomb interaction is loosely derived in Appendix $\mathbf{D}$.

## Chapter III

## Extracting The Bound State Energy

In this chapter we examine the pinch singularity that appears in the calculation of the four point Green function. We will show where it appears and why it doesnit enter into the calculation of the bound state energy

While we will use covariant Dirac propagators for the quarks in the actual calculation, we wIII use onfy the forward-moving quark part of the mode sum expression for the Drac propagator in examining the singularity structure of the calculation. We will also Ignore all color factors at this time.

To find the energy of the bound quark state we wtll calculate a projection of the four point Green function,

$$
\int\left[d^{4_{x_{i}} l_{5,8}} \bar{U}\left(x_{5}\right) e^{i \omega_{5} t_{5}} \quad \vec{u}\left(x_{6}\right) e^{i \omega_{6} t_{6}}\right.
$$

$$
\left.\langle 0| T e^{-i H}\left|\psi\left(x_{5}\right) \psi\left(x_{6}\right) \bar{\psi}\left(x_{7}\right) \bar{\psi}\left(x_{8}\right)\right| 0\right\rangle u\left(x_{7}\right) e^{-i \omega_{7} t_{7}} u\left(x_{8}\right) e^{-i \omega_{8} t_{8}}
$$

# $\equiv \mathrm{P} \ll 0\left|T \mathrm{e}^{-i H_{1}} \psi\left(x_{5}\right) \psi\left(x_{g}\right) \overline{\mathcal{N}}\left(x_{7}\right) \bar{\psi}\left(x_{8}\right)\right| 0 \gg-\mathrm{i} \Delta$ 

where:

$$
\begin{gathered}
u(x) \equiv \Psi_{i S}(x) \\
\int\left[\left.d^{4} x_{i}\right|_{m, n}=\int d^{4} x_{m} d^{4} x_{m+1} \cdots d^{4} x_{n-1} d^{4} x_{n}\right.
\end{gathered}
$$

unless no subscripts are listed with the box, in which case all $x$ variables are integrated over, and the relevant part of $\pi_{7}$ is:

$$
H_{f}=-g_{c} \int d^{4} x \bar{\psi}(x) \gamma_{p} \psi(x) A^{\mu}(x) \equiv \int d t h(x)
$$

where $h(x)$ is the Hamiltonian density.
Then to lowest order in perturbation theory we have the following diagram:


Figure 2-a
Lowest order diagram in the perturtative exparsion of the four point Green function.

Evaluating the relevant projection of the diagr am:

$$
\begin{aligned}
& \left.-i \Delta_{0}=P 《<{ }_{0}\left|\tau \psi\left(x_{5}\right) \psi\left(x_{6}\right) \bar{\psi}\left(x_{7}\right) \bar{\psi}\left(x_{B}\right)\right| 0\right\rangle \\
& =\int\left[d^{4} x_{i}\right]_{5,8} \bar{u}\left(x_{5}\right) e^{i \omega_{5} t_{5}} \vec{u}\left(x_{6}\right) e^{i \omega_{6} t_{6}} \\
& \left.i \int \alpha \omega_{a} e^{-i \omega_{a}\left(t_{5}-t_{6}\right)} \sum_{m} u_{m}\left(x_{5}\right) u_{m}\left(n_{7}\right) / 2 \pi\left(\omega_{a}-\omega_{m}+i \epsilon\right)\right)^{-1} \\
& i \int d \omega_{b} e^{-1 \omega_{b}}{ }^{(t 5-t g)} \sum_{n} u_{n}\left(x_{5}\right) u_{9}\left({ }_{g}\right) /\left.2 \pi\left(\omega_{b}-\omega_{n}+i \epsilon\right)\right|^{-1} \\
& u\left(x_{7}\right) e^{-1 \omega_{7} t_{7}} u\left(x_{8}\right) e^{-i \omega_{B} t_{8}}
\end{aligned}
$$

Performing the integrals we find:

$$
\Delta_{0}=-12 \pi \delta\left(\omega_{5}-\omega_{7}\right) 2 \pi \delta\left(\omega_{6}-\omega_{8}\right)\left(\omega_{7}-\omega_{0}+|\epsilon|^{-1}\left|\omega_{8}^{-\omega_{0}}+i \epsilon\right|^{-1}\right.
$$

To extract the energy of the state let us perform the following integrations:

$$
\int d \omega_{5} d \omega_{6} \Delta \Delta \Delta_{0}(2 \pi)^{3}=-i \int d \Delta l 2 \pi\left(\Omega / /_{2}+\Delta-\omega_{\mathrm{o}}+\mathrm{i} \epsilon\right)\left(\Omega /\left.2^{\left.-\Delta-\omega_{\mathrm{o}}+\mathrm{i}\right)}\right|^{-1}\right.
$$

where:

$$
\Delta=\left(\omega_{5}-\omega_{6}\right) / 2 \quad \text { and } \Omega=\left(\omega_{5}+\omega_{6}\right) \text { total energy }
$$

Performing this last integration leaves,

$$
\Delta_{0}=-\left[\Omega-2 \omega_{0}\right]^{-1}
$$

putting the unperturbed energy at $2 \omega_{o}$ as expected.

Next let us consider the second order contribution to the four point function:


Figure 2-b
Secand order diagram on the pertubative expansion of the four point Green function.

$$
\begin{aligned}
& \left.-\dot{i} \Delta_{2}=P \ll 0\left|T:-i H_{1}\left(x_{1}\right):-i H_{1}\left(x_{2}\right) \Psi\left(x_{5}\right) \bar{\psi}\left(x_{6}\right) \bar{\psi}\left(x_{7}\right) \bar{\psi}\left(x_{8}\right)\right| 0\right\rangle / 21 \\
& =\int\left[d^{4} x_{i}\right]_{5,8}\left\{\bar{J}\left(x_{5}\right) e^{i \omega S_{5} t} \bar{U}\left(x_{6}\right) e^{i \omega \omega_{6} t_{6}}\left(i g_{C}\right)^{2} \gamma_{\alpha, \beta}^{\mu} \gamma_{k \tau}^{\lambda}\right. \\
& \int d^{4} x_{1} d^{4} x_{2}\left(i \int\left(d \omega_{e} / 2 \pi\right) D_{\mu} \lambda^{\left(x_{2}, x_{1}, \omega_{e}\right)} e^{\left.-1 \omega_{e^{(t}}-t_{1}\right)}\right) \\
& i \int\left(d \omega_{0} / 2 \pi\right) e^{-I \omega_{b}}{ }^{(t 5-1 t)} \sum_{n} \bar{U}_{n}\left(\kappa_{5}\right) \bar{u}_{n}^{-\alpha}\left(x_{l}\right)\left[\omega_{b}-\omega_{n}+i \epsilon\right]^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.i \int\left(d \omega_{c} / 2 \pi\right) e^{-i \omega_{c}} c^{(t 2-t a)} \sum_{q}{ }^{t \omega} q_{q}\left(\mu_{2}\right) \bar{u}_{q}\left(x_{B}\right) \lambda \omega_{c^{-}} \omega_{q}+i \epsilon\right\}^{-1}\right\}
\end{aligned}
$$

$$
u\left(x_{7}\right) e^{-i \omega_{7} t 7} u\left(k_{8}\right) e^{-1 \omega \omega_{8} t_{\theta}}
$$

Doing all of the integrals except those over $x_{1}$ and $x_{2}$ results in,

$$
\begin{aligned}
& =-i 2 \pi \delta\left(\Omega_{i}-\Omega_{f}\right) K_{o o g d}\left(\omega_{7}-\omega_{5}\right) \\
& \left.\int\left(\omega_{7}-\omega_{0}+i \epsilon\right)\left(\omega_{8}-\omega_{0}+i \epsilon\right)\left(\omega_{6}-\omega_{0}+i \epsilon\right)\left(\omega_{5}-\omega_{0}+i \epsilon\right)\right]^{-1}
\end{aligned}
$$

Now note that the factor in the first line of the above equation is actually the second order S-matrix amplitude for off mass shell quarks.

$$
\left.\left\langle\left\langle q_{5} q_{6}\right| s_{2} \mid a_{7} q_{8}\right\rangle\right\rangle=-i k_{c o, 0 d}\left(\omega_{7}-\omega_{5}\right)
$$

The subscripts on $k(\omega)$ indicate the energy state occupied by the quarks on the legs connected to the gluon propagator. To isolate the energy of the bound state we integrate over

$$
\Omega_{f}=\omega_{5}+\omega_{6}, \quad \Delta_{1}=\left(\omega_{7}-\omega_{8}\right) / 2, \quad \text { and } \quad \Delta_{1}=\left(\omega_{5}-\omega_{6}\right) / 2
$$

ignoring the poles in the gluon propagator. This forces the external
quark legs to the mass shell and gives us the mass of the physical bound quark states.

$$
\begin{aligned}
& \Delta_{2}=i \int\left(d \Delta_{i} / 2 \pi\right)\left(\Delta \Delta_{i} / 2 \pi\right)\left(-i k_{00.0 d}\left(\Delta_{i}-\Delta_{1}\right)\right) \\
& \left(\Omega / 2+\Delta_{\mathrm{r}}-\omega_{\mathrm{o}}+\mathrm{i} \epsilon\right)\left(\Omega / 2-\Delta_{\mathrm{i}}-\omega_{\mathrm{o}}{ }^{+\epsilon}\left(\Omega / 2+\Delta_{\mathrm{r}}-\omega_{\mathrm{o}}+i \epsilon\right)\left(\Omega / 2-\Delta_{\mathrm{r}}-\omega_{\mathrm{o}}+i \epsilon\right)\right)^{-1} \\
& =-k_{00,00}(\circ)\left[\Omega-2 \omega_{0}\right]^{-2}=-\Omega \Omega-2 \omega_{0}-^{-2}\left|\ll q_{5} q_{6}\right| s_{2}\left|q_{7} 9_{8}\right\rangle
\end{aligned}
$$

Or since we are interested in bound states of definite spin, we will be interested in the following s -matrix amplitudes,

$$
\Delta_{2}=-\left[\Omega-2 \omega_{0}\right]^{-2},\left\langle s_{f}\right| s_{2}\left|s_{i}\right\rangle
$$

This implies that to second order.

$$
\Delta=\Delta_{0}+\Delta_{2}=\left[\Omega-2 \omega_{o}+K_{0,0 \infty}(0) \Gamma^{\prime}\right.
$$

or that the energy of the bound state is at $\Omega=2 \omega_{0}-K_{\text {oo. on }}(0)$. Where we have inverted the Green function to extract the energy pole in the standard way. The reader may wish to review the self energy mass
corrections to the electron propagator at this point.
Finally we arrive at the pourth order term. We must catculate

$$
\left.\Delta_{4}=-\left[\Omega-2 \omega_{0}\right]^{-2} i<s_{f}\left|s_{4}\right| s_{i}\right\rangle
$$

However, only the box diagrams have problems with pinch singularities, so we will only examine the box diagram of Figure 2.c.


$$
\begin{aligned}
& \left.-i \Delta_{4}=-\left[\Omega-2 \omega_{0}\right]^{-2} 《 q_{1 S} q_{15}\left|s_{4}\right| q_{1 S} q_{15}\right\rangle \\
& \left.<q_{1 S} q_{15}\left|s_{4}\right| q_{1 S} q_{1 S}\right\rangle=
\end{aligned}
$$

Performing the integration over $\omega$ we are left with several terms.

$$
\bar{u}\left(k_{3}\right) \gamma_{\mu} u_{n}\left(x_{3}\right) \bar{u}_{n}\left(x_{4}\right) \gamma_{\lambda} u\left(x_{4}\right) \bar{u}^{\left(x_{1}\right)} \gamma_{x} u_{m}\left(x_{1}\right) \bar{u}_{m}\left(x_{2}\right) \gamma_{\tau} u\left(k_{2}\right)+\text { finite }
$$ terms from poles in gluon propagator

$=-1 \sum_{m, n} k_{o o, m n}\left(\omega_{0}-\omega_{m}\right)\left[2 \omega_{0}-\omega_{m} \omega_{n}\right]^{-1} k_{o o, m n}\left(\omega_{o}-\omega_{m}\right)+$ inite terms

Only the first term has any singularity, and that occurs only for that part of the dtagram for which the intermediate quark states are the same as the initial states. This part is actually not to be included in the calculation of the energy shift as will be demonstrated below.

$$
\begin{aligned}
& \left\langle q_{I S} q_{I S}\right| s_{4}\left|q_{I S} q_{15}\right\rangle=g_{c}^{4} \sum_{m, n} \int\left[d^{3} x_{1}\right]_{1.4}\left[2 \omega_{0}-\omega_{m}-\omega_{n}\right]^{-1} \\
& i^{\mu}{ }^{\mu \lambda}\left(x_{1}, x_{3}, \omega_{0}-\omega_{m}\right) \text { id }{ }^{k \tau_{\left(x_{4}\right.}, x_{2}, \omega_{0}}{ }^{\left.-\omega_{m}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \left(g_{c}\right)^{4} \int(d \omega / 2 \pi) \int\left[d^{3} k_{1} l_{1,4} \quad i D^{j \lambda \lambda}\left(k_{1}, k_{3}, \omega\right) \quad i D^{k \tau}\left(x_{4},{ }_{2} i^{\omega}{ }^{\omega}\right)\right. \\
& \bar{U}\left(x_{3}\right) \gamma_{j} \text { } 1 \sum_{n} U_{n}\left(x_{3}\right) \bar{u}_{n}\left(x_{4}\right)\left(\omega_{o}+\omega-\omega_{n}+i \epsilon\right\}^{-i} \quad \gamma_{\lambda} L\left(x_{4}\right) \\
& \bar{U}\left(x_{1}\right) \gamma_{k} ; \sum_{m} u_{m}\left(x_{1}\right) \bar{u}_{m}\left(x_{2}\right)\left[\omega_{0}-\omega-\omega_{m}+i \epsilon\right]^{-1} \gamma_{\tau} 山\left(x_{2}\right)
\end{aligned}
$$

Adding the zeroth，second and rourth order results together we find，

$$
\begin{aligned}
& \Delta=\Delta_{o}+\Delta_{2} \Delta_{4}=-\left(\Omega-2 \omega_{o}\right]^{-1}-\left[\Omega-2 \omega_{o}\right]^{-2}\left(k_{o o, o d}(O)+\right. \\
& \quad \sum_{m_{n} n} k_{\left.o o, m n^{\prime}\left(\omega_{o}-\omega_{m}\right)\left[2 \omega_{o}-\omega_{m}-\omega_{n}\right)^{-1} k_{o o, m n}\left(\omega_{o}-\omega_{m}\right)\right\}}
\end{aligned}
$$

which can be written as，

$$
\begin{aligned}
& \Delta=\left[\Omega-2 \omega_{0}-k_{o 0, o \rho^{\prime}(0)-\sum_{m, n}^{\prime} k_{o o, m n}\left(\omega_{o}-\omega_{m}\right)}\right. \\
& \left.\quad\left[2 \omega_{o}-\omega_{m}-\omega_{n}\right]^{1} \quad k_{o o m n}\left(\omega_{o}-\omega_{m}\right)\right]^{-\dagger}
\end{aligned}
$$

Where the prime of the summation indicates that the term with intermediate quarks in the same state as the initial quarks is to be excluded．This puts the pole in the total energy at

$$
\begin{aligned}
& \left.E=2 \omega_{o}-k_{o, 0,0}(0)-\sum^{\prime} k_{o 0, m n}\left(\omega_{o}-\omega_{n}\right) / 2 \omega_{o}-\omega_{m}-\omega_{n}\right]^{-1} k_{o o, m n}\left(\omega_{o} \omega_{m}\right) \\
& \left.\left.=2 \omega_{o}-i 《 s_{f}\left|s_{2}\right| s_{i}\right\rangle-i 《 s_{f}\left|s_{4}\right| s_{i}\right\rangle
\end{aligned}
$$

Where the primes have the obvious meaning that the part of the diagram that gives the sifngularity is to be avoided.

We thus have our prescription for finding the fourth order energy shift of the bound quark states; calculate the fourth order 5 -matrix element for quarks in a definite spin state but exclude that part of the diagram that is an iteration of the second order diagram. In the actual calculation when we are using covariant Dirac propagators and doing the $a$ integration atter wick rotation, this will simply mean choosing a contour that excludes the unwanted pole in the Dirac propagator.

## Chapter ill

## Gauge invariance of The Calculation

As stated in the introduction since we are not calculating the full set of rourth order Feynman diagrams. we must show that the set of diagrams we have calculated is gauge invariant by itself. We must remember, however, that we are onfy calculating those diagrams with a certain. $\left(T_{1} \cdot T_{2}\right)^{2}$, color matrix structure. Therefore, we can ignore those parts of the calculated diagrams that result in terms with a different color matrix structure.

The coulomb propagator has a gauge term $\sim \mu / \mathrm{F}$. We will show that this term gives zero contribution to the diagrams calculated. For this examination it is again easier to work with the mode sum expansion of the propagator and the normal vertex function used in free field OCD.

First consider the gauge term contribution to the coutomb-coulomb box diagram:


Figures 3-a and 3-b
Coulomb-coulomb box diagrams

Figure $3 . a$ is the general diagram and Figure 3.b is the iterative piece to te subtracted. [goring common factors we find:

$$
\begin{aligned}
& a-b \approx(\mu / R)^{2} \int d \omega \int\left[d^{3} x_{i}\right] \\
& \left\{\bar{\psi}_{I S}\left(x_{1}\right) \gamma^{\circ} \sum_{m}\left(\psi_{m}\left(x_{1}\right)\left(\omega_{o}-\omega-\omega_{m}+\dot{\epsilon}\right)^{-1} \bar{\psi}_{m}\left(x_{2}\right)\right) \gamma^{\circ} \psi_{q_{s}}\left(x_{2}\right)\right. \\
& \left.\bar{\Psi}_{15}\left(x_{3}\right) \gamma^{\sigma} \sum_{n}\left\{\psi_{n}\left(x_{3}\right)\left(\omega_{o}+\omega-\omega_{n}+i \epsilon\right) \Psi_{n}\left(x_{4}\right)\right\} \gamma^{\alpha_{4}} \psi_{15}\left(x_{4}\right)\right\}- \\
& \left\{\bar{\psi}_{15}\left(x_{1}\right) \gamma^{\circ} \psi_{15}\left(x_{1}\right)(-\omega+i 6)^{-1} \bar{\psi}_{15}\left(x_{2}\right) \gamma^{\circ} \psi_{15}\left(x_{2}\right)\right. \\
& \left.\left.\bar{\psi}_{15}\left(x_{3}\right) \gamma^{o} \psi_{15}\left(x_{3}\right)(\omega+i \epsilon)^{-1} \bar{\psi}_{\text {s }_{s}}\left(x_{4}\right)\right) r^{\alpha_{4}}{ }_{15}\left(x_{4}\right)\right\}
\end{aligned}
$$

Since the coulomb gauge term has no $k$ dependence, the integrations
over $x_{1}, x_{2}, x_{3}$, and $x_{4}$ reduce the sum over $m$ and $n$ to only the is state. This then cancels the second term giving a totar contribution of zero.

Next, consider the mixed coulomb-transverse diagrams.


The wiggly line with a circle on it in Figure 3 e stands for the transverse propagator with $\omega=0$. The last diagram is subtracted because of the pinch singularity discussed in Chapter 2.

$$
\begin{aligned}
& c+d \approx \mu / R \int d \omega \int\left[d^{3} x_{i} \mid\left\{\bar{\Psi}_{I S}\left(x_{1}\right) \gamma^{\mu} \sum_{m}\left(\psi_{m}\left(x_{1}\right)\left(\omega_{o}^{-\omega-\omega_{m}}+i \epsilon\right)^{-1} \bar{\Psi}_{m}\left(x_{2}\right)\right)\right.\right. \\
& \left.\gamma_{o} \psi_{\mathrm{Is}}\left(\kappa_{2}\right) \mathrm{D}_{\mu \lambda}\left(\mathrm{k}_{1}, \mu_{3}, \omega\right)\right\} \\
& \left\{\bar{\psi}_{15}\left(x_{3}\right) \gamma^{\lambda} \sum_{n}\left(\psi_{n}\left(x_{3}\right)\left(\omega_{0}+\omega-\omega_{n}+i \xi\right) \bar{\psi}_{n}\left(x_{4}\right)\right){\gamma_{0} \psi_{15}\left(x_{4}\right)}+\right. \\
& \left.\bar{\Psi}_{15}\left(x_{4}\right) \gamma_{o} \sum_{n}\left(\psi_{n}\left(x_{4}\right)\left(\omega_{o}-\omega-\omega_{n}+\dot{ }\right)^{-1} \bar{\psi}_{n}\left(x_{3}\right)\right) z^{\lambda} \psi_{1_{5}}\left(x_{3}\right)\right\}
\end{aligned}
$$

Agaln, since the coulomb gauge term has no $x$ dependence, the

Integrals over $x_{2}$ and $x_{4}$ constrain the mode sum to Include only the is state mode. We can thus write:

$$
\begin{gathered}
c+d \approx \mu / R \int d \omega \int\left(d^{3} x_{1}\right]\left\{\bar{\psi}_{15}\left(x_{1}\right) \gamma \mu_{\psi_{15}}\left(x_{1}\right)(-\omega+i \epsilon)^{-1}\right. \\
\left.\bar{\psi}_{15}\left(x_{2}\right) x_{0} \psi_{15}\left(x_{2}\right) D_{\mu \lambda}\left(x_{1}, x_{3}, \omega\right)\right\} \\
\left\{\bar{\psi}_{15}\left(x_{3}\right) \gamma^{\lambda} \Psi_{15}\left(x_{3}\right)(\omega+16) \bar{\psi}_{15}\left(x_{4}\right) x_{0} \psi_{15}\left(x_{4}\right)+\right. \\
\left.\bar{\psi}_{15}\left(x_{3}\right) \gamma^{\lambda} \psi_{15}\left(x_{3}\right) \bar{\psi}_{15}\left(x_{4}\right) x_{0} \psi_{15}\left(x_{4}\right)(-\omega+i \epsilon)^{-1}\right\}
\end{gathered}
$$

The $x$ dependence is the same in both terms so let us ignore it and examine the $\omega$ dependence only:

$$
\left.c+d \approx \int d \omega(-\omega+i \epsilon)^{-1} D(\omega) f(\omega+i \epsilon)^{-1}+(-\omega+i \epsilon)^{-1}\right)
$$

There are poles in $\mathrm{O}(\omega)$ but the quantity in curly brackets assures their residues give no contribution This leaves the pole at $\omega=0$ with which to contend. If we close the integral in the upper half plane, the second term in curly brackets gives zero contribution. Pulling the contribution from diagrame back into the picture, we are feft with the residue at $\omega=0$ for the following integral:

$$
b+C-d \approx \int d \omega(-\omega+1 G)^{-1}(\omega+i c)^{-1}\{D(\omega)-D(0)\}
$$

Which is zero.
This completes the proof that the calculation is gauge invariant under the restricted gauge transformation $G(x) \approx G(x)+\mu / A$. We believe that since the above diagrams are the only ones with the above color matrix structure, we can be reasonably certain that they are gatige invariant by thernselves.

## Chapter IV

## Ihe calculation

As shown in Chapter fl, the fourth order energl contribution is given by,

$$
E_{4}=i\left\langle\left\langle s_{1}\right| s_{4}{ }_{4} \mid s_{i}\right\rangle
$$

where, again, the prime on $\mathrm{S}_{4}$ indicates we do not include the pinch singularity at $\omega=0$. Also as stated previously, we will only calculate those S -matrin amplitudes that have a different color matriy structure than that of the second order contribution. The diagrams corresponding to these amplitudes are shown in Figures 4 a through $4 \cdot \mathrm{e}$.


To calculate these diagrams first expand the S -matrix amplitude:

$$
\left.\left\langle s_{f}\right| s\left|s_{1}\right\rangle\right\rangle=\sum \mu_{1_{t}} \mu_{2,} \mu_{3,} \mu_{4}
$$

$\left.\left\langle\left\langle s_{f} \mu \mid s_{1} \mu_{1}, s_{3} \mu_{3}\right\rangle\right\rangle\left\langle s_{1} \mu_{1}, s_{3} \mu_{3}\right| s\left|s_{2} \mu_{2}, s_{4} \mu_{4}\right\rangle\right\rangle$

$$
\left\langle\left\langle s_{2} \mu_{2} S_{4} \mu_{4} \mid S_{1} \mu_{i}\right\rangle\right.
$$

Use of equation $\mathrm{B}-1$ results in:

$$
\begin{aligned}
& \left.\left\langle s_{p}\right| s_{1}\left|s_{i}\right\rangle\right\rangle=\sum \mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}(-1) s_{1}-s_{1}-\mu_{1}+s_{4}-s_{2}-\mu_{1} \\
& {\left[\left(25_{1}+1\right)\left(25_{i}+1\right)\right]^{1 / 2}} \\
& \left(\begin{array}{lll}
s_{1} & s_{3} & s_{r} \\
\mu_{1} & \mu_{3} & \mu_{r}
\end{array}\right)\left(\begin{array}{lll}
s_{2} & s_{4} & s_{i} \\
\mu_{2} & \mu_{4} & \mu_{i}
\end{array}\right) \quad\left\langle s_{1} \mu_{1} s_{3} \mu_{3}\right| s\left|s_{2} \mu_{2} s_{4} \mu_{4}\right\rangle
\end{aligned}
$$

We can now evaluate the above matrix element using the Feyrman rules listed in Appendix A A bok and crossed box diagram are shown in more detail with all necessary labeling in Figures $4 . \mathrm{f}$ and $4 . \mathrm{g}$. The dashed lines represent either coulomb or transverse gluons. The same labeling will be used for all five diagrams whether the exchanged gluons are transverse or coulomb.


Figure 4.1
Labeling convention for box diagr ams.


Figure $4 . g$
Labeling convention for crossed box diagrams.

We make the following gef inition:

$$
\mathrm{E}_{4} \stackrel{\text { TTBOX }}{ }+\text { CTBOX }+ \text { CCBOX }+ \text { TTCHOSS }+ \text { CTCROSS }
$$

Where the prefixes TT, CT, and CC have the obvious definitions:

## TTetransverse-transverse, CTecoullomb-transverse, and CCacoulomb-cowomb.

Consider first the box diagram with two transverse gluons. Use of the Fegrman Rules in Appendix A results in:

$$
\begin{aligned}
& \text { TTBOX } \equiv \sum \mu_{1}, v_{2}, \mu_{3}, \mu_{4}^{(-1)} S_{3}-S_{1}-\mu_{1}+S_{4}-S_{2}-\mu_{1} \\
& \left(\left(25_{i} \cdot 1\right)\left(25_{i}+1\right)\right]^{1 / 2} \\
& \left(\begin{array}{lll}
s_{1} & S_{3} & S_{f} \\
\mu_{1} & \mu_{3} & \mu_{f}
\end{array}\right)\left(\begin{array}{lll}
s_{2} & S_{4} & S_{i} \\
\mu_{2} & \mu_{4} & \mu_{i}
\end{array}\right) \\
& \left.i 《 S_{1} \mu_{1}, S_{3} \mu_{3}\left|S_{4}\right| S_{2} \mu_{2}, S_{4} \mu_{4}\right\rangle \\
& \text { TTBOX }=\operatorname{Ig}_{C}^{4}\left(T_{1} \cdot T_{2}\right)^{2} \int d \omega / 2 \pi \int\left[d x_{i} x_{i}{ }^{2}\right] \\
& \| X_{1_{1}}\left(x_{1}\right)\left(I_{1}^{\prime} 1 / 2 \quad 1 / 2| | Y_{J i, 1} \sigma| | I_{1} 1 / 2 j_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& X_{1} \cdot 2^{\left.\left(k_{2}\right)\right]}\left[X_{1 \cdot 3}\left(\mathrm{~K}_{3}\right)\left(I_{3} \quad 1 / 2 \quad 1 / 2| | Y_{J_{1 L}} \cdot \sigma| | I_{3} 1 / 2 j_{2}\right)\right. \\
& p^{2} S_{j 213 / 4}\left(x_{3}, x_{4}, \omega_{0}+\omega\right) p^{2}
\end{aligned}
$$

$$
\begin{aligned}
& D_{J 2 L 42_{2}}\left(x_{4},^{x} 2^{, \omega)}\right. \\
& \sum_{\text {all } m_{1} M_{t} \mu}(-1) I_{1}+I_{2}+J_{1}+J_{2}^{-\left(m_{1}+m_{2}+M_{1}+M_{2}+\mu_{1}+\mu_{i}+\mu_{1}+\mu_{3}\right)-L_{2}-L_{3}-1} \\
& \left(\begin{array}{ccc}
s_{1} & s_{3} & s_{1} \\
\mu_{1} & \mu_{3} & -\mu_{1}
\end{array}\right)\left(\begin{array}{ccc}
s_{1} & J_{1} & j_{1} \\
-\mu_{1} & \mu_{1} & m_{1}
\end{array}\right)\left(\begin{array}{ccc}
s_{3} & J_{1} & l_{2} \\
-\mu_{3} & -\mu_{1} & m_{2}
\end{array}\right) \quad\left(\begin{array}{lll}
s_{2} & s_{4} & s_{i} \\
\mu_{2} & \mu_{4} & -\mu_{i}
\end{array}\right) \\
& \left(\begin{array}{ccc}
s_{2} & j_{1} & J_{2} \\
\mu_{2} & -m_{1} & -M_{2}
\end{array}\right) \quad\left(\begin{array}{ccc}
s_{4} & j_{2} & J_{2} \\
\mu_{4} & -m_{2} & M_{2}
\end{array}\right) \quad\left[\left(2 s_{1}+1\right)\left(2 s_{1}+1\right)\right]^{1 / 2}
\end{aligned}
$$

Notice that only the three-j symbols depend upon the $a$ component of angular momentum. We shall denote this summation soin sum and evaluate it next.

We split the sum into two parts and use the three-j relations in appendix $\mathbf{B}$ :

$$
\text { Spin Sum }=(-1) l_{1}{ }^{+} 2^{*} J_{1}+J_{2}+\left(\mu_{\mathrm{r}}-m_{1}-m_{2}\right)-L_{2}-L_{3}-1
$$

$$
\begin{aligned}
& \sum_{\mu_{1}, M_{1}, \mu_{3}(-1)} M_{1}+\mu_{1}+\mu_{3}+J_{1}+S_{1} * I_{1} \\
& \left(\begin{array}{ccc}
s_{1} & s_{1} & s_{3} \\
-\mu_{1} & \mu_{1} & \mu_{3}
\end{array}\right)\left(\begin{array}{ccc}
J_{1} & j_{2} & s_{3} \\
-M_{1} & m_{2} & -\mu_{3}
\end{array}\right)\left(\begin{array}{ccc}
\mu_{1} & s_{1} & j_{1} \\
M_{1} & -\mu_{1} & m_{1}
\end{array}\right) \\
& \sum_{\mu 2, \mu 4, M_{2}(-1)} \mu_{2}+\mu_{4}+M_{2}+j_{1}+S_{2}+ل_{2} \\
& \left(\begin{array}{ccc}
s_{4} & S_{2} & s_{1} \\
-\mu_{4} & -\mu_{2} & \mu_{1}
\end{array}\right)\left(\begin{array}{ccc}
j_{1} & S_{2} & J_{2} \\
-m_{1} & \mu_{2} & -M_{2}
\end{array}\right)\left(\begin{array}{lll}
s_{4} & j_{2} & J_{2} \\
\mu_{4} & -m_{2} & \mu_{2}
\end{array}\right)
\end{aligned}
$$

Next let $\mu_{3}$ go to $-\mu_{3}$ in the first sum, and tet $\mu_{4}$ go to $-\mu_{4}$ in the second sum. This results in:

$$
\begin{aligned}
& \text { Spin sum }=(-1))_{1} \cdot j_{2}-L_{2}-L_{3}-1 \quad \sum_{m, m 2}(-1)\left(\mu_{1}-m_{1}-m_{2}\right) \\
& \sum_{\mu, M 1, \mu 1}(-1)^{M_{1}+\mu_{1} * \mu_{3}} \\
& \left(\begin{array}{ccc}
s_{1} & s_{1} & s_{3} \\
-\mu_{1} & \mu_{1} & -\mu_{3}
\end{array}\right)\left(\begin{array}{ccc}
J_{1} & j_{2} & s_{3} \\
-\mu_{1} & m_{2} & \mu_{3}
\end{array}\right)\left(\begin{array}{ccc}
J_{1} & s_{1} & j_{1} \\
m_{1} & -\mu_{1} & m_{1}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{\mu_{2, \mu 4, M 2}(-1) \mu_{2} \mu^{+} 4^{+M_{2}}} \\
& \qquad\left(\begin{array}{ccc}
s_{4} & s_{2} & s_{1} \\
\mu_{4} & -\mu_{2} & \mu_{i}
\end{array}\right)\left(\begin{array}{ccc}
j_{1} & s_{2} & J_{2} \\
-m_{1} & \mu_{2} & -\mu_{2}
\end{array}\right)\left(\begin{array}{ccc}
s_{4} & j_{2} & j_{2} \\
-\mu_{4} & -m_{2} & M_{2}
\end{array}\right)
\end{aligned}
$$

Use of $\mathrm{B}-3$ results in:

$$
\begin{aligned}
& \text { Spin sum }=\sum_{m 1, m 2}(-1) j_{1}+j_{2}+J_{1}+J_{2}+\left(\mu_{1}-m_{1}-m_{2}\right)-L_{2}-L_{3}-1 \\
& \qquad\left(\begin{array}{ccc}
j_{1} & j_{2} & s_{1} \\
m_{1} & m_{2} & -\mu_{1}
\end{array}\right)\left\{\begin{array}{ccc}
j_{1} & j_{2} & s_{1} \\
-m_{1} & -m_{2} & \mu_{i}
\end{array}\right)\left\{\begin{array}{ccc}
j_{1} & j_{2} & s_{1} \\
1 / 2 & 1 / 2 & J_{1}
\end{array}\right\}\left\{\begin{array}{ccc}
j_{1} & j_{2} & s_{i} \\
1 / 2 & 1 / 2 & J_{2}
\end{array}\right\}
\end{aligned}
$$

Noting $\mu_{1}=m_{1}+m_{2}$ and using $B-2$ we arrive at our final form for the spin sum:


$$
\left\{\begin{array}{ccc}
j_{1} & j_{2} & s_{f} \\
1 / 2 & 1 / 2 & j_{1}
\end{array}\right\}\left\{\begin{array}{lll}
j_{1} & j_{2} & s_{i} \\
1 / 2 & 1 / 2 & j_{2}
\end{array}\right\}
$$

Which allows us to write:

$$
\operatorname{TTBOX}=i g_{C}^{4}\left(T_{1} \cdot T_{2}\right)^{2} \int d \omega / 2 \pi \int\left[d x_{1}{x_{i}}_{i}^{2}\right.
$$

$$
\begin{aligned}
& \left(X_{l_{1},}\left(x_{1}\right)\left(\gamma_{1} 1 / 2 \quad 1 / 2\left\|Y_{J_{L}} \sigma\right\| \|_{1} 1 / 2 j_{1}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& 5_{j 2 i 314}\left(x_{3},{ }_{4} 4^{\omega \omega} 0^{+} \omega\right) \rho^{2}
\end{aligned}
$$

$$
\left\{\begin{array}{ccc}
j_{1} & j_{2} & s \\
1 / 2 & l_{1} & j_{1}
\end{array}\right\}\left\{\begin{array}{lll}
j_{1} & j_{2} & s \\
1 / 2 & j_{2} & j_{2}
\end{array}\right\}
$$

At this point we could perform the $\omega$ integration along the real $\omega$ axis. This would pick up the poles in the propagators and produce the mode sum expressions used in chapters il and ill. Instead, we will rotate the contour and replace the slowly convergent mode sums with a rapidly convergent integration parallel to the imaginary $\omega$ axis. To do this we must verify that the two quarter-circles at inf inity give zero contribution to the desired integral. This will be shown in appendix D .

We are interested in evaluating TTBOX:
TTBOX= $\int(d \omega / 2 \pi) F(\omega)-\operatorname{Residue}[F(\omega=0)]$

Consider the integral around the contour in the complex $\omega$ plane shown in figure 4 h.


Figure 4-h
Eontour choice with poles in Dirac propagators represented by $x$ 's and poles in gluon propagators represented by o's.

The pinch singularity comes from the poles in the Dirac propagator shown on the imaginary $\alpha$ axis. The above contour eliminates the unwanted term that has the singularity as will be shown below.

Now integrate around the dashed contour shown in Figure 4.n:

$$
\begin{aligned}
& i \oint(d z / 2 \pi) F(z)=\operatorname{Residue}[F(\omega=0)] \\
& \quad=1 \int_{-\infty}(d \omega / 2 \pi) F(\omega)+i \int_{C+i \infty}(d z / 2 \pi) F(z)+\text { zero terms }
\end{aligned}
$$

which implies that,

$$
\text { TTBOX }=-i \int_{c+i \infty}(d z / 2 \pi) F(z)
$$

Letting $z=c-i \eta$ we obtain.

$$
\begin{aligned}
& \operatorname{TTBOX}=-\int_{-\infty}(\mathrm{d} \eta / 2 \pi) F(\mathrm{C}-i \eta) \\
& =-g_{C}^{4}\left(\mathrm{~T}_{1} \cdot T_{2}\right)^{2} \int d \eta / 2 \pi \int\left(\mathrm{dx}_{i} \mathrm{x}_{\mathrm{i}}{ }^{2}\right)
\end{aligned}
$$

$$
\left(x_{1^{\prime} 1}\left(x_{1}\right)\left(l_{1}|/ 2 \quad| / 2 \| y_{J_{1}} L_{1}-\sigma| | l_{1} 1 / 2 j_{1}\right)\right.
$$

$$
\left.\rho^{2} s_{j 1 / 1 / 2}\left(x_{1}, x_{2}, \omega_{o}^{-2}\right) \rho^{2}\left(l_{2}\left|/ 2 j_{1}\right| \mid Y_{j 2 l}{ }_{2} \sigma\| \| l_{2}^{\prime} 1 / 21 / 2\right) X_{l^{\prime} \cdot}\left(\mathrm{K}_{2}\right)\right]
$$

$$
\left(X_{1^{\prime} 3}\left(x_{3}\right)\left(l_{3}^{\prime} \quad 1 / 2 \quad 1 / 2| | Y_{J / L 3} \cdot \sigma| | I_{3} 1 / 2 j_{2}\right) \rho^{2} s_{j 2|3| 4}\left(x_{3}, x_{4}, \omega_{o}+z\right) \rho^{2}\right.
$$

$$
\left.\left(l_{4} 1 / 2 \dot{1}_{2}| | Y_{J 2 L 4} \cdot \sigma| | I_{4} 1 / 2 \mid / 2\right) x_{1} 4_{4}^{\left(x_{4}\right)}\right) D_{J 1 L I L 3}\left(x_{1}, x_{3}, z\right)
$$

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{JLL}_{2} 2_{2}\left(\mathrm{x}_{4}, \mathrm{x}_{2}, 2\right)}(-1)^{\mathrm{J}+\mid 2^{+} \mathrm{J}^{+} \mathrm{J}_{2}-\mathrm{L}_{2}-\mathrm{L}_{3}-1} \\
& \left\{\begin{array}{ccc}
1_{1} & j_{2} & 5 \\
1 / 2 & 1 / 2 & J_{1}
\end{array}\right\} \quad\left\{\begin{array}{lll}
1_{1} & 1_{2} & 5 \\
1 / 2 & 1 / 2 & J_{2}
\end{array}\right\}
\end{aligned}
$$

This is our final analytic expression and must be evaluated numerically.

Next consider the box diagram with two coulomb gluons being exchanged. Use of the Feynman rules in Appendix A result in:

$$
\begin{aligned}
& \operatorname{ccsox}=\operatorname{ig}_{\mathrm{c}}{ }^{4}\left(T_{1} \cdot T_{2}\right)^{2} \int d \omega / 2 \pi \int \operatorname{ldx_{1}} x_{i}{ }^{2} \mid
\end{aligned}
$$

$$
\begin{aligned}
& \left.\rho^{3} S_{j+112}\left(x_{1}, x_{2}, \omega_{o}^{-\omega}\right) \rho^{3}\left(l_{2} /\left.2 j_{1}\left\|v_{J_{2}}\right\|\right|_{2} 1 / 2 \mid / 2\right) x_{1^{\prime}\left(x_{2}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(l_{4} 1 / 2 j_{2}| | \gamma_{J_{2}}| | i_{4}^{\prime}|/ 2| / 2\right) x_{1} \cdot\left(x_{4}\right)\right) G_{J_{1}}\left(x_{1}, x_{3}\right) \\
& G_{J 2}\left({ }_{k}{ }_{4} x_{2}\right)\left[\left(2 s_{i}+1\right)\left(2 s_{f}+1\right)\right]^{1 / 2} \\
& \sum_{\text {all } m, m_{1}, \mu}(-1) l_{1}{ }^{+j} 2_{2}\left(m_{1}+m_{2}+M_{1}+M_{2}+\mu_{1}+\mu_{i}{ }^{+} \mu_{1}+\mu_{3}\right)+1
\end{aligned}
$$

$$
\left(\begin{array}{ccc}
s_{1} & s_{3} & s_{1} \\
\mu_{1} & \mu_{3} & -\mu_{1}
\end{array}\right)\left(\begin{array}{ccc}
s_{1} & \mu_{1} & j_{1} \\
-\mu_{1} & \mu_{1} & m_{1}
\end{array}\right)\left(\begin{array}{lll}
s_{3} & \mu_{1} & j_{2} \\
-\mu_{3} & -m_{1} & m_{2}
\end{array}\right)\left(\begin{array}{lll}
s_{2} & s_{4} & s_{i} \\
\mu_{2} & \mu_{4} & -\mu_{i}
\end{array}\right)\left(\begin{array}{lll}
s_{2} & j_{1} & J_{2} \\
\mu_{2} & -m_{1} & -\mu_{2}
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
s_{4} & j_{2} & \lrcorner_{2} \\
\mu_{4} & -m_{2} \mu_{2}
\end{array}\right)
$$

Notice that the sum over the $z$ component of angular momentum is the same as Spin Sum in the evaluation of TTBOX except for a factor

$$
(-1)^{\mathrm{J}_{4}+\mathrm{J}_{2}-\mathrm{L}_{2}-\mathrm{L} 3}
$$

We can thus write:
actor Spin Sum $=(-1)^{j+j 2+1} \quad \delta_{s_{j}}, s_{f} \delta_{\mu_{i}, \mu_{f}}\left(2 s_{f}+1\right)^{-1}$

$$
\left\{\begin{array}{ccc}
\mathrm{j}_{1} & \mathrm{j}_{2} & \mathrm{~s}_{\mathrm{f}} \\
1 / 2 & \mathrm{l} / 2 & \mathrm{j}_{1}
\end{array}\right\}\left\{\begin{array}{lll}
\mathrm{j}_{1} & j_{2} & \mathrm{~s}_{1} \\
1 / 2 & 1 / 2 & j_{2}
\end{array}\right\}
$$

Performing a wick rotation as in the $\dagger T B O X$ calculation, we arrive at our final analytic expression for CCBOX.

$$
\begin{aligned}
& \operatorname{ccBOX}=-g_{C}^{4}\left(T_{1} \cdot T_{2}\right)^{2} \int d \pi / 2 \pi \int\left(d x_{i} x_{i}{ }^{2}\right) \\
& \left(X_{1 \cdot 1}\left(x_{1}\right)\left(I_{1} \quad 1 / 2 \quad 1 / 2| | Y_{J 1}\| \| I_{1} \quad 1 / 2 j_{1}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{X_{l^{\prime} 3}\left(x_{3}\right)\left(l_{3} 1 / 2 \quad 1 / 2| | Y_{J_{1}} \|\left.\right|_{3} 1 / 2 j_{2}\right) p^{3} S_{j 2 i 314}\left(x_{3}, x_{4} \cdot \omega_{\circ}+z\right) \rho^{3}\right. \\
& \left(f_{4} 1 / 2 j_{2}| | Y_{J 2}| | r_{4} 1 / 21 / 2\right) X_{1} \cdot{ }_{4}\left(x_{4}\right) \mid G_{J 1}\left(x_{1}, x_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{rrr}
\mathrm{j}_{1} & \mathrm{j}_{2} & \mathrm{~s} \\
\mathrm{l} / 2 & \mathrm{l} / 2 & \mathrm{~J}_{1}
\end{array}\right\}\left\{\begin{array}{lll}
\mathrm{j}_{1} & \mathrm{j}_{2} & \mathrm{~s} \\
\mathrm{l} / 2 & 1 / 2 & \mathrm{j}_{2}
\end{array}\right\}
\end{aligned}
$$

Next consider the box diagram with one coutomb gluon and one transverse gluon being exchanged. Use of the Feymman rules in Appendix A result in:

$$
\begin{aligned}
& \operatorname{ctgox}=-\lg _{\mathrm{C}}{ }^{4}\left(\mathrm{~T}_{1} \cdot \mathrm{~T}_{2}\right)^{2} \int \Delta \omega / 2 \pi \int\left[\sigma \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}{ }^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& G_{\mathrm{J} 2}\left(\mathrm{H}_{4},{ }^{\mathrm{n}} 2\right)\left[\left(2 S_{\mathrm{i}}+1\right)\left(2 S_{\mathrm{f}}+1\right)\right]^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
S_{1} & S_{3} & S_{1} \\
\mu_{1} & \mu_{3} & -\mu_{1}
\end{array}\right)\left(\begin{array}{ccc}
S_{1} & j_{1} & j_{1} \\
-\mu_{1} & M_{1} & m_{1}
\end{array}\right)\left(\begin{array}{ccc}
S_{3} & \mu_{1} & j_{2} \\
-\mu_{3} & -M_{1} & m_{2}
\end{array}\right)\left(\begin{array}{lll}
S_{2} & S_{4} & S_{1} \\
\mu_{2} & \mu_{4} & -\mu_{i}
\end{array}\right)\left(\begin{array}{ccc}
S_{2} & j_{1} & J_{2} \\
\mu_{2} & -m_{1} & -M_{2}
\end{array}\right) \\
& \left(\begin{array}{lll}
s_{4} & j_{2} & J_{2} \\
\mu_{4} & -m_{2} & M_{2}
\end{array}\right)
\end{aligned}
$$

Notice that the sum over the $z$ component of angular monentum is the same as $5 p / n$ Sum in the evaluation of TrBOX except for a factor

$$
(-1) \mathrm{J}_{2}^{-L} 2^{-1}
$$

We can thus write:

$$
\begin{array}{ll}
\text { ctbox Spin Sum }=(-1) I_{1}+I_{2} J_{1}-L_{3} & \left(2 S_{f}+1\right)^{-1} \\
& \left\{\begin{array}{ccc}
j_{1} & j_{2} & s \\
1 / 2 & 1 / 2 & J_{1}
\end{array}\right\}\left\{\begin{array}{lll}
j_{1} & j_{2} & s \\
1 / 2 & 1 / 2 & J_{2}
\end{array}\right\}
\end{array}
$$

This allows us to write our final arialytic expression for cTBOX.

$$
\begin{aligned}
& \text { ctBOX }=-g_{c}{ }^{4}\left(T_{1} \cdot T_{2}\right)^{2} \int \mathrm{~d} \eta / 2 \pi \int\left[\mathrm{dx}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}{ }^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\rho^{3}\left(I_{4} 1 / 2 j_{2}| | x_{J 2}| | I_{4} 1 / 2 \mid / 2\right) x_{1} \cdot 4_{4}\left(x_{4}\right)\right] D_{H_{L} L 3}\left(x_{1}, x_{3}, \omega\right) \\
& \left.G_{J 2}\left(x_{4}, x_{2}\right)(-1)\right)_{1} J_{2} J_{1}+L_{3}+1 \\
& \left\{\begin{array}{rrr}
j_{1} & j_{2} & s \\
1 / 2 & 1 / 2 & J_{1}
\end{array}\right\}\left\{\begin{array}{lll}
j_{1} & j_{2} & s \\
1 / 2 & 1 / 2 & j_{2}
\end{array}\right\}
\end{aligned}
$$

Nest let us find an analytic expression for the crossed box in which both gluons are transverse.

$$
\begin{aligned}
& \text { TTCROSS }=\operatorname{Ig}_{c}{ }^{4}\left(T_{1} \cdot T_{2}\right)^{2} \int d \omega / 2 \pi \int\left(\mathrm{dx}_{1} x_{1}{ }^{2}\right]_{1}
\end{aligned}
$$

$$
\begin{aligned}
& p^{2} s_{j 11 / 2}\left(x_{1}, x_{2}, \omega_{o}^{-\omega}\right) p^{2}\left(I_{2} 1 / 2 \quad j_{1} \|\left. Y_{\mathrm{JLL}} \sigma| |\right|_{2} \quad 1 / 21 / 2\right) \\
& x_{1 \cdot 2}\left(x_{2}\right) M X_{1} \cdot\left(x_{4}\right)\left(\left.\right|_{4} \quad 1 / 2 \quad 1 / 2\left\|y_{j 2 L 4} \cdot \sigma\right\| 1_{4} / 2 \quad 1_{2}\right) p^{2} s_{j 214 \mid 3}
\end{aligned}
$$

$$
\begin{aligned}
& D_{\text {JLli. }^{3}\left(x_{1}, x_{3}, \omega\right)} \quad D_{J_{2 L 4 L}}\left(x_{4}, x_{2}, \omega\right) \\
& \sum_{\text {all m, m, } \mu}(-1) I_{1}+I_{2} J_{1}+J_{2}-\left(m_{1}+m_{2}+\mu_{1}+M_{2}+\mu_{1}+\mu_{1}+\mu_{1}+\mu_{3}\right)-L_{2}-L_{3}-1 \\
& \left(\begin{array}{ccc}
s_{1} & s_{3} & s_{1} \\
\mu_{1} & \mu_{3} & -\mu_{1}
\end{array}\right)\left(\begin{array}{ccc}
s_{1} & J_{1} & j_{1} \\
-\mu_{1} & m_{1} & m_{1}
\end{array}\right)\left(\begin{array}{ccc}
s_{3} & J_{2} & j_{2} \\
-\mu_{3} & \mu_{2} & m_{2}
\end{array}\right)\left(\begin{array}{ccc}
s_{2} & s_{4} & s_{i} \\
\mu_{2} & \mu_{4} & -\mu_{i}
\end{array}\right)\left(\begin{array}{ccc}
s_{2} & j_{1} & J_{2} \\
\mu_{2} & -m_{1} & -\mu_{2}
\end{array}\right) \\
& \left(\begin{array}{ccc}
S_{4} & I_{2} & J_{1} \\
\mu_{4} & -m_{2} & -\mu_{1}
\end{array}\right) \quad I\left(2 S_{i}+1\right)\left(2 S_{1}+1\right) 1^{1 / 2}
\end{aligned}
$$

We again concentrate only on the summation over the $a$ component of angular momentum. We shall denote this summation Gross $50 / 75 \mathrm{~m}$
and evaluate it next. Noting that $S_{i}=S_{f}$ and $\mu_{i}=\mu_{f}$, and taking advantage of the rotational invariance of the problem we can sum on $\mu_{i}$ if wee divide by (25+1).

$$
\begin{aligned}
& \text { Cross spin mum }=(-1)^{\mathrm{J}} \mathrm{I}^{+} \mathrm{J}_{2} \mathrm{~J}_{1}+\mathrm{J}_{2}^{-\mathrm{L}} 2^{-\mathrm{L}_{3}^{-1}(25+1)^{-1}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
s_{1} & S_{3} & s_{1} \\
\mu_{1} & \mu_{3} & \cdots \mu_{1}
\end{array}\right)\left(\begin{array}{ccc}
s_{1} & J_{1} & \mu_{1} \\
-\mu_{1} & M_{1} & m_{1}
\end{array}\right)\left(\begin{array}{lll}
S_{3} & J_{2} & j_{2} \\
-\mu_{3} & M_{2} & m_{2}
\end{array}\right) \\
& \left(\begin{array}{lll}
s_{2} & s_{4} & s_{i} \\
\mu_{2} & \mu_{4} & -\mu_{i}
\end{array}\right)\left(\begin{array}{ccc}
s_{2} & j_{1} & J_{2} \\
\mu_{2} & -m_{1} & -\mu_{2}
\end{array}\right)\left(\begin{array}{ccc}
s_{4} & l_{2} & J_{1} \\
\mu_{4} & -m_{2} & -\mu_{1}
\end{array}\right)
\end{aligned}
$$

To use expression B-4 we must note that $m_{1}+m_{2}+M_{1}+M_{2} * \mu_{1}+\mu_{i} * \mu_{1} * \mu_{3}$ is always even and can thus he discarded from the exponent, We must also make all the lower components of the three- $\dagger$ symbols positive. We do this by blotting $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$ go into their negatives, then changing the sign of the lower components of some of the resulting three-j symbols. This will be done in two steps.

Cross Spin Sum n $=(-1) I_{+}^{+1} 2^{+} J_{1}+J_{2}^{-L} 2^{-L} 3^{-1}(25 \cdot 1)^{-1}$

$$
\begin{gathered}
\sum_{\mu t, \mu, \mu, \mu 4, \mu, m_{s}, m_{2}, M_{1}, M_{2}} \\
\left(\begin{array}{ccc}
s_{1} & s_{3} & s_{4} \\
-\mu_{1} & -\mu_{3} & -\mu_{4}
\end{array}\right)\left(\begin{array}{ccc}
s_{1} & \mu_{1} & j_{1} \\
\mu_{1} & M_{1} & m_{1}
\end{array}\right)\left(\begin{array}{ccc}
s_{3} & J_{2} & j_{2} \\
\mu_{3} & M_{2} & m_{2}
\end{array}\right) \\
\left(\begin{array}{ccc}
s_{2} & s_{4} & s_{1} \\
-\mu_{2} & -\mu_{4}-\mu_{1}
\end{array}\right)\left(\begin{array}{ccc}
s_{2} & j_{1} & \mu_{2} \\
-\mu_{2} & -m_{1} & -m_{2}
\end{array}\right)\left(\begin{array}{ccc}
s_{4} & j_{2} & J_{1} \\
-\mu_{4} & -m_{2} & -m_{1}
\end{array}\right)
\end{gathered}
$$

Now change the signs in lower components.

Cross Spin Sum $=(-1) j_{1}+i_{2}+J_{1}+J_{2}-L_{2}^{-L_{3}}{ }^{-1}(25+1)^{-1}(-1) j_{1}+i_{2}+S$

$$
\begin{aligned}
& \sum_{\mu 1, \mu 2, \mu 3, \mu 4, \mu, \mathrm{ml}_{1}, \mathrm{~m} 2, \mathrm{Ml}_{1, M 2}} \\
& \left(\begin{array}{lll}
s_{1} & s_{3} & s_{f} \\
\mu_{1} & \mu_{3} & \mu_{1}
\end{array}\right)\left(\begin{array}{lll}
\mu_{1} & i_{2} & s_{4} \\
M_{1} & m_{2} & \mu_{4}
\end{array}\right)\left(\begin{array}{lll}
j_{1} & J_{2} & s_{2} \\
m_{1} & M_{2} & \mu_{2}
\end{array}\right) \\
& \left(\begin{array}{lll}
s_{1} & J_{1} & j_{1} \\
\mu_{1} & M_{1} & m_{1}
\end{array}\right)\left(\begin{array}{lll}
S_{3} & j_{2} & J_{2} \\
\mu_{3} & m_{2} & M_{2}
\end{array}\right)\left(\begin{array}{lll}
s_{1} & S_{4} & S_{2} \\
\mu_{1} & \mu_{4} & \mu_{2}
\end{array}\right)
\end{aligned}
$$

Therefore. using $\mathbf{B - 4}$

$$
\begin{aligned}
& \text { Cross spin Sum }=(-1)^{S+J_{1}}+J_{2}^{-L} 2^{-L} 3^{-1}(2 S * 1)^{-1} \\
&\left\{\begin{array}{lll}
S_{1} & S_{3} & S_{1} \\
J_{1} & J_{2} & S_{4} \\
j_{1} & J_{2} & S_{2}
\end{array}\right\}
\end{aligned}
$$

Using the symmetry properties of the nime-j symbol we can rewrite this as

$$
\begin{aligned}
& \operatorname{Cross} \text { Spin Sum }:(-t) \mathrm{I}_{1}+\mathrm{J}_{2}+\mathrm{L}_{2} \mathrm{~L}_{3}{ }^{+1}(2 s+1)^{-1} \\
&\left\{\begin{array}{lll}
s_{1} & s_{3} & S_{1} \\
I_{1} & J_{1} & s_{4} \\
J_{2} & I_{2} & s_{2}
\end{array}\right\}
\end{aligned}
$$

Thus our final expression after wick rotation for TTCROSS is,

$$
\begin{aligned}
& \operatorname{TTCROSS}=-g_{C}{ }^{4}\left(T_{1} \cdot T_{2}\right)^{2} \int d \pi / 2 \pi \int\left[d x_{i} x_{i}{ }^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& D_{J 2 L 42}\left(n_{4}, x_{2} x^{2}\right)(1) 11^{+1} 2^{+L} 2^{+L} 3^{+1}
\end{aligned}
$$

$$
\left\{\begin{array}{lll}
s_{1} & s_{3} & s_{1} \\
j_{1} & J_{1} & s_{4} \\
J_{2} & j_{2} & s_{2}
\end{array}\right\}
$$

where again. $z=\mathrm{c}-\mathrm{it}$.
And finally we evaluate the expression for the last dagram, that of the crossed box diagram in which one glaton is transwerse and one is coulomb.

$$
\begin{aligned}
& \left.\operatorname{CTCROSS}=\operatorname{ig}_{C}^{4}\left(T_{i} \cdot T_{2}\right)^{2} \int d \omega / 2 \pi \int \operatorname{ldx_{i}} \kappa_{i}{ }^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& G_{J_{2}}\left(x_{4},{ }_{2}\right) \quad\left[\left(2 S_{i}+1\right)\left(2 S_{i}+1\right)\right]^{1 / 2} \\
& \sum_{\text {all m, } M_{1}, \mu}(-1) j_{1}+\dot{j}_{2}+j_{1}-\left(m_{1}+\mathrm{m}_{2}+M_{1}+M_{2}+\mu_{\mathrm{f}}+\mu_{i}+\mu_{1}+\mu_{3}\right)-L_{3}+1
\end{aligned}
$$

$$
\left(\begin{array}{ccc}
s_{1} & s_{3} & S_{1} \\
\mu_{1} & \mu_{3} & -\mu_{f}
\end{array}\right)\left(\begin{array}{ccc}
s_{1} & j_{1} & j_{1} \\
-\mu_{1} & m_{1} & m_{1}
\end{array}\right)\left(\begin{array}{ccc}
s_{3} & j_{2} & j_{2} \\
-\mu_{3} & m_{2} & m_{2}
\end{array}\right)\left(\begin{array}{ccc}
s_{2} & s_{4} & s_{1} \\
\mu_{2} & \mu_{4} & -\mu_{1}
\end{array}\right)\left(\begin{array}{ccc}
s_{2} & j_{1} & J_{2} \\
\mu_{2} & -m_{1} & -m_{2}
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
s_{4} & \dot{I}_{2} & J_{1} \\
\mu_{4} & -m_{2} & \mu_{1}
\end{array}\right)
$$

This time the sumimation over the $z$ component of angular momentum is the same as cooss spin Sum in the TTCROSS calculation except for a factor:

$$
(-1)^{J_{2}-L} 2
$$

Therefore,

$$
\begin{gathered}
\text { cteross spin sum }=(-1) 1^{+} J_{2}^{+J_{2}+b_{3}+1}(2 S+1)^{-1} \\
\left\{\begin{array}{lll}
s_{1} & s_{3} & S_{f} \\
j_{1} & J_{1} & s_{4} \\
J_{2} & I_{2} & s_{2}
\end{array}\right\}
\end{gathered}
$$

And our final expression for CTCROSS is:

$$
\begin{aligned}
\operatorname{CTCROSS}= & -g_{C}{ }^{4}\left(T_{1}-T_{2}\right)^{2} \int d \eta / 2 \pi \int\left[d x_{1} x_{1}{ }^{2}\right] \\
& \mid x_{\mid 1}\left(x_{1}\right)\left(11_{1} 1 / 2 \quad 1 /\left.2| | Y_{A 1} L_{1} \cdot \sigma| |\right|_{1} 1 / 2 j_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& G_{j 2}\left(x_{4} \times 2\right)(-1) I_{1}+I_{2}+J_{2}+L_{3}+1 \\
& \left\{\begin{array}{lll}
s_{1} & s_{3} & s_{1} \\
j_{1} & j_{1} & s_{4} \\
j_{2} & j_{2} & s_{2}
\end{array}\right\}
\end{aligned}
$$

This concludes the analytic portion of the calculation. The final expressions listed for each diagram are then evaluated numerically. The integration is done via a Monte Carlo integration program developed by G. C. Sheppey.

## Chapter V

## Results and Summary

The final analytic expresstons for the varlous diagrams were calculated numerically for the case in which $\mathrm{J}_{1}=\mathrm{j}_{2}=1 / 2$ only. A study of the transverse-transverse diagram indicates that the contribution from higher angular momentum states is small there. Resulls obtatned by Donoghiue and Gomm ${ }^{7}$ also found that contributions due to higher angular momentum states were small

The final result for the sum of the transverse-trangverse bok diagram and the transverse-transverse crossed box diagram is,

$$
\begin{aligned}
E_{T T} \equiv T T B O X+T T C R O S S & =-(.089 \pm .018) \alpha_{c}^{2}\left(T_{i}-T_{j}\right)^{2} / R \delta_{S, 0} \\
& -(.0098 \pm .002) \alpha_{c}{ }^{2}\left(T_{i}-T_{j}\right)^{2} / R \delta_{S, 1} \\
& \approx-.0098 \alpha_{c}^{2}\left(T_{i} \cdot T_{j}\right)^{2}\left(\sigma_{i} \sigma_{j}\right)^{2 / R}
\end{aligned}
$$

within the accuracy stated. Comparing the magnitude of the fouth order result with that of the second order result.

$$
\mathrm{E}_{\mathrm{T}} / \mathrm{E}_{2} \approx .055 \alpha_{\mathrm{c}}\left|\mathrm{t}_{\mathrm{i}} \cdot \mathrm{~T}_{\mathrm{j}}\right|\left|o_{i} \cdot o_{j}\right|
$$

or, $\mathrm{E}_{\mathrm{T} T}$ varies irom

$$
\mathrm{E}_{\mathrm{TT}} \approx .08 \mathrm{E}_{2} \text { for spin } 1 \text { mesons. }
$$

to

$$
\mathrm{E}_{\mathrm{T} T} \approx .44 \mathrm{E}_{2} \text { for spin } 0 \text { mesons. }
$$

The result for the sum of the mixed coulomb-transverse diagrams must be multiplied by two since the reverse of the diagrams contributes an equal result. After multiplying by this factor of two we find.

$$
\begin{aligned}
\mathrm{E}_{\mathrm{CT}} \equiv 2(\mathrm{CTBOX}+\mathrm{CTCROSS}) & =-(.020 \pm .01) \alpha_{c}{ }^{2}\left(T_{i}-T_{j}\right)^{2} / R \delta_{S, O} \\
& -(.0085 \pm .0026) \alpha_{c}{ }^{2}\left(T_{i} \cdot T_{j}\right)^{2 / R} \delta_{S, 1} \\
& \approx-.0076 \alpha_{c}{ }^{2}\left(T_{i} \cdot T_{j}\right)^{2}\left|\sigma_{i} \cdot \sigma_{j}\right| / R
\end{aligned}
$$

withen the specifled error
Finally we write the result for the coutomb-coulomb box diagram,

$$
\begin{aligned}
& E_{C C}=(.11 \pm .026) \alpha_{C}^{2}\left(T_{i} \cdot T_{j}\right)^{2} \delta_{S, 0} / R \\
&+(.085 \pm .017) \alpha_{c}{ }^{2}\left(T_{i} \cdot T_{j}\right)^{2} \delta_{S, 1} / R \\
& \approx .0975 \alpha_{c}^{2}\left(\Gamma_{i} \cdot T_{i}\right)^{2} / R
\end{aligned}
$$

We find that, just as in the second order case, the pure coulomb interactions do not produce a spin dependent mass splitting.

Final expressions for the above terms can be written as,

$$
\begin{aligned}
& E_{T T}=-.16 \alpha_{C}^{2}\left(T_{i} \cdot T_{j}\right)^{2}\left(S_{i} \cdot S_{j}\right)^{2 / R} \\
& E_{C T}=-.03 \alpha_{C}^{2}\left(T_{i} \cdot T_{j}\right)^{2}\left|S_{i} S_{j}\right| / R \\
& E_{C C}=.0975 \alpha_{C}{ }^{2}\left(T_{i} \cdot T_{j}\right)^{2 / R}
\end{aligned}
$$

And the result for $E_{2}$ is,

$$
E_{2}=-.700\left(T_{i} \cdot T_{j}\right)\left(S_{i} \cdot S_{j}\right) / R
$$

We wise the values of $\mathrm{R}, \mathrm{B}$, and $\mathrm{Z}_{\mathrm{O}}$ obtained from the second order calculation to compute the four th order energy shifts. The values of A for the $\pi, p, N$ and $\Delta$ are:

$$
\mathrm{R}_{\pi}=3.34 \mathrm{GeV}^{-1}, R_{\rho}=4.71 \mathrm{GeV}^{-1} . \mathrm{R}_{\mathrm{N}}=5 \mathrm{GeV}^{-1}, \mathrm{R}_{\Delta}=5.48 \mathrm{GeV}^{-1}
$$

The old value $x_{C}=2.2$ was obtained by fit to the $N-\Delta$ mass splitting using only the second order calculation. Now also including the four th order splittings that we have calculated, we should refit $\mathrm{a}_{\mathrm{c}}$ so that the $\mathrm{N}-\Delta$ mass splitting is 5 till 300 MeV . Thus.
$300 \mathrm{MeV}=300 \mathrm{MeV}\left(\alpha_{\text {new }} / \alpha_{\text {secondorder }}\right)+$

$$
44 \mathrm{MeV}\left(\alpha_{\text {new }} / \alpha_{\text {secondor der }}\right)^{2}
$$

This implies that $\alpha_{\text {new }} \approx 89 \alpha_{\text {secondorder }} \approx 1.96$. We now use $\alpha_{\text {new }}$ to calculate the mass splitting to fourth order. The results are shown n Table 5r.

| Table 5.1Fgurth order mass shitsin MeV |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Partirle | $E_{\text {TT }}$ | ${ }^{\text {E }}$ CI | $\mathrm{E}_{\text {ci }}$ | $E_{4}$ |
| $\pi$ | -184 | - 46 | 199 | -31 |
| F' | $-15$ | $\cdot 11$ | 141 | 115 |
| N | $-51$ | - 8 | 100 | 41 |
| $\Delta$ | $-9$ | $\cdots$ | 91 | 75 |

The $\pi$ - $\rho$ mass difference to second order was 503 MeV . We must multiply this result by 89 to account for the change in $x_{c}$. Therefore,

$$
\Delta \mathrm{E}_{2} \pi-\mathrm{p}=448 \mathrm{MeV}
$$

The lourth order result is.

$$
\Delta E_{4} \pi-\rho=14 \mathrm{KMV}
$$

Thus to fourth order the $\pi-\rho$ mass splitting is,

$$
\Delta E^{\pi-\rho}=593 \mathrm{MeV}
$$

in closer agreement with the experimental value of 641 MeV .
In summary, the fourth order mass splitting was lound to be smaller than the second order mass splitting. Viz.

$$
\begin{aligned}
& \left(\Delta \mathrm{E}_{4} / \Delta \mathrm{E}_{2}\right)^{\pi-\rho} \approx 1 / 3 \\
& \left(\Delta \mathrm{E}_{4} / \Delta \mathrm{E}_{2}\right)^{N-\Delta} \approx 1 / 8
\end{aligned}
$$

Also. the $\pi-\rho$ mass splitting was brought closer to the experimental value. This indicates that the nadron mass splitting can be calculated perturbatively in the bag model.

We further note that the large results obtained by Donoghue and Gomm for the quark arnihitation diagram are not in disagreement with the above results. They found that the major contribution to the energy shift was due to the lowest mode in the propagators. This is precisely the mode that had to be excluded in our calculation for reasons given in chapter II.

Finally, while we cannot make a det initive statement as to whether the perturbative expansion is convergent or not, we can say the fourth order resuits calculated here indicate it may.

## Appendix A

Feymman rules for QCD in a static spherical cavity 9.10
(1) Draw all topologically distinct one-particle-irreducible graphs using dashed lines for coulomb gluons, wiggly lines for transverse gluons, and solid lines for quarks. Give all lines an arrow. The arrows on quark lines must be consistent throughout the graph while the arrows on gluon lines are arbitrary.
(2) Each external line carries energy ( $\omega$ ), radial quantum number ( $n$ ), total angular momenturn ( $/$ ) $z$ component ( $m$ ), and orbital angular momentum ( $/$ ). Externał quark lines are labeled with $/=\neq 1 / 2$ Each loop is assigned a circulating energy ( $\omega$ ) and $z$ component of angular momentum ( $m$ ) consistent with conservation of $\omega$ and $m$ at the vertices. Both $\omega$ and mare treated as signed quantities flowing in the direction of the arrows on alf lines. Each internal tine is given a total angular momentum (/). Internal transverse gluons and quark lines are further labeled with orbital angular momentum /and / at each end. All quark lines also carry $\rho$-space indices, and all lines carry color labels in the standard fashion. Each vertex carries a radial coordinate label ( $r$ ).
(3) For each vertex an integral, $\int_{0} r^{2} d r$. For each internal line a sum
over all allowed ; values. For each internal or external quark or transverse gluon lime, a sum over all/values consistent with $/(/ / j / / 2$ for quarks, $L=J-1, J, J+1$ for gluons). For each loop an integral, $\int_{-\infty} d \omega / 2 \pi$, and a sum over all $m$ values consistent with the current; values. All implicit $\beta^{-s p a c e}$ and color indices summed as usual.
(4) For each internal line with its arrow pointing from a verlex labeled $r$ 'to one labeled $r$. itimes a full partial-wave propagator:

$$
\begin{aligned}
& \text { quarks } \quad \sim S_{j H}(r, r ; \omega)=-i \omega^{2}\left[\delta_{\|} \rho^{3}+\left(I^{\prime}-1\right) p^{2}\right] f_{I}(\omega r) f_{I}(\omega r) \\
& +\left.i \omega^{2}\left(c_{j}(x)\left[\delta_{I I} p^{3}+\left(I^{\prime}-1\right) \rho^{2}\right]+g_{j}(x)\right)(1-1) \rho^{\circ} \varepsilon_{\|}\right|^{\prime \prime}-i \delta_{I I} \rho^{1} \| j_{j}(\omega r) j_{j}\left(\omega r^{\prime}\right)
\end{aligned}
$$

where: $f_{1}(\Delta r)=j_{1}(\omega r) \theta\left(r^{\prime}-r\right)+h_{l}^{(1)}(\omega r) \theta(r-r)$

$$
\begin{aligned}
& c_{j}(x)=\left[j_{j-1 / 2}(x) n^{(1)} j-1 / 2(x)-j_{j+1 / 2}(x) n^{(1)} j+1 / 2(x)\right] \\
& \quad \otimes\left[j_{j-1 / 2} 2(x)-j_{j+1 / 2}^{2}(x)\right]^{-1} \\
& g_{j}(x)=1 /\left[\mu^{2}\left[j_{j-1 / 2}{ }^{2}(x)-j_{j+1 / 2}{ }^{2}(x)\right]\right\} \\
& n=\omega R
\end{aligned}
$$

and $\quad I=j+1 / 2$ when $I=j-1 / 2$ and vice versa

where: $\quad Q_{J, J-1, J-1} T M=J+1 /(2 J+1)$

$$
\begin{aligned}
& Q_{J_{1} J-1, J+1} T M=Q_{J_{1} J+1, J-1} T M=-[J(J+1)]^{1 / 2} /(2 J+1) \\
& Q_{J_{1} J+1, J+1} T M=J /(2 J+1) \\
& Q_{\text {JELL }}{ }^{T M}=0 \text { rom all other L. L' combination } \\
& Q_{y_{1}, j} T E=1 \\
& Q_{\mathrm{JLL}} \mathrm{TE}^{\mathrm{TE}}=0 \text { for all other L, L' combinations } \\
& a_{J}{ }^{T M(x)}=n_{j}{ }^{[1]}(x) / J_{J}(x) \\
& \left.a_{j}{ }^{T E}(x)=\left[r_{j} j^{(1)}(x)+x r_{j} j^{(1)}(x)\right] I J f(x)+x j^{\prime} j^{(x)}\right]^{-1}
\end{aligned}
$$



$$
e(2 J+1)^{-1}
$$

(5) For each external quark line entering the graph (incoming quark or outgoing antiquark), a wave furction

$$
X_{( }(\mathrm{r})=2.27\left(\mathrm{j},\left(\omega_{\mathrm{o}} \mathrm{r}\right)\left[\delta / 0^{\left.-\rho^{2} \delta_{1} / \| I^{1}{ }_{0}\right]}\right.\right.
$$

where $/$ is summed over $/=0.1$ and $\omega_{0}$ is the enery of the quark in the is state.

For each external quark line leaving the graph, a factor

$$
x_{/}(r)=2.27\left\{1 /\left(\omega_{0} r\right)[10]\left[s_{0 /}+p^{2} \delta_{1} /\right]\right\}
$$

where again / is summed over 0 and I .
(6) For every quark-transverse gluon vertex with an incoming gluon, a factor:

—至

$$
i-1 i=\cdots m l_{2}\left(\begin{array}{ccc}
1 & 1 & 1 \\
-+m= & 11 & m_{1}
\end{array}\right)
$$

Figure A. 1
Fumman rule for tranverse quan vertes funtion

If the gluon is outgoing replace $M$ by $-M$ and include a factor $(-1)^{J-M-I-I}$

Where the reduced matrix element is given by:

$$
\begin{aligned}
& \left(\begin{array}{lll}
1-1 & 1 & 1 \\
1 & 1 & 1 \\
\vdots & 1 & 1 \\
\vdots & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
11 & 0 & 0
\end{array}\right)
\end{aligned}
$$

and:

$$
\left\{\begin{array}{lll}
1_{1} & 1_{2} & i_{1} \\
l_{4} & j_{5} & 1
\end{array} \left\lvert\,-\prod_{i=1}^{E} i_{2}+1 i^{1 / 2}\left\{\begin{array}{lll}
1_{1} & l_{2} & 17 \\
1_{4} & l_{6} & 1_{6}
\end{array}\right\}\right.\right.
$$

with a similar relation deween the nine-j box and the nine- $;$ symbol.
(7) For an quark-coulomb gluon vertex with an incoming gluon, a factor:

$$
\Longrightarrow \operatorname{lil}_{1}
$$

Figure A-2


For an outgoing coulomb gluon replace $M$ by $-M$ and include a factor $(-1)^{M}$.

And where:

$$
\begin{aligned}
& \text { (1, } 512,2 y_{1} \| 1_{1} \leq 1_{1}=\frac{(-1)^{5+1}+1}{\sqrt{4 \Gamma 1(25+1)}} \\
& {\left[\begin{array}{lll}
1, & 1 & 5 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)}
\end{aligned}
$$

## Appendix $B$

Three-j, six-j, nine jand reduced matrix element relations ${ }^{\prime \prime}$.

Relation between Clebsch-Gordon coeficients and three-j symbols

## Relation R.I




## Relation B. 2



$$
\left(2 i_{7}+1\right)
$$

The three-j symbol is trwariant under even permutations of the cofumns For odd permutations of columns or changing the stgns of all of the lower elements one must multiply by $(-1)_{1}{ }^{*} J_{2}{ }^{*} j_{3}$.

## Relation B-3

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 1 & 1_{2} \\
1 & 1_{2} & r_{1} \\
n_{1} & 2 & n_{3}
\end{array}\right)\left(\begin{array}{lll}
1, & 1_{2} & 1_{2} \\
1_{2} & 1_{2} & 1_{7}
\end{array}\right)
\end{aligned}
$$

The six-j symbol is invariant under exchange of any columns or the exchange of any two elements from the top row with the corresponding two elements from the bottom row

$$
\begin{aligned}
& \text { - } 4 \text { The mine } 1 \text { symbol }
\end{aligned}
$$

Even permutations of the nine-f symbols rows or columns leaves it unchanged. Odd permutations of the nine- $j$ symbol changes its sign by

## Appendix C

## The wick Rotation

For the wick rotation used in Chapter IV to be valud we must show that the two quarter circles at infinity give zero contribution to the contour reproduced from Chapter IV in Figure c.l.


The terms being integrated have $\alpha$ dependence only in the Dirac and transverse gluon propagators. The large a behavior of the propagators has been obtained by Hansson and Jafre ${ }^{9}$ :

$$
\begin{aligned}
& D\left(r, r^{\prime}, \omega\right) \approx\left[2 \omega r r^{-1}\left[e^{\mid \omega\left(2 R-r^{\prime}\right)}-e^{i \omega\left(r_{>}-r^{\prime}\right)}\right) \text { for } \operatorname{lm}(\omega)>0\right. \\
& \left.S\left(r, r^{\prime}, \omega\right) \approx-i\left[2 r r^{\prime}\right]^{-1}\left(e^{\mid \omega\left(2 R-r-r^{\prime}\right)}+e^{\mid \omega(r>-r}\right)\right) \text { ror } \operatorname{lm}(\omega)>0
\end{aligned}
$$

The behavior of these propagators in the lower half of the complex $\omega$ plane is given oy

$$
\begin{aligned}
& D\left(r, r^{\prime}, \omega^{*}\right)=D^{*}\left(r, r^{\prime}, \omega\right) \\
& S_{j 11}\left(r, r^{\prime}, \omega^{*}\right)=\rho_{3} s T_{j r}\left(r^{\prime}, r, \omega\right) \rho_{3}
\end{aligned}
$$

Thus our proof need only be concerned with the quarter circle in the upper half of the complex $\omega$ plane.

There will always be Iwo Dirac propagators to be integrated over but the number of transverse gluon propagators varies from zero for the coulomb-coulomb box diagram to two for the transverse-transverse box and crossed bok diagrams. The transverse gluon propagator has an extra factor of $a$ in the denominator as compared to the coulomb gluon propagator. therefore if we show that the quarter circle at infinity has zero contribution for CCBOX. it will also have zero contribution for the
other diagrams that have at least one extra power of a to help with convergence.

Hence consider the $\alpha$ integration of CCBOX:

$$
C C B O x \approx \int d \omega d r_{1} d r_{2} d r_{3} d r_{4} r_{1} r_{2} r_{3} r_{4} e^{i \omega f\left(r_{1}, r_{2}\right)} e^{i \omega g\left(r_{3}, r_{4}\right)}
$$

Where $\mathrm{f}\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)$ and $g\left(\mathrm{r}_{3}, \mathrm{r}_{4}\right)$ are always greater than or equal to zero.
Integrating over $r_{1} r_{2} r_{3}$ and $r_{4}$ we find that the least well behaved part of the integral over $\omega$ is:

$$
\operatorname{CCBO} x \approx \int d \omega \omega^{-4}
$$

Which vanishes for the circle at infinty. Herce we are justified in rotating the contour for all of the diagrams considered in this thesis.

## Appendix $D$

## The coulomb vertex fuffiction

The Feynman rules for QCD in a static spherical cavity listed in Appendix A were derived in the references Histed. Here we give a loose derivation of the coulomb vertex factor.

The relevant part of the aCD lagranglan density is given by

$$
L=g_{C} \bar{\psi}_{i}(x) \gamma_{\mu} T^{a_{i j}} \psi_{j}(x) A^{\mu, a_{(x)}}
$$

First consider the second order S-matrix element for free field theory:

$$
\begin{aligned}
& S_{2}=\ll q^{\prime} q^{\prime} \mid T \int d^{4} x d^{4} y\left[: g_{C} \bar{\psi}_{i}(x) z_{\mu} T^{a}{ }_{i j} \Psi_{j}(x) A^{\mu, a}(x) ;\right. \\
& : i g_{C} \bar{\Psi}_{k}(y) \delta_{\lambda} T_{k I}^{D} \psi_{1}(y) A^{\lambda . D}(y): \gg
\end{aligned}
$$

We can already see what the vertex lactor will be for free field theor y.


Notice that since the particles were in definite states of linear momentum, an energy-momentum conserving detta function appeared at the vertex. In confined field theory the particles are in definite states of energy and angular momentum. the four dimensional integral at each vertex creates an energy and $z$ component of angular momentum conserving delta function, but can't force conservation of all of the components of totai angular momentum. This problem leads to more comples behavior at the vertex in confined field theory as will be shown below.

To simplify this problem we decompose the Dirac spinor into a direct product of $5 \cup(2)$ spaces, $p$ space and $\rho$ space, def ined by

$$
\begin{aligned}
& \gamma^{\circ}=p^{3} \bullet 1 \\
& \gamma^{1}=p^{2} e \sigma^{1} \\
& \gamma^{5}=p^{1} * 1
\end{aligned}
$$

Then the wave function can be written as ${ }^{9}$.

$$
\Psi(x)=\sum_{n j l m} \Psi_{n j l m}(x)=\sum_{n j l m l} \cdot x_{n j l^{\prime}}(r) \phi_{j l^{\prime} m}(x)
$$

Where $/$ is summed over $/ \pm 1 / 2$ and the summation convention will be used for the rest of this Appendix.

The color lactors at the vertex will not change in confined field theory so we can drop them from the remander of this derivation and reintroduce them at the end.

Hence we can write the coulomb part of $S_{2}$ for a confined space as

$$
S_{2}=\left\langle\langle q ^ { \prime } q ^ { \prime } | \dagger \int d ^ { 3 } x d ^ { 3 } y \left\{ i g_{C} \bar{\psi}(x) r_{o} \psi(x) A^{o, a_{(y)}}:\right.\right.
$$

$$
: g_{C} \bar{\psi}(y) \gamma_{O} \psi(y) A^{\circ}, \mathrm{D}(y): \gg
$$

Where the integration over time has been done and turned into an energy conserving delta function at each vertex. Pewriting the above using the SU(2) decomposition scheme and inserting the propagator we find:

$$
\begin{aligned}
& =\int d^{3} x d^{3} y\left\{g_{c} \bar{x}_{n} \text { jif } I^{\prime}(x) \phi_{j} \mid \cdot m^{(x)} \rho^{3} x_{n j \mid l}(x) \phi_{j} I^{\prime} m^{(x)}\right\}
\end{aligned}
$$

Where the coulomb gluon propagator has been derived by T. D. Lee ${ }^{10}$ to be:

$$
\left.G(y-x)=\sum_{L M} \mid 2 L+1\right]^{-1}\left[r_{<}^{L} r_{>}^{-(L+1)}-(x y)^{L} A^{-(2 L+1)}\right] \gamma_{L M}(y) r_{L M}^{*}(x)
$$

We switch to a coordinate free representation for the spinor spherical harmonics:

$$
\phi_{j \mid m}(x)=\langle\langle x|||/ 2 j m\rangle
$$

Then examining only the vertex at $x$ where the gluon leaves the vert tex we have:

Applying the wigner-Eckart theorem:
vertex $=\operatorname{igT} \mathrm{a}_{\mathrm{ij}}(-1)^{M}(-1)^{j_{2}} \mathbf{2 m}_{2}\left(\begin{array}{ccc}j_{2} & 1 & M_{1} \\ -m_{2} & -M & m_{1}\end{array}\right)$

$$
\left(J 1 / 2\| \|_{J} \| J 1 / 2 j\right) \int_{o} d r r^{2}
$$

Which is the vertex function for an outgoing gluon. Note that for an incoming gluon we wouldn't have the factor $(-1)^{M}$ and instead of the $-M$ in the three-' symbol, we would have an Mill agreement with the Feynman rules found ti Appendix A

## Footnotes

1. Geli-Mann, M., Phys Lett. 8, 214(1964)
Zweig, G, CERN Report 8182/TH. 40 I
Zweig. G, CERN Report 8419/TH.412, reprinted in Developments inthe Ouark Theory of Hadrons, vol. 1: 1964-1978, ed. D. B. Lichtenbergand S. P Rosen (Hadronic Press, Nonantum, Mass., 1980), p 22
2. Greenberg, 0 . W., Phys, Rev. Lett. 13, 598 (1964)
3. See for example: Marclano and Pagels, Physlcs Reports C 36, 137(1978)
4. Politzer, H D. Phys Rev. Lett. 30, 1346 (1973)Gross, D. لand Willazek, F., Phys. Rev. Lett. 30, 1343 (1973)
Gross, D. $ل$ and Wilczek, F, Phys Rev 08,3633 (1973)
5. A. Chodos, R.L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Welsskopf,Phys. Rev 09, 3471 (1974)A. Chodos, R.L. Jaffe, K Johnson, and C. B. Thorn, Phys. Rev. D 10, 2599(1974)

# 6 T. De Grand, R. L. Jaffe, K Johnson, and J. Kiskts, Phys. Rev. D I2, 2060 (1975) 

7. Donoghue, J. F and Gomm, H. Phys. Rev. 028, 2800 (1983)
B. T. D. Lee, Phys. Rev. D 19, 1802(1979)
8. T. H. Hansson and R. L. Jaffe, Phys. Rev. D 2B, 882 (1983)
9. A. R. Edmonds, Angular Momentum in Ouantum Mechanics, $2^{\text {nd }}$ ed. (Princeton University Press, N.J., 1960)

## VITA

## Imothy Jehn Hayens

Born in Bismarck, North Dakota, February I, 1956 to Harold and Luanne Havens Graduated from Orting High School in Orting, washington In June of 1974. A Bachelor of Science degree was obtained in 1980 Irom Eckerd College in St. Petersburg, Florida. Received a Master of Science from The College of Willam and Mary in willianasburg, Virginia th 1981

The author has accepted a faculty appointment with Francis Marion College in Florence South Carolina.

