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ABSTRACT

The stability and tramsitlion properties of & bourded, cutrankt carrying
magnatofluld are =xplored, using the hydrodynamic theory developed for plane
shear flowa as a quide. A driven magnetobhydrodynamic sheeb pinch equilibrium
is employed. A sixth order, complex eigenvalue equation which governa the
naorsal modes of small oscillationa ia derived, and solved huMerically by the
Chebyshev Lau method. Ejigenfunctions are shown, as well as the curve of
neutral stability. The locus of critical Lundquist numbers has the form of a
hyperbola. The nonlinear stability of a primary disturbance of the system is
considered. Por regions in parameter space close Lo criticality, a nonlinear
stabliity sguation of the Landau type iz derived. These regions are charac-
terized by low values of the Lundquist numbers, In contrast with the inviscid,
highly conéucting limit considered by Autherford (1973). Amplitude phase planes
for these disturbances are exhibited, The full =et of two dimensional magneto-
hydrodynamic equations [a solved pumerically by a 2eml - loplicit, mined Fourier
pseudonpectral - finite difference algerithm. Both linear and random pertur-
bations of the system are followed nrumerically into the nonlinear regima.
Current sheets and deflection currents are ponlinear structures found Lo be 21g-
nificant to the evelution of the system. A secondary inatability mechanisa,
the dynamic rupturing of the current density sheet, in also observed.



STABELITY AND TRANSITION
OF THE
CAIVEN MAGNETOBYDRODYNAMIC SHEET PINCH



1. INTRODUCTION

Stability and tranaition are tws central concepts in fluid mechanics. The
study of atability focuses on the effect of perturbations on equilibria. Tran-
sition studies focus on the passage from iaminar te turbulent atates, ;r in a
wider sense, on the pasaage from linearity to nonlinearity. Such probleas have
bean studied in neutral fluids since the tiae of Helmheltz and Rayiefgh, while
the interest of the fusion community might be sald to date from the aeminal
papar of Xruskal and Schwarzchild (135d).

Traditionally, the neutral fluld community has focused its theoretical
effort on the study of somewhat idealized problems, ¢.g., plane shear flows,
with the uitimate goal of eaplaining the complexn proceases by which laminar
flowa evolve inte turbulent flows. There has resultad a Jdevelopment of vary
powerful numerical and analytical methods. Many of these flowsa can be realized
quite well in the laboratary, so that experimentation has pleayed a very sig-
nificant role in advancing the understanding of stability and transition phen-
omena. The experimental resylts serve as touchstones in judging the relative
merit af theeories.

on the other hand, the confined fusion theoretical community generally has
atteapted bto solve mors reslistic problems in the belisf that this would hasten
the development of a working fusion reactor. The main interest in fusion re-
search has been to determine and underatand the procesaes that theart plasma
confinement. To this end. the fupion models endeavour to account for a wide
range of phyaical phenomena, e.g., compresaibility, toroidal effects, Complex
nagnetic fleld structurea, finite Larmor radius effects, etc. Thiz leads Lo
an obviodsly considerable complication of the governing dAlfferential esquations.
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These difficulties are compounded by the rather low level of emparimental in-
formation that is available from the current generation of large magnetic con-
finement devices. Internal probes carnot be maintained at the high operating
temperatures in these devices. External diagnoatics, such as colls, provide
aomewhat indirect ipformation about intetnal magnetic fleld structure, eleciric
corrent density, etc. Numerical simulation has been resorted to in order to
anguer many of the questions about the stability and transition properties of
thase devfces. The resulkts of the simuelatiens are often the only information
that {3 possessed about the Internal werkings of thagse devices, so that the
numerical algorithms have in fo way been sublect to the sort of Close comparison
that occers between simulation and experiment in the neotral fluid community.

In this dissecrtation a magnetohydrodynamic conflguration, the driven mag-
netohydrodynamic sheet pinch, will be investigated by using analytical and nu-
merical methods developed for the study of the stabjlity and transitien of plane
shear flows. Pirst certaln aspects of the hydrodynamic theory will be reviewed,
and then the magnetohydrodynamic probiem will be introduced. Finally, the moti-

vation and structure of this dissertation will be described.

A. Aeview of Bydrodynamic Theory of Plane Poisewiile flow

The hydrodynamic stability theory of plane shear flows has & long history.
We will conaider the stability theory developed for piane Poiseville flow as a
representative case. Excellent general Ctreatments of this subject are given by
Drazin and Reid {1961} and Herbert (1981).  The iinear atability theory is wel:
reviewed by Lin (1945}, while the nonlinear stability theory is Well reviewsed

by Stuart (1%71). Good revisaws of the computational wWwork are found in Drazin



and Reid (1981), and Gottlelb, Bussaini, and Orszag (1964).
The motion of all incompressible neutral Mewtonian fluids is governed

by the Mavier - Stokes equations, written here in dimensiocnless form ( of

Batchelor (19€7), or Yih (198%9) ):

Y
aT*iVi:'vf*F i

=0

i<

where:
¥ = dimensionless fluid velocity = { u (x.y.2), v{x,¥,2), H(x.¥.2) )
p = mechanical pressure / masa densjty )
R = Reynolds number = ( U, L )/ W
U, = characteristic velocity
L, = characteristic length

Y

<

kinematic viacosity

We consider steady ( %«E —+ © ), unidirectional ( ¥ = ( u(y), #. 9 )}
flow between rigid, parallel, impenetrable walls at y = ] and vy = -1. Ho alip
boundary conditions are enforced at the walla, u{ y =1 ) =n( ¥y = -1 ) =1
1t can be ahown that p = p( % }. Por the case ig.:' = gonstant, the normallzed
velocity profile takes the formu( vy } =] - r.:l This type of floW is termed
plane Poisenille flow.

This flom is lasinar, since the flulé slldes in planes, i.e., fluid in the

plane defined by y = y, #ill always remain in this plane. The flows encount-



eced in nature do not tend to remain organized in this way. Instead a

high degtes of mixing of the fiuid i3 geperally observed. In 1328 Davies and
White ( cf. Drazin apd Reid (1981) ) experimented with pressure driven flows in
rectangular charnels with large ratics of width to height which approximated
well the geometry required for plane Polseullle flow. They observed that
turbulent Elows did exist, and found that the behaviour of the flow was param-
eterized by the Reynolds number. For Reynelds numbers below approximately
1999, the flow weuld remain laminar asymptotically, whereas for Reynolds numbers
approximately 108§, disturbances of the basic flow pattern would either remain
or amplify in time, corresponding to a turbulent state. This transiticnal
value of the Reynolds number, approximately 1988, is called the critical
Reynelds number. One of Lhe wain tamks faced by the hydrodynamic stability
theorists has been to produce this critical value of the Reynolds number as &
conseguence of = mode). If & model] predicts scme other value of the Reynolds
number at criticality, then {t is clesarly deficient.

The first inmight inty the stapility properties of plane Poimeuille flow
was provided by Rayleigh in I8BF during the course of & somewhat more generaj
investigation. Raylelgh considered the growth of infinitesmal disturbances in
an inviscid Ravier - Stokes £luid using a plecewise linear mean flow profile.
Thiz invisc!d form of the Mavier Stokes equations is often called the Euler
equations. At this time vizcosity was widely balieved to have only a disaip-
ative effect, so that preaence of finlte dissipation would only serve to retard
the growth of the iZeally unstable modes, Since the disturbances are infin-
Ltesmal, the Euler squatiens cer be linesrized about the mean flow profila.
Uaing a normal mode analys#is, Rayleigh cast the atability problem in the form of
an eigenvalue problem. He arrived at the following necessary condition for the

existence of instahilites in inviscid plane shear Flows - the mean flow profils



west have an inflacticn point in it for linearly unstable modes to exist, ar
aqeivalently, the mean vorticity must have a maxinum in the chanpel. This re-
sult implies that plane Pelseujlle flow 15 ideally stable to infinitesma] per-
turbations that are normal modes of the system aince the mean flow praflle is
non - inflected within the channel.

Several decades later a linear stability thaory for vwiscous plane shear
flows began to be developed ( cf Drazin and Reid (1981) ). oOrr in 1997 and
Gommerfeld in 1948 Iindependently derived & stability equation that has been

named in thelr honor, viz., the Orr - Sommerfeld equation:

(Da-xz)lqa-'- LNR[( Ua - %)(D“—anl) ~ (D"U_)] ¢
CP(L(‘:l)':crfq:-t) =0

where:
?fﬂ = parturbed stream function
I.L{n,) = sean flow profile
o = real parailel savenumber
N conplex frequency

R = Reynolds rumber

D -4
4

Por fimed real alpha and R, this equation defines an eigenvalue problem fgr the
complex eigenfrequency ¢J. The mathesatical complexity of this equation
defi=d the powers of mathesatical analysis available at the time, and its

soluticn remained an outstanding problem 1n applied mathematics Eor almost

geventy years.



Duzing the 1928's Prandtl showed that viscosity could have a destabilizing
effect by inducing Reynolds atresses whkich tranzfer momentum from the mean flow
to the distyrbance. In (224 Heisenbery obtained the first sclutions of the
Orr - Sommerfeld egquations by employing a singular perturbation theory. He
discovered that liaear instabilities did =xist in plane Poiseuille £low due ta
the presence of finite viscoaity. Furthermore, he calculated the upper branch
of the curve of neutral stability for plane Poiseuille flow, s well as cbtain-
ing an eatimate for the lower branch { the curve of neutral stability i3 de-
fined to be the curve in { &, R ) space which separates the stable region from
the unstable reqgion 3.

In the 193#'s an importart result was given by Squire. Squire proved
that two dimensicnel linear instabilities were the most dangerous, so that the
slnimum critical Reynolda number and parallel wavenumber could be determined
through consideration of twd dimensional disturbances alone.

The analytic theory reached its zenith in the work of €. C. Lin ( Lin
(1955) ). Using refiped asymptotic aralysis, Lin obtained accurate salutions of
the Orr Sommerfeld equation for s variety of plane shear flows. He was able to
cajculate both branches of the neutral stability curve., His 1955 monograph
still remains the authoritative book on the subject.

At about the time Ekat Lin's monograph was in preparation, the discipline
of computational fiuid dynamics was being beorn. In 1953 L. 8. Thomas published
the first numerical solution of the Orr - Sommerfeld equation { Themas (1953) ).
Thomas used a five point Numerov finite difference scheme with about one hundred
points on the half chapnel. H» was able to compute eighteen sigenmodes using
approximately three hundred hours of computing time onr an IEM selactive se-

quential ejectronic computer. Thomas calculated a critical Reynolds number of

9780, with a critical alpha of 1.€26 for plane Poiseuille flow.



Subsequently, many refinements {n the numerical methed ceccurred, of which
two have special significance to this work. Flrst, several authors attempted o
use gpecktral methods to solve the Orr - Gommerfeld equation { cf. Dolph and
Lewis (19981, Croach and Salwen (1948) ). Second, Gary and Balgason (1972
developed an iterative method for reducing the Orr - Sommerfeld squation %o a
standard eigenvalue problem. The standard eigenvalue problem can easily be
be solved by the QR algorithm [ Wilkinson (1965) ).

These developments culminated in a 1971 paper by Orszag ( Orszag (19713 ).
Using Chebyshev polynomials as basis functions, COrszag combined the Lanczos tau
method { cf. Gottleib and Orazag (1%77) ) with the iterative method developed by
Gary and Belgason and computed the eigenvalues and critical parameters of the
Ory Sommerfeld equation to extremely high accuracy. This high accuracy can be
attributed to the excellent convergence properties of the Chebyshev polynomials
used for the axpansion functions. The accuracy iz said to be of infinite order.
meaning that the truncation errer falls off more rapidly than any power of N,
where N is the number of Chebyshev polyncmials retained in the truncated expan-
sion., oOrszag calculated a critical Reypolds number of 5772.22, with a critical
alpha of 1.¥:20% for plane Pojseuille flou.

Farallel to the linear stability theory a nonlinear stabjlity theory for
plans shear flows has evolved, motivated primarily by the lack of agresment
between the linear theory and the experimental results, as well as by the desire
to know what happens to the linearly unstable modes when they achieve finite
amplitude and excite the nonlinear terms. These nonlinear stability theories
share the common attribute of considering the effect of two dimensional finite
amplitude perturbations on the stability of the mean flow profile. The differ-

ences in the theotries occur in the methods uzed to simplify the nonlinear prob-



Iem to allow for svccessful analysis, or, more fo the paint, the decisions con-
cerning which terms toc discard and which toc keep in the apalysis. Such deci-
sions must ultimately have soma justification in expearience. Many of these the-
orjes have focused on the perturbation epergy balance ( for instance, Stuart
(13587, and Joseph (1976) ), often callad the Reynolds - Qrr energy equatisn.
This approach focuaes on the global properties of the fluld and hence minimizes
the igpartance of localized structures. 1t has besn especially useful for de-
tereining the lower bounds of the Reynolds nuaber for the existence of {nstabi-
litles. An alterpative approach has been to employ perturbation methods, and
this approach has been somewhat meors fruitful than the esnergy methoeds with
respect to discovering subcritical instabilibies. An important early result is
due Lo Meksyn and Stuart (1951). By igroring the generation of higher harmohics
{ the mean fleld approximation ), they showed that subcritical instabilities
conld occur in plane Polseuille flow above Reynolds numbers of about 2909, 4
value still somewhat above the expsrimental critical value of about 19949, but
loser than that predicted by the linear stabilfty theory. Most of bhe sub-
sequent development has been directed toward the derivation of Landau Lype
neniinear instability equaticns ( ¢f Landau and Lifshitz (125%) ) using an-
alytical perturbation methads (Stuart (196@), Watsen (1963, Reynolds and Fotter
{1967}, Herbert (1983) ). An important numerical result was given by Zahn,
Toomre, Speigel, and Gough (1974), who sclved a highiy truncated form of the
Navier Stokes equaticns to detfermine the stability beoundary of plane Poiseuiile
flow in the parameter space of paralle] wavenumber, Heynolds number, ard pertur-
batior amplitude,

The inability of the above analyses to produce the syperimental critiral
Reynolds number for plane Poligegille flow has motivabed the study of the prob-

lem by means of numerical simulation. It ia hoped that such simulatiens abviate
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the need for simplifying assumptions that might prejudice the results of the
analysis. Mumerical analysis using apectral methods of computation has had an
especially large impact on these problema ( Gottleib and Qrszag (1977) ). Thres
spectral methods in particular have smerged which vary primarily in the manner
in which the continuity of the fluid is enforced { Gottleib, Aussstni, and
Oraszag (1984)). Orszag and Eells (1986) have developed a three level tipe
splitting technique in which the fluid incompresaibhility is enforced at the in-
termediste time step. They employ Pourier series in the streamwise and spanwise
directions, and s Chebyshev series in the cross - atream direction. Moin and
KFim esplay o a2emi - implicit time stepping scheme, and solve the continuity
equation directly. They alse discretize with Fourler series in the streamwise
and spanwise directions, but use aither Chabyshev serjes ( Moin and Rim (1980) )
or stretched finite differences { Moin and Rim (1982) ) in the cross - stream
direction. The Havier - Stokes aystem is reduced to a block tridiagonal form
Which can be sasily inverted. Klejzer and Schusabpn (1%984) have developed a
aethod aimiiar to that of Holn and Kim, except that they 30lve the Navier -
Stokes aystem of equations by an iterative technique. The Orszag and Zells code
in particular has besn applied to the problem of CLransition te turbulence

in plane Peolseuille Elow, with extremeiy succeasful resulits. They have found
that the restriction of the transition probles to two dimensions is an espe-
clially severe one, These authors have found transition behaviour nesr Reynolds
nuniers of 190§ dve to an interaction batween three dimenzional infinitesmal
perturbations and two dimensionai finite amplitude pe:turbations. Orazag and

Paters {19817 have speculated that this i3 a secondary linear inscability

mechaniam.
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B. Magnetohydrodynamic Pinch Configurations

One of the most impertant goals of the nuclear fusion effort has been to
achieve the sagnetic confinesent of plazmas in configurations stable encugh to
to allow for heating te thermonuclear tempsratures, While the mathematical
theory of such squilibria is straightforward ( see, for axatiple, ¥an EKampen and
Felderhof (1967) ), in practice any magnetically confined plasea will be per-
turbed due to startup conditions, impurities, asymmetries, etc. [f these per-
turbations are amplified in time the plaspa - magnatic field system is fun-
damentally altered. This altered configuration Interacts with the externally
imposed magnetic flelds and electric currents of the conflnement device in a
wannay differant than what wag intended in the design. 1In all likelihood plasma
confinement will no longer be maintained, confounding the eapectation of the
designer.

Many of the destryuctive effects of perturbations are 1llustrated by the
anial pinch configuration. Consider a cylindrical tube of plasmas. An axial
electric current in this plassa cylinder will generate an azimuthal magnetic
field. The interaction of the axial electris current with the azimgthal mag-
netic £iel]d produces a radially inward pressure gradient that confines, or pin-
¢ches, the plasma ( except &t the ends, where particle losses are {nevitable --
40 lat the cylinder be infinite In axial extent ).

The most dangerous perturbations to the system are called the ideal mag-
netoydrodynamic ( MAD ) instabiiitias ( cf Bateman (1978) ). The plazma is
modeiled as a perfectly conducting fluld, with the magnetofluid velocity equal
to zero in equilibrium. Small displacements in the magnetofluld surface create

changes in the sxternal magnetic fiald, lsading to changes In the magnatiec
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pressure responsible fer confining the magnetoflyid, These displacements can am-
plify, contorting the plasma column, and often leading to & loss of confinement.

These ideal M8D inatabilities can be controlled in several ways. Appli-
cation of an axial magnetic f1#1d within the magnetofluid column is one mathod
that has proved to be effective. Bulk motion of the magnetofluid caused by the
jdeal MBO instability tends to coupress these magnetic field lines, producing a
reatoring force that counteracts the destructive pertubation. Stabjlization can
alao be assisted by applying an axial magnetic field external to the magneto-
fluid column, as well as by surrounding the column by & highly conpducting con-
tainer made of, e.g., copper.

Unfortunately, the story does not end at this point. The tota]l magnetic
field, which 18 now sheared, 1a highly susceptible to a variety of resistive in-
stabilities. These instabilities all shara the common feature that the magnetic
field 2inea can be torn apart and reconnected to form new magnetic field tapol-
ogies due to the finite resistivity of the magnetofluid. This flux surface dia-
tortion can lead to enhanced transport of momentum and energy, magnetofluid tur-
bulence,and the possible breakdown of the stabilization of the ideal MHC modes.
The relansed magnetic energy from the tearing can also be kinetic snergy, resul-
ting in high speed motion of Lhe magnetofluid.

A related pinch configuration which retains many cof the effects noted above
is the magnetohydrodynamic sheet pinch. This plnch consists ¢f an infinite
plane current layer in a single £luld magnetofluid with a DC magnetic field re-
versing sign at the current layer. Structures of thiz sort are thought to be of
jmportance in several different physical contexts, Interaat first arose in the
space physica community, where these structures are balisved to account for the

acceleration of charged particlea to high speeds. An sxcellent review of this
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material 1z given by Sonnerup (1979)}. The nuclear fusion community has sus-
tained interest in the MAD sheet pinch because of its analytic tracztability, as
it can be studied in the Cartesian geometry. This study of Chis configuration
has a somewhat briefer hiatory than that of plane shear flows. The fusion ori-
ented theory is well revieswed by White (1983), and also by Manheimer and
Lashmore-Davies (1964].

The interest of the fusion community in the stability properties of the
sagnetohydrodynamic sheet pinch Iintensified in 1963, when Furth, Killeen, and
Rosenbluth published their influenmtinl paper on the linear theory of the teariag
mode [ Purth, Killeen and Resepbluth ¢1963) ). The term ™ tearing " refars
rather graphically to tha tendency of the magnetic field lines to break and re-
connect in the resiative magnetofluid. They researched thesa jpstabilities in
an =ffort to explain the failures of the ideal single £luld MHD stability theary
to accurately predict plasma confinement. These authors examined a plane infin-
jte corrent layer in a compressible inviscid plasma with a sheared zeroth order
sagnetic field. Limiting themselves to the case of infinitessal perturbations,
they employed a normal mcde anslysja to formulate the linesr stability problem
as an eigenvalue problem, which they solved by the method of matched asymptotic
expanaions in the high reajstive Lundquist number 1imit. They sought to deter-
mine conditiona for instability, es well a3 the scaling of tha instability
growth rates with various garameters of the ayatem. Subaequently, research in
" this area has dominated a lacge portion of the theoretical fyusion effort.

Wesson (1966) solved the eigenvalue eguations given by Furth . et. al, nu-
merically, using an jterative finite difference method. BHe relaxed the condi-
tions required for the asymptotic analyaia, |.e=., he zolved the same equations
in the ipner and outer reqions, and found substantial agreement with the analy-

tic results. A related computation has peen done by Dibjase and Killeen (1377},
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who used an initial valiue method.

The theories dealing with the temporal evelution of the tearing mode have
ganerally follewed the evolution of a sirgle linear mede into the nonlinear re-
gime. A theory treating the nonlinear evelution of the tearing mode was given
by Rutherford (1973), who considered an inviscid magnetofluid. Neglecting both
the inertial terms and the generation of higher harmonics, he determined that
the tearing mede should ceaze to grow exponentially in time, as is appropriate
to the 1inearly unatable modes, and begin to grow algebraically !n time when the
second order LorentZ Eorces become large enough to oppose Lthe perturbed flow,
This work was extended by White, Monticello, Roaenbluth, and Waddell (1977), who
predicted that theae algebraically growing modes shonld saturate nonlinearly due
to Jistortions of the current profile exterior o the tearing mode. These su-
thors considerad & highly conducting inviscid magnetofluid, and assumed that the

fundasental disturbance would dominate the nonlinear atmbility process. A re-

cent apalysis of interest is dus to Pao, Rosenau, and Guo (1983), who conaider a
viscous magnetofluid.

Computations that have been performed of the nonlinear svelution of the twe
dinensional magnetonydrodynamic sheet pinch have exhibited soae differences,
both in terms of the model and the numerical method employed. Schnack and
Eilleen (1379 and 198F) eaployed & conservative fipite difference acheme, and
used an alteraating directien implicit temperal Siscretization. Using an invis-
¢id, compressible model, they followed the nonlinear evolutlion of elgenmodes of
the linearized problem. They found a pariod of exponantial growmth, followed by
nonlinear saturation. They wers particularly interested in determining the non-
linear effects cn the structore of the magnetic field. Matthaeus and Montgomery

{198]1) =mployed a Pourjer spectral { Galefkin truncation ) method in apace and
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used sscond order RAunge - Kutta time atepping. They considered a viscoresistive
incomprensible magnetofluid in a periodic box with sidea 2 77T with two current
sheats of opposite sign present. 3Small random perturbations were imposed ini-
tizlly on both the sagnetic and velocity Elelds, and the system was allowed to
evolve without any driving. These authors focused on the nonlinear behaviour

of the current density, which emphasizes the high frequency components of the
sagnetic field. They found that highly locmlized current structuras, which they
called filaments, would develop. This locaiization indicated that many of the
high frequency components of the sagnetic field were excited, a feature ipdica-
tive of turbulent bekaviour. Decay of the mean is significant during the courae

of this simulation.

C. Description »f Research

In thia thesia the evolation In time of thi driven magnetohydrodynamic
sheet pinch will be considered using analytical and numerical techniquas devel-
oped Eor the study of plane shear flow problems in hydrodynamics. This work
represents the development of ideas first proposed by Montgomery (1962 and 1904),
viz., that due to the aimilarity of the MAD equations to the equations of ordl-
nary hydrodynamics, the hydrodynamical methods that have been developed for the
study of the stability apd trensition of pisne shear flowe could be profitably
applied to analogous problems in magnetohydrodynamics. This approach has al-
ready proven of value in the study of fully developed, homogeneous, isotrapic,
two dimensional magnetohydrodynamic turbulence ( Fyfe and Montgomery (1976),
Pyfe, Joyce and Montgomery (1977), Fyfe, Montgomery and Joyce (1977}, Hossain,
et al. (1983), Shebalin, et al. (1983) ). A related analysis for the linsar
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stability of the nondriven MHD sheet pinch, mhich exploits this similarity of
the governing equatlens, has been given by Dahiburg, Iang, Montgomery and
Bossaini (1983).

In chapter II, the governing equations are given and the sagnetohydro-
dynamic equilibrium to be studied is described. 1In chapter IIT the linear
stability properties of this aystem are examined both analytically and numer-
ically. A quiescent MED analogue of the Orr - Sommerfeld equation 13 derived
which 18 solved numerically by the Chebyshev tau method. The critical pars-
meters are determined, and the curve of neutral atabllity is computed. A aimple
relation between the critical viacous and resiastive Lundguist numbers for neut-
tally stable modes 13 found. In chepter IV a theory of nonllnear stabllity is
given that relies on certaln assumptions aboub the pe;turhltiun anergy balance.
A Reynolds - Orr energy equation for maghetofluida is formulated, A nenlinear
stability equaticn of the Landau type 15 derived, and some of the nonlinear
stability properties of the ayatem are investigated. The amplitude phase plane
for m primacy disturbance is given. In chapter ¥ & mixed Pourier pseudospactral
finite difference algorithm with a semji-implictt time stepping scheme used for
nuserical simulaticn of the full set of two dimensional nonllnear partial dif-
ferantial squatjons that govern the MED channel system is glven. In chapter ¥I
the nonlinzar evolution of a primary disturbance is described. The effect of
the nonlinear terms is determined. The deformation of the equilibrivwm and pri-
maey disturbance i3 described. The gemeration of higher harmonics is slso con-
sidered. 1In chapter VIT the evolution of the system with random Initisl pertur-
bations 1s described. Several nonlinear structures are seen to evolve, includ-
ing current sheets and deflectlion currents. A highly nonlinear structure is

seen to develop during the maghetic © - point coalszcence phase. A secondary



17

instability mechanism, the dynamie rupturing of the electric corrent density
sheet, ja observed and a simple model is given. In the appendix an MHED Rayleigh

theorem is proved.



IT. EQUILIBRIUM

The aquilibrium that we shall consider conaists of an inflaite plane layer
of slectric current, with a DC magnetic fleld reversing aiqn at the current lay-

er. The fluid velocity 1s zero. This configuration ia customarily referced to

the " magnetohydrodynamic sheet pinch " ( cf Matthasus and Montgomery (1981) ).
This disaertation will focus on a driven version of the magnetohydrodynanmic
sheet pinch. 1In this driven version the Chmic dissipation of the magnetic ener-
gy 1s balanced by an external eslectric field and variation of the resistivity
perpendlicular to the mean zagnetic fleld,

The magnetofleld under study iz conflined betwesn parallel, rigid, Impene-
trabie plates. The plates are regarded as perfect conductors coated with a thin
layer of insulating material. Mo slip boundary conditions are imposed on the
viscous magretofluid at the walls. The normal componant of the magpetic field
is constrajned to agual zero at the walls, but the tangantial component of the
current is unrestricted. The % directjon is regarded as periocdic. Al]l varia-
tion in 2 i5 ignored, a3 is conaistent with the presence of a strong, conatant,
unfform, external DC magnetic field.

The behaviour of the magnetoflyld is governed by the two dimenaional incom-

pressibla MAD aguations, written in a dimenzjonlesz form:

oA - 2
11 - 1. -5; -f-f_\'?ﬂ S 7(?)?:‘21 + &

EEEQ_ W = . ﬁ;?'zﬁJ
1 - 2. at-f',_'u{ W £7j+/
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where:
A = magnetic vector potential = H{;cf [.fl:‘t)
b= V}(}qg&_ = ( By B‘f' # ) = magnetic €leld = E(K‘t&tj
J= -3 = electric current density = j_(xr qtt)
€ = conatant external e=lectric Eield
7(1]' apatially varying dimensionless magnetic diffusivity
v = flow velocity » (u , v , F) =1{I[lfrt)
M= TxY =~ (9,9, ) manetofluid vorticity = W ¢€)
4 = dimensionlesa kinematic viscosity "

Plow speeds are messured In terms of the Altvéh speed, L, = el
where B, is a characteristic value of the mean field, and {ais the mass density
of the sagnetofluld. The characteriatic length is taken to be the half channel
width,

We consider an equilibrium with zero mean €luld flow. The moLivation be-
hind the choice of specification of the magnetic terms arises from the need to
balance the magnetic energy loases dus to Ohmic dissipation ( Purth et al.,

(1963), Wesson (19656), Waddell et al. (1976) ). Proceeding, we specify that

o=y =8 and A= h&{ ¥y , t ). This specification reduces 11 - 1 and II - 2 to:

G ) o £
- . b ( --—'"—1- +
11 -3 at ’7 t( 3({

The temporal variation of A can be eliminated by requiring that.
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‘a‘An I ) ( ?3;:{&?)"

11 - 6. E /7(?_.5)?’&

I1 - 5. 7(7)

lf =0

The constant electric field maintains the resiative equilibrium, and hence is
the magnetohydrodynamic equivelent of the applied pressure in plane shear flows.
Clearly A, must be restricted to functions that do not possess inflection points
in the domain vy = 41 to ¥y = -1, i.e., within the channel.

If ne requﬂ/u and 7[ y = 0 ) as characteristic diasipation values, then
the governing equations ( II - 1 and I1 - 2) cen be written in another dimen-

s{ionless fars:

1 -7, %%‘4',?_‘_*‘7&: {—(51—)?2& + €&

Qu +£~Vw:€1VJ'+;;— v 2w

II - 8. _

where:

s %1(7_:“) = resistive Lundquist number

5(1‘)’ (%(Tu)(i%)j dimensionless resistivity
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|
M 4 = yvisgcous Lundqeist number

where Lundquist numbers are simply Reynolds numbers in which the characteristic
velocity Is defined to be the Alfven speed Cﬂ . The nagnetic fields are then
aeasured In terms of the externully supported field B, .

It i3 important to note that the dimension]ess resistiuityﬁ?{ ¥ ) remains
fizxed in time, although the m#an value of the magnetic vector potential can
evolve in time if the system 13 perturbed. The dimensionless resistivity ia
defined by the value of the undisturbed egquilibrium magnetic vector potential
EFleld.

Por future purposes We define heres a dimensionless conductivity function

q . defined an:
l
SR (DR

Mo slip boundary conditjons are anforced on the veloacity field:

U(1:f) = u(u"‘-‘-‘l) =0
V(L‘zt)”- "-"0(':") =0

The normal component of the magnebic field is constrained {0 equal zero at

Ir - im

the wallis, or;
-1 F\((t =)= CONSTAWT ; A(({:-l):.{_mJSTﬁd?'

The current denaity is unrestrained at the walls, as is implied by the thin
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inzulating coating { cf Montgomery {1984) J:

-1 - VQH S ve / UNRESTRAINED
Q'=I %‘:-1
The m=an magnetic vector potential that will be studied in depth in this

disaertation is the follewing:

with the aasociated magnetic field.

11 - 14 @'(1): ’tﬂﬂ-‘d/b'

snd current denaity:

1 - 15 J;(;’): -a/ (l+b/3’1:1)'l

Where = stretch Eactor.

This specificatien of mean fields produces a magnetohydradynamic sheet
pinch configuration. There is an {nfinite plane layer of electric current
centred adbout y = 4, at which location the mean sagnetic fleld reverses sign.
The mean fleld velocity 13 Zero,

these mean fields are plotted for the case 5- B, M =5 =190, in fiqures
11-1, 1I-2, and I1-3 respectively.

In certain applicationsa it will be more convenient to replace 11 - 7 and
I1 - & by the corresponding magnetic induction equations, eguations of motion,

and an equaktion of continuity for the magnetofluid:
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oo By oy 78 =80+ Dyig
ot
17 - 18, S—i+£*?u=~§=&-—IBT+ i—-?au
- 18 %+£+Vu=-%a;—+g'gx+ﬁv2v
11 - 2F g—i”‘g—;—-o

where p is defined to be the mechanical pressure divided by the mass density.

In this formulation the perfectly conducting boundary condition can be

expressed as:

I - 21 61(;{:;) = g'f (L{'l‘l> -0

and the current boundary condition becomes:

L
O

vy

1 - 22 ﬁquﬁ_} :ﬁ‘x‘?xgl
1 4=~

Fa
khere P {2 defined to be a unit vector normal bta the wall.

For the squilibrium specified { 11 - 13 %, II - 1B apd I - 19 reduce to.
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A4
11 - 2 ﬁit{ - ~:I-EQ;;
i.e., the pressure gradient in the magnetofluid i= due sptirely te the interac-
tion of the equilibrium current with the squilibrium magnetric £1e14, This

pressure gradient tends to force the magnetofluld toward the current sheet from
elther side - hence the name * magnetohydrodynamic sheet pinch ",

As is cuatomary in the study of incompreasible flulds, it will often be
more convenient to une a stream function representation for the velocity field.
The atream function q/ Will be related to the componenta of the velocity
field through the fcllowing definitions:

Of course no physical system will exist in as pristine a state as the
equilibrium described {n this chapter, especially in an extremely compiicated
exper imental device. There will inevitably be neise ot some kind of disturbance
present. Our obiective in the next few chapters will e to determine how the

perturbed aystes will evolve in time.



I11. LINEAR STABILITY

The obviaus way to initiate the study of Lhe effects of perturbing this
aystes 1s to constder the effects of small disturbances, i.e., to conaider the
linear stability of the system.

What is meant by stability 7 Conaider a system in eguilibrium. We impose
ssall disturbances , e.q., the normal podes of small osclllations for this sys-
tew, on this equilibrium. If these perturbatiens decrease as a function of
time, we define the system o3 being stable. If the perturbations amplify or re-
main constant in time, we define the system as being unstable.

When the geomebry, boundary conditions, and initial conditions are fixed,
the growth rate of theae perturbations, as well as their phaze velocity and
shape, i3 completely determined by various pacamaters which define the problem.
Por the MHD channel aystem, these parameters are the size of the perturbaticen in
the direction parallel to the sean magnetic field, and the kinematic viscosity
and magnetic diffusivity of the sagnetofluid. Small variations in these parame-
ters can produce large variations in the temporal evolution of the magnetofluid.

The linear stability of this ayatea i3 governed by the quiescent magneto-
hydrodynamic analogue of the orr - Sommerfeld equation for the stabjlity of
plane shear fiows. We present here a aimple derivation that takes as ita
starting peint equations II - 7 and I1 - §. It must be mentioned that the deri-
vation can done at much greater length if the starting point Is the three dimen-
sional MHD equations. In this more complicated case it {s poasible to prove a
“ Bquire's theorem " which implies the following ~ If a three dimensionul linear
jnatability can be found at a certain set of Lundguist numbers, then a twe di-
mensional linear instabllity can always be found at a lower value of the

Lundquiat numbers. This means that the 2-D disturbances are the most unstable

25
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linearly { cf. Montgomery (19%84) ). HWe now derive the aguaticns that govern the
the linear stability of the driven MHD sheet pinch.

We start with the governing equations:

£ 2¥ 0 ¢ 2 BT+ Ve %
11 - 1 Bt’: DCf oX %(.'btf - "“(3)( +}7-")

11 -2

R A P oA —S) /YA VA
’bt'r?(cf;_ dK Px Dy %(ﬁ+"ﬁf}+g

Linsarize these squations about the equilibrivm described in the previcus
chapter, allowing the resiacivity and the electric field to remain fixed in

time, 1.2,

ACx, 4, €)= Poly)+ Al yt) = Agta
& (x', 7,4:) = ca,(xrn;;t)- = Q-
ni -3 QU()(, Y, t) = Y (xﬁ;f) = P
B y) = BApActBlyyS = Brh
Tloyt) =T+ Ty H=F+]

To Eirst order:
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20 -m.
Ba?’é%? pm m( b

E)x“

1=
)

This system of linear partial differential equations can be reduced Lo a
system of linear ordinary differential equations in ¥ by inveking the periodic-

ity in = and assuming the ewistence of a complex frequency &J . Let:

b x ~LoT

e -6 jﬁ(%,y,t) ““)»f(a/)e

Upon making thies substitution, III - 4 and [II - 5 become respectively:

111 - 7 ~cwi :-‘Cx.g.:] +(DI)L? _;.;;-(bl_mﬂ)-ﬁ_

11 - 8 —iua—ﬁd@&)? ‘Izéﬂ (D'E-O‘;'a.{l.

where ; D d"

Note that.

n_= -Vgcp —> - (b'?"ﬂ*'?)?



Lq-_—.—'b._‘}- == (KA ®
111 b :a>(

B = DA,

Substituting these gquantities Iinto III - 7 and IT] - & and redrranging

-2 p = ~LwM (D2-a*)
~L &M (DA,) (Dﬂ'd.a)ﬂ. + LM (Dz‘qa) A

IIT - 19

m -1 ipi-..ﬂ&- (w 5;(7)30« Ry ngf)mﬂq) P

No - alip boundary canditions are enforced on the veloclity field:

Ply=1) = g (qzrt) =0

I - 12
dey %) =o
A4 ly= dy 'ty ==

the magnetic perturbation is constrained te equal zZero at the walls:

i1 - 13

ﬂ.(cl::) = ﬂ(t{:-—l) =0

These squations rapresent the quiescent magretohydrodynamic analogue of
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the Orr - Sommerfeid equation for the linear stability of plane shear flows.
Furth et, al. have, to some extent, studied the M = DO, high § limit of this
systep. A related system was studied in greater detail by Dahlburg, =t al.
{1983), who studied the linear stability of magnetbic gquasi - equilibria. 1In
that study, the resisitivity profile l=s uncoupled from the mean magnetic vector

potential, and there {s po external electric field. The linear stability prop-
erties of that system and the one atudied {pn this chapter are similar since the
reaistivity is only significant in the ragion of the current sheet.

111 - 1F and III - 1] are 4 sifth ordar, complex set of linear ordinary
differential squations. The complicated form of the system makes 1t analyti-
cally intractable, One way Lo alleviate the difficulty of the analytical prob-
lem is to raduce the order of the system of equations by passing to the jdeal

limit. This i3 esquivalent to examining the limlt of infinite ™ ard 5. In this

limit the linear stability equations become:

- v O=w(D?-«?) p + o E’Df’ru)( DA - ) ‘(DSA.)] A

My -1 W= - & (DA,,)?

In the appendix {t (s shown that this system 1s stable to linear perturba-
tion® for any cholce of equilibrium magnetic fleld. Hence it can be concluded
that any instabilities that occur must be a consequence of finite diasipation.

Equations IJI -~ 14 apd IIT - 11 are solved numerically by the Chebyshev tau

method as adapted for the Orr-Sommerfeld equation by Orazag (19711  The numeri-
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cal mathod is described in detail in Dahiburg, et al. {1983). MWe present here a
short sommary. The various Field variables are expanded in Chebyshev series,
and the system of equations is truncated by the Lanczoz tag method { Gottleib
and Orszag (1977) ). Only odd Chebyshev polynomials sre neesded for the per-
turbed atream function, while only sven Chebyshev polynomials are required for
the magnetic eigenfunction. The resulting geaneralized eigenvalue problem i3 re-
duced by the iterative method of Gary and Balgason (1379) to a standard eigen-
value problem. Thia standard eigenvalue problem is solved by Lthe QR algorithm

{ Wilkinson (196%) ). For cases in which a solutian is known, and solutions

that are nearby in the parameter space are desired, it is computationally more
efficlent to replace the step invelving the QR algerithm with an iterative meth-
od. In these cases inverse Rayleigh - power ltaration is employed ( Dahlguist,
et al. {(1974), Ortega and Poole (1381} ). This itecrative method L2 e3specially
useful in the computation of the neutral curve.

We find the following results numerically:

1. Linearly unstable modes were not found to exist for mean current density
profilen without inflection points in the domain y =+l to ¥ = -1. The pro-
files af this kind that were tested were found to be linearly stable at ex-
tremely large values of the Lundquist numbers, on the crder of 199,§#08.

In contrast, mean current density profiles with inflection pojnts in the
domain vy = +] to y = -1 ware found to be linearly unstable at extremely low
values of the Lunquiat rumbers, on the order of 10. Steep current gradients
alone were insufficient to provoke linearly unstable modes. MW¢ analytical
proof of these resullts has emerged.

2. Por thase profiles that are linearly unstable, the phase velocities of the
unstable aodes are always seen equal to zero. This has an important conse-

quence for the sigenfunctions. Let p = i), 9 = la. Upon Substitution,
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equatlions 1II - 14 and IIT - 1] become, respectively:

(p*- .tﬂ)“? <-pM (D3 p - M [(0a) @) ~(DA)g

I pS5p3g = «520) (DAY

Conzider cases with p real ( i.e., with (& purely imaginary 1.

( D“—.E")}= W, M(D* ) p - MDA P2 (D%)] 4

EDE. .¢2-w;5{f7)§j = xS;(r{) (D&)?

By inspecticn of the above aquations it can be seen that the real and imagi-
nary parts of ?nnd g satisfy the same set of ordinary differential squa-
tions. This implies that solutions of these equations are possible in which
the imaginary fields are simple multiples of the real fields. The computer
code gives the result that, for the linearly unatable modes, the imaginary
part of a and the real part of ? are equal to zero. Hence we only consid-
er the real part of a and the imaginary part of ? .

Figure III - 1 shows the unstable magnetic eigenfunction for alpha = 1,

=5 =25, and gammma » 3. Pigure 1II - 2 shows the upstable velocity eigen-
function for the aame paramsters. Figure IIT - 3 shous thg root mean aquyare
¥ componernt of thia perturbed magnetic field. Figure III - 4 shows the raot
mean square ¥ component of this magnetic fleld. Figure IfI - 9 shows thas
rool mean square ¥ compenent of thia welocity field. FPigure III - & shous

the root mean square y component of this velocity field.
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Figure III - 7 shows the unstable magnetic eigenfunction for alpha =1,
M=E5=]H, and gasva = 8. Flgure III - 8 showz the unstable velocity
aigenfunction for the sade paramaters, The effect of ralaing the Lunquist
numbars on the elgenfunctions can be seen by comparing these figures With
figures IIT7 -1 and III - 2 respectively. The regions of mamimum value of
the magretic eigenfunction are seen to move away from y = 0§, while the

" hollow ™ in the centre becomes relatively deeper. The region of maximum
velocity eigenfunction are seen to move toward y = &, and the gradient of the
eigenfunction at the centre {pcreases. The variation of the eigenfunctions
with respect to Lundquist pumber s dealt with more thoroughly by Dahlburg,

et al. (1983), for a closely related case.

. For the non-conducting fluid, only one dissipative mechanism exists. Rence
the zone of zero growth rate can be characterized by the curve in (&, R )
space which separates the stable and unstable modes. In contrast, the mag-
netofioid has two dissjpative mechanisms, and thus ﬁhe ZeTo groWth rate Zone
has the Eorm of a surface in the (of ., M , E ) space. A representative

" slice " of this neutral surface for the case B,( y ) = arctan( By } is
shoun in figure JII - 9. This ™ slice " , or neutral curve, 1s taken in the
{ef, ¥ plane with 5 held constant at 198, The neutral curve in the

{of . 5 ) space with M held constant at 19¥ {3 geometrically congruent. The
form of the neutral curve indicates that stabilization of the modes can al-
ways be achisved by decreasing the Lundquist numbers to a sufficiently low
erough value. Stabilization is alsc achieved at both sufficiently high and
low encugh wavelengths of the disturbance.

On this neutral surface &) = 4 by definition. Combining this with the pre-

vious result ( 2. ) gives
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g,_}::&:)r "\‘"WL‘ =

on the neutral surface.

Substituting this result into the linear stability equations ( IIT - 1F and
I - 11 ) given:

(b?- ma);) = - M (DA, )(D>- p{iL. + M (ﬂ"ﬁ,)g
(p*- .(2)a = -(x 5;(7) (Dﬂu)t}D

These equations can De rescaled in terms of one Lundquist number in a variety

of different ways. Pfor inatance, letf* .Ma . Substituting:

(D*-—a-“‘)"‘? s ix (DA (0% L+ cw(DA)F

(b%oDf = - i« [K3ly) (dA,)

were TR = MS 1s the new Lundquist number. The stability boundary is

then determined by this one Lundquist number JR and the critical o .

This result implles the existence of a " stabllity hyperbola " defined by the
locus of critical pointy in the M - § plane for a unique critical e . For

instance, for E'(TJ- tﬂa"'ﬁ. it 1s found numerically that:
m; = SCM‘L = /O?S

for o, = 1.4, The critical locus is shown in figure 111 - 1§,
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This result has recently been confirmed In the course af somewhat differant
analyses by Borton, Tajima, and Galvao (1961) and by Bondeson and Sobel
(1984).



IV. HNONLINEAR ETABILITY

A linearly unstable mode will enlarge itself exporentially in time. At
some time during its evolutlion it will attain a large enough amplitude that the
nonlinear teras in the governing aquations will no longer be negligible. These
nonlinear terms will than act by several processes to aiter progressively the
ayates In ways that invalidate the assumpticons underlying the linear spproxima-
tion.

What are these nonlinear processes that occur when the lipear disturbance
attains finite amplitude? In order to simplify this problem, consider a single
elgenmode that varies ss exp( ix ), often called a primary disturbance. When
this disturbance sttains f{inite amplitude, it can interact with Itself through
the nonlinear terms in the governing equations. This self - !nteérsction will
give rise to the first harmonic of the diaturbance, often called the secondary
disturbance. This new mode can alse participate in the exchange of energy with
the sean Eleld, so that the energy budget of the system 1a fundamentally altered
by its presence. The primary disturbance will also interact with lts own com-
plex conjugate, the result being the deformation of the mean magnetic field.
This deformation of the mean field alteara the rate of entrgy tranfer between the
mean field and the primary disturbance. Hence the growth of the primary d1s-
turbance can no longer be characterized by the linear groumth rate.

The interaction of the primary diaturbance with itseli and with its complex
conjugate groduce the highest order nomlinear efiects. By the same sort of
processes even higher harmonics of the primary disturbance can be created and
the primary diaturbance 1tself can be deformed. The extent of the excitation of
higher harmonics i3 limited only by the level of dissipation present in the
aypbem.

s
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It is legitimate to ask what the consequences are of the linear perturba-
tions achieving finite amplitude? The severe nonlinearities present in the
governing equations make the analytic exploration of this question difficult,
Bowever, by making certain asaumptions, some apalytic headway can be made.

We can determine the first order nonlinear corraction of the mean magnetic
vector potential equation due to the finite Lorentz forces. It 13 assumed that
the only significant nonlinear interaction occurs between the pean magnetic vec-
tor potential and its primery disturbance. Hence the generation of higher har-
monics of the disturbarces is considerad to ba negligible by hypothesis.

Pirst congider the magnatic vector potential squation:

o, R W g A - L) %A L 224
v ot f'atf 2x  dx 31 -—'1—(_&)(11—3__.){-6‘

Isolate the linear terma Erom the nonlinear terms:

R _qr.) (VR LPPA -0 oA YA
-2 e -E“—(axa ‘a‘f) -€ 2y DX 3x31

Edpand H and P , allowing for a mean part, the pripary disturbance, and its

complex conjugate. Let:

Alx g, t) = Ay(q, ) + aly,€)e " rat(yt)e

— KX

Do a0 p e

subatituting these terms into IV - 2 will give, after averaging over x;
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Mear the neutcal sarface, or in the vicinity of a secondery equilibrium,

A
the growth or decay of the perturbation should be negligible, j.e., ?E“‘-ED.
This equation will then give an expression for the distortion of the mean cur-

rent profile.

R S
¥ - 5 d1 j‘( y = 5?(?)5— + (= {(T 9 ﬁ.tf)
The firat term on the right 1s just the initial unperturbed currert profile. The

second term represents the distortion of this currert prafile caused by the ac-

tion of the perturbatien Lorantz Eorces.
Second, we derive an expresaion for the perturbation energy balance. It is
necessary first to give thea magnetic induction equations for the variable

resistivity case { eguations II - )6 to II -~ 29 }. The equation for B x 18:

The 8 1 equation 1s unaltered except for the disafpative térm:

s Bty g L) (4,08
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The equations of motlion governing the welocity fiald are:

EHJ = .___!2. _ 3 (T
Vv = +v. W o= J'E.! ’“ i ?1
3"1.:
-9 %—t+v Vv"a'q'i'jg xa T 31)

The continuity of the fiuld 1s assumed.

Linearize IV - 6 through IV - % about the equilibrium described in chapter
11, allowing for the sean field to have some time dependence. Hence the per-
tiurbed sagnetic field 1a here being defined aa the dlfference batween Lhe Lotal

magnetic field and the mean magnatic field.

b, 2%b
% 8, _p 2. L4l 7 ¢+ Lly) [ 2bx TLbx
- 1s 5@"*”'{;'8°3>< S dy "sﬂ—(a oy
%, g, L) [T D
-1l 'é'zj"'gag,;'* S (ﬁ 5-1-1;)
W 2p ) et (Y2
I¥ - 12 at 3 x DT M a,il ‘37

P 2 ) A 2
-1 S *a—'vﬁfJ:Lx Jg,*;‘— %—i—ﬂ-%—:{%}



19

ke now derive an exprasaion for the perturbation energy densitiss; first

the magnetic, than the kinetic, and finally the total perturbation energy den-

sity squation.
Mualtiply IV - 1@ by i,. IV - 11 by i.’ . And then add the resuits. After

some reairangement, this gives the following expreasion for the perturbation

sagnekbic energy density: :)

12 (bdeby) = —5‘-‘-"5 A X G

v - 14

*5—(—%(5 3, LV*& )— digb

Multiply 1¥ - 12 by u, IV - 11 b v, and then add the results. Aftar some
rearcangeaent, this gives the following empression for the kinetic energy
density:

D
_I'.-_.a_(ua.{-u"z): -(uéﬁ +U54L "J;; UET
A 2t 2 X 9

v - 15

+ 7, vby +&vj + (U“?U*VV "')

Malng I¥ - 14 and IV - 15 gives an expression for the perturbation energy

density:



L1

2
%%(uﬂuﬂbﬁrh) (ua'-#- +ua'-f'—)

‘1
B, (b, 2% = in.fg“;) Jovky + T vby +8B, v4

- gﬁ%a b+ L (b7, 1,7

IV - 16

e (o7 eV
We simplify IV - 16 by noting that;
< = - ¢ . = ?3_ *
Vb 3@?_ / v L'f ox !

v - 17

1. 'V'?'u":—-—-
Vi % 2%

Subatituting this result inte IV - 16 gives:

& '&t‘“ +bﬂruaf'f) (UQF+# )h%”bx

+8 (Ex LY}-‘"-— IuL + Jovby +&\:ﬁj
Iv - 19

~.LAS 5y /1 24 . 2
$ 4 0b 11020 0 1)

rhlk 02

We Inteqrate 1¥ - 10 between the walls at vy = 1 and over one period in x
to sbtain an a2xpresaion for the perturbation energy balance. It is assumed Chat

the Eield varlables are periodic in . No - sllp boundary condltionsz are im-
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posed on the velocity fleld:

U(7=r)= U(!1 ='!)= o
viy=r) = v(({:—;) =0

The norsal component of the parturbed perturbed magnetic fleld is constrained to

by (4=1) = by (y=-) =0

After some manipulation, we possasa the following expression for the per-

turbation energy balance:

de i
T8 [ (ev?ebleb?) dndy =

~f

won [ (o ve) B ey

I AT i i P
[ 3 I
o (T widxdy - = [T £y g% dy
Mo ) S
o -
This integral equation is the driven magnetohydrodynamic equivalent of the
Reynolds - Orr energy equation for neutral fluids. The Integral term on the

left hand side 18 simply the perturbed energy, magnetic and kinetie. The first

term on the right represents the acticn of the Lorentz forces in moving energy
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betuesn the mean and perturbed fields. We will call it the interchange inte-
gral. The interchange integral canp be slther positive or negative. 1f it is
positive, than thare is a draining of e=nergy from the mean field to the per-
turbed fields. If it 1s negative, then there is a transfer of snerqgy from the
perturbed fields to the mean £leld. The form of the mean magnetic fileld is seen
to be important to the energy Interchange. The interchange integral implies that
no unstable mode is possibie unleas the second y derivative of the aean nagnetic
field is zero, i.e., tha mean electric current denalty canret be conatant in y.
Obviously if the mesn magnetic field i3 allowed to change with time, then the
sxchange of energy batween the mean and perturbed flelds will also change with
time. The second integral om the right hand side tepresents the viscous dissi-
pation of kKipetic energy. The third integral on the right hand side represents
the Ohmic dismipation of perturbed magnetic energy. The viscous {ntegral and
the Ohmic integral are always peaitive, and both will always serve to decresse
the perturbed enargy. The only clircumstance in which unstable modes will exist
is when the interchange integral |a positive and greater in magnitude than the
sum of the viscous and Chmic integrela combined.

By employing a method intreduced by Stuart (1958) we can cbtain some infor-
mation about the nonlinear stability properties of the primary disturbance. We
first remrite I¥ - 19 in terms of the stream function ypand the magnetic vector

potential A = ﬁ.{-a :



23 [T [P 8) (o3 4cdy -
1T

[ e (o) et

(B B) ddy
ijﬂﬂ Wﬁ“)d»d?

1f we asaume that only the primary disturt}nnce and it=s complex conjugate

v - 28

are significant, then:

Alx 4.£) = Ay, %) +alytle

X - L ¥

+ a‘(«f,t)a

-
Iv - 21

Plxg, €)= plyt)e ™ + #¥yt)e

We now employ the " shape assumption ". We assome that the primary dis-
turbance is agual te the eigenfunction of the linearized problem multiplied by a
time amplification factor >|(t):

Alx 4, €) =Alyt) + Alt) [a::,)e."""fa*‘(n,):w]

Iv - 22

Yo xOlppeepty:

ka}
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where aly) and ?{H are understood to be the eigenfunctions of the linearized

problem.
Por pazameter regions near the neutral curve, or in the vicinlty of the a

secondary equiliibtrium, the growth rate of the diaturbance will be negligible.

A
Hence the }--H-}_ term In the Lorentz force integral can be replaced by the

equivalent expression IV - 5, which by the shape assumption becomes:

A, _ vl (4 o
e G S ()€ + 25 Nly) I 6-9.)

We make these substitutions and evaluate the x integrals. After asveral
pages of algebra, tha following expression for the perturbation energy balapce

is derived:

(L) ot () o]y
a5 3[04 (o] 443 A"
#24SE {50 L (g )45 ¥
u%Eil'[éf%)“w(%J“H"?cﬂﬂ*ﬁ*‘
(<8

rat (2 (%) "f 4 ]de@
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where ?; = imaginary part of the stream function sigenfunction
. = real part of the nagnetic vector potential elgenfunction

I¥ - 24 has the form:

v - 28 X@D'E 'insar;)\q-r Q(a{SE'JE-iL‘{E))A

2
Mhere: a/ EL![(QL J+ #1?*.3+ (%) + dgﬁ.—zjdcf

! <
yo2 [ 200 [4 G |4y
;ﬁ-LI;(q) ;—l;(-ﬁrCP;) Ay
' N p Y4 ;.?
b () 2 (4 <]

fos T e () + 1)
1_‘:1[2{(414.—)’- daf a,]%dq

IV - 26

1f we define:



Ca#%-(xsgxz”%:" s‘) *

then IV - 25 reduces to:

ax 2 4
1v - 28 d{_-—Ct) Cg)

a
1f we define E} = :\ . IV - 28 18 further simplified;

v - 29 i—%—:ﬁ'ie'caga

This equation for the amplitude evolution was first presented by Landau ( cf
Landay and Lifshitz (1959) ), and is widely believed to represent the essence of
the evoiution of nonlinear perturbations on certain ayatess in the vicinity of
the inatability threshold [ Herbert (1983} ).

Cartain properties of IV - 29 are immediately discernible. For linear
disturbances the CJBJ' Lerm 13 by definition negligible. This means that
the 1inear growth rate of the energy will be given by C,, i.e., by equstion
I¥ - 27. I1E this linear disturbance saturates nonlinearly, then [V - 23

reduces to:
2
w-w 0= (6 -C0B

and the square of the saturated amplitude 1s given by:
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I¥ - 8 = e
ot , -

The expreasion for the llnear growth rate and will be used as a check on
the accuracy af the numerical work. Thia !5 done by comparing these results
#lth the benchmarzk results of the eigenvalue coda.

Condider the case:

v - 32 Q_ (,1): /c,au")u?{

This tmplies:

f(u[)'-‘- 1+ ]'{2‘{1.
SE =%

The expression for the linear growth rate ( I¥ - 27 ) reduces to:

- - %(xxols +ﬁ11 + ﬁ—)

S

v -1

The Inteqrals are evalvated acctiratsly by uaing Simpaen’s method.
Let the stretch factor M = B, and & = ]. The eigenvalue code gives the

the following results for the unstable eigenmode:



CASE § 1 (M=E5=53)-

a = 0.0 T0282

Iv - 35
CASE § 2 (M=5=1M )

= 0.(FR23

The nonlinear theory glves:

CASE § 1

b= &= 0.09027F

3
€, = 1506
b, = 0.0001 39

A, = 001172

I¥ - 36
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11

o,
A, = 00102490

The amplitude phase plane for CASE § 1 1s shown in Eiqure IV - 1, and that
for CASE § 2 s shown in figqure IV - 2 ( 1in these picty, p is defined be the
square of the amplitude, i.e., p =&, and p' {x defined to be the time deriva-
tive of p). Several features are common to both plots. Near p = § a region of
exponentinl growth is cbserved. As p incresses {n magnitude, the time deriva-
tive reaches a maximum and ultimately begina to decay. At the saturatjon ampli-
tude the growth rate 1a, by definition, equal to zerc. Above the saturation
amplitude the growth rate is zero, indicating that a soluticn with a larger am-
plitude will decay until it achieves the saturation amplitude. Hence, the point
on the curve associated with the saturation amplituds 13 an attractor in the
phase space. By way of comparison, CASE § 2 achisves larger values of p' than
CASE § 1 does, and 15 predicted to saturate at a lsrger amplitude.

The distortion of the mean current profile is predicted by equation
IV - 23. Figure IV - 3 shows the initial mesn current profile for CASE # 1.
The perturbed current depsity for this case is shown in figure IV - 4, and the
distorted mean current denaity profile is shewn in figure 1I¥ - 5. The analogous
resulta Eor CASE § 2 are shosm in figures IV - & through IV - B. As ls consiat-
ent with the results of the previoys paragraph, the dlatortion of the mean tur-
rent denaity profile ia larger at the higher Lundquist numbers,

This analyais implies that the primary disturbance will saturate nonline-
arly into a secondary nonturbulent eqguilibrium, {.2., the nonlinear terms will
act to move the syatem to a '"smooth’ Einal state. This secondary equilibrium

can itself be ynstable to small perturbations, ao that & series of such tran-
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sitiona 13 possible. It is necessary, however, tc bear in mind that the many
simplifying assumptions made in this analysis have causzed the neqlect of many
processes that might have turned out to be of impartance, s.g., the generation
of higher harmonica, the deformation of the primary disturbance, rapid alter-
dtions of the mean magnetic field, etc. Inclusion of any one of these effects
could alter the conclusions.

This chapter has illvatrated the difficultiss {nvolved in mathematical
aralysis of nonlinear transition problems. IL has been necessary to make
Severs approximations to get apy results at all, and apparently the range of
valldity of the concluaions is extremely limited. 1In a subsequent chapters

thesse results will be compared with the results of pumerical simulation.



¥. SIMULATION ALGORITHM '

The preceding chapter has sade it clear that, {f nothing else, it is &dif-
ficult to obtain much information about the nonlinear behavjour of the driven
sagnetohydrodynamic sheet pinch by analytical methods. In such cases it 1s cus-
tomary to have recourse to the nmumerical analysia of the problem on a high speed
computer. The nonlinear evelution of the driven magnetohydrodynamic sheet plnch
is then considered as an initis]l - boundary value problem. The numerical alge-
rithm that we »ill employ ia based on the Mavier - Stokes algorithm developed by
Moin and Kim ( Moin and Eim (1989), Moin and Kim (1982) ).

The simtlation will trace the noniinear evolution of the Bystem described
in esrlier chaptera, but the governing equations that ara used will be different
for numerical reasens, The x - ¥ plane studied in the previocus chapters is now
replaced by the x - z plane, mutatis mutandia. The following system of nonlin-

sar, partial differsntinl equations ia solved numerically:

ou oW _ _.2I0 - 2A Ve
'l - WAox % X 'axVJA+/'{

— 2
2w o 2w ) =20 L 2R A e W VW

V-2 bt+u(?’x vy 2 22 2
dv L ow -

-3 5xt R T°

¥ - i aifi- + Lj1i£i— + iat gifi- = 47{3!) ;}f;?q +' EE-
£ 2% 22

where;

51
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v (x,z,t) = X component of velocity
WXzt = Z component of velocily
Al Xzt » saghetic vector potential
2 2
[ LY .
ﬂ-[ Xzt 1) + ) "+ Y preasurs head

A = .I,/ﬁ =  dimensionleas viscosity
'7(2') = ﬂé% = dimensionleas resistivity

Equations ¥ - ] through ¥ - 4 relate to the governing equations introduced
In chapter II in the following say: esquation ¥ - ) repiaces equation II - 18;
squation ¥ - 2 replaces sguation II - 19%; Equation ¥ - 3 replaces equation
1T - 24; and equation ¥ - 4 replaces equation II - 1.

Equations ¥ - 1 through ¥ - 4 are written in the rotation form in order to
1tal - conserve total energy peeudespectrally ( Dahlburg and Zang, to be pub-
lishad ). Bothk squations of metisn are used {n the numerical algorithm so that
the no - 3lip boundazy conditions can be simply imposed at the walls.

The periodic direckion ( u ) 13 naturally discretized by the Fourler
papudoapectral method ( Gottleib and Orszag (1977 ). In the spirit of the
pssudospectral method, computations are performed in the space of greatest con-
venience. For instance, configuration space derivatives are evaluated without
phase error in Fourier space, with simple multiplications and additions being
the anly operations required. Nonlinesr terms are more eagily evaluated in con-
flguration space.

The perpendicular dirsetion ( 2 ) 15 discretized with second - order finite

diffarerces on & stretched mesh. The finite dlfference formulas are found by
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taking derivatives of the three - point second order Lagrange interpolating
polynomial - the reaulting expression being uwaed for the numerical derivative at
the central point.

The second order Lagrange interpelating polynomjal to the function £{(z) 1s:

P - (E"f.,') (E'ZJ-H) (Z‘,)
@ (2 22 200t ) Fle..

o B2 WE-2i) H Vi (-2 ) (2-2) ,c(

(2 zl-t)(i Z'uh‘ ({:H LI)(ZLFI-Z |

pifferentiating once and evaluating at the central goint #, gives:
ar | Z,~ Zivy
2:2" (Zt.-*t-z )(z ol )

fz. )

+

22, ~ (2.4 +2p) )+ (8- 2..,)
(2.- 2., ) 2,-2,,,) (20~ 2o )25~ 20)

This expression 1s used for evaluating the firat derivative of £{z) at 2 = 2

fz.)

Differentiating the Lagrange interpolating polyromial twice and evaluating

the resolting expresaion at z = 2 N glves.
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djﬁ 2‘?( 2;.'-1)
424 2:2, ( x; . Ei) (2,;,,_ :Z&H)

2 CI N 260 2ee)
-2, (2. -2) (B 2.)(Z,,- 2)

This expression is used to evaluate the second derivative of F(z) at £ = z

Note that z derivative operators can be computed initially and then storsd, The
presaure head is evaluated on a staggered grid. The ztandard mesh polats are
located halfway Detween the staggered grid points to give second order accuracy
on Che Z derivatives of the pressure head.

The mesh prescription depends on the physical problem under consideration.
for this problem fine scale structures are expected to develop at the walls and
near the centre of the channel. To increase the resolution in theae regions,
the Besh should contajin many grid points pear the walls and the channel centre.

The staggered mesh {ic is prescribed firat:

Z":-CDS C_lﬁ.-_é:)_ﬂ-_ C 8S (k-—i‘)ﬂ'

v-3 k’“" kﬂ”‘

K= 23 L ko

The standard mesh EK is given by:
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vl Z-k - i—(gk" +Zk) ; kzﬂ?r'gf‘f"“(kﬂix

Z = -0 . 2, = LD

f max * !

A seml - implicit method is used to discretize the system in Cime. All
nonlinear terms and the pareilel diffusion terms are advanced i{n time by the
gecond order Adems - Bashforth methed. The perpendicular diffusion terms are
discratized by the Crank - Nicolson sethod. This methed 1s used because of its
sxcellent stability properties for diffusion problems on meahes with small grid
apacing, This methed, however, is sometimes Khown to produce erroneoua oscilla-
tions ( Dahlquiat, Blorck, snd Andermon (1974) ). In this magnetohydrodynamic
code, az well ap in its hydrodynamic counterpart, for small fluid velocities the
preasure head 13 seen to oscillate when it 18 advanced in time by the Crank -
Nicolson method. This objectionable feature is removed If the pressure head is
temporally discretized by the backward Euler methed ( T.A. Zang, private comsu-
nication ). Note alao that this discretization decreases the amount of computa-
tional work required for each time step.

To 11luatrate batter the algorithm, isolate the terms that ara discretized

euplicitly in time, lek:

- ?;vi_..?_u_.)..w_ 2 2%
Hr‘ W DX oz ?)vaJr/“ xR



H3 = —u(%y; ) A 7+ -‘)"1

?x

- 1%

Hy = Ugﬁ;-wa +7(a)“ + €

Bubstituting into ¥ - 1 to ¥ - § gives:

Qv . P 2%
¥ -1l by --HIr S -r-/:.tai
oW 2T 23
v-12 =— = ol
ot Hs - 52 3z

¥ - 13 %—d—-f-b—i - D

9% DE

2R _ s
Y-l — = Hq + ’7(2) 3?.-'1

2t

Discretizing thia aystes in Cime:
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Art A 2TC \MC At N A
W =W -bt(bi r .;{-.[:P)Hs_H;u

¥ - 16 ™ +
palii 3'__1“_)“ !
* A (jaa‘ *

M A Iw N+
¥ - 17 (_;; (B&) =D

A= AT AT [y oy

- 18
' (.g) [ alﬂ Nt 3_1&_)“
az‘ ye?

where the superacript n i{pdexes the time step.

This system of partial differential eguations is Fourier transforeed in the
¥ directton, reselting {n a set of ordinary differential equations in z for each

value of k % -

v-19 Un”#- Jc,ﬂ‘t ﬂ_nﬂ— /Aft 3,11) Qr
At A+l A
cwow e a6 (TS mbt (2] = R

v ’n k N+ <a )ﬂ'ﬂ
- U o
K x + >z O
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i+l

Nt At 7 %A —
-2 fi - '-7%— 3z2) — QK

where the functions § represent terms invelving the pressure head, velocity
fields, magnetic fields, and alectric fields at time steps nand 1 - 1. The
fields are new Lo be regarded as one dimenslonal Fourjer transformed gquantitias.

When this system of equations is dizcretized in 2. the continulty aguation
being evaluated on Che staggered mesh, an algebraic system of equatlions for the
Pourier transformed field variables reselts. This algebraic system ls block -
tridiagonal and can be solved by standard elimination methods. The system of
equations ia most efficlently solved when the system of equations i3 ordersd and
scaled to establish diagonal dominance and so avold the nead for piveting. Thia
ordering and scaling is an extremely crucial conaideration in the design of the
vectorized version of this algorithm.

Periodic boundary conditions in x on all fields are built into the algoe-

rithm. No - slip boundary conditions are imposed on the welocity field at

Z*s ¢ japdz=-1.
g(z=1)=ygiz=-11=¢
Wliz=1)=wiz=-1131=1}

The norsal companent of the magnetic field {s constrained to equal zero at the

walls, i.e.,

Alz=1l)Y=A(2=-11)=CONSTANT



59

Boundary conditlons an the pressure are unnecessacy ( Moin and Kim (1984) ).
Two different forms of Initialization are possible. The code can be
initiallzed with sigenmodes from the codes developed for the linear problem,
or it can be initialized with randoa noise perturbations.
When the initial perturbstions are taken from the eigenvalue code, the

initial fields take the form:

Pn(xf, z‘,tw) = A=) t € ApLosKR

de: o
- - e e SR

Sz )z Cexpimeosx

whece:

A.= real vart of the magnetic eigenfunction
?,; -5"‘;11-191& of the wvelecity sigenfunction

£ 1

The code can alsao be initialized with random nolse perturbations. Some
care must be taken in doing this to ensure that the noise fulfills the boundary
conditions a5 well as the constralnts mandated by the solenoldality of the
finlida.

Por the perturbed magnetic £leld a mixed exponential - Erigonometric ax-
pansion suificea. The arguments of the trigonometric functiens in z are chesen
so a8 to set the perturbed vector potential and current equal to zero at the

walls. The inltial magnatic vector potential i5 given by:



]

H(xri.‘tt*:u):lq,(?:){-g %‘@Mfasaﬂx {-Bﬂé;ﬂﬂ‘ R)Cﬁsﬂl—%

- . {A«l}ﬂ'i‘
+(Cmn COSMX + Dms.mmx) 5iA 2 J

¥ - WHELE"

€ 1
Hma‘; Bnnf ma D = EAdDom REAL NoMBERS wiTH
2ERoD mmu AND NI VARANCE

The perturbed stream Funcbtion 18 esxpanded in a complex exponential seriss
In x, and in Chandrasskhar - Aeid polynomiala In z. The perturbed wvelocity
field components are found by taking the appropriate partial derivative= of the

perturbed stream function. The initial stream function 18 given by:

glJ(x 2 t=a) ~e S [( Qm cosmx + Kuq siamx)
! ﬂfﬂ
cosh Aa 2 . Cos )‘%
( Cosh )ﬂ ‘E;ﬁ‘:) +

- ik
(Shﬁf.asmc - ﬂnﬂfanx> (i;;f;_— SM/J,\ )]

WHERE "
M= Iles Mm‘_“ ; A= L 2, ?f-.- HM‘)‘
£ Lt
= 4
Qm, ‘Zm‘,S..._..r ’T:* = fAdDom €A MimBERS (w1 TH
ZERO MEAS AND  UMIT  VARIANCE
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A= PosiTivE tooTs OF (fanh +4an D= 0)

AMa = POs(TIVE ZooTs OF (c,a‘th/u -.(_gf‘/u:p)

Several versjons of this code exist, both in scalar and vector form. The
most optimized versien is on the CDC CYRER 295 supercomputer at the Institute
for Computational Studies at Colorade State University. The numerical saimu-
lations reported in this thesis wers performed with this version ¢f the code.
This versien of the code has been vectorized to the fullest extant posaible.
The code takes approaimately §.25 seconds per time step at a gpatial resalution
of 64 Fourler modes by 129 finite difference points. The bulk of the computa-
tional time is spent in solving the block-tridiagonal zquations, even though
this section of the code has been vectorized over the x wavenumbers to improve
the speed ( Tang, private coppunication }. The data generated during the runs
was processed on the CRAY computers at the National Magnetic Fusion Energy

Computer Ceanter at the Lawrence Livermore Hatisnal Laboratory.



¥1. NOMLINEAR EVOLUTION OF A PRIMARY DISTURBAMNCE

In this chapter the evalution of a small primary disturbance fnto the non-
linesr regime will be simolated numerically. The moat obvjous candidate for the
gmall primary dliaturbance is the linearly unstable zigenmode of the system with
alpha equal to one. In this chapier we will determine by numerical simulation
what happens to this mode when the nonlinear terms In the equationsz governing
the system begin to get excited.

In chapter I¥ the slgnificant nonlinear processes for the case of a aystem
dominated by a single unatable primary mode and 1ts higher harmonics wers given,
Those non}inear processes are reviewed here. Whan the primary disturbance
achjaves finite amplitude 1t will interact with itself and generate the first
harmonic of the disturbance. The finite amplitude perturbation will alsoc inter-
act with its cemaplex conjugate and s¢ distort the mean profile. By the same
aort of process, arill higher harmenics of the disturbance are generated by the
interaction of the secondary harmoric with itself, the interaction of the terti-
ary harmopic with itself, ete. The finite anplltude perturbation can itself be
distorted by the interaction of the secondary harmonic with itz complex coniu-
gate, and %o forth. The analysis given in chapter I¥ lgnored the generation of
higher harmonics and the distortion of the primary disturbance in crder to de-
crease the difficulty of the nonlinear stabillty problem. Numerical simulation
will aljow us to determine how valid the assumptions of chapter 1V were with re-
spect to the importance of the various nonlinesr procesaes on the evalution of
the primary disturbance.

Severa] diagnostics are employed to characterize the time &volution of the
system. Contour plots are used Eo display Wwithin the computaticonal box four

a2
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significant scalar fields; the magnetic wvector potential A [ %, 2, t ), tha ve-
locity atream function q’ { x, 2, £t ), the electric current density

J{ %, 2z, £}, and the vorticity of the magnetofluid fJ ( %, 2, t ). 1In the
two dimensional case, lines of constant magnetic vector potential are equivalent
to magnetic fleld linea { aince B-V A = 8 ), The components of the velocity

Field are related to the stresm function P in the following way:

J= - %%;é;_ - A = Eiif.

/ oX

The electric current density and the vorticity are superior diagnostlcs for de-
termining the presence of nonlinearity and / or turbulence in the system, since
these fields emphasize the high frequency parta of the magnetic and velocity
spectra, respectively., The alectric current density plots also reveal the re-
gions of high Chmic dissipation. Where the electric current density is large,
the Chmic diasipatian will be mignificant. In the same way, the vorticity plots
reveal the cegions of high viscoux dissipatjon.

The time avolotion of several global gquantities alsc provides useful infor-
mation about the atate of the system. Of obvious significance are the energies
in the varjous flelds, which provide a global measure of the deqres of excita-

tion of these fialds.

1
kinetic ehergy

i‘ {0+ w?) Axdz

Eg o -{
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!
| J | 2
magretic energy : — ( EK + g )0‘!)(9(%
Es g v =i :

dew -t
perturbed magretic | 2
: — 2
energy Qg '?\L J' [( Eh'Gn) + Ba}dlxd&
-
total epergy : Eﬁ + Ey

one dimensional

N 2
podal magnetic ensrgy :2_-[! | E(er 2‘) l d =

one dimenzional

L 2
godal kinetic ensrgy 5- f I }‘\"_ (er ;?_-)I AE‘
|

The computed confliguration space energies are volume averaged to allow for
comparison with the one dimenszjonral { 1 - D ) modal energies.
GroMth rates for the perturbations can be computad from the perturbed

sperqgiea.
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kinetic energy ! d»‘ff
growth rate ‘ Sy d't'
perturbed magnetic energy .'_ f’!eg
growth rata ' eL dt

These growth rates are not computed at each tiwe step, but rather after several
time steps, typically £lfty or one hum‘.lrf.i This {s done becauae the evaluation
of the global quantities is a computationally expensive step involving ocutput,
and hence the number of such evaluations must be kept to & minimum.

Also Eollomed ere meveral of the ideal invariants of two dimensional

magnetohydrodynamics ( Pyfe and Montgomery (1978) ):

Nals
cross helicity -DTJ J’ E,B___, Akdé
& ol |

2Tl' !
HEAN AQuUatTe . ._L_ -z
vector potential &jﬁ ‘/:‘ H Ax A

The actlvatlion of the amall scale atructures in the system is reflected in
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the fiald enstrophies, which provide a global meagure of the amount of dissipa-

tive activity present In the system ( Matthaeua and Montgomery (19893 ).

dr ! .
snatrophy ) ﬁ{)( AE

o “f
magnetic '?f ' de da
enstrophy ‘ h]
“l

It would have been more appropriate for the analysis of the driven magnetchydro-
dynapic sheet pinch to Weight the magnetic enatrophy with the dimensionless
resistivity function, but thia was not done.

Several methods are uaed to monltor the accuracy ¢f the run, Jome mors
vaiuvable thap others., We describe these methods here, a3 well az several
general accuracy checks for the code.

An obvious question about the code is this - can the code reproduce the
eqoilibrium selution wher it {s initially unperturbed? The answer is yes, to
within 2ix digits for several thousand time steps. However, care must be taken
in defining the resistivity profile to use numerical derivatives of the mean
magnetic vector potentjal rather than aralytical derivatives. This !s gquite
similar to the manner in which the sxternal pressure gradient must be computed
for the case of plane Folseuille flow.

A good check on the accuracy of the code i3 to see how well it can regro-

duce the linsar grouth rate whep it Is inittally perturbed with the appropriate
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magnetic and valocity eigenfunctions. In this code the growth rates of the per-
turbed velocity field and the perturbed magnetic field ace monitored, so that
either or both of thesae can be compared with the Iinear growth rate predicted by

the eigenvalue code. The growmth rate computed by the eigenvalue code is regar-

ded as the benchmark growth rate. This is one way Lo ensure that the finite
difference grid 18 accurately resolying the internal boundary layer.

The energy in the I / 4 1d modal energy is monitored to check for aliasing
ercors { cf Gottlelb and Orszag (1977} ), where 1 is dafinad to be the number of
Fourier modes in the g direction. When this mode interacts with 1tself the re-
ault is alianed back to the mean, due to the cse of the discrete fast Fourier
transfora. The aliasing error is expected to bacome significant if the energy
in the T / 4 modal energies exceeds order 14 ) of the energy in the mean,
although this ratio i3 not univeraally agreed upohn.

The Kolmogoroff dissipation wavenumber, as defined by Shebalin, at al.
(1983), |s monitored. This number, determined on the basia of of dimenzjonal
analysis, approzimately determines the spatial acales at which dissipation is
accuring in a turbulent fluid. Sheballn et, al. define the dissipation wave-

o(r 148, - 1)

whare:

d
—Eﬂ-' = gheic dissipation rate
A+ q

dty

] = yisgcous dissipation rate

4t ],
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For the variahle resistivity case considered here, the value of resistvity
at z sgual to zero i3 used since this will give the most pessimistic value.
This diagnostic is expected to be of significance when the system has a high
degree of nonlinear excitation present, for only then will the systsm have 3
dis=ipation range.

To ensore the stability of the explicit temporal discretization, two
Courant numbers are monitored throughout the rupg, although more auch numbers
could be given { o g. & dissipation number ). the standard Courant number for
fluid mechanical problems is monitored at every grid polnt ( of Roache (1972,

Moin and Kim {1982} ):

C(£) =max S Nt {f;er ’i—l g <7-_:,—-_

An magnetohydrodynanic Courant number is given by Frisch, Pouquet, Sulem

and Mepequzz! (1903}

Cons = QLSUP({M-E(XI,{-E\)'( 1

MHD I

b = lacal mesh apacing
This numbar s of limited utillity, since it is intended for the Elsasser for-
mulatien of the MRD eguations., It has, despite this, served a3 a usefu! leadirng
indicator of numerical inatabllities.
Next, details will be given regarding & run following the evolution of an
unstable eigenfunction inte the nonlinear regime. The code fa initialized with

the squilibrium magnetic fleld Eotzh = gretan (92 1. The Lunguist numbers are
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specified to be M = 5 = 1#¢. The unstable eigenmode for this aquilibriva with
algha =1, M»5S = 190 is used as the perturbation. BHence this corresponds to
CASE & 2 of chapter I¥. The code is run with 32 Fourier modes in x and 129 fin-
ite difference points on & stretched mesh in z. f}f& = 9,392629 » lipa'initial-
ly and is adjusted as required by the Courant numbers to ensure numerical atabi-
1ity. The value chosen for epsilen in equations ¥ - 23 is & 09].

The initfal value of the mean magnetic energy s #.75691%. The initial
value of the perturbed magnetic energy is ¥.19B4 » 1I.#: or & 48262% of the mean
magnetic energy. The value of the kinetic energy is # 2338 » llvf or 9.¢33F8%
of the mean magnetic energy. The perturbed energies are entirely in the ky =1
aagnetic and velocity modes, The initial values of the perturbation energies
are chosen to be small enough to be Ip the linear regime, yet not too far away
from the nonlipear regime a5 to require a prohlbitive amount of computational
time to attain finite amplitude.

Pigure ¥I - 1 shows the initial mesn magnebic profile. The initlal primary
magnetic disturbance !s shown in fiqure IV - 2, Figure ¥I - 1 is a contour plot
vf the Ilnitial maqnetic vector potential. The fnjtial perturbation is barely
barely distinguishable. The initial velocity stream function is shown in fiqure
¥I - . Pour large eddies are apparent. Figure ¥ - 9 shows the i{pitial elec-
tric current density. The {pitial perturbation can be detected as a slight
bowing of the lines of conatant current depsity. Figure ¥I - 6 shows the

initial vorticity.

The time evolutlon of the various global quantities that character{ze the
run is exhibited in figures ¥I - 7a through VI - 7e.
The growth rate for the linear modes computed by the eigenvalue code is

&} + @ 18221, After 50 time steps the nonlinear code returns the result that
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the perturbed magnetic energy growth rate ia 9.18296, which differs from the
eigenvalue by U 40F6%. At the same time the kinetic energy growth rate is
P.18176, which differs from the eigenvalue by 9.2579%. Cloaer results would be
possible by saapling the energy more frequently, hut this process is time con-
guming for the computation.

A resglt for longer times is revealing., WVsing the growth rate from the
eigenvalye code we can predict what the perturbed energies should be at sone
future time if they are growing according to the linear theory. At t = 3,924

I"

the perturbed magnetic enerqgy should egual #.8280 x 11' , and the kinetic energy

should equal #.9745 x ll'q. The nonlinear code returns 9.8235 ¥ li'.HI for the
perturbed magnetic energy, and F.?SBB 1 lji¥for the kinetic snergy. The magnet-
ic prediction is off by 9.5555%, while the valoclity prediction is off by 1. 498%.
This implies that, in this particular run, the velocity field responds first to
the nonlinearities In the governing egquations. In fact, by this time szome ex-
citation ia evident in the higher harmonics of the 1D modal energies { although
this i3 perhaps not evident on the plots, Figures ¥ - 7d and ¥I - 7¢ 1.

The primary disturbance ceazes grodth at approximately t = 16.5, with dercay
in the primary velocity field preceding decay in the primary magnetic field. At
t = 15.70796, the mean magnetic energy equals @.73349, or 96.97% of its initial
value. This indicates that the mean magnetic field is being deformed in auch a
way as ta favor eperqgy transfer to the perturbation, rather than wvice wversa, At
this time CLhe magnetic enerqgy in the orimary disturbance equals & 15294 x 19'1l
or 94.21% of the mean magnetic energy. The kinetic energy in the primary distyrb-
ance is equal to 9.1179 x lipl, or ¥.16% of the mean magnetic energy,

1t must be noted that by Lhis time, t = 15.79796, the qeneration of higher

harmonics of the primary disturbance has become significant. This is especially

frue of the primary disturbapce of the magnetic field. At thiz time the per-
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turbed magnetic energy is squal to ¥.2661 ¥ ll.:E of which 57.5% i=s ir the
primary disturbance, 27.5% is in the secondazy disturbance, and 9.¥% is in the
tertiary disturbance, The generation of highar harmonics 18 somewhat leas pro-
nounced in the velocity field. AL this time the kinetic enerqgy is equal to

)

@.1435 2 19 ', of which 82.1% reaides In the primary disturbance, 15 8t in the

secondacy disturbance, and 1.82% in the tertiary disturbance. These energy
ratios imply that the harmonics of the primary disturbance are entering into
the dynamics of the system in a significant manner, and hence their generation
cannot De iqrored in any mcdel of the nonlinear evolution of the primary die-
turbance.

Several picots which exhibit various quantities at t=15 79796 aie helpful.
Figure ¥I - 8 shows the mean magnetic profila. The deformation of the mean pro-
file appears to be simply a small decline from its initial value., The primary
magnetic disturbance {s shown in figure ¥] - 9. Hhjle the hellow {n the centre
centre appears to be relatively deeper, the ahape assumpiicn seems to be fairly
well fustified. The secondary magnetic disturbance is shown {n flgure ¥ - 1F§.
In genaral form it 13 2imilar to the priwary sagnetic disterbance, axcept that
some curvature of the disturbance is evident in the axterlor regions. The ter-
tiary magnatic disturbance 13 shown in figuze ¥ - 11. Although !t 1is perhaps
not evident, there is a slight hollow in the centre of this disturbance.

Figure ¥1 - 12 1s a contour plot of the magnetic vector potential at
E = 15.78796. A amall closed magnetic field structure, commonly referred to as
a pagnetic 0 - point, 15 evident at the centre of the centour plot ([ cf
Matthaues and Montgomery (196813 }, The magretic field structurs at
{x=f§,z=@)orat (x=2W, z =7 is commonly referred to as a magnetic

X - point. Figure ¥I - 13 showa the velocity stream Eunction at this time. It
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can be seen that the nonlinear Cerds In the governing equations have had the
effect of concentrating the regions of high velocity in the vicinity of ths
closed magnetic field structure. Figure ¥I - 14 shouws the electric current
density at thias time, revealing that the current density has developed a

* peaked " structure within the closed magnetic field structute. A well devel-
oped current sheet is evident. FPiguze ¥I - 15 ahows the vorticity of the mag-
netofluld at this time. Some wall effects are evident. cCertajn of these struc-
tures will be discussed in greater detail in the nest chapter, although in a
different context.

The mean current profile at t = 15.70796 is shown in figure ¥I - 16. This
plot sheuld be compared with the thecretically predicted mean current proflle {n
figure I¥ - B. The mean current profile has decayed at the centre, as was pre-
dicted, but the magnitude of the distortion |s far less than was predicted.

After achieving these maximum vaives, the primary disturbance 1s geen Lo
decay while the secondary disturbance ascends in value. After some time the
bulk of the perturbed energy resides in the secondary disturbance, which takes
on an approximately constant value.

The secendary disturbance dominates the syatem unt!]l the end of the run.
Only very gradual changes are observed in the global quantitiem after approxi-
imately t = 48, with the exception of the mean magnetic energy. 1L appears that
the rate at which energy is being removed from the mean magnetfic field is ap-
proximately equal to the rate at which it 1s being dissipated, since very little
change 1s observed in the magnitude of the perturbed snergies. At t = 74 683,

the mean magnetic erergy is egual to 6.2979, & 1€.7% decrease from Its initlal

valus, This large distortion indicates the significance of the nonlinear inter-
actions in the systems evolution, At thia time moat of the energy resides in

the secondary disterbance. The perturbed magnetic energy ls equal to
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9.523] x 19 -Jﬂ of which 82.7%, or F. 4325 x lliaia in the secondary magnetic
mode. The kinetic energy is equal to 9.1276 x ll"iuf which 94.1%, or

#.1281 = 1E"ais 1n the secondary velocity mode. The perturbed magnetic anergy
is 1.83% of the gean magnetic energy, while the kinstic energy is 9.20% of the
mean pagretic energy. These percentages are roughly constant over the last half
of the run.

the lack of chenge Ip the system in the later stages of Che run is well
illuntrated by comparison of contour plots taken at tWwe widely separated times.
Por t = 54,900, contour piots of scalaf fields are shown in figures ¥I - 17
through ¥1 - 24. The corresponding fields at &t = 78, 680 are shown in fiqures
¥I - 2] through ¥I - 24. Some ainor decay of the perturbed fields has occurred,
but the field configuration has remained relatively conatant.

I1ts apparent that the nonlinear atability theory outlined in chapter IV
must he apdified teo sccount for the generation of higher harmonics, although the
best way to do this is uncertain. Obviously in this run the generatiocn of high-
#t harmonics haa been significant, and 15 perhaps responsible for the failure of
the primary disturbance to saturate nonlineacly, Howsaver, the second half of
thin run indicatea that a state resembling nonpiinear saturation can be achieved
by the secondary disurbance.

Inspection of tha enerqgy wversus time plots shous that the @ean magnetic en-
erqy 1s apparently asymptoting toward m value around 62.9, whils the perturbed
energles are peen to be decaying at an extremeiy low rate, Thiz appears to be
consistent with tee Intarpretations. First, the chanye in the perturbed ener-
gles 13 3¢ slight over thousands of time steps that it could be arqued that the
secondary mede has indeed saturated nonlinearly, whereas the primary 2disturbance
had failed to do s0. In this case a double magnetic 0 - point structure with

large £luid flows will constitute the saturated state of the systs=a. Second, it
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could be argued that the system is asoymptotically stable in the sense of
Liapunov. The perturbation in the secondary !s apparently decaying very slowly
with time, while the mean iz evidently agsymptoting toward some conatant value.
An extrapolation of this to very lerg times would indjcate the difference be-
tween the mean and the perturbation iz tending toward zerc a2 time tends toward

infinity. More computing is required to resclva this iasue.



¥IIl. EVOLUTION OF SYETEM WITH RANDOM INITIAL PERTURBATIONS

In this chapter the nonlinear evolution of the randomly perturbed system is
deacribed. By fandomly perturbed js meant the following, many magnetic and ve-
locity modes are excited initially. This differs from the case considared pre-
viously In that It is possible, from the cutaet, that the interactjions ameng
many modes are dynamically significant. Purthermere, many of the symmetries
that were pre2ent in the previous case are here brokss, implying that the systenm
#ill evolve in a less constrained manner. This latter situation more closely
models the nolsy {nterior of a magnetically confined fusion plasma. MNumerical
simulation i= especially well sulted for problems of this kind, where it is dif-
ficulit to determine the appropriate simplifying assumptions necessary for suc-
cessful analysis. Our goal is to follow numerically the evelution of the mag-
netohydrodynaalc sheet pinch Inte the nonlinear regime and to 1dentify the
structures that develop.

In the run described here small random perturbations are imposed on the
magnetofluid system with the initial equiiibrium £leld given by B (2) =
arctan{ 9 z ). 3Hence, the initial mean current profile has a peak value of @ at
2 =@ { see figures II - 1 through IT - 3 ). The exact formolation of the per-
turbations 1s given {p equations ¥ - 24 and ¥ - 25. For the pertorbed magnetic

vector potential expansion, B oaray " 16, n 7. For the velocity fleld ex-

My
pansion, B e = nmx = 8, The randem number cosfficients are generated by
the IMSL subroutine GGNML. The value chosen for &£ is 0. M. We specify
M=5=4{0d  The timne step Initially squals . 9919635, and ix adiuated as re-
quired by the Courant numbers to ensure numerical stability.

The initial aize of the perturbed fields relative to the mean magnetic

75
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fiald can be determined globally by a consideration of the various volume aver-
aged energies at t = 9, the mean magnetic energy equals F_ 756081947, the per-
turbed magnetic enezgy equals 9. 21926 x 11'3. and the kinatic energy equals
§.22979 ¢ II‘I. Using these energy values, initially the perturbed magnaetic
energy is 8.9278% of the mean magnetic energy. while the kinetic energy is
{nitially 7.9292% of the mean magnetic energy.

Piqures ¥IJ] - la through ¥II - 1d are contour plots of, respectively, the
initial magnetic vector potential, the initial velocity stream function, the
initial electric current den=ity, and the initial magnetofluid vorticity. The
random nature of the initial perturbations is evident.

The various global quantities which characterize the svolution of the
aystem are shown in figures VII - 2a through YII - 2e.

The first stage in the time evolution of the ayatem is a period of rela-
tively unsystematic magnetohydvodynapic activity. A net Joss of perturbed &n-
ergy occurs, which i3 parhaps due to the decaving of the Jamped modes. The mean
magrnatic energy remains gnchanged.

Around .t = 1% growth of the perturbations in both the magnetic and velocity
fields is evidant. A comparigon of the perturbed epergy ploks [ figure
¥I1 - 2a ) with the 1D modal energy plots ( flgures ¥II - 2d through WII - 2e }
reveals that most of the growth of the perturbed shergy i3 contained in the
lowar "x modes, This behavisur agress somawhat with the expectations formed
from the linesr theory. For the parameters choseh, several of the sigenmodes
with integral values of alpha ( -1:! ) are linearly unstable { as can be infer-
red by comparison of figures II - 9 and Il - 1W), The k,, =1 per-
turbation is the most unstable llnear mode, with a growth rate of ¥.19.

Note, howaver, that some decay in the nean magnetic energy i3 apparent

atter approwimacely ¢ = 14.7, implying that by this time the nonlinear effects
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have become significant. HAence the linear theory, which assumes the station-
arity of the mean, will no longer aerve as an adequatce description of the be-
haviour of the syatem. The size at which the perturbations attain finite ampli-
tyde can be {inferrsd from the 10 modal energy ratio= at, say, t = 14 72622, AL
this time the mean magnetic energy equals 9.755202, 30 it has lost 4. 91#9% of
fts inikia}l value. The parturbed magnetic snergy is @ 31826 ¥ ll'j. or 9.941%
of the mesn magnatic energy. The kinetic enerqy is 9. 87740 ll'q, or 9.012% of
the Bean magnetic energy. Note that the ratio of perturbed energy to mean en-
ergy ia at this time actually less than 1t was Initially, which seems xcmewhat
paradoxical. This aseming paradox is explained by the observation that this
diagnostic, the ratio of perturbed energy to mean magnetic erergy, cbscures the
fact that at thiz time the perturbed energy is now Somewhat more concentrated in
feuer modes, a matter which is now addressed.

The 1D modal energy plots show that the early phases of growth are domin-
ated by the k, = 2 magnetic and velocity modes. At t = 19.635, the perturbed
sagnetic energy is egual to P.16971 % llil. £31.14% of thia energy is in the
k o = 2 magnetic mode, with 33.19% of the remainder residing in the k o =)
mode. The kinetic energy is equal to 9.3771 x IIFS. of which 77.94% {s in the

k, = 2 velocity mode. The dominance of this mode is clearly seen in the con-

x
tour plot of the magnetic vector potential at this time, figure VII - 3a. This
multiple magnetic island structure persists for thousands of timesteps. In

this respect these results differ from the non - driven simulation reported by
Matthaeus and Montgomery {1381}, who report seeing only single island structures
enetrge from random noise initial conditions. It can be conlectured that the

evolution of the mean sagnetic fleld i3 in some way responsible for this dis-

czepancy. Matthasus etb. al. report a 19% loss of mean magnetic energy during
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their run. By cortramt, the mean magnetic energy in thie driven run is @ 7514098
At t = 19,635, or 93.39% of its initial value.

AL £ = 19,635 the [ndividual magnetic X - points do possess the character-
iatic form described by Matthaeus et. al. Spikes, or f£llaments of the electric
current denaity form at the sagnetic X - points, indicakting that a large amount
of Ohmic diasjpation is occurring at these locations { figure VII - 3c }. The
peak valus of the current Zensity is approximately egual to 14.3, which repre-
sents a 20.75% increase over the initial mean value. The electzic current den-
sity within the sagnetic islands is relatively £lat and foraless, with a value
of approwimately 5.5, or a 31.25% decrease from the initial mean valve. High
speed expulaicn of the sagnetofluid from the vicinity of the magnretic X - peint
parallel to the mean magnetic f{eld is avident ( Eigure ¥11 - 3b }. This accel-
eration of the magnetcofluid implies that some of the magnetic energy released at
the magnetic ¥ - point is being transformed into kinetic energy, rather than
baing disaipated Ohmically. The magnetofluid vorticity is seen to form gquadru-
pole like atructures about each magnetic X - point, as reported by Matthaeus
(1982).

Subsequently, the time evelution of the system is dominated by proceases of
3 radically different kind which furtber increase the level of noniinearity.
Given the presence of multiple asgnetic ¢ - points, they will interact with each
other In such a way as to merge, or coslesce { Finn and Xaw (1977}, Matthaeus
and Montgomery (1377) ). It is during this phase of island coalescence that the
ayatem becomes mosf nonlinear. This is evidenced by the rapid increase in the
enstrophy at this time, indicating an enhanced excitation of the small zcales.
Apparently, the asymmetrias present in the system at this Lime predispose the
magnetic 1slands to move towards each other in one direction rather than the

other. The magnetic 0 - points are seen to coaleace fairly rapidly [ within
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about two thousand btime steps ). One of the X point structeres establishes
itself as dominant, while the other, subordinate, X point becomes the site of
the faland coaleacence ( figures VII - da and VII - dc }. The cuirent density
at the deminant magnetic X - peint increases in time while the current density
at the subordinate magnetic X - point decreases until, as seen in figure

¥II - 4c, no filampentary structure js evident at the coalsacence site. Note
also that as the magnetic islands approach sach other the electric current den-
sity within sach of them increases in magnitude and begins to form a pealied
structure. The eddies associated with the dominant X point are also seen to
enlarge themselves until Ehey £ill the computational bex.

The magnetic 0 - polnt coalescence phase corresponds to a rise in the per-
turbed energies which takes the systes well into the nonlinear state. The per-
turbed energies achieve their largest values for the run during this stage. The
paximum kinetic energy is approwimately equal to .31 % li'z; and the time it i3
achieved leads by approximateiy two time units the peak in the perturbed mag-
netic enerqgy, which is approximately equal to 9.9192. The total perturbed en-
ergy is thus approximately 1.87% of the mean esnergy at {ts peak.

The peak in the k , = 1 D modal energy plot at approximately t = I¥ |3 as-
gociated with the end of the magnatic ¢ - point coalescence phaze. Subsequentiy
the gystem enters a relatively quiescent phase characterized by the transfer of
energy ln the kJ‘ = | paqnetic mode to the higher x harmonics of the disturb-
ance. This increase in magnetic nonlinearity flinds its configuration space ana-
logue in the evolution of the domirant slectric current density filament into a
shest - like structure, the shaet being roughly parallel to the mean magnetic
field ¢ figure ¥II - 5¢c ). The nonlinearity of this atructure is evident from

the |D modal magnetic energy plots at t = 19 2699, 59 4% of the perturbed
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magnetic energy resides in the kﬂK = ] mode, 25.9Y in the kix = 2 made, 9.48% in

the kK, = 3 mode, with the remajining ¢.9% being distributed in the higher mag-

X
netic modes,

Apparently the magnetofluld is expelled from the weak magnetic fleld cor-
nera of the X point in such A way a2 to raise the local current density thers
{ note, however . that the peak value of the current density withln the sheet
decreasss ay the sheet evolves ). As the current sheet developa, the magneto-
fluld jets are seen to be localized at the extremities of the electric current
density sheet, implying that this is where the #nergy being released by the
magnetic reconnection ia being most effectively converted inte kinebic energy
f Eigure YII - 5b). This wotion of the magnetofluid jets away from the mag-
netic X pelnt has the consequence that the vorticity guadrupoles now have the
appearance ¢f being centred about the magretic Island.

The role which the resistivity profile plays ln the formation of the elec-
tric current densaity sheet i3 unclear. The nature of magnetic reconnection
regions la , in general, a someshat controversial sabject, and several competing
models exist, The formation of electric current demsity sheets in the magpetic
reconnection zone of uniform resistivity plssmas has heen advocated for some
time by Syrovatskii (1%71) and comorkers in solar physica. FKadomtaev (1975}

has argued that alectric current density sheets will appear in the magnetic
reconnection zones In tokamak piasmas. Electric current depsity sheets have
also been observed in numerical simulations of uniform reslstivity magnetofluids
by Brushlinakii, et. al. (198F), and wore recently by Blskamp (1384} The seem-
seeming insignificance of the resistivity profile to the formation of electric
current density sheets at the site of magretic reconnection in these instances

suggests that the magnetic field and flow structure are of more Importance in

the formation of the current sSheat,
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Associated with the formation and expansion of the current sheet iz the
contraction of the remaining magnetic & - polnt in the direction parallel to the
pean magnetic field. This contraction is accompanied by the formation of a pos-
ftive electric current denmity " splke " of large magnitude within the magnetic
0 point. At t = 19.269% the peak current value within the magnetic 0 - point is
approximately 7.25, compared with a peak value of approximately 6.37 within the
electric current depajty sheet. This contraction of the pagnetlic ¢ - polnt is
probably due to the " aqueezing " effect caused by the magnetofluid Jets on
either side of the magnetic 0 - point, and hence muat be deemed an artifact of
the periodielity of the aystea. In a noppericdic system the magnetic 0 - point
would be convected amway from the sagnetic X - point. The Lorentz forces wibthin
this structure at the magnetic O - peint are directed approximately radially
cutward, indicating that this structure lapedes the the sttempts of the magneto-
fluid to enter into it. Similar structures have also recently been seen in nu-
aerical simulatiens relevant to solar physics, shere the current density
" spike ™ at the asgnetic ¢ - point 15 called a deflection current ( Porbes,
private comsunjcation ).

As is evident from figure VI1 - 6, the current denaity sheet is not a
stable structure. By t = 51.95186 the current sheet has ruptured inte two dis-
tinct filaments, This inatabllity is of a fundamentally different kind than
those seen earlier ( Syrovatskll {1%79) ). The earlier instabilities were those
apprepriate to the infinite plane current layer described in chapter 11. 1In
contrast, the current sheet iz a nonlinear structure of finite sxtent. Further-
more, the infinite plane current layer is a static configuration, whereas the
curcent sheet {s essentially dynamic. From its inception, large amounts of mag-

netafluid flow inte and out of the currant sheet. By contributing to the growth
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of the current sheet, the flow can be considered to be a cause of the inatabill-
ty rather than a consequence.

The halloark of this instability is the breakup of the electric current
density aheet into two distinct filasents. The physical processes responsible
for this rupturing are not wel} understood, but a possible scenario is the fol-
lowing, Magnetic £ield lines are dragged into the current sheet region hy the
motion of the magnetefluid. The magnetic field lines tear and reconnect within
this region, with the excess energy being dissipated Chafcally or bransformed

into kinetlc energy. The latter vrocess results In magnetofluld belng expelled
from the weak magnetic field corner of the X paint at high velocity, wuhere it
rajses the local current depsity, probably by the stretching of magnetic fiald
lines. The entrainsent of ambient magnetofluid is greatest in the vicinity of
of the sagnetofluid jets. As the current sheet expands these reglons of maximum
sagnetofluld entrainment are Incrensingly separated spatially from each other,
implying that the rate at which magnetic field lines are being convected into
the current shest begins to vary along the direction of lts expansion. When

the electric current density sheet attains some critical value of length in the
direction paraliel to the mean magnetic field, the rate of magnetic flux recon-
nection within the sheet does vary, and electric current denaity proto - fila-
ments appear at the extremitjes where the magnetofluld jetting 1s occurring.
These proto - filaments exert a greater attractive force on the magnetafluld
than the other sections of the current sheet do, so more magnetofluid i3 pulled
into the proto - filament region, further enhsncing the currant density thers.
Likemise, the amount of magpetofluid flowing inte the central reqion of the cur-
rent sheet declines, lessening the tate at which magnetic £lux s swept into

this region, and the current density thersa decressss,
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As {8 compatible with the presence of two magneticz X - points, a second
sagnetic 0 - point is aeen at t = 54.97885 { figure ¥II - 7a ) betmeen the
two current density filaments. The eddy structure becones somewhat confused,
apparently att=apting to set up the the flow pattern seen at t = 19.6349%

( fiqure ¥II - 3b ).

These two magnebtic & - points quickly respond to each others presence and
rush to coalesce, suggeating that the entire process described in this chapter
might be cyclical in nature. As was mentioned previcusly, the mmgnetic 0 -
point coalescence phaae was se#n to De the mopt ronlinear phase of the system's
tiae evolution. The system becomes 3o nonlinear that by t = 58 the aliasing
errar from the paeudosgectral part of the calculation is significant enough to
requice halting the calculaktian. Pigqures Vi1 - Ba through YII - 8d are contour
plote exhibiting the scalar fialds at the gltimate time of the run, t = 58.996.
Certain physical Features evident in these contour plots will be dlacussed in
greater detajl later.

The nonlinear evolution of the driven magnetshydrodynamic sheet pinch with
random initial perturbations is seen to display several different stages which
are characterized by different physical processes. The perturbed system appar-
ently attempts to nonlineariy relax to the lower snergy state containing the
electric current denaity aheet, but is foiled in {ts attempt to equilibrate by
the secondary instabilities of the sheet. A repetition of theése processes seems
Hkely.

In en attempt te obtain more inforsation about the long term state of the
driven magnetohydrodynamic sheet pinch, a3 well as to resolve better certain
highly nonlinear phencmens, a subsequent run was parformed in all respects the

same¢ as the one just reported except that both of the Lundquist numbers were



decreased to 200 to augment the numerical resolution. The various global quan-
tities which characterize the run are shown In Elqures YII - %a through

¥II - 9e. The early behaviour of this system !3 szeen to be gualitatively simi-
lar to the Lunguist nuaber equal to 484 run. We will describe a highly nonlin-
ear structure which develops, and then briefly characterize the long - tarm
behaviour of the system.

Contour plots at t = 54,9738 show that the magnetic 0 - points are |n a
phase of coalescence ( figqure VII - 18a ). The subordinate electric current
density filament is =stil]l vialble, as i85 avidence of the peaking of the slectric
curzent density within each of the coalescing magnetic 0 - points ( figure
¥I1 - lic ). vesatiges of the subordinate eddies are 2lso visible { flgures
¥II - ifdb and VII - 1M ).

As the coaleacence of the magnetic O - points proceeds, an unusuel]l ané
short lived atructure is seen to develop at the coaleacence site, This
structure is well formed at ¢t = 5H. 986, Pigure ¥YII - lla shows the Two magnetic
0 - paints in an advanced state of coalescence, At this tjwe, o negative current
filament of large magnitude forms at the coalescence site { figure ¥II - llc ).
This negative current filament 13 situsted on 2 stagnation polnt and hence must
be due to an induced electric £leld. This highly localized current density
structure 1s evidence of the excitatlon of many frequencies of the magnetic
fleld. The high atate of excitation of the energy containing mades 1s clearly
visible in the one dimensional modal emergy plots ( figures ¥11 - 34 and
¥II - 9e ). The Larentz forces In this structure are directed ln such a way as
to expel the magnetefluid tosard the walls ( figure WII - 1lb }. The highly
nonlinear character of this magnetofluid wmoticn is evideat from the contour
plots of the verticlty at this time ( figure ¥I! - 11d ), where much small scale

atructure {5 evident in the viclpity of the coalescence aite. HNote that this is
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the same highly nonllnear structure that appeared in the Lundquist number equal
to 489 run and precipitated the breakdown of numerical resolution.

Subsequently several more cycles of behaviour similar to those described
earlier are Eeen to occur, although the perturbed energies achisve lesser values
at their saxima. It appears that the mean magnetic energy approaches a constant
value as time proceeds., At ¢ = 161,008, the ultimate time of this run, the mean
magnetic energy equais F. 571694, or approximately 75t of its initial value of
¥.75601%. cContour plots of this uitipate state are shown in figures ¥I1] - lla

through YII - 12¢, exhibiting behaviour similar te that seen earlier.



¥II]1. DISCOSSION

In thi=s thesia the stability and tranaiticon properties of a bounded, cur-
rent carcying sagnetofluid have been examined, vaing the theory Jeveloped for
plane shear flows as a guide. This approach has proven useful in discovering
new relationships and structures., The ®ain resulks are summarized here and
suggestions for extensions of this work are given.

The equilibrium considered was a driven magretohydrodynamic sheet pinch.
The mean flow velocity equals zero. A conatant elactric field and a spakially
varying resistivity profile were utilized to balance the Ohmic dissipation of
the mean field magnetic snergy. Mean saghetic vector potential proflles with
inflaction points in the domain were axcluded from consideration.

When the magnetchydrodynamic shest pinch is nok driven by an external
slectric field, the decay of the mean sagnetic fleld 13 from the outset a sig-
nificant factor in the evolution of the perturbed system. tThis is especially
true &t the low values of the resistive Lundquist number that are currently
accessible computationally. The electric field hinders this diasipation of the
mean profile in the perturbed system, and thus permits other phyaical processzes
to dominate the evolution of the system. Diriving the system also generates
complex behaviour for many Alfven transit times, !ndicating that the slectric
field enters into the dynaalcs by keeping the system externally excited.

The mean magnetic prafile that was chosen was one appropriate bto the
driven magnetohydrodynamic shest pinch. It wam, however, someshat arbitrary in
that any cne of an Infinltude of such soluticns of the mearn field equations
could have beep chosen. The ressons for the choice of mear magnetic profile
( B(y ) =arctan{ B8 ¥y ) ) usasd were partly physical and partly

g4
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numerical. This type of profile was chosen because it is linesrly unstable,
with the perturbations requiring only a moderate amount of computational time
before nonlinearities become significant. The mean Eield profile can be well
resolved numerically. Bowmever, a more rational approach im needed to Jdetermine
appropriate magnetic equilibria. In contrast, the eguilibria uaed in plane
shear flow problems emerge as unique solutiens to the steady atate, uniditect-
ional Mavier Stokes egquations, An Infipitude of mean fleld solutions are poss-
ible for the driven magnetchydrodynamic sheet pinch, and some criterion ia
needed to determine which solution 1a the most likely on physical grounds.

The linear stabillty of the syatem was Investigated by a normal mede
analysis. A sixth order system of complex ordinary diiferential equations
which governs the normal modes of the system was Jerived., An algorithm based
on the Chebyshev tau method was developed teo sclve Chese equatiocns numerically.
Linearly unatable modes were only found for mean current profiles with in-
£lection peinta in the channel. For inflected current profiles, linearly un-
atable medes were found for rather iow values of the Lundgqulist numbera. The
neutral stability curve was calculated and shown. The form of the neutral
stability curve indicates that stabllization can be achieved either by
increaning the Lundquist numbers, or by increasing or decreasing the parallel

wavenumber. The locus of critical Lupdquist numbers was shown to take the form

of a hyperboln.

Certain nontrivial details of the linear analysis remaip Lo be done. The
locus of ¢ritical Lundquist numbars is by definition the locus of peints in the
M - 5 space apan which the growth rate of the linear perturbations equals zero.
It would be informative to determine the the form of the loci for non-zero
values of the growth rate, Unfortenately, on these cther loci alpha might not

be conatant as it {5 on the critlical locus, apd this will greatly complicate



the task of Jetermining the curves. A related, but simpler, task would be to
determine the curves of constant growth rate {n a reduced space, =.3., the
{ol, M) space. Finaily, with minor modifications to the existing code 1t
would be possible to szamine the three dimensional linearly unstable modes.
These modes vary with a second wavenumber, beta, which determines the wave-
length of the perturbation in the direction perpendicular to the mean magnetic
fleld.

The nonlinear stability of a primary disturbance of the system was investi-
gated by an energy method. A Reynolds Orr energy equation was derived for the
driven magnetohydrodynamic sheet pinch. Por regions ln the vicinity of crili-
cality, the nonlinear stabiiity properties are represented by = stability
equation of the Landau type ( of Landau and Lifshitz (1959) ). The derivation
of this equation relied on certain assumptions about the nonlinear behaviour,
viz., that the prisary disturbance retained the form of the eigenfunction upon
achieving finite amplitude, and that the generation of higher harsonics of the
primary disturbance was negligible. The nonlinear behaviour of & primary dis-
tyrbance predicted by this model ia represented {in the amplitude phase plane
plots,

The reaelts of the numerical simulation imply that more of the nonlinear
effects must be added to the nonlinear atability model, in particular the
generation of the secondary and tertiary harmonics of the primary disturbance.
This would likely result in the addition of ewtra terms to the Landsu norlinear
stabllity equation, as well as szoms variation in the Landau conatant. It is
posaible that the sn#rgy method might have to be abandened for being relatively

insenaitive tp local phenomena, and that a theory based on apalytical perturb-

ation methods might be superior.
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For mean current profiles with inflection peints in the domain, linearly
unstable modes were found for low values of the Lundguist numbers. For these
casez the question of whether or not subcritical instabilities ewis{ appears to
be uninteresting. PFor mean current proflles without inflection polnts, no lin-
early onatable modes were found. These profiles might, however, be unstable %o
perturbations of finite amplitude. This could be determined most readily by a
nonlinear stabjlity analysis.

A computer code ba2ed on the large - eddy simulation algorithm of Moin and
Kim ( Moin and Rim (1900}, Moln and Kim (1982) } was developed in order to solve
the full set of two - dimensicnal incompressible MAD equations. The algorithm
is mixed Pourier pssudospectral - finite difference, and uses a seml - implicit
tesporal discretization. The pressure head i3 evaluated on a staggered grid. A
highly vectorized form of this code has been developed for use on the CDC CYBER
285 supercomputer. An obvisus improvement to this algorithm would be to make
make the code fully spectral, which would prowvide greater spatial resclution for
the same array sizes, Thiaz could be accomplished by replacing the finits dif-
ference discretization in the perpendicular direction with a discretization
based on Chebyshev polyromlals. Thls would ba especially beneficial if tha code
Ners upgraded to inglude all three spatial dlmensions, when optimization of ths
algorithm would be paramount.

The nonlinear swplution of a primary disturbance in the parameter reginme
near the atability boundary was observed. The primary disturbance chosen was
the unstable eigemsode of the system with parnllel wavepumber equal to ynity.
The qeneratioen of higher harmonics and deformation of the mean magnatic profile
were seen to be significant. Deformation of the primary disturbance was slight.

A quasl - steady state structure with meltiple magnetic islands was seen to form

and persist fFor thousapds of time steps.
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The nonlinear svolution of the randomly perturbed system exhibited several
interesting structures. Electric current density sheets and deflection cur-
rents were cbserved. A complex structure was seen during the coaleacence of
magnetic O points, characterized by a negative current " spike " and the expul-
sion of the magnetofluid toward the walls. This phase of the aystes's svolution
corresponding to the coalescence of magnetic O points is the time of the most
ronlinear behaviour. A secondary instability mechaniss, the dynamic rupturing
of the electric current density sheet [ cf Syrovatskii (1979) ) was obeerved.
This secondary instabllity mechanism !5 apparently responsible for the cyclic
behaviour of the system.

The numerical aimulations have revealed thut the nonlinear evolution of the
driven magnetohydrodynamic aheet pinch is entremely complex. More simulations
ate required to determine how the nonlinear evolutlon scalaa with reapect to the
various parameters which define the system, Of especlal Interest is raising the
Lundquist numbara as far as is computationally posaible to aliow Eor the excit-
ation of many spatisl scales. This would aasist in the understanding of the
turbulent phenomena encountered during the nonlinear evolution. It would alsc
be of intereat to study the nonlinear evolution of finite amplitude perturb-
ationa on both linearly stable and unatable profiles. A recent effort in thia
direction i5 due to Matthasus and Lamkin (1985).

The limiting of the numerical simulation to twe apatial dimepaions js per-
haps the severeat restriction that has been made. By neglecting the third
spatial dimension, many degrees of freedom have been removed, and the nenlinear

evolution of the syatem has hence been someshat constricted. It has only come
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to l1ight recently In the study of plane shear flows how severe the penalty can
be for neglecting the third spatial dimensicn { cf. Orszaqg and Kells (1934) ).
The simjlacity of the incomprassible MBD equations to the Mavier Stokes
equations implies that, by analeogy, the true nonlinear behaviour of the driven
sagnetohydrodynamic sheet pinch will only be revealed when sll three npatial

dimenslons are included in the computation.



APPENDIX. FROOF OF IDEAL STABILITY ( HMAGNETORYDRODYNAMIC RAYLEIGH THEOREM )

In this appendix the linear stability properties of the driven magneto-

hydrodynamic sheet pinch are examined in the limit of zero viscosity and resist-
1vity.

The governing equations are:

0%-2)’p = -coM (D> Dp - M (D) (2.5 )a
Aol 4+ L"-M (DRAo)ﬂ

-2 3BT Lt (w S?f‘!)g“ S 5;(7)(5&)?

d

where D = 2"

To simpliéy the following proof, we will make some subatitutions. Let:

B z DA,

hz-lea
A-2 V?'-'L"‘-‘f’
Kz I

Bubstitute the variables defined in & - 3 Into A - 1 and & - 2:

92
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(D*- pt.‘?)g;' = -eMc (D'?'#.J) v - LFFLMB(J}J"E)L

AL - 4 + M (Dqg)b
Al - 5 {ba-xz-rt'aisg('?)cgﬁ :-L‘D{S;(T)BV‘

In the ideal limit, B —Ddot and M—p0 . In this 1imit, A - 4 and & - 5

become, respectively:
ros 0= -c(b?x)v - B(D2-aPb + (DB
A -7 C.l:=-gv'

Use A - 7 to substitute for b in A - 6, Which becomes:
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0= C:‘([}i-ﬂ")v - B(0*-x)(8v) +(D°8)(8v)

= (Cz'- 82) DQU -~ o (c.a- BR) v
- 28 (&)Y

= f‘.{_ AV — x3( ﬂ_g:l)
_pd)y e~ A TNC '
do [e*e2) duf]

Multiply & - 8 by u*.

¥ dv 2
A-9 Y f{[(c.“-ﬂa) I{]_ az(c’-B“) Wi“ =0

Integrate A - 9 between the walls, utilizing the free - slip boundary

condition; v( y = 1 ) =vw({y=-1) =§,

_ " dv |
O"J:, V*f:{-[(ci-ﬁz)dut]d, -di(c’-&a)lv’%’

{ .
A - 19 :-—] (ﬂz_gn)lj?'fd?‘ a(.‘tL (Ca,gz)ru,:td?



- [ren([& ] - i)

Sepacate A - 1F Into its real and imaginary parts.

REAL PART:

A - | 2,3 e} 144 )% Aiut)dy = 0
¥ f_t(c.. ¢ B)(l,{T' )‘1

IMACINARY PART:

A- 12 C'rﬁ‘.f‘“i;-’a*"”ﬂ:) d¢1 2p
-t

For A - 12 to hold, ane of the Eollowing must be Erue:
N o
viy) ;

M- 13 . = O ;

(=0

L

We restrict ourselves to cases with non-trivial eigenfunctions,
which eliminatea the firat posajbility ( v = # ). An examination of the
A& - 11 shows that the equality cannot be met if Cf= #, which implies that:
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A- L L =0

i.=., Ehe ayatem i3 atable for all equilibrium magnetic profiles in the
1deal limit.

Mote also that the A - 11 determines a bound on the disturbance phase
velocities In the 1deal limit,

Cr2 = [min B:‘r MAX B:I]
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Figure 1311 - 2. Velocity eigenfunction: E‘i v ) o= arctant By 1, alpha = ..
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Figure IV - 1. Amplitude phage plans; B,i ¢ Y=arztan B ¥ 1, alpha =1,
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Figure IV - 5.

Distarted mean current profile; B { v } = arctan ( 8 ¥ ),
alpha = 1, M= § = 54,
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Figure IV - 7. Perturbed current density, B-{ y ) =arctan ( B ¥ ), alpha = 1,

M=5= ]0F
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Flgure ¥I = 1 Mean maghetic vector potentjal at t = §,
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Figure ¥1 - 8

Mean pagnetic vector potentlial at ¢t = 15 F8794.
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Figure ¥I - 11 Tertlary magnetic disturbance at t = 15 79796,
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Plqure ¥I - 16 pistorted mean cucrent proffle at t = 15.7479¢.
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Figure ¥I1 - 188 Contour plat of vorticity at r = 54 97485,
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Figure ¥II - lla Contour plot of magnetic wector potenkial at t = 54 9433
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