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ABSTRALT

The fourth order diagrams in the perturbative expansion of the
hadron mass are calculated using the static spherical cavity
approxamation to the MIT bag madel and Quantum Chromodynamics (QCD).
Only terms wtth color matrix strocture different than that of the second
order dtagrams are retained.

The fourth order mass splttiing is found to be smalter than the

second order sphtting by a factor of three or more.
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CHAPTER
Introduction

Curing the (960's it was found that the large number of newly
discovered hadrons could he explained as composites of three
elementary particles, the up, down, and strange quarks'.  The
possibility of color charge was pointed out by O. W, (E-rlatarnl:u?rg2 in
1964, and by 1973 Quantum Chromodgnamics3, the nypothesized
non-abelian interaction between colored quarks, was in full bloom,
This was due largely to the newly found property of asymptotic
freedom®. Asymptotic freedom is the resutt that the coupling constant
asymptotically approaches a small value for targe Q4. The QCD running

coupting parameter can be expressed as,

o0 = 121/((33-2N; ) IMQZ/AZ)]

where Ny is the number of quark flavors, and A is a parameter that must

be determined experimentally.

while asymptotic freedom makes perturbative catculations possible
at high momentum transfer {sma!l distances), it cannot tel! us how the
force behaves at small momentum trans(er (large distances). The fact

2



3
that no cotored objects are found in nature indicates that in fact the
force is large at large distances, and therefore non-perturbative.

while asymptotic {reedom cannol guaranteeg that the coupling
constant is small enough te do perturbative caicuiations of the hadron
mass sphitings, the fact that the mass splittings are usually small for
a given family of particles indicate that the mass splittings may arise
from perturbative aspects of QCD even though the confingment
mechanism i non-perturbative.

This was the hope of the group of people at MIT who intreduced the
bag model.  [n the MIT baq model the quarks are confined (o color
singlet hadrons via an infinite square well potential. Inside the hadron
they are assumed almost free, the interactions between quarks being
those of perturbative QCOD.

we consider the static sphericat cavity approximation to the MIT bag
model. While 1t is weil known that this approximation does not satisfy
Lorentz invariance, it is expected that the static hadron properties such
as their masses, magnetic moments, and charge radii can be calculated
with a considerable degree of confidence. These choices mean the

quarks inside the bag are governed by the Dirac equation
(R-mg(x)= D

for a free particle. The confining potential can be translated into the

foltowing boundary condition at the surface of the bag:



~itF (=)
x=H

Using the above model the masses of the hadrons have been

calcutated® to second order in J~ Where gE2=41Tot. The result for

massless guarks is,
MR)=(4/3)TBR3-Z A" ¢ Nwg =708 o« lT) T )T (S 5R”!

where: B= energy density in the bag, B4 = 1456av

R= radius of bag = .6 to 11 fermi for various hadrons
o= Qo2/ AT % 2.2
Z, = zero point energy in the bag ~ 1.84

N= nymber of quarks in the hadran

W= energy of quark in I3 state

Ty 7o =color matrices = -2/3 for baryens

= =443 1or mesons

8, R, Z., and . were treated as free parameters and fixed by fitting the

above mass formula to the four states N, A, p, and . The resuits for
the rest of the spectrum are remarkably good when flavor SU(3) is
broken, as can be seen in reference 6. However, there are two main
problems with the results. The Tirst problem is that the coupling

constant is farge. However, since the effective expansion parameter
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15 = /T, there is still the possibility that the higher order

corrections are small.

A second problem concerns the m{958)-n'(SS50)-w(139) mass
differences. The mass splitting is partly due to the difference between
the strange and the up or down quark masses. However, working only to
second order, there will be some linear combination of the 7 ang 7'
which is degenerate with the 7 mescn. However to fourth order, the
iIsoscalar mesons 7 and 7" have their masses split hy the fourth order

diagrams shown in Figures 1a and Tb.

L XC

a o

Figures i-a and (-b

The anmifiilation diagrams,

[t had long been cbserved that if the intermediate stales of these
diagrams are saturated by the gluonic resonances {qluebaiis), the sign
¢f Figures ta ang |0 is determingd and makes the 1’ lighter than the
7. The sign arguement does not work (or a full calculation, mainly Gue
to the possibility of exchanging coulomb gluons. The diagrams were

¢alculated in the coulomb gauge in 1983 by Donahue and Gomm?. They

found that the sign was right and, with a reasonable o, the magnitude

was right to account for the 7m-n' mass splitting. This has its

disturbing side also, however. The splitting due to these diagrams is
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large. This, which is of course connected with the targe coupling
constant, seriousiy raises the question of the size ¢f the other fourth
order diagrams in the perturbative espansicon.

A partial answer to this question is the quest of this thesis. A
subset of the diagrams that coniribute to the masses of the hadrons arg

shown in Figures 1c through 1k

Y
T i SN T ¢
£ e f g

d
)

N gff'—_

Figures 1-c to t-k
Some af the diagrams Lhat appear in the perturbative
expansion of the four pomnt Green function

A quick glance at the Feynman rules in Appendix A indicate that only
diagrams with two gltuons exchanged between two quarks have dif ferent
cotor matrix structure than that of the second order diagrams.

Cafcuiating the fourth order diagrams that have the same color matrix

structure as the lower order diagrams would rencrmalize o, but would

not change the splitting pattern except
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under very unusual circumstances. For exampie, adding the second and

fourth ¢rder results together we would find an expression like,

ﬁE:ﬁC(Nz'*D(cNd) TI T2 "D‘{:E qu (Tl TE]E
where No indicates the size of the second order contribution to the
energy shifts, Ny indicates the size of the fourth order contribution

with the same color matriy structure, andg Ng' indicates the size of the
fourth order contribution with different color matrix structure. One

can see that the N4 term will not change the splitting pattern at all,
although it can change the fitted value of e~  Only in the unusual
situation that N4 is much larger than N4 witl it give a more
interesting result than Ng' since the latter could qualitatively affect

the splitting pattern as well as modify O Thus this thesis concerns

itsetf only with those diagrams thal have two gluons exchanged
between the two quarks.

The calculation procgeds oy a perturbative calculation of the four
point Green function. By extracting the pole in the Green function ong
abtains a perturbative expansion of thg mass of the meson. The
technique used for doing this is described in Chapter . A naive
calculation of the fourth order diagrams leads (¢ a pinch singularity
during the « integration for parts of the diagram. This probtem (s alsc
dealt with in Chapter II.

Since we are not calculating the entire set of (ourth order
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diagrams we must show that the subset we have calculated is gauge
invariant by itself. This is discusseg in Chapter HL. In Chapter IV the
relevant diagrams are calculated, and in Chapter ¥V our resuits are
presentad.

Appendix A presents the Feyrwnan rules®? ror catculating S-matrix
amplitudes. Apperdis B lists a number of usefu! relations between
Clebsch-Gordon coefficients!? three-| symbols, six-j symbols and
nineg-] symbels.

IT the « integrations associaied with the 1¢ops in the box and
crossed box diagrams were done in the normal way, the residues due to
the poles In  the prapagators would be summed [eading to the usual
mode sum expressions. Instead, we foltow Hansson and Jaffe® and
perform the integrals after Wick rotation. To do this we must show
that the contributions to the contour integral from the quarter-cir¢les
at infinity are zerc. This is done in Appendix C.

Finally, to give some feeling of where the feyrman rules of Appendix
A came from, the vertex function for the coulomb interaction is

[oosely derived in Appendix D.



Chapter 11

Extracting The Bound State Energy

In this chapter we examine the pinch singularity that appears In the
calculation of the four point Green function. we will show where it
appears and why It doesn't enter Into the calcuiation of the bound state
eneraqy

while we will use covariant Dirac propagators for the quarks in the
actual calculation, we will use onty the forward-moving quark part of
the mode sum expression Tor the Dirac propagator {n examining the
singuiarity structure of the calculation. We wtll alsa Ignore all coler
factors at this time.

To Tind the energy of the bound guark state we wtll calculate a
projection of the Tour point Green functtion,

J-[-::Iqx-ll5_5 Wngle@sls  i(xg) o'Wl

Ko Te ™M yixg) Yig) Flxg) Flug)| 0 uixp) e 077 u(xg) e 10els

S
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=P 0| 7o yixg) vixg) Fxy) x| 0M»="1A
where:

u(x)= e (%)
I{a“urlm_nsjd“xm a0 %

unlgss no subscripts are listed with the box, in which case ail x

variables are integrated over, and the relevant part of #; is:

Hy & —ng“u F0) ¥ ¥(x) AH(x) = Iat h{x)
wherg hix) is the Hamiltonian density.
Then to lowest order in perturbation theory we have the following

diagram:



figure 2-a

Lowest order diagram in the perturbative
expansion of the four pont Green function,

Evaluating the reievant projection of the diagram:
—1A = P«o|1 yixg) v o) Fxg) 03

- Ildq”i]S,B U[HS}BIm5t5 Wxg,) e'Wslg
i fdwge 0allste) § y (o) un (k)21 leny -, *ie)) !
| [dwpe M0pUE) § o (o) u(ngllerr(wy-wprie)] ]
u(x;) @ OTT y(xg) @ i0BtE

Performing the integrals we Ting:

Aﬂ=-l2ﬂ5[m5—m?]2Tr5[m5—m8:l{m?*mﬂﬂfl_] Emﬁ—m{;ifi"
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To extract the energy of the state let us perform the following

integrations:
Idw5dw6 a4 A(;’(?w}z = -i_fdﬂl?ﬁ(ﬂf2+ﬂ-m0+if}(nf 7=4 —*:-.'t.:}*hs]l'1

wihere:

A={wg-wg)/2  and Q= (wgrwg)=total enrergy

Performing this last integration leaves,
A =(Q-2w,)""
o 10200)
putting the unperturbed energy at 2w, as expected.

Next let us consider the second order contribution 1o the four point

function:
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D a Wh 1

7 {
W
B € :
2

W o
C d

Figure 2-b

Second order dragrar tn the pertubative expansion
of the four point Green functian,

-1 A2= P«o [TemiH (0 =ik () s) $lng) Flxp) Flng)| QR /2)

- o155 {ongelsts T eto6ts (g2 3, 22,

Iﬂ4x1 a5 (i[{dwg/277)D 5 (k2 ¢y ,me}e’ime(t?_m]
i [(dewp/2me 1 0pUS™ M) 5 g (xe) 1%(x) ey -wpriel ]
i [(dwy/2me 10 5 (B (e ) U (M-, ie]

i j(dmdf’?‘.rr}e"'md“'ﬁ'tﬂ ZDUD{HE:I H“D{rcz)[wd—mpﬂfi"

i j[ﬂmcfzﬂ)e_imc(t?'t“] unfq[uzj Eq[xajlmc—mqﬂfi" }
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u{n?}r g lwrt? u(xg) p-lw et

Dolng ail of the integrals except those over #y and x5 results in,
_lA2:2'”5{01"Qf)“ﬂ}?—mﬂ‘*ifnwB‘{ﬂG*if}(MB—mG*if){m5‘MD*iE) I_’r

IIG3H]L2 (Cigulx, prATE 1) iD;.Il{H?'HI W ?‘{IJ5](1'QC)U(H2)3?"U(H )
= | ZTTE(QFQ;J Knﬂ‘ﬂ{{m?-m‘r}}
[{-:a:?—m0+if]{mB-Luo*«if}[mﬁ-mg*riE](w5-mD+iE)l'1

Now notg that the fTactor in the first line of the above equation is

actually the second order S—matrix amplitude Tor off mass shell quarks,

a5 4152107 95 = 1 kg ofww7005)
The subscripts on K{w) indicate the energy state occupied by the
quarks on the iegs connected to the givon propagator. To isclate the

energy of the bound state we integrate over
Qf= u:-5+m5. ﬂi=(m?*m5)f2. and ﬂ.r‘- ({UE‘Mﬁ)J’E,

ignoring the poles in the gluon propagator. This Torces the external
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quark iegs to the mass sheil and gives us the mass of the physical bound

quark states.

A )7l J-(dﬂ.i!ﬁr](ﬁa‘f?ﬂ) (K g od B~ )}

(Q/2+ 8w HENQ/2-A - o EXQ/ 24 A ,-mgit}(ﬂf}ﬂrmcﬂﬂ]"

= Ko od N2 2= - (Q-201 7 1€ g5 a5(50| a7 950
Or since we are interested in bound states of gefinite spin, we wili

be interested in the following S-matrix amplitudes,

A:-’:" [Q-?mol_z | (< 51‘ | 52|S] ))

This impligs that tc second order,

A- Ayt Ay = [Q-205%K g o JOIT!
or that the energy of the bound state is at Q=2w,- K, . f0). Where we

have inverted the Green (unction to extract the energy pole in the

standard way. The reader may wish to review the self energy mass
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corrections to the electron propagator at this point.

Finally we arrive at the fourth order term. we must calculate

B, =19-20,)7 €S 5,4]5; P

However, only the box diagrams have probiems with pinch

singularities, 50 we wilt only examine the box dlagram of Figure 2-C.

[4 m.u mq_m WP 5
m .
We
B ) ) ) 6
Wo Wot @ Yo
Figure 2-c
Fourth order diagram in the perturbative expansian
of the four point Green functian,

"!&f 1Q-2047¢Kas 5 (54955 a5 ?

Laig a5 154la15 a5 ? =
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(g I[dm!?*n‘] J'Idsr-:,lh,q DEMx; 4 1.0) IDXT(x 4% p0)
Uleg) By 1 Lpunlu) Unlxg) [worw-wariel T ¥yuln )

Ty ) ¥y | Znm®)) T () [ g-w-w#ie) ™ 3l 5)

Performing the integration over o we are left with several terms,

Kas s 154105 945 ? =g Emn J (&%) 4 (205 w0m-tp) !
iDl-'k{xl K350 DX 44 0.0 -0 p)
ﬂ[HS]?J'PUn(H3]ﬁn(l-!q}ﬁlu(bt“} ﬁ[HI}'ﬁx U (%1 ) T} Bpubno) + finite

terms {rom poles in gluoh propagator

!-'Em'n Koglmn{ma-mm) [.?mo-mm—mn]_l Kgolmn(mo-u}m] + finite

terms

Only the first term has any singularity, and that Gccurs only for that
part of the diagram for which the intermediate quark states are the
same as the initial states. This part is actualiy not to be included in

the calculation of the energy shift as wil! be demonstrated helow.
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Adding the zeroth, second and Tourth order resulls together we find,
DB A A 47 Q2w )] -IQ-?mol"E{KGDIOJU] +
-1
men Koo mrl@awm) [205-wn-wn) KGD‘mnEmD—mmJ}
which can be written as,
A:[Q-z -K 0-% K (W)
WgKoo0d mn oomnto™wm

e 1l i =1
(265w opl ™ Koo m®e ”Jm]']
wherg the primeg on the summation indicates that the term with

intermediate quarks in the same state as the Initiai quarks is to De

excluded. This puts the pole in the total enerqy at
1
- _ _ _ _ -1 -
E=204Ko0.040) 2 Koomnl®wg )26 oty 0] Koo.mnl®o ®m)
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where the primes have the cbvious meaning that the part of the
diagram that gives the singularity is to be avoided.
we thius have our prescription for Tinding the fourth order energy
shift of the bound quark states; calculate the fourth order S-matrix
element for quarks in a defimte spin state but exclude that part of the
diagram that is an iteration of the second order diagram. In the actual
calculation when we are using covariant Dira¢ propagators and doing
the @ integration after Wick rolation, this will simply mean choosing

a contour that excludes the unwanted pole in the Dirac propagator.



Chapter il

Gauge invariance of The Calculation

As stated in the introduction, since we are not calcuiating the full
sel of Tourth order Feynman diagrams, we must show that the set of
dlagrams we have caiculated 15 gauge Invariant by itself. We must

remember, however, that we arg onty calcutating thosg diagrams with a

certain, {T) T)2, color matrix siructure. Therefore, we can ignore

those parts of the c¢alculated diagrams that result in terms with a
different color matrix structure.

The coulomb propagator has a gauge term ~pu/R . we will show that
this term gives zero contribution 1o the diagrams calcuiated. For this
examinaticn it is again easier to work with the mode sum expansion of
the propagator and the normal vertex function used in free field QCD.

First consider the gauge term contridution to the coutomb-coutomb

Box diagram:

20



2

mm. ‘ (JJD
(Wai T 1w
a b

Figures 3-a and 3-b

Coulamb-coulomb box diagrams

Figure 3.2 is the general diagram and Figure 3.6 is the iterative piece

to be subtracied. Ignoring common factors we find:

a-bh= (}IJ’H}EIGNIM%I
{%5 (%1 )% (¥ (%) Wt gt +ie} ™1 § 049)) BOP g ()
1o ($3)80% Y (k3 Hw grw-wn P (k4190 {H4J} -
{ﬁls () )% 16 (x M-weie) ™ Byg (x) ¥OY (x)
Fl ()00 ¥ (33 Xos0ie) 7 g (3003 g {’-'4)}

Since the coulgmb gauge term has no » dependence, the integrations
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OVer x|, ¥o, ¥3, and x4 reduce the sum over /7 and A to only

the 1S5 state. This then cancels the second term giving a total

contribution of zero,

Next, consider the mixed coulomb-transverse diagrams.

figures 3-c - 3-e
Mixed coloumb-transverse giagrame.,

The wiggly Iing with a circle on it 1n Figure 3-e stands for the
transverse propagator with w=0. The tast diagram is subtracteg

because of the pinch singuiarity discussed in Chapler 2.
crd ~ pfﬂjdmj[d’uil{iﬁ.ﬁ (1 YEHS () Ko g~ wptie) 7 B (o)
Bo¥is (12) Dy 3y K 3.0) }
[?15 (2202 T (¥ (3 0w gt oW T (X AN ¥ s (2 g)
Pls (* )8 Tnl¥nlr gl w-wntie) ™ Fx )l g (xy) }

Again, since the coulomb gauge term has no x dependence, the
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Integrals over x, angd x4 constrain the mode sum to Include only the (s

state moge. we can thus write:

ced = prIUMI[GIHi]{;ﬁTE (% J'a"l‘l‘hﬁ (x4 M-w+ie) !
']:'15 (HZHDIPIS {Hz} D]Jl(ﬂl R s.m) }
{fﬂs (8308 $ye (63 MWW 15 (KW oF 1 (o)

$1g (%3082 15 (830 F1 (4080 ¥1g (K g~ ¥ie) }
The « dependence i the same in both terms so fet us ignore it and

examine the w dependence only:

c+d ==Jdm(—m+'rc}" D(w)f(w+ie)! + (-weie) 1)

There are poles in D{w) but the quantity in curly brackets assures their
residues give no contribution This ipaves the pote at w=0 with which
to contend. If we close the integral in the upper half plane, the second
term in curly brackets gives zero contribution. Pulling the contribution
from diagram & back into the picture, we are feft with the residue at

w=0 for the Tollowing integqrak:

brc-d = Idm[—m-ﬂf]" (wie) ! {D(w)-D{O))
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WhICh IS Zero.

This completes the proofl that the calcuiation is gauge invariant
under the restricted gauge trarsformation G(x)=G(x) +p/R. We believe
that since the above diagrams are the only ones with the above color
matrix structuwre, we can be reasonably certain that they are gauge

imvariant by themselves.



Chaptler IV

Ihe calculation

As shown in Chapter fl, the fourth order energy contribution is given

by,

Eg= 1 €Sc|S 4152
where, again, the prime on 54 indicates we do not include the pinch
singularity at w=0. Also as statled previously, we will only calcutate
those S—-matri¥ amplitudes that have a different color matrix structure

than that of the second order contribution. The diagrams corresponding

to these amplitudes are shown in Fiqures 4-a through 4-e.

g
h&-d

Figures 4-a-4-e

Lnagrams contribimttegg fo F | whth mifferent color matey:
structare than b

+

25
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To calculate these diagrams first espand the S-matrix amplitude:

Ws|s|s »:ZPL Mo M3 Mg
Cspp| Sy S3u3 R sy S3ns| S| S5m0 P

LSappSanalSin?

Use of equation B-t resulis im:

«sp|sfs» = Zp? U2, )i3. ) 4(-) 3575y~ P54 S,

[(25+1X25 +0) V2

5 3 5{) (‘32 54 Si) €Sy 530318 Sop2S40g 7
My H3 Hr Ha H#a Hi

we can now evaluate the abowve matrix element Using the Feynman

rules listed in Appendix A A bax and crossed box diagram are shown
in morg detail with all necessary labeling in Figures 4-f and 4-9. The
dashed tines represent either coulomb orf transverse gluons. The same
tabeling will be used for all five diagrams whether the exchanged

glucns are transverse or coulomb.



+ j. m
S0 12 x a hM ey 5y
Lo Wy ~w Ly
| ']
Ja M, w
b I ].
X
54-“4 "‘4 W W 3 53“3
Figure 4-1

{ abeting convention for box diagrams.

27

Figure 4-g

Labeling convention Tor crossed box diagrams.
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we make the fcllowing definition:

Egq = TTBOX + CTBOX + CCBOX + TTCAOSS + CTCROSS

where the prefixes TT, CT, and CC have the obvious definitions:

TT=transverse-transverse, U T=coulomb-transyerse, and

CCzconlomb-coulomb,

Consider first the box diagram with two transverse gluons, Use of

the Feynman Rules in Appendix A resylts in

TTBOX = Z“I o iz 41 S 51" BrSa S,

(25,125 ;+N} /2
(s, Sz sf) Sp S4 51)
Hp Hz My Ha Ha K
(S py 53315 qlS2125414

TTBOX = ig 4 (T, -TE)EIGMIZTTI[IJH-; %21

) Gy vz w2 [y ety ve )
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PE Syt K@) p2 U3 172y || Y p0 |1 12 V2
Xirok ) UXpy0a) ('3 W2 1V2§1¥ - 013 /2 o)

p 5j 21314 3 0 ot ©0) p
GaV2 jy [| Yjara @ 1] V4 V2 V2) X @)} Dy 4x1. %3.0)

D jo1 4 AX g% 2:00)

Za“ mM,p [vl)]l+]2+J.|+J2":_ﬂ'|-l+m2+Hi+I‘12+|_|r+pi+j]l+j_[3:l-L2‘L3*|
Sy Sy 5 (51 4oy (53 ) 12) (52 54 51)
B Bz cHgf ol Mmoo ps oy ma Hz M4~

(sz ih J2 ) (54 j9 Jz) (25, + 1X(25, + .
p

7 M My jig ~Mo My

Notice that only the three-j symbels depend upon the 2 component
of angular momenium. We shall denote this summation Sp# Serr and
evaluate it next.

we split the sum intc two parts and use the three-j relations in
appendix B :

spin sum = (-1 *12¢dy <92 Yp-my-ma) -z
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5 s COTCHEIE S

(51 5 53) (Jl ) 53] (J1 3 jl)
CHe My Hzd O mp -zl Ay -pg My
-1y P2tHa*Mptiy *52 2

54 S2 5 /iy 52 J2 (54 iz -‘2)
“Pa iz Wi \TMy By Mp g Mo Py

Nest let ypz go to -pz in the first sum, and et py go to -p, in

Epzpaﬁz(

the second sum. This results in:
spin sum = (-nl1 *t2 Lotz 5 ma 1 (py=my -mz)

MytH Hs

Zw.m,p]{"}
(51' 3 53) (JI jo 53 ) (—'1 5 11)
S T 7 AR N L 2 X PR B S L



3
2z ez (D H2RatT2

(54 Sp 5':} (11 52 Iz ] (54 iz Iz
Mg ~Ho My Ny pa ~F] \-lg -mp My

Use of B-3 results in

Spin sum = 3 oo (1) 1 #1201t 20 Gepmmy mmo)-LpLy-l
(jl iz S (11 J2 5 Ih I2 31'% {jl j2 i
m] |T|‘2 "'}l{ -m| "I"l"lz jJ.l 1/2 1/2 J] W2 1/2 ..|2

NOtIng jig=my +m5 and using B-2 we arrive at our final form for the
Spin sum:

Spin sum = (i1 129 Y2l ls s By, (250> 17!

{h 2 Sf} {h iz 5
v2 vz g ) trz vy

which allows us to write:

TTBOX= i g.2 (T,T,)? Jdmf?nj-[dut %]
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Oy ) ) V2 02 Yy o)y W2 )
p? Sj ity X @) p2 0o 12 g || Yyggo ||V w2 12 )
Xy oo Uy y(x3) (g 172 12[|Y gy 5 o} iz W2y ) p?
Siznu(“3-”4u%"m}P?

(|4 1/2 ]2 Il YJ?L":' J H |'4 1/2 /2 J Il‘.((‘qd}} DJIL!LE{H}' H3,l‘.ﬂ}

D o 4 Rakpw) (-0hit12titdz Tty

{h s S {h b S
112 12 4y 112 /2 Jy

Al this point we could perform the « integration along the real «
aris. This would pick up the poles in the propagators and praduce the
mode sum expressions used fn chapters Il and 1l Instead, we will
rotate the contour and replace the slowly convergent mode sums with a
rapidly convergent ntegration parallel to the imaginary « axis. To do
this we must verify that the two quarter-circles at infinity give zero

contribution to the desired integral. This will be shown in appendix D.
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we are interested in evaluating TTBOX:

TTBOX= iI(dmerr}F{m) - Residue(F{w=0)1

Consider the integral arcund the contour in the complex « ptan@ shown

in figure 4.

-
-

1
L]
1

Figure 4-h

Lontour chipice with poles in Dirac propagator s repre-

sented by x's and poles in gluon propaqators represented
by 0's.

The pinch singularity comes from the poles in the Dirac propagator
shown on the imaginary <« axis. The above contour eliminates the
unwanted term that has the sinquiarity as will be shown below.

Now integrate around the dashed contour shown in Figure 4-h:
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i§[dzf21rr) F(2) = Residue[F{w=0)]

= II_N(Umf'zn] Flw) + ijc*im[ﬂza’zﬂ} F(z)} + zero terms

which impligs that,

TTBDX:~iJ _ (dz/2m)F(2)
C+ioo

Letting z=c-i7 we obtain,

TTBOX = - I _(an/2m) Fle-im)

= - g4 (1,72 Innfzn_[[uui %)

O ) (0 2 2 (Y g o] (1 V2 )
D2 Sjy11o% K052 P2 UIg 142§y || ¥y 0 [1 /2 W/2)) Kpegfin)]
(Xgle3) O3 V2 V2] 1Y - o] 1312 §y) p2 Syg34 (3 g0 1 2) 2

04172 o |} Ypaq- 0 1] Vg Y2172) X ik )V D gy 1508 ¥3.2)
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D gt 4 fKgttpz) (- itzrdidete-ls-l

1 Si {JT b 5}
172 12 ) 2 112 4,

This 15 our final analjtic espression and must be evatluated

numerically.

Next consider the box diagram with two coulomb glions being
gxchanged. Use of the Feynman rules in Appendix A result in:

CCBOX = igc? (T4T5 ¥ Iuwzwfluxi %l
Gy, ) 0y w2 72 vy, |0 2 ;)
p* Si1 1112081 X it @) p3 (15172 || ¥y HIlo 172 142 ) Xy (x5)]
UXae3) ('3 172 V2[5, [ [131/2 j5) 3 Sjgpg)4 M3k g0 ot @) P
(g 172 o || Yy || 174 W2 172 ) %y 5 g0} G ) (), %5)
G (K4 5) [(25; + (X25, + DIV2

Tall mgy (012700 e ARy i)
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(:I S3 5{) (51 Jy h 53 Jy 2 I Jz\
| M3 M ‘M“i"‘ 3”1"‘2 zﬂqﬂ 2""1'”2

(54 iz J2 )
Hq ~ma M7

Notice that the sum over the Z component Of anguiar momentum is

the same as Spé7 Swm inthe evaluation of TTBOX except for a factor

(-ny JiedeLals

wWe can thus write:
cebox Spin Sum = (-T2 S5, Bpe (250 17
{h b2 Sel Ui B2 S
172 w2 0y L2 172 4,

Ferforming 3 Wick rotation as in the TTBOX catculation, we arrive

at our final analytic expression for CCBOX.
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CCBOX =  -gc* (T,-T,)? f dnKZTTJ'[dM-,HI-Z]'
OG- Gy Orp w2z w2 ||y, Hny vz )
P> Sz Ko 2> Up 2 gy | Yo |1 172 1123 Yyegle gl
EXrge3) (3 12 V2] 1Y)y 111312 ) p3 Sy Gax 4050 2) p3
(aV2 o |1 Yo ) Vg W2 1/2) 4 dx g} Gy (xy, %3)

G ok g ) YT

{ h 2 Si{h 2 5
vz w2 53 Lz vz o,
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Next consider the box diagram with one coulomb gluon and one

transverse gluon being edchanged. Use of the Faynman rules in Appendis

A resuylt e

CT8OX — -Ig. (T)-T5)? Iumfzn_[lsxi x;?]
OO e Gy 22 072 |y g0 |y Y2 gy)
p? Sjrin1a{*y Koo w) p° U5 W/2 p {[ Yy FIPy V2 172) Xy plxo)}
Dy 3(e3) ('3 172 V2] [¥ 55013172 1) 97 )15 (3 g o0 )
P lig V2 jp || Yo | Vg 12 02) K @810 141400 30
G (8 4k P [(25) + (25, « N1V2

Salt mpy (117020 MMy gty gy

(51 S3 Sr) (51 ST )(53 S )(52 S4 ‘31)(52 i 92 )
Be M3 ~Mef \tHe Mpomyi-pg My Mgl o Mg cliE o\ H -y Py

(54 2 2 )
Hq “Ma M3
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Notice that the sum over the 2 component O angular mormentum is
the same as Sp/7 Swr inthe evaluation of TTBOX except (or a factor
(-nJz27t7T,
Wwe can thus write:

ctbox Spin Sum = (-1 1241 7L3 (25, )y

2 SK {J, 2 3
/2 W2 J) Wiz /2
This aliows Ws to write our final anglytic expression for CTROX.

CTBOX = g% (T)-T5)¢ J'UHIE‘ITJ’[L‘IH-I %]

l){ﬁgl.{: J{JHITUE.]; Jl:fﬂl""f":l{?ﬂriﬁll /2 §; )
p 5;11112(”1-“2-{“0"2:'P3 (172 i 1] ¥y |[T102 V2 142 Yy plx3))
(Apalxg) (0 12 2] ] ¥ 50 (115 H2 1) p2 5314 iad 4067 2)

> (4172 )7 |1 Y3 1114 V2020 Xy fxg)) Dy sy %3.:0)

G ) fngxo) (<1723

i 1o 525 i b S
W7 /2 JT e 12 J2
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Next let us find an analytic expression for the craossed box in which

both gluons are iransverse,

TTCROSS  — g (TI-TZJ?JdeEﬂJ[uai H|2]
Oy e ary w22 W2 Y, oty v2 g
p” Shipr12y 820 5m0) pf g 12 4y || Yy 0 [l W2 12)
Xiole M Kk dx g 12 V2 [Y g o 1g2 1) p? Sppigs
(kg 30 ©) p2U3 172 o || Yy O 1] Vs VZ 172 ) Xp4(x3))

D psLagstye x3.00) D a1 ol 2(¥ 4% )

Sall mpp 001012y e g gL g

IR (51 o it)(Ss I 1%52 54 s;) (;’2 i Jz}

Hp Mg o e M Mg M maf g kg iy g oMy Mg
(f’q Iz 4 J [(2s; + 1(25¢ + N2

q "My

we again concentrate only on the summation over the 2 component

of angular momentutn. We shall denote this summation Crogs 5pm Sum
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and evaluate it next. Noting 1hat 5;=5; and lij=,. and laking advantage
of the rotational invariance of the problem we Can sum on K; if we

divide by (25+1).

cross Spin sum = (-1 120y el lal (o8 4 gyl

_ e et 404 +
2}11-112.}11.114 Jumimai Mz 0 (my sy Py P Ut gy tpg)

(31 53 Sy )(51 ) ) (53 V. )
Riomg e f \OWp My /o A =pg Mg mo

(52 S4 S (52 i1 J2 ) 54 17 44 )
H2 mgqpif \pp-my Mz ) A dg -p N,

To use exbression B-4 we must note that
My #Mo+ My tMo* e+l +f 1S always even and can thus be discarded
from the exponent. wWe must also make all the lower components of the
three-} symbols positive.  wWe do this by ietting fy . Jo s ltg go nto

their nggatives, then changing the sign of the lower components of some

ot the resutting three-j symhols. This will be dong in two steps.



Cross Spin Sum = (-1 12?9 tdalomiz =) (og 4 iy

Zw,p ZUT 4 pmem2Mr M2

(51 S3 5¢ \ {8 I h) (53 J7 iz
THE TRy CHe A\ My B3 Moy my

(52 54 5 ) (52 1 42 ) (54 iz 9 )
"Bz THa THi7 TR I CRg) kg mmp T

Now change the signs in lower components.

Cross Spin Sum = (-1 2t dyrdp Lotz (25 + 071 {1y Iy tig*s

Zw MZH3p4 pamemz MMz

3y 93 ET) (J1 i2 54 )(il J7 52)
K1 Hz Hel \Mymopg my My g

(5| Iy h) (53 Iz -‘2) Ci 5452)
o My myf \pymp My i Ha H7

Therefore, using B-4

41
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Cross Spin Sum = (-1)3* 1 *27Lo7 L7l (5 4 gy
31 53 5
Jy 12 54
i1 J2 32
Using the symmetry properties of the nine-} symbol we can rewrite this as
Cross SpinSum = (-1 1142 °L2'L3*) (254 )]

31 33 3¢
iy Jy 54
d2 12 52

Thus our final expression after Wick ratation for TTCROSS 1s,

TTCROSS—  -g.4 (71,75 Idn!?ﬂj[dxi %]

Oy g 0y 112 072 [ g o By 172 )
pY Sy 1aé X g2 7 U W2y H Y g0 [0 V2 ¥2) X))
X1 a0 g W2 V21 Y g 0 0114172 1) 97 Sipay Kg3.047 2) 7
U3 172 o || Yz @ 15 1721720 X5 D 48K ¥3.2)

DJ?L*ﬂ_?(Hd‘”?‘z) {” ill +]? ' 2+L3+]
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S 53 5¢
Iy 4 34

d3 ]2 37

where again, Z=c-iT.

And finatly we evaluate the expression for the last diagram, that of
the crossed box diagram in which ome gluen is transverse and one is
coulomb,

CTCROSS = ig.d (7, T5)? Idmf?nj[dxi X%l
IXpy YO 172 12 |y, ool [y w24
P2 S)n 1 £ 2w @) P2 U 172 Jy {1 Y gy {1 12172) Xy plxg))
t x;-‘ﬂf}ﬂq]“'q ”2 ”2[ "'I’J? | |I41f2 J2 :' P3 512|4|] (”4-”}“}{)_ l‘..l.'l] ]]2
Uz 172 o || Yy o ) Vs V202 ) X5tz D44 #3.0)
i 112
GJ2(H4,H 2] [(25| + ]}(25{ * 1}]

Zall mpp (1Tt ema g ey gl L
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(51 53 3¢ (51 Jy i )(53 4o iz) Sy S4 5'4) 2 I Jz)
Bi 83 cPef Nl M omy /g My mp plig g - ) LB -my 1
Sa a2 )
Ha Mz By

This time the summatioh over the 2z component of angular

momentum 15 the same as (Foss 50/ Sun in the TTCAOSS calculation

grcept for a factor:

-1y d27L2
Therefore,

cteross Spin Sum = (-1 Fitlz2 *922k3*l a5 . !

31 S3 3y
I 54
J2 12 59

And our Tinal expression For CTCROSS i

CTCROSS = -gC‘q (T -T?J? Iﬂnf?ﬁj[ﬂkl xIE]

Iy, GO0 72 172 Y, L1-+cr||1E 12 g
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PL ) 1119y Xowg2) 3 U 172§y [ ¥ 5 [ V2 102) Xpgfepd}
Xy axg)g V2 02 1Y 55 [121V2 13) 03 Sjp145 (g 3005 2) p?
(U572 Jp || Yy 0 H 15 V21720 K Dy 5ty %3.2)
G (% g1 0) (-0 11717 ot 3ot
51 33 3¢

v 41 54
43 02 92

This concludes the analytic portion of the catcufation. The final
expressions listed for each diagram are then evalvated numerically,
The integration is done via a Monte Carfo integration program

developed by G. C. Sheppey.



Chapter V

Results and Summary

The final analytic expresstons for the various diagrams were

calculated namericaiiy for the case In which |)=jo=1/2 only. A study of

the transverse-transverse giagram indicates that the contribution from

highet anqular momentumn states 1s small there. Resulls obtained by

Doncghue and Gomm’ also found that contributions due to higher angular

momentum states were small
The final resull for the sum of the transverse-transverse box

diagram and the transverse-transverse crossed box diagram 15,

Ery = TTBOX « TTCROSS = -(089 £ 018) =c? (TyT))*/R 854
-(0098 2 002} o (T;T))? fRégy

% -0098 o (T;Tp? (00 )/

within the accuracy stated. Comparing the magnitude of the fourth

order result with that of the second order result,

Erq/ky ®.055 e [ 13T | foyo]

406



47

Or, Eq1 varies from

Err=.08Ey for spin | mesons,

to

Eyp=.44E; forspm O mesons.

The result for the sum of the miked couvlomb-lransverse diagrams
must be multiplied by two since the reverse of the diagrams
contributes an equal result. After muitiplying by this factor of two we

find,

Ecr = 2(CTROX » CTCROSS) = -(020 + 0N orc? (1311 MRbg g,
- (0085 £ .0026) .2 (T, T})2/A 8 |
= 0076 wc? (1,1 oo | /R

within the specified error.

Finally we write the result for the coutomb-coulomb hox diagram,

Ece = (114 .026) o« (F;Tj)2 b5 /R
« (085 £ 017 o ? (1)1} b5 ¢ /R

~ 0975 «c” (1;1))4/R

we tind that, just as n the second order case, the pure coulomb

nteraclions do not produce a spin dependent mass splitting.
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Final expressicons for the above terms can be written as,

Epp= ~I60cc? (1,702 (5;5))¢ /R
Eey =~ 030 (T T2 }55, | /R
Ece = 0975 (TpT)) /R

And the result for ko is,

Ep = -708(T-T;2(55)) /R
‘Wwe use the values of R, B, and Zo obtained from the second order

calculation to compute the fourth order energy stifts. The values of R

for the m, p, N, and A are:

Ryr334 Gev!. Ry=4.71 Gev™!. Ry=5Gev™ , Rp=5.48 Gev™
The old value o.=2.2 was obtained by M1t to the N-A mass splitting

using only the second order calculation. Now alss including the fourth

order splittings that we have czlculated, we should refit . so that the

N-A mass splitting 1s stul 300 MeV. Thus,
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300 MeV = 300 MeV {rgw/*secondorder *

2
44 eV (xngyw /' *secondor der’
This mplies that Fnaw =-89%socandorder =196, WE NOwW USE Xrow

e calculate the mass spiitting to fourth order. The results are shown

n Table 5.

[ Table 5-1 ]
Faurth arder mass shifts
in MeY
Particle ETT ECT EEE Eg
n - 184 gala tag -Z1
£ -15 11 141 115
i -ol -H 100 41
& -9 "7 9 i

The m-p mass difference to second order was 503 MeV. We must

multiply this resutt by 89 to account for the change in o . Therefore,

AE;TTP = 448 MeV

The Tourth order result s,



S0

AE4TT7P = 146 Mev

Thys to fourth order the m-p mass splitting s,
AETTP = 593 tey

in closer agreement with the experimental value of 641 Mey.
In summary, the fourth order mass splitbing was 1ound 1o be smaller

than the second order mass splitting. Viz.,

T
(AE4/AE)T P = 173

(AE4/AE N2 = 178

Also, the 11-p mass spliting was brought closer to the experimental
valug. This indicates that the hadron mass splitting can be calculated
perturbativety in the bag model.

we further note that the large results obtained by Dencghue and
Gomm for the quark annihilation diagram are net in disagreement with
the above results. They found that the major contribution to the energy
shift was due 1o the |owest mode in the propagators. This is precisely
the mode that had to be excluded in our calculation (or reascns given In
chapter 1.

Finally, while we cannot make a definitive statement as to whether
the perturbative expansion is convergent or not, we can say the fourth

order resuits calculated here indicate it may.



Appendix A

Feynman rules for QCD in a static spherical caviIQQJU

(1)  Draw all topologically distinct one-particle-irreducible graphs
using dashed tines lor coulomb gluons, wiggly tines for transverse
gluons, and solid lings for quarks. Give alfl lines an arrow. The arrows
on quark lings must be consistent throughout Lhe graph while the arrows

an gluon lines are arbitrary.

(2) Each external line carries energy (w), radial quantum number (2),
total angular momentum ( /), 2 component (), and orbital anguiar
momentum ( / ). Externat quark lines are labeled with /=¢+1/2 Each loop
s assigned a circulating energy (w) and z component of anguiar
momentum (/77 ) consistent with conservation of w and # at the
vertices. Both w and /mare trealed as s/ig%d qQuantities flowing in the
direction of the arrows on all lines. Each internal line is given a total
angular momentum (s ). Internal transverse gluons and uark lines are
further labeled with orbital angular momentum / and /' at each end. All
quark lines also carry p-space indices, and all ines carry color labels in

the standard fashion. tach vertex carries a radial coordinate 1abel (7).

(3) For gach vertex an integral, I r? dr. For each internal line @ sum
o

2
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over all aillowed , wvalues, For each internal or external quark or
ransverse gluon ling, a sum over all / values consistent with f{ /=272

for quarks, L=J-1J,J+1 for qlucns). For each lcop an integral,

J mﬂmr’z-rr, and a sum over all »7 values consistent with the current /

values. All imphicit p-space and color indices summed as usual.

(4) For gach internal hine with its arrow pointing from a vertex labeled

r o one 1abeled #, / times 2 [ull partial-wave propagator:

quarks  ~ Sy (rr’, @ ) m;-"[a“; p3 o+ (r-1)pd T (wr) 1 (wr?)
i@ 00l p ¢ (-1 p21+ 0 GO By — 18y p T ) jper)
where: 1 {wr)= jlwr}e(r-r) -« h|“;i (wr)elr-r)
€007 Ujjyyz G 050 00 = iy (00 0D o )
‘3’“]_1;2 2(x) - Ij+l;’2 Z(H]i_r
UJ(H:F if{H?[I]‘-.Ifz ?{H) - jj*”? '?(H:']}

=R

and 1=)+1/2 when 1=j-1/2 and vice versa
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transverse gluong ~10 {1 ', @ )= -iw 8|, - j (ore) o dwr,)

1 'lu}[aiT”[K} UJLL-TH * 'ﬂ]‘TE(H] QJLLvTE ] ]L{mr] ]L*{{ﬂr')

where: Q) gy 1= 2
Q) )-1, 41 ™= Qg Jet 41 TH= e V2 f(2401)
OJ.J*LJ*] ms= JA(2.041)

E}JLL-TH =0 lrar all other L, L' combination

TE
Qg "=

C.‘.!JLL-TE =0 for all gther L, L' combinations
a; My =n W 7 ) 00

a, Ty =1 oy s om0 6o 5000 o g ™!
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Sﬁﬂ.@{ﬂlﬂlﬂﬂﬂi“ ~G ey, @)= Ire? ¢ r:,,]'UﬂJ (e g2
a(2 )7

(5} For each external quark line entering the graph (incoming quark or

outgoing antiquark), a wave function
K],.r‘:r )=227 {];(morHS ;U‘Pz 8 ;] 3! U]
where / is summed over /=D, 1 and w, is the enery of the quark in

the IS state.

For each esternal quark line leaving the graph, a factor
AAr 1=227{ ) Aw ) 1O} g, 028 1)

where again 7 is summed over O and |.

(&) For every quark-transverse gluon vertes with an incoming gluon, a

factor:
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Figure A-1
Fegnman rule for transvyerse gluan wertex function

i lhe gluon i1s outgoing replace M by -M and include 3 factor
(-1) 2-M-L-)

where the reduced matrix element is given by:



Uy 12 g @ I 198 g1 =)

1 —_—

r:_,. byt h
1
. ¢ ]f
R PO
11 11 (i
oy I
.~ /
and:
| i ] 1 b "".: | |- |+
R ST g BRI
1= 1 B
] ] '
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with a simitar relation beween thg ning-| box and the nine-} symbeol.
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{7) For an quark-coylomb gluon vertex with an incoming gluon, a

factor

| =
|
4 J

Figure A-2

Fegnman rule far cogtomt ghunn vertér Tunc tion

For an cutgomng codlomb gluon replace M by -M and inciude a factor
oM

And where:
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Appendix 8
Three-1, six-j, nine-§ and reduced matrix element relations ! !,

Relation between Clebsch-Gordon coeficients and three- j symbols

Relation R-1

’ }lmIJ_:lm’ul T1}_I Iz, - = ':'1,'"‘-' - St l-
.rrr 4,
X L ]1 J.." I {
r
» My m.ooom, A
Relation B-2
R T T P 4
R I IR EET TV T
T (I I TPy “moomoom ]:':J?* m_!m:_.l
meor | x - 1 o - S S
1 ‘_. “ -
(2i+ 13

The three-] symbo! is thvariant under even permutations of the cotumns
For odd permutations of columns or changing the stgns of all af the lower
etements one must multiply by (-13)14)2* 13

B0



Relation B-3

L by
PN I'\ ]7
! - I3 ] ! ]1 ] ]_' _
[ LI TR T i
1 . L ] 1 l_r
h r .:I -
i I TR B R O N (I )
S PR [ Iff by 1 b j
'.I r.. T.I _n
norLn, vy e T
' b

The six-j symbel is Invariant under exchange of any columns ¢r the

exchange of any two elements from the top row with the corresponding twao
elements from the bottom row
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B-4 The mine | symbal
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[ I l l
L TR TR Venoomom_ !
- A B A At

Even permutations of the nine-} symbois rows or columns leaves It

unchanged. 0Odd permutations of the nine-} symbol changes its sign by

(- (ysurm of Its mine elements



Appendix €
The Wick Rotation
For the wick rotation used in Chapter 1V 1o be valid we must show

that the two quarter circles at infinity give zero contribution to the

contour reproduced from Chapter IV in Figure C-1.

| |
1
! *I X X X
1
1
)
v I O 0 0
v I
L3 1
% 1
% 1
L™ 1
LY 1
L] [ ]
. '
n.‘- 1
il T )
Figure C-1

Lontour chinice with poles 1o Diran propagatior s repre -
SENtE Dy 5 and pobes toogbaon e opagatore reprecrnte
I
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The terms being integrated have « depgndence only in the Dirac and
transverse gluon propagators. The large @ behavior of the propagators

has begn obtained by Hansson and Jaf fe>:
Drrw)= [2orr] T e@2Rr-r) _plwlrs—rad ) yor Im(w)>0
Strrw)® -i(2er) 7t (@RI L ol Tad ) for Im(w)>0

The behavior of these propaqators in the lower hal of the complex &/

ptane is given by
Dirrw ) =D (rrw)

Sj”-(r,r',m BE p3 STJ-,-J {rir.w) ps

Thus our proof need only be concerned with the quarter circle in the

upper half of the complex < plane.

There will always be Iwo Dirac propagators (o be integrated over bul
the number of transverse gluon propagators varies from zero for the
coulomb-coulomb box diagram to twao for the transverse-transverse box
and crossed box diagrams. The transverse (luon prepagator has an extra
factor of & in the denominator as compared to the coulomb gluon
propagator. Therefore if we show that the quarter circte at infinity has

Zero contribytion for CCBOX, it will also have zero conlribution for the
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other diagrams that have at [east one extra power of &' o help with

CONvergence.

Hence consider the « integration of CCBOX:

CCBDHEJUN ﬂr1 'Ell"z dr3 ﬂrq r] r2 r3 rq Elmr[r] x 2] Eiiﬂg(r 3,""4]

where 1(r|r+)and girsr4) are always greater than or equal to zero.
Integrating over ry ror3 andr, we find that the ieast well behaved

part of the integral over ¢! is:

ccaaxx_[nm w3

which vanishes for the circle at infimty. Hence we are justified in

rotating the contour for all of the diagrams considered in this thesis.



Appendix D

The coulomb vertex function

The Feynman rules for QCD in a static spherical cavity Jisted in
Appendix A were derived in the references Hsted Here we give a loose
derivation of the coulomb vertex factor,

The relevant part of the QCD lagrangian density 1s given by
= . a. oy, |
L= ge ¥i(0) ¥, T3 () AHG)
First consider the second order S-malrix glement for Tree field 1heory:
Sy a7 § d% oy i g F00 3, T2 900 A0
19 Vi) By TP 9w aAP(g) i

de“w oyl 1gc TR H ) T2 Tty e KR ) ipHAq) ' x U]

14

{ ll]cﬁk{k:lﬂlk”-u E}. TDH Ul{k‘) E_mm'g }

We can already see what the vertex lactor will be for free field theoty,

ST



66

L

a o
'gtﬁurij 8(k'-k-q)

Figure D- |
Free tefd wed tes fac by

Notice that since the particles were in definite states of iinear
mcmentum, an energy-momentym conserving deita function appeared at
the vertex. In confined field thecry the particles are in definite stales
ol energy and anguliar momentum. The four dimensional integral at each
vertex creales an energy and Zz component of angular momentum
conserving delta function, but can't force conservation of all of the
components of tolal anguiar momentum, This problem leads to more
comples behavier at the vertex in confined field theory as will be
shown below.

To simplify this problem we decompose the Dirac spinor into a

direct product of SU(2) spaces, p space and G space, defined by

30 = pley
afl - IPZ o G’]

Then the wave function can be written 359.
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YE0=2njim Injim ® = Znjimls Xnji (0 @jim (0

where /' is summed over ;172 and the summalion convention will be
used for 1he rest of this Appendix.

The cotor [actors at the vertex will not change in confined field
thecry so we can drop them from the remamnder of this derivation and

reintroduce them at the end.

Hence we can write the coulomb part of 52 for a confined space as
sp= aa 1 [ @ ady i g T 2 v00 AOAG)

1 ge W) B $ly) ACD) D>

where the integration over {ime has been done and turned into an energy
conserving detta function at each vertex. Rewriting the above using the

SU(2) decomposition schieme and inserting the propagator we find:

:Iﬂ3x Y9N j 1 W) - D 0% Xy j o1 (OB 1 ) )

iGly ») {1 Qc.fn jL (934’1 iy p3 Xn Rk (U]‘#j i miyl)

where the coulomb gluon propagator has been derived by T. D, Lee!?

to be:
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Gy = Sy (2007 b, D b AR ]y ) v 0

we switch 1c a coordinate frege representation (or he spinor

spherical harmonics:

¢jlm[”) = L]y 172 jm»

Then examining only the vertex at » where the gluon Jeaves the

veEries we have:

vertex = lgTa-,]- Iuﬂr rz_fdx<(i 2 jm !x))Y*J_”(x]<<u| J 142 jm»
= igTalj [‘UH J’Gdr r‘? ((J 1/ j m “J,—H 1_1 /2 ]‘ITI.}}

Applying the wWigner-Eckart theorem:

vertex= ig13) (-0 (-p)271 ( b J
-m2 - my

(212, 1oz L}urr2

which is the vertex function for an outgeing gluon. Note that for an
incoming gidon we wouldn't have the factor (-N" and instead of the -M
i the three-y symboi, we would have an F o agreement with the

Feynman rules found tn Appendiz A
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