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ABSTRACT

In this thesis a general theory of electron 

detachment in slow collisions of negative ions with atoms is 

presented . The theory is based upon a semiclassical close- 

coupling framework, following the work of Taylor and Delos. 

The Schrodinger equation is reduced, under certain assump­

tions, to a non-denumerably infinite set of coupled equa­

tions. We develop a new method for solving these equations 
that is more general than the methods used by Taylor and 

Delos. A zero-order approximation of our solution is 

applied to the case of H~(D“) on Ne collisions, the results 

are compared with the experimental data, and we find good 

agreement between theory and experiment, particularly with 

regard to the isotope effect. A first-order approximation 

of the solution is proved to be very close to the exact 

solution, and it is applied to the case of H” (D- ) on He col­
lisions. We use quadratic and quartic approximations for 

the energy gap ^(t) to calculate, among other things, the 

survival probability and electron energy spectrum. There 

are some interesting results for the electron energy .spec­

trum which have not yet been observed in experiments.



A GENERAL THEORY OF ELECTRON DETACHMENT 

IN NEGATIVE ION COLLISIONS



Chapter I 
INTRODUCTION

1.1 OBJECTIVES

There are many processes that involve strong 

coupling between a discrete state and a continuum. Among

them are electron detachment in collisions of negative ions
Vwith atoms,

A + B —  ̂ A + B + e (1.1 — 1)

3 ,4Penning ionization,

A* + B — > A + B4 + e" (1.1-2)

“5 fa 'T Qdissociative recombination ' and dissociative attachment ’

e" + AB+ — » A + B (1.1-3)

e~ + AB — » A- + B (1.1-4)

4,10and positron production in heavy ion collisions 

„ • * + u m+ _  , u u r w t  -  i m T 4 * e +

-► + x,m"n + e+
(1.1-5)

- 1 -
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In this thesis a new theoretical method for calculating 

cross sections and associated rates for such processes is 

given. The theoretical methods developed in this thesis can 

be used to study any of the processes listed above (and oth­

ers as well) but in our discussion we will especially con­

sider electron detachment (1.1-1) for which there is a
\,l, 11-2.0

wealth of recent experimental data.

In the next section we give a simple description

of the background for this work. The complex-potential mod­

el and the zero-range-potential model, both of which have 

been applied successfully to some cases, are described 

briefly.

In chapter II we give a short history of the 

close-coupling model which we use as a foundation of our 

theory. Also we present the basic assumptions used in this

work and the derivation of the new formulation.

In chapter III we apply a zero-order approximate 
solution to the case of H“ (D~) on Ne. Special examination 

has been made of the isotope effect, which, in the case of H 

(D“) on Ne, has been found to be opposite to that of H"(D~) 

on He collisions.

Chapter IV gives in detail the properties of a 

function we call the "propagator". This function plays an 

important role in the formulation of our solution.

In chapter V, we show that our new formulas can be 
converted to the complex potential formulas under a slow
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collision approximation. Chapter VI describes the method 

for numerical solution. Then in chapters VII and VIII, we 

apply our new formulas to the case of H_ (D_) in collisions 

with He. We discuss there, among other things, the survival 

probabilities and the electron energy spectra.

Finally, in chapter IX we give a summary of the 

present work and we discuss prospects for future develop­

ments . '

1.2 BACKGROUND

Early experiments on electron detachment in colli­

sions of negative ions with atoms showed evidence that de­

tachment could be described by a local-complex-potential 

model, in which it is assumed that the energy of the dis­

crete bound state of the negative ion crosses into that of 

the continuum of states of a free electron (Fig.I-1), and 

that the discrete state becomes a resonance. This resonance 

or quasi-bound state is assigned a complex energy

and the state decays with a half-life inversely proportional 

to T ’ (R). Then the probability that the electron does not 
detach (the survival probability) is given by

£ (R) = V(R) - 1/2 i T(R) (1.2-1)

oo
(1.2-2)



>
UJ

Ih+erfiud^A'T BisTanc-e R,

*Fig. I ~  1  CucrM-t Cross \r\(̂  kJlth

c\ C o h t m u u m
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This model predicts that if we compare collisions involing H- 
with those involing D- at the same relative collision ener­

gy, the heavier, slower isotope will have a larger cross 

section for electron detachment because it spends more time 

in the unstable region. This "normal" isotope effect is 

seen in collisions of H" or D' with He, and in that case the

model is in quantitative agreement with low-energy experi-
l

ments.

On the other hand, the opposite isotope effect was
4found in collisions of H or D with Ne or Ar. No simple 

modification of the theory has been found to explain this 

isotope effect. Also, at higher energy, further discrepan­

cies between this complex-potential model and experiments 

appear. These results showed that a different model of 

electron detachment is required.

Using a zero-range-potential (ZRP) model, Gauyacq^' 

was able to explain the inverse isotope effect observed in 

the case of H~(D~) on Ne for collision energies up to 30 eV. 
In the ZRP model it is assumed that the active electron is 

bound to the atom by a potential well of very short range; 

as the atoms approch each other, the potential binding the 

active electron changes, and it might for some time interval 
become too weak to hold a bound state. The ZRP model in­

volves solving the free Schroedinger equation

(1.2-3)



outside the range of the potential (i.e. r > 0), subject to 

a time-dependent boundary condition

(\f/vL) = f(t) (1-2-4)1 r=o

In the present thesis, we use a different approach to study

electron detachment. Basically we treat these processes in

a semiclassical, close-coupling framework. In its purpose,

and in its basic assumptions, the theory developed here is
2Z

similar to one developed by Taylor and Delos; we improve on 
their work by using assumptions that are both more general 

and more suited to the specific cases we study.



Chapter II 
DERIVATION OP THE NEW FORMULAS

2.1 INTRODUCTION

In this chapter, a general theory describing elec­

tron detachment processes in slow negtive ion-atom colli­
sions is derived.

Our theory is based on a close-coupling model 

first developed by Demkov. The essence of this approach 

is to treat the continuum states of the free electron as an 

infinite set of parallel curves and to find the solution of 

the resulting coupled equations.

In close-coupling theories of electronic excita­

tion and electron detachment, two quantities are of primary 

importance: the energy gap ̂ \(t) between the initial and fi­

nal states> and the coupling between the states, referred to 

here as V|t(t) . In all earlier work on electron detachment, 

the time-dependence of the coupling has been neglected, and 

various assumptions have been made about the time-dependence 

of the energy gap A(t) • These are presented in Fig.II-1.

In (a) a stationary energy level is embedded in a continuum 
This time-independent configuration interaction problem was

2-b Zh-2.5solved by Fano. Then Demkov and his collaborators solved

- 7 -
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the case where the energy level moves through a continuum as 

a linear function of time as seen in (b). In the case of a 

crossing between two discrete states, their formulation 

leads to the well-known Landau-Zener formula; for a cross­

ing between a discrete state and a continuum, their formulas 

become those of the local-complex-potential model.

Recently, Taylor and Delos22 have gone one step 

further by assuming a quadratic time-dependence of the po­

tential difference, as seen in (c) . Such a model can be 

used for describing threshold and turning-point phenomena. 

They applied their new formulas obtained under the quadratic 

approximation to calculate differential and total cross sec­

tions for H"(D_) on He collisions. The agreement between 

the theoretical calculation and the experiment is good.

In this work, we take another step to make the 

close-coupling model more general, to handle more complicat­

ed potential differences like the case shown in (d) . The 

present formulation allows both the energy gap and the 

coupling strength to be arbitrary functions of time.

Most of the assumptions defining the limits of the

present approach are similar to those given by Taylor and
uDelos, but their special assumptions about ^(t) and V|f(t) 

are eliminated. The new formulation can be used more gener­

ally to describe physical systems.

In the next section, we give the fundamental as­
sumptions used in this work. In section 2.3, the coupled
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equations are solved and the solutions are given. Section

2.4 gives the boundary conditions and the general properties 

of the solutions.

2.2 HYPOTHESES

We are given a molecular collision system de­
scribed by a Schroedinger equaion for electrons (with coor­

dinates collectively denoted r) and nuclei (with coordinates 
collectively denoted R)

and we are given an approprite set of boundary conditions. 

Assuming (i) that semiclassical approximations are applica­

ble, this full stationary Schroedinger equation can be re­

duced to a "time"-dependent electronic Schroedinger equation

where h is the electronic Hamiltonian, X* is an electronic 

wave-function and R(t) is a trajectory for the nuclei.

in a carefully chosen basis containing both discrete (bound) 

and continuum (free) states.

H(R,r) \f^(R,r) = E-^Jr(R,r) (2.2-1)

h (r ,R (t) ) ]f(r,t) = ifi^T(rr t)/d t (2.2-2)

The electronic wave-function X  fr t) is expanded

00

(2.2-3)
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where f^(t) is the density of states in the continuum ( 

if̂(t) > 0 for all (r, t) . Assuming (ii) that the basis 

states are orthogonal, we obtain coupled equations for the 

vector of coefficients b(t)

itidb/dt = { h + v • P } b (2.2-4)

where v is the nuclear velocity and

hfcn = [ ^ ^ h t r r R J C ^ r ^ R J d r  (2.2-5)

■Pbn= [cj)*(r,R)*(-itiV^)^n(r,R)dr (2.2-6)

Electron translation factors have not been explicitly writ­

ten in the expansion (2.2-3) because they are believed to be

unimportant for most (but not all) of the processes of in­

terest.

Writing spherical components of the vector v, P as

v = (v, v0, v$ ) (2.2-7)

P = (P,P®,PS) (2.2-8)

so that v and P are the radial components of v and P, we 
have

ihdb/dt = {\T + v-P } b (2.2-9)
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with

= h + v + v (2.2-10)

The most important assumptions are that the basis functions 

{ (̂ (r.-R) , ^(r.’R)} form a partially diabatic and partially

adiabatic representation having the following properties.

(iii) There is one bound state and one continuum

(iv) Coupling between Cj) ( and { is represented diabati- 

cally, with vanishing P( ̂ and non-vanishing \JJf* (v) Couplng 
within the continuum itself is negligible,

* 0 , 0 ( rft (2.2-11)

Thus, transtions are possible from the bound state to the 

free states and vice versa, but direct transitions from one 

free state to another are neglected.
Under these conditions, the coupled equations 

(2.2-9) take a simple form: defining

C_((t) = b ((t). exp{i/fi[\fneu1rd (t')dt'} (2. 2-12a)

C^t)  = b , ( t )  • e x p { i / t r j - v f wiutrftl ( t ' )dt ' )  ( 2 . 2- 12b)

we have

oO
itidC_) ( t ) / d t  = A ( t ) C _ | ( t )  +  ̂ Vl t ( t ) C t( t ) - - f ^ ( t ) d e  (2  , 2 - 1 3 a )
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i1ldC_(t)/dt = Vw (t)C6(t) + V (t)C_,(t) (2,2-13b)

where

(2.2-14a)

vrt(t) -\k<t) (2.2-14b)

(2.2-14C)

Eqs (2.2-13) are a non-denumerably infinite set of coupled 

equations. The purpose of this paper is to develop a gener­
al method for solving such equations.

as defining "generic" properties of a broad class of sys­

tems. Specific forms of the matrix element —  i.e. the 

time-dependence and £ -dependence of \̂(t) , V^(t) and V^(t) 

—  are regared as "constitutive" properties, which depend 

upon the particular system being considered. Of course it 

is assumed that all of the matrix elements are bounded, con­

tinuous, differentiable functions of £ and t; also, a suf­

ficient condition for validity of our manipulations is that

The assumptions (i)-(v) listed above are regared

(2.2-15)
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converges for all finite t0, t, and in the limits t — > - oo, 

t — + oo •
In the work of Taylor and Delos22- several addition­

al assumptions were made. (vi) Diagonal continuum matrix 

elements form parallel curves, so \f(R) - \f,/(R) has a negli- 

gible dependence on R, and

"4<R> - ' i L W ' O  + f 0 < e < co (2.2-16)

with 6 independent of R. Also the density of states is 

independent of R. (vii) The R-dependence (or t-dependence) 

of the coupling matrix element \T_. between the bound and 

free states can be neglected. (viii) The energy gap A(t) is 

approximately a quadratic function of time.

The main contribution of the present work is the 

demonstration that, by using different mathematical and com­

putational techniques,, eqs (2.2-13) can be solved without 

these additional assumptions.
Later in our calculations, we will again use as­

sumptions (vi), not because it is essential, but because we 

believe it is valid for the systems of interest to us. Later 

also, instead of (vii) we will use the approximation that 

all bound-free coupling matrix elements have the same time- 

dependence

V fc)̂  v g(t) (2.2-17)
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This approximation should be reasonably accurate for most 

molecular collision processes and it is very convenient.

It greatly simplifies the formulas and the calculations, but 

we emphasize that it is not essential to the present theory. 

Assumption (viii) is abandoned, and we allow in principle a 

general time-dependence of ^(t) . In a calculation we use a 
quartic approximation to /\(t) .

2.3 UNCOUPLING THE EQUATIONS

The infinite set of coupled equations (2.2-13) is 

easily reduced to a single equation because it is possible 

to solve Eq.(2.2-13b) for Ĉ (t) in terms of C_j (t) :

CJt) = exp{-i §€(t,t„ Ce(t)

+ (l/ifi)j dt'-V^t)- exp{i (t) }

(2.3-1)

where

(2.3-2)

Substituting (2.3-1) into (2.2-13a) we obtain

HidCH (t)/dt = A(fc)c-| (t)

+ { (ifi)'-f d6--P(t) .V..(t).exp{-i%(t,t)/tf}
J 0 £ f



16

X*  j dt7>V^(t/) • exptiijt'rt^/fijC ( (t) }

oo
+ j d6-f̂ (t) • V^jt)- exp{-i§t(tft)/fi}Ct(t) (2.3-3)
O

and, reversing the order of integration (valid if (2,2-15) 
converges)

■t
{i-hd/dt - A(t) }c_,(t) -^(t,t)C_J (t)dt' = vSS (t) (2.3-4)

where

CO

^(t,t') = (i'hj1(ude-^(t)Vle(t)exp{-iit(t,t)/fi}Ve.|(t/) (2.3-5)

.00
Vfi(t) = ( d£-^(t)Vt(t)exp{-i 5t(t,to)/K}Ct(t) (2.3-6)

2.4 BOUNDARY CONDITIONS AND FORMAL PROPERTIES

There are two sets of boundary conditions that ap­

ply to normal collisions. If the system begins in the bound 
state,

C (V  = 1 ; Cf(t) = 0 (2.4-1)

from which it follows that

vS(t) = 0 (2.4-2)
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If the system begins in one of the free states

C^(t) = 0 ; Cf(t) = S ( £ - 6J/£(t) (2.4-3)

then

-i
$(t) = fe(t)-^(t) .Vle(t)exp{-i^(t,g/h} (2.4-4)

In the present paper, we will only consider the boundary 

conditions (2.4-1), so C_| (t) satisfies the homogenous con- 

terpart to (2.3-4).

• t

{i1id/dt - A(t)lc-|<t) ~ ( ̂ ><t,t)C (t)dt = 0 (2.4-5)
jt0

The matrices ]i, P, ~tf, and V are all Hermitian, so the total

probability for finding the system in bound and free states

is conserved,

The quantities ^(t,t), <^>b(t,t)/dt, vQ(t) , d^/dt,
C(t), dC(t)/dt and d^C(t)/dt2 all are continuous functions of 

t, provided that certain integrals converge. For those who 

are interested we give proofs of continuity in Appendix A.

In the limit as t — »oo, C_|(t) is oscillatory but 

|C_|(t)| and |Ĉ _(t)| must approach definite limits —  after
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all, |C_((co)| is supposed to be the survival probability for 

the negative ion, and I(oo^lf^ is the probability that an

electron will be detached with energy near € . We show in
X

Appendix B that if ( J^ftjtjdt7 goes to zero sufficiently
jt0

rapidly as t — then

c_|(t) = C_,(t)exp{-i A(t)dt'/fi} (2,4-7)
Jt0

approaches a finite limit as t —»»oo.

2.5 DISCUSSION

The complete solution to the coupled equations 

(2,2-13) under the boundary condition (2.4-1) is now accom­

plished in three steps. (1) Evaluate the propagator ^(t,^)

defined in Eq.(2.3-5); (2) Solve the fundamental integro-

differential equation (2.4-5) for C_((t); (3) Use C_|(t) in

Eq. (2.3-1) to obtain Ĉ (t) .

We will explain in detail the properties of 
^)(t,t) in chapter IV, and in subsequent chapters we will 

solve Eq.(2.4-5) by various approximate methods. Before do­

ing this, however, it is worthwhile to examine a very simple 

"zero-order" approximation in which ^>(t,t) is entirely neg­
lected. In the following chapter we show that this leads to 

the standard "first-order" formulas of time-dependent per­

turbation theory. This approximation is then used to calcu­
late cross sections for H- (D“) on Ne.



Chapter III

ZERO-ORDER APPROXIMATION AND H- (D“) ON NEON
COLLISIONS

3.1 INTRODUCTION

As was discussed in the first chapter, there have 

been measurements of electron detachment in collisions of H~ 

(D~) on He, Ne, Ar etc. done recently to elucidate the mech­

anism of the processes involving coupling between a discrete 

state and a continuum. The complex potential model was suc-
_ _ icessfully applied to the case of H (D ) + He by Lam et el.

But that model failed to explain the reverse isotope effect
— — £1 in the case of H (D ) on Ne. Gauyacg suggested that in the

case of weak coupling the detachment comes from direct dy­
namical transtions from the bound state to continuum. In so 

doing he was able to explain the reverse isotope effect ob­

served in the case of H _(D~) + Ne for collision energies 

from threshold up to 30 eV.
In this chapter we use a zero order approximation 

in the formulation given in the preceding chapter to calcu­

late the total cross section for electron detachment, <7<j, 
for collisions of H" or D~ with Ne. The results of this 

calculation are very interesting: at low energy the "anoma­
lous" isotope effect occurs, i.e. the faster isotope gives

- 19 -



20

more detachment; however, at higher energies the system 

shows the "normal" isotope effect/ with the slower isotope

giving more detachment. Identical phenomena were found in
26new measurements by Hug et al.

3.2 ZERO-ORDER APPROXIMATION

A "zero-order" solution to Eq.(2.4-5) is obtained 

by making the approximation

^>(t,t) «  0 (3.2-1)

in Eq.(2.4-5). Using $^(t,t) = £*(t-t) (this will be ex­

plained in section 4.2), we immediately obtain

ft ,
C_,(t) = exp{-ij A(t)dt'/fi} (3.2-2)0

and

"t

Ĉ (t) =  ̂ dt-V^tVexpf-i/fi | (A(t)-Odt) (3.2-3)
-<0 0

These formulas are immediately recognized as being equiva­

lent to the result of forst-order time-dependent perturba­

tion theory.

The cross section for detachment is obtained by 

three numerical integrations: changing variable from t to

R/ we have

CO R
C(co) = 2 ̂  dR-(V|t(R)/v(R) ) .exp{-i/h ( dR'. (A(rf) -6 ) /v (r') }

R-jp R-tp
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(3.2-4)

where v(R) = dR/dt. The probability that the electron does 

not detach (the survival probability) is given by

OO

Ps = 1 -  ̂IC(oo) -d£ (3.2-5)
o ^

The total detachment cross section is

OO
(J6 = 2Ttf {1-P5(b) }bdb (3.2-6)0

3.3 CALCULATIONS FOR H~(D~) ON NEON

Three quantities are needed for the calculation: 

the trajectory R(t), which is calculated from an average po­

tential energy, the difference between ionic and neutral po­

tential curves ^(R(t)), and the coupling function V^e(R(t) ) .

Calculations of hf0n(R) and ^neu1>1Jj(R) have been made
Zl Z<?by Gauyacq and by Olson and Liu; the results are quite 

close together, but^(R(t)) that we obtained from Gauyacq's 

calculation is slightly lower than that obtained by Olson 

and Liu. Here we use the one derived from Gauyacq 

(Figs 111-1,2). We see that in the case of H" (D- ) on Ne 

the negative-ion potential curve grazes the continuum as 

shown in Fig.III-1. This dtffers from the case of H_ (D") on 

He, where the negotive-ion potential curve crosses into the 

continuum.

The coupling function is assumed to be of the form
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vt_|(R) = oi-/2m?-exp (-̂ 5R) (3 3-1)

where d-= 2.58 and jb = 0.66 are chosen to fit the experimen­

tal data. This form can be justified in a number of ways, 

for example by taking the target Ne to be a hard repulsive 
core and by assuming that the bound and free wave functions 

for the active electron are s-waves with radial functions e 

and sin(kr).

The calculation is now straightforward. We com­

pute C ̂ (oo) in zero order using equation (3.2-2); then equa­

tion (3.2-3) gives the survival probability and (3.2-4) 

gives the total detachment cross section.

The experimental results for H~(D~) + Ne have been
lreported by Lam et al. for collision energies up to 100 eV.

ISRecently the experiment has been reported by Huq et al. in 

this institution for energies up to 200 eV. The comparison 

between the calculation and the new experiment is shown in 

Fig.III-3.

3.4 DISCUSSION

We see that the agreement between the calculation 

and the experiment is good. We not only find the "anoma­
lous" isotope effect (H~ above D-) at low energies, but we 

also find at high energies the "normal" isotope effect (D~ 

above H~) in both the calculation and the.experiment.
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The "anomalous" isotope effect arises because the 

energy of the discrete state does not cross the continuum 

but just grazes it. Electrons undergo detachment only by 

making a jump across a small energy gap, and such jumps are 

more probable at higher nuclear velocity. Hence the light­

er faster isotope gives more detachment. In faster colli­

sions, we show in Fig.III-4 that the detachment cross sec­

tion depends only on the relative velocity of the colliding 

pair, and not on their relative energy. Because the cross 

section gradually decreases with increasing velocity, the 

curves in Fig.III-3 cross over each other, and at high ve­

locity the heavier isotope gives more detachment when cross 

sections are compared at the same center-of-mass energy.

It is also interesting to notice that at identical 

center-of-mass energies, the lighter isotope undergos de­

tachment at somewhat larger impact parameters than does the 

heavier isotope (Fig.III-5).

We see, therefore, that in the case of H- (D~) on 

Ne, where there is a weak coupling between the discrete 

state and the continuum, the zero order approximation gives 

reasonable agreement between the calculation and the experi­
ment.

In the case of strong coupling, however, the pro­

pagator )̂(t,t') can no longer be ignored. In the next 
chapter we shall discuss in detail the properties of the
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propagator ^)(t,t) before applying our theory to other cases 
of interest.



Chapter IV 
THE PROPAGATOR

4.1 INTRODUCTION

According to Eqs (2.3-4) and (2.4—2)r collisions 
in which the electron is originally bound are governed by 

two functions, A(t) and ,£>(t,t). In principle, both of 

these functions can be obtained from ab initio calculations. 

A(fc) is the gap between the negative-ion and neutral-mol- 

ecule energy curves, and this has been calculated for a num­

ber of systems. However a more elaborate calculation would 

be required to obtain ,£>(t,t).

The properties of ^(t.t^ follow from those of the 

phase function $ fe(t,t)* the density of states ^(t) , and the 

coupling matrix element V,e(t). In the next section we shall 

examine each of these constituents of ^&(t,t). In Section 

4.3, we give general properties of ^(t,^) and we present an 

important simplifying approximation, which we call a 

"short-memory" approximation. In section 4.4 a reduced pro- 

pagator £ ( T )  is given under a "separable" approximation.
A.In section 4.5 we show some calculations related to (t ) 

and its Fourier transform.

- 30 -
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To help the reader avoid getting lost in detail, 

let us state the main result: under conditions discussed in 

this chapter, ^(t,^) can be written approximately as

£(t,t) ~  |g{t) |2-j£(t-t) (4.1-1)

a / Awhere ^Qft-t) = ^ ( T )  has a shape like that shown in

Fig.IV-1, and g(t) has a shape like that shown in Fig.IV-2.
, AAlso the Fourier transform of ^(T) is called G(£), and it 

has a shape like that shown in Figs.IV-3,4. This is all we 

need to know in order to understand the calculations given 

in later chapters.

4.2 CONSTITUENTS

A. PHASE FUNCTION

If assumption (vi) of section 2.2 holds, i.e. if 

the basis function ^(^/R) are chosen such that their ener­

gies orm a set of parallel curves then we can take €

to be that energy relative to the lowest state in the con­

tinuum

f = \ £ t(R) - \ L W R>' 0 < 6 <00 (4.2-1)

and £ will be independent of R. Hence from Eqs.(2.3-2) and 
(2.2-14b) we have
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$ fr(t,t) = 6 - (t-t) (4.2-2)

It is difficult to imagine a representation for a negtive- 

ion system in which Eq.(4.2-2) would not hold.

B_. DENSITY OF STATES

For a typical collision between a negative ion and 

an atom, will be independent of time, and it will be

the same as the density of states for a free electron. A 

semiclassical formula states that the number N(6) of quantum 
states having energy less than 6 is proportional to the 

volume i2(6) of phase space contained inside the energy sur­

face h(r.R) < 6 :

N(6) = .0.(6)/( 2Tt*)d (4.2-3)

where 2d is the dimension of the phase space. To ensure 
that _Q(6) is finite, let us enclose the whole system in a 

box of volume (4/3)7tL*. Assuming that only one electron can 

be detached, we divide 12(6) into two parts: 12,(6) is that
part of X2(6 ) in which the electron is within a few a0 of 

either atom A or B, and 12.,(6) is all the rest of 0(6). If 

the electron is free to move in three dimensions, then 0 /6) 
is practically equal to

i  3
_Q2(6) = (4/3) 7L (2/AO*. (4/3)TEL (4.2-4)
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_Q((6 ) depends on the details of the electron Hamiltonian 
h(r;R), and it will in general depend on R (or t). However 

it will normally be finite, and it will have a finite limit 

as L ->°o. Hence _Q(<?) ^  „Q2(£) and the density of states for 

three-dimensions is

For slow collisions involving negative ions, the electronic 

wave-function will frequently be dominated by its s-wave 

component. Then the configuration space is effectively 

one-dimensional, and the phase-space volume is

and the density of states for one-dimensional motion is

Obviously if the ground state of the neutral atom is degen­

erate, these results would be multiplied by an appropriate 

factor. Note also that the above argument does not apply to 

an electron moving away from a positive ion, nor does it ap­

ply to an electron interacting with a very singular attrac­

tive potential, such as -r^.

f>(0 = dN(0/d£

= (2/iy - e -  L/(3W) (4.2-5)

(4.2-5)

(4.2-7)
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C COUPLING MATRIX ELEMENT

The coupling matrix element depends upon the sys­

tem the type of coupling (electrostatic, rotational, ....) 

and the representation that is chosen. As t -»oo , V|e(t) goes 

to zero faster than 1/t, but not faster than e where t
is some constant. We have seen in section 3.2, for example,

that after changing variable from t to R, Y|̂ (R) can take the 
- f i  Rform f (O'e .

4.3 GENERAL PROPERTIES OF AND SHORT-MEMORY
APPROXIMATION

Based on the above properties, we can write

00

^)(t,t) = (iti)"̂  Yte(t)-exp{-ie(t-t/)/fi} (t'jf’.dfc

(4.3-1)

from which follows the symmetry

-£(t',t) = ->^(t,t) (4.3-2)

Also, for any fixed t

Lim ^(t,t) = 0 (4 .3-3a)
x!-> ±oo

and for any fixed t

Lim (t, t) = 0
"t->±oo

(4.3-3b)
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Since the range of the coupling matrix element is normally a 
few Bohr radii, it follows that the time scale on which 

^(tjtf) is significant is no more than a few atomic length 

units divided by the collision velocity. For example, con­

sider a slow collision, with the nuclear velocity .01 atom­
ic units. In this case ^(t,t;) is negligible unless both 

|t| and |t̂  are less than a few hundred atomic time units.

Eq. (4.3-1) also contains (t-t') in the exponent.

To see its effects, let us momentarily ignore the time de-
/ Q /pendence of V^ft) . Then as |t-t| -»oo , ^)(t,t) — > 0 again. 

However this happens on a much shorter time scale: with T  = 

t-t', the span of time intervals ^7 over which ^(t,t) is 

significant is inversely related to the range of energy 

in which V,^is significant:

A T  * A 6 ~  (4.3-4)

Since the order of magnitude of A £  would be one atomic unit 

of energy (27.2 eV), the order of magnitude of ^ 7  would be 

one atomic unit of time (2.42*10 IT sec). Thus -^)(t,t) 

would be negligible for any t, t' such that It-tl > a few at­

omic time units.

This important fact provides a useful simplifying 

approximation for ^(t,t). The fundamental integrodifferen- 

tial equation, (2.3-4), may be said to be a differential 

equation with " memory ": the time-derivative of C . (t) de­
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pends not only upon the present value of C_|(t), but also 

upon its value at all times in the past. The argument above 
indicates that the equation's memory is short.

To make use of this, let us rewrite Eq.(4.3-1) in 

terms of variables t and ~x = t-t' :

^(t.t) = >?) (7 ; t) (4.3-5a)

00
= (  V1<t( t ) - e x p ( - i 6 T / f i ) -  ^ ( t - T ) ^  de (4 .3-5b)

'O

Eq. (4.3-5) is exact. Suppose now A T  is small compared to 

the time over which changes significantly:

(dV^/dt) • (AT/^) «  1 (4.3-5)

-i
or, using ^d^/dt = v/a0 and Eq. (4.3-4),

*v/(aoA7) «  1 (4.3-7)

If this condition is satisfied we may substitute v (t-T) 

—  ^  ((t) in Eq.(4.3-5b) to obtain

^  & s(T;t)

°0 t
|V_l£(t) | • exp(-ie7/fi)^d^ (4.3-8)
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>£(T;t) will be referred to as the short-memory approxima­

tion to (T ;t) .

For later reference, let us introduce a Fourier 

transform of (7 ?t):

oo
G(£;t) sj exp(i^T/fi)*^l (7*t)d7 (4.3-9)

' O

Using the short-memory approximation, we have

G(£;t) «  G(£;t)

oo

( exp(itT/K)-A(T;t)d7 (4.3-10)

If £ is given a small positive imaginary part, using 

Eq.(4.3-8) we may reverse the order of integrations over f 

and £ to obtain

oo
Gs(£,t) = (  |V|t,(t) h (£-fc') ! ^d€' (4.3-11)

' o

4.4 Â  SEPARABLE APPROXIMATION AND A REDUCED PROPAGATOR

A further approximation provides physical insight 

and an additional simplification. Even if the coupling ma­

trix elements are significant over a broad range of the con­

tinuum, transtions might only occur into a rather narrow
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range. For example, if the collision is very slow, usually 

only very low-energy electrons are produced. Within that 

narrow range of continuum energies, it may be reasonable to 

assume that all of the coupling matrix elements have the 

same time-dependence

where V (̂  is independent of t and g(t) has a shape as shown 

in Fig.IV-2. This gives

is a reduced propagator. The corresponding short-memory ap­

proximation is

The following properties of y^)(T) are easily proved. Sepa­
rating real and imaginary parts,

(4.4-1)

<, / O Sep t / A  /
= g (fc) • g (4.4-2)

where

'£>{7) = s S (t_t) = { I V 2' exp(-U7/fi) (4.4-3)

(4.4-4)

A

(4.4-5a)

/ 2 
 ̂ dt I V|f| • sin (£1/6) (4.4-5b)



£^(7) = - £ ' [  d^f>|V|t|a-cos(€7/fi) (4 .4-5c)

/\ A
^  (7) is an odd function of T, so >£)(0) = 0. Also ft.

|d^R/d7lT=0= --n2[ < 0 (4.4-6)

Aif the integral converges. (T) is an even function of T

and £ (0) < 0, Id^/dTl = 0. For all T,*^1 I T=0

|£ (7) I < $(0) (4.4-7)

and

Lim J)(z) = 0  (4.4-8)
T -> c o  ^

By the same argument as before, the period of time over 

which ĵ )(7) is significant may typically be only a few atom­

ic units.
AThe Fourier transform of ^o(T) is

G(6) s ( dT-exp(ifcT/fi)*>&(7) (4.4-9a)
J O

If € is given a small positive imaginary part, then we may 

use (4.4-3) in (4.4-9a) and reverse the order of integration
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4.5 A MODEL FOR ^>(T) AND G(£)
A

In the last section we obtained G(£) (4.4-9a), the
AFourier transform of ^)(T)• Eq.(4.4-9b) shows that for Im6

A
> 0, this G(£) is the same quantity that Taylor and Delos 

obtained in Eq.(2.20) of Ref. 22, denoted there G(£). There­

fore we can take over many of their results. For £ < 0, G(e 

) is real, negative, and it goes to zero when f - o o  as I £ I 

For 6 > 0, G(£) is complex, and its imaginary part is 
negative:

Im G(e) = (4.5-1)

At (■ = 0, the derivative of G (£) is discontinuous. Further 

details are given in Ref.22.
A

For which is needed in the calculation of G(£)
A

and ^(T), we use a form derived from a square-well model by
Z2Taylor and Delos. We give in Appendix C a simple descrip­

tion of it. Figs.IV-3,4 show the real and imaginary parts 

of G(£) from Taylor and Delos.22

For this model, numerical integration of
AEq.(4.4-3) leads to results for ^)(T) that are shown in 

Fig.IV-1.
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4.6 SUMMARY

In this chapter we have discussed in detail the 

constituents and the general properties of the "propagator" 

^(t,^). The characteristic "short memory" of ^(trt) enables

us to simplify it as in Eq.(4.3-8). In the next chapter we
*•

show that this slow collision approximation leads, under 

proper additional assumptions, to the well-known local-com­

plex-potential formulas.

We have also shown in this chapter that an addi­

tional "separable" approximation leads to a reduced propaga-
A A

tor -*£>(7) and a Green function G (6) which has been presented
A

before by Taylor and Delos. The relationship between >0 (T)
A

and G(£) has been illustrated through numerical calcula­

tions .



Chapter V
SLOW COLLISION APPROXIMATION AND COMPLEX 

POTENTIAL FORMULAS

5.1 INTRODUCTION

We have shown in chapter II that the coupled equa­

tions (2.2-4) can be reduced to a single integrodifferential 

equation and that, for the boundary conditions (2.4-1), that 

equation is homogeneous

t
{ihd/dt - A(fc)} c_i(t) - (£(t,t) -C (t')dt' = 0 (5.1-1)

We have also given in chapter IV some information about the 

propagator ^(t,t). Now we have to find ways of solving 

this fundamental equation.

In the present chapter we give an approximate ana­

lytic solution, which is suitable for slow collisions, and 

which, under appropriate conditions, can be reduced to the 

local-complex-potential formulas. In section 5.2 the fun­

damental equation (5.1-1) is written in a different way, 

then in section 5.3 we make a slow collision approximation. 
The results are shown to be identical to those of the local- 

complex-potential model.

- 46 -
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5.2 THE DYNAMICAL COMLEX POTENTIAL

The analytic solution is based upon the short-mem­

ory approximation for ,£)(t,t) that was given in chapter IV.

Let us define £(t) such that

__________________  t_________
C (t) = exp{-i ( £ (t') dt'/fi} (5.2-la)

0
i ,e.

£(t) = i-h-{dC_,(t)/dt}/C_)(t) (5.2-lb)

These equations have the same form as equations obtained in 

the local-complex-potential model, but they have a different 

meaning. Local-complex-potential formulas may be regarded 
as results of a model, or as results of an approximation 

method. However, (5.2-la) is supposed to represent the ex­

act solution to the fundamental equation (5.1-1). £(t) may
therefore be regarded as an "exact" or "dynamical" complex

potential, which might or might not have some relationship 

to the local-complex-potential. In this chapter we give 

conditions under which <£(t) will be close to the local-com­

plex potential, and in the following chapter we will calcu­

late £(t) numerically.

For all t such that C_((t) ^ 0, £(t) is finite, con­

tinuous and differentiable. Substituting (5.2-1) into 

(2.4-5), we obtain an integral equation for £(t):

t X
£(t) = A ( fc) + ( &(t,t)exp{i^ Sft'W'/fiJdt' (5.2-2)
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with the boundary condition

6 (t0) =A(t) (5.2-3)

We take t0 to be a time long before the collision, when 

y?)(t,t) is insignificant. Then £(t) remains equal to /̂ (t) 

until ,£)(t,t) becomes substantial, at which time t-t* is 

large. Changing to variables t, T =  t-t', Eq. (5.2-2) becomes

t-tQ -t
£(t) = A(t) + ( ^>(T;t)exp{i( ^(t)dt%}dT (5.2-4)

Jt- 7

So far, everything is exact, and (5.2-4) is just another 

form of the fundamental homogenous equation (2,4-5).

5.3 SLOW COLLISION APPROXIMATION

Let us now assume that the time scale on which 
^(t) changes is comparable to that on which A(t) and Y^(t) 

change, and that this time scale is long compared to the 

time A  on which is significant. Then in (5.4-4) we

can replace £(t1 by £(t), to obtain

£(fc) = A ( t) + ( &(T;t)exp{-i£(t)?/fi}dT (5.2-5)
O

Since A T  is also small compared to t-t/, we can replace the 

upper limit by infinity, and, using (4.3-9) and (4.3-10), 
Eq.(5.2-5) becomes approximately
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£(t) = A ( fc) + G s<£(t)#t> (5.2-6)

Let us define £ 3(t) as the exact solution to this approxi­

mate equation (5.2-6). Once G^^jt) is known, £ s(t) can be 

obtained by an iterative algebraic process: the zero-order 

approximation is

£ ‘6>(t) = A(t) (5. 2-la)

and, substituting this back into (5.2-6), the first-order 
approximation is

6t>(t) = A ( fc> + G s(A(t);t) (5.2-7b)

and so on. For a slow collision, the exact £(t) defined 

in Eq. (5.2-1), will be close to £5(t) .

The result of this slow-collision approximation is

■t
C_((t) = exp{-i^ Ss(t)dt'/fi} (5.2-8)

5.4 LOCAL-COMPLEX-POTENTIAL FORMULAS

From Eq.(5.2-8), using Eq.(5.2-7b) we obtain the 

survival probability for the negative ion

z  / ”Ps= IC_,(00) | = exp{2 j Im Gs (A(t) ;t)dt/fi} (5.3-la)
-00
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exp{-| y’(t) dt/fi} (5.3-lb)

where

*T(t) = -2 Im Gs (£(t) ;t) (5.3-2a)

(5.3-2b)

Eqs (5.3-1) and (5.3-2) constitute the classical formulas of 

the local-complex-potential model.

5.5 DISCUSSION

It is very pleasing to arrive at the local-com­
plex-potential formulas because they are familiar results, 
known to be applicable to a variety of systems. The above 

is one of the most general derivations of these formulas 

that has yet been given. Other treatments have relied upon 

the hypothesized existence of a long-lived quasibound reso­

nance, and Taylor and Delos's treatment (following Demkov) 

made use of special assumptions about ^(t) and * T^e
present derivation uses only the general assumptions listed 

in chapter II and the approximations leading from (5.2-5) to

sical local-complex-potential formulas have some problems: 

not that they are slightly inaccurate, but rather that they

(5.2-7b) .

On the other hand, it is well known that the clas-
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give hopelessly wrong answers for some systems —  for H_ (D“) 

on Ne, Ar, Kr, or Xe, they predict an isotope effect that is 

opposite to what is observed. This is because they do not 

properly describe phenomena that arise when the discrete 

curve just grazes the continuum. A related but rather sub­

tle inconsistency of the above equations also appears when -
Acalculations are made. We showed that G(t) has a discontin­

uous derivative at € = 0 ; G s(€;t) must have the same behav­

ior. As a consequence, £(t), the solution to Eq.(5.2-6), 

will have a discontinuous derivative with respect to time 

when 0. However, in Appendix A, we took some care to

prove that C_|(t), dC_|/dt and d^Ci/dt* all are continuous 

functions of time, and this implies that the exact £(t) has 

a continuous derivative. The exact solution C_|(t) glides 

smoothly through the region where the slow-collision approx­

imation would give bumps.



Chapter VI

ITERATIVE CALCULATION OF £(t) AND FIRST-ORDER
APPROXIMATION

6.1 INTRODUCTION

In chapter V we converted the fundamental

for C_|(t)

{i-fid/dt -A(t)>C (t) - ( &(t,t')C_((t)dt = 0
to

into a new equation

t-t„ t
£(t) = A(t) + ( v5(T ;fc) ‘ exp{i ( £ (t) dt'/h}dT

t-T

with the relationship

C_|(t) = exp{-J £,(t')dt7f»} (6. l-2b)

Equations (6.1-1) and (6.1-2) are exactly equivalent (a so­

lution to one implies a solution to the other) and £ (t) is 

finite, continuous, and has a continuous derivative for all 
t such that CL|(t) ^ 0

In the preceding chapter, we showed that the fun­

damental integrodifferential equation (6.1-2a) could be

equation

(6.1-1)

(6.l-2a)

- 52 -
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solved using a slow collisoon approximation, and that the 

result is the familiar locai-complex-potential formula.

In the present chapter we give an iterative method 

for solving this equation, and we show the results of a 

"first-order" calculation. We find that £0>(t) , obtained 
from this first-order calculation, is comparable to that ob­

tained in the local-complex-potential approximation, but 

this first-order approximation also describes tunneling and 

interference effects.

6.2 ITERATIVE METHOD AND FIRST-ORDER APPROXIMATION

The zero order approximation of £(t), of course
is

£l°‘(t) =A(t) (6 2-1)

AS we discussed in chapter III, this "zero-order" approxima­

tion is equivalent to first-order time-dependent perturba­

tion theory. This approximation was used therein to de­

scribe electron detachment in collisions with H~(D“ ) with 
Ne.

Starting from Eq.(6.2-1), an iterative scheme for

solving it is obvious: given an "nth - order" approximation

£<h)(t) , the "(n+l)^ - order" approximation is

t-t0 -j-
g m \t) =A(t) + ( £(T;t).exp{i^ & <n)(t')dt'/fi}-dT (6.2-2)

o t-7
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In the present work,, we shall consider only the first-order 

approximation. Furthermore, we shall use the separable ap­

proximation and slow collision approximation defined in 
Eq.(4.4-4). Also, in the case of interest, the time depen­

dence of g(t) is less important than that of A(t), so we 

will use the additional approximation g(t) 1. Then taking 

t„= -oo, we have

^ it
£ (l,(t) = A ( t )  +( dT-jftm-exp{i Aft'jdt'/lU (6.2-3)

t-T

This formula is the basis of most of our subsequent calcula­

tions. Henceforth we drop the superscript on ^ , and just 

call it (o •
Although our zero-order approximation is equiva­

lent to first-order time-dependent perturbation theory, 

there is in general no direct correspondence between our ntJ> 

order approximation and some level of the standard perturba­

tion theory. Even the first-order approximation (6.2-3) 

contains parts of all orders of perturbation theory.

6.3 AN ILLUSTRATIVE CALCULATION

Let us now examine consequences of the above 

first-order approximation in a special case. Suppose /±(t) = 

Eo-ySt2 ; then we have

oO n
£(t)-A(t) = j' dT.^(T) .exp{i C(E0 + p t x 1 -

(6.3-1)
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We have seen in Fig.IV-3 that ^(T) gets small as x  gets 

larger. So, temporarily neglecting the terms involving t 2 

and T 3 in the exponent, we have

00
£(t) - A(t) =* ( dT-£(T)-exp{i(E0- ^t2 )T} (6.3-2a)

2= G(Eo- (5t ) (6 . 3-2b)

This is a special case of the slow collision approximation 

that was discussed in chapter V, and we have again arrived 

at the local-complex-potential formula.

The neglected terms in the exponent of Eq (6.3-1) 

have surprising effects: they give oscillations in £ (t) .

To see this, let us define

f,(T; t) = (E„-<3ti)T (6. 3-3a)

fz(T;t) = f,(T;t) + |5tT2 (6. 3-3b)

f(Tyt) = f^Tjt) - ((i/3)Ti (6.3-3c)

thi.e. f.(T;t) is a k degree approximation to the exponent inR
Eq«(6.3-1). Also, define

oo

Fft) " | (t)‘ exp{ifk(Tyt) }-dT (6.3-4)
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In fig.VI-1 we give the comparison between F((t) and Ê (t) . 

The calculations are the numerical evaluation of Eq.(6.3-4) 

with Eq =0.2 and p=5*10 . Fig.VI-2 shows the comparison

between F (t) and F,(t) .£ 3

6.4 SIMPLIFYING APPROXIMATIONS

In the last section we showed the calculations of 

^ (t)—/^Ct) using first order approximation. We have seen that 

is, except for the oscillatory structures, similar
Ain shape to G(^(t)). We can better understand these results 

by considering some simplifying approximations.

Contributions to the integral appearing in 

Eqs.(6.2-3) and (6.3-1) mainly come from certain small rang­

es of T. For general values of T, ^  (T) is small and the 

exponent is rapidly varying, so the contribution to the in­

tegral is negligible. Significant contributions come from
A

the region near 7 = 0> where (T) is large, and from sta­

tionary phase points, where the exponent is slowly varying.

The contribution from the region near T  = 0 may 

be estimated by using the "slow-collision approximation" de­
fined in chapter V:

;«>" a t "oo" A
) d7-$  (t) • exp{i( A(t)dt/tf} - f  >S (7)-exp{iT ̂ (t)/ft}d7
o + °t-T

= G(A(t)) (6.4-1)
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Here "oo" is a value of T  that is sufficiently large that
/V
^>("00") small, but sufficiently small that ^(t) does not 

change significantly in the range from t-T to t.

Stationary phase contribution to the integral 

(6.2-3) arise from regions near the points T5p at which

-7; (  A ( t ' ) d t ' |  = A ( t - T  ) = 0  ( S . 4 - 2 a )
't-t >  sr

i.e.

T5p= t - t* (6. 4-2b)

where t* is a time at which ^(t) = 0. In the quadratic ap­
proximation there are two such points, t* and t*ut, where the 

discrete curve crosses into the continuum and where it 

crosses back out. However, the integral in Eq (6.2-3) in­

volves only positive values of T , so the stationary phase

contributions should only be considered for t* < t. Hence1 in

we have the following:

%t < t ;n no stationary phase contribution

tx < t < txut_ one stationary phase contribution near tx.n

X xtout< t two stationary phase contributions, near t m

and txout

In each case, the contribution to the integral from the re­
gion of stationary phase is



I^rjl* exp{i^-sign-/\(txn)} (t-t*) • exp{i j ^(t)dt'/fi}
t_t" (6.4-3)

The integral in Eq.(6.2-3) is then estimated by combining 

(6.4-1) with zero, one or two terms of the form (6.4-3).
From the quadratic approximation, ^(t) = E0- jit , with Ee =

'b0.2 and p =  5*10 , the result is shown in Fig.VI-3; it is

very close to the result obtained by numerical evaluation of 

Eq. (6.3-1) .

Why do oscillations appear in <S (t) and what do 

they mean? In discrete curve-crossing problems, Stueckel- 

berg32 showed in 1932 that the transition probability would 
be oscillatory because of interference between transitions 

that occur on incoming and outgoing parts of a trajectory. 

Similar oscillations are also known to occur in Penning ion­
ization, which involves transitions between a discrete state 

and a continuum. Such oscillations are also possible in 

systems undergoing electron detachment (though they have not 

yet been seen in experiments) . Oscillations in the tran­

sition probability must manifest themselves in C._((t), and, 

therefore, also in the dynamical complex potential (t). 

Like Stueckelberg oscillations, the phase of the oscillatary



61

T~ig. VI 3 l̂Ct) o M  Fct)



62

is related to the integral of the energy gap A(fc) from the 
time of crossing to t.

Since C_\(t) is obtained by integrating £(t) over 

t, these oscillations will usually have relatively little 

effect on C_((t) and the survival probability. However, in 

certain cases, oscillations may be important in the electron 

energy spectrum. This will be shown in the next chapters.



Chapter VII

ELECTRON DETACHMENT FOR H~(D") IN COLLISIONS
WITH HELIUM

PART I: QUADRATIC APPROXIMATION

7.1 INTRODUCTION

Before going further/ let us summarize what has 

been accomplished so far. Referring back to Figure 11-1/ we 

recall that in earlier developments of close-coupling theo­

ry/ solutions were obtained for models in which ^(t) is ei­

ther constant (Fano), a linear function of time (Demkov), or 
a quadratic function of time (Taylor and Delos). The pur­
pose of the present work is to obtain solutions to the 

close-coupled equations under more general assumptions.

In the preceeding chapters we developed a frame­

work for doing this. The probability of survival of the 

negative ion is

Ps = 10.j(oo) \2 (7.1-1)

and the probability that an electron with energy near 
will be detached is

Pd(f) = |C6 (oo)|*f̂  (7.1-2)

- 63 -
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Under the assumptions given in chapter II, if C_|(t) is 
known, and if V^t) then C^(t) can be calculated from

/ / /C 6(t) = («i) J Vu -exp{-i^(t-t/)/fi}-CH (t).dt (7.1-3)

Hence if we can obtain C_((t) , the problem is solved. Under

assumptions stated earlier, we obtained an integrodifferen- 

tial equation for C_j(t) (Eq.(2.3-4)) and we transformed this 

into an equation for £(t), defined by

C (t) = exp{-i^ £(t)dt'/1i} (7.1-4)
-00

£  (t) was interpreted as a "dynamical complex potential" and 

we considered some approximate methods for solving 

Eq.(6.1-2a) to determine it. In our subsequent calcula­

tions, we will use what we called the "first-order" approxi­

mation to £(t)

03 -J-
£ (t) = £(t) + ( $ ( 7 ) -exp{if A(t')dt'/fi}-dT (7.1-5)

°  j-■fc-t

From this we obtain C_|(t) , C^(t), and the desired probabili­
ties and the cross sections. As we have seen in section 6.2 

this first order approximation is much better than the first 

order pertubation theory, which corresponds to the zero-or­

der approximation in our picture.
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In the present chapter we consider a quadratic ap-
. 22proximation of A(t) as was done by Taylor and Delos. The

reasons that we repeat the calculations using the same ap­

proximation are: (i) to illustrate the "dynamical complex

potential". (ii) to see if our results of calculation agree 

with those of Taylor and Delos. (i i i) to extend the calcu­

lation to the electron energy spectrum which was not ob­

tained by Taylor and Delos. (iv) to lay the ground for 

quartic approximation of A(t) which will be discussed in the 

next chapter.

7.2 THE DYNAMICAL COMPLEX POTENTIAL

Suppose now we have A ( fc) = This quadrat­
ic approximation to /\(t) corresponds to situations where, as 

R goes smaller, the discrete state crosses into the continu­

um and does not cross back out as shown in Fig.I-1. Calcu­

lations have been performed for several combinations of Ec 

and ft; the values chosen are listed in Table VII-1, and we 

denote them cases A1 to A4.

Table VII-1 E„ and £> for A(t)

Case A1 A2 A3 A4

Eo 0 2 0.016 -0 - 01 -0.01

/b(*106) 5-0 3.7 3.7 0 87
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In Figs.VII-1,2 we show respectively for case A1 

the calculations of the real and imaginary parts of (i) 

A(t) , (ii) G(A(t)), (iii) £(t)-/\(t) calculated from 
Eq.(7.1-5).

We see several things from these figures. First, 

the real part of £>(t)-^(t) is very small compared with ^(t) 

(except of course where A(t) goes through zero). The imagi­

nary part is comparable in magnitude to the real part. This 

justifies the approximation we used in Eq (7.1-5) where we 

substituted A(t) in the right-hand side for <o(t). Second 

both the real and imaginary parts of £(t)-^(t) are, except
Afor the oscillations, similar in shape to those of G(A(t)). 

The oscillations can be explained by the stationary 

phase approximation, which we have discussed in section 6.3. 

In that approximation we find that the wavelength of the os­

cillations is proportional to 27E/A(t) , so rapid oscillations 

correspond to regions where A(fc) large. This is consis­
tent with the results shown in Figs.VII-3,4.

7.3 THE SURVIVAL PROBABILITY

In Fig.VII-5 we show the survival probability for
-6£y=10 calculated from Eqs.(7.1-1) and (7.1-4). Also includ­

ed in the figure are the results calculated from the classi-
ical local-complex-potential (CLCP) model and the Taylor-De- 

los f o r m u l a s O u r  result lies between that of Taylor and 

Delos and that of the CLCP model. Both the present calcula-
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tion and the Taylor-Delos calculation improve upon the CLCP 

model in that they take into account "tunneling" transitions 

(which occur for E0< 0) and interference effects (small os­

cillations when E0> 0). However it is not possible to say 

with certainty whether the present result or the Taylor-De­

los result is the more accurate. Both are reasonable, and 

they do not differ by much.
From Fig.VII-5 we would expect, that for the H~(D" 

) on He system at low energies, the total detachment cross 

section calculated by the present method would be slightly 

higher than that calculated by Taylor and Delos. The pres­

ent result would therefore be closer to the experimentally 

measured results for that system. But since the calcula­

tions of the total detachment cross section by the complex 

potential model and Taylor-Delos formulas are close to each 

other, we see no need to carry out the calculation once 
again.

7.4 ELECTRON ENERGY SPECTRUM

We now proceed to calculate the electron energy 

spectrum. The direct numerical computation of Eq.(7.1-3) 
would be very time-consuming, so we are going to use two 

different approximate methods to calculate Ce (oo) . One is 

a stationary phase approximation. This gives a very simple 

result which turns out to be accurate for most of the spec­

trum. It fails, however, near € = E0. To get a result that
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is accurate in that region we use a uniform approximation
30, ji

developed by Connor et al., which is described in Appendix 

D.

a. STATIONARY PHASE APPROXIMATION

Here we use a stationary phase approximation to 

the integral in Eq. (7.1-3). (In chapter VI we used a sta­

tionary phase approximation to a different integral.)

The stationary phase points are two roots of /\(t) 
- 6 = 0, i.e.

We get two different results depending upon whether t, and t^ 

are real or not.

are both real, and the stationary phase approximation gives

(7.4-la)

(7.4-lb)

(1) i < Ec

For this classically accessible region, t, and t2

|C^(oo)|a = ( s,Z + s* + 2s(-s/sinlf) (7.4-2)

where

s(t) (7.4-3a)

s, = stt̂ ) (7.4-3b)



74

sz.= s (fci) (7.4-3c)

A  -i
If = (4/3)/3 * (E0- ̂  )Z (7 . 4-3d)

From Eq.(7.4-3a) we have |s(t)|2 equal to the survival prob­

ability at time t. We also know that is the detachment

rate and that 4 p> tz is the rate of change of which we get 

from A(t)-£ = 0. Hence we see from Eq.(7.4-2) that the 

first two terms of the right-hand side correspond to two 

probabilities of detachment at time t, and t̂  respectively 

and that the third term corresponds to the interference be­

tween these two processes. This is illustrated in Fig VII-6 
where we see two different paths leading to detachment: (i)

the electron makes a transition, at t( on the incoming part 

of the trajectory, to the continuum state of energy £ , and 
(ii) the electron remains in the bound state and makes a 

transition to the continuum state at t̂  on the outgoing part 

of the trajectory.

(2) (r > E0

In this classically inaccessible region we have 

two stationary phase points t( and tz which are both purely 

imaginary. From the condition that the integral must be 

convergent we know that the contour of integration goes 

through the point t whose imaginary part is positive. Tak­

ing only the real part of t when calculating s(t), we have 
s (t̂) ^  s (0) and
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|C€(«o)| = ( 7LY /̂/3| tj ) • s (0) • exp(- JT/2) (7.4-4)

We see that |C6 (oo)|£ decreases exponentially in the forbid­

den region. The stationary phase approximation breaks down 

at regions where E0-£ is close to zero.

b UNIFORM APPROXIMATION

A derivation of the uniform approximation is given 

in Appendix D. Here we just state the result. Let us de­

fine

i

y = (E0-6 )|3 5 (7. 4-5a)

S2 = S(-Ŝ  (7.4-5b)

f, = 2 fit/U, (7.4-5C)

fl = 2/3 tz (7. 4-5d)

where t( r , s, and s2 are the same as in Eqs. (7.4-1) and 

(7.4-3).

We can express |Ct (oo)|2 as follows depending on 

whether € is smaller than E 0 or not.

(1) £ « E0
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In this classically accessible case/ where t. and

t^ are real, we have

z 2.

lCe (ao) f = { (s+s/.yt A i V y )

+ (s(-s/. y*. Ai/2(-y) } (7.4-6)

where Ai is the Airy function.

(2) £ > Ea

In this classically inaccessible region we have 

t, = - i-/( - E0 )/p (7 . 4-7a)

tz= -t, (7.4-7b)

and

2 i
I C€ (CO) I* = 4'Y ~r e { (1-sin U - V 2 ) M y F -  Ai2(|y|)

+ (l+sin(ot-V2)>|y|i- Ai/2 ( |y| ) } (7.4-8)

where

rl
oi = i {] Im £(t)dt/ti} (7.4-9a)
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fo=1/4/S " E«) (7 . 4-9b)

There is a problem in applying Eq.(7.4-8). The quantity oi. 
in (7.4-9a) involves an integral over £(t) for purely imag­

inary 1 , but we have only calculated £ (t) for real t. 

There are several ways of estimating ot , of which the sim­

plest is the approximation ot= 0. This can be justified in 

the following way. The classically inaccessible region 

starts where £ - EQ is zero, and both t ( and t2 are zero. 

As £ increases, t, and t2 move out the imaginary axis 

and the magnitude of oL increases. However when £ is 

large enough that oL is significant, the Airy functions 

and |C^(oo)|i have become very small. In the range of £ 

in which |C6 (oo)|2 is significant, oL is close to zero, and 

Eq.(7.4-8) can be simplified as

2 ^ i. ^

C e(co) |Z = 1 y |* Ai£( | y 1 ) (7.4-10)
To"

£. RESULT

2In Fig.VII-7 we show the calculations of |C^(oo)|-pf

as functions of £ using both the uniform approximation and
-bstationary phase method for p -  10 and E 0= 0.02. In 

Fig.VII-8 we show the same calculations for Ec= 0.05.

In Fig.VII-7 we see only one peak but in Fig.VII-8 
there are three peaks in the electron energy spectrum . The 

number of peaks is determined by the value of E - 6 as can
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be seen from sintf in Eq.(7.4-2) or Ai(-y) in Eq.(7.4-6). 

The kind of oscillatory electron energy spectrum shown in 

Fig.VII-8 has not yet been seen in measurements involving 

electron detachment, but it does appear in measurements on 

Penning ionization.

Because we used a first-order approximation, we could not be 

sure that these probabilities would add to unity; the fact 

that they nearly do so suggests that our calculations are 

accurate and the approximations used are justified.

7.5 SUMMARY AND DISCUSSION

In this chapter we have applied our formulas to 

the case of H~(D“) in collisions with He using a quadratic 

approximation for A(t). We have calculated the dynamical 

complex potential and shown how it differs from the local 

complex potential. We have calculated the survival prob­

ability, and compared it with that obtained from the local 

complex potential model and that obtained by Taylor and De­

los. In this case it is found that the results are quite 

close to each other. This is not surprising: in chapter V, 

we showed that our formulas reduce to those of the local-

From Figs.VII-5 and VII-7 a simple calculation
-6gives, for E0= 0.02 and p= 10

o
2

(7.4-11)
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complex-potential model under appropriate conditions. In 

Appendix E we give an analytic proof that under appropriate 

conditions our results must agree with those of Taylor and 

Delos.

We have also calculated the electron energy spec­

trum which is found to have oscillatory structures that 

have not previously been calculated or observed for electron 
detachment. We have shown analytically why those oscilla­

tions arise. Finally, by checking conservation of probabil­

ity we have shown that the approximations used and the cal­

culations presented in this formulation should be accurate.



Chapter VIII
ELECTRON DETACHMENT FOR H - (D~) IN COLLISIONS 

WITH HELIUM

PART II: QUARTIC APPROXIMATION

8.1 INTRODUCTION

In this chapter we apply our formulas 

(Eqs.(7.1-1,2,3,4,5)) to the case of electron detachment for 

H“ (D“) in collisions with He using a quartic approximation 

for /\(t). This approximation can be related to the situ­

ations where, as R decreases, the discrete state crosses 

into the continuum and comes out again as shown in

Fig.VIII-1. Such behavior was found by Olson and Liu for
_ — 28 the H (D ) - He system.

In the last chapter we have applied our formulas 
to the same case using a quadratic approximation for ^(t). 

We are going to see in this chapter what differences arise 

from the more accurate quartic approximation. The calcula­
tions we make in this chapter parallel those made in sec­

tions 7.2, 7.3, and 7.4.

To see why a quartic approximation is needed, let 
us examine the H - He energy curves shown in Fig.VIII-1. 

For impact parameter b = 0, at energies near E = Ea, a graph

- 83 -
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of ^(t) vs t has the behavior indicated in Fig.VIII-2a, be­

cause the discrete state goes into the continuum then comes 
back out at smaller R (smaller |t|). At lower energies, 

near E^, A(fc) has two maxima and a minimum but the minimum 

is still within the continuum. For E = Ec, if the turning 

point coincides with the point at which A(R) is a maximum, 
then A(t) has the form shown in Fig.VIII-2c, and for still 

lower energies, we revert to the case of Fig.VIII-2d, for 

which the simpler quadratic approximation should usually be 

adequate.

The same types of behavior are found if we hold 

the energy fixed (near or above Eft) and increase the impact 

parameter. Since the electron energy spectrum directly re­

flects the behavior of A (fc) • we see that this quartic ap­

proximation can lead to much more complicated and interest­

ing behavior than can the quadratic approximation.

8.2 THE DYNAMICAL COMPLEX POTENTIAL AND SURVIVAL 
PROBABILITY

We suppose A ( fc) = E0 + oLt2 - ji t+ . In Table VIII-1 

we we give values for different combinations of E0, oL , and ft 

and we denote them cases B1 to B5. In Figs.VIII-3,4 we 

show respectively for case B1 the calculations of the real
Aand imaginary parts of (i) A(t) , (ii) G(^(t)), and (iii) 

£(t)-A(t). In Figs.VIII-5,6 we show the calculations of Im 

£(t) for cases B2, B3 and B4, B5 respectively. The case B2
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and B4 are easiest to interpret. In case B4 , ^(t) has the 
form shown in Fig.VIII-2a. When ^(t) increases toward its 

first maximum G(i/\(t)) also increases, and | Im (t) | has a 

corresponding maximum. Then as A(t) decreases, so does 

G(A(t)), and | Im £ (t)I moves back toward zero. Hence |Im 

£(t)I has a sharp peak for negative t, and a second sharp 

peak for positive t. Besides these, interference structures 

are visible, especially at large t.

Cases B3 and B5 are similar to B2 and B4, except 

that A(fc) is displaced negatively, so |Im£(t)| does not be­
come so large.

In Fig.VIII-7 we give the survival probabilities

for different combinations of cL and p .  The survival prob-
-6ability for p = 10 in the quadratic case is also included 

in the figure. The main effect of the quartic approximation 

is to "lower the threshold" for electron detachment. In the 

quadratic approximation, if E0^ 0 the discrete curve does 

not penetrate into the continuum, and the survival probabil­

ity is close to unity. In the quartic approximation, this 

threshold is shifted to E0 = - c £ / 4 p .

Table VIII-1 E0 , cL , and /3 for A(t)

Case B1 B2 B3 B4 B5
Eo 0 03 0 -0 04 -0.01 -0.05

oL (*10-4) 10 10 10 5 5

p (*10'lc) 5 5 5 1 1
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8.3 ELECTRON ENERGY SPECTRUM

As in the last chapter we use both the stationary
phase approximation and uniform approximation to calculate

— 5" -10
the electron energy spectrum for ol = 10 and = 5*10 .

a STATIONARY PHASE APPROXIMATION

the stationary phase points are the roots of df(t)/dt = 0; 
from which we have

Defining

f(t) = —  t5 - -joi t3- (E0-£ )t (8.3-1)

(8.3-2a)

(8.3-2b)

(8.3-2c)

(8.3-2d)

We must calculate C^(oo) differently according to whether 

oL +4^3(E0-£) is real or not. For classically accessible re­

gion we have oii+4|5 (E„-£) > 0, i.e., E 0- £ > -(at/4p) r so we
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can express C^foo) as follows depending upon whether £ is 

smaller than Ee+oi*/4(3 or not. From Fig.VIII-8 we see that 

in region (i) , i.e. for £ > E0+ °£/4p> r there are four com­

plex stationary phase points; in region (ii) we have Eo< 6 < 
2.E0+ot/4p and there are four real stationary phase points

and in region (iii) £ is less than E0 and there are two
✓

real and two complex stationary phase points.

(1) ^ < E0 + ol̂ 4|5

We have for this classically accessible region

4 1 "tie
CJ°°) = V s(t̂ 'exp{iIT signA/(t̂ + ( (A(fc) - O dt)}

’ (8.3-3a)

where

A
s(t^ = exp{- I Im £ (t) dt/fi} (8.3-3b)

~oo

In case of ^ < E0 , tj and t4 are complex. Their absolute 
values are very small as can be seen from Eqs.(8.3-2c) and 

(8.3-2d), so we make the approximation that t^= t4 = 0.

(2) £ > Eo+o£>4^3

For this classically inaccessible region we have

t,= a6+ i b c ' (8.3-4a)

t^= -t, (8 . 3-4b)
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t3= aG - iba (8 . 3-4c)

(8.3-4d)

where

aO= _/ ( ̂ /4 p +l)/2 (8.3-5a)

be= V ( V 4  f5 ( ^ E U ?  -l)/2 (8 .3-5b)

Since t ( ,t2 ,t3 ft4 are all complex numbers we see from 

Fig.VIII-9, which is the contour of integration of C^(oo), 

that the path of integration goes through only two station­

ary points. From the condition that as £ — > oo the imagi­

nary part of f(t) must be positive, we know the stationary 

points we need are t , and t^ . The stationary phase method 

then gives

Once again we use the approximation s(t^) = s(Ret^). We 

also notice that the stationary phase approximation breaks
down in regions where £ is close to E or to E 0+cf/4p> , 

where d^(t)/dt = 0.

b. UNIFORM APPROXIMATION

Defining

,-0°
(8.3-7)
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where

f (x) = ^ x  + ?3x3 + x5- (8.3-8a)

1, = -(E0-6 ) ( /3/5) 5 (8.3-8b)

3
- ( d / 3 )  ( fi/5)S (8.3-8c)

the uniform approximation gives

We have to calculate qo, q^, qz and q^ differently according 
to whether £ is in classically accessible or inaccessible 

regions. This accessibility depends upon whether the saddle 

points of U r i.e. the roots of df(x)/dx = 0, are real or 

not.

As in the case of stationary phase approximation we can ex­

press C ̂  (co) as follows depending upon whether £ is smaller

From df(x)/dx = 0 we have

xZ = cj. {d ± -Jot+ 4/3 (E#-€ ))/2(3 (8.3-10)

where

c,= ( /3/5)s (8.3-11)

than E 0 + d l/ 4 p or not.
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(1) 6 < Eo+

In this classically accessible region we have

where

30= (c0 /2) {x3• (s+s^ -xf• (s+s) }/(x* -x,2 ) (8 . 3-12a)

qt= (c0/2) {x3-(s-s,) -x̂ .(s-ŝ ) }/(x(x] -x̂ x* ) (8.3-12b)

q^= (c./2) (s+s-s-s4)/(xf-x3 ) (8.3-12C)

q3= (c0/2) {x^s-s^ -x ,(s-s4) }/(xx* -xx| ) (8.3-12d)

x ( =-/(<* + V ot‘l+4^(E„-^))/2|5 /co (8 . 3-13a)

x2= -x, (8. 3-13b)

x3 = V(0l - n/cL'-+4p(Z0 -(:))/2p /co (8.3-13C)

x^= -x3 (8 . 3-13d)
A

exp{-c0/h\ Im £(cox)dx} ,(8.3-13e)
-«>

The function U and its derivatives can be expressed in terms 

of gamma functions:

°0 00 I, Hi

U =  2 . X Z  (Vi,! >(*,/£!)•*■( 4  (8.3-14a)
Ir-oifo ^

3 U / J 2 = 2 X  £  {^/( 1,-1)! } (iffy!) *F( £ , ) (8.3-14b)
V i 0
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, , 00 60 g,
3 ^ 1  = 2 I  E  { ^,/( -2) ! } (V/*,!)- F(^I > h  ) (8.3-140

ipi IfO

aU/52 = 2 £  5  (^/^!){^/(£i-l)l } - F( i, r Z5) (8.3-14d)
£r°ff'

where

F(4,,£3 ) = 7^{(l+£,+3ij)/5}-cos{7r (1+6£,+8£j )/10}

(8.3-15)

In case of 6 < E0, we make the approximation that x^= x^= 0 

for the same reason stated in the case of the stationary 
phase approximation.

(2) € > E# + oLV4f5

In this classically inaccessible region we have 
the same difficulty as is encountered in the quadratic case,

i.e. we do not know what £(x) is if x is not real. In this

case x is a complex number. We have

x( = cc (ac+ ib„ ) (8 .3-16a)

xz = -x, (8 . 3-16b)

x3= c0(a0- ib0 ) (8.3-16c)

x^= —x 3 (8.3-16d)

where a 0 and b0 are defined in Eqs.(8.2-5a,b).

Since the classically inaccessible region
starts when 4^3(€-E0 ) /d£ = 1 we see that a0= 1 and bc = 0. So
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we assume the imaginary part of xfe can be neglected when we

calculate s = exp{-cc /fi\ I m £ ( c 0x)dx} where k = 1,2,3,4.
—00

Then we have

qo= c0 (S(+S2)/2 (8.3-17a)

q, = c0 (s-sp (3a0"’-b0i)/{4af (ao +b„ ) } '(8 3-17b)

q2= 0 (8.3-17c)

q3= -co (S|-sz)/{4at-(af+b^)} (8.3-17d)

but we do not think it is right to have q = 0 so we take q 

equal to the limit in the classically accessible region.

c_. RESULT

In Fig.VIII-10 we show the calculations of I C ̂ (co) I*""!? 

as functions of 6 using both the stationary phase and uni-
— 5 -10form approximations for cL - 10 r p= 5*10 and E0= 0.03. 

Figs.VIII-11 12 show the same calculations for E0= 0 and 

-0.03 respectively.

Interesting structure is found in these spectra.
At points corresponding to dA(t)/dt = 0, the stationary 

phase approximation blows up; usually the uniform approxima­

tion will also show a peak in this region. Also there are 

valleys corresponding to interference minima as explained 

earlier.
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8.4 DISCUSSION

In this chapter we have applied our formulas to 
the case of H“ (D~) in collisions with He using a quartic ap­

proximation for A ( t )  • Although the Taylor-Delos formulas 

(based on the simpler quadratic approximation) had been used 

to account for the survival probability and differential and 

total cross sections for this system, we find that the more 

accurate quartic approximation ought to be used to calculate 

the electron energy spectrum.

The electron energy spectrum shows in some cases 

interesting structure, with peaks corresponding to points 

where d (t)/dt = 0, and an interference pattern which arises 

because several paths lead to the same final state.



C h a p te r  IX 

CONCLUSION

9.1 SUMMARY

We have presented here a general theory of elec­

tron detachment for negative ions in collisions with atoms. 

The thoery is based upon the close-coupling model developed 

by Taylor and Delos, but we have found a new way to solve 

the coupled differential equations. Our new methods are 

more general than those developed earlier, and they permit a 

more accurate representation of the behavior of the systems 

that we study.

We showed in chapter II the derivation of our new 

formulas and applied in chapter III a zero order approximate 
solution to the case of H"(D~) in collisions with Ne. The 

theoretical calculation of the total detachment cross sec­

tion were found to be in good agreement with experiments. 

Then in chapter IV we discussed in detail the properties of
Aa propagator ^  (7 ) which was neglected in the zero-order 

approximation.

In chapter V we showed that our formulas can be 
reduced, under appropriate conditions, to the local-complex- 

potential formulas, which are well-known and which have been

- 106 -
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applied successfully to some cases. However, we noted some 

defects in this approximation: in theory we found that C_̂ (t ) 

and all its derivatives are continuous, but the complex-po­

tential formula leads to some discontinuous derivatives; 

more significantly, it has been found in experiments that 

the local-complex-potential formulas predict an isotope ef­

fect that is opposite to what is found in experiments. 
Therefore, in chapter VI, we found an improved (first-order) 

approximation to the solution. The solution is described in 

terms of a "dynamical complex potential", which goes in the 

slow-collision limit to the local-complex-potential, but 

which shows interesting oscillatory structure.

In chapters VII and VIII we applied our formulas 

to the case of H“ (D“) colliding with He. The new formulas 

have been shown to be comparable and consistent to those de­

veloped by Taylor and Delos in the case of a quadratic ap­

proximation for ^(t) • Using a quartic approximation to 

^(t), some interesting results are given for the electron 

energy spectra. These results have not yet been found in 

experiments.

9.2 PROSPECTS

There are many further developments that can be 

made in connection with the new formulation we have present­

ed in this thesis.
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First, since there have been several calculations 

for ^(t) (or 2\(R(t) ) ) / for example: H~ on Ar, Cl” on Ar33and 
Br“ on He, we can apply our formulas to calculate cross sec­

tions for electron detachment for these cases. Probably for 

these processes, ^(t) can be well fitted to either the qrad- 

ratic or quartic approximation of time, and such approxima­

tions provide simplicity and physical insight. However, as 

we have emphasized before, in the present formulation we can 

take any form for ̂ (t), so many systems can be described re­

gardless of whether or not these additional approximations 

are valid.

Second, we hope that direct numerical computation 

of Eq.(7.1-3) can be made in the near future so that the 

various approximations we used for calculations in chapters 

VI, VII and VIII can be tested for their applicability and 

accuracy.

Finally, the framework developed here can also be 

applied to other processes- such as Penning ionization, as­

sociative detachment, dissociative recombination and disso­

ciative attachment, and positron production in heavy ion 
collisions. The results may provide helpful comparisons to 

the various theories used at present to study those process­

es .



Appendix A 

CONTINUITY PROOF

In this appendix, we sketch proofs which give suf­

ficient (but not necessary) conditions that C_|(t) and its 

first two derivatives, and its derivative, and d$
/dt are all continuous.

As stated earlier, it is assumed that ̂ \(t), p^(t), 

V^(t) and V,(t) are differentiable functions of t. If in 

addition, for all t,t'

I $ M,(€) (A-la)

and
00
^ M((£)d£ converges (A-lb)
O

then ^)(t,t) is a continuous function of t (Weierstrass M- 

test) , and so is ^(t^t). If

I pt(t)- V|t(t) |  ̂M2(fe) (A-2a)

and

l M^(£)d£ converges (A-2b)

- 109 -
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then $ (t) is a continuous function of t. It then follows 

that Eq. (2.3-4) has solution C_( (t) which-are continuous and 

differentiable; futhermore dC_j(t)/dt is also continuous. If

f^M-V^tJ.expt-if^t.t'j/fiJ.V^t)}! ^ M3(0 (A-3a)

and
00

 ̂ converges (A-3b)
O

then ^^(tjtJ/at exists and it is continuous. Likewise if 

lfjr{ fl(t)' V,/t(t)-exp{-i$e (t,t')/fi}} 1 < M4(£) (A-4a)

and
00

 ̂M^(t)de converges (A-4b)
0

then dv$/dt exists and is continuous.

Differentiating Eq.(2.3-4) we have

iDdC_|(t)/dt2 = + £  (t,t)C_, (t)

+ ( dt{d&(t,t)/at}C_,(t) + dv9/dt (A-5)

and since the right-hand-side is continuous, so is the 
left-hand-side.

Derivatives of •>& and vi) are given by



= (ih)'^ d  ̂|f{ V t ) '  exp{-i^^(t,t)/f5}}V^H(t)
(A-6)

.00
dvQ/dt = ^ d €  ft(t)-V)f(t)- exp{-i ̂ (t^tVhJjCJt,,) (A-7) 

provided that the integrals converge.



Appendix B 

CONVERGENCE PROOF

A
We give here a proof that the quantity C_|(t), de­

fined in Eq. (2.4-7) approaches a finite limit as t->»oo. A 

sufficient (but by no means necessary) condition for this 

result is that

rT /t /
lim \ dt\ dt|&(t,t) I < co (B-l)
T-̂ od 't

Under this condition, the proof is simple. The statement
Athat C_|(t) approaches a finite limit as t -»oo is equivalent 

to the statement that

/T + a  Alim I | dC_i(t) /dt | dt = 0 (B-2)
T-a>oo

for any finite a. Now

"t ^
dC_j(t)/dt = exp{i( A(t)dt%}f ^ ( t /t)C_1(t)dt/ (B-3)

and

so

A. /|dCH (t)/dt| ^ ( I^Xt^tJldt7 (B-4)

7T+A ciC-.C-t) f ciC-jCt)I lim ( dt | « lim ( I— 7T— I dtT ^00)_r dt dt

- 112 -
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,Tm ,t

T-»0Ô -r •’t1 o

=0 (B-5)

/ / n I /^ lim ( I I-/) (t,t) I dt • dt
L

if the limit (B—1) exists.



Appendix C 

Vlt FROM SQUARE WELL MODEL

In this appendix V|f is calculated from a square 
well model derived by Taylor and Delos. For details see 

Ref. 22.

) can be approximated by solving the Schreodinger equation 

for a particle in a square well capable of supporting a sin­

gle bound state (Fig.C-1)^2' The normalized bound state wave 

function is

The simplest single electron wave functions ( d> ,<!>
(r

0 ^ r < rQ (C-la)

r > r0 (C-lb)

where

(C-2a)

(C-2b)

N = r0 + (v0/(e ' + V0 ))• (sin2 (k ,r)/kci) (C-2c)

Under the following boundary conditions

4>̂ (r = 0) = 0

- 114 -
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4>(r=L) = 0 (C-3b)

the normalized continuum wave function are

2 4( — )• sinkr (C-4a)

=
■{ exp{ik (r-r)} (--cos (kr) +i• sin(kr) )

where

(2LM)k i c Hi i 0 ' 0

+ exp{-ik(r-r) }(— p-cos (kr)+i* sin (kr0) ) } (C-4b)Z c- | o i

k| = {2m ( £ + V) /ft2" } L (C-5a)

k^= (C-5b)

I2!1 2. 2M = — -cos(kr) + sin(kr) (C-5c)^  I o’ I °

Then we have

V , -  V|t=

0 <-fr>‘-s i n <koir ) - V . - l ^ - s i n ^ n - d r

^ ^ , . ( k lSin(ka g-cos(l^rj

“k0)cos (k6| r0) • sin (kr) }/(k^-k^) (C-6c)

where V( is a constant coupling potential.



Appendix D 
UNIFORM APPROXIMATION

This appendix is mainly an abstract from Ref.31. 

The uniform approximation is used to calculate the 

following integral

Asymptotically, the main contribution to the integral (D-l) 

arises from the saddle-points of f, i.e. the roots x = x(, x?, 

.... xn which satisfy

The first step in the calculation is to introduce a new 

variable u into the integral (D-l) by mapping f(ol;x) onto a 

polynomial:

(D-l)

f (o!; x) /S x = 0 (D-2)

f(o(;x) = h<n)(ot;u) (D-3)

where h(n1(oi.;u) is a polynomial in u of degree n+1

h<n\d;u) = 7 (d) + Z  I M ) * *  + u°+' (D-4)
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Notice that the term in un is absent and the the coefficient 
of the term in u has been nomalized to unity.

The mapping (D-3) is one-to-one and uniformly ana­

lytic if the saddle-points on either side of Eq.(D-3) corre­
spond

x = x(d) 4-- * u = u.(ol.) i=l,2, ...n (D-5)
L L

The saddle-points x.(oO are found from Eq (D-2) and the u (oi)i-
satisfy the equation

3hCn)(oUu)/eu = 0 (D-6)

Substituting the saddle-points (D-5) into Eqs. (D-3) and 

(D-4) leads to

Vrl :
f(d;x.) = I j d )  + £ l . ( d ) u  + u 1 = 1,2, ...n (D-7)

After changing variables from x to u, the integral (D-l) be­
comes

(D-8) 

(D-9)

where

1(d) = (u) • exp{ihcn)(d;u) }du
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The second step in the calculation is to expand G(u) in a 

power series in u. Retaining the first n terms of this se­

ries, we have

M  k
G(u(oO) = I  q*(oU-u(oU (D-10)

te.=o

From Eqs.(D-5), (D-9), and (D-10) we have 

dX h-' fe
g (x) ‘ (TTr)y. = I  guU  ̂ 1 = 1*2, ...n (D-ll)

du £-0 h v

where

(4tT>y = {hw l[ol>tt)/f̂ (ol;K)}i i = 1,2, ...n (D-12)0 U Xj. I j.

Inserting Eq.(D-10) into Eq.(D-8) and extending its limit to 
(-00,4-00) gives

n -| / ° °  u n-' . |
I(oi) = Y. u‘ exp{ i (£ uJ +u )}du-exp(i£) (D-13)

fc*o ioo «H J

Eq.(D-13) can be written in terms of the cannonical integral

( ) ^ IU((?,,̂ , . . . ̂ ) =  ̂ exp{i (̂ |u+^ui+. . . + ̂ u +u^)}du (D-14)
-oo n~

and its derivatives. The result is

I(ol) = (qU -î I q u ) • exp (i^) (D-15)O , P-Jl ~7 Ok='
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In Ref.31 three limiting cases of the above result are dis­

cussed: (i) all saddle-points are close together, (ii) all
saddle-points are well separated from one another, and 

(iii) a group s of saddle-points out of the total number n 

are close together but are separated from the remaining n-s. 

Also in Ref.31 is presented, the series representation of the 

canonical integral (D-14) using complex variable techniques. 

Notice though in Ref.31, Eq.(4.10) is wrong as we consider 

the case n=4 in which P2 should be equal to P(.

In the case n=2 we see in Ref.30 that the result 

(D-15) can be reduced to the Airy expansion.



Appendix E 
EQUIVALENCE PROOF

In this appendix we show that our formulas are 

equivalent to those of Taylor and Delos at least for some 

simple form of G(6)-
We have from Ref.22

C (t -*oo) = lim exp{-i^(t) t/h}- exp(fy\ ) (E-la)

C (t -><o) = lim (7lV.,//3i)exp(-i£t/fi)-exp(-|yi ) (E-lb)

where

yx = (|^ {(x-E0-G(^))//3}2 dx,j' (E-lc)

So we have

{ (x-Eo -G(x) )/p) dx (E-2a)

(E-2b)

with

XT- E0- G(xrp) = 0 (E-2c)
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Suppose G(x) = ax+b and /\(t) = Eft- jit/fi*' ; then we have

ytr ,E-3a)

and

lim v = -i•( 
-fĉeo P

(E-3c)

From Eq.(E-l) we then have

C_((co) = lim exp{i^(t) t/fi}-exp{-i (-^-)2 t3/fi3 } (E-4a)
"t-^oo I

and

I ^ f ° ° **C (oo) = lim  r -V •exp(-i£t/fiM exp{i (^~+yx) }dx
i[S ? ) o 3 t

(E-4b)

From Eq.(6.2-2a) we have

2>(T) = ill-a-$'(7) + b-$(T) (E-5)

then

£(t) = ^(t) + a-£(t) + b (E-6)

This gives



123

- ACt) + b Eo-jStVtf+bS ( t )  -  - 5= 5;- - - - h r —  ( * - 7 )
So from Eq.(7.1-2) we have

f -L r Q E . t
C_i(t) = exp{~-[ A(fc)*t + -7TT + - -,— n--  l} (E"8a)

s (■»— <̂)/5't AEr̂ t-= exp{-i/\(t) t/fi) }exp{-^,------ |- q-----} (E-8b)

as t — » oo we have

C .(oo) = lim exp{-iA(fc) t/fi} • exp{-“ 0(--” ) t/4\} (E-9)-t-̂ oo fpi

Compare Eqs.(E-4a) and (E-9) we see they are very close. 
For small a we have

(1-a) = 1 - a/2 - aZ/8 + ....  (E-10a)

(1— a)/(l-a) = 1 - a/2 - a^2 + ....  (E-10b)

So Eqs.(E-4a) and (E-9) are equal to the first order of a. 
From Eq.(7.1-3) we have

C<Jt) = — ■ exp (-if t/fi) •  ̂ exp{^(£t'- j ~ - ~ - d t J  }dt'

(E-ll)

Since
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£ t' - ( — — dt = ( <c - -~^')t/+ l.UlL- (E-12a)
K  \~<\ \-(y  ̂ (HDfi5

( E - 1 2 b |

we have

C (oo) = lim — V • exp (-it t/fi) . f  exp{i ( -~ + y  •/) }dx
-t-^oo IB * J 0 3 ^

(E-13a)

where

x  "  ( E - 1 3 b )

Eqs.(E-4b) and (E-13a) are exactly the same. So we have 

shown that our formulas are almost equivalent to those of 

Taylor and Delos in the quadratic case at least for some 

simple form of G(£).
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