Turbulent disruptions from the Strauss equations

Jill Potkalitsky Dahlburg
College of William \& Mary - Arts \& Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd
Part of the Plasma and Beam Physics Commons

Recommended Citation

Dahlburg, Jill Potkalitsky, "Turbulent disruptions from the Strauss equations" (1985). Dissertations, Theses, and Masters Projects. Paper 1539623754.
https://dx.doi.org/doi:10.21220/s2-h52a-7y67

This Dissertation is brought to you for free and open access by the Theses, Dissertations, \& Master Projects at W\&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W\&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

INFORMATION TO USERS

I The simb

 ル

Dahlburg, Jill Poikalitsky

TURBLLENT OISRUPTIONS FROM THE STRAUSS EOLATIONS

Copyright 1985

by

Dahlburg, Jill Potkalitsky All Rights Reserved

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from tha available copy. Problerths encpuntered with this document have been identified here with a check mark \qquad ${ }^{-}$

1. Glossy phowgraphs of pages \qquad
2. Colored illustrations, paper or print \qquad
3. Photographs with dark background \qquad
4. Illustrations are poor copy \qquad
5. Pages with black marks, not orkinal copy \qquad
6. Print shows through as there is text on bath sides of page \qquad
7. Indistinct, broken or small print on several pages \qquad
8. Print exceeds margin requirements \qquad
9. Tightly bound copy with print lost in spine \qquad
10. Computer printout pages with indistinct prini \qquad
11. Page(s) \qquad lacking when malerial received, and not awallabla trom schoot or author
12. Pagels) \qquad seem to be missing in numbering only as text follows.
13. Two pages numbered \qquad Text fallows.
14. Cbirling and witinkled pages \qquad
15. Dissertation contains pages with print at a slant filmed as received \qquad
16. Other \qquad
\qquad
\qquad

TVRENLENT DISRUPTIOWE

F月OH
taE bthanbs bquations

A Dissertation

Presented to

The Faculty of the Department of Physics

The Colleqe of Whlliat and Maty in Wiginia

In Partial Pulflliment
 of the Requirenents for the Degree of
 Dactor of Philosophy

by
NH11 Potkalitsky Dahlburg
1985

\qquad
George Wahala

(5) 1985

JILL PQTKALITSKY PAHLBURG

All Fights Reser red

thele OP COMTENTE

Page
ACEMOWLEDCETENTS 1 4
ABETAHCT \boldsymbol{v}
I. TORHNR DISRUPTIONS 2
I]. TEE BOTATION MD EOUATIONS USED 23
IIJ. CYLINDRICAL HODELSEMG 32
IV. TBE SIMULATION CODE 41
W, GIHULATION RESULT ${ }^{(}$, DECAY 4
WI. LON OROER HODEL 62
WJ. SJHILATJOW REBULS, THINEA 78
VII. D1scussion 88
APPENDIM A: TWO-DJHEHSIOTHL MNERICKL REPEAHENTS
SPECTARL VSRSUS PSEUDODPECTRAL 94
APPENDIX B; sJMOLhTION OF THE IINRARI\&ED ETRAUSE
EOURT1OMS WITB CASE 2 PARMETERS 114

AITH CASE 4 PARAMETERS 118
AEPERFNEES 111

ACEMOHLEDGEHENTS

The suggestion of this mork cane fron my thesis adolsor, Duvid Montgonery. Most of the detailed effort laplicit here also arose as a consequence of has helpful guldance. The scalar version of the stmulation tode generated for this thesis could never have existed without the greatly appreciated instructions and suggestions of Thomas zang. Mafor contributions by William Matthaeug in the generation of the vectorized version of the free decay code are noted with sincere apprecjation. Conversations concerning this resesrch effort, with Russell Dahlburg, Hurshed Boasain and George Vahala, were thes extraordinarily useful. Thank you all. Additional, active participation in this project, on the part of Gary Doolen ds shiso gratefully acknowledged.

Anstanct

the aubject of thig thesio is an anolyais of results frop pseadospectral afulation of the strauss equationg of reduced three-dimenaional engnetohydrodynamica. We have aplved theqe equations in a rigid cylinder of aquare croas section. cylinder with perfectly conducting side walla, and perlodic ends. we assume that the uniform-density manetolluld which fills the cylisnder is resistive, but inviscid. stuations which we are condidering mise in several es-
 fmposed, and the plasin carrtes anet current which produces a polotdal magnetic field of suffictent akrength to induce current diarpptions. These dis-
 map themelves around the engnetic exis. An ordered, helscal velocity field grows out of the bromd-band, low aiplitude noise with which me tritialize the velocity field. Winetic energy pealis near the time the helical curient filsment disappears, and the current colunn broadena and thattens itaelf out. We find thet this is monilnear, turbolent phenomenon, in mish many fourfer modes participate. By rolaing the Lundquat nuber ustod in the almulation, we are able to generate aituations in which multiple disuptions are induced. when on external electic field is imposed on the plase, the initial diaruption, fron a quiescent otate, is found to be very similio to thore observed in the undriven runs. After the lobed "n $x 1, \mathrm{n}=1$ " atren function pattern devalops, however, quasi-steady otate mith flow is miatained for tens of Alfven tranait tiacs. If viscous dnping is facluded in the driven probles, the steady state may be avoided, and doditionil disruptions produced is a tine lesa than lerge-acale resiative dectiy tiat.

TURPILEAT D]SRUPTIONS
FROM
THE STAAOSS EOUATIONS

I. TORAMAK DISHUPTIOHS

The toknak is one of the most widely studled spectes of the genus "magnetic fusion confinement device." In esgence, the tokank is a torus-shaped gagnetic bottle. Two basic conelning magnetic Eields are present in a tokama, a toroidal field B_{q} and a poloidal field Bot see Fig. la. The toroidal field is produced by an eaternal toroldal solenoid. The toroldal plaspa itself serves as the aecondary of a transformer. A changing aquetic field in the prinary produces an eiectice current in the taroldal dicection of the plagna This current ohnicaliy heats the plaswa, and generateg a polaldal angetic field which assists the atronger enternally loposed magnetic field in conflning the plasma.

Although a tokanak is a qood precursor for confineaent fusion device, it is far from a final state reactor. Two fundamental types of plaga confinement prableas esigt for a tokamak plasna, problems ghared with other magnetic fusion confinenent devices. The primary difficulty is that the plagm has a ayriad of instabilities associated with jt. Sone of the most dangerpus, digruptive instabilitieg, even lead to the termination of the alscharge, and can serjousiy damage the device. A complerentary probjen is that fusion-otiented devices operate in a temperature range which makes internal dagnosis of the dynamios troublesone. Accurate (lf any) emperiental observations of may necessary quantities $=$ ion dengities, varying magnetle fields, fluld velocities, and curcent distributions, for example $=$ are difficult to obtain. thus, in order to generate the Mvors phoris (likely story) for what happens when these Instabilities take place, it is necessary to augsent experimental observationg Hith extrapolative theoretical modejling. For problens of interest, it is in general important to implenent compatational methods, to generste as much in-
formation as possible on the dynanit. of the plagat.
One of the soat central questions in the whole subject of tokasak confinement has been "mat happens in the disruptive fnstablifty? (Bickerton (1977); Rutherford (1989): Rebinson (1982)), Only when the diaruptive process is ressonably well understood, and controlled, may the tokam evolve into practical fusion rotctor. It it clag of jacalized pladea probleas related to disroptlon which we explore in the body of thie work.

Following a brief introduction to the tokamik, and its prosent erperimental 4tatug, experinental obervations of the digruptive instablisties are considored, with particular mphats on fiterhal digruptiont. After a durvey of the various energent interpretations and modele of these ohaervitions, this approach to the problem of current disruptions in boonded empetoflufo is denerfbed.

A. The Tok anak.

Figare 2, after Robinton (1982), Ehoms atindard atrangenent for traditional tokeak. Table 1 , produced by Bickerton (1977). Ls a list of repteaentative tokank devices. Mote that some deulces no longer have an iron core but rather an air core. Also, for sone devices, vertical cofls mith feedback have replaced the copper stabilizing shell. A feed-back irtangement becomes necepary when shaped cross-aections, with better atability propertses, are waed. This arranqement is also more convenient (8ickerton (1977); Robinson (1982)).

1. Diagnostica.

According to Dickerton (1977), it is "astoniahing" that we till have no direct may to mensure the pololdal mannetic field. or equivaleatly, the radial warlation of the curcent denaity. It Is calculated by assuning that the tor-
oldal current denaity $j_{f}(x)$ varies at the electron temperature, \boldsymbol{T}_{e}, to the $3 / 2$ power, and that the effective charge of the plased ions is undfore across the plame.

The flectron density and tenperature, and the ion tenperature, all can be measured by Thomson scattering, the scattering of laser ligit by electrons. In n revien article, Magar (1981) enplains that an election placed in the field of a lager boam will be nctelerated and hence enft radiation. Irregularitien in the denaity distribution give rise to net scattering. Randon nonumiforaities prodace "Incoherant sattering"; the ratultant scattered power is propartional to the electron density. since electrons forn a polerizing shield around fons, scattering off these coherent clougs allows the observer to deternine the phase velocity of the density fluctuations, and hence of the ion tenperature. Analogeusly, by senttering off individual electrons, one can infer electron temperatures. These measirementa have been made practical by the advent of the high power pulsed laser. The pulaing is dratmek; only fem aensurementr mat be taken per diacharge.

Although less scevrate than thonson seattering, thalysis of n-ray enission yielde the electron temperature as continuous function of time. Bickerton (1977) describes this as e chordal line of aight measurement which requires some unravelling to give $\mathrm{T}_{\mathrm{g}}(\mathrm{r}, \mathrm{t})_{\mathrm{i}}$ it yields the highest temperature in aight line. Gild (1981) discusses w-rif diaqnostics is depth. Be gives formulue that allow one to convert the mesuured radiation in a plabia Into information about the electron temperature, assuning the plage is Mawellian, and that no diserete enission lines are present, be also describes the w-ray pinhole technique, which has beth used (won Goeler, et al (1974)) to gkudy the magnetohydrodynamie activity of the hottest part, the central region, of a tokamak plasem. By com-
paring aignal phases at various positfons in the plasen, the periodicity of the disturbuce may be inferred.

Another diagnostic tool is the external magnetic pick-up coil, which allows one to detect seall magretic eluctuations autside the plasia. These EluctunElohs can be meagured at several locations around the plasm, analysed into their Pourier compontita, and Interpreted in teres of mqnetohydrodpnamic (HBD) nodes (hesson (1981)).

Horton (1976), and futchinson (1976) carefully inserted manetic probes to follow the developent of internal manetic field triuctures in the toknak 1T-3. Gutchinson deducea the toroldal corrent denalty from these measurnents by mabining cylindrical bymetry.
 alysig of the fast neutral atons labing the plasia. Purther, although the ceasurement of current and loop voltage ire relatively atraightformard, he marns that even in deriving the resistive part of the volkage, difficulties may ensue. In thort, he suggests that good general principle is to mesture everything with two gethods, and "to treat all reaults with initiol disbelief".

2. Parameters, finabcales.

Bickerton (1977) states that the busic queation about boldunat is whether or not they can be made to contain a plasu which mill astisfy the reactor criterion lifst set forth by lauson in 195日. The reactor criterion is a atatement about what is necessary in the way of planer confinement, to achieve fusion. The plasia must be dense enough, and stay in the machine long enough, with enough thermal energy to overconte the coutond repulalon betmetn nueled, for a useful mont of energy to be produced, if minture of deuterjum and kritim 18 used in the tokncik, the ballpark "enoughs" are that the tenperatute of the
plasia be on the order of 5 to 10 key, and the product of the particle density, $n_{\text {, }}$ and energy confinement time, T_{t}, be at least $1 f^{14} \mathrm{~cm}^{-3}$ tec (bateman (1978)). It is eaticated that the next generation machines, Jti in particular, will approtech thise criterion (Rutherford (19.8)).

It is also necessary to monitor other, leas dranatic figures, on the way to the gonl of fusion. observation and theory must be conparable, for any use to be made of their coexistence. For these comparisons to take place, the language of theory must agree with that of experiment at sone level. The most basic bridge between theory and experizent is that bullt by aimenaionless numbers and general thescales. Por instonct, the value of aingle diatesionless number, the Reynolds number $\mathrm{A}=$ ((characteristic velocity) * (characteriatic length) / (kinematic viscosity)) allown en estimate of whether flow is laninar or tutbulent, and consequently which sort of theory ay apply.

In order to obtain t straightformard vien of the plesans under invegtigation, we calculate siallas nubera for sone exisking fusion devices, using formulte fiom orminakil (1965), and typitel plasm paracters of the curcent generation fution devices from bickerton (1977). Results of these calculations are in Table 2 . The constants, in cgs units, used to create this table are those given by book (1986). Where the bracketed numbers refer to formula numbers in Bugintki's drticle, bybols used ure:
[2.7] $G_{2}=$ perpendiculat eleatron conductivity.
$[2.23] r_{i, 1}=$ fon dynamic visconsty coefficient.
[2.24] $\prod_{i z}=$ fon dpnafic viscosfty coefficient.
[6.32] $\mathrm{D}_{\mathrm{m}}=$ mpnetic diffusivity, $f\left(\sigma_{L}\right)$.
[7.18] P mass density.

Fron these coeffatenty ate calculaked:

$$
\begin{aligned}
& T_{A} \text { - Alfven transit time - (eajor radius) / } V_{A} \text {. } \\
& 5=\text { Lundquist number } \quad=T_{p} / T_{A} \equiv 1 / \eta_{i} \\
& P_{\text {m, }}=\text { Eagnetic Prandtl number }=\left[\eta_{i} / p\right] / D_{\mu} \text {. } \\
& P_{m_{3}}=\text { Eagnetic Prandtl number }=\left[\eta_{1}, / \rho\right] / D_{M} \text {. }
\end{aligned}
$$

Hote that for all numbers calculated, me: wsoune that z, the charge atate, ia unity; we the spitzer logaritha (Spitzer (1962)); designate the directions $1 / 4$ to mean perpendicular / paralle! to the external magnetle field.
2. General Hacroscopic Difficulties.

The strupgle to crete a productive fusion reactor has spanned decades, and 18 Fill continuing. A mar difficulty is an engineering one, asoociated with the operation of the machine. Another, more eerlous difficulty is the followIng. Even present ganerakion mohines camot be tun in gossible regines of large current with arbitrarily shaped current density profilat and large nuaber densities. Physical indtabilitien rettrict the operation of tokams, to the point that the devices will only work in 1 soluted windows of poraster space.

A very fmportant tokanak number is the "safety factor", q . Thla pafaneter Ia \quad manure of the relative field strengths toroidally to goloidaly, or the number of tises a field line mraps the long way around the torod divided by the number of tiges it wraps pololdally, in the licit of on infinite number of windings. Pron the geonetry of field lines, when the aurfaces on which the field lines lie have cfrcular cross eection, $q(r)=\left(I B_{p}\right) /\left(R B_{e}\right)$. It fs found that the most dangerous unstable modes tend to be those in which the helicity of the perturbotion is the same as that of the tokames manetic field, since perturbation with this shape involves the lenst bending of ey-

Ieting mannetic field lines. Thia perturbation can be witten in kerna of f(r)
 of the field, and the posibility of almple, linen instablity frises (e.q., E. ${ }^{t}=1$

Whnefard(1984), These idens will be trented in more detail in chapter 3,

At this polnt, wing this terininology, we can briefly cateforize the flue nacroacopic tokana fastabilitien, according to mateman (1970).

Pirat reen way what is often termed the sauage, or m instability. The Instability has no poleldal dependence. It is sugpestively called the savage Instablify, ance the plase colum tends to pinch itself into form resenbling links, when subject to this instability.

When modetate longltudinal magnetic field mas inposed on the plasion coltim to atablife the $\boldsymbol{m}=$ instability, another hiphly macroscopic instablity appeared, the $m=1$. This instability is olso known as the kibk instability. bectuse when this mode is sctive in the plasea, the plasem colum itself may distort and wrap itself heldcally about ke manetic ats. The safety factor "o" is useful in deterdining the linear onget of this instability. For $\mathrm{q}(\mathrm{r}=$ plara edge) : $q_{\text {Enge }}$ (1 , is may be ohown that a plasman colum which does not
 even in a atright cylinder. If $4_{i_{j-j e}}$ ' i, the plames is not aubject to this Instability. The criterion $\mathrm{a}_{\mathrm{c} \text { dut }}$? Is called the Mruakal-Ehafranoy stability criterion (Iruatal, et al (1958); Shafranoy (1976); Batemin (1978)).

Hirnov oscillations were observed soon after the $=1$ Instablility mas seen. these osciliations were detected as asill perturbations in the magnetic field at the edge of the plase colunn. Pourier decompasition of the signalg ytelded inforintion about their "a's" and "n's", their pololdal and teroldal
mave numbera; m runing froe 6 down through 2 , with $n=1$, fe comeon zarly in - Abcharge.

Found ment were samtooth oscillations. In 1974, von Goeler, Btodiek and Southoff observed reproducible oscillations in toft s-rays entted from the hotter central reqion of the plitate, these indications of diaruptive ctivity mithin the plasim are so naned because the w-ray which produce then generate a sambooth pattern on the oscllloscope acteen.
throughout the history of tokeadi operation, the diaruptive instability would fregutnthy apter. this is a generic nane for wide clats of unexblalned, obropt tranfitions of toknak plasms, misch often occur mithout witning. The diaruptive process is frequently characterized by enpanaion of the Dlasm colum, and + large, neqative voltage apike kicking back agalnst the trandoret. The understanding of dieruptive behovior is of paranount inportonce in the tokamak fusion effort. He turn now to closer look at sone enperimental atudies of large scale diaruptive activity in tokanak plamas.
B. Pocus on Diaruptive Activity.

Rapid, enplogive-like tokanak diaruptions range from internel disruptions that occur at regular intervala deep within the plesen, with no wisible effect on global diteharge paraters, to eajor disruptions that may lead to tereindtion of the atscharge in a aingle burat of activity (biakap (1979)). Rodontaev (1984) categorizes an abrupt flattening of the electron tenperature, or equivalently, power of the toradal current density profile, as anction of redius, in Internal dieraption. Le classes non-internal, or externtl, disroptions as varying in deqree from minor to major. A pleswa with curtent will survive a minor disruption, but not a majone.

External dieruptions have been seen since the earliest times of toknak
operation Major disruptione ore observed as etetatiophic interriptions of plagen current density and electron temperatare (Sathoff, et (1978)). thorough documentation ocmes about far less easily than observation. Only a few agreed-upon featurea mark the existence of a generic external diaruption. According to kadontsey (1975, 1984), the plasia colun itpelf enpands along the inor radus at the onset of the diseuption, followed by e redistribution of the current density, negative apike on the medsured loop voltage, and an abrupt decrense in the eajor radius of the plama colung.

The enternal dituption, then, can not be classed at a phenotenon wilch is elther independent of the plama free surface, of its toroidicity. Homerical simulation of such a serfes of events is entirely beyond the present capabilIties of twasishle conputers. Nonetheleas, sttents have been made to motel aspects of the external disruption (haddell, et il (1970), (1979); Bicks, et a) (1981). (1982); Dimond. et (1984)). He w111 not pursue that course here.

Instead, the focus in this mork will be on the internal disruption. since this subelass of disruptive instabilities occurs deep within the plasna, it may readily be argued that particular edge effecta play a lesa crucial role. We embark on atudy of the internal discuptive inatability with the hope that enploration of it will lead to a clearer vision of the underlying causes of disruptive activity in a wide vardety of situations.

1. Enperitental Observations of Internal Dieruptions.

According to Buteman (197日), areakthrough in the field of siagnostics cane when won Goeler, et sl (1974) first used sensitive, moveable noft w-ray detectors to observe continuous, reproducible oscillations at the center of the Et tokamak. This m-tay emasion with santooth atructure was also observed in other tok mak discharges (Jahna, et 0 (1978)). Lodostsev (1984) considers the
observations of von Goeler, Stedick and Guthoff to be even more than a jor technical advance; be confectures that reaults of their work my hold the key to understanding disruptive processes.

1a 1974, von Goeler, et al (1974) obtained "Inges" of the ET tokamak plama colubn by means of a slot aperture. The m-ray easaion from different regions of the plasma, flltered through l- and 3- Ell Be folls, was measured with allicon surface barrier detectora, moveable in the fage plane. Thejr moblitity allow on observer to sample different chords of the plasma cross section. Radiation intenaity is sald to be function of the electron density. n_{s}, and temperature f_{e}, and of the inpurity contentration, while the fluetuit tions in the radiation are predoninantly cansed by fluctuations in T_{e}. The oscilloscope traces of these fluctuations show a "antooth-1lke" pattern, with slow rise and fast drop near the center of the colum. Sconning slightly further out in plame radivs yields an "inverted" sautooth, with fant rise and slow, exponential drop. By asaming a stationary discharge and constant value of impurity concentration across the current coluan, they calcolate the safety factor, $g(r)$, derived from Thonson scattering, to find that q(r = I) $=$ A.B, and g(i $=2 \mathrm{~cm}.): 1.1$. They meanure relative santooth mplitude is o function of radial chords, and find that the rawtopth abyitude has a node at the $q * 1$ point. It 16 outside that point that the santooth is inverted. By simultareously mensuring the shtooth at different locationa golosdally and toroidally, they observe that the sudden break of the santooth orcurs at the sime tine everymere. They conjecture that this indicates independence of virl-
 ternal disfuption". They report that, inside the $q * 1$ surface, $\boldsymbol{F}_{\mathrm{t}}$ sharpens
 increase juat outside the $q=1$ surface. The outer increase dies off exponen-
tially during the rebeating of the centrol part.
Etach Internal distuption, or abrupt flattening of the fe profile, is pre-
 9) dependence, Von Gotler ind comorkers (1974) infer the pololdel epde number - and torofdel mode number n of the disturbance by comparing phase relationships mong m-ray traces taken at andety of chords.

Jahns, et al (1978) deserthe the evolution of zawtooth oscillations in ofrha, and give examples of the soft m-ray sifats taken from the hot, central plagna of that tokank. From may particular cases, they aee that, in ORNR. sameath ate generally characterized by areptition the of 1.5 to 2.5 milliseconds. and adaruption, or fall tine, of about one tenth of thet, The observed m= l oscillation has fiequency in the neighborhood of one cycle in a kenth of millisecond. Beyond some radyus, the samtooth signals are "inverted", with fast rise coincident with the disruptive fall of the "ingide" atateeth. The inversion radius, or $q=1$ gurface, rangelf from 3 to \mathbf{g}. Recalling from Table that orana's sinor racius is 23 c... it is clear that the inner region of the bantooth activity fo aeparated from the wall of the device.

Batenan (197日) alas refers to ORMAn data in bis description of the sefnarlo. He fids to the deacription given by Juhns, et al (1978), when he states that the mplitude of the - - loscillation, atrongest in the neighborhood of the $q=1$ eriface, does not meen to be directly corcelated with the strength of the samtosth oschlation. In genersl, however. it is observed that the $=1$ osctllotion grows during the rise time of the interior santooth, and vanishes jost fifter the diaruption. Batean (1978) alao notes thet in 197f the TFR group established that the k-ray matooth is prianily due to changes in T_{e}, and not due to density variations

Equthoff and co-morkera, (1979), describe internal disroptive instabilities In PLT. Apparently, the mass of data acquired in PLT (with and without mentral ben injection) is not as strightformard is that obtained from onar. They present information about the evolution of $a=1$ modes, burats of which can tither be correlated to internal disruptions or decay without disruptive cyent. Their signals of line-jntegrated edspivity display a 1 oscillations at fundarental rotation frequency ω visible on traces whose signals orifinate from the center, out through chords $\pm \mathrm{cm}$. from the center. They note that the central trace enhbits 20 behavior, since the hot epot passes within viaw tuice per revolution. (According to patean (1978), the rotation frequency of the $m=1, n=1$ helical atructure is not understond; it masy be due to dimagnetic effects, or to rotation of the torve as athole.)
sauthoff, and cownkers, (1979), report that in inmard epiral trajectory of the peak after disruption is alap aten, better obperved in a relatively geall
 burst of a-ray activity is observed even in radil beyond 12 cm , which sugpested that the penk region creates a localized protrusion into the previous concentric circular structures. After this "disruption", the peak talasivity reqion then spirals back tomard the center. Beuthoff, et at (1979), conjecture that the two different outconea of bursts of $\quad=1$ activity woy be related to the extent of the radial excursion of the manetic axis; the closer the axis appronchet the $\mathrm{g}=1$ surface, the more energy is lost from the center.

A nem syates of fast data acquisition and hagh performance alplifiers used on the JFR soft arday arraya of surface barrier detectors added new information to the observations of gamteth in tokank devices. Dubois, et al (1983) deacribe the obferved sawtooth phenomene in TPh is being chatacterized by aregeneration part, during which the temperatiare, and hence the x-ray emisaivity
profile, becomes peaked. An ogcillation of ax parity beqins to grow. The central stgnal abrupty drops an the electron tenperoture protile flattens. indicating thet an internal distuption has oecurred. In sone cases, however, the disiuption itself genergtes complicated signals, sharg goikes in the emissivity near the tine of sayimum discuption. Dubois, et al (1983) report that these featores seen to be present in all internal discuptions, and were not detected previously because their mplitude relative to the $m=1$ node and to the total temperature variation was much less; more delicate time resolotion thap previously enployed mas necesoary to observe then.

The basic, repetitive story of doternal distuptions, then. is that sam-
 the work of von Goeler, et al (1974), that alot m $=1, n=1$ instability orcurs in the plasma and grows to an order of about in of the total cadiation. this instabjllty then gives may to an abrupt disruption, corresponding to a rapid symatric cooling of the central region, and heating of the peripherat reFion. \#\# interpreks thege results in terme of a cyldndical, helical flax finction, where 0 ds replaced by z. The curl of this fium fonction generated
 vandsheg at the $q \times 1$ surface, creating gitugthon which is unstable to perturbatlons. Because of finite resistivity, he conjectures that the lines of B, break and "recloge" at an m-point jocated on the q F 1 surface. This reclosing becomes progressively more rapid, and cannot stop tintil the entice internal region is reclosed with lines of the enternal field, and g_{m} has scquited one sign throughout the plaspor, i. 4 , the safety factor q has becone greater than ubity everywhere. Heating of the plasme colum occorg, causing Bot to ugain develop a singuls surfape, and the gcemarjo to repeat. Fhege ideas wlly
be alscusued in further dekail in chapter 3.
2. Humerical Exparimente.

Kadontrev"s acenarto led haddell and co-morkers (1976) to per Eorla a single helicity ($\mathrm{f}(\mathrm{r}, \mathrm{T}=\mathrm{c}=\mathrm{e}+\mathrm{kz}$), only) nuerical calculation to test the above hypothesia. They describe this bypothesis as one fin which the $m=1$ mode realstively alions the plama to evolve from a state In which belichl fiun contours are circular, to a lower energy state in which helical flux contours are agos circular, thereby fattening the current density and fncressing q at the origin.

They solved a piri of equations for the fluid vorticity and magnetic helical flus fuaction in a atralght cylinder geometry, in which $B_{\theta}>\mathrm{B}_{\mathrm{z}}$ (self-con-
 fluid. by alloming the plasan to completely fill the cylinder, the bourdury condition on the agnetic field at the edge of the plases was the same as the one the tdge of the computational domaln. they chose the condition that the
 thally penkedon-axia model for the unperturbed torojdal current density mas employed, with resiativity modelled to vary as the inverse of the inftial current profile. a lundquist number of $\mathrm{g}=5 \mathrm{x} 1 \mathrm{o}^{4}$ was chosen, where $\mathrm{g}=\mathrm{T}_{\mathrm{s}} / \mathrm{T}_{\mathrm{L}}$,
 of the resiativity. The spatial resolution was not reported. The initial perturbation to the aysten was an $\mathrm{m}=1$ mode.

By monitoring the kinetic energy of the aystel they followed the evolution of the dynatics. They found that by the tiae kintic energy mas maxinu, the toroidal curcent had flattened inside the $q=1$ surface, with akin current at the x-point, and $\mathbb{G}(\mathrm{r}=\mathrm{i}) \sim 1$. As the kinetic energy decreased alouly, the contours of belical flux evolved, but remained complen, strictly differing from
 tunction was finily undform across the center, however. Flow patterns remined esentially unchanged as the instablifty progressed, encept that the velocity at the plasea center was noted to increase relative to that at the singular layer, as the instability developed. They reported no adoltional burats of activity.

In 1976, sykes and wesson (1976) reported resulta frow three-dinenaional, hydromanetic simulation. Resietivity, viecosity, ohaic heating and an energy loss were included in the equationa solved, with the renistivity varying as $\mathrm{I}_{\mathrm{t}}^{-\dot{\xi}_{2}}$. a varying function of poaition and tire. They chose $\underset{\sim}{\boldsymbol{n}}=\hat{f}$ for the velocity field boundary condition, where $\hat{\mathrm{i}}$ is the unit normal vector to the aurface and y is the plased valacity, and for magetic field conditions they supplied an approptiate electric field ot the wall to mintelo constant curcent. Although their computational grid mas only $14 * 14 * 14$, they qualitatively observed a relatation ofelluation in the central value of the prespure, similar to enperirentally observed anuteth. This oscillation they attributed to the ohatic heating of the plama and consequent channeling of the current. After sone computational tiae, they found that for the calculations reported, the ostillations decayed amay and the instablifty fimplly took the form of atationary helis. In order to better upderstand the maghetic fjeld akructure, they "unwound" the magnetic field. transforsing to a coordinate system in which $\mathrm{B}_{\mathrm{F}}{ }^{*}=\mathrm{B}_{\mathrm{F}}$, and $B_{\theta}^{*}=b_{\theta}-2 \pi r B_{F} /$ (cylinder length). If this frame, they observed that t $t=0, q) 1$ throughout the eqgetofluid. Subsequent concentration of current led to a < 1 in en inner region. An instability acose, in which the origlnal angetic aris moved to one side, and new ope appeared on the opposite side of the plage where a manetic "island" had formed around the $\mathrm{g}=1$ gurface. The new island then displaced the old, with another anlaymetric configuration
formed, the value of q now greater than unity. Eubsequent cycles behaved differently from the first. A new manetic ialand was tormed on the surface of minimin q. when a fell below unity. This fsland did not remove the original Island, but was itself expeljed by a reaurgence of the original ishand howing g) 1. Jn sumary, they sam features similar to experiment, and results supportive of Radontsev's interpretation.

Ahso in 1975, Strauss (1976) published his equations of reduced three dimensional BHD. which may be furthei reduced to the single helicity set used by Waddell. et al (1976), but do not a priori lapose a aingle fixed helfejty on the system. These equations are probably the siaplest posaible mato description that retains some three-dimensionalyty of HBD turbulence in current-carrying bounded magnetofluid. Though inadequate in situations In which the cur rents are strong enough to generate internal magnetic flelda as strong as the exter -naliy-imposed de magnetic fields, they appear as the logical first gtep in acquifing conputational experience with reallatic geonetries. We shall discuss these equations at more length in Chapter 2.

Strauss (1976) reported results of mimerical simulation of these equations in rectangular geonetry, at unspecified, non-zero walues of wiscosity and re-
 dary conditions appropriste for rigid, free-slip, perfectly conducting malls. The viscogity and reaigtivity were necessary to danp the mighest hamonics Bis numerical alutions of the equations confirned the existence of fagt growing fled-boundary kink modes in non-cjreular tokanaks.

These equations were later used by Waddell. Carreras, Hicks and Bolpes (1979) (and \#icks, et al (1961)), and Bisknp ind Welter (1962) to study situations In which many modes nonlinemiy theract, in clrcular cylinder geometry.

Haddell, et al (1979) concentrated on situatsons perhaps appropriate to the ador disraptive gituation, seeking to observe interactions of the $m \times 2, n=1$ and $\quad=3, n=2$ modes, by selecting a profiles inftially fint in the plasma core and high values of $g\left(\sim 10^{5}\right)$. Digkan and melter (39月2) chase very large values for $5\left(-5 \times 10^{5}\right)$, and inposed boundary conditions correaponding to constant current. The consequent tiae-dependent behavior of the inposed electric fleld at the mall can model the behavior of the loop voltage in a eafor disruption. Their aigulations admittedly auffered from the inability to reaolve the sall spatial scales which are generated by the nonlinear terms. then they tan their aimulations for long tines, however, they reported observation of explosive ajaultaneous grouth in both gall-scale Alfyen turbolence, and large achle modes; in this poorly realved regime, they observed that of the energy of the dominant modes peatied, the applied electric field went regative. These sinulations, although seainal, may be dangeronaly $111-\mathrm{resolved}$.

Dnestroyskil, et al (1977) used different aets of equations to piece together a full simulation of internal disruptive ectivity. They described three atapea: In stage (1), the plama heated and g(axis) decrensed; the ebergy balance and current diffusion equations were simulated in this stage. the rapid diaruption stage, (2), eaployed equations which followed fron the mBD theory of reconnection of engnetje surfaces. In atase (3), they resumed the Integretion of equations employed in stage (1), ond g(x - i) ugain decreased. A cyclic procedure wat thas envisaged.

Sinulations of other syatena have also begun to be performed in investigation of these resiotive jncernal modes in tokank plasmas, modes which depend on third dimension for their anistence. some go to higher ordera in inverse atpect fatio expanaion, (for example, lizo, et al (1983)), while athers allow for fully three-dinensional motion of the magnetofluid (bateran, et al (1974);
 report the bbsence of totel reconnection, and the observation of oultiple changes in sipn of the -1 vorticity pattern, when they choose an inverse aspect ratio of l / s.

Other fusion devicea te also sinulated. It in interesting to mity that Whatani, et al (1983) obatre that regulta they obtained from sinulation of Intermal discuptions in 日ELIOTRON E, se well as those recently obtained for reveratd field pinches (Caraman, et 1 (1983)) sean to suggent that the gicture of internal discuption bayed on the kadoatsev (1975) reconsection model may toply to tll manetic confinement bystems pastable to -1 modea. It is even eore faportant, therefore, to discover all we can about these internal diaruptfons.
3. Theoreticsi studies.
although ladontsev's model appears in earence to aqree with both erperimental and sfeulation resulta, many difficulthes renain. Johns, et al (1979), (wadell, et al (1977)) expanded on the bisic jdea by developing a model for the tine evolution of the electron temperature and the shear at the magnetic surface, to obtain a value for the repetition tiat of ornar's sputeth mich ugrees moderstely well mith erperigents. They conclude that resistive ingtabilfties and angnetic reconnection, in conjunction with resistive henting, are responsible for sawteeth oscillations in tokanks.

Dubois, et al (1983), however, cite the emperimental results which point to "Incomplete reconnection" (Bathoff, ot ol (1979)) *s evidence that the tatal reconnection sodel is inadequate. They ingeat that the agrement between experiment and theory in the model of Jabne and co-morkers (1978) is not bufflciently convincing, because line-of-ilight integration, and e realiatic x-ray
ealanivity function were not taken into account. They dewonstrute thet 4 inenetic model in mich turbuience, starting in the region of the q a 1 surface and propagating toward the core of the plases, given better deacription of the behwior of ibternal diaruptions.

Lichtenberg (1944) suggeata intrinale stochasticity, generated by nonlinear interactions of the $=1$, $n=1$ mode with mode arising from the coroidal equilibrium, es the mechanish for the distuptive phase of the $m=1$ oscillation. Be, too, objects to the concept of the magetic ioland growing to fill the entire region within the $q=1$ surface, pointing to experinental results in which the island persists after disruption. Be suggests that growth of the "n =1, $n=1^{*}$ island could be contered by an incrense in the thickness of the stochastic layer fron the more rapid growth of second order islands.

M altogether different hypothesis, ostensibly generaked to aplain mor dioruptions, fa the iden of Montgonerg (19月2). He conjectures that an alterndtive explanation to "tearing mode" theory is one expressed in teres of inverse magnetic helicity cascades, where magnetic helicity is defined as the integral (volume overaged) over apace of the manetic iseld dotted into ito vector potential. He demonstratea that the inverfe capcade behavior, generated from a varlety of poasible gources of mall icale turbulente, would appear as an attempt of the ear rent to flatten itself. That the onset of najor dibruptive cotivity is unpredictable is noted to be suspestive of the appearance of on inverse helicity cascade, dibo,

It is clear that additional. accurate information bout disruptive mBC activity resulting from various curtent diduptions wotld be welcone.

C. Otur Approteh.

In this mork, we consider aitution which is tokanak-like in the Eollowing ways. jomaine cutting the tokanak torts, and gtrajghenlog it into a cylinder, one with perjodic ends. For conputational convendence, consider this to be a cylinder mith rectangular crose section, where polojdal" trangates into
 large tocoldal magnetic field, then. becomes a field which la externally inposed fin the z-direction, and the curient fnduced in the plasna also points in 2. The rigid metal malls of the device afe sganed to be perfectly conducting. with free-silp boundary conditions inposed.

W1th the Straves equations (Stratuss (1976); Montgonery (1982)) of reduced three-dmensional mBD as our model, we oddress the general problen of myD disruptue instabilities. Considering quiestent inftia] conditions - smoth curfent proflles and low anpltude randon nojse in the velocity field - we perform 刀umerjcal simulations to discover what sot of torbulent behavior such laninar conditions can generate.

We mumerically solve the strass equations by means of a FoRthan code mittten for the problem. The algarithats fully oseudospectral in space, with an erplicit form of time-stegptng. All possible Fourder modes hove bet kept fa the sfolation. Digejpation ig gufficjent to resolve any generoted small scale apatial gtructure. The results are thus numerical solutjons of the Eull physical model.

This thesta demangtrates the value of realistic computer simulations as a ugeful diaghogtic tool. The strase equations are time-gdvanced in periodic, rectongular bok, ond current digruptons are nceurately observed.

The equations and notstion are introduced in the second chapter. Radontser'g model will be considered in more detall, in the tindrd ehapter, the
last of the introductory chapters. In the fourth chapter, our simulation machine will be deacribed, and how the "knobs" it and B_{0} my be adjusted. He mill discusa free-decay code results, for various paraneters, in the fifth chapter. a low-order model of the stratus equations will be derivad in the suth chapter: this model contains sone festures of the free-decay simulation results, and may be used to generate predictions for the driven sinulation results. to the seventh chapter me tepults fron slaulations in which a fonstant external electric field is inposed for all tipe. The eighth chapter contains a sumary, and suggestions for further work.

II. TEL NOTATION MD D EQUATIONS USED

A. single fluid, three-dientional, lneonpressible mao.

The equations of continuity and motion when describe flows of an anconpressible, conducting fluid are:

$$
\begin{gather*}
\nabla y=0 \tag{1}\\
\rho\left(\frac{a y}{\partial t}+y \cdot \nabla y\right)=-\nabla p+\rho \nu \nabla^{2} \underset{\sim}{v}+\frac{\partial}{c} \times \underset{\sim}{B}= \tag{2'}
\end{gather*}
$$

together with a phenomenological otway lam,

$$
C\left(E+\frac{Y}{t} \times \underline{E}\right)=\dot{g}
$$

and the relevant faxueli'a equations,

$$
\begin{align*}
& \nabla \underline{E}=0 \\
& \nabla \times \underset{E}{\theta}=\frac{4 \pi}{4} \dot{\theta}+\frac{1}{2} \frac{\partial E}{\partial t} \tag{3'}\\
& \frac{\partial \underline{B}}{\partial t}=-c \nabla \times \underline{E}
\end{align*}
$$

These are a set of equations which may be taken to govern the behavior of an incongresible magnetofluid, where $v(x, y, z, t)=$ velocity field of the fluid:

```
        W) - V Ny = fluld vorticity; f = density, bere asoumed uniform and
```


curtent density; $\sigma=$ condurtivity; x epeed of light in thevo; and $\underset{\sim}{E}=$ electric field.

The equations of MAD, and the appronimations necessory to generate then, are discusged at length in varlety of places (e.g. Alfuen (1962); Braginshfy (1965); Chen (1974); Bateman (1976); Hontgonery (1963)). The essential ceasures of applicablity are set forth by Braqinakil (1965). Bis derivation of transport equations fiom kinetic equations is valid under the assumptions that the average quantities in a plana (number of patticles per unit volume, mean velocity of thete particles, and kinetic tepperature) change auch more slouly In tine and space than the time and distance it takes for the distribution functions, which characterize each particle conponent, to relay to local Mammellians, He niso assumes that the effect of the magnetic field on the collision itself may be jgnored, or the tarmor radiua is large conpared with the Debye radua, i.e. $B^{2} \lll \pi c^{2}$ [nass density of a species]. Although these measures are frequently unjustifled, the equations apparently are valuable in a wide variety of situations. This shapler model, the RHD medel, da generally applied to the stody of large scale plasma phenomena, in situations where more sophisticated models are too complicated to be of value. We wlil use the single fluld (e.g. Braginakif (1965) man model here.

An atditional approximation is that of inconpresslbility. Hontgonery (1983) applied an arqument similar to the one which establishes the inconpressibility of a non-condacting fluld to magnetoflald. Fe showed that so long as we conbider "high beta" plosma, basitaliy one in which the alfuen speed is less than the speed of sound, the approxieation is valdd. That is. since $B=$ $p /\left(a^{2} / 8 \pi\right)$, and the speed of sound in a fluld is the thermal speed, F° (speed of aound) ${ }^{2}$ (Alfven sped) ${ }^{2}$, where we have repregented the pressure p as [number denslty] [Boltzann's constant] * [tenperature], an Alfuen speed =
 that the eddition of an external magnatic field D_{0} to the dynamica of the aysteit celanes this constralat bomewht, for the case in which Bo is large conpared to the fluctuting 8 . Then, If the ratio of 8 to $\mathrm{B}_{=}$is men leas than e(B_{0}), incompressibility of the fluid is a good appronination. Tokank plasmas have very large external fielda ingoged on then, which sonewhat justifies the fincompressibility assmption. This sssumption is also very conventent. Ho equation of state, nor one for internal energy is necessary; instead, the pressure may be computed from polsson equation which is imediately derivable fron the montur equition. Further, the diffusivities of both fields will be epprosimated as tine-findependent acalara.
lgnoring high-frequency effects in faraday's law, an equation may be obtalned for the time-fovancement of the magnetic fleld from Ampere's law,

$$
\frac{\underline{E}}{\Delta t}+\underline{\underline{V}} \cdot \underline{B}=\underline{B} \cdot \nabla \underline{V}+\eta \nabla^{2} \underline{\theta}
$$

where a ncalar manetic diffusivity. $2 x^{2} /(4 \pi \sigma)$ is introduced through ohs's lam. If minitial magntic field it properly solenoidsl, it will reatin that way as function of time.
B. Disensionless Units.

We follow Pyfe mon Montosary (1976) in the uay the equations are made dimensionleas. Let U_{0} be aome characteriatic velocity of the fluld, l_{o} a characteristic length, and Po chnicteristic density which we whil choose to be $(4 \pi)^{-1}$. The other virfables ere defined in terna of these. a dinensionless. eddy turnover the is created by mans of dinensionlese distance divided by - Almensionless velocity, while, for instance, pressure is measured in units of

When these dimensionlatis variables are introduced in to the prised equations of the prewious naction, the following set ls obtajned:

$$
\begin{align*}
& \ddot{v}+\underline{v}-\nabla \underline{v}=\vec{V}+\dot{j} \times \underline{\theta}+v \nabla^{2} \underset{\sim}{v} \tag{2}\\
& \nabla \cdot \underline{\theta}=\underset{\sim}{\dot{\theta}} \tag{3}\\
& \frac{\partial \underline{B}}{\partial t}+\underline{v} \cdot \nabla \underline{B}=\underline{B} \cdot \nabla \underline{v}+\eta \nabla^{2} \underline{B} \tag{4}
\end{align*}
$$

How τ is the inverae of the Aeynolds number based on v_{0}. and τ is the inverse of aimilar Reynolds nuber. with kineatic viscosity replaced by laborstory manetic offfusfyity, It can be either mothetic Reynolds number (when U_{s}

For quiescent initial conditions, ones fin when thennetle onergy, $\boldsymbol{Z}_{\mathrm{E}}=$

 teristic guantity other than the flom speod. The sealing we choose is the
 transit times: distance of one unit is traversed in one onit of time, when $V_{A}=1$. The inverse of y becomes the Lundquiat naiber, $6=t_{b} V_{A} /$ [1aborm-
 [tinemale viscogity]. it is this stituation wich is considered here.
C. Tokamak 0rdeilag.

The manetic field in a tokanak plasm is most simply comprised of tho types
of fleld. The poloidal Eield arises self-consiatently fro the onnic current, mbile the toroidal field is lorgely generated by enternal coila. This toroidal field is at leart an order of manitude greater than the aelf-consistent poloidal tield Munerical atudies by Ebebilin, Mathaeus and Hon-qonery (1983) deaonstrate that spectral kransfer in incompressible mp turbulence is inhibited In the direction parallel to a strong, externally imposed magetyc field. These results inply that more apectral transfer ought to be enpected to occur in the poloidal plane, perpendicular to the ezternal field, and less in the direction parallel to that field. Cood use can be made of this inhibition of ercitation in what is here the $z-d i r e c t i o n ;$ any turbulence in the manetofluid my be enpected to be anisotropic, and mostly occurrian poloidally. It is astural, then, to conjecture that derivatives which consider poloidal wave numers will be larger generally than those which are taken with reapect to z.

Pollowimy Montgonery (1982), we generate a series of equations (Btrans (1976)) fan the full three-dimensional set, from order of manftude considerations alone, by means of an erpanaion parameter \in. This parameter may be interpreted an in inverse aspect ratio; typian values of the inverse aspect ratio for current generation athines are Lated in fable 2.

Let the lorge external magnetic field be repreatented as B / ϵ everywhere In the syster. Upon expanding the self-consiotent fields in powera of this prameter, the following serles are obtained;

$$
\underline{B}=\underline{B}^{(0)}+\epsilon \underline{B}^{(1)}+\epsilon^{2} \underline{B}^{(2)}+\cdots
$$

$$
V=V^{(0)}+\in \underline{V}^{(+)}+\epsilon^{2} V^{(2)}+
$$

Inserting these series into the equations, the results are considered order
 $n \geqslant 4$. An order of magnitude most be assigned to the tide derivative; no aeroth order population of hleven waves is allowed to exist, which mete that the time derivative is of).

 F is the velocity stream function.
 ged over, leaving the gentler ez dependence unaltered. it this order, the formal parameter, \in, is then \quad et equal to unity.
D. The striate Equations.

The very pleagible and convenient set of equations which results at first order are the strings equations of reduced three-diecnsionsl MBD (stats (1976): Montgomery (1982)).

$$
\begin{align*}
\frac{\partial \underline{v}_{\perp}}{\partial t}+v_{\perp} \cdot \nabla_{\perp} V_{\perp}= & -\nabla_{\perp} p+\underline{B}_{\perp} \cdot \nabla_{\perp} \underline{B}_{\perp}+B_{\perp} \frac{\partial B_{1}}{\partial I} \tag{5}\\
& +\nu \nabla_{1}^{2} \underline{v}_{\perp} \\
\frac{\partial B_{\perp}}{\partial t}+\underline{v}_{\perp} \cdot \nabla_{\perp} B_{\perp}= & \underline{B}_{\perp} \cdot \nabla_{\perp} v_{\perp}+B_{C} \frac{\partial v_{\perp}}{\partial z}+\eta_{1} \nabla_{\perp}^{2} B_{\perp} \tag{6}
\end{align*}
$$

where

$$
\underline{B}_{\perp}=\left(B_{x}, B_{y}, 0\right)=\nabla_{1} \times A(x, y, z, t) \hat{E}_{z}
$$

$$
v_{1}=(u, v, o)=\nabla_{\perp} \times \Psi(x, y, z, t) \hat{e}_{z}
$$

and

$$
\begin{aligned}
& \dot{\partial} \hat{e}_{z}=-\nabla_{1}^{2} A \hat{e}_{z}=\nabla_{\perp} \times \underline{E}_{1} \\
& W \hat{e}_{z}=-\nabla_{1}^{2} \psi \hat{e}_{z}=\nabla_{1} \times V_{1}
\end{aligned}
$$

These equations are quite similar to the equations of two-dienasional mad. The only z-derivatives that appear in the system are those which are multiplied by the large toroidal field $\mathrm{B}_{\mathrm{o}} \mathrm{E}_{\mathbf{z}}$. All other derivatives are taken with respect tog or y.

It is consequence of this ordering that the velocity and magnetic fields in the z-ditection are passive salty at this order.

$$
\begin{align*}
& \left(\frac{\partial}{\partial t} \cdot \underline{v_{4}} \cdot \nabla_{1}\right) v_{z}=\underline{B}_{1} \cdot \nabla_{1} v_{z}+B_{0} \frac{\partial}{\partial z} R_{z}+v \nabla_{1}^{2} v_{z} \tag{7}\\
& \left(\frac{\partial}{\partial t}+v_{1} \cdot \nabla_{1}\right) B_{z}=B_{1} \nabla_{1} B_{z}+B_{0} \frac{\partial}{\partial z} v_{z}+\eta v_{1}^{2} E_{z} \tag{8}
\end{align*}
$$

If they are initially zero. they will remain so, They are initialized to zero in the simulations described in this work.

Thus, we me left with a eaten of four equations to solve, rather than sir. This spate may be reduced further, by taking the curl of the momentum equation, and removing the curl from the magnetic field equation, to obtain

$$
\begin{align*}
& \frac{\partial A}{\partial t}=A_{2}\left(A_{2} m D_{1}\right)+B_{0} \frac{\partial t}{Z}+F_{1} A_{1}+E \tag{10}
\end{align*}
$$

Ihis 18 s syete of tho equtions to time-aduance, one for the vorticity. a (z,f,z,t), and nother for the vector potential, m(n,y,,t. The addfiomal

The quadratic congtonts of the motion tor the strous equations ore the sane ts those for the full threedinensionil bet: the total epergy,

 pseudaspectral simulation of there equations is pogsible when conservation of energy is pteudospectially enforced.
E. Boundary Conditions.

The boundry conditions inponed on the myter are those appropridet to perfodic cylinder wherigid, free-slip, perfectly pohoucting oide mils. For infindtely conducting milis, the normal conponent of the eqpetic field nust qo to zero th the wall. This wil cesult if the rector potentide is constont. at the mall at eny instint of tiet khs constant fo here set to zero. In this curfent version of the gtrangs epde, the botudpry condition inponed on the veloctty field at the mell is thet obly the morenl conponent of the velocity field go to zero at the mil. or $y \cdot \hat{n}=$ F, where \hat{n} de unit vector normel to khe will. In analogy mith the mognetic quintities, this condition 15 et if
the velocity atren function is a constant at the mall. congtant with may be set to zero. Finlte conductivity within the fluid qives the condition that the tangential component of the carrent muat ge to zero at the mull.
becones component of the electric field is continoous, and must be zero inside a perfect conductor.

If the strean function and the vector potential are enpanded in half-range Fourfer sine aerita in a and y, and full complen Fourier gerien in a. all theate conditions are mutomatically met, latace, this is the choice of expansion functions ade for our sinulation code (hereafter, the "sine-strauss code).
III. CYIMD日ICAL MODELING

A difficulty sides when attempting analytical arguments in geometry with two non-1pnorable coordinates. In order to gals some comprehension of the aitnation later treated numerically, polar coordinates are here employed to anamarize a one existing approaches which are beginnings to satisfactory andytical treatment of the problem.
A. the Internal $=1$ Mode, in Circular cylinder.

Following Manheinera(1984), Instabilities are sought in the linearized Strauss equation a in polar ceotainatea. If (ny) -) (r., $)$, only z-independent ofolilbila without flow are allowed, and perturbations of the form

$$
\begin{aligned}
\frac{\partial \omega y^{(1)}}{\partial t} & =B_{t}^{(1)} \cdot \nabla_{\perp} j^{(0)}+\underline{B}^{(0)} \cdot \nabla_{1} g^{(1)}+B_{0} \frac{\partial g^{(1)}}{\partial z} \\
& =B_{r}^{(1)} \frac{\partial}{\partial r} g^{(0)}+B_{\theta}^{(0)} \frac{i m}{r} j^{(1)}-B_{0}\left(1 k j^{(i)}\right) \\
& =i\left[B_{\theta}^{(0)} \frac{m}{r}-k B_{0}\right] g^{(1)}+B_{r} \frac{\partial}{\partial r} g^{(0)}
\end{aligned}
$$

 the following may be obtained

$$
\begin{equation*}
\gamma \omega^{(1)}=i F j^{(1)}+B_{r}^{(1)} \frac{\partial}{\partial r} j^{(0)} \tag{11}
\end{equation*}
$$

Prom $\quad \nabla \times \underset{\theta}{\underline{B}})_{z}=\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{\theta}\right)-\frac{1}{r} \frac{\partial}{\partial \theta} B_{r}$

$$
j^{(1)}=\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{\theta}^{(r)}\right)-\frac{i m}{r} B_{r}^{(+)}
$$

with $\quad j^{(0)}=\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{\theta}^{(0)}\right)$

$$
=\frac{1}{r m} \frac{\partial}{\partial r}\left(r^{2} F\right)
$$

and (al) may be witt en

$$
\begin{align*}
& \gamma \omega^{(1)}=i F\left\{\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{\theta}^{(1)}\right)-\frac{(m}{r} B_{r}^{(1)}\right\} \tag{22}\\
&+\frac{B_{r}^{(1)}}{m}\left[3 \frac{\partial F}{\partial r}+r \frac{\partial^{2} F}{\partial r^{2}}\right]
\end{align*}
$$

Since $\quad \nabla \cdot \underset{\sim}{Y}=B_{1}$ and $\nabla \cdot \underline{\sim}=\mathbf{I}$,

$$
\begin{aligned}
& v_{\theta}^{(1)}=\frac{i}{m} \frac{\partial}{\partial r} r v_{r}^{(1)} \\
& B_{\theta}^{(1)}=\frac{i}{m} \frac{\partial}{\partial r} r B_{r}^{(1)}
\end{aligned}
$$

Also. $\left.\quad W^{(1)}=\nabla r y\right)_{z}=\frac{1}{r} \frac{\partial}{\partial r} r v_{\theta}^{(1)}-\frac{i m}{r} v_{r}^{(1)}$

These equalities allow the re-expreasion of (12), where the avperserfpt (1) is dropped.

$$
\begin{align*}
r\left[\frac{1}{r} \frac{\partial}{\partial r}(r\right. & \left.\left.\frac{i}{r^{r}} \frac{\partial}{\partial r}\left(r v_{r}\right)\right)-\frac{i m}{r} v_{r}\right] \\
= & i F\left[\frac{1}{r} \frac{\partial}{\partial r}\left(\frac{i r}{m} \frac{\partial}{\partial r}\left(r B_{r}\right)-\frac{i m}{r} B_{r}\right]\right. \tag{13}\\
& +\frac{B_{r}}{i m}\left[3 \frac{\partial F}{\partial r}+r \frac{\partial^{2} F}{\partial r^{2}}\right]
\end{align*}
$$

 Turaing to equation (6), and eaploying the anme perturbations at were uted for (9), (6) ylelds:

$$
\begin{aligned}
\gamma \underline{\mathrm{E}})_{r} & \left.=\nabla \times(\underline{v} \underset{\sim}{\mathrm{E}})_{r}-\eta \nabla \times(\nabla \times \underline{E})\right)_{r} \\
& \left.=-V_{\perp} \cdot \nabla_{\perp} \underline{B}^{(0)}+\underline{E}_{\perp}^{(0)} \nabla_{\perp} \underline{V}_{\perp}+B_{0} \frac{\partial v_{r}}{\partial z}+\forall_{\perp}^{2} \underline{E}\right)_{r}
\end{aligned}
$$

If if is apill enough to be neglected,

$$
\begin{align*}
& \text { - E,ikvr } \\
& =\left(-i k E_{n}+\frac{i f}{r} E_{j}^{i n}\right) V_{r} \\
& G_{r}=\frac{-F V r}{\gamma} \tag{14}
\end{align*}
$$

Inserting (14) into (13) yield

$$
\begin{aligned}
& Y 2\left\{\frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\left(r v_{r}\right) ; m^{2} v_{r}\right]\right. \\
&= F\left[-\frac{\partial}{\partial r}\left[r\left\{\frac{\partial}{\partial r}\left(r F v_{r}\right)\right\}\right]+m^{2} v_{r} F\right] \\
&+m r v_{r} F\left[\frac{\partial}{m}\left(3 \frac{\partial F}{\partial r}+r^{2} \frac{\partial^{2} F}{\partial r^{2}}\right)\right] \\
&= F^{2}\left[-v_{r}-3 r \frac{\partial v_{r}}{\partial r}-r^{2} \frac{\partial^{2} v_{r}}{\partial r^{2}}+m^{2} v_{r}\right] \\
&-\partial F r^{2} \frac{\partial v_{r}}{\partial r} \frac{\partial F}{\partial r}
\end{aligned}
$$

And aince $\quad \frac{1}{r} \frac{\partial}{\partial r}\left(r^{3} \frac{\partial}{\partial r} v_{r}\right)=\frac{1}{r}\left(3 r^{2} \frac{\partial}{\partial r} V_{r}+r^{3} \frac{\partial^{2}}{\partial r^{2}} V_{r}\right)_{2}$

$$
\begin{align*}
\left(r^{2}+F^{2}\right)\left[\frac{1}{r} \frac{\partial}{\partial r} r^{3} \frac{\partial}{\partial r} V_{r}\right]= & \left(m^{2}-1\right) V_{r}\left(r^{2}+F^{2}\right) \tag{15}\\
& -2 F r^{2} \frac{\partial V_{r}}{\partial r} \frac{\partial F}{\partial r}
\end{align*}
$$

or

$$
\begin{equation*}
\bar{r} \frac{\partial}{\partial r}\left[r^{3}\left(r^{2}+\gamma^{2}\right)\right] \frac{\partial}{\partial r} V_{r}=\left(m^{2}-1\right)\left(r^{2}+f^{2}\right) V_{r} \tag{16}
\end{equation*}
$$

White (1983) remarks of (16) that when $\mathrm{r}^{-3} \mathrm{f}^{2}$ is neglected with respect to $r^{3} \mathrm{p}^{2}$, the equation may be obacived to exhibit a Angular nature in the neigh-

 be the angular radius, I_{s}.

Hanheiner examines the behavior of (16) in the neighborhood of $r=$. From (15). when $r \cdots 1.2 F r^{3} \frac{\partial v_{r}}{\partial r} \frac{\partial F}{\partial r} \rightarrow$ f. That leaves

$$
\begin{equation*}
\frac{\partial}{\partial r} r^{3} \frac{\partial}{\partial r} V_{r}=-r\left(1-m^{2}\right) V_{r} \tag{17}
\end{equation*}
$$

Solutions to (17) ere of the form $v_{r}=\beta r^{m}$ or $V_{r_{i n}}=\beta r^{m-1}, \psi_{r_{r}}=F^{-1-m}$ V_{t} most be discarded because it is not well-behaved in the neighborhood of the or jain, and $v_{r}=\beta t^{m-1}$ remains.
 pleas enter does not move, If $=1$, however, $\mathrm{v}_{\mathrm{r}}=\beta$. Hence, near the origin, (Hinheinera(1983)),

$$
\begin{aligned}
v_{r} & \operatorname{kic}[\beta(0 \theta \theta+i \sin \theta)(\cos k z-i \sin k z)] \\
& =\beta[\cos \theta \cos k z+\sin \theta \sin k z]
\end{aligned}
$$

At $z=0$.

$$
\begin{aligned}
v_{r} & =\hat{\beta} \cos \hat{\theta} \\
& =v \cdot \hat{\theta}_{r} \\
& =v \cdot\left[\hat{e}_{r} \theta+\theta+\hat{\theta}_{y} \sin \theta\right] \\
\Rightarrow \quad V & =\beta \hat{e}_{x}
\end{aligned}
$$

$x t z=\frac{\pi}{2 k}, \quad y=\hat{\beta} \hat{e}_{y}$

$$
\begin{aligned}
\text { similarly, } \begin{aligned}
B_{r} & =a[-\sin \theta \cos k z+\cos \theta \sin k] \\
& =-a e_{y}, a t \quad z=0 \\
& =a \hat{\theta}_{x}, \quad a t \quad z=\frac{T_{4}}{2 k}
\end{aligned}, l
\end{aligned}
$$

That is. the solution ts seen to pe one in which the velocity field locally points towards increasing vector potential, A.

A helical perturbation is observed in both fields. It ls apparent, then. that the m = linear instability may be of use in modelling internal distopfive activity. It is the only m considered in the remainder of this chapter
 $\psi_{4}=4$ could satisfy the boundary condition. For interesting behavior to be found in a cylinder with circular cross section, other term in the equations must be allowed, egg. a nonzero value of the resistivity. Note that this sitnation does not hold necessarily for cylinders with mon-chycular cioss-gection. In 1976, Edery, Laval. Fellas and Boule showed that the stability of the m = :
fdesi mode, the internal kink mode, is very mensitive to sall distortions of a circular cylindrical equilibriun.

Ben though it ta found to be necesary at this order, realstivity nay not of al be important everguhere in the planan. Manheimerin 1984 argues that if the time for a mode to grow ia much greater than the tiee it would take for flfyen waves to satablab a pressure balonce, anay fros the singular reqion, then pressure balunce can be suintained almost everywhere, outside narrow layer, it is conceivable that constant solutfons can exist.

Inside the layer, near $F=(14$) is no longer the appropriate qoverning equation. Reaistivity cannot be neqlected, of

$$
\begin{equation*}
\left.E_{r}=\frac{F v_{r}}{\gamma}+\frac{\eta_{1}}{\gamma} \nabla^{2} B\right\rangle_{r} \tag{18}
\end{equation*}
$$

In this case, (15) cannot be obtaned fros (13), but possible growth cates nuat be calculated from the coupled (13) ant (19). Coppl, Pellat, Rosenbluth and Rutherford (1977) bave calculated such rates for the general case, where $\mathrm{B}_{\mathcal{Z}}$.ay slso be a function of radios.
B. 胜detsev's scenario for an Internal Dieruption.

This complicated moute is not necesary in order to thederstand a process that may explain an internal digruption. The process whereby the plasma may first develop an internal helical perturbation, then flatten, was described in a aingle helicity franework by Radontsev in 1975.

1. Single deliefty.
 $\frac{\partial}{\partial z}=\frac{k}{m} \frac{\partial}{\partial G}$. and for $-Y=E_{o}=$, equation (10) may be rewritten;

$$
\begin{aligned}
\frac{\partial A}{\partial t}+v_{\perp} \cdot \nabla_{\perp} A & =E_{v} \frac{k}{m} \frac{\partial \psi}{\partial \theta} \\
& =E_{\square} \frac{k}{m}\left[\frac{1}{2 r} \frac{\partial \psi}{\partial \theta} \hat{r} \cdot \nabla r^{2}\right] \\
& =E_{u} \frac{k}{2 m} \underline{v} \cdot \nabla r^{2}
\end{aligned}
$$

or $\quad \frac{\partial A}{\partial t}+V_{i} \cdot \nabla_{1} \varphi=0$
where $\rho=A_{z}-\frac{B_{0} k r^{2}}{2 m}=A_{z}-\frac{k r}{m} A_{g}$, for $A_{0}=\frac{r E_{z}}{z}$. since $\frac{k r}{m} \lambda$ is time-independent,

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}+v_{L} \cdot \nabla_{\perp} \varphi=0 \tag{19}
\end{equation*}
$$

It may be shown that if flux through a helical ribbon at radius r and pitch defined by $\mathrm{M}_{\mathrm{i}} \times \mathrm{kz}+\mathrm{m}$, by integrating A along path tangent to \hat{e}_{z} -

 that ribbon.

 call that B_{o} is the externally imposed m_{2}.
2. The Description.

From the observations of in Internal disruption in yon Goeler, et al (1974), Radontay (1975) conjectured that since the $\mathrm{a}=1$ gur face mos reported to lie in the plasm, the unstable mede mas of form $=1$. He thur specified his choice

 potentially dynanic configuration thas exista, one highy analogous to the fa-
 Small mounts of resiativity dided to the MBD deacription will serve to make reconnection of the eagnetic field lhes possible. Random nonunifornities then may krigger the instability in the region of a nacent z-point. Reconnection will begin to take place. Sadontsev suggeated that the reclosing of the field with itself will intensify the field in a region opposite to the reclosing region, generating force that will squeeze the internal colun toward the opposing field. The process will become thus progressively more tapit, and not be sile to stop until the field ${\underset{\sim}{*}}_{*}$ acquires the ane aign throughout the colunn (a) 1). and the current has becone redistributed.

Inconpressibility of the fludd, solenoidality of the mgnetic fleld, and negigible resistivity in regions own from the singular surface lead to the doe that flus is distributed to a definite redius t, begond the rodius r. of the q - 1 afnqular surface. The disturbance starts in the neighborbood of r_{s}, and morks ite may out from r_{5}, and tomerd the origin. by the completion of the reconnection process, the inner flux ing reclosed with an equal anount of outer flux of opposite sign. Eeyond r_{o}, the hellcal flum function renains unperturted. It is generally possible, then, for diacontinuity to orise in the first derivative of the helical flux function with respect to radius, that is, athet curcent moy be observed at $\mathrm{r}=\mathrm{r}_{\mathrm{o}}$, with algn opposite to that of the Innez current colimo.

Kadontsey (1975) gives a simple exanple, to denonatrate these fentures, in
 ter reclosing would be sbout 934 less than it wat ot $t=*$.

This energetically favorable mechatige is one which plaseably explains a single sawtooth. If the fluy function returns to helically unperturbed state at the end of the reclosing, of he conjectures, and the velocity field goes any, oxtarnal heating can once agin drive the curient to amoothly steepened profile. with $q=1$ gurface agan in the plaga. The single helicity disiaption can then repeat.

Although this reasonable aingle helicity scenario cannot be expected to hold emactly in thref-diaensional plasis with a cross-aection that is other than circular, it eay provide an approwinate deacription of the events which take place in a guiencent plasa which has a $\mathrm{q}=1$ singular surface enbedded in the large-scale vector potential. We proceed, now, to nonlinear, multiple helicity calculation of these conditions, numerical simulation of the strass equations in rectengulat geometry.

IW, TEE EJHOLHTIOA CODE

lite turn to discussion of the method we use to gain information Eron the straus equations.
A. Algoritha for the Bine-Strauss Code.

1. Focus on the two-Dtmensjonal square.

It is easier to firgt consider the two-dimensional, bounded poloidal cross-aection of our calculation. Let the strean function and the vector potential be expanded in the sine series in I and y . we now have two speces we can think abouk, a physical (x, y) space, and a mavenuber (k_{x}, k_{f}) apace. The sine series are global and orthogonal,

$$
\sum_{n=1}^{N-1} \sin \left(\frac{\pi j n}{N}\right) \sin \left(\frac{\pi k n}{N}\right)=\frac{1 y}{2} d j k
$$

Hence, if we are given values of the velocity atrean function and the manetic vector potential everywhere on the bounded $x . y$ grid, their real pourfer coefficients, their counterparts on the bounded mavenamer $z_{y}, k y$ grid, my be obtained. For fistance, if me assign values to the strean function which correspond to $\sin (x) \sin (y)$ at all grid pofints x, and y_{k}, the Fourier space mould have one
 obtain this information, nurerically, by using aome veraion of cooley and Tukey's (1965) fast Pourier transfores (PPTs). Bere we use fenperton's PPIs (1981), a vectorized veralon of earlier scalir ffts.
2. The Pull expansions.

It is natural to erpand the variabled in full, compler fourier series in the periodic "toroldal" difection. The full. three-diensional expansions, then,
 the equations are nonlinear, fare wat be taken to moraine the sums "on the may to Pour ier space", to quid inserting unconsidered factors of n in the ti ne step size.

For entaple, the vector potential fa expanded

$$
\begin{aligned}
& A\left(x_{j}, y_{k}, z_{l}\right)= \sum_{m, n=1}^{N-1} \sum_{p=-M / 2}^{M / 2-1} \widetilde{A}_{m n p} \sin \left(m x_{j}\right) \\
& * \sin \left(n y_{k}\right) \exp \left[i p z_{l}\right] \\
& x_{j}=\pi j / N, \quad y_{k}=\pi k / N, z_{l}=2 \pi l / M \\
& j, k=1, \ldots, N-1, \quad l=0, \ldots, N-1
\end{aligned}
$$

with transformation

$$
\begin{aligned}
& \hat{A}_{m n p}=\left(\frac{2}{N}\right)^{2} \frac{1}{M} \sum_{j, k-1}^{N-1} \sum_{i=0}^{1} A_{g k i} A m\left(m_{n}\right) \\
& * \sin (n y k) \because f\left(-i f z_{i}\right. \\
& m, n+1, \ldots, N-1, p=-\frac{11}{2}, \quad \frac{1}{2},
\end{aligned}
$$

Values of the estreat function and the vector potential at every grid point, then. are all that is needed to generate any of the other $4 B 0$ variables required. at a given tine.

3. The mbancenent.

He are not considering static solutions, however. The equations have partaal derivatives with respect to time, which also mast be treated. For convenience, an explicit, weakly unstable method, the second order Runge-Eutte scheme, is chosen. For $A \leq$, or A, and $f=$ the right hand aide of equal-
tion (9) of (18), $\frac{\text { dh }}{\bar{\partial} \hat{t}}=\mathrm{f}$ is discretized with second order Ronge-mutte:

$$
\begin{aligned}
& u^{n+1 / 2}=u^{n}+\frac{\Delta t}{2} f^{n} \\
& u^{n+1}=u^{n}+\Delta t f^{n+1 / 2}
\end{aligned}
$$

where Δt ia the timentep and n is the time inder.
our tiae atep is sanil enough that accuracy is llnearly assured for approximately nine hundred Alfén transit times, (Dahiburg, et (1985) even without dissipation. It ia poasible to demonstrate that the method mep be atablized, in model linear problef, by a suitable choice of diftuafulty. The convenience. then, ia not outweighed by any errors generated by this method, and we tind it to be satiafactory one.

The nonlinear terna in the atrauss equations also present source of potentinl numerical difeiculties. A standard way to treat theas teras is to remove all allasing errors gencrated by then, at each time atep (orazag (1971)).
 for tach dimension. he would consequently prefer to solve the equations in a much more efficient fore then the deallased Galertin form.

A good candidate for an efficient form is that of collocation, where by collocation is meant that the equations thentelves are entorced at each grid polat. The nonlinear terns would then be eviluated in the actunl physical apuce of the problem, at each grid point, and no further manipulation mould be perforived on then.

Collocation, combined with apectral evaluation of the derivatives, mas tersed "pseudospectral" by Orazeg (1971). In two pepers, (orazag (1972); Fox
and Orszeg (1973)), he reported that the greudospectral wethod generates solutions which are nesty dentical to the more coreful spectral, or dealisaed, method, when anount of viscosity mufficient to renove unresolvable amoll gatial structure is introduced. These results were obtined for the two-dinensional maver-stokes equation, In its vorticity formiation. they further reported that more sccurate aolutsons were generated by the code when the equations were mitten in a form which pseudospectrally conaerved kinetic ehergy.

He performed ateries of numerical enperiments on the two-dimensional min equations. Our results were in bapic agreenent with the findings from the Mavier-stoke equation, with single exception. we observed intesse numerical inatability, unless the equations were miften in fors which paeudospectrally congeryes total energy. Bo, we choose to tine advance the equationg in a form wich would semb-conserve total energy in the absence of any dissipation. gy runing two-dimensionsl version of the code, we find that indeed the energy is congerved to within efen percent, for any Alfven transit thes. Including diasipation in the problen yields the neceasary cesult that pectral and pteudospectral rebults agree remrkably weli for long ties. There Cindinga are discussed at greater length in Appendin A of this thesis.

4. Algoritha.

Given vorticity, $\omega^{\omega}\left(k_{x}, k_{y}, z\right)$, and vector potentisl, $A\left(k_{x}, k_{y}, z\right)$, everywhere on the (k, \ldots, t) grid the n-th time step. we solve for the vorticity and vector potential at the ($n+$ first) atep, and 50 on. Because the code is paeudeapectral, time advancement can be performed in the most convenient pace.

He wish to fus this code on a vector conputer, ERAY-1, and consequently we must consider its gall cort memory. If we wanted to write the code with a completely atraightforward algoritha, mbout fourteen three dimenalonal artays nould
be needed; arrays like "U" and "bx", and so forth, conld then be ured, mere the array name would directly correspond with the infoimation the ariay contained. Thia algotitha mould hove the disadvantage of iot fitting in the machine for my realiotic grid size. Bence, we perforn the entire enleulation in

The key features of the alqortha are the following. All nonlinear product terms are forned in the actual physical space of the systen. Derivativas are taken in the suitable Foutier space. The strauss approximation da such that the only z-derdvatives ever needed are on the strean function, and the curreat. only thene two arraya, then, ore ever transforned to the full, conplex pourder sonce for E . Thys efficient feature of the code gomes about because me using a pseudoppetral schene, rather than a spectral one. In other words, the pseudospectral code is even mote efficient than the tarlier estiate given mould indicate. Aghin, for convenience, the motonl time-ndwancement is perforsed in a hybild (k_{k}, h_{y}, s) space. Hith this fully-vectorized algorithm, we Elad that the $32 * 32 * 16$ grid code takes about $1.7 \mathrm{sec} / \mathrm{t}$ mestep on CRAY-1 aupercomputer.
8. Cholces of the sell parameter. η.

Before we actually beqin reporting physical computations, one more question must be reaplved: how much dissipation is necessaty to keep all nonlinearly generated soatial acales within the avallable computational liaits 7 The answer to thia can only be estimeted, priori. A rule of than for finite difference codea is that there is about one to one correapendence between number of grid points in any one dimension, and the walue of the Reynolds nomber,
 be necessary to properly resolve a ainulation mith a Reynold's gumber of 1144.

Additional factors of four, or so, may alter the estiante by augenting that in general apectral code needs about one fourth the resolution a comparable finite difference code would requite, for the sase degree of accuracy. Ths leaves us with only crude estinates; we mat turn to enirical tests.

We find that weh seall scale spatial structure fs generated in the simulation near the kine of a kinetic energy peak, fy examining plots of our total spectrol energiea at these times, we may deterine whether or not the ainula-
 Lundquiat number, $1 / \nmid$, of 1.15, we Indeed have enough resolution to belifeve the results. Thit my be cabily read off a contour plot of modal energy. The aris
 tour plot, then, gives a good iden of what in happening to the total modal energy in the full Pourder apace avallable to the calculation. The lowest value of modal energy plotted is $1 * 11^{-7}$. It is evident that this simution ovolved with avfeicient anount of recolution; see Fig. 3a.

If the Luadquist number is raised by only factor of five, wile leaving the grid saze unchanged, the sinulation is nat so succesaful. A plot of cotal modal epectial energy, scaled identicaliy to the one above it, shows that the resolution has been severely exceeded, as displayed in Fig. 3b. It this case, the nuatrical results are deened untrustworthy.
 necessary to increase the grid size, in order to do so. The last plot of apectral energy, agtin senled as above, shows the total modal spectral entrgy for our most maltiour run, one with $k_{x_{\text {max }}}=64, k_{y_{\text {ma }}}=64$, ind k_{7} mos $=16$,
 tion to generaliy accept our similation'a results, as anow in Pig. 3c.

Because the boundary conditions imposed on the velocity field are the free-
slip conditions, the matority of aine-6traves simulations are run wlth no viscosity whtever. A consequence of the Alfvén effect is that at hish mavenumber, kinetic and magnetic energles approach equipartition. By virtue of this. If one Efeld's fourier coefficients are belng dissipated in the bigh wavenumber portion of phase space, so also will the other field's foutief coefficfenta be diainished. Therefore, only one diffussulty, here the inverse Lundquist number, is necessary to draln off amall scale structure in both fields (cf Rralchnan (1965); Fyfe, Montgomery and Joyce (1977)).

Y. 81nULATIOA REBULS, DECAY.

We now embark on discussion of the numerical simulation results generated by the aine-Strauss code.
A. Choices of the large parameter, B_{2}.

A crucial large parameter must be set in the calculations. This parameter is the field strength of the externally imposed magnetic field, f . For
 transfer would be reduced to near tho-dimensionality. For $B_{;}$too sail, the strung approximation mould break down. We find that for a middle range of valuts of B_{j}, we are ale to induce current disruptions, processes which thrive on spectral transfer in all three Fourier ainentions. Recall from the derivation of the straus e equations in the second chapter that the sell formal expansion parament (interpretable as the ratio of minor radius to mo jor radius) multiplies bath b_{0} and z everywhere; that is. $\in B_{a} \bar{z}_{\bar{\delta}(t)}^{\bar{z}}=B_{u} \frac{\partial}{\partial z}$
we will now exhibit results from trio of simulations. hall three are initial value problems, wi th the gene initial current profile:

$$
\left.j(x, y, z)=30 \sin x \sin y \operatorname{Exp}\left[-5(x-\pi / 2)^{2}-5,-i 2\right)^{2}\right]
$$

Par each of the three ans, the velocity field ia initialized with broad-bund, low order random noise:

$$
W_{k}-S_{\left(n^{-2}\right)} \text { for } k_{x}, k_{1} \in[4,8]_{2} \in(1,4]
$$

The difference between the first and the second simulation is that we choose
$3_{g}=8$ for CASE 1 , and $B_{0}=4.3$ for CASE 2 . Both of these rans mere performed
 fn values of Lundquiat number, the arid aize, and purticultr values of $\overline{3}$ it $=$ t) that the aecond and the third rons differ, CAEE 3 was run on doubled, 64 * $64 * 32 \mathrm{grid}$, with a lundquist number of 44.
B. $\square_{0}=0, \eta=1,01$.

CASE 1 , the run with the large value of B. is an Inhibited siculation, after a brief burat of ectivity, me find that the model transfer quickly becones alnost erclusively tuo-diensfonal.

1. Geonetry,

The simulations thenselves are performed in three-dinensional box in physical space, with a bor of fontical magnitude in Fourler apace. we find it mont ugeful to focus on few slices in the cylinder, when dieplaying our solutions. In particular, the ones shown here will be the (s,y,z π) slice, apoloidal
 venient to renenber that the initial manetic ands is a dot in the eidde of the poloidal cut, at $\left(n=\frac{\pi}{2}, y=\frac{\pi}{2}\right)$, and 1 a a line up the center of the toroidal cut, at $(x=\pi / 2)$.
2. Initial conditions.
we use thase slices to display contours of the initial conditions, in Fig
5. The eross-aections are the pololdal ($x, y, 7=T$) blices, wille the geries of parallel lines are the ($x, z, y=\pi / 2$) alices. The externslly imposed eagnetic field points along these contours. Mote that the contours of initial vector potential, and of curcent, se very saooth and unperturbed. A poloidal cot of the strean function suggesta a velocity field which is randon, and of not much
strength.
The inftial onidiractional energy spectra are displayed in two mya, in Fig. 6. To the left are "mountalntop plots", where the contori values are chonen at equally spaced intervals. To the tight are "powers of $\mathbf{z}^{\prime \prime}$ plots: contour values chosen here are aeparated by powers of two. Also, this calun of plota dre all contoured with the some values, a feature whith enables us to see equal levels of gatil sfole spatial structure in the kinetic energy, the magnetic energy, and in the coablned, total eneray.

This type of diagnostic is ugeful for two remons. Onf is that by ermining the spectral plote me can imediately detect where most of the nagnetofluid energy is centered in the computation's Pourier space. The other, less physical retson, ia thot by frequenty observing these plots, we abe to bet the agnitude of enill scale apatial structure qenerated in the simustion, and consequently detersine if nmerical retolution is grosgly exceted.
3. Global dimpnsetics.

We ala find it tseful to consider the ghomel quantitien, as function of bime. Por Instance, wind the kinetic energy to be the most valuable harald of interesting activity; see Fig. 7n. Naqnetic energy is less sensitive; the overill decay of the men curfent is the dominant fenture of this quantity, as may be observed in Fig. 7b. h ratio of kinetic to mognetic entgy wlll often highlight the relative amounte of nctivity in the two fields, plotted in fig. 7c. By monitoring the net, volube averaged curient. Pig. 7d, we can tee that the integrated current in the cylinder does not decay moch at all during this simulation. The change of magnetic mergy whth ceapect to time varies as the square of the curcent; this quantly show un, in Pig. 7e, that manetic energy wears amay smothly, and without any periods of enhanced dissipation.

We consider thatan to be non-diaruptive one, since bo disturbance it able to rise up out of the initial, very low-level noise in the velocity field. and grow to doninate. The current coluan kinke anall mount, bat only that. The mojor activity in the simulation, long before we teralnated it, was the unrelieved ohate decay of the magnetic field.
4. Calculating 9.

Another diagnostic, one wich $\begin{gathered}\text { ight posably explain why this run is so un- }\end{gathered}$ eventful, is the safety factor " 0 ". 0 has formula in a right circolar cylin der. In a cylinder of square cross tection, homever, it must be obtined numerically.

The standard definition for the fafaty factor, 9 , In a fusion device is the number of tines a magnetic field line winds toroidally divided by the nomber of tines the field line wind poloddally, is the linit of on infinite number of mindings (cf batema 197日). We apply that definition here to a crost-atction in which neither of the coordinates (x, y) is ignorable. The key feature of our algorith is that we use the equation for magnetic field line to obtain the ratio of toroldal (z) distance traversed to a sibgle tranalt pololdally.

 We tranaform this array to the full, complex Fourier apace in k_{x}, y_{y} and k_{z}, and
 tial which has been toroidally overaged. He use this array to torm \mathbf{z}-averaged values for $B_{y}\left(k_{y}, k_{y}\right)$ and $B_{y}\left(k_{y}, k_{y}\right)$. Interpoleted walues for $\boldsymbol{f}_{x}(\mathrm{H}, \mathrm{y})$ and $\mathrm{B}_{\mathrm{y}}(\mathrm{n}, \mathrm{y})$ way be obtained from these fourter coefficients. For instance:

$$
B_{x}(x, y)=\sum_{m, n=1}^{N-1} \tilde{B}_{x m, n} \operatorname{smn}(m x) \cos (n y)
$$

where m and y are not necessarily the frid poists.
Adding constunt sall increntent oz to z, and generally starting at a grid potnt ($x ; \pi j / N, y=16 \pi / 32, z=1) .1 \in(N / 2, N-1)$, we step along a manetie field line by menns of the equation

$$
\begin{equation*}
\frac{d x}{B_{y}}=\frac{d y}{B_{y}}=\frac{d z}{B_{0}} \tag{24}
\end{equation*}
$$

After one lopp poloidaliy, we find ourselveq back wlthin the congutational (x,y) elenentel grid square from \quad 位ich we began the circuit. We then calculate, for one trip around the center of the aguare.

$$
9 \text { - (z distance stepped)/(length of the square cyilinder). }
$$

Por modernte distances off the center of the equare at ($\bar{T} / 2, ~ \pi / 2$), this g-vilue is nearly equal to that qiven by the formula for the q-value over length L of of atraight circular cylinder,

$$
q=\frac{2 \pi r}{L} \frac{B_{z}(r)}{B_{\theta}(r)}
$$

 x for the region of interest.

Upon caleviating "g" profiles for this run, we fad that they ate amoothly Incteasing futctions of distance from the magnetic anig. lnitially, the man ourface is within the plasma, in Pig. Aa, but by $t=0.62$ the aurface has left the plasea. Dever to return, \quad of displayed in Fig. 0b.
5. Quiescent resulta; $=6.02$.

Contours. Fig. 9, at $\mathrm{t}=\mathrm{B}, \mathrm{B2}$ ghow largely unperturbed state,
Spectra this tine, fig. 14, yield the information that most of the
energy is locited in the $k=$ mades, the two-dimencional ones. This x sult substantiates the mo-dimensionsl mort of shebalin, et al (1903), in thin geonetiy.
C. $B_{3}=4.3,-4=1$.

This sizulution beqins with all the same parameters and conditions as the

 ally out of the nolac, and comes to dowinate the relocity field. Corrent filaments form, and helichlly wrap themelves around the mgnetic aris, The tllaents contrect tomards the outer ife of the disturbunce.

Hedr the tipe of the fifst penk in kinetic energy, the current profile abropty becomes flat, with moch sull sale spatisl structore visible in the shell of the current colun.

The kinetic ebergy decreases, then, apd curcent filamente fain form, to once more wrap themseluet bout the anis. The helical mense is still counter ciocinise, the helfoity of the indtial unpertorbed field. The disipution has broust mbout atectase in the aplitudes of migher order Pourier modes. however. This time, the ran soon becones quiescent, with the discuptive behovior - fenture of the pat.

1. G-Proflle at $t=$ E.
mytin we conpute minitial " p° profile, to find that " g^{\prime} dips well below
 choice is justified tor two reasons. The firat is that, since this is frefly decaling run, the initial current mot be quite petked for to to obderve any disruptive behayior before ohaic dissipation becomes overwhelsing.

Ment, note the value of "g" near the mall of the cylinder, in Pis. 11 . Thas value is not so uncealitic; noi unceported. we sy milow, then, that this "g"
profile existe within the realn of the possible, for tokenk plasen.
2. Ghobal quantities.

The global quantities of this run suggest a much different history from the dynaics of the previous run. He observe dranatic growth in the kinetic energy, thergy wich ribet orders of manikude above ita fottial value, in Pig. 124.

We find this quantity points to tiaes of diaruptive activity in the magetofluid. In the following sections, we exanine contours and spectra during the periods of enhanced motion, to taplofe thit activity.

Aqain, we note that the Integrated current, Plg. 12h, does not vary much through the run, although ateady ohnic decay of the mean profile is oceuring, so miy be getn in Pig. 12g.
3. A Tise Bistory of the Run. $t=4.44$.

We follow the developent of this eruption. Contours at $t=4.44$, Fig. 13, thow that the current has bequo to kiak about the anis, characteriatic lobes of the "mxl", "n=l" pattern have gromn out of the poist in the otreen function, a poloidal crose section of which is shown. Note that the vector potential contorts are bardly distorted from their initial ptate.

If we toke closer look the poloidel cut of cutrent density. by means of three-dimersional perspective plot. Pig. 14a, we find that the current profile han developed flatter region, in the slde opposite to the curient monam.

We are alao able to manine the behavior of the thret-dimensional maqnetic field lines, by means of tield line tracing code. The code, writen for this problem. employn a third order Lagrange interpolating polynomial to obtain vilues of the magnetic field between computational grid poinks. He follow the
line by means of equation (2f), atoring s,y valuea ench time the followed field line apirals through the $z=\pi$ plene. Results fron thin code are plotted in Pig. 14 b, c. In Fig. 14b we act cloned, ctescent-ahaped figure energing, while Pif. lic diaplays another shape, that of an oval, centered on different n.y point. The erescent corresponds to the flattened region in the current perspective plot, and the oval surrounds the current marimum.

The "mountaintop plot" of the kinetic energy spectron shows that the perturbution is predoninantly in the $k_{i}=1$ band of mavenmbers, and that a veriety of perpenditulat mentumbers conbine to form the "ma" lobes.
$t=6.6$.
At thia inter time, contours of conatant eurient are seen to trace on even greater disturbance, ashomin in. 16. Agsin, the vector potential contours are only alightly ranctanged. we observe that the strean function anplitude is Increasing, confictent with the tine bistory of the kinetic energy.

1*7.8.
The atrean function lobes have grown in aplitude, at asy be observed in Fig. 17, ts hat the velocity field they imply. In the ($x, y, z=T$) plane, this field points in the direction of the curcent matam.

We ate that the curient cilanent has bequa to tighten up, the helical filament pulling tomard the periphery of the disturbance.

Aghin, the contours of constant vector potential are only slightly disturbed.
By apectral plote, Fig. 1 若, we see that the "n $=1, \mathrm{n}=1$ " mode is growing In strength, with more and more Pourier coefficienta nonzero.

It in quite opparent that the vector potential is very unperturbed, when we look at the "blom-up" of the toroldel cross section, in Pig. 19n. At this ane tiae, the current croas-section, plotted in Pig. 19b, is quite perturbed. The
curfent 19 the negative Laplacjan of the vector potential. and as such, displays the activity of the smaller seales more clearly. We gee here that there ds much amall scale pgatial actlvity, particularly in the meighborhood of the current masimbla.

Polojdal cutg auquent the wien cited above. Contours of constant vector potential, plotted in fig. 29a, are very gaoth and neatly unperturbed. No hint of magnetlc island can be found. As bbove, we see distocted curtent, Fig. 2fb, Hith the maximum draning jtgelf towards the outer edges of the per turbed region.

Poincare traces through the $x_{+} y+z=\pi$ plane. at this time, display the inforpat lon that lines of the wagetic field lie on surfaces minch more clogely paralleling surfaces of constant current than congtant vector potential. Three separate traces are plotted in Fig. 2l. Ondy the sallest, tiosed ovel, forms In a clochaise sense, indicatims a safy factor q (1 in that refion. $t=8.76$.

At this tine, a little after the kinetic energy peak, the curcent has become quite broad and whely flat, in Fig. 27. Only a vestige of the helis rematas. This Elattering of the cursent we find to be a nominear procegs, and one in which many Pourier coefficients participate. Cven at this Lundquat number, of l9m, we set (Hell-resolved) tanal scale turbulence, particularly in the neighborhood of the vegtigal current marigum. $t=3.02$.

It is intereating to note thot curient density perspertive plots, at x日. 22 , Pla. 23 . depict tlattened profiles, with only a shall positue blip in the vacinjty of where the current manjmu had been. To the outside of thas ateepened current is a current "dip", well-like region where the curfent nearly
jeta negative.
$t=14.98$.
We can see in Fig, 24 that the manar velocity field ia now pointing in a direction oppositely to the may it had pointed previously. the current filiment, as well. is tinking up everywhere opposike to its prevlously perturbed state. Redontsev'a (1975) conjecture of aturation followed by a long perjod of quiescence is oppurently not barne out, in this geometry. $t=17.52$.

The ptrean function lobes now eqhibit a shell-1ite patetri, in Pig. 25, with the newegt "a = 1^{*} paif at the center. Very little is happening in the current, and even less in the vector potential. The contour plot of the vector

 ly perturbed current. This is the final solution of the run.

It is interesting to note that as the poloidal manetic field strenpth decreases and the effective toroldal field atrength incresses, the anall sale sotion becones more and more two-dimensionali see Fig. 26. hgaln, this is what we muld erpect from the work of Shebolin, et al (1983). Theat specta my also be viewed as evidence that the Straus mpronimation ts valid, for the conditions.
4. Additional Diagnostics.

Something of the run's hiatory can be seen in time sacifor of plota of " $\mathrm{a}^{\prime \prime}$ veraus rodius, in Fig. 27. " $0^{\prime \prime}$ pear the ands ot $x=\pi / 2$ increages until after
the firgt kinetic energy peak. At this time, the $Q=1$ surface can no longer be found in the magetofluid. Ther, " \boldsymbol{Q}^{*} dips slightly, for short tine. hfter this, it resumes its resistive rise.

Another may to obtain global view of the ran is to consider the energies in various kis. in Fig. 28. Kinetic energy is plotted with a dashed line. while magnetic energy 15 plotted with the solid line. The "col", "n=1" node grows up in $k_{z}=1$, as all the spectral plots have suggested. That nost of the kinetic energy is located in this mavenumer may also be geen in Pig. 2Ba. The magnetic energy of $k_{3}=1$ and the kinatic enercy of $k_{3}=1$ are just about exactly out of phase with one another.

Enhanced excitation near the time of the disruption nay algo be found in the energles with $k_{z}=2$ and $k_{i}=3$, While the $k_{z}=2$ energies peak at alightly different thes, the nodes in the $k_{z}=3$ band are excited ajmultaneously, as may be seen in Figs. 28 b, c.

Although the energy scales doun by a factor of ten in each plot, it is clear that this phenonenon is a nonlinear one, fin which many modes participate. In order to discover bow nonlinear this disruptive process can be, at Lundquigt numbers of only las, it is necessary to consider the linearized strauss equations. Results fron simulating the linearized gtrauss equathons, using these CASE 2 paraheters, are discussed in Appendix II. A conparison afiong linear and nonlinear solutions is set forth there.
B. $B_{c}=4.3, \gamma_{1}=0.0125$.

We nove on now to results from a large grad run, CASE 3. The foitial conditions afe virtually ldentical to the previous nonlinear run discugged above Here, however, we choose bundquist nuaber of 4in, on the grid of size 64" 64 * 32.

1. Global quantities.

An lmodiate difference from cass 2 is seen in the olot of kinetic energy versus time, in fig. 29. Instead of only one kinetic energy peak, more thon one was attajned. The plot of $\mathrm{j}^{4} \mathrm{j}$ versus tine is also qualitatively different: the j^{+1} peak points to a tine of enhanced disslpation of magntic energy. This enhanced diagipation is even visible on a plot of manetic energy versus time. Pinally, it is interesting to note that the net curient does not change much at al] throughout the run.
2. A Time history of case 3 .
$t=1032$.
Like in the Lundeuist namber laf run, the current develops helical fllaments, which wrap themelves about the agnetic axis, as may be seen in Flg. 30 A negative fllarent has formed, to the outside of the inner, very positive one

A three-dimensional plot of the curcent (\quad, $y+2=\pi$), Fig. 3la, clearly shows a rippled corrent profile. mose naximul is no longer at the geonetric center of the cylinder. The developing negative fet is also visible. as In case 2, we observe the suggesion of a variety of cloged regions in the $z=\pi$ plane Poincaré plots of maqnetic field lines, Fig 3lb. Here, too, a crescent shaped figure cortesponds to pronounced eurtent shelf
$t=13.26$
In Pig. 32, we digplay close-up plots of curcent (32a), veloclty field (32b), and poloddal magnettc field llnes (32c). Fron fig. 32a we gee that the negative current sheath lies very close to the most positive part of the current. A anall disturbance is set up in the fluld to the outside of this sheath. with velocity field pointing toward the current jet, In Pig. 32b. Fololdal magnetic fleld lines, in fig. 32c. are strongest in the neighbornood of this
wheath.
$t=14.52$.
As in the lundquist number ifi run. the helical filament of corrent has nearly removed itself from the current coluan, at this tine, time near the first large kinetic energy peak, Fig. 33. Much samll scale gpatial structure has develoged, with e shallow negative curtent "aont" encirciling a positive current sheath. Within this region, the curfent is relatively flattened.

At this point it is necessury to add a marning about the resolution of this Lundquiat aumber (8) $=$ (fif siaulation. It is clear from Figs. 33e and f that modal energy spectra are very well-wehaved even at this time. The siaulation
 much sall-acale spatial atructure is generated, and the curcent density diaplayg on increasing tendency to 'jet' more and more, both positively and negatively.

Gince the energies reain fully mell-behaved, however, it is highly likely that this run my be truated throughout, as far af gross angetative behavior is concerned.

The quettion of why the simulation alightly excetded its allotnent of resoJution way be raised. Nont probably, $6=49$ da sonewhat too large for a grid of 64 * 64 * 32. A narrower inkernal layer than could be remolved attempted to evolve. Increasing the grid (to an impossibly expensive size), with this value of E, mon id cure the difficulty.

A thred-dimesional plot of the current contours of the previous contours show the intenalty of the neqative jet, at utll as abundance of amplacale apatial structure. Randon nonumiforaities are particularly observable to the outside of the current colum.
$t=16.26$.
mear the local kinetic energy aindaus, the current profile once again didalas much internal structure in Fig. 35. The colum is in the process of kiaking up in a mappoile to ito previous helical deformation, as even the toradal cut of vector potentid findentes.

The aharp, forming curcent cliff is wistble in a perspective plot of current density. Pig, 36a, as mell as the overall abymetry in the channel itself. Motice the "hole" near $\equiv \pi, y=\|_{i}$ this demonstrates the overall distortion of the current coluan. Fiq. 36b thow crescent shaped Poincaré plote of nagnetic field line traces in the $2=\pi$ plane. $t=17.46$.

Finally, we consider solutions near the aecond kinetic energy penk, in Fig, 37. agsin, most of the current vaitation is located in the outer regions of the columin; mithin this shell, the current is once again goite flet.

We can iagine this oficilintory procesa, perhape reaniscent of the Incomplete Alsruptions observed by sathoff. et 1 (1979). continuing for longer periods of tise th higher valuef of the lundquist number.

Wi. LOW ORDER MODEL

In the disruptive results f ron free decay aimolations, reported in the
 ly dopinate the dynaica, in congunction with much seall-scale turbulent structure. For a clearer understanding of the proceas, the isolated interaction onong the largeat acales in the evolution of the discoptive behavior can be studied, by means of a dow-order truncation model of the straus equations. In this chapter, we derive such a model. We then ${ }^{\text {a }}$. forcting tern to the vector potential equation, and a viscous ter to the strean function equation, und discass consequences these nem terns aight Inply. Analogsug studies of the poasible tranaition to disorder in the genard convection problen have been per(ormed by Lorenz (1963), and most recently contjnued by Curcy, et (1994).

A. Implication Erom Code Resulta.

Mearly $u l l$ contour plots of the velocity atrear function generate the suggestion that the doninant $k_{z}=1$ mode is of the form $\sin (x) * s i n(2 y)$. This auggestion my be oubstantinted by the tranination of nuerical valate of these modes. Although the largest aode is not inays $\psi_{r_{j} i}\left(k_{y}=1, k_{y}=2, k_{z}=1\right.$) or $\psi_{r_{1}}\left(k_{\mu}=2, k_{y}=1, k_{z}=1\right)$, 1inear combination of thio pair nay generally be found to contribute more to the mean squace stren function than any other angle modal elenent. The game is observed to be troe of the vector po-

 $k_{z}=0$. An exanination of the $k_{z}=$ part of strem function solutions shows
that only very low order noise exists in this wavenumber. We thus take

B. Truncation Model.

We begin with the strauss equations (9) and (10). Writing each tern enplicity,

$$
\begin{align*}
& \left.\frac{\partial \omega}{\partial t}=-\mu \frac{\partial \omega}{\partial x}-v \frac{\partial \omega}{\partial y}+B_{x} \frac{\partial y}{\partial y}+B_{y} \frac{\partial y}{\partial y}+B_{0} \frac{\partial j}{\partial z}+v \nabla_{\perp}^{2} \omega\right)(21) \\
& \frac{\partial A}{\partial t}=\omega_{y}-v B_{x}+B_{0} \frac{\partial \psi}{\partial z}+\partial_{y} \nabla_{1}^{2} A+E_{0} \tag{22}
\end{align*}
$$

For now, we set $\mathcal{V}=\mathbf{E}_{0}=\boldsymbol{f}$.
Let

$$
\begin{aligned}
A\left(k_{z}=0\right) ; A^{0} & =A \sin x \sin i \\
& =\lambda h
\end{aligned}
$$

w th

$$
\begin{aligned}
& B_{y}^{0}=\lambda \frac{\partial h}{\partial y}=A \sin y \cos y \\
& B_{y}^{0}=-\lambda \frac{\partial h}{\partial y}=-A \cos x \sin y
\end{aligned}
$$

and

$$
j^{0}=2 a k
$$

Although we will show that more general combinations are allowed, let the pair of counterclockwise helical perturbations be the following:

$$
\begin{aligned}
A\left(k_{z}=1\right)=A^{\prime} & =a[\sin 2 x \sin y \cos z, \sin x \sin 2 y \sin z] \\
& \equiv a f
\end{aligned}
$$

$$
\begin{aligned}
\psi\left(k_{z}=1\right) \equiv \psi^{\prime} & =\beta[\sin x \sin 2 y \cos z-\sin 2 x \sin y \sin z] \\
& \equiv \beta g
\end{aligned}
$$

ت)

$$
\begin{aligned}
& B_{y}^{\prime}=\alpha \frac{\partial f}{\partial y}=\alpha[\sin 2 x \cos y \cos z+\hat{c} \sin x \cos 2 y \sin z] \\
& E_{y}^{\prime}=-\alpha \frac{\partial f}{\partial x}=-\alpha[2 \cos 2 x \sin y \cos z+\operatorname{in} x \sin 2 y \sin z] \\
& {A^{\prime}}^{\prime}=\beta \frac{\partial y}{\partial y}=\beta[2 \sin x \sin y \cos z-\sin 2 x \cos y \sin z] \\
& V^{\prime}=\beta \frac{\partial q}{\partial y}=\beta[\cos x \sin 2 y \cos z-\cos 2 x \sin y \sin z]
\end{aligned}
$$

These yield

$$
\begin{aligned}
& \omega=\omega\left(k_{z}=1\right)=\omega^{\prime}=5 \beta g \\
& j=j\left(k_{z}=0\right)+j\left(k_{\bar{z}}=1\right) \equiv j^{0}+j^{\prime}=2 A^{0}+5 A^{\prime}=\ddot{r} h+5 \cdot f
\end{aligned}
$$

We find that only the $k_{z}=1$ dependence survives in equation (21), since

$$
\begin{aligned}
& B_{x} \frac{\partial j}{\partial y}=\left[B_{x}\right]\left[\frac{\partial{ }^{2}}{\partial y} \cdot \frac{\partial j}{\partial x}\right]=\left[B_{x}{ }^{2}+E_{x}\right]\left[\frac{\partial E_{j}}{}{ }^{\prime}-5 E_{j}{ }^{\prime}\right] \\
& +B_{y} \frac{\partial j}{\partial y}=\left[B_{y}\right]\left[\frac{\partial j^{0}}{\partial y}+\frac{\partial j^{\prime}}{\partial y}\right]=\left[B_{y}{ }^{0}+B_{y}{ }^{\prime}\right]\left[\hat{a} B_{y}^{2}-5 E_{-}^{\prime}\right]^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& B_{x} \frac{\partial j}{\partial x}+B_{y} \frac{\partial j}{\partial y}=3\left[B_{x}{ }^{1} B_{y}{ }^{2}-B_{x}{ }^{0} B_{y}\right]_{1} \\
& \text { and }-\kappa \frac{\partial \omega}{\partial x}-v \frac{\partial \omega}{\partial y}=-5 \beta^{2}\left(\frac{\partial g}{\partial y} \frac{\partial g}{\partial x}-\frac{\partial z}{\partial y}{ }^{2}+j=\right\}
\end{aligned}
$$ further, since

$$
\frac{\partial}{\partial z}=50 \mathrm{~g},(2.1) \text { becomes }
$$

$$
\begin{equation*}
\frac{\partial w^{\prime}}{\partial t}=3\left[E_{x}^{\prime} E_{y}^{0}-E_{x}^{0} B_{y}^{\prime}\right]+5 B_{y} a g \tag{23}
\end{equation*}
$$

The nonlinear teras in (23) way be rewitten.

$$
\begin{aligned}
& =A F \\
& E_{0}^{0} B_{2}^{\prime}-\left(a \frac{G^{h}}{a y}\right)(a \operatorname{ci}) \\
& =-\bar{\lambda}\left[(\sin , \therefore+1)\left(\Delta \theta_{1} y \sin 2 y\right)\right] \operatorname{smz}
\end{aligned}
$$

$$
\begin{aligned}
& \equiv D a G
\end{aligned}
$$

By means of trigonometric identitien I and G my be rempressed:

$$
\begin{equation*}
\frac{\partial \omega^{\prime}}{\partial t}=3\left[B_{x}^{\prime} E_{y}^{0}-E_{x}^{o} E_{y}^{\prime}\right]+5 B_{y} a y \tag{23}
\end{equation*}
$$

The nonlinear terns in (23) my be rewtitten.

$$
\begin{aligned}
& E_{x}^{\prime} E_{y}^{0}=\left(\alpha \frac{\partial f}{\partial y}\right)\left(i \frac{\partial h}{\partial x}\right) \\
& =-a \lambda[(\sin \sin \cos x)(\cos y \sin y) \cot z
\end{aligned}
$$

$$
\begin{aligned}
& =A F \\
& B_{x}^{a} B_{y}^{\prime}=-\left(\dot{d} \frac{\partial h}{\partial y}\right)\left(a \frac{c^{\prime} f}{\partial v}\right) \\
& =-\operatorname{Ao}[(\sin \operatorname{sen})(\operatorname{son} y \sin 2 y)] \sin z \\
& -2 \operatorname{san}[\sin , \sin) \sin \hat{\sin y}] \mathrm{y} \boldsymbol{\operatorname { s i n }} \\
& \equiv A 0 G
\end{aligned}
$$

By meass of trigonometric identitien F and 6 my be re-enpressed:

$$
\begin{aligned}
& F=-\frac{1}{4}[(\sin 3 x+\sin x) \sin 2 y] \cos z \\
& -\frac{2}{4}[\sin 2 x(\sin 3 y-\sin y)] \sin z \\
& \alpha F=A \operatorname{A}\left[-\frac{1}{4}(\sin 3 x \sin 2 y+\sin x \sin 2 y) \cos z\right. \\
& \left.-\frac{1}{2}(\sin 2 x \sin 3 y-\sin 2 x \sin y) \sin z\right) \\
& G=-\frac{1}{4}[\sin 2 x(\sin 3 y+\sin y)] \sin E \\
& \left.-\frac{1}{2}(\sin 3 x-\sin x) \sin 7 y\right] \cos z \\
& \alpha A G=a\left(A \left(-\frac{1}{4}(\sin 2 x \sin 3 y+\sin 2 x \sin y) \sin a\right.\right. \\
& -\frac{1}{2}\left(\sin 3 x=x^{2} y-\operatorname{sm} x \sin 2 y ; \cos E\right]
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\alpha(F-G)=-\frac{1}{4} \operatorname{aog} & +\frac{\lambda \infty}{4}[\sin 3 x \sin 2 y-3 \\
& -\sin 2 x \sin 3 ;=\operatorname{taj}]
\end{aligned}
$$

Neglecting terms with $\mathbf{k}, \mathrm{k}_{\mathrm{i}}>2$, we have

$$
\begin{align*}
\frac{\partial w^{\prime}}{i t} & =\left[5 B_{0} \alpha-\frac{9 \lambda 0}{4}\right] y \tag{23'}\\
& =5 g \frac{p}{i t}
\end{align*}
$$

How, consider (22):

$$
\begin{aligned}
\frac{\partial A^{2}}{\partial t}+\frac{\partial A^{\prime}}{\partial t}= & A^{\prime} B_{y}^{\prime}-v_{x}^{\prime}+h^{\prime} B_{y}^{2}-\nu^{\prime} B_{x}^{0}+B_{y} \frac{\partial \psi^{\prime}}{\partial z} \\
& +\eta \nabla_{2}^{2} A^{2}+\eta \nabla_{1}^{2} A^{\prime}
\end{aligned}
$$

This separates into an equation for the $k_{z}=1$ component of $h_{\text {: }}$

$$
\begin{equation*}
\frac{\partial A^{\prime}}{\partial t}-u^{\prime} B_{y}^{0}-v^{\prime} B_{x}^{0}+B_{y} \frac{\partial \psi^{\prime}}{\partial z}-\eta j^{\prime} \tag{24}
\end{equation*}
$$

and an equation for the $k_{z}=0$ component of A :

$$
\begin{equation*}
\frac{\partial A^{\circ}}{\partial t}=u^{\prime} B_{y}^{\prime}-v^{\prime} E_{x}^{\prime}-\eta j^{\circ} \tag{25}
\end{equation*}
$$

As above. We compute terms of (24):

$$
\begin{aligned}
& A^{\prime} B_{y}{ }^{n}=-\left(\beta \frac{\partial g}{\partial y}\right)\left(\lambda \frac{\partial h}{\partial x}\right) \\
& =-\beta n[2(\sin \cos x)(\cos \theta y \sin y)] \cos z \\
& +\beta A[(\sin \theta \sin x \sin y \sin y)] \sin z \\
& \equiv E \lambda H \\
& v^{\prime} B^{\prime}=-\left(\theta^{\left.\left.\frac{\partial g}{\partial x}\right)\left(\alpha^{\frac{\partial j}{c}}\right), ~\right) ~}\right. \\
& =-\xi x[(\cos x \sin x, \sin 2 \theta \cos)] \cos z
\end{aligned}
$$

$$
\begin{aligned}
& \because G A
\end{aligned}
$$

Using trigonometric identities, we find that

$$
\begin{aligned}
& r-\frac{1}{2}[\sin 2 x(\sin x y-\sin y)] \cos z \\
& +\frac{1}{4}[(\sin 3 x+\sin x) \Delta \sin y] \sin z \\
& I=-\frac{1}{4}[\sin 2 x(\sin ; \sin)] \quad \Leftrightarrow y z
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad A B(H-I)=\frac{3}{4} A E f+\frac{Q_{4} R}{4}[& \sin 2 x \sin 3 y \cos 2 \\
& +\sin 3 \times \operatorname{sen} 2 y=m 2]
\end{aligned}
$$

Again, neglecting terms with $k_{x}, k_{y}>2$.

$$
A^{\prime} B_{y}^{o}-v^{\prime} B_{x}^{o}=\frac{3}{4} \lambda \in F
$$

since $\frac{\partial \psi}{\partial z}-\beta f$. (24) becomes

$$
\begin{align*}
\frac{\partial A^{\prime}}{\partial t} & =[3, F-E, \beta-5 \eta a] f \tag{+}\\
& =f \frac{\partial \alpha}{\partial t}
\end{align*}
$$

ferns of (25) nay be rewritten:

$$
\begin{aligned}
& A_{y}^{\prime}=\left(\frac{5}{8 y}\right)\left(a \frac{\partial f}{\partial x}\right) \\
& =\rightarrow \alpha \beta[-4(\sin x \operatorname{din} \sin 2 y \sin j): \sin 2)^{2} \\
& \left.+\sin 2 x-\operatorname{sij}(\cot y \sin 2 y) \operatorname{sm2})^{2}\right] \\
& V^{\prime} B_{x}^{\prime}=a \beta\left[-4\left(\operatorname{sen} 2 x \sin x(\operatorname{sm}\}(4 y) 65 z^{\prime}=\right.\right. \\
& +\quad(\cos r \sin i x)(=x 2 y \cos)(: x z)^{2} \text { ? }
\end{aligned}
$$

or

$$
\begin{aligned}
& u^{\prime} E_{y}{ }^{\prime}-v^{\prime} E_{x}{ }^{\prime}=a F\left[-\frac{\partial f}{\partial x} \frac{\partial}{\partial y}+\frac{\partial y}{\partial x} \frac{r \frac{1}{\partial y}}{\partial y}\right] \\
& =\alpha \underset{X}{\alpha}[-\sin 3 x-\sin x)(\sin 3 y-\sin , \theta] \\
& +2(\sin 3 x+\sin x)\{5 \sin -\therefore \theta] \\
& =-\frac{3}{4} a \beta \sin x \sin y \text {, }
\end{aligned}
$$

where we neglect terms with $k_{x}, k_{Y}>2, k_{E}>1$.
Equation (25) becomes

$$
\begin{equation*}
\frac{\partial A^{0}}{\partial t}=-\frac{3}{4} \alpha \beta h-2 \eta a h=h \frac{\partial G}{\partial t} \tag{*}
\end{equation*}
$$

Or, (23'), (24') and (25') are:

$$
\begin{align*}
& \frac{d g}{d t}-\left[E_{0}-\frac{4}{20} d\right] \alpha \tag{26}\\
& \frac{d d}{d t}=\left[\frac{3}{4} \lambda-B_{0}\right] \beta-5 \mathcal{F}_{2} \tag{27}\\
& \frac{d d}{d t}=-\frac{3}{4} \Omega f \quad \therefore i d
\end{align*}
$$

1. More General Perturbations.

In order for (26) - (28) to be useful. the perturbations monlinearly gencrated by the large grid code mot be compatible with the fora assumed by the
 more general perturbations are also flowed.
 2. ne listed In table 3. other cages exhibit exactly similar behavior. From
 of the for

$$
\begin{align*}
& A^{\prime}=a[-\{\xi+E G] \tag{29}\\
& \psi^{\prime}=\beta[-E F-\delta[] \tag{31}
\end{align*}
$$

and $\quad g=\sin x \sin 2 y \cos z-\sin 2 x \sin y \sin z$.
2. Demonstration of Applicability.

Using (29) and (34), we recompute terms that form equations (23'), (24') and (25'). Starting with (23'), where

$$
\begin{aligned}
& B_{x}^{\prime}=\alpha\left[-\delta \frac{\partial f}{\partial y}+\epsilon \frac{\partial g}{\partial y}\right] \\
& B_{y}^{\prime}=-\mu\left[-\delta \frac{\partial f}{\partial x}+\epsilon \frac{\partial g}{\partial x}\right] \\
& \dot{u}^{\prime}=\beta\left[-\delta \frac{\partial y}{\partial y}-\frac{\partial f}{\partial y}\right] \\
& V^{\prime}=\beta\left[-\delta \frac{\partial g}{\partial x}-\epsilon-\frac{c}{\partial y}\right]
\end{aligned}
$$

the nonlinear terns become

$$
\begin{aligned}
B_{y}^{\prime} B_{y}^{a} & =-a\left[-\frac{\partial f}{\partial y}+6 \frac{\partial}{\partial}-A \frac{\partial h}{\partial y}\right. \\
& =+\alpha d\left[\frac{\partial f}{\partial y} \frac{c h}{\partial x}\right]-a A:\left[\frac{\partial a}{\partial} \frac{c A}{\partial}\right] \\
& =\alpha a[-d F+\epsilon H]
\end{aligned}
$$

Thus, $B_{y}{ }^{\prime} B_{y}{ }^{a}-B_{y}{ }^{0} B_{y}^{\prime}=-\infty\{[F-G]+x i \in[H-I]$

$$
\begin{aligned}
& =\frac{3}{4} \times i q+\frac{3}{4} x \lambda \in \\
& =-\frac{3}{4} \times \lambda[\operatorname{cit}-\in f]
\end{aligned}
$$

where as before we neglect terms with $k_{x}, k_{y}>2$.

Also, $\frac{\partial f^{\prime}}{\partial z}=5 \frac{\partial}{\partial z}(d[-\delta f+\epsilon g))=-5 \alpha(d g+c f)$. Thus, the form of (23'). or equivalently (26), is unchanged.

The more general perturbations also generate equation (24'), as may be sen by considering

$$
h^{4} B_{y}{ }^{0}=\mu A\left\{+\frac{\partial g}{\partial y} \frac{\partial h}{\partial x}+\epsilon \frac{\partial f}{\partial y} \frac{\partial h}{\partial x}\right\} \equiv E G\{-\in F-\{H\}
$$

nd

$$
V^{\prime} Q_{x}^{D}=\beta Q\left\{+\frac{\partial g}{\partial x} \frac{\partial h}{\partial y}+\epsilon \frac{\partial f}{\partial x} \frac{\partial h}{\partial y}\right\} \equiv \beta Q\{-\epsilon G-\delta I\}
$$

That Is,

$$
\begin{aligned}
& A^{\prime} B_{d}{ }^{\circ}-V^{\prime} B_{x}^{a}=E ;[-\in F+E G-G H+c I] \\
& =E M-t(-a+1)-(T)] \\
& =\frac{\ddots}{i}+\mathcal{F}+\underset{i}{ }
\end{aligned}
$$

where again we neglect terms with $k_{x}+k_{y}>2$. Further, mince $\frac{\partial^{\prime} f^{\prime}}{\partial z}=$ $-\left[\left\{\left[\begin{array}{l}f f \\ {[}\end{array} \in \mathcal{f}\right]\right.\right.$, the form of (24'), or equivalently (27) is still valid.
 evaluated. Using the notation of above.

$$
\begin{aligned}
& +\left[\beta\left(-\frac{\partial g}{\partial x}+\epsilon \frac{\partial f}{\partial x}\right)\right]\left[m\left(-d \frac{\varepsilon f}{2 a}+i \frac{\partial}{\partial f}\right)\right] \\
& =\alpha \beta\left[\varepsilon^{2}+c^{2}\right]\left[\frac{\partial a}{b x} \frac{i f}{\partial y}-\frac{-y}{\partial y} \frac{i f}{\partial 3}\right] \\
& =\infty\left[t^{2}+\epsilon^{2}\right]\left[-\frac{3}{4} h\right]
\end{aligned}
$$

Where we neglect terns with $k_{x}, k_{y}, 2, k_{z}>1$. As long as we impose the
constraint that $\left[\delta^{2}+\epsilon^{2}\right]=1$, a restriction that we are free to denand, the form of (25'), or (20), is also unaltered. Thus the forn of perturbations generated from nonlfnear simulation are not incompatible with the form used in the derivation of the low-order trincation model, equations (26), (27) and (20)

For the particular case $2, \delta$ and \in are greater than zero. If they were of opposing sign the same resolts would be obtained, as may be seen by setting $+\delta$ to $-\delta$ everywhere in the aboup demonstration
© Results from the Model, $E_{0}=\mathbf{I}$.
In the inviscid decay problem, only one critical point exists, where by critical point is meant solution to the time-independent equattors (26) - (28). The critical point is $(\beta, \alpha, a)=(\boldsymbol{\sigma}, \boldsymbol{A}$, , as may be seen from the following:

$$
\begin{aligned}
& \text { Equation }(26) \Rightarrow \quad 0=B_{0} \times-\frac{9 a}{20} a \quad \text { or } \quad a=\frac{20 B_{0}}{9} \text {. } \\
& \text { Equation (27) } \Rightarrow \quad O=-5 \eta^{\alpha}-B_{i} \beta+\frac{3 a_{\beta}}{4} \text { or } \quad \alpha=\frac{2}{15} \frac{B_{o}}{} \beta . \\
& \text { Equation }(2 \theta) \Rightarrow 0=-\frac{3}{4} * \beta-2 \eta a \quad \text { or } \quad \beta^{2}=-\frac{204^{2} \lambda}{B}
\end{aligned}
$$

For simulated (positive) A and B_{0}. β would have to be imaginary, which is not allowed.

1. Linear.

In order to obtain information about the behavjof of solutions to the loworder model. we first examine a ligearizet version of them. Since is the amplituce of the equilibrium, h(sin(xiting(y)), it is reasomable to treat as a parameter. Equation (26) and (27) become a gajr of linear, coupled ordinary differentia! equations, and thelf solution $1 s$:

$$
\begin{equation*}
\binom{\beta}{\alpha}=d_{1}\binom{b+\sqrt{b^{2}+4 a c}}{2 c} e^{d_{+} t}+d_{2}\binom{b-\sqrt{b^{2}+4 a c}}{2 c} e^{d-t} \tag{29}
\end{equation*}
$$

for $\quad \lambda_{ \pm}=-\frac{5}{2} \eta \pm \frac{1}{2} \sqrt{25} x^{2}+4\left(B_{0}-\frac{9}{20} a\right)\left(\frac{3}{4} a-B_{0}\right)^{4}$
where $a=B_{u}=\frac{9}{20} a, \quad b=5 m \quad$ and $\quad c=\frac{3}{4} a-B$,

To underatand what this solution does as a function of the parameter A, first note that, generally, the only critical point of (26) and (27) is (f $=1$, $\mathrm{A} \times$). The behavior of (29) can be deterained locally in the neighborhood of ($\hat{f}=\boldsymbol{a}-\boldsymbol{a}$) by considering the elgenvaluea $\lambda_{ \pm}$.

From Bender and Orsas (1979), we know that:

where $\underset{\sim}{\boldsymbol{v}}$ is the vector which corresponds to λ_{+}, while $\underset{\sim}{\mathbf{y}}$ - is the vector that corresponds to $\lambda_{\text {. }}$
 $\alpha=0$ is a stable spiral. By setting a to zero. ${ }^{\text {d }}$ is seen to be positive function of f, or the apiral is counterclockwise, as may be observed in numer ical solution of (26) and (27), where we have used the second-order Runge-Ruth scheme on the tine derivative.
 comes a stable node.

 Hith liniting slope of

$$
\frac{\alpha}{B}=\frac{2\left[\frac{3}{4} a-B_{0}\right]}{5 n \sqrt{25} \eta_{1}^{2}+4\left(\frac{3}{4} \alpha-E_{v}\right)\left(\overline{\left.B_{0}-\frac{7}{2}, \frac{2}{2}\right)}\right.}
$$

 - liniting slope of

$$
\frac{\square}{6}=\quad \begin{aligned}
& \quad\left[\frac{2}{4} a-E_{0}\right] \\
&
\end{aligned}
$$

This behavior tay be aeen by nuerical solution of (26) and (27), depicted in PI. 11.

 served in thother nuerical solution of (26) and (27), shown in Pig. 42.
2. Monlinear.

When equation (20) is solved sicultanepusly with (26) and (27), the behavior of $*$ and \hat{E} in the neighborhood of $(\hat{p}=\boldsymbol{H}, \mathrm{A}=\mathrm{F})$ atill lust vary at a function of Q. Por instance, as dectys from andial value greater than

 If it uns stable spital. If α and \notin are not very amall, they measurably modulate the decay of $\mathcal{A}(\mathrm{t})$. These behaviors may be geen for a fen initial conditione and parmeters. in Fig. 43.
D. Comparison with Code Redults.

In ordet to compare the behavior of the nonlinear full-grid simulation results with results from the low-order model, we obtaln " \hat{b}^{*} and "an from the full-grid stored solvtions, as indicuted in Table 3. The " $p^{\prime \prime}$ " "o" and ${ }^{4} Q^{\prime \prime}$ from CASE 2 ore plotted in Fig. 44. Solutions of (26) - (29), from conditione and parameters of CASE 2 tre gloteted in Fig. 45. Although the egrement is only qualitative, it is notemothy that eqen in a model based only on the very large scales, quableyclic behavior of the solutions is observed, behavior in which both magnetic field and velocity field pertarbations participate. fowever, subsequent bursts of the quasi-cyclic activity are unlike the first; find α both grow together only in the firat event of the series.

We mut tura to driven simulations in order to observe repeated. simultaneque growth of β and α.
E. neous growth of β ind α. Tern, the Eiternal Electric pield \mathbf{E}_{2}

15 we add a forcing terie to the Strauss equations, by setting E to positive constant, the menn field cannot decay to zero. It is phyalcally meaningfol for t_{0} to be non-zero; sn electric field is imposed at the walla of most fusion devices, to mintaln the current. When mded to the Etrauss medel, the driving mechandan can be reaponsible for repeated parlods of joint grouth of $;$ and ar for suitable chaices of parametara E_{0}, B_{0} and η. In this section, we wlll explore the behaulor of the driven, faviacid, low-order model.

1. The Equations.

The dominant ginusoldal mode in any positive conatant mould be of the form $\sin (m)^{*} \sin (y), k_{z}=\|$. The driving tera la added to equation (2B), then. we choose $C_{D} \rightarrow 2$ y O_{0}, and (2B) becomes

$$
\begin{equation*}
\frac{\partial a}{\partial t}=-\frac{3}{4} a \beta+2 m_{1}\left(a_{0}-a\right) \tag{34}
\end{equation*}
$$

(26) and (27) are maltered.
 This point, by ingpection, is repleced with $\left(\beta=1, \alpha=0, \alpha=\alpha_{0}\right)$. a multitude of edditional tine-independent solutions exiat: the line $\beta=$ constant, with $\alpha=A_{0}=4 B_{0} / 3$, and $\alpha=1$ contains the $(\beta=0, x \cdot 1)$ critical point as - Bpectal case.

$$
\left.\alpha_{t}= \pm \frac{4}{3} \sqrt{\frac{b_{0}}{5}\left(a_{0}-\frac{20}{4} b_{0}\right)} \quad, \quad \beta \pm \pm 10 \eta \sqrt{\frac{1}{5 E_{3}}\left(A_{0}\right.} \cdot \frac{20}{4} B_{0}\right)
$$

3. Solutions.

samples of the dynanical systens behavior which ay be generated by this driven, diselpative syatea are ahomin in fig. 46 - 52. Table 4 is ehart of the paraneters and initial conditions ured to generate the solutions shom in these figures, tlong with brief deseriptions of the observed behavior.
3. The Addition of Wiscosity.

If we add diastpation teri to the equation for the anplitude of the strean function perturbation, we have

$$
\begin{equation*}
\frac{\partial \beta}{\partial t}=\left[B_{0}-\frac{c}{20} \alpha\right] \alpha-5 v \beta \tag{31}
\end{equation*}
$$

One critical point of the syaten (31), (27) and (31) is atill $(\beta=0$, a $=$,
 no longer solves the time-independent ayaten. In its place are two critical
 also be found, where

$$
\begin{aligned}
& u_{ \pm}=\frac{16}{4} B_{0}: \frac{4}{4} \sqrt{E_{0}^{2}-375 v v} \\
& \alpha_{ \pm}= \pm \sqrt{\frac{7}{15}\left(u_{0} \cdot \lambda\right)\left(\frac{2}{4} 0 \cdot E_{3}\right)}
\end{aligned}
$$

and

$$
F_{ \pm}= \pm 10 \cdots \sqrt{2} \sqrt{15\left(\frac{3}{4}-E_{3}\right)}
$$

The latter pair of solutions, functions of A $_{\text {, }}$, reduce to the two nontrivial critical points of the driven inviscid model described in section (l) above

This altered system, (31), (27) and (30), is explored in Figs. $53-55$; Table 4 again tecompanies the figures. Figure 55 is of particuln interest exhibited there ta solution with features very alailar to those found fo the Lorenz (1963) model, for certain classes of conditions. Note that the low order model presented here differs significantly from the Lorenz model in that quadrastic nonlinear terns made up of the other two amplitudes open in each of the three amplitude equations (31), (27) the (30), wile in the Lorenz mode) such ter ia only appear in two of the three equations of that model.

Sutathent of noblinear behavior is observed in both the driven, inviscid model, (26), (27) and (31), and the drIven, viscous model, (31), (27) and (31). This susta!nent ought to be a feature of the tine-depandent solutions of the driven Strauss equations. as well; results from full grid simulation of there equation d is the subject of the next chapter.

VII. BIHULMTION RESULTE. DAIVEA

of the simulationa appropriate to internal diaruption, wind were discussed in the first chapter, noat were performed in the prestace of gone form of enternal forcing and variable resistivity. These terns mete anployed to Inhibit the resistive decay of the current profile, two combinations were dosinant. both of which imposed a resistivity profile which vailed as the dnverse of the indticl current dessity, of the ainulations considered. only sykes and wesson (1976) then allowed the resitivity profile to evolve. In addition to the use of variable resistivity, sone simulations mere petformed in the presence of an electric field which maintained a constant current (es. Biskmp and heltar

 the realtive decay of the initial current density, although convenience ia prinary reason for keeping the variable resistivity fixed in tine, Wadaell, et a (1976) noted that since the inportant modea grow up on tiae scaies wich are faster than resistive decay thes, results should not qualitatively depend on the spacific resiativity profile chosen.

In the alaulations described in thit chapter, the resistive decay of the inftial current profile is countered. A resistivity profile which variea in space ia the inverse of the inftial current profile, apdoaching values of o(1) at the malls, is chosen. since the vector potential is poloidally exponded in sine functiona, the vilue of this quantity is automatically zero in the very resiotive reqlon at the mall. Bence, in order to prevent the resistive decay of the Initial current proftie, E_{0} is chosen to be a sasil positive conatant which balances $y^{\prime}(\mathrm{ft}=$ a) at all the internal grid points. The aimulation reaults
reported in this chapter are fundanentilly different from those discussed in the fifth chapter, in that both non-zero valve of the erternal electric field E is chosen for all ruas, and variable reaistivity is employed. Since the
 be generated in aine-fourier space, but rather in physical space, with the other nonlinesr terms of equations (9) and (1f).
three bets of conditions. CASE 4, CASE 5. ond CASE b are considered. Both CASE 4 and CASE 5 are simulated on $32 * 32 * 16$ grid, with resistivity profiles $\eta(n, y)=\left[2 H+\exp \left\{-1.2(x-\pi / 2)^{2}-1.2(y-\pi / 2)^{2}\right]\right]^{-1}$. CASE 4 and Case 5 differ only in the initial anplitudea of the current denaity profiles, and the values of the external fields, Ba_{a} and E_{O}. Whle chse 4 has

$$
\beta^{(t=0)}=10 \exp \left[-1.2(x \cdot \pi / 2)^{2}-1.2(y-\pi / 2)^{2}\right], B_{0}=3 \text { and } E_{0}=1 / 200
$$

CASE 5 is fun with

$$
\hat{g}^{(t-0)}=8 \operatorname{stp}\left[-12\left(x-T_{1 / 4}\right)^{2}-12(y-\pi / 2)^{2}\right], B_{0}=2 \cdot 4 \text { and } E, x_{i}-\infty
$$

Although the disruptive events occur at alightly different conputational tises In the two cases, the features of the events are very sidilar. Chst 6, run on a 64 * $64 * 32$ grid, is initialized with

In all three cases, the vorticity Fourier coefficients are inithalized with randow noize of $0\left(4^{-2}\right.$) in a brond band of wave nubers, $k_{x}, k_{y} \in[4,0]$, $k_{2} \in[1,4]$.

In order to adoress the effects generated by the altered current profile, and the varisible resiativity, we performed an unforced, inviacid simulation with Case 4 parancters and conditions. This run, discussed in the third appendin, displays features similar to the conatant resiativity decay runs of the fifth chapter, in that agnetic and velocity field pecturbations flist grow to-
gether, then apparently attempt to oactlate in algn as the solutions rapidiy danp to zero in the very reastive fluid. This quasi-cyclife behayior fa not observed in the inviseld, driven gimilations.

Disruptive behavior la observed fifer only a few alfuén transit times In the inviscid driven runs of CASE 4, CASE 5. and CASE 6, followed by a neariy atendy situation with suatalned, findte flow, which can be watained for tens of aleven transit times. This state is reniniscent of that sugsested by the low order model for the dilven, inviscid case; solut dons with constent equilibrium amplitude λ, constant, arbitrary strean function amplude $\dot{\beta}$, and a 2ero value for the vector potential pertarbation aplltude 0 , do exiat.

CASES 4 and 5 are repented with noh-zero values of lluid viacosity. It is assumed that neglect of the no-slip boundary condition does not invalidate the results. atnce the relevant modes grow up far in the interior of the computational cylinder. Purther, note that mlthough wicosity, or Fsinothing* terf Is frequently added to the velocity field equation solved in many simulations.
 mebel. Schnack and Egro (1904)), the condition generally faposed on the veloeity fleid is that eppropriate for free-slip, rigid side malls (Gykes and Wesson (1976); 6trause (1976) ; Schnack, baxter and caraman (1983); hydear and Barnes (1984)), Upon the inclusion of wistota tern, disturbunce which is repetituve is here observed, wlab a period that ia tar longer than the periodicity of the free-decay bursta. in these driven, diaruptive bursts, the velocity field daes not change sign; rather, single-bigned perturbation repeatediy grows and decays. Once eqain the qualitative behwitor of the low-order nadel may be correinted with that of the large-grid simulation; bo sustalned, steady-state velocity field is observed in the viscous, large-grid sinulations, while the addition of alscous term to the low-order model removes a prosible
polution with $\lambda=$ constant,$\beta=$ constant $),$ and $\alpha=1$.
He turn to specific regults from there aimulations, CMEES 4, 5 and 6, which support the bove description.
A. $y_{0}=3.4, \eta_{1}(n, y)=\left\{24 \|\right.$ enp $\{-1.2(\mu-\pi / 2)-1.2(y-\pi / 2)\}^{-1}$.

Bere me consider siaulationa for whath the initial poloidal sagnetic energy only varien by fempercent from that quantity in CASES 1,2 and 3 . The external magnetic field B_{j} is chosen so that the gafety factor $Q(x=\pi / 2, y=\pi / 2$,
 constant in space and tine. is imposed. This driving ters, ε_{0}, exactly balnaces the $\mathcal{Y}^{(x, y)}$ * $f(x, y, t=$ F) term with an anditude of f. I5. Contour plots of the initial conditions are displayed in Fiq. 56.

1. $V=\$$.

We first consider the inviscid case a aisulation. out of the broad-band, low order vorticity perturbation, $\mathrm{m}_{\mathrm{D}}=1, \pi=\mathrm{l}^{\mathrm{m}}$ helical structures energe to Soninate the spectra of both perturbed fields. The prowth of these stiuctures may be traced tn time inistorias of global quantitiea, shown fn Fig. 57; of primary interest is a plot of kinetic energy. C_{F}, verpus tine.

As the kinetic energy groms, helical current filanent mops itself acound the line ($n=\pi / 2, y=\pi / 2, z$), while bean-shaped cointer-rotating strean function lobed generate a velocity field which points across the pololdal cut tomard the region of maximum curcent density, ts by be seen in Fig, 5 , $t=16.56$. With behavior siallar to that abserved in the undriven simulations deacribed in the fifth chapter, the current filament intenaifjed in reqions toward the edge of the diaturbance, whlle the velocity field grome stronger; see Fig. 59, $t=$ 20.64. By $\mathrm{t}=\mathbf{2 6}$.4F, the current cokuen appoachas a flattened state. This atate is virtually achieved by $t=36.24$, as may be seen in Fig. 61. Through-

 varying in mplytude.

The velocity field perturbation continues to eniat for tens of hlfén tranast times, almost in a steady state, as may be seen at anple tie of 42 , in Fig. 62. An onusual horseshoe-zhaped current filament, hollow to the center of the poloidal cut, has developed, which co-ealsts mith the jong-lived velocity field. By comparing Figs. 62b with 62d, it is clear that the velocity field points across the center of the pololdal cut, miny from the region of lesser corcent density and toward the "bwee" of the horseshoe-shaped curient flianent. Apparently, this filementary structure is not paralleled in surfaces upon which magnetic field lines lif; no "horgeshoe-ohaped islands" can be detected in Poincare traces of magnetic field linen in the $z=\pi$ plane, at $t=42$; bee F19. 63.

After tens of Alfuen tramst times. when sufficient reaolution must seriously becone suspect, the velofity field has decayed to local ainimu, at $t=$ 141.84. After this time, another burat of kinetic nctivity is observed, with fenturen very alallar to the first. At $t=199.44$, near the time of the aecond kinetic energy manimus, helical filament once again has formed, in the ane physical location where the $t: 16$ filament had been; see Pig. 64. this filament behaves like the one near $t: 16$ did: it nearly disappens into the edge of the diaturbance as the current profile broady flattens. Through this time, the velocity field perturbation has grom 5 n agglitude, with unchanged sign.

Following this burst of activity, , horseshot-shaped current fllagent once again developa, while the velocity field settlea into a nealy constant-taplitude steady state flow pattern. as ay be sten in Pig. 65.

As findicated sbove, this second burst of disroptive activity occurs under
conditiona of uncertaln resolution. Plota of modal kisetic energy spectra during this time, Fig. 66, are tncouraging: the perturbation it low menmabera molly doninates. Mounta of excitation, of $0\left(10^{-5}\right.$, $\left.10^{-6}\right)$ do exiat in the highest mavenabers through this time, however, and must generate consjderable aliasing efror.

An identical run periformed on a $16 * 16 * 16$ grid was able to track the same aolution through $t \sim 65$. The comeser prid cun's solutions then diverged from the $32 * 32 * 16$ grid run's solutions, as my be seen in Pig. 67. It is conjectured that alabing error astained the conraer grid ron's perturbation, prohibiting atend disruptive event fiom taking place. Although this aumilfry run eatablished the nuerical validity of the first event, the validity of the second event is sonewhat questionable.
2. $\psi=1.11$.

Hultiple events of disroptive activity may becurately generated, homever. Ibclusion of viscous danping tern, which can case the austained velocfty field perturbation to be diainathed, leads to time history depicted in Fig. 68. There it may be observed that, about 25 Alfven tranait tines after the firot burat of kinetic energy and net current, another shaline burst oecurs.

Because a second diaruptive event mas observed in the inviacid Case 4 simulation (under conditions of some numerical error). it is not possible to say that the ealtiplicity of evente only occurs through the ection of viscous damping of a gatained velocity field perturbation. It is clear, however. that developent of the fluld flow depends atrongly on whether wiscous ters Is added to the equation of motion. Inciusion of viscosity tends to danp the Llom, and leads to pronounced subaequent bounces.

He proceed to estudy of aimlar get of ofmulations, CASE 5, to establish that this behavior occurs over range of parameters.

As in the CASE 4 inulations, $\mathrm{O}(\mathrm{x}=\pi / 2, \mathrm{y}=\pi / 2, \mathrm{t}=0)=5 \mathrm{f}$ in the CASE 5 simulations, described in this section. The values of $f(x=\pi / 2, y=\pi / 2$,
 $j(x, y, t=4), x_{0}=8 / 204$, for all time, at all interior orid point.e.

1. $\nu=1$.

This sianlation io quite sindiar to the case 4 inviscid, driven run, as may be aetn in time hiatoriea of sone global quantities. Plg. 69. Pollowing the typical burst of dirruptive activity, the curtent density develops horseshoeshaped fllament, while the velocity field again points tomard the bere of the horseghoe. These features are depicted in fig. 78. A current cross-sectionsl alice at $x \times \pi / 2, y, z=T$ clearly exhibits the hollow center of the current denalty, the anglitude of which drops from appromicately $25 t$ of the off-center manime to value $f(x=\pi / 2, y=\pi / 2, z=\pi) \not 4$ 4.3. Contours at a later time, $\mathbf{3 5} .44$, show that the horgeshoe fllanent is filling in, while the strean function perturbation remaliss nearly steady, wat unchanging in aigh; gee Pig. 71. Wo diditional bursts of ectivity were observed to occut in this ainulation, through a colpotational tiet of 52 .
2. $V=1.1$.
upon the inciusion of a viscous daping tera in the equation of otion, however, a multitude of discuptive bursts of activity were generated. Glob-is from the viscous, forced case 5 simulation. Fig. 72, point to bursts of ectivity taking place regularly, after on initial disruption at $t=32.1$. a second burat occurs at $t=56.28$, whle third happons at $t=0$. 16 ,

Each event is characterized by the formation, then diappearance, of an "m - 1, $n=t{ }^{*}$ hellcal current filatent, and the disinishing, then growth, of
single-figned helical streas function pattern. Prior to the first flattening of the curcent density, both a mell-formed filament and a large-abplitude velocity field perturbation may be seen, at $t=29.28$, in Fig. 73. Following the flegt kinetic energy peak, the curcent columin has becone broady flat, with much swall-scale spatial atructure present toward the colunin edges. Though diainighed in ampliftude, the same strean-function perturbation exists at $t=39.36$ at had betn visible at $t=29.28 ;$ set Fig. 74 .
h few Alfuéa transit times before the second kinetic energy peak. a helical fllanent clearly has farmed once agaln, in the same region as the $t=29.2$. filament had been. The stemen function perturbation, unchanged in sign, bas grown in anplitude; these features we apparent at $t=54.72$, Fig. 75.

The disruptive process described in this aection is a repetitive one, with each aubsequent burst of activity qualitatively nuch like the first. The enveloping mplitude of the perturbed field weakens as the siaulation proceeds, however. It da likely that highly regular and uniform "sawtooth" bursts of disruptive activity may requite plasna processes not included in the strauss apprommation.
C. $B_{0}=2,4, \eta_{1}(x, y)=[350$ enp $\left.\{-6 x-\pi / 2)-(y-\pi / 2)]\right]^{-1}$.

In the slmulations, caseg 4 and 5 , only a sall central reqion of the magnetofiojd is exposed to a resistivity of o($4 . f 1$) or less. In order to establish that the small central reqion of variable cesistivity in cases 4 mod 5 is not a gtabilizing factor which enforces the long perfod of nearly steady-atate solutions with fion, in the inviscid cabes 4 and 5 , we perfore an additional driver, jnviacid simulation, on a $64 * 64 * 32$ gidd, with $\eta_{\text {min }}=1 / 359_{\text {, and }}$

 we choose $\mathrm{B}_{\mathrm{o}}=2.4$, and $\mathrm{f}(\mathrm{t}=\mathrm{F})=\mathrm{Bexp}(-(\mathrm{x}-\pi / 2)-(\mathrm{y}-\pi / 2))$
 with value of $1 / 351$
selected global for this annulation. CRSE 6, ore shown in Pig. 76. These global indicate that, following an initial burst of disruptive activity at about $t=34$, a quasi steady-atote with flow, similar to the states attained by the driven. inviscid CASES 4 and 5 . is achieved. Contours at $t=39.24$. Pig. 77, display the dominant velocity field pattern. At this time, the eurrent density is peaked along the center line of the stream function perturbstimon. Only one magnetic anis may be inferred from Poincare traces of mantic field lines in the $z=\pi$ plane; samples of traces at $t=39.24$ are shown in PIg. 76.

The atrean function perturbation apparent near $t=39$ continues to dominate
 averaged over a period of time from $t=57.48$ to $t=68$. 16 as e found to be

$$
\begin{aligned}
\psi\left(k_{z}=1\right)= & -5.6 \times 10^{2}[\sin 2 x \sin y \cos z+\sin \times \sin 2 y \sin \bar{z}] \\
& +32 \times 10^{-2}[\sin x \sin 2 y \cos z-\sin 2 \sin ; \therefore z]
\end{aligned}
$$

similarly, the largest vector potential modes in the $k_{z}=1$ band likewise averaged over a period of computational time frost $\mathbf{- 5 7 . 4 6}$ to $t=69.16$ are;

$$
\begin{aligned}
& A\left(k_{i}-1\right)=6.2 \times 10^{-2}[\sin 2 \times \sin p \cos z+\sin \times \sin \therefore \quad \text {, } t]
\end{aligned}
$$

Employing the notation used in the sixth chapter, these perturbations my be rewritten:

$$
\begin{aligned}
& \psi^{\prime}=\beta[-\epsilon f-\delta g] \\
& A^{\prime}=\alpha[-\delta f+\epsilon g]
\end{aligned}
$$

for $d(4) / \epsilon(4)=-1.57143 \mathrm{nd} \quad \delta(A) / \epsilon(A)=-9.56364$. The d / ϵ ratios average to $\delta / \notin-1.567$. Further, $-\beta \in=-1.156$, or $\beta(\alpha)=1.1644$, while $\beta \delta=\operatorname{s.032}$. or $\beta(\lambda)=$ i. 6649 ; the experimental valves for β differ by only
 A. A11, which also gives mic) $a(d)=$ fining. These perturbations are thus of a type for which the low order model is applicable.

From the simulation described in this section, it is clear that the combingLion of in increased grid adze and consequent manlier - does not alter the basic driven, inviscid scenario observed in CASBS and 5 .

VIII. DIGCUESIOH

Huch effort has been devoted to the experinental and numerical study of disruptive activity in current-cariying magnetofluids. Resulta from relevant experfments, and from earlier conputations, are sumarized in the first chapter. In this chapter, after arief comparison of the resulte reported in this mork with reaults fron prior numerical studes, the ipplicability of our reaults to experimental observation is addressed. Possible future directions will then be suggested.
A. Sunary.

Almot every previous mort considered employed sone fort of external driving. Surprisingly, not only our driven renults, reported in the seventh chapter, but also our free decay resulta, reported in the fifth chapter, agree sonemhat with the driven. single helicity celculations of wadell, et al (1976) and the ariven three-diensional results of Sykes and Hesson (1976). In all
 et al (1976), only follow one flattening of the current, whle the sinulation of δ ghes and hesson (1976) generater repetitive enpulsions of the $\mathrm{q}=1$ surface from the plasma. In our almulations, we also observe quasi-cyclic repetition of the activity; in the free-decay, constant resiakivity siaulations, the activity repeats on nearly alfvenic timescales, whlle in the driven, varinble resistivity aiadutions, the period of the disturbance in in quneral muth longer.

Mlthough haddell, ot al (1979) aleg perforn simulations with the stratas equations, their choice of a flat, initial grgrofile, as opposed to the strongly-varying ones employed here, wast theit conputations aparently incom-
mensurable with ours . The electric-field dependent resulte of biang and Welter's (1963) simulations are not exactly comparable with ourb, aince our reported simulations employ no "constant current" driving sechanish. Pinally, it is difficult to correlate resulte from these simulations with simulations in which atfferent aspect ratio expansiont tre enghasized.

One ajor difference which atparater the work from previous almulations is the values here chosen for the lundquist number. We enploy no "radial gmoothing", nor do we use any "mode selectien" for numerical stability or reanonable teaporal evolution of epatiol profiles. The Straus equations ate shalated by meana of an undistorted. three dimensional grid in Fourier space, is which all modes dynanically accessible are available to the tire-degendent solutions, and may fre active. Except where clearly indicated, our results are well-centerget mumerical solutions to the poged problen, with unceaticted initial condtions.

In sumary, we find that qualitative features of disrupting, bounded, cur-rent-carying manetofluids con be atudied by tificient (0.7 sec./timestep on the CRAYl at 32 * 32 * 16 remolution) pseudospectral computation, in the preqence of reaiative, free-silp boundary conditions. Appropriate initial condttions are thought to be cur rent and magntic field profiles which have current mania in the center of the channel (but which are not analytic equilibria) plus amall amonts of random nolse broudy distributed in Fourler apace. Prom buch conditions, which relas quickly touard nearly quieacent equilibria, aingle disroptive event can develop and complete its evolution in felatively few hlfven tranalt timea and in far lesa than large-scale resiative decay tiata. Theae events tre characterized by helical concentrations of mann $=1$ " current and vopticity. Even in the unforced problea, the disruptive process ds
obnerved to be cyclic, on an Alfén timescale. with repented bounces of the Whetic energy as function of tipe. Resulta from the 1 inearized gtrass equations, reported in the second appendix. sqree with the nonlinear ones for * few hlfén tranait ties. then diverge algnificantly fron the disruptive, bonlinear results. A low order truncation model of the Strouse equations, described in the sinth chapter. is found to contain sone of the quasi-cyclic and stendy featores the large-scale sinulations exhibit, but much of the interesting dynamical systens behavior of this model is apparently unparalleled it the large-quid reaulta. The inclusion of an external electric field and witible registivity in the jnuiscid, large-grid binulation give aise to an indGial diaruptive event which is much like the ones observed in the undriven sinulationa, followed by nearly steady-atate altuation with flow, which arvives for tens of Alfven transit times. The ddition of wigcous daping teris to the equation of motion leavea the inttial event basically unaitered. Wiacosity tends to danp the genernted flow, fol, following the initial borst of disruptive activity, pronounced subsequent bounces in qlobal quantities as a function of tine accur in driven, viscous sinalations.

A quantitative comparison of these results with the experimental observations of diaruptive activity is unremarding. One reason for this is that our siminations represent idealized situations. Without fentures which my affect observed tiat ocalea and signal alat, such as compressibility, toroidicity, a vacuif reqion atrounding the plam, uneven malls, liaiters, with whith the plasen interacta chemically, and gas puffing, Anothet reason if that while whive of lundquist number were chosen to insure numerically accurate solutions to the straus model as a function of the, they are far less than those represented in Fable 1 , for curcent generation fusion davices; the enhanced values of diffusion used here may lead to a less probounted separation of lerge-scale
resistive decay and mifern transt timescales than enists experimentally Qualitative conparigon, however, is instructive

The Eretedecay, quasi-cyclic oscillationg occor in the obeence of forcjng. and with marked qemeration of spall-scale turbulent structure at the perim phery of the current colum. Several workers, notably DuBois, et al (1983), and hicthenberg (1984), have sugqested that turbulence in the mejghborbood of the reconnection regdon 19 responsible for fnconplete feconfection of the m = eqolution. Dur simulation reaults maree with the brpothesis that turbulence js Generated in the neighborhood of the geparatin. Also, the quasi-cyclic nature of the disruptive activity in the decay simulations indicate that helical
 suggestion of a symetric state evoluing after s single disrupture bounce, is not realized tn our simulations. it is possible, then, that the quasj-cyclic attivity observed fin the free decay sinulations is sldatar in nature to the
 from experjmental PLT data.

Further, the dnclusion of gtrong drjwing in the simulations can generate repeated bounces on timescales which are not inconpatibie with the timescales
 timescales are longer than Alfveric timescales but shorter than the largerseale resistive timeg. our drying mechandsn is jmposed at every grid point, rather than only being allowed to resistively diffuse inward. we thus neglect many effects the turbupence might have on the drlving mechanism. The addityon of a viscous danping tern also reduces the level of generared small-scafe gpatal structure. Here, although a amalj post-bounce is generally observed in the fnvigeid. Griven gimbationg, only tsolated events are seen in the viscous.
driven russ. Our driven sinulationa thus could siaulate disruptive activity in a less turbulent eagnetofluid, one in which repeated, quasi-cyclic itteapts at recpnsection are not doninant.
B. Directions for Purther Hork,

In order to observe dynanic cascade behavior of similated equations, turbulence researchers bave added anall, external forcang terns to the solved equations (for example, Pyfe, et (1977), Bosain, et al (1983), to overcone the strongly daping effecta of necessarlly large diffusion cofficients. Attenpts to include auch forcing terms in the aine-gtraus code have met with fallure, Mo damping existe in the z-direction, in the Strausa equationa. Instead, the ection of the strong external field $\mathrm{B}_{\mathrm{E}} \mathrm{E}_{\mathrm{z}}$ is depended upon to reatrict nonllnear developaent th that direction. We have found that banded anall acale forcing teras generate nuch nonlanear development in all three allowed ditections, and resolution is quickly lost in the z-direction. Benct, to observe inpertant dynamical behavior of the mat equations in Strass-like geometry, with cocrent generation conputers, it will be necessary to solve the tull 3-d MAD equations, with strass-like conditions and hatural dissipation in all threa directions. sall-sale randon forcing terns may then be added, with sinulation tesolution not exceedet.

A parallel atudy using lan ofder model like the one proposed in the aixth chapter, would be appropriate for sufficiently Strass-like three-dinensional conditions. a mall-scile, random driving term added to the equation for the strean function perturbation could ainulate the poloidal anall-scule strocture with $k_{x}=1$ dependence that is qenerated in the neighbor hood of the reconhection region, and would lead to a meana of enploring what effects very amoll seales could have on the largest modes avillable to the gystem.

The clearest entension of the large-qrid simulations reported in this work to full three-dimensionality would de to perform sinulations with a code which employs a set of expanaion functions that reduce to the ones used here. Such a stt has been proposed by Turner (1904). Upen the generation of this code, the question of how an inverse cascade of the eagnetic helicity may effect disruptive behavior (Montgonery (1982)) could be accurately explored.

APPEMDIY h

TMO-DIHEAGIOWAL MHERJCAL EXPESIMENTE:

A. Introduction to the Simulation Probles.

When turning to digital computer as an ald in the underatanding of a phyaical procest, ft is necessary to select a merital method of solution of the modeling equations as carefully as the equatlons theaselves were choten. Spurious resulta my otherwhe be obtained, or even no results at all,

Several factors ate generally conaldered when ereating thumerical algorithm, arong then effictency, eccuracy and stabllity. Although accuracy fs the most crucial of the three, atability, or the lack thereof, is posodbly the first one approached when trying out hew method. If the correctly prograced nuetical method is totally ond enplosively unstable, no reliable phybical intights ean ever be obtuined fion simulation whith eaploys this algorith.

The consequences of simulating the two-diaensional MBD equations, both spectrelly and pseudospectrally, is the subject of this appendin. A further categorization, that of representing the nonlinear teras in two numerIcally different ways, is introduced. By means of almulation, it will be found that when the equations are pseudarpactrally solved in a fors which does not conserve onergy, the simulation is apectacularly numerically onstable one. Bowever, when the equations are again solved ta their fully allased, or preudospectral representation. In may which numericelly conserves the total energy of the syaten, the solutions are quite well-behaved. It is turther de-
monstrated that when a sustable mount of diantpation is introduced into the the gyster, the conservation-fors psedospectral method again gields stable resolts. These inaults are found to agree well with those generated by code witch is fully apectral, code in which all alissing errors have been tenoved.
B. The Systen of Equtiona Used to Denonstrate the Problen.

An in jllustration of the influence the algorithin chosen has on a sinulation, conalder the numerical solution of the two diaensional han equations for vorticity ond vactor potential, computationally time advanced in the following form ($\mathrm{A}-1$).
(a) $\frac{b \omega}{\partial t}=\nabla \cdot(-v \omega+B j)+v \nabla^{2} \omega$ (A-1)
(b) $\frac{\partial A}{\partial t}=\nabla(-v A)+\eta \nabla^{2} A$

These equations are apecial case of the strause equations. discuased in Chapter II. They may be obtained from the strause equations by setting the external manntic fiela, B_{0} to zero, and allowing no z-vatiation in Lejor A. for convendence, the defintions of the now two-dinensional veriablea
 for $\underset{\sim}{V}$, the solenoldal velocity field, and $\psi=\psi(x y,\{)$, the acalar atrens function. Also, let $A: A(n, 4, i)$ be the vector potential, from which the soleneidal, self-consistent magnetic fleld, $E=\nabla \cdot N \hat{\mathrm{e}}_{z}$, and the curcent
 sionless units as were wasd in the body of the work tre used here.

The geonetry of these simulations whll be any horizontal plane of the full three-dimenalonal domain described in chapter 2 . Aa there, malls bound the fluid in x and in y. Por the runs described in this appendix, the strictly
tmo-dimensional manetofluid is confined to a aquare in the x, y plane with sides of length π. The boundary conditions faposed are those appropriate for rigid, fret-slip, perfectly conducting melle, nunely, the vector potential and gtream function vanish at the malla, ws does the curcent density. Three quadratic constants of the motion exist for the two-diwensional H日D equations ($A-1$): total energy, $E=\frac{1}{2 V_{0}} \int d^{2} y\left(v^{2}+B^{2}\right)$; men aquare vector potentiol, $Q=\frac{1}{2 V_{1}} \int d^{2} y A^{2} \quad ;$ and cross helicity. $p=\frac{1}{2 V_{p l}} \int d^{2} F \underline{V}$ (fyfe and montqonery, 1976). In the following, focus will be on the total energy as a useful diagnostic.
C. Particulars of the method moloyed.

The apatisi and temporal diensjons are esaentially different in mature. A boundery value problem is posed in spice, while in tipe, the conditions are those of an inftial value probles. The derdvatives in these dinensions are thus treated differentiy. Pirst, conaider the time derivatives.

The tire-stepoing chosen is identical to that used in the main simiation code. deteribed in chapter 14 . Let $\frac{\partial u}{\partial t}: f$, where u mould be either or A, and and $f(0)$ then mould represent the right hand sides of (A-1) (a) or (b). The second order Runge-Rutta, or bevn, method amployed 13

$$
\begin{aligned}
& u^{n+1 / 2}=u^{n}+\frac{\Delta t}{2} f\left(n^{n}\right) \\
& u^{n+1}=u^{n}+\Delta t \int\left(n^{n+1} 2\right)
\end{aligned}
$$

Where in is the tiat index, and Δt is the timestep. This method is mumerically unstable when applied to a linear advaction equation, at can be seen by perforsing von Heuman analyais on the model linear equation

$$
\frac{\partial u}{\partial t}=U_{0} \frac{\partial u}{\partial x}+\eta \frac{\partial^{2} u}{\partial x^{2}}
$$

with $\boldsymbol{\gamma}$ set to zero (Bossaln, 1983). The weak instablity can be renoued by a suitable choice of 7 (Dablburg, Hontgomery and matthatus, 1985). This is atine stepping method which has previously been successfully enployed even for abolute equilibriun studies of equations (A-l), Galerkin simulations in wich both diffusivities are aft to zero (Pyfe, soyce and Hontqomery, 1977).
bsais functions are pased for the spatial dimensions of the sialation, real Pourier sine series in both the x and y directions. The velocity atreas function and the magnetje vector potential wre expanded in these half-range Pourler series in both w and y. This corresponds to imposing the desired free slip. rigid mall boundary conditions on the velocity field, end perfectiy conducting boundary conditions on the manetic field. Spatial derivatives ate taken apectrally, in the sine-Fourler space. specifictily, in phaical-apace quantity is tranaforned to the sine-fourder space, its coefficients are then multiplied by the appropilate power of meve nuber, and the rosult is returat to phyalcal space by mans of a half-range cosine aerles tor a first derjvative, and half-range aine series when two derivatives are taken.

Por instance, in ont dimension, let

$$
\left.k_{k}\right)=\sum_{k=1}^{N-1} \tilde{\psi}_{k} \sin \left(k x_{j}\right), \quad x_{j}=\pi / 1 j, j: 1, N \cdot 1
$$

mat be represented on ($\boldsymbol{*}, 2 \pi$) by menn of a full complen fourier series;

$$
\psi\left(x_{j}\right)=\sum_{k=\cdot k_{1} / 2}^{M / 2-1} \psi_{k} E y p\left[i k_{j}\right] \quad x_{j} \frac{2 \pi j}{M}, j=0, M_{j}, 1
$$

The sine series representation for ψ do recovered it the real part of \mathcal{F} zero, $\Psi_{i}(k)=-\frac{1}{2} \widetilde{\psi}_{k}$, and the reality condition is imposed, so that $\Psi_{i}(\cdot k)=$ $+\frac{1}{2} \Psi_{k}$.

A derivative of the foll complex series is token in the following may:

$$
\frac{\bar{\partial} \psi\left(x_{1}\right)}{\partial x_{j}}=\sum_{k=-\mu_{2}}^{M / 2-1} i k \Psi_{k}\left[\cos \left(k y_{j}\right)+i \sin \left(k x_{j}\right)\right]
$$

For the Ψ previously defined, $\Psi_{i k} 0_{j} \Psi_{r k}=0$, it is gen that the reality condition implies that only the confine ser les survives

$$
\frac{\partial \psi\left(x_{1}\right)}{\partial x_{j}}=\sum_{k=m / 2}^{m / 2-1} \Psi_{k} \text { cow }\left(v x_{j}\right)
$$

or, using the equivalence between Ψ and Ψ

$$
\frac{\partial \psi(y)}{\partial x_{j}}=\sum_{k=1}^{1 j-1} k \bar{\psi}_{k}\left(k+x_{j}\right)
$$

similarly, one cen obtain

$$
\frac{\partial^{2}+\left(x_{j}\right)}{\partial y_{j}^{2}}=-\sum_{k=1}^{i 1-1} k^{2} \tilde{H}_{k} \sin \left(k y_{j}\right)
$$

Product ter me nay also be considered.

$$
\begin{aligned}
& \psi\left(x_{j}\right) \xi\left(x_{j}\right)=\sum_{k=1}^{N-1} \psi_{k} \operatorname{Sin}\left(k x_{j} \sum_{j=1}^{N-1} \sum_{k} \sin \left(k_{j}\right)\right. \\
& =\sum_{m} \dot{F}_{m} \dot{\theta c}\left(m r_{J}\right) \\
& \text { applies } \frac{\partial}{\partial y}(\psi \xi)=-\sum_{k=1}^{N-1} k भ_{k} \sin \left(k x_{j}\right)
\end{aligned}
$$

let
where again only the imaginary parts of the Pounder coefficients me nonzero. A fully aliased sum is obtained for $\sum_{k \in} \psi_{k} \tilde{F}_{i} \sin \left(\mid c r_{j}\right) \sin \left(i_{3}\right)$

$$
\begin{aligned}
& \rightarrow \sum_{k_{1} l} \Psi_{k} e^{i k_{j}} \xi e^{i \ell_{j}}=\sum_{k_{j} \ell} \Psi_{k c} \xi_{\ell} e^{i x_{j}(k+1)} \\
& =\sum_{k, k}\left(i \Psi_{k}\right)\left(e_{j}\right) e^{i r_{j}(k+l)} \\
& =-\sum_{k_{j} k} \psi_{i k} E_{i d}\left(\cos \left[(k+C) x_{j}\right]+\operatorname{sm}\left[\left(k+l \mid x_{j}\right]\right)\right. \\
& =-\sum_{k, 1} \Psi_{i k} \xi_{i k} \cos \left[(k+k) x_{j}\right]
\end{aligned}
$$

implies an aliased sum $\quad \sum Q_{m} \cos m x_{j}$.

That is, for the reality condition to be met. only the cosine port of the full complex series survives. The derivative of this product will bring down an "dk" from the exponential ugqment; gain a sine series in obtained, by the reality condition.

A parallel argument demonstrates that

$$
\begin{aligned}
V G & =\sum_{k} \tilde{V}_{k} \operatorname{coc}_{0}\left(k x_{j}\right) \sum_{\hat{L}} \hat{\xi}_{i} \sin \left(\lambda x_{j}\right) \\
& =\sum_{m=1}^{N} \rho_{m} \sin (\min)
\end{aligned}
$$

Where the complex Fourier series coefficient for V mould be real, only, with $V_{r}\left(k^{3}\right)=+V_{r}(-k)$.

For later reference, we note here that dealiasing the product terms is a simple matter: pad the complex Four der coefficients with zeroes from -H/2-1 to -M and $\mathrm{H} / 2$ to $\mathrm{H}-1$ when transforming an array to physical space to make product (0razag. 1971). From the conversion previously show, it is clear that
 valent exponential coefficient are suitably padded with zeroes, and that a
detliased aum mill reanlt.
D. Illustrative muericel Enperiment Runs Perforged.

1. Without Digipation; Diffuaivities $=\mathrm{G}$.

The method thosen, the proposed serfies of amerlatil experiments is now embarked upon, beginining with what arould be a simple nunerical exercise. Fot that first simulation, Rum h, the folly oliased sums are used, and the the equations are advanced mith the apatisl parts written in the form ($\mathrm{m}-\mathrm{l}$).
 Fourler coefficients

$$
\vec{A}_{3,1}=-0.4, \quad \vec{A}_{2,2}=0.5, \quad \vec{A}_{3,5}=4 / 34
$$

and

$$
\dot{\omega}_{2,3}=\vec{\omega}_{1,1}=-\tilde{\omega}_{7,8}=-\tilde{\omega}_{4,2}=4,
$$

ali other sine-Fourier coefficients zero. The code is set into motion. Within only about 4 timesteps, catagtrophic instability, of the numerical variety, has forced the simulation to halt, by generating numbers too lerge for conputer to deal with, this explosion is demonstraked in a plot of total energy vergus tite, in Pigure al. It is opporent from this plot alone that no use can be made of any reaults which come from the equations numerically solved in this fashion.

Cures for this blow-up of entrgy do enist. One cure is to dealias the nonlinem product terat which appear in equations ($\mathrm{m}-1$). Dealiasing to effected, an described mbove, by padding the Pourier coefficients whith zeroes from $k^{\prime}, k y=\mathrm{N}$ to 2 k when tranaferring the arrays to physital space to make the product terns, and then the adyancing the returned products in the

with the same initial conditions nim parameters to were ased in the fully diased RUN l, yiald startlingly different terults. Pigure has shows plot of the very well-behoved total entrgy versus time, while pigures abb and ace show
 thergy ($\left.E_{k}: \frac{1}{24,1}\right\} d^{2} \times B^{2}$) veraus time, respectively. Pigures azb and mecestablish that variation does exist in quantities other than the tokal energy. The solutions change nuch as anction of the, as figures mid through mag
 Pourier apace contour plot of $\vec{A}_{2}(t=\|)$. Pigures an and $A 2 y$ are pourier space contour plots of $\hat{\omega}_{2}(t=8,76)$, and $\widehat{A}_{2}(8.76)$ respectively; these Fourler cofficients have evolved from those depieted in piguras aid and he.
ferolto enactly identical to RuN \boldsymbol{a} eay be obtained by bolving the equations (A-1) in the forn
(a) $\quad \frac{\sigma \omega}{\sigma t}=\nabla \cdot(-\underline{v} \omega+\underset{\underline{E}}{j})+\nu \nabla^{2} \omega$
(A-2)
(b) $\quad \frac{\partial A}{\partial t}=\underline{V}=\underline{E} \cdot \hat{e}_{2}+\cdots 7^{2} A$
wh the product term dealiased as they were in RuN 22 . That the tine evolution of the Fourier coafficients of this run, RUN A_{3}, is fentical is most
 Figure $\mathrm{Ab}^{3 b}$, of $\mathrm{A}_{3}(\mathrm{t}=\mathbf{8 . 7 6)}$, with Pigure A 2 g , to observe that the evolving Pourler coefficients are indietinguiahable.

When the appended zeroes are renoved, however, and the bane paraneters and Initial conditions are used, for RUN A4, the explosive aliasing instablity (Phillips, 1959) is found to be absent. Inatead, the solutions are very well behaved, as is denonatrated by plote of tatal energy versub tiee, (Flg , A4a), kinetic energy verdus the, (Fig. Ab), and manetic enargy versuatime (Fig.

Ac). The inatability observed in RUF hl was thos removed by mriting the time-tuanced equations in forn (Lang, 1982) which meal-conserves total energy pseudospectially. That is, ignoring any discietitation errors, forle (a) enforcea numerical conservation of energy. The solutions are thus bounded at function of time, and the sfaulation ay be ron for tens of units of ties.

2. Dissipative; Diffusivities $=1 / 51$.

It is of more phyalal interest to stady a diabative syaten. The simulatjons described above are now repeated, with finite maunts of wiscosity and resistivity.
 sane is above, it is seen that a reasonable amount of diffusion is insufficient to stabilize the allasing lnatability. Plote of total energy veraus time, (F1g. A5a), kinetic energy versus time, (Pig. A5b), and manetic energy versus tiat, (Pig. Asc), demonstrate the molutions' lack of alicunspection; the coefficients can anly be time-advanced for uselessly short interval.
 except that U. \uparrow. A. A2. flere the solution behaves well as a function of bine, whe my seen in Pigures A6a, A6b, and m6c, which are plots of total energy versus time, magnetic energy versua time, and kinetic energy versus time. respectively, Piqures abd and a6e are physical space contour plots of the in-

 plot of $A_{6}(t=1.76)$.

 Identical results are obtained so long ts the product terms are solved for on
the grid enpanded for dealiasing. This my be easily observed by comparing the solutions $N_{7}(x, y, t=8.76)$ in Pigure A7a with ω_{6} of Piqure A6f, and

Expenaive dealiabing ety be avojded altogether, and the aimulation still retafn integrity, as RUN id demonstrates. RUN as is the repeated RUN A4, with

 compare well with the globis plotted is Pigures Ag, A6b, and mac. The golu-
 ically siailur, as can be observed by comparing Fifures M6f and A6g with Figures hed and hee. The slight differenced are lest than a cell size in dinemsion; such plotting discrepanties esty be enpected.

This agreenent allows the conclusion that the eore economical paradoapectral method is valdd, and valuable technipue for simulating the MBD tquations. When the equations are numerically tine-duanced in the form which conserven energy psevdospectrally, form ($\mathrm{A}-2$), the nonlinent, or difting instablifty is removed. Iqnoring tiae diacretization errors, the solutions then remalo bounded. Adjlig a aufficient mount of dissipation to the problen generates the additional reault that the solutions produced by the conservation form paedospectral scheme are seen to agree quite well with truly apectal solutions. Sfallar agreement was found in stalations of the two-diensional Havier-Stokes equation (Orszag, 1972; Fon 5 Orszag. 1973).

APPETHIY

EIMNLATION OF FBE LIMRARIED STRAUSS

EOUATIONS WITG CASE 2 PARHNTERS

If we linearize equations (9) and (1) about a zeroth order gtate ${ }^{\text {lo }}$.
 for the perturbation tields 15
 ($\mathrm{B}-1$)

 either be slloted to partieipote in the dynamics according to
 $(B-2)$
(b)

$$
\frac{\partial A^{\left(\theta^{\prime}\right.}}{\partial t}=-v_{1}^{(s)} \cdot D_{1} A^{(0)}+\eta_{0} v_{1}^{2} A^{\prime}
$$

or mey be approxiated by setting η, to zero. In the latter case we shall
 "frozen", and In the former cose, we ohell say the zeroth order state ds "thaned".

Only the trozen problem, becouse of the tien-dependent zerotb-order coeffi-
 11near elgenvalue problea with well-defined tepporal gronth rate. for very high ralues of $g(10 n-p)$, the decay predicted by equation ($B-2$) b will be sufficiently flow that the distjotson between the frozen and thaned linemrized
problews thould be unimportant, sut for the ititution tinulated, we find that
 significantly during the bimes of interest. Thus there are two more-or-lets relevant linearized problems.

Since we wish to initialize the linear aimulations with conditions from the nonlinear run CASE 2, we must first deternine the extent to which the magnato fluid has relayed to something that can reasonably be called on "equilibriun" state by, say, $t=1.74$. This offers the most natural candidates for $\mathrm{A}^{(\cdots)}, \mathrm{B}_{\mathrm{s}}$: ${ }^{\text {n }}$, and $f^{\text {(D) }}$ and we form then from the total contributions from the $k_{z}=$ conponents only of magnetic quantitiea at $t=1.74$, zeroth order parts of $\psi^{\text {tot }}, y_{t}^{(b)}$ and (4) wre initialized in this why, slso, by, for ingtance, setting the almost negligible a $^{\prime}\left(t-1.74, k_{z}=0\right)$ equal to $w^{\text {(o) }}$. The extent to which these conditions represent on equilibrive is tested in the following maner.

We return to the primitive who variables, nolve the poiason equation for the preasure p, obtain the velecities, and compute the individual terms in the equation of motion. The queation becomes the extent to which the remaining terma compare in manitude fon point to point with the eagnitudea of those in the appronimate equilibrium relation $\nabla_{4} p-y X B_{\perp} \approx$. The departure frow
 of eath term in the zeroth order equation of motion. We find that $\nabla_{\perp} p$ and 1 i + typically have mgntendes of $0(1)$ separately, and the other terns in the equation of eation typicaliy have magnitudea of o(1t ${ }^{-4}$) at $t=1.74$, time near the first mininul of the kinetic energy. Thus we conclude that to astisfactory appoximation, the plases has relaned to an equilibriun state by this thes.

The zeroth order initial conditions now deternined, we choose the first or-
der quastities to parallel further the dynales of the nonlisear ran an clocely
 and $j^{(0)}$ from $k_{z}=1$ components of their nonlinemr counterparts at $t=1.74$. Constant parameters agree with those of the nonlinear ran CASE 2, also: go" 4.3. $y=0.11$, and $k_{x_{\text {max }}}=k_{y_{\text {mox }}}=32$. Foth frozen and thamed runs ahare these conditiona. In adition, for the thamed run, y. I. while for the frozen run. in = \boldsymbol{H}.

Upon tied-aduancing these conditions, we find that the linear perturbation energies follow the nonithear k_{z} * component of the energies fot only few
 component of the kinetic energy for the frozen, thawed and nonlinear runs. while Pig. Blb displays the $k_{z}=1$ component of the magnetic energy for all three cases. In both a and b, the Erozen run's perturbotion energies are represented by ahort dashed lines, the thawed linear run's perturbation energies are dram with unbroken 11 nea, and the nonlinear $\mathrm{k}_{z}=1$ conponents of the energies are traced with long dashed linea. The linan frozen rion diverges from the nonlinear one firat, Each perturbation energy of the frozen ran grows exponentially, setting into a constant growth gate of ©.7. where we approatmate a Instantaneous grouth rate γ fron the relation energy $(t+\Delta t)=$ energy(t) * enp[2 γ a t], tor each pertorbed tiald. The thated linear run follows its nonlinear counterpart for a oneuhat longer time. As the disruptive activity strengthens, the results of the linear, thawed and nonlinear runs conclosively part conpany.
 linetr) - B.日2; each of Fige. B2 and B3 contains contour plots Efon all three runs. These contours clearly show the entent to which the linear runs' solutions are no longer comparable to those of the nondinen case. For both linear
runs, plotted are the zeroth order quantities to mbich theit full perturbations have been added.

Elices in the $z=\pi$ planes of vector potential a are shown for the nonlinear run tin Pig. B2a; for the linear frozen run in B2c; and for the linear thaned run In bie. Theugh the Inear frozen vector potential is amemat mare oskem than the vector potential contoars of the other two cases, sll three are siailar. Since the vector patential depends mast strongly on the larger scales present in the simulation, reflected in the similarity is the agreenent of all three runs at the largest spatinl scoles. More differences may be seen by comparing addal manetif energy spectra, plotted to the same scale, in Fig. 82 b , o and e .

Flgures Bj and b tre current contours in the $\mathrm{z}=\mathrm{T}$ and $\mathrm{y}=\mathrm{T} / 2$ planes from the nonlinear run; Pigs. b3 c and d are identical current alices at the
 cross-acctions from the lineat thawed run. Hultolying this additional factor of k_{\perp} to the compared quantities affords ua enen better glapse at the differences mong the three ainulations. As aldht be expected, the linear frozen run's current is totally unlike that of the other two runs, with large reglons of negitive current growing near the center of the channel. Though the current of the linear thawed run is free of such large negative bubblea, it, too is quite kinked, and peaked off anis. The nonlinear run's torrent, at this gase tine, hat flattened and broadened into a wide channel in which many pouritt modes are present, we thus dram the conclusion that it is only the presence of many nonlinearly active pourfer coefficients of bigher wave numbers which qenerate the full scenarlo of the disruptive activity.

APPEMDIX c
 RESULTS FROH AN URDRIYEN SIMTLATION
 WItG CASE 4 PARAMETERS

The conditions and parapeters of the sinulations deseribed in this appendia are those of CASE 4 ; the oafety factor $0(\mu=\pi / 2, y=\pi / 2, k=0) \simeq$ $1.6 \pm 2 \theta_{0} / \mathrm{j}(\mathrm{T} / 2, \pi / 2, \mathrm{t}=0$), and a $32 * 32 * 16$ grid is used. the corrent profle varies as the inverse of the resistivity profile, so that " $M(x, y) * J(n, y, t=0)=$ constant for all isterior points. Both the externat electric field and the usacous damping ore ignored here; hence, the doninant features ought to apree with those observed in casts 1,2 and 3 ,

For purposes of numerical nccuracy. It is crucial that the average value of the resistivity in reqiong of maqnetofluid nctivity not be nuch less than (f^{*} K_{r} man $^{-1}$, as was diacussed in the fourth chapter. On the other hand, munerical atabllity of the $2^{\text {mid }}$ order Runge-ritto tire-atepping as applited to the diffusion term of equation (15) denands that η epproach $D(1)$ as marimin velue, far timestep of about $1 / 5 \operatorname{lil}_{\text {of }}$ on hlfuén transit tine. This dual requirement on the value of m constrasns the profiles considered for $1 /$ in , and consequently for 1 ; current density piofiles ulth faifly gentle slopes sust be chosen. in order to allon y to vary as $1 / J(t=0)$ over eost of the computitional bok. this requireant implies that the high mavenumer magnetic modes are less entited, initially, than they were in CASES l, 2 and 3.
 sloped current proflle can lead to alower tenporal variation of ω. The initial value of the poloidal magnetic energy is nearly the sane here is it is for the fifth chapter's cascs 1, 2 and 3, with ddentical velocity field initializa-
 run tion, and $\frac{4}{N^{2}} \sum_{4 j=4 / 4+1}^{3 N / 4}-7\left(y_{1} y_{j}\right)-1.0 月 67$. However, the discoptive activity in this
 at a compational tise of 17.52 , because a near-equilibritio situation was attalned. The energy in this simulation, by $t \rightarrow 20$, is also much redaced. Bence, it is difficult to compare post-diorbotive activity between case 2 and this run. Although not much quasi-cyclic behavior is observed in this run after the fintial burst of activity, indications that the qeneral featurea of thla sinulation agree with those observed in cabes 2 and 3 my be found.

This run differs ensiderably from the forced case 4 run, discussed in the seventh chapter, it may be aeen in Pis. Cl. Fit. Cla ia a comparison plot of the total magnetic energy in the two inviscid GASE 4 runs. While the Eotal eagnetic energy in the unforced run decays by more than 69 , the total magnetic onergy in the inulscid driven CASE 4 only decays by about lat during the asme period. The firat burst of dinruptive activity also takea place at diffecent tines, at may be inferred from a tiat bistory of knetic energy, In Pig, cib.

Howeve , es the contour plots in Fig. Ci show, the inftial burat of activity fa much like ita counterparta in all the cases discussed. Thja burat is characterized by the appeniance of a helical current filanent which mrage itself thout the line ($=\pi / 2, y=\pi / 2,2$). This manetic sctivity is acconpanded by the forgation of a counter-rotating palr of bean-shaped stren function lobes which generate a velocity field that points accoss the center of the poloidal cut, toward the region of maximan current density. Near the tiae of the kinetic energy maximin, the cur with the current cross aection beconing broad and flat. as wy be seen in the contours at $t=24.64$, P1g. C3.

Following this butst, the velocity fleld apparently attempts to reverse
itself. as my be aeen at $t=23.52$. in Pig. C4.
Contoura it m 48.8日, Fig. C5, display current cuts which indicate excitation of oppositely signed magnetit perturbations; the regions of manime current are everymere opposite to where they were at $t=21.64$. An extremely lan amplitude atrean function pattern indicates that regions wikh reversed flow likemise enist.

In conclusion, then, the general featuren of disruptive ectivity observed in this nimulation are compatible with those of CAgES 1,2 and 3.
 Oxford University Piess (1965).

Aydenir, A. Y., Barnes, D. C., Caranana, E., Hirin, A, Mebel, R., Schnack, D. and Ggro, A., Lapl Preprint B4-3959 (1984).

Aydenit, A. Y, and Barnes, D. C., J. Comp. Phys., Vol 53, 1HM, and references therein (1984).

Gateman, G., Schneider. W. and Grossamn. H., Nucl. Pusjon, Yol 14. 669 (1974).

Gateman, G.. "MRD Instablitites." Combidge, MIT Piess (197日).
Bender, C. M. and Orazag. s. h., "Mdvanced Mathematical Methods for Scientists and Englneers." Hcgam-Hill, Men York (1978).

Bickerton, R. J., in "Theory of Magnetically Confined Plamas, 1977." (eds. Cappl, B., Btringer, T., Pozzall. R., Stndoni. E., Corndon, J. P., leotte, G. G.) Pergamon Press, New York (1979).

Biskanp, D., In "physics of Plasnas Close to Thernonuclear Condltions, 1979. ${ }^{\mu}$ Yol l. (eds. Coppl. B.. Leotta. G. G.. Pfirsch. D., Pozzoll, m , and Sindonl, E.) Perqanmon Press, Hew York (1981).

Biskarp. D. and Welter, a., In "Plasm Physics and Controlled Huclear Fusion Research 1982." (IAEA; Vienra), Vol 3, 373 (1983).

Book, D. L., "NAL Plaga Formulary. Navol Research Laboratory. Washington, D.C. (1981)

Braginstil，s．j．，in＂Reviens of Plasint Physics．Fol l，（ed． Lephtovich，M．A．）Cobsultarts＇Buteas，Mew York， 2 （19（1965）．

Cormana，E．J．，Webel，A．A．and schnack，D．D．，Phys．Flulda， Vol 26． 1305 （1983）．

Carteras，B．A．，Hicks，B，R．，Holmes，J．A．\＆Wodell，B．Y．， Phys．Fluids，Yol 23， 1 dll（190；）．

Carreras，B．A．，Hicks，日．A． 5 Let，D，K．，Phys．Pluids．Yol 24. 66 （1981）．

Cben，P．P．，＂introduction to Plasa Fhysica．＂Plenum Press，Mew York（1974）．

Cooley，J．W．，Lewis，P．A．t Helch，P．D．，J．sound Vib．， Vol 12， 315 （1975）．

Cooley，J．W．and Tukey，J．W．．Math．Comp．，Vol 19297 （1965）．
Coppi，B．，Galvao，M．，Pellat，R．，Rosenbluth，H．，and Rutherford， P．，Piz．Platey，Yol 2，961（1976）．
 Hech．Vol．147， 1 （1984）．

Dahlburg，J．P．，Montgomety，D，and Matthaeds，W．B．，to eppear in J．Plasea Physics（1985）．

Dahlburg，R．E．，Zang，T，h．，Hontyonery，D．and lyasaini，H．Y．， Froc．Matl．Acnd．Gei．UEA，Vol 日月． 5796 （1903）．

Dablquiet，G．，Byorck．A．A Anderson，M．，WNaerical Methods．＂ Prentice－Hall，Englemod cliffa，wJ（1974）．

Diamond，P．日．，Bazeltine，R．D．，An，Z．G．，Carteras，B．，and Hick，日．R．Phys．Flulda，Vol 27， 1449 （1984）．

Dnestrowakit，Y．H．，Lysenko．E．E．Esith，R．，Sow．J．Plisint Phys．．Vol 3， 9 （1977）．

Dubois，H．A．，Peequet，A．1．and Reverdin，C．，Huct．Pusion，Vol 23， 147 （1983）．

Edery，D．，bavil，G．，Pellat，A．and soule．：L．，Phys，flulds Yol 19． $26!$（1976）．

Pyfe，D．Montgonery，D．J．Plages Phys．，Vol 16， 181 （1976）． Fyfe，D．，Montgonery，D．E Joyct，G．J．Plasna Phys．，Vol 17, 369 （1977）．

Clli，R．D．，in＂Plasna Physica and Muclear Pusion Research．＂ （ed．Gill，R，D．）Acsdenic Press，Mem York， 551 （1981）．

Gottlieb，D．© Orszag，S．A．，＂Humerical Analyaia of Spectral Hethods：Theory and Apolications．＂Society for Industrial and Applied Matheaticn， 171 pages，Philadelphia（1977）．
 B．Y．，J．Comp．Phys．，Vol 44， 46 （1981）．

日leks，日．R．，Garrerag，B．，golmes，t．A．，Lynch，V．E．，Mucl． Furion，Yol 22， 117 （1982）．

Bicks，日．A．，Carreras，B．A．，Garcis．L． 1 Holnes，J．A．，WThe Reliabllity of inftal Walue mat Calculations of Tokanak Dla－ ruptions．＂Oak fldge Mat＇l Lah．preprint orplim－9127（1904）．

Bossain．H．，Ph．D．dissertation．Willian and Mary（1983）．
Bossain．M．，Mathaeua，H．日．and Montqomery，D．，J．Plasea Fhys．， Nol 3F， 479 （1983），
 MASA Contractor Report 172248， 61 page：（1983）．

Butchinson，I．日．，Phys．Rev．Lett．，Vol．37． 338 （1976）．

Izzo，R．，Honticella，D．A．，Strause，月．R．，Park，N．，Manickas，J．，
Grim，R．C．and Delucia，J．，Phys．Pluids，Yol 26， 3166 （1983）．
Jahns，G．L．，Soler，M．，Waddell．B．Y，Callen，J．D．，and Bicks，
B．A．，街1．Fubion，Vol 18， 699 （1978）．

Kadontsev，B．B．，in＂Plasas Phyifes and Controlled Fusion．＂Yol 26， 217 （1964）．

Kraichnaft، R．日．，Phys．Plulds，Vol 8， 1385 （1965）．
Krugkel，M．B．，Johnson，J．L．，Gottlieb，M．B．Gad Goldean，L．H．， Phyt．Flulds，Vol 1， 421 （1959）．

Lichtenberg，A．J．，Nucl．Posion，Vol 24， 1277 （1984）．
Lofenz，E．H．．J．hteres．Sci．Vol 2f， 138 （1963）．
Mhat，G．，in＂Plaser Physics and Nuclear Puaion Research．＂
（ed，Gill，R．D．）Acadenic Press，Hen York， 539 （1901）．

sinple Plana Coniquration．＂Maval Regearch Laboratory，
Mashington，D．C．（1984）．
Hontgomery，D．，in＂Proc．V．S．－Jupan Horkthop on 3－d MBD
gtudies for foroldal Devices．＂（1．A．Cerretas，Ed．）
Oak Ridge hational lab．Report COMF－gllall，oak Ridge 7 ．
pp．32－54（1981）．
Montgonery，D．，Physica Scripte t2／l， 83 （19月2）．
Hontqoetry，D．in＂bolar Hind Five．＂（ed．Meugthbouer．M．）
UASA Conference Publication 229I， 147 （1963）．
Horton，A．\＆．，Nuel．Pusion，Vol 16， 571 （1976）
Orszag．8．A．，Etud．Appl．Moth，Yol 5l，253（1972）．
phylips，M．A．，in＂The atnosphere and the sea in Motion．＂

Hockerfeller Institute Preas, New York, pp 511-514. (1959). Robinson, D. C. invited lecture at the Latin-Anerican Morikhop on Plasad Physica and Controlled Mpelear Puaton, Cambugira, Minas Gerais, Brazil (19日2).

Hutherford, P., Mucl, fosion, Vol 21, 1086 (1981).
geuthoff, H. R., von Goeler, g., Eates, D. R. and Stodiek, W, in "sylpossum on Current Disruptions in foroidal Devicea." (eds. Lecknet, and tehrfeld, B. P.) Prot. IABA, Garching (1979). Schnack, D. D., Banter, D. C., t Carsman, E. J., "h pseudoppectral algorithe for thret-diaensional manetohydrodynamic thaulation," Science Applications, Inc., report shlo2383-477LJ/APPAT-14; subaitted to J. Comp. Phy (1983).

Shafranov, V. D., Gov. Phys-fech, Phys., Vol 15, 175 (1975).
Shebalin, J. V., Mothetys, W. B. and montgomery, D., J. Plased
Phytice, Vol 29, 525 (1983).
5pitzef, L. *Physics of Pully Ionized Gasess." Intersciente Pub 1ishers. Mew York (1962).

Etrauss, B. A., Phys. Pluids, Yol 19, 134 (1976).
Sykea, A. and wesson, J. H., Phys. Rev. Letttera, Vol 37. 14% (1976).

Temperton, C., J.Conp.Phyt., Vol 52, l (1983)
Turner, l., private comanication (1984).
von Goeler, B., Stodiek. W. had Gquthoff, W., Phys. Rev, Lett.,
Vol. 33. 1211 (1974).
Waddell, B. Y., Rosenbluth, M. G., Monticello, D. A. and Whyte.
R. B., Mucl. Pusion, Yol 16, 528 (1976).
 D. E., Phys. Rev. Lett., Vol 41, 1386 (1978).

Haddell, B. Y., Carreras, B., Bicks, B. R. and golthes, J. A., Phys.
Fluids, Yol 22, 696 (1979).
Wakatani, H., Ghirai, q., Zushi, B., Faneko, 日.. Hotosima, O., obikj, T., lyyosht, h., Uo, R., Mack, Pusion, Vol 23 1669 (1983).

Wesson, J. A., in "Plaged Physics and Huclear Fugion Restarch." (ed. Cill, R. D.) Acodemif Press, Hew York, 191 (19B1).

White, R. B., In "\#andbook of Plases Physics." (Vol l, eds. Galeev.
A. N. and Sudan. R. A.) Morth-Bolland Publisting Conpany (1963).

2ang, T. A., private conemication (1992).

Table 1．Representative Tolumaks from Bickerton（1977）

DFP108	Colntici	En 1cri＇	u（cie）	4， 4 ， 63	15 （14）	4	Mir ar【тひா Eus	$\begin{gathered} \text { Statioligis. } \\ \text { Sherli } \\ \text { racor ars } \end{gathered}$
T－7	21558	300	17	25	1041	4	1 for	Ye5
T－－	Lr5．9\％	1051	17	50	200	4	Iform	Y 45
OPHAKK ，i＇ir	U5．4	80	$2]$	18	200	2.9	I． \boldsymbol{r}－	Yes
5T		104	13	40	130	2.4	2 ran	Yes
A1：	U5．A	E18－35	$17+1$	20－50	80－20．9	4.1	His	1.10
TF ${ }^{\text {P }}$	FGAJITM	98	20	50	300	4．］	I［itio	1es
PLWSATIE	Ff．r．	10	17	28	80	3， 6	I 4 ¢п	Yus
M．cminh	11ヶ\％	54	9.5	75	109	6	Ait	Tes
UITE．	l＇k．	112	13	28	200		Iron	No
FLJ	US\＆	130	410	35（46）	600	3.6	4tr	He
t－1u	ESith	150	1	35450	400		1180	Ye：
mobblet jif	15.4	665	35niou	A		b． 5	A！	H ；
Fosch	67	30	10		23		Mis	Mins
JfT－2	JAFMN		33	18	130			195
	JAPMAN				15			1%
FT	1TMEY	4］	31	100	1000		Air	L＋5
res	1294	140	45	5	；		A： S^{\prime}	（i）${ }^{\text {\％}}$
A5¢ए．	FRE	134	40	0	350		Ais	$\stackrel{+}{ } \cdot$
Mablerit［J！	USA	146	453218	26（42）	TStuctuj		$\mathrm{H}_{1} \mathrm{~T}$	： 0
Hit	Efrore	216	123x210	75	2600		Iras，	Rin
Trja		74.8	85	57	1500		H_{15}	is．
5760	JAPAN	3010	100	50	3000		$\mathrm{Al}_{1} \mathrm{~T}$	$1 \cdot 1$
t－70	LF5\％	550	765	10	3000		1－	Hes

Table 2. Parantiers and fimescales for Mepresentative Tokanaks

Table 3. Largest $\mathbf{k}=1$ Mode Coefficients, CASE 2

$$
\left.4 \frac{\epsilon}{\delta}\right)_{A}=-\frac{2 \tau_{A}}{2 \phi_{A}}+\frac{2 \chi_{A}}{2 \phi_{A}}-\frac{2 \tau_{A}}{2 V_{A}}+\frac{2 \chi_{A}}{2 \nu_{A}}=\frac{\pi_{L}}{n_{B}}+\frac{-\pi G}{-\sigma_{d}}-\frac{r_{2} t}{r_{l}}+\frac{-a t}{-\alpha \delta}
$$

for $\quad \rho T(t)=$ coeffichent of $\sin (x) \sin (2 y) \cos (z)$
$2 U(t)=$ coefflcient of $\sin (2 x) \sin (y) \cos (z)$
$2 \varphi(t)=$ coefflcient of $\sin (x) \sin (2 y) \sin (z)$
$2 X(t)=$ coefflctent of $\sin (2 x) \sin (y) \sin (z)$
separate valueg almost zero, since near loca! minimum in ε_{v}; lgnore this one.

Table 4. Chart of Sample Low-order Model Huns

Figure $1 .=$ Geometry: (a) fielids and co-ordinates used to define toroidal pinch; from Robinaon (1982), and (b) situlation geonetry.

(a) Genaral arrangmeril

(b) Meridional cross-fection

Figure 2. - standard dispogition of coils and vacusm vesgel for thoidida! pinch: 〔ay gemeral afyangement, and (b) teridional cioss-gection: from Roolngon \{1982).

Figure 3. - Contous plot of total modal entergy for: (a) CASE 2,

3 (b) discarted rum,

and 3 (t) Casc 3 , where

Figure 4. - Pololdal and toroldal "cuts" in the computational box. the polaidal cot is taken at $2=\pi$, and the toroldal cut is allee at $y=\pi / 2$.

Figure 5. - Contout plots at t - of initial conditions for the decay rung. 5 (a): contours of $A=$ constant, pololdal cut.

5 (b): contours of $f=$ constant, polojdal cut.

5 (e): contours of $\psi=$ constant, pololdal cut.

5 (d): contours of $\mathrm{A}=$ constant, toroldal cut.

5 (e): contours of $j=$ conatant, toroldal cut.

Figure 6. - Contours of energy in Fourier space at $t=1 . f$. 6 (a): equally apaced contours of constant kinetic energy

6 (b): equally spaced contours of constant magnetle energy.

6 (0): contours separated by pouters of two of constant kinetic entroy

6 (e): contours aeparated by pawers of two of constant magnetic energy

6 (f): contours separated by powers of two of constant total energy.

Figure 7. - Globals as a function of tine for case :
$7(4)$: total kinetic energy [E_{v} las function of time,

$7(b)$: total maqnetic energy [E_{B}] as a function of time.

7(c): E_{U} / E_{f} as a function of tiee,

7(d): total integrated toroldal current as a function of time, and

7(e): half the mean square current denstiy as a function of time.

Figure - Q-proflles for CASE l: (a) $t=1$,

Figure 9. - Contour plots at t = 8.82 from CASE l : 9 (a): contours of $\mathrm{A}=$ Constant, pololdal cut.

9 (c): contours of $\psi=$ constant, polaldal cut.

9 (d): contours of A $=$ constant, toroidal cut.

9 (e): contours of $1=$ constant, torojdal cut.

 10 (a): equally spaced contors of constant kinetic energe.

10 (b): equally spaced contours of constant magnetic energy.

14 (c): equally spaced contoute of constant total energy.

14 (d): contorrs separated by powers of two of constant kinetic energy.

10 (e): contours separated by powers of two of constant manetfenergy.

Figure 11. - Q-profile at $t=$ for CASES 2 and 3.

 12(a): kinetic energy as a function of tine.

12(b): magnetic energy as a function of time.

12(t): total energy at function of tine.

12(d): ratio of kinetic to magnetic energy as function of thene

12(e): half the stan square vorticity as function of time,

i2(f): half the mean square vector potential as wnction of time,

12(g): half the mean gquare current as function of the, and

12(h): kotal integrated current density as function of tine.

Figure 13. - Contour plots at 4.44 from case 2 : 13 (a): conteurs of $\mathrm{A} x$ constant, polofdal cut,

13 (b): contours of $\mathrm{j}=$ constant, poloidal cut,

13 (c): contours of $\psi=$ constant. pololdel cut

13 (e): contours of $j=$ constant, torojdal cut,

Figure 14. - At $\mathrm{t}=4.4$, case 2 :
14 (a): 3-d perspective plot of 1 , pololdal cut, it $t=4.4$,

14 (b). 14 (c): Polncare plots of manctic field line traces in the $2=10$ plane.

15 (c): equally spacec entours of constant total energy.

15 (d): contours separated by pouers of two of constant kinetic energy

15 (e): contours separated by powers of two of constant magnetic energy

15 (f): contolss separated by posers of two of constant total enerpy

Figure 16. - Contour plots at $t=6.68$ fron CASE 2 : 16 (1 : contours of A constant. poloidal cut,

16 (b): contours of f constant. poloidal cot.

16 (c): contours of $\psi=$ constant. pololdal cut.

16 (d): contours of $\mathrm{A}=$ constant, taroidal cut,

Figure 17. - Contour plotg at $t=7 . \theta_{\text {f }}$ fon CASE 2 : 17 (a): contouts of $A=$ constant, poloidal cut,

17 (b): contours of $y=$ constant, poloidal cut.

17 (c): contouts of $\psi=$ constant, poloidal cut.

17 (e): contours of $)$ constant, toroidal cut,

Ploure 18. - Contours of energy in fourier soace at $t=7.80$, case 2 : 16 (a): equally spaced contours of constant kinetic energy.

18(b): equally apaced contoura of constant magnetic energy.

1月(c): equally spaced contours of constant total energy.

18 (d): contours epparated by powers of two of constant winetic energy.

18 (e): contours separated by powers of two of constant nagnetic energy.

18 (f): contours separated by pouers of two of constant total energy

> Ftgure 19. - at $t=7$, on, case 2, enlarged toroidal cuts of: 19fa) vector potential. A, and

19(b) current denaity. y

20(b) eurrent density. j.

Figure 21. - polncaré traces at $t=7.81$ of magnetle field lines in the $z=\pi$ Dlane. CASE 2.

Figure 22. - Contour plats at $t=9.76$ from case 2 : 22 (a): contours of $A=$ constant, poloidal eut,

22 (c): contours of $\psi=$ constant, pololdal cut.

Figure 23, - Perspective plots of $1(t=8.82)$ in the $z=\pi$. plane, case 2. Mote: See Pig. B(3ej for contour plots of the same quantaty

Figure 24. - Contour plots at $t=14.96$ from Case 2: 24 (a): contours of $A=$ constant, poloidel cut.

24 (b): contours of $1=$ constant, poloidal cut.

24 (c): contours of $\psi=$ constant, pololdal eut.

24 (d): contours of $A=$ conatant, toroldal cut.

24 (e): contours of $j=$ constant, tocoldal cut.

Pigure 25. - Contour Dlots at $t=17.52$ from Ch5E 2: 25 (a): contoura of $\mathrm{m}=$ constant, poloidal cut.

25 (b): contours of $j=$ constant, pololdsl cut.

25 (c): contours of ψ x constant, poloidal cut.

25 (d): contours of $A=$ constant, toroldal cut.

25 (e): contours of $1=$ enstant, tocoidal cut +

Pigure 26. - Contours of energy in foutier space at $t=17.52$, case 2 : 26 (a): equally spaced contours of constant kinetic energy

26 (b): equally spaced contours of constant magnetic energy.

26 (c): equally apaced contours of constant total energy.

26 (d): contours separated by pouers of two of constant kinetic energy

26 (e): contours separated by powera of two of congtant wagnetic energy

26 (f): contours sepmated by pouets of tupo of constant total energy.

Pigure 27. - Q-proflles at $27(\mathrm{t}): \mathrm{t}=4.44$

27(b): $=6.61$

$27(c): t=7$. 的

Figure 2 2 . - CAGI 2, energies (k_{2}) as a function of tine, with dashed line for kinetic energy, and bolid line for magnetic ehergy: 2日(a): $k_{z}=1$.

2月(b): $k_{z}=2$, and

$20(6): \mathrm{K}_{2}=3$.

 29(a): kintic energy ds a function of time.

29(b): atgnetic energy as a function of tine,

29(c): total energy as a function of time,

29(d): ratio of kinetic to manetic energy as a function of tine,

$29(e)$: half the mean square vorticity as a function of time.

29(f): half the nean aquare vector potential as a function of tive,

29(g): half the nean square current as a function of time. and

29(h): total integrated current density as a function of time.

Figure 34. - Contours at $t=14.32$, CASE 3
30 (a): Contours of constant A . toroidal cut.

30 (b): Contours of constant 1 , poloidal cut.

31 (c): Contours of constant 1 , torofdal cut,

34 (d): Contours of constant Ψ. peloidal cit.

34 (e): Contours of modal kinetic energy, spaced by powers of two,

and $3 f$ (f): Contours of modal magnetic energy, spaced by powers of two.

Figure 31. - case 3. $\mathrm{t}=14.32$:
31(0): Perspective plots of curcent in the $2=\pi$ plane, and

$31(b):$ Poincare olots of magnetic field line traces in the $2=\pi$ plane

Pigure 32. - CASE $3 . t=13.26$: 32(a): close-up of y, pojoldal eut.

32 (b): close-ap of the veloctty field, poloidal cut, and

32(c): close-tip of the pololdal mapetic field, poloidal cut.

Figure 33. - Contours at $t=14.52$, CABF 3 : 33 (1 : Contours of constant h, toroidal cut.

33 (b): Contours of constant f. pololdal cut.

33 (c): Contours of constaft 1 , toroidal cut.

33 (d): Contours af constant 4 . poloidal cut.

33 (e): Contours of modal kinetic energy. apaced by poners of two.

and 33 (f): Contours of modal nagnetic energy, apaced by powers of two.

Flgure 34: - Perspective plot of $j(n, y, z=\pi, t=14.52)$, case 3.

Figure 35. - Ches 3, $t * 16.26$;
35 (a): contours of $A=$ constant, poloidal cut.

35 (b): contours of $A=$ constant, toroidal cut.

35 (c): contours of $j=$ constant, poloddal cut,

35 (d): contourg of $j=$ constant, roroldal cut.

35 (e): contours of $\psi=$ constant, poloidal cut, and

35 (f): contours of $\psi=$ constant, toroldal cut.

Pigure 36. - CASE 3, $t=16.26$:
36(a): Perspective plot of current in the $2=\pi$ plane, and

36(b): Poincaré plots of dagnetle field line traces in the $z=\pi$ plare.

Figure 37. - Contours at $t=17.16$, CASE 3
37 (a): Contours of constant A_{+}toroidal cut.

37 (b): Contourg of constant 1, pololdal cut.

37 (6) Contours of constant 9 , toroldal cut,

37 (d): Contouts of constant 母. polojdal cut,

37 (e) Contours of nodal kinetic energy. spaced by pawers of two.

and 37 (f). Contours of nodal magnetic energy, spaced by powers of twe

Figure 49. - Numerical solution of equations (26) and (27). with $a=15 . \theta_{0}=4.3$. and $q=1.11$.
Hote: $a>2 \% b_{0} / 9$.

Fiqute 41. - Momerical solution of equations (26) and (27). with $\alpha=7.5, B_{0}=4.3$, and $y=1.11$
Note: $B_{0} / 3<a<20 B_{a} / 9$.

Figute 42. - Hunterica! soIution of equations (26) and (27). with $a=3.75, B_{0}=4.3$, and $y=6$.

Note: \quad 人 <1 B. $/ 3$.

Figure 43. - Solutions of the nomlinear, undriven low-order model. equations (26), (27), and (36):

43(b):9, $=4.3, \quad \eta=0.101, \quad \beta=-1.8, \quad \alpha^{\prime}=1.1, d=7.50$,

43(d): $H_{4}=4.3, \quad 4=1.111, \quad \beta=1.1, \quad \alpha=1.6, \quad \alpha=3.75$,
Mote: $t_{\text {man }}=1$, and $\mathrm{t}_{\text {may }}=59.8 \mathrm{~B}$.

Figure 44. - CASE 2 fulj-gitd sintiation enperfatatal values for with $t_{\text {min }}=4.44$ and $t_{\text {may }}=17.52$.

Flgure 45. - Solution of equations (26), (27) and (28) with parameters and conditions as for Fig 44 ,

45(a): with $a^{-a m p l i t u t e}$ of $\sin (\pi)+\sin (y)$ at $4.44=2.89$, and

45(b): with $a=j_{\text {max }}(t=4.419 / 2=7.5$

Figure 46. - Solution of (26), (27) and (3) for an instal critical point: $B_{0}=3 . \operatorname{tiP189}, \quad a_{*}=9.6666666, \quad a=6.6666666$, $¥=9.159194, \quad \alpha=1.1327956, \quad \beta=1.2519889$, with $t_{\min }=1 . \mathrm{I}_{\text {a }}$ and $t_{\text {max }}=59.50$.

Fiqure 47 - Solution of (26), (27) and (3f) for an indtial critical point: $B_{3}=3.40441, \lambda_{0}=7.6666666, \quad \hat{\alpha}=6.6666566$, $\eta \pm 9.711414, \quad a=1.1327956, \quad \beta=\$.015919689$. $1=1$ italid,
with $t_{\text {min }}=$, and $t_{\text {max }}=59.89$.

Figure 48. - Solution of (26), (27) and (30) for an andtial tritical point: $B_{0}=3 . \log 98, \quad a_{0}=7.6666666, \quad a=6.6666666$, $\eta=0.499918, \quad \alpha=1.4327956, \quad \beta=1.047125819889$, $u=0.419509$,
$w 1 t_{h} t_{\text {min }}=9.1$, and $t_{\text {max }}=59.08$

Fiquet 49. - solution of (26), (27) and (34) for an initial nolnt: $s_{p}=3$. df1449, $a_{4}=7.9999999, \quad a=6.6666666$.
 $v=0.94 \$ 199$, with $t_{\text {m.m }}=T$, and $t_{\text {mby }}=59.8 \theta$

Plgure 59. - solution of (26), (27) and (30) for an instial point:
$B_{\mathrm{r}}=3 . \operatorname{sin49}, \quad a_{4}=7.9999999, \quad a=5.5555555$, $\eta=$ F. I91914, $\alpha=1.432956, \quad \beta=9.19925819899$,
with $t_{\text {mun }}=$ 4. and $t_{\text {may }}=59.80$.

Flque 51. - Eolution of (26), (27) and (30) for an intital polnt:

 $\nu=1$ IIfera

Figure 52. - solution of (26), (27) and (30) for an instal point:

with $t_{\text {min }}=f$ and $t_{\text {man }} * 59.88$

Fiqure 53. - Solution of (31). (27) and (34) for an indtial point

 HIth $t_{\text {min }}=1$, and $t_{\text {max }}=59.86$.

Figure 54. - 50lution of (31). [27) and (38) for an inttial tritical point $B_{0}=3 . \operatorname{diphad}, a_{0}=5$ didfodr, $a=4.1027647$,
$\eta=1.114104, \quad \propto=1.263591, \quad \beta=1.79846746$. $v=0 . \operatorname{ldisi}$,
with $t_{\text {min }}=1$ id, and $t_{\text {max }}=59.88$

Pigure 55. - solution of (31), (27) and (34) for an initiaj point:

$u=1.05909 \mathrm{~A}$,
wath $t_{\text {min }}=$, and $t_{\text {max }}=599$.le.
Hote: non-trivial critical points are $\left\{\beta, \alpha_{2}, ~ a\right)$, where $a=5.343144, \quad \alpha \pm= \pm \mathbb{1} .1524146, \quad \beta_{ \pm}= \pm 1.3335898$.

Figure 55 - (continutd)

56 (b): contours of $A=$ constant, toroldal eut,

56 (6): contours of $I=$ constant, poloidal cut.

56 (d): centours of 1 = constant, toroidal cut.

56 (e): contoucs of ψx constant, poloidal cut, and

$56(f)$: contourt of $\psi=$ constant, torojdal cut.

57(b): magnetic energy as a function of time.

57(c): total energy as a function of tiat.

57(d): malf the mean square vector potential as function of tine.

57(e): half the mean aquare current as a function of tine.

57(f): tatal integrated current as a function of time.

$57(g)$: total integrated vector potential wa function of tine.

57h; half the pean square strean function as a function of time, and

57(1); half the mean square vorticity as a function of tine.

58 (b): contours of $1=$ congtant, polojdal cut.

50 (c): contours of $1=$ constant, toroldal cut,

and 5 (d) : contours of $\Psi=$ constant, polaidsl cut

 59 (a) : contours of $A=$ constant, toroldal evt.

59 (b): contours of $\}=$ constant, poloids) cut,

59 (c) contours of $j=$ constant, toroldal tut,

and 59 (d) : contears of 4 t constant, poloidal cut.

 6年 (a): contours of h = constant, pololdal cut,

6f (b): contours of A * constant, toroidal cut,

61 (0) : contours of $j=$ eonstant, poloidsl cut.

68 (d): contours of 1 constant, toroldal cut.

66 (e): contoura of $\psi=$ constant, poloidal cut, and

Gil (f) : contours of $\psi=$ constant, toroidal cut.

Pigute 61. - contours at $t=36.24$, for chat $4, b_{0}=1.05, V=0.1$ 61 (a): contours of $A=$ congtant, pololdal cut.

6) (b): contouss of $A *$ constant, torotdal cut.

61 (c): contout of $1=$ constant, pololdal cut,

61 (d): contours of j a constant, toroidal cut,

6] (e): contaurs of $\psi=$ constant, poloidal cut, and

61 (f): eontours of $\psi=$ constant, totoifal cut.

Pigure 62, - Contours at $t=42.11$, for $\operatorname{CaSE} 4 . E_{0}=1.15, V=1$. 62 (a) : contours of $A=$ constant, toroldal cut.

62 (b): contoure of f constant, poloidal cut,

62 (c): contours of 1 constant, torofdal cut,

and 62 (0) : contours of $\psi=$ constant, poloidal cut.

64 (b): contours of $)=$ constant, poloidal cut.

64 (c): contours of $1=$ conatant, torcidal tut,

and 64 (d) : centours of $\Psi=$ constant, poloidal cut.

 65 (a): contours of A constant. pololdal cut,

65 (b): contours of $A=$ constant, toroidal cut.

65 (c) : contours $\boldsymbol{f} \mathrm{f}=$ constant, polojdal cut.

65 (d) contours of 1 * constant, toroldal cut.

65 (e): contours of $4=$ constant, poloidsl cut, and

$65(f)$: contours of 4 - constunt, torotdal cut.

Flgure 66. * Spectra, CASE 4, with $\left.E_{*}=1.05, V\right) \quad$. 90 , 66(a): t M I. ${ }^{\text {a }}$.
$66(b): t=101.76$.
66(c) : $t=189.44$.
$66(d): t=117.12$.

 Dashed 14ne: $32 * 32 * 16$ qrid. So ${ }^{1}$ id 1 has: $16 * 16 * 16$ grid.

Figure 68, - Clobal quantities, CASE 4, $\mathrm{E}_{\mathrm{a}}=1.15$. Dashed line: $V=\boldsymbol{I}$. 5 , Soldelfne: $v=$ all. 68(a): ratio of kinetic to magnetic encrgies as a function of time.

68(b): total integrated eurrent as anction of tine.

P1quie 69. - Globais for chse $5, E_{0}=8 / 241, ~ V=0 . d:$ 69(a): k!netic entroy as function of the.

69(b): magnetic energy as a function of then, and

69(c) : total integrated current as a function of tine.

Figure 74. - Contours of $t=26.76$, for CABE $5, E_{0}=8 / 204, v=1$. 7 (a) : contouts of $h=$ constant, toroidal cut,

70 (b): contours of j e constant, poloidal cut,

71 (c): contours of j * constant, poloidal cut,

74 (d) : contours of $\psi=$ constant, polosidal cut,

$78(E):$ lice of $\Psi(\kappa=\pi / 2, y, z=\pi)$, and

74 (f): sllee of $\}$ ($\pi=\pi / 2, \gamma, 2=\pi)$.

 71 (a) : contours of $\mathrm{A}=$ constant, toroidal cut.

71 (b): contours of $j=$ constant, pololdal cut,

71 (c) contours of $1=$ constant, torojdal cut.

71 (d) : contours of Ψ e constant, poloidsl cut,

Pigure 72. - Globale, chist 5, with $E_{0}=8 / 241, ~ U=\|$ H, 72(a): kinetic energy as a function of time.

72(c): total energy as function of tive.

72(0): half the mean square strean function as a function of tine,

72(e): half the mean square vorticity as function of time,

N2(f): total integrated turrent as a function of time.

72(g): total integrated vector potential as anction of time.

72(b): half the nean aguare vector potential is a function of the, and

72(1): half the mean square current as a function of time.

Plgure 73. - Contours at $t=29.28$, for case $5, E_{0}=8 / 204, \quad V=1.01$: 73 (a): contours of $A=$ constant, polosesi cut.

73 (b): contout of $\mathrm{A}=$ constant, toroiddal cut.

73 (c): contours of j (constant, poloidnt cut,

73 (d): contours of $j=$ constant, toroldal cut.

73 (4): contours of $\Psi *$ constant, poloidal cert.

73 (f) : contaus \boldsymbol{F} of $\Psi=$ constant, toroldal cut.

Pigure 74. - Contours at $t=39.36$, for case $5, E_{0}=8 / 218, ~ U=1.11:$ 74 (a) ; contours of $A=$ constant, toroidal tut,

74 (b) : contours of $1=$ constant, poloidal cut.

74 (c): contours of $j=$ constant. toroidal cut, and

74 (d) : contours of $\gamma=$ constant, poloidsl cut.

Fiqure 75. - Contours at $t=54.72$, for ChBE $5, E_{0}=8 / 240, \mathcal{V}=0.41$: 75 (a) ; contours of $A=$ congtant, toroidal cut.

73 (b) : contours of $A=$ constant, toroidal eut,

73 (c): contours of j = constant. poloidal cut.

73 (d): contours of $j=$ constant, toroidal eut,

73 (e): contours of $\Psi=$ constant, peloldal cut.

$73(5)$: contours of $\psi=$ constant . paroidal cut.

Pigure 74. - Contours at $t=39.36$, for CASE 5, $E_{0}=8 / 249, v=4.01$: 74 (a) ; contours of $A=$ constant, toroldal cut,

74 (b): contours of 9 constant, polojdal cut.

74 (c): contours of $f=$ constant, toroidal cut, and

74 (d) : contours of $\gamma=$ constant, polofdal cut.

 75 (a) : contours of $A=$ constant, toroidal cut.

75 (b): contours of $1=$ constant, poloidal / toroldal cut.

75 (c) : contours of $1=$ constant, toroldal cut, and

75 (d) : contours of $\psi=$ constant, poloddal cut.

Plgure 76. - Globals, CAEL 6. Eo $=8 / 351, V=1.19$ $76(a)$: kinetic thergy as function of the.

76(b): magnetic entrgy as function of time ond

76(c) : total integrated cufrent as a function of tine.

Pigure 77. - Contouts at $t=39.24$, for Case 6. $E_{o}=8 / 351, V=0.0$ 77 (a): contours of $A=$ constant, poloidal cut,

77 (b): contours of $A=$ constant, rocoidal cut,

77 (c): contours of $j *$ constant, poloidal cut.

77 (d): contours of $j=$ constant, toroldal cut,

77 (e): contours of $\psi=$ constant, poloidal cut.

77 (f): contours of $\psi=$ constant, toroddal cut

Flgure 76. - polncaré plate, case 6.t $=39.24$.

Pugure Al. - Total energy versus time for RUN Al.

Figute A2. - RUN A2:

$\mathrm{A} 2(\mathrm{c}) \mathrm{E}, \operatorname{sf} \mathrm{f}(\mathrm{t})$.

A (d): Pourfer space contour glatg, $t=$. II, of wi

Figure A3. - MUN A3:
$\mathrm{A} 3(\mathrm{a}):$ Fourier space contour plota, $t=8.76$, of \vec{b}

M 3 (b): Fourier apace contour plots, $t=8.76$, of $\overline{\mathrm{h}}$.

Fiqure A_{5}. - RUN M5: A5 (a): Etas f(t).

A5 (b): Ev as (t).

H5 (c): I_{8} as $f(t)$.

Figure A6. - FUN A6: Ag (a): E_{T} as $f(t)$.

A6 (c): Eg as f(t).

A6 (d): physical space contour plots, $t=4.08$, of W,

A6 (e): physical space contour plots, $t=0.49$, of A,

M6 (f) : physical space contour plots, t $=8.76$. of ω.

and 46 (0): physical space contour plots, $t=0.76$, of h.

Figure A7. - hun A7:
A (a): physical space contour plots, $t=8,76$, of ω.

A7 (b) physical space tontout plots, t - 8.76 . of λ.

Flgure AB. - RUN AB:
Ag (a): E_{T} as f(t).

$A \theta(b): E_{w} \quad f(t)$.

AB(C): E_{B} Bs $f(t)$

A日 (d): physical space contour plots, t - 0.76 , of ω.

and as (e): physica] space contour plots, $t=8.76$, of A.

Figure B1. - CASE 2 :
Bl (4): KInetic energy ($k \neq\{, t$) for cuns
froien (ahort dashed life).
ThanEp (solld line).
homLJimaf (long dashed line), and

Bl (b): eagnetic energy ($\left.\mathrm{k}_{\mathrm{z}}=\mathrm{l}, \mathrm{t}\right)$ for cuns: FRozen (short dashed lint). ThanED (solld life), MON:INEAF (long dashed line).

PIquie B2. - Case 2. $\mathrm{t}=\mathrm{B} . \mathrm{B2}$:
B2 (a): contours of $A=$ constant fron FMOREP run.

B2 (b): spectra of modal aggnetic energy Eron FROLEN rum,

B2 (c); contours of $A=$ constant from THMAED run.

日2 (d): spectia of modal magnetic energy from THMAD run,

B2 (f): apectra of modal magnetic energy from monitatar run.

Pigure B. - Case 2, contours of constant current $+\mathrm{t}=\mathrm{B}, 82$; B3 (a): polordal cut fron Prozen sun.

B3 (b): toroidal cut frof Prozen rum.

83 (c): polotolal cut from t\#ably run.

BJ (d): toroidal cat from fanald run.

B3 (e): pololdal cut from monlialar cun, and

B3 (f): tofordal cut from NOALIREAF rum.

Figure Cl. - Comparison globals for Case t, V.e.
El (a); magnetic energy as function of tine. where dashed line: $E_{B}=\|$. and solid line: $\mathrm{E}_{\mathrm{p}}=\mathrm{C}, \mathrm{P}$, and

Cl (b): kinetic energy as a function of tipe. where dashed line: E. $=$ q $_{+}$ and solid Jine: $\mathbf{E}_{6}=\mathbf{B}$.

 (22 (a) : costourt of $\mathrm{A}=$ constant, toroidal cut,

c2 (b): contours of $j=$ conctant. polojdal cut,

C2 (c$)$: contours of $\mathrm{j}=$ constant, toraldal cut, and

C2 (d) : contoura of $\Psi=$ tonstant, poloidal cut.

Figure C3. - Contours at $t=24.64$, for CASE $4, E_{0}=$ I.,$V=0$. C3 (A): contours of $A=$ constant, polojdal ett,

C3 (b): contours of A = constant, toroldal cut.

C3 (c): contours of $1=$ constant, pololdal cut,

0 (d): contours of $j=$ constant, torordal cut.

c3 (e): contours of $\Psi=$ constant, poloidal tut, and

C3 (f): contours of $\mathbf{\psi =}$ constant, tocoldal cut.

C4 (b): contours of $y=$ constant , pololdal cut.

C4 (c): contours of $f=$ constant, toroidal cut, and

c4 (d): contouts of $\Psi=$ constant, poloidal cut.

 c5 (a): contenrs of $A x$ constant, poloidal eut,

c5 (b): contours of $\mathrm{a}=$ constant, toroidal cut.

C5 (c): contours of $1=$ constant, polodoal cut,

C5 (d) : contours of $f=$ constant, toroldal cut,

c5 (e): contours of 4 = constant, pololdal cut, and

C5 (f): contours of $\psi=$ constant, toroidal cut.

14L Pokkalitsky Dahlburg

Boff in chambersburg, Penmsyluania, June 21, 1956. She graduared frop Chambergburg Area Senjor High School in that Eown, June, sq74. Ehe sttended
 Htth a gatchelor of Arts degret. Huth comcentrition in liberal arts.
In June. 197日, the author entered the College of willidn and mary as a graduate assistant in the Departaent of Physics.

