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ABSTRACT

The fourth order diagrams In the perturbative expansion of the 

hadron mass are calculated using the static spherical cavity  

approximation to the MIT bag model and Quantum Chromodynamics (QCD) 

Only terms wtth color matrix structure dtfferent than that of the second 

order dtagrams are retained.

The fourth order mass sp litting is found to be smaller than the 

second order splitting by a factor of three or more
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CHAPTER I

Introduction

During the (960's it was found that the large number or newly 

discovered hadrons could he explained as composites o f three 

elementary particles, the up. down, and strange quarks’ . The 

possibility of co lor charge was pointed out by O. W. Greenberg2 in 

1964, and by 1973 Quantum Chromodynamics^, the hypothesized 

non-abehan interaction between colored quarks, was in full bloom. 

This was due largely to the newly found property of asymptotic 

freedom ^. Asymptotic freedom is the result that the coupling constant 

asymptotically approaches a small value for farge Q2. The QCD running 

coupling parameter can be expressed as,

<x(Q2) = 12TT/[(33-2Nf ) H Q 2/ A 2)]

where is the number of quark flavors, and A  is a parameter that must

be determined experimental I y.

While asymptotic freedom makes perturbative calculations possible 

at high momentum transfer (small distances), it cannot tell us how the 

force behaves at small momentum transfer (large distances). The fact

2
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that no co lored objects are found in nature indicates that in fact the 

fo rce  is large at large distances, and therefore non-perturbative.

While asymptotic freedom cam o t guarantee that the coupling 

constant is small enough to do perturbative calculations o f the hadron 

mass splittings, the fact that the mass splittings are  usually small fo r  

a given family o f particles indicate that the mass splittings may arise 

from  perturbative aspects of QCD even though the confinement 

mechanism is non-perturbative.

This was the hope o f the group o f people at MIT who introduced the 

bag model5 , [n the MIT bag model the quarks are confined to c o lo r  

singlet hadrons via an infinite square well potential. Inside the hadron 

they are assumed almost free, the interactions between quarks being 

those o f perturbative QCD.

We consider the static spherical cavity approximation to the MIT bag 

model. While it is well known that this approximation does not satisfy 

Lorentz invariance, it Is expected that the static hadron properties such 

as their masses, magnetic moments, and charge radii can be calculated 

with a considerable degree o f confidence. These choices mean the 

quarks inside the bag are governed by the Dirac equation

(p^-m)+(x)= 0

fo r a free particle. The confining potential can be translated into the 

fo llow ing  boundary condition at the surface of the bag:
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- i r #  +(x)=+(x)
x=fl

Using the above model the masses of the hadrons have been 

calculated^ to second order in gc  where gc^=4rro^. The result fo r  

massless quarks is,

h(R)=C4/3)TrBR3 ^ _1 * N u 0 -,7O0o<c(T| T 2)^ |< |(S r Sj)R -I

where; B= energy density in the bag, Bl /4  ~ T45GeV

R= radius of bag *  .6 to 31 fermi for various hadrons

« c= gc2/47T = 2,2

ZQ -  zero  point energy in the bag « 1.84 

N= number of quarks in the hadron 

u>0 = energy of quark in !5 state

T| T2 =color matrices = -2 /3  for baryons

-  - 4 /3  for mesons

8 , R, and <xc were treated as free parameters and fixed by fitting the

above mass formula to the four states N, A, p, and Q. The resuits fo r  

the rest o f the spectrum are remarkably good when flavor 5U(3) is 

brokers as can be seen in reference 6 . However, there are two main 

problems with the results. The first problem is that the coupling 

constant is large. However, since the effective expansion parameter
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is there is still the possibility that the higher order

corrections are small.

A second problem concerns the t\(958)-tV(550)-7T(139) 01355 

differences. The mass splitting is partly due to the difference between 

the strange and the up or down quark masses. However, working only to 

second order, there will be some linear combination of the i\ and T|J 

which is degenerate with the tt meson However to fourth order, the 

isosca/ar mesons r\ and m’ have their masses split by the fourth order 

diagrams shown in Figures fa  and lb.

It had long been observed that if the intermediate states of these 

diagrams are saturated by the gluonic resonances (gluebalfs), the sign 

of Figures Ta and lb  is determined and makes the t \ j lighter than the 

T\r The sign arguement does not work fo r a full calculation, mainly due 

to  the possibility o f exchanging coulomb gluons. The diagrams w ere  

calculated in the coulomb gauge in 1993 by Donahue and Gomm7 They 

found that the sign was right and, with a reasonable the magnitude

was right to account for the t\ - t\ j mass splitting. This has its 

disturbing side also, however. The splitting due to these diagrams is

Figures f-a and I -b

The annih i la tion diagrams.
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targe. This, which is o f course connected with the targe coupling 

constant, seriously raises the question o f the size o f the other fourth  

order diagrams in the perturbative expansion.

A partial answer to this question is the quest o f this thesis. A 

subset of the diagrams that contribute to the masses o f the hadrons are 

shown in Figures 1c through Ik.

A quick glance at the Feynman rules in Appendix A indicate that only  

diagrams with tw o gluons exchanged between tw o quarks have different 

co fo r matrix structure than that o f the second order diagrams. 

Calculating the fourth order diagrams that have the same c o lo r  matrix 

structure as the lower order diagrams would renorm alize w c  but would 

not change the splitting pattern except

Figures l-c to t-k
Some of the d iagram s that  appear in the p e r tu rb a t iv e  
expansion of the four point Green funct ion
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under very unusual circumstances. For example, adding the second and 

fourth order results together we would find an expression like,

AE-tx^Nj+tXcN^) T] 'T j  N4 (T| T ^

where N2 indicates the size of the second order contribution to the

energy shifts, N4  indicates the size of the fourth order contribution

with the same co lor matrix structure, and N4 ' indicates the size of the 

fourth order contribution with different color matrix structure. One 

can see that the term will not change the splitting pattern at all,

although it can change the fitted value of <xc  Only in the unusual

situation that N4 is much larger than N^ 1 wifi it give a more

interesting result than N4 ' since the latter could qualitatively affect

the splitting pattern as welt as modify <xc  Thus this thesis concerns

itsetf only with those diagrams that have two gluons exchanged 

between the tw o  quarks.

The calculation proceeds by a perturbative calculation o f the Tour 

point Green function. By extracting the pole in the Green function one 

obtains a perturbative expansion of the mass o f the meson. The 

technique used fo r doing this is described in Chapter (I. A naive 

calculation o f the fourth order diagrams leads to a pinch singularity 

during the it) integration fo r parts o f the diagram. This problem Is also 

dealt with in Chapter I I ,

Since we are not calculating the entire set of fourth order
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diagrams we must show that the subset we have calculated is gauge 

invariant by itself. This is discussed in Chapter III. In Chapter IV  the 

relevant diagrams are calculated, and in Chapter v our results are 

presented.

Appendi* A presents the Feynman rules6,9 for calculating 5-matrix 

amplitudes. Appendix B lists a number of useful relations between 

Clebsch-Gordon coefficients19. three-j symbols, six-j symbols and 

nine-j symbols.

If the <t> integrations associated with the loops in the box and 

crossed box diagrams were done in the normal way. the residues due to  

the poles In the propagators would be summed leading to the usual 

mode sum expressions. Instead, we fo llow  Hansson and Jaffe9  and 

perform the Integrals after Wick rotation. To do this we must show 

that the contributions to the contour integral from  the quarter-circles  

at infinity are 2ero. This is done In Appendix C.

Finally, to give some feeling of where the Feynman rules o f Appendix 

A came from , the vertex function for the coulomb interaction is 

loosely derived In Appendix D.



C h a p te r  I I

Extracting The Bound State Energy

In this chapter we examine the pinch singularity that appears In the 

calculation of the four point Green function. We w ill show where It 

appears and why it doesn't enter into the calculation of the bound state  

energy

While we w ill use covariant Dirac propagators for the quarks In the 

actual calculation, we w ill use only the for ward-moving quark part of 

the mode sum expression for the Dirac propagator In examining the 

singularity structure of the calculation. We w tll also Ignore all color 

factors at th is  tlme.

To find the energy of the bound quark sta te  we w ill calculate a 

projection of the four point Green function,

« o] T  e’ IHl + fx5 > +(x6 ) f ( x 7 ) 'f(x0) | O »  u(x7 ) e  u(x0) e



TO

=P« 01T e |HI +(k6) f<*7) <Kx0)|O» = j A

where:

u(x)* (x)

J ^ d 4 t<ilm>n EX ^ ^ Km + r  ' ^ n - l  ^ xn

unless no subscripts are listed with the box, in which case all x  

variables are integrated over, and the relevant part of Hf is:

Hj e -g c J d 4 x +(x) 2f ̂ +(x) A^(h) a J d t  h(x)

where h(x) is the Hamiltonian density.

Then to lowest order in perturbation theory we have the foiiowing 

diagram;



Figure 2-a

Lowest order diagram in the perturbat ive  

expansion of the four  point Green funct ion.

Evaluating the relevant projection of the diagram:

- i A  =  P « 0 | T +C«5) t(K 6 ) Mx 7) +(xe) | 0 »  

^ s t e 10*5' 5 u&fc)el<0tU

i /d<Dae ' l(i>al ,5_tB) £ mum(n5) um(K7)[2Tr(w3-b)m- i O r l 

i Jd(i)be ' la>blt6" l8) £ nun(x5 ) un(>rs )l2Tr(aiij-airi'*’f^l_1

u( k7 ) e ' ' “ l t r  utK8 ) e ' 1I0BtB

Performirxj the integrals we find:

A  =-iZ7TS(£i>5 -ii37)2TTSC<ii>&-(ije ) lw 7 -<o0 +if l_1 |(i>0 -<i)o* i e r '
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To extract the energy o f the state let us perform  the fo llow ing  

Integrations;

JcJw5 dti>6  dA = - i jd A l2 T r ( Q /2 +A - t f 0 + if } (Q /2-A  - w ^ i O r 1

where:

A K w g -W g V ?  and 0 = (w 5 +<i>6)=tota l energy 

Performirtfj this last integration leaves,

A  HQ-2<D0r'
O °

putting the unperturbed energy at 2a>Q as expected.

Next let us consider the second order contribution to the four point 

function:



T3

W 2 <*> . c d

Figure 2 -b
Second order d iagram in the pe r tu d a tw e  expansion 

of the four point Green funct ion,

~ i A 2 = P  «  0 | T: - iH , ( K | ) :  :-iHjCn2 ) ^ ( K 5 ) + (^5 ) +(><7 ) + (x8 ) | 0 » / ? l

5 J  I ' A i s . a  e'“ ‘ t6 ('9ci 2 ^ M« e

J d4x, d4*2 tl/Wwe/2wH^l i (K2,K| _,11)

i J((kiJtl/ 2 T r )e _l(j)bt t5 -T ^  Z ndn(K5 ) f i * V Kl ) [ ^ t f w n+i^  1 

i J(dtoa / 2 T t ) e " ,a)aU r t ^ ^ m u ^ m (M1 ) um ( x 7 )itda -a>m -ie ]H  

i J(d(0d/2 T T )e - i a ) d^t6~ t2 j  SpUp(H6 ) UKp(i<2)fW(}-Wpt i f r l

i / ( d d J ^ T O e - ' ^ ^ -1 8 ) Z qur q(x 2 ) uq(x 3 ){wc - i i y  ie] ' 1 }



14

u(x7) e "'W7t7 u(Mg) e '^ e t e  

Doing all o f the integrals except those over and * 2  results in,

”  I  A 2 =27T6Cnj-of )I(o j7 -w 0 +if)((i3Q-(ii0 +if )(oj6 -(i>0 +if)(to5 -(i)0 ^E) r T

Jl<33x112 (CiQc >̂J(N 1 1)

■ i 2TT^(Qj-QfJ ^00h(K(W 7-u j5 )

[((O y-w ^ifK^Q -ttJQ +ifK w g-ui^ ieK tPg-uJoH e) ] ' 1

Now note that the fa c to r in the first line of the above equation is 

actually the second order S-nnatrix amplitude fo r o f f  mass shell quarks,

^  %  q61 s 21 q7 ^8 ^  = * 0 0 , ^ 7 ^

The subscripts on K(uO indicate the energy state occupied by the 

quarks on the legs connected to the gluon propagator. To isolate the 

energy of the bound state we integrate over

Q p  ol>5 +o>6p Ap(<i>7-w 0 ) / 2, and A p  Uu^-w^V?,

ignoring the poles in the gluon propagator. This forces the external
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quark legs to the mass shell and gives us the mass o f the physical bound 

quark states.

A 2=i J  (d /y 2 7 r X u V z iT )  ' - “W W *

(Q /2 +A p (i)0+if)(Q /2 -A j-ti> 0 +ieX Q /2+A p ( i)0 +ic )(Q /2 -A p tu 0+ic))"f

r  _lW « f  ° ^ " 2wcJ 2 = -  2 1 ^  ^5 ^ 6 1 s 21 ^7 ^0 ^

Or since we are interested in bound states o f definite spin, we will 

be interested in the following S-matrix amplitudes,

A =-ia-?a>0r? i«sf|s2|Sj»

This implies that to second order,

A  = a q * a 2 = i n ^ o ' K ^ o j r 1

or that the energy o f the bound state is at Q=2tii0 -  Where we

have inverted the Green function to extract the energy pole in the 

standard way. The reader may wish to review the self energy mass
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corrections to  the electron propagator at this point.

Finally we arrive at the fourth order term. We must calculate

A 4  = - [ Q - 2 u o r 2  i « S f | s 4 | s ( »

However, only the bon diagrams have problems with pinch 

singularities, so we w ill only examine the box diagram o f Figure 2 c.

8

<!>□ 
 *—

tl>Q -Cl> 
-*------

Wl
<1>
<1>

m
n

<i>

o w n + v

F i g u r e  2 - c

<i>o

Fourth  o rder  diagram in the per tu rba t ive  expansion  

of the four  point &reen funct ion.

j  [O 2w 0 ] ^15 I S 4  I q15 ^

^<J|5 djs ( l t;lS q15 »  =
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{qc)A ^ t d ( o / 2 T T )  ^ Id ^ H j  1| 4  i D K r ( X 4 , K 2 l £o)

^ 3) ^ ^  1 ^ ^ ( > ( 3) un(x 4 ) iw o+v - 0)n+ ie r f tfx u<x4 )

u(x,) * K i £ mum(x,) um(x2) [too-oj-03m- ie r ! H ^ 2)

Performing the integration over &> we are le ft with several terms,

^ 1̂5 ^15 I s -41 ^15 <15 »  = J w 3x il|(4 1

i D ^ X j  ,x 3 ,v 0 'W m) iDKT(H4 ,M 2, v 0 - v m)

u(K3) ^ u n(M3 ) un(x4 )^ x u(H4 ) u(xt ) * K Um(xt ) um(H2) tfr ufK2) + finite 

terms from poles in gluon propagator

a"£m ,n  ^ o o .m rf^ o '^ m ) ^u>0 - u m-ci>n] 1 ^ o o .m n ^ o - ^ ^  * 

terms

Only the first term has any singularity, and that occurs only for that 

part of the diagram for which the intermediate quark states are the 

same as the initial states. This part is actually not to he included in 

the calculation of the energy shift as w ill be demonstrated below,
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Adding the zeroth, second and fourth order results together we find,

A=A0 * A 2* A 4 =-(0 - 2% r '  - [D -2<,j0 | - 2 { k o 0 iOC( 0 ) *

£<n,n Koo,mn^0Jo_<l,m ^ 2u o_(lSnn“u n̂  * ^oo,m rt^o-tllm ^

which can be written as,

A  [ q - 2<o0 -K0 0 i0 (̂ 0 )- Z  mn tcoo,mn^0}o"0)m  ̂

[2(0o-u>m-w n] 1 K o o .m r ^ V ^ m ^
- I

Where the prime on the summation indicates that the term with 

intermediate quarks In the same state as the initial quarks is to be 

excluded. This puts the pole in the total energy at

E=2 u 0-k 0 0 i0 (£Q}_2  ^ o o .m n ^ o '^ n ^ ^ o ^ r rT ^ n ^  1 ^ o o ,m n ^ o -com  ̂

-2 (0Q-i « 5 f |S 2 | S j » -  i « S f | 5 ' ^ | 5 j »
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Where the primes have the obvious meaning that the part o r  the 

diagram that gives the singularitg is to  be avoided.

We thus have our prescription /o r  finding the fourth order energy 

shift o f the bound quark states; calculate the fourth order 5 ~matrix 

element fo r  quarks in a definite spin state but exclude that part o f the 

diagram that is an iteration o f the second order diagram. In the actual 

calculation when we are using covariant Dirac propagators and doing 

the a) integration a fte r Wick rotation, this w ill simply mean choosing 

a contour that excludes the unwanted pole in the Dirac propagator.



Chapter ill

Gauge Invariance o f The Calculation

As stated in the introduction since we are not calculating the full 

set of fourth order Feynman diagrams, we must show that the set of 

diagrams we have calculated is gauge invariant by itself. We must 

remember, however, that we are only calculating those diagrams with a 

certain, (T j T2)2. co lo r matrix structure. Therefore, we can ignore

those parts of the calculated diagrams that result in terms with a 

different color matrix structure.

The coulomb propagator has a gauge term ^ ji/R  . We w ill show that 

this term gives zero contribution to the diagrams calculated. For this 

examination it is again easier to work with the mode sum expansion o f 

the propagator and the normal vertex function used in free field QCD.

First consider the gauge term contribution to the coulomb-coulomb 

box diagram:

20
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(Ajm, , , ^ 0  
■ ■ >
! " I I

Figures 3*a and 3-b

Coulom b-coulom b box diagrams

Figure 3.a is the general diagram and Figure 3,t> is the iterative piece 

to  be subtracted. Ignoring common fac to rs  we find:

a -  b ~ ( j i /F O ^ d u )  J j d 3Hjl 

{ * 1 5  ("I X ^ - w - w ^ i f r 1 + m( * 2)} <” 2 )

?ls<H3 ) * ^ n ^ n < M w o+w' w n+k^ n ( K4 )}y t^ ls  <*4 ) ) ”  

{ + i s b ]  c* 1 x -w + if  r *  $  Tg (x2) ^ , 5  (x2)

f | S (X3 ) * 0 9)s Cx3 X(0 +if>^t f  ls ( * 4 ))tf^ f ts (x4 ) }  

Since the coulomb gauge term has no x  dependence, the integrations
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over Xy t * 2 ‘ 30(1 *4 reduce the sum over m  and n to  only

the IS state. This then cancels the second term giving a total

contribution or zero,

Next, consider the mixed coulom b-transverse diagrams.

Figures 3-c -  3-e

Mixed co lo u m b - t ra n s v e rs e  diagrams.

The wlggly Itne w ith  a c irc le  on it  in Figure 3-e stands for the 

transverse propagator w ith  a i-0 . The last diagram is subtracted 

because o f the pinch singularity discussed in Chapter 2.

c+d *  jj/R  duj

V i s  ( * 2) D p x(ii|.*3 .u>) J

♦is +n^3 )wX+ls <*J> )

Again, since the coulomb gauge term has no x  dependence, the
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Integrals over x 2 and x 4  constrain the mode sum to include only the I s 

state mode. We can thus write:

c + d *  p / r J d < o J [ d JH j ] { + Ts( K | ) ^ l g ^ T ) ( - { i ) + i f ) _l

?1S ( " z 'V lS  (*2> DpX(*l ,x }

{ f ]s (X3)ffx  + Is (* 3 )(W< l<)+ Is ( x ^ o + ls  ^ 4 ) +

fIS  ( ^ ^ I s  ( * j)  t ls  (l<4 )5fo ♦ is O ^ X -u * * ) '1 }

The x  dependence is the same in both terms so let us ignore it and 

examine the ui dependence only:

c + d *  J *d tii(-u + if) -1 D(ti>)f(w+if) -1 + (-Qi+iO -1 }

There are poles in D((o) but the quantity in curly brackets assures their 

residues give no contribution This leaves the pole at (u=0 with which 

to contend. If we close the integral in the upper half plane, the second 

term in curly brackets gives zero contribution. Pulling the contribution 

rrom diagram 2 back into the picture, we are left with the residue at 

w -0  for the following integral:

b+c-d * ( (w +iO 1 fD(<D)-D(0))
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which is zero.

This completes the p roo r that the calculation is gauge invariant 

under the restricted gauge transform ation G(x)=»G(x) +p/R. We believe  

that since the above diagrams are the only ones with the above c o lo r  

matrix structure, we can be reasonably certain that they are gauge 

invariant by themselves.



Chapter IV

1 he calculation

As shown in Chapter fl. the fourth order energy contribution is given

by.

E„ = i« S f |s ‘4 |S(»

where, again, the prime on indicates we do not include the pinch

singularity at o)-CK A lso  as stated previously, we w ill only calculate 

those S-matriw amplitudes that have a different c o lo r  matrix structure 

than that o f the second order contribution The diagrams corresponding 

to these amplitudes are shown in Figures 4 a through A 2.

4-b

4-c 4-d

Figures 4 -a -4 *e

strue hjre th,m F .
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To calculate these diagrams firs t expand the S-matrix amplitude;

« 5 fji|S | p, ,S3 > i 3 » « 5 r P] S3 P3 | S | S2p2-S4 M 4 ^

« 5 2p2(S4 j14 | s 1pj »

Use of equation B-t results in;

« S f | S [ 5 j»  =  ̂ f  >‘J2,P3>P4(-0 V V M i* W P i

[C2Sf-lX 25 j + t)] 1/2

P3 Mr/ U 2 M  P|j

« S |  j s |  52P 2iS4 lJ4 ^

We can now evaluate the above matrix element using the Feynman

rules listed in Appendix A A box and crossed box diagram are shown 

in more detail with all necessary labeling in Figures 4-f and 4-g. The 

dashed lines represent either coulomb or transverse gluons- The same 

labeling will be used fo r  all five diagrams whether the exchanged 

gluons are transverse or coulomb.
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32 M2 V2 * 2 }2  ^, m i  * 1  r l
   ■ [     1  *—

I  l_2  » 0 - w  1 L |

I
J  j M| <kl

D
t

3
¥

54 ^ 4  X 4  S3 ^ 3

Figure 4 %

Labeling convention fo r  box diagrams.

S2 Jl2 ’ *2 x 2 12 j t m ' 1| r ,  3 , | i ,
» V 1 7 >

L2 ^  ^  L ,

\  ^  j |  M fW
^2 ti> ^  ̂

/  \t,
. /  ^  LL ,  M l „ m ^  m> L .

■ ■—  >

3 4 * M  3  0 )o-  (I>  4 s3|13

Figure 4-g

Labeling convention fo r  crossed box diagrams.
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We make the following definition:

E4  * TTBOX * CTBOX * CCBOX * TTCH055 * CTCROS5

Where the prefixes TT, CTh and CC have the obvious definitions:

TTitransverse-transverse, CT a coulomb-transverse, and 
cCacouiomb-coui omb<

Consider first the box diagram with two transverse gluons. Use of 
the Feynman Rules in Appendix A results in:

TTBOX = .U2 .Ji3 .M4 H ) S3-SrPr+W t h

( (2 5 f + 1)C25 j + 1)} ?/2

S1 S3 SA / S2 S4 Si
P] P3 W  \ M 2 M4 JJ|

i«S, p] .S3 M3 |S ' 4  |S2J|i2-s4ii4 ^

TT80X = tgc4  (T, T2)2Jd(0 /ZTrJ IdHjKj2!

) X n ( x , H i ' ,  1/2 1/2 | | Y j ,  L i <j | | i , 1/2 j , )
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P̂  ^)ilil?̂*1 P̂  ^2 '22 il 11 1I' ? '22 '̂ 2 '

X i - ^ ^ U X n ^ X ' ^  1/2 ' ^ l l ' f j . L j  o i l ' s 1/2 i2>

p 2  ^ j 2 l j U ^ , t3 ’J<4 ' (iJ0 + ^  P ^

( U  1/2 )2 I I X j2 U ' 0  I I ' -4 1/2 1/2 'I X p /x^W  dJiL iL3^I' *3>Mi  

DJ2L<2(*4'X2>“ )

Sail m,n.p ( - i ) ) i * l 2 * J i * J2H m i * m 2‘ f1l 4t12t P f+P i4P i, P 3 H z-L 3-i 

/ 5 1 53 Sf )  /  Sl Jl il \  / S3 Jl 12 \  ( h  54 Si 'j

(.Pi P3 ‘ Pfj  V P l Ml ^ 1 /  \P 2  P4 " P i /

/  S2 i l  J2 1 /  S4  i2  J 2 j  « 2Si 4 0(2Sf ♦ 1)]l/2

\ p 2 - m ,  - M 2 /  ( P 4 ~ m 2 r l 2 /

Notice tnat only the three-j symbols depend upon the z  component

of angular momentum. We shall denote this summation Spin Sum and

evaluate it next.

We split the sum into two parts and use the three-j relations in 

appendix fl :

Spin Sum = (-l)J 1+J 2^J I +J2+ (P r-m r m2J ~L2 L3 1
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£  j i tm  ,jij n ' *M| ,JJ3 'J t *5 i ' i  i

A  s i %  I  /J i h  53 ) / J i s i J i ]  

y ^ f  H  ^ 3 '  v n l m2 ~ ^  V*1 “ ^1 m K

S M2(^ n 2 ( - ^ 2tp ^ 2H j+ ^ +J^

/ 5 4  5 2 S ; W j ,  S2 J 2 \  ( S A  ) 2 J 2 ^  

\ -V4~V2  Mj) V m 1 ^2 ^2  ) \ ^ 4  -m 2 n 2 /

Next let >i3 go to - jj3 rn the first sum* and let p4 go to - p 4 in

the second sum. This results in:

Spin sum = (-I)J I * i 2 _L2^L3 '1 m2 (-1) ^ f " m1 ' m2̂

A  5 1 5 3 \  / J 1 J2 5 3 ]  / J 1 5 1 i|  \

\ -»1  1̂ ^ 3 ] ^ “n 1 m 2 ^ 3 /  ^ 1  ml /
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s4  S2

V4  -V-2

j |  ^2 ^2  ̂ p 4  )2

“m | V-2 2> V ^ 4  ~m2 m2 j

Use o f  B-3 results irv

Spin sum = Smi.m? ^  ] l  +j 7' J] +J2 ^ r _ml ^ ~ h ' LZ ^

Ji h  si \ (  Ji h  5 r \  f i t  h  sr J  f h  h  5 i

m 1 m 2 ^'m 1 ~m 2 ^ i )  ( 1/2 1/2 Ju  ^ , / 2  1/2 J2

Noting j i p r r i ]  +m 2 and using B -2  w g  arrive at our final form  fo r  the 

spin sum:

Spin sum = ( - l ) i l +f2 +Jt +J2 ‘ L2 “L3 T S 5 j(S r S p jtp f (2S f + W ]

Il h  5 f ?  / i l  k  s i 
L l/2  1/2 J | j  (1 /2  i /2  J2

Which allow s us to write:

TTBOX = ig c4  (T, T 2) 2 J ( ta ) /2 T rJ id K t » i2l



(X , . ,  ( K , ) ( r ,  1/2 1/2 11 V j ,  Ll | j 1, 1/2 i , )

^ j i I t l / x l 2 / 4 o  ^  ^ 2  *^2 1̂ 11 I h  2 2̂2 2̂2  ^

X l ' j ^ H I ’j  1 / 2  1 / 2 1 | V j ) L 3  ■ o |  ] l 3 1 / 2  \2 ) p 2

<U 1/2 t2 11 *J2L« O 11 ''4 1/2 1/2 > Xr X M  D j t u u f * ! .  

0 J2L L̂j(x 4 ,h2.“ ) ( - 0 l ) i i2 *J1 *J 2 'L2‘ L3"1

At this point we could perform the &  integration along the real & 

axis. This would picfc up the poles in the propagators and produce the 

mode sum expressions used In chapters ll and 111. Instead, we will 

rotate the contour and replace the slowly convergent mode sums with a 

rapidly convergent integration parallel to the imaginary <o axis. To do 

this we must verify that the two quarter-circles at infinity give zero  

contribution to the desired integral. This will be shown in appendix D.

5 j2| , n ( * 3,»4,<uo* ( 0 ) p 2

Jl )2 5

. 1/2 1/2 J 2
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We are interested in evaluating TTBOX:

TTBOXa i j (dcii/2Tr)F(cia) -  He$idiie[F(<i>=0)l

Consider tte  integral around the contour in the complex <d  plane shown 

in figure 4fi.

Figure 4-h

Contour choice with poles in D i n e  p ropagators  re p re 

sented by x’s and poles in gluori propagators represented  

by o Js.

The pinch singularity comes from  the poles in the Dirac propagator 

shown on the imaginary &) axis. The above contour eliminates the 

unwanted term that has the singularity as w ill be shown below.

Now integrate around the dashed contour shown in Figure 4h:



i <P(dz/2TT) F(z) = Rest(hie[F((i)=0)]

34

J (du)/2n )  f(w ) + i I . (d z /2 if )F (z )  *■ zero terms
-00 j  C4|w

which implies that,

TTBOX -  - i [ . (dz/2TT)F(z)
J  iC * l»

Letting z -c - i^  we obtain,

TTBOX = - j (<fti/27T) F(c-iTi)
J  -00

= -  gc4 fT , T2)2 JCJV2TT JtdK i K|2 ]

(xn M O , \n 1/2 ||¥JlLl0 ||i, 1/2 j, )

p 2 5 | i | | j 2 U i 1x 2 ,tiJ0 - z ) p 2 ( |2 i / 2  j, I I  ¥ j 2L2' 0  f 11'2 1/2 1/2  ) X | ' 2( « 2 ^  

( X j'3tK3) (1'3 1/2 1 /2 1 | VJlL3 a  | | l 3 1/2 j3 ) p 2 $j2,3U tH3,K4 ,(i>04 z ) p 2

O4 1/2 32 I I VJ2L -T a  I I * 4 , /2  ^ 2 J X l'4 ^ 4 ^  DJiLtL3^1* w3lZ^
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DJ2UU(*4 x2.z ) (-1) JW **J iM rt> -L |-1

{ ft h  5
1/2 1/2 J, {

Jl  \2 5

in  m i  j 2

This is our final analytic expression and must be evaluated 

numerically.

Newt consider the bow diagram with two coulomb giuons being 

exchanged. Use o f the Feynman rules In Appendix A result in;

I ty ,  ( * , ) ( ! ' ,  1/2 1/2 11 Yj ,  I I I ,  1/2 j, ) 

p-’ S j r u ^ . K ^ o - a l p 3 (>2t /Z  i| 11 Vj 2  | | l ' 2 1/2 1/2 ) X|-2( * 2 )J 

t / 2  l / 2 |  | V j ,  | | l 3 l/Z jz >p3 Sj2,3|<<x3.x4 .a>0* oi) p3

( l 4  1 /2  j2 I I v j 2  I I r 4  1/2 1/2 ) X i ' ^ 4 )J G J l < * l -  

Gj2 Cx4 .x2M(25j * lX25f * f)11/2

igc4 ( Tr T 2 j2 J d w / 2TrJ|dKj * j 2lCCBOX



Notice that the sum over the z  component o r  angular momentum is 

the same as Spin Sum in the evaluation o f TTBOX except fo r a factor

Jt*J2-L2-L3

We can thus write:

ccbox Spin Sum = ( - i ) i 'M 3* 1 S s jpS f S j i j .p f (2S f + I) 1

)l h  5 f \  J )? 12 s i 

T/2 1/2 J , j  L1/2 1/2 J2 .

Performing a Wick rotation as in the TTBOX catenation, we arrive 

at our final analytic expression fo r CCBOX.
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CCBOX “  -g c4 (T j T 2) 2 JdT|/2TrJ"[dK | k(2]

{ X n ( X | H l ' l  1/2 1/2 | | Yj,  1(1, 1 / 2 ] ,  )

^ j i  li 1 ^ M1 2 pWo P ^  ^ 2  ^ 2  ll I I  YJ2 1 1 ^ 2  ^ 2  1 /2  ) X | * j ^ x 2 ^

I  X j - j t * ^  ( ' ’3 1/2 ,2 2 l l YJi I M 3 1/2 )2  ̂P3 5 j2 f 3 U ^ 3 i><4*a)o* P3

(*4 1/2 J2 I I YJa I I <4 1/2 1/2 ) X | ' > 4 »  O j / x p  H3)

GJ2(h4 ,k 2) (-1)jfM ?+1

f  *1 *2 S \  |  il J2 5 1
1 1/2 1/2 J, i  t l / 2  1/2 J2 [
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Newt consider the box diagram with one coulomb gluon and one 

transverse gluon being exchanged. Use o f the Feynman rules in Appendix 

A result in:

CTBOX -  - lgc4 (T, T2)2 Jd < i> /2 i r j [d * j  Xj2l

( X n  ( * , JO ', 1/2 1/2 I [VJ|L1 a  I 1/2 j, )

p2 SjT |T|2C « | .« 2 ^ o - ^ P 3 f 2 ,/2  il I I  VJ= M r 2 1/2 1/2 J X| 2<x2>J

( r 3 1^2 1 /2 1 | vJTL3 -CTI j 13 1/2 j2 ) sj 2|3l-4

P3 ( U  1/2 h  I I VJ3 I I > 4  1/2 1/2 J X l > 4 »  °JfLtL3^1 ■

G  j ?( m 4 ,x 2 )  [ ( 2 S j  -  1 ) ( 2 S f  + 1)] 1/2

Za ll m n ) i  ( - l ) J t +J2+J1 - ^ r m2+ri1+n2 ^ r +^ ^ 1 ^ 3 J- L3 

5, S3 5 f \  ^5, J 1 j, \ / 5 3 Jj j2 \ /S 2 s4  S\ \ l S2 U J2

M1 mlH " P 3  "«!

^S4  ^2 J2 \

,p4 - r T ^ t l j /
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Notice that the sum over the z  component o f angular momentum is 

the same as 5pm Sum in the evaluation o f TTBOK except fo r a factor

( X n  ( » , ) ( ! - ,  1 / 2  1 / 2  | |  YJ)L| c j |  | i ,  1 / 2  j ,  )

P2 s jtn i2 ( |<i . “ 2 ^ o - z )P 3 ( |2 l /2  il I I  yj2  I I '*2 1/2 1/2 > K,'2(«2)J

C'3 1/2 l / 2 l l  vJiL3 >̂11'3,/2 )2> P2 Sj2r3|̂ <«3*,t4"o" ^  

p3 ( '4  1/2 12 I I VJ2 I I ''4  1/2 1/2 ) DJlLlLJ("l • *3 'u )

G j2( * 4 .X2 > C-I)JI * l 2 * J l * L3 ‘ 1

(-1) j 2 'L2_1 .

We can thus write:

ctbox Spin Sum = ( - l ) h +J 2+ J l " l 3 (2Sf+ I) *

This allow s us to w rite  our final analytic expression for  CT80X.

CTBOX — 9 c "  ( T |  T 2 ) 2  J d [ d X j  « j 2 l 

f  )i h  f i i  \2 s T
I  1/2 1/2 J?)  [1 /2  1/2 J2J
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Next let us find an analytic expression for the crossed box in which 

both gluons are transverse.

TTCROSS -  igc4 (T |-T 2)7 J d (i)/2 7 rf|()K i « ,21

Cxn («,)(!', 1/2 1/2 ||VjlL|-o||l| 1/2 ], )

If 1 2 ^ 1  1 / 2  !| I I  ^ J 2 L 2 ' <2  I f  2  ^

X ,'2(x2 )H  X|-4(h4 MI-4 122 , / 2 l l v J2U  ' ° l  h 4 ,/2  )2 > P2 S(2UI3

( k^ , « 3 . ^ , 0 -  CO) p 2 ( I 3 1 / 2  iz  I I Y J l L 5  o | |  f j  1 / 2  1 / 2  ) X n ( x 3 »

dJ)LiU^I' *3’“ ) DJ2L4L?̂>t4,>' 2-tliJ

Eall mM.p < - « )| , l2 , -, l " J 2 ^ m 1*fn2*l11*M2*)1f*11i*t11*P3J-L2 'L3 ' 1 

Si s 3 5 ( \  /  s, J, j | X / s 3 j 2 j?y s 2 S4 S | W S 2 j ,  J 2 

P| P3 -Pf)  V P  I n l m1/ \"P3 m2 rn2l  W  P4 W  W  "ml ~n 7.

S4 i 2 J l 
14  - n \ 2 - n j

((2S| >■ l)(2S, * l)ll /2

We again concentrate only on the summation over the z  component 

of angular momentum. We shall denote this summation Cross Spin Sum
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and evaluate it nest. Noting that S j-S f and Pj-jtf, and taking advantage

of the rotational invariance of the problem we can sum on jij if we 

divide by (25+1).

Cross spin Sum  ̂ ( - I )J l +i 2 + J i + J 2 “ L2 “L3 “ I (25 + I ) ' 1

To use expression B -A  we must note that

rff| *rr>2+Mj +N2 +f i f t Mj+P i *M3 is always even and can thus he discarded

from the exponent. We must also make all the lower components of the

three-j symbols positive. We do this by letting .p 2.113.^4 go |nto

their negatives, then changing the sign of the lower components of some 

of the resulting three-) symbols. This will be done m two steps.



Cross Spin Sum = H ) J  t *12+J1 +J2“L2 “L3 "1 (2S * l) - i

^ j j t fj j 2„jj

(  S1 S3 5 f \  / S1 J l Jl \  / s3 J 2 J2 \

I  “Pi -P 3 "PfJ U l  n l ml /  U 3 r i2 m2 /

/ S 2 S4  Sj \  f$2  Ji ^2 \  / S4  J2 J 1 

n i 2 “P 4 “P j /  ( “Ji 2 “rn| ~^2t  \ P 4  ^m2 _rl 1

Now change the signs in lower components.

Cross Spin Sum = (■~1)il *i 2 +Jl +J2“L2“L3 -t (2S + I)-1 (-1) i |

^|ii>p2Pp3,p4 .p.mi,m2,riItff 2

/ s T S3 5 t \  L  \ 2 S A \  f \ \  J 2 s 2 \

\P l  P3 P r i  \ n ) P4 /  ( ml n 2 ^ 2 /

f SI J l ll ^ I s3 2̂ J2 \  A  5 4 5 2A
Wl "i mj lp3m2tt2/ ^ p4p2y

Therefore, using B -4
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Cross Spin Sum = (- t )^ +Jl (?S + I)- ’

5 , S3 Sf 

J1 \2 S4

j f J2 S2 _

Using the symmetry properties of the nine-] symbol we can rewrite this as 

Cross Spin Sum = ( t) j 1 2 +L2+L3+1 (2S * I)-1

h J| S4

J2 12 $2

Thus our final expression after Wick rotation for TTCROS5 is,

TTCROSS=  -g c4 (T, - T 2 ) 2  Jd t\/2T T  J "IdXj Kj2]

(X n  C k i)(I', 1/2 1/3 | ( V j, Ll O| | i ,  1/2 j! ) 

p2 S j , | | ,3( x i |N?1(i>0 - z ) p 2 ( ,? t /2  j, [ |  Vj2L/ 0  | j l ' ? 1/2 !/2  ) t vp 2 )} 

i t \ - p AXVA \ n  1/ 2 j |v J?L< ■ O | j I4 I/ 2  }2 ) P z) p

0 3 !/2  j? I I V j (Lj ’ O I I I 3 1/2 1/2 ) X |'3CJt3>l D j lLll ,(K |, ^ .z )  

D ja m a ( * 4 * 2 ' z)  ( 0 i l +) ? +L 2 *L3+1
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where again, z = c -it |.

And finally we evaluate the expression for the last diagram, that of 

the crossed box diagram in which ore gluon is transverse and one Is 

coulomb,

CTCR055 = igc4  (T, T 2 )2 J d W 2 n J [d H j Xj2l

( X n  (H, ) ( !' ,  1/2 1/2 | | V j r L r o | | l t 1/2 ^ ) 

p 2 5 j , „ l7( x , 1x 2 ,<0o - w ) p 3 C12 1/2 j, I I  Y j 3 ! I rJ2 1/2 1 / 2 )  XyJ.x2))

* X f -4 ^ 4 J(,,4  1/2 1 /2 1 I VJ2 I I U 1/2 J2 5 j2N h  ^ 3 ^ 0 “

( l 3 1/2 j ? | | Y j l L j  O | | l J5 1/2 1/2 ) X n ( K3 ) l  DJ i L l L l ^ l 1 * 3 ^  

G j 2 (x 4 ,x 2 ) K2Sy + l ) (2Sf t I ) ] ' / 2 

Sail m(n,p ^  }] ' ] 2 *J]  ’ tm ’ *m 2*ni +M2+^ f+Mj + M( ^ H 3 *l
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S4 12 

V 4  “m2 ■*t )

This time the summation over the .z component of angular 

momentum is the same as Cross Spin Sum in the TTCRQSS calculation 

except to r  a factor;

( - 1) j 2“ l 2

Therefore,

ctcross Spin Sum = (-1) h  +J2 * J 2+L3 +1 (2 5 +  I)- '

J1 Jf s4

J2 \7 S2

And our finaf expression for CTCROSS is;

CTCROSS = -gc4  (T, T? ) 2 J fln/2TT J[dx, np2)

IX |■ | M2 1/2 ( |Y j, Ll o |  | l ,  1/2 j, )
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P2 5 JI li 12^1 0 -z J P5 ( I2 1/2 ]} | |  VJ2 | \V 7 1/2 1/2 ) X,-iO<2»

J 4 l ^ | | V Ja | | l 4 1/z j 2  ̂ ^j2Uf3 ^ 4 / 3^ 0 " ^

0 5 1/2 j z I I  YJlL3 0  I I  I 3 1/2 1/2 ) X|'}0<3)} DJtLlL3^1 ’ m3'2  ̂

g J2{x4 , *2) (-0 J1+J? - J ?+u3m

r h  s 3 s n

<  Jl J l 54 r

L  J2 h  S2 )

This concludes the analytic portion of the calculation. The final

expressions listed for each diagram are then evaluated numerically. 

The integration is done via a Monte Carfo integration program

developed by G. C. Sheppey.



Chapter V

Results and 5ummary

The final analytic expressions for the various diagrams were 

calculated numerically for the case In which J ( = j2 = 1/2 only A study of

the transverse-transverse diagram indicates that the contribution from 

higher angular momentum states is small there. Resells obtained by 

Donoghue and Gomm2 also found that contributions due to higher angular

momentum states were small

The final result for the sum of the transverse-transverse box 

diagram and the transverse-transverse crossed box diagram is,

ETT -  TTBOX + TTCRQ5S = ( ,0 6 9  ♦ .016) « c? (T| T j)2/R Ss o

- ( .0098 ± .002) <xc2 (Tr T j )2 /RBSj  

*  ".0096 (Tr T j )2 (Oj d j ) ?/ R

within the accuracy stated. Comparing the magnitude of the fourth 

order result with that o f the second order result.

ETT/ t 2 * . 0 5 5 « J t |-Tj | | a j-Oj |

4G
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Of, Ej t  varies f rom

f TT ® .08  E2 fo r spin I mesons,

to

E |T ~ . 4 4 E 2 fo r spin 0 mesons

The result fo r the sum of the mined coulomb-transverse diagrams 

must he multiplied by two since the reverse o f the diagrams 

contributes an equal result. A fter multiplying by this fac to r of two we 

find,

Ec t  = 2(CTB0X * CTCROSS) = -(,0 2 0  + .Of) < x 2 (1 j-T j ) 7 /R  Ss 0

- ( 0005 t  ,0026) c<c2 (T r T |)2/R £s t 

-  -.0076 txc 2 ( T jT j ) 2 | o f-Cj |/R

within the specified error

Finally we write the result fo r the coulomb-coulomb box diagram,

Ecc  M  II * . 026 )  * c z (T| T j )2 hS Q /R

* (.005 ± .017) « c2 (Tj-T j ) 2 £s ! /R  

*  .0975 T j)2/R

We find that, just as in the second order case, the pure coulomb 

interactions do not produce a spin dependent mass splitting
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Final expressions for the above terms can be written as,

ET T = -.lfi<xc 2 ( T r T j ) 2 ( S j - S ^ / R

Ec t  = -0 3 w c 2 CT, T | )2 (5 ,'S j | /R

Ecc = . 0 9 7 5 ^ ( 1 ^ ) 2  /R

And the result fo r Ez is,

Ez = -.7O0{Tr T j ) ( S r S j ) /R  

We use the values or R, B, and ZQ obtained from  the second order

calculation to compute the fourth  order energy shifts. The values of H 

fo r  the tt, p. N. and A are:

R7T=3.34 G eV-1 „ Rp=4.7l  G eV - 1 . R^j-5 G e V ' 1 , RA =5.40  G e V " 1

The old value « c=2 2 was obtained by fit to the N -A  mass splitting 

using only the second order calculation. Now also including the fourth  

order splittings that we have calculated, we should re fit <xc so that the 

N -A  mass splitting is still 300 tleV. Thus,
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3 0 0  n e v  = 3 0 0  Mg v  ( wn e w^ wg g co nd o rd Gr ^ +

4 4  lieV  (^neyy/^SGConcforcler^

This implies that c x ^ y ,-8g(*sec and order 15:1 g& We now use ©Yew

to calculate the mass splitting to fourth order The results are shown 

in Table 5-1.

T a b l e  5 -1

Fourth order  mass shi f ts  
in beV

a r t i c l e . £ t t e c t E cc ^4

V - 184 - 4 6 199 -31

y - 18 1 1 141 1 15

ti - 5  1 - 0 100 41

A■—I - 9 V. “I
H 9 1 75

The TT-p mass difference to second order was 503 beV. We must 

multiply this result by .89 to account for the change in « c . Therefore,

A E z 7r'P =  4 4 8 M e V

The fo u r th  order result  is.
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Thus to fourth order the Tt-p  mass splitting is,

A f 7T“P = 593 heV

in closer agreement with the experimental value of 641 fleV

In summary, the fourth order mass splitting was found to be smaller 

than the second order mass splitting, v iz .,

(AE4 /A F 2)t t “P ~ 1/3 

(AE4 /A E 2)N' A s  | /8

Also, the Tt-p mass splitting was brought closer to the experimental 

value. This indicates that the hadron mass splitting can be calculated 

perturbatively in the bag model.

We further note that the large results obtained by Donoghue and 

Gomrri for the quark annihilation diagram are not in disagreement with 

the above results. They found that the major contribution to the energy 

shift was due to the lowest mode in the propagators. This is precisely 

the mode that had to be excluded in our calculation for reasons given in 

chapter l|.

Finally, while we cannot make a definitive statement as to whether 

the perturbative expansion is convergent o r not, we can say the fourth 

order resuits calculated here indicate it may.



Appendix A

Feynman rules for QCD in a static spherical cavity^*10

(1) Draw all topologically distinct one-partic le-irreducib le graphs 

using dashed lines for coulomb gluons, wiggly lines fo r transverse 

gluons, and solid lines fo r quarks. Give all lines an arrow . The arrow s  

on quark lines must he consistent throughout the graph while the arrow s  

on gluon lines are arbitrary.

(2) Each external line carries energy (u ). radial quantum number { n ) t 

total angular momentum ( / ' ) ,  z component { m  ), and orbital angular 

momentum ( /  ). External quark lines are labeled with / - / ± ] / 2  Each loop 

is assigned a circulating energy (to) and z  component o f  angular 

momentum { m  ) consistent with conservation o f and m  at the 

vertices. Both go and /ware treated as s/gne<f quantities flow ing in the 

direction o f the arrow s on all lines. Each internal line is given a total 

angular momentum ( /  ). Internal transverse gluons and quark lines are 

further labeled with orbital angular momentum /  and / ' a t  each end. A ll 

quark lines also carry p-space indices, and all lines carry co lo r labels in 

the standard fashion. Each vertex carries a radial coordinate label ( z ) .

(3) For each vertex an integral, f  r 2 dr. For each internal line a sum

51
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over all allow ed /  values. For each internal o r external quark o r

transverse gluon line, a sum over all /va lues consistent with

fo r quarks, L=J-I,J,J+I fo r gluons). For each loop an integral,

du>/2n\ and a sum over ail m  values consistent with the current /

values. A il implicit p-space and c o lo r indices summed as usual.

(4 )  For each internal line with i t s  arrow  pointing from  a vertex labeled 

r  ' to one labeled r ,  /  times a full partial-w ave propagator:

quarks -  i s j [ r  (r. r ^  w 2(fi|r  p 3 * ( I1 - I  )p 2l f |(u ir ) rr (u)r1)

+ i <o2{cj(x)l$ ||. p3 * (I - I )  p2] * d j (x ) | ( l - l )p °  5]j- -  i S||. p11) jj(u ir) j| (o r  ) 

where; f|Cwr)= j|(o>r) 0(r - r )  + (u>r) e ( r - r  )

Cj(x)^ (x) hc1)|_ i /2  (x) - jj t | /2  (x) h ^ ^ +1/2 Ch)1

• t j j - 1 / 2  2 W  ‘  j j + 1 /2

d j ( * ) =  i / { w ? li j - i / 2  ^  '  i j + i / 2

x-oiR

l - j +1/2 when != j-1 /2  and vice versa
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transverse gluons - i  DJLL ( r „ r a) ) -  -ito &LL- jLC^r<) htlJ L.(rDr>) 

t id>[ajTri(x) O j l l  ™  + 3 jTE(x) Q j l l ,TE 1 JLjCd>r ')

where: Qj j - u - |  ™  = >1/(2J+i)

QJ(J-1,J+I Tr1 = ° J 3J+IPJ-1 ™  _ -U(J^S)] 1/2 /(2J^1) 

QJ,J*1fJ*l ™ ’  J/C2J+1)

QjLj_ ™  = 0 for all other L. L‘ combination

Q j LL'T£ = 0 f o r  al l  other L, L' combinations 

a j™ {jf) = h jt lJ (K) /  ]j(x)

3j TECk) = [ (x) * x h j ^  (*)][ jj(x) * x j'jOOl-1
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coulomb gluons11 - iG j( r  ,r ' ,  <u)= i Ir< J ( r>)"(J+1J - (r r ')J R ^ 2J+1J 1

®(2J+1)_I

(5 ) For each external quark line entering the graph (incoming quark or 

outgoing antiquark), a wave function

X / r ) = 2.27 (j y(u0r) IS / 0 -p z 5, / ] ) ( ' 0 1

where /  is summed over / - D. ) and is the enery of the quark in 

the IS state

For each external quark line leaving the graph, a factor 

X /(r  ) = 2 27 f \ f a j )  !l 0 K  &Q / * p2 S, / } }  

where again /  is summed over 0 and I.

(6 ) For every quark-transverse gluon vertex with an incoming gluon, a

factor;
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g T' ■ I rt■i *
JL

i i t n

' 1, J

 ̂ - ffi^ \) miv

Hgure A* 1
Fognman rule fo r  transverse gluon verte:-; funct ion

If Ihe gluon is outgoing replace M by -M and include a factor

( - 0  J - " -1' 1

Where the reduced matrix element is given by;
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with a similar relation beween the nine j box and the nine^j symbol
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(7 ) Tor an quark-coulomb gluon vertex with an Incoming gluon, a

factor:

' 9 t h  i_.ll Vj I I I ,  1 / :  I, :■

. /  U  J J . )i. ■ 1 J “ * \ /
'■ (fi n n i t/

Figure A~2

f-eynman ru  1 e f n r  r m i fomb q 1 ucm ’■ p r ley. Turict i o n

For an outgoing coulomb giuon replace fl by -M and include a factor 

H ) m

And where:
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(I .1, ;r v , ii
■i* i , j

w - n  M

4 H  C2F < 1J



Appendix 8

Three-J, s ix -j. nine' J and reduced matrtx element re la tio n s ' 

Relation between Clebsch&ordon coeflcients and th ree 'j symbols

Relat inn Ft-1

m
' f, i I , " * ,  ■ = M i  -  - ■'

X (' >1 h' )
V m , m - rn ,  /

R e l a t i o n  D - 2

' ) ( J l  ^  ) ‘  A, d
ir. m rn m m m rn- ^in rj i > < - i -i -7      :____

1 ■’ 1 -
( 2 1 T+ 1 i

The three-J symbol is invariant under even permutations of the columns 

For odd permutations of columns or changing the signs of a ll of the lower 

elements one must m ultiply by <-1 I ^ 2 ^ 3

5Q
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Relation B-3

■' -1 1 1 i 1 -rt ' t. J \ 1
I ■ i :■I in hi m , |

1 -■ / 1 !

n r-. n.

+ [ | 1 + i' 2 4 n -r j  I

' i

/  I ,

n , rr i ^ n

i

1 i
i .

n , ri ■> ni

The six-J symbol is Invariant under exchange of any columns or the 

exchange of any two elements from the top row w ith  the corresponding two 

elements from the bottom row
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t l -  A  The nine 1 symbol

fill rn

r n n \ rr i ( r /El i i 1 ■'

I  /  ! ! I
\  f” i ftl , , r M-.-7 /  \  rr,T i Mit  i ' m ( r n n ,rn >-  ̂ 1 ^  1 -■ v \  M 2 \ :■ 1 /

/

* h 1 s  ̂ ' 11 •/  I t I - * 7 ", \  t \ ) \ \
/  t J —  - -  \  i  1 1 - -1 -.-i \

\  i ‘ \i
i

\  m i ^ / ‘V -  /  V M i ^ m :^ rriT V

Even perm utations of the nine ] symbols nows or columns leaves It  

unchanged Odd permutations of the nine-J symbol changes Its  sign by

(_ | jsum o f its nine elements



Appendix C

The Wick Rotation

For the Wick rotation used in Chapter IV to be valid we must show 

that the two quarter circles at infinity give zero contribution to the 

contour reproduced from  Chapter IV  in Figure CT.

Figure L'-l

Lontour  cl'noict w i th  p u k s  in [ mi ai. propagator i  r t p r t -  

sf-ntRii ny :■ s -3rd p n k j  ir> i i luun fu o p r i r - * -  r f p r n r ► r)

by o '-e.
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The terms being integrated nave a} dependence only in the D irac and 

transverse gluon propagators. The large n> behavior o f the propagators  

has been obtained by Hansson and J a ffe g:

D(r1r ' ,w )^  [2 to rrJt T ( e 1̂ 2R r_r J - e ^ r >- r <J } fo r  lm (a>)>0

S(r,r - i [ 2 r r ’]" t { e laj^?R' r_r  ̂ * e ltii r̂ >_ r< M  Tor lm(u>)>0

The behavior o f these propagators in the low er half o f the com plex &  

plane is given by

D( r fr = D V , r »

S jn -tr^ '.w  * )  -  p3 S t j r j ( r ’/ . t i) )  p3

Thus our p ro o f need only be concerned with the quarter c irc le  in the

upper half o f the complex &  plane.

There w ill always be tw o Dirac propagators to  be integrated over but 

the number o f transverse gluon propagators varies from  z e ro  fo r  the 

coulom b-coulom b box diagram to tw o fo r the transverse-transverse box 

and crossed box diagrams. The transverse gluon propagator has an extra 

fac to r o f (d  in the denominator as compared to  the coulom b gluon 

propagator Therefore if we show that the quarter c irc ie  at infinity has 

ze ro  contribution fo r CCBOX. it w ill also have ze ro  contribution fo r  the
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other diagrams that have at least one extra power o f 6J to  help w ith  

convergence.

Hence consider the in tegration  o f CCBOX;

C C B O X -Jd w  dr 1 d r2 d r3 dr4 r 1 r 2 r 3 r 4 e i t l l f ( r 1 -r  2 } e ia)9(r 5, r4 )

Where f ( r ( ,r 2) and g (r3, r 4 ) are alw ays greater than o r equal to  zero .

Integrating over ^  r 2 r 3 and r 4  we find that the least w ell behaved 

part o f the integral over a) is:

C C B O X -J d to  u> '4

Which vanishes fo r  the c irc le  at infinity. Hence we are justified in 

ro tating  the contour fo r all o f  the diagrams considered in this thesis.



Appendix D

The coulomb vertex function

The Feynman rules for OCD In a s ta tic  spherical cavity listed in 

Appendix A were derived in the references listed Here we give a loose 

derivation of the coulomb vertex factor.

The relevant part of the QCD lagranglan density is given by

L -g c ^ |(x ) ^ T aij + j0 0  A ^ 'a(x)

First consider the second order S-m atrix element fo r  free field theory; 

S2= « q 'q J|T  J d 4 x d4 y (:i gc + ,(* )  2f^ Ta^ ^ j(x ) A ^ ‘d(x ) :

: ’ 9C 'M y )  z \  T M  ^ i^ )  AX,Dty) ^

d4 y( igc U|(lc)e,^'K Tajj Uj(k') e_1k K } i D ^ t q J e '^ " ^

{ igc uk(k)e,k"'y Tbkl u,{k ) e ~, r 'M }

We can already see what the vertex factor will be fo r free field theory.
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Figure  D-1

Notice that since the particles were in definite states o f linear 

momentum, an energy-momentum conserving delta function appeared at 

the vertex. In confined field theory the particles are in definite stales  

of energy and angular momentum. The four dimensional integral at each 

vertex creates an energy and z component o f angular momentum  

conserving delta function, but can't fo rc e  conservation  of all o f the 

components o f to tal angular momentum. This problem  leads to  m ore  

complex behavior at the vertex in confined fie ld  theory as w ill be 

shown below.

To sim plify this problem we decompose the D irac spinor into a 

direct product o f  5U (2) spaces, p space and a  space, defined by

2f° = p3* l  

t f1 = ip2 *  o 1 

= p 1 ®1

Then the wave function can be w ritten  as9,
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'H x J - Z n j i m  ^ n j l m ^  = ^ n j l m l '  ^ n j l l J ^  ^ j l ' m M

W here / '  is summed over y * 1/2 and the summation convention w ill be 

used fo r  the rest o f this Appendix.

The c o lo r  fa c to rs  at the vertex w ilt not change in confined fie ld  

theory so we can drop them from  the remainder o f this derivation and 

reintroduce them at the end.

Hence we can w rite  the coulomb part o f  52  fo r  a confined space as

S2 = «  q q [ T J  dJ x d^y ( i gc ?(x) 2f0  <H*) A ° -a(x) :

11 9c W  z o  +Cu) A ° ,b<y) ^

W here the integration over time has been done and turned into an energy 

conserving defta function at each vertex. Rewriting the above using the 

5U (2 ) decom position scheme and inserting the propagator we find:

= J ct3K d3y {i gc7 n ( (xtyj m(x) p3 Xn j ) I’ I1 m(,<>}

iC (y  x )  (  i gc 7 n , | j* ( y t y j  r  ^ ( y )  p 3 X n j i |- ( u W j  i' m<H> >

Where the coulom b gluon propagator has been derived by T. D. Lee10 

to  be:
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o C y - x )  -  Z l m  I z l + i 1  1 f r < L f >  (L + ,J  ( n y ) L R " t 2 L + ^  1 \ r i ^  v * L n ^

We switch to a coordinate free representation fo r the spinor 

spherical harmonics:

x 11 1/2 j

Then examining only the vertex at x where the gluon leaves the 

vertex we have:

Vertex = igTajj L  dr r 2 J d x ^ O  t/2  }m  | x » Y * j n ( x ) « x |  J 1/2 jm ^  

= igTaij ( - 0 ^  J ^ d r  r 3 «  J 1/2 j m |Y j  _M | _ M / 2 j m »

Applying the Wigner-Eckart theorem;

Vertex= igTa jj (-1)^ / j2 J |A

\-m 2 -M m j  

(J  !/2  j | | Y j | | J t /2  j) J Qd r r2

Which is the vertex function for an outgoing gluon. Note that fo r an 

incoming gluon we wouldn't have the factor H ) 1̂  and instead o f the -M 

in the th ree-j symbol, we would have an fl in agreement with the 

Feynman rules found in Appendix A
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